Science.gov

Sample records for basin northern pikeminnow

  1. Early life history of the northern pikeminnow in the lower Columbia River basin

    USGS Publications Warehouse

    Gadomski, D.M.; Barfoot, C.A.; Bayer, J.M.; Poe, T.P.

    2001-01-01

    The northern pikeminnow Ptychocheilus oregonensis is a large, native cyprinid in the Columbia River basin that has persisted in spite of substantial habitat alterations. During the months of June to September 1993-1996, we investigated the temporal and spatial patterns of northern pikeminnow spawning, along with describing larval drift and characterizing larval and early juvenile rearing habitats in the lower Columbia River (the John Day and Dalles reservoirs and the free-flowing section downstream of Bonneville Dam) as well as in the lower sections of two major tributaries (the John Day and Deschutes rivers). The density of newly emerged drifting larvae was higher in dam tailraces (a mean of 7.7 larvae/100 m3 in surface tows) than in the lower reservoirs (0.3 larvae/100 m3), indicating that tailraces were areas of more intense spawning. Density was particularly high in the Bonneville Dam tailrace (15.1 larvae/100 m3), perhaps because adult northern pikeminnow are abundant below Bonneville Dam and this is the first tailrace and suitable main-stem spawning habitat encountered during upriver spawning migrations. Spawning also occurred in both of the tributaries sampled but not in a backwater. Spawning in the Columbia River primarily took place during the month of June in 1993 and 1994, when the water temperature rose from 14??C to 18??C, but occurred about 2 weeks later in 1995 and 1996, possibly because of cooler June water temperature (14-15??C) in these years. The period of drift was brief (about 1-3 d), with larvae recruiting to shallow, low-velocity shorelines of main-channel and backwater areas to rear. Larvae reared in greatest densities at sites with fine sediment or sand substrates and moderate- to high-density vegetation (a mean density of 92.1 larvae/10 m3). The success of northern pikeminnow in the Columbia River basin may be partly attributable to their ability to locate adequate spawning and rearing conditions in a variety of main-stem and tributary

  2. Report on the Predation Index, Predator Control Fisheries, and Program Evaluation for the Columbia River Basin Experimental Northern Pikeminnow Management Program, 2008 Annual Report.

    SciTech Connect

    Porter, Russell .

    2009-09-10

    This report presents results for year seventeen in the basin-wide Experimental Northern Pikeminnow Management Program to harvest northern pikeminnow1 (Ptychocheilus oregonensis) in the Columbia and Snake Rivers. This program was started in an effort to reduce predation by northern pikeminnow on juvenile salmonids during their emigration from natal streams to the ocean. Earlier work in the Columbia River Basin suggested predation by northern pikeminnow on juvenile salmonids might account for most of the 10-20% mortality juvenile salmonids experience in each of eight Columbia River and Snake River reservoirs. Modeling simulations based on work in John Day Reservoir from 1982 through 1988 indicated that, if predator-size northern pikeminnow were exploited at a 10-20% rate, the resulting restructuring of their population could reduce their predation on juvenile salmonids by 50%. To test this hypothesis, we implemented a sport-reward angling fishery and a commercial longline fishery in the John Day Pool in 1990. We also conducted an angling fishery in areas inaccessible to the public at four dams on the mainstem Columbia River and at Ice Harbor Dam on the Snake River. Based on the success of these limited efforts, we implemented three test fisheries on a system-wide scale in 1991 - a tribal longline fishery above Bonneville Dam, a sport-reward fishery, and a dam-angling fishery. Low catch of target fish and high cost of implementation resulted in discontinuation of the tribal longline fishery. However, the sport-reward and dam-angling fisheries were continued in 1992 and 1993. In 1992, we investigated the feasibility of implementing a commercial longline fishery in the Columbia River below Bonneville Dam and found that implementation of this fishery was also infeasible. Estimates of combined annual exploitation rates resulting from the sport-reward and dam-angling fisheries remained at the low end of our target range of 10-20%. This suggested the need for additional

  3. Development of a System-Wide Predator Control Program: Stepwise Implementation of a Predation Index, Predator Control Fisheries, and Evaluation Plan in the Columbia River Basin; Northern Pikeminnow Management Program, 2000 Annual Report.

    SciTech Connect

    Porter, Russell G.; Glaser, Bryce G.; Amren, Jennifer

    2003-03-01

    This report presents results for year ten in a basin-wide program to harvest northern pikeminnow (Ptychocheilus oregonensis). This program was started in an effort to reduce predation by northern pikeminnow on juvenile salmonids during their emigration from natal streams to the ocean. Earlier work in the Columbia River Basin suggested predation by northern pikeminnow on juvenile salmonids might account for most of the 10-20% mortality juvenile salmonids experience in each of eight Columbia River and Snake River reservoirs. Modeling simulations based on work in John Day Reservoir from 1982 through 1988 indicated that, if predator-size northern pikeminnow were exploited at a 10-20% rate, the resulting restructuring of their population could reduce their predation on juvenile salmonids by 50%. To test this hypothesis, we implemented a sport-reward angling fishery and a commercial longline fishery in the John Day Pool in 1990. We also conducted an angling fishery in areas inaccessible to the public at four dams on the mainstem Columbia River and at Ice Harbor Dam on the Snake River. Based on the success of these limited efforts, we implemented three test fisheries on a system-wide scale in 1991--a tribal longline fishery above Bonneville Dam, a sport-reward fishery, and a dam-angling fishery. Low catch of target fish and high cost of implementation resulted in discontinuation of the tribal longline fishery. However, the sport-reward and dam-angling fisheries were continued in 1992 and 1993. In 1992, we investigated the feasibility of implementing a commercial longline fishery in the Columbia River below Bonneville Dam and found that implementation of this fishery was also infeasible. Estimates of combined annual exploitation rates resulting from the sport-reward and damangling fisheries remained at the low end of our target range of 10-20%. This suggested the need for additional effective harvest techniques. During 1991 and 1992, we developed and tested a modified

  4. Development of a System-Wide Predator Control Program: Stepwise Implementation of a Predation Index, Predator Control Fisheries, and Evaluation Plan in the Columbia River Basin; Northern Pikeminnow Management Program, 2002 Annual Report.

    SciTech Connect

    Porter, Russell G.; Winther, Eric C.; Fox, Lyle G.

    2004-01-01

    This report presents results for year twelve in a basin-wide program to harvest northern pikeminnow1 (Ptychocheilus oregonensis). This program was started in an effort to reduce predation by northern pikeminnow on juvenile salmonids during their emigration from natal streams to the ocean. Earlier work in the Columbia River Basin suggested predation by northern pikeminnow on juvenile salmonids might account for most of the 10-20% mortality juvenile salmonids experience in each of eight Columbia River and Snake River reservoirs. Modeling simulations based on work in John Day Reservoir from 1982 through 1988 indicated that, if predator-size northern pikeminnow were exploited at a 10-20% rate, the resulting restructuring of their population could reduce their predation on juvenile salmonids by 50%. To test this hypothesis, we implemented a sport-reward angling fishery and a commercial longline fishery in the John Day Pool in 1990. We also conducted an angling fishery in areas inaccessible to the public at four dams on the mainstem Columbia River and at Ice Harbor Dam on the Snake River. Based on the success of these limited efforts, we implemented three test fisheries on a system-wide scale in 1991--a tribal longline fishery above Bonneville Dam, a sport-reward fishery, and a dam-angling fishery. Low catch of target fish and high cost of implementation resulted in discontinuation of the tribal longline fishery. However, the sport-reward and dam-angling fisheries were continued in 1992 and 1993. In 1992, we investigated the feasibility of implementing a commercial longline fishery in the Columbia River below Bonneville Dam and found that implementation of this fishery was also infeasible. Estimates of combined annual exploitation rates resulting from the sport-reward and damangling fisheries remained at the low end of our target range of 10-20%. This suggested the need for additional effective harvest techniques. During 1991 and 1992, we developed and tested a modified

  5. Development of a System-wide Predator Control Program: Stepwise Implementation of a Predation Index, Predator Control Fisheries, and Evaluation Plan in the Columbia River Basin; Northern Pikeminnow Management Program, 1998 Annual Report.

    SciTech Connect

    Young, Franklin R.; Wachtel, Mark L.; Petersen, Marc R.

    2003-03-01

    We are reporting on the progress of the Northern Pikeminnow Sport-Reward Fishery (NPSRF) in the lower Columbia and Snake rivers for 1998. The objectives of this project were to (1) implement a sport fishery that rewards anglers who harvest northern pikeminnow Ptychocheilus oregonensis {ge}279 mm (11 inches) total length, (2) collect catch data on selected fish species caught by fishery participants while targeting northern pikeminnow, (3) monitor and report incidental catch of sensitive salmonid species by anglers targeting northern pikeminnow and, (4) collect, monitor and report data on angler participation, catch and catch per angler day of northern pikeminnow during the season. A total of 108,903 northern pikeminnow {ge}279 mm were harvested during the 1998 season and 21,959 angler days were spent harvesting these fish. Harvest was below the seven year average of 150,874 and participation was well below the seven-year average of 51,013 angler days. Catch per angler day for all anglers during the season was 4.96 and exceeded the seven-year average of 2.96 northern pikeminnow per angler day. Peamouth Mylocheilus caurinus, and white sturgeon Acipencer transmontanus, were the other species most often harvested by returning NPSRF anglers targeting northern pikeminnow. Harvest of salmonids Oncorhynchus spp. by NPSRF anglers targeting northern pikeminnow remained below limits established by the National Marine Fisheries Service (NMFS).

  6. Development of a System-Wide Predator Control Program: Stepwise Implementation of a Predation Index, Predator Control Fisheries, and Evaluation Plan in the Columbia River Basin; Northern Pikeminnow Management Program, 2001 Annual Report.

    SciTech Connect

    Porter, Russell G.; Winther, Eric C.; Fox, Lyle G.

    2003-03-01

    This report presents results for year eleven in a basin-wide program to harvest northern pikeminnow (Ptychocheilus oregonensis). This program was started in an effort to reduce predation by northern pikeminnow on juvenile salmonids during their emigration from natal streams to the ocean. Earlier work in the Columbia River Basin suggested predation by northern pikeminnow on juvenile salmonids might account for most of the 10-20% mortality juvenile salmonids experience in each of eight Columbia River and Snake River reservoirs. Modeling simulations based on work in John Day Reservoir from 1982 through 1988 indicated that, if predator-size northern pikeminnow were exploited at a 10-20% rate, the resulting restructuring of their population could reduce their predation on juvenile salmonids by 50%. To test this hypothesis, we implemented a sport-reward angling fishery and a commercial longline fishery in the John Day Pool in 1990. We also conducted an angling fishery in areas inaccessible to the public at four dams on the mainstem Columbia River and at Ice Harbor Dam on the Snake River. Based on the success of these limited efforts, we implemented three test fisheries on a system-wide scale in 1991--a tribal longline fishery above Bonneville Dam, a sport-reward fishery, and a dam-angling fishery. Low catch of target fish and high cost of implementation resulted in discontinuation of the tribal longline fishery. However, the sport-reward and dam-angling fisheries were continued in 1992 and 1993. In 1992, we investigated the feasibility of implementing a commercial longline fishery in the Columbia River below Bonneville Dam and found that implementation of this fishery was also infeasible.

  7. Persistence of identifiable remains of white sturgeon juveniles in digestive tracts of northern pikeminnow

    USGS Publications Warehouse

    Gadomski, D.M.; Frost, C.N.

    2004-01-01

    Juvenile white sturgeon, Acipenser transmontanus, have not been commonly identified as prey items in digestive tracts of fishes collected in the wild. In particular, the diet of northern pikeminnow, Ptychocheilus oregonensis, an abundant Pacific Northwest freshwater predator which has been widely studied, has not included juvenile white sturgeon. To aid in interpreting these results and help in planning future feeding studies, we determined the persistence of identifiable remains of white sturgeon juveniles in this predator's digestive tract. Northern pikeminnow (mean total length = 476 mm), were force-fed meals of 2 or 3 juvenile white sturgeon (mean total length = 91 mm). After digestive periods of 4, 8, 16, 24, 28, and 32h at a water temperature of about 17 ??C, fish were sacrificed, digestive tracts removed, and contents examined. Our results indicate that juvenile white sturgeon would be readily discernable in digestive tracts of northern pikeminnow at least a day after feeding, with scutes remaining undigested and identifiable for 28 h.

  8. Development and corroboration of a bioenergetics model for northern pikeminnow (Ptychocheilus oregonensis) feeding on juvenile salmonids in the Columbia River

    USGS Publications Warehouse

    Petersen, J.H.; Ward, D.L.

    1999-01-01

    A bioenergetics model was developed and corroborated for northern pikeminnow Ptychocheilus oregonensis, an important predator on juvenile salmonids in the Pacific Northwest. Predictions of modeled predation rate on salmonids were compared with field data from three areas of John Day Reservoir (Columbia River). To make bioenergetics model estimates of predation rate, three methods were used to approximate the change in mass of average predators during 30-d growth periods: observed change in mass between the first and the second month, predicted change in mass calculated with seasonal growth rates, and predicted change in mass based on an annual growth model. For all reservoir areas combined, bioenergetics model predictions of predation on salmon were 19% lower than field estimates based on observed masses, 45% lower than estimates based on seasonal growth rates, and 15% lower than estimates based on the annual growth model. For each growth approach, the largest differences in field-versus-model predation occurred at the midreservoir area (-84% to -67% difference). Model predictions of the rate of predation on salmonids were examined for sensitivity to parameter variation, swimming speed, sampling bias caused by gear selectivity, and asymmetric size distributions of predators. The specific daily growth rate of northern pikeminnow predicted by the model was highest in July and October and decreased during August. The bioenergetics model for northern pikeminnow performed well compared with models for other fish species that have been tested with field data. This model should be a useful tool for evaluating management actions such as predator removal, examining the influence of temperature on predation rates, and exploring interactions between predators in the Columbia River basin.

  9. Evacuation of Passive Integrated Transponder (PIT) Tags from Northern Pikeminnow Consuming Tagged Juvenile Chinook Salmon

    USGS Publications Warehouse

    Petersen, J.H.; Barfoot, C.A.

    2003-01-01

    Prey fish implanted with passive integrated transponder (PIT) tags can be used in predation studies if the timing of tag evacuation from the predators is understood. Laboratory experiments were conducted to determine how PIT tags in juvenile Chinook salmon Oncorhynchus tshawytscha that were consumed by northern pikeminnow Ptychocheilus oregonensis were evacuated in relation to various parameters. The rate of evacuation was directly related to temperature, while predator size and the number of prey consumed had less effect on the timing of tag evacuation. A power model was fitted to predict the proportion of tags expected to be evacuated at different intervals after ingestion. These results could be used in planning field or laboratory predation experiments with PIT-tagged prey fish.

  10. Density, aggregation, and body size of northern pikeminnow preying on juvenile salmonids in a large river

    USGS Publications Warehouse

    Petersen, J.H.

    2001-01-01

    Predation by northern pikeminnow Ptychocheilus oregonensis on juvenile salmonids Oncorhynchus spp. occurred probably during brief feeding bouts since diets were either dominated by salmonids (>80% by weight), or contained other prey types and few salmonids (<5%). In samples where salmonids had been consumed, large rather than small predators were more likely to have captured salmonids. Transects with higher catch-per-unit of effort of predators also had higher incidences of salmonids in predator guts. Predators in two of three reservoir areas were distributed more contagiously if they had preyed recently on salmonids. Spatial and temporal patchiness of salmonid prey may be generating differences in local density, aggregation, and body size of their predators in this large river.

  11. Predation by Northern Pikeminnow and tiger muskellunge on juvenile salmonids in a high–head reservoir: Implications for anadromous fish reintroductions

    USGS Publications Warehouse

    Sorel, Mark H.; Hansen, Adam G.; Connelly, Kristin A.; Wilson, Andrew C.; Lowery, Erin D.; Beauchamp, David A.

    2016-01-01

    The feasibility of reintroducing anadromous salmonids into reservoirs above high-head dams is affected by the suitability of the reservoir habitat for rearing and the interactions of the resident fish with introduced fish. We evaluated the predation risk to anadromous salmonids considered for reintroduction in Merwin Reservoir on the North Fork Lewis River in Washington State for two reservoir use-scenarios: year-round rearing and smolt migration. We characterized the role of the primary predators, Northern Pikeminnow Ptychocheilus oregonensis and tiger muskellunge (Northern Pike Esox lucius × Muskellunge E. masquinongy), by using stable isotopes and stomach content analysis, quantified seasonal, per capita predation using bioenergetics modeling, and evaluated the size and age structures of the populations. We then combined these inputs to estimate predation rates of size-structured population units. Northern Pikeminnow of FL ≥ 300 mm were highly cannibalistic and exhibited modest, seasonal, per capita predation on salmonids, but they were disproportionately much less abundant than smaller, less piscivorous, conspecifics. The annual predation on kokanee Oncorhynchus nerka (in biomass) by a size-structured unit of 1,000 Northern Pikeminnow having a FL ≥ 300 mm was analogous to 16,000–40,000 age-0 spring Chinook Salmon O. tshawytscha rearing year-round, or 400–1,000 age-1 smolts migrating April–June. The per capita consumption of salmonids by Northern Pikeminnow having a FL ≥ 200 mm was relatively low, due in large part to spatial segregation during the summer and the skewed size distribution of the predator population. Tiger muskellunge fed heavily on Northern Pikeminnow, other nonsalmonids, and minimally on salmonids. In addition to cannibalism within the Northern Pikeminnow population, predation by tiger muskellunge likely contributed to the low recruitment of larger (more piscivorous) Northern Pikeminnow, thereby decreasing the risk of predation to

  12. Development of a Systemwide Predator Control Program, Section I : Northern Squawfish Management Program - Implementation, 1997 Annual Report.

    SciTech Connect

    Young, Franklin R.

    1998-10-01

    Report on results from the sixth year of a basin-wide program to harvest northern pikeminnow (Ptychocheilus oregonensis) in an effort to reduce mortality due to northern pikeminnow predation on juvenile salmonids during their emigration from natal streams to the ocean.

  13. Caribbean basin framework, 2: Northern Central America

    SciTech Connect

    Tyburski, S.A.; Gordon, M.B.; Mann, P. )

    1991-03-01

    There are four Jurassic to Recent basin-forming periods in northern Central America (honduras, Honduran Borderlands, Belize, Guatemala, northern Nicaragua): (1) Middle Jurassic-Early Cretaceous rifting and subsidence along normal faults in Honduras and Guatemala; rifts are suggested but are not well defined in Honduras by the distribution of clastic sediments and associated volcanic rocks. Rifting is attributed to the separation of Central America from the southern margin of the North American plate; (2) Cretaceous subsidence recorded by the development of a Cretaceous carbonate platform in Honduras, Guatemala, and Belize; subsidence is attributed to thermal subsidence of the rifted margins of the various blocks; (3) Late Cretaceous-Recent development of a volcanic arc along the western margin of Middle America and the northern margin of Honduras; (4) Late Cretaceous large-scale folding in Honduras, ophiolite obduction, and formation of a foredeep basin in Guatemala (Sepur trough); deformation is attributed to the collision between a north-facing arc in northern Honduras and the Nicaraguan Rise and the passive margin of Guatemala and Belize; and (5) Eocene to Recent strike-slip faulting along the present-day North American-Caribbean plate boundary in Guatemala, northern Honduras, and Belize. Strike-slip faults and basins form a California-type borderlands characterized by elongate basins that appear as half-grabens in profile. Counterclockwise rotation of the central honduras plateau, a thicker and topographically higher-than-average block within the plate boundary zone, is accommodated by rifting or strike-slip faults at its edges.

  14. Megafans of the Northern Kalahari Basin

    NASA Technical Reports Server (NTRS)

    Wilkinson, M. J.; Miller, R. McG.; Eckardt, F.; Kreslavsky, M. A.

    2016-01-01

    We identify eleven megafans (partial cones of fluvial sediment, >80 km radius) in the northern Kalahari Basin, using several criteria based on VIS and IR remotely sensed data and SRTM-based surface morphology reconstructions. Two other features meet fewer criteria of the form which we class as possible megafans. The northern Kalahari megafans are located in a 1700 km arc around the southern and eastern flanks of the Angola's Bié Plateau, from northern Namibia through northwest Botswana to western Zambia. Three lie in the Owambo subbasin centered on the Etosha Pan, three in the relatively small Okavango rift depression, and five in the Upper Zambezi basin. The population includes the well-known Okavango megafan (150 km), Namibia's Cubango megafan, the largest megafan in the region (350 km long), and the largest nested group (the five major contiguous megafans on the west slopes of the upper Zambezi Valley). We use new, SRTM-based topographic roughness data to discriminate various depositional surfaces within the flat N. Kalahari landscapes. We introduce the concepts of divide megafans, derived megafans, and fan-margin rivers. Conclusions. (i) Eleven megafan cones total an area of 190,000 sq km. (ii) Different controls on megafan size operate in the three component basins: in the Okavango rift structural controls become the prime constraint on megafan length by controlling basin dimensions. Megafans in the other les constricted basins appear to conform to classic relationships fan area, slope, and feeder-basin area. (iii) Active fans occupy the Okavango rift depression with one in the Owambo basin. The rest of the population are relict but recently active fans (surfaces are relict with respect to activity by the feeder river). (iv) Avulsive behavior of the formative river-axiomatic for the evolution of megafans-has resulted in repeated rearrangements of regional drainage, with likely effects in the study area well back into the Neogene. Divide megafans comprise the

  15. Hydrothermal Activity in the Northern Guaymas Basin

    NASA Astrophysics Data System (ADS)

    Berndt, C.; Hensen, C.; Mortera-Gutierrez, C. A.; Sarkar, S.; Geilert, S.; Schmidt, M.; Liebetrau, V.; Kipfer, R.; Scholz, F.; Doll, M.; Muff, S.; Karstens, J.; Böttner, C.; Chi, W. C.; Moser, M.; Behrendt, R.; Fiskal, A.; Evans, T.; Planke, S.; Lizarralde, D.; Lever, M. A.

    2015-12-01

    Rift-related magmatism in the Guaymas Basin, Gulf of California induces hydrothermal activity within the basin sediments. Mobilized fluids migrate to the seafloor where they are emitted into the water column changing ocean chemistry and fuelling chemosynthetic ecosystems. New seismic and geochemical data from the northern rift arm of the Guaymas Basin document the variety of fluid expulsion phenomena from large-scale subsurface sediment mobilization related to contact metamorphosis to focused small-scale structures. The geochemical composition of emitted fluids depends largely on the age of the fluid escape structures with respect to the underlying intrusions. Whereas, old structures are dominated by methane emission, young vent sites are characterized by hot fluids that carry a wide range of minerals in solution. The overall high geothermal gradient within the basin (mainly between 160 and 260 °C/km) leads to a thin gas hydrate stability zone. Thus, deep hydrothermal fluid advection affects the gas hydrate system and makes it more dynamic than in colder sedimentary basins.

  16. Basins and Sedimentation Within the Martian Northern Plains

    NASA Astrophysics Data System (ADS)

    Tanaka, K. L.; MacKinnon, D. J.

    1999-03-01

    MOLA data show that six basins and sedimentary plains make up the northern plains of Mars. Four types of plains units are deposited in them, in the following stratigraphic order: marginal, level-top, basin-floor, and downslope units.

  17. OVERVIEW OF VALVE TOWER FROM NORTHERN SIDE OF BASIN. VIEW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OVERVIEW OF VALVE TOWER FROM NORTHERN SIDE OF BASIN. VIEW FACING SOUTHWEST - Schofield Barracks Military Reservation, Ku Tree Reservoir, Valve Tower, Kalakoa Stream, East Range, Wahiawa, Honolulu County, HI

  18. Miocene tephrochronology in the northern Basin and Range

    SciTech Connect

    Perkins, M.E.; Brown, F.H.; Nash, W.P. . Dept. of Geology and Geophysics)

    1993-04-01

    Silicic air-fall tephra layers with unaltered glass shards preserved in Miocene basins of the northern Basin and Range Province (NBR) were sampled from well-exposed sections in the Goose Creek (GCB) and Ibapah (IB) basins in the northeastern NBR, and the El Pasco basin (EPB) in the southwestern NBR. Each basin may contain up to 50 tephras. Glass shards from individual tephras in any one basin are compositionally distinct, as shown by XRF and electron microprobe analysis. Seventeen tephra correlate between two or more basins; 12 of these are regionally important, providing precise stratigraphic ties across the NbR. Four regionally correlative tephras are white biotitic ashes from southern Nevada sources, whereas eight are gray vitric ashes from Yellowstone hot spot sources. Dates on tephra layers and lava flows in the basins, and on ashflow units correlated with four other tephra provide a preliminary chronology for the tephra in the all basins. In each section [Delta]h/[Delta]t appears constant on time scales [>=]1 Ma, but variation in [Delta]h/[Delta]t is demonstrated from IB, and is likely typical of all basins. Sedimentation in all five basins begins in the time interval of 14.5--12.5 Ma, which may represent the beginning of a phase of regional extension in the NBR. Post-[approximately]9.5 Ma deformation has affected all basins and likely contributed to the termination of sedimentation in the exposed areas of these basins.

  19. Timing of Cenozoic Basin Formation in Northern Sundaland, Southeast Asia

    SciTech Connect

    Liew, K.K. )

    1994-07-01

    The present shorelines of northern Sundaland show preferential northwest-southeast elongation. This trend is parallel for subparallel to major faults and suture in this region. Continental wrench/shear basins developed on the western portion of this region and back-arc basins developed on the western portion of this region and back-arc basins in the rest of the region are also aligned to this trend. Different basin geometries and structural patterns among Cenozoic basins in northern Sundaland indicate different origins and/or timing of basin formation. Wrench faulting has played a significant role in the formation of these Cenozoic basins. The continued collision of the Indian subplate with the Eurasian plate during early Cenozoic has caused a redistribution of stress within this region. Zones of weakness have been reactivated or created with large lateral displacements by these changes, thus initiating the subsidence of these basins. The episodic initiation of Cenozoic basins may have begun as early as Jurassic and continued till Oligocene.

  20. Basin modeling of the Parang (Socotra) Basin, northern East China Sea shelf: Implications for hydrocarbon potential

    NASA Astrophysics Data System (ADS)

    Kim, H.; Moon, S.; Lee, G.; Yoon, Y.; Kim, H.

    2013-12-01

    The hydrocarbon potential of the Parang (Socotra) Basin in the northern East China Sea shelf has remained poorly understood. We performed one-dimensional basin modeling for a dummy well located in the depocenter of the northern part of the Parang Basin to investigate the timings of hydrocarbon generation and expulsion. First, a depth-converted seismic profile crossing the dummy well was restored by backstripping and decompaction for eight regional and subregional unconformities, including the top of the acoustic basement, to reconstruct the subsidence history and to determine the timing of trap formation. The basin modeling, assuming rifting heat-flow model and source rocks with type III kerogen, suggests that the main phase of hydrocarbon (mostly gas) expulsion peaked in the Late Eocene, predating the inversion that created traps in the early Middle to latest Middle Eocene. Thus, the potential for large hydrocarbon accumulations in the northern Parang Basin is probably limited.

  1. JUNIPER CONTROL AND ASPEN RESTORATION IN THE NORTHERN GREAT BASIN

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Western juniper woodlands are rapidly replacing lower elevation (< 2100 m) quaking aspen stands throughout the northern Great Basin. Aspen restoration is important because these communities provide important habitat for wildlife species and contain a high diversity of understory shrubs and herbaceou...

  2. Geomorphological characterization of endorheic basins in northern Chile

    NASA Astrophysics Data System (ADS)

    Dorsaz, J.; Gironas, J. A.; Escauriaza, C. R.; Rinaldo, A.

    2011-12-01

    Quantitative geomorphology regroups a large number of interesting tools to characterize natural basins across scales. The application of these tools to several river basins allows the description and comparison of geomorphological properties at different spatial scales as oppose to more traditional descriptors that are typically applied at a single scale, meaning the catchment scale. Most of the recent research using these quantitative geomorphological tools has focused on open catchments and no specific attention has been given to endorheic basins, and the possibility of having particular features that distinguish them from exorheic catchments. The main objective of our study is to characterize endorheic basins and investigate whether these special geomorphological features can be identified. Because scaling invariance is a widely observed and relatively well quantified property of open basins, it provides a suitable tool to characterize differences between the geomorphology of closed and open basins. Our investigation focuses on three closed basins located in northern Chile which describe well the diversity in the geomorphology and geology of this arid region. Results show that endhoreic basins exhibit different slope-area and flow paths sinuosity regimes compared to those observed in open basins. These differences are in agreement with the particular self-similar behavior across spatial scales of the Euclidean length of subcatchments, as well as the Hack's law and Horton's ratios. These regimes imply different physical processes inside the channel network regardless of the basin area, and they seem to be related to the endorheic character of these basins. The analysis of the probability density functions of contributing areas and lengths to the lower region shows that the hypothesis of self-similarity can also be applied to closed basins. Theoretical expressions for these distributions were derived and validated by the data. Future research will focus on (1

  3. Evolution of the Basco-Cantabrian basin, northern Spain

    SciTech Connect

    Vaughan, O. )

    1988-08-01

    The Basco-Cantabrian basin (BCB) stretches for 150 km west from the Pyrenean system and displays a complex subsidence pattern through time, involving Triassic faulting, Jurassic quiescence, Cretaceous faulting and subsidence, followed by Tertiary compression. Its southern margin is rimmed by a narrow (40 km wide) Tertiary basin, deeper in places than the coeval Ebro basin in the southern Pyrenees, but lacking any driving load. This Tertiary Cantabrian basin may reflect the interaction between thermal subsidence phases at the southern margin of the BCB and uplift (inversion) of the Mesozoic basin to the north. In addition, the BCB shows a number of interactions between thin-skinned and thick-skinned styles of shortening. In the west, inversion has uplifted a major basement ridge between areas of vastly differing sedimentology and structural style. The southern thrust margin to the basin has no basement outcrops, even though it marks the southern margin of Mesozoic sedimentation. Balanced sections imply the reactivation of basement faults in controlling the geometry, position, and orientation of the thrust front. In the northern part of the BCB, around Bilbao, major monoclines and thrusts follow basement fault trends - trends which earlier strongly affected the distribution of the Mesozoic. The BCB has a stratigraphy and structure in common with eastern basins such as the Aquitaine and Ebro. Though it can be difficult to correlate individual structures, many features of basin dynamics are similar. It is valuable to study the less-deformed BCB in order to understand the basins of northern Spain and southern France.

  4. Annotated bibliography of the Black Warrior basin area, northern Alabama - northern Mississippi

    SciTech Connect

    Ward-McLemore, E.

    1983-01-01

    This bibliography contains 1964 records related to the geology of the Black Warrior basin of northern Alabama and northern Mississippi. Specific topics include, but are not limited to: coal, petroleum, and natural gas deposits; mineralogy; lithology; paleontology; petrology; stratigraphy; tectonics; bauxite; iron ores; geologic correlations; earthquakes; fossils; gold deposits; geological surveys; hydrology; and water resources. The subject index provides listings of records related to each county and the geologic ages covered by this area. Some of the items (54) are themselves bibliographies.

  5. Cryopreservation of Sperm from the Endangered Colorado Pikeminnow

    USGS Publications Warehouse

    Tiersch, T.R.; Figiel, C.R., Jr.; Wayman, W.R.; Williamson, J.H.; Gorman, O.T.; Carmichael, G.J.

    2004-01-01

    We developed methods for the cryopreservation of sperm of the endangered Colorado pikeminnow Ptychocheilus lucius. Sperm were collected from a captive broodstock population of Colorado pikeminnow reared and maintained at the Dexter National Fish Hatchery and Technology Center. Our objectives were to (1) evaluate the effects on sperm motility of 24-h storage in Hanks' balanced salt solution (HBSS); (2) characterize sperm motility and duration; (3) examine the relationship between sperm motility and osmotic pressure; (4) examine the effect of four cryoprotectants (dimethyl sulfoxide [DMSO], dimethyl acetamide [DMA], glycerol, and methanol [MeOH] at two concentrations [5% and 10%]) on postthaw motility; and (5) compare the effect of two cooling rates (40??C/ min and 4??C/min) on postthaw motility. The sperm samples diluted with HBSS retained higher motility (mean ??SD, 77 ?? 22%; n = 9) than did undiluted samples (12 ?? 30%; n = 9) after 24 h of storage. When exposed to HBSS at 274 mosmols/kg or more, few sperm became motile (???1%). Exposure to HBSS at 265 mosmols/kg elicited threshold activation (defined as 10% motility), and maximum motility (>95%) was observed at 93 mosmols/ kg. The maximum motility of sperm was observed within 10 s after activation with deionized water, and sperm remained motile for 57 s. The sperm that were cooled at a rate of 40??C/min and cryopreserved with 5% MeOH retained higher postthaw motility (56 ?? 13%) than did sperm cryopreserved with DMSO, DMA, or glycerol (at 5% and 10%). When the sperm samples were cooled at a rate of 4??C/min, sperm cryopreserved with MeOH (5% or 10%) or DMSO (5% or 10%) retained the highest postthaw motilities (???14%). The use of cryopreserved sperm can assist hatchery managers in the production of fish, provide for the long-term conservation of genetic resources, and assist in the recovery of endangered species such as the Colorado pikeminnow.

  6. Subsidence history in basins of northern Algeria

    NASA Astrophysics Data System (ADS)

    Bracene, Rabah; Patriat, Martin; Ellouz, Nadine; Gaulier, Jean-Michel

    2003-02-01

    The Tellian foreland in Algeria represents a part of the southern Tethyan margin during the Mesozoic. Its tectonic evolution includes a rifting stage during the Triassic and Liassic times characterised by tilted blocks and early diapiric events during the Liassic, a post-rift regime from Middle Jurassic up to the Late Cretaceous and basin inversion during the Tertiary related to the African and European plates convergence. The subsidence modelling supported by surface and subsurface data integration emphasises different subsidence phases. Liassic subsidence phase under Tethyan and Atlantic control related to crustal thinning. Late Jurassic, Cretaceous and Tertiary subsidence phases, where the first one is linked to diapiric events and the second in eastern Algeria to the effects of the rifting event developed more easterly in the Gulf of Gabès and Sirte. The last one is flexural and occurs in foreland basins during the Tertiary. Taking into account the subsidence record of each structural domain, a correlation between tectonic events and the subsidence phases can be established.

  7. Rejuvenation of the Kuqa foreland basin, northern flank of the Tarim basin, northwest China

    SciTech Connect

    Lu Huafu; Jia Dong; Cai Dongsheng

    1994-12-01

    The Kuqa depression along the northern flank of the Tarim basin is filled with a thick sequence of Neogene and Quaternary coarse elastic continental sediments. This structural depression is part of a large foreland basin that leads south of the Tianshan - an orogenic belt of intracontinental convergence resulting from the northward propagation of stress following the collision of India with the southern margin of Eurasia. 11 refs., 6 figs., 1 tab.

  8. Hydrocarbon maturation in Laramide basins - constraints from evolution of northern Big Horn basin, Wyoming and Montana

    SciTech Connect

    Hagen, E.S.; Furlong, K.P.; Surdam, R.C.

    1984-04-01

    Thermal and mechanical models were used to quantify the effects of Laramide uplifts and subsequent synorogenic deposition on the hydrocarbon maturation of Cretaceous source rocks in the Big Horn basin. Laramide deformation and resultant sedimentation has clearly affected hydrocarbon maturation of Cretaceous source rocks. (Thermopolis, Mowry, Frontier, Cody). Modified Lopatin-type reconstructions suggest that a significant region containing Cretaceous source rocks has been within the liquid hydrocarbon window. The earliest onset of hydrocarbon maturation in the northern Big Horn basin was latest Eocene, with some regions still containing immature Cretaceous source rocks as a consequence of Cenozoic erosion, uplift of the Pryor Mountains, and lack of burial. Regional geologic features indicate that the basin formed as a result of flexural compensation of an elastic lithosphere during emplacement of the Beartooth and Pryor Mountains, and possibly the Absaroka volcanics. This was determined by 2-dimensional models which predict sediment thickness caused by tectonic loading and subsequent sedimentation. Flexural rigidities of 10/sup 2/2exclamation-10/sup 22/ newton-meters adequately explain flexural subsidence in the northern Big Horn basin. The present basin configuration also was compared with a theoretical profile based on geologic constraints. Subsidence models for the present basin profile suggest the Paleocene thrusting of the Beartooth block contributes a majority of the tectonic loading and that Cenozoic erosion has drastically affected the resultant sedimentary sequence (Fort Union and Wasatch). These models, along with stratigraphic reconstructions, can be combined to pinpoint areas of potential hydrocarbon maturation within Laramide-type basins.

  9. Hydrogeologic data for the northern Rocky Mountains intermontane basins, Montana

    USGS Publications Warehouse

    Dutton, DeAnn M.; Lawlor, Sean M.; Briar, D.W.; Tresch, R.E.

    1995-01-01

    The U.S. Geological Survey began a Regional Aquifer- System Analysis of the Northern Rocky Mountains Intermontane Basins of western Montana and central and central and northern Idaho in 1990 to establish a regional framework of information for aquifers in 54 intermontane basins in an area of about 77,500 square miles. Selected hydrogeologic data have been used as part of this analysis to define the hydro- logic systems. Records of 1,376 wells completed in 31 of the 34 intermontane basins in the Montana part of the study area are tabulated in this report. Data consist of location, alttiude of land surface, date well constructed, geologic unit, depth of well, diameter of casing, type of finish, top of open interval, primary use of water, water level, date water level measured, discharge, specific capacity, source of discharge data, type of log available, date water-quality parameters measured, specific conductance, pH, and temperature. Hydrographs for selected wells also are included. Locations of wells and basins are shown on the accompanying plate.

  10. Potential cretaceous play in the Rharb basin of northern Morocco

    SciTech Connect

    Jobidon, G.P. )

    1993-09-01

    The autochthonous Cretaceous in the Rharb basin of northern Morocco is located underneath a cover of neogene sediments and of the Prerif nappe olistostrome, which was emplaced during the Tortonian 7 m.y. The presence of infranappe Cretaceous sediments is documented in a few onshore wells in the Rharb basin and in the adjacent Prerif Rides area, as well as in the Rif Mountains. Their presence in the deeper portion of the Rharb basin is difficult to detail because of poor seismic resolution data beneath dispersive prerif nappe. A recent study of offshore seismic data acquired by PCIAC in 1987 indicates that the infranappe interval can be more than 1500 m thick in some of the offshore Kenitra area. These sediments have seismic signatures that would correspond to Middle Cretaceous transgressions, culminating with a Turonian highstand. Their deposition systems were located on the northern and western flanks of the Meseta and were followed by a hiatus lasting until the Miocene. Regional studies of gravity and magnetic data provide and additional understanding of the Rif province, its evolution, and the possible presence of autochthonous Cretaceous sediments below the prerif nappe cover. The infranappe of Rharb basin has a good potential to develop into a major hydrocarbon play with the presence of middle Cretaceous reservoir rocks, Turonian-Cenomanian black shale source rocks, as well as the timely combination of trap formation, source rock maturation, and hydrocarbon migration.

  11. Integrated Watershed Assessment: The Northern River Basins Study

    NASA Astrophysics Data System (ADS)

    Wrona, F. J.; Gummer, W. D.

    2001-05-01

    Begun in 1991 and completed in 1996, the Northern River Basins Study (NRBS) was a \\$12 M initiative established by the governments of Canada, Alberta, and the Northwest Territories to assess the cumulative impacts of development, particularly pulp mill related effluent discharges, on the health of the Peace, Athabasca and Slave river basins. The NRBS was launched in response to concerns expressed by northern residents following the 1991 approval of the Alberta Pacific Pulp Mill in Athabasca. Although initiated by governments, the NRBS was set-up to be `arms-length' and was managed by a 25 member Study Board that represented the many interests in the basins, including industry, environmental groups, aboriginal peoples, health, agriculture, education, municipalities, and the federal, territorial and provincial governments. Overseen by an independent Science Advisory Committee, an integrated research program was designed covering eight scientific components: fate and distribution of contaminants, food chain impacts, nutrients, hydrology/hydraulics and sediment transport, uses of the water resources, drinking water quality, traditional knowledge, and synthesis/modeling. Using a 'weight of evidence' approach with a range of ecological and sociological indicators, cumulative impacts from pulp and paper-related discharges and other point and non-point sources of pollution were determined in relation to the health and contaminant levels of aquatic biota, nutrient and dissolved oxygen-related stress, hydrology and climate related changes, and human health and use of the river basins. Based on this assessment and Study Board deliberations, site-specific and basin-wide scientific and management-related recommendations were made to Ministers regarding regulatory and policy changes, basin management and monitoring options, and future research. The Study reinforces the importance of conducting ecosystem-based , interdisciplinary science and the need for public involvement in

  12. A magnetotelluric model of the Mana Pools basin, northern Zimbabwe

    NASA Astrophysics Data System (ADS)

    Bailey, D.; Whaler, K. A.; Zengeni, T.; Jones, P. C.; Gwavava, O.

    2000-05-01

    The Mana Pools sedimentary basin lies within the Zambezi mobile belt in northern Zimbabwe. New and preexisting magnetotelluric data and the available seismic reflection data are used to constrain the basin structure and the depth to the electrical basement. Long-period magnetotelluric (LMT) data were collected at five stations along a 60 km north-south profile across the Mana Pools basin and onto the southern escarpment. These data augment an existing audiofrequency (AMT) data set from 11 sites in the same area. The subsurface apparent resistivities measured at periods sampling the basin are very low (a few Ωm). After processing both data sets, the estimated impedance tensor is decomposed, showing that the resistivity structure of the Mana Pools basin can be modeled two dimensionally. The ρ+ algorithm is used to show that there is no systematic offset in magnitude between the AMT and LMT data sets before they are combined. Minimum structure resistivity models of the Mana Pools basin compare well with the information from reflection seismic data and support its previous description as a half graben basin of ˜7 km depth. The excellent conductor in the Mana Pools basin is quite different to those seen elsewhere in the orogenic belt in that it is a feature of the sedimentary fill rather than the basement. The resistivity of the basement is low but no localized good conductor is observed; these low resistivities may result from a high degree of either chemical or tectonic alteration to the underlying rocks due to metamorphic processes and tectonic disruption during rift formation.

  13. Tectonosedimentary history of the sedimentary basins in northern west Siberia

    SciTech Connect

    Kunin, N.Ya.; Segalovich, I.E. )

    1993-09-01

    Sedimentary basins of northern west Siberia belong to the Arctic tectonosedimentary province. This basin evolved dissimilarly compared to those in the Urengoy and more southern areas, which resulted in substantial differences in the geologic characteristics. Seismic surveys indicate that the basement surface in northern west Siberia occurs at great depths, in places exceeding 15 km. The depressions of the basement surfaces are filled with the thick Paleozoic and Mesozoic sequences. The paper discussed the results of seismostratigraphic analysis of more than 13,000 km of regional common-depth-point profiles. These profiles identified systems of east-west-trending and isometric structures in the region. Some of the structures are buried; others are mapped in the upper horizons of the sedimentary cover and decrease in magnitude with depth. Cretaceous marine sediments that were deposited under deep-water conditions and did not compensate for the tectonic subsidence are widely present in the region. Noncompensated sedimentation was the longest from the Late Jurassic to the Hauterivian-Barremian on the Gydan peninsula and in adjacent areas. The Jurassic section is dominate by ingressive marine sediments. Sediments that did not compensate for tectonic subsidence widely occurred in the Early Jurassic and resulted in deposition of petroleum source rocks. Triassic and Jurassic strata occur conformable in most of northern west Siberia. Significant deformation of the Triassic sediments are identified in the periphery of the Triassic marine basin. This indicates that surrounding structures were thrust against northern west Siberia at the Triassic and Jurassic time boundary. Isometric structures of high magnitude were formed during the Paleozoic structure stage and these structures continued to grow through the Triassic and Jurassic. These and other results of seismostratigraphic analysis suggest the high oil potential of the region.

  14. Basement structures in the northern Tularosa Basin, central New Mexico

    SciTech Connect

    Whitebread, M.W.; Adams, D.C. . Dept. of Geological Sciences)

    1993-02-01

    A variety of geophysical data consisting of gravity and magnetic measurements, drill holes, and other geologic information have provided an analysis of basement structures within the northern Tularosa Basin of central New Mexico. Both the Laramide and Ancestral Rockies orogenies and the extension associated with the Rio Grande rift affected the structural development of this area. This area is significant in that it is the region in which the eastern boundary of the Rio Grande rift shifts 115 km eastward to the bounding fault between the Tularosa basin and the Sacramento uplift. The Tularosa basin is a large, complex structure consisting of two grabens and a horst block. At this latitude, it is probably the major Rio Grande rift structure. In fact, gravity modeling has determined that the thinnest crust (above 32 km) in the region lies beneath the north Tularosa basin. Analysis of gravity and magnetic anomaly maps identify gravity lows associated with Paleozoic or Precambrian basins. Gravity lows northeast of the Oscura uplift form a semi-continuous regional depression eastward to the late Paleozoic Pedernal uplift, a topographic feature believed to be a remnant of the Ancestral Rocky Mountains.

  15. Geoenvironmental Investigations of the Humboldt River Basin, Northern Nevada

    USGS Publications Warehouse

    Stillings, Lisa L.

    2003-01-01

    Northern Nevada is one of the world's foremost regions of gold production. The Humboldt River Basin (HRB) covers 43,500 km2 in northern Nevada (Crompton, 1995), and it is home to approximately 18 active gold and silver mines (Driesner and Coyner, 2001) among at least 55 significant metallic mineral deposits (Long and others, 1998). Many of the gold mines are along the Carlin trend in the east-central portion of the HRB, and together they have produced 50 million ounces of gold from 1962 (when the Carlin mine first opened) through April 2002 (Nevada Mining Association, 2002). Mining is not new to the region, however. Beginning in 1849, mining has taken place in numerous districts that cover 39 percent of the land area in the HRB (Tingley, 1998). In addition to gold and silver, As, Ba, Cu, Fe, Hg, Li, Mn, Mo, Pb, S, Sb, V, W, Zn, and industrial commodities such as barite, limestone, fluorite, sand and gravel, gypsum, gemstones, pumice, zeolites, and building stone, have been extracted from the HRB (McFaul and others, 2000). All papers within this series of investigations can be found as lettered chapters of USGS Bulletin 2210, Geoenvironmental Investigations of the Humboldt River Basin, Northern Nevada. Each chapter is available separately online. The data and software utilized in this product (Chapter F) permit the user to view and analyze the geographic relationships among chemistry of stream sediments and surface waters, geology, and various cartographic base information such as but not limited to cities, county boundaries, and land ownership. Data for this product were compiled and or produced as part of a mineral and environmental assessment of the Humboldt River basin conducted by the U.S. Geological Survey between 1995 - 2000.

  16. Unusual Radar Backscatter along the Northern Rim of Imbrium Basin

    NASA Technical Reports Server (NTRS)

    Thompson, Thomas W.; Campbell, Bruce A.; Ghent, Rebecca R.; Hawke, B. Ray; Leverington, David W.

    2006-01-01

    A viewgraph presentation of the unusual radar backscatter properties along the Northern Rim of Imbrium Basin is shown. The contents include: 1) Visual and Infrared Observations of Moon; 2) Radar Observations of Moon; 3) Lunar Orbiter Photographs Geologic Setting; 4) 70-cm Radar Data; 5) .70-cm Radar Dark Halo Craters; 6) 3.8-cm Radar Data; 7) 7.5-m Radar Data; 8) 70cm, 3.8 cm and 7.5-m Radar Data; 9) Optical and Infrared Data; 10) Plato Rilles; 11) Isopachs of Crater Ejecta; 12) Plato-like Craters; 13) Observation Summary; 14) Interpretation Matrix; 15) Dark Halo Diameters vs. Crater Size; and 16) Radar Geologic Column.

  17. Channeling in Paleocene coals, northern Powder River basin, Montana

    SciTech Connect

    Hansen, W.B.

    1983-08-01

    Interpretation of 1,200 geophysical logs in the northern Powder River basin, Montana, reveals the paleodrainages influencing coal deposition during the deposition of the Tongue River member (Paleocene, Fort Union Formation). Four channels with associated crevasse splay deposits are recognized: (1) an east-west rosebud drainage near Colstrip, (2) a north-south wall channel near Birney, (3) a north-south Dietz drainage near Tongue River Reservoir, and (4) a north-south Anderson channel in the vicinity of Moorhead. These channels support the concept of a major northeast-flowing drainage system during deposition of the Tongue River Member. Identification of these channels serves as a guide to future coal exploration.

  18. Transfer structures in the Northern Tarim Basin, Northwest China

    SciTech Connect

    Guang-Ya Zhang; Shi-Xia Gao

    1996-03-01

    The fold-thrust tectonics of the Northern Tarim Basin, oriented roughly parallel to the South Tianshan orogenic belt, consists of two large-scale tectonic regimes: (1) the foreland-basin, thin-skinned deformation belt; and (2) the foreland-craton, thick-skinned-dominated (i.e., basement-involved) deformation belt. Variations in the degree of deformation in these tectonic belts and style along the regional tectonic strike can be accounted for by longitudinal (progressive transfer or transverse (abrupt) transfer). Longitudinal transfer maintains the overall displacement or shortening within the fold-thrust belts as uniform or with gradual change along the tectonic strike. This includes the tectonic transfer between en echelon master thrusts and from the individual master thrust to terminal fold(s) or distributive thrusts. Transverse transfer resulted from an abrupt change in overall displacement or shortening along the tectonic strike. Within the transverse transfer zone, various tectonics-such as strike-slip faults, strike-slip thrusts, transverse anticlines, and en echelon folds-are developed. The development of longitudinal transfer zones can be attributed to the gradual variation of intrinsic and extrinsic and extrinsic deformational conditions along the tectonic strike. The initiation of transverse transfer may be related to variations in the thickness of sedimentary layers, detachment-layer distribution limits, and variation along strike of the degree and mode of the South Tianshan orogenic belt`s effect on the basin, as well as the variation of the boundary conditions of the deformation, such as in the geometry of plate margins. 15 refs., 8 figs.

  19. Regional Fluid Flow and Basin Modeling in Northern Alaska

    USGS Publications Warehouse

    Kelley, Karen D., (Edited By)

    2007-01-01

    INTRODUCTION The foothills of the Brooks Range contain an enormous accumulation of zinc (Zn) in the form of zinc sulfide and barium (Ba) in the form of barite in Carboniferous shale, chert, and mudstone. Most of the resources and reserves of Zn occur in the Red Dog deposit and others in the Red Dog district; these resources and reserves surpass those of most deposits worldwide in terms of size and grade. In addition to zinc and lead sulfides (which contain silver, Ag) and barite, correlative strata host phosphate deposits. Furthermore, prolific hydrocarbon source rocks of Carboniferous and Triassic to Early Jurassic age generated considerable amounts of petroleum that may have contributed to the world-class petroleum resources of the North Slope. Deposits of Zn-Pb-Ag or barite as large as those in the Brooks Range are very rare on a global basis and, accordingly, multiple coincident favorable factors must be invoked to explain their origins. To improve our understanding of these factors and to contribute to more effective assessments of resources in sedimentary basins of northern Alaska and throughout the world, the Mineral Resources Program and the Energy Resources Program of the U.S. Geological Survey (USGS) initiated a project that was aimed at understanding the petroleum maturation and mineralization history of parts of the Brooks Range that were previously poorly characterized. The project, titled ?Regional Fluid Flow and Basin Modeling in Northern Alaska,? was undertaken in collaboration with industry, academia, and other government agencies. This Circular contains papers that describe the results of the recently completed project. The studies that are highlighted in these papers have led to a better understanding of the following: *The complex sedimentary facies relationships and depositional settings and the geochemistry of the sedimentary rocks that host the deposits (sections 2 and 3). *The factors responsible for formation of the barite and zinc deposits

  20. Geochemical evolution of groundwater salinity at basin scale: a case study from Datong basin, Northern China.

    PubMed

    Wu, Ya; Wang, Yanxin

    2014-05-01

    A hydrogeochemical investigation using integrated methods of stable isotopes ((18)O, (2)H), (87)Sr/(86)Sr ratios, Cl/Br ratios, chloride-mass balance, mass balance and hydrogeochemical modeling was conducted to interpret the geochemical evolution of groundwater salinity in Datong basin, northern China. The δ(2)H, δ(18)O ratios in precipitation exhibited a local meteoric water line of δ(2)H = 6.4 δ(18)O -5 (R(2) = 0.94), while those in groundwater suggested their meteoric origin in a historically colder climatic regime with a speculated recharge rate of less than 20.5 mm overall per year, in addition to recharge from a component of deep residual ancient lake water enriched with Br. According to the Sr isotope binary mixing model, the mixing of recharges from the Shentou karst springs (24%), the western margins (11%) and the eastern margins (65%) accounts for the groundwater from the deep aquifers of the down-gradient parts in the central basin is a possible mixing mechanism. In Datong, hydrolysis of silicate minerals is the most important hydrogeochemical process responsible for groundwater chemistry, in addition to dissolution of carbonate and evaporites. In the recharge areas, silicate chemical weathering is typically at the bisiallitization stage, while that in the central basin is mostly at the monosiallitization stage with limited evidence of being in equilibrium with gibbsite. Na exchange with bound Ca, Mg prevails at basin scale, and intensifies with groundwater salinity, while Ca, Mg exchange with bound Na locally occurs in the east pluvial and alluvial plains. Although groundwater salinity increases with the progress of water-rock/sediment interactions along the flow path, as a result of carbonate solubility control and continuous evapotranspiration, Na-HCO3 and Na-Cl-SO4 types of water are usually characterized respectively in the deep and the shallow aquifers of an inland basin with a silicate terrain in an arid climatic regime. PMID:24737419

  1. Hydrometeorology Testbed in the American River Basin of Northern California

    NASA Astrophysics Data System (ADS)

    Kingsmill, D.; Lundquist, J.; Jorgensen, D.; McGinley, J.; Werner, K.

    2006-12-01

    In California, most precipitation occurs in the winter, as a mixture of rain at lower elevations and snow in the higher mountains. Storms from the Pacific carry large amounts of moisture, and put people and property at risk from flooding because of the vast urban development and infrastructure in low-lying areas of the central valley of California. Improved flood prediction at finer spatial and temporal resolutions can help minimize these risks. The first step is to accurately measure and predict spatially-distributed precipitation. This is particularly true for river basins with complex orography where the processes that lead to the development of precipitation and determine its distribution and fate on the ground are not well understood. To make progress in this important area, the U.S. National Oceanic and Atmospheric Administration (NOAA) is leading a Hydrometeorology Testbed (HMT) effort designed to accelerate the testing and infusion of new technologies, models, and scientific results from the research community into daily forecasting operations. HMT is a national effort (http://hmt.noaa.gov) that will be implemented in different regions of the U.S. over the next decade. In each region, the focus will be on individual experimental test basins. The first full-scale implementation of HMT, called HMT-West, targets northern California's flood-vulnerable American River Basin (4740 km2) on the west slopes of the Sierra Nevada between Sacramento and Lake Tahoe. The deployment strategy is focused on the North Fork of the basin (875 km2), which is the least- controlled portion of the entire catchment. This basin was selected as a test basin because it has reliable streamflow records dating back to 1941 and has been well characterized by prior field studies (e.g. the Sierra Cooperative Pilot Project) and modeling efforts, focusing on both short-term operations and long-term climate scenarios. Intensive field activities in the North Fork of the American River started in

  2. Evolution of an Intermontane Basin Along the Northern San Andreas System: Evidence from Basin Structure of Little Lake Valley (Willits), Northern California Inferred from Gravity and Geologic Data

    NASA Astrophysics Data System (ADS)

    Erickson, G.; Kelsey, H.; Langenheim, V.; Furlong, K.

    2007-12-01

    Associated with the northern strands of the San Andreas fault system in California is a series of small intermontane basins. While it is tempting to ascribe their formation to simple pull-apart tectonics along the dominantly strike-slip fault strands, direct evidence for basin genesis is lacking. In this study, a detailed gravity survey throughout the Little Lake Valley region (Willits, California) provides constraints on mechanisms of basin formation along this young segment of the San Andreas fault system. Interpretation of isostatic gravity anomaly data provides insight into fault geometry, basin structure, and thickness of Quaternary fill in Little Lake Valley, California. Although the active strike-slip Maacama fault zone diagonally trends through the southwest part of the valley, gravity and geologic interpretations indicate the valley conceals an earlier basin and faulting history. The isostatic gravity anomaly of the basin is negative (up to 13 mGals) and rhombic in shape. Modeling indicates two splays, less than a km apart, of an up-to-the-east East Valley fault; the basinward fault is buried by fill and the more easterly fault defines the eastern margin of the basin. Cumulative up-to-the-east vertical fault displacement along the East Valley fault increases southward up to 610 m in the southern portion of the valley. Gravity gradients also suggest approximately east-west trending faults bound the northern and southern sides of the valley and offset Quaternary fill. From gravity and geologic data combined, the basin floor dips approximately 7 degrees to the south in the north part of the valley and both the Quaternary sediment and basin floor dip approximately 13 degrees to the north in the south part of the valley, implying an approximately east-west axis of dip reversal of the basin floor at the northern stretch of East Hill Road (latitude 39.39 degrees N). Faults and basin fill structure are not consistent with any one simple structural model of basin

  3. Base of fresh ground water, northern Louisiana Salt-Dome Basin and vicinity, northern Louisiana and southern Arkansas

    USGS Publications Warehouse

    Ryals, G.N.

    1980-01-01

    The National Waste Terminal Storage Program is an effort by the U.S. Department of Energy to locate and develop sites for disposal or storage of commercially produced radioactive wastes. As part of this program, salt domes in the northern Louisiana salt-dome basin are being studied to determine their suitability as repositories. Part of the U.S. Geological Survey 's participation in the program has been to describe the regional geohydrology of the northern Louisiana salt-dome basin. A map based on a compilation of published data and the interpretation of electrical logs shows the altitude of the base of freshwater in aquifers in the northern Louisiana salt-dome basin. (USGS)

  4. The central and northern Appalachian Basin-a frontier region for coalbed methane development

    USGS Publications Warehouse

    Lyons, P.C.

    1998-01-01

    The Appalachian basin is the world's second largest coalbed-methane (CBM) producing basin. It has nearly 4000 wells with 1996 annual production at 147.8 billion cubic feet (Bcf). Cumulative CBM production is close to 0.9 trillion cubic feet (Tcf). The Black Warrior Basin of Alabama in the southern Appalachian basin (including a very minor amount from the Cahaba coal field) accounts for about 75% of this annual production and about 75% of the wells, and the remainder comes from the central and northern Appalachian basin. The Southwest Virginia coal field accounts for about 95% of the production from the central and northern parts of the Appalachian basin. Production data and trends imply that several of the Appalachian basin states, except for Alabama and Virginia, are in their infancy with respect to CBM development. Total in-place CBM resources in the central and northern Appalachian basin have been variously estimated at 66 to 76 trillion cubic feet (Tcf), of which an estimated 14.55 Tcf (~ 20%) is technically recoverable according to a 1995 U.S. Geological Survey assessment. For comparison in the Black Warrior basin of the 20 Tcf in-place CBM resources, 2.30 Tcf (~ 12%) is technically recoverable. Because close to 0.9 Tcf of CBM has already been produced from the Black Warrior basin and the proved reserves are about 0.8 Tcf for 1996 [Energy Information Administration (EIA), 1997]. U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Reserves, 1996 Annual Report. U.S. Department of Energy DOE/EIA-0216(96), 145 pp.], these data imply that the central and northern Appalachian basin could become increasingly important in the Appalachian basin CBM picture as CBM resources are depleted in the southern Appalachian basin (Black Warrior Basin and Cahaba Coal Field). CBM development in the Appalachian states could decrease the eastern U.S.A.'s dependence on coal for electricity. CBM is expected to provide over the next few decades a virtually untapped source of

  5. Uplift and Erosion in the Northern Al Kufrah Basin (Southeast Libya)

    NASA Astrophysics Data System (ADS)

    Gröger, H. R.; Bjørnseth, H. M.; Higgins, S.; Vandré, C.; Walderhaug, O.; Geiger, M.

    2009-04-01

    The Al Kufrah Basin forms part of the North African continental basin system. While neighbouring basins (e.g. Murzuq Basin, Sirt Basin) are proven petroleum provinces, the Al Kufrah Basin is still in an early stage of exploration. This study combines outcrop studies from the northern basin margin (Jabal Az Zalmah) and the eastern basin margin (Jabal Azbah) with subsurface data in a regional analysis of the key episodes of uplift and erosion in the Al Kufrah Basin. The understanding of the burial and exhumation history of a sedimentary basin is an important parameter for modelling source rock maturation and contributes thus to the evaluation of the hydrocarbon potential. In a first approach the amount of net erosion is estimated using geometrical reconstructions along two perpendicular cross-sections, based on interpretation of 2D-seimic data. In a second step the resulting net erosion map is integrated with three different analytical methods: (1) Shale compaction analyses (based on outcrop samples and well logs), (2) sandstone diagenesis analyses (based on outcrop samples) and (3) apatite fission track analyses (based on outcrop samples). Several erosional events are documented in the Palaeozoic stratigraphic record of the Al Kufrah Basin. The major episodes of regional Palaeozoic uplift and erosion occurred in Late Silurian - Early Devonian and in Late Carboniferous - Early Permian ("Hercynian event"). For both episodes a general southward increase in uplift and erosion has been estimated from integrated analyses of seismic and outcrop data. The northern flank of the basin including the Jabal Az Zalmah outcrop area does not appear to have been subjected to major uplift and erosion during these two Palaeozoic events. Maximum burial was reached during the Mesozoic after deposition of Late Permian - Early Cretaceous (?) continental sandstones. The most important episode of uplift and erosion occurred after the Early Cretaceous (?) sedimentation, leading to net

  6. Deep crustal structure of the Adare and Northern Basins, Ross Sea, Antarctica, from sonobuoy data

    NASA Astrophysics Data System (ADS)

    Selvans, M. M.; Stock, J. M.; Clayton, R. W.; Cande, S.; Granot, R.

    2014-11-01

    Extension associated with ultraslow seafloor spreading within the Adare Basin, in oceanic crust just north of the continental shelf in the Ross Sea, Antarctica, extended south into the Northern Basin. Magnetic and gravity anomaly data suggest continuity of crustal structure across the continental shelf break that separates the Adare and Northern Basins. We use sonobuoy refraction data and multi-channel seismic (MCS) reflection data collected during research cruise NBP0701, including 71 new sonobuoy records, to provide constraints on crustal structure in the Adare and Northern Basins. Adjacent 1D sonobuoy profiles along several MCS lines reveal deep crustal structure in the vicinity of the continental shelf break, and agree with additional sonobuoy data that document fast crustal velocities (6000-8000 m/s) at shallow depths (1-6 km below sea level) from the Adare Basin to the continental shelf, a structure consistent with that of other ultraslow-spread crust. Our determination of crustal structure in the Northern Basin only extends through sedimentary rock to the basement rock, and so cannot help to distinguish between different hypotheses for formation of the basin.

  7. Paleogene palaeogeography and basin evolution of the Western Carpathians, Northern Pannonian domain and adjoining areas

    NASA Astrophysics Data System (ADS)

    Kováč, Michal; Plašienka, Dušan; Soták, Ján; Vojtko, Rastislav; Oszczypko, Nestor; Less, György; Ćosović, Vlasta; Fügenschuh, Bernhard; Králiková, Silvia

    2016-05-01

    The data about the Paleogene basin evolution, palaeogeography, and geodynamics of the Western Carpathian and Northern Pannonian domains are summarized, re-evaluated, supplemented, and newly interpreted. The presented concept is illustrated by a series of palinspastic and palaeotopographic maps. The Paleogene development of external Carpathian zones reflects gradual subduction of several oceanic realms (Vahic, Iňačovce-Kričevo, Szolnok, Magura, and Silesian-Krosno) and growth of the orogenic accretionary wedge (Pieniny Klippen Belt, Iňačovce-Kričevo Unit, Szolnok Belt, and Outer Carpathian Flysch Belt). Evolution of the Central Western Carpathians is characterized by the Paleocene-Early Eocene opening of several wedge-top basins at the accretionary wedge tip, controlled by changing compressional, strike-slip, and extensional tectonic regimes. During the Lutetian, the diverging translations of the northward moving Eastern Alpine and north-east to eastward shifted Western Carpathian segment generated crustal stretching at the Alpine-Carpathian junction with foundation of relatively deep basins. These basins enabled a marine connection between the Magura oceanic realm and the Northern Pannonian domain, and later also with the Dinaridic foredeep. Afterwards, the Late Eocene compression brought about uplift and exhumation of the basement complexes at the Alpine-Carpathian junction. Simultaneously, the eastern margin of the stretched Central Western Carpathians underwent disintegration, followed by opening of a fore-arc basin - the Central Carpathian Paleogene Basin. In the Northern Hungarian Paleogene retro-arc basin, turbidites covered a carbonate platform in the same time. During the Early Oligocene, the rock uplift of the Alpine-Carpathian junction area continued and the Mesozoic sequences of the Danube Basin basement were removed, along with a large part of the Eocene Hungarian Paleogene Basin fill, while the retro-arc basin depocentres migrated toward the east

  8. Cenozoic evolution of the northwestern Salar de Atacama Basin, northern Chile

    NASA Astrophysics Data System (ADS)

    Pananont, P.; Mpodozis, C.; Blanco, N.; Jordan, T. E.; Brown, L. D.

    2004-12-01

    Since 90 Ma, the nonmarine Salar de Atacama Basin has been the largest, deepest, and most persistent sedimentary basin of northern Chile. Integration of 200 km of two-dimensional seismic reflection data with surface geological data clarifies Oligocene and Neogene evolution of the northern part of the basin. A normal fault with 6 ± 1 km of vertical separation controlled the western boundary of the basin during the accumulation of the Oligocene-lower Miocene Paciencia Group. The combination of this structure, a similar one in the Calama Basin, and regional structural data suggests that localized extension played an important role within a tectonic environment dominated by margin-perpendicular compression and margin-parallel strike-slip deformation. Seismic data substantiate the surface interpretation that much of the Cordillera de la Sal ridge resulted from diapiric flow of the Paciencia Group. Diapiric flow initiated during the late early Miocene or middle Miocene, associated with a deep reverse fault.

  9. Tectonic controls on rift basin morphology: Evolution of the northern Malawi (Nyasa) rift

    NASA Technical Reports Server (NTRS)

    Ebinger, C. J.; Deino, A. L.; Tesha, A. L.; Becker, T.; Ring, U.

    1993-01-01

    Radiometric (K-Ar and Ar-40/Ar-39) age determinations of volcanic and volcaniclastic rocks, combined with structural, gravity, and seismic reflection data, are used to constrain the age of sedimentary strata contained within the seismically and volcanically active northern Malawi (Nyasa) rift and to characterize changes in basin and flank morphologies with time. Faulting and volcanism within the Tukuyu-Karonga basin began at approximately 8.6 Ma, when sediments were deposited in abroad, initially asymmetric lake basin bounded on its northeastern side by a border fault system with minor topographic relief. Extensions, primarily by a slip along the border fault, and subsequent regional isostatic compensation led to the development of a 5-km-deep basin bounded by broad uplifted flanks. Along the low-relief basin margin opposite border fault, younger stratigraphic sequences commonly onlap older wedge-shaped sequences, although their internal geometry is often progradational. Intrabasinal faulting, flankuplift, and basaltic and felsic volcanism from centers at the northern end of the basin became more important at about 2.5 Ma when cross-rift transfer faults developed to link the Tukuyu-Karonga basin to the Rukwa basin. Local uplift and volcanic construction at the northern end of the basin led to a southeastward shift in the basin's depocenter. Sequence boundaries are commonly erosional along this low-relief (hanging wall) margin and conformable in the deep lake basin. The geometry of stratigraphic sequences and the distribution of the erosion indicate that horizontal and vertical crustal movements both across and along the length of the rift basin led to changes in levels of the lake, irrespective of paleoclimatic fluctuations.

  10. Lithospheric Instabilities within the Northern Basin and Range Province

    NASA Astrophysics Data System (ADS)

    Porter, R. C.; Fouch, M. J.

    2012-12-01

    Flat slab subduction and the subsequent removal of the subducting Farallon slab beneath the western United States has had a profound impact on the state of the North American lithosphere. In order to provide new constraints on the structure and evolution of the region's crust and upper mantle, we use surface wave tomography and receiver functions to image the earth beneath the Northern Basin and Range (NBR) and surrounding regions. We combine these results with published geophysical and geochemical data to further characterize lithospheric and asthenospheric processes and relate these to geological observations at the surface. Our initial results show high-velocity upper mantle, interpreted as lithosphere, beneath the center of the NBR and thinner lithosphere along its western, southern, and eastern margins. The zone of thickest lithosphere corresponds to areas with relatively thick crust, high elevations, and an absence of historic seismicity greater than magnitude 5.0. This region of thicker lithosphere also underlies a zone of reduced volcanic rock exposure relative to surrounding regions. Further, within the region there are no volcanic rocks in the NAVDAT database younger than 10 Ma, with the exception of Lunar Craters located in the south-central NBR. The shallow lithosphere-asthenosphere boundary observed along the margins of the NBR suggests that significant lithospheric thinning has occurred in these areas. This thinning is likely related to either extensional shear stresses or to the removal of lithospheric material, perhaps leading to accentuated strain along the margins of the Basin and Range. We interpret these data in the context of gravitational instabilities resulting in the removal of lithospheric material. A lithospheric downwelling has previously been identified within the center of the NBR based on high-velocity upper-mantle material observed in body wave tomography, a zone of weak or absent horizontal anisotropic fabric observed in shear

  11. Regional surficial geochemistry of the northern Great Basin

    USGS Publications Warehouse

    Ludington, S.; Folger, H.; Kotlyar, B.; Mossotti, V.G.; Coombs, M.J.; Hildenbrand, T.G.

    2006-01-01

    The regional distribution of arsenic and 20 other elements in stream-sediment samples in northern Nevada and southeastern Oregon was studied in order to gain new insights about the geologic framework and patterns of hydrothermal mineralization in the area. Data were used from 10,261 samples that were originally collected during the National Uranium Resource Evaluation (NURE) Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) program in the 1970s. The data are available as U.S. Geological Survey Open-File Report 02-0227. The data were analyzed using traditional dot maps and interpolation between data points to construct high-resolution raster images, which were correlated with geographic and geologic information using a geographic information system (GIS). Wavelength filters were also used to deconvolute the geochemical images into various textural components, in order to study features with dimensions of a few kilometers to dimensions of hundreds of kilometers. The distribution of arsenic, antimony, gold, and silver is different from distributions of the other elements in that they show a distinctive high background in the southeast part of the area, generally in areas underlain by the pre-Mesozoic craton. Arsenic is an extremely mobile element and can be used to delineate structures that served as conduits for the circulation of metal-bearing fluids. It was used to delineate large crustal structures and is particularly good for delineation of the Battle Mountain-Eureka mineral trend and the Steens lineament, which corresponds to a post-Miocene fault zone. Arsenic distribution patterns also delineated the Black Rock structural boundary, northwest of which the basement apparently consists entirely of Miocene and younger crust. Arsenic is also useful to locate district-sized hydrothermal systems an d clusters of systems. Most important types of hydrothermal mineral deposit in the northern Great Basin appear to be strongly associated with arsenic; this is less

  12. A Wintertime Aerosol Model for the Ganga Basin, Northern India

    NASA Astrophysics Data System (ADS)

    Dey, S.; Tripathi, S. N.

    2006-05-01

    An aerosol model has been developed using mass size distributions of various chemical components measured at Kanpur (an urban location in the Ganga basin, GB, in Northern India) and applied to estimate the radiative effects of the aerosols over the entire GB during the winter season for the first time. The number size distribution of various species was derived from the measured mass concentration and the optical properties were calculated using OPAC model. The anthropogenic contribution to the total extinction was found to be more than 90%. The relative contribution of various species to the aerosol optical depth (AOD) at 0.5 μm are in the following order, (NH2)2SO4 (AS, 37%), nitrate (N, 28%), other salts (S, mainly NaCl and KCl, 19%), dust (9%) and black carbon, BC (7%). Contribution of AS, N, S to the observed AOD decreases with wavelength and that of dust increases with wavelength, whereas, BC contribution remains almost same. The extinction coefficient strongly depends on the relative humidity (RH), as the scattering by fine mode fraction (contributing 88% to the total extinction) is enhanced at high ambient RH. The spectral variation of absorption coefficient indicates that the most likely source of BC (as BC is the dominant absorbing species) in this region is fossil- fuel. The spectral variation of single scattering albedo (SSA) in the fine and coarse mode fractions and that of asymmetry parameter suggests that the internal mixing is more likely scenario, although the possibility of external mixing can not be ruled out. If the RH is lowered by ~20%, BC contribution to the AOD increases by ~3.5%, which implies that the RH is a strong controlling factor of the aerosol forcing. The mean shortwave clear sky top of the atmosphere (TOA) and surface forcing over Kanpur are -13±3 and -43±8 W m-2. Extending the TOA and surface efficiency over the entire GB, the mean TOA and surface forcing become -9±3 and -25±10 W m-2. This results in high atmospheric

  13. The Bowser and Sustut Basins, Northern British Columbia, Canada: Insights From Analysis of Magnetic Anomaly Data.

    NASA Astrophysics Data System (ADS)

    Baker, J.; Lowe, C.

    2005-12-01

    The Bowser and Sustut basins occupy an area of more than 60,000 km2 in northern British Columbia, Canada. They comprise three, dominantly sedimentary, stratigraphic successions, in part overlapping in age: the Bowser Lake Group, the Skeena Group, and the Sustut Group. These three successions overlie arc volcanic and volcaniclastic strata of Stikinia, an allochtonous island arc terrane that accreted to the western margin of North America in the Early Jurassic to early Middle Jurassic. All three basin successions and underlying Stikinia were deformed during development of a thin-skinned fold and thrust belt (the Skeena Fold and Thrust Belt) in Cretaceous and possibly into earliest Tertiary time. Recently, the basins have been the focus of intense geological studies which have resulted in major revisions to the stratigraphic and structural framework of the basins and demonstrated that they have significantly higher petroleum potential than had been previously recognized. To advance these new findings further requires better imaging of the three-dimensional geometry and architecture of the basins. In this study we harness existing magnetic anomaly data to provide the first quantitative estimates of sedimentary thickness across the entire extents of both basins. Our results, which are in general in accord with geological interpretations, indicate that basin-fill is relatively thin and fairly uniform in the Sustut Basin (2.5-3 km), but highly variable in the Bowser Basin, ranging from less than 2 km to more than 6 km. Overall, sedimentary fill is thicker in the northern half of Bowser Basin compared to the south and is typically less than 2 km near the basins northern, western and southern margins. In addition, we demonstrate how a large, buried intrusion beneath the northeast part of Bowser Basin can account for an observed magnetic anomaly and explain the high coalification gradients and localized high maturation levels of the overlying sedimentary rocks. Neither of

  14. Selenium concentrations in the Colorado pikeminnow (Ptychocheilus lucius): relationship with flows in the upper Colorado River.

    PubMed

    Osmundson, B C; May, T W; Osmundson, D B

    2000-05-01

    A Department of the Interior (DOI) irrigation drainwater study of the Uncompahgre Project area and the Grand Valley in western Colorado revealed high selenium concentrations in water, sediment, and biota samples. The lower Gunnison River and the Colorado River in the study area are designated critical habitat for the endangered Colorado pikeminnow (Ptychocheilus lucius) and razorback sucker (Xyrauchen texanus). Because of the endangered status of these fish, sacrificing individuals for tissue residue analysis has been avoided; consequently, little information existed regarding selenium tissue residues. In 1994, muscle plugs were collected from a total of 39 Colorado pikeminnow captured at various Colorado River sites in the Grand Valley for selenium residue analysis. The muscle plugs collected from 16 Colorado pikeminnow captured at Walter Walker State Wildlife Area (WWSWA) contained a mean selenium concentration of 17 microg/g dry weight, which was over twice the recommended toxic threshold guideline concentration of 8 microg/g dry weight in muscle tissue for freshwater fish. Because of elevated selenium concentrations in muscle plugs in 1994, a total of 52 muscle plugs were taken during 1995 from Colorado pikeminnow staging at WWSWA. Eleven of these plugs were from fish previously sampled in 1994. Selenium concentrations in 9 of the 11 recaptured fish were significantly lower in 1995 than in 1994. Reduced selenium in fish may in part be attributed to higher instream flows in 1995 and lower water selenium concentrations in the Colorado River in the Grand Valley. In 1996, muscle plugs were taken from 35 Colorado squawfish captured at WWSWA, and no difference in mean selenium concentrations were detected from those sampled in 1995. Colorado River flows during 1996 were intermediate to those measured in 1994 and 1995. PMID:10787099

  15. Seasonal distribution of zooplankton in the northern basin of Lake Chad

    USGS Publications Warehouse

    Robinson, A.H.; Robinson, Patricia K.

    1971-01-01

    More than 300 pairs of fine and coarse mesh plankton net samples were collected in the northern basin of Lake Chad during an 18-month period, June 1967 to November 1968. The seasonal distribution and abundance of the dominant species of Rotifera and Crustacea are given in addition to a general description of the hydrology and circulation of the northern basin of the lake. The composition and abundance of the zooplankton varied considerably over the sampling period; a generalized seasonal cycle is suggested. Synoptic estimates of absolute abundance are presented and compared to those in the southeastern portion of the lake.

  16. Geochemical data for Jurassic diabase and basalt of the northern Culpeper basin, Virginia

    SciTech Connect

    Lee, K.Y.; Leavy, B.D.; Gottfried, D.

    1983-01-01

    The Culpeper basin is a north-northeast-trending faulted trough at the inner margin of the Piedmont geologic province along the east front of the Blue Ridge. Most of the Culpeper Group is intruded and locally metamorphosed by dikes, sills, and stocks of tholeiitic diabase. This report deals with a suite of samples from several diabase intrusives and basalt flows in the northern part of the Culpeper basin in Virginia. 22 refs., 2 figs., 2 tabs. (ACR)

  17. Deep seismic structure of the Atacama basin, northern Chile

    NASA Astrophysics Data System (ADS)

    Schurr, B.; Rietbrock, A.

    2004-06-01

    The Atacama basin is a prominent morphological anomaly in the Central Andean forearc. 3D seismic structure beneath the depression and its surroundings has been determined from local earthquake tomography. Depth maps of P-wave velocity and attenuation (1/Qp) through the lithosphere reveal a rheologically strong (high Qp and vp) lithospheric block beneath the basin, surrounded by weak regions (low Qp and vp) beneath Pre- and Western Cordilleras. The anomalous lithospheric structure appears to bar hot asthenospheric mantle from penetrating trenchward, and hence causes the volcanic front to be deflected by the Salar de Atacama basin. The cold block may also influence the thermal structure of the subducted slab causing reduced Benioff seismicity and less hydration of mantle rocks evident from reduced vp/vs ratios. Seismic data are hard to reconcile with extension and lithospheric thinning as a mechanism for subsidence of the basin. Instead, high strength of the Atacama lithospheric block may contribute to basin formation by focussing deformation and uplift along the block's weak edges.

  18. Structure and evolution of the Sporadhes basin of the North Aegean trough, northern Aegean sea

    NASA Astrophysics Data System (ADS)

    Brooks, M.; Ferentinos, G.

    1980-09-01

    Air gun and sparker profiling data from the northwest Aegean Sea provide detailed information on the structure of the Sporadhes basin (the western part of the North Aegean trough) and the adjacent shallow water area of Thermaicos Bay. Both areas are underlain by a thick postorogenic sedimentary sequence that exhibits "growth folds" (supratenuous folds attributable to synsedimentary tectonism) and associated antithetic faulting attributable to gravity creep down the limbs of the developing folds. The Sporadhes basin is an asymmetrical graben closely similar to Gulf Coast structures (down-to-basin faults) that have been modelled experimentally by Cloos (1968). Major listric faulting characterises the southern margin of the basin and the wide northern flank represents an associated downbend or reverse drag structure with antithetic faulting. Magmatism may occur in the axial zone of the basin. The Sporadhes basin has been formed in a late Cenozoic tensile stress regime and its evolution is discussed in terms of the regional tectonics and the process of back-arc extension. The structure and evolution of the northern Aegean area and the Pannonian basin are shown to be closely similar.

  19. Tectonoestratigraphic and Thermal Models of the Tiburon and Wagner Basins, northern Gulf of California Rift System

    NASA Astrophysics Data System (ADS)

    Contreras, J.; Ramirez Zerpa, N. A.; Negrete-Aranda, R.

    2014-12-01

    The northern Gulf of California Rift System consist sofa series faults that accommodate both normal and strike-slip motion. The faults formed a series of half-greens filled with more than 7 km of siliciclastic suc­cessions. Here, we present tectonostratigraphic and heat flow models for the Tiburón basin, in the southern part of the system, and the Wag­ner basin in the north. The models are constrained by two-dimensional seis­mic lines and by two deep boreholes drilled by PEMEX­-PEP. Analysis of the seismic lines and models' results show that: (i) subsidence of the basins is controlled by high-angle normal faults and by flow of the lower crust, (ii) basins share a common history, and (iii) there are significant differences in the way brittle strain was partitioned in the basins, a feature frequently observed in rift basins. On one hand, the bounding faults of the Tiburón basin have a nested geometry and became active following a west-to-east sequence of activation. The Tiburon half-graben was formed by two pulses of fault activity. One took place during the protogulf extensional phase in the Miocene and the other during the opening of Gulf of California in the Pleistocene. On the other hand, the Wagner basin is the result of two fault generations. During the late-to middle Miocene, the west-dipping Cerro Prieto and San Felipe faults formed a domino array. Then, during the Pleistocene the Consag and Wagner faults dissected the hanging-wall of the Cerro Prieto fault forming the modern Wagner basin. Thermal modeling of the deep borehole temperatures suggests that the heat flow in these basins in the order of 110 mW/m2 which is in agreement with superficial heat flow measurements in the northern Gulf of California Rift System.

  20. Unusual Radar Backscatter Properties Along the Northern Rim of Imbrium Basin

    NASA Technical Reports Server (NTRS)

    Thompson, Thomas W.; Campbell, Bruce A.

    2005-01-01

    Earth-based radar backscatter from the lunar terrae is 2-4 times that of the maria. The largest (most conspicuous) exception is the terra along the northern rim of Imbrium Basin, where highlands that surround Sinus Iridium and crater Pluto have long wavelength (70-cm) radar backscatter that is comparable to (and sometimes weaker) the mare.

  1. Ecological Condition of Streams in Northern Nevada EPA R-MAP Humboldt Basin Project

    EPA Science Inventory

    This report presents stream data on the Humboldt River Basin in northern Nevada using the R-EMAP Program. Water is of primary importance to both the economy and the ecology of the region. Many of the waters of Nevada have previously received relatively little attention in regar...

  2. The northern Great Basin: a region of continual change

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There are many controversies and conflicts surrounding land management in the Great Basin. The conflicts often revolve around the maintenance of native plant and animal communities. This paper outlines some of the historical aspects of plant community change and some of the unanticipated impacts of ...

  3. Assessment of coal geology, resources, and reserves in the northern Wyoming Powder River Basin

    USGS Publications Warehouse

    Scott, David C.; Haacke, Jon E.; Osmonson, Lee M.; Luppens, James A.; Pierce, Paul E.; Rohrbacher, Timothy J.

    2010-01-01

    The abundance of new borehole data from recent coal bed natural gas development in the Powder River Basin was utilized by the U.S. Geological Survey for the most comprehensive evaluation to date of coal resources and reserves in the Northern Wyoming Powder River Basin assessment area. It is the second area within the Powder River Basin to be assessed as part of a regional coal assessment program; the first was an evaluation of coal resources and reserves in the Gillette coal field, adjacent to and south of the Northern Wyoming Powder River Basin assessment area. There are no active coal mines in the Northern Wyoming Powder River Basin assessment area at present. However, more than 100 million short tons of coal were produced from the Sheridan coal field between the years 1887 and 2000, which represents most of the coal production within the northwestern part of the Northern Wyoming Powder River Basin assessment area. A total of 33 coal beds were identified during the present study, 24 of which were modeled and evaluated to determine in-place coal resources. Given current technology, economic factors, and restrictions to mining, seven of the beds were evaluated for potential reserves. The restrictions included railroads, a Federal interstate highway, urban areas, and alluvial valley floors. Other restrictions, such as depth, thickness of coal beds, mined-out areas, and areas of burned coal, were also considered. The total original coal resource in the Northern Wyoming Powder River Basin assessment area for all 24 coal beds assessed, with no restrictions applied, was calculated to be 285 billion short tons. Available coal resources, which are part of the original coal resource that is accessible for potential mine development after subtracting all restrictions, are about 263 billion short tons (92.3 percent of the original coal resource). Recoverable coal, which is that portion of available coal remaining after subtracting mining and processing losses, was determined

  4. War and early state formation in the northern Titicaca Basin, Peru

    PubMed Central

    Stanish, Charles; Levine, Abigail

    2011-01-01

    Excavations at the site of Taraco in the northern Titicaca Basin of southern Peru indicate a 2,600-y sequence of human occupation beginning ca. 1100 B.C.E. Previous research has identified several political centers in the region in the latter part of the first millennium B.C.E. The two largest centers were Taraco, located near the northern lake edge, and Pukara, located 50 km to the northwest in the grassland pampas. Our data reveal that a high-status residential section of Taraco was burned in the first century A.D., after which economic activity in the area dramatically declined. Coincident with this massive fire at Taraco, Pukara adopted many of the characteristics of state societies and emerged as an expanding regional polity. We conclude that organized conflict, beginning approximately 500 B.C.E., is a significant factor in the evolution of the archaic state in the northern Titicaca Basin. PMID:21788514

  5. Comparison of geoelectric and seismic reflection models of the Zambezi Valley basins, northern Zimbabwe

    NASA Astrophysics Data System (ADS)

    Bailey, David; Whaler, Kathy; Zengeni, Teddy

    2000-09-01

    The Mana Pools and Lower Zambezi Karoo sedimentary basins lie within the Zambezi mobile belt in northern Zimbabwe. The subsurface apparent resistivities measured at both locations are extremely low. Magnetotelluric (MT) data along a profile across part of the Lower Zambezi basin have been inverted using Rapid Relaxation Inversion (Smith & Booker 1991) to find the minimum structure needed to fit the data and compare with an earlier forward model. The resistivity models of both the Mana Pools and the Lower Zambezi basins are then compared with their structure revealed from seismic reflection data. The resistivity structure of the Mana Pools basin is well modelled as a series of different resistivity layers whose boundaries are defined by the seismic data. However, the resistivity structure of the Lower Zambezi basin cannot be matched easily to the seismic structure; additional structure with no seismic expression is required. There is a conductive feature in the two basins in the Upper Karoo sandstone layer that extends below the seismic basement beneath the Lower Zambezi basin. This indicates that the conductors may represent different types of features in the two basins, consistent with their proposed different tectonic origins. A resistive unit is present within the sediments in the Lower Zambezi basin that may represent intercalated basalt dykes, giving an anisotropic MT response. It has been suggested that there might be similar thin basalt layers within the sediments of the Mana Pools basin, but these could not be resolved by MT methods. The low resistivity of the basement, particularly beneath the Lower Zambezi basin, is remarkable and may result from a high degree of either chemical or tectonic alteration to the underlying rocks due to metamorphic processes and tectonic disruption during rift formation. The presence of the Lower Zambezi basin conductor at depths greater than the seismic basement is consistent with observations to the west, in the adjacent

  6. Groundwater quality in the Northern Coast Ranges Basins, California

    USGS Publications Warehouse

    Mathany, Timothy M.; Belitz, Kenneth

    2015-01-01

    Recharge to the groundwater system is primarily from mixture of ambient sources, including direct percolation of precipitation and irrigation waters, infiltration of runoff from surrounding hills/areas, seepage from rivers and creeks, and subsurface inflow (from non-alluvial geologic units that bound the alluvial basins). The primary sources of discharge are evaporation, discharge to streams, and water pumped for municipal supply and irrigation.

  7. Pedogenic and groundwater processes in a closed Miocene basin (northern Spain)

    NASA Astrophysics Data System (ADS)

    Armenteros, Ildefonso; Angeles Bustillo, M. A.; Blanco, Jose Antonio

    1995-09-01

    The Sepúlveda-Ayllón Basin (SAB) was an episodically closed Miocene basin adjacent to the Tertiary Duero Basin (northern Spain). The sediments studied here represent a depositional system developed from the margin to the centre of the basin by alluvial fan, mud flat and saline mud flat/ ephemeral lacustrine environments. An assemblage of authigenic lithotypes was formed in the basin, their distribution being influenced by that of the depositional environments within the basin. Authigenesis took place mainly before sedimentation of the next set of beds. In the distal alluuial fan, authigenesis of smectite (outer part), palygorskite (inner part) and calcrete predominates, and the original muddy deposits are still recognizable. In the mud flat, a more intense transformation of the sediments took place, with predominant formation of palygorskite (outer part), interstitial gypsum, calcrete (outer part), dolocrete (inner part) and brown silcrete. In the saline mud flat /ephemeral lake, original sediment was extensively disturbed and replaced by magnesian clays (sepiolite and magnesian smectite), interstitial gypsum, dolocrete and cream and white silcrete. Authigenic alteration within each cycle varied in time and place, and was both pedogenic and groundwater-related. The authigenic assemblages point to a closed basin under evaporation in a seasonally dry climate. At the end of this period the SAB became connected with the Duero Basin to the northeast, thus losing the endoreic regime. Consequently, the authigenic evaporitic assemblages were then unstable and were partially replaced by a late sparry calcrete.

  8. The mechanics of continental extension in Qiongdongnan Basin, northern South China Sea

    NASA Astrophysics Data System (ADS)

    Zhao, Zhongxian; Sun, Zhen; Wang, Zhenfeng; Sun, Zhipeng

    2015-09-01

    Located in the intersection of NE-trended rifted margin of South China Sea (SCS) and NW-oriented Ailao Shan-Red River Shear Zone (RRSZ), Qiongdongnan Basin shows significant differences in geological features from west to east, indicating different mechanics of continental extension. Based on the dense and updated multichannel seismic profiles, we disclose the characteristics of the remnant crystalline crust. Besides, we analyze the basin structures, calculate the stretching factors of upper and whole crust, and compute the syn-rift and post-rift unloaded tectonic subsidence along three selected transects in the west, middle and east of Qiongdongnan Basin. The crust thickness is 22 km on the northern and southern parts of Qiongdongnan Basin and thins gradually towards the central depression with two extremely thinned domains (<4 km), of which one is in Ledong Sag in the west and another is in Baodao and Changchang Sags in the east. Correspondingly, the stretching factors of crust are 1.5-2 on both sides and increase remarkably towards the central depression (β > 2) with two extremely stretched domains (β > 9), of which one is in Ledong Sag in the west and another is in Baodao and Changchang Sags in the east. However, the mechanics of continental extension vary significantly from west to east. The simple shear dominates in the west, the pure shear dominates in the east, and it is intermediate between the two end members of simple shear and pure shear in the middle of Qiongdongnan Basin. The simple shear in the west of Qiongdongnan Basin is probably controlled by the left-lateral movement of RRSZ. The pure shear in the east is probably related to the Cenozoic rifting along the northern continental margin of SCS. The transitional zone in the middle of Qiongdongnan Basin is possibly the combined results of the left-lateral movement of RRSZ and the Cenozoic rifting along the northern continental margin of SCS.

  9. Deformation of the Bellingham Basin in the Northern Cascadia Forearc as Inferred from Potential Field Data

    NASA Astrophysics Data System (ADS)

    Taylor, J.; Wolf, L. W.; Blakely, R. J.; Sherrod, B. L.; Brown, J.

    2013-12-01

    The Bellingham basin, spanning onshore and offshore regions of northwestern Washington state and southwestern British Columbia, is deforming under north-south shortening in the north Cascadia forearc. Accommodating the regional strain are Holocene-active faults within the basin that have been traced both offshore and onshore on the basis of gravity, aeromagnetic, and limited seismic data. In this study, we add 160 new gravity measurements to an existing database to better define the geometry of the Bellingham basin and its relation to recently discovered NW-trending faults. The new gravity data, spaced at ~ 1 km in the study area, were collected to address gaps in the irregular spatial distribution of existing data and extrapolate deformation recorded in coastal areas eastward into the basin. Regional-residual separation methods and derivative maps suggest that the Bellingham basin is segmented into three smaller basins. The southeast-trending Birch Bay fault extends 30 km into the basin, in agreement with previous work. The Sandy Point fault to the south of Birch Bay and the Drayton Harbor fault to the north appear as pronounced NW-SE trending lineations in magnetic data but are not as apparent as the Birch Bay fault in the new gravity data. The new data indicate that the northern margin of the Bellingham basin follows an arcuate path, southeastward from Birch Bay, then curving northeastward to connect with the Boulder Creek Fault. Two cross-sectional 2.5D models crossing the Bellingham basin show that the Birch Bay fault is steeply dipping and closely associated with a NW-SE trending anticlinal structure involving the underlying Chuckanut Formation and older rocks. An industry seismic line located ~2 km north of the Birch Bay fault shows an anticline involving Quaternary strata, consistent with the cross-sectional models. Results from the study suggest that the Bellingham basin contains evidence of Holocene-active faulting that, like other forearc basins to the

  10. Palynology and organic/isotope geochemistry of the Mae Moh Basin, Northern Thailand

    SciTech Connect

    Minh, L.V.; Abrajano, T.; Burden, E.; Winsor, L. ); Ratanasthien, B. )

    1994-07-01

    The Mae Moh basin is one of several Tertiary intermontane basins in northern Thailand, whose evolution has been linked to the collision of the Indian plate with the Eurasian plate since the early Eocene. As in most of these basins, lacustrine/swamp sedimentation in the Mae Moh basin can be broadly divided into an Oligocene to Miocene synrift sequence and a Miocene to Quarternary postrift sequence. The dominance of swamp flora recognized from spore and pollen assemblages (e.g., Polypodiidites usmensis, Verrucatosporites, Cyrtostachys), as well as the abundance of macrophytes and woody debris, indicate overwhelming hot and humid swamp conditions, with lake development restricted to relatively small areas. The distribution of alkanes and their compound-specific carbon isotope compositions are used to further show climatic variations affecting the lake/swamp ecology during the deposition of the synrift sequence.

  11. Contrasting red bed diagenesis: the southern and northern margin of the Central European Basin

    NASA Astrophysics Data System (ADS)

    Schöner, Robert; Gaupp, Reinhard

    2005-12-01

    We compare the diagenetic evolution of deeply buried Rotliegend (Permian) red bed sandstones at the southern and northern margin of the Central European Basin (CEB) in Germany. Main target is to evaluate the influence of maturation products from hydrocarbon (HC) source rocks during red bed diagenesis. At the southern margin of the CEB, thick coal-bearing Carboniferous source rocks are omnipresent beneath the Rotliegend. They contain dominantly gas-prone terrigenous organic material and some oil source rocks. Hydrocarbons were generated from Late Carboniferous onwards throughout most of basin subsidence. At the northern margin of the CEB, source rocks are almost absent due to deep erosion of Carboniferous rocks and a low TOC of local Lower Carboniferous relics. Early diagenetic processes are comparable at both basin margins. Significant differences in burial diagenetic evolution are spatially correlated to the occurrence of hydrocarbon source rocks. Burial diagenesis at the southern margin of the CEB is characterized especially by bleaching of red beds, major dissolution events, pervasive illite formation, impregnation of pore surfaces with bitumen, and formation of late Fe-rich cements. Almost none of these features were detected at the northern basin margin. Instead, relatively early cements are preserved down to maximum burial depths. This suggests that major diagenetic mineral reactions in deeply buried red bed sandstones are controlled by the presence or absence of maturing hydrocarbon source rocks.

  12. Structural features of northern Tarim basin: Implications for regional tectonics and petroleum traps

    SciTech Connect

    Dong Jia; Juafu Lu; Dongsheng Cai

    1998-01-01

    The rhombus-shaped Tarim basin in northwestern China is controlled mainly by two left-lateral strike-slip systems: the northeast-trending Altun fault zone along its southeastern side and the northeast-trending Aheqi fault zone along its northwestern side. In this paper, we discuss the northern Tarim basin`s structural features, which include three main tectonic units: the Kalpin uplift, the Kuqa depression, and the North Tarim uplift along the northern margin of the Tarim basin. Structural mapping in the Kalpin uplift shows that a series of imbricated thrust sheets have been overprinted by strike-slip faulting. The amount of strike-slip displacement is estimated to be 148 km by restoration of strike-slip structures in the uplift. The Kuqa depression is a Mesozoic-Cenozoic foredeep depression with well-developed flat-ramp structures and fault-related folds. The Baicheng basin, a Quaternary pull-apart basin, developed at the center of the Kuqa depression. Subsurface structures in the North Tarim uplift can be divided into the Mesozoic-Cenozoic and the Paleozoic lithotectonic sequences in seismic profiles. The Paleozoic litho-tectonic sequence exhibits the interference of earlier left-lateral and later right-lateral strike-slip structures. Many normal faults in the Mesozoic-Cenozoic litho-tectonic sequence form the negative flower structures in the North Tarim uplift; these structures commonly directly overlie the positive flower structures in the Paleozoic litho-tectonic sequence. The interference regions of the northwest-trending and northeast-trending folds in the Paleozoic tectonic sequence have been identified to have the best trap structures. Our structural analysis indicates that the Tarim basin is a transpressional foreland basin rejuvenated during the Cenozoic.

  13. Evidence for bloc rotation tectonics in the seismic Cheliff basin (northern Algeria) from paleomagnetic investigations

    NASA Astrophysics Data System (ADS)

    El-M. Derder, Mohamed; Henry, Bernard; Amenna, Mohamed; Bayou, Boualem; Maouche, Said; Besse, Jean; Ayache, Mohamed; Abtout, Abdeslam

    2010-05-01

    The seismic activity in the Western Mediterranean area is mainly concentrated in northern Africa, particularly in northern Algeria, as it was shown by the 21 May 2003 Boumerdes and the 10 October 1980 El Asnam earthquakes (of moment magnitudes Mw =6.9, and Ms= 7.3 respectively), which were among the strongest recent ones recorded in the western Mediterranean area. This seismicity is due to the convergence between Africa and Eurasia plates since at least the Oligocene. This convergence involves a transpression tectonic with N-S to NNW-SSE direction of shortening, which is expressed by active deformations along the boundary of these two plates. In Algeria, the seismicity is focused in a coastal zone (the Tell Atlas) in the northern part of the country. Active structures define there NE-SW trending folds and NE-SW sinistral transpressive faults, which affect the intermountain and coastal basins of Neogene to Quaternary age (e.g. " Cheliff "basin, " Mitidja "basin). These reverse faults are coupled with NW-SE to E-W trending strike-slip deep faults. The active deformation in northern Algeria could thus be explained by a kinematic model of bloc rotation: the transpression tectonics with NNW-SSE direction of convergence defines NE-SW oriented blocs, which have been possibly subjected to clockwise rotation. The aim of this study is to look for such blocks rotation in the "Cheliff" basin (northern Algeria), by using the paleomagnetic tool. A paleomagnetic study has been thus conducted on the midlle Miocene, Tortonian, Messinian and Pliocene sedimentary rocks cropping out on the eastern part of this basin. The study is still in progress, but despite the very weak intensity of the Natural Remanent Magnetization (NRM) measured on the samples, and the frequently observed magnetization instability during the thermal demagnetization, the preliminary results show that clockwise rotations have affected different sites of the studied area. The magnitude of these rotations varies

  14. Structure and seismic stratigraphy of deep Tertiary basins in the northern Aegean Sea

    NASA Astrophysics Data System (ADS)

    Beniest, Anouk; Brun, Jean-Pierre; Smit, Jeroen; Deschamps, Rémy; Hamon, Youri; Crombez, Vincent; Gorini, Christian

    2015-04-01

    Whereas active basin formation in the Aegean Sea is illustrated by seafloor bathymetry, the sedimentary and tectonic history of Tertiary basins is poorly known as existing offshore industrial seismic and well-log data are not easily accessible. We studied the evolution of the northern Aegean Sea with a focus on the North Aegean Trough and the Northern Skyros Basin, which are amongst the deepest basins of the northern Aegean domain. Structural and seismic stratigraphic interpretation of a 2D seismic dataset retrieved in the 1970's is combined with the well-investigated records of the onshore deep basins of northern Greece and Western Turkey. A general seismic signature chart was established using onshore basin stratigraphy and poorly-constrained well data. The studied domain shows two sharp unconformities that correspond to the Eocene-Oligocene transition and the Miocene-Pliocene shift, respectively. These transitions were then used as pillars for a more detailed structural and seismic stratigraphic interpretation. A NW-SE trending seismic line that cross-cuts the southern part of the NE-SW-trending North Aegean Through displays the main features that are observed in the area: 1) an overall basin geometry that is rather symmetrical; 2) pre-Pliocene units affected by steep normal faults; 3) a rather constant thickness of Oligocene sediments that define a depocenter with an apparent NW-SE orientation; 4) an ablation of Miocene sediments by erosion, likely related to the Messinian Salinity Crises (MSC); (5) thick deltaic/turbiditic deposits in the NE-SW oriented central through of Neogene age; 6) trans-tensional growth patterns in Pliocene and Quaternary sediments that combine NE-SW steeply dipping fault zones, more likely corresponding to strike-slip corridors, and E-W-trending normal faults. The evidence listed above suggest that, in the northern Aegean Sea, (1) extension started at the latest during the Late Eocene/Early Oligocene (data quality does not allow for a

  15. Changes in tectonic stress field in the northern Sunda Shelf Basins

    SciTech Connect

    Tjia, H.D.; Liew, K.K. )

    1994-07-01

    The Tertiary hydrocarbon basins of the northern Sunda Shelf are underlain by continental and attenuated continental crust characterized by moderate to high average geothermic gradients in excess of 5[degrees]C/100 m. In the Malay basin, Oligocene and younger sediments are more than 12 km thick. The smaller basins (which are commonly half grabens) and probably also the main Malay basin were developed as pull-apart depressions associated with regional north-to-northwest-striking wrench faults. Initial basin subsidence took place during the Oligocene, but at least one small basin may have developed as early as the Jurassic. Sense of movement of the regional wrench faults was reversed during middle to late Miocene and in some of these faults, evidence was found for yet a younger phase of lateral displacement. These offsets range up to 45 km right-laterally along north-trending fault zones. During most of the Cenozoic, succeeding wrench faulting with sense of movement in the opposite direction caused structural inversion of the basin-filling sediments, which became folded. The regional wrench faults act as domain boundaries, each tectonic domain being characterized by different stress fields. The evolving stress system can be attributed to varying degrees of interference of plate motions coupled with changes in movement directions and/or rates of the Pacific plate Indian Ocean-Australian plate and possible expulsion of southeast Asian crustal slabs following the collision of the Indian subplate with the Eurasian plate.

  16. Microgastropod biofacies of the Upper Carboniferous system in the northern Appalachian (Dunkard) Basin

    SciTech Connect

    Anderson, J.R. Jr.; Rollins, H.B.

    1985-01-01

    Upper Carboniferous microgastropod faunas are numerically abundant and diverse, and have recently received considerable taxonomic attention. However, there has been little attempt to appreciate their biostratigraphic utility. A comprehensive study of microgastropod distribution within fourteen marine units of the Pottsville, Allegheny, and Conemaugh Groups of the northern Appalachian Basin resulted in biofacies and range delimitation of many taxa. Microgastropod biofacies of the Pottsville and Allegheny Groups are less spatially and temporally static than those of the Conemaugh Group. Biofacies distribution suggests that Upper Carboniferous marine depocenters of the Dunkard Basin did not coincide with the structural basin observed today. The seaway connection between the Dunkard Basin and the mid-continent basins was most likely in central Ohio, rather than in southern Ohio and northern Kentucky. Upper Carboniferous microgastropod associations are much more diverse than their macrogastropod counterparts and, in addition, display more rapid temporal and spatial morphological change. Such microgastropod faunas not only offer potential for detailed biostratigraphic zonation of Upper Carboniferous strata, but also constitute a vast untapped data set for a variety of paleoecological and evolutionary studies.

  17. Coal resources of selected coal beds and zones in the Northern and Central Appalachian Basin

    USGS Publications Warehouse

    Ruppert, Leslie; Tewalt, Susan; Bragg, Linda

    2002-01-01

    The Appalachian Basin is one of the most important coal-producing regions in the world. Bituminous coal has been mined in the basin for the last three centuries, and the cumulative production is estimated at 34.5 billion short tons. Annual production in 1998 was about 452 million short tons; the basin's production is mostly in the northern (32 percent) and central (63 percent) coal regions. The coal is used primarily within the Eastern United States for electric power generation, but some of it is suitable for metallurgical uses. The U.S. Geological Survey (USGS) is completing a National Coal Resource Assessment of five coal-producing regions of the United States, including the Appalachian Basin. The USGS, in cooperation with the State geological surveys of Kentucky, Maryland, Ohio, Pennsylvania, Virginia, and West Virginia, has completed a digital coal resource assessment of five of the top-producing coal beds and coal zones in the northern and central Appalachian Basin coal regions -- the Pittsburgh coal bed, the Upper Freeport coal bed, the Fire Clay and Pond Creek coal zones, and the Pocahontas No. 3 coal bed. Of the 93 billion short tons of original coal in these units, about 66 billion short tons remain.

  18. Estimating flows in ungauged river basins in northern Mozambique

    NASA Astrophysics Data System (ADS)

    Minihane, M.

    2011-12-01

    In many regions across the globe, there are limited streamflow observations and therefore limited knowledge of availability of surface water resources. In many cases, these rivers lie in countries that would benefit from economic development and improved access to water and sanitation services, both of which are linked to water resources. Additional information about streamflow in these watersheds is critical to water resources planning and economic development strategies. In southeastern Africa, the remote Rovuma River lies on the border between Mozambique and Tanzania. There are limited historic measurements in the main tributary and no recent observations. Improved knowledge of the water resource availability and inter-annual variability of the Rovuma River will enhance transboundary river basin management discussions for this river basin. While major rivers farther south in the country are more closely monitored, those in the north have gauging stations with only scattered observations and have not been active since the early 1980's. Reliable estimates of historic conditions are fundamental to water resources planning. This work aims to provide estimates in these rivers and to quantify uncertainty and bounds on those estimates. A combination of methods is used to estimate historic flows: simple index gauge methods such as the drainage area ratio method and mean flow ratio method, a statistical regression method, a combination of an index gauge method and global gridded runoff data, and a hydrological model. These results are compared to in-situ streamflow estimates based on stage measurements and rating curves for the basins and time frames for which data is available. The evaluation of the methods is based on an efficiency ratio, bias, and representation of seasonality and inter-annual variability. Use of gridded global datasets, either with the mean flow ratio method or a hydrological model, appears to provide improved estimates over use of local observations

  19. Paleotectonic controls on sedimentation in northern Williston basin area, Saskatchewan

    SciTech Connect

    Kent, D.M.

    1983-08-01

    The Williston basin lies within the so-called stable cratonic interior and would not be expected to have had the same intensity of tectonic activity as is generally considered to be characteristic of cratonic margin sedimentary basins. From time to time, however, other structural features appear to have been effective controls on sediment distribution patterns. In southern Saskatchewan, one of the most active of these was the Swift current platform. This feature appears to have been sufficiently positive during early Paleozoic time to have caused a distinct thinning of those sediments over it. The platform was mildly positive during other periods of sedimentation, as well as during periods of erosion. It was a site of widespread salt solution during Mesozoic time, which was also its time of major tectonic fluctuation, as well as being the period when it had the most significant influence on sedimentation. Southeastern Saskatchewan is the locale for some significant regional gravity and magnetic anomalies which appear related to exposed structural zones in the Precambrian Shield. A major gravity anomaly on the extreme eastern side of the province is on trend with the Nelson River zone of Manitoba and a magnetic anomaly (Camfield-Gough conductor zone) can be traced to the Wollaston trend in north-central Saskatchewan. The Camfield-Gough zone is particularly significant in that it lies along the axis of the Hummingbird trough, an area affected by basement-controlled early salt solution, and it extends southward into the United States, where it is flanked by a number of local multizone oil-producing structures in North Dakota and Montana.

  20. Cenozoic subsurface stratigraphy and structure of the Salar de Atacama Basin, northern Chile

    NASA Astrophysics Data System (ADS)

    Jordan, T. E.; Mpodozis, C.; Muñoz, N.; Blanco, N.; Pananont, P.; Gardeweg, M.

    2007-02-01

    Sequence mapping of industry seismic lines and their correlation to exposed stratigraphic formations enable a description of the evolution of the nonmarine Salar de Atacama Basin. This major tectonic basin, located in the present-day forearc of the northern Chilean Andes, was first defined topographically by late Cretaceous inversion of the Jurassic-early Cretaceous extensional Tarapacá backarc Basin. Inversion led to both the uplift of the Cordillera de Domeyko and subsidence of the Salar de Atacama Basin along its eastern flank. The basin evolved from a continental backarc in the Cretaceous and Paleogene to a forearc tectonic setting during the Neogene. The principal causes of basin-scale tectonic subsidence include late Cretaceous and earliest Paleocene shortening and Oligocene-early Miocene localized extension. The basin was not completely filled by late Cretaceous (Purilactis Group, sequence G) and Paleocene (sequence H) strata, and its empty space persisted through the Cenozoic. Eocene deformation caused long-wavelength rotation of a deeply weathered surface, generating an erosional unconformity across which coarse clastic strata accumulated (sequence J). Oligocene-early Miocene normal faulting, perhaps in a transtensional environment, repositioned the western basin margin and localized hangingwall subsidence, leading to the accumulation of thousands of meters of evaporitic strata (sequence K, Paciencia Group). By the close of the early Miocene, shortening resumed, first uplifting the intrabasinal Cordillera de la Sal and later generating Pliocene blind reverse faults within the topographically lowest part of the basin. Unequal deposition and tilting across the nascent Cordillera de la Sal induced diapirism of the Paciencia Group halite. In combination, inherited accommodation space and new tectonic subsidence, plus local salt-withdrawal subsidence, shaped the distribution of Upper Miocene-Recent ignimbrites, evaporites, and clastics (sequence M and Vilama

  1. Flathead River Basin Hydrologic Observatory, Northern Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Woessner, W. W.; Running, S. W.; Potts, D. F.; Kimball, J. S.; Deluca, T. H.; Fagre, D. B.; Makepeace, S.; Hendrix, M. S.; Lorang, M. S.; Ellis, B. K.; Lafave, J.; Harper, J.

    2004-12-01

    We are proposing the 22, 515 km2 glacially-sculpted Flathead River Basin located in Montana and British Columbia as a Hydrologic Observatory. This hydrologic landscape is diverse and includes large pristine watersheds, rapidly developing intermountain valleys, and a 95 km2 regulated reservoir and 510 km2 lake. The basin has a topographic gradient of over 2,339 m, and spans high alpine to arid climatic zones and a range of biomes. Stream flows are snow-melt dominated and underpinned by groundwater baseflow. The site headwaters contain 37 glaciers and thousands of square kilometers of watersheds in which fire and disease are the only disturbances. In contrast, the HO also contains watersheds at multiple scales that were dominated by glaciers within the last 100 years but are now glacier free, impacted by timber harvests and fires of varying ages to varying degrees, modified by water management practices including irrigation diversion and dams, and altered by development for homes, cities and agriculture. This Observatory provides a sensitive monitor of historic and future climatic shifts, air shed influences and impacts, and the consequences of land and water management practices on the hydrologic system. The HO watersheds are some of the only pristine watersheds left in the contiguous U.S.. They provide critical habitat for key species including the native threaten bull trout and lynx, and the listed western cutthroat trout, bald eagle, gray wolf and the grizzly bear. For the last several thousand years this system has been dominated by snow-melt runoff and moderated by large quantities of water stored in glacial ice. However, the timing and magnitude of droughts and summer flows have changed dramatically. With the information that can be gleaned from sediment cores and landscape records at different scales, this HO provides scientists with opportunities to establish baseline watershed conditions and data on natural hydrologic variability within the system. Such a

  2. Unusual Radar Backscatter Properties Along the Northern Rim of Imbrium Basin

    NASA Technical Reports Server (NTRS)

    Thompson, T. W.; Campbell, Bruce A.

    2005-01-01

    In general, radar backscatter from the lunar terrae is 2-4 times that of the maria. One exception to this is the terra terrain along the northern rim of Imbrium Basin. The highlands that surround Sinus Iridum and crater Plato have long-wavelength (70-cm) radar backscatter that is comparable to or lower than that from the adjacent maria. We are studying new 70-cm radar images and earlier multispectral data to better constrain the regional geology.

  3. Paleozoic unconformities favorable for uranium concentration in northern Appalachian basin

    SciTech Connect

    Dennison, J.M.

    1986-05-01

    Unconformities can redistribute uranium from protore rock as ground water moves through poorly consolidated strata beneath the erosion surface, or later moves along the unconformity. Groundwater could migrate farther than in present-day lithified Paleozoic strata in the Appalachian basin, now locally deformed by the Taconic and Allegheny orogenies. Several paleoaquifer systems could have developed uranium geochemical cells. Sandstone mineralogy, occurrences of fluvial strata, and reduzate facies are important factors. Other possibilities include silcrete developed during desert exposure, and uranium concentrated in paleokarst. Thirteen unconformities are evaluated to determine favorable areas for uranium concentration. Cambrian Potsdam sandstone (New York) contains arkoses and possible silcretes just above crystalline basement. Unconformities involving beveled sandstones and possible fluvial strata include Cambrian Hardyston sandstone (New Jersey), Cambrian Potsdam Sandstone (New York), Ordovician Oswego and Juniata formations (Pennsylvania and New York), Silurian Medina Group (New York), and Silurian Vernon, High Falls, and Longwood formations (New York and New Jersey). Devonian Catskill Formation is beveled by Pennsylvanian strata (New York and Pennsylvania). The pre-Pennsylvanian unconformity also bevels Lower Mississippian Pocono, Knapp, and Waverly strata (Pennsylvania, New York, and Ohio), truncates Upper Mississippian Mauch Chunk Formation (Pennsylvania), and forms paleokarst on Mississippian Loyalhanna Limestone (Pennsylvania) and Maxville Limestone (Ohio). Strata associated with these unconformities contain several reports of uranium. Unconformities unfavorable for uranium concentration occur beneath the Middle Ordovician (New York), Middle Devonian (Ohio and New York), and Upper Devonian (Ohio and New York); these involve marine strata overlying marine strata and probably much submarine erosion.

  4. Early Tertiary subsidence and sedimentary facies - Northern Sirte Basin, Libya

    SciTech Connect

    Gumati, Y.D.; Kanes, W.H.

    1985-12-01

    The subsidence curves and subsidence rate curves for the Sirte basin, constructed from the stratigraphic record, show that subsidence was continuous throughout Late Cretaceous and Tertiary times, reaching a maximum during the Paleocene and Eocene, when a major reactivation of faults occurred. Shales and carbonates were deposited during all of the Late Cretaceous and Tertiary. Abrupt lateral facies changes occur from the platform areas toward the deeper troughs along with steep downdip thickening. The absence of upper Paleozoic and lower Mesozoic sediments suggests that the area was domed, faulted, and eroded during the late Mesozoic. As a result of crustal extension during the Paleocene, a marked lithologic and structural change occurred. The Heira Shale succeeded the Kalash Limestone in the Marada trough. Reactivation of the earlier faults, accompanied by an increase in the sediment supply from the south, caused these lower Paleocene shales to cover the entire area, with the exception of the old highs where carbonate deposition continued. An intercalation of shales and carbonates provides a sensitive indicator of change of depth and sediment type. 14 figures.

  5. Early Tertiary subsidence and sedimentary facies - northern Sirte Basin, Libya

    SciTech Connect

    Gumati, Y.D.; Kanes, W.H.

    1985-01-01

    The subsidence curves and subsidence rate curves for the Sirte basin, constructed from the stratigraphic record, show that subsidence was continuous throughout Late Cretaceous and Tertiary times, reaching a maximum during the Paleocene and Eocene, when a major reactivation of faults occurred. Shales and carbonates were deposited during all of the Late Cretaceous and Tertiary. Abrupt lateral facies changes occur from the platform areas toward the deeper troughs along with steep downdip thickening. These conditions were probably assisted by contemporaneous faulting along structurally weak hinge lines where the dominant structural elements are normal step faults. The absence of upper Paleozoic and lower Mesozoic sediments suggests that the area was domed, faulted, and eroded during the late Mesozoic. As a result of crustal extension during the Paleocene, a marked lithologic and structural change occurred. The Heira Shale succeeded the Kalash Limestone in the Marada trough. Reactivation of the earlier faults, accompanied by an increase in the sediment supply from the south, caused these lower Paleocene shales to cover the entire area, with the exception of the old highs where carbonate deposition continued. An intercalation of shales and carbonates provides a sensitive indicator of change of depth and sediment type.

  6. Delineating the northern part of the Socotra Basin, offshore Korea, using marine magnetics

    NASA Astrophysics Data System (ADS)

    Suh, M.; F. Abdallatif, T.; Han, J.; Choi, S.; Oh, J.

    2005-12-01

    A marine magnetic survey was carried out in and around the northern part of Socotra Basin, offshore Korea (31°42'32″ 32°46'29″N and 123°56'26″ 125°49'16″E), in order to better delineate its northern and eastern boundaries. Analyses of the observed magnetic field and estimation of the basement depth were used to assess these boundaries. The power spectrum and the three-dimensional analytical signal methods were used for depth estimation and to reconstruct basement configuration. Estimated depths resulting from the power spectrum method range from 1.5 to 6.0 km for deep sources (basement troughs), and from 0.3 to 1.7 km for shallower sources (basement peaks). An isopach map shows that the sedimentary sequence varies from 1.4 to 6.0 km in thickness. Estimated depths from the analytic signal method fluctuate in the range 1.2 6 km. The results of the observed field analysis and depth estimation indicate good agreement with the formerly proposed eastern boundary but disagreement with the northern boundary. The findings suggest either an extension of the Socotra Basin or the existence of other sub-basins possibly interconnected with the study area.

  7. 2000 resource assessment of selected coal beds and zones in the Northern and Central Appalachian Basin coal regions

    USGS Publications Warehouse

    Northern and Central Appalachian Basin Coal Regions Assessment Team

    2001-01-01

    This report includes results of a digital assessment of six coal beds or zones in the Northern and Central Appalachian Basin coal regions that produce over 15 percent of the Nation's coal. Other chapters include an executive summary, a report on geology and mining, a report summarizing other selected coal zones that were not assessed, and a report on USGS coal availability and recoverablity studies in the Northern and Central Appalachian Basin coal regions.

  8. Diachronous fault array growth within continental rift basins: Quantitative analyses from the East Shetland Basin, northern North Sea

    NASA Astrophysics Data System (ADS)

    Claringbould, Johan; Bell, Rebecca; Jackson, Christopher; Gawthorpe, Robert; Odinsen, Tore

    2016-04-01

    The evolution of rift basins has been the subject of many studies, however, these studies have been mainly restricted to investigating the geometry of rift-related fault arrays. The relative timing of development of individual faults that make up the fault array is not yet well constrained. First-order tectono-stratigraphic models for rifts predict that normal faults develop broadly synchronously throughout the basin during a temporally distinct 'syn-rift' episode. However, largely due to the mechanical interaction between adjacent structures, distinctly diachronous activity is known to occur on the scale of individual fault segments and systems. Our limited understanding of how individual segments and systems contribute to array-scale strain largely reflects the limited dimension and resolution of the data available and methods applied. Here we utilize a regional extensive subsurface dataset comprising multiple 3D seismic MegaSurveys (10,000 km2), long (>75km) 2D seismic profiles, and exploration wells, to investigate the evolution of the fault array in the East Shetland Basin, North Viking Graben, northern North Sea. Previous studies propose this basin formed in response to multiphase rifting during two temporally distinct extensional phases in the Permian-Triassic and Middle-to-Late Jurassic, separated by a period of tectonic quiescence and thermal subsidence in the Early Jurassic. We document the timing of growth of individual structures within the rift-related fault array across the East Shetland Basin, constraining the progressive migration of strain from pre-Triassic-to-Late Jurassic. The methods used include (i) qualitative isochron map analysis, (ii) quantitative syn-kinematic deposit thickness difference across fault & expansion index calculations, and (iii) along fault throw-depth & backstripped displacement-length analyses. In contrast to established models, we demonstrate that the initiation, growth, and cessation of individual fault segments and

  9. Paleostress perturbations and salt tectonics in the Subhercynian Basin, northern Germany

    NASA Astrophysics Data System (ADS)

    Brandes, C.; Schmidt, C.; Tanner, D.; Winsemann, J.

    2012-04-01

    Paleostress field analysis provide valuable data about deformation phases of a sedimentary basin and are of particular interest to understand modern stress-field patterns. Salt domes commonly represent inhomogeneities in a basin-fill that can cause significant stress pertubations, which can seriously influence the choice of exploration targets and the course of drilling campaigns (Koupriantchik et al., 2007). The Subhercynian Basin, located between the Harz and Flechting basement highs in northern Germany, is an ideal natural laboratory to study the paleostress field in a structurally-complex, salt-dominated basin. The basin-fill is characterized by a set of alternating narrow and broad, NW-SE trending, salt-cored anticlines. We use a multi-scale approach that combines outcrop-scale observations with regional-scale deformation structures to analyse the central and northwestern part of the Subhercynian Basin. We determined paleostress data from the orientation of faults, slickensides, joints and stylolites. On a regional scale, the major normal paleo-stress vector was mainly horizontally NNE-SSW-oriented, which reflects the Late Creatceous inversion phase in Central Europe, but locally the paleostress field shows distinct perturbations that are related to the salt structures. In some cases, the maximum principle normal paleostress vector is deflected by up to 80° from the regional trend. Nevertheless, this deflection is predictable, because our dataset shows that the maximum principle normal paleostress is always perpendicular to the axes of the salt anticlines. Another perturbation occurs at the edges of the salt structures; towards the tips of anticlines, the maximum principle normal paleostress vector tends to rotate towards the trend of the anticline axis. Reference Koupriantchik, D., Hunt, S.P., Boult, P.J. & Meyers, A.G. (2007) Geomechanical modelling of salt diapirs: 3D salt structures from the Officer Basin, South Australia. In: Munson, T.J. and Ambrose, G

  10. Organic geochemistry of Pennsylvanian-Permian oils and black shales, northern Denver basin

    SciTech Connect

    Clayton, J.L.; King, J.D.

    1984-04-01

    Organic geochemical analyses were performed on Paleozoic shales and oils from the northern Denver basin to determine oil-source bed relationships. Two general oil types were recognized: oil produced from reservoirs of Virgilian and Wolfcampian age in northeastern Colorado and Nebraska, and oil produced form the Lower Permian Lyons Sandstone near the basin axis in Colorado. Low-gravity oil (20/sup 0/ API) produced from the Virgilian-age reservoir at the Amazon field (Nebraska) and a higher gravity oil (37/sup 0/ API) produced from a well near the Amazon field (Wespro 1-23 Lyngholm) can be distinguished geochemically from the other Virgilian-Wolfcampian oils studied and may be genetically unrelated to them. For comparison, oils were analyzed from the Minnelusa Formation (Permian-Pennsylvanian) in the Powder River basin. These oils are geochemically unlike any Paleozoic oils analyzed in this study in southeastern Wyoming and Colorado.

  11. Stratigraphic context of fossil hominids from the Omo group deposits: northern Turkana Basin, Kenya and Ethiopia

    SciTech Connect

    Feibel, C.S.; Brown, F.H.; McDougall, I.

    1989-04-01

    The chronometric framework developed for Plio-Pleistocene deposits of the northern Turkana Basin is reviewed in light of recent advances in lithostratigraphy, geochemical correlation, paleomagnetic stratigraphy, and isotopic dating. The sequence is tightly controlled by 20 precise ages on volcanic materials. These ages are internally consistent but are at variance with estimates for the boundaries of the magnetic polarity time scale by about 0.07 my. This discrepancy can be only partially resolved at present. Based on the established chronometric framework and stratigraphic sequences, depositional ages can be estimated for significant marker beds. These ages can in turn be used to constrain the 449 hominid specimens thus far reported from the basin. Ages for most hominid specimens can be estimated with a precision of +/- 0.05 my. In addition, the chronometric framework will be applicable to other paleontological collections, archeological excavations, and future discoveries in the basin.

  12. Tectonic control on the Late Quaternary hydrography of the Upper Tiber Basin (Northern Apennines, Italy)

    NASA Astrophysics Data System (ADS)

    Benvenuti, Marco; Bonini, Marco; Moroni, Adriana

    2016-09-01

    We examine the intramontane Upper Tiber Basin in the Northern Apennines (central Italy), where sub-orthogonal fault systems forced river deviation and the abandonment of alluvial fans since the late Middle Pleistocene. Archaeological material, spanning the Middle Palaeolithic-Iron Age, was collected mostly from the surface of the Late Quaternary alluvial landforms and related deposits (MUP and HOL units). This information contributed to the partial dating of seven major stages of drainage development. Normal faults parallel and transverse to the basin trend were active at different times and conditioned the valley pattern of the Middle (MUP1-2)-Late (MUP3) Pleistocene Tiber, Singerna, Sovara and Tignana rivers, which still flow today into the basin. The MUP1 and the MUP3 fans were beheaded by the displacement of their feeder valleys along the basin-transverse Carmine and Montedoglio faults. In some cases, the former feeder rivers underwent stream piracy but their courses mostly deviated in response of the topographic gradient created by faulting, as well as through the incision of new valleys that exploited the lithological contrast along the fault lines. The MUP3 Tignana fan was abandoned mostly due to the activity of the basin-parallel, dip-slip Sansepolcro fault. Subsidence driven by the basin-parallel Anghiari and Sansepolcro fault systems also provided the accommodation space for the MUP3 and HOl1-2 Afra fans between Late Pleistocene and early-mid Holocene. This study exemplifies the interplay between longitudinal and transverse fault systems, and the Late Quaternary hydrographic evolution of an extensional basin settled in the axial zone of an active fold-and-thrust belt. Although the faulting has interacted with the forcing exerted by the Late Quaternary climate fluctuations on the basin drainage systems, the tectonic rates are sufficiently high to represent the prime controller on base-level change and drainage routing patterns.

  13. Reactive Transport of Nitrate in Northern California Groundwater basins: An Integrated Characterization and Modeling Approach

    NASA Astrophysics Data System (ADS)

    Esser, B. K.; Moran, J. E.; Hudson, G. B.; Carle, S. F.; McNab, W.; Tompson, A. F.; Moore, K.; Beller, H.; Kane, S.; Eaton, G.

    2003-12-01

    More than 1/3 of active public drinking water supply wells in California produce water with nitrate-N levels indicative of anthropogenic inputs (> 4 mg/L). Understanding how the distribution of nitrate in California groundwater basins will evolve is vital to water supply and infrastructure planning. To address this need, we are studying the basin-scale reactive transport of nitrate in the Livermore and Llagas basins of Northern California. Both basins have increasingly urban populations heavily reliant on groundwater. A distinct nitrate "plume" exists in the Livermore Basin (Alameda County) whereas pervasive nitrate contamination exists in shallow groundwaters of the Llagas Basin (Santa Clara County). The sources and timing of nitrate contamination in these basins are not definitively known; septic systems, irrigated agriculture and livestock operations exist or have existed in both areas. The role of denitrification in controlling nitrate distribution is also unknown; dissolved oxygen levels are sufficiently low in portions of each basin as to indicate the potential for denitrification. We have collected water from 60 wells, and are determining both groundwater age (by the 3H/3He method) and the extent of denitrification (by the excess N2 method). Excess nitrogen is being determined by both membrane-inlet and noble gas mass spectrometry, using Ar and Ne content to account for atmospheric N2. We are also analyzing for stable istotopes of nitrate and water, nitrate co-contaminants, and general water quality parameters. Preliminary analysis of archival water district data from both basins suggests positive correlations of nitrate with Ca+2, Mg+2 and bicarbonate and negative correlation with pH. In the Llagas Basin, a negative correlation also exists between nitrate and temperature. Flow path-oriented reactive transport modeling is being explored as a tool to aid in the identification of both the sources of nitrate and evidence for denitrification in both basins

  14. MOLA Topography of Impact Basins in the Northern Hemisphere of Mars

    NASA Technical Reports Server (NTRS)

    Frey, Herbert; Sakimoto, S. E. H.; Roark, J. H.

    1998-01-01

    Coverage of the northern hemisphere of Mars by the Mars Orbiter Laser Altimeter (MOLA) during the aerobraking hiatus and the two Science Phasing Operation periods provides improved definition and characterization of large impact basins. Gridded MOLA data show the Utopia Basin has a pronounced bowl-like structure, as opposed to the interior rises suggested by the earlier USGS DEM. The elevation structure is concentric about the basin center as mapped by McGill. In particular, the proposed inner ring closely follows the -4 km contour over much of the southern, western and northwestern sides. Higher topography along portions of the dichotomy boundary aligns with the basin's outer ring. High topography in the polar region also occurs where the outer ring should lie, raising the possibility that perhaps some of the polar topography is due to basin structure as well as ice. Two MOLA passes near Phison Rupes provide evidence for a large "stealth" hole where Viking imagery show little evidence of any major structure. The 2 km deep, 600 km wide depression at 31OW, 3ON is as large as the Cassini impact basin 1000 km to the SW. While Cassini is easily recognized in image data, the "MOLA Hole" is not. If this depression is a deeply eroded and buried impact basin (as perhaps suggested by a decrease in the crater density and somewhat smoother terrain than in adjacent areas), it is not clear why it has managed to maintain its great depth. In Tempe at the dichotomy boundary a 300 km wide impact basin is revealed by pronounced bowl-like topography centered at 87W, 47N, even though only about 1/3 of the basin rim structure is obvious. The basin lies on a sloping boundary zone, with the more buried N rim up to 2 km below the rugged S rim. A similar N-S asymmetry in basin ring structure occurs for the much larger Isidis Basin, where the S rim rises 6 km but the subdued N rim rises barely 2 km above the floor. There is essentially no topographic expression of the main ring in the NE

  15. Geodynamic evolution of the northern Dinarides and the southern part of the Pannonian Basin

    NASA Astrophysics Data System (ADS)

    Tari, Vlasta; Pamić, Jakob

    1998-11-01

    Most of the recent geodynamic interpretations of the Pannonian Basin focus on its relation to the formation of the Carpathians and the Alpine orogeny. However, also the Dinarides were severely affected by Neogene tectonics related to the formation of the Pannonian Basin. Especially in the northernmost Dinarides Neogene deformation played a very important role in the evolution of this mountain chain. Geological records clearly show evidence of two phases of plate convergence along the northern and eastern margins of the present-day Dinarides. At the end of the Jurassic the Dinaridic parts of the Tethys ophiolites were obducted onto the northeastern margins of the Apulian microplate. The second phase is documented in the central part of the northernmost Dinarides. It is genetically related to an ancient volcanic arc, as indicated by Late Cretaceous-Palaeogene trench sediments with blueschist olistolithes which are interlayered by basalt, rhyolites, pyroclastics, medium-pressure metamorphosed trench sediments, and associated synkinematic granitoids. In the northern part of the Dinarides subduction processes terminated with the Eocene compressional event which caused the uplift of the Dinarides. Numerous intramontane basins with shallow-marine, fluviatile and lacustrine deposits were generated during the Oligocene. Penecontemporaneous andesites which are found along the Drava and Sava depressions of the South Pannonian Neogene Basin can be correlated with the easternmost Periadriatic tonalites. However, observations do not indicate strike-slip faulting at that time in this area. The Neogene rift stage initiated the evolution of the Pannonian Basin. It is marked by extruded submarine trachyandesites of Karpathian age, Badenian basalts, andesites, dacites and rhyolites, and Pannonian alkali basalts, which are interlayered by coeval sedimentary rocks. Main evidence for the large-scale tectonic transport of large Dinaridic blocks into the Pannonian Basin area are the

  16. Neotectonic of Dead Sea pull-apart basin. A new tectonic model for its northern closure

    NASA Astrophysics Data System (ADS)

    Al-Awabdeh, Mohammad; Pérez-Peña, J. Vicente; Azañón, J. Miguel; Booth-Rea, Guillermo

    2014-05-01

    The Dead Sea is a pull-apart basin formed by the relative motion of two active fault segments of the southern Dead Sea Transform Fault system (DSTF); the Wadi Araba Fault (WAF) and the Jordan Valley Fault (JVF) in northwest Jordan. Both of them are sinistral strike slip faults, however, the WAF has slightly faster slip-rate than the JVF. The northern termination of the Dead Sea basin is not well constrained, without clear transverse structures closing the basin. However, geophysical data suggest an abrupt thinning in this northern termination. Based on fieldwork and observations of recent tectonic structures, we suggest that the northern closure of this pull-apart basin corresponds to an active NW-SE normal fault system to the north of the Kafrain Dam (28 km southwest Amman; the capital of Jordan). These normal faults constitute a transtensional zone formed by the partial reactivation of two major structures; the Shueib and the Amman Hallabat structures (SHS and AHS). Normal faults dipping SW present low to moderate throws, lateral ramps coalescing in the SHS, and probably they merge into a low-dipping main plane. This fault system is also the responsible of the extension of the upper Cretaceous formations to the NE of Kafrain Dam and has associated colluvial wedges of Holocene sediments, indicating a seismic component with related small to medium earthquakes. This work reveals the Quaternary reactivation of tectonic structures that thought inactive in the Neogene and how they accommodate part of the stress in the region alongside with the DSFT.

  17. Advective and Conductive Heat Flow Budget Across the Wagner Basin, Northern Gulf of California

    NASA Astrophysics Data System (ADS)

    Neumann, F.; Negrete-Aranda, R.; Contreras, J.; Müller, C.; Hutnak, M.; Gonzalez-Fernandez, A.; Harris, R. N.; Sclater, J. G.

    2015-12-01

    In May 2015, we conducted a cruise across the northern Gulf of California, an area of continental rift basin formation and rapid deposition of sediments. The cruise was undertaken aboard the R/V Alpha Helix; our goal was to study variation in superficial conductive heat flow, lateral changes in the shallow thermal conductivity structure, and advective transport of heat across the Wagner basin. We used a Fielax heat flow probe with 22 thermistors that can penetrate up to 6 m into the sediment cover. The resulting data set includes 53 new heat flow measurements collected along three profiles. The longest profile (42 km) contains 30 measurements spaced 1-2 km apart. The western part of the Wagner basin (hanging wall block) exhibit low to normal conductive heat flow whereas the eastern part of the basin (foot wall block) heat flow is high to very high (up to 2500 mWm-2). Two other short profiles (12 km long each) focused on resolving an extremely high heat flow anomaly up to 15 Wm-2 located near the intersection between the Wagner bounding fault system and the Cerro Prieto fault. We hypothesize that the contrasting heat flow values observed across the Wagner basin are due to horizontal water circulation through sand layers and fault pathways of high permeability. Circulation appears to be from west (recharge zone) to east (discharge zone). Additionally, our results reveal strong vertical advection of heat due to dehydration reactions and compaction of fine grained sediments.

  18. Late Miocene and Pliocene synorogenic sedimentation in northern Livermore basin, California

    SciTech Connect

    Isaacson, K.A.; Andersen, D.W.

    1987-05-01

    Late Tertiary synorogenic sedimentation in the northern Livermore basin, Contra Costa County, California, has recorded two major changes in provenance. Changes in clast composition of fluvial conglomerates reflect regional tectonic reorganization as the San Andreas fault system began to evolve at this latitude. Shallow marine deposition of Sierran andesitic sediment gave way at approximately 8 Ma to fluvially dominated deposition of sediment from a local, graywacke-rich, Coast Range source. Deposition of reworked andesitic material prior to 5.5 Ma records development of anticlinal uplifts along trends of the present Altamont Hills and Calaveras fault system. By 4 Ma, the areal extent of the subsiding basin had increased; the Altamont Hills continued to be uplifted, but the Calaveras fault region began to subside rapidly. Late Miocene and Pliocene deformation of the Livermore basin area extended over a broad zone east of the developing transform fault system. Structures that developed included broad synclinal basins and gentle anticlinal uplifts that had topographic expression but were not deeply incised. Intense deformation of the basin and uplift of Mount Diablo occurred after 3 Ma.

  19. Extensional collapse along the Sevier Desert reflection, northern Sevier Desert basin, western United States

    NASA Astrophysics Data System (ADS)

    Coogan, James C.; Decelles, Peter G.

    1996-10-01

    Newly released and previously published seismic reflection data from the northern Sevier Desert basin provide a complete seismic transect between the tilted western margin of the basin and the eastern breakaway zone. When tied to well and surface age data, the transect delineates a continuum of extensional fault and basin fill geometries that developed between late Oligocene and Pleistocene time across the basin. A minimum of 18 km of top-to-the-west normal displacement is estimated across the Sevier Desert from only the most conspicuous growth geometries and offsets across listric normal faults that sole downward into the Sevier Desert reflection (SDR). The SDR clearly marks a normal fault zone beneath the entire basin, where stratal truncations are imaged for 50% of the 39 km length of the reflection east of the Cricket Mountains block. Restoration of extensional displacement along this entire 39 km fault length is necessary to reconstruct the pre-Oligocene configuration and erosion level of Sevier thrust sheets across the Sevier Desert area. The SDR normal fault zone underlies the former topographic crest of the Sevier orogenic belt, where it accommodated extensional collapse after cessation of regional contractile tectonism.

  20. Tectonic Subsidence Analysis of the Pearl River Mouth Basin, Northern South China Sea

    NASA Astrophysics Data System (ADS)

    Tang, X.; Huang, S. S. X. E. C.; Zhuang, W.; LIU, Z.; Duan, W.; Hu, S.

    2015-12-01

    The Pearl River Mouth Basin (PRMB hereafter) in the northern margin of the South China Sea has attracted great attention not only because of its special tectonic location but also for its abundant hydrocarbon resources. Tectonic evolution controls the petroleum geological condition of hydrocarbon-bearing basins. Efforts have been made to understand the tectonic evolution of this basin. However, many issues about the tectonic features and the evolution process of this basin, such as the age of the breakup unconformities and the anomalously accelerated subsidence during the post-rifting stage, remain controversial. Here we employ tectonic subsidence analysis of sedimentary basins, a technique of removing isostatic loading and compaction effects by back-stripping, to investigate the tectonic controls on the basin formation of the PRMB. We performed the analysis on 4 drill wells and 43 synthetic wells constructed based on recently acquired seismic profiles. The result shows that tectonic subsidence in the eastern sags of the PRMB began to decrease at ~30Ma while in the western sags the onset was ~23.8Ma. This suggests that the break-up time i.e. the end of rifting in the PRMB is earlier in the eastern sags than in the western sags. Abnormally accelerated tectonic subsidence occurred between 17.5-16.4Ma during the post-rifting stage, at an average subsidence rate as high as 301.9m/Ma. This phenomenon discriminates the PRMB from the category of classical Atlantic passive continental marginal basins, of which the tectonic subsidence during the post-rifting stage decays exponentially. The main objective of this paper is to provide insights into the geological and geodynamic evolution of the PRMB. The result bears significance to hydrocarbon exploration in this region.

  1. Tectonic fabric of northern North Fiji and Lau basins from GLORIA sidescan

    SciTech Connect

    Tiffin, D.L. ); Clarke, J.E.H.; Johnson, D. ); Jarvis, P. ); Hill, P. ); Huggett, Q.; Pearson, L. ); Price, R. )

    1990-06-01

    GLORIA mosaics, Seabeam, and seismic data over parts of the backarc New Hebrides arc, northwest and central North Fiji basin, Fiji Fracture Zone north of Fiji, Peggy Ridge, northeast Lau basin, northern Tonga arc, northwestern Tonga Trench, and Western Samoa reveal a complex tectonic framework for the region. Two triple junctions and several rifts are clearly delineated by outcrops and ridges of neovolcanic rocks. Backarc troughs in the New Hebrides Arc are commonly floored by volcanic rocks with little sediment cover. The locus of major faults are well defined in places by volcanic ridges and scarps. On the Fiji Fracture Zone north of Fiji, scarps indicate the trace, but west of Fiji it disappears for about 100 km, becoming well pronounced again near the central North Fiji basin triple junction. At Peggy Ridge a very extensive area of sheet-like volcanics indicates activity extends northeast from Peggy Ridge toward the western extension of the Tonga Trench passing west of Niuafo'ou Island, possibly marking a fault-to-trench transition. East of Niuafo'ou Island, backarc spreading close to the Tofua Arc is seen at a nascent triple junction, its northern arm approaching close to the western Tonga Trench. Long linear fault scarps in the trench result from bending of the crust. Only a few areas, including the seafloor north of Samoa, are mainly sediment covered. Two known hydrothermal deposits near the two triple junctions have been imaged, but other mapped areas of extensive neo-volcanics in the vicinity of propagators and pull-apart basins suggest sites for further investigation. The prevalence of ridge propagators and extensional basins suggests their significant role in the development of the region.

  2. Diachronous Growth of Normal Fault Systems in Multiphase Rift Basins: Structural Evolution of the East Shetland Basin, Northern North Sea

    NASA Astrophysics Data System (ADS)

    Claringbould, Johan S.; Bell, Rebecca E.; A-L. Jackson, Christopher; Gawthorpe, Robert L.; Odinsen, Tore

    2015-04-01

    Our ability to determine the structural evolution and interaction of fault systems (kinematically linked group of faults that are in the km to 10s of km scale) within a rift basin is typically limited by the spatial extent and temporal resolution of the available data and methods used. Physical and numerical models provide predictions on how fault systems nucleate, grow and interact, but these models need to be tested with natural examples. Although field studies and individual 3D seismic surveys can provide a detailed structural evolution of individual fault systems, they are often spatially limited and cannot be used examine the interaction of fault systems throughout the entire basin. In contrast, regional subsurface studies, commonly conducted on widely spaced 2D seismic surveys, are able to capture the general structural evolution of a rift basin, but lack the spatial and temporal detail. Moreover, these studies typically describe the structural evolution of rifts as comprising multiple discrete tectonic stages (i.e. pre-, syn- and post-rift). This simplified approach does not, however, consider that the timing of activity can be strongly diachronous along and between faults that form part of a kinematically linked system within a rift basin. This study focuses on the East Shetland Basin (ESB), a multiphase rift basin located on the western margin of the North Viking Graben, northern North Sea. Most previous studies suggest the basin evolved in response to two discrete phases of extension in the Permian-Triassic and Middle-Late Jurassic, with the overall geometry of the latter rift to be the result of selective reactivation of faults associated with the former rift. Gradually eastwards thickening intra-rift strata (deposited between two rift phases) that form wedges between and within fault blocks have led to two strongly contrasting tectonic interpretations: (i) Early-Middle Jurassic differential thermal subsidence after Permian-Triassic rifting; or (ii

  3. Organic geochemistry and petroleum geology, tectonics and basin analysis of southern Tarim and northern Qaidam basins, northwest China

    NASA Astrophysics Data System (ADS)

    Hanson, Andrew Dean

    Organic geochemistry of oils from the Tarim basin, NW China, distinguish at least seven genetic groups of oils. The largest group are derived from Middle-Upper Ordovician anoxic slope-facies marls coincident with the margins of structural uplifts. Other groups include non-marine derived oils in the Luntai uplift, from southwest Tarim, in the Kuqa depression, and west of the Bachu uplift. A seep sample from west of Kashi clusters with Luntai oils. These results suggest that numerous source-rock horizons occur, but they are really restricted. Organic geochemistry of oils from northern Qaidam defines a family of hypersaline, anoxic lacustrine derived oils. Cenozoic outcrop samples from northern Qaidam are too organic lean to be of source quality, but dark laminated upper Oligocene mudstones from the Shi 28 well are of fair to good quality. Biomarkers provide a good correlation between the oils and the core samples. Organic matter is from algae and bacteria and lacks terrestrial material. Hydrocarbons are contained in upper Oligocene, Miocene, and Pliocene reservoirs. Eight oils are from NW Qaidam, but one sample comes from NE Qaidam, an area previously believed to only produce oils derived from Jurassic source rocks. Thus an unidentified Cenozoic source rock occurs in NE Qaidam. Thermal modeling indicates generation occurred in northwestern Qaidam within the last 3 million years, agreeing with observed low maturity biomarker parameters. Cenozoic stratigraphy in northern Qaidam and southern Tarim basins record the tectonic history of the surrounding structural/topographic elements. Paleocurrents record flow away from adjacent ranges from the Miocene to the present. Provenance data tie sediments to adjacent structural elements. Petrography indicates increasingly immature sandstones in Miocene and younger sediments relative to pre-Miocene samples. Apatite fission-track results from southeastern Tarim yield a cooling age of 17 +/- 1 Ma indicative of unroofing since at

  4. Miocene woods from the Qaidam Basin on northern Qinghai-Tibet Plateau with implications for paleoenvironmental change

    NASA Astrophysics Data System (ADS)

    Cheng, Ye-Ming; Yang, Xiao-Nan

    2016-02-01

    The Qaidam Basin with the most complete Cenozoic sedimentary preservation in northern Qinghai-Tibet Plateau is a key area for studying uplift and environmental change of the plateau. Three types of woods, Ulmus (Ulmaceae), Leguminosae (?) (angiosperm) and Cupressaceae (gymnosperm) were recognized from the large-scale preservation of fossil woods in late Miocene Shang Youshashan Formation in northern Qaidam Basin on the Qinghai-Tibet Plateau. Both investigations of their Nearest Living Relatives (NLRs) and previous grassland mammal evidences suggest that there have been temperate deciduous broad-leaved forest and needle-leaved forest with grass in northern Qaidam Basin during the late Miocene in contrast to the desert vegetation found there nowadays. The presence of the ancient forest steppe further implies that the southern part of the plateau used to be adequately low, so that the Indian and East Asian monsoons could approach the northern area and to accommodate the vegetation in late Miocene.

  5. Structural evolution of the northern East China Sea Shelf Basin interpreted from cross-section restoration

    NASA Astrophysics Data System (ADS)

    Cukur, Deniz; Horozal, Senay; Lee, Gwang H.; Kim, Dae C.; Han, Hyun C.; Kang, Moo H.

    2011-09-01

    The northern East China Sea Shelf Basin consists of three depressions (the Domi, Jeju, and Socotra Depressions), separated by basement highs or rises. Reconstruction of depth-converted seismic reflection profiles from these depressions reveals that the northern East China Sea Shelf Basin experienced two phases of rifting, followed by regional subsidence. Initial rifting in the Late Cretaceous was driven by the NW-SE crustal stretching of the Eurasian plate, caused by the subduction of the Pacific plate beneath the plate margin. Major extension (~15 km) took place during the early phase of basin formation. The initial rifting was terminated by regional uplift in the Late Eocene-Early Oligocene, which was probably due to reorganization of plate boundaries. Rifting resumed in the Early Oligocene; the magnitude of extension was mild (<1 km) during this period. A second phase of uplift in the Early Miocene terminated the rifting, marking the transition to the postrift phase of regional subsidence. Up to 2,600 m of sediments and basement rock were removed by erosion during and after the second phase of uplift. An inversion in the Late Miocene interrupted the postrift subsidence, resulting in an extensive thrust-fold belt in the eastern part of the area. Subsequent erosion removed about 900 m of sediments. The regional subsidence has dominated the area since the Late Miocene.

  6. Developing the Late Quaternary Record of Pluvial Lake Clover, Northern Great Basin, U.S.A

    NASA Astrophysics Data System (ADS)

    Laabs, B. J.; Munroe, J. S.

    2009-12-01

    Lake Clover was one of numerous closed-basin pluvial lakes that formed in the northern Great Basin during the Pleistocene. The geomorphic record of the lake includes continuous shoreline ridges and spits at altitudes of as much as 25 m above the modern playa surface. The history of Lake Clover is poorly known compared to those of the larger lakes Lahontan and Bonneville, but can provide a useful framework for understanding regional-scale environmental changes during the latest Pleistocene. Shoreline ridges of Lake Clover are preserved at altitudes of ca. 1729, 1725, 1719, and 1715 m asl, which correspond to intervals when the lake attained a surface area of 788, 726, 618, and 524 km2, respectively. Although the chronology of highstands at these altitudes is still being developed (through radiocarbon and luminescence-dating methods), the morphology and orientations of prominent shoreline features provide clues to regional air-circulation patterns during highstands. The highest shoreline is represented by a gravel ridge that can be traced nearly continuously around the perimeter of the lake basin. The ridge is uniformly developed along shorelines of differing aspect, suggesting that the wind field during the ice-free season was not dominated by a single direction. Along the eastern and western shores of the basin, the lower shorelines are manifested by a similar gravel ridge. However, in other sectors of the basin, features associated with progressively lower shorelines reveal an increasing dominance of northward longshore drift. The most dramatic features correspond with the 1719 m shoreline and include 1) a pronounced V-shaped, northward projecting spit at the southern end of the basin, 2) a 3-km long spit projecting to the north-northwest along the northeastern shoreline, and 3) a tombolo connecting a former island to the northern shore. Together these features suggest that dominant wind directions became more southerly during the ice-free season when the lake

  7. Paleozoic stratigraphy and tectonics of northern Uncompahgre front, Paradox basin, Utah - an alternative view

    SciTech Connect

    Stevenson, G.M.; Powell, T.G.

    1986-08-01

    The Paradox basin is a complex pull-apart basin of major proportions that developed along intersecting basement fracture zones by strong east-west extensional pulses in the Middle Pennsylvanian. These stresses caused the Ancestral Rocky Mountains to emerge and the Paradox basin to subside. Oblique divergent strike-slip faulting along the Uncompahgre-San Luis uplifts allowed smaller subbasins to develop by orthogonal spreading along intersecting northeast-trending transform faults. The rate of basin-floor subsidence was related to combinations of normal reverse, and strike-slip faulting. The northernmost subbasin of the Paradox basin is bounded by the northwest-trending Uncompahgre uplift, the salt Valley diapiric feature, and the northeast-trending San Rafael and Cataract lineaments. Although generally straight on a regional scale, the Uncompahgre master fault system is complicated in detail. The zone consists of en echelon fault slices, thrust blocks, and detachment faults. Few Paleozoic tests have been drilled along the northern Uncompahgre front. Most structural interpretations have been based on seismic data that have disregarded empirical geologic data from the few deep tests in the area. Structural features such as the Thompson-Yellow Cat anticlines have been assumed to be salt bulges or pillow structures. Geologic and geophysical data strongly suggest these features may be low-angle detachment thrust sheets. The true economic potential of the area also remains unknown; however, the structural style, burial history, and sedimentary rock types suggest that sizable accumulations of untapped hydrocarbons may exist in this portion of the Paradox basin.

  8. Federally owned coal and Federal lands in the Northern and Central Appalachian Basin coal regions

    USGS Publications Warehouse

    Tewalt, S.J.

    2002-01-01

    The U.S. Geological Survey (USGS) assessed five coal beds or coal zones in the northern and central Appalachian Basin coal regions for the National Coal Resource Assessment: the Pittsburgh coal bed, the Upper Freeport coal bed, the Fire Clay coal zone, the Pond Creek coal zone, and the Pocahontas No. 3 coal bed. The assessment produced stratigraphic and geochemical databases and digital coal maps, or models, which characterized the coal beds and coal zones. Using the assessment models, the USGS estimated original and remaining (unmined) resources for these coal beds or zones. The Appalachian Basin assessment was conducted in collaboration with the State geological surveys of West Virginia, Pennsylvania, Ohio, Maryland, Kentucky, and Virginia.

  9. Structural style and Basin Formation in Deep-water Area of Northern South China Sea

    NASA Astrophysics Data System (ADS)

    di, Z.; Zhen, S.; Xiong, P.; Min, C. C.

    2007-12-01

    In the deep-water area of northern South China Sea (SCS) developed a series of sedimentary basins. Active exploration for deep-water hydrocarbon has begun in these areas since this century. The well LW3-1-1 at water depth of 1480m in the BaiYun Sag (BYS) of the Pearl River Mouth Basin in 2006 discovered 56m layer of pure gas, demonstrated the good hydrocarbon potential of the area. Wide-angle seismic profiling has verified the transitional type of crust in the slope areas. The Moho surface shoals step-by-step from 30-29km under the shelf, ~15 km under the slope, and ~12km under the abyssal plain. Moho also rises beneath depocenters, mirroring the shape of sedimentary basement. The crustal thickness at the center of the BYS is <7km. Lower crustal high velocity layer is found in the eastern and central portions of the northern SCS. The pre-Cenozoic basement in northern SCS is the extension of the inland basement and consists of mainly metamorphosed Paleozoic and Mesozoic marine and continental strata, complicated by Yanshanian (J-K) intrusive and extrusive rocks. From geophysical data we inferred that a SW-NE Mesozoic trench-arc system exists beneath the Cenozoic sediments in the northeastern SCS, related to the subduction of the Paleo-Pacific Ocean towards the East Eurasian margin. The stress field in the East Eurasian margin changed abruptly in Late Cretaceous. Rifting started in the entire margin and eventually led to the opening of the SCS in late Early Oligocene. Large sedimentary basins developed in the margins of the SCS. Paleogene lacustrine sediments contain hydrocarbon sources, while traps are mostly found in Neogene marine strata. The structure of the northern SCS shows clear W-E variation, divided into NE-, NEE-, and NE-trending segments by two major NW-SE transfer faults. The Southern Depression of the Qiongdongnan Basin to the west is characterized by NE-trending half grabens. The BYS at the central segment is characterized by NEE-trending composite

  10. Federally owned coal and Federal lands in the northern and central Appalachian Basin coal regions

    SciTech Connect

    Susan J. Tewalt

    2002-02-01

    The US Geological Survey (USGS) assessed five coals beds or coal zones in the northern and central Appalachian Basin coal regions for the National Coal Resource Assessment: the Pittsburgh coal bed, the Upper Freeport coal bed, the Fire Clay coal zone, the Pond Creek coal zone, and the Pocahontas No. 3 coal bed. The assessment produced stratigraphic and geochemical databases and digital coal maps, or models, which characterized the coal beds and coal zones. Using the assessment models, the USGS estimated original and remaining (unmined) resources for these coal beds or zones. The Appalachian Basin assessment was conducted in collaboration with the State geological surveys of West Virginia, Pennsylvania, Ohio, Maryland, Kentucky, and Virginia. 3 refs., 7 figs.

  11. Coal resources of selected coal beds and zones in the northern and central Appalachian Basin

    SciTech Connect

    Leslie Ruppert; Susan Tewalt; Linda Bragg

    2002-02-01

    The U.S. Geological Survey (USGS) is completing a National Coal Resource Assessment of five coal-producing regions of the United States, including the Appalachian Basin. The USGS, in cooperation with the State geological surveys of Kentucky, Maryland, Ohio, Pennsylvania, Virginia, and West Virginia, has completed a digital coal resource assessment of five of the top-producing coal beds and coal zones in the northern and central Appalachian Basin coal regions -- the Pittsburgh coal bed, the Upper Freeport coal bed, the Fire Clay and Pond Creek coal zones, and the Pocahontas No. 3 coal bed. Of the 93 billion short tons of original coal in these units, about 66 billion short tons remain. 2 refs., 5 figs., 2 tabs.

  12. Visan miospore biostratigraphy and correlation of the Poti Formation (Parnaba Basin, northern Brazil).

    PubMed

    Melo; Loboziak

    2000-10-01

    The Poti Formation, which consists mainly of sandstones with minor proportions of carbonaceous shales and other siliciclastic lithologies, represents all the Viséan strata thus far recorded in the Parnaíba Basin, northern Brazil.Well-preserved miospores featuring species with both Southern Euramerican and Gondwanan affinities have been recovered from this formation in four well sections. The most characteristic species are listed in this paper, and brief systematic descriptions are presented for the most significant species, along with comments on their biostratigraphy. A new generic combination is proposed: Cordylosporites magnidictyus (Playford and Helby) Loboziak and Melo comb. nov. Comparisons with miospores illustrated from the Grand Erg Occidental, Algerian Sahara, are tentatively proposed.In terms of the Western European Carboniferous palynozonation, miospore assemblages from the Poti Formation are assignable to the Perotrilites tessellatus-Schulzospora campyloptera (TC)-Raistrickia nigra-Triquitrites marginatus (NM) zonal range. This corresponds to the upper part of the Holkerian and the whole Asbian, which are British regional stages for the lower to middle parts of the upper Viséan. The Viséan age formerly attributed to biostratigraphic interval XII of Petrobras' regional palynostratigraphic scheme is therefore confirmed. As already noted in our recent investigations of the Faro Formation in the Amazon Basin and equivalent strata of the Solimões Basin, latest Tournaisian and early to middle Viséan sections are either absent or barren of characteristic miospores in the Parnaíba Basin as well. PMID:11042330

  13. Latest Miocene to Quaternary deformation in the southern Chaiwopu Basin, northern Chinese Tian Shan foreland

    NASA Astrophysics Data System (ADS)

    Lu, Honghua; Wang, Zhen; Zhang, Tianqi; Zhao, Junxiang; Zheng, Xiangmin; Li, Youli

    2015-12-01

    Basinward propagation of fold and thrust belts is a crucial geological process accommodating Cenozoic crustal shortening within the India-Eurasia collision zone. Anticlinal growth strata in the southern Chaiwopu Basin (a piggyback basin) of the northern Chinese Tian Shan foreland record basinward encroachment of the Tian Shan along the Junggar Frontal Thrust Fault. A new magnetostratigraphic section constrains the onset of syntectonic growth strata at circa 6.4 Ma and suggests synchronous basinward thrusting and propagation of the Tian Shan. The intense alluviation in the southern Chaiwopu Basin ceased at circa 0.55 Ma due to significant anticlinal growth and its resultant river incision. More recent anticlinal growth and deformation during the late Quaternary are revealed by folded river terraces developing across the anticline. The terrace height profile indicates that terrace T1H has been vertically offset about 0.6 m by thrust faulting since its formation at about 7 Ka. The stratigraphic and geomorphic data presented in this work are helpful to understand the initiation of thrust-related folding, as well as aggradation and subsequent incision, in foreland basins of the Tian Shan in relation to the India-Asia collision.

  14. Ground-water levels in intermontane basins of the northern Rocky Mountains, Montana and Idaho

    USGS Publications Warehouse

    Briar, David W.; Lawlor, S.M.; Stone, M.A.; Parliman, D.J.; Schaefer, J.L.; Kendy, Eloise

    1996-01-01

    The Regional Aquifer-System Analysis (RASA) program is a series of studies by the U.S. Geological Survey (USGS) to analyze regional ground-water systems that compose a major portion of the Nation's water supply (Sun, 1986). The Northern Rocky Mountains Intermontane Basins is one of the study regions in this national program. The main objectives of the RASA studies are to (1) describe the groundwater systems as they exist today, (2) analyze the known changes that have led to the systems present condition, (3) combine results of previous studies in a regional analysis, where possible, and (4) provide means by which effects of future ground-water development can be estimated.The purpose of this study, which began in 1990, was to increase understanding of the hydrogeology of the intermontane basins of the Northern Rocky Mountains area. This report is Chapter B of a three-part series and shows the general distribution of ground-water levels in basin-fill deposits in the study area. Chapter A (Tuck and others, 1996) describes the geologic history and generalized hydrogeologic units. Chapter C (Clark and Dutton, 1996) describes the quality of ground and surface waters in the study area.Ground-water levels shown in this report were measured primarily during summer 1991 and summer 1992; however, historical water levels were used for areas where more recent data could not be obtained. The information provided allows for the evaluation of general directions of ground-water flow, identification of recharge and discharge areas, and determination of hydraulic gradients within basin-fill deposits.

  15. Holocene faulting in the Bellingham forearc basin: upper-plate deformation at the northern end of the Cascadia subduction zone

    USGS Publications Warehouse

    Kelsey, Harvey M.; Sherrod, Brian L.; Blakely, Richard J.; Haugerud, Ralph A.

    2013-01-01

    The northern Cascadia forearc takes up most of the strain transmitted northward via the Oregon Coast block from the northward-migrating Sierra Nevada block. The north-south contractional strain in the forearc manifests in upper-plate faults active during the Holocene, the northern-most components of which are faults within the Bellingham Basin. The Bellingham Basin is the northern of four basins of the actively deforming northern Cascadia forearc. A set of Holocene faults, Drayton Harbor, Birch Bay, and Sandy Point faults, occur within the Bellingham Basin and can be traced from onshore to offshore using a combination of aeromagnetic lineaments, paleoseismic investigations and scarps identified using LiDAR imagery. With the recognition of such Holocene faults, the northernmost margin of the actively deforming Cascadia forearc extends 60 km north of the previously recognized limit of Holocene forearc deformation. Although to date no Holocene faults are recognized at the northern boundary of the Bellingham Basin, which is 15 km north of the international border, there is no compelling tectonic reason to expect that Holocene faults are limited to south of the international border.

  16. Geophysical observations on northern part of Georges Bank and adjacent basins of Gulf of Maine

    USGS Publications Warehouse

    Oldale, R.N.; Hathaway, J.C.; Dillon, William P.; Hendricks, J.D.; Robb, James M.

    1974-01-01

    Continuous-seismic-reflection and magnetic-intensity profiles provide data for inferences about the geology of the northern part of Georges Bank and the basins of the Gulf of Maine adjacent to the bank. Basement is inferred to be mostly sedimentary and volcanic rocks of Paleozoic age that were metamorphosed and intruded locally by felsic and mafic plutons near the end of the Paleozoic Era. During Late Triassic time, large fault basins formed within the Gulf of Maine and probably beneath Georges Bank. The fault basins and a possible major northeast-trending fault zone beneath the northern part of the bank probably formed as a result of the opening Atlantic during the Mesozoic. Nonmarine sediments, associated with mafic flows and intrusive rocks, were deposited in the fault basins as they formed. The upper surface of the Triassic and pre-Triassic rocks that comprise basement is an unconformity that makes up much of the bottom of the Gulf of Maine. Depth to the basement surface beneath the gulf differ greatly because of fluvial erosion in Tertiary time and glacial erosion in Pleistocene time. Beneath the northern part of Georges Bank the basement surface is smoother and slopes southward. Prominent valleys, cut before Late Cretaceous time, are present beneath this part of the bank. Cretaceous, Tertiary, and possibly Jurassic times were characterized by episodes of coastal-plain deposition and fluvial erosion. During this time a very thick wedge of sediment, mostly of Jurassic(?) and Cretaceous ages, was deposited on the shelf. Major periods of erosion took place at the close of the Cretaceous and during the Pliocene. Fluvial erosion during the Pliocene removed much of the coastal-plain sedimentary wedge and formed the Gulf of Maine. Pleistocene glaciers eroded all but a few remnants of the coastal-plain sediments within the gulf and deposited a thick section of drift against the north slope of Georges Bank and a thin veneer of outwash on the bank. Marine sediments were

  17. Paleozoic evolution of active margin basins in the southern Central Andes (northwestern Argentina and northern Chile)

    NASA Astrophysics Data System (ADS)

    Bahlburg, H.; Breitkreuz, C.

    The geodynamic evolution of the Paleozoic continental margin of Gondwana in the region of the southern Central Andes is characterized by the westward progression of orogenic basin formation through time. The Ordovician basin in the northwest Argentinian Cordillera Oriental and Puna originated as an Early Ordovician back-arc basin. The contemporaneous magmatic arc of an east-dipping subduction zone was presumably located in northern Chile. In the back-arc basin, a ca. 3500 meter, fining-up volcaniclastic apron connected to the arc formed during the Arenigian. Increased subsidence in the late Arenigian allowed for the accomodation of large volumes of volcaniclastic turbidites during the Middle Ordovician. Subsidence and sedimentation were caused by the onset of collision between the para-autochthonous Arequipa Massif Terrane (AMT) and the South American margin at the Arenigian-Llanvirnian transition. This led to eastward thrusting of the arc complex over its back-arc basin and, consequently, to its transformation into a marine foreland basin. As a result of thrusting in the west, a flexural bulge formed in the east, leading to uplift and emergence of the Cordillera Oriental shelf during the Guandacol Event at the Arenigian-Llanvirnian transition. The basin fill was folded during the terminal collision of the AMT during the Oclóyic Orogeny (Ashgillian). The folded strata were intruded post-tectonically by the presumably Silurian granitoids of the "Faja Eruptiva de la Puna Oriental." The orogeny led to the formation of the positive area of the Arco Puneño. West of the Arco Puneño, a further marine basin developed during the Early Devonian, the eastern shelf of which occupied the area of the Cordillera Occidental, Depresión Preandina, and Precordillera. The corresponding deep marine turbidite basin was located in the region of the Cordillera de la Costa. Deposition continued until the basin fill was folded in the early Late Carboniferous Toco Orogeny. The basin

  18. Geology, Streamflow, and Water Chemistry of the Talufofo Stream Basin, Saipan, Northern Mariana Islands

    USGS Publications Warehouse

    Izuka, Scot K.; Ewart, Charles J., III

    1995-01-01

    A study of the geology, streamflow, and water chemistry of Talufofo Stream Basin, Saipan, Commonwealth of the Northern Mariana Islands, was undertaken to determine the flow characteristics of Talufofo Stream and the relation to the geology of the drainage basin. The Commonwealth government is exploring the feasibility of using water from Talufofo Stream to supplement Saipan's stressed municipal water supply. Streamflow records from gaging stations on the principal forks of Talufofo Stream indicate that peak streamflows and long-term average flow are higher at the South Fork gaging station than at the Middle Fork gaging station because the drainage area of the South Fork gaging station is larger, but persistent base flow from ground-water discharge during dry weather is greater in the Middle Fork gaging station. The sum of the average flows at the Middle Fork and South Fork gaging stations, plus an estimate of the average flow at a point in the lower reaches of the North Fork, is about 2.96 cubic feet per second or 1.91 million gallons per day. Although this average represents the theoretical maximum long-term draft rate possible from the Talufofo Stream Basin if an adequate reservoir can be built, the actual amount of surface water available will be less because of evaporation, leaks, induced infiltration, and reservoir-design constraints. Base-flow characteristics, such as stream seepage and spring discharge, are related to geology of the basin. Base flow in the Talufofo Stream Basin originates as discharge from springs near the base of limestones located in the headwaters of Talufofo Stream, flows over low-permeability volcanic rocks in the middle reaches, and seeps back into the high-permeability limestones in the lower reaches. Water sampled from Talufofo Stream during base flow had high dissolved-calcium concentrations (between 35 and 98 milligrams per liter), characteristic of water from a limestone aquifer. Concentrations of potassium, sodium, and chloride

  19. Recognition of relict Mesozoic Dongsha Basin in the northern margin, South China Sea and its implication

    NASA Astrophysics Data System (ADS)

    Yan, Pin; Wang, Yanlin

    2015-04-01

    The Pearl River Mouth Basin (PRMB) is dominated by NE-trending rift architecture produced mainly during Cenozoic Era. It comprises a series of grabens built up with thick Paleogene and thick Neogene sediments, up to 12000 m, and dividing basement highs composing Yanshanian granitic rocks. Though previously considered as one constituent part of PRMB in the southeast, Dongsha Basin displays major differences in sedimentary architecture and tectonic framework. Firstly, Dongsha Basin is characterized by a prominent angular unconformity, interpreted as a spectacular planation or rough erosion surface which separates the sediment column into two distinct parts. It is interpreted with accumulating seismic and drill data that the underlying strata comprise Early Cretaceous terrestrial, Jurassic marine and possibly Triassic sedimentary rocks totaling to 4~9 km thick, whereas the overlying strata are very thin (usually 0.5~1 km in whole) composing mainly Neogene sediments. The major sedimentary hiatus between them corresponds to the Late Cretaceous to mid-Miocene Epoch, well during the rifting to spreading process when the PRMB developed. Secondly, unlike the PRMB, the Dongsha Basin has suffered considerably less extension except its boundary areas, and actually remained as a relatively stable block though Cenozoic Era. Moreover, there are a few compressive open fold structures within the buried Mesozoic strata over the central Dongsha Basin. These folds trend in NNE and are characterized mostly by few minor growing upthrust faults with offsets in the order of few tens to hundreds meter. The upthrust faults dipped mostly southeastward against the northwestward subduction of paleo-Pacific plate as postulated in other previous study. The blind folds featured more like back-thrust growth tectonics, formed a broad NNE-SSW trending belt, obviously oblique to the trend of northern margin of the South China Sea and the PRMB as well. In a few recent models, the most prominent

  20. Extraordinarily thick-boned fish linked to the aridification of the Qaidam Basin (northern Tibetan Plateau).

    PubMed

    Chang, Meemann; Wang, Xiaoming; Liu, Huanzhang; Miao, Desui; Zhao, Quanhong; Wu, Guoxuan; Liu, Juan; Li, Qiang; Sun, Zhencheng; Wang, Ning

    2008-09-01

    Scattered with numerous salt lakes and approximately 2,700-3,200 m above sea level, the giant Qaidam inland basin on the northern Tibetan Plateau has experienced continuing aridification since the beginning of the Late Cenozoic as a result of the India-Asia plate collision and associated uplift of the Tibetan Plateau. Previous evidence of aridification comes mainly from evaporite deposits and salinity-tolerant invertebrate fossils. Vertebrate fossils were rare until recent discoveries of abundant fish. Here, we report an unusual cyprinid fish, Hsianwenia wui, gen. et sp. nov., from Pliocene lake deposits of the Qaidam Basin, characterized by an extraordinarily thick skeleton that occupied almost the entire body. Such enormous skeletal thickening, apparently leaving little room for muscles, is unknown among extant fish. However, an almost identical condition occurs in the much smaller cyprinodontid Aphanius crassicaudus (Cyprinodonyiformes), collected from evaporites exposed along the northern margins of the Mediterranean Sea during the Messinian desiccation period. H. wui and A. crassicaudus both occur in similar deposits rich in carbonates (CaCO(3)) and sulfates (CaSO(4)), indicating that both were adapted to the extreme conditions resulting from the aridification in the two areas. The overall skeletal thickening was most likely formed through deposition of the oversaturated calcium and was apparently a normal feature of the biology and growth of these fish. PMID:18757732

  1. Sequence stratigraphy and depositional systems of the Lower Silurian Medina Group, northern Appalachian basin

    SciTech Connect

    Castle, J.W. )

    1991-08-01

    Detailed sedimentological analysis of 3500 ft of continuous core from 44 wells in Pennsylvania, Ohio, Ontario, New York, and West Virginia, combined with regional study of geophysical logs, results in new interpretations of sequence stratigraphy and depositional systems in Lower Silurian siliciclastic rocks of the northern Appalachian basin. Above a type-1 sequence boundary at the base of the Medina Group are a lowstand systems tract and a transgressive systems tract that are represented, respectively, by the Whirlpool Sandstone and by the overlying Cabot Head Shale. The thickest sandstones in the Medina Group occur in the Grimsby Sandstone, which is interpreted as a highstand systems tract with basinward-prograding parasequences. Sea level rise after Grimsby parasequence deposition is represented by marine-shelf shale in the uppermost part of the Medina Group. Based on facies successions in the cores, four mappable depositional systems are interpreted for the Grimsby Sandstone and correlative sandstone units; (1) wave-dominated middle shelf, (2) wave- and tide-influenced inner shelf, (3) tide dominated shoreline, and (4) fluvial. The wave-dominated middle-shelf system, which includes very fine-grained shelf-ridge sandstones encased in marine shale, is the most basinward system, occurring from Ontario through parts of eastern Ohio. Shoreward, across the northern Appalachian basin, the influence of tidal processes relative to wave processes generally increased, which may have been related to distance across the shelf, water depth, and shoreline configuration. The shoreline may have been deltaic in some areas and straight in other areas.

  2. The Cenozoic on-shore basins of Northern Vietnam: Biostratigraphy, vertebrate and invertebrate faunas

    NASA Astrophysics Data System (ADS)

    Böhme, Madelaine; Prieto, Jérôme; Schneider, Simon; Hung, Nguyen Viet; Quang, Do Duc; Tran, Dang Ngoc

    2011-01-01

    A first account of paleontological data from three Cenozoic on-shore basins in Northern Vietnam, i.e. the Na Duong, Cao Bang, and Hang Mon basins, reveals a rich fossil fauna and flora of supposed Oligocene age, offering a great potential for taxonomic, paleoenvironmental, and paleobiogeographic studies. Two excavation campaigns unearthed well-preserved fossil remains of mammals, crocodiles, at least six turtle species, some 20 fish taxa, some other 20 mollusc species, and different plant remains. The majority of these taxa are regarded as new to science. However, close affinities to modern faunas of northern Southeast Asia demonstrate the importance of these fossils for an evaluation of the biological history of this modern biodiversity hot spot. Moreover, the fossil assemblages may help to disentangle the intricate Cenozoic tectonic evolution of Southeast Asia by application of paleobiogeographic modelling. Finally, the discovery of complex paleo-food-webs and the presence of several taxa indicative of certain ecological conditions provide a solid base for autecologic, synecologic and paleoclimatic studies. The potential biostratigraphic value of the macrofauna has to be demonstrated yet, as evolutionary concepts for most of the respective groups have not been proposed to date.

  3. Extraordinarily thick-boned fish linked to the aridification of the Qaidam Basin (northern Tibetan Plateau)

    PubMed Central

    Chang, Meemann; Wang, Xiaoming; Liu, Huanzhang; Miao, Desui; Zhao, Quanhong; Wu, Guoxuan; Liu, Juan; Li, Qiang; Sun, Zhencheng; Wang, Ning

    2008-01-01

    Scattered with numerous salt lakes and ≈2,700–3,200 m above sea level, the giant Qaidam inland basin on the northern Tibetan Plateau has experienced continuing aridification since the beginning of the Late Cenozoic as a result of the India–Asia plate collision and associated uplift of the Tibetan Plateau. Previous evidence of aridification comes mainly from evaporite deposits and salinity-tolerant invertebrate fossils. Vertebrate fossils were rare until recent discoveries of abundant fish. Here, we report an unusual cyprinid fish, Hsianwenia wui, gen. et sp. nov., from Pliocene lake deposits of the Qaidam Basin, characterized by an extraordinarily thick skeleton that occupied almost the entire body. Such enormous skeletal thickening, apparently leaving little room for muscles, is unknown among extant fish. However, an almost identical condition occurs in the much smaller cyprinodontid Aphanius crassicaudus (Cyprinodonyiformes), collected from evaporites exposed along the northern margins of the Mediterranean Sea during the Messinian desiccation period. H. wui and A. crassicaudus both occur in similar deposits rich in carbonates (CaCO3) and sulfates (CaSO4), indicating that both were adapted to the extreme conditions resulting from the aridification in the two areas. The overall skeletal thickening was most likely formed through deposition of the oversaturated calcium and was apparently a normal feature of the biology and growth of these fish. PMID:18757732

  4. Diversity of Bacteroidetes in high-altitude saline evaporitic basins in northern Chile

    NASA Astrophysics Data System (ADS)

    Dorador, Cristina; Meneses, Daniela; Urtuvia, Viviana; Demergasso, Cecilia; Vila, Irma; Witzel, Karl-Paul; Imhoff, Johannes F.

    2009-06-01

    The phylum Bacteroidetes represents one of the most abundant bacterial groups of marine and freshwater bacterioplankton. We investigated the diversity of Bacteroidetes in water and sediment samples from three evaporitic basins located in the highlands of northern Chile. We used both 16S rRNA gene clone libraries created with targeted Bacteroidetes-specific primers and separation of specifically amplified gene fragments by denaturing gradient gel electrophoresis (DGGE). DGGE analysis revealed a reduced richness of these organisms in samples from Salar de Huasco (two to four DGGE bands) increasing in Salar de Ascotán (two to seven DGGE bands) and Laguna Tebenquiche at Salar de Atacama (four to eight DGGE bands). Cluster analysis (WPGMA) of DGGE bands showed that bands from Salar de Huasco and Salar de Ascotán grouped together and samples from Salar de Atacama formed separate clusters in water and sediment samples, reflecting different Bacteroidetes communities between sites. Most of the sequences analyzed belonged to the family Flavobacteriaceae and clustered with the genera Psychroflexus, Gillisia, Maribacter, Muricauda, Flavobacterium, and Salegentibacter. The most abundant phylotype was highly related to Psychroflexus spp. and was recovered from all three study sites. The similarity of the analyzed sequences with their closest relatives in GenBank was typically <97% and notably lower when compared with type strains, demonstrating the unique character of these sequences. Culture efforts will be necessary to get a better description of the diversity of this group in saline evaporitic basins of northern Chile.

  5. Selective ingress of a Samoan plume component into the northern Lau backarc basin.

    PubMed

    Nebel, Oliver; Arculus, Richard J

    2015-01-01

    Intra-plate basalt isotopic trends require mixing between enriched mantle components (EM1, EM2, HIMU) and a primordial component with high (3)He/(4)He termed FOZO. However, proportions of components, geometric distributions within individual plumes, relative proportions of melting components and loci of mixing of melts and residues remain poorly understood. Here we present new Hf-Nd isotopic data of dredged sea floor basalts from the northern Lau backarc basin, ~250 km south of the subaerial and submerged Samoan chain, with high (3)He/(4)He, (20)Ne/(22)Ne and primordial (129)Xe/(130)Xe, characteristic of the FOZO component. Combined Hf-Nd-noble gas isotope systematics require mixing of refractory, sub-northwestern Lau backarc mantle only with a spatially restricted FOZO component, most plausibly sourced from part of the Samoan plume. Other geographically restricted and possibly volumetrically minor enriched Samoan plume components are not detectable in northern Lau backarc samples, consistent with selective plume ingress of the FOZO component beneath the basin. PMID:25761912

  6. Imaging lithospheric structure in northern Scotland and the South Caspian Basin

    NASA Astrophysics Data System (ADS)

    Asencio, Eugenio

    Passive- and active-source seismological studies of northern Scotland and the South Caspian Basin indicate: (1) pervasive and laterally heterogeneous velocity discontinuities within the upper mantle influenced by the localized tectonic and thermal history of northwest Scotland, and (2) growth fault-bend folds overriding a regional ductile detachment zone at a depth of about 13 to 16 km in response to a component of right-lateral simple shear of the underlying crust between the South Caspian Basin and the central and western Caucasus. Teleseismic earthquakes recorded by a small array of portable broadband stations and permanent short-period stations are used to ascertain the lateral extent of velocity discontinuities within the continental mantle lithosphere beneath Scotland. Radial receiver functions contain distinct P-to-S ( Ps) converted phases at about 3.1--3.2 s and at 4.5--5.2 s after the direct P-wave. These observations suggest that the upper mantle Ps phase originates from a high velocity and/or anisotropic layer within the upper mantle. At two stations, ORE and BACA, located along the northern shoreline of Scotland, these upper mantle phases can be correlated with the W-reflector, a bright, regionally extensive seismic reflector previously observed on marine deep seismic reflection and wide-angle refraction-reflection profiles. However, the variability in physical characteristics suggests the possibility that there may be multiple layered reflectors in the upper mantle beneath northern Scotland and revives debates on the regional and global significance of upper mantle layering. Deep seismic reflection profiles acquired in the deepwater of the South Caspian Sea, offshore Azerbaijan image a thick sequence of sediments (19--22 km thick) that structurally have been deformed into relatively symmetrical folds. These structures are interpreted as fault-bend growth folds overriding a regional ductile detachment zone at a depth of about 13 to 16 km. The analysis

  7. Towards large scale modelling of wetland water dynamics in northern basins.

    NASA Astrophysics Data System (ADS)

    Pedinotti, V.; Sapriza, G.; Stone, L.; Davison, B.; Pietroniro, A.; Quinton, W. L.; Spence, C.; Wheater, H. S.

    2015-12-01

    Understanding the hydrological behaviour of low topography, wetland-dominated sub-arctic areas is one major issue needed for the improvement of large scale hydrological models. These wet organic soils cover a large extent of Northern America and have a considerable impact on the rainfall-runoff response of a catchment. Moreover their strong interactions with the lower atmosphere and the carbon cycle make of these areas a noteworthy component of the regional climate system. In the framework of the Changing Cold Regions Network (CCRN), this study aims at providing a model for wetland water dynamics that can be used for large scale applications in cold regions. The modelling system has two main components : a) the simulation of surface runoff using the Modélisation Environmentale Communautaire - Surface and Hydrology (MESH) land surface model driven with several gridded atmospheric datasets and b) the routing of surface runoff using the WATROUTE channel scheme. As a preliminary study, we focus on two small representative study basins in Northern Canada : Scotty Creek in the lower Liard River valley of the Northwest Territories and Baker Creek, located a few kilometers north of Yellowknife. Both areas present characteristic landscapes dominated by a series of peat plateaus, channel fens, small lakes and bogs. Moreover, they constitute important fieldwork sites with detailed data to support our modelling study. The challenge of our new wetland model is to represent the hydrological functioning of the various landscape units encountered in those watersheds and their interactions using simple numerical formulations that can be later extended to larger basins such as the Mackenzie river basin. Using observed datasets, the performance of the model to simulate the temporal evolution of hydrological variables such as the water table depth, frost table depth and discharge is assessed.

  8. Sequence stratigraphy of the Pennsylvanian Morrow Formation, northern Delaware basin, New Mexico

    SciTech Connect

    Bay, A.R.; Baltensperger, P.A. )

    1990-05-01

    Stratigraphic sequence analysis of the Pennsylvanian Morrow Formation is a new technique useful in predicting and understanding shifts in sand trends that can help locate Morrow gas reservoirs in the mature northern Delaware basin. Morrow sandstone reservoirs are fluvial deltaic channel fill and transgressive beach deposits that typically are 10-30 ft thick and consistently less than 1 mi wide. Detailed mapping and correlation within the systems tracts of each sequence can high-grade specific areas in the basin for exploration. Based on subsurface log correlations, the Morrow clastics and Atoka carbonates in the northern Delaware basin are interpreted as three stratigraphic sequences bounded by subregional type I unconformities. The post-Mississippian unconformity represents the oldest sequence boundary in the Morrow-to-Atoka succession and formed as the base level dropped and the shoreline shifted at least 50 mi basinward. The uplifted Pedernal Highlands supplied sediment to dip-trending lower Morrow channels that downcut into the exposed Mississippian carbonate ramp surface. The transgressive systems tract in this sequence consists of landward-stepping, wave-dominated deltaic deposit. The Morrow shale, a regionally correlatable organic-rich shale that separates the lower Morrow from the middle Morrow, represents the highstand deposits as base level that rose to a maximum. Another base level drop occurred at the end of Morrow shale deposition and resulted in dip-trending channel-fill sandstones and, stacked landward stepping transgressive beach and offshore ridge deposits oriented parallel to strike. The highstand progradational deposits of this sequence formed a terrace that supplied a shelf margin system of deltaic and slope-apron sediments during the succeeding third sequence. The shelf margin deposits are capped by highstand shelf carbonates of the upper Morrow and lower Atoka.

  9. Ellipticity of Rayleigh waves in basin and hard-rock sites in Northern Italy

    NASA Astrophysics Data System (ADS)

    Berbellini, Andrea; Morelli, Andrea; Ferreira, Ana M. G.

    2016-07-01

    We measure ellipticity of teleseismic Rayleigh waves at 95 seismic stations in Northern Italy, for wave period between 10 and 110 s, using an automatic technique and a large volume of high-quality seismic recordings from over 500 global earthquakes that occurred in 2008-2014. Northern Italy includes a wide range of crustal structures, from the wide and deep Po Plain sedimentary basin to outcropping sedimentary and crystalline rocks in the Northern Apennines and Alps. It thus provides an excellent case for studying the influence of shallow earth structure on polarization of surface waves. The ellipticity measurements show excellent spatial correlation with geological features in the region, such as high ellipticity associated with regions of low seismic velocity in the Po Plain and low ellipticity values in faster, hard rock regions in the Alps and Apennine mountains. Moreover, the observed ellipticity values also relate to the thickness of the basement, as highlighted by observed differences beneath the Alps and the Apennines. Comparison between observations and predicted ellipticity from a reference crustal model of the region show substantial fit, particularly for T ˜ 38 s data. Discrepancy for shorter wave period suggests that slight modifications of the model are needed, and that the ellipticity measurements could help to better constrain the shallow crustal structure of the region. Predictions for the Po Plain are larger than the observations by a factor of four or more and transition from retrograde to prograde Rayleigh wave motion at the surface for periods of T ˜ 10-13 s is predicted for seismic stations in the plain. Analysis of corresponding real data indicates a possible detection of teleseismic prograde particle motion, but the weak teleseismic earthquake signals are mixed with ambient noise signals at the predicted, short, transition periods. Detection of the period of polarity inversion from the joint analysis of earthquake and ambient noise

  10. Ellipticity of Rayleigh waves in basin and hard-rock sites in Northern Italy

    NASA Astrophysics Data System (ADS)

    Berbellini, Andrea; Morelli, Andrea; Ferreira, Ana M. G.

    2016-04-01

    We measure ellipticity of teleseismic Rayleigh waves at 95 seismic stations in Northern Italy, for wave period between 10 s and 110 s, using an automatic technique and a large volume of high-quality seismic recordings from over 500 global earthquakes that occurred in 2008-2014. Northern Italy includes a wide range of crustal structures, from the wide and deep Po Plain sedimentary basin to outcropping sedimentary and cristalline rocks in the Northern Apennines and Alps. It thus provides an excellent case for studying the influence of shallow earth structure on polarisation of surface waves. The ellipticity measurements show excellent spatial correlation with geological features in the region, such as high ellipticity associated with regions of low seismic velocity in the Po Plain and low ellipticity values in faster, hard rock regions in the Alps and Apennine mountains. Moreover, the observed ellipticity values also relate to the thickness of the basement, as highlighted by observed differences beneath the Alps and the Apennines. Comparison between observations and predicted ellipticity from a reference crustal model of the region show substantial fit, particularly for T ˜ 38 s data. Discrepancy for shorter wave period suggests that slight modifications of the model are needed, and that the ellipticity measurements could help to better constrain the shallow crustal structure of the region. Predictions for the Po Plain are larger than the observations by a factor of four or more and transition from retrograde to prograde Rayleigh wave motion at the surface for periods of T ˜ 10-13 s is predicted for seismic stations in the Plain. Analysis of corresponding real data indicates a possible detection of teleseismic prograde particle motion, but the weak teleseismic earthquake signals are mixed with ambient noise signals at the predicted, short, transition periods. Detection of the period of polarity inversion from the joint analysis of earthquake and ambient noise

  11. Water masses of the northern part of the Iceland Basin in the late Pleistocene

    NASA Astrophysics Data System (ADS)

    Lukashina, N. P.

    2013-02-01

    A core of bottom sediments AMK-4438 with a length of 320 cm was taken in the North-Eastern part of the Iceland Basin from the depth of 2240 m. The continuous sampling (every 2 cm) made it possible to study the core using the principle of high-resolving paleoceanology. For the stratigraphic partition of the core, we applied the paleotemperature analysis by planktonic foraminifera and carbonate analysis; the distribution of the iceberg rafted debris (IRD) was studied. As a result, nine isotopic stages were distinguished. The change in the complexes of benthic foraminifera indicates that the present-day deepwater circulation in the North-Eastern part of the Iceland Basin had no analogs in earlier glacial periods, including the MIS 5 age. During almost 300 ka, there were relatively warm, rich in nutrients, and poor in oxygen water masses. The formation of the modern Northern-Eastern deep water in the Iceland Basin began in the Bolling-Allerod 14 ka B.P.

  12. Alpine tectonics of granites in basement of Ysyk-Köl Basin, northern Tien Shan

    NASA Astrophysics Data System (ADS)

    Leonov, M. G.; Przhiyalgovsky, E. S.; Lavrushina, E. V.; Poleshchuk, A. V.; Rybin, A. K.

    2016-07-01

    The Ysyk-Köl Basin filled with Lower Jurassic-Quaternary sedimentary rocks is the largest intermontane negative structural unit of the northern Tien Shan. The basement of this basin is composed of Precambrian-Paleozoic rocks, largely of Ordovician and Silurian granitoids exposed in mountain ranges of the basin framework and as separate anticlinal domes situated in areas occupied by the Mesozoic-Cenozoic sedimentary cover. The postmagmatic tectonic internalstructure of the Chonkurchak (Chunkurchak), Kyzyl-Choku, Kyzyl-Bulak, and Prishib massifs emplaced in the basement, as well as their relationships to the sedimentary cover, are described in the paper. The study was carried out using the morphostructural method, detailed geological mapping, structural kinematic analysis, and petrographic examination of rocks. The internalstructure of Paleozoic granites in the basement and indications of their 3D tectonic flow are characterized. It is shown that granites underwent 3D deformation after their emplacement in the consolidated crust, and this process had a substantial influence on tectonic processes at the plate and orogenic stages of regional evolution.

  13. Morphotectonics and sedimentation in convergent margin basins: An example from juxtaposed marginal sea basin and foreland basin, Northern South China Sea

    NASA Astrophysics Data System (ADS)

    Yu, Ho-Shing; Huang, Zehn-Yin

    2009-03-01

    Using reflection seismic profiles and bathymetric mapping this paper reveals the tectonic-sedimentary characteristics of the convergent margins in the northern South China Sea, where it is strongly related to flexure of Chinese rifted margin and overthrust of Taiwan orogen. Convergent margin tectonics of the South China Sea near southern Taiwan is characterized by a progressively northward transition from oceanic subduction along the Manila Trench to the incipient collision zone offshore southern Taiwan where the continental crust of the Eurasian plate subducts beneath the Philippine Sea plate. North of 21°N, dip angles of the Benioff zone increase up to 80° in the incipient collision zone where the Manila Trench becomes shallower, gradually loses its morphological identity and finally merges into the nearly N-S trending Penghu Canyon. Convergent margin tectonics in the initial collision zone in SW Taiwan is manifested by the beginning of flexure of the Chinese margin under the westward migrating overthrust belt of Taiwan, forming two distinct basins. On the passive Chinese margin, the marginal sea basin becomes smaller and is underlain by the South China Sea Slope, while on the active Taiwan margin, a wedge-top basin has formed above the frontal thrust sheets of the Taiwan orogenic wedge. Sediments derived from the Taiwan orogen progressively overlie the strata of the passive Chinese margin, resulting in sediment thickening and basin shallowing from south to north. Sedimentary facies shows that offshore deep-water mud is gradationally overlain by shallow marine sediments. Sediments of the wedge-top basin are being actively deformed into mud diapiric intrusions and a series of west-vergent thrusts and folds with their associated piggy-back basins, resulting in irregular topography of the sea floor with alternating sea ridges and troughs. Pliocene-Quaternary strata of the passive Chinese margin are a little deformed under the westward compression induced by the

  14. Reinterpretation of the Northern Terminus of the San Andreas Transform System: Implications for basin development and hydrocarbon exploration

    SciTech Connect

    Foland, S.S. ); Enzor, K.J. )

    1994-07-01

    The northern San Andreas transform system was studied to evaluate the tectonic history of offshore Point Arena basin, northern California. The Point Arena basin lies 250 km north of San Francisco and encompasses 8500 km[sup 2] on the outer continental shelf. It is a tertiary basin formed during Eocene subduction and overprinted by Pliocene-Pleistocene strike-slip motion of the San Andreas fault system. Interpretation of the data yields a new tectonic model for the northern San Andreas fault system and Point Arena basin. Previous models curved the fault system east parallel to the coast, intersecting faults exposed on Point Delgada, and then bending the fault sharply west to join the Mendocino triple junction. The new model projects the San Andreas fault system due northwest, straight into the offshore basin, as a series of parallel faults aligned with the onshore fault trace to directly intersect the triple junction. The new interpretation is supported by aeromagnetic data, which indicates the basin is divided by a major northwest-trending structural boundary and floored by two distinct basement types (Mesozoic Salinian granies and Jurassic Franciscan metasediments). The latest seismic data contain enough information to determine the genesis and orientation of the offshore fault system and associated folds. Basin modeling indicates hydrocarbon generation has occurred in the Miocene source beds. The model estimates the Point Arena basin contains multibillion barrel potential trapped in large antiforms associated with the through-going San Andreas system. Integration of all geotechnical data allowed reinterpretation of the tectonic history, and produced an enhanced understanding of Point Arena basin.

  15. Giant mudwaves in the Northern Argentine Basin: born and buried by bottom currents

    NASA Astrophysics Data System (ADS)

    Borisov, Dmitrii; Murdmaa, Ivar; Ivanova, Elena; Levchenko, Oleg

    2014-05-01

    New sedimentary records and very high resolution seismic profiles collected during four cruises of the RV "Akademik Ioffe" (2011-2013) were correlated with seismic, multibeam and coring data obtained during cruises of the RV "Robert Conrad", "Knorr", "Meteor". A complex analysis of the geological-geophysical data revealed an extensive field of giant mudwaves (48 000 km2) in the northwestern Argentine Basin, South Atlantic. The symmetric waves up to 60 m in height and 4000 m in wavelength are oriented roughly parallel to contours. They partly cover the Santa Catarina Plateau and extend through the Santos Basin to the Sao Paulo Plateau. The mudwaves field is traced at the depth range from 3400 to 4000 m and divided into buried (northern) and non-buried (southern) parts. The non-buried sediment waves cover the surface of the huge drift in the Santa Catarina Plateau. The wave height increases from the drift summit to its flanks and decreases at the foot. Two cores retrieved from the drift top and its northern flank recovered muddy contourites with a greater amount of silt-size material in the core from the drift flank. The age of the recovered sediments is at least 130 ka. In the northern Santos basin, the sediment waves are buried under a large lens-like sediment body (drift?) inclined at the margins. Cores obtained from the buried part of the mudwaves field recovered an intercalation of hemipelagic clay and silty-clay contourite. The age of recovered sediments does not exceed 150 ka (Bleil et al., 1993). Contourites deposition in the study area is related to the activity of the Antarctic bottom water (AABW) contour current. The AABW flow is considered to be divided into two branches by the Santa Catarina Plateau. We suggest that this topographic obstacle causes a flow velocity increase. Wave height and grain-size variations indicate higher bottom current velocities at the plateau flanks and relative tranquil conditions at the flat summit of the plateau. The symmetric

  16. Petroleum evaluation of Ordovician black shale source rocks in northern Appalachian basin

    SciTech Connect

    Wallace, L.G.; Roen, J.B.

    1988-08-01

    A preliminary appraisal of the Ordovician black shale source beds in the northern part of the Appalachian basin shows that the sequence is composed of the Upper Ordovician Utica Shale and its correlatives. The shales range in thickness from less than 200 ft in the west to more than 600 ft in the east along the Allegheny Front. Structure contours indicate that the shales plunge from 2,000 ft below sea level in central Ohio and to about 12,000 ft below sea level in central and northeastern Pennsylvania. Geochemical analyses of 175 samples indicate that the sequence has an average total organic carbon content (TOC) of 1.34%. Conodont alteration indices (CAI) and production indices indicate that the stages of maturation range from diagenetic in the less deeply buried western part of the basin, which probably produced mostly oil, to catagenetic in the more deeply buried eastern part of the basin, which probably produced mostly gas. Potential for continued hydrocarbon generation is poor in the east and fair to moderate in the western part of the basin. If the authors assume that these rocks have produced hydrocarbons, the hydrocarbons have since migrated. Using an average TOC of 1%, an organic carbon to hydrocarbon conversion factor of 10%, and a volume of rock within the oil and gas generation range as defined by CAI values of 1.5-4, the Ordovician shale could have generated 165 billion bbl of oil or equivalent. If only 1% of the 165 billion bbl was trapped after migration, then 1.65 billion bbl of oil or equivalent would be available for discovery.

  17. Climatic responses to anthropogenic groundwater exploitation: a case study of the Haihe River Basin, Northern China

    NASA Astrophysics Data System (ADS)

    Zou, Jing; Xie, Zhenghui; Yu, Yan; Zhan, Chesheng; Sun, Qin

    2014-04-01

    In this study, a groundwater exploitation scheme is incorporated into the regional climate model, RegCM4, and the climatic responses to anthropogenic alteration of groundwater are then investigated over the Haihe River Basin in Northern China where groundwater resources are overexploited. The scheme models anthropogenic groundwater exploitation and water consumption, which are further divided into agricultural irrigation, industrial use and domestic use. Four 30-year on-line exploitation simulations and one control test without exploitation are conducted using the developed model with different water demands estimated from relevant socioeconomic data. The results reveal that the groundwater exploitation and water consumption cause increasing wetting and cooling effects on the local land surface and in the lower troposphere, along with a rapidly declining groundwater table in the basin. The cooling and wetting effects also extended outside the basin, especially in the regions downwind of the prevailing westerly wind, where increased precipitation occurs. The changes in the four exploitation simulations positively relate to their different water demands and are highly non-linear. The largest changes in climatic variables usually appear in spring and summer, the time of crop growth. To gain further insights into the direct changes in land-surface variables due to groundwater exploitation regardless of the atmospheric feedbacks, three off-line simulations using the land surface model Community Land Model version 3.5 are also conducted to distinguish these direct changes on the land surface of the basin. The results indicate that the direct changes of land-surface variables respond linearly to water demand if the climatic feedbacks are not considered, while non-linear climatic feedbacks enhance the differences in the on-line exploitation simulations.

  18. Strain Partitioning in the Northern Walker Lane and Western Basin and Range from GPS Measurements

    NASA Astrophysics Data System (ADS)

    Hammond, W. C.; Blewitt, G.; Kreemer, C.

    2009-05-01

    The northern Walker Lane, in the western Basin and Range Province of the United States, is a complex system of dextral, normal and sinestral faults that work together to accommodate approximately 9 mm/yr of relative motion between the Sierra Nevada/Great Valley block and the more slowly extending Province. GPS measurements made using the BARGEN, EarthScope PBO and MAGNET GPS networks since 2004 are now providing improved resolution of deformation patterns and crustal fault slip rates inside the Walker Lane and western Basin and Range. We have processed all the GPS data as part of a uniform global solution, and filtered the solution on a Great Basin spatial scale to obtain rates of motion of the Walker Lane crust with respect to North America. Using these rates we have constrained slip rates on regional faults using a block model whose boundaries conform to Quaternary surface rupture geometries. These results show a very strong correlation between the geologic domains and style of strain measured with GPS. In particular, east of the Walker Lane, where the topography and crustal faulting are characteristic of classic Basin and Range tectonic extension, the GPS velocities show a highly uniform southeast to northwest uniaxial extension of 2.5 mm/yr distributed over 250 km. This uniform extension implies normal slip rates of approximately 0.1 mm/yr on average for each fault (horizontal extension). The transition between Basin and Range morphology and the Walker Lane is matched in the GPS velocities by a transition from uniaxial extension to transtension that is resolved into dextral slip on northwest trending faults, with minor contributions from left lateral slip on northeast striking faults and normal slip. Right oblique extension is well-distributed across the Walker Lane, with most faults contributing some slip to accommodate the overall slip budget. The greatest slip rates occur on the western and eastern margins, and by far the greatest amount of normal slip

  19. Polyphase tectonic subsidence evolution of the Vienna Basin inferred from quantitative subsidence analysis of the northern and central parts

    NASA Astrophysics Data System (ADS)

    Lee, Eun Young; Wagreich, Michael

    2016-04-01

    The Vienna Basin is a tectonically complex Neogene basin situated at the Alpine-Carpathian transition. This study analyzes a detailed quantification of subsidence in the northern and central parts of the Vienna Basin to understand its tectonic subsidence evolution. About 200 wells were used to arrange stratigraphic setting, and wells reaching the pre-Neogene basement were analyzed for subsidence. To enhance the understanding of the regional subsidences, the wells were sorted into ten groups based on their position on major fault blocks. In the Early Miocene, subsidence was slow and along E-W to NE-SW trending axis, indicating the development of thrust-controlled piggyback basins. During the late Early Miocene data show abruptly increasing subsidence, making the initiation of the Vienna pull-apart basin system. From the Middle Miocene, the tectonic subsidence curves show regionally different patterns. The tectonic subsidence during the Middle Miocene varies laterally across the Vienna Basin, and the differential subsidence can be related to the changing tensional regime of weakening transtension and strengthening extension toward the late Middle Miocene. From the late Middle Miocene to the Late Miocene, the tectonic subsidence occurred dominantly along the regional active faults, and corresponds to the axis of E-W trending extension of the western parts of the Pannonian Basin system. In the Quaternary the Vienna Basin has been reactivated, and resulted in subsidence along the NE-SW trending Vienna Basin transfer fault system.

  20. A Very Large Population of Likely Buried Impact Basins in the Northern Lowlands of Mars Revealed by MOLA Data

    NASA Technical Reports Server (NTRS)

    Frey, H. V.; Shockey, K. M.; Frey, E. L.; Roark, J. H.; Sakimoto, S. E. H.

    2001-01-01

    High resolution Mars Orbiter Laser Altimeter (MOLA) data have revealed a large number of subdued quasi-circular depressions (QCDs) >50 km diameter in the northern lowlands of Mars which are generally not visible in Viking imagery and which may be buried ancient impact basins. Additional information is contained in the original extended abstract.

  1. Geodynamic evolution and sedimentary infill of the northern Levant Basin: A source to sink-perspective

    NASA Astrophysics Data System (ADS)

    Hawie, N.

    2013-12-01

    Nicolas Hawie a,b,c (nicolas.hawie@upmc.fr) Didier Granjeon c (didier.granjeon@ifpen.fr) Christian Gorini a,b (christian.gorini@upmc.fr) Remy Deschamps c (remy.deschamps@ifpen.fr) Fadi H. Nader c (fadi-henri.nader@ifpen.fr) Carla Müller Delphine Desmares f (delphine.desmares@upmc.fr) Lucien Montadert e (lucien.montadert@beicip.com) François Baudin a (francois.baudin@upmc.fr) a UMR 7193 Institut des Sciences de la Terre de Paris, Université Pierre et Marie Curie/ Univ. Paris 06, case 117. 4, place Jussieu 75252 Paris Cedex 05, France b iSTEP, UMR 7193, CNRS, F-75005, Paris, France c IFP Energies nouvelles, 1-4 avenue du Bois Préau 92852 Rueil Malmaison Cedex, France d UMR 7207, Centre de Recherche sur la Paleobiodiversité et les Paleoenvironnements. Université Pierre et Marie Curie, Tour 46-56 5ème. 4, place Jussieu 75252 Paris Cedex 05, France e Beicip Franlab, 232 Av. Napoléon Bonaparte, 95502 Rueil-Malmaison, France Sedimentological and biostratigraphic investigations onshore Lebanon coupled with 2D offshore reflection seismic data allowed proposing a new Mesozoic-Present tectono-stratigraphic framework for the northern Levant Margin and Basin. The seismic interpretation supported by in-depth facies analysis permitted to depict the potential depositional environments offshore Lebanon as no well has yet been drilled. The Levant region has been affected by successive geodynamic events that modified the architecture of its margin and basin from a Late Triassic to Middle Jurassic rift into a Late Cretaceous subduction followed by collision and Miocene-Present strike slip motion. The interplay between major geodynamic events as well as sea level fluctuations impacted on the sedimentary infill of the basin. During Jurassic and Cretaceous, the Levant Margin is dominated by the aggradation of a carbonate platform while deepwater mixed-systems prevailed in the basin. During the Oligo-Miocene, three major sedimentary pathways are expected to drive important

  2. Monitoring and modeling of two alluvial aquifers in lower Nestos river basin, Northern Greece.

    PubMed

    Boskidis, Ioannis; Pisinaras, Vassilios; Petalas, Christos; Tsihrintzis, Vassilios A

    2012-01-01

    A groundwater monitoring and modeling program in two aquifers within the lower Nestos river basin in Northern Greece is presented. A monitoring network of 54 wells was developed in the two study areas, and groundwater level measurements and water quality sample analyses were conducted for a period of 2.5 years, from March 2007 to October 2009. The field data were used for the calibration and verification of the mathematical model MODFLOW in the two aquifers. The validated model was used to examine ten alternative management scenarios regarding groundwater abstraction in the two aquifers. The study showed that MODFLOW, if properly validated, is a useful and flexible tool in groundwater resources management. PMID:22755533

  3. Miocene non-marine diatoms from the western Cordillera basins of northern Peru

    USGS Publications Warehouse

    Fourtanier, E.; Gasse, F.; Bellier, O.; Bonhomme, M.G.; Robles, I.

    1993-01-01

    Diatom assemblages are documented from diatomite layers of two Miocene fluvio-lacustrine units from the basins of the western Cordillera of northern Peru: the Namora Formation and the Cajabamba Formation. Emphasis is given to taxa of particular stratigraphic interest. The diatom assemblages indicate for the Namora Formation the occurrence of swampy conditions with very dilute, low alkalinity water. The diatom assemblages of the Cajabamba Formation reflect the occurrence of fresh, slightly alkaline, eutrophic lakes with deep water in some samples, and swampy conditions with relatively high salt content in other samples. The Namora formation is late Miocene in age based on the diatom assemblages and radiometric analyses. The diatom layers of the Cajabamba Formation are dated as late middle to early late Miocene. -from Authors

  4. Distribution of maximum burial temperatures across northern Appalachian Basin and implications for Carboniferous sedimentation patterns

    SciTech Connect

    Johnsson, M.J.

    1986-05-01

    Clay-mineral diagenesis and apatite fission-track age data indicate that the maximum burial temperatures to which the Middle Devonian Tioga metabentonite was exposed rise abruptly from low values in western New York State to higher values in the east. The highest temperatures, which approach 175/sup 0/C, were reached just west of Syracuse. Neither the pattern nor the magnitude of burial temperatures can be explained solely by burial of the metabentonite beneath Upper Devonian sediments. Although spatial variations in the geothermal gradient could have produced the observed pattern of burial temperatures, it is more likely that Carboniferous sediments, no longer preserved in the area, were responsible for the indicated burial. The inferred presence of thick Carboniferous sequences in western New York State suggests that the Allegheny orogeny had a stronger influence on sedimentation in the northern Appalachian Basin than has been previously recognized. 25 references, 2 figures, 2 tables.

  5. Comparison of offshore and onshore gas occurrences, Eel River basin, northern California

    USGS Publications Warehouse

    Lorenson, T.D.; McLaughlin, Robert J.; Kvenvolden, Keith A.; Orange, Daniel L.; Davisson, M. Lee; Brewer, Peter G.; Martin, J.B.

    1998-01-01

    The Eel River basin of northern California is a upper Cenozoic depocenter containing more than 3,000 meters of sedimentary rock located near the Mendocino triple junction. Active tectonism has resulted in folding, faulting and rapid sedimentation. Both thermogenic and microbial hydrocarbons are known to be present in the sediments. In August 1997, we sampled two submarine gas seeps, one at a water depth of 520 m that supports a chemosynthetic-based ecosystem very near an area of previously recovered gas hydrate. Another vent site was sampled in sand covered with white bacterial mats at a water depth 41 m. We compared the hydrocarbon gas composition and methane isotopic composition of these seeps with land-based gas occurrences that include: 1) a gas seep and 2) gas from a 2360 m-deep gas well.

  6. Prediction of the distribution of Glossina tachinoides (Diptera: Glossinidae) in the Volta basin of northern Ghana.

    PubMed

    Mahama, C I; Koné, A; de la Rocque, S; De Deken, R; Geerts, S

    2005-02-01

    The classification of a Landsat Thematic Mapper satellite image helped demonstrate prevailing habitat types and land use intensity in the Volta basin of the Northern Region of Ghana. A geo-referenced data layer comprising the capture results of a cross-sectional survey of Glossina tachinoides Westwood was over-laid on a data layer of habitat types within 500 m of either bank of the Volta river and its tributaries. An evaluation of the relationship between habitat types and the capture results of G. tachinoides suggested a strong preference of G. tachinoides for woodland, followed by shrubland, grassland and flood plains. The findings were used to classify the suitability of habitat types for G. tachinoides as 'high', 'medium' and 'low' and a prediction map for the distribution of G. tachinoides in the entire river network was produced. The usefulness of this method in estimating the potential distribution of G. tachinoides in an area of increasing agricultural expansion is discussed. PMID:15705216

  7. Lunar impact basins: New data for the nearside northern high latitudes and eastern limb from the second Galileo flyby

    NASA Technical Reports Server (NTRS)

    Head, J. W.; Belton, M.; Greeley, R.; Pieters, C.; Fischer, E.; Sunshine, J.; Klaasen, K.; Mcewen, A.; Becker, T.; Neukum, G.

    1993-01-01

    During the December 1992 Galileo Earth/Moon encounter the northern half of the nearside, the eastern limb, and parts of the western farside of the Moon were illuminated and in view, a geometry that was complementary to the first lunar encounter in December, 1990, which obtained images of the western limb and eastern farside. The Galileo Solid State Imaging System (SSI) obtained multispectral images for these regions during the second encounter and color ratio composite images were compiled using combinations of band ratios chosen on the basis of telescopic spectra and laboratory spectra of lunar samples. Ratios of images taken at 0.41 and 0.76 micron are sensitive to changes in the slope in the visible portion of the spectrum, and ratios of 0.99 and 0.76 micron relate to the strength of near-infrared absorptions due to iron-rich mafic minerals (0.76/0.99 ratio) such as olivine and pyroxene. Results of the analyses of the compositional diversity of the crust, maria, and Copernican craters are presented elsewhere. Primary objectives for lunar basin analysis for the second encounter include analysis of: the north polar region and the Humboldtianum basin; the characteristics of the Imbrium basin along its northern border and the symmetry of associated deposits; the origin of light plains north of Mare Frigoris and associated with several other basins; the nature and significance of pre-basin substrate; the utilization of the stereo capability to assess subtle basis structure; the identification of previously unrecognized ancient basins; basin deposits and structure for limb and farside basins; and assessment of evidence for proposed ancient basins. These data and results will be applied to addressing general problems of evaluation of the nature and origin of basin deposits, investigation of mode of ejecta emplacement and ejecta mixing, analysis of the origin of light plains deposits, analysis of basin deposit symmetry/asymmetry, investigation of basin depth of

  8. Mapping and monitoring cheatgrass dieoff in rangelands of the Northern Great Basin, USA

    USGS Publications Warehouse

    Boyte, Stephen P.; Wylie, Bruce K.; Major, Donald J.

    2015-01-01

    Understanding cheatgrass (Bromus tectorum) dynamics in the Northern Great Basin rangelands, USA, is necessary to effectively manage the region’s lands. This study’s goal was to map and monitor cheatgrass performance to identify where and when cheatgrass dieoff occurred in the Northern Great Basin and to discover how this phenomenon was affected by climatic, topographic, and edaphic variables. We also examined how fire affected cheatgrass performance. Land managers and scientists are concerned by cheatgrass dieoff because it can increase land degradation, and its causes and effects are not fully known. To better understand the scope of cheatgrass dieoff, we developed multiple ecological models that integrated remote sensing data with geophysical and biophysical data. The models’ R2 ranged from 0.71 to 0.88, and their root mean squared errors (RMSEs) ranged from 3.07 to 6.95. Validation of dieoff data showed that 41% of pixels within independently developed dieoff polygons were accurately classified as dieoff, whereas 2% of pixels outside of dieoff polygons were classified as dieoff. Site potential, a long-term spatial average of cheatgrass cover, dominated the development of the cheatgrass performance model. Fire negatively affected cheatgrass performance 1 year postfire, but by the second year postfire performance exceeded prefire levels. The landscape-scale monitoring study presented in this paper helps increase knowledge about recent rangeland dynamics, including where cheatgrass dieoffs occurred and how cheatgrass responded to fire. This knowledge can help direct further investigation and/or guide land management activities that can capitalize on, or mitigate the effects of, cheatgrass dieoff.

  9. Patterns and mechanisms of heat transport in the northern Denver Basin: Nebraska, South Dakota and Wyoming

    NASA Astrophysics Data System (ADS)

    Ochsner, Aaron Thomas

    Finite difference simulations of the hydrothermal system of the northern Denver Basin are suggestive of a correlation between anomalous heat flux and the presence of faults and structural lineaments mapped in the region. Geothermal, hydrogeological, lithological, and structural data available for the northern Denver Basin were compiled and analyzed in an effort to determine the hydrothermal mechanisms responsible for observed heat flow anomalies in the study area. Measurement of thermal conductivity was conducted for 82 solid core samples and 60 unconsolidated samples from drill cuttings, yielding a harmonic mean thermal conductivity value of 1.52 +/- 0.91W m-1 K -1 for the stratigraphic column of the study area. A total of 929 thermal gradient values compiled from several databases were incorporated with thermal conductivity data to produce a heat flow map of the study area, delineating prominent areas of anomalous heat flux. Data was processed using finite difference simulation software (Hydrotherm Interactive) developed by the U.S. Geological Survey for the purposes of modeling and predicting heat and fluid transport in porous media. Two-dimensional cross-sectional models were calibrated using heat flow profiles and available potentiometric surface data for the Madison and Dakota aquifers in the region. Although calibrated models resulted in accurate simulations of non-anomalous heat flow profiles, anomalous heat flow highs were not reproduced. Acknowledging the existence of several major faults and numerous structural lineaments documented in the study area, vertical pathways of fluid flow were added to simulations to recreate the effect of such structural features. Models which incorporated a hypothetical linear fracture sufficiently accounted for previous discrepancies, and indicate probable upward advective flow through existing vertical fractures.

  10. Density, topography, and regional, tensile stresses: Gravity-driven extension of the northern Basin and range

    SciTech Connect

    Unruh, J.R. )

    1993-04-01

    It has long been recognized that regional topographic gradients may give rise to tectonic (non-lithostatic) stresses in the lithosphere (Artyushkov, 1973). The elevation of a buoyantly-uplifted region represents a balance between these stresses and the strength of the lithosphere. This study uses existing data on crustal and lithospheric structure in the western United States to test the hypothesis that the topographically high (1.5--2.2 km) northern Basin and Range is spreading under it own weight. Following England and Jackson (1989), the total deviatoric tensile force (Fl) in the northern Basin and Range (NBR) due to the regional high topography is the difference between the vertically-integrated lithostatic stress in the NBR and in western California. Using available velocity models for the crust and upper mantle, and empirically-derived velocity-density relationships, calculated values of Fl range between 1--3 [times] 10[sup 12] N/m. Assuming a visco-elastic rheology for the lithosphere, an average heat flow of 90 m W/m[sup 2], and a crustal thickness of 35 km, values of Fl ranging from 1--3 [times] 10[sup 12] N/m may result in horizontal extension rates of approximately 10[sup [minus]15]/s to 10[sup [minus]15]/s to 10[sup [minus]16]/s. This is comparable to the rate of seismically-released strain in the NBR, and to extension rates of 8--9 mm/yr across the region determined from geologic and geodetic data. These results imply that shear tractions on the base of the lithosphere from mantle convection are not necessary to explain NBR extension. In addition to driving active extension, the weight of the topographically high NBR may exert a compressive force on surrounding lowlands. If so, this may account for some of the active shortening in western California, and the state of horizontal compressive stress in the western Great Plains.

  11. Gas Chemistry of Hydrothermal Systems of the Northern Lau Basin - New Results

    NASA Astrophysics Data System (ADS)

    Lupton, J. E.; Lilley, M. D.; Butterfield, D. A.; Resing, J. A.; Arculus, R. J.; Rubin, K. H.; Embley, R. W.; Evans, L.

    2013-12-01

    The northern Lau Basin is host to widely-dispersed volcanism in a complicated pattern of activity, including the volcanoes of the Tofua Arc, rear-arc volcanoes such as the Mata group, several back-arc spreading centers and rifts, and various intervening isolated volcanic centers. Farther west along the Rochambeau Rifts and the NW Lau Spreading Center, elevated 3He/4He ratios in the seafloor lavas and hydrothermal plumes suggest that an OIB or mantle plume signature, possibly from Samoa, has influenced this extensional zone. During a recent expedition aboard the R/V Revelle in Sept. 2012, we used the QUEST 4000 remotely operated vehicle to visit several new sites of active hydrothermal venting in this region, including Niuatahi (formerly called Volcano O), Niua North, Niua South, and the so-called northern Matas (Mata Ua, Mata Tolu, and Mata Fitu). Fluid samples collected using special titanium gas-tight bottles were analyzed for helium, helium isotopes, neon, CO2, H2, CH4, etc. When these new data are combined with previous sampling at West Mata, East Mata, the 2008 eruption site on the NE Lau Spreading Center as well as Maka volcano, an interesting pattern emerges. The combined helium isotope and C/3He ratios derived from both fluid and rock samples can be used to differentiate between arc, rear-arc, back-arc, and mantle hotspot influences. Thus far the elevated 3He/4He ratios indicative of an OIB or hotspot signature are confined to the Rochambeau Rifts and Northwest Lau Spreading Center. In the northeast Lau Basin, the individual volcanic centers and the zones of back-arc spreading show varying degrees of arc vs. back-arc (MORB-like) influence based on their 3He/4He - C/3He fingerprint.

  12. Arsenic release by indigenous bacteria Bacillus cereus from aquifer sediments at Datong Basin, northern China

    NASA Astrophysics Data System (ADS)

    Xie, Zuoming; Wang, Yanxin; Duan, Mengyu; Xie, Xianjun; Su, Chunli

    2011-03-01

    Endemic arsenic poisoning due to long-term drinking of high arsenic groundwater has been reported in Datong Basin, northern China. To investigate the effects of microbial activities on arsenic mobilization in contaminated aquifers, Bacillus cereus ( B. cereus) isolated from high arsenic aquifer sediments of the basin was used in our microcosm experiments. The arsenic concentration in the treatment with both bacteria and sodium citrate or glucose had a rapid increase in the first 18 d, and then, it declined. Supplemented with bacteria only, the concentration could increase on the second day. By contrast, the arsenic concentration in the treatment supplemented with sodium citrate or glucose was kept very low. These results indicate that bacterial activities promoted the release of arsenic in the sediments. Bacterial activities also influenced other geochemical parameters of the aqueous phase, such as pH, Eh, and the concentrations of dissolved Fe, Mn, and Al that are important controls on arsenic release. The removal of Fe, Mn, and Al from sediment samples was observed with the presence of B. cereus. The effects of microbial activities on Fe, Mn, and Al release were nearly the same as those on As mobilization. The pH values of the treatments inoculated with bacteria were lower than those without bacteria, still at alkaline levels. With the decrease of Eh values in treatments inoculated with bacteria, the microcosms became more reducing and are thus favorable for arsenic release.

  13. Hydrogeochemistry of high-fluoride groundwater at Yuncheng Basin, northern China.

    PubMed

    Li, Chengcheng; Gao, Xubo; Wang, Yanxin

    2015-03-01

    Hydrogeochemical and environmental isotope methods were integrated to delineate the spatial distribution and enrichment of fluoride in groundwater at Yuncheng Basin in northern China. One hundred groundwater samples and 10 Quaternary sediment samples were collected from the Basin. Over 69% of the shallow groundwater (with a F(-) concentration of up to 14.1mg/L), 44% of groundwater samples from the intermediate and 31% from the deep aquifers had F(-) concentrations above the WHO provisional drinking water guideline of 1.5mg/L. Groundwater with high F(-) concentrations displayed a distinctive major ion chemistry: Na-rich and Ca-poor with a high pH value and high HCO3(-) content. Hydrochemical diagrams and profiles and hydrogen and oxygen isotope compositions indicate that variations in the major ion chemistry and pH are controlled by mineral dissolution, cation exchange and evaporation in the aquifer systems, which are important for F(-) mobilization as well. Leakage of shallow groundwater and/or evaporite (gypsum and mirabilite) dissolution may be the major sources for F(-) in groundwater of the intermediate and deep aquifers. PMID:25478652

  14. Using Diverse Data Types to Calibrate a Watershed Model of the Trout Lake Basin, Northern Wisconsin

    NASA Astrophysics Data System (ADS)

    Hunt, R. J.; Feinstein, D. T.; Pint, C. D.; Anderson, M. P.

    2004-12-01

    As part of the USGS Water, Energy, and Biogeochemical Budgets project and NSF Long-Term Ecological Research work, a parameter estimation code was used to calibrate a deterministic groundwater flow model of the Trout Lake Basin in northern Wisconsin. Observations included traditional calibration targets (head, lake stage, and baseflow observations) as well as unconventional targets such as groundwater flows to and from lakes, depth of a lake plume, and time of travel. The unconventional data types were important for parameter estimation convergence and allowed the development of a more parameterized model. Independent estimates of groundwater inflow to lakes were most important for constraining lakebed leakance, and the depth of the lake plume was important for determining hydraulic conductivity and conceptual aquifer layering. The most important target, however, was a conventional regional baseflow target that was important for correctly distributing flow between sub-basins and the regional system. The use of parameter estimation: 1) facilitated the calibration process by providing a quantitative assessment of the model's ability to match disparate observed data types; and 2) provided a best fit for the particular model conceptualization. The model calibration required the use of a "universal" parameter estimation code in order to include all types of observations in the objective function. The methods described here help address issues of watershed complexity and non-uniqueness common to deterministic watershed models.

  15. Palaeoenvironmental significance of the clay mineral composition of Olduvai basin deposits, northern Tanzania

    NASA Astrophysics Data System (ADS)

    Mees, Florias; Segers, Stijn; Ranst, Eric Van

    2007-01-01

    Quaternary deposits in the southeastern part of the Olduvai basin, northern Tanzania, consist of lake margin deposits, followed by a series of fluvial sediments. The clay mineral fraction of the lake margin deposits (Bed I and lower part of Bed II) is composed of smectite and subordinate illite. All smectite is largely dioctahedral and shows indications for a limited degree of irregular interstratification by illite. In the overlying fluvial deposits (Beds II-IV), illite is the most abundant clay mineral. Smectite only occurs in lower parts of the fluvial deposits (up to the middle of Bed III), where it generally shows a high degree of irregular interstratification. Differences in clay mineral composition between the lake margin deposits and the fluvial deposits record differences in sediment source area and degree of alteration. Dioctahedral smectite in the lake margin deposits and the oldest fluvial deposits is derived from a region with volcanic material extending to the east and south of the basin, which also supplies a certain amount of illite. Illite in the fluvial deposits of Bed IV originates from an area with a metamorphic bedrock to the west and north. Alteration of detrital clay minerals resulted in Mg-enrichment of dioctahedral smectite in part of the lake margin deposits and partial illitization of smectite in the older fluvial deposits. Formation of clay minerals during diagenesis or soil development is not documented by analysis of the total clay fraction.

  16. Sequence stratigraphy and depositional facies of the Silurian-Devonian interval of the northern Permian basin

    SciTech Connect

    Canter, K.L.; Geesaman, R.C. ); Wheeler, D. )

    1992-04-01

    The Silurian and Devonian intervals of the northern Central Basin platform area of west Texas and southeastern New Mexico include the Fusselman, Wristen, and Thirtyone formations and the Woodford Shale. The carbonate-rich Fusselman, Wristen, and Thirtyone formations record a transition from ramp to platform deposition. Oolite grainstones of the lower Fusselman Formation were deposited in a ramp setting during an Upper Ordovician/Lower Silurian transgression. The overlying crinoid packstones and grainstones represent shoals that developed along a break in slope separating the evolving platform from a southward-dipping starved basin. By the close of Fusselman deposition, the platform was well developed, with shallow peridtidal mudstones and wackestones, and high-energy grainstones deposited as near-parallel facies tracts over the platform area. The platform system became fully developed during the deposition of the Wristen Formation. Porous dolomitic peridtidal and platform margin facies grade downdip into nonporous, limy and argillaceous open-shelf facies. Platform facies are typified by numerous shallowing-upward parasequences that terminated at subaerial exposure surfaces. The rocks of the Lower Devonian Thirtyone Formation were deposited as a wedge that onlaps the exposed Silurian platform margin. This formation contains a porous, chert-rich, lowstand deposit; a transgressive disconformity; and variably porous, grain-rich highstand deposits representing an overall sea level rise. A major unconformity marks the contact between the karsted upper surface of the Thirtyone Formation and the overlying organic-rich, anoxic Woodford Shale.

  17. Vertical movements of the crust: Case histories from the northern Appalachian Basin

    NASA Astrophysics Data System (ADS)

    Friedman, Gerald M.

    1987-12-01

    Evidence of former deep burial of Ordovician to Devonian strata of the northern Appalachian Basin has been obtained from various techniques of study, including fluid-inclusion homogenization temperatures, δ18O, and vitrinite reflectance. Diagenetic minerals indicate paleotemperatures of 100 200 °C. Maximum depths of burial were calculated from the estimated paleotemperatures; a gradient of 26 °C/km was assumed. Silurian strata of the basin are interpreted to have reached maximum burial depths of 5.0 km; Devonian strata in the Catskill Mountains had former burial depths of ˜6.5 km; Lower Ordovician carbonate sequences were buried to >7 km; Middle Ordovician strata had paleodepths of ˜5 km; and Devonian carbonate strata had paleodepths from 4.5 to 5 km. If these strata were buried deeper than previously thought, unexpectedly large amounts of uplift and erosion, ranging from 4.3 to 7 km, must also have taken place to bring these strata to the present land surface. The occurrence of such large-scale vertical movements of the crust and lithosphere must be recognized in paleogeographic reconstructions. Such drastic changes represent isostatic unroofing, with widespread implications for paleogeography of a kind unrecognized at present.

  18. Tertiary fluvial systems within the Bear Creek coal field, northern Big Horn basin, Montana

    SciTech Connect

    Weaver, J.N. ); Gruber, J.R. Jr. )

    1991-06-01

    The Bear Creek coal field contains the 250-m-thick coal-bearing Paludal Member of the Paleocene Fort Union Formation in the northern Big Horn Basin, Montana. Detailed field and subsurface data show two contrasting geometries in alluvial strata, each bounded by an economic coal bed. The lower 50 m of the Paludal Member is dominated by sheet and ribbon sandstones. The sheet sandstones are as long as 1.5 km and fine upwards from medium to fine grained. Some sandstones are multistory with sharp upoper and lower contacts. The upper portion has convolute bedding, ripple lamination, and some horizontal and tabular crossbeds. Stratigraphically higher is a 12-m-thick fine-grained sequence, containing large tree trunks in growth position and extensively rooted mud rocks. Sandstone bodies, 6 m thick and 10 m wide, are enclosed within mudstones and siltstones. The sandstones are primarily ripple laminated and have stepped bases and internal erosion surfaces. This interval has previously been interpreted as deposits of an anastomosed fluvial system. The sandstones show little evidence of significant lateral migration. In contrast to the lower interval, the environment here consisted of well-developed vegetated islands separating fluvial channels. Subsurface data show that the major coal beds are laterally continuous within the study area. The cyclic development of the coals reflects intermittent periods of long-term basin stability. Alternating dominance of the sandstones suggests that influx and distribution were controlled through episodic uplift of the nearby Beartooth Mountains.

  19. The spatial and temporal variability of groundwater recharge in a forested basin in northern Wisconsin

    USGS Publications Warehouse

    Dripps, W.R.; Bradbury, K.R.

    2010-01-01

    Recharge varies spatially and temporally as it depends on a wide variety of factors (e.g. vegetation, precipitation, climate, topography, geology, and soil type), making it one of the most difficult, complex, and uncertain hydrologic parameters to quantify. Despite its inherent variability, groundwater modellers, planners, and policy makers often ignore recharge variability and assume a single average recharge value for an entire watershed. Relatively few attempts have been made to quantify or incorporate spatial and temporal recharge variability into water resource planning or groundwater modelling efforts. In this study, a simple, daily soil-water balance model was developed and used to estimate the spatial and temporal distribution of groundwater recharge of the Trout Lake basin of northern Wisconsin for 1996-2000 as a means to quantify recharge variability. For the 5 years of study, annual recharge varied spatially by as much as 18 cm across the basin; vegetation was the predominant control on this variability. Recharge also varied temporally with a threefold annual difference over the 5-year period. Intra-annually, recharge was limited to a few isolated events each year and exhibited a distinct seasonal pattern. The results suggest that ignoring recharge variability may not only be inappropriate, but also, depending on the application, may invalidate model results and predictions for regional and local water budget calculations, water resource management, nutrient cycling, and contaminant transport studies. Recharge is spatially and temporally variable, and should be modelled as such. Copyright ?? 2009 John Wiley & Sons, Ltd.

  20. Mictomys borealis (northern bog lemming) and the Wisconsin paleoecology of the east-central Great Basin

    NASA Astrophysics Data System (ADS)

    Mead, Jim I.; Bell, Christopher J.; Murray, Lyndon K.

    1992-03-01

    Teeth of northern bog lemming, Mictomys borealis, are reported from Cathedral and Smith Creek caves and represent the first Wisconsin remains of the genus from the Great Basin. Specimens from Cathedral Cave, Snake Range, are associated with U-series ages of 24,000 to 15,000 yr B.P. Previous work with pollen and packrat middens, dating to the same age as the Mictomys, indicate that Smith Creek Canyon contained a riparian, locally mesic community, including Picea engelmannii (spruce), Betula sp. (birch), Cercocarpus sp. (mountain mahogany), and Artemisia sp. (sagebrush) among other species. Exposed canyon slopes and the adjacent valley apparently contained a more xeric steppe community including sagebrush and Chenopodiineae species; rocky outcrop permitted Pinus flexilis (limber pine) and P. longaeva (bristlecone pine) to grow adjacent to Lake Bonneville or low in the canyon. The region apparently experienced a dry climate (not necessarily drier than today); however, Smith Creek Canyon was fed by glacial meltwater from Mt. Moriah. The northern bog lemming probably lived only in the riparian community and possibly on the north-facing slope below Cathedral Cave. Few canyons of the Snake Range would have had the unusually mesic conditions found in Smith Creek Canyon.

  1. Spatial distribution of pelagic fish larvae in the northern main basin of Lake Huron

    USGS Publications Warehouse

    Roseman, Edward F.; O'Brien, Timothy P.

    2013-01-01

    Larval fish occurrence in inshore and offshore zones in the northern main basin of Lake Huron was assessed during 2007 as part of a larger ecological examination of Lake Huron foodwebs and habitats. Day and night collections using neuston and conical nets at inshore (1.5–15 m depths) and offshore (37 and 91 m depths) locations at De Tour and Hammond Bay to assess the abundance, phenology, and spatial distribution of pelagic ichthyoplankton during spring and early summer were made. In general, densities of larval fishes were higher at De Tour than Hammond Bay during daytime neuston net collections, with the exception of Longnose Sucker, which were only collected at Hammond Bay. Lake Whitefish, Burbot, and Rainbow Smelt dominated inshore catches in early spring with Cisco, Deepwater Sculpin, Emerald Shiner, Bloater, Slimy Sculpin, Ninespine Stickleback, and Yellow Perch larvae also collected. Nighttime nearshore and offshore sampling revealed that Rainbow Smelt and Burbot larvae were present in relatively high abundances compared to inshore densities. Concentrations of larvae of deepwater demersal fishes such as Lake Whitefish and Deepwater Sculpin suggest that inshore zones in northern Lake Huron are important nursery habitats emphasizing a critical production and recruitment linkage between inshore and deepwater zones.

  2. Gravity analysis of the Precambrian basement topography associated with the northern boundary of Ghadames Basin (southern Tunisia)

    NASA Astrophysics Data System (ADS)

    Dhaoui, Mohamed; Gabtni, Hakim; Jallouli, Chokri; Jleilia, Ali; Mickus, Kevin Lee; Turki, Mohamed Moncef

    2014-12-01

    Gravity data were analyzed to determine the structural development of the northern boundary of the Ghadames Basin in southern Tunisia. The Ghadames Basin which also occurs in eastern Algeria and northwestern Libya is one of the most prolific hydrocarbon producers in North Africa with several of the largest oil fields occurring along its northern boundary. The Ghadames Basin was formed during a series of tectonic events ranging from the Early Paleozoic to the Early Cenozoic. These tectonic events produced a basin in southern Tunisia that has a complex basement configuration which is not completely known. A residual gravity anomaly map constructed using polynomial trend surfaces, and vertical and horizontal gravity derivative maps indicate that the northern boundary contains a series of maxima and minima anomalies that trend in two prominent directions: northeast-southwest and east-west. The horizontal and vertical derivative gravity anomaly maps indicate that the width of the basement structures range between 10 and 20 km in width. Three-dimensional (3D) Euler deconvolution and 3D forward modeling constrained by well data, one seismic reflection profile and remote sensing data confirm the width of the basement structures and indicates that the depth of basin varies between 1.5 and 5 km, with deeper sections in general more numerous in the southern sections of the boundary. The gravity analysis constrained by the seismic reflection profile and well data implies that the basement topography may have been formed during the Pan African and/or late Mesozoic rifting. However, additional seismic reflection and well data are needed to confirm this conclusion. The discovery of the numerous basement structures suggests that there may exist additional hydrocarbon traps within the northern boundary of the Ghadames Basin.

  3. Provenance and tectonic-paleogeographic evolution: Constraints from detrital zircon U-Pb ages of Late Triassic-Early Jurassic deposits in the northern Sichuan basin, central China

    NASA Astrophysics Data System (ADS)

    Shao, Tongbin; Cheng, Nanfei; Song, Maoshuang

    2016-09-01

    U-Pb ages of 290 new detrital zircons from five Late Triassic-Early Jurassic sandstone samples in the northern Sichuan basin, along with other geological data, are used to constrain the sediment provenance and evaluate tectonic-paleogeographic evolution for the adjacent orogens through/from which these sediments were potentially derived. The Upper Triassic depocenter was located at the front of the Longmen Shan belt, and sediments in the western, southern and eastern Sichuan basin shared the southern North China block (NCB) and Qinling belt with the eastern Songpan-Ganzi terrane of Middle-Upper Triassic via the Longmen Shan belt, whereas the northern part of the basin was fed by dominant South Qinling belt (SQB) and northern Yangtze block and possibly subordinate southern NCB. Also, the youngest population in the northern Sichuan basin has a slightly younger age peak (∼235 Ma) than those (∼270 Ma) in other parts of the basin. During the Early Jurassic, the depocenter was still at the front of the Longmen Shan belt but only northern regions (e.g., SQB and northern Yangtze block) fed the basin. The northern Sichuan basin received less sediments from the southern NCB and more from the SQB and northern Yangtze block during the Early Jurassic than during the Late Triassic. The middle Mesoproterozoic detrital zircons, which likely originated from the North Qinling belt and northern Yangtze block where rocks with these zircons may be unexposed, occur more widely in the Lower Jurassic than in the Upper Triassic. These facts suggest that from the Late Triassic to Early Jurassic, it was increasingly difficult for sediments to transport from the NCB into the northern Sichuan basin and the provenance transferred progressively from the southern NCB to both the SQB and northern Yangtze block, implying the continuous South China block-NCB collision during that time.

  4. Land cover changes associated with recent energy development in the Williston Basin; Northern Great Plains, USA

    USGS Publications Warehouse

    Preston, Todd M.; Kim, Kevin

    2016-01-01

    The Williston Basin in the Northern Great Plains has experienced rapid energy development since 2000. To evaluate the land cover changes resulting from recent (2000 – 2015) development, the area and previous land cover of all well pads (pads) constructed during this time was determined, the amount of disturbed and reclaimed land adjacent to pads was estimated, land cover changes were analyzed over time for three different well types, and the effects from future development were predicted. The previous land cover of the 12,990 ha converted to pads was predominately agricultural (49.5%) or prairie (47.4%) with lesser amounts of developed (2.3%), aquatic (0.5%), and forest (0.4%). Additionally, 12,121 ha have likely been disturbed and reclaimed. The area required per gas well remained constant through time while the land required per oil well increased initially and then decreased as development first shifted from conventional to unconventional drilling and then to multi-bore pads. For non-oil-and- gas wells (i.e. stratigraphic test wells, water wells, injection wells, etc.), the area per well increased through time likely due to increased produced water disposal requirements. Future land cover change is expected to be 2.7 times greater than recent development with much of the development occurring in five counties in the core Bakken development area. Direct land cover change and disturbance from recent and expected development are predicted to affect 0.4% of the landscape across the basin; however, in the core Bakken development area, 2.3% of the landscape will be affected including 2.1% of the remaining grassland. Although future development will result in significant land cover change, evolving industry practices and proactive siting decisions, such as development along energy corridors and placing pads in areas previously altered by human activity, have the potential to reduce the ecological effects of future energy development in the Williston Basin.

  5. Stable isotopic signatures of diachronous Andean mountain building from volcanic glass, Condoroma Basin, northern Altiplano, Peru

    NASA Astrophysics Data System (ADS)

    Saylor, J.; Horton, B. K.; Stockli, D. F.

    2012-12-01

    Recent stable isotopic analyses of pedogenic carbonates from the central Altiplano (~18S) suggest that the plateau may have uplifted rapidly between 10 and 6 Ma possibly in response to removal of mantle lithosphere. Climate modeling, however, suggests that gradual uplift may have produced a similar magnitude effect in the stable isotopic system of the central Altiplano in response to attainment of a critical elevation. We present the results of new stable isotope (δD) analyses of volcanic glass from the Condoroma Basin in southern Peru (~15S). Nonmarine sedimentation in this hinterland basin extended from ~20 to ~5 Ma. The basin fill is composed primarily of lacustrine and lake-margin lithofacies but, critically, contains records of multiple volcanic eruptions. Samples of volcanic glass, which hydrates in the presence of surface water within ~10 kyr following eruption, were separated from multiple volcanic levels in two stratigraphic sections. Analysis of the deuterium isotopic composition of the volcanic glass reveals an abrupt and pronounced decrease of approximately 50-70‰ in both stratigraphic sections. Analyses of multiple grain size fractions yield consistent δD values, providing additional confidence in the robustness of the data. (U-Th)/He analysis of zircons separated from volcanic strata indicate that this shift occurred at ~18-14 Ma; earlier than in the central Altiplano. Applying the modern lapse rate implies an elevation increase of ~2.5 km. However, the isotopic shift could be the result of attainment of a threshold elevation, rather than representing a rapid, large-magnitude uplift event. Nevertheless, temporal variations suggest that uplift was not a single, plateau-wide event but rather, that the northern Altiplano was rapidly uplifted or attained the critical elevation prior to the central Altiplano. The possible effects of a diachronous rise in the Andes have not fully been incorporated into climate models. These data point to a diachronous

  6. Land cover changes associated with recent energy development in the Williston Basin; Northern Great Plains, USA.

    PubMed

    Preston, Todd M; Kim, Kevin

    2016-10-01

    The Williston Basin in the Northern Great Plains has experienced rapid energy development since 2000. To evaluate the land cover changes resulting from recent (2000-2015) development, the area and previous land cover of all well pads (pads) constructed during this time were determined, the amount of disturbed and reclaimed land adjacent to pads was estimated, land cover changes were analyzed over time for three different well types, and the effects from future development were predicted. The previous land cover of the 12,990ha converted to pads was predominately agricultural (49.5%) or prairie (47.4%) with lesser amounts of developed (2.3%), aquatic (0.5%), and forest (0.4%). Additionally, 12,121ha has likely been disturbed and reclaimed. The area required per gas well remained constant through time while the land required per oil well increased initially and then decreased as development first shifted from conventional to unconventional drilling and then to multi-bore pads. For non-oil-and-gas wells (i.e. stratigraphic test wells, water wells, and injection wells), the area per well increased through time likely due to increased produced water disposal requirements. Future land cover change is expected to be 2.7 times greater than recent development with much of the development occurring in five counties in the core Bakken development area. Direct land cover change and disturbance from recent and expected development are predicted to affect 0.4% of the landscape across the basin; however, in the core Bakken development area, 2.3% of the landscape will be affected including 2.1% of the remaining grassland. Although future development will result in significant land cover change, evolving industry practices and proactive siting decisions, such as development along energy corridors and placing pads in areas previously altered by human activity, have the potential to reduce the ecological effects of future energy development in the Williston Basin. PMID:27318516

  7. Structural style and petroleum prospects of the Kuqa depression, northern Tarim basin, northwest China

    SciTech Connect

    McKnight, C.L.; Hendrix, M.; Sobel, E.; Schulein, B.; Carroll, A.; Chu, J. )

    1990-05-01

    The Kuqa depression is a 400-km {times} 100-km, east-west-trending foredeep basin located on the northern margin of the Tarim craton in northwestern China. A 10-km-thick nonmarine Mesozoic and Cenozoic sedimentary section has accumulated in the basin as the Tian Shan range to the north and has been episodically uplifted and thrust southward, tectonically loading the craton margin and providing source areas for clastic sediments. Regional mapping from Landsat images and field reconnaissance reveal important details of the structural style of the Kuqa depression. The Kuqa depression is characterized by thin-skinned deformation resulting in a series of steep, faulted, elongate folds. Thick, mobile Tertiary shale sequences and an Upper Cretaceous-lower Tertiary evaporite section in the west form detachment horizons separating disharmonically deformed structural packages. At the southern margin of the depression, the Mesozoic-Cenozoic section overrides faulted Paleozoic strata of the North Tarim uplift. Here, the Neogene Qiulitage anticline extends 250 km along the basin margin. Beginning in 1984, several important oil discoveries have been made in the Paleozoic section on the North Tarim uplift. Analysis of an oil sample indicates its compatibility with a lower Paleozoic marine source. Other potential source rocks in the Kuqa depression include Jurassic oil shales and coals. Sandstone reservoir strata and structural trapping geometries are numerous, but exploration risks are complicated by the presence of the ductile evaporite and shale seals. If nonmarine source rocks are also present in the thick Cenozoic section, the Kuqa depression may be an attractive exploration target.

  8. Crustal structure beneath the Northern Transantarctic Mountains and Wilkes Subglacial Basin: Implications for tectonic origins

    NASA Astrophysics Data System (ADS)

    Hansen, Samantha E.; Kenyon, Lindsey M.; Graw, Jordan H.; Park, Yongcheol; Nyblade, Andrew A.

    2016-02-01

    The Transantarctic Mountains (TAMs) are the largest noncollisional mountain range on Earth. Their origin, as well as the origin of the Wilkes Subglacial Basin (WSB) along the inland side of the TAMs, has been widely debated, and a key constraint to distinguish between competing models is the underlying crustal structure. Previous investigations have examined this structure but have primarily focused on a small region of the central TAMs near Ross Island, providing little along-strike constraint. In this study, we use data from the new Transantarctic Mountains Northern Network and from five stations operated by the Korea Polar Research Institute to investigate the crustal structure beneath a previously unexplored portion of the TAMs. Using S wave receiver functions and Rayleigh wave phase velocities, crustal thickness and average crustal shear velocity (V>¯s) are resolved within ±4 km and ±0.1 km/s, respectively. The crust thickens from ~20 km near the Ross Sea coast to ~46 km beneath the northern TAMs, which is somewhat thicker than that imaged in previous studies beneath the central TAMs. The crust thins to ~41 km beneath the WSB. V>¯s ranges from ~3.1-3.9 km/s, with slower velocities near the coast. Our findings are consistent with a flexural origin for the TAMs and WSB, where these features result from broad flexure of the East Antarctic lithosphere and uplift along its western edge due to thermal conduction from hotter mantle beneath West Antarctica. Locally, thicker crust may explain the ~1 km of additional topography in the northern TAMs compared to the central TAMs.

  9. The structure of the Chañarcillo Basin: An example of tectonic inversion in the Atacama region, northern Chile

    NASA Astrophysics Data System (ADS)

    Martínez, F.; Arriagada, C.; Peña, M.; Del Real, I.; Deckart, K.

    2013-03-01

    The Chañarcillo Basin is an Early Cretaceous extensional basin in northern Chile (27-29°S). The folding style of the syn-rift successions along the eastern side of the basin reveals an architecture consisting of a NNE-trending anticline “Tierra Amarilla Anticlinorium”, associated with the inversion of the Elisa de Bordos Fault. A set of balanced cross sections and palinspastic restorations across the basin show that a partially inverted “domino-style” half-graben as the structural framework is most appropriate for reproducing the deformation observed at the surface. This inverted system provides a 9-14 km shortening in the basin. The ages of the synorogenic deposits preserved next to the frontal limb of the “Tierra Amarilla Anticlinorium” suggest that basin inversion occurred close to the “K-T” boundary (“K-T” phase of Andean deformation). We propose that tectonic inversion is the fundamental deformation mechanism, and that it emphasizes the regional importance of inherent Mesozoic extensional systems in the evolution of the northern Chilean Andes.

  10. Status and understanding of groundwater quality in the northern San Joaquin Basin, 2005

    USGS Publications Warehouse

    Bennett, George L.; Fram, Miranda S.; Belitz, Kenneth; Jurgens, Bryant C.

    2010-01-01

    Groundwater quality in the 2,079 square mile Northern San Joaquin Basin (Northern San Joaquin) study unit was investigated from December 2004 through February 2005 as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin Project was developed in response to the Groundwater Quality Monitoring Act of 2001 that was passed by the State of California and is being conducted by the California State Water Resources Control Board in collaboration with the U.S. Geological Survey and the Lawrence Livermore National Laboratory. The Northern San Joaquin study unit was the third study unit to be designed and sampled as part of the Priority Basin Project. Results of the study provide a spatially unbiased assessment of the quality of raw (untreated) groundwater, as well as a statistically consistent basis for comparing water quality throughout California. Samples were collected from 61 wells in parts of Alameda, Amador, Calaveras, Contra Costa, San Joaquin, and Stanislaus Counties; 51 of the wells were selected using a spatially distributed, randomized grid-based approach to provide statistical representation of the study area (grid wells), and 10 of the wells were sampled to increase spatial density and provide additional information for the evaluation of water chemistry in the study unit (understanding/flowpath wells). The primary aquifer systems (hereinafter, primary aquifers) assessed in this study are defined by the depth intervals of the wells in the California Department of Public Health database for each study unit. The quality of groundwater in shallow or deep water-bearing zones may differ from quality of groundwater in the primary aquifers; shallow groundwater may be more vulnerable to contamination from the surface. Two types of assessments were made: (1) status, assessment of the current quality of the groundwater resource; and (2) understanding, identification of the natural and human factors

  11. Landsat investigations of the northern Paradox basin, Utah and Colorado: implications for radioactive waste emplacement

    USGS Publications Warehouse

    Friedman, Jules D.; Simpson, Shirley L.

    1978-01-01

    The first stages of a remote-sensing project on the Paradox basin, part of the USGS (U.S. Geological Survey) radioactive waste-emplacement program, consisted of a review and selection of the best available satellite scanner images to use in geomorphologic and tectonic investigations of the region. High-quality Landsat images in several spectral bands (E-2260-17124 and E-5165-17030), taken under low sun angle October 9 and 10, 1975, were processed via computer for planimetric rectification, histogram analysis, linear transformation of radiance values, and edge enhancement. A lineament map of the northern Paradox basin was subsequently compiled at 1:400,000 using the enhanced Landsat base. Numerous previously unmapped northeast-trending lineaments between the Green River and Yellowcat dome; confirmatory detail on the structural control of major segments of the Colorado, Gunnison, and Dolores Rivers; and new evidence for late Phanerozoic reactivation of Precambrian basement structures are among the new contributions to the tectonics of the region. Lineament trends appear to be compatible with the postulated Colorado lineament zone, with geophysical potential-field anomalies, and with a northeast-trending basement fault pattern. Combined Landsat, geologic, and geophysical field evidence for this interpretation includes the sinuousity of the composite Salt Valley anticline, the transection of the Moab-Spanish Valley anticline on its southeastern end by northeast-striking faults, and possible transection (?) of the Moab diapir. Similarly, northeast-trending lineaments in Cottonwood Canyon and elsewhere are interpreted as manifestations of structures associated with northeasterly trends in the magnetic and gravity fields of the La Sal Mountains region. Other long northwesterly lineaments near the western termination of the Ryan Creek fault zone. may be associated with the fault zone separating the Uncompahgre horst uplift from the Paradox basin. Implications of the

  12. Altered volcanic ash partings in Wasatch Formation coal beds of the northern Powder River basin: composition and geologic applications

    USGS Publications Warehouse

    Bohor, Bruce Forbes; Phillips, Richard E.; Pollastro, Richard M.

    1979-01-01

    In contrast to the coal-bearing rocks of the Appalachian and Eastern Interior Basins, those of the northern Powder River Basin exhibit more complex stratigraphic and facies relationships, and regional correlations of coal beds are, therefore, more difficult to establish. Recently, however, several coal beds in the Powder River Basin, as well as coal beds in several other coal basins of the Rocky Mountain region, have been found to contain thin but persist·ent layers. of altered volcanic ash described as kaolinitic bentonites (Bohor, 1976, 1977, 1978, Bohor and others, 1976, 1978, Bohor and Pillmore, 1976). These layers serve as isochronous marker horizons which aid in correlating coal beds over broad areas.

  13. Late Cenozoic lacustrine and climatic environments at Tule Lake, northern Great Basin, USA

    NASA Astrophysics Data System (ADS)

    Platt Bradbury, J.

    1992-01-01

    Cores of lake sediment to a depth of 334 m in the town of Tulelake, Siskiyou County, northern California, document the late Cenozoic paleolimnologic and paleoclimatic history of the northwestern edge of the Great Basin. The cores have been dated by radiometric, tephrochronologic and paleomagnetic analyses. Lacustrine diatoms are abundant throughout the record and document a nearly continuous paleolimnologic history of the Tule Lake basin for the last 3 Myr. During most of this time, this basin (Tule Lake) was a relatively deep, extensive lake. Except for a drier (and cooler?) interval recorded by Fragilaria species about 2.4 Ma, the Pliocene is characterized by a dominance of planktonic Aulacoseira solida implying a warm monomictic lake under a climatic regime of low seasonality. Much of the Pleistocene is dominated by Stephanodiscus and Fragilaria species suggesting a cooler, often drier, and highly variable climate. Benthic diatoms typical of alkaline-enriched saline waters commonly appear after 1.0 Ma, and tephrochronology indicates slow deposition and possible hiatuses between about 0.6 and 0.2 Ma. The chronology of even-numbered oxygen isotope stages approximately matches fluctuations in the abundance of Fragilaria since 800 ka indicating that glacial periods were expressed as drier environments at Tule Lake. Glacial and interglacial environments since 150 ka were distinct from, and more variable than, those occurring earlier. The last full glacial period was very dry, but shortly thereafter Tule Lake became a deep, cool lacustrine system indicating a substantial increase in precipitation. Aulacoseira ambigua characterized the latest glacial and Holocene record of Tule Lake. Its distribution indicates that warmer and wetter climates began about 15 ka in this part of the Great Basin. Diatom concentration fluctuates at 41 000 year intervals between 3.0 and 2.5 Ma and at approximately 100 000 year intervals after 1.0 Ma. In the late Pliocene and early Pleistocene

  14. Low palaeoelevation of the northern Lhasa terrane during late Eocene: Fossil foraminifera and stable isotope evidence from the Gerze Basin.

    PubMed

    Wei, Yi; Zhang, Kexin; Garzione, Carmala N; Xu, Yadong; Song, Bowen; Ji, Junliang

    2016-01-01

    The Lhasa terrane is a key region for understanding the paleoelevation of the southern Tibetan Plateau after India-Asia collision. The Gerze Basin, located in the northern part of the Lhasa terrane, is a shortening-related basin. We discovered Lagena laevis (Bandy) fossils in upper Eocene strata of the Gerze Basin. This type of foraminifera is associated with lagoon and estuarine environments, indicating that the northern part of the Lhasa terrane was near sea level during the late Eocene. We speculate that these foraminifera were transported inland by storm surges to low elevation freshwater lakes during times of marine transgressions. This inference is consistent with the relatively positive δ(18)O values in carbonate from the same deposits that indicate low palaeoelevations close to sea level. Considering the palaeoelevation results from the nearby Oligocene basins at a similar latitude and the volcanic history of the Lhasa terrane, we infer that large-magnitude surface uplift of the northern Lhasa terrane occurred between late Eocene and late Oligocene time. PMID:27272610

  15. Low palaeoelevation of the northern Lhasa terrane during late Eocene: Fossil foraminifera and stable isotope evidence from the Gerze Basin

    PubMed Central

    Wei, Yi; Zhang, Kexin; Garzione, Carmala N.; Xu, Yadong; Song, Bowen; Ji, Junliang

    2016-01-01

    The Lhasa terrane is a key region for understanding the paleoelevation of the southern Tibetan Plateau after India-Asia collision. The Gerze Basin, located in the northern part of the Lhasa terrane, is a shortening-related basin. We discovered Lagena laevis (Bandy) fossils in upper Eocene strata of the Gerze Basin. This type of foraminifera is associated with lagoon and estuarine environments, indicating that the northern part of the Lhasa terrane was near sea level during the late Eocene. We speculate that these foraminifera were transported inland by storm surges to low elevation freshwater lakes during times of marine transgressions. This inference is consistent with the relatively positive δ18O values in carbonate from the same deposits that indicate low palaeoelevations close to sea level. Considering the palaeoelevation results from the nearby Oligocene basins at a similar latitude and the volcanic history of the Lhasa terrane, we infer that large-magnitude surface uplift of the northern Lhasa terrane occurred between late Eocene and late Oligocene time. PMID:27272610

  16. Low palaeoelevation of the northern Lhasa terrane during late Eocene: Fossil foraminifera and stable isotope evidence from the Gerze Basin

    NASA Astrophysics Data System (ADS)

    Wei, Yi; Zhang, Kexin; Garzione, Carmala N.; Xu, Yadong; Song, Bowen; Ji, Junliang

    2016-06-01

    The Lhasa terrane is a key region for understanding the paleoelevation of the southern Tibetan Plateau after India-Asia collision. The Gerze Basin, located in the northern part of the Lhasa terrane, is a shortening-related basin. We discovered Lagena laevis (Bandy) fossils in upper Eocene strata of the Gerze Basin. This type of foraminifera is associated with lagoon and estuarine environments, indicating that the northern part of the Lhasa terrane was near sea level during the late Eocene. We speculate that these foraminifera were transported inland by storm surges to low elevation freshwater lakes during times of marine transgressions. This inference is consistent with the relatively positive δ18O values in carbonate from the same deposits that indicate low palaeoelevations close to sea level. Considering the palaeoelevation results from the nearby Oligocene basins at a similar latitude and the volcanic history of the Lhasa terrane, we infer that large-magnitude surface uplift of the northern Lhasa terrane occurred between late Eocene and late Oligocene time.

  17. Oligocene-Miocene deformational and depositional history of the Andean hinterland basin in the northern Altiplano plateau, southern Peru

    NASA Astrophysics Data System (ADS)

    Perez, Nicholas D.; Horton, Brian K.

    2014-09-01

    Cenozoic basin fill of the northern Altiplano plateau records the tectonic development of the flanking Western Cordillera magmatic arc and Eastern Cordillera fold-thrust belt. The Ayaviri hinterland basin of southern Peru contains a ~2300 m thick succession of fluvial sandstones and overbank siltstones (upper Oligocene Puno Group and lower Miocene lower Tinajani Formation) capped by ~400 m of alluvial fan conglomerates (middle Miocene upper Tinajani Formation). New U-Pb zircon chronostratigraphic constraints from ~30 to 15 Ma yield sediment accumulation rates of 110-660 m/Myr. Newly dated growth strata highlight the genetic role played by thrust displacement in basin evolution. A several phase accumulation history derived from chronostratigraphic, provenance, and structural data reveals Oligocene basin filling by fluvial sand and mud that changes provenance from Western Cordillera Mesozoic-Cenozoic volcanic rocks to Paleozoic-Mesozoic Eastern Cordillera sedimentary rocks driven by deformation along the southwest directed, northeastern basin margin Ayaviri thrust at 28-26 Ma. Continued early Miocene fluvial deposition was sourced solely from the Eastern Cordillera. An abrupt middle Miocene shift to coarse alluvial fan deposition sourced from the Western Cordillera was driven by out-of-sequence deformation along the northeast directed, southwestern basin margin Pasani thrust at 18-16 Ma. This northern Altiplano out-of-sequence deformation was coincident with increased Eastern and Western Cordillera exhumation and thrusting and may be symptomatic of changes in critical wedge dynamics. The overall record of basin sedimentation and syndepositional fold-thrust deformation emphasizes the role of regional shortening in governing crustal thickening and basin evolution in the central Andes during the Oligocene to Miocene.

  18. Oligocene-Miocene Mammalian Fossils from Hongyazi Basin and Its Bearing on Tectonics of Danghe Nanshan in Northern Tibetan Plateau

    PubMed Central

    Li, Qiang; Wang, Xiaoming; Xie, Guangpu; Yin, An

    2013-01-01

    A shortage of Cenozoic vertebrate fossils in the Tibetan Plateau has been an obstacle in our understanding of biological evolution in response to changes in tectonism, topography, and environment. This is especially true for Paleogene records, so far known by only two sites along the northern rim of the Plateau. We report a Hongyazi Basin in northern Tibetan Plateau that produces at least three mammalian faunas that span Oligocene through late Miocene. Located at the foothills of the Danghe Nanshan and presently connected to the northern margin of the Suganhu Basin through the Greater Haltang River, the intermountain basin is controlled by the tectonics of the Danghe Nanshan to the north and Chahan’ebotu Mountain to the south, making the basin sediments well suited for inferring the evolutionary history of these two mountain ranges. At the bottom of the local section, the Oligocene Haltang Fauna is best compared to the early Oligocene Desmatolagus-Karakoromys decessus assemblage in the Dingdanggou Fauna in Tabenbuluk Basin. The Middle Miocene Ebotu Fauna from the middle Hongyazi section shares many taxa with the late Middle Miocene Tunggur mammal assemblage in Inner Mongolia, such as Heterosminthus orientalis, Megacricetodon sinensis, Democricetodon lindsayi, and Alloptox gobiensis. Toward the top of the section, the Hongyazi Fauna includes late Miocene elements typical of Hipparion faunas of North China. All three faunas are of typical North China-Central Asian characteristics, suggesting a lack of geographic barriers for faunal differentiation through the late Miocene. Sedimentary packages producing these faunas are arrayed from north to south in progressively younger strata, consistent with a compressive regime to accommodate shortening between Danghe Nanshan and Chahan’ebotu Mountain by thrust faults and folds. With additional constraints from vertebrate fossils along the northern flanks of the Danghe Nanshan, an eastward propagation of the Danghe Nanshan

  19. Advances in ammonite biostratigraphy of the marine Atacama basin (Lower Cretaceous), northern Chile, and its relationship with the Neuquén basin, Argentina

    NASA Astrophysics Data System (ADS)

    Mourgues, Francisco Amaro

    2004-09-01

    Preliminary results about the Lower Cretaceous ammonite biostratigraphy of northern Chile reveal eight fossiliferous levels: Lower-Upper Valanginian neocomitid and olcostephanid faunas in the Punta del Cobre and Abundancia Formations and Upper Hauterivian-Barremian crioceratid in the Nantoco, Totoralillo, and Pabellón Formations. The faunal affinities with the Neuquén are strong during the Valanginian and Hauterivian. In contrast, during the Barremian and Aptian, the ammonites show affinities with Austral, California, and Tethys basinal faunas. The Lower Valanginian-lower Upper Aptian series in northern Chile comprises two sedimentary cycles separated by a regressive pulse of Upper Hauterivian-Lower Barremian age. This pulse may be equivalent to the regression that ended the Early Cretaceous marine cycle in central Chile and central west Argentina, where the second marine sedimentary cycle observed in northern Chile is not represented.

  20. Late Pliocene-Quaternary evolution of outermost hinterland basins of the Northern Apennines (Italy), and their relevance to active tectonics

    NASA Astrophysics Data System (ADS)

    Sani, Federico; Bonini, Marco; Piccardi, Luigi; Vannucci, Gianfranco; Delle Donne, Dario; Benvenuti, Marco; Moratti, Giovanna; Corti, Giacomo; Montanari, Domenico; Sedda, Lorenzo; Tanini, Chiara

    2009-10-01

    We examine the tectonic evolution and structural characteristics of the Quaternary intermontane Mugello, Casentino, and Sansepolcro basins, in the Northern Apennines fold-and-thrust belt. These basins have been classically interpreted to have developed under an extensional regime, and to mark the extension-compression transition. The results of our study have instead allowed framing the formation of these basins into a compressive setting tied to the activity of backthrust faults at their northeastern margin. Syndepositional activity of these structures is manifested by consistent architecture of sediments and outcrop-scale deformation. After this phase, the Mugello and Sansepolcro basins experienced a phase of normal faulting extending from the middle Pleistocene until Present. Basin evolution can be thus basically framed into a two-phase history, with extensional tectonics superposed onto compressional structures. Analysis of morphologic features has revealed the occurrence of fresh fault scarps and interaction of faulting with drainage systems, which have been interpreted as evidence for potential ongoing activity of normal faults. Extensional tectonics is also manifested by recent seismicity, and likely caused the strong historical earthquakes affecting the Mugello and Sansepolcro basins. Qualitative comparison of surface information with depth-converted seismic data suggests the basins to represent discrete subsiding areas within the seismic belt extending along the axial zone of the Apennines. The inferred chronology of deformation and the timing of activity of normal faults have an obvious impact on the elaboration of seismic hazard models.

  1. Assessment of metallic mineral resources in the Humboldt River Basin, Northern Nevada, with a section on Platinum-Group-Element (PGE) Potential of the Humboldt Mafic Complex

    USGS Publications Warehouse

    Wallace, Alan R.; Ludington, Steve; Mihalasky, Mark J.; Peters, Stephen G.; Theodore, Ted G.; Ponce, David A.; John, David A.; and Berger, Byron R.; Zientek, Michael L.; Sidder, Gary B.; Zierenberg, Robert A.

    2004-01-01

    The Humboldt River Basin is an arid to semiarid, internally drained basin that covers approximately 43,000 km2 in northern Nevada. The basin contains a wide variety of metallic and nonmetallic mineral deposits and occurrences, and, at various times, the area has been one of the Nation's leading or important producers of gold, silver, copper, mercury, and tungsten. Nevada currently (2003) is the third largest producer of gold in the world and the largest producer of silver in the United States. Current exploration for additional mineral deposits focuses on many areas in northern Nevada, including the Humboldt River Basin.

  2. Late cenozoic lacustrine and climatic environments at Tule Lake, northern Great Basin, USA

    SciTech Connect

    Bradbury, J.P.

    1992-01-01

    Cores of lake sediment to a depth of 334 m in the town of Tulelake, northern California, document the late Cenozic paleolimnologic and paleoclimatic history of the northwestern Great Basin. Lacustrine diatoms are abundant throughout the record documenting a nearly continuous paleolimnologic history of the Tule Lake basin. Except for a drier (and cooler?) interval recorded by Fragilaria species about 2.4 Ma, the Pliocene is characterized by a dominance of planktonic Aulacoseira solida implying a warm monomictic lake under a climatic regime of low seasonality. Much of the Pleistocene is dominated by Stephanodiscus and Fragilaria species suggesting a cooler, drier, and highly variable climate. Benthic diatoms typical of alkaline-enriched saline waters commonly appear after 1.0 Ma, and tephrochronology indicates slow deposition and possible hiatuses between about 0.6 and 0.2 Ma. The chronology of even-numbered oxygen isotope stages approximately matches fluctuations in the abundance of Fragilaria since 800 ka indicating that glacial periods were drier environments at Tule Lake. Glacial and interglacial environments since 150 ka were distinct from, and more variable than, those occurring earlier. The last full glacial period was very dry, but shortly Tule Lake became a deep, cool lacustrine system indicating a substantial increase in precipitation. Aulacoseira ambigua characterized the latest glacial and Holocene record of Tule Lake, indicating that warmer and wetter climates began about 15 ka. Diatom concentration fluctuates at 41000 year intervals between 3.0 and 2.5 Ma and at approximately 100000 year intervals after 1.0 Ma. In the late Pliocene and early Pleistocene, Aulacoseira solida percentages wax and wane in an approximately 400000 year cycle. The possible response of Tule Lake diatom communities to orbitally-induced insolation cycles underscores the importance of this record for the study of late Cenozoic paleoclimate change. 41 refs., 8 figs.

  3. Effects of precipitation and potential evaporation on actual evapotranspiration over the Laohahe basin, northern China

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Ren, L.; Yang, X.; Ma, M.; Yuan, F.; Jiang, S.

    2015-06-01

    Problems associated with water scarcity are facing new challenges under the climate change. As one of main consumptions in water cycle on the Earth, evapotranspiration plays a crucial role in regional water budget. In this paper, we employ two methods, i.e. hydrological sensitivity analysis and hydrological model simulation, to investigate the effect of climate variability and climatic change on actual evapotranspiration (Ea) within the Laohahe basin during 1964-2009. Calibrations of the two methods are firstly conducted during the baseline period (1964-1979), then with the two benchmarked models, simulations in climatic change duration (1980-2009) are further conducted and quantitative assessments on climatic change-induced variation of Ea are analysed accordingly. The results show that affected by combined impacts of decreased precipitation and potential evapotranspiration, variation of annual Ea in most sub-catchments suffer a downward trend during 1980-2009, with a higher descending rate in northern catchments. At decadal scale, Ea shows significant oscillation in accordance with precipitation patterns. Northern catchments generally suffer more decadal Ea changes than southern catchments, implying the impact of climatic change on decadal Ea is more intense in semi-arid areas than that in semi-humid regions. For whole changed durations, a general 0-20 mm reduction of Ea is found in most parts of studied region. For this water-limited region, Ea shows higher sensitivity to precipitation than to potential evaporation, which confirms the significant role of precipitation in controlling Ea patterns, whereas the impact of potential evapotranspiration variation would be negligible.

  4. Fine-grained suspended sediment source identification for the Kharaa River basin, northern Mongolia

    NASA Astrophysics Data System (ADS)

    Rode, Michael; Theuring, Philipp; Collins, Adrian L.

    2015-04-01

    Fine sediment inputs into river systems can be a major source of nutrients and heavy metals and have a strong impact on the water quality and ecosystem functions of rivers and lakes, including those in semiarid regions. However, little is known to date about the spatial distribution of sediment sources in most large scale river basins in Central Asia. Accordingly, a sediment source fingerprinting technique was used to assess the spatial sources of fine-grained (<10 microns) sediment in the 15 000 km2 Kharaa River basin in northern Mongolia. Five field sampling campaigns in late summer 2009, and spring and late summer in both 2010 and 2011, were conducted directly after high water flows, to collect an overall total of 900 sediment samples. The work used a statistical approach for sediment source discrimination with geochemical composite fingerprints based on a new Genetic Algorithm (GA)-driven Discriminant Function Analysis, the Kruskal-Wallis H-test and Principal Component Analysis. The composite fingerprints were subsequently used for numerical mass balance modelling with uncertainty analysis. The contributions of the individual sub-catchment spatial sediment sources varied from 6.4% (the headwater sub-catchment of Sugnugur Gol) to 36.2% (the Kharaa II sub-catchment in the middle reaches of the study basin) with the pattern generally showing higher contributions from the sub-catchments in the middle, rather than the upstream, portions of the study area. The importance of riverbank erosion was shown to increase from upstream to midstream tributaries. The source tracing procedure provides results in reasonable accordance with previous findings in the study region and demonstrates the general applicability and associated uncertainties of an approach for fine-grained sediment source investigation in large scale semi-arid catchments. The combined application of source fingerprinting and catchment modelling approaches can be used to assess whether tracing estimates are

  5. High resolution sequence stratigraphic analysis of the Late Miocene Abu Madi Formation, Northern Nile Delta Basin

    NASA Astrophysics Data System (ADS)

    Sarhan, Mohammad Abdelfattah

    2015-12-01

    Abu Madi Formation represents the Upper Miocene Messinian age in the Nile Delta basin. It consists mainly of sandstones and shale intercalations and because of its richness in hydrocarbon, it has been subdivided by the petroleum companies into Level-I, Level-II and Level-III, respectively according to the increase in the sandstone to the shale ratio. The Miocene cycle in the northern subsurface section of the Nile Delta encompasses three main formations namely from the base; Sidi Salim formation, Qawasim Formation and Abu Madi Formation at the top. The high resolution sequence stratigraphic analysis, using gamma ray responses, has been done for the Late Miocene formation in the northern part of the Nile delta subsurface section. For this purpose, the gamma-ray logs of ten deep wells, arranged in four cross-sections trending in almost north-south direction throughout the northern region of the Nile Delta, were analyzed. The analysis has revealed that the interpreted 4th order depositional cycles within Abu Madi Formation display great variations in both number and gamma ray responses in each investigated well, and cannot be traced laterally, even in the nearest well. These variations in the interpreted 4th order depositional sequences could be attributed to the presence of normal faults buried in the inter-area laying between the investigated wells. This finding matches with the conclusion of that Abu Madi Formation represents a part of the Upper Miocene Nile Delta syn-rift megasequence, developed during the Upper Miocene rift phase of the Red Sea - Gulf of Suez province in Egypt. Accordingly, in the sequence stratigraphic approach, the depositional history of Abu Madi Formation was strongly overprinted by the tectonic controls rather than the relative sea-level changes which are assumed to be of a secondary influence. Regarding the hydrocarbon aspects of the Abu Madi Formation, the present work recommends to direct the drilling efforts into the stratigraphic traps

  6. Preliminary study of the uranium potential of the northern part of the Durham Triassic Basin, North Carolina

    SciTech Connect

    Harris, W.B.; Thayer, P.A.

    1981-09-01

    This report presents results of a four-channel spectrometric survey of the northern part of the Durham Triassic basin and adjacent Piedmont, North Carolina. Gamma-ray spectrometric measurements were obtained at 112 localities from 136 different lithologies. The nominal sampling density in the Durham Basin is one site per 2 mi/sup 2/. Surface radiometric surveys reveal no anomalous radioactivity in the northern part of the Durham Basin. Uranium concentrations in Triassic rocks are from 0.6 to 9.7 ppM and average 2.9 ppM. Mudrocks contain from 1.3 to 9.7 ppM, and the average is 4.5 ppM. Sandstones contain from 0.6 to 8.8 ppM, and the average is 2.5 ppM. Fanglomerates contain the lowest concentrations of uranium, from 1.4 to 2.0 ppM, for an average of 1.8 ppM. Uranium/thorium ratios average 0.27 for Triassic rocks and are from 0.04 to 1.85. The mean log uranium/log thorium for Triassic rocks is 0.37. Mudrock has the highest average uranium/thorium ratio (0.32), and the range is 0.09 to 0.66. Sandstones have an average uranium/thorium ratio of 0.26, and the range is 0.04 to 1.85. Fanglomerates have the lowest range uranium/thorium ratio (0.19), and the range is 0.12 to 0.19. On the basis of surface radiometric surveys and geologic studies, it is believed that sedimentary strata in the northern part of the Durham Basin are poor targets for further uranium exploration. This conclusion is based on the lack of favorable characteristics commonly present in fluvial uranium deposits. Among these are: (1) carbonaceous material is absent in Triassic rocks of the northern basin, (2) indicators of a reduzate facies in sandstones are not present, and (3) no tuffaceous beds are associated with sediments in the northern Durham Basin.

  7. Peat accumulation in drained thermokarst lake basins in continuous, ice-rich permafrost, northern Seward Peninsula, Alaska

    USGS Publications Warehouse

    Jones, Miriam C.; Grosse, Guido; Jones, Benjamin M.; Anthony, Katey Walter

    2012-01-01

    Thermokarst lakes and peat-accumulating drained lake basins cover a substantial portion of Arctic lowland landscapes, yet the role of thermokarst lake drainage and ensuing peat formation in landscape-scale carbon (C) budgets remains understudied. Here we use measurements of terrestrial peat thickness, bulk density, organic matter content, and basal radiocarbon age from permafrost cores, soil pits, and exposures in vegetated, drained lake basins to characterize regional lake drainage chronology, C accumulation rates, and the role of thermokarst-lake cycling in carbon dynamics throughout the Holocene on the northern Seward Peninsula, Alaska. Most detectable lake drainage events occurred within the last 4,000 years with the highest drainage frequency during the medieval climate anomaly. Peat accumulation rates were highest in young (50–500 years) drained lake basins (35.2 g C m−2 yr−1) and decreased exponentially with time since drainage to 9 g C m−2 yr−1 in the oldest basins. Spatial analyses of terrestrial peat depth, basal peat radiocarbon ages, basin geomorphology, and satellite-derived land surface properties (Normalized Difference Vegetation Index (NDVI); Minimum Noise Fraction (MNF)) from Landsat satellite data revealed significant relationships between peat thickness and mean basin NDVI or MNF. By upscaling observed relationships, we infer that drained thermokarst lake basins, covering 391 km2 (76%) of the 515 km2 study region, store 6.4–6.6 Tg organic C in drained lake basin terrestrial peat. Peat accumulation in drained lake basins likely serves to offset greenhouse gas release from thermokarst-impacted landscapes and should be incorporated in landscape-scale C budgets.

  8. Geologic evolution and aspects of the petroleum geology of the northern East China Sea shelf basin

    SciTech Connect

    Lee, G.H.; Kim, B.Y.; Shin, K.S.; Sunwoo, D.

    2006-02-15

    Analysis of multichannel seismic reflection profiles reveals that the northern East China Sea shelf basin experienced two phases of rifting, followed by regional subsidence. The initial rifting in the Late Cretaceous created a series of grabens and half grabens, filled by alluvial and fluviolacustrine deposits. Regional uplift and folding (Yuquan movement) in the late Eocene-early Oligocene terminated the initial rifting. Rifting resumed in the early Oligocene, while alluvial and fluviolacustrine deposition continued to prevail. A second phase of uplift in the early Miocene terminated the rifting, marking the transition to the postrift phase. The early postrift phase (early Miocene-late Miocene) is characterized by regional subsidence and westward and northwestward marine transgression. Inversion (Longjing movement) in the late Miocene interrupted the postrift subsidence, resulting in an extensive thrust-fold belt in the eastern part of the area. The entire area entered a stage of regional subsidence again and has become a broad continental shelf. Source rocks include synrift lacustrine facies, fluvial shales, and coal beds. Synrift fluvial, lacustrine, and deltaic deposits, postrift littoral and/or shallow-marine sandstones, and fractured basement have the potential to provide reservoirs. Various types of hydrocarbon traps (e.g., faulted anticlines, overthrusts, rollover anticlines, faults, unconformity traps, combination structural-stratigraphic traps, weathered basement, and stratigraphic traps) are recognized, but many of these traps have not been tested.

  9. Post-Laramide uplift and erosional history of northern Wind River Basin, Wyoming

    SciTech Connect

    Conel, J.E.; Lang, H.R.; Paylor, E.D.

    1985-02-01

    Landsat Thematic Mapper (TM) multispectral scanner images together with aerial photographs have been used to infer Laramide to Holocene tectonic events along the northern fringe of Wind River basin near Wind River Canyon, Wyoming. TM images reveal the presence of a large system of alluvial fans, terraces, and residual tongue-shaped debris deposits covering an area of 90 mi/sup 2/ at the base of Copper Mountain. The debris system contains predominantly dark metasedimentary clasts. Both Eocene (Wind River and Wagon Bed Formations) and Quaternary deposits are present, and some Eocene gravel has been reworked into the later units. These deposits contrast sharply in brightness and color with rocks in adjacent areas. Detailed topographic analysis of the terraces and fan remnants disclosed an episodic history of post-Wagon Bed (upper to middle Eocene) uplift and pediment cutting. At least 3 principal stages covering a vertical interval possibly as great as 1300 ft have been identified. Soil profiles in Quaternary gravels capping the pediments show increase in maturity consistent with age inferred from topographic elevations. These local erosional stages may record tectonic events of regional significance. Their absolute ages need to be determined.

  10. Lithologic variations and diagenesis of Lower Cretaceous Muddy Formation in northern Powder River basin, Wyoming

    SciTech Connect

    Walker, A.L.; Patterson, P.E.

    1986-08-01

    Regional facies studies show that sandstones in the Muddy Formation, northern Powder River basin, were deposited in fluvial and nearshore marine paleoenvironments. Most sandstones of the fluvial facies contain only minor amounts of clay matrix and are classified as quartzarenite or sublitharenite, whereas those of the shoreface facies contain appreciable clay and are classified as litharenite or arkose. The arkoses are concentrated along a narrow belt that trends northeastward, parallel to the inferred paleoshoreline. Both the fluvial and shoreface sandstones have been variably affected by postdepositional alteration. During early stages of diagenesis, matrix clay was formed predominantly within the shoreface sandstones, owing mainly to alteration of volcanic material. Later, quartz overgrowths and calcite cement were precipitated within the remaining pore spaces in both fluvial and shoreface sandstones. Calcite also replaced detrital framework grains and some of the previously formed matrix clay. During intermediate diagenetic stages, detrital feldspar grains, particularly those in the arkosic shoreface sandstones, were replaced by albite, which characteristically lacks twinning or displays distinctive chessboard texture. Microprobe analyses indicate that both forms are essentially pure albite. During later stages of diagenesis, following maximum burial, much of the calcite was dissolved, producing secondary porosity. Inasmuch as the calcite was precipitated early, i.e., prior to significant compaction, and inasmuch as it replaced both framework grains and authigenic matrix clay, the secondary pores exhibit a relatively high level of interconnection. It is this secondary porosity that has contributed to the migration and storage of hydrocarbons in the Muddy Formation.

  11. New palynological data from Karoo sediments, Mana Pools basin, northern Zimbabwe

    NASA Astrophysics Data System (ADS)

    d'Engelbronner, E. R.

    1996-07-01

    The palynological associations of 16 Karoo samples, collected in the Mana Pools basin, Northern Zimbabwe, were studied, and four zonal assemblages can be recognized. Assemblage I (Kondo Pools Formation) is dominated by monosaccate pollen grains and diverse alete bisaccate pollen grains occur frequently. Important but rare marker genera include Limitisporites, Vittatina and Weylandites. These indicate a middle to late Early Permian age (e.g. Late Sakmarian to Early Artinskian). The palynological assemblage, derived from the Massive Sandstone Member, Angwa Sandstone Formation, is characterized by a small number of smooth and apiculate spores, but is lacking any age significant marker taxa. Assemblages II and III, both from the Alternations Member (Angwa Sandstone Formation), and Assemblage IV (Pebbly Arkose Formation) are dominated by alete bisaccate and multitaeniate pollen grains. The rare occurrence of Vittatina, Weylandites lucifer and Guttulapollenites hannonicus indicates a Late Permian to Early Triassic age for Assemblage II. Based on sedimentological data and literature, a preliminary age of Early Triassic (Induan) can be given. A range from latest Fassanian (Ladinian) to Lacian (Norian) for Assemblage III is indicated by the occurrence of Asseretospora gyrata, Cadargasporites senectus, Eucommiidites, Infernopollenites, Minutosaccus crenulatus, Retisulcites perforatus and Samaropollenites speciosus. Small amounts of Asseretospora gyrata, Cadargasporites senectus, Cycadopites, Microcachryidites and Minutosaccus crenulatus indicate a slightly larger age range for Assemblage IV (e.g. Carnien to Rhaetian).

  12. Provenance and accommodation pathways of late Quaternary sediments in the deep-water northern Ionian Basin, southern Italy

    NASA Astrophysics Data System (ADS)

    Perri, Francesco; Critelli, Salvatore; Dominici, Rocco; Muto, Francesco; Tripodi, Vincenzo; Ceramicola, Silvia

    2012-12-01

    The northern Calabria along the southeastern coast of Italy provides a favorable setting in which to study complete transects from continental to deep-marine environments. The present northern Ionian Calabrian Basin is a wedge-top basin within the modern foreland-basin system of southern Italy. The Ionian margin of northern Calabria consists of a moderately developed fluvial systems, the Crati and Neto rivers, and diverse smaller coastal drainages draining both the Calabria continental block (i.e., Sila Massif) and the southern Apennines thrust belt (i.e., Pollino Massif). The main-channel sand of the Crati and Neto rivers is quartzofeldspathic with abundant metamorphic and plutonic lithic fragments (granodiorite, granite, gneiss, phyllite and sedimentary lithic fragments). Sedimentary lithic fragments were derived from Jurassic sedimentary successions of the Longobucco Group. The mud samples contain mostly phyllosilicates, quartz, calcite, feldspars and dolomite. Traces of gypsum are present in some samples. The I-S mixed layers, 10 Å-minerals (illite and micas), chlorite and kaolinite are the most abundant phyllosilicates, whereas smectite and chlorite/smectite mixed layers are in small amounts. The geochemical signatures of the muds reflect a provenance characterized by both felsic and mafic rocks with a significant input from carbonate rocks. Furthermore, the degree of source-area weathering was most probably of low intensity rather than moderately intense because CIA values for the studied mud samples are low. Extrapolation of the mean erosion budget from 1 to 25 Ma suggests that at least 5 to 8 km of crust have been removed from the Calabrian orogenic belt and deposited in the marine basins. The Calabrian microplate played an important role in the dynamic evolution of southern Italian fossil and modern basins, representing the key tectonic element of the entire orogenic belt.

  13. The Post-Permian evolution of the Northern Part of the North German Basin

    NASA Astrophysics Data System (ADS)

    Hansen, M. B.; Huebscher, C.; Lykke-Andersen, H.; Gajewski, D.; Dehghani, A.; Reicherter, K.

    2004-12-01

    In the frame of the Priority Program 1135 of the German Research Foundation (DFG) "Dynamics of sedimentary systems under varying stress conditions by example of the Central European Basin System", the scientific goal of the NeoBaltic project is to describe the post-Permian to recent geological evolution of the entire western Baltic Sea region, with a special emphasis on neotectonic activity and it relation to salt dynamics. The western Baltic Sea comprises the northern part of the North German Basin (NGB), a part of the Central European Basin System (CEBS), and the transitional zone between the NGB and the Baltic Shield. In order to investigate these scientific goals the Universities of Aarhus (Denmark) and Hamburg (Germany) has since 1998 completed seven marine campaigns in the western Baltic Sea, collecting 2D high resolution seismic (HRS), gravity and magnetic data in the entire region during different projects. Since 2003 all these data has been available for the NeoBaltic project. All together the data pool have more than 7000 km HRS, 5000 km gravity and 4000 km magnetic data. Until now the project work has been focused on the completion of the data processing and the digital interpretation of important Mesozoic and Cenozoic markers on the seismic sections from the Bays of Kiel and Mecklenburg. Furthermore, several maps have been completed from the potential field data (gravity and magnetic). As a result of the digital interpretation of the HRS data, the overall geological evolution of the northern part of the NGB can be subdivided into four distinct periods. During the Triassic and the Early Jurassic, E-W extension and the deposition of clastic sediments initiated the movement of the underlying Zechstein evaporites. This is seen by the presence of several salt pillows in the region. The deposition ceased during the Middle Jurassic, when the entire area was uplifted, due to the Mid North Sea Doming. The uplift resulted in a pronounced erosion of Upper Triassic

  14. Precipitation thresholds for triggering floods in Corgo hydrographic basin (Northern Portugal)

    NASA Astrophysics Data System (ADS)

    Santos, Monica; Fragoso, Marcelo

    2016-04-01

    The precipitation is a major cause of natural hazards and is therefore related to the flood events (Borga et al., 2011; Gaál et al., 2014; Wilhelmi & Morss, 2013). The severity of a precipitation event and their potential damage is dependent on the total amount of rain but also on the intensity and duration event (Gaál et al., 2014). In this work, it was established thresholds based on critical combinations: amount / duration of flood events with daily rainfall data for Corgo hydrographic basin, in northern Portugal. In Corgo basin are recorded 31 floods events between 1865 and 2011 (Santos et al., 2015; Zêzere et al., 2014). We determined the minimum, maximum and pre-warning thresholds that define the boundaries so that an event may occur. Additionally, we applied these thresholds to different flood events occurred in the past in the study basin. The results show that the ratio between the flood events and precipitation events that occur above the minimum threshold has relatively low probability of a flood happen. These results may be related to the reduced number of floods events (only those that caused damage reported by the media and produced some type of damage). The maximum threshold is not useful for floods forecasting, since the majority of true positives are below this limit. The retrospective analysis of the thresholds defined suggests that the minimum and pre warning thresholds are well adjusted. The application of rainfall thresholds contribute to minimize possible situations of pre-crisis or immediate crisis, reducing the consequences and the resources involved in emergency response of flood events. References Borga, M., Anagnostou, E. N., Blöschl, G., & Creutin, J. D. (2011). Flash flood forecasting, warning and risk management: the HYDRATE project. Environmental Science & Policy, 14(7), 834-844. doi: 10.1016/j.envsci.2011.05.017 Gaál, L., Molnar, P., & Szolgay, J. (2014). Selection of intense rainfall events based on intensity thresholds and

  15. Northern latitude chemical weathering rates: clues from the Mackenzie River Basin, Canada

    NASA Astrophysics Data System (ADS)

    Millot, Romain; Gaillardet, J. érôme; Dupré, Bernard; Allègre, Claude Jean

    2003-04-01

    The main scope of this study is to investigate parameters controlling chemical weathering rates for a large river system submitted to subarctic climate. More than 110 river water samples from the Mackenzie River system (northern Canada) have been sampled and analyzed for major and trace elements and Sr isotopic ratios in the dissolved phase. The three main morphological units are reflected in water chemistry. Rivers from the Canadian Shield are very dilute, dominated by silicate weathering (Millot et al., 2002), whereas the rivers of the Rocky and Mackenzie Mountains as well as the rivers of the sedimentary Interior Platform are dominated by carbonate weathering and are SO 4 rich. Compared to the rivers of the Mackenzie and Rocky Mountains, the rivers of the interior plains are organic, silica, and Na rich and constitute the dominant input term to the Mackenzie River mainstream. Rivers of the Canadian Shield area do not significantly contribute to the Mackenzie River system. Using elemental ratios and Sr isotopic ratios, a mathematical inversion procedure is presented that distinguishes between solutes derived from silicate weathering and solutes derived from carbonate weathering. Carbonate weathering rates are mostly controlled by runoff, which is higher in the mountainous part of the Mackenzie basin. These rates are comparable to the carbonate weathering rates of warmer areas of the world. It is possible that part of the carbonate weathering is controlled by sulfide oxidative weathering, but its extent remains difficult to assess. Conversely to what was stated by Edmond and Huh (1997), overall silicate weathering rates in the Mackenzie basin are low, ranging from 0.13 to 4.3 tons/km 2/yr (Na + K + Ca + Mg), and confirm the negative action of temperature on silicate weathering rates for river basins in cold climates. In contrast to what has been observed in other large river systems such as the Amazon and Ganges Rivers, silicate weathering rates appear 3 to 4

  16. Timing, distribution, amount, and style of Cenozoic extension in the northern Great Basin

    USGS Publications Warehouse

    Henry, Christopher D.; McGrew, Allen J.; Colgan, Joseph P.; Snoke, Arthur W.; Brueseke, Matthew E.

    2011-01-01

    This field trip examines contrasting lines of evidence bearing on the timing and structural style of Cenozoic (and perhaps late Mesozoic) extensional deformation in northeastern Nevada. Studies of metamorphic core complexes in this region report extension beginning in the early Cenozoic or even Late Cretaceous, peaking in the Eocene and Oligocene, and being largely over before the onset of “modern” Basin and Range extension in the middle Miocene. In contrast, studies based on low-temperature thermochronology and geologic mapping of Eocene and Miocene volcanic and sedimentary deposits report only minor, localized extension in the Eocene, no extension at all in the Oligocene and early Miocene, and major, regional extension in the middle Miocene. A wealth of thermochronologic and thermobarometric data indicate that the Ruby Mountains–East Humboldt Range metamorphic core complex (RMEH) underwent ~170 °C of cooling and 4 kbar of decompression between ca. 85 and ca. 50 Ma, and another 450 °C cooling and 4–5 kbar decompression between ca. 50 and ca. 21 Ma. These data require ~30 km of exhumation in at least two episodes, accommodated at least in part by Eocene to early Miocene displacement on the major west-dipping mylonitic zone and detachment fault bounding the RMEH on the west (the mylonitic zone may also have been active during an earlier phase of crustal extension). Meanwhile, Eocene paleovalleys containing 45–40 Ma ash-flow tuffs drained eastward from northern Nevada to the Uinta Basin in Utah, and continuity of these paleovalleys and infilling tuffs across the region indicate little, if any deformation by faults during their deposition. Pre–45 Ma deformation is less constrained, but the absence of Cenozoic sedimentary deposits and mappable normal faults older than 45 Ma is also consistent with only minor (if any) brittle deformation. The presence of ≤1 km of late Eocene sedimentary—especially lacustrine—deposits and a low-angle angular

  17. Asynchronous timing of extension and basin formation in the South Rhodope core complex, SW Bulgaria, and northern Greece

    NASA Astrophysics Data System (ADS)

    Stübner, Konstanze; Drost, Kerstin; Schoenberg, Ronny; Böhme, Madelaine; Starke, Jessica; Ehlers, Todd A.

    2016-01-01

    Upper crustal extensional structures range from steep normal faults to shallow-dipping detachments. The relationship between extension and formation of synkinematic hanging wall basins including their relative timing is not well understood. The South Rhodope core complex, Southern Balkans, has experienced extension for >40 Ma leading to a number of extensional structures and Cenozoic sedimentary basins. We present new bedrock and basin detrital zircon and apatite (U-Th-Sm)/He ages from the Pirin and Rila Mountains and the Sandanski basin. Results identify three episodes of Cenozoic extension in SW Bulgaria accommodated by (1) the Eocene/Oligocene Mesta detachment; (2) the early to middle Miocene Gorno Spanchevo fault (circa 18-15 Ma), which is the northern prolongation of the Strymon low-angle detachment; and (3) the late Miocene West Pirin fault (≤10 Ma). Detachment faulting on the Strymon fault accommodated tens of kilometers of ENE-WSW extension and created ~1500 m topographic relief, but because the resulting hillslopes were gentle (≤10°), extension did not lead to enhanced footwall erosion or formation of a hanging wall basin. In contrast, the West Pirin normal fault resulted in mostly vertical motion of its footwall causing steep topography, rapid erosion, and formation of the synrift Sandanski basin. Digital topographic analysis of river channel profiles identifies the latest episodes of deformation including westward tilting of the Sandanski and Strymon basins and Quaternary N-S extension. This study demonstrates that basin formation in the South Rhodope core complex is related to normal faulting postdating the main episode of crustal stretching by detachment faulting.

  18. Depositional and provenance record of the Paleogene transition from foreland to hinterland basin evolution during Andean orogenesis, northern Middle Magdalena Valley Basin, Colombia

    NASA Astrophysics Data System (ADS)

    Moreno, Christopher J.; Horton, Brian K.; Caballero, Victor; Mora, Andrés; Parra, Mauricio; Sierra, Jair

    2011-10-01

    The Central Cordillera and Eastern Cordillera of the northern Andes form the topographic flanks of the north-trending Magdalena Valley Basin. Constraining the growth of these ranges and intervening basin has implications for Andean shortening and the transformation from a foreland to hinterland basin configuration. We present sedimentological, paleocurrent, and sandstone petrographic results from Cenozoic type localities to provide insights into the tectonic history of the northern Middle Magdalena Valley Basin of Colombia. In the Nuevo Mundo Syncline, the mid-Paleocene transition from marine to nonmarine deposystems of the Lisama Formation corresponds with a paleocurrent shift from northward to eastward transport. These changes match detrital geochronological evidence for a contemporaneous shift from cratonic (Amazonian) to orogenic (Andean) provenance, suggesting initial shortening-related uplift of the Central Cordillera and foreland basin generation in the Magdalena Valley by mid-Paleocene time. Subsequent establishment of a meandering fluvial system is recorded in lower-middle Eocene strata of the lower La Paz Formation. Eastward paleocurrents in mid-Paleocene through uppermost Eocene fluvial deposits indicate a continuous influence of western sediment source areas. However, at the upper middle Eocene (˜40 Ma) boundary between the lower and upper La Paz Formation, sandstone compositions show a drastic decrease in lithic content, particularly lithic volcanic fragments. This change is accompanied by a facies shift from mixed channel and overbank facies to thick, amalgamated braided fluvial deposits of possible fluvial megafans, reflecting changes in both the composition and proximity of western sediment sources. We attribute these modifications to the growing influence of exhumed La Cira-Infantas paleohighs in the axial Magdalena Valley, features presently buried beneath upper Eocene-Quaternary basin fill along the western flank of the Nuevo Mundo Syncline. In

  19. California GAMA Program: Ground-Water Quality Data in the Northern San Joaquin Basin Study Unit, 2005

    USGS Publications Warehouse

    Bennett, George L.; Belitz, Kenneth; Milby Dawson, Barbara J.

    2006-01-01

    Growing concern over the closure of public-supply wells because of ground-water contamination has led the State Water Board to establish the Ground-Water Ambient Monitoring and Assessment (GAMA) Program. With the aid of the U.S. Geological Survey (USGS) and Lawrence Livermore National Laboratory, the program goals are to enhance understanding and provide a current assessment of ground-water quality in areas where ground water is an important source of drinking water. The Northern San Joaquin Basin GAMA study unit covers an area of approximately 2,079 square miles (mi2) across four hydrologic study areas in the San Joaquin Valley. The four study areas are the California Department of Water Resources (CADWR) defined Tracy subbasin, the CADWR-defined Eastern San Joaquin subbasin, the CADWR-defined Cosumnes subbasin, and the sedimentologically distinct USGS-defined Uplands study area, which includes portions of both the Cosumnes and Eastern San Joaquin subbasins. Seventy ground-water samples were collected from 64 public-supply, irrigation, domestic, and monitoring wells within the Northern San Joaquin Basin GAMA study unit. Thirty-two of these samples were collected in the Eastern San Joaquin Basin study area, 17 in the Tracy Basin study area, 10 in the Cosumnes Basin study area, and 11 in the Uplands Basin study area. Of the 32 samples collected in the Eastern San Joaquin Basin, 6 were collected using a depth-dependent sampling pump. This pump allows for the collection of samples from discrete depths within the pumping well. Two wells were chosen for depth-dependent sampling and three samples were collected at varying depths within each well. Over 350 water-quality field parameters, chemical constituents, and microbial constituents were analyzed and are reported as concentrations and as detection frequencies, by compound classification as well as for individual constituents, for the Northern San Joaquin Basin study unit as a whole and for each individual study area

  20. The architecture of an incipient oceanic basin: a tentative reconstruction of the Jurassic Liguria-Piemonte basin along the Northern Apennines-Alpine Corsica transect

    NASA Astrophysics Data System (ADS)

    Marroni, Michele; Pandolfi, Luca

    2007-11-01

    In this paper, a scenario for the early evolution of the Jurassic oceanic Liguria-Piemonte basin is sketched. For this purpose, four selected examples of ophiolite sequences from the Northern Apennines and Corsica are described and analyzed. In the External Ligurian units (Northern Apennines), the ocean-continent transition of the Adria plate was characterized by a basement made up of subcontinental mantle and lower continental crust, covered by extensional allochthons of upper crust. Both, the basement rocks and the extensional allochthons are cut by basaltic dikes and covered by basalts and pelagic deposits. The conjugate ocean-continent transition of the Corsica margin, represented by the Balagne nappe (Corsica), was composed of mantle peridotites and gabbros covered by basaltic flows and minor breccias, that in addition include continent-derived clasts. By contrast, the innermost (i.e., closest to the ocean) preserved area observed in the Internal Ligurian (Northern Apennines) and Inzecca (Corsica) units consists of former morphological highs of mantle peridotites and gabbros, bordered by small basins where the basement is covered by a volcano-sedimentary complex, characterized by ophiolitic breccias and cherts interlayered with basaltic flows. The overall picture resulting from our reconstructions suggests an asymmetric architecture for the Liguria-Piemonte basin with a central area bounded by two different transition zones toward the continental margins. This architecture can be interpreted as the result of a rifting process whose development includes a final stage characterized by passive, asymmetric extension of the lithosphere along an east-dipping detachment fault system.

  1. Deglacial and postglacial evolution of the Pingualuit Crater Lake basin, northern Québec (Canada)

    NASA Astrophysics Data System (ADS)

    Desiage, Pierre-Arnaud; Lajeunesse, Patrick; St-Onge, Guillaume; Normandeau, Alexandre; Ledoux, Grégoire; Guyard, Hervé; Pienitz, Reinhard

    2015-11-01

    The Pingualuit Crater, located in the Ungava Peninsula (northern Québec, Canada) is a 1.4-Ma-old impact crater hosting a ~ 245-m-deep lake. The lake has a great potential to preserve unique paleoclimatic and paleoecological sedimentary records of the last glacial/interglacial cycles in the terrestrial Canadian Arctic. In order to investigate the stratigraphy in the lake and the late Quaternary glacial history of the Pingualuit Crater, this study compiles data from three expeditions carried out in May 2007 (~ 9-m-long sediment core), in August 2010 (~ 50 km of seismic lines), and in September 2012 (high-resolution terrestrial LiDAR topography of the inner slopes). Despite the weak penetration (~ 10 m) of the 3.5-kHz subbottom profiling caused by the presence of boulders in the sedimentary column, seismic data coupled with the stratigraphy established from the sediment core enabled the identification of two glaciolacustrine units deposited during the final stages of the Laurentide Ice Sheet (LIS) retreat in the crater. Two episodes of postglacial mass wasting events were also identified on the slopes and in the deep basin of the crater. The high-resolution topography of the internal slopes of the crater generated from the LiDAR data permitted the confirmation of a paleolake level at 545 m and determination of the elevation of drainage outlets. Together with the mapping of glacial and deglacial landforms from air photographs, the LiDAR data allowed the development of a new deglaciation and drainage scenario for the Pingualuit Crater Lake and surrounding area. The model proposes three main phases of lake drainage, based on the activation of seven outlets following the retreat of the LIS front toward the southwest. Finally, as opposed to other high-latitude crater lake basins such as Lake El'gygytgyn or Laguna Potrok Aike where high-resolution paleoclimatic records were obtained owing to high sediment accumulation rates, the seismic data from the Pingualuit Crater Lake

  2. Localized Stress Perturbations in the Northern Newark Basin: Implications for Induced Seismicity and Carbon Sequestration

    NASA Astrophysics Data System (ADS)

    Zakharova, N. V.; Goldberg, D.

    2013-12-01

    Induced seismicity has emerged as one of the primary concerns for large-volume underground injections, such as wastewater disposal and carbon sequestration. In order to mitigate potential seismic risks, detailed knowledge of reservoir geometry, occurrence of faults and fractures, and the distribution of in situ stresses is required to predict the effect of pore pressure increase on formation stability. We present a detailed analysis of in situ stress distribution at a potential carbon sequestration site in the northern Newark basin, and then consider fault and fracture stability under injection conditions taking into account the effects of localized stress perturbations, formation anisotropy and poroelasticity. The study utilizes borehole geophysical data obtained in a 2-km-deep well drilled into Triassic lacustrine sediments in Rockland County, NY. A complex pattern of local variations in the stress field with depth and at multiple scales is revealed by borehole breakouts, including: (i) gradual counter-clockwise rotation of horizontal stress orientation and decrease in relative magnitude with depth, (ii) pronounced rotations of the principal horizontal stresses at two depths, ~800 m and ~1200 m, and (iii) small-scale departures from mean orientation at the scale of meters to tens of meters. Localized stress drop near active faults may explain these observations. Seismic profiling in the vicinity of the borehole and along dip and strike of basin sediments suggests the presence of crosscutting, and potentially active, fault zones but their geometry cannot be accurately resolved. Borehole image data from the site indicates the presence of numerous fractures with increasing density over depth that roughly form two sets: high-angle fractures striking NE-SW and sub-horizontal fractures dipping NW. We perform iterative dislocation modeling for various fault orientations and slip distances to match the observed stress distribution in the borehole. Both intersecting and

  3. Terrasar-X Insar Processing in Northern Bohemian Coal Basin Using Corner Reflectors (preliminary Results)

    NASA Astrophysics Data System (ADS)

    Hlaváčová, I.; Halounová, L.; Svobodová, K.

    2012-07-01

    The area of Northern Bohemian coal basin is rich in brown coal. Part of it is undermined, but large areas were mined using open-pit mines. There are numerous reclaimed waste dumps here, with a horse racetrack, roads and in some cases also houses. However, on most of the waste dumps, there are forests, meadows and fields. Above the coal basin, there are the Ore mountains which are suspected to be sliding down to the open mines below them. We installed 11 corner reflectors in the area and monitor them using the TerraSAR-X satellite. One of the reflectors is situated in the area of radar layover, therefore it cannot be processed. We present preliminary results of monitoring the remaining corner reflectors, with the use of 7 TerraSAR-X scenes acquired between June and December 2011. We process whole scene crops, as well as the artificial reflector information alone. Our scene set contains interferometric pairs with perpendicular baselines reaching from 0 to 150 m. Such a configuration allows us to distinguish deformations from DEM errors, which are usual when the SRTM (Shuttle Radar Topography Mission) DEM (X-band) is used for Stripmap data. Unfortunately, most of the area of interest is decorrelated due to vegetation that covers both the Ore mountains and the reclaimed waste dumps. We had to enlarge the scene crop in order to be able to distinguish deformations from the atmospheric delay. We are still not certain about the stability of some regions. For the installed artificial reflectors, the expected deformations are in the order of mm/year. Generally, deformations in the area of interest may reach up to about 5 cm/year for the Ervěnice corridor (a road and railway built on a waste dump). When processing artificial corner reflector information alone, we check triangular sums and perform the processing for all possible point combinations - and that allows us to correct for some unwrapping errors. However, the problem is highly ambiguous.

  4. Post-rift Magmatism at Passive Margins: An Integrated Study of the Northern Gulf of Mexico Basin

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Murphy, M. A.; Cannon, J. M.

    2014-12-01

    The pre-Cenozoic tectonic history of the Gulf of Mexico (GoM) can be broadly described as Triassic rifting, followed by Jurassic seafloor spreading and post-rift igneous activity as well as domal uplifts and rapid subsidence during the Late Cretaceous. Igneous rocks, identified from geophysical data and outcrops, extend from the Uvalde and Balcones volcanic fields in Texas, through northern Louisiana and eastern Arkansas, to the Jackson Dome in Mississippi. How this widespread magmatic event affected the thermal and structural framework of the crust and the sedimentary system in the northern GoM basin, remain poorly understood. Competing hypotheses exist regarding post-rift igneous activity: 1) Magmatism in the northeastern GoM basin is part of the Bermuda hotspot track; 2) The subduction of the Farallon plate caused distant lithospheric flexure and associated igneous activity in the northwestern GoM basin; 3) Edge-driven mantle convection produced melts at the continent-ocean boundary; 4) Grenville and Ouachita sutures led to opportunistic igneous activity. Preliminary results show that, instead of an eastward age progressive track, which is predicted by the Bermuda hotspot hypothesis, the spatial distribution and ages of igneous rocks follow the transition between continental and oceanic crust; it also roughly coincides with the Grenville and Ouachita sutures. It is also possible that the shallow-angle subduction of the Farallon plate could trigger magmatism ca. 1500 km from the trench; a modern analog is the subduction of the west Pacific plate and the Changbai volcano in northeast Asia. Here we emphasize the tectonomagmatic evolution of the northern GoM basin; and moreover suggest post-rift magmatism at passive continental margins is likely affected by both edge-driven convection and inherited lithospheric structures.

  5. Calibration and use of integrated hydrological models in a large groundwater basin in Northern Italy

    NASA Astrophysics Data System (ADS)

    Gandolfi, Claudio; Giudici, Mauro; Ponzini, Giansilvio; Agostani, Davide; Rienzner, Michele

    2010-05-01

    We present and discuss the main steps of the implementation and use of the ground water flow model of a large alluvial aquifer system underlying a densely settled and heavily irrigated territory, with a special focus on the estimation of the distributed recharge and on the calibration of the model. The 2500 km² grounwater basin lies in the Padana plain (Northern Italy), one of the most developed industrial and agricultural areas of Europe, and is bordered by the rivers Adda, Oglio and Po. The model implementation was urged by the water management and administration authorities in the area, which in the last years have been under increasing pressure for the release of pumping consents, especially from the irrigation sector. Indeed, the limitation to water withdrawal from rivers to ensure the minimum instream flow, along with a sequence of very dry years, pushed the farmers to seek new sources of irrigation water. On the other side the water authorities are trying to drive a process of transformation of the irrigation systems, towards an increase of their water use efficiency. The same authorities, however, are aware that this process must be carefully controlled in order to protect a number of groundwater dependent ecosystems, that are largely dependent on the distributed recharge due to irrigation. Therefore, the main practical goals of the model is to provide a tool for the assessment of both the sustainability of increased groundwater withdrawals and the effects of changes of the irrigation systems characteristics. Distributed recharge, mainly due to rainfall and irrigation, has been often treated in a simplified way in many applications of groundwater models, in spite of the fact that the unsaturated zone scientific community has achieved significant progresses in the modelling of soil-water-atmosphere interactions. Indeed, especially when irrigation systems are densely spread over a large area but poorly efficient, the distributed recharge term may represent

  6. Palaeoenvironment and its control on the formation of Miocene marine source rocks in the Qiongdongnan Basin, northern South China Sea.

    PubMed

    Li, Wenhao; Zhang, Zhihuan; Wang, Weiming; Lu, Shuangfang; Li, Youchuan; Fu, Ning

    2014-01-01

    The main factors of the developmental environment of marine source rocks in continental margin basins have their specificality. This realization, in return, has led to the recognition that the developmental environment and pattern of marine source rocks, especially for the source rocks in continental margin basins, are still controversial or poorly understood. Through the analysis of the trace elements and maceral data, the developmental environment of Miocene marine source rocks in the Qiongdongnan Basin is reconstructed, and the developmental patterns of the Miocene marine source rocks are established. This paper attempts to reveal the hydrocarbon potential of the Miocene marine source rocks in different environment and speculate the quality of source rocks in bathyal region of the continental slope without exploratory well. Our results highlight the palaeoenvironment and its control on the formation of Miocene marine source rocks in the Qiongdongnan Basin of the northern South China Sea and speculate the hydrocarbon potential of the source rocks in the bathyal region. This study provides a window for better understanding the main factors influencing the marine source rocks in the continental margin basins, including productivity, preservation conditions, and the input of terrestrial organic matter. PMID:25401132

  7. Modeling of gas generation from the Alam El-Bueib formation in the Shoushan Basin, northern Western Desert of Egypt

    NASA Astrophysics Data System (ADS)

    Shalaby, Mohamed Ragab; Hakimi, Mohammed Hail; Abdullah, Wan Hasiah

    2013-01-01

    The Shoushan Basin is an important hydrocarbon province in the northern Western Desert, Egypt, but the burial/thermal histories for most of the source rocks in the basin have not been assigned yet. In this study, subsurface samples from selected wells were collected to characterize the source rocks of Alam El-Bueib Formation and to study thermal history in the Shoushan Basin. The Lower Cretaceous Alam El-Bueib Formation is widespread in the Shoushan Basin, which is composed mainly of shales and sandstones with minor carbonate rocks deposited in a marine environment. The gas generative potential of the Lower Cretaceous Alam El-Bueib Formation in the Shoushan Basin was evaluated by Rock-Eval pyrolysis. Most samples contain sufficient type III organic matter to be considered gas prone. Vitrinite reflectance was measured at eight stratigraphic levels (Jurassic-Cretaceous). Vitrinite reflectance profiles show a general increase of vitrinite reflectance with depth. Vitrinite reflectance values of Alam El-Bueib Formation range between 0.70 and 0.87 VRr %, indicating a thermal maturity level sufficient for hydrocarbon generation. Thermal maturity and burial histories models predict that the Alam El-Bueib source rock entered the mid-mature stage for hydrocarbon generation in the Tertiary. These models indicate that the onset of gas generation from the Alam El-Bueib source rock began in the Paleocene (60 Ma), and the maximum volume of gas generation occurred during the Pliocene (3-2 Ma).

  8. Palaeoenvironment and Its Control on the Formation of Miocene Marine Source Rocks in the Qiongdongnan Basin, Northern South China Sea

    PubMed Central

    Li, Wenhao; Zhang, Zhihuan; Wang, Weiming; Lu, Shuangfang; Li, Youchuan; Fu, Ning

    2014-01-01

    The main factors of the developmental environment of marine source rocks in continental margin basins have their specificality. This realization, in return, has led to the recognition that the developmental environment and pattern of marine source rocks, especially for the source rocks in continental margin basins, are still controversial or poorly understood. Through the analysis of the trace elements and maceral data, the developmental environment of Miocene marine source rocks in the Qiongdongnan Basin is reconstructed, and the developmental patterns of the Miocene marine source rocks are established. This paper attempts to reveal the hydrocarbon potential of the Miocene marine source rocks in different environment and speculate the quality of source rocks in bathyal region of the continental slope without exploratory well. Our results highlight the palaeoenvironment and its control on the formation of Miocene marine source rocks in the Qiongdongnan Basin of the northern South China Sea and speculate the hydrocarbon potential of the source rocks in the bathyal region. This study provides a window for better understanding the main factors influencing the marine source rocks in the continental margin basins, including productivity, preservation conditions, and the input of terrestrial organic matter. PMID:25401132

  9. Palaeoclimatic oscillations in the Pliensbachian (Lower Jurassic) of the Asturian Basin (Northern Spain)

    NASA Astrophysics Data System (ADS)

    Gómez, J. J.; Comas-Rengifo, M. J.; Goy, A.

    2015-08-01

    One of the main controversial items in palaeoclimatology is to elucidate if climate during the Jurassic was warmer than present day, with no ice caps, or if ice caps were present in some specific intervals. The Pliensbachian Cooling event (Lower Jurassic) has been pointed out as one of the main candidates to have developed ice caps on the poles. To constrain the timing of this cooling event, including the palaeoclimatic evolution before and after cooling, as well as the calculation of the seawater palaeotemperatures are of primary importance to find arguments on this subject. For this purpose, the Rodiles section of the Asturian Basin (Northern Spain), a well exposed succession of the uppermost Sinemurian, Pliensbachian and Lower Toarcian deposits, has been studied. A total of 562 beds were measured and sampled for ammonites, for biostratigraphical purposes and for belemnites, to determine the palaeoclimatic evolution through stable isotope studies. Comparison of the recorded uppermost Sinemurian, Pliensbachian and Lower Toarcian changes in seawater palaeotemperature with other European sections allows characterization of several climatic changes of probable global extent. A warming interval which partly coincides with a negative δ13Cbel excursion was recorded at the Upper Sinemurian. After a "normal" temperature interval, a new warming interval that contains a short lived positive δ13Cbel peak, was developed at the Lower-Upper Pliensbachian transition. The Upper Pliensbachian represents an outstanding cooling interval containing a positive δ13Cbel excursion interrupted by a small negative δ13Cbel peak. Finally, the Lower Toarcian represented an exceptional warming period pointed as the main responsible for the prominent Lower Toarcian mass extinction.

  10. Palaeoclimatic oscillations in the Pliensbachian (Early Jurassic) of the Asturian Basin (Northern Spain)

    NASA Astrophysics Data System (ADS)

    Gómez, Juan J.; Comas-Rengifo, María J.; Goy, Antonio

    2016-05-01

    One of the main controversial themes in palaeoclimatology involves elucidating whether climate during the Jurassic was warmer than the present day and if it was the same over Pangaea, with no major latitudinal gradients. There has been an abundance of evidence of oscillations in seawater temperature throughout the Jurassic. The Pliensbachian (Early Jurassic) constitutes a distinctive time interval for which several seawater temperature oscillations, including an exceptional cooling event, have been documented. To constrain the timing and magnitude of these climate changes, the Rodiles section of the Asturian Basin (Northern Spain), a well exposed succession of the uppermost Sinemurian, Pliensbachian and Lower Toarcian deposits, has been studied. A total of 562 beds were measured and sampled for ammonites, for biochronostratigraphical purposes, and for belemnites, to determine the palaeoclimatic evolution through stable isotope studies. Comparison of the recorded latest Sinemurian, Pliensbachian and Early Toarcian changes in seawater palaeotemperature with other European sections allows characterization of several climatic changes that are likely of a global extent. A warming interval partly coinciding with a δ13Cbel negative excursion was recorded at the Late Sinemurian. After a "normal" temperature interval, with temperatures close to average values of the Late Sinemurian-Early Toarcian period, a new warming interval containing a short-lived positive δ13Cbel peak, developed during the Early-Late Pliensbachian transition. The Late Pliensbachian represents an outstanding cooling interval containing a δ13Cbel positive excursion interrupted by a small negative δ13Cbel peak. Finally, the Early Toarcian represented an exceptional warming period, which has been pointed out as being responsible for the prominent Early Toarcian mass extinction.

  11. A review of tectonics and sedimentation in a forearc setting: Hellenic Thrace Basin, North Aegean Sea and Northern Greece

    NASA Astrophysics Data System (ADS)

    Maravelis, A. G.; Boutelier, D.; Catuneanu, O.; Seymour, K. St.; Zelilidis, A.

    2016-04-01

    Exposure of the forearc region of the North Aegean Sea, Greece, offers insight into evolving convergent margins. The sedimentary fill of the Thrace Basin during the Late Eocene to Oligocene time provides a record of subduction-driven processes, such as growth of magmatic arcs and construction of accretionary complexes. This large sediment repository received sediment from two sources. The southern (outboard) basin margin reflects the active influence of the exhumed accretionary prism (e.g. Pindic Cordillera or Biga peninsula), while the northern (inboard) margin records the effect of the magmatic arc in the Rhodope region. The forearc basin sedimentary fills shoal upward into shallow-marine strata but are dominated mainly by deep-marine facies. The depositional trend and stacking pattern are dominated by progradational patterns. This trend, which is observed in both basin margins, is related to tectonic deformation rather than sea-level fluctuations. Additional evidence for this tectonic uplift comes from the backstripping analysis. The accretionary complex provided material into the forearc basin. This material was transported northeast and formed a sand-rich turbidity system that evolved upslope into shallow-marine deposits. Stratigraphic data indicate that this turbidity system exhibits a successive landward (inboard) migration of the depocenter. Provenance data utilizing sandstone petrography, conglomerate clast composition, and bulk-rock geochemistry suggest that this system reflects an increased influx of mafic material into the basin. Volcanic arc-derived material was transported south and east and accumulated in deep-marine settings. Both stratigraphic and provenance data indicate a seaward (outboard) migration of the basin depocenter and a significant increase in felsic detritus into the forearc.

  12. Active deformation and shallow structure of the Wagner, Consag, and Delfín Basins, northern Gulf of California, Mexico

    NASA Astrophysics Data System (ADS)

    Persaud, Patricia; Stock, Joann M.; Steckler, Michael S.; MartíN-Barajas, Arturo; Diebold, John B.; GonzáLez-FernáNdez, Antonio; Mountain, Gregory S.

    2003-07-01

    Oblique rifting began synchronously along the length of the Gulf of California at 6 Ma, yet there is no evidence for the existence of oceanic crust or a spreading transform fault system in the northern Gulf. Instead, multichannel seismic data show a broad shallow depression, ˜70 × 200 km, marked by active distributed deformation and six ˜10-km-wide segmented basins lacking well-defined transform faults. We present detailed images of faulting and magmatism based on the high resolution and quality of these data. The northern Gulf crust contains a dense (up to 18 faults in 5 km) complex network of mainly oblique-normal faults, with small offsets, dips of 60-80° and strikes of N-N30°E. Faults with seafloor offsets of tens of meters bound the Lower and two Upper Delfín Basins. These subparallel basins developed along splays from a transtensional zone at the NW end of the Ballenas Transform Fault. Twelve volcanic knolls were identified and are associated with the strands or horsetails from this zone. A structural connection between the two Upper Delfín Basins is evident in the switching of the center of extension along axis. Sonobuoy refraction data suggest that the basement consists of mixed igneous sedimentary material, atypical of mid-ocean ridges. On the basis of the near-surface manifestations of active faulting and magmatism, seafloor spreading will likely first occur in the Lower Delfín Basin. We suggest the transition to seafloor spreading is delayed by the lack of strain-partitioned and focused deformation as a consequence of shear in a broad zone beneath a thick sediment cover.

  13. Is long range transport of pollen in the NW Mediterranean basin influenced by Northern Hemisphere teleconnection patterns?

    PubMed

    Izquierdo, Rebeca; Alarcon, Marta; Periago, Cristina; Belmonte, Jordina

    2015-11-01

    Climatic oscillations triggered by the atmospheric modes of the Northern Hemisphere teleconnection patterns have an important influence on the atmospheric circulation at synoptic scale in Western Mediterranean Basin. Simultaneously, this climate variability could affect a variety of ecological processes. This work provides a first assessment of the effect of North Atlantic Oscillation (NAO), Arctic Oscillation (AO) and Western Mediterranean Oscillation (WeMO) on the atmospheric long-range pollen transport episodes in the North-Eastern Iberian Peninsula for the period 1994-2011. Alnus, Ambrosia, Betula, Corylus and Fagus have been selected as allergenic pollen taxa with potential long-range transport associated to the Northern Hemisphere teleconnection patterns in the Western Mediterranean Basin. The results showed an increase of long range pollen transport episodes of: (1) Alnus, Corylus and Fagus from Western and Central Europe during the negative phase of annual NAO and AO; (2) Ambrosia, Betula and Fagus from Europe during the negative phase of winter WeMO; (3) Corylus and Fagus from Mediterranean area during the positive phase of the annual AO; and (4) Ambrosia from France and Northern Europe during the positive phase of winter WeMO. Conversely, the positive phase of annual NAO and AO are linked with the regional transport of Alnus, Betula and Corylus from Western Iberian Peninsula. The positive phase of annual WeMO was also positively correlated with regional transport of Corylus from this area. PMID:26125408

  14. Unraveling burial heating and sediment recycling in retroarc foreland basins: Detrital thermochronologic insights from the northern Magallanes Basin, Patagonian Andes

    NASA Astrophysics Data System (ADS)

    Fosdick, J. C.; Grove, M. J.; Graham, S. A.; Hourigan, J. K.; Lovera, O. M.; Romans, B.

    2014-12-01

    Sediment recycling is expected in many tectonic settings, such as foreland basins, where the path followed by grains initially derived from erosion of a basement source region typically involves significant intermediate stages of crustal evolution before the detritus is finally incorporated into tectonically stable basin strata. The shallow-crustal thermal histories experienced by eroded sediment may go undetected by traditional provenance methods but are potentially recoverable by thermochronologic methods. The Patagonian Magallanes retroarc foreland basin affords an excellent case study of sediment burial and recycling within a thrust belt setting. Combined detrital zircon U-Pb geochronology and (U-Th)/He thermochronology data and thermal modeling results confirm delivery of both rapidly cooled, first-cycle volcanogenic sediments from the Patagonian magmatic arc and recycled sediment from deeply buried and exhumed Cretaceous foredeep strata to the Cenozoic Magallanes basin depocenter. Numerical models of temperature-time histories indicate that ca. 54-45 Ma burial of the Maastrichtian Dorotea Formation produced 164-180°C conditions and heating to within the zircon He partial retention zone. Such deep burial is unusual for Andean foreland basins and may have resulted from combined effects of high basal heat flow and high sediment accumulation within a rapidly subsiding foredeep that was floored by basement weakened by previous Late Jurassic rifting. In this interpretation, Cenozoic thrust-related deformation deeply eroded the Dorotea Formation and underlying strata from ~5 km burial depths and may be associated with the development of a regionally extensive Paleogene unconformity. Results from the Cenozoic Río Turbio and Santa Cruz formations confirm that they contain both Cenozoic first-cycle zircon from the Patagonian magmatic arc and highly outgassed recycled zircon. This work suggests that Middle Miocene sediments were most likely derived from recycling of

  15. Cheatgrass percent cover change: Comparing recent estimates to climate change − Driven predictions in the Northern Great Basin

    USGS Publications Warehouse

    Boyte, Stephen P.; Wylie, Bruce K.; Major, Donald J.

    2016-01-01

    Cheatgrass (Bromus tectorum L.) is a highly invasive species in the Northern Great Basin that helps decrease fire return intervals. Fire fragments the shrub steppe and reduces its capacity to provide forage for livestock and wildlife and habitat critical to sagebrush obligates. Of particular interest is the greater sage grouse (Centrocercus urophasianus), an obligate whose populations have declined so severely due, in part, to increases in cheatgrass and fires that it was considered for inclusion as an endangered species. Remote sensing technologies and satellite archives help scientists monitor terrestrial vegetation globally, including cheatgrass in the Northern Great Basin. Along with geospatial analysis and advanced spatial modeling, these data and technologies can identify areas susceptible to increased cheatgrass cover and compare these with greater sage grouse priority areas for conservation (PAC). Future climate models forecast a warmer and wetter climate for the Northern Great Basin, which likely will force changing cheatgrass dynamics. Therefore, we examine potential climate-caused changes to cheatgrass. Our results indicate that future cheatgrass percent cover will remain stable over more than 80% of the study area when compared with recent estimates, and higher overall cheatgrass cover will occur with slightly more spatial variability. The land area projected to increase or decrease in cheatgrass cover equals 18% and 1%, respectively, making an increase in fire disturbances in greater sage grouse habitat likely. Relative susceptibility measures, created by integrating cheatgrass percent cover and temporal standard deviation datasets, show that potential increases in future cheatgrass cover match future projections. This discovery indicates that some greater sage grouse PACs for conservation could be at heightened risk of fire disturbance. Multiple factors will affect future cheatgrass cover including changes in precipitation timing and totals and

  16. Apatite fission track evidence for Miocene extensional faulting east-central Nevada, northern Basin and Range province

    SciTech Connect

    Miller, E.L.; Dumitru, T.A. . Geology Dept.); Gans, P.B. . Geological Sciences Dept.); Brown, R.W. . Geology Dept.)

    1993-04-01

    Apatite fission track ages indicates that a large component of motion along many of the present range-bounding faults occurred in the Early to Middle Miocene, tilting and uplifting rocks through the apatite annealing zone (120--60 C) between 18--13 Ma (n = 20, Deep Creeks), 18--15 Ma (northern Snake Range, n = 20), 25--17 Ma (n = 7, southern Snake Range), 24--15 Ma (Egan Range, n = 6), 23--18 Ma (Kern Mts., n = 2) and 28--16 ma (Schell Creek Range, n = 2). Long track length distributions indicate rapid cooling through the 120--60 C interval followed by residence at low, near surface temperatures. The data set also indicates that the combined Deep Creek-Kern Mountains-northern and southern Snake Range constitutes a single coherent footwall crustal block beneath a > 150 km-long system of east-dipping Miocene faults which includes at least the eastern portions of faults that have been mapped as the Snake Range decollement (NSRD). Conglomerates deposited in hanging wall basins along this fault system contain metamorphic and granitic boulders whose FT ages are coeval with footwall unroofing. The deposits themselves are now known to be younger than previously reported (Oligocene) as ages from boulders are Miocene. The thick (> 2 km) sequences of synorogenic conglomerate indicates rapid unroofing; large slide blocks attest to generation of steep, fault-controlled topography. Faults that cut this sequence are now known to be younger than 15 Ma. Thus, protracted extensional faulting affected the region, beginning in the Early Oligocene and continuing to the Recent, but a significant part of this extension, including a large component of the slip on the NSRD, was accomplished in the Early to Middle Miocene. Data from this region is compatible with a growing base of apatite fission track data from elsewhere in the northern Basin and Range, which, together with geologic relationships, suggest an important episode of Miocene extension and Basin and Range development.

  17. Depositional Record of the Bagua Basin, Northern Peru: Implications for Climate and Tectonic Evolution of Tropical South America

    NASA Astrophysics Data System (ADS)

    Moreno, F.; George, S. W. M.; Williams, L. A.; Horton, B. K.; Garzione, C. N.

    2015-12-01

    The Andes Mountains exert critical controls on the climate, hydrology, and biodiversity of South America. The Bagua Basin, a low elevation (400-600 m) intermontane basin in northern Peru, offers a unique opportunity to study the ecological, climatic, and structural evolution of the western topographic boundary of the Amazonian foreland. Situated between the Marañon fold-thrust belt of the Western Cordillera and basement block uplifts of the Eastern Cordillera, the Bagua region contains a protracted, semi-continuous record of Triassic through Pleistocene sedimentation. Whereas Triassic-Cretaceous marine deposits were potentially related to extension and regional thermal subsidence, a Paleocene-Eocene shift to shallow marine and fluvial systems marks the onset of foreland basin conditions. Oligocene-Miocene sedimentation corresponds to a braided-meandering fluvial system with exceptional development of paleosols. In this study, we use new detrital zircon U-Pb geochronologic and oxygen stable isotopic datasets to establish a chronology of pre-Andean and Andean processes within the Bagua Basin. Detrital zircon geochronology provides constraints on when the Western and Eastern cordilleras shed sediments into the basin. Syndepositional zircons within Eocene, Oligocene and Miocene strata provide key age control for a previously poorly constrained depositional chronology. Preliminary results suggest a dramatic provenance shift in which Paleocene deposits contain almost exclusively cratonic populations (500-1600 Ma) whereas Eocene deposits show a mix of syndepositional zircons from the magmatic arc, recycled Mesozoic zircons, and cratonic zircon populations. Oxygen stable isotopes (δ18O) of carbonate nodules from Neogene paleosols will help elucidate when the Eastern Cordillera became an orographic barrier intercepting moisture from the Amazon basin to the east. Together, these records will help uncover the history of tectonics and climate interaction in tropical South

  18. Late paleozoic tectonic amalgamation of northwestern China. Sedimentary record of the northern Tarim, northwestern Turpan, and southern Junggar basins

    SciTech Connect

    Carroll, A.R.; Graham, S.A.; Hendrix, M.S.; Ying, D.; Zhou, D.

    1995-05-01

    This study focuses on areas adjacent to the Tian Shan (shan is Chinese for mountains) in Xinjiang Uygur Autonomous Region, northwestern China, and provides new field data on Carboniferous and Permian outcrop exposures of sedimentary rocks of the southern Junggar, northwestern Turpan, and northern Tarim basins that bear directly on the history of late Paleozoic tectonic amalgamation. We present here a multifaceted sedimentary basin analysis, including sedimentary facies, paleocurrent, and sandstone provenance analyses, and reconstructions of late Paleozoic basin subsidence. These data provide a unique record not only of the basins themselves, but also of the evolution of the adjacent orogenic belts. This study is based on fieldwork during the summers of 1987, 1988, 1991, and 1992 by workers from Stanford University, the Chinese Academy of Geological Sciences, and the Xinjiang Bureau of Geology and Mineral Resources. Although reconnaissance in nature, the data presented here provide a basis for evaluating alternative hypotheses for the evolution of northwestern China and provide a starting point for more comprehensive future studies. 72 refs., 18 figs., 1 tab.

  19. Geologic assessment of natural gas from coal seams in the Northern Appalachian Coal Basin. Topical report, September 1986-September 1987

    SciTech Connect

    Kelafant, J.R.; Wicks, D.E.; Kuuskraa, V.A.

    1988-03-01

    Based on a geologic assessment of the Northern Appalachian Coal Basin, natural gas in place is estimated at 61 trillion cubic feet (Tcf), contained in 352,000 billion tons of coal. Over one third of the gas in place is in the deep, areally extensive Kittanning group (24.0 Tcf), although the Freeport (15.5 Tcf), Brookville/Clarion (11.0 Tcf), and Pittsburgh (7.0 Tcf) groups also hold considerable potential for coalbed gas. Five regional cross sections correlating the six major coal groups are included along with areal extent, overburden (depth of burial), coal isopach, and coal-rank maps.

  20. An astronomically calibrated early Paleocene magnetostratigraphy and biostratigraphy at Zumaia (Basque Basin, Northern Spain)

    NASA Astrophysics Data System (ADS)

    Dinarès-Turell, J.; Baceta, J. I.; Pujalte, V.; Orue-Etxebarria, X.; Bernaola, G.; Lorito, S.

    2003-04-01

    We have retrieved the magnetostratigraphy of a 54 m long section above the Cretaceous-Tertiary boundary at the sea-cliff section of Zumaia in the Basque basin (Northern Spain). The section encompasses the entire Danian and the lower part of the Selandian stages as indicated by calcareous plankton biostratigraphy (planktic foraminifera and calcareous nannofossils) performed along section. The studied interval is made up by pelagic-marl alternations in the form of couplets and bundles, which range from centimetre/decimetre to meter scale respectively including a few intercalations of thin-bedded calcareous turbidites. The pelagic carbonate beds grade from reddish-pink to light grey colour and are similar to many well-known pelagic sequences like the Scaglia Rossa sequences in the Umbrian basin from Italy, which have provided reference Paleocene magneto- and biostratigraphic chronologies. Our magnetostratigraphy is based in the identification of the primary remanence component after stepwise thermal demagnetisation up to 580-600°C in samples from about 200 stratigraphic levels, which allows the identification of six reversal boundaries from chron C29r to C26r at a bed level. A lithologically coded series has been derived for the studied section taking also the colour information into account and studied with spectral analysis. The spatial (or temporal) evolution of periodicities in the coded series is studied with a wavelet spectral technique. The same wavelet approach has been performed on a published calcium carbonate record for the lower Paleocene 14 m of the Zumaia section (Ten Kate and Sprenger, 1993) obtaining comparable results, which validates our lithologically coded approach. A preliminary time-model based on the standard GPTS indicates that the basic lithologic carbonate-marl couplet corresponds to the 19-23 ky precession cycle (21-31 cm cycle in the depth domain) and that a cycle (usually bundles of 4-6 basic couplets) with global periodicity centred at 1

  1. Past, present and future formation of groundwater resources in northern part of Baltic Artesian Basin

    NASA Astrophysics Data System (ADS)

    Marandi, A.; Vallner, L.; Vaikmae, R.; Raidla, V.

    2012-04-01

    Cambrian-Vendian Aquifer System (CVAS) is the deepest confined aquifer system used for water consumption in northern part of Baltic Artesian Basin (BAB). A regional groundwater flow and transport model (Visual Modflow) was used to investigate the paleohydrogeological scientific and contemporary management problems of CVAS. The model covers the territory of Estonia and its close surrounding, all together 88,000 km2 and includes all main aquifers and aquitards from ground surface to as low as the impermeable part of the crystalline basement. Three-dimensional distribution of groundwater heads, flow directions, velocities, and rates as well as transport and budget characteristics were simulated by the model. Water composition was changed significantly during the last glaciations.Strongly depleted O and H stable isotope composition, absence of 3H and low radiocarbon concentration are the main indicators of glacial origin of groundwater in the Cambrian-Vendian aquifer in northern Estonia. The noble gas analyses allowed concluding, that palaeorecharge took place at temperatures around the freezing point. While in North Estonia, most of water was changed by glacial melt water, high salinity water is till preserved in Southern part of Estonia.First results of modeling suggest that during the intrusion period lasting 7.3-9.3 ka the front of glacial thaw water movement had southeast direction and reachedto 180-220 kmfrom CVAS outcrop in Baltic Sea. Confining layer of CVAS is cut through by deep buried valleys in several places in North Estonia making possible for modern precipitation to infiltrate into aquifer system in present day. In case of natural conditions, the water pressure of CVAS is few meters above sea level and most of valleys act as discharge areas for aquifers system. Two regional depression ones have formed in North Estonia as a result of groundwater use from CVAS. Water consumption changes the natural groundwater gradient, flow direction and thereforerecharge

  2. Radar Probing of Planetary Regoliths: An Example from the Northern Rim of Imbrium Basin

    NASA Technical Reports Server (NTRS)

    Thompson, Thomas W.; Campbell, Bruce A.; Ghent, Rebecca R.; Hawke, B. Ray; Leverington, David W.

    2006-01-01

    Imaging radar measurements at long wavelengths (e.g., >30 cm) allow deep (up to tens of meters) probing of the physical structure and dielectric properties of planetary regoliths. We illustrate a potential application for a Mars orbital synthetic aperture radar (SAR) using new Earth-based 70-cm wavelength radar data for the Moon. The terrae on the northern margin of Mare Imbrium, the Montes Jura region, have diffuse radar backscatter echoes that are 2-4 times weaker at 3.8-cm, 70-cm, and 7.5-m wavelengths than most other lunar nearside terrae. Possible geologic explanations are (1) a pyroclastic deposit associated with sinuous rilles in this region, (2) buried mare basalt or a zone of mixed highland/basaltic debris (cryptomaria), or (3) layers of ejecta associated with the Iridum and Plato impacts that have fewer meter-sized rocks than typical highlands regolith. While radar data at 3.8-cm to 7.5-m wavelengths suggest significant differences between the Montes Jura region and typical highlands, the surface geochemistry and rock abundance inferred from Clementine UV-VIS data and eclipse thermal images are consistent with other lunar terrae. There is no evidence for enhanced iron abundance, expected for basaltic pyroclastic deposits, near the source vents of the sinuous rilles radial to Plato. The regions of low 70-cm radar return are consistent with overlapping concentric ''haloes'' about Iridum and Plato and do not occur referentially in topographically low areas, as is observed for radar-mapped cryptomaria. Thus we suggest that the extensive radar-dark area associated with the Montes Jura region is due to overlapping, rock-poor ejecta deposits from Iridum and Plato craters. Comparison of the radial extent of low-radar-return crater haloes with a model for ejecta thickness shows that these rock-poor layers are detected by 70-cm radar where they are on the order of 10 m and thicker. A SAR in orbit about Mars could use similar deep probing to reveal the nature of

  3. Biomarkers of contaminant exposure in northern pike (Esox lucius) from the Yukon River Basin, Alaska

    USGS Publications Warehouse

    Hinck, J.E.; Blazer, V.S.; Denslow, N.D.; Myers, M.S.; Gross, T.S.; Tillitt, D.E.

    2007-01-01

    As part of a larger investigation, northern pike (n = 158; Esox lucius) were collected from ten sites in the Yukon River Basin (YRB), Alaska, to document biomarkers and their correlations with organochlorine pesticide (total p,p'-DDT, total chlordane, dieldrin, and toxaphene), total polychlorinated biphenyls (PCBs), and elemental contaminant (arsenic, cadmium, copper, lead, total mercury, selenium, and zinc) concentrations. A suite of biomarkers including somatic indices, hepatic 7-ethoxyresorufin O-deethylase (EROD) activity, vitellogenin concentrations, steroid hormone (17B- ustradiol and 16-kebtestosteront) concentrations, splenic macrophage aggregates (MAs), oocyte atresia, and other microscopic anomalies in various tissues were documented in YRB pike. Mean condition factor (0.50 to 0.68), hepatosomatic index (1.00% to 3.56%), and splenosomatic index (0.09% to 0.18%) were not anomalous at any site nor correlated with any contaminant concentration. Mean EROD activity (0.71 to 17.51 pmol/min/mg protein) was similar to basal activity levels previously measured in pike and was positively correlated with selenium concentrations (r = 0.88, P < 0.01). Vitellogenin concentrations in female (0.09 to 5.32 mg/mL) and male (0.01 mg/mL in male pike from multiple sites indicated exposure to estrogenic compounds. Mean steroid hormone concentrations and percent oocyte atresia were not anomalous in pike from any YRB site. Few site differences were significant for mean MA density (1.86 to 6.42 MA/mm2), size (812 to 1481 ??m2), and tissue occupied (MA-%; 0.24% to 0.75%). A linear regression between MA-% and total PCBs was significant, although PCB concentrations were generally low in YRB pike (???63 ng/g), and MA-% values in female pike (0.24% to 0.54%) were lower than in male pike (0.32% to 0.75%) at similar PCB concentrations. Greater numbers of MAs were found as zinc concentrations increased in YRB female pike, but it is unlikely that this is a causative relationship

  4. The correlation between Historical and Instrumental Seismicity in the Sansepolcro Basin, Northern Apennines, Italy

    NASA Astrophysics Data System (ADS)

    Bernardi, F.; Ciaccio, M. G.; Hunstad, I.; Palombo, B.; Ferrari, G.

    2009-04-01

    The area investigated, the Sansepolcro basin, is characterized by the presence of important earthquakes in the past with estimated intensity even larger than IX MCS (the 1352 Monterchi earthquake, the 1389 Boccaserriola, the 1458 Citta' di Castello, the 1781 Cagliese and the 1917 Monterchi-Citerna earthquakes, CPTI Working Group, 2004) and by a surprisingly scarce instrumental seismicity compared to the adjacent areas struck by high seismicity (Castello et al., 2005; Ciaccio et al., 2006). The area north of Sansepolcro has been struck in recent years by four minor sequences, occurred between 1987 and 2001 with magnitude ranging from Ml3.0 to Mw4.7. In this work we analyse the most important earthquakes of the 20th century occurred in the Altotiberina Valley in 1917, 1918, 1919 and 1948; in particular instrumental relocation, focal mechanisms and Ms and Mw magnitude estimation are re-evaluated. The relocation of these earthquakes is particularly critical and is an important issue. An instrumental and precise location is critical for the complexity of the problems associated with the study of seismograms prior to the first half of the twentieth century and is relevant because in the surrounding regions higher seismicity is observed. Regarding this peculiarity of the area, it's very important to detect the location of the historical earthquakes: in particular, the 1917 event is often associated to the possibility that the regional low angle Altotiberina Fault (Barchi et al., 1998) is able or not to nucleate large- or moderate-magnitude events, being historically located close to its surface (Boncio and Lavecchia, 2000). References: Barchi, M.R., A. De Feyter, M.B. Magnani, G. Minelli, G. Pialli and B.M. Sotera (1998) Extensional tectonics in the Northern Apennines (Italy): Evidence from the CROP03 deep seismic reflection line, Mem. Soc. Geol. It., 52, 527-538. Boncio, P. and G. Lavecchia (2000) A structurl model for active extension in Central Italy, J. of Geodynamics

  5. Trace Perchlorate in Background Ground Water and Local Precipitation, Northern Rio Grande Basin, New Mexico

    NASA Astrophysics Data System (ADS)

    Dale, M.; Longmire, P.; Granzow, K. P.; Englert, D.; Yanicak, S.; Larson, T.; Rearick, M.; Heikoop, J.; Perkins, G.

    2007-12-01

    Perchlorate occurs at detectable concentrations of 0.07 to 0.45 parts per billion (ppb) in ground water of background quality within the northern Rio Grande basin, New Mexico. Ground-water samples were collected from 47 wells and springs near Los Alamos, Santa Fe, and Taos, New Mexico. Analytical methods consisted of liquid and ion chromatography-mass spectrometry mass spectrometry (LC/MS/MS and IC/MS/MS). An upper tolerance limit (mean plus two standard deviations) of 0.40 ppb was calculated from 184 analytical results for the background samples. Six distinguishable ground-water zones were sampled based on location, age, and hydrochemistry. In the Los Alamos area, ground water within the mountain-front and mountain-block region is mostly young or modern (less than 50 years). The regional aquifer including the White Rock Canyon springs are of sub-modern age (greater than 50 years). Tritium data from springs north of Taos indicate ground water of modern and sub-modern ages. Background perchlorate concentrations within the Los Alamos area were consistently higher than those measured in the Taos area. Ground water from the Taos area contains less perchlorate and has lower δ18O and δ2H values than ground water from the Los Alamos area. The elevation at which precipitation occurs with respect to recharge and/or the amount of evapotranspiration may play a role in perchlorate concentration in ground water. Natural variability, hydrogeology, and atmospheric inputs may also affect perchlorate concentration in ground water. A linear regression through perchlorate and chloride concentrations for all stations resulted in an r2 = 0. However, the r2 value of the Los Alamos regional aquifer for perchlorate versus chloride was 0.66. Thirteen precipitation samples were collected in the Los Alamos area. Results from eleven of these samples showed no perchlorate greater than 0.05 and 0.009 ppb, the method detection limit (MDL). Two precipitation samples analyzed using the IC

  6. Structure of the Wagner Basin in the Northern Gulf of California From Interpretation of Seismic Reflexion Data

    NASA Astrophysics Data System (ADS)

    Gonzalez, M.; Aguilar, C.; Martin, A.

    2007-05-01

    The northern Gulf of California straddles the transition in the style of deformation along the Pacific-North America plate boundary, from distributed deformation in the Upper Delfin and Wagner basins to localized dextral shear along the Cerro Prieto transform fault. Processing and interpretation of industry seismic data adquired by Petroleos Mexicanos (PEMEX) allow us to map the main fault structures and depocenters in the Wagner basin and to unravel the way strain is transferred northward into the Cerro Prieto fault system. Seismic data records from 0.5 to 5 TWTT. Data stacking and time-migration were performed using semblance coefficient method. Subsidence in the Wagner basin is controlled by two large N-S trending sub-parallel faults that intersect the NNW-trending Cerro Prieto transform fault. The Wagner fault bounds the eastern margin of the basin for more than 75 km. This fault dips ~50° to the west (up to 2 seconds) with distinctive reflectors displaced more than 1 km across the fault zone. The strata define a fanning pattern towards the Wagner fault. Northward the Wagner fault intersects the Cerro Prieto fault at 130° on map view and one depocenter of the Wagner basin bends to the NW adjacent to the Cerro Prieto fault zone. The eastern boundary of the modern depocenter is the Consag fault, which extends over 100 km in a N-S direction with an average dip of ~50° (up to 2s) to the east. The northern segment of the Consag fault bends 25° and intersects the Cerro Prieto fault zone at an angle of 110° on map view. The acoustic basement was not imaged in the northwest, but the stratigraphic succession increases its thickness towards the depocenter of the Wagner basin. Another important structure is El Chinero fault, which runs parallel to the Consag fault along 60 km and possibly intersects the Cerro Prieto fault to the north beneath the delta of the Colorado River. El Chinero fault dips at low-angle (~30°) to the east and has a vertical offset of about 0

  7. Evolution of the Neogene Andean foreland basins of the Southern Pampas and Northern Patagonia (34°-41°S), Argentina

    NASA Astrophysics Data System (ADS)

    Folguera, Alicia; Zárate, Marcelo; Tedesco, Ana; Dávila, Federico; Ramos, Victor A.

    2015-12-01

    The Pampas plain (30°-41°S) has historically been considered as a sector that evolved independently from the adjacent Andean ranges. Nevertheless, the study of the Pampas showed that it is reasonable to expect an important influence from the Andes into the extraandean area. The Pampas plain can be divided into two sectors: the northern portion, adjacent to the Pampean Ranges, has been studied by Davila (2005, 2007, 2010). The southern sector (34°-41°S) is the objective of the present work. The study of this area allowed to characterize two separate foreland basins: the Southern Pampa basin and the Northern Patagonian basin. The infill is composed of Late Miocene and Pliocene units, interpreted as distal synorogenic sequences associated with the late Cenozoic Andean uplift at this latitudinal range. These foreland basins have been defined based on facies changes, distinct depositional styles, along with the analysis of sedimentary and isopach maps. The basins geometries are proposed following De Celles and Gilles (1996) taking into account the infill geometry, distribution and grain size. In both cases, these depocenters are located remarkably far away from the Andean tectonics loads. Therefore they cannot be explained with short-wave subsidence patterns. Elastic models explain the tectonic subsidence in the proximal depocenters but fail to replicate the complete distal basins. These characteristics show that dynamic subsidence is controlling the subsidence in the Southern Pampas and Northern Patagonian basins.

  8. Invasions and impacts of alligatorweed in the upper Xiaoqing River basin of northern China

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Alligatorweed (Alternanthera philoxeroides (Mart.) Griseb), is a problematic and difficult to manage invasive weed. The recent invasion in the upper Xiaoqing River, northern China extends its range northwards through almost five degrees latitude and 500 km from the northern limit and main invasion a...

  9. Hydrogeochemistry and stable isotopes of ground and surface waters from two adjacent closed basins, Atacama Desert, northern Chile

    USGS Publications Warehouse

    Alpers, C.N.; Whittemore, D.O.

    1990-01-01

    The geochemistry and stable isotopes of groundwaters, surface waters, and precipitation indicate different sources of some dissolved constituents, but a common source of recharge and other constituents in two adjacent closed basins in the Atacama Desert region of northern Chile (24??15???-24??45???S). Waters from artesian wells, trenches, and ephemeral streams in the Punta Negra Basin are characterized by concentrations of Na>Ca>Mg and Cl ???SO4, with TDS Mg ??? Ca and SO4 > Cl, with TDS also Mg ??? Ca and SO4 > Cl, but with TDS up to 40 g/l. The deep mine waters have pH between 3.2 and 3.9, and are high in dissolved CO2 (??13 C = -4.8%PDB), indicating probable interaction with oxidizing sulfides. The deep mine waters have ??18O values of ???-1.8%.compared with values < -3.5??? for other Hamburgo Basin waters; thus the mine waters may represent a mixture of meteoric waters with deeper "metamorphic" waters, which had interacted with rocks and exchanged oxygen isotopes at elevated temperatures. Alternatively, the deep mine waters may represent fossil meteoric waters which evolved isotopically along an evaporative trend starting from values quite depleted in ??18O and ??Dd relative to either precipitation or shallow groundwaters. High I/Br ratios in the Hamburgo Basin waters and La Escondida mine waters are consistent with regionally high I in surficial deposits in the Atacama Desert region and may represent dissolution of a wind-blown evaporite component. Rain and snow collected during June 1984, indicate systematic ??18O and ??D fractionation with increasing elevation between 3150 and 4180 m a.s.l. (-0.21??.??18O and -1.7??.??D per 100 m). Excluding the deep mine waters from La Escondida, the waters from the Hamburgo and Punta Negra Basins have similar ??D and ??18O values and together show a distinct evaporative trend (??D = 5.0 ??18O - 20.2). Snowmelt from the central Andes Cordillera to the east is the most likely source of recharge to both basins. Some of the

  10. Petroleum systems of the Po Basin Province of northern Italy and the northern Adriatic Sea; Porto Garibaldi (biogenic), Meride/Riva di Solto (thermal), and Marnoso Arenacea (thermal)

    USGS Publications Warehouse

    Lindquist, Sandra J.

    1999-01-01

    The Porto Garibaldi total petroleum system dominates the Po Basin Province of onshore northern Italy and offshore Italy and Croatia in the northern Adriatic Sea. Porto Garibaldi contains Pliocene (primarily) and Pleistocene (secondarily) biogenic gas ? approximately 16 TCF (2.66 BBOE) ultimately recoverable ? accumulated in co-eval siliciclastic reservoirs. This area was the northwestern edge of the Gondwanan (African) continental plate in pre-Hercynian time until the assembly of Pangea, a dominantly carbonate passive continental margin during the Mesozoic breakup of Pangea, and a Cenozoic collision zone with siliciclastic foredeep and foreland regions surrounded by thrust belts. At least two other petroleum systems, with Triassic (Meride / Riva di Solto) and Miocene (Marnoso Arenacea) source rocks, contribute oil and thermal gas reserves (nearly 1 BBOE) to the province. The major time of hydrocarbon expulsion of the thermal systems was Late Neogene during the Alpine and Apennine orogenies. Local Mesozoic oil expulsion from Triassic rocks also occurred, but those oils either were not trapped or were leaked from faulty traps through time.

  11. Active deformation in the frontal part of the Northern Apennines: insights from the lower Metauro River basin area (northern Marche, Italy) and adjacent Adriatic off-shore

    NASA Astrophysics Data System (ADS)

    Di Bucci, D.; Mazzoli, S.; Nesci, O.; Savelli, D.; Tramontana, M.; De Donatis, M.; Borraccini, F.

    2003-09-01

    An integration of seismological data with geological and geomorphological information aided by seismic interpretation was performed to characterise the Quaternary tectonic evolution of the Metauro River basin area (northern Marche) and adjacent off-shore sector of the external Northern Apennines. On-shore, along the Adriatic coast, the youngest age of thrusting and folding post-dates the Early-Middle Pliocene, while Pleistocene deposits appear to be, at least in part, not involved in the deformation. Recent (i.e. post-thrusting) tectonic structures have been recognised both in pre-Quaternary substratum rocks and in Upper Quaternary continental deposits (Upper Pleistocene terrace alluvium, Upper Pleistocene-Holocene slope deposits). These faults are all compatible with a WSW-ENE oriented extension. In the Metauro River basin area, preserved flights of stream terraces have been categorised according to the presence or absence of alluvial suites in relationship to each terrace level. Here, based on both the heights above the valley floor and the areal distribution of stream terraces, a generalised vertical tectonic uplift can be inferred, particularly during the Middle-Late Pleistocene. Moreover, the along-valley distribution of stream terraces provides further constraints on the age of thrusting and folding. In fact, the reconstructed terrace-levels are substantially parallel, and no evidence for any significant deformation by fold activity has been recognised. Local deformation displayed by both terrace surfaces and alluvial/slope-waste deposits suggests, instead, the intervening of some minor differential movements associated with the generalised uplift and/or to Middle-Late Pleistocene normal faulting. Their occurrence appears anyhow to be unrelated with the pattern of folds and associated thrusts. The present-day seismic activity of the study area was considered by analysing 83 seismic events that occurred from 1987 to 2000. The epicentre distribution is very

  12. Physics-Based Long-Period Ground Motion Scenarios in and Around the Po Plain Sedimentary Basin (Northern Italy)

    NASA Astrophysics Data System (ADS)

    Molinari, I.; Morelli, A.; Casarotti, E.

    2014-12-01

    Unexpected large and prolonged shaking (> 80s) associated with long-period ground motion has been observed inside the Po Plain sedimentary basin (Northern Italy) during the two M~6, May 20-29, 2012, earthquakes. Long-period ground motion impacts on the seismic response of taller structures. It is hence important to understand the characteristics of long-period ground motion associated with the 3D structure and finite fault properties, in particular in those regions with deep sedimentary basins and a complex geological context. We implement a recent high resolution model of the Po basin (MAMBo), derived from geological constraints, in spectral-element code SPECFEM3D_cartesian (Peter et al., 2012). The simulations are numerically accurate for periods of 2 sec and longer, and incorporate complex 3D basin structure and topography as well as the spatial and temporal heterogeneity of source rupture. The response of our basin model has been evaluated for several instrumental earthquakes. Synthetics seismograms reproduce well amplitude and long duration, as well as envelope and coda, observed in paths that travel through sediments. We also evaluate ground motion produced by plausible earthquakes inferred from historical data, such as the Modena (1501) and Verona (1117) events that caused well-documented strong effects in a unusually wide areas with lengths of hundreds of kilometers. We test different representations of the seismic source, from point source to finite sources with different rupture histories, evaluating the impact on shaking amplitude. We compare our results with damage maps (when available) and with the GMPEs currently adopted for this area, evaluating the effects of finite fault and 3D propagation on ground shaking. We show that deterministic ground motion calculation can indeed provide information to be actively used to mitigate the effects of destructive earthquakes on critical infrastructures.

  13. The segmentations and the significances of the Central Canyon System in the Qiongdongnan Basin, northern South China Sea

    NASA Astrophysics Data System (ADS)

    Su, Ming; Xie, Xinong; Xie, Yuhong; Wang, Zhenfeng; Zhang, Cheng; Jiang, Tao; He, Yunlong

    2014-01-01

    The submarine canyons as the important element of the source to sink have attracted the widespread interests in studying their morphologic features, stratigraphic frames, depositional architectures, as well as the related depositional model, hydrodynamic simulation, and hydrocarbon exploration. The Central Canyon System, a large axial submarine canyon, in the Qiongdongnan Basin is developed in Neogene passive continental margin of northern South China Sea, which is paralleled to the shelf break with an "S-shaped" geometry and an NE-NEE orientation. Based on the integrated analysis of high-resolution 2D/3D seismic data and well log data, the whole canyon could be divided into three segments from west to east through its distinct morphological and depositional architecture characteristics, the head area, the western segment and the eastern segment. The canyon shows the classical U-shaped morphology in seismic profiles, and the infillings are composed of a suit of turbidite channel complex in the head area. In the western segment, the canyon demonstrates the sinuous geometry and multiple-shaped morphology in seismic profiles. Four complexes of turbidite channel and mass transport complex (MTC) are observed, which could constitute into two stratigraphic cycles. The canyon in the eastern segment shows V-shaped morphology with steep flanks and a narrow and straight course, which is composed of collapse deposits in the flanks and the sheet sand-MTC complex. The sediment supply, northern continental slope system, paleo-geomorphic characteristics and tectonic setting in the Qiongdongnan Basin are considered as the controlling factors on the development and evolution of the Central Canyon System, each of them have different influences in the three segments. The turbidite channel in the head area was triggered by the abundant sediment supply from western source together with the fault activity at 5.7 Ma of the Red River Fault. The evolution of the canyon in the western

  14. Nested Calderas in the Northern Kawich Range, Central Nevada: Termination of the Ignimbrite Flare-up in the Great Basin

    NASA Astrophysics Data System (ADS)

    Honn, D. K.; Smith, E. I.

    2006-05-01

    During the ignimbrite flare-up in the Great Basin of the western United States nearly 500,000 km3 of ash- flow tuff related to caldera collapse was erupted between about 40 and 23 Ma. In the central Great Basin the flare-up ended abruptly at about 23 Ma and major caldera generating eruptions did not occur again for nearly 7 Ma. To test models for the demise of this voluminous igneous event, we studied ash-flow tuffs in the northern Kawich Range, central Nevada that erupted just before the end of the ignimbrite flare-up. Five calderas were discovered in the northern Kawich Range; each filled with intracaldera rhyolite tuffs and caldera collapse breccias. Based on 40Ar / 39Ar dating of sanidine and crosscutting relations, the calderas erupted in the following order from oldest to youngest: Clifford Spring (23.67 ± 0.09 Ma), Tobe Spring (22.77 ± 0.07 Ma), Cow Canyon (22.78 ± 0.07 Ma), Bellehelen (22.87 ± 0.16 Ma), and Warm Springs. Field evidence including the occurrence of older welded tuff clasts in younger collapse breccia deposits indicates that these calderas represent separate events and not a single caldera with piecemeal collapse. The five intracaldera tuffs are chemically and chronologically similar to the widespread Pahranagat Formation (33,000 km2)and the Pyramid Spring tuff. To explain the eruption of at least seven tuffs of very similar chemistry over a short period of time (1.06 m.y), large scale partial melting (>50%) of the lower crust is required. Transfer of heat from the crust to the atmosphere during these eruptions cooled the crust may have resulted in the suppression of the ignimbrite flare-up in the Great Basin at 23 Ma.

  15. A modern analogue for tectonic, eustatic, and climatic processes in cratonic basins: Gulf of Carpentaria, northern Australia

    USGS Publications Warehouse

    Edgar, N. Terence; Cecil, C. Blaine; Mattick, R.E.; de Deckker, Patrick; Djajadihardja, Yusuf S.

    2003-01-01

    The Gulf of Carpentaria is a tropical, silled epicontinental sea and may be a modern analogue for ancient cratonic basins. For the purpose of this study, the Gulf of Carpentaria is compared to Pennsylvanian cratonic basins of the United States. During the Pennsylvanian, the North American continent moved from the Southern Hemisphere, through the Equator, into the Northern Hemisphere. Today, the Gulf of Carpentaria–New Guinea region is a few degrees south of the Equator and is moving towards it. During the Pennsylvanian, the world was subjected to major glaciations and associated sea-level changes. The island of New Guinea and the Gulf of Carpentaria have undergone similar processes during the Quaternary. A reconnaissance seismic survey of the gulf conducted by the USGS and the Australian National University (ANU), combined with oil-exploration well data, provided the first step in a systematic evaluation of a modern tropical epicontinental system. During the Cenozoic, the region was dominated by terrestrial sedimentation in a temperate climate. At the same time, carbonates were being deposited on the northern shelf edge of the Australian Plate. During the Miocene, carbonate deposition expanded southward into the gulf region. Then in the Late Miocene, carbonate sedimentation was replaced by terrigenous clastics derived from the developing Central Range of the island of New Guinea, which developed a wetter climate while moving northwards into the tropics. At least 14 basin-wide transgressive–regressive cycles are identified by channels that were eroded under subaerial conditions since about the Miocene. Comparison of the modern Gulf of Carpentaria sequences with those of the Pennsylvanian reveals many similarities.

  16. Seismo-stratigraphic evolution of the northern Austral Basin and its possible relation to the Andean tectonics, onshore Argentina.

    NASA Astrophysics Data System (ADS)

    Sachse, Victoria; Anka, Zahie; Pagan, Facundo; Kohler, Guillermina; Cagnolatti, Marcelo; di Primio, Rolando; Rodriguez, Jorge

    2013-04-01

    The Austral Basin is situated in a formerly and recently high active tectonic zone in southern Argentina. The opening of the South Atlantic to the east, the opening of the Drake Passage in the south, and the subduction related to the rise of the Andes to the west, had major influence on the study area. To identify the impact of the tectonic events on basin geometry, sediment thickness and depocenter migration through time, 2D seismic interpretation was performed for an area of approx. 180.000 km² covering the onshore northern Austral Basin. A total of 10 seismic horizons were mapped and tied to the stratigraphy from well reports, representing 9 syn- and post- rift sequences. The main units are: Basement (U1), Jurassic Tobifera Formation (U2), Early Cretaceous (U3), Late Cretaceous (U4), sub-unit Campanian (U4A), Paleocene (U5), Eocene (U6), Oligocene (U7), Miocene (U8), and Plio-Pleistocene (U9). Main tectonic events are identified representing the break-up phase forming graben systems and the evolution from the ancient backarc Rocas Verdes Basin to the foreland Austral Basin. Inversion and changes in the tectonic regime are concomitant with onlapping and thinning of the base of the Upper Cretaceous to Campanian sediments, while the Top of the Upper Cretaceous represents a Maastrichtian unconformity. Units depth maps show a triangular geometry since the Jurassic, tracing the north-eastern basement high and deepening to the south. Since the Campanian the former geometry of basin fill changed and deepening to the south stopped. Beginning of the foreland phase is assigned to this time as well as changes in the stress regime. Paleogene times are marked by a relatively high sedimentation rate coupled with enduring thermal subsidence, on-going rise of the Andes and changes in the convergence rates of the Nazca relative to the South American plate. Onset of sediment supply from the Andes (Incaic phase) resulted in enhanced sedimentation rates during the Paleocene

  17. Moisture History and Small Mammal Community Richness during the Latest Pleistocene and Holocene, Northern Bonneville Basin, Utah

    NASA Astrophysics Data System (ADS)

    Grayson, Donald K.

    1998-05-01

    Precipitation and net primary productivity are positively correlated in arid environments. Both variables are, in turn, correlated with mammal species richness, but this relationship is not necessarily positive. With increasing precipitation in arid areas of low to moderate productivity, mammal richness increases linearly; as rainfall and productivity increase beyond this point, mammal richness is known to decline in some areas, producing a relationship that has been termed "unimodal" or "humped." In the Great Basin of the arid western United States, studies of the relationship between rodent species richness and precipitation have revealed only a positive relationship between these two variables. It has, however, been argued that if areas of higher precipitation were to be sampled within this region, the decline phase would become evident. When latest Pleistocene and Holocene small mammal assemblages from the northern Bonneville Basin (central Utah) are examined across a temporal moisture gradient, species richness declines as moisture declines. Since the Great Basin was significantly moister during the latest Pleistocene and Early Holocene than it has been since that time, the unimodal response model does not appear to apply to this region.

  18. Sedimentology and sequence stratigraphy of Lower Shihezi Formation in Shenguhao area, northern Ordos basin, China

    NASA Astrophysics Data System (ADS)

    Chen, Lin; Lu, Yongchao; Lin, Zi

    2015-04-01

    The structural location of Shenguhao area locates at the transition zone of Yimeng uplift and Yishan slope of northern Ordos basin, China. The study area is in erosion condition until Late Carboniferous and has deposited Taiyuan Formation (C2t), Shanxi Formation (P1s), Lower Shihezi Formation (P1x), Upper Shihezi Formation (P2s) and Shiqianfeng Formation (P2sh) in succession during Late Paleozoic, which mainly develops transition facies and alluvial plain facies. The fluvial sandstone of Lower Shihezi Formation is the major target layer of gas exploration and development in this area. This study is based on the interpretation of 38 wells and 113 sesmic reflection profiles. Three significant lithofacies were identified with sedimentological analysis of cores from the Shenguhao area: fluvial conglomerates, fluvial sandstone and floodplain mudstone, which represent fluvial depositional environment. Based on sequence stratigraphy methodology, well log patterns and lithofacies analysis, Lower Shihezi Formation can be divided into four depositional sequence cycles (1-4) bounded by fluvial scouring erosional surfaces. Each sequence succession shows the trend of base level rising and overall performs fining-upward feature, which characterized by coarsening-upward lower to upper fluvial sandstone and floodplain mudstone. In ascending order, sequence 1 records the transition from the underlying braided river delta plain fine-grained sediments of Shanxi Formation into the overlying fluvial sandstone of Lower Shihezi Formation and develops scouring erosional unconformity at the base, representing a regression. Sequence 1 consists of a package of progradting thick layer of amalgamated fluvial sandstone at the lower part passing into aggrading thin layer of floodplain mudstone at the upper part, suggesting that accommodation growing rate is gradually greater than deposition supply rate under the background of base level gradual increase. Sequence 2 and 3 record similar

  19. Genetic structure of lake whitefish, Coregonus clupeaformis, populations in the northern main basin of Lake Huron

    USGS Publications Warehouse

    Stott, Wendylee; Ebener, Mark P.; Mohr, Lloyd; Schaeffer, Jeff; Roseman, Edward F.; Harford, William J.; Johnson, James E.; Fietsch, Cherie-Lee

    2012-01-01

    Genetic analysis of spawning lake whitefish (Coregonus clupeaformis) from six sites in the main basin of Lake Huron was conducted to determine population structure. Samples from fisheryindependent assessment surveys in the northwest main basin were analyzed to determine the relative contributions of lake whitefish genetic populations. Genetic population structure was identified using data from seven microsatellite DNA loci. One population was identified at Manitoulin Island, one to two were observed in the east-central main basin (Fishing Island and Douglas Point), and one to two populations were found in the northwest (Thunder Bay and Duncan Bay). The genetic identity of collections from Duncan Bay and Thunder Bay was not consistent among methods used to analyze population structure. Low genetic distances suggested that they comprised one population, but genic differences indicated that they may constitute separate populations. Simulated data indicated that the genetic origins of samples from a mixed-fishery could be accurately identified, but accuracy could be improved by incorporating additional microsatellite loci. Mixture analysis and individual assignment tests performed on mixed-stock samples collected from the western main basin suggested that genetic populations from the east-central main basin contributed less than those from the western main basin and that the proportional contribution of each baseline population was similar in each assessment sample. Analysis of additional microsatellite DNA loci may be useful to help improve the precision of the estimates, thus increasing our ability to manage and protect this valuable resource.

  20. The linkage between longitudinal sediment routing systems and basin types in the northern South China Sea in perspective of source-to-sink

    NASA Astrophysics Data System (ADS)

    Su, Ming; Hsiung, Kan-Hsi; Zhang, Cuimei; Xie, Xinong; Yu, Ho-Shing; Wang, Zhenfeng

    2015-11-01

    Using bathymetric and seismic data, this study describes the morpho-sedimentary features in Qiongdongnan basin and southwest Taiwan collision basin, northern South China Sea and reveals the linkages between sediment routing system and basin types. The modern Central Canyon in the Qiongdongnan basin is located along the rift margin, and subparallel to the shelf-break southeast of Hainan Island. The modern Central Canyon develops along the basin axis (i.e., Xisha Trough) and longitudinally transports sediments eastward which are mainly supplied by northern continental slope. The Penghu Canyon in the southwest Taiwan collision basin is located along the collision boundary parallel to the strike of the adjacent uplifted Taiwan orogen. The Penghu Canyon develops along the tilting basin axis transporting sediments longitudinally southward to the deep-sea basin and Manila Trench. The Penghu Canyon is supplied with sediments from both flank Kaoping and South China Sea slopes where tributary canyons and channels transport sediments down-slope and feed the axial canyon. The certain basin types may be occupied by particular styles of sediment routing system. By comparing the morpho-sedimentary features and basin characteristics associated with the modern Central Canyon to that of the Valencia Channel in NW Mediterranean Sea, the longitudinal sediment routing system in rift basin type can be determined. In contrast, the longitudinal sediment routing systems in collision setting can be represented by the comparable examples of Penghu Canyon in southwest Taiwan collision basin and Markham Canyon in western Solomon Sea. The rift type sediment routing system is characterized by an axial canyon with a single sediment supply from land drainage margin. In contrast, sediment routing system in collision type basins consists of an axial canyon and dual sediment supplies from flank adjacent slopes. The axial canyons in collision basins are more active than that of the rift basin due to

  1. Gravity and Magnetotelluric Modeling of the Santo Domingo Basin, Northern New Mexico

    NASA Astrophysics Data System (ADS)

    Zamudio, K. D.; Keithline, N.; Blum, C.; Cunningham, E.; Fromont, A.; Jorgensen, M.; Lee, R.; McBride, K.; Saez Berrios, P.; Harper, C.; Pellerin, L.; McPhee, D.; Ferguson, J. F.

    2015-12-01

    The Santo Domingo Basin, one of a series of basins within the Rio Grande Rift, is located between Santa Fe and Albuquerque, NM, and has been the focus of research by the Summer of Geophysical Experience (SAGE) program since 2000. Gravity, magnetotelluric (MT), and seismic data have been collected throughout the region, although we are concentrating on gravity and MT data collected during SAGE 2014 and 2015. The study area is located in the center of the Santo Domingo basin, an extensional, Miocene age, rift basin, in an area that was minimally involved in the preceding local Laramide orogenic activity. Rift sediments (~3.5 km thick) are underlain by Eocene age sediments that were shed from adjacent uplifts. Up to 3 km of Mesozoic and Paleozoic sediments are preserved above the Precambrian basement. Geologic outcrop, borehole and seismic reflection data, and known density values were used in the construction of a ~100 km-long, generalized geologic cross section from which a gravity response was calculated. The modeled gravity response makes fairly definitive predictions about the geometry of the basin as well as the stratigraphy and faulting within and bounding the basin. MT data was collected at ten stations within the basin. The MT sounding curves exhibit one-dimensional behavior at short periods (<10 s), not surprisingly considering the relatively flat local structure in the area. Layered-earth MT models, without geologic constraints, show a conductive (<10 ohm-m) layer at ~1.5 km above a more resistive layer (>1000 ohm-m) at ~ 3.5-4 km. Conductivities of the major stratigraphic units have been determined from well logs and previous MT modeling. Forward and inverse MT models constrained by the gravity-modeled geologic cross section are used to develop a conductivity model consistent with the geology, and are a step towards a better unified treatment of MT, seismic and gravity data.

  2. Seasonal variation of clogging of an artificial recharge basin in a northern climate

    NASA Astrophysics Data System (ADS)

    Schuh, W. M.

    1990-12-01

    The decrease of infiltration rate, and the depth, cause, and hydraulic effect of clogging, were evaluated for a sandy, artificial-recharge test basin during the application of water containing between 51 and 61 mg l -1 suspended solids. Infiltration rate decreased by two orders of magnitude under fall operational conditions for a clean sand surface. Clogging was caused by clay deposition within the basin soil profile during early operation times (19-75 h) followed by the complete interception of sediment in the surface filter cake during later operational times. Impedance decreased by two to three orders of magnitude in the surface 8 cm, and by zero to two orders of magnitude from 8 to 38 cm. Increased clay content following basin operation was measured to a depth of 5 cm. During the spring test, sediment movement and deposition were similar to the fall test. In addition, carbonates and iron oxyhydroxides precipitated, causing cementation of the surface soil grains. The cementation caused increased hydraulic impedance and resulted in a decrease of total recharge. Carbonate precipitation was caused by increased basin-water pH resulting from algal photosynthesis. Allowing the basin to dry and crack for ten days resulted in a substantial recovery (64%) of infiltration rate. Following the drying treatment the basin reclogged more quickly than for the previous test on clean sands, and the impedance of the surface layer reached values larger than those prior to the drying treatment. The decrease of impedance caused by drying was confined to the surface layer, and no effect was observed below 8 cm. Following the natural drying treatment, total recharge was about half that of the clean basin.

  3. A tectogenetic mechanism controlling the evolution of the Texel-IJsselmeer High (northern Netherlands) and adjacent basins

    SciTech Connect

    Rijkers, R.; Geluk, M. )

    1993-09-01

    Geological studies around the Texel-IJsselmeer High have been carried out for the regional subsurface mapping project of the Geological Survey of The Netherlands. The Texel-IJsselmeer High, in the northern part of the Netherlands, is a northwest-southeast-trending structural unit, slightly tilted to the northeast. The geological evolution of the Texel-IJsselmeer High and the adjacent areas can be linked to an extensional tectonic regime during which several Jurassic basins in the Netherlands originated. During the Late Jurassic, the southern border of the Texel-IJsselmeer High was characterized by normal faulting. Main faults are dipping southwest and are generally part of a half-graben structure. Faulting is accompanied by subsidence of the hanging wall (Jurassic basin area), while the footwall (the Texel-IJsselmeer High) is isostatically uplifted and eroded. The proposed model is based on thinning of the lower crust beneath the basins during Jurassic extension by pure shear. This mechanism is coupled locally with shear zones (simple shear) as a result of lower crustal failure. The model is supported by observations on deep regional seismics at the southern margin of the basin area. During the Late Cretaceous/early Tertiary, transpressional intraplate stresses reactivated the structural weakness zones in the lower and upper crust in a reversed way (inversion). During this tectonic inversion the northwest-southeast-trending Texel-IJsselmeer High acted as a buffer zone perpendicular to the direction of maximum principal stress. Paleogeographical studies and geohistory analysis support the proposed tectogenetic model of the Texel-IJsselmeer High.

  4. Architecture and subsidence history of the intracratonic Hudson Bay Basin, northern Canada

    NASA Astrophysics Data System (ADS)

    Pinet, Nicolas; Lavoie, Denis; Dietrich, Jim; Hu, Kezhen; Keating, Pierre

    2013-10-01

    The Phanerozoic Hudson Bay Basin is a large intracratonic basin that is almost completely encircled by Precambrian rocks of the Canadian Shield. The preserved sedimentary succession is up to 2500 m thick and consists mainly of Upper Ordovician to Upper Devonian limestones, dolostones, evaporites and minor siliciclastics that were deposited in shallow marine conditions. Backstripping, based on new paleontological data and well correlations, reveals an irregular subsidence history marked by several periods of exhumation. In seismic data, the Hudson Bay Basin appears to have a relatively simple geometry, characterized by a lower sedimentary package cut by high-angle faults, overlain by a saucer-shape, essentially underformed upper sedimentary package. Normal (or transtensional) faults imaged on seismic reflection profiles provide clear evidence for crustal extension during deposition of the older sedimentary packages or slightly later, indicating that the basin is, at least partly, extensional in nature. However, significant changes in the depocenter location during the Paleozoic and variable exhumation values required by new maturation data indicate that other mechanisms influenced the subsidence/exhumation history of the basin. In particular, the influence of far-field events and dynamic topography transmitted by large-scale mantle flow in the continental interior (creating long-wavelength tilting and unconformities) is suspected but not yet proven.

  5. Evolution of the Lower Cretaceous Coqen basin in northern Lhasa, central Tibet Plateau: stratigraphy, sedimentology, and detrital zircon geochronology

    NASA Astrophysics Data System (ADS)

    Sun, Gaoyuan; Hu, Xiumian; Sinclair, Hugh; BouDagher-Fadel, Marcelle

    2016-04-01

    potential sources, the Zelong volcanic rocks and the pre-Carboniferous strata within the northern part of the Lhasa terrane are the most possible sources for the Duoni Formation. The evolution of the Early Cretaceous Coqen basin can be indivied into two stags. During Aptian time (~123-115 Ma), the Duoni Formation received materials southward from the Zelong volcanic rocks and the sedimentary basement rocks in the central Lhasa terrane. The basin developed in a retro-arc setting related to the northward subduction of Neo-tethyan oceanic lithosphere, resulting in the occurrence of the Zelong volcanics arc meanwhile. Our data are inconsistent with the foreland basin related to the Lhasa-Qiangtang collision in the north as previous interpreted. During latest Aptian-earliest Cenomanian (~115-98 Ma), the Coqen basin was prevailed by the shallow marine Langshan limestone, developed in a sag basin that developed in the retro side of the Neo-tethyan oceanic lithosphere subduction. The mechinism of this sag basin was the dynamic subsidence resulted from the low-angle or flatted subduction of the Neo-tethyan oceanic lithosphere during this time interval.

  6. Geochemical evidence for Paleozoic oil in Lower Cretaceous O Sandstone, northern Denver basin

    USGS Publications Warehouse

    Clayton, J.L.

    1989-01-01

    Organic geochemical properties of the oil produced from the Lower Cretaceous O sandstone on the eastern flank of the Denver basin indicate that this oil has been derived from a different source rock than other Cretaceous oils in the basin. O sandstone oil is characterized by low pristane/phytane ratio, high isoprenoid/n-alkane ratios, high asphaltene content, high sulfur content, and slight predominance of even-carbon numbered n-alkanes in the C25+ fraction. These features are evidence of a Paleozoic source and indicate a carbonate rock is the likely source. Preliminary source rock evaluation and correlation data suggest that calcareous black shales and marls of Middle Pennsylvanian (Desmoinesian) age are the source of the O sandstone oil. This is the first reported occurrence of oil from Paleozoic source rocks in a Cretaceous reservoir in the Denver basin. -from Author

  7. A digital resource model of the Upper Pennsylvanian Pittsburgh coal bed, Monongahela Group, northern Appalachian basin coal region, USA

    USGS Publications Warehouse

    Ruppert, L.F.; Tewalt, S.J.; Bragg, L.J.; Wallack, R.N.

    1999-01-01

    The U.S. Geological Survey is currently conducting a coal resource assessment of the coal beds and zones that are expected to provide the bulk of the Nation's coal resources for the next few decades. The Pittsburgh coal bed is the first bed in the northern and central Appalachian basin coal region to undergo a fully-digital assessment. The bed-specific assessment is being carried out in partnership with the state geologic surveys of West Virginia (WV), Pennsylvania (PA), Ohio (OH), and Maryland (MD). Comprehensive stratigraphic and geochemical databases have been developed for the Pittsburgh coal bed, and areal extent, mined areas, structure contour, isopach, overburden thickness maps of the bed have been released as United States Geological Survey (USGS) Open-File Reports. The resulting resource model indicates that of the original 34 billion short tons (31 billion tonnes) of Pittsburgh coal, 16 billion short tons (14 billion tonnes) remain. Although most of the remaining coal is thinner, deeper, and higher in ash and sulfur (S) than the original resource, there are blocks of extensive thick (6-8 ft or 1.8-2.4 m) coal in southwestern PA and the northern panhandle of WV.The U.S. Geological Survey is currently conducting a coal resource assessment of the coal beds and zones that are expected to provide the bulk of the Nation's coal resources for the next few decades. The Pittsburgh coal bed is the first bed in the northern and central Appalachian basin coal region to undergo a fully-digital assessment. The bed-specific assessment is being carried out in partnership with the state geologic surveys of West Virginia (WV), Pennsylvania (PA), Ohio (OH), and Maryland (MD). Comprehensive stratigraphic and geochemical databases have been developed for the Pittsburgh coal bed, and areal extent, mined areas, structure contour, isopach, overburden thickness maps of the bed have been released as United States Geological Survey (USGS) Open-File Reports. The resulting resource

  8. Geophysical characteristics of Qiongdongnan Basin, Northern South China Sea and its significance in crustal structure study

    NASA Astrophysics Data System (ADS)

    Qiu, N.; Sun, Z.; Wang, Z.; Sun, Z.

    2013-12-01

    Qiongdongnan Basin was initiated in the Cenozoic above Pre-Cenozoic basement which overprinted by Cenozoic rifting basin tectonics soon after became as part of a South China Sea rifted passive continental margin. Decades of industrial exploration and scientific research in this petroliferous region have produced a lat of geological and geophysical data. We have integrated available grids of sedimentary horizons, well, seismic reflection data, and the observed gravity field into the first crust-scale structural model of the Qiongdongnan Basin. Reflectors of the base of Cenozoic were time-depth converted by implementing available information on time-depth relations. The relations time-depth conversion in different regions was made with reference to the adjacent wells. The depth and thickness data sets were compiled and integrated and then we interpolateidng of scattered data to create regular grids. The dimensions of the finalisedfinal depth and thickness maps amount tospan 300 km in an east--west direction and 150 km in a north-south direction, which is mainly limited by the distribution of available data Qiongdongnan Basin developed as a rifted continental margin that was overprinted by foreland tectonics soon after its initiation. To fully understand the complex history of the basin, it is indispensable necessary to widen integrate the knowledge about the present-day structure of the sub-sedimentary parts of the crust. We confront this challenge by combining existing information on the composition of the crust and on the depth of the crust-mantle boundary as indicated by refraction seismic lines with isostatic calculations and gravity modelling. (1) The sedimentary thickness distributions (a) sag belt center thicker than uplift belt; (b) the western parts of the basin are thicker than in the eastern; (c) a mainly general trend of gradual west(/southwest)ward shift of the migration of the depocentre form towards the westsouthwest during the Paleogene to Neogene

  9. Hydrochemistry (major and trace elements) of Lake Malawi (Nyasa), Tanzanian Northern Basin: local versus global considerations

    NASA Astrophysics Data System (ADS)

    Branchu, P.; Bergonzini, L.; Ambrosi, J.-P.; Cardinal, D.; Delalande, M.; Pons-Branchu, E.; Benedetti, M.

    2010-07-01

    This paper presents the first inventory of dissolved minor and trace element (F, Al, Fe, Mn, Ba, Cd, Cr, Cu, Pb, Mo, Bi, Sr, Zn) concentrations in Lake Malawi, the second largest African lake. Sampling was carried out during 1993 dry season in the northern part of the lake. Trace metal concentrations were measured, together with Ca, Mg, Na, K, Cl, SO4, Alkalinity and Si, along three profiles in the lake northern extremity, in five tributaries and two on-land hydrothermal springs. Water profiles show similar elemental distributions and concentrations that are influenced by lake physical-chemical stratification. Stratification, assessed using temperature, conductivity, Si and Mn profiles, is characterised by two boundaries: the thermocline (70-90 m) and the oxicline (150-190 m). Elemental water concentrations are discussed using simple covariance analyse. Epilimnetic concentrations and distribution are also influenced by atmospheric deposition and river diving. Comparison of dissolved concentrations for potentially polluting elements with World Health Organisation Guidelines and those reported for other East African lakes shows that this reservoir is uncontaminated despite an increasing human stress. Major element behaviour is assessed through a 3 boxes model. In this model Cl and K are conservative elements whereas Si is removed from the solution by diatom productivity and sedimentation. Ca, Na, Mg and alkalinity show low reactivity. Evaporation is one of the controlling factors of lake element concentration that superimposes on the watershed control. Hydrothermal activity, not evidenced in the lake, controls the chemistry of one of the main northern tributary. Chemical comparison between Northern rivers and other tributaries characterises the geographical and geological specificity of studied northern watershed. Moreover the lake annual chemical budget shows that northern watershed generates the main elemental input to the lake, illustrating the dual importance of

  10. National Account Energy Alliance Final Report for the Basin Electric Project at Northern Border Pipeline Company's Compressor Station #7, North Dakota

    SciTech Connect

    Sweetzer, Richard; Leslie, Neil

    2008-02-01

    A field research test and verification project was conducted at the recovered energy generation plant at Northern Border Pipeline Company Compressor Station #7 (CS#7) near St. Anthony. Recovered energy generation plant equipment was supplied and installed by ORMAT Technologies, Inc. Basin Electric is purchasing the electricity under a purchase power agreement with an ORMAT subsidiary, which owns and operates the plant.

  11. The northern and central Appalachian basin coal region -- The Upper Freeport and Pond Creek coal bed assessments

    SciTech Connect

    Ruppert, L.; Tewalt, S.; Bragg, L.; Wallack, R.; Freeman, P.; Tully, J.

    1999-07-01

    The Upper Freeport and Pond Creek coal beds are two of six coal beds being assessed by the US Geological Survey (USGS) in the northern and central Appalachian basin coal region. The coal resource assessments were designed to provide up-to-date, concise data on the location, quantity, and quality of US coals for Federal agencies, the public, industry and academia. Assessment products are fully digital and include original and remaining resource estimates; maps depicting areal extent, mined areas, geologic structure contour, isopach, overburden thickness, ash yield, sulfur content, calorific value, and selected trace-element contents; and public domain geochemical and stratigraphic databases. The assessment methodology and a few results are presented.

  12. Innovative Methodology For Detection of Fracture-Controlled Sweet Spots in the Northern Appalachian Basin

    SciTech Connect

    Jacobi, Rober

    2007-03-28

    This Topical Report (#6 of 9) consists of the figures 3.6-13 to (and including) 3.6-18 (and appropriate figure captions) that accompany the Final Technical Progress Report entitled: “Innovative Methodology for Detection of Fracture-Controlled Sweet Spots in the Northern Appalachian Basin” for DOE/NETL Award DE-AC26-00NT40698.

  13. Innovative Methodology for Detection of Fracture-Controlled Sweet Spots in the Northern Appalachian Basin

    SciTech Connect

    Jacobi, Rober

    2007-03-31

    This Topical Report (#6 of 9) consists of the figures 3.6-13 to (and including) 3.6-18 (and appropriate figure captions) that accompany the Final Technical Progress Report entitled: "Fracture-Controlled Sweet Spots in the Northern Appalachian Basin” for DOE/NETL Award DE-AC26-00NT40698.

  14. Fluvio-lacustrine sedimentation and volcanism in a Late Carboniferous tensional intra-arc basin, northern Chile

    NASA Astrophysics Data System (ADS)

    Breitkreuz, Christoph

    1991-11-01

    Extensive outcrops of Late Carboniferous to Triassic volcanoplutonic magnetic-arc complexes occur in the Andes of northern Chile. In the Salar de Atacama area, terrestrial volcanosedimentary successions include a 200-600 m thick fluvio-lacustrine sequence ("Miembro Medio"). The terrestrial basin which accommodated this sequence formed during the latest Carboniferous on top of the deposits of the pre-existing Carboniferous composite volcanoes. The lower part of the Miembro Medio consists of green limnic and multicoloured alluvial fan deposits; the upper part is made up of red fluvial sedimentary rocks. Basic volcanic rocks occur locally throughout the sequence. The climate is inferred to have been warm and humid. The limnic (freshwater) environment had a minimum extension of 300 × 100 km. Limnic facies is inferred from the existence of fine-parallel-bedded sediments, ooliths and a limnic benthic fauna. Lake-shore deposits prevail in the outcrops. In some sections, the green limnic sequence is followed by red fine-grained floodplain or alluvial plain, and fluvial channel deposits. The framework composition of the Miembro Medio is dominated by volcanogenic detritus presumably eroded from the successions of the previous Late Carboniferous volcanic arc. Another volcanogenic clast type was provided by syndepositional basalto-andesitic phreatomagmatic activity, which also produced peperitic sills, dykes and lavas. The limnic-alluvial fan facies association, the predominance of volcanogenic detritus, and the accompanying intrabasinal basic calc-alkaline volcanism together with the considerable size of the basin point to a ?NW-SE trending half-graben setting controlled by (trans-)tensional arc tectonics. With regard to the Late Carboniferous-Triassic volcanosedimentary successions of northern Chile, this Latest Carboniferous tensional setting is the only feature in this area supporting those models, which inferred an extensional magmatic arc for the entire Central and

  15. Late Quaternary faulting on the Manas and Hutubi reverse faults in the northern foreland basin of Tian Shan, China

    NASA Astrophysics Data System (ADS)

    Gong, Zhijun; Li, Sheng-Hua; Li, Bo

    2015-08-01

    The Tian Shan Range lies in the actively deforming part of the India-Asia collision zone. In the northern foreland basin of Tian Shan, the strata were intensively deformed by Cenozoic folding and faulting. Slip rate studies along these faults are important for understanding the dynamics of crustal deformation and evaluating the seismic hazards in the region. Two reverse faults (the Manas and Hutubi faults) in the northern foreland basin were investigated. Due to past faulting events along these faults, the terrace treads along the Manas River were ruptured, forming fault scarps several meters in height. Loess deposits were trapped and preserved at the surface ruptures along these scarps. The thickness of the trapped loess is dependent on the size of the ruptures. The minimum and maximum ages of these scarps are constrained by dating the loess preserved at the surface ruptures and the terrace treads, respectively, using the quartz optically stimulated luminescence (OSL) dating technique. Our dating results suggest that the loess trapped at the ruptures was deposited from the early to mid-Holocene at the Hutubi Fault, and from the mid- to late-Holocene at the Manas Fault. The vertical displacements of the faults were evaluated by measuring the topographic profiles across the investigated fault scarps using the differential global position system (DGPS). Our results suggest that, during the late Quaternary in the studied region, the vertical slip rates of the Manas Fault were between ˜ 0.74 mm /yr and ˜ 1.6 mm /yr, while the Hutubi Fault had a much lower vertical slip rate between ˜ 0.34 mm /yr and ˜ 0.40 mm /yr. The tectonic implications of our results are discussed.

  16. Fission track evidence for widespread early to Middle miocene extension in the northern Basin and Range province

    SciTech Connect

    Dumitru, T.; Miller, E.; Savage, C. . Geological Dept.); Gans, P. . Geological Science Dept.); Brown, R. . Geology Dept.)

    1993-04-01

    The northern Basin and Range province has experienced multiple periods of extension but the precise timing and relative importance of the various periods is poorly known. Geologic data in many areas suggest inception of extension was closely tied with the southward sweep in earliest magmatism, which is Eocene in southern Idaho, Oligocene in east-central Nevada, and Miocene in southern Nevada. Ar/Ar ages suggest that extension continued into the Early Miocene in areas such as the Raft River, Albion, Ruby, and Snake Range metamorphic core complexes. Youthful topography and recent faulting have been taken as indicating that faulting leading to present physiography is commonly younger than [approximately]10 Ma. New apatite fission track cooling age and track length data, supplemented by other information, point to the Early to Middle Miocene as an additional time of very significant extension-induced uplift and range formation. Many ranges in a 700-km-long north-south corridor from the Utah-Nevada-Idaho border to southernmost Nevada experience extension and major exhumation in Early to Middle Miocene time. Whether extension of Early to Middle Miocene age is restricted to this corridor or is more widespread is unclear due to the paucity of similar data to the east and west. Reconnaissance apatite ages from the Toiyabe Range and environs (NV) are [approximately]15 Ma and geologic data indicate Early to Middle Miocene extension at Yerington NV (Proffet and Dillis, 1984). Thus, it appears from the available data that the Early to Middle Miocene was an important, and previously little recognized, period of major extension over broad areas of the northern Basin and Range.

  17. New insights into lithology and hydrogeology of the northern Newark Rift Basin

    NASA Astrophysics Data System (ADS)

    Zakharova, N. V.; Goldberg, D. S.; Olsen, P. E.; Kent, D. V.; Morgan, S.; Yang, Q.; Stute, M.; Matter, J. M.

    2016-06-01

    The marginal facies of the Triassic rift basins in the eastern United States are poorly documented, particularly on the hinge or hanging wall margins. This study presents a lithological description and multiscale petrophysical analysis of basement rocks, overlying marginal facies of the early synrift strata, and the basal contact of the Palisade Sill that were drilled and cored in the northeastern part of the Newark Basin, near its terminus. The expression of the Stockton Formation differs from that in the central basin in having thinner layers, with uncertain temporal relationship to the type area. The bottom 50 m is lithologically distinct with brick-red to dark-purple mudstones and sandstones, abundant gypsum-filled fractures, and a thin zone with anomalously high uranium concentration, not associated with organic-rich mudstones as other occurrences in the basin. The crystalline basement is apparently Fordham gneiss, overlain by a thin sandstone layer and a dark-purple hydrophilic mudstone. Despite the abundance of coarse-grained strata and multiple sets of tectonic fractures, hydraulically transmissive zones are sparse, and do not uniquely correlate to fracture and/or matrix characteristics. Enhanced transmissivity may exist along intrusion boundaries due to enhanced thermal fracturing, but more hydraulic data are needed to verify it. Comparison of petrophysical data in two boreholes ˜210 m apart shows no direct correlation of individual lithological units and their hydraulic properties, although the overall formation characteristics are similar. The results highlight challenges for outcrop correlation at the marginal edges of the rift basins and estimating reservoir properties of these heterogeneous formations.

  18. Crustal structure of the Boreas Basin formed at ultraslow spreading Knipovich Ridge - Northern North Atlantic

    NASA Astrophysics Data System (ADS)

    Hermann, T.; Jokat, W.

    2012-04-01

    The Boreas Basin is located in Norwegian Greenland Sea bordered by the Greenland Fracture Zone in the south and the Hovgard Ridge in the north, respectively. In the east it adjoins the ultraslow mid-ocean Knipovich Ridge. Previous seismic reflection studies in the Boreas Basin have shown that the basement topography has a roughness, which is typical for ultraslow spreading ridges. This observation supports assumptions that the basin was formed at ultraslow spreading rates during its entire geological history. However, the detailed crustal structure remained unresolved. In summer 2009 new seismic refraction data were acquired in the Boreas Basin during the expedition ARK-XXIV/3 with the research vessel Polarstern. The deep seismic sounding line has a length of 340 km. Forward modelling of the data of 18 ocean bottom seismometers deployed along the NW-SE trending profile reveal an unusual 3.2 km thin oceanic crust. The crustal model is further constrained by S-wave and 2D gravity modelling. The P-wave velocity model shows a layered oceanic crust without oceanic layer 3 and with velocities less than 6.3 km/s except beneath a nearly 2000 m high seamount. Beneath the seamount velocities of up to 6.7 km/s were observed. The mantle velocities range between 7.5 km/s in the uppermost mantle and 8.0 km/s in almost 15 km depth. A serpentinisation of approximately 13% in the uppermost mantle decreasing downwards can explain the low mantle velocities. In summary, the transect confirms earlier models that the entire Boreas Basin was formed at ultraslow spreading rates. Indications for this are the basement roughness and the overall thin oceanic crust. Both observations are typical for ultraslow spreading systems.

  19. What drives basin scale spatial variability of snowpack properties in northern Colorado?

    NASA Astrophysics Data System (ADS)

    Sexstone, G. A.; Fassnacht, S. R.

    2014-03-01

    This study uses a combination of field measurements and Natural Resource Conservation Service (NRCS) operational snow data to understand the drivers of snow density and snow water equivalent (SWE) variability at the basin scale (100s to 1000s km2). Historic snow course snowpack density observations were analyzed within a multiple linear regression snow density model to estimate SWE directly from snow depth measurements. Snow surveys were completed on or about 1 April 2011 and 2012 and combined with NRCS operational measurements to investigate the spatial variability of SWE near peak snow accumulation. Bivariate relations and multiple linear regression models were developed to understand the relation of snow density and SWE with terrain variables (derived using a geographic information system (GIS)). Snow density variability was best explained by day of year, snow depth, UTM Easting, and elevation. Calculation of SWE directly from snow depth measurement using the snow density model has strong statistical performance, and model validation suggests the model is transferable to independent data within the bounds of the original data set. This pathway of estimating SWE directly from snow depth measurement is useful when evaluating snowpack properties at the basin scale, where many time-consuming measurements of SWE are often not feasible. A comparison with a previously developed snow density model shows that calibrating a snow density model to a specific basin can provide improvement of SWE estimation at this scale, and should be considered for future basin scale analyses. During both water year (WY) 2011 and 2012, elevation and location (UTM Easting and/or UTM Northing) were the most important SWE model variables, suggesting that orographic precipitation and storm track patterns are likely driving basin scale SWE variability. Terrain curvature was also shown to be an important variable, but to a lesser extent at the scale of interest.

  20. Interaction between regional and local tectonic forcing along a complex Quaternary extensional basin: Upper Tiber Valley, Northern Apennines, Italy

    NASA Astrophysics Data System (ADS)

    Pucci, S.; Mirabella, F.; Pazzaglia, F.; Barchi, M. R.; Melelli, L.; Tuccimei, P.; Soligo, M.; Saccucci, L.

    2014-10-01

    In extending areas undergoing regional tectonic uplift, the persistence of subsidence at a normal-fault hanging-wall depends on the competition between regional and local tectonic effects. When regional uplift exceeds the subsidence of the hanging-wall block, denudation prevails at both the hanging-wall and the foot-wall. When local tectonic subsidence exceeds regional uplift, sedimentation occurs over the hanging-wall block, supplied by foot-wall erosion. We analyzed a Pliocene-Quaternary continental basin, currently crossed by the Tiber River in Italy. The tectono-sedimentary evolution of the basin developed at the hanging-wall of a regional low-angle extensional detachment, the Alto Tiberina Fault, in the axial region of the Northern Apennines of Italy. This area is affected by regional uplift on the order of 0.5-1.0 mm/yr. The present-day activity of the fault is revealed by both microseismicity and geodetic (GPS) data. We investigated the mid- (10-100 ka) and long-term (0.5-3.0 Ma) evolution of the three depocenters by studying the continental Pleistocene succession infilling the basin as well as fluvial terraces and higher paleosurfaces carved into the Pleistocene deposits. By using surficial geologic data and an interpretation of a set of seismic reflection profiles, we show that the three depocenters experienced a fairly similar evolution during the Pliocene-Early Pleistocene, when a 1000-m-thick continental succession was deposited. On the contrary, geomorphological observations indicate that, at the beginning of the Middle Pleistocene, a switch occurred in the evolution of the three depocenters. In the northernmost Sansepolcro sub-basin, bounding normal faults are active and hanging-wall subsidence outpaces regional uplift. Concurrently, in the Umbertide and Ponte Pattoli sub-basins uplift dominates over the hanging-wall subsidence, promoting river incision and exhumation of the Pleistocene deposits. For these two depocenters, by means of terrace

  1. Multi-azimuth 3D Seismic Exploration and Processing in the Jeju Basin, the Northern East China Sea

    NASA Astrophysics Data System (ADS)

    Yoon, Youngho; Kang, Moohee; Kim, Jin-Ho; Kim, Kyong-O.

    2015-04-01

    Multi-azimuth(MAZ) 3D seismic exploration is one of the most advanced seismic survey methods to improve illumination and multiple attenuation for better image of the subsurface structures. 3D multi-channel seismic data were collected in two phases during 2012, 2013, and 2014 in Jeju Basin, the northern part of the East China Sea Basin where several oil and gas fields were discovered. Phase 1 data were acquired at 135° and 315° azimuths in 2012 and 2013 comprised a full 3D marine seismic coverage of 160 km2. In 2014, phase 2 data were acquired at the azimuths 45° and 225°, perpendicular to those of phase 1. These two datasets were processed through the same processing workflow prior to velocity analysis and merged to one MAZ dataset. We performed velocity analysis on the MAZ dataset as well as two phases data individually and then stacked these three datasets separately. We were able to pick more accurate velocities in the MAZ dataset compare to phase 1 and 2 data while velocity picking. Consequently, the MAZ seismic volume provide us better resolution and improved images since different shooting directions illuminate different parts of the structures and stratigraphic features.

  2. Enigmatic uppermost Permian-lowermost Triassic stratigraphic relations in the northern Bighorn basin of Wyoming and Montana

    SciTech Connect

    Paull, R.A.; Paull, R.K. )

    1991-06-01

    Eighteen measured sections in the northern Bighorn basin of Wyoming and Montana provide the basis for an analysis of Permian-Triassic stratigraphic relations. This boundary is well defined to the south where gray calcareous siltstones of the Lower Triassic Dinwoody disconformably overlie the Upper Permian Ervay Member of the Park City Formation with little physical evidence of a significant hiatus. The Dinwoody is gradationally overlain by red beds of the Red Peak Formation. The Dinwoody this to zero near the state line. Northward, the erathem boundary is enigmatic because fossils are absent and there is no evidence of an unconformity. Poor and discontinuous exposures contribute to the problem. Up to 20 m of Permian or Triassic rocks or both overlie the Pennsylvanian Tensleep Sandstone in the westernmost surface exposures on the eastern flank of the Bighorn basin with physical evidence of an unconformity. East of the exposed Tensleep, Ervay-like carbonates are overlain by about 15 m of Dinwoody-like siltstones interbedded with red beds and thin dolomitic limestone. In both areas, they are overlain by the Red Peak Formation. Thin carbonates within the Dinwoody are silty, coarse algal laminates with associated peloidal micrite. Carbonates north of the Dinwoody termination and above probably Ervay are peloidal algal laminates with fenestral fabric and sparse coated shell fragments with pisoids. These rocks may be Dinwoody equivalents or they may be of younger Permian age than the Ervay. Regardless, revision of stratigraphic nomenclature in this area may bed required.

  3. The importance of diverse data types to calibrate a watershed model of the Trout Lake Basin, Northern Wisconsin, USA

    NASA Astrophysics Data System (ADS)

    Hunt, Randall J.; Feinstein, Daniel T.; Pint, Christine D.; Anderson, Mary P.

    2006-04-01

    As part of the USGS Water, Energy, and Biogeochemical Budgets project and the NSF Long-Term Ecological Research work, a parameter estimation code was used to calibrate a deterministic groundwater flow model of the Trout Lake Basin in northern Wisconsin. Observations included traditional calibration targets (head, lake stage, and baseflow observations) as well as unconventional targets such as groundwater flows to and from lakes, depth of a lake water plume, and time of travel. The unconventional data types were important for parameter estimation convergence and allowed the development of a more detailed parameterization capable of resolving model objectives with well-constrained parameter values. Independent estimates of groundwater inflow to lakes were most important for constraining lakebed leakance and the depth of the lake water plume was important for determining hydraulic conductivity and conceptual aquifer layering. The most important target overall, however, was a conventional regional baseflow target that led to correct distribution of flow between sub-basins and the regional system during model calibration. The use of an automated parameter estimation code: (1) facilitated the calibration process by providing a quantitative assessment of the model's ability to match disparate observed data types; and (2) allowed assessment of the influence of observed targets on the calibration process. The model calibration required the use of a 'universal' parameter estimation code in order to include all types of observations in the objective function. The methods described in this paper help address issues of watershed complexity and non-uniqueness common to deterministic watershed models.

  4. Flood-tracking chart for the Withlacoochee and Little River Basins in south-central Georgia and northern Florida

    USGS Publications Warehouse

    Gotvald, Anthony J.; McCallum, Brian E.; Painter, Jaime A.

    2014-01-01

    The U.S. Geological Survey (USGS), in cooperation with other Federal, State, and local agencies, operates a flood-monitoring system in the Withlacoochee and Little River Basins. This system is a network of automated river stage stations (ten are shown on page 2 of this publication) that transmit stage data through satellite telemetry to the USGS in Atlanta, Georgia and the National Weather Service (NWS) in Peachtree City, Georgia. During floods, the public and emergency response agencies use this information to make decisions about road closures, evacuations, and other public safety issues. This Withlacoochee and Little River Basins flood-tracking chart can be used by local citizens and emergency response personnel to record the latest river stage and predicted flood-crest information along the Withlacoochee River, Little River, and Okapilco Creek in south-central Georgia and northern Florida. By comparing the current stage (water-surface level above a datum) and predicted flood crest to the recorded peak stages of previous floods, emergency response personnel and residents can make informed decisions concerning the threat to life and property.

  5. High-resolution shallow reflection seismic image and surface evidence of the Upper Tiber Basin active faults (Northern Apennines, Italy)

    USGS Publications Warehouse

    Donne, D.D.; Plccardi, L.; Odum, J.K.; Stephenson, W.J.; Williams, R.A.

    2007-01-01

    Shallow seismic reflection prospecting has been carried out in order to investigate the faults that bound to the southwest and northeast the Quaternary Upper Tiber Basin (Northern Apennines, Italy). On the northeastern margin of the basin a ??? 1 km long reflection seismic profile images a fault segment and the associated up to 100 meters thick sediment wedge. Across the southwestern margin a 0.5 km-long seismic profile images a 50-55??-dipping extensional fault, that projects to the scarp at the base of the range-front, and against which a 100 m thick syn-tectonic sediment wedge has formed. The integration of surface and sub-surface data allows to estimate at least 190 meters of vertical displacement along the fault and a slip rate around 0.25 m/kyr. Southwestern fault might also be interpreted as the main splay structure of regional Alto Tiberina extensional fault. At last, the 1917 Monterchi earthquake (Imax=X, Boschi et alii, 2000) is correlable with an activation of the southwestern fault, and thus suggesting the seismogenic character of this latter.

  6. A Systematic Regional Trend in Helium Isotopes Across the NorthernBasin and Range Province, Western North America

    SciTech Connect

    Kennedy, B. Mack; van Soest, Matthijs C.

    2005-03-22

    An extensive study of helium isotopes in fluids collectedfrom surface springs, fumaroles and wells across the northern Basin andRange Province reveals a systematic trend of decreasing 3He/4He ratiosfrom west to east. The western margin of the Basin and Range ischaracterized by mantle-like ratios (6-8 Ra) associated with active orrecently active crustal magma systems (e.g. Coso, Long Valley, Steamboat,and the Cascade volcanic complex). Moving towards the east, the ratiosdecline systematically to a background value of ~;0.1 Ra. The regionaltrend is consistent with extensive mantle melting concentrated along thewestern margin and is coincident with an east-to-west increase in themagnitude of northwest strain. The increase in shear strain enhancescrustal permeability resulting in high vertical fluid flow rates thatpreserve the high helium isotope ratios at the surface. Superimposed onthe regional trend are "helium spikes", local anomalies in the heliumisotope composition. These "spikes" reflect either local zones of mantlemelting or locally enhanced crustal permeability. In the case of theDixie Valley hydrothermal system, it appears to be a combination ofboth.

  7. Spatial assessment and source identification of trace metal pollution in stream sediments of Oued El Maadene basin, northern Tunisia.

    PubMed

    Ayari, J; Agnan, Y; Charef, A

    2016-07-01

    An extensive spatial survey was conducted on trace metal content in stream sediments from Oued El Maadene basin, northern Tunisia. Our objectives were to evaluate the level of trace metal pollution and associated ecological risk and identify the major sources of metal pollution. A total of 116 stream sediment samples were collected and analysed for total As, Cd, Cr, Cu, Ni, Pb, V, Zn, and Zr concentrations. The results showed that concentrations of Cr, Ni, V, and Zr were close to natural levels. In contrast, As, Cd, Cu, Pb, and Zn had elevated concentrations and enrichment factors compared to other contaminated regions in northern Tunisia. Ecological risk to aquatic ecosystems was highlighted in most areas. Principal component analysis showed that Cr, Ni, V, and Zr mainly derived from local soil and bedrock weathering, whilst As, Cd, Pb, and Zn originated from mining wastes. Trace metals could be dispersed downstream of tailings, possibly due to surface runoff during the short rainy season. Surprisingly, Cu, and to a lesser extent As, originated from agricultural activities, related to application of Cu-based fungicides in former vineyards and orchards. This study showed that, despite the complete cessation of mining activities several decades ago, metal pollution still impacts the local environment. This large pollution, however, did not mask other additional sources, such as local agricultural applications of fungicides. PMID:27270485

  8. Technique for the long-term projections of water balance components for northern river basins of Russia

    NASA Astrophysics Data System (ADS)

    Gusev, Yeugeniy; Nasonova, Olga

    2014-05-01

    The goal of the present work is a development of a technique for a long-term projection of changes in water resources of northern rivers of Russia caused by climate change. The technique is based on the land surface model SWAP and information on the land surface parameters taken from global data sets. SWAP is a physically-based model. A good accuracy of simulating different characteristics of the water and energy regimes under different conditions and on different spatial scales was confirmed by numerous validation of the model against measured data. As a result, it was concluded that SWAP can be a good tool for simulation of water balance components for various river basins both for the current climatic conditions and for the future ones. The northern river basins of Russia are covered with a sparse network of meteorological stations and poorly provided with land surface parameters. The latter was overcome by application of global data sets on land surface characteristics. Evidently, that direct application of such information leads to a low accuracy of model simulations. To improve the quality of river runoff modeling the main land surface parameters were calibrated using the SCE-UA algorithm and river runoff measurements. Optimization of model parameters has significantly improved the agreement between measured and simulated streamflow of northern rivers. The Nash-Satcliffe efficiency for the modeled daily streamflow varied from 0.70 to 0.85 and the absolute bias values reached 1-10 %. That allowed us to use the SWAP model for hydrological projections. In order to make sure that the land surface parameters, obtained for the modern period, remain valid in projection periods, the following investigation was carried out. For the Northern Dvina River, model transposability in time under contracted climate conditions was analyzed. In so doing, model calibration and validation was performed for contrasted climatic conditions in terms of temperature and precipitation

  9. Age and tectonic significance of volcanic rocks in the northern Los Angeles Basin, California

    USGS Publications Warehouse

    McCulloh, Thane H.; Fleck, Robert J.; Denison, Rodger E.; Beyer, Larry A.; Stanley, Richard G.

    2002-01-01

    Volcanic rocks, mostly basalts and some andesites, are interbedded with middle Miocene strata and are overlain by younger rocks throughout the greater part of the Los Angeles Basin, California. Roughly correlative flows, previously dated radiometrically (or paleontologically) at about 16.4 to 10.7 Ma, crop out in five separate regions around the basin perimeter. Los Angeles Basin volcanic rocks have special meaning because they offer clues to tectonomagmatic events associated with onset of clockwise transrotation of the western Transverse Ranges region and to the timing and locus of the initial basin opening. Whole-rock 40Ar/39Ar dating of near-tholeiitic olivine basalts of the Topanga Formation (Hoots, 1931) from three sites in the easternmost Santa Monica Mountains, combined with 87Sr/86Sr dating of fossil carbonates from interstratified marine beds at nine sites, establish a new age of 17.4 Ma for these oldest known Topanga-age volcanics of the Los Angeles Basin. We also record three new 40Ar/39Ar ages (15.3 Ma) from andesitic flows of the lower Glendora Volcanics at the northeast edge of the basin, 70 km east of the Santa Monica Mountains. A whole-rock determination of 17.2±0.5 Ma for nearby altered olivine basalt in the unfossiliferous Glendora volcanic sequence is questionable because of a complex 40Ar/39Ar age spectrum suggestive of 39Ar recoil, but it may indicate an older volcanic unit in this eastern area. We hypothesize that the 17.4-Ma volcanics in the eastern Santa Monica Mountains are an early expression of deep crustal magmatism accompanying the earliest extensional tectonism associated with rifting. The extremely thick younger volcanic pile in the western and central parts of the range may suggest that this early igneous activity in the eastern area was premonitory. Paleomagnetic declination data are needed to determine the pre-transrotational orientation of the eastern Santa Monica Mountains volcanic sequence. The new age determinations do not

  10. Geohydrologic feasibility study of the Northern and Central Appalachian basin areas for the potential application of a production process patented by Jack W. McIntyre

    SciTech Connect

    Kvasnicka, D.

    1994-03-01

    Geraghty & Miller, Inc. of Midland, Texas conducted geologic and hydrologic feasibility studies of the potential applicability of a patented (US Patent Office No. 4,766,957) process developed by Jack W. McIntyre for the recovery of natural gas from coalbed/sand formations in the Northern and Central Appalachian basin areas. General research, based on a review of published literature from both public and private sources, indicates that the generally thin, but numerous coalbeds found in the greater Appalachian Basin area do exhibit some potential for the application of this patented process. Estimates of total gas reserves in-place (Gas Research Institute, July 1991) for coalbeds in the Central and Northern Appalachian Basin areas are 5 trillion cubic feet (TCF) and 61 TCF respectively. Produced waters associated with coal deposits in the greater Appalachian Basin area can be characterized on the basis of established but limited production of coalbed methane. Central Appalachian coals generally produce small quantities of water (less than 50 barrels of water per day for the average producing well) which is high in total dissolved solids (TDS), greater than 30,000 parts per million (ppM). The chemical quality of water produced from these coal seams represents a significant disposal challenge to the operators of methane-producing wells in the Central Appalachian Basin. By contrast, water associated with the production of coalbed methane in the Northern Appalachian Basin is generally fair to good quality, and daily production volumes are low. However, the relatively slow desorption of methane gas from Northern Appalachian coals may result in a greater net volume of produced water over the economic life of the well. The well operator must respond to long-term disposal needs.

  11. The tectonic evolution of the Transbrasiliano Lineament in northern Paraná Basin, Brazil, as inferred from aeromagnetic data

    NASA Astrophysics Data System (ADS)

    Curto, Julia B.; Vidotti, Roberta M.; Fuck, Reinhardt A.; Blakely, Richard J.; Alvarenga, Carlos J. S.; Dantas, Elton L.

    2014-03-01

    Data from six airborne magnetic surveys were compiled and analyzed to develop a structural interpretation for the Transbrasiliano Lineament in northern Paraná Basin, Brazil. Magnetic lineaments, interpreted to reflect geologic contacts and structures at different depths, were illuminated using the matched-filter technique applied to aeromagnetic anomalies. Field-based structural measurements generally support our magnetic analysis. We estimated three primary magnetic zones: (i) a zone of deep magnetic sources at 20 km depth, (ii) an intermediate basement zone at 6 km depth, and (iii) a shallow zone of near-surface geological features at 1.5 km depth. The deepest zone exhibits three major NE trending crustal discontinuities related to the Transbrasiliano Lineament, dividing the region into four geotectonic blocks. Anomalies associated with the intermediate zone indicate directional divergence of subsidiary structures away from the main Transbrasiliano Fault, which strikes N30°E. The shallow magnetic zone includes near-surface post-Brasiliano orogenic granites. Our analysis identified NE trending sigmoidal lineaments around these intrusions, indicating intense zones of deformation associated with probable shear structures. At the shallow depth zone, magnetic anomalies caused by Cretaceous alkaline intrusive bodies and basalts of the Serra Geral Formation are enhanced by the matched-filter method. These igneous bodies are related to extensional NW striking lineaments and seismicity aligned along these lineaments suggests that they currently are reactivated. Prior to flexural subsidence of the Paraná Basin, reactivation processes along transcurrent elements of the Transbrasiliano Lineament promoted extensional processes and formed initial Paraná Basin depocenters. Cretaceous and more recent sedimentation also correlate with reactivations of NE striking structures.

  12. Subsurface images of the northern Newark basin, New York, USA and their implications for carbon sequestration

    NASA Astrophysics Data System (ADS)

    Olsen, P. E.; Withjack, M. O.; Schlische, R. W.; Goldberg, D.; Kent, D. V.; Tamulonis, K.; Couëslan, M.; Collins, D. J.

    2011-12-01

    The Triassic-Jurassic Newark rift, a large onshore sedimentary basin close to northeast US metropolitan areas, may have potential for safe geological storage of CO2 in a suitably deep formation overlain by appropriate confining units. Filled with continental synrift sedimentary rocks and CAMP (Central Atlantic Magmatic Province) basaltic intrusions and flows, the basin is bounded on the NW by the NE-striking, SE-dipping Ramapo fault. Funded by the Department of Energy's (DOE) National Energy Technology Laboratory's (NETL) Carbon Sequestration Program's portion of the American Recovery and Reinvestment Act of 2009 (ARRA) and NYSERDA, the TriCarb Consortium for Carbon Sequestration acquired two seismic-reflection profiles in Rockland County, NY that were processed to obtain depth-migrated images of the basin's subsurface geometry. The E-trending dip profile crosses most of the basin, while the shorter N-trending profile provides a strike-view. Five seismic facies are present: (1) shallow continuous, closely spaced, W-dipping reflections suggestive of lacustrine deposits; (2) short, non-coherent reflections suggestive of conglomeritic fluvial strata; (3) high-amplitude parallel reflections, locally exhibiting reverse separation, suggestive of prerift early Paleozoic strata Cambro-Ordovician carbonates; (4) a facies at the bottom of both lines and the western end of the ESE-trending line that lacks reflections, suggestive of prerift metamorphic rocks such as Precambrian gneiss, and/or highly deformed Taconic (Ordovician) phyllites; and (5) a seismically transparent band commonly bounded by high-amplitude reflections that cuts across the stratigraphy of facies 1-3, suggestive of a scoop-shaped intrusive diabase sheet that projects to the surface to outcrops of the CAMP-related Palisade sill. Basin geometry is well-imaged conforming to a deeply eroded half graben. Reflections of facies 3 are truncated by facies 2 marking the angular pre-rift unconformity. Distinct

  13. Paleoceanographic changes and glacial history of the Powell Basin, northern Weddell Sea

    NASA Astrophysics Data System (ADS)

    Yoo, Kyu-Cheul; Yoon, Ho Il; Lee, Jae Il; Lee, Yong Il; Kim, Kitae; Lee, Min Kyung; Park, Young-Suk

    2015-04-01

    Sedimentological, geochemical, and paleontological profiles were measured at three sediment gravity cores (GC01-PW02, 813 cm; GC03-PW2, 784 cm; GC04-G03, 592 cm) obtained from the Powell Basin (West Antarctica). These results show late Quaternary glacio-depositional environment and we present glacial and paleoceanographic changes in the basin. AMS 14C age dating of planktonic foraminfera Neogloboquadrina pachyderma (sinistral) has been used for chronology of core GC01-PW02 and the chronology of other cores was inferred from the relative comparison of stratigraphy. In particular, no existence of LOD (last occurrence of diatom) Hemidiscus karstenii over all cores' sediments indicates at least the maximum core bottom age within MIS 6. The study area provides an excellent depositional setting for undisturbed, well-defined sediment records with no turbidites, suggesting that turbidity current pathways do not affect the study area. All sedimentological, geochemical and paleontological proxies reflect a clear alternating pattern according to paleoclimatic change.

  14. Depositional architecture and provenance of two Miocene submarine fans, northern Shikoku Basin, from IODP Expedition 322 results

    NASA Astrophysics Data System (ADS)

    Pickering, K. T.; Underwood, M.; Saito, S.; Kutterolf, S.; Scudder, R. P.; Naruse, H.; Moore, G. F.; Park, J.; Slagle, A. L.; Tudge, J.; IODP Expedition 322 Scientists

    2011-12-01

    Seismo-stratigraphy, lithology and logging while drilling (LWD) show that two distinct and contrasting mid to late Miocene submarine fans accumulated in the Shikoku Basin, northern Philippine Sea plate, here designated the Kii Fan (~12.2 - 14 Ma), and the Zenisu Fan (~7.6 - 9.4 Ma). Their age ranges coincide with the two inferred major glacio-eustatically driven falls in sea level inferred from the Zachos et al. (2008) oxygen-isotope curve. Any purely glacio-eustatic response to explain deposition in the Shikoku basin, however, must reconcile the package of sandy turbidites at Site 1177 (Ashizuri transect), during the time when only hemipelagic deposits accumulated at the Exp322 sites. The Kii and Zenisu fans show different sediment provenance. Seismic interpretation of the transect that includes IODP sites C0011 and C0012, suggests that the older fan (Unit IV - Kii submarine fan) is characterized by a more sheet-like geometry typical of depositional lobes. It likely represents more distal fan deposition at Exp322 sites, with petrographic data suggesting that it was supplied by sediment gravity flows fed from north as a Honshu/Shikoku source, including sediment derived from the Sambagawa metamorphic belt - estimated at a distance of ~350 km based on known plate motions. In contrast, the younger fan (Unit II - Zenisu submarine fan) is characterized by common channel elements, likely recording more proximal middle-fan deposition at Exp322 sites. Geochemical and petrographic data from pumice fragments, however, suggest a significant provenance not from the more proximal Izu-Bonin island arc, but a source to the north in the Honshu Arc. The Zenisu Fan, therefore, likely had a mixed provenance, both from the Honshu and Izu-Bonin arcs. In the absence of a high-resolution multichannel seismic grid from this area, the channels observed in Line 95 from IFREE mini-3D seismic survey (Park et al. 2008) could be either relatively straight channels coming from the Izu-Bonin arc

  15. Carbonate and lignite cycles in the Ptolemais Basin: Orbital control and suborbital variability (Late Neogene, northern Greece)

    NASA Astrophysics Data System (ADS)

    Weber, M. E.; Tougiannidis, N.; Ricken, W.; Rolf, C.; Kleineder, M.; Bertram, N.; Antoniadis, P.

    2009-04-01

    We recently commenced a project to investigate deep drillings as well as outcrops in the Ptolemais Basin, northern Greece, for paleoenvironmental and paleoclimate change. Specific attention is paid to mining sites Achlada, Vevi, Vegora, Amynteon, North Field, South Field, and Lava. The sediment archive comprises Upper Miocene to Quaternary continental lake deposits (up to 800 m thick) with an extended Lower Pliocene section. The Upper Miocene sections are composed of diatomaceous mud and gray marls. Pliocene lake sediments commence with the Kyrio member (lignite/grey marl), followed by the Theodoxus member (beige marl/lignite), and the Notio member (marl with intercalated sand /lignite). The limnic deposits show striking rhythmic bedding of (mostly) carbonates and lignites, reflecting orbital-induced humidity and temperature changes in this small NW-SE elongated continental basin. First, we retrieved chronometric information by determining magnetic polarity changes on three sites as independent stratigraphic ground-truth in combination with palynological evidence and published data. Then we conducted a number of high-resolution (1 - 6 cm increment), non-destructive measurements to obtain paleoclimate proxies: photospectrometry (colors L, a, b), magnetic susceptibility, and natural gamma. Accordingly, we achieved a multi-proxy insight into paleoclimate and paleoenvironmental evolution at unprecedented temporal resolution (up to a few decades!) over long time series and at a number of key sites. Using the newly-developed ESALab software, we conducted spectral and evolutionary spectral analysis to evaluate the cyclo-stratigraphic development. As for orbital variability, spectral power is concentrated on precession, hemi-precession, and eccentricity, with only minor impact of orbital tilt. We used this information to increase the temporal resolution of our age models by tuning as many precession (insolation) maxima as possible to carbonate minima (lignite maxima

  16. Timing of Cenozoic volcanism and Basin and Range extension in northwestern Nevada: New constraints from the northern Pine Forest Range

    USGS Publications Warehouse

    Colgan, J.P.; Dumitru, T.A.; McWilliams, M.; Miller, E.L.

    2006-01-01

    Eocene-middle Miocene volcanic rocks in the northern Pine Forest Range, Nevada, are ideally situated for reconstructing the timing and style of volcanism and extensional faulting in the northwesternmost part of the Basin and Range province. A conformable sequence of Cenozoic volcanic and sedimentary strata in the northern Pine Forest Range dips ???30??W, and 11 new 40Ar/39Ar ages from this sequence define 3 major episodes of volcanic activity. Pre-Tertiary basement and older (ca. 38 Ma) Tertiary intrusive rocks are overlain unconformably by Oligocene (ca. 30-23 Ma) basalt flows and dacitic to rhyolitic ash-flow tuffs interbedded with fine-grained tuffaceous sedimentary rocks. Oligocene rocks are overlain by ???550 m of ca. 17-16 Ma basalt flows equivalent to the Steens Basalt in southern Oregon, and basalt flows are capped by a thin 16.3 Ma ignimbrite that likely is correlative with either the Idaho Canyon Tuff or the Tuff of Oregon Canyon. The northern Pine Forest Range is bounded to the east by a major down-to-the-east normal fault that dips ???40??E with well-developed fault striations indicative of dip-slip motion. This fault initiated at an angle of ???70?? and was rotated ???30?? during uplift of the range. A suite of 17 apatite fission-track ages from the Pine Forest footwall block demonstrates that exhumation, uplift, and slip on the range-bounding fault began ca. 12-11 Ma and continued until at least 7 Ma, with moderate slip since then. The Pine Forest Range did not undergo significant extension before or during peak Oligocene and Miocene volcanism, and similar geologic relationships in nearby ranges suggest that a larger region of northwestern Nevada was also little extended during this interval. Basin and Range faulting in northwestern Nevada appears to have begun no earlier than 12 Ma, making it distinctly younger than deformation in much of central and southern Nevada, where peak extension occurred in the middle Miocene or earlier. ?? 2006 Geological

  17. Heavy Metal Accumulation by Periphyton Is Related to Eutrophication in the Hai River Basin, Northern China

    PubMed Central

    Tang, Wenzhong; Cui, Jingguo; Shan, Baoqing; Wang, Chao; Zhang, Wenqiang

    2014-01-01

    The Hai River Basin (HRB) is one of the most polluted river basins in China. The basin suffers from various types of pollutants including heavy metals and nutrients due to a high population density and rapid economic development in this area. We assessed the relationship between heavy metal accumulation by periphyton playing an important role in fluvial food webs and eutrophication in the HRB. The concentrations of the unicellular diatoms (type A), filamentous algae with diatoms (type B), and filamentous algae (type C) varied along the river, with type A dominating upstream, and types B then C increasing in concentration further downstream, and this was consistent with changes in the trophic status of the river. The mean heavy metal concentrations in the type A, B and C organisms were Cr: 18, 18 and 24 mg/kg, respectively, Ni: 9.2, 10 and 12 mg/kg, respectively, Cu: 8.4, 19 and 29 mg/kg, respectively, and Pb: 11, 9.8 and 7.1 mg/kg respectively. The bioconcentration factors showed that the abilities of the organisms to accumulate Cr, Ni and Pb decreased in the order type A, type B, then type C, but their abilities to accumulate Cu increased in that order. The Ni concentration was a good predictor of Cr, Cu and Pb accumulation by all three periphyton types. Our study shows that heavy metal accumulation by periphyton is associated with eutrophication in the rivers in the HRB. PMID:24482681

  18. Hydrogeochemical studies of historical mining areas in the Humboldt River basin and adjacent areas, northern Nevada

    USGS Publications Warehouse

    Nash, J. Thomas

    2005-01-01

    The study area comprises the Humboldt River Basin and adjacent areas, with emphasis on mining areas relatively close to the Humboldt River. The basin comprises about 16,840 mi2 or 10,800,000 acres. The mineral resources of the Humboldt Basin have been investigated by many scientists over the past 100 years, but only recently has our knowledge of regional geology and mine geology been applied to the understanding and evaluation of mining effects on water and environmental quality. The investigations reported here apply some of the techniques and perspectives developed in the Abandoned Mine Lands Initiative (AMLI) of the U.S. Geological Survey (USGS), a program of integrated geological-hydrological-biological-chemical studies underway in the Upper Animas River watershed in Colorado and the Boulder River watershed in, Montana. The goal of my studies of sites and districts is to determine the character of mining-related contamination that is actively or potentially a threat to water quality and to estimate the potential for natural attenuation of that contamination. These geology-based studies and recommendations differ in matters of emphasis and data collection from the biology-based assessments that are the cornerstone of environmental regulations.

  19. Water resources: the prerequisite for ecological restoration of rivers in the Hai River Basin, northern China.

    PubMed

    Tang, Wenzhong; Mao, Zhanpo; Zhang, Hong; Shan, Baoqing; Zhao, Yu; Ding, Yuekui

    2015-01-01

    The competition for water resources between humans and river ecosystems is becoming ever more intense worldwide, especially in developing countries. In China, with rapid socioeconomic development, water resources to maintain river ecosystems are progressively decreasing, especially in the Hai River Basin (HRB), which has attracted much attention from the Chinese government. In the past 56 years, water resources have continuously decreased in the basin, such that there is 54.2 % less surface water now compared with then. Water shortages, mainly due to local anthropogenic activities, have emerged as the main limiting factor to river ecological restoration in the HRB. However, the South-to-North Water Diversion Project, the largest such project in the world, presents a good opportunity for ecological restoration of rivers in this basin. Water diverted from the Danjiangkou Reservoir will restore surface water resources in the HRB to levels of 30 years ago and will amount to more than 20 billion m(3). Our findings highlight the fact that water resources are crucial for river ecological restoration. PMID:25142344

  20. Oil geochemistry of the northern Llanos Basin, Colombia. A model for migration

    SciTech Connect

    Ramon, J.C.; Dzou, L.

    1996-12-31

    The chemical composition of 23 crude oils and one oil seep from Llanos Basin, Colombia were studied in detail by geochemical methods in order to understand their genetic relationship. A filling history model is proposed to explain the observed composition variations in Llanos Basin oils. Geochemical fingerprinting indicates that there are six families of crude oils. The biomarker compositions have been used to identify characteristics of the source rocks. The Llanos oils contain marine algal- derived {open_quotes}C30 steranes{close_quotes} (i.e., 24-n-propylcholestanes), which are diagnostic for oils generated from marine Cretaceous source rocks. A significant HC-contribution from a Tertiary source is also indicated by the presence of high concentration of the {open_quotes}flowering plant{close_quotes}-markers oleanane, bicadinanes and oleanoids. Low DBT/Phen, %sulfur values and high diasteranes concentration indicate that the source rock is clay-rich. Biomarker maturity parameters indicate a wide range of source-rock thermal maturities from early to late oil window. Heavy biodegradation has been particularly common among the first oils to fill reservoirs in central Llanos oil fields. The older altered heavy oils were mixed with a second pulse of oil explaining the wide range of oil gravities measured in the central Llanos Basin.

  1. Oil geochemistry of the northern Llanos Basin, Colombia. A model for migration

    SciTech Connect

    Ramon, J.C. ); Dzou, L. )

    1996-01-01

    The chemical composition of 23 crude oils and one oil seep from Llanos Basin, Colombia were studied in detail by geochemical methods in order to understand their genetic relationship. A filling history model is proposed to explain the observed composition variations in Llanos Basin oils. Geochemical fingerprinting indicates that there are six families of crude oils. The biomarker compositions have been used to identify characteristics of the source rocks. The Llanos oils contain marine algal- derived [open quotes]C30 steranes[close quotes] (i.e., 24-n-propylcholestanes), which are diagnostic for oils generated from marine Cretaceous source rocks. A significant HC-contribution from a Tertiary source is also indicated by the presence of high concentration of the [open quotes]flowering plant[close quotes]-markers oleanane, bicadinanes and oleanoids. Low DBT/Phen, %sulfur values and high diasteranes concentration indicate that the source rock is clay-rich. Biomarker maturity parameters indicate a wide range of source-rock thermal maturities from early to late oil window. Heavy biodegradation has been particularly common among the first oils to fill reservoirs in central Llanos oil fields. The older altered heavy oils were mixed with a second pulse of oil explaining the wide range of oil gravities measured in the central Llanos Basin.

  2. The Evolution of the Hydrogeologic System in the Taipei Basin, Northern Taiwan

    NASA Astrophysics Data System (ADS)

    Lin, M.; Chia, Y.

    2011-12-01

    Taipei basin is the largest metropolitain area in Taiwan, and thus the change of its hydrogeologic system is closely associated with the economic development of the urban area. In this study, we integrated the core data and groundwater level data to construct the hydrogeologic framework of the Taipei basin. Then the long-term elevation data and groundwater data were analyzed to understand the impact of urban development on the hydrogeologic system. By analyzing the long-term change of groundwater level in the Taipei basin, we found two groups of wells with a different range of water level and pattern of water level variation. The first group of wells is relatively shallow. Their hydraulic heads fluctuated between 0 and 5m. Generally the water level is rarely affected by pumping, but sensitive to the rainfall. These wells were placed in sand layers of the Songshan formation. However, the second group of wells, where the hydraulic head ranges from -40m to 0m, is relatively deep. They were installed in the Jingmei formation and Wugu formation. Pumping activities have significantly influenced the change in groundwater level. For these reasons, we proposed two hydrogeologic units in the Taipei basin. One is the Songshan aquifer characterized by interbeded local aquifer and aquitard. The other is the Taipei aquifer which combines the lower Songshan formation, Jingmei formation, and Wugu formation. Extensive pumping from the Taipei aquifer has caused serious land subsidence since the rapid expansion of the urban area in 1950s. The cumulative amount of settlement in the Taipei basin is about 2.2 m by 1983. The subsidence appeared to be inelastic with little recovery. The groundwater level has declined approximately 50 m by 1976. The decline was followed by a rapid recovery in the Taipei aquifer starting from late 1970s. In the past two decades, however, small subsidence ranging from 3~5 cm have been induced by the extensive pumping during the construction of Metro system

  3. Provenance analysis and tectonic setting of the Neoproterozoic sediments within the Taoudeni Basin, Northern Mauritania

    NASA Astrophysics Data System (ADS)

    Nicoll, Graeme; Straathof, Gijs; Tait, Jenny; Lo, Khalidou; Ousmane, N'diaye; El Moctar Dahmada, Mohamed; Berndt, Jasper; Key, Roger

    2010-05-01

    We have dated over 800 detrital zircon grains from the Neoproterozoic sediments within the Taoudeni Basin of Mauritania on the West African craton. This sequence of sediments preserves a relatively condensed mixed continental and marine succession as well as Neoproterozoic glacial and glacially influenced deposits. The underlying Archaean and Birimian basement of the West African craton is exposed on the Reguibat shield in the north, and on the Leo shield in the south although smaller inliers occur scattered along the Bassaride and Mauritanide belts, as well as in the core of the Anti-Atlas belt. The large West African craton is totally surrounded by Pan-African fold belts. Sedimentation within the Taoudeni basin started around 1000Ma and lasted until the end of the Carboniferous. The basin is 1000-1500 km in diameter and the sedimentary pile is on average 3000 m thick. All dated zircons in the stratigraphically lowest Char and Atar Groups are older than ~1800Ma. These groups show a strong input of 2950 and 2075Ma ages, indicating sourcing from the local underlying granitic and gneissic basement. These basal sediments also include a large input from a rare 2475Ma source. Samples from the upper Assebet El Hassiane Group contain numerous zircons of 2000-900Ma. While the Neoproterozoic Marinoan glaciogenic "Triad" Jbeliat Group and stratigraphically above formations show a large range of 3200-595Ma ages. We have also undertaken a detailed Carbon isotope profile study through the carbonates which cap the Glacial Jbeliat Group. The upper part of the Jbeliat cap carbonate displays a distinct and pronounced rise from -4.3 to +3.8 13C, followed by the final demise of carbonate productivity. This positive trend is consistent with the upper part of the globally extensive Ghaub/Nantuo/Marinoan cap carbonate sequences. This world-wide sequence is characterized by composite negative-to-positive trends up section and so this isotope stratigraphy along with the zircon data helps

  4. Assessing tectonic and climatic causal mechanisms in foreland-basin stratal architecture: insights from the Alborz Mountains, northern Iran

    NASA Astrophysics Data System (ADS)

    Ballato, Paolo; Strecker, Manfred

    2015-04-01

    The southern foreland basin of the Alborz Mountains of northern Iran is characterized by an approximately 7.3-km-thick sequence of Miocene sedimentary rocks, constituting three basin-wide coarsening-upward units spanning a period of 106 years. We assess available magnetostratigraphy, paleoclimatic reconstructions, stratal architecture, records of depositional environments, and sediment-provenance data to characterize the relationships between tectonically-generated accommodation space (A) and sediment supply (S). Our analysis allows an inversion of the stratigraphy for particular forcing mechanisms, documenting causal relationships, and providing a basis to decipher the relative contributions of tectonics and climate (inferred changes in precipitation) in controlling sediment supply to the foreland basin. Specifically, A/S > 1, typical of each basal unit (17.5-16.0, 13.8-13.1 and 10.3-9.6 Ma), is associated with sharp facies retrogradation and reflects substantial tectonic subsidence. Within these time intervals, arid climatic conditions, changes in sediment provenance, and accelerated exhumation in the orogen suggest that sediment supply was most likely driven by high uplift rates. Conversely, A/S < 1 (13.8 and 13.8-11 Ma, units 1, and 2) reflects facies progradation during a sharp decline in tectonic subsidence caused by localized intra-basinal uplift. During these time intervals, climate continued to be arid and exhumation active, suggesting that sediment supply was again controlled by tectonics. A/S < 1, at 11-10.3 Ma and 9-6-7.6 Ma (and possibly 6.2; top of units 2 and 3), is also associated with two episodes of extensive progradation, but during wetter phases. The first episode appears to have been linked to a pulse in sediment supply driven by an increase in precipitation. The second episode reflects a balance between a climatically-induced increase in sediment supply and a reduction of subsidence through the incorporation of the proximal foreland into the

  5. Mid-Pleistocene to present stratigraphic responses in a tectonically-driven depositional setting: Eel River Basin, Northern California

    NASA Astrophysics Data System (ADS)

    Burger, Robert Lawrence

    The Eel River Basin of northern California is an actively deforming forearc basin, affected today by Gorda-North America Plate convergence, northward migration of the Mendocino Triple Junction, glacioeustatic sea-level fluctuations that periodically exposed the continental shelf, and high rates of sediment input. A high-resolution multichannel seismic reflection survey of the shelf and upper slope has been conducted as part of the Office of Naval Research STRATAFORM initiative, with the goal of understanding processes affecting sediment dispersal and preservation in this complex continental margin setting. Interpretations of the seismic images indicate that, although tectonism strongly overprints preserved sequence morphologies, glacioeustacy is of primary importance in the distribution and preservation of sediments along this margin. On the shelf, stacked sequences dominated by interpreted highstand marine sediment are separated by prominent ravinement surfaces formed during sea-level transgressions. Folding and faulting locally modify sequence morphologies. At the south end of the seismic grid, localized uplift attributed to Mendocino Triple Junction encroachment overrides the glacioeustatic stacking pattern dominant over the rest of the shelf, inducing shelf incision and preferential preservation of vertically stacked channel-fills. An abrupt shift in shelf sequence morphology ˜500 ka suggests that the triple junction began to affect the southern basin at that time, by decreasing accommodation space marginwide. On the adjacent slope, effects of tectonism and glacioeustacy can also be discerned. In the south, the Humboldt Slide is identified as a long-lived masswasting feature, likely triggered by triple junction-related uplift and associated seismicity ˜450--500 ka. However, a cyclical succession of contrasting lithologies is also apparent in the deformed slide sequences, which I attribute to glacioeustatic cyclicity. To the north, effects of regional

  6. Effects of anthropogenic groundwater exploitation on land surface processes: A case study of the Haihe River Basin, northern China

    NASA Astrophysics Data System (ADS)

    Zou, Jing; Xie, Zhenghui; Zhan, Chesheng; Qin, Peihua; Sun, Qin; Jia, Binghao; Xia, Jun

    2015-05-01

    In this study, we incorporated a groundwater exploitation scheme into the land surface model CLM3.5 to investigate the effects of the anthropogenic exploitation of groundwater on land surface processes in a river basin. Simulations of the Haihe River Basin in northern China were conducted for the years 1965-2000 using the model. A control simulation without exploitation and three exploitation simulations with different water demands derived from socioeconomic data related to the Basin were conducted. The results showed that groundwater exploitation for human activities resulted in increased wetting and cooling effects at the land surface and reduced groundwater storage. A lowering of the groundwater table, increased upper soil moisture, reduced 2 m air temperature, and enhanced latent heat flux were detected by the end of the simulated period, and the changes at the land surface were related linearly to the water demands. To determine the possible responses of the land surface processes in extreme cases (i.e., in which the exploitation process either continued or ceased), additional hypothetical simulations for the coming 200 years with constant climate forcing were conducted, regardless of changes in climate. The simulations revealed that the local groundwater storage on the plains could not contend with high-intensity exploitation for long if the exploitation process continues at the current rate. Changes attributable to groundwater exploitation reached extreme values and then weakened within decades with the depletion of groundwater resources and the exploitation process will therefore cease. However, if exploitation is stopped completely to allow groundwater to recover, drying and warming effects, such as increased temperature, reduced soil moisture, and reduced total runoff, would occur in the Basin within the early decades of the simulation period. The effects of exploitation will then gradually disappear, and the variables will approach the natural state and

  7. Effects of anthropogenic groundwater exploitation on land surface processes: A case study of the Haihe River Basin, Northern China

    NASA Astrophysics Data System (ADS)

    Xie, Z.; Zou, J.; Qin, P.; Sun, Q.

    2014-12-01

    In this study, we incorporated a groundwater exploitation scheme into the land surface model CLM3.5 to investigate the effects of the anthropogenic exploitation of groundwater on land surface processes in a river basin. Simulations of the Haihe River Basin in northern China were conducted for the years 1965-2000 using the model. A control simulation without exploitation and three exploitation simulations with different water demands derived from socioeconomic data related to the Basin were conducted. The results showed that groundwater exploitation for human activities resulted in increased wetting and cooling effects at the land surface and reduced groundwater storage. A lowering of the groundwater table, increased upper soil moisture, reduced 2 m air temperature, and enhanced latent heat flux were detected by the end of the simulated period, and the changes at the land surface were related linearly to the water demands. To determine the possible responses of the land surface processes in extreme cases (i.e., in which the exploitation process either continued or ceased), additional hypothetical simulations for the coming 200 years with constant climate forcing were conducted, regardless of changes in climate. The simulations revealed that the local groundwater storage on the plains could not contend with high-intensity exploitation for long if the exploitation process continues at the current rate. Changes attributable to groundwater exploitation reached extreme values and then weakened within decades with the depletion of groundwater resources and the exploitation process will therefore cease. However, if exploitation is stopped completely to allow groundwater to recover, drying and warming effects, such as increased temperature, reduced soil moisture, and reduced total runoff, would occur in the Basin within the early decades of the simulation period. The effects of exploitation will then gradually disappear, and the land surface variables will approach the

  8. Late Cenozoic pollen records and paleoclimate in the western Qaidam Basin, Northern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Miao, Y.

    2013-12-01

    Y. F. Miao1, X. M. Fang2*, F. L. Wu2, M. T. Cai2, C. H. Song3, Q. Q. Meng3 1 Key Laboratory of Desert and Desertification, Cold and Arid Regions Environmental and Engineering Institute, Chinese Academy of Sciences, Lanzhou, 730000, China 2 Key Laboratory of Continental Collision and Plateau Uplift, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100085, China 3 School of Earth Science, Lanzhou University, Lanzhou, 730000, China * Corresponding author, E-mail address: fangxm@itpcas.ac.cn (X.M. Fang). Abstract: Cenozoic climate changes in inner Asia provide a basis for understanding linkages between global cooling, the Tibetan Plateau uplift, and possibly the development of the East Asian monsoon. Based on a compilation of palynological results from the western Qaidam Basin, this study reconstructed a 15 million years (Ma) record of changing vegetation and paleoclimates spanning the middle Miocene to present (comprising two series: ~18-5 Ma and ~3.1-0 Ma, respectively). The thermophilic percentages were highest between 18 and 14 Ma, and decreased after 14 Ma, closely corresponding to the Middle Miocene Climatic Optimum (MMCO) between 18 and 14 Ma and the following global climatic cooling between 14 and 5 Ma. At the same time, decreases in the xerophytic and coniferous taxa percentages, and the increasing logarithmic ratio of non-arboreal pollen to arboreal pollen (ln (NAP/AP)), reveal the continuous aridification across both the basin and surrounding mountains. Between ~3.1-0 Ma, the percentages of the thermophilic, xerophytic and coniferous pollen as well as the ln (NAP/AP) imply further cooling and drying in this region since 3.1 Ma. We argue that these vegetation and climate patterns during the late Cenozoic western Qaidam Basin are primarily a result of the global cooling, with the Tibetan Plateau uplift and East Asian summer monsoon having contributions of lesser importance.

  9. Transpression, transtension and reactivation during basin evolution: a case study from northern Scotland and Orkney

    NASA Astrophysics Data System (ADS)

    Dichiarante, Anna Maria; Holdsworth, Robert; McCaffrey, Ken; Dempsey, Edward; Selby, Dave; De Paola, Nicola; Conway, Andy; Wilson, Woody; Ogilvie, Steven

    2014-05-01

    The onshore Devonian sedimentary rocks of the Orcadian basin host significant amounts of fracturing, faulting and some localized folding. Most published accounts have assumed Devonian ages for the supposedly extensional faulting in the Orcadian Basin, with some limited inversion and reactivation proposed during the Carboniferous. More recently, however, regional studies, palaeomagnetic dating of fracture fills and structural studies in the adjacent basement rocks suggest that significant amounts of faulting may be related to the development of the contiguous offshore West Orkney Basin (WOB) during the Mesozoic. New field and microstructural analyses of the structures found within the Devonian cover sequences in Scotland and Orkney reveal 3 main groups of structures based on orientation, kinematics and infill. All are transtensional or transpressional on local to regional scales mainly due to reactivation of pre-existing structures: Group 1 faults trend ENE-WSW, N-S and NW-SE and display predominantly sinistral strike-slip to dip-slip extensional movements. They form the dominant structures in the eastern part of Caithness, and to a lesser extent Orkney. Gouges/breccias associated with these faults display little or no mineralization or veining. Group 2 structures are closely associated systems of metre- to kilometre-scale N-S trending folds and thrusts related to a highly heterogenous regional inversion event recognized locally throughout the field area, but especially on Orkney. Once again, fault rocks associated with these structures display little or no mineralization or veining. Group 3 structures are dextral oblique NE-SW trending faults and sinistral E-W trending faults with widespread syn-deformational carbonate mineralisation (± pyrite and bitumen) both along faults and in associated mineral veins. In a few localities (e.g. Dunnet Head, Scarfskerry, E. Scapa Fault) strike-slip inversion events have occurred at this time leading to localized transpression

  10. Climatic and Tectonic Controls on Topography in the Northern Basin and Range

    NASA Astrophysics Data System (ADS)

    Foster, D.; Brocklehurst, S. H.; Gawthorpe, R. L.

    2006-12-01

    This study takes advantage of the relatively simple tectonics of the normal fault-bounded Lost River and Lemhi Ranges and the Beaverhead Mountains, eastern Idaho, USA, to assess the roles of climate, erosion, and tectonics in topographic evolution through a combination of digital topographic analyses and field observations. These ranges transect the southern limit of Quaternary glaciation, and drainage basins record a range of glacial extents and histories, allowing for comparisons between climatic and tectonic controls. At a catchment scale, topography is controlled by both the degree of glaciation, and the response of the drainage system to range-front faulting. The range-bounding normal faults are segmented along-strike, and fault uplift rates vary systematically, being greatest at the fault centres. Here catchments predominantly drain normal to the range-front fault, although the trend of some catchments is influenced by pre-existing tectonic fabrics related to Cretaceous (northeast-southwest trending) and early Miocene (northwest-southeast trending) extension. For catchments that drain through fault segment boundaries, one of two general morphologies occurs. Either large drainage basins form, capturing drainage area from neighbouring basins, or, when fault segment boundaries are en echelon, a series of small drainage basins may form as catchments as the inboard- and outboard- footwalls interact and respond to fault linkage. Quaternary glaciation affected all but the southern portions of each of the ranges, most extensively at the north-eastern range flank. Increased extent of glaciation within a catchment results in wider valley floors, steeper valley walls, and greater relief at elevations close to the ELA. Cirque formation occurs preferentially on the north-eastern range flank, where glaciers are sheltered from both solar radiation and snow re-distribution by the prevailing winds. Snow accumulation is promoted in this setting by the increased influx of wind

  11. Study of Ground-Water Recharge Rates in the Northern Powder River Basin

    NASA Astrophysics Data System (ADS)

    Healy, R. W.; Bartos, T. T.

    2003-12-01

    Coal-bed methane (CBM) production in the Powder River Basin is growing rapidly. The Bureau of Land Management estimates that by the year 2010 there may be as many as 50,000 producing wells in the Wyoming part of the Basin alone. Development of CBM requires the pumping of water from coal seams. As water pressure in the seam is lowered, methane is released from storage. The pumped water is usually discharged into streams, channels, or impoundments. With a typical well producing about 48 cubic meters of water per day, the rate of discharge for the Basin could exceed 2.4 million cubic meters per day by 2010. The fate of that water and its impact on the environment are topics of some concern. Relevant issues include the rate at which water infiltrates and percolates to the water table, the eventual discharge of infiltrated water to surface water, and chemical changes that occur as water moves through the system. An adequate understanding of these issues requires knowledge of local and regional hydrology. This study is investigating rates of ground-water recharge under natural conditions and as impacted be CBM development. Natural recharge within the Powder River Basin occurs by both diffuse mechanisms (infiltration of precipitation and subsequent travel of water through the unsaturated zone to the water table) and focused mechanisms (infiltration from line and point sources, such as streams and ponds). Under natural conditions, the relative importance of each is difficult to assess. Discharged CBM water should substantially enhance the rate of focused recharge, with less effect expected on diffuse recharge. Objectives of this study are to estimate rates of diffuse recharge, naturally occurring focused recharge, and enhanced focused recharge due to the discharge of CBM water. Multiple approaches are being employed: chloride mass balance; tracer methods based on tritium, stable isotopes, and other compounds; Darcy/unit hydraulic gradient; water budget; water

  12. Multielement geochemical dataset of surficial materials for the northern Great Basin

    USGS Publications Warehouse

    Coombs, Mary Jane; Kotlyar, Boris B.; Ludington, Steve; Folger, Helen W.; Mossotti, Victor G.

    2002-01-01

    This report presents geochemical data generated during mineral and environmental assessments for the Bureau of Land Management in northern Nevada, northeastern California, southeastern Oregon, and southwestern Idaho, along with metadata and map representations of selected elements. The dataset presented here is a compilation of chemical analyses of over 10,200 stream-sediment and soil samples originally collected during the National Uranium Resource Evaluation's (NURE) Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) program of the Department of Energy and its predecessors and reanalyzed to support a series of mineral-resource assessments by the U.S. Geological Survey (USGS). The dataset also includes the analyses of additional samples collected by the USGS in 1992. The sample sites are in southeastern Oregon, southwestern Idaho, northeastern California, and, primarily, in northern Nevada. These samples were collected from 1977 to 1983, before the development of most of the present-day large-scale mining infrastructure in northern Nevada. As such, these data may serve as an important baseline for current and future geoenvironmental studies. Largely because of the very diverse analytical methods used by the NURE HSSR program, the original NURE analyses in this area yielded little useful geochemical information. The Humboldt, Malheur-Jordan-Andrews, and Winnemucca-Surprise studies were designed to provide useful geochemical data via improved analytical methods (lower detection levels and higher precision) and, in the Malheur-Jordan-Andrews and Winnemucca Surprise areas, to collect additional stream-sediment samples to increase sampling coverage. The data are provided in *.xls (Microsoft Excel) and *.csv (comma-separated-value) format. We also present graphically 35 elements, interpolated ("gridded") in a geographic information system (GIS) and overlain by major geologic trends, so that users may view the variation in elemental concentrations over the

  13. Helium isotope, C/3He, and Ba-Nb-Ti signatures in the northern Lau Basin: Distinguishing arc, back-arc, and hotspot affinities

    NASA Astrophysics Data System (ADS)

    Lupton, John; Rubin, Ken H.; Arculus, Richard; Lilley, Marvin; Butterfield, David; Resing, Joseph; Baker, Edward; Embley, Robert

    2015-04-01

    The northern Lau Basin hosts a complicated pattern of volcanism, including Tofua Arc volcanoes, several back-arc spreading centers, and individual "rear-arc" volcanoes not associated with these structures. Elevated 3He/4He ratios in lavas of the NW Lau Spreading Center suggest the influence of a mantle plume, possibly from Samoa. We show that lavas from mid-ocean ridges, volcanic arcs, and hotspots occupy distinct, nonoverlapping fields in a 3He/4He versus C/3He plot. Applied to the northern Lau Basin, this approach shows that most of Lau back-arc spreading systems have mid-ocean ridge 3He/4He-C/3He characteristics, except the NW Lau spreading center, which has 3He/4He-C/3He similar to "high 3He" hotspots such as Loihi, Kilauea, and Yellowstone, but with slightly lower C/3He. Niua seamount, on the northern extension of the Tofua Arc, falls squarely in the arc field. All the NE Lau rear-arc volcanoes, including the recently erupting West Mata, also have arc-like 3He/4He-C/3He characteristics. Ba-Nb-Ti contents of the lavas, which are more traditional trace element indicators of mantle source enrichment, depletion, and subduction input, likewise indicate arc and hot spot influences in the lavas of the northern Lau Basin, but in a more ambiguous fashion because of a complex prior history. This verifies that 3He/4He-C/3He systematics are useful for differentiating between mid-ocean ridge, arc, and hotspot affinities in submarine volcanic systems, that all three of these affinities are expressed in the northern Lau Basin, and provides additional support for the Samoan plume influence in the region.

  14. Genesis and emplacement of oil in the San Andres Formation, Northern Shelf of the Midland Basin, Texas. Report of Investigations No. 116

    SciTech Connect

    Ramondetta, P.J.

    1982-01-01

    San Andres oil constitutes more than 80 percent of the total production from the Northern Shelf of the Midland Basin, Texas. The San Andres and Clear Fork carbonate rocks of the Northern Shelf contain sufficient amounts of lipid-rich organic material to rank them as potential petroleum source beds. Organic maturation of these rocks as revealed from vitrinite reflectance and kerogen color, however, is not sufficient to have initiated categenesis. Therefore, oil within Northern Shelf reservoirs was derived mostly from other sources. San Andres oils have a common source, as evidenced by their remarkably uniform composition, which is revealed in liquid and gas chromatography. Wolfcampian basinal clastics and dark argillaceous limestones of the northern Midland Basin are the most likely source rocks for this oil. Vertical expulsion of basinal oil through fractures into overlying shelf and shelf-margin carbonates has occurred along the Lower Permian Abo Reef trend. The trapping mechanism in the Northern Shelf is a combination of structural and facies control. Good reservoir conditions exist in San Andres strata that are draped and subsequently fractured over the subjacent shelf-margin buttress. Late Cretaceous uplift in New Mexico exposed Permian strata, iniating a west-to-east flow of relatively fresh ground water. Passage of this meteoric water through San Andres and Clear Fork reservoirs caused downdip degradation and flushing of the oil. As a result of this ground-water movement, oil/water contacts tilt downdip 0.3/sup 0/ to 0.5/sup 0/, and oil production is slightly offset downdip from local structural highs. The San Andres and Clear Fork oil was degraded by anaerobic sulfate-reducing bacteria, which resulted in an enrichment of sulfur and light aromatics and a slight depletion of saturated hydrocarbons. This biodegradation progressively increases updip, as evidenced by higher sulfur contents and lower API gravity. 28 figures, 7 tables.

  15. Hydrogeochemistry of high iodine groundwater: a case study at the Datong Basin, northern China.

    PubMed

    Li, Junxia; Wang, Yanxin; Xie, Xianjun; Zhang, Liping; Guo, Wei

    2013-04-01

    High iodine concentrations in groundwater have seldom been reported and there have been few systematic studies on high iodine groundwater worldwide. To better understand the sources and processes responsible for iodine enrichment in the groundwater of the Datong Basin, the hydrochemical characteristics of groundwater and geochemical features of aquifer sediments were studied. High iodine groundwater mainly occurs in the center of the Datong Basin with iodine concentrations ranging between 3.31 and 1890 μg L(-1). Most samples with iodine concentrations higher than 500 μg L(-1) are from wells with depths between 75 and 120 m. High pH and a reducing environment are favorable for iodine enrichment in the groundwater, with iodide as the dominant species that accounts for 63.2-99.3% of the total iodine. Sediment samples from a borehole specifically drilled for this study contain 0.18-1.46 mg kg(-1) iodine that is moderately correlated with total organic carbon (TOC). The results of sequential extraction experiments show that iodine is mostly bound to iron oxyhydroxides and organic matter in the sediments. The mobilization processes of iodine are proposed to include reductive dissolution of iron oxyhydroxides and transformations among iodide, iodate and organic iodine driven by microbial activities under alkaline and reducing conditions. PMID:23478640

  16. Evolution of the Rodgers Creek–Maacama right-lateral fault system and associated basins east of the northward-migrating Mendocino Triple Junction, northern California

    USGS Publications Warehouse

    McLaughlin, Robert J.; Sarna-Wojcicki, Andrei M.; Wagner, David L.; Fleck, Robert J.; Langenheim, V.E.; Jachens, Robert C.; Clahan, Kevin; Allen, James R.

    2012-01-01

    The Rodgers Creek–Maacama fault system in the northern California Coast Ranges (United States) takes up substantial right-lateral motion within the wide transform boundary between the Pacific and North American plates, over a slab window that has opened northward beneath the Coast Ranges. The fault system evolved in several right steps and splays preceded and accompanied by extension, volcanism, and strike-slip basin development. Fault and basin geometries have changed with time, in places with younger basins and faults overprinting older structures. Along-strike and successional changes in fault and basin geometry at the southern end of the fault system probably are adjustments to frequent fault zone reorganizations in response to Mendocino Triple Junction migration and northward transit of a major releasing bend in the northern San Andreas fault. The earliest Rodgers Creek fault zone displacement is interpreted to have occurred ca. 7 Ma along extensional basin-forming faults that splayed northwest from a west-northwest proto-Hayward fault zone, opening a transtensional basin west of Santa Rosa. After ca. 5 Ma, the early transtensional basin was compressed and extensional faults were reactivated as thrusts that uplifted the northeast side of the basin. After ca. 2.78 Ma, the Rodgers Creek fault zone again splayed from the earlier extensional and thrust faults to steeper dipping faults with more north-northwest orientations. In conjunction with the changes in orientation and slip mode, the Rodgers Creek fault zone dextral slip rate increased from ∼2–4 mm/yr 7–3 Ma, to 5–8 mm/yr after 3 Ma. The Maacama fault zone is shown from several data sets to have initiated ca. 3.2 Ma and has slipped right-laterally at ∼5–8 mm/yr since its initiation. The initial Maacama fault zone splayed northeastward from the south end of the Rodgers Creek fault zone, accompanied by the opening of several strike-slip basins, some of which were later uplifted and compressed

  17. INNOVATIVE METHODOLOGY FOR DETECTION OF FRACTURE-CONTROLLED SWEET SPOTS IN THE NORTHERN APPALACHIAN BASIN

    SciTech Connect

    Robert Jacobi; John Fountain

    2001-02-28

    In the structure task, we completed a N-S transect east of Seneca Lake that indicated a N-striking fault near the southeastern shore of Seneca Lake, and also indicated NE and ENE-trending FIDs and faults north of Valois. The orientation and existence of the NE-striking FIDs and faults are thought to be controlled by basement faults, rather than thrust ramps above the Salina salt controlled only by a far-field Alleghanian stress field. Structure contour maps based on well log analyses have been constructed but not interpreted. Soil gas data displayed a number of ethane-charged soil gas ''spikes'' on a N-S transect from Ovid south to near Valois. The soil gas team found a larger number of spikes in the northern half of the survey, suggesting more open fractures (and faults) in the northern half of the survey. Seismic data has been purchased and reprocessed. Several grabens observed in the Trenton reflector are consistent with surface structure, soil gas, and aeromagnetic anomalies. The aeromagnetic survey is completed and the data is processed. Prominent magnetic anomalies suggest that faults in the Precambrian basement are located beneath regions where grabens in the Trenton are located.

  18. Spatio-temporal snow cover change and hydrological characteristics of the Astore, Gilgit and Hunza river basins (western Himalayas, Hindukush and Karakoram region) - Northern Pakistan

    NASA Astrophysics Data System (ADS)

    Tahir, Adnan Ahmad; Chevallier, Pierre; Arnaud, Yves; Lane, Stuart; Terzago, Silvia; Adamowski, Jan Franklin

    2015-04-01

    A large proportion of Pakistan's irrigation water supply is drawn from the Upper Indus River Basin (UIB) situated in the Himalaya-Karakoram-Hindukush (HKH) ranges. More than half of the annual flow in the UIB is contributed by five of its high-altitude snow and glacier-fed sub-basins including the Astore (Western Himalaya - southern part of the UIB), Gilgit (Hindukush - western part of the UIB) and Hunza (Central Karakoram - northern part of the UIB) River basins. Studying the snow cover, its spatio-temporal evolution and the hydrological response of these sub-basins is important so as to better manage water resources. This study compares data from the Astore, Gilgit and Hunza River basins (mean catchment elevation, 4100, 4250 and 4650 m ASL, respectively), obtained using MODIS satellite snow cover images. The hydrological regime of these sub-catchments was analyzed using hydrological and climate data available at different altitudes from the basin areas. The results suggest that the UIB is a region undergoing a stable or slightly increasing trend of snow cover in the southern (Western Himalayas), western (Hindukush) and northern (Central Karakoram) parts. Discharge from the UIB is a combination of snow and glacier melt with rainfall-runoff in the southern part, but snow and glacier melt is dominant in the northern and western parts of the catchment. Despite similar snow cover trends (stable or slightly increasing), different river flow trends (increasing in Astore and Gilgit, decreasing in Hunza) suggest that a sub-catchment level study of the UIB is needed to understand thoroughly its hydrological behavior for better flood forecasting and water resources management and to quantify how the system is being forced by changing climate.

  19. BOLIVAR and GULFREX MCS Data Constrain Closure of the Grenada Backarc Basin During Oblique Collision Between the Lesser Antilles Arc System and Northern South America

    NASA Astrophysics Data System (ADS)

    Aitken, T. J.; Mann, P.; Christeson, G.

    2004-12-01

    The Lesser Antilles evolved from the mid-Cretaceous as an extensional arc system formed above a steeply dipping slab of Atlantic oceanic crust. The arc became extensional during the Paleocene - early Eocene along normal faults at the eastern edge of the basin as the present-day Lesser Antilles chain rifted away from the Aves Ridge. Backarc rifting ceased during the early Eocene, leaving the 140 km wide 3 km deep Grenada backarc basin. Sediment accumulation reached nearly 8 km during the Paleogene with another 1.5 km of sediments accumulating during the Neogene. In this presentation, we combine newly acquired MCS lines from the BOLIVAR study with existing GULFREX data collected in 1975 to document the structural and stratigraphic effects of closure of the Grenada backarc basin because of the progressive, oblique collision between the Lesser Antilles arc system and northern South America. The southern end of the Grenada basin has been narrowed from an undeformed width of approximately 100 km to a deformed width of 30 km, and rotated nearly 90 degrees to the west as the arc system obliquely collides with the South American margin. Shortening of the colliding backarc basin is mainly accommodated by inversion of Paleogene normal faults on the eastern edge of the basin, folding, low-angle thrust faults, and possibly shale diapirism. We propose that this closure in the area is a backthrusting response during Oligocene - late Miocene closure along the leading edge of the oblique arc-continent collision in the Eastern Venezuelan basin.

  20. The effect of plate movements in the northern region of South America on tectonics and sedimentation in the Eastern Llanos Basin

    SciTech Connect

    Pena, L.E. )

    1993-02-01

    The geological configuration of the Eastern Llanos pericratonic mega-basin has been directly affected by the overall tectonic regime experienced in the Northern part of South America. Interaction between the Pacific (Cocos), South American and Caribbean Plates generated a regional compressional dextral rotational force expressed as a regional North-South striking structural trend in the southern part of the basin and an east-west striking trend in portion nearest the Caribbean Plate Boundary. Nearly 90% of the strike-slip faults in this northern area show right lateral displacement. The majority of the structures in the East Llanos basin are related to the Late Miocene uplift of the Eastern Andes. Nevertheless we can subdivide the structures into two major groups: pre-Miocene and post-Miocene. By being able to recognize pre-Miocene Cretaceous age structures, much altered by later movements, we can envision remigration of hydrocarbons out of early traps into those created more recently. Plate tectonic events in the north of South America have produced a general regional structure strike directional through time. Sedimentary-tectonic relationships depend upon regional phenomena which, if interpreted correctly, help to sub-divide the mega-basin into genetically related parts. By understanding the mechanism that creates large scale structural features, the geologist is thus provided with an important tool that can aid him in exploring the Eastern Llanos basin.

  1. U-Pb Geochronology, Geochemistry and Kinematic Analyses of Subduction-Related Late Triassic Basins in Northern Chile (24.5º-26ºS).

    NASA Astrophysics Data System (ADS)

    Espinoza, M. E.

    2015-12-01

    In northern Chile (24.5°-26°S) two Pre-Andean depocenters crop out: the Cifuncho basin in the Coastal Cordillera and the Profeta basin in the Precordillera. These basins have been classically interpreted as a continental rifting unrelated to subduction during the period prior to the Andean orogenic cycle. However, recent petrographic and geochemical data suggest the development of these basins in an active subduction system. In order to test this hypothesis and to establish the geologic evolution of the basins and the strain field during the rifting process, we present preliminary U-Pb geochronological and geochemical data together with structural analyses of synrift structures. The geochronological data along the Cifuncho and Profeta basins, show a main continental sedimentary deposition during the Norian to Raethian. Volcanosedimentary rocks show a main detrital supply of Early Permian age (~297-283 Ma). This input can be associated with the volcanic La Tabla Formation and/or the exhumation of Permian granitoids. A minor supply close to ~478 Ma is related to a source from the Lower Ordovician arc (~480 Ma), suggesting the tectonic exhumation of this source to the east of the Profeta basin during the Late Triassic. On the other hand, structural analysis was carried in third and four order extensional faults (<10 m of slip) along the Profeta basin. Most of the faults show a clear synrift character with the development of fault controlled growing strata. The kinematic analyses evidence a variability in the orientation of the maximum strain axes from a main northwest to a subordinate northeast direction of extension. Thus, the intimate relation between the continental sedimentary deposition and a proximal volcanism of intermediate composition and calk-alkaline affinity, suggests the development of these basins in a supra-subduction setting during the Late Triassic. Structural data probably reflect local variation in the strain field across the basins.

  2. Assessment of undiscovered conventional oil and gas resources, onshore Claiborne Group, United Statespart of the northern Gulf of Mexico Basin

    USGS Publications Warehouse

    Hackley, P.C.; Ewing, T.E.

    2010-01-01

    The middle Eocene Claiborne Group was assessed for undiscovered conventional hydrocarbon resources using established U.S. Geological Survey assessment methodology. This work was conducted as part of a 2007 assessment of Paleogene-Neogene strata of the northern Gulf of Mexico Basin, including the United States onshore and state waters (Dubiel et al., 2007). The assessed area is within the Upper Jurassic-CretaceousTertiary composite total petroleum system, which was defined for the assessment. Source rocks for Claiborne oil accumulations are interpreted to be organic-rich, downdip, shaley facies of the Wilcox Group and the Sparta Sand of the Claiborne Group; gas accumulations may have originated from multiple sources, including the Jurassic Smackover Formation and the Haynesville and Bossier shales, the Cretaceous Eagle Ford and Pearsall (?) formations, and the Paleogene Wilcox Group and Sparta Sand. Hydrocarbon generation in the basin started prior to deposition of Claiborne sediments and is currently ongoing. Primary reservoir sandstones in the Claiborne Group include, from oldest to youngest, the Queen City Sand, Cook Mountain Formation, Sparta Sand, Yegua Formation, and the laterally equivalent Cockfield Formation. A geologic model, supported by spatial analysis of petroleum geology data, including discovered reservoir depths, thicknesses, temperatures, porosities, permeabilities, and pressures, was used to divide the Claiborne Group into seven assessment units (AUs) with three distinctive structural and depositional settings. The three structural and depositional settings are (1) stable shelf, (2) expanded fault zone, and (3) slope and basin floor; the seven AUs are (1) lower Claiborne stable-shelf gas and oil, (2) lower Claiborne expanded fault-zone gas, (3) lower Claiborne slope and basin-floor gas, (4) lower Claiborne Cane River, (5) upper Claiborne stable-shelf gas and oil, (6) upper Claiborne expanded fault-zone gas, and (7) upper Claiborne slope and basin

  3. Sedimentological and geochronological evidences of anthropogenic impacts on river basins in the Northern Latium coastal area (Italy)

    NASA Astrophysics Data System (ADS)

    Piazzolla, Daniele; Paladini de Mendoza, Francesco; Scanu, Sergio; Marcelli, Marco

    2015-04-01

    In this work we aimed to compare sedimentological and geochronological data from three sediment core samples (MIG50, MRT50, and GRT50) taken in the Northern Latium (Italy) coastal area, at -50 m depth, to data regarding rainfall, river flows and the land use in the three most important hydrographic basins (Mignone, Marta and Fiora) and in the coastal area. Different trends of sediment mass accumulation rate (MAR) are detected in the three cores: a strongly increasing trend was identified in MIG50 and MRT50 cores while GRT50 doesn't show significant variation. Data from the sedimentological analysis of GRT50 core identify a progressive decrease in the sandy component, which declined from about 30% to the current level of 7% over the last 36 years, while MRT50 and MIG50 cores (mainly composed by pelitic fraction > 95%) showed slight variations of textural ratio between silt and clay. According to the general decrease of pluviometric trend observed in Italy, related to teleconnection pattern tendency (NAO), the statistical analysis of rain identified significative decrease only in the Fiora river basin, whereas in the other two locations the decrease was not as significant. Regarding the Fiora river flow, a significative decreasing trend of average flow is detected, while the flood regime remained unaffected over the past 30 years. The analysis of the land use shows that the human activities are increased of 6-10% over the available time steps (1990 - 2006) in Fiora and Mignone river basins, while the Marta river basin has a strong human impact since 1990 highligting more than 80% of artificial soil covering. The largest variation is observed on the Fiora basin (10%) where the antrhopic activities have expanded to an area of about 85 Km2. Moreover, in the last ten years a large beach nourishment in 2004 (570000 m3) and dredging activities in the early second half of 2000s (1000000 m3 moved) were performed in Marina di Tarquinia beach and in front of the Torrevaldaliga

  4. Seismic interpretation of the post-Middle Miocene section of the northeastern Northern South Sea Yellow Basin, Yellow Sea

    NASA Astrophysics Data System (ADS)

    Kim, Hyeonju; Lee, Gwang H.; Kim, Han J.; Yi, BoYeon

    2016-04-01

    The Yellow Sea is a very shallow (< 90 m), semi-enclosed epicontinental sea, lying between China and the Korean Peninsula. The Yellow Sea has undergone gradual, regional subsidence since the Middle Miocene when the major plate reorganization in East Asia led to regional uplift and subsequent erosion in many parts of the marginal basins of the western Pacific, including the Yellow Sea. In this study, we analyzed about 2500 km of 2-D multi-channel seismic data from the northeastern part of the Northern South Yellow Sea Basin to investigate the post-Middle Miocene geologic history of the area. We identified and mapped the Middle Miocene unconformity (MMU) and two horizons (H1 and H2) which are correlatable over much of the area. H1 and H2 were inferred to be of the early Late Miocene (ca. 10 Ma) and of the late Late Miocene (ca. 6.7 Ma), respectively, assuming a constant sediment accumulation rate. MMU forms the top of the basement except for the southwestern corner of the area and is interrupted by numerous volcanic bodies, suggesting active post-Middle Miocene volcanism. The volcanic bodies are oriented largely parallel to the basement faults. H1 and H2 are also affected by volcanic bodies in the northern part of the area, suggesting continued volcanism until the late Late Miocene. The depth of MMU increases southwestward from about 250 m to over 750 m, indicating progressive tilting (i.e., differential subsidence) of the basement toward the depocenter in the southwest. The depths of H1 and H2 increase west- and southwestward from about 200 m to over 450 m and from about 150 m to over 300 m, respectively. Detailed seismic facies were not analyzed due to poor data quality; nevertheless, continuous reflectors, suggesting uniform and thus marine deposition, appear to increase upward and northeastward. This, together with the amount of subsidence estimated from the depth of MMU, strongly suggests that subsidence has been dominant in the area over the global sea

  5. Two new species of Pseudancistrus (Siluriformes, Loricariidae) from the Amazon basin, northern Brazil

    PubMed Central

    Silva, Gabriel S. C.; Roxo, Fábio F.; Oliveira, Claudio

    2015-01-01

    Abstract Two new species of Pseudancistrus, a genus diagnosed by non-evertible cheek plates and hypertrophied odontodes along the snout margin, are described from two drainages of the Brazilian Shield: Pseudancistrus kayabi from the rio Teles Pires (rio Tapajós basin) and Pseudancistrus asurini from the rio Xingu. The new species are distinguished from congeners (Pseudancistrus barbatus, Pseudancistrus corantijniensis, Pseudancistrus depressus, Pseudancistrus nigrescens, Pseudancistrus reus, and Pseudancistrus zawadzkii) by the coloration pattern. Pseudancistrus kayabi has dark bars on the dorsal and caudal fins which are similar to that of Pseudancistrus reus from the Caroní River, Venezuela. Pseudancistrus asurini is unique among Pseudancistrus in having whitish tips of the dorsal and caudal fins in juveniles to medium-sized adults. PMID:25709528

  6. Two new species of Pseudancistrus (Siluriformes, Loricariidae) from the Amazon basin, northern Brazil.

    PubMed

    Silva, Gabriel S C; Roxo, Fábio F; Oliveira, Claudio

    2015-01-01

    Two new species of Pseudancistrus, a genus diagnosed by non-evertible cheek plates and hypertrophied odontodes along the snout margin, are described from two drainages of the Brazilian Shield: Pseudancistruskayabi from the rio Teles Pires (rio Tapajós basin) and Pseudancistrusasurini from the rio Xingu. The new species are distinguished from congeners (Pseudancistrusbarbatus, Pseudancistruscorantijniensis, Pseudancistrusdepressus, Pseudancistrusnigrescens, Pseudancistrusreus, and Pseudancistruszawadzkii) by the coloration pattern. Pseudancistruskayabi has dark bars on the dorsal and caudal fins which are similar to that of Pseudancistrusreus from the Caroní River, Venezuela. Pseudancistrusasurini is unique among Pseudancistrus in having whitish tips of the dorsal and caudal fins in juveniles to medium-sized adults. PMID:25709528

  7. Shelf-edge sedimentary systems off Rio de Janeiro State, northern Santos basin-Brazil

    NASA Astrophysics Data System (ADS)

    Maia, R. M. C.; Dos Reis, A. T.; Gorini, C.; Silva, C. G.; Rabineau, M.; Granjeon, D.

    2012-04-01

    elements provide a hint at a prevailing subsidence regime and effective sediment supply into the basin that clearly contrast with the conveyed idea of a sediment-starved and tectonic stable shelf. They naturally raise questions about the nature and origin of sediment supply, since no significant point siliciclastic fluvial source flows directly into the shelf. Stemming from that, we are forced to speculate about: (A) the role of neotectonic movements involving the Serra do Mar coastal mountain ranges to potentially source clastic influx into the basin during the Quaternary, or about the real importance of secondary drainage basins debouching today; and (B) the mechanical nature of a supposed subsidence during the Pliocene and the Quaternary time span (overloading ? sediment compaction ? thermal cooling ?). The interpretation of industrial seismic lines can provide the answers of many of these questions. The next step of this work is to make a stratigraphy model of the sedimentary systems of Santos basin to understand how the ancient creation of accommodation space can influence the recent sedimentary architecture and how is the change in sedimentary influx and the sedimentary records of different orders of cyclicity.

  8. Late Pleistocene shortening rate on the northern margin of the Yanqi Basin, southeastern Tian Shan, NW China

    NASA Astrophysics Data System (ADS)

    Huang, Wei-liang; Yang, Xiao-ping; Li, An; Pierce, Ian K. D.; Thompson, Jessica A.; Angster, Stephen J.; Zhang, Ling

    2015-11-01

    How strain is distributed and partitioned on individual faults and folds on the margins of intermontane basins remains poorly understood. The Haermodun (Ha) anticline, located along the northern margin of the intermontane Yanqi Basin on the southeastern flank of the Tian Shan, preserves flights of passively deformed alluvial terraces. These terraces cross the active anticline and can be used to constrain local crustal shortening and uplift rates. Geologic and geomorphic mapping, in conjunction with high-resolution dGPS topographic surveys, reveal that the terrace surfaces are perpendicular to the fold's strike, and display increased rotation with age, implying that the anticline has grown by progressive limb rotation. Combined with the open sinusoidal curve model and excess area method, we calculated uplift and shortening values for each terrace since abandonment. Using the published exposure ages of each terrace, we found the vertical uplift rate gradually decreased from ∼0.43 to ∼0.11 mm/a, whereas the shortening rate remained constant at ∼0.3 mm/a since the anticline began to grow. A fresh fault scarp, 0.4 ± 0.1 m high, is visible along the southern portion of the Ha anticline, and is interpreted to be the most recent evidence of seismic activity. Using an estimated rupture area and the length of the fresh offset created by this earthquake, we estimate that the main thrust underlying the Ha anticline has generated moderate (M < 7) earthquakes in the past. The shortening rates of the Ha anticline from geomorphology agree with current GPS measurements cover-over the fold, and highlight the importance of determining slip rates for individual faults in order to resolve patterns of strain distribution across intermontane belts.

  9. Occurrence, behavior and distribution of high levels of uranium in shallow groundwater at Datong basin, northern China.

    PubMed

    Wu, Ya; Wang, Yanxin; Xie, Xianjun

    2014-02-15

    Geochemical investigations of uranium (U) occurrence in the environments were conducted at Datong basin of northern China. The results suggest that U contents were generally <1mg/kg for the igneous and metamorphic rocks, typically 2-5mg/kg for the Carboniferous and Permian sedimentary rocks and around 3mg/kg for sediments and topsoil, respectively. U in the Quaternary aquifer sediments may be primarily associated with carnotite from the Carboniferous and Permian coal-bearing clastic rocks around the basin. Shallow groundwater had U concentrations of <0.02-288 μg/L (average 24 μg/L), with 24% of the investigated boreholes above the WHO provisional guideline of 30 μg/L for U in drinking water. Average U concentration for surface water was 5.8 μg/L. In oxidizing waters, uranyl (UO2(2+)) species is dominant and strongly adsorbed onto iron (hydro)xides, while it would be preferentially complexed with carbonate in the alkaline groundwater, forming highly soluble uranyl-carbonate complexes at Datong. Under reducing conditions, uranous (U(IV)) species is ready to precipitate or bind to organic matter, therefore having a low mobility. At the study area, high U groundwater (>30 μg/L) occurs at the alluvial plains due to intermediate redox and enhanced alkaline conditions. The abnormally high levels of U in groundwater (>100 μg/L) are locally found at the west alluvial plains. By contrast, U co-precipitation with secondary carbonate minerals like Ca2UO2(CO3)3 in the dominant Ca-Mg-Na-HCO3 type groundwater may prevail at the east alluvial plains. Besides, bedrocks such as Carboniferous and Permian sedimentary rocks, especially the coal-bearing strata which have higher U contents at the west mountain areas may also account for the abnormally high levels of U in groundwater. PMID:24342086

  10. Clay mineralogical and geochemical constraints on late Pleistocene weathering processes of the Qaidam Basin, northern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Miao, WeiLiang; Fan, QiShun; Wei, HaiCheng; Zhang, XiYing; Ma, HaiZhou

    2016-09-01

    At the Qarhan Salt Lake (QSL) on the central-eastern Qaidam Basin, northern Tibetan Plateau, Quaternary lacustrine sediments have a thickness of over 3000 m and mainly composed of organic-rich clay and silty clay with some silt halite and halite. In this study, a 102-m-long sediment core (ISL1A) was obtained from the QSL. Combining with AMS 14C and 230Th dating, clay minerals and major-element concentrations of ISL1A were used to reconstruct the weathering process and trend of the QSL since late Pleistocene. The results reveal that the clay mineral from <2 μm fraction in ISL1A is composed of illite (47-77%), chlorite (8-27%), smectite (including illite-smectite mixed layers, 3-29%) and kaolinite (2-11%). Such clay mineral assemblages in ISL1A derived primarily from felsic igneous rocks, gneisses and schists of Eastern Kunlun Mountains on the south of the QSL. The abundance of illite mineral displays an opposite fluctuation trending with that of smectite, chlorite and kaolinite mineral in ISL1A, which is significantly different from the monsoon-controlled regions. Moreover, higher values of illite, kaolinite/chlorite and illite/chlorite ratios, and lower values of smectite, chlorite and kaolinite minerals occurred in 83-72.5 ka, 68.8-54 ka, 32-24 ka, corresponding to late MIS 5, late MIS 4, early MIS 3 and late MIS 3, respectively. These three phases were almost similarly changed with oxygen isotopes of authigenic carbonates and pollen records in ISL1A, which implies that stronger chemical weathering corresponds to higher effective moisture periods of source region in the Qaidam Basin. Based on chemical weathering index and (Al2O3-(CaO + Na2O)-K2O) diagram, chemical weathering degree in this study area takes a varying process from low to intermediate on the whole.

  11. Organic geochemical characterisation of shallow marine Cretaceous formations from Yola Sub-basin, Northern Benue Trough, NE Nigeria

    NASA Astrophysics Data System (ADS)

    Sarki Yandoka, Babangida M.; Abdullah, Wan Hasiah; Abubakar, M. B.; Hakimi, Mohammed Hail; Jauro, Aliyu; Adegoke, Adebanji Kayode

    2016-05-01

    The shallow marine shales of the Cretaceous formations namely Yolde, Dukul, Jessu, Sekuliye and Numanha ranging in age from Cenomanian to Coniacian within the Yola Sub-basin in the Northern Benue Trough, northeastern Nigeria were analysed to provide an overview on their hydrocarbon generation potential. This study is based on pyrolysis analysis, total organic carbon content (TOC), extractable organic matter (EOM), biomarker distributions and measured vitrinite reflectance. The present-day TOC contents range between 0.24 and 0.71 wt. % and Hydrogen Index (HI) values between 8.7 and 113 mg HC/g TOC with Type III/IV kerogens. Based on the present-day kerogen typing, the shale sediments are expected to generate mainly gas. Biomarker compositions indicates deposition in a marine environment under suboxic conditions with prevalent contribution of aquatic organic matter and a significant amount of terrigenous organic matter input. Organic matter that is dominated by marine components contains kerogens of Type II and Type II-III. This study shows that the organic matter has been affected by volcanic intrusion and consequently, have reached post-mature stage of oil generation. These higher thermal maturities levels are consistent with the vitrinite reflectance ranging from 0.85 to 2.35 Ro % and high Tmax (440-508 °C) values as supported by biomarker maturity ratios. Based on this study, a high prospect for major gas and minor oil generation potential is anticipated from the shallow marine Cretaceous formations from Yola Sub-basin.

  12. Late Cretaceous and Early Tertiary depositional environments of the northern Sacramento basin revealed by seismic-stratigraphic analysis

    SciTech Connect

    Damuth, J.E.; Link, M.H.; Gabay, S.H. )

    1990-05-01

    Seismic-stratigraphic analysis of regional seismic data across the Willows-Beehive Bend gas field reveals a prograding shelf-slope depositional sequence, including basic submarine-fan, slope, and shelf deltaic deposits, that progressively infilled the northern Sacramento forearc basin during the Campanian. The base of the Forbes Formation and the base of the Princeton Gorge fill form the lower and upper boundaries, respectively, of this sequence. Upper Cretaceous submarine-fan and basin-plain deposit form the strata between the Sierran basement and the base of the Forbes and progressively onlap the basement from west to east. The lower to middle Forbes Formation is characterized by high-amplitude discontinuous reflections and consists of mud-rich submarine-fan deposit with laterally restricted, sand-prone channel/levee complexes and broader depositional lobes. In contrast the upper Forbes consist of mud-rich slope deposits characterized by broad, southward-dipping clinoforms. Submarine-canyon/gully fills are common and return discordant hummocky to chaotic reflections. The overlying Kione Formation consists of sand-rich, delta-front deposits that return high amplitude, gently dipping subparallel reflections and are transitional into the slope deposits of the uppermost Forbes. The Kione was partially eroded during cutting of the Princeton Gorge submarine canyon in the early Tertiary. The lower (Eocene) Princeton Gorge fill shows highly variable reflection character and seismic facies that suggest multiple episodes of submarine erosion and deposition. At least three northwest-southeast-striking fault zones, including the Willows fault, disrupt these formations and appear to have strike-slip components.

  13. The importance of diverse data types to calibrate a watershed model of the Trout Lake Basin, Northern Wisconsin, USA

    USGS Publications Warehouse

    Hunt, R.J.; Feinstein, D.T.; Pint, C.D.; Anderson, M.P.

    2006-01-01

    As part of the USGS Water, Energy, and Biogeochemical Budgets project and the NSF Long-Term Ecological Research work, a parameter estimation code was used to calibrate a deterministic groundwater flow model of the Trout Lake Basin in northern Wisconsin. Observations included traditional calibration targets (head, lake stage, and baseflow observations) as well as unconventional targets such as groundwater flows to and from lakes, depth of a lake water plume, and time of travel. The unconventional data types were important for parameter estimation convergence and allowed the development of a more detailed parameterization capable of resolving model objectives with well-constrained parameter values. Independent estimates of groundwater inflow to lakes were most important for constraining lakebed leakance and the depth of the lake water plume was important for determining hydraulic conductivity and conceptual aquifer layering. The most important target overall, however, was a conventional regional baseflow target that led to correct distribution of flow between sub-basins and the regional system during model calibration. The use of an automated parameter estimation code: (1) facilitated the calibration process by providing a quantitative assessment of the model's ability to match disparate observed data types; and (2) allowed assessment of the influence of observed targets on the calibration process. The model calibration required the use of a 'universal' parameter estimation code in order to include all types of observations in the objective function. The methods described in this paper help address issues of watershed complexity and non-uniqueness common to deterministic watershed models. ?? 2005 Elsevier B.V. All rights reserved.

  14. Adaptive transitions and environmental change in the northern Great Basin: A view from Diamond Swamp

    SciTech Connect

    Musil, R.R.

    1992-01-01

    The presence of sedentary prehistoric occupations in association with wetland settings in the Great Basin has been the focus of continued debate. Theoretical discussions concerning the nature of hunter-gatherer adaptations to wetland environments have been based on two models: (1) Stress-based or push models, which argue that hunter-gatherer populations would reduce mobility as a response to less favorable conditions, and (2) abundance-based or pull models, which argue that hunter-gatherers would have been attracted to localized environments of diverse and plentiful resources. Archaeological evidence from Diamond Swamp provides insight into human adaptive transitions in wetland environments. Archaeological data from Diamond Swamp revealed a series of cultural components representing significant portions of the Holocene. The components at the Dunn and McCoy Creek sites consist of collections of artifactual, faunal, and floral materials, in association with semi-subterranean pithouse features dated between 3500 and 900 BP. These occupations correspond to periods of increased moisture and higher water tables. During periods of climatic amelioration semi-sedentary occupations occurred with the expansion of highly productive marsh and juniper grassland vegetation zones. The component at the McCoy Creek Site corresponds to a period of decreasing moisture punctuated by periodic drought, evidenced by the presence of a less substantial wickiup occupation dated at 500 BP. This occupation is indicative of a transition to a more mobile, less intensive occupational episode. The study provides evidence that transitions to sedentary pithouse villages in Diamond Swamp are best accounted for by the abundance-based model. A shift towards a less substantial, more mobile, occupation occurred with a decline in effective moisture. The research reflects adaptations made by local hunter-gatherer populations to long term environmental change within a typical Great Basin wetlands setting.

  15. Temporal and spatial constraints on the evolution of a Rio Grande rift sub-basin, Guadalupe Mountain area, northern New Mexico

    NASA Astrophysics Data System (ADS)

    Thompson, R. A.; Turner, K. J.; Cosca, M. A.; Drenth, B.; Hudson, M. R.; Lee, J.

    2013-12-01

    The Taos Plateau volcanic field (TPVF) in the southern San Luis Valley of northern New Mexico is the most voluminous of the predominantly basaltic Neogene (6-1 Ma) volcanic fields of the Rio Grande rift. Volcanic deposits of the TPVF are intercalated with alluvial deposits of the Santa Fe Group and compose the N-S-trending San Luis Basin, the largest basin of the northern rift (13,500 km2 in area). Pliocene volcanic rocks of the Guadalupe Mountain area of northern New Mexico are underlain by the southern end of one of the larger sub-basins of the San Luis Valley, the Sunshine sub-basin (~ 450 km2 in area) juxtaposed against the down-to-west frontal fault of the Precambrian-cored Sangre de Cristo Range. The sub-basin plunges northward and extends to near the Colorado-New Mexico border. The western margin (~15 km west of the Sangre de Cristo fault) is constrained by outcrops of Oligocene to Miocene volcanic rocks of the Latir volcanic field, interpreted here as a broad pre-Pliocene intra-rift platform underlying much of the northern TPVF. The southern sub-basin border is derived, in part, from modeling of gravity and aeromagnetic data and is interpreted as a subsurface extension of this intra-rift platform that extends southeastward to nearly the Sangre de Cristo range front. Broadly coincident with this subsurface basement high is the northwest-trending, curvilinear terminus of the down-to-northeast Red River fault zone. South of the gravity high, basin-fill alluvium and ~3.84 Ma Servilleta basalt lava flows thicken along a poorly exposed, down-to-south, basin-bounding fault of the northern Taos graben, the largest of the San Luis Valley sub-basins. The uppermost, western sub-basin fill is exposed along steep canyon walls near the confluence of the Rio Grande and the Red River. Unconformity-bound, lava flow packages are intercalated with paleo Red River fan alluvium and define six eruptive sequences in the Guadalupe Mountain area: (1) Guadalupe Mtn. lavas (dacite ~5

  16. Seismic reflection-based evidence of a transfer zone between the Wagner and Consag basins: implications for defining the structural geometry of the northern Gulf of California

    NASA Astrophysics Data System (ADS)

    González-Escobar, Mario; Suárez-Vidal, Francisco; Hernández-Pérez, José Antonio; Martín-Barajas, Arturo

    2010-12-01

    This study examines the structural characteristics of the northern Gulf of California by processing and interpreting ca. 415 km of two-dimensional multi-channel seismic reflection lines (data property of Petróleos Mexicanos PEMEX) collected in the vicinity of the border between the Wagner and Consag basins. The two basins appear to be a link between the Delfín Superior Basin to the south, and the Cerro Prieto Basin to the north in the Mexicali-Imperial Valley along the Pacific-North America plate boundary. The seismic data are consistent with existing knowledge of four main structures (master faults) in the region, i.e., the Percebo, Santa María, Consag Sur, and Wagner Sur faults. The Wagner and Consag basins are delimited to the east by the Wagner Sur Fault, and to the west by the Consag Sur Fault. The Percebo Fault borders the western margin of the modern Wagner Basin depocenter, and is oriented N10°W, dipping (on average) ˜40° to the northeast. The trace of the Santa María Fault located in the Wagner Basin strikes N19°W, dipping ˜40° to the west. The Consag Sur Fault is oriented N14°W, and dips ˜42° to the east over a distance of 21 km. To the east of the study area, the Wagner Sur Fault almost parallels the Consag Sur Fault over a distance of ˜86 km, and is oriented N10°W with an average dip of 59° to the east. Moreover, the data provide new evidence that the Wagner Fault is discontinuous between the two basins, and that its structure is more complex than previously reported. A structural high separates the northern Consag Basin from the southern Wagner Basin, comprising several secondary faults oriented NE oblique to the main faults of N-S direction. These could represent a zone of accommodation, or transfer zone, where extension could be transferred from the Wagner to the Consag Basin, or vice versa. This area shows no acoustic basement and/or intrusive body, which is consistent with existing gravimetric and magnetic data for the region.

  17. Early-stage rifting of the northern Tyrrhenian Sea Basin: Results from a combined wide-angle and multichannel seismic study

    NASA Astrophysics Data System (ADS)

    Moeller, S.; Grevemeyer, I.; Ranero, C. R.; Berndt, C.; Klaeschen, D.; Sallares, V.; Zitellini, N.; Franco, R.

    2013-08-01

    Extension of the continental lithosphere leads to the formation of rift basins and ultimately may create passive continental margins. The mechanisms that operate during the early stage of crustal extension are still intensely debated. We present the results from coincident multichannel seismic and wide-angle seismic profiles that transect across the northern Tyrrhenian Sea Basin. The profiles cross the Corsica Basin (France) to the Latium Margin (Italy) where the early-rift stage of the basin is well preserved. We found two domains, each with a distinct tectonic style, heat flow and crustal thickness. One domain is the Corsica Basin in the west that formed before the main rift phase of the northern Tyrrhenian Sea opening (˜8-4 Ma). The second domain is rifted continental crust characterized by tilted blocks and half-graben structures in the central region and at the Latium Margin. These two domains are separated by a deep (˜10 km) sedimentary complex of the eastern portion of the Corsica Basin. Travel-time tomography of wide-angle seismic data reveals the crustal architecture and a subhorizontal 15-17 ± 1 km deep Moho discontinuity under the basin. To estimate the amount of horizontal extension we have identified the pre-, syn-, and post-tectonic sedimentary units and calculated the relative displacement of faults. We found that major faults initiated at angles of 45°-50° and that the rifted domain is horizontally stretched by a factor of β ˜ 1.3 (˜8-10 mm/a). The crust has been thinned from ˜24 to ˜17 km indicating a similar amount of extension (˜30%). The transect represents one of the best imaged early rifts and implies that the formation of crustal-scale detachments, or long-lived low-angle normal faults, is not a general feature that controls the rift initiation of continental crust. Other young rift basins, like the Gulf of Corinth, the Suez Rift or Lake Baikal, display features resembling the northern Tyrrhenian Basin, suggesting that half

  18. Did Oligocene crustal thickening precede basin development in northern Thailand? A geochronological reassessment of Doi Inthanon and Doi Suthep

    NASA Astrophysics Data System (ADS)

    Gardiner, Nicholas J.; Roberts, Nick M. W.; Morley, Christopher K.; Searle, Michael P.; Whitehouse, Martin J.

    2016-01-01

    The Doi Inthanon and Doi Suthep metamorphic core complexes in northern Thailand are comprised of amphibolite-grade migmatitic gneisses mantled by lower-grade mylonites and metasedimentary sequences, thought to represent Cordilleran-style core complexes exhumed through the mobilization of a low-angle detachment fault. Previous studies have interpreted two metamorphic events (Late Triassic and Late Cretaceous), followed by ductile extension between the late Eocene and late Oligocene, a model which infers movement on the detachment at ca. 40 Ma, and which culminates in a rapid unroofing of the complexes in the early Miocene. The Chiang Mai Basin, the largest such Cenozoic Basin in the region, lies immediately to the east. Its development is related to the extension observed at Doi Inthanon and Doi Suthep, however it is not definitively dated, and models for its development have difficulty reconciling Miocene cooling ages with Eocene detachment movement. Here we present new in-situ LA-ICP-MS and SIMS U-Pb age data of zircon and monazite grains from gneiss and leucogranite samples taken from Doi Inthanon and Doi Suthep. Our new zircon data exhibit an older age range of 221-210 Ma, with younger ages of ca. 72 Ma, and 32-26 Ma. Our monazite data imply an older age cluster at 83-67 Ma, and a younger age cluster of 34-24 Ma. While our data support the view of Indosinian basement being reworked in the Cretaceous, they also indicate a late Eocene-Oligocene tectonothermal event, resulting in prograde metamorphism and anatexis. We suggest that this later event is related to localized transpressional thickening associated with sinistral movement on the Mae Ping Fault, coupled with thickening at the restraining bend of the Mae Yuan Fault to the immediate west of Doi Inthanon. Further, this upper Oligocene age limit from our zircon and monazite data would imply a younger Miocene constraint on movement of the detachment, which, when combined with the previously recorded Miocene

  19. Morphology, sedimentary features and evolution of a large palaeo submarine canyon in Qiongdongnan basin, Northern South China Sea

    NASA Astrophysics Data System (ADS)

    Li, Xiangquan; Fairweather, Luke; Wu, Shiguo; Ren, Jianye; Zhang, Hongjie; Quan, Xiayun; Jiang, Tao; Zhang, Cheng; Su, Ming; He, Yunlong; Wang, Dawei

    2013-01-01

    The large Miocene-aged palaeo canyon that extents through the Qiongdongnan basin (QDNB) and Yinggehai basin (YGHB) of Northern South China Sea has been of considerable interest both economically and scientifically over the past decade. Stemmed from this, significant research has been employed into understanding the mechanism for its existence, incision, and sedimentary fill, yet debate remains. In the first case the canyon itself is actually quite anomalous. Alone from the size (over 570 km in length and more than 8 km in width (Yuan et al., 2009)), which is considerably more than most ancient deep-water channels (REFS), the canyon's sedimentary fill is also distinctly different. Some explanations have been given to explain the canyon's origin and existence, these include increased sediment supply from the Red River which is genetically linked to uplift of the Tibetan Plateau, lowstand turbidite and mass-transport activity, reactivation and dextral displacement of the Red River Fault zone inducing erosive gravity-flows, regional tilt of the QDNB and YGHB, paleo-seafloor morphology and seal-level fluctuations. With the application of new data obtained from interpretations of a large number of 2D seismic profiles, core and well log data, and tectonic and sedimentary analysis this contribution aims to: (1) Present models to explain the Canyon's sedimentary fill and basin plain deposits, which provided significant understanding of processes pre-, syn- and post-incision and; (2) review the plausibility and likelihood of each of the controlling mechanisms, hoping to shed light on this controversial aspect. We conclude that the final erosive event that shaped the canyon is dated at 5.5 Ma. The Canyon's unusual fill is a product of variation in the interaction between turbidity currents and MTD that blocked the canyon's axis, and the reduction in gravity flow energy through time; and therefore the complete succession represents one major erosive and cut event at 5.5 Ma and

  20. Growth of the Zagros Fold-Thrust Belt and Foreland Basin, Northern Iraq, Kurdistan

    NASA Astrophysics Data System (ADS)

    Koshnaw, Renas; Horton, Brian; Stockli, Daniel; Barber, Douglas; Ghalib, Hafidh; Dara, Rebwar

    2016-04-01

    The Zagros orogenic belt in the Middle Eastern segment of the Alpine-Himalayan system is among the youngest seismically active continental collision zones on Earth. However, due to diachronous and incremental collision, the precise ages and kinematics of shortening and deposition remain poorly understood. The Kurdistan region of the Zagros fold-thrust belt and foreland basin contains well-preserved Neogene wedge-top and foredeep deposits that include clastic nonmarine fill of the Upper Fars, Lower Bakhtiari, and Upper Bakhtiari Formations. These deposits record significant information about orogenic growth, fold-thrust dynamics, and advance of the deformation front. Thermochronologic and geochronologic data from thrust sheets and stratigraphic archives combined with local earthquake data provide a unique opportunity to address the linkages between surface and subsurface geologic relationships. This research seeks to constrain the timing and geometry of exhumation and deformation by addressing two key questions: (1) Did the northwestern Zagros fold-thrust belt evolve from initial thin-skinned shortening to later thick-skinned deformation or vice-versa? (2) Did the fold-thrust belt advance steadily under critical/supercritical wedge conditions involving in-sequence thrusting or propagate intermittently under subcritical conditions with out-of-sequence deformation? From north to south, apatite (U-Th)/He ages from the Main Zagros Thrust, the Mountain Front Flexure (MFF), and additional frontal thrusts suggest rapid exhumation by ~10 Ma, ~5 Ma, and ~8 Ma respectively. Field observations and seismic sections indicate progressive tilting and development of growth strata within the Lower Bakhtiari Formation adjacent to the frontal thrusts and within the Upper Bakhtiari Formation near the MFF. In the Kurdistan region of Iraq, a regional balanced cross section constrained by new thermochronometric results, proprietary seismic reflection profiles, and earthquake hypocenters

  1. GIS-based RUSLE modelling of Leça River Basin, Northern Portugal, in two different grid scales

    NASA Astrophysics Data System (ADS)

    Petan, S.; Barbosa, J. L. P.; Mikoš, M.; Pinto, F. T.

    2009-04-01

    Soil erosion is the mechanical degradation caused by the natural forces and it is also influenced by human activities. The biggest threats are the related loss of fertile soil for food production and disturbances of aquatic ecosystems which could unbalance the environment in a wider range. Thus, precise predictions of the soil erosion processes are of a major importance for preventing any kind of environmental degradations. Spatial GIS modelling and erosion maps greatly support the policymaking for land planning and environmental management. Leça River Basin, with a surface of 187 km2, is located in the Northern part of Portugal and it was chosen for testing RUSLE methodology for soil loss prediction and identifying areas with high potential erosion. The model involves daily rainfall data for rainfall erosivity estimation, topographic data for slope length and steepness factor calculation, soil type data, CORINE land cover and land use data. The raster layer model was structured in two different scales: with a grid cell size of 10 and 30 meters. The similarities and differences between the model results of both scales were evaluated.

  2. Model of the development of the Rif/Prerif basin and implications for the hydrocarbon prospectivity of northern Morocco

    SciTech Connect

    Munro, S.E. )

    1988-08-01

    The geology of northern Morocco is dominated by the mountainous areas of the Rif and the Prerif. These mountains form the southern half of the Rif-Betic arc. The surface geology of the Prerif area is characterized by the allochthonous mass of the Prerif nappe, which is variously described as a tectonic melange, an olistostrome, or a combination of the two. It is structurally extremely complex and this fact has, in the past, deterred international companies from exploring for oil in the area. Recently acquired seismic data shed some light on the structure within the Prerif nappe; it tends to support a tectonic origin rather than one based on gravity drive. In this framework, a model is proposed for the tectonic development of the Rif/Prerif in particular and the Rif/Betic arc in general, based upon the interaction of the Iberian, Moroccan, and Alboran plates from the Triassic to the Neogene. The seismic data also show, however, that a sizeable Mesozoic trough exists beneath the mass of the Prerif nappe. In addition, several piggyback basins are developed above the nappe. Therefore, considerable potential for oil and gas discoveries exists both above and below the nappe.

  3. Mammalian community response to the latest Paleocene thermal maximum: An isotaphonomic study in the northern Bighorn Basin, Wyoming

    NASA Astrophysics Data System (ADS)

    Clyde, William C.; Gingerich, Philip D.

    1998-11-01

    New stratigraphic and paleontological information from the McCullough Peaks, northern Bighorn Basin, Wyoming, is incorporated into an isotaphonomic faunal database and used to investigate the impact of the latest Paleocene thermal maximum and coincident earliest Wasatchian immigration event on local mammalian community structure. Surface collections from Willwood Formation overbank deposits provide taphonomically consistent and stratigraphically resolved samples of the medium- to large-sized components of underlying mammalian communities. Rarefaction shows that the immigration event caused an abrupt and dramatic increase in species richness and evenness. After this initial increase, diversity tapered off to more typical Wasatchian levels that were still higher than those in the preceding Clarkforkian. Wasatchian immigrants were rapidly incorporated into the new community organization, representing ˜20% of the taxa and ˜50% of the individuals. Immigrant taxa generally had larger body sizes and more herbivorous and frugivorous dietary habits compared to endemic taxa, causing significant turnover in body-size structure and trophic structure. There was a significant short-term body-size decrease in many lineages that may have been prompted by the elevated temperatures and/or decreased latitudinal thermal gradients during the latest Paleocene thermal maximum. Rapid short-term climatic change (transient climates) and associated biotic dispersal can have abrupt and long-lasting effects on mammalian community evolution.

  4. Reconsidering the taxonomy of the Black-Faced Uacaris, Cacajao melanocephalus group (Mammalia: Pitheciidae), from the northern Amazon Basin.

    PubMed

    Ferrari, Stephen F; Guedes, Patrícia G; Figueiredo-Ready, Wilsea M B; Barnett, Adrian A

    2014-01-01

    The black-faced uacaris are a poorly known group of platyrrhine monkeys from the Rio Negro basin in northwestern Amazonia. Originally described as two distinct species-Cacajao melanocephalus (Humboldt 1812) and Cacajao ouakary (Spix 1823)-from opposite banks of the Negro, they were treated as a single species until the end of the twentieth century, when molecular studies reconfirmed their status as true species. One of these studies not only nominated a third (northern) species, Cacajao ayresi Boubli et al. 2008, but also identified C. ouakary as a junior synonym of C. melanocephalus, resulting in the introduction of a new nomen, Cacajao hosomi Boubli et al. 2008. In the present study, additional evidence on morphological and zoogeographic variables is analyzed, which indicates that C. ouakary should be reinstated, and supports the nomination of a neotype of C. melanocephalus. The molecular and zoogeographic data on the species status of the ayresi form are also re-assessed, leading to the conclusion that, on the basis of the evidence available at the present time, this form should be considered a subspecies of C. melanocephalus. A new taxonomic arrangement is proposed, which recognizes two species, C. ouakary and C. melanocephalus, the latter with two subspecies, C. m. melanocephalus and C. m. ayresi. PMID:25283664

  5. Quantification and multivariate analysis of water erosion in the Mediterranean region. A case study of the Isser basin. northern Algeria

    NASA Astrophysics Data System (ADS)

    Zeggane, Houari; Boutoutaou, Djamel

    2016-07-01

    In the Mediterranean region, the specifisity of erosion stems from a particularly contrasted climate, drought, and from summer and autumn severe thunderstorms. The process of erosion generates substantial loss of soil and affects any kind of crop. The adopted approach aims to establish regression models in order to highlight the relationship between solid and liquid flows at four measurement stations in the Isser catchement area, northern Ageria. The Power Model seems to explain this relationship. The quantification and temporal analysis of solid matter transport showed that the rates of erosion are high along the study area. The annual mean solid matter transport for the whole basin is about 2 200 t/km2.year, of which the main part is recorded in autumn during peak flows. The different factors involved in the process of water erosion are determined in advance in order to establish a model between the predictand variable, which is the specific erosion, and other predictors. Besides, a functional relationship has been highlighted between water erosion and the mean slope, the drainage density and the lithology index.

  6. Seismicity in the Raton Basin of Southern Colorado and Northern New Mexico, USA, as Recorded by a Local Array

    NASA Astrophysics Data System (ADS)

    Macartney, H.

    2013-12-01

    Microseismic events (Basin of southern Colorado and northern New Mexico, USA, over a period of 18 months following the occurrence of a 5.3 magnitude event near Trinidad CO in August, 2011. Micro-seismicity was observed in the region, concentrated in six clusters at depths of 6-12 km below the surface, deep in the basement, and 4-10 km below zones used for fluid disposal from an overlying coalbed methane natural gas field. Clusters are separated from disposal zones by large aseismic intervals. The clusters are mixed in character; both planar and elongate amorphous swarms, some continually active and some as short-lived bursts, with larger initial events tending to occur deeper and smaller after-shocks propagating upward and away from the nucleating events. Magnitudes range between 0 and 3, with the vast majority being less than 1.5M. Most of the clusters have no disposal wells above and no seismic activity was correlated with changes in fluid disposal. No seismicity was detected from hydraulic fracturing operations.

  7. [Monitoring of soil salinization in Northern Tarim Basin, Xinjiang of China in dry and wet seasons based on remote sensing].

    PubMed

    Yao, Yuan; Ding, Jian-Li; Zhang, Fang; Wang, Gang; Jiang, Hong-Nan

    2013-11-01

    Soil salinization is one of the most important eco-environment problems in arid area, which can not only induce land degradation, inhibit vegetation growth, but also impede regional agricultural production. To accurately and quickly obtain the information of regional saline soils by using remote sensing data is critical to monitor soil salinization and prevent its further development. Taking the Weigan-Kuqa River Delta Oasis in the northern Tarim River Basin of Xinjiang as test object, and based on the remote sensing data from Landsat-TM images of April 15, 2011 and September 22, 2011, in combining with the measured data from field survey, this paper extracted the characteristic variables modified normalized difference water index (MNDWI), normalized difference vegetation index (NDVI), and the third principal component from K-L transformation (K-L-3). The decision tree method was adopted to establish the extraction models of soil salinization in the two key seasons (dry and wet seasons) of the study area, and the classification maps of soil salinization in the two seasons were drawn. The results showed that the decision tree method had a higher discrimination precision, being 87.2% in dry season and 85.3% in wet season, which was able to be used for effectively monitoring the dynamics of soil salinization and its spatial distribution, and to provide scientific basis for the comprehensive management of saline soils in arid area and the rational utilization of oasis land resources. PMID:24564152

  8. A water-resources data-network evaluation for Monterey County, California; Phase 3, Northern Salinas River drainage basin

    USGS Publications Warehouse

    Templin, W.E.; Schluter, R.C.

    1990-01-01

    This report evaluates existing data collection networks and possible additional data collection to monitor quantity and quality of precipitation, surface water, and groundwater in the northern Salinas River drainage basin, California. Of the 34 precipitation stations identified, 20 were active and are concentrated in the northwestern part of the study area. No precipitation quality networks were identified, but possible data collection efforts include monitoring for acid rain and pesticides. Six of ten stream-gaging stations are active. Two surface water quality sites are sampled for suspended sediment, specific conductance, and chloride; one U.S. Geological Survey NASOAN site and one site operated by California Department of Water Resources make up the four active sampling locations; reactivation of 45 inactive surface water quality sites might help to achieve objectives described in the report. Three local networks measure water levels in 318 wells monthly, during peak irrigation, and at the end of the irrigation season. Water quality conditions are monitored in 379 wells; samples are collected in summer to monitor saltwater intrusion near Castroville and are also collected annually throughout the study area for analysis of chloride, specific conductance, and nitrate. An ideal baseline network would be an evenly spaced grid of index wells with a density of one per section. When baseline conditions are established, representative wells within the network could be monitored periodically according to specific data needs. (USGS)

  9. Hydrogeochemistry of co-occurring geogenic arsenic, fluoride and iodine in groundwater at Datong Basin, northern China.

    PubMed

    Pi, Kunfu; Wang, Yanxin; Xie, Xianjun; Su, Chunli; Ma, Teng; Li, Junxia; Liu, Yaqing

    2015-12-30

    Abnormal levels of co-occurring arsenic (As), fluorine (F) and iodine (I) in groundwater at Datong Basin, northern China are geochemically unique. Hydrochemical, (18)O and (2)H characteristics of groundwater were analyzed to elucidate their mobilization processes. Aqueous As, F and I ranged from 5.6 to 2680 μg/L, 0.40 to 3.32 mg/L and 10.1 to 186 μg/L, respectively. High As, F and I groundwater was characterized by moderately alkaline, high HCO3(-), Fe(II), HS(-) and DOC concentrations with H3AsO3, F(-) and I(-) as the dominant species. The plots of δ(18)O values and Cl/Br ratios versus Cl(-) concentration demonstrate build-up of more oxidizing conditions and precipitation of carbonate minerals induced by vertical recharge and intensive evaporation facilitate As retention to Fe (hydr) oxides, but enhance F and I mobilization from host minerals. Under reducing conditions, As and I can be simultaneously released via reductive dissolution of Fe (hydr) oxides and reduction of As(V) and I(V) while F migration may be retarded due to effects of dissolution-precipitation equilibria between carbonate minerals and fluorite. With the prevalence of sulfate-reducing condition and lowering of HCO3(-) concentration, As and I may be sequestered by Fe(II) sulfides and F is retained to fluorite and on clay mineral surfaces. PMID:26282220

  10. Geohydrology of the northern Louisiana salt-dome basin pertinent to the storage of radioactive wastes; a progress report

    USGS Publications Warehouse

    Hosman, R.L.

    1978-01-01

    Salt domes in northern Louisiana are being considered as possible storage sites for nuclear wastes. The domes are in an area that received regional sedimentation through early Tertiary (Eocene) time with lesser amounts of Quaternary deposits. The Cretaceous-Tertiary accumulation is a few thousand feet thick; the major sands are regional aquifers that extend far beyond the boundaries of the salt-dome basin. Because of multiple aquifers, structural deformation, and variations in the hydraulic characteristics of cap rock, the ground-water hydrology around a salt dome may be highly complex. The Sparta Sand is the most productive and heavily used regional aquifer. It is either penetrated by or overlies most of the domes. A fluid entering the Sparta flow system would move toward one of the pumping centers, all at or near municipalities that pump from the Sparta. Movement could be toward surface drainage where local geologic and hydrologic conditions permit leakage to the surface or to a surficial aquifer. (Woodard-USGS)

  11. INNOVATIVE METHODOLOGY FOR DETECTION OF FRACTURE-CONTROLLED SWEET SPOTS IN THE NORTHERN APPALACHIAN BASIN

    SciTech Connect

    Robert Jacobi

    2005-05-31

    The primary goal was to enter Phase 2 by analyzing geophysical logs and sidewall cores from a verification well drilled into the Trenton/Black River section along lineaments. However, the well has not yet been drilled; Phase 2 has therefore not been accomplished. We have switched oil and gas exploration and production companies, and are now in continued negotiations with Fortuna concerning a plan to retrieve 18 m of horizontal core across a gas-charged zone in the Trenton/Black River in central New York State, the ''hottest'' play in the Appalachian Basin. We completed analysis of remote sensing images to determine, by using the weights-of-evidence method, which images and processing techniques result in lineaments that best reflect the fractures found in outcrop. The conclusions do not differ from the preliminary conclusions reported in the previous progress report. These data continue to demonstrate that integration of aeromagnetic and remote sensing lineaments, surface structure, and soil gas and seismic allows us to extrapolate Trenton-Black River trends away from confirmatory seismic lines.

  12. 26Al/10Be burial dating of Xujiayao-Houjiayao site in Nihewan Basin, northern China.

    PubMed

    Tu, Hua; Shen, Guanjun; Li, Haixu; Xie, Fei; Granger, Darryl E

    2015-01-01

    The Xujiayao-Houjiayao site in Nihewan Basin is among the most important Paleolithic sites in China for having provided a rich collection of hominin and mammalian fossils and lithic artifacts. Based on biostratigraphical correlation and exploratory results from a variety of dating methods, the site has been widely accepted as early Upper Pleistocene in time. However, more recent paleomagnetic analyses assigned a much older age of ∼500 ka (thousand years). This paper reports the application of 26Al/10Be burial dating as an independent check. Two quartz samples from a lower cultural horizon give a weighted mean age of 0.24 ± 0.05 Ma (million years, 1σ). The site is thus younger than 340 ka at 95% confidence, which is at variance with the previous paleomagnetic results. On the other hand, our result suggests an age of older than 140 ka for the site's lower cultural deposits, which is consistent with recent post-infrared infrared stimulated luminescence (pIR-IRSL) dating at 160-220 ka. PMID:25706272

  13. 26Al/10Be Burial Dating of Xujiayao-Houjiayao Site in Nihewan Basin, Northern China

    PubMed Central

    Tu, Hua; Shen, Guanjun; Li, Haixu; Xie, Fei; Granger, Darryl E.

    2015-01-01

    The Xujiayao-Houjiayao site in Nihewan Basin is among the most important Paleolithic sites in China for having provided a rich collection of hominin and mammalian fossils and lithic artifacts. Based on biostratigraphical correlation and exploratory results from a variety of dating methods, the site has been widely accepted as early Upper Pleistocene in time. However, more recent paleomagnetic analyses assigned a much older age of ∼500 ka (thousand years). This paper reports the application of 26Al/10Be burial dating as an independent check. Two quartz samples from a lower cultural horizon give a weighted mean age of 0.24 ± 0.05 Ma (million years, 1σ). The site is thus younger than 340 ka at 95% confidence, which is at variance with the previous paleomagnetic results. On the other hand, our result suggests an age of older than 140 ka for the site’s lower cultural deposits, which is consistent with recent post-infrared infrared stimulated luminescence (pIR-IRSL) dating at 160–220 ka. PMID:25706272

  14. Eustatic and salt-tectonic controls on sequence development, northern east Texas basin

    SciTech Connect

    Demarest, J.M. II; Ehman, K.D. )

    1990-05-01

    Detailed log and seismic interpretation of the Woodbine/Eagle Ford interval in the vicinity of the Hainesville dome of east Texas resulted in the recognition of salt-tectonic and eustatic controls on depositional patterns. Major cycles of transgression and regression within this interval correspond to eustatic cycles recognized worldwide. The late Cenomanian lowstand resulted in the deposition of fluvial Woodbine sandstones above the marine Maness Shale (93 Ma). Transgressive and highstand marine shales of the Eagle Ford rest above the fluvial Woodbine sands. A late Turonian sequence boundary (90 Ma) separates the highstand shales of the Eagle Ford from the lowstand and transgressive marine sands and shales of the sub-Clarksville. The section is capped by the transgressive Austin Chalk. Between the Woodbine (93 Ma) and the sub-Clarksville (90 Ma), the Hainesville salt dome evolved from a nonpiercement to a piercement salt dome. This evolution of the Hainesville dome caused the area adjacent to the present-day dome to change from a structural high to a rapidly subsiding basin adjacent to the dome. With the rapid loss of salt into the piercement dome around 92 Ma, conditions adjacent to the dome changed from subaerial onlapping of the Woodbine fluvial facies to distal downlapping of the Eagle Ford marine shales into the center of the Hainesville withdrawal syncline. Thus, the detailed timing of salt movement is recorded in the thickness and facies distribution around the salt dome within the context of major global eustatic cycles.

  15. Mesozoic deformation in the Chaoshan Depression of the Pearl River Mouth Basin, northern South China Sea

    NASA Astrophysics Data System (ADS)

    Zhang, Jiangyang; Sun, Zhen; Zhang, Yunfan; Li, Fucheng

    2016-05-01

    Newly collected, high resolution multi-beam sonar data are combined with previous bathymetry data to produce an improved bathymetric map of Shatsky Rise oceanic plateau. Bathymetry data show that two massifs within Shatsky Rise are immense central volcanoes with gentle flank slopes declining from a central summit. Tamu Massif is a slightly elongated, dome-like volcanic edifice; Ori Massif is square shaped and smaller in area. Several down-to-basin normal faults are observed on the western flank of the massifs but they do not parallel the magnetic lineations, indicating that these faults are probably not related to spreading ridge faulting. Moreover, the faults are observed only on one side of the massifs, which is contrary to expectations from a mechanism of differential subsidence around the massif center. Multi-beam data show many small secondary cones with different shapes and sizes that are widely-distributed on Shatsky Rise massifs, which imply small late-stage magma sources scattered across the surface of the volcanoes in the form of lava flows or explosive volcanism. Erosional channels occur on the flanks of Shatsky Rise volcanoes due to mass wasting and display evidence of down-slope sediment movement. These channels are likely formed by sediments spalling off the edges of summit sediment cap.

  16. The Manciano Sandstone: a shoreface deposit of Miocene basins of the Northern Apennines, Italy

    NASA Astrophysics Data System (ADS)

    Martini, I. P.; Cascella, A.; Rau, A.

    1995-09-01

    Well exposed, diamond-line cut, quarry-exposures of the Manciano Sandstone allow a detailed analysis of sandy, fossiliferous, nearshore deposits of the shelf of the Northern Apennines. The Manciano Sandstone is characterized by medium to very coarse, washed, fairly well sorted, lithic sandstone, with thin interlayers of sandy conglomerates. It displays two principal, rhythmically alternating sandy facies: (a) slightly burrowed (mostly Macaronichnus, Ophiomorpha, Skolithos) units, trough cross-bedded, locally showing possible tidal bundles with few whole Scutella (echinoid) shells reworked on foresets, or occasional large-scale (approximately 2 m) planar cross-bedded, bar-accretion units; and (b) slightly finer, darker-coloured reddish-brown sandstone units, heavily bioturbated ( Cruziana-Skolithos) ichnofauna) representing slightly more sheltered settings. Large oysters are present in near-living position in a few thin layers and, more commonly, as reworked, comminuted fragments in sandy layers. Many calcareous pebbles and oyster fragments are bored. Other fossils consist of echinoids ( Scutella), some balanids and reworked foraminifera and bryozoa. The Manciano sands were deposited primarily in a wave-dominated shoreface, containing migrating bars/ridges and affected by wave-induced, possibly tidal-enhanced currents. This tidal influence confirms the opening of the Miocene Apenninic Sea to oceans, both the developing Atlantic Ocean to the west and, through a long, narrow seaway, the Asian portion of the Tethys Sea to the east.

  17. Structural architecture and tectonic evolution of the Maghara inverted basin, Northern Sinai, Egypt

    NASA Astrophysics Data System (ADS)

    Moustafa, Adel R.

    2014-05-01

    Large NE-SW oriented asymmetric inversion anticlines bounded on their southeastern sides by reverse faults affect the exposed Mesozoic and Cenozoic sedimentary rocks of the Maghara area (northern Sinai). Seismic data indicate an earlier Jurassic rifting phase and surface structures indicate Late Cretaceous-Early Tertiary inversion phase. The geometry of the early extensional fault system clearly affected the sense of slip of the inverted faults and the geometry of the inversion anticlines. Rift-parallel fault segments were reactivated by reverse slip whereas rift-oblique fault segments were reactivated as oblique-slip faults or lateral/oblique ramps. New syn-inversion faults include two short conjugate strike-slip sets dissecting the forelimbs of inversion anticlines and the inverted faults as well as a set of transverse normal faults dissecting the backlimbs. Small anticline-syncline fold pairs ornamenting the steep flanks of the inversion anticlines are located at the transfer zones between en echelon segments of the inverted faults.

  18. Rayleigh-wave ellipticity and shallow structure in sedimentary basins: the Po Plain (northern Italy)

    NASA Astrophysics Data System (ADS)

    Berbellini, A.; Morelli, A.; Ferreira, A. M. G.

    2015-12-01

    The amplitude ratio between horizontal and vertical components of Rayleigh waves (also known as ellipticity) is in principle uniquely sensitive to local earth structure beneath each recording station. Rayleigh wave ellipticity is mostly influenced by the shallowest layers, so it can be effectively used to infer the structure of the uppermost crust, with particular relevance for sedimentary environments. We implement an automatic method to measure Rayleigh wave ellipticity, and extensively apply it to teleseismic records from the northern part of Italy, for a period range between 10s and 130s. As expected, no appreciable correlation with epicenter distance or azimuth can be seen, but rather a strong correlation with local structure: generally high horizontal to vertical amplitude ratios are seen in sedimentary settings, with respect to Alpine and Apenninic crystalline-rock terrains. We verify that shortest usable period may be limited by very low shear-wave velocity in shallow sediments, when the assumed retrograde elliptical particle motion polarisation for the fundamental mode breaks off. The highly non-linear sensitivity of frequency-dependent ellipticity curves can then be inverted using a direct search method to infer shear wave velocity profiles below stations. By comparing our results with local a priori geological information we show that robust information can indeed be retrieved.

  19. Preliminary Paleomagnetic Results From Tertiary Rocks of Sedimentary Basins in Northern Vietnam and Tectonic Implications

    NASA Astrophysics Data System (ADS)

    Zhao, X.; Liu, Z.; Le, K.; Zhao, Y.; Hoang, V.; Phan, D.

    2013-12-01

    The South China Sea (SCS) is a classical representative of western Pacific marginal seas and contains records of Cenozoic tectonic events of SE Asia. The SCS has been at the center stage of many first-order tectonic and paleoclimatic events since the Mesozoic. One clear way to evaluate the relationship between tectonic uplift and climate is to study the resulting changes in marginal sea strata. To this end, we will conduct an integrated paleomagnetic and stratigraphic investigation on Tertiary strata from Phu Tho and Yen Bai provinces, northern Vietnam to help understand the causal linkages among geological and tectonic events and their consequences related to the SCS evolution. We will collect paleomagnetic samples at sections where the most continuous, complete, and best preserved Eocene-Miocene successions. Standard paleomagnetic field tests, such as the fold, reversal, and conglomerate tests will be used to determine the relative age of the magnetization. In addition to detailed thermal and alternating field demagnetization and analysis, selected samples will also be subjected to several rock magnetic analyses to identify magnetic carriers in the rocks. In particular, the hysteresis parameters Jrs/Js and Hcr /Hc ratios will enable us to apply techniques for detecting low-temperature remagnetization of sedimentary rocks. Preliminary finding of this ongoing project will be presented.

  20. Technological improvements in the field-based monitoring of glaciers in the Huasco basin, Northern Chile

    NASA Astrophysics Data System (ADS)

    Cisternas, Sebastián; Uribe, José; Carrión, Daniela; Rivera, Andrés; Corripio, Javier

    2014-05-01

    Difficulties with the terrain, weather conditions and accessibility makes high altitude field-based glacier monitoring (>4000 m.a.s.l) particularly challenging. Due to this field measurements are often incomplete and temporally limited when available. Given the importance of temporal analyses when monitoring glacierised environments (especially those that are directly influenced by human activities such as mining) the development and improvement of field-based monitoring techniques is thus essential. Here a series of field technologies are presented that are intended to improve the monitoring of glaciers in the Pascua Lama mining project, Northern Chile (29º18'S , 70º03'W). Efforts focus on monitoring changes in the energy balance and the spatial distribution of albedo variation over glacier surfaces. Technological innovations are described in the use of: (1) meteorological networks (automatic weather stations) - improved for better transmission in unfavourable weather conditions through the use of high frequency portions of the electromagnetic spectrum; (2) Non-metric fixed camera systems - improved to allow continuous monitoring of glacier albedo variations by using high frequency transmission over the Industrial, Scientific and Medical (ISM) band and low power servers based on ARM architecture. The implementation of these technologies has so far successfully improved data acquisition were applied and offers a robust alternative to the traditional field-based glacier monitoring methods used previously.

  1. Small valley glaciers and the effectiveness of the glacial buzzsaw in the northern Basin and Range, USA

    NASA Astrophysics Data System (ADS)

    Foster, David; Brocklehurst, Simon H.; Gawthorpe, Rob L.

    2008-12-01

    The glacial buzzsaw hypothesis suggests that efficient erosion limits topographic elevations in extensively glaciated orogens. Studies to date have largely focussed on regions where large glaciers (tens of kilometres long) have been active. In light of recent studies emphasising the importance of lateral glacial erosion in lowering peaks and ridgelines, we examine the effectiveness of small glaciers in limiting topography under both relatively slow and rapid rock uplift conditions. Four ranges in the northern Basin and Range, Idaho, Montana, and Wyoming, USA, were chosen for this analysis. Estimates of maximum Pleistocene slip rates along normal faults bounding the Beaverhead-Bitterroot Mountains (~ 0.14 mm y - 1 ), Lemhi Range (~ 0.3 mm y - 1 ) and Lost River Range (~ 0.3 mm y - 1 ) are an order of magnitude lower than those on the Teton Fault (~ 2 mm y - 1 ). We compare the distribution of glacial erosion (estimated from cirque floor elevations and last glacial maximum (LGM) equilibrium line altitude (ELA) reconstructions) and fault slip rate with three metrics of topography in each range: the along-strike maximum elevation swath profile, hypsometry, and slope-elevation profiles. In the slowly uplifting Beaverhead-Bitterroot Mountains, and Lemhi and Lost River Ranges, trends in maximum elevation parallel ELAs, independent of variations in fault slip rate. Maximum elevations are offset ~ 500 m from LGM ELAs in the Lost River Range, Lemhi Range, and northern Beaverhead-Bitterroot Mountains, and by ~ 350 m in the southern Beaverhead-Bitterroot Mountains, where glacial extents were less. The offset between maximum topography and mean Quaternary ELAs, inferred from cirque floor elevations, is ~ 350 m in the Lost River and Lemhi Ranges, and 200-250 m in the Beaverhead-Bitterroot Mountains. Additionally, slope-elevation profiles are flattened and hypsometry profiles show a peak in surface areas close to the ELA in the Lemhi Range and Beaverhead-Bitterroot Mountains

  2. Characterization of submarine canyon bathymetries in northern Ionian Sea, Italy, using sediment geochemical variation induced by transportation distance and basin depth

    NASA Astrophysics Data System (ADS)

    Francesco, Perri; Tohru, Ohta; Salvatore, Critelli

    2015-07-01

    Geochemical data of marine mud sediments collected from the Esaro, Neto and Corigliano canyons in the northern Ionian Sea (southern Italy) were investigated in order to characterize canyon bathymetry types. Mud sample compositions analyzed by the principal component analysis (PCA) provided useful information for the morphology of the depositional area of the northern Ionian Sea. The use of sediment geochemical data as well as transportation distance and depth as input variables for PCA enabled the extraction of following latent variables: basin depth (PC1), sedimentation rate (PC2) and transportation distance (PC3). Based on these results, we further developed geochemical indices that can estimate basin depth (F1), sedimentation rate (F2) and transportation distance (F3); these functions can be solely calculated from the elemental concentration data of the mud samples. Since these F1, F2 and F3 functions are mathematically independent variables, they facilitate more precise characterization of individual canyon types. That is, the Esaro Canyon is regarded as a sediment-starved deep canyon characterized by a single source area; the Neto Canyon can be seen as a deeply sloped submarine apron system and sediments are mainly supplied by the sediment gravity flows; the Corigliano Canyon is characterized by multiple sources and moderately sloped system, whose sediments disperse mainly by traction currents. These interpretations are concordant with the basin bathymetry of the studied area. Therefore, F1, F2 and F3 functions might be applicable to any oceanic basins.

  3. Lower Permian stems as fluvial paleocurrent indicators of the Parnaíba Basin, northern Brazil

    NASA Astrophysics Data System (ADS)

    Capretz, Robson Louiz; Rohn, Rosemarie

    2013-08-01

    A comprehensive biostratinomic study was carried out with abundant stems from the Lower Permian Motuca Formation of the intracratonic Parnaíba Basin, central-north Brazil. The fossils represent a rare tropical to subtropical paleofloristic record in north Gondwana. Tree ferns dominate the assemblages (mainly Tietea, secondarily Psaronius), followed by gymnosperms, sphenophytes, other ferns and rare lycophytes. They are silica-permineralized, commonly reach 4 m length (exceptionally more than 10 m), lie loosely on the ground or are embedded in the original sandstone or siltstone matrix, and attract particular attention because of their frequent parallel attitudes. Many tree fern stems present the original straight cylindrical to slightly conical forms, other are somewhat flattened, and the gymnosperm stems are usually more irregular. Measurements of stem orientations and dimensions were made in three sites approximately aligned in a W-E direction in a distance of 27.3 km at the conservation unit "Tocantins Fossil Trees Natural Monument". In the eastern site, rose diagrams for 54 stems indicate a relatively narrow azimuthal range to SE. These stems commonly present attached basal bulbous root mantles and thin cylindrical sandstone envelopes, which sometimes hold, almost adjacent to the lateral stem surface, permineralized fern pinnae and other small plant fragments. In the more central site, 82 measured stems are preferentially oriented in the SW-NE direction, the proportion of gymnosperms is higher and cross-stratification sets of sandstones indicate paleocurrents mainly to NE and secondarily to SE. In the western site, most of the 42 measured stems lie in E-W positions. The predominantly sandy succession, where the fossil stems are best represented, evidences a braided fluvial system under semiarid conditions. The low plant diversity, some xeromorphic features and the supposedly almost syndepositional silica impregnation of the plants are coherent with marked dry

  4. Geochemistry and petrogenesis of the Belmont diabase sheet, northern Culpeper Basin, Virginia

    SciTech Connect

    Mihm, K.A.; Nielsen, R.L.

    1985-01-01

    The Belmont diabase sheet (BDS) is one of numerous hypabyssal tholeiitic intrusions common to the early Mesozoic rift valleys of the mid-Atlantic states. Petrographic, microprobe and whole rock major and trace element analyses in conjunction with limited field and geophysical evidence indicate that the BDS is a westward dipping, irregular basin-shaped intrusive sheet of high-TiO/sub 2/ quartz-normative type diabase. The bulk of the exposed portion of the BDS is fractionated relative to the chill zone composition. A semi-circular outcrop pattern of relatively high MgO rocks surrounds the main body of the BDS. These high-MgO rocks share a distinctive petrography characterized by large, anhedral OPX grains often mantled by inverted pigeonite and are interpreted as a basal cumulate zone. Drill core samples collected from the western portion of the sheet penetrate 500' of fractionated diabase without intersecting the high-MgO layer or a lower chill margin, however,subhedral grains of inverted pigeonite appear in the lowermost core samples. This suggests that the cumulate layer underlies the sheet of >500' depth on the W side and crops out up-dip to the E, N and S where the sheet margins are turned upward. Mass balance calculations indicate that the exposed high-MgO rocks may be derived from the chill margin composition by accumulation of 13% OPX + 2% CPX + 5% PLAG (AN52) and the remaining rocks of the BDS are derived through fractional crystallization of varying amounts of CPX, OPX and PLAG. Magmatic features characteristic of similar tholeiitic intrusions such as rhythmic layering and a Mg-olivine layer were not observed. However, examination of the BDS and other hypabyssal intrusions offers insight into the limitations and circumstances under which these features may be developed.

  5. Assessment of River Habitat Quality in the Hai River Basin, Northern China

    PubMed Central

    Ding, Yuekui; Shan, Baoqing; Zhao, Yu

    2015-01-01

    We applied a river habitat quality (RHQ) assessment method to the Hai River Basin (HRB); an important economic centre in China; to obtain baseline information for water quality improvement; river rehabilitation; and watershed management. The results of the assessment showed that the river habitat in the HRB is seriously degraded. Specifically; 42.41% of the sites; accounting for a river length of 3.31 × 104 km; were designated poor and bad. Habitat in the plain areas is seriously deteriorated; and nearly 50% of the sites; accounting for a river length of 1.65 × 104 km; had either poor or bad habitats. River habitat degradation was attributable to the limited width of the riparian zone (≤5 m); lower coverage of riparian vegetation (≤40%); artificial land use patterns (public and industrial land); frequent occurrence of farming on the river banks and high volumes of solid waste (nearly 10 m3); single flow channels; and rare aquatic plants (≤1 category). At the regional scale; intensive artificial land use types caused by urbanization had a significant impact on the RHQ in the HRB. RHQ was significantly and negatively correlated with farmland (r = 1.000; p < 0.01) and urban land (r = 0.998; p < 0.05); and was significantly and positively correlated with grassland and woodland (r = 1.000; p < 0.01). Intensive artificial land use; created through urbanization processes; has led to a loss of the riparian zone and its native vegetation; and has disrupted the lateral connectivity of the rivers. The degradation of the already essentially black rivers is exacerbated by poor longitudinal connectivity (index of connectivity is 2.08–16.56); caused by reservoirs and sluices. For river habitat rehabilitation to be successful; land use patterns need to be changed and reservoirs and sluices will have to be regulated. PMID:26393628

  6. Assessment of River Habitat Quality in the Hai River Basin, Northern China.

    PubMed

    Ding, Yuekui; Shan, Baoqing; Zhao, Yu

    2015-09-01

    We applied a river habitat quality (RHQ) assessment method to the Hai River Basin (HRB); an important economic centre in China; to obtain baseline information for water quality improvement; river rehabilitation; and watershed management. The results of the assessment showed that the river habitat in the HRB is seriously degraded. Specifically; 42.41% of the sites; accounting for a river length of 3.31 × 10⁴ km; were designated poor and bad. Habitat in the plain areas is seriously deteriorated; and nearly 50% of the sites; accounting for a river length of 1.65 × 10⁴ km; had either poor or bad habitats. River habitat degradation was attributable to the limited width of the riparian zone (≤5 m); lower coverage of riparian vegetation (≤40%); artificial land use patterns (public and industrial land); frequent occurrence of farming on the river banks and high volumes of solid waste (nearly 10 m³); single flow channels; and rare aquatic plants (≤1 category). At the regional scale; intensive artificial land use types caused by urbanization had a significant impact on the RHQ in the HRB. RHQ was significantly and negatively correlated with farmland (r = 1.000; p < 0.01) and urban land (r = 0.998; p < 0.05); and was significantly and positively correlated with grassland and woodland (r = 1.000; p < 0.01). Intensive artificial land use; created through urbanization processes; has led to a loss of the riparian zone and its native vegetation; and has disrupted the lateral connectivity of the rivers. The degradation of the already essentially black rivers is exacerbated by poor longitudinal connectivity (index of connectivity is 2.08-16.56); caused by reservoirs and sluices. For river habitat rehabilitation to be successful; land use patterns need to be changed and reservoirs and sluices will have to be regulated. PMID:26393628

  7. Debris flows on Belding Creek, Salmonberry River basin, northern Oregon Coast Range

    SciTech Connect

    Burris, L.M. . Dept. of Geology)

    1993-04-01

    Belding Creek, a tributary of the Salmonberry River, has experienced repeated debris flow episodes. The Salmonberry River flows through Paleocene Tillamook Basalt and is located at longitude 45[degree]43 minutes in the Northern Oregon Coast Range. On January 9, 1990, a debris flow initiated on a first order tributary of Belding Creek during a heavy precipitation event. A month later another debris flow initiated on a different first order stream under similar conditions. Both debris flows traveled for a distance of approximately 2.1 km and poured into the main Belding Creek channel washing out Belding Road which crosses the stream. Numerical data was obtained from the youngest flow deposit. The debris flow material density is 2.5 g/cm[sup 3]. It traveled at an average velocity of 2.9 m/s with a shear strength of 2.5 [times] 10[sup 4] dn/cm[sup 2], a friction angle of 4[degree], and a cohesion value of 1.4 [times] 10[sup 4] dn/cm[sup 3]. Less than 3% of the fine sediments deposited are clay and silt. Deposits from previous, older debris flow events are in and adjacent to the Belding Creek stream channel. Similar processes are evident in other major tributaries of the Salmonberry River, although these other stream channels have not shown recent activity. Each stream in the area that has experienced past debris flows similar to Belding Creek has a landslide feature at the top and follows regional lineation patterns.

  8. Quaternary hyperpycnal fans on the shelf of an active margin basin, Northern Santa Barbara Channel, California

    NASA Astrophysics Data System (ADS)

    Steel, E.; Simms, A.; Warrick, J. A.

    2013-12-01

    The small mountainous rivers draining the Transverse Ranges of southern California are known to form sediment-rich hyperpycnal plumes on the adjacent shelf during flooding events. Six fans were recently identified using sonar and lidar data in the northern Santa Barbara Channel and represent a unique opportunity to sample hyperpycnal deposits that have not been reworked or remobilized by other sedimentary processes. The two largest of these fans are those located directly offshore of Refugio and Tajiguas Creeks and are found in 20m to 70m water depths. We conducted shallow seismic surveys to image the morphology and internal architecture of the two fans. Internal reflectors define three seismic packages within the fans and isopach maps of these packages are presented. Geometries of the seismic reflections are interpreted to represent a shift from erosion of material over the most proximal fan locations to deposition of sediment with little or no erosion in distal portions. In several locations, dipping reflections can be clearly seen beneath an unconformity. Where present, this unconformity is interpreted to represent the base of the Holocene section overlying deformed Neogene strata. We report the results of a coring campaign on one of these fans designed to characterize the grain size, grain shape, and facies trends of hyperpycnal deposits. Additionally, petrology of core samples was compared to modern river samples to determine source regions. By analyzing sedimentation patterns and structures found in the fans of the Santa Barbara Channel, we hope to identify features that can be used to distinguish hyperpycnal deposition from other density-driven flows.

  9. Preliminary nannofossil and geochemical data from Jurassic black shales from the Qiangtang Basin, northern Tibet

    NASA Astrophysics Data System (ADS)

    Chen, Lan; Jenkyns, Hugh C.; Xu, Guiwen; Mattioli, Emanuela; Da, Xuejuan; Yi, Haisheng; Xia, Minquan; Zhu, Zhangxiong; Huang, Zhaohui

    2016-01-01

    This paper presents new biostratigraphic and geochemical data from the Biluo Co section in northern Tibet, which exposes Jurassic black organic-rich shales, locally containing abundant coccoliths. Because of a general lack of macrofossils, the stratigraphic ages have been a matter of debate. However, coccoliths suggest an Early Bajocian through Bathonian to possibly Early Callovian age (Middle Jurassic) for the middle-upper part of the section. In this study, a range of trace-metal paleoredox proxies is used to assess how seawater oxygen levels varied both locally and globally during the deposition of these shales. The redox-sensitive elements V, Cr, U, Ni, Cu, Mo, Co, Cd and Zn exhibit relatively high concentrations and element/Al ratios. In particular, the Ni compositions fluctuate between ∼75 ppm and ∼106 ppm and Mo between ∼1 ppm and ∼7 ppm: values that are higher than those of the post-Archean Average Shale. Palaeoproductivity proxies, such as Zn, P and Cd, which can be fixed in elevated concentrations in sediments deposited under generally reducing conditions, are also relatively enriched. Furthermore, the U-Mo concentrations and Enrichment Factors (EFs) are consistent with deposition under predominantly suboxic to weakly anoxic conditions. Scattered bivalves, however, point to at least intermittent oxic conditions on the sea floor. Based on the redox-sensitive trace-element concentrations, together with ratios (V/(V + Ni), Ni/Co and V/Cr), the formation of the Biluo Co black shales, in Tibet was probably caused by increased productivity and organic-matter flux, leading to enhanced preservation of organic material under low-oxygen conditions.

  10. Quantitative evaluation of minerals in lignites and intraseam sediments from the Achlada Basin, Northern Greece

    SciTech Connect

    Nikolaos Koukouzas; Colin R. Ward; Dimitra Papanikolaou; Zhongsheng Li

    2009-04-15

    Seven core samples (five lignite samples and two intraseam nonlignite rock samples) from the Achlada open-cut mine in northern Greece were characterized by X-ray diffraction (XRD) and X-ray fluorescence (XRF) techniques. Quantitative evaluation of the mineral phases in each sample was made from the powder X-ray diffractograms using Siroquant commercial interpretation software, which is based on Rietveld principles. The main minerals in the low-temperature ash (LTA) ash of the lignites are kaolinite and illite, with bassanite and quartz in minor proportions. The nonlignite rock samples mainly consist of illite, mica (2M1), and kaolinite (poorly ordered), along with quartz, chlorite (ferroan), feldspar (albite), rutile, and dolomite. Oriented-aggregate XRD study further shows the presence of smectite, and interstratified illite/smectite (I/S), in the clay fractions of the lignite and rock samples, with the mineral matter of the lignites being richer in kaolinite, smectite, and I/S than in mineral matter of the nonlignite materials. The differences in mineralogy between the lignite and the rock materials probably reflect selective concentration of minerals in the original peat during deposition, combined with authigenic precipitation of minerals such as kaolinite in the peat deposit. Inferred chemical analyses derived from the XRD data show reasonably good correlations with chemical data obtained by direct ash analysis, especially if the smectite and I/S are taken into account. This provides a link between mineralogical and chemical studies that may be valuable in evaluating the behavior of the lignite under different utilization conditions. 27 refs., 4 figs., 6 tabs.

  11. Subsurface structure and stratigraphy of the northwest end of the Turkana Basin, Northern Kenya Rift, as revealed by magnetotellurics and gravity joint inversion

    NASA Astrophysics Data System (ADS)

    Abdelfettah, Yassine; Tiercelin, Jean-Jacques; Tarits, Pascal; Hautot, Sophie; Maia, Marcia; Thuo, Peter

    2016-07-01

    In order to understand the subsurface stratigraphy and structure of the northwest end of the Turkana Basin, Northern Kenya Rift, we used 2-D joint inversion of magnetotelluric (MT) and gravity data acquired along 3 profiles perpendicular to the main Murua Rith-Lapur Rift Border Fault. The regional geology is characterized by a basement of Precambrian age overlain by a ≤500-m thick sandstone formation named the Lapur Sandstone of upper Cretaceous-lower Eocene in age, covered by thick rhyolitic and basaltic lavas of late Eocene-middle Miocene age, known as the "Turkana Volcanics". Final interpretation of the resistivity and density models, until 5 km depth, obtained by the joint inversion approach confirms the previous general knowledge about the half-graben geometry of the northern part of the Turkana Basin. The main Murua Rith-Lapur Rift Border Fault is well identified by both gravity and MT. At least, two other important secondary faults without surface expression are also identified. A new small half-graben basin, named the Kachoda Basin, parallel to the main Turkana Basin and filled by 1.5 km of sediments, has been also characterized. This study also highlights strong thickness variations of the three main geological units that could be expected in the subsurface of the Turkana Basin. For example, the sedimentary Nachukui and Kibish Formations reach up to >3 km in thickness at the eastern end of the north and central profiles. Lateral variations of the topography of the Precambrian basement are also evidenced. Conceptual geological models, which result from the combination of the obtained density and resistivity models as well as from geological and reflection seismic data, are proposed. In such an area of intensive and promising oil exploration, these models are essential in terms of identification of reservoirs, source rocks and trapping mechanisms.

  12. Controls of oil family distribution and composition in nonmarine petroleum systems: A case study from Inner Mongolia Erlian basin, Northern China

    NASA Astrophysics Data System (ADS)

    Chen, Zhelong; Liu, Guangdi; Huang, Zhilong; Lu, Xuejun; Luo, Qiang; Ding, Xiujian

    2014-10-01

    The Erlian basin is a continental rift basin located in Inner Mongolia, Northern China. It is a typical representative of Cretaceous Northeast Asian Rift System, which includes many small petroliferous basins in Mongolia Republic and Northern China. Although Lower Cretaceous source rocks are understood to be most important in the Erlian petroleum systems, the precise identification of these source rock intervals and their determination on oil families distribution and composition are poorly understood in this tectonically complicated, nonmarine basin. New bulk data have been gathered from source rock intervals, oil sands and crude oil samples in eight main oil-producing subbasins. Geochemical analyses indicate that Lower Cretaceous Aershan formation (K1ba) and Tengger 1 formation (K1bt1) are two main source intervals in the Erlian basin and their source rock facies vary from profundal lacustrine to marginal lacustrine according to biomarker and trace elements calibration, the profundal lacustrine facies is characterised by brackish water and anoxic environment, which is similar to their correlative oils (Family 1 oils). The marginal lacustrine facies is characterised by freshwater and suboxic environment, which sourced the most common Family 2 oils. Meanwhile, different maturation processes exercise the second control on oil groups and their compositions, the profundal lacustrine source rocks characterised by their sulphur-rich kerogens lead to two oil groups (group 1 and group 2 oils), whose maturity range from low to normal; while, the marginal lacustrine source rock only lead to normal-maturity oils. At last, biodegradation affected the composition of a certain oils and formed group 4 heavy oils. In addition, short migration distance in small subbasins made the contamination or fractionation less notable in the Erlian basin.

  13. Mode of extension and rifting history of upper Tiburón and upper Delfín basins, northern Gulf of California

    NASA Astrophysics Data System (ADS)

    GonzáLez-FernáNdez, A.; DañObeitia, J. J.; Delgado-Argote, L. A.; Michaud, F.; Córdoba, D.; Bartolomé, R.

    2005-01-01

    The crustal structure of the northern Gulf of California transtensional margin has been investigated by a 280-km-long NW-SE profile, including deep multichannel seismic reflection and densely sampled refraction/wide-angle reflection seismic information combined with gravity modeling. The seismic and gravity modeling constrains two thinned crustal areas, corresponding to the upper Delfín and the upper Tiburón basins. On both sides of the profile, toward the Baja California Peninsula and the Mexico mainland, a progressive thickening of the continental crust is observed. Our results indicate that the crustal thickness is 19 km below the coastline, and it decreases to 14 and 17 km below the upper Delfín and upper Tiburón basins, respectively. In the area between both basins, the crust thickens to 19.5 km. There are significant lateral thickness variations for the different levels of the crust. The interpreted structure is consistent with the existence of an aborted rift below the upper Tiburón basin. Prominent dipping reflections in the multichannel data under upper Tiburón basin and the ridge between upper Tiburón and upper Delfín basins can be explained as a mylonite like zone related to a detachment fault. This interpretation suggests that the structural evolution of upper Tiburón basin could be controlled by a major fault that cuts through the upper crust and merges into a zone of subhorizontal reflections in the lower crust. The mode and locus of extension have evolved from a core complex in upper Tiburón to a narrow rift mode in upper Delfín basin.

  14. Magnetic fabrics in the Jurassic-Cretaceous continental basins of the northern part of the Central High Atlas (Morocco): Geodynamic implications

    NASA Astrophysics Data System (ADS)

    Moussaid, B.; El Ouardi, H.; Casas-Sainz, A.; Villalaín, J. J.; Román-Berdiel, T.; Oliva-Urcia, B.; Soto, R.; Torres-López, S.

    2013-11-01

    The aim of this work is to study the Anisotropy of the Magnetic Susceptibility (AMS) in two Jurassic-Cretaceous synclines located in the northern border of the Central High Atlas (Morocco): the Aït Attab and Ouaouizaght basins. AMS is used in order to obtain the magnetic fabric and its relationship with the kinematic evolution of both basins. The tectonic evolution of the basins, still under discussion, is mostly considered as the result of inversion during Tertiary and perhaps since Bathonian, of extensional and/or strike-slip Jurassic basins. Both basins are filled with Upper Jurassic to Lower Cretaceous silts and sandstones, with less frequent marine marly limestones. The bulk magnetic susceptibility (km) generally shows higher values in the red facies (163.2 E-6 in AT and 168.6 E-6 in WZ) than in the yellowish marly limestones (97.88 E-6 in AT and 132 E-6 in WZ). Most sites show an oblate magnetic fabric. The rock magnetic analyses indicate that the main carrier of the magnetic susceptibility for the red facies is hematite, whereas in the yellowish facies there is a dominance of paramagnetic minerals. In both basins, the magnetic lineation (long axis of the ellipsoid, kmax axes) shows a predominant E-W direction. The overlapping of the stress fields during the Atlasic basins evolution, in both compressional and extensional regimes and hinder the straightforward interpretation of the magnetic fabrics. However, a coeval N-S compression during the times of sedimentation with an E-W transtension can explain the magnetic lineation found in many of the sites analyzed in the present work. There are also other less frequent directions of kmax axes (NE-SW and NW-SE) are interpreted as the result of local change of the stress field during the early extensional stage of basin formation.

  15. INNOVATIVE METHODOLOGY FOR DETECTION OF FRACTURE-CONTROLLED SWEET SPOTS IN THE NORTHERN APPALACHIAN BASIN

    SciTech Connect

    Robert Jacobi; John Fountain

    2005-03-01

    The primary goal was to enter Phase 2 by analyzing geophysical logs and sidewall cores from a verification well drilled into the Trenton/Black River section along lineaments. However, the well has not yet been drilled; Phase 2 has therefore not been accomplished. We have switched oil and gas exploration and production companies, and are now, in conjunction with Fortuna, planning to retrieve 18 m of horizontal core across a gas-charged zone in the Trenton/Black River in central New York State, the ''hottest'' play in the Appalachian Basin. Secondary goals in Phase I were also completed in previous reporting period. Although new structural data were collected and analyzed for a few regions where we had no data, the results did not change the previous conclusions. We have also continued analyzing remote sensing images to determine, by using the weights-of-evidence method, which images and processing techniques result in lineaments that best reflect the fractures found in outcrop. We have tested the lineaments from EarthSat (1997), as well as lineaments we identified on Landsat and ASTER images. For fracture intensification domains (FIDs) along Seneca Lake, we found that lineaments identified on a fused image of Landsat and ASTER images produced better correlation to FIDs than lineaments from EarthSat (1997) and ASTER alone. This relationship held true for all orientations of FIDs except E-striking FIDs, which showed a better correlation with lineaments observed on ASTER lineaments than on the fused Landsat and ASTER image lineaments. For Cayuga Lake FIDs, lineaments identified on a fused image of Landsat and ASTER images also produced significantly better correlation to FIDs than lineaments from ASTER alone for NW- and NNW-striking FIDs. However, for NE-, ENE- and E-striking FIDs, ASTER lineaments generally showed the closest match. These data continue to demonstrate that integration of aeromagnetic and remote sensing lineaments, surface structure, soil gas and

  16. A high 87Sr 86Sr mantle source for low alkali tholeiite, northern Great Basin

    USGS Publications Warehouse

    Mark, R.K.; Lee, Hu C.; Bowman, H.R.; Asaro, F.; McKee, E.H.; Coats, R.R.

    1975-01-01

    Olivine tholeiites, the youngest Tertiary units (about 8-11 m.y. old) at five widely spaced localities in northeastern Nevada, are geologically related to the basalts of the Snake River Plain, Idaho, to the north and are similar in major element and alkali chemistry to mid-ocean ridge basalts (MORB) and island arc tholeiites. The measured K (1250-3350 ppm), Rb (1??9-6??2 ppm) and Sr (140-240 ppm) concentrations overlap the range reported for MORB. Three of the five samples have low, unfractionated rare earth element (REE) patterns, the other two show moderate light-REE enrichment. Barium concentration is high and variable (100-780 ppm) and does not correlate with the other LIL elements. The rocks have 87Sr/86Sr = 0??7052-0??7076, considerably higher than MORB (~0??702-0??703). These samples are chemically distinct (i.e. less alkalic) from the olivine tholeiites from the adjacent Snake River Plain, but their Sr isotopic compositions are similar. They contain Sr that is distinctly more radiogenic than the basalts from the adjacent Great Basin. About 10 b.y. would be required for the mean measured Rb/Sr (~ 0??02) of these samples to generate, in a closed system, the radiogenic Sr they contain. The low alkali content of these basalts makes crustal contamination an unlikely mechanism. If the magma is uncontaminated, the time-averaged Rb/Sr of the source material must have been ~0??04. A significant decrease in Rb/Sr of the source material (a factor 2??) thus most probably occurred in the relatively recent (1??09 yr) past. Such a decrease of Rb/Sr in the mantle could accompany alkali depletion produced by an episode of partial melting and magma extraction. In contrast, low 87Sr 86Sr ratios indicate that the source material of the mid-ocean ridge basalts may have been depleted early in the Earth's history. ?? 1975.

  17. RECONNAISSANCE ASSESSMENT OF CO2 SEQUESTRATION POTENTIAL IN THE TRIASSIC AGE RIFT BASIN TREND OF SOUTH CAROLINA, GEORGIA, AND NORTHERN FLORIDA

    SciTech Connect

    Blount, G.; Millings, M.

    2011-08-01

    A reconnaissance assessment of the carbon dioxide (CO{sub 2}) sequestration potential within the Triassic age rift trend sediments of South Carolina, Georgia and the northern Florida Rift trend was performed for the Office of Fossil Energy, National Energy Technology Laboratory (NETL). This rift trend also extends into eastern Alabama, and has been termed the South Georgia Rift by previous authors, but is termed the South Carolina, Georgia, northern Florida, and eastern Alabama Rift (SGFAR) trend in this report to better describe the extent of the trend. The objectives of the study were to: (1) integrate all pertinent geologic information (literature reviews, drilling logs, seismic data, etc.) to create an understanding of the structural aspects of the basin trend (basin trend location and configuration, and the thickness of the sedimentary rock fill), (2) estimate the rough CO{sub 2} storage capacity (using conservative inputs), and (3) assess the general viability of the basins as sites of large-scale CO{sub 2} sequestration (determine if additional studies are appropriate). The CO{sub 2} estimates for the trend include South Carolina, Georgia, and northern Florida only. The study determined that the basins within the SGFAR trend have sufficient sedimentary fill to have a large potential storage capacity for CO{sub 2}. The deeper basins appear to have sedimentary fill of over 15,000 feet. Much of this fill is likely to be alluvial and fluvial sedimentary rock with higher porosity and permeability. This report estimates an order of magnitude potential capacity of approximately 137 billion metric tons for supercritical CO{sub 2}. The pore space within the basins represent hundreds of years of potential storage for supercritical CO{sub 2} and CO{sub 2} stored in aqueous form. There are many sources of CO{sub 2} within the region that could use the trend for geologic storage. Thirty one coal fired power plants are located within 100 miles of the deepest portions of

  18. Structure and Stratigraphy of the Rift Basins in the Northern Gulf of California: Results from Analysis of Seismic Reflection and Borehole Data.

    NASA Astrophysics Data System (ADS)

    Martín, A.; González, M.; Helenes, J.; García, J.; Aragón, M.; Carreño, A.

    2008-12-01

    The northern Gulf of California contains two parallel, north-south trending rift basin systems separated by a basement-high. The interpretation of several exploration wells, and ~4500 km of seismic reflection data from PEMEX (Mexican national oil company) indicate that the tectonically active basins to the west (Wagner- Consag and Upper Delfin basins) may have initiated synchronously with the now abandoned Tiburón- Tepoca-Altar basins to the east in the Sonora margin. In both basin systems the lower sequence (A) is marine mudstone-siltstone, has parallel reflectors and a largely uniform thickness that reaches up to1.5 km, and gradually pinches out toward the lateral margins. This suggests that the unit was deposited prior to their segmentation by transtensional faulting. Marine microfossils from borehole samples from sequence A in the Tiburón and Consag basins indicates middle Miocene (>11.2 Ma) proto-Gulf conditions. Sequence B conformably overlies sequence A, and is characterized by up to 2 km growth strata with a fanning geometry that show a clear genetic relationship to the major transtensional faults that control the segmentation of the two basin systems. Sequence C in the Tiburón and Tepoca basins is comparatively thin (<800 m) and includes several unconformities, but is much less affected by faulting. In contrast, sequence C in the active Wagner, Consag and Upper Delfin basin is a much thicker (up to 2 km) growth sequence with abundant volcanic intrusions. Marked variations in sequence C in the different basin systems clearly demonstrate a major westward shift of deformation and subsidence at this time. The modern depocenter in Wagner-Consag basins is controlled by the Consag and Wagner faults, which trend parallel to the north ~20 km apart, and show opposite normal offset. These two faults merge at an oblique angle (70°-50°, respectively) into the Cerro Prieto transform fault to the north and likely accommodate an important amount of dextral shear. To

  19. Steady rifting in northern Kenya inferred from deformed Holocene lake shorelines of the Suguta and Turkana basins

    NASA Astrophysics Data System (ADS)

    Melnick, Daniel; Garcin, Yannick; Quinteros, Javier; Strecker, Manfred R.; Olago, Daniel; Tiercelin, Jean-Jacques

    2012-05-01

    A comparison of deformation rates in active rifts over different temporal scales may help to decipher variations in their structural evolution, controlling mechanisms, and evolution of sedimentary environments through time. Here we use deformed lake shorelines in the Suguta and Turkana basins in northern Kenya as strain markers to estimate deformation rates at the 103-104 yr time scale and compare them with rates spanning 101-107 yr. Both basins are internally drained today, but until 7 to 5 kyr lake levels were 300 and 100 m higher, respectively, maintained by the elevation of overflow sills connecting them with the Nile drainage. Protracted high lake levels resulted in formation of a maximum highstand shoreline — a distinct geomorphic feature virtually continuous for several tens of kilometers. We surveyed the elevation of this geomorphic marker at 45 sites along > 100 km of the rift, and use the overflow sills as vertical datum. Thin-shell elastic and thermomechanical models for this region predict up to ~ 10 m of rapid isostatic rebound associated with lake-level falls lasting until ~ 2 kyr ago. Holocene cumulative throw rates along four rift-normal profiles are 6.8-8.5 mm/yr, or 7.5-9.6 mm/yr if isostatic rebound is considered. Assuming fault dips of 55-65°, inferred from seismic reflection profiles, we obtained extension rates of 3.2-6 mm/yr (including uncertainties in field measurements, fault dips, and ages), or 3.5-6.7 mm/yr considering rebound. Our estimates are consistent, within uncertainties, with extension rates of 4-5.1 mm/yr predicted by a modern plate-kinematic model and plate reconstructions since 3.2 Myr. The Holocene strain rate of 10- 15 s- 1 is similar to estimates on the ~ 106 yr scale, but over an order of magnitude higher than on the ~ 107 yr scale. This is coherent with continuous localization and narrowing of the plate boundary, implying that the lithospheric blocks limiting the Kenya Rift are relatively rigid. Increasing strain rate

  20. A slow-slipping active fold and thrust system at the SE corner of the Atacama basin, northern Chile

    NASA Astrophysics Data System (ADS)

    Lin, Y.; Shyu, J. H.; González, G.

    2009-12-01

    The western South American offshore is one of the major active convergent plate boundaries in the world, where the Nazca plate is subducting northeastward beneath the South American plate at a rate of about 84 mm/yr. Despite of this rapid plate convergence, the forearc region of western Andes does not seem to undergo large deformation at present. In order to understand the characteristics and mechanisms of active forearc deformation related to the plate convergence, we investigated tectono-geomorphic features in the area of Tilocalar, near the SE margin of the Atacama Basin in northern Chile, where active structures have been previously identified. To map topographic features produced by active structures, we used a combination of several remote-sensing data sets, including digital elevation models (DEM) made from Shuttle Radar Topographic Mission (SRTM), as well as higher resolution ASTER and QuickBird satellite images. Detailed geomorphic surveys using real time kinematic (RTK) GPS are carried out in the field to obtain high-resolution topographic profiles across these features. We also performed 40Ar/39Ar dating of deformed volcanic rocks in order to determine the long-term slip rates of the active structures. The hyper-aridity of the Atacama Basin results in extremely low erosion and sedimentation rates in the area. As a result, the present relief of land surface is mostly produced by neotectonic activity, and can be used as deformation marker. In the Tilocalar area, several N-S trending ridges are present. These ridges, generally several tens of meters high, are likely formed by asymmetric anticlines or monoclines with steep forelimbs facing east, and these folds are likely fault-propagation folds produced by underlying thrust faults. We suggest that these faults merge at depth to become a major active thrust system. From 40Ar/39Ar plateau ages, we found that the surface ignimbrites mostly deposited in latest Pliocene (2.3~4.3 Ma). If the structures have been

  1. Determining the source and genetic fingerprint of natural gases using noble gas geochemistry: a northern Appalachian Basin case study

    USGS Publications Warehouse

    Hunt, Andrew G.; Darrah, Thomas H.; Poreda, Robert J.

    2012-01-01

    Silurian and Devonian natural gas reservoirs present within New York state represent an example of unconventional gas accumulations within the northern Appalachian Basin. These unconventional energy resources, previously thought to be noneconomically viable, have come into play following advances in drilling (i.e., horizontal drilling) and extraction (i.e., hydraulic fracturing) capabilities. Therefore, efforts to understand these and other domestic and global natural gas reserves have recently increased. The suspicion of fugitive mass migration issues within current Appalachian production fields has catalyzed the need to develop a greater understanding of the genetic grouping (source) and migrational history of natural gases in this area. We introduce new noble gas data in the context of published hydrocarbon carbon (C1,C2+) (13C) data to explore the genesis of thermogenic gases in the Appalachian Basin. This study includes natural gases from two distinct genetic groups: group 1, Upper Devonian (Marcellus shale and Canadaway Group) gases generated in situ, characterized by early mature (13C[C1  C2][13C113C2]: –9), isotopically light methane, with low (4He) (average, 1  103 cc/cc) elevated 4He/40Ar and 21Ne/40Ar (where the asterisk denotes excess radiogenic or nucleogenic production beyond the atmospheric ratio), and a variable, atmospherically (air-saturated–water) derived noble gas component; and group 2, a migratory natural gas that emanated from Lower Ordovician source rocks (i.e., most likely, Middle Ordovician Trenton or Black River group) that is currently hosted primarily in Lower Silurian sands (i.e., Medina or Clinton group) characterized by isotopically heavy, mature methane (13C[C1 – C2] [13C113C2]: 3), with high (4He) (average, 1.85  103 cc/cc) 4He/40Ar and 21Ne/40Ar near crustal production levels and elevated crustal noble gas content (enriched 4He,21Ne, 40Ar). Because the release of each crustal noble gas (i.e., He, Ne, Ar

  2. The integration of gravity, magnetic and seismic data in delineating the sedimentary basins of northern Sinai and deducing their structural controls

    NASA Astrophysics Data System (ADS)

    Selim, El Sayed Ibrahim

    2016-01-01

    The Sinai Peninsula is a part of the Sinai sub-plate that located between the southeast Nubian-Arabian shield and the southeastern Mediterranean northward. The main objectives of this investigation are to deduce the main sedimentary basin and its subdivisions, identify the subsurface structural framework that affects the study area and determine the thickness of sedimentary cover of the basement surface. The total intensity magnetic map, Bouguer gravity map and seismic data were used to achieve the study aims. Structural interpretation of the gravity and magnetic data were done by applying advanced processing techniques. These techniques include; Reduce to the pole (RTP), Power spectrum, Tile derivative and Analytical Signal techniques were applied on gravity and magnetic data. Two dimensional gravity and magnetic modeling and interpretation of seismic sections were done to determine the thickness of sedimentary cover of the study area. The integration of our interpretation suggests that, the northern Sinai area consists of elongated troughs that contain many high structural trends. Four major structural trends have been identified, that, reflecting the influence of district regional tectonic movements. These trends are: (1) NE-SW trend; (2) NNW-SSE trend; (3) ENE-WSW trend and (4) WNW-ESE trend. There are also many minor trends, E-W, NW-SE and N-S structural trends. The main sedimentary basin of North Sinai is divided into four sub-basins; (1) Northern Maghara; (2) Northeastern Sinai; (3) Northwestern Sinai and (4) Central Sinai basin. The sedimentary cover ranges between 2 km and 7 km in the northern part of the study area.

  3. Ground-water resources and potential hydrologic effects of surface coal mining in the northern Powder River basin, southeastern Montana

    USGS Publications Warehouse

    Slagle, Steven E.; Lewis, Barney D.; Lee, Roger W.

    1985-01-01

    The shallow ground-water system in the northern Powder River Basin consists of Upper Cretaceous to Holocene aquifers overlying the Bearpaw Shale--namely, the Fox Hills Sandstone; Hell Creek, Fort Union, and Wasatch Formations; terrace deposits; and alluvium. Ground-water flow above the Bearpaw Shale can be divided into two general flow patterns. An upper flow pattern occurs in aquifers at depths of less than about 200 feet and occurs primarily as localized flow controlled by the surface topography. A lower flow pattern occurs in aquifers at depths from about 200 to 1,200 feet and exhibits a more regional flow, which is generally northward toward the Yellowstone River with significant flow toward the Powder and Tongue Rivers. The chemical quality of water in the shallow ground-water system in the study area varies widely, and most of the ground water does not meet standards for dissolved constituents in public drinking water established by the U.S. Environmental Protection Agency. Water from depths less than 200 feet generally is a sodium sulfate type having an average dissolved-solids concentration of 2,100 milligrams per liter. Sodium bicarbonate water having an average dissolved-solids concentration of 1,400 milligrams per liter is typical from aquifers in the shallow ground-water system at depths between 200 and 1,200 feet. Effects of surface coal mining on the water resources in the northern Powder River Basin are dependent on the stratigraphic location of the mine cut. Where the cut lies above the water-yielding zone, the effects will be minimal. Where the mine cut intersects a water-ielding zone, effects on water levels and flow patterns can be significant locally, but water levels and flow patterns will return to approximate premining conditions after mining ceases. Ground water in and near active and former mines may become more mineralized, owing to the placement of spoil material from the reducing zone in the unsaturated zone where the minerals are

  4. Low Angle Normal Fault System Controls the Structure Evolution of Baiyun Deepwater Basin and Its Lithosphere Thinning, Northern South China Sea

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Ren, J.; Yang, L.

    2015-12-01

    The discovery of the transition area from ~30 km to weakly thinned continental crust (<12 km) in Baiyun deepwater basin, Northern South China Sea leads to two questions: What controls extreme crustal thinning and what is the nature of Baiyun basin. The 3D seismic data newly acquired show that Baiyun basin is an asymmetric half graben mainly controlled by a set of north-dipping normal faults converging in deep. By employing the principle of back-stripping, we estimate the fault dips and slip amount would be in the absence of post-rift sediments and seawater loading. Results show these Middle Eocene faults were extremely active, with a high accumulation horizontal displacement (> 10 km) and an initial very low angle (<7°), followed by a rotated into sub-horizontal. A general scenario for extension of the uppermost continental crust probably includes simultaneous operation of low angle normal fault (F1) as well as parallel arrays of step-faults (domino-faults, f2-f9). Under such a scenario, it shows no obvious extension discrepancy in Baiyun basin. Our results indicate that Baiyun sag preserves information recording the continent thinning before the seafloor spreading, and it could be an abandoned inner rifted basin.

  5. Basin structure beneath the Santa Rosa Plain, Northern California: Implications for damage caused by the 1969 Santa Rosa and 1906 San Francisco earthquakes

    USGS Publications Warehouse

    McPhee, D.K.; Langenheim, V.E.; Hartzell, S.; McLaughlin, R.J.; Aagaard, B.T.; Jachens, R.C.; McCabe, C.

    2007-01-01

    Regional gravity data in the northern San Francisco Bay region reflect a complex basin configuration beneath the Santa Rosa plain that likely contributed to the significant damage to the city of Santa Rosa caused by the 1969 M 5.6, 5.7 Santa Rosa earthquakes and the 1906 M 7.9 San Francisco earthquake. Inversion of these data indicates that the Santa Rosa plain is underlain by two sedimentary basins about 2 km deep separated by the Trenton Ridge, a shallow west-northwest-striking bedrock ridge west of Santa Rosa. The city of Santa Rosa is situated above the 2- km-wide protruding northeast corner of the southern basin where damage from both the 1969 and 1906 earthquakes was concentrated. Ground-motion simulations of the 1969 and 1906 earthquakes, two events with opposing azimuths, using the gravity- defined basin surface, show enhanced ground motions along the northeastern edge of this corner, suggesting that basin-edge effects contributed to the concentration of shaking damage in this area in the past and may also contribute to strong shaking during future earthquakes.

  6. Delineation of ground-water basins and recharge areas for municipal water-supply springs in a karst aquifer system in the Elizabethtown area, northern Kentucky

    USGS Publications Warehouse

    Taylor, C.J.

    1997-01-01

    Ground-water basins and recharge areas for municipal water-supply springs for the Elizabethtown area, northern Kentucky, were delineated using a hydrogeologic-mapping approach, potentiometric map interpretation, anddye-tracing tests. Five distinct ground-water basins drained by major karst springs are present in the Elizabethtown area. These basins are composed of networks of hydraulically interconnected solution conduits and fractures. The boundaries of the basins for Elizabethtown and Dyers Springs-the primary sources of water for the city of Elizabethtown-weredelineated by the positions of inferred ground-water divides on an existing potentiometric contour map. The results of dye-tracing tests, plotted as straight- line flowpaths, were used to confirm the presence and location of inferred ground-water divides and to adjust the position of the basin boundaries. Recharge areas of 4.8 and 2.7 square miles weredelineated for Elizabethtown and Dyers Springs, respectively. Swallets that drain concentrated stormwater runoff from major highways are presentin the recharge areas for both municipal-supply springs. Each spring is therefore potentially vulnerable to stormwater-runoff contaminants oraccidental spills and releases of toxic or hazardous materials into certain highway drainage culverts.

  7. Development of Paleogene depressions and deposition of Lacustrine source rocks in the Pearl River Mouth basin, northern margin of the South China Sea

    SciTech Connect

    Wang, Chunxiu; Sun, Yuxiao

    1994-11-01

    A more accurate, integrated chronostratigraphic framework is applied to the analysis of the development of Paleogene depressions in the Pearl River Mouth basin. The results of our study show that the development of these depressions was characterized by at least three rifting or basin-forming phases occurring during these periods: late Paleocene (Late Cretaceous?)-middle Eocene, late Eocene-early Oligocene, and middle-Oligocene-late Oligocene. The transition from rifting stage to postrifting stage in the basin is about 10 m.y. later than the initial spreading of the South China Sea. The prologue of the spreading of the South China Sea began as early as the end of the middle Eocene. Lacustrine source rocks deposited during the basin`s first rifting phase are thick and of good quality; source rocks deposited during the last two phases, which had a sharp increase in sedimentation rate, are of lesser quality, with the exception being those areas where deposits were out of reach of sediment from the northern mainland.

  8. Meltwater palaeohydrology of the Baker River basin (Chile/Argentina) during Late Pleistocene deglaciation of the Northern Patagonia Icefield

    NASA Astrophysics Data System (ADS)

    Thorndycraft, Varyl; Bendle, Jacob; Benito, Gerardo; Sancho, Carlos; Palmer, Adrian; Rodríguez, Xavier

    2016-04-01

    The Late Pleistocene deglaciation of the Northern Patagonia Icefield (NPI) was characterised by rapid ice sheet thinning and retreat, and the development of large proglacial lake systems characterised by continental scale drainage reversals. In this region, research has focused primarily on the identification of former ice-limits (e.g. moraine ridges) for geochronological analyses, with little attention given to the meltwater palaeohydrology of major river valleys. The Baker River catchment drains the majority of the eastern ice shed of the NPI, with a basin area of 29,000 km2 that includes the large transboundary lakes of General Carrera/Buenos Aires and Cochrane/Puerreydón. The Baker River valley is aligned north to south, crossing the east-west valleys of the main NPI outflow glaciers, and thus represents an important aspect of regional Late Pleistocene palaeogeography. The Baker River valley therefore has the potential to refine regional models of deglaciation through better understanding of relationships between glacier dynamics, ice dammed lakes and meltwater pathways. Here we present geomorphological mapping from the Atlantic-Pacific drainage divide (over 150 km east of the Cordillera) to the lower Baker valley, in order to reconstruct Late Pleistocene palaeohydrology. We provide new mapping of palaeolake shoreline elevations and evidence for glacial lake outburst flood (GLOF) pathways that require a re-evaluation of the currently accepted palaeogeographic models. For example, the palaeohydrological evidence does not support existing models of a unified Buenos Aires/Puerreydón mega-lake at ca. 400m elevation. We propose a relative chronology of palaeohydrological events that help refine the published moraine chronology derived from cosmogenic nuclide exposure dating. Controls on Late Pleistocene meltwater palaeohydrology of the Baker catchment are discussed, including the interplay of glacial processes and regional tectonics, in particular, dynamic

  9. Yield Responses of Ruderal Plants to Sucrose in Invasive-Dominated Sagebrush Steppe of the Northern Great Basin

    USGS Publications Warehouse

    Brunson, J.L.; Pyke, D.A.; Perakis, S.S.

    2010-01-01

    Restoration of sagebrush-steppe plant communities dominated by the invasive ruderals Bromus tectorum (cheatgrass) and Taeniatherum caput-medusae (medusahead) can be facilitated by adding carbon (C) to the soil, stimulating microbes to immobilize nitrogen (N) and limit inorganic N availability. Our objectives were to determine responses in (1) cheatgrass and medusahead biomass and seed production; (2) soil microbial biomass C and N; and (3) inorganic soil N to a range of C doses and to calculate the lowest dose that yielded a significant response. In November 2005, we applid 12 C doses ranging from 0 to 2,400 kg C/ha as sucrose to plots sown with cheatgrass and medusahead at two sites in the northern Great Basin. Other ruderal plants established in our plots, and this entire ruderal community was negatively affected by C addition. End-of-year biomass of the ruderal community decreased approximately by approximately 6% at each site for an increase in C dose of 100 kg C/ha. For the same increase in C, microbial biomass C increased by 2-4 mg/kg in November 2005 and March 2006, but not in July 2006. There was little, if any, microbial soil N uptake, as microbial biomass N increased by 0.3 mg/kg at only one site at the earliest date, in November 2005. Soil nitrate (NO3-) measured via resin capsules placed in situ for the study duration decreased at both sites with increasing C. Although we found no threshold dose of C, for a significant reduction in ruderal biomass, we calculated lowest significant doses of 240-640 kg C/ha. ?? 2010 Society for Ecological Restoration International.

  10. A longitudinal epidemiological survey of bovine trypanosomosis and its vectors in the White Volta river basin of Northern Ghana.

    PubMed

    Mahama, C I; Desquesnes, M; Dia, M L; Losson, B; De Deken, R; Speybroeck, N; Geerts, S

    2005-03-31

    A longitudinal epidemiological survey of bovine trypanosomosis and its vectors was carried out in the Volta river basin of Northern Ghana to determine the relationship between cattle management and the incidence of bovine trypanosomosis. Two groups of sentinel cattle under different systems of management, classified as "fully-sedentary" and "partially-sedentary" (depending on the type of management) were followed over a 1-year period starting from March 2003 onwards. Cattle were screened at intervals of 3 months using the buffy coat technique (BCT). Buffy coat specimen from animals that were positive for the BCT and those that were negative, but with a packed cell volume (PCV) of less than 21% were further tested using the polymerase chain reaction (PCR). Plasma from all animals were tested for antibody using the indirect antibody enzyme-linked immunosorbent assay (ELISA). Trypanosomosis challenge was determined in tandem with the epidemiological survey with watering sites of sentinel cattle being the foci of interest. The parasitological prevalence at the start of the survey was higher in the fully-sedentary group (9%) than in the partially-sedentary group (3%). In subsequent visits, however, the parasitological incidence was consistently higher in the partially-sedentary group than in the fully-sedentary group. The mean seroprevalence (ELISA) of both groups increased from 3% in March to 54% in December. Statistical analysis of the serological results using a random effect logistic regression, showed a significant difference in incidence of bovine trypanosomosis between the two groups. There was also a significant effect of time. The influence of cattle herding on host-vector-parasite interface and its consequence on the incidence of trypanosomosis are discussed. PMID:15740857

  11. Formation of hydrothermal deposits at Kings Triple Junction, northern Lau back-arc basin, SW Pacific: The geochemical perspectives

    NASA Astrophysics Data System (ADS)

    Paropkari, Anil L.; Ray, Durbar; Balaram, V.; Surya Prakash, L.; Mirza, Imran H.; Satyanarayana, M.; Gnaneshwar Rao, T.; Kaisary, Sujata

    2010-04-01

    An inactive hydrothermal field was discovered near Kings Triple Junction (KTJ) in northern Lau back-arc basin during 19th cruise of R/V Akademik Mstislav Keldysh in 1990. The field consisted of a large elongated basal platform 'the pedestal' with several 'small' chimneys on its periphery and one 'main mound' superposed over it. The surrounding region is carpeted with lava pillows having ferromanganese 'precipitate' as infillings. The adjoining second field consisted of small chimney like growths termed as 'Christmas Tree' Field. The basal pedestal, the peripheral chimneys and small 'Christmas Tree' like growths (samples collected by MIR submersibles), though parts of the same hydrothermal field, differ significantly in their mineralogy and elemental composition indicating different history of formation. The pedestal slab consisting of chalcopyrite and pyrite as major minerals and rich in Cu is likely to have formed at higher temperatures than sphalerite dominated peripheral chimney. Extremely low concentration of high field strength elements (e.g. Zr, Hf, Nb and Ta) and enrichment of light REE in these sulfides indicate prominent influence of aqueous arc-magma, rich in subduction components. The oxide growths in the 'Christmas Tree' Field have two distinct layers, Fe rich orange-red basal part which seems to have formed at very low temperature as precipitates from diffused hydrothermal flows from the seafloor whereas Mn rich black surface coating is formed from hydrothermal fluids emanated from the seafloor during another episode of hydrothermal activity. Perhaps this is for the first time such unique hydrothermal oxide growths are being reported in association with hydrothermal system. Here, we discuss the possible processes responsible for the formation of these different hydrothermal deposits based on their mineralogy and geochemistry.

  12. Extensive summer water pulses do not necessarily lead to canopy growth of Great Basin and northern Mojave Desert shrubs.

    PubMed

    Snyder, K A; Donovan, L A; James, J J; Tiller, R L; Richards, J H

    2004-10-01

    Plant species and functionally related species groups from arid and semi-arid habitats vary in their capacity to take up summer precipitation, acquire nitrogen quickly after summer precipitation, and subsequently respond with ecophysiological changes (e.g. water and nitrogen relations, gas exchange). For species that respond ecophysiologically, the use of summer precipitation is generally assumed to affect long-term plant growth and thus alter competitive interactions that structure plant communities and determine potential responses to climate change. We assessed ecophysiological and growth responses to large short-term irrigation pulses over one to three growing seasons for several widespread Great Basin and northern Mojave Desert shrub species: Chrysothamnus nauseosus, Sarcobatus vermiculatus, Atriplex confertifolia, and A. parryi. We compared control and watered plants in nine case studies that encompassed adults of all four species, juveniles for three of the species, and two sites for two of the species. In every comparison, plants used summer water pulses to improve plant water status or increase rates of functioning as indicated by other ecophysiological characters. Species and life history stage responses of ecophysiological parameters (leaf N, delta15N, delta13C, gas exchange, sap flow) were consistent with several previous short-term studies. However, use of summer water pulses did not affect canopy growth in eight out of nine comparisons, despite the range of species, growth stages, and site conditions. Summer water pulses affected canopy growth only for C. nauseosus adults. The general lack of growth effects for these species might be due to close proximity of groundwater at these sites, co-limitation by nutrients, or inability to respond due to phenological canalization. An understanding of the connections between short-term ecophysiological responses and growth, for different habitats and species, is critical for determining the significance of

  13. Seismic hazards astride the boundary between the eastern Snake River Plain and northern Basin and Range Province Idaho

    SciTech Connect

    Wong, I.G.; Hemphill-Haley, M.A.; Sawyer, T.L. ); Coppersmith, K.J.; Youngs, R.R. ); Smith, R.P.; Jackson, S.M.; Hackett, W.R. ); Silva, W.J.; Stark, C.M. ); Knuepfer, P.L.K. . Dept. of Geological Sciences); Bruhn, R.L.; Wu, D. . Dept. of Geology and Geophysics)

    1993-04-01

    The occurrence of the damaging 1983 M[sub w] 6.8 Borah Peak, Idaho earthquake, which ruptured a central segment of the Lost River fault, has increased the awareness of seismic hazards in this portion of the Northern Basin and Range Province (NBR). As a result, comprehensive deterministic and probabilistic seismic hazard analyses were performed for the Idaho National Engineering Laboratory (INEL) which is located within the eastern Snake River Plain (ESRP) but adjacent to the NBR. In this region, the most significant seismic sources are three late-Quaternary NBR normal faults, the Lost River, Lemhi and Beaverhead faults, and ESRP volcanic zones. For each source, the maximum earthquake, source geometry, recurrence and their uncertainties were estimated and incorporated into the probabilistic analysis through the use of logic trees. Recent paleoseismic trenching of the Lost River and Lemhi faults and volcanic mapping in the ESRP provided much of the data necessary to characterize the most significant seismic sources. Issues such as fault segmentation, temporal clustering, the nature of fault termination, and the maximum magnitude and recurrence of volcanic zone earthquakes were evaluated in the hazard analyses. Deterministic and probabilistic ground motions were computed using both empirical and stochastic approaches. In the deterministic analysis, the southern segments of the Lemhi fault controlled the hazard at the INEL due to their proximity and potential to generate M[sub w] [approximately]7 earthquakes. In the estimation of deterministic ground motions, potential rupture scenarios were evaluated for a Lemhi earthquake. In the probabilistic analysis, the hazard is dominated by the ESRP random earthquake, and the Lemhi and Lost River faults. The difference in the results of the two analyses points out the uncertainties in assessing seismic hazards due to random earthquakes and in regions of large but infrequent earthquakes.

  14. Natural resources and their prospects in the closed basins of rift valley marginal grabens in northern Ethiopia

    NASA Astrophysics Data System (ADS)

    Meaza, Hailemariam; Frankl, Amaury; Poesen, Jean; Zenebe, Amanuel; Deckers, Jozef; Vaneetvelde, Veerle; Lanckriet, Sil; Nyssen, Jan

    2016-04-01

    With increasing population, producing more food and fibers has led to an expansion of the area under cultivation. For this, much attention is given to low-lying flat areas in search of suitable agricultural lands. The objectives of this paper are therefore: (1) to review the opportunities and challenges of natural resources in the marginal grabens for rural development; (2) to highlight the knowledge gaps and priorities in research and development in the marginal grabens, and (3) to supplement the literature review through repeat transect walks, focus group discussions and interviews across the western rift valley of northern Ethiopia. The paper shows that marginal grabens along the rift valleys are rich both in blue and green water resources due to their topographical and geological characteristics. Spate irrigation has been a growing water management practice to respond to soil moisture deficit. Besides, marginal grabens are fertile plains as a result of alluvial deposition that could be suitable for agricultural development. However, rainfall variability and groundwater withdrawal lead to graben basin closure and salinization. Notably, riverbed incisions and sediment deposition affects drainage systems and water supply in the marginal grabens. As a result, socioeconomic and natural capital of the marginal graben farmers are continuously threatened. Thus, the benefits of natural resources for rural development in the marginal grabens along the rift valley can be optimized if the current bottlenecks are converted into opportunities. A better understanding of the complex marginal graben system via a robust land evaluation framework will improve livelihoods of the communities that live in the (closed) marginal grabens. Keywords: population pressure, marginal grabens, endorheic lakes, salinization, Ethiopia

  15. Paleoshoreline patterns in the transgressive-regressive sequences of Pennsylvanian rocks in the northern Appalachian Basin, U.S.A.

    NASA Astrophysics Data System (ADS)

    Carlson, Ernest H.

    1994-11-01

    Sheets of sponge spicule flint of Pennsylvanian age (Bashkirian, Moscovian, Kasimovian) that are present in the northern Appalachian Basin of Ohio and adjacent parts of Kentucky, Pennsylvania and West Virginia, are important indicators of paleoshorelines. This flint typically occurs with or occupies the position normally held by shallow-water limestone and contains a normal marine fauna. The flint was deposited above coal or underclay, representing the detritus-starved marine portion of a transgressive-regressive sequence and marking the eastern limit of transgression across a westward-spreading alluvial plain. Flint occurs at several stratigraphic positions in the upper Pottsville-lower Conemaugh interval. The most important are: Boggs, Upper Mercer and Kanawha flints of the upper Pottsville Group; Kilgore-Flint Ridge, Zaleski and Vanport flints of the lower Allegheny Group; and Brush Creek flint of the lower Conemaugh Group. Lithofacies maps of these beds were constructed to show the distribution of the flint. Limestone-hosted flint occurs in long discontinuous chains of sheetlike bodies, whereas shale-hosted flint occurs in single sheets with restricted geographic distribution. Chains of limestone-hosted flint attain maximum dimensions of a few meters in thickness, a few kilometers in width and several hundreds of kilometers in length. The Upper Mercer, Vanport and Brush Creek flints are particularly extensive, forming arcuate shoreline patterns that parallel the fronts of large delta systems. Beds of clay ironstone and/or coal above flint indicate that the lagoonal environment in which flint was deposited was followed closely by a change to stagnant waters. Cementation of flint with silica likely occurred under the lower pH conditions existing at that time and when depths of burial were shallow.

  16. Innovative Methodology for Detection of Fracture-Controlled Sweet Spots in the Northern Appalachian Basin

    SciTech Connect

    Robert Jacobi; John Fountain; Stuart Loewenstein; Edward DeRidder; Bruce Hart

    2007-03-31

    For two consecutive years, 2004 and 2005, the largest natural gas well (in terms of gas flow/day) drilled onshore USA targeted the Ordovician Trenton/Black River (T/BR) play in the Appalachian Basin of New York State (NYS). Yet, little data were available concerning the characteristics of the play, or how to recognize and track T/BR prospects across the region. Traditional exploration techniques for entry into a hot play were of limited use here, since existing deep well logs and public domain seismic were almost non-existent. To help mitigate this problem, this research project was conceived with two objectives: (1) to demonstrate that integrative traditional and innovative techniques could be used as a cost-effective reconnaissance exploration methodology in this, and other, areas where existing data in targeted fracture-play horizons are almost non-existent, and (2) determine critical characteristics of the T/BR fields. The research region between Seneca and Cayuga lakes (in the Finger Lakes of NYS) is on strike and east of the discovery fields, and the southern boundary of the field area is about 8 km north of more recently discovered T/BR fields. Phase I, completed in 2004, consisted of integrating detailed outcrop fracture analyses with detailed soil gas analyses, lineaments, stratigraphy, seismic reflection data, well log data, and aeromagnetics. In the Seneca Lake region, Landsat lineaments (EarthSat, 1997) were coincident with fracture intensification domains (FIDs) and minor faults observed in outcrop and inferred from stratigraphy. Soil gas anomalies corresponded to ENE-trending lineaments and FIDs. N- and ENE-trending lineaments were parallel to aeromagnetic anomalies, whereas E-trending lineaments crossed aeromagnetic trends. 2-D seismic reflection data confirmed that the E-trending lineaments and FIDs occur where shallow level Alleghanian salt-cored thrust-faulted anticlines occur. In contrast, the ENE-trending FIDs and lineaments occur where Iapetan

  17. Eocene to late Oligocene history of crustal shortening within the Hoh Xil Basin and implications for the uplift history of the northern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Staisch, Lydia M.; Niemi, Nathan A.; Clark, Marin K.; Chang, Hong

    2016-04-01

    The timing and magnitude of deformation across the northern Tibetan Plateau are poorly constrained but feature prominently in geodynamic models of the plateau's evolution. The Fenghuoshan fold and thrust belt, located in the Hoh Xil Basin, provides a valuable record of the Cenozoic deformation history of the northern Tibetan Plateau. Here we integrate fault gouge geochronology, low-temperature thermochronology, geologic mapping, and a balanced cross section to resolve the deformation history of Hoh Xil Basin. Chronologic data suggest that deformation initiated in the mid-Eocene continued until at least 34 Ma and ceased by 27 Ma. The balanced cross section resolves 34 ± 12 km upper crustal shortening (24 ± 9%). We explore whether the observed Cenozoic shortening can account for the modern elevation and lithospheric thickness in the northern Tibetan Plateau. For a range of reasonable preshortening conditions, we conclude that the observed shortening alone cannot achieve modern crustal and mantle lithospheric thicknesses or modern elevation without either the removal of lithospheric mantle, the influx of lower crustal material, or some combination of these processes. Our results, along with previous studies, suggest that crustal shortening propagated into the northern Tibetan Plateau shortly after the onset of the Indo-Asian collision. The small magnitude of shortening and the late Oligocene cessation of deformation in the northern Tibetan Plateau raise questions of how and where the remaining Indo-Asian convergence was accommodated between Eocene to mid-Miocene time, prior to the approximately late Miocene establishment of the deformation patterns observed in the present day.

  18. Zircon Hf isotopic constraints on the mantle source of felsic magmatic rocks in the Phan Si Pan uplift and Tu Le basin, northern Vietnam

    NASA Astrophysics Data System (ADS)

    Usuki, T.; Lan, C.; Tran, T.; Pham, T.; Wang, K.

    2013-12-01

    Permian plume-related rocks, such as picrites, flood basalts and silicic volcanic rocks occur in northern Vietnam. This area was displaced 600 km southeastward along the Ailao Shan-Red River fault during mid-Tertiary in response to the India-Eurasia collision. The original location of the area was situated at the central Emeishan Large Igneous Province (ELIP) in SW China before Tertiary. The picrites and flood basalts in northern Vietnam have been investigated by many authors and are comparable with the ELIP. While, felsic magmatisms in northern Vietnam has been poorly studied. Zircon U-Pb age and Hf isotopic data are useful to compare the felsic magmatism in northern Vietnam with that in the ELIP, because the magmatisms of the ELIP had a characteristic time period (260-250 Ma) and the Hf isotopes show a remarkable mantle signature. Therefore, this study carried out in-situ U-Pb ages and Hf isotopic compositions for 300 zircon grains in eighteen granitoids and rhyolites in Phan Si Pan uplift and Tu Le basin in northern Vietnam. Zircons from the granitoids and rhyolites occasionally show development of {101} pyramid and {100} prism crystal facies, suggesting typical zircons crystallized from high temperature alkaline granite. 206Pb/238U ages of granitoid and rhyolite yield consistently in a narrow range of 260 to 250 Ma, which coincides with those from peralkaline to metaluminous granites in the ELIP. ɛHf(t) values of zircons in rhyolites and granites of this study dominate in the range of +5 to +10, which is consistent with those from the ELIP. U-Pb ages and Hf isotopic compositions of zircons indicate that felsic magmatic rocks in the Phan Si Pan uplift and Tu La basin have been derived from the same mantle source with the ELIP.

  19. The geologic boundary between the northern part of the Socotra Basin and the Fukien-Reinan Massif, offshore Korea: Implementations in marine magnetics

    NASA Astrophysics Data System (ADS)

    Suh, M.; Abdallatif, T. F.; Oh, J.; Choi, S.; Han, J.

    2010-03-01

    A detailed marine magnetic survey of the region southwest of Jeju Island, offshore Korea, reveals the boundary between the northern part of the Socotra Basin (SB) and the Fukien-Reinan Massif (FRM). To delineate the boundary and highlight its origin, several interpretation methods have been applied. Low and band pass filtering; upward-continuation filtering; horizontal gradient (HG) transformation and 2½D methods delineate the boundary in the subsurface basement. Analysis of the magnetic amplitudes through three selected profiles provides a good correlation between the applied methods and exposes the magnetic sources on and around the boundary. The modeling of magnetic anomalies northwest of the Socotra Basin revealed the edge lines between the adjacent subsurface geological units. Among the applied methods, the results of the horizontal gradient method were prominent in clarifying distinctly the location of this important boundary. These results are shown in addition to the results of other interpretation tools that the boundary is located in the shallow section of the northwestern part of the SB. Based on these results, FRM is probably sandwiched between two identified boundaries in the northwestern portion of the northern part of the SB. These results are consistent with earlier recent studies over the same area, and will lead to a better understanding of the geology of this neglected region and the East China Sea Shelf Basin in general.

  20. Identifying key climate and environmental factors affecting rates of post-fire big sagebrush (Artemisia tridentata) recovery in the northern Columbia Basin, USA

    USGS Publications Warehouse

    Shinneman, Douglas; McIlroy, Susan

    2016-01-01

    Sagebrush steppe of North America is considered highly imperilled, in part owing to increased fire frequency. Sagebrush ecosystems support numerous species, and it is important to understand those factors that affect rates of post-fire sagebrush recovery. We explored recovery of Wyoming big sagebrush (Artemisia tridentata ssp.wyomingensis) and basin big sagebrush (A. tridentata ssp. tridentata) communities following fire in the northern Columbia Basin (Washington, USA). We sampled plots across 16 fires that burned in big sagebrush communities from 5 to 28 years ago, and also sampled nearby unburned locations. Mixed-effects models demonstrated that density of large–mature big sagebrush plants and percentage cover of big sagebrush were higher with time since fire and in plots with more precipitation during the winter immediately following fire, but were lower when precipitation the next winter was higher than average, especially on soils with higher available water supply, and with greater post-fire mortality of mature big sagebrush plants. Bunchgrass cover 5 to 28 years after fire was predicted to be lower with higher cover of both shrubs and non-native herbaceous species, and only slightly higher with time. Post-fire recovery of big sagebrush in the northern Columbia Basin is a slow process that may require several decades on average, but faster recovery rates may occur under specific site and climate conditions.

  1. A regional view of urban sedimentary basins in Northern California based on oil industry compressional-wave velocity and density logs

    USGS Publications Warehouse

    Brocher, T.M.

    2005-01-01

    Compressional-wave (sonic) and density logs from 119 oil test wells provide knowledge of the physical properties and impedance contrasts within urban sedimentary basins in northern California, which is needed to better understand basin amplification. These wire-line logs provide estimates of sonic velocities and densities for primarily Upper Cretaceous to Pliocene clastic rocks between 0.1 - and 5.6-km depth to an average depth of 1.8 km. Regional differences in the sonic velocities and densities in these basins largely 1reflect variations in the lithology, depth of burial, porosity, and grain size of the strata, but not necessarily formation age. For example, Miocene basin filling strata west of the Calaveras Fault exhibit higher sonic velocities and densities than older but finer-grained and/or higher-porosity rocks of the Upper Cretaceous Great Valley Sequence. As another example, hard Eocene sandstones west of the San Andreas Fault have much higher impedances than Eocene strata, mainly higher-porosity sandstones and shales, located to the east of this fault, and approach those expected for Franciscan Complex basement rocks. Basement penetrations define large impedence contrasts at the sediment/basement contact along the margins of several basins, where Quaternary, Pliocene, and even Miocene deposits directly overlie Franciscan or Salinian basement rocks at depths as much as 1.7 km. In contrast, in the deepest, geographic centers of the basins, such logs exhibit only a modest impedance contrast at the sediment/basement contact at depths exceeding 2 km. Prominent (up to 1 km/sec) and thick (up to several hundred meters) velocity and density reversals in the logs refute the common assumption that velocities and densities increase monotonically with depth.

  2. Magnetochronology of the Feiliang Paleolithic site in the Nihewan Basin and implications for early human adaptability to high northern latitudes in East Asia

    NASA Astrophysics Data System (ADS)

    Deng, Chenglong; Xie, Fei; Liu, Caicai; Ao, Hong; Pan, Yongxin; Zhu, Rixiang

    2007-07-01

    We present a new magnetostratigraphic dating of the Feiliang Paleolithic site in the Nihewan Basin, northern China. Partially-oxidized magnetite and hematite were identified as the main carriers for the characteristic remanent magnetizations of the fluvio-lacustrine sediments. Paleomagnetic results suggest that the sequence recorded the very early Brunhes chron and the upper Matuyama chron, including the Jaramillo subchron. The Feiliang artifact layer was determined to be within the pre-Jaramillo Matuyama chron, with an estimated age of ca. 1.2 Ma. Our finding, coupled with previously published magnetochronology, strongly indicates a prominent early human flourishing in the high northern latitudes of East Asia during or just prior to the Mid-Pleistocene climate transition.

  3. {open_quotes}Black Gold{close_quotes} leads to new structural interpretation, Northern Sangre de Cristo Mountains/Northeast San Luis Basin

    SciTech Connect

    Watkins, T.A.; Belcher, J.S.; Gries, R.

    1995-06-01

    In the course of exploring for gold along the east margin of the Rio Grande Rift (northern Sangre de Cristo Mountains and northeastern San Luis Basin) live Cretaceous oil was discovered in fractured Precambrian gneiss in 25 of 42 shallow drill holes. Geologic mapping located two outcrops of Mesozoic sediments along the west flank of the Sangre de Cristo Mountains. Mancos Shale, Dakota Group and Morrison Formation sediments were identified from 17 drill holes. These are the first known occurrences of Mesozoic sediments in the area. Previous investigations had concluded that the Mesozoic section eroded from the San Luis uplift during the Laramide. Surface and subsurface geologic data was integrated with gravity, magnetic and seismic surveys for a new structural interpretation. The San Luis Basin is separated from the mountains by an intermediate block and the main basin-bounding fault is three miles west-southwest of the mountain front. A major low-angle, normal fault or detachment fault is related to Miocene rifting. A thick section of Mesozoic sediments are interpreted to be present in the hanging wall of this low angle fault. Buried and thermally matured in a Laramide intermountane basin, these sediments are likely the source of the present day oil found in Precambrian rocks.

  4. Analytical results and sample locations of reanalyzed NURE stream-sediment and soil samples for the Humboldt River basin mineral-environmental assessment, northern Nevada

    USGS Publications Warehouse

    Folger, H. W., (compiler)

    2000-01-01

    The U.S. Geological Survey (USGS), in cooperation with the Bureau of Land Management (BLM), began a study in 1996 to describe to the geochemistry of the Humboldt River Basin. The principal sample media evaluated are stream-sediment and soil samples retrieved from the National Uranium Resource Evaluation (NURE) archives located in Denver, Colorado. Samples were retrieved from the Wells, McDermitt, Vya, Lovelock, Winnemucca, Elko, Ely, Millett, Reno, and Tonopah 1? x 2? quadrangles in northern Nevada. The data are appropriate for large-scale reconnaissance resource evaluations and landscape geochemical-geoenvironmental evaluations. The analytical results are presented in this report.

  5. Application of the authigenic 10Be/9Be dating method to Late Miocene-Pliocene sequences in the northern Danube Basin (Pannonian Basin System): Confirmation of heterochronous evolution of sedimentary environments

    NASA Astrophysics Data System (ADS)

    Šujan, Michal; Braucher, Régis; Kováč, Michal; Bourlès, Didier L.; Rybár, Samuel; Guillou, Valéry; Hudáčková, Natália

    2016-02-01

    Authigenic 10Be/9Be dating method was applied to lacustrine, deltaic and alluvial sequences of the northern Danube Basin (Pannonian Basin System), to bridge the insufficiency of geochronological data for the Late Miocene to Pliocene period. The measurements of 51 samples (both lacustrine and floodplain), ranging from 11.6 to 0.95 Ma are consistent with the existing magnetostratigraphic and biostratigraphic data standing mainly on the evolution degree of endemic mollusk fauna, mammals and dinocysts. This agreement confirms our assumption that the incoming beryllium fluxes remained constant over the studied time period and thus that the two initial 10Be/9Be ratios determined in actual Holocene/Late Pleistocene sediments (lacustrine and floodplain) are valid for these environments. The obtained ages indicate gradual progradation of the deltaic depositional systems across the Danube Basin with a clear time-transgressional character, replacing basin floor and shelfal environments. Deltaic sedimentation occurred firstly in the north at foothills of the Western Carpathians from 11.0 Ma, and changed to the alluvial environment after 10.5 Ma. At the same time (~ 10.5 Ma), the paleo-Danube deltaic system draining the Eastern Alps entered the study area from the Vienna Basin situated on the West. Later, the deltaic systems were merged in the central part of the basin and reached its southeastern margin at ~ 9.4 Ma. Regression of the Lake Pannon from the southernmost part of the study area is evidenced after 8.7 Ma. Alluvial deposition of meandering rivers lasting until 6.0-5.0 Ma followed and was interrupted by the early Pliocene basin inversion. Sedimentation of braided streams took place during the late Pliocene and Pleistocene, reflecting uplift of mountains surrounding the basin margins. This study documents the powerful potential of the authigenic 10Be/9Be dating method and its reliability in a basin with complicated tectonic and sedimentary history. It demonstrates that

  6. Rock magnetic properties and paleoenvironmental implications of an 8-Ma Late Cenozoic terrigenous succession from the northern Tian Shan foreland basin, northwestern China

    NASA Astrophysics Data System (ADS)

    Lu, Honghua; Zhang, Weiguo; Li, Youli; Dong, Chenyin; Zhang, Tianqi; Zhou, Zuyi; Zheng, Xiangmin

    2013-12-01

    In the northern Tian Shan foreland basin, northwestern China, the thick Cenozoic terrigenous succession is crucial for paleoclimate-environmental reconstruction of the Asian interior. Here we present a detailed rock magnetic investigation on 245 samples from the ~ 1200-m-thick Neogene Taxi He section with a magnetostratigraphic age span of ca. 8.0 to 2.0 Ma in the northern Tian Shan foreland basin. Our rock magnetic results indicate that the significant variations in composition, concentration and grain size of magnetic minerals occurred at ca. 6.0, 3.7 and 2.7 Ma. The comparable compositions of rare earth elements (REEs) throughout the Neogene Taxi He section suggest no significant modification of the source materials during the interval between ca. 8.0 and 2.0 Ma, and thus sediment provenance is not regarded as responsible for these observed variations in rock magnetic properties. Our further analyses show that the variations in magnetic properties of the Taxi He section are casually linked mainly with lithofacies transition due to range encroachment into foreland basin as well as climate aridification. Identified enhancement of aridification was chronologically constrained at ca. 6.0 and 2.7 Ma. Such climate events are important archives for reconstructing the Late Cenozoic paleoclimatic history of the Asian interior. Further comparison between different paleoclimate records clearly indicates that magnetic parameters such as S- 100mT are potentially effective proxy indices for paleoclimate-environmental reconstruction in the Tian Shan foreland basins and the nearby areas.

  7. Holocene Paleoenvironment of the North-central Great Basin: Preliminary Results from Favre Lake, Northern Ruby Mountains, Nevada

    NASA Astrophysics Data System (ADS)

    Starratt, S.; Wahl, D.; Wan, E.; Anderson, L.; Wanket, J.; Olson, H.; Lloyd-Davies, T.; Kusler, J.

    2009-12-01

    Little is known about Holocene climate variability in north-central Nevada. This study aims to assess changes in watershed vegetation, fire history, lake levels and limnological conditions in order to understand secular to millennial-scale changes in regional climate. Favre Lake (2,899 m a.s.l.; 12 m deep; 7.7 hectares) is a flow-through lake in the northern Ruby Mountains. The primary sources of influent, both of which appear to be intermittent, are Castle Lake (2,989 m a.s.l.) and Liberty Lake (3,077 m a.s.l.). The bedrock of the three lake basins is early Paleozoic marble and Mesozoic granite and metamorphic rocks. Bathymetric maps and temperature, pH, salinity, and conductivity profiles have been generated for Favre Lake. Surface samples and a series of cores were also collected using a modified Livingstone piston corer. The presence of the Mazama ash in the basal sediment (~4 m below the sediment/water interface) indicates the record extends to ~7,700 cal yr B.P. Magnetic susceptibility (MS) and loss-on-ignition data indicate that the sediments in the lowest part of the core contain primary and reworked Mazama ash. About 2,000 years ago CaCO3 increased from 2 to 3% of the inorganic sediment. The upper 25 cm of the core are marked by an increase in MS which may indicate increased erosion due to grazing. Between about 7,700 and 6,000 cal yr B.P. the diatom flora is dominated by a diverse assemblage of benthic species. The remainder of the core is dominated by Fragilaria, suggesting that lake level rose and flooded the shelf that surrounds the depocenter of the lake. This is supported by changes in the abundance of the aquatic fern Isoetes. Pinus and Artemisia dominate the pollen record, followed by subordinate levels of Poaceae, Asteraceae, Amaranthaceae, and Sarcobatus. The late early Holocene (7,700-6,000 cal yr B.P.) is dominated by Pinus which is present in reduced amounts during the middle Holocene (6,000-3,000 cal yr B.P.) and then returns to dominance in

  8. Estimation of aerosol optical properties and radiative effects in the Ganga basin, northern India, during the wintertime

    NASA Astrophysics Data System (ADS)

    Dey, Sagnik; Tripathi, S. N.

    2007-02-01

    An aerosol model has been developed using mass size distributions of various chemical components measured at Kanpur (an urban location in the Ganga basin, GB, in northern India) and applied to estimate the radiative effects of the aerosols over the entire GB during the winter season. The number size distribution of various species was derived from the measured mass concentration, and the optical properties were calculated using Mie theory. The maximum anthropogenic contribution to the total extinction was estimated to be ˜83%. The relative contributions of various species to the aerosol optical depth (AOD) at 0.5 μm are in the following order: (NH4)2SO4 (nss-SO4, 30%), nitrate (NO3-, 24%), salt (mainly NaCl and KCl, 18%), dust (17%) and black carbon (BC, 11%). Relative contribution of nss-SO4, NO3- and salt to the calculated AOD decreases with wavelength, and that of dust increases with wavelength, whereas BC contribution is spectrally insensitive. The extinction coefficient strongly depends on the RH, as the scattering by fine mode fraction, which contributes 88% to the total extinction, is enhanced at high ambient RH. The spectral variation of absorption coefficient indicates that the most likely source of BC in this region is fossil fuel. The spectral variation of single scattering albedo (SSA) in the coarse mode fraction suggests mixing of BC and dust particles. During the observational period, the mean shortwave (SW) clear sky top of the atmosphere (TOA) and surface forcing over Kanpur are estimated to be -13 ± 3 and -43 ± 8 W m-2, respectively. The corresponding longwave forcings are 3.6 ± 0.7 and 2.9 ± 0.6 W m-2, respectively. Mean AOD at 0.55 μm over the GB as derived from MODIS data is 0.36 ± 0.14. Extending our model over the entire GB, the net mean TOA and surface forcing become -6.4 and -30.2 W m-2 (with overall ˜15% uncertainty). This results in high atmospheric absorption (+23.8 W m-2), translating into a heating rate of 0.67 K day-1. The SW

  9. Late Miocene to Quaternary Transition in Magmatism and Tectonics, Sierra Nevada - Basin and Range Boundary, Northern California-Western Nevada

    NASA Astrophysics Data System (ADS)

    Prytulak, J.; Cousens, B. L.; Henry, C. D.

    2001-12-01

    During the late Miocene and early Pliocene, the Ancestral Cascades Arc (ARC) in northern CA and western NV shut off as the Mendocino triple junction migrated northward. At the same time, Basin and Range extension migrated westward into the Sierra Nevada block, with major episodes at 12 and 3 Ma. These tectonic events are reflected in a complex transition in magmatic composition and style. We are using geochemical, isotopic, and 40Ar/39Ar data to evaluate magma petrogenesis, the timing of volcanism, and the relationship between volcanism and tectonism in this poorly understood region of Mio-Pliocene arc volcanism. The ARC erupted highly porphyritic, pyroxene- or hornblende-plagioclase andesites to dacites, termed the Kate Peak Formation, from numerous stratovolcano complexes over basement rocks of the Sierra Nevada Batholith. Our new and published dating indicate activity from \\sim16 to 4 Ma. Immediately west of Reno, sequences dominated by poorly-phyric, olivine- and pyroxene-basaltic andesite, commonly termed Lousetown Formation, began to erupt as early as 10 Ma and continued to \\sim1 Ma. Early episodes, at 10.3 and 4 Ma, were contemporaneous with continued arc magmatism. Further, post-arc mafic volcanism continued in the area north of Lake Tahoe between 2.9 and 1.2 Ma. Although the change from hydrous intermediate rocks to \\sim anhydrous mafic rocks suggests a fundamental change in magmatic sources and tectonic setting, the mafic rocks have normalized incompatible element patterns and radiogenic isotope compositions that include a strong subduction component that is virtually indistinguishable from that in ARC intermediate lavas. Thus mafic and intermediate magmas, including post-arc magmas, share a common, fluid-modified, mantle wedge source. Additionally, the timing of mafic magmatism coincides only imprecisely with extension. No mafic magmas erupted before the beginning of extension at any location, but the earliest activity followed extension by \\sim2Ma

  10. Genesis of Middle Miocene Yellowstone hotspot-related bonanza epithermal Au-Ag deposits, Northern Great Basin, USA

    NASA Astrophysics Data System (ADS)

    Saunders, J. A.; Unger, D. L.; Kamenov, G. D.; Fayek, M.; Hames, W. E.; Utterback, W. C.

    2008-09-01

    Epithermal deposits with bonanza Au-Ag veins in the northern Great Basin (NGB) are spatially and temporally associated with Middle Miocene bimodal volcanism that was related to a mantle plume that has now migrated to the Yellowstone National Park area. The Au-Ag deposits formed between 16.5 and 14 Ma, but exhibit different mineralogical compositions, the latter due to the nature of the country rocks hosting the deposits. Where host rocks were primarily of meta-sedimentary or granitic origin, adularia-rich gold mineralization formed. Where glassy rhyolitic country rocks host veins, colloidal silica textures and precious metal-colloid aggregation textures resulted. Where basalts are the country rocks, clay-rich mineralization (with silica minerals, adularia, and carbonate) developed. Oxygen isotope data from quartz (originally amorphous silica and gels) from super-high-grade banded ores from the Sleeper deposit show that ore-forming solutions had δ 18O values up to 10‰ heavier than mid-Miocene meteoric water. The geochemical signature of the ores (including their Se-rich nature) is interpreted here to reflect a mantle source for the “epithermal suite” elements (Au, Ag, Se, Te, As, Sb, Hg) and that signature is preserved to shallow crustal levels because of the similar volatility and aqueous geochemical behavior of the “epithermal suite” elements. A mantle source for the gold in the deposits is further supported by the Pb isotopic signature of the gold ores. Apparently the host rocks control the mineralization style and gangue mineralogy of ores. However, all deposits are considered to have derived precious metals and metalloids from mafic magmas related to the initial emergence of the Yellowstone hotspot. Basalt-derived volatiles and metal(loid)s are inferred to have been absorbed by meteoric-water-dominated geothermal systems heated by shallow rhyolitic magma chambers. Episodic discharge of volatiles and metal(loid)s from deep basaltic magmas mixed with

  11. Untangling the Palaeocene climatic rhythm: an astronomically calibrated Early Palaeocene magnetostratigraphy and biostratigraphy at Zumaia (Basque basin, northern Spain)

    NASA Astrophysics Data System (ADS)

    Dinarès-Turell, Jaume; Baceta, Juan Ignacio; Pujalte, Victoriano; Orue-Etxebarria, Xabier; Bernaola, Gilen; Lorito, Stefano

    2003-12-01

    The magnetostratigraphy of a 54-m-long section above the Cretaceous-Tertiary boundary at the sea-cliff section of Zumaia in the Basque basin (northern Spain) has been established. The section encompasses the entire Danian and the lower part of the Selandian stages as indicated by calcareous plankton biostratigraphy. The studied interval consists of (hemi)pelagic limestone-marl alternations in the form of couplets and bundles, which range from centimetre/decimetre to metre scale respectively and a few thin-bedded calcareous turbidites. The magnetostratigraphy, based on samples from about 200 stratigraphic levels, allows the identification of six reversal boundaries from chron C29r to C26r at a bed level. The spatial (or temporal) evolution of periodicities from a lithologically coded series is studied with the continuous wavelet transform technique. A preliminary age model based on the standard CK95 GPTS indicates that the basic lithologic carbonate-marl couplet corresponds to the 19-23-kyr precession cycle (21-31-cm cycle in the depth domain) and that a bundle cycle (usually groups of four to six basic couplets) with global periodicity centred at 1.22 m corresponds to the ∼110-kyr eccentricity cycle. We have tuned the bundle cycles to the Va03_R7 eccentricity orbital solution [Astrophys. J. 592 (2003) 620-630] following an initial match of a node of the ∼2.4-Ma eccentricity modulatory cycle in the target time series to particularly carbonate-rich bundles from the upper part of the Zumaia section that displays significant power of a 4.4-m-period cycle corresponding to the ∼404-kyr eccentricity cycle. Consistency between lithologic patterns and characteristics in the eccentricity target is reasonably met although the ∼404-kyr eccentricity cycle is not persistent throughout. The tuning, however, appears robust as it brings the age of the K/T boundary at ∼65.8 Ma. It is argued that a sea-level signal (tectonically driven?) is superimposed on the climatic

  12. Tectono-sedimentary evolution of an extensional basin revealed by a combined photo-geological and field-mapping approach. The Montefalco Basin (Northern Apennines, Italy)

    NASA Astrophysics Data System (ADS)

    Bucci, Francesco; Mirabella, Francesco; Santangelo, Michele; Cardinali, Mauro; Guzzetti, Fausto

    2016-04-01

    Active extensional basins are important since their sedimentary infills and bounding tectonic structures provide: i) sinks with preservation potential for sedimentary and fossil records of past changes in climate and sediment/water supply, ii) information on the growth, activity, decay and death of normal faults, iii) vast economic reserves of hydrocarbons, water and minerals. Unfortunately, quaternary extensional basins, especially if located in humid and temperate climate environments, are often characterized by extensively cultivated areas, homogeneous terrains and quite flat morphologies. Furthermore, they commonly host human settlements, together with roads, economic and industrial infrastructures, with a consequent limited availability of good outcrops. Such a limitation can (often severely) hamper an adequate mapping of the sedimentary infill. Therefore alternative methodological approaches (such as aerial photographs interpretation, API) are needed to integrate heterogeneous and incomplete datasets. This contribution presents an updated photo-geological map of a Quaternary extensional basin in Central Italy, the Montefalco Basin. This basin developed in a continental environment characterized by clayey-sandy lacustrine and fluvial sequences (late Pliocene - early Pleistocene) underlying more recent coarse grained deposits related to alluvial fan environment (early-to-late Pleistocene) and younger palustrine deposits (late Pleistocene). Since the late Pleistocene, regional uplift and local tectonics led to the end of deposition in the Montefalco basin, which experienced a diffuse incision and the modification of the drainage network, in response to the W-to-E migration of active faulting and tectonic subsidence. The new photo-geological map represents an important improvement compared to the existing data, since it provides unprecedented and spatially distributed information on the geometry of the continental deposits and on the tectonic structures affecting

  13. Late Mesozoic to Paleogene stratigraphy of the Salar de Atacama Basin, Antofagasta, Northern Chile: Implications for the tectonic evolution of the Central Andes

    NASA Astrophysics Data System (ADS)

    Mpodozis, Constantino; Arriagada, César; Basso, Matilde; Roperch, Pierrick; Cobbold, Peter; Reich, Martin

    2005-04-01

    The Salar de Atacama basin, the largest "pre-Andean" basin in Northern Chile, was formed in the early Late Cretaceous as a consequence of the tectonic closure and inversion of the Jurassic-Early Cretaceous Tarapacá back arc basin. Inversion led to uplift of the Cordillera de Domeyko (CD), a thick-skinned basement range bounded by a system of reverse faults and blind thrusts with alternating vergence along strike. The almost 6000-m-thick, upper Cretaceous to lower Paleocene sequences (Purilactis Group) infilling the Salar de Atacama basin reflects rapid local subsidence to the east of the CD. Its oldest outcropping unit (Tonel Formation) comprises more than 1000 m of continental red sandstones and evaporites, which began to accumulate as syntectonic growth strata during the initial stages of CD uplift. Tonel strata are capped by almost 3000 m of sandstones and conglomerates of western provenance, representing the sedimentary response to renewed pulses of tectonic shortening, which were deposited in alluvial fan, fluvial and eolian settings together with minor lacustrine mudstone (Purilactis Formation). These are covered by 500 m of coarse, proximal alluvial fan conglomerates (Barros Arana Formation). The top of the Purilactis Group consists of Maastrichtian-Danian alkaline lava and minor welded tuffs and red beds (Cerro Totola Formation: 70-64 Ma K/Ar) deposited during an interval of tectonic quiescence when the El Molino-Yacoraite Late Cretaceous sea covered large tracts of the nearby Altiplano-Puna domain. Limestones interbedded with the Totola volcanics indicate that this marine incursion advanced westwards to reach the eastern CD slope. CD shortening in the Late Cretaceous was accompanied by volcanism and continental sedimentation in fault bounded basins associated to strike slip along the north Chilean magmatic arc to the west of the CD domain, indicating that oblique plate convergence prevailed during the Late Cretaceous. Oblique convergence seems to have

  14. Late Quaternary landscape evolution in the Kunlun Mountains and Qaidam Basin, Northern Tibet: A framework for examining the links between glaciation, lake level changes and alluvial fan formation

    USGS Publications Warehouse

    Owen, L.A.; Finkel, R.C.; Haizhou, M.; Barnard, P.L.

    2006-01-01

    The Qaidam Basin in Northern Tibet is one of the largest hyper-arid intermontane basins on Earth. Alluvial fans, pediment surfaces, shorelines and a thick succession of sediments within the basin, coupled with moraines and associated landforms in the adjacent high mountain catchments of the Kunlun Mountains, record a complex history of Late Quaternary paleoenvironmental change and landscape evolution. The region provides an ideal natural laboratory to examine the interaction between tectonics and climate within a continent-continent collision zone, and to quantify rates of landscape evolution as controlled by climate and the associated glacial and hydrological changes in hyper-arid and adjacent high-altitude environments. Geomorphic mapping, analysis of landforms and sediments, and terrestrial cosmogenic radionuclide surface exposure and optically stimulated luminescence dating serve to define the timing of formation of Late Quaternary landforms along the southern and northwestern margins of the Qaidam Basin, and in the Burhan Budai Shan of the Kunlun Mountains adjacent to the basin on the south. These dates provide a framework that suggests links between climatic amelioration, deglaciation, lake desiccation and alluvial fan evolution. At least three glacial advances are defined in the Burham Budai Shan of the Kunlun Mountains. On the northern side of this range these occurred in the penultimate glacial cycle or early in the last glacial cycle, during the Last Glacial Maximum (LGM)/Lateglacial and during the Holocene. On the south side of the range, advances occurred during the penultimate glacial cycle, MIS-3, and possibly the LGM, Lateglacial or Holocene. Several distinct phases of alluvial fan sedimentation are likewise defined. Alluvial fans formed on the southern side of the Kunlun Mountains prior to 200 ka. Ice-contact alluvial fans formed during the penultimate glacial and during MIS-3. Extensive incised alluvial fans that form the main valley fills north of

  15. Enhanced sediment delivery in a changing climate in semi-arid mountain basins: Implications for water resource management and aquatic habitat in the northern Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Goode, Jaime R.; Luce, Charles H.; Buffington, John M.

    2012-02-01

    The delivery and transport of sediment through mountain rivers affects aquatic habitat and water resource infrastructure. While climate change is widely expected to produce significant changes in hydrology and stream temperature, the effects of climate change on sediment yield have received less attention. In the northern Rocky Mountains, we expect climate change to increase sediment yield primarily through changes in temperature and hydrology that promote vegetation disturbances (i.e., wildfire, insect/pathogen outbreak, drought-related die off). Here, we synthesize existing data from central Idaho to explore (1) how sediment yields are likely to respond to climate change in semi-arid basins influenced by wildfire, (2) the potential consequences for aquatic habitat and water resource infrastructure, and (3) prospects for mitigating sediment yields in forest basins. Recent climate-driven increases in the severity and extent of wildfire suggest that basin-scale sediment yields within the next few years to decades could be greater than the long-term average rate of 146 T km - 2 year - 1 observed for central Idaho. These elevated sediment yields will likely impact downstream reservoirs, which were designed under conditions of historically lower sediment yield. Episodic erosional events (massive debris flows) that dominate post-fire sediment yields are impractical to mitigate, leaving road restoration as the most viable management opportunity for offsetting climate-related increases in sediment yield. However, short-term sediment yields from experimental basins with roads are three orders of magnitude smaller than those from individual fire-related events (on the order of 10 1 T km - 2 year - 1 compared to 10 4 T km - 2 year - 1 , respectively, for similar contributing areas), suggesting that road restoration would provide a relatively minor reduction in sediment loads at the basin-scale. Nevertheless, the ecologically damaging effects of fine sediment (material < 6 mm

  16. Longitudinal evolution of the tectonic style along the Cyprus Arc, northern margin of the Levant and Herodotus Basins

    NASA Astrophysics Data System (ADS)

    Symeou, Vasilis; Homberg, Catherine; Nader, Fadi; Darnault, Romain; Lecomte, Jean-Claude

    2016-04-01

    The Levant Basin is bounded to the north by the Cyprus Arc zone which was created by the northward movement of the African plate with respect to the Eurasian plate since Late Cretaceous time. The westward movement of the Anatolian micro-plate since Late Miocene created an additional strike-slip component along the plate boundary. The main objective of this contribution is to portray the structural architecture and features offshore Cyprus by analyzing available 2D seismic data in order to investigate the transition in tectonic style from compression to strike slip along the Cyprus Arc zone. We identified three different crustal domains offshore Cyprus that are from east to west: the eastern domain which belongs to the Levant Basin, the South-central domain which includes the Eratosthenes Seamount, and the South-West domain of Cyprus which corresponds to the Herodotus Basin. In the Levant Basin, the sequences identified are from Base Pliocene extending until the Senonian unconformity. The same sequences in the Cyprus Basin are offset and less thick due to the movement of the Latakia Ridge, which is identified as a steeply dipping sub-vertical fault on our data. In the central domain, the horizons identified on the Eratosthenes Seamount indicate that the Seamount is a Mesozoic carbonate platform covered by thin Miocene/Plio-Pleistocene sediments. A subdivision of the sedimentary sequence in the Herodotus Basin is proposed down to the Paleocene-Eocene basis. A major change in the structural style of the deformation is observed form west to east. Whereas the Levant Basin is almost undeformed south of the Latakia Ridge, several structures were mapped in the central domain, like flexural basin, pop-up structures and back-thrusts. South-verging thrusts were also, identified in the Cyprus Basin. All these structures show a Pliocene activity. Our data suggest that the heterogeneity of the crustal structure played a major role in the longitudinal evolution of the plate

  17. The Pre-historical Eruption of Volcanoes Near a Capital-city: Inferred From Tephra Deposits in the Taipei Basin, northern Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, C.; Lin, C.

    2006-12-01

    The volcanic pyroclastic flows, lahars and/or ashes derived from volcanic eruptions are a serious threat of human lives and regional economies, especially in the densely populated area. In case, more than two million populations in the capital-city Taipei, northern Taiwan just live in the vicinity of the Tatun Volcanic Group (TVG), how to make effective and reliable volcanic hazard mitigation is absolutely mandatory. Volcano is a pretty complex system. Hazard mitigation can be achieved only by applying numerous techniques. Understanding the recent eruptive history will be the most important information for prediction the future activity of eruption. After 1995, the Center Geological Survey of Ministry of Economic Affair handled to drill more than 20 wells in the Taipei basin to investigate the subsurface geology of basin. These continuous core samples offered the best materials to investigate if any volcanic ashes had deposited in the basin. The young juvenile volcanic ashes V pumice tuff were firstly identified in the two cores of the Kuantu well (KT- 1) and the Shihlin well (SL-1 in the late Pleistocene Sunshan formation. According to the radiocarbon (C-14) ages of core samples (Lin et al, 1998, Shieh, 2001), the time of this tephra deposit was extrapolated around 18.6 kyrs C-14 B.P.. Respecting, this tephra would like to be temperately named as the 18 kyrs Taipei Tuff (18 KTT). These air-fall ash deposits found in the core directly demonstrated that there had been re-active in the TVG in the recent time. More notable thing is that there are three historical records of submarine eruptions in northern offshore Taiwan, then, a program of the volcanic hazard reduction should be seriously considered around the capital city-Taipei.

  18. Large-scale thrusting along the northern margin of the Tibetan Plateau and the southwest Tarim basin: 230 km long active Hotian thrust sheet

    NASA Astrophysics Data System (ADS)

    Suppe, J.; Wang, X.; He, D.; Liang, H.

    2015-12-01

    We present the geometry, kinematics and mechanics of large-scale active thrusting in the western Kunlunshan and southwest Tarim basin, which accounts for ~130-165km total shortening of Tarim crust at the northern margin of Tibet. The great frontal structure is the ~230km long bedding-parallel Hotian thrust sheet, which is perhaps the longest active intact thrust sheet in the world, composed of flat-lying strata of the Tarim basin sliding northward on a regional gypsum detachment at the base of the Cenozoic sequence. The toe of the Hotian thrust ramps to the surface two thirds of the way across the Tarim basin, forming the Selibuya-Mazartag hills in the Taklamakan sand desert. At the southern edge of the Tarim basin in the Kunlunshan foothills, a set of high-amplitude anticlines are growing by complex break-forward ramping and wedging in the Hotian thrust sheet as it steps up to the Cenozoic gypsum detachment from a regional Cambrian evaporate detachment that extends under Tibet. More interior structures such as the Tiklik thrust bring older strata and Proterozoic basement to the surface, together with their Cenozoic Tarim cover in the Buya basin. The Cambrian detachment also extends northward under the Tarim basin with minor hanging-wall deformation that locally warps the overlying Hotian thrust sheet, producing a complete syntectonic record in seismically imaged growth strata of its northward motion over these warps. Seismic profiles in the southwest Tarim foothill belt also reveal widespread growth strata that record much of the structural history beginning in the early Pliocene Atushi Formation. Ages of seismic reflectors are calibrated to a surface magnetostratigraphic sequence (Zheng et al., 2000). The beginning of thrusting and folding in the southwest Tarim basin north of the Tiklik thrust is dated at 3.6Ma with shortening >25km and a progressive northward propagation toward the Selibuya-Mazartag hills. The overall shortening rate is ~10 mm/yr. The gypsum

  19. Testing 3D fault configuration in the northern Los Angeles basin, California via patterns of rock uplift the since 2.9 Ma

    NASA Astrophysics Data System (ADS)

    Cooke, M.; Meigs, A.; Marshall, S.

    2004-12-01

    Competing models of three-dimensional fault topology, starting from the Southern California Earthquake Center (SCEC) Community Fault Model (CFM), were tested for viability using numerical Boundary Element Method (BEM) models and patterns of rock uplift by folds in the northern Los Angeles basin Los Angeles basin. Thirteen structural cross-sections constrained by well and outcrop data were used to compile a structure contour map of the base of the Pico Formation (2.9 Ma) across about 50 km of the northern Los Angeles basin from the Coyote Hills on the east to Pacific Palisades on the west. A map of rock uplift rate was constructed from these data by measuring the structural relief relative to the central trough of the Los Angeles basin, a long-lived northwest-trending structural low that lies to the northeast of the Newport-Inglewood fault. BEM models of 3D fault topology were used to generate uplift rates over the same region using North-South contraction at 100 nanostrain/year. A suite of models investigate the sensitivity of uplift patterns to 1) dip of blind thrust faults (e.g. Las Cienegas and Elysian Park), 2) presence of low-angle (20 degree) thrust ramp below 10 km depths 3) regional extent of this low-angle ramp and 4) inclusion of near surface splays of the Santa Monica fault. Model-data compatibility was evaluated on the basis of structural trend, spatial variation in rates and location of major structures (i.e. key near surface folds). All models are consistent with the location and uplift pattern of the Coyote Hills and Santa Fe Springs structures, the location and orientation of the central trough, and a North-trending structure separating Santa Fe Springs on the east from Montebello to the northwest. Incorporation of the low-angle ramp below 10 km depth that is regionally extensive (i.e. many faults sole into this fault) improves model and geologic uplift compatibility. Furthermore, steepening the Las Cienegas and Elysian Park faults to 60 degrees

  20. Advanced interpretation of land subsidence by validating multi-interferometric SAR data: the case study of the Anthemountas basin (northern Greece)

    NASA Astrophysics Data System (ADS)

    Raspini, F.; Loupasakis, C.; Rozos, D.; Moretti, S.

    2013-04-01

    The potential of repeat-pass space borne SAR (Synthetic Aperture Radar) interferometry has been exploited to investigate spatial patterns of land subsidence in the Anthemountas basin, in the northern part of Greece. The PSI (Persistent Scatterer Interferometry) approach, based on the processing of long series of SAR acquisitions, has been applied to forty-two images acquired in 1995-2001 by ERS1/2 satellites. Interferometric results have been analyzed at a basin scale as support for land motion mapping and at local scale for the characterization of ground motion events affecting the village of Perea in the Thermaikos municipality and the "Macedonia" international airport. PSI results revealed a moderate subsidence phenomenon along the wider coastal zone of Anthemountas basin corresponding to intense groundwater extraction. Highest values, exceeding 20 mm yr-1, were measured in the airport area where the thickest sequence of compressible Quaternary sediments occurs. Intense subsidence has been detected also in the Perea village (maximum deformation up to 10-15 mm yr-1), where a series of fractures, causing damages to both buildings and infrastructure, occurred in 2005-2006. Furthermore, a linear pattern of deformation, elongated parallel to the major normal Thermi fault, has been observed, indicating movements with a probable tectonic component.

  1. Advanced interpretation of land subsidence by validating multi-interferometric SAR data: the case study of the Anthemountas basin (Northern Greece)

    NASA Astrophysics Data System (ADS)

    Raspini, F.; Loupasakis, C.; Rozos, D.; Moretti, S.

    2013-10-01

    The potential of repeat-pass space borne SAR (Synthetic Aperture Radar) interferometry has been exploited to investigate spatial patterns of land subsidence in the Anthemountas basin, in the northern part of Greece. The PSI (Persistent Scatterer Interferometry) approach, based on the processing of long series of SAR acquisitions, has been applied to forty-two images acquired in 1995-2001 by ERS1/2 satellites. Interferometric results have been analysed at a basin scale as support for land motion mapping and at a local scale for the characterisation of ground motion events affecting the village of Perea in the Thermaikos municipality and the "Macedonia" international airport. PSI results revealed a moderate subsidence phenomenon along the wider coastal zone of Anthemountas basin corresponding to intense groundwater extraction. Highest values, exceeding -20 mm yr-1, were measured in the airport area where the thickest sequence of compressible Quaternary sediments occurs. Intense subsidence has been detected also in the Perea village (maximum deformation of -10 to -15 mm yr-1), where a series of fractures, causing damages to both buildings and infrastructure, occurred in 2005-2006.

  2. Magnetostratigraphy of the Suerkuli Basin indicates Pliocene (3.2 Ma) activity of the middle Altyn Tagh Fault, northern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Chang, Hong; Ao, Hong; An, Zhisheng; Fang, Xiaomin; Song, Yougui; Qiang, Xiaoke

    2012-01-01

    The left-lateral strike-slip Altyn Tagh Fault (ATF) forming the northern boundary of the Tibetan Plateau accommodates parts of the overall convergence between the colliding Indian and Eurasian plates. Precise dating of the ATF activity is essential for understanding possible mechanisms of Tibetan Plateau deformation and uplift. Here we report a magnetostratigraphic study of the Suerkuli Basin deposits recording depositional changes during the ATF activity. Field investigations reveal a remarkable and widespread change in depositional environment in the Suerkuli Basin, i.e. a transformation from low-energy lacustrine deposits (grayish-green mud-siltstone and brown mud-siltstone) into high-energy alluviul fan deposits (poorly sorted gray pebble and cobble conglomerates). Detailed magnetostratigraphy of the 390-m-thick Daban section, at the southeastern margin of the Suerkuli Basin (38°43.09'N, 90°58.84'E), shows that this change in depositional facies occurred at ˜3.2 Ma, accompanied by a remarkable increase in sediment accumulation rate. We attribute this depositional change to the Piocene tectonic activity of the middle ATF although the contribution of the Pliocene global climate deterioration cannot be excluded.

  3. Development of an integrated water resources management plan for the Lake Manyara sub-basin, Northern Tanzania

    NASA Astrophysics Data System (ADS)

    Ngana, J. O.; Mwalyosi, R. B. B.; Madulu, N. F.; Yanda, P. Z.

    Water resources management in Lake Manyara sub-basin is an issue of very high significance as the sub-basin hosts a number of national and global assets of great socio-cultural, ecological and economic values. The sub-basin comprise of a Biosphere Reserve with boosting tourism from Lake Manyara National Park with a variety of wildlife population, large livestock population and highly fertile land for agricultural production. The prevailing system of uncoordinated water resources management in the sub-basin cannot sustain the ever increasing water needs of the various expanding sectors, therefore a strategy must be sought to integrate the various sectoral needs against the available water resources in order to attain both economic and ecological sustainability. Through participatory approach with the stakeholders, the study has established key issues, demonstrated considerable experience in water resources management in the sub-basin including existence of water boards, water committees in some districts as well as land resources management practices However, a number of constraints were noted which inhibit sustainable water resources management including ignorance of water policies, conflicting sectoral policies, lack of coordination between sectors, high in migration rates into the basin, heavy in migration of livestock, conflicts between sectors, poor land use resulting in soil erosion and sedimentation, lack of comprehensive data base on water resources and water needs for : domestic, tourism, livestock, irrigation, wild life and environmental flows. As a way forward it was recommended that a basin wide legally mandated body (involving all levels) be established to oversee water use in the sub-basin. Other strategies include capacity building of stakeholders on water natural resources management policies, water rights and enforcement of laws. This progress report paper highlights the wealth of knowledge that stakeholders possess on water resources management and

  4. Stratigraphic and tectonic studies in the central Aquitaine Basin, northern Pyrenees: Constraints on the subsidence and deformation history of a retro-foreland basin

    NASA Astrophysics Data System (ADS)

    Rougier, Géraldine; Ford, Mary; Christophoul, Frédéric; Bader, Anne-Gaëlle

    2016-03-01

    The central North-Pyrenean retrowedge developed on a thinned lithosphere, rich in Keuper evaporites. The behavior of this retro-foreland system is studied using subsidence analyses and a sequentially restored cross-section (120 km, Saint-Gaudens to Castelsarrasin) constrained by new chrono- and lithostratigraphy, surface and subsurface data. During the Late Cretaceous, a first episode of foreland subsidence (E1) produced a narrow marine depocenter (Comminges Basin, 30 km wide), supplied from the east. A synchronous early deformation involved inversion of basement faults and gentle shortening (4.5 km) of the Mesozoic strata above a Keuper decoupling layer. A tectonically quiet period (Q, Paleocene), characterized by a condensed succession (marine and continental), was followed by a second episode of subsidence (E2), basin migration and gentle thick- and thin-skinned shortening (8 km). Continental sedimentation, supplied by the uplifting orogen, first filled a narrow flexural basin (E2, M-L Eocene), then expanded across the Aquitaine Platform (E3, Oligocene-Miocene).

  5. Detection of detached forced-regressive nearshore wedges: a case study from the central-southern Siena Basin (Northern Apennines, Italy)

    NASA Astrophysics Data System (ADS)

    Martini, Ivan; Arragoni, Simone; Aldinucci, Mauro; Foresi, Luca Maria; Bambini, Anna Maria; Sandrelli, Fabio

    2013-07-01

    The detection of detached nearshore wedges formed in response to relative sea-level drops is considered one of the hottest topics in sequence stratigraphic analysis due to their importance as reservoir analogues. In fact, they usually constitute sandy and porous bodies generally encased in impermeable clay, thus presenting a good potential as traps for fluids. This paper focuses on the sequence stratigraphic analysis of the Pliocene deposits cropping out in the central-southern sector of the Siena Basin (Tuscany, Italy), a post-collisional basin of the Northern Apennines. The exposed sedimentary succession was investigated through a detailed sedimentological and stratigraphic approach, integrated by biostratigraphic analyses, aimed at a better characterization of the infilling history of this sector of the basin. Specifically, this study revealed the occurrence of repeated facies shifts that allowed the identification of two depositional sequences. In detail, a thick sand-rich body far from the basin margins, and previously considered as a turbiditic lobe, has been reinterpreted as formed in a nearshore setting during a fall in relative sea level. This body is totally encased in offshore clay, and due to the lack of physical connection with the related HST deposits, it has to be considered as a detached forced-regressive wedge. The present work led to the recognition of some sedimentological and stratigraphic features typical of falling stage systems tract deposits (e.g. presence of intrabasinal recycled materials, sedimentological evidence of a pre-existing fluvial network subsequently eroded) that can provide useful clues for the identification of detached forced-regressive nearshore wedges in core studies and poorly exposed settings.

  6. Pockmark development in the Petrel Sub-basin, Timor Sea, Northern Australia: Seabed habitat mapping in support of CO2 storage assessments

    NASA Astrophysics Data System (ADS)

    Nicholas, W. A.; Nichol, S. L.; Howard, F. J. F.; Picard, K.; Dulfer, H.; Radke, L. C.; Carroll, A. G.; Tran, M.; Siwabessy, P. J. W.

    2014-07-01

    The extent to which fluids may leak from sedimentary basins to the seabed is a critical issue for assessing the potential of a basin for carbon capture and storage. The Petrel Sub-basin, located beneath central and eastern Joseph Bonaparte Gulf in tropical northern Australia, was identified as potentially suitable for the geological storage of CO2 because of its geological characteristics and proximity to offshore gas and petroleum resources. In May 2012, a multidisciplinary marine survey (SOL5463) was undertaken to collect data in two targeted areas of the Petrel Sub-basin to facilitate an assessment of its CO2 storage potential. This paper focuses on Area 1 of that survey, a 471 km2 area of sediment-starved shelf (water depths of 78 to 102 m), characterised by low-gradient plains, low-lying ridges, palaeo-channels and shallow pockmarks. Three pockmark types are recognised: small shallow unit pockmarks 10-20 m in diameter (generally <1 m, rarely to 2 m deep), composite pockmarks of 150-300 m diameter formed from the co-location of several cross-cutting pockmarks forming a broad shallow depression (<1 m deep), and pockmark clusters comprised of shallow unit pockmarks co-located side by side (150-300 m width overall, <1 m deep). Pockmark distribution is non-random, focused within and adjacent to palaeo-channels, with pockmark clusters also located adjacent to ridges. Pockmark formation is constrained by AMS 14C dating of in situ mangrove deposits and shells to have begun after 15.5 cal ka BP when a rapid marine transgression of Bonaparte Shelf associated with meltwater pulse 1A drowned coastal mangrove environments. Pockmark development is likely an ongoing process driven by fluid seepage at the seabed, and sourced from CO2 produced in the shallow sub-surface (<2 m) sediment. No evidence for direct connection to deeper features was observed.

  7. Stable Isotopic Constraints on Abiogenic Hydrocarbon gas Contributions to Thermogenic Natural gas Resources in the Northern Appalachian Basin, USA

    NASA Astrophysics Data System (ADS)

    Burruss, R. C.; Laughrey, C. D.

    2006-05-01

    The generation of abiogenic methane by serpentinization or by graphite-water reactions in high-grade metamorphic rocks is well documented by isotopic, fluid inclusion, and petrographic studies. However, geochemical evidence is equivocal for abiogenic generation of higher hydrocarbon gases (ethane through pentane) in economic resources. Thermogenic hydrocarbon gases, generated by thermal cracking of sedimentary organic matter of biological origin, are progressively enriched in 13C as a function of increasing number of carbon atoms in the molecule. The isotopic composition is controlled by the kinetic isotope effect (KIE) during carbon-carbon bond breaking with the largest KIE for methane. Published work on gases in Precambrian rocks in Canada and South Africa suggest that some were generated by abiogenic Fischer-Tropsch type reactions that produced gases with carbon isotopic compositions that are reversed from the thermogenic trend. We have documented reversed isotopic compositions in natural gas accumulations in lower Paleozoic reservoirs of the Appalachian basin regionally from West Virginia and eastern Ohio through Pennsylvania to central New York. The regional accumulation in lower Silurian age strata shows progressive enhancement of the isotopic reversal with increasing depth in the basin. Multivariate analysis of the molecular and isotopic data define an end-member in the deep basin with an approximate composition of 98 mol % CH4, 1-2 mol % C2H6, << 1 mol % C3H8, and δ13C (CH4) = -27 ‰, δ13C (C2H6) = -40 ‰, δ13C (C3H8) = - 41‰. The nominal similarity of isotopic reversals in the gases from Precambrian rocks to those in the lower Paleozoic rocks of the Appalachian basin suggests that abiogenic F-T reactions may have generated some fraction of the gases in the deep basin. Comparison of molecular and hydrogen isotopic compositions show that the gases of putative abiogenic F-T origin are significantly different from Appalachian basin gases. All the

  8. The controlling factors on the submarine canyon system: a case study of the Central Canyon System in the Qiongdongnan Basin, northern South China Sea

    NASA Astrophysics Data System (ADS)

    Su, Ming; Zhang, Cheng; Xie, Xinong; Wang, Zhenfeng; Jiang, Tao; He, Yunlong; Zhang, Cuimei

    2013-04-01

    Based on the integrated analysis of the high-resolution 2D-3D seismic data and the drilling data, this study analyzed the tectonic-sedimentary evolution since Late Miocene, and discussed the controlling factors on the formation and development of the CCS. The sediment failure caused by the relative sea level falling could discharge the deposits from the slope to the canyon. The two suits of the infillings, the turbidite and the mass transport complex, were derived the northwestern source and northern source respectively. The distinct different sediment supplies from the different areas, would lead to the variation of the internal architectures. The tectonic transformation around 11.6 Ma provided the tectonic setting for the CCS and formed an axial sub-basin in the central part of the Changchang Depression, which could be suggested as the rudiment of the CCS. The tectonic activity of the Red River Fault at 5.7 Ma could strengthen the hydrodynamics of the deposits at the junction of the Yinggehai Basin and the Qiongdongnan Basin, and trigger the high energy turbidite current. The mass transport complex from the northern continental slope system would be constrained by the Southern Uplift, which played as the barrier for the infillings of the CCS. Due to the sufficient sediment supply during the Holocene period and the paleo-seafloor morphology, the relief of modern central canyon with the starving shaped in the eastern Changchang Depression may be accentuated by deposition of sediments and vertical growth along the canyon flanks, where the collapse deposits were widely developed. Corresponding to the segmentation of the CCS, the forming mechanisms of the canyon between the three segments would be different. The turbidite channel in the head area was triggered by the abundant sediment supply from northwestern source together with the fault activity at 5.7 Ma of the Red River Fault. The formation and evolution of the canyon in the western segment should be the combined

  9. Observed Loss and Ineffectiveness of Mosquito Larvicides Applied to Catch Basins in the Northern Suburbs of Chicago IL, 2014

    PubMed Central

    Harbison, Justin E; Layden, Jennifer E; Xamplas, Christopher; Zazra, Dave; Henry, Marlon; Ruiz, Marilyn O’Hara

    2015-01-01

    In the northeastern part of the greater Chicago metropolitan area, the North Shore Mosquito Abatement District (NSMAD) treats approximately 50,000 catch basins each season with larvicide tablets as part of its effort to reduce local populations of the West Nile virus (WNV) vector Culex pipiens. During the 2014 season, an NSMAD technician monitored a subset of 60–195 basins weekly for 18 weeks among the communities of the District for the presence of mosquitoes. Monitoring found no clear evidence in the reduction of mosquitoes with the use of larvicides, and visual inspections of 211 larvicide-treated basins found that the majority (162, 76.8%) were missing tablets 1–17 weeks after applications. This loss of treatment may be due to the rapid dissolution or flushing of larvicides and would help explain why the larvicide appeared to be ineffective. PMID:25987841

  10. The Qaidam Basin and Northern Tibetan Plateau as Dust Sources for the Chinese Loess Plateau, Determined by U-Pb Detrital Zircon Provenance

    NASA Astrophysics Data System (ADS)

    Pullen, A.; Kapp, P. A.; Chang, H.; McCallister, A. T.; Garzione, C. N.; Gehrels, G. E.; Heermance, R.; Ding, L.

    2011-12-01

    The Chinese Loess Plateau of central Asia is one of the most complete and extensive terrestrial eolian records on Earth. This record has accumulated over the past ~2.5 Ma and consists of interbedded loess and paleosol layers correlating to marine isotope glacial and interglacial stages respectively. Understanding the sources of the loess-paleosol deposit is fundamental to reconstructing wind patterns during Quaternary glacial-interglacial cycles. We determined and compared U-Pb ages for zircon crystals from loess strata from the Loess Plateau and potential source areas. Loess strata yield significant zircon age probability peaks in the ranges of 1925-1825 Ma, 490-370 Ma, 330-190 Ma, and 30-8 Ma. In comparison, detrital samples from Pliocene-Quaternary age strata in the Qaidam Basin yielded similar age probability distributions with peaks in the ranges of 490-380 Ma and 290-225 Ma, but very few samples yielded ages in the range of 1925-1825 Ma. Samples from the extensive Triassic (Hoh-Xil-Songpan-Ganzi) turbidite deposits exposed on the northern Tibetan Plateau yielded significant age probability peaks within the ranges of 1925-1825 Ma, 490-390 Ma, and 330-225 Ma. In addition, detrital zircon ages from the loess samples in the range of 225-190 Ma overlap with granitic plutons intruded into the turbidite deposits, whereas ages in the range of 30-8 Ma overlap with the extensive Cenozoic volcanic fields exposed on the northern Tibetan Plateau. These points indicate that the zircon crystals in the loess were likely derived from the Qaidam Basin and the northern Tibetan Plateau to the west. In addition, both areas exhibit spatially extensive geomorphic landforms indicative of pre-Holocene wind erosion/deflation by westerly winds. This interpretation challenges the current paradigm that the loess of the Chinese Loess Plateau was largely sourced from deserts located to the northwest, as observed in the modern interglacial climate. We propose that this dichotomy reflects

  11. Alkali element enrichments on the BABBs at the IODP Expedition 333 Site C0012 in the northern Shikoku Basin

    NASA Astrophysics Data System (ADS)

    Haraguchi, S.; Nakamura, K.; Fujinaga, K.

    2015-12-01

    The Shikoku Basin is a back arc basin located westside of the Izu-Ogasawara (Bonin) arc, spreading was from 25 to 15 Ma. The drilling of the DSDP, ODP and IODP recovered the backarc basin basalt (BABB) of the Shikoku Basin. Site C0012, south of the Kii Peninsula, was operated during the IODP Exp 333, and BABB was recovered 100m thickness under the 520m of sediment. This BABB is divided into upper aphyric pillow (Unit 1) and lower massive flow (Unit 2) divided at the 560 mbsf, and show variable degree of alteration, clay mineral and zeolite depositions. SiO2 and MgO contents of these basalts are 47-55 and 5-8 wt%. These basalts show wide variation of enrichment of alkali elements, 2.3-7.5 and 0.4-4.2 wt% of Na2O and K2O. Na2O+K2O contents show 3.2-8.0 wt%, and 2 wt% higher trends than other BABBs in the Shikoku Basin at the same SiO2 contents. Na2O and K2O show proportional and anti-proportional trends with increasing LOI. Therefore, both alkali element enrichments in these rocks are caused by secondary mineralization, and host phase of Na2O is hydrous and that of K2O is anhydrous minerals. Secondary mineral phases was mainly identified by XRD. The identified host phases of Na are analcime and thomsonite. Analcime is observed in rocks of more than 4 wt% of Na2O. Chlorite and smectite are identified to clay minerals. This mineral assemblage indicates the high-temperature zeolite facies alteration. The host phases of K are mainly identified into K-feldspar. We assume that secondary mineralization of K-fd is associated with low-temperature albitization. Compared to the lithostratigraphy, the Na enrichment is prominent in the Unit 1 and upper 20 m of the Unit 2, and the K enrichment is prominent in lower part of the Unit 2. We consider that the Na enrichment associated with zeolite depositions occurred under high water/rock ratio with active hydrothermal circulation because of high water permeability of pillow lava, and K enrichment associated with albitization occurred

  12. Imaging 3D geological structure of the Mygdonian basin (Northern Greece) with geological numerical modeling and geophysical methods.

    NASA Astrophysics Data System (ADS)

    Cédric, Guyonnet-Benaize; Fabrice, Hollender; Maria, Manakou; Alexandros, Savvaidis; Elena, Zargli; Cécile, Cornou; Nikolaos, Veranis; Dimitrios, Raptakis; Artemios, Atzemoglou; Pierre-Yves, Bard; Nikolaos, Theodulidis; Kyriazis, Pitilakis; Emmanuelle, Chaljub

    2013-04-01

    The Mygdonian basin, located 30 km E-NE close to Thessaloniki, is a typical active tectonic basin, trending E-NW, filled by sediments 200 to 400 m thick. This basin has been chosen as a European experimental site since 1993 (European Commission research projects - EUROSEISTEST). It has been investigated for experimental and theoretical studies on site effects. The Mygdonian basin is currently covered by a permanent seismological network and has been mainly characterized in 2D and 3D with geophysical and geotechnical studies (Bastani et al, 2011; Cadet and Savvaidis, 2011; Gurk et al, 2007; Manakou et al, 2007; Manakou et al, 2010; Pitilakis et al, 1999; Raptakis et al, 2000; Raptakis et al, 2005). All these studies allowed understanding the influence of geological structures and local site conditions on seismic site response. For these reasons, this site has been chosen for a verification exercise for numerical simulations in the framework of an ongoing international collaborative research project (Euroseistest Verification and Validation Project - E2VP). The verification phase has been made using a first 3D geophysical and geotechnical model (Manakou, 2007) about 5 km wide and 15 km long, centered on the Euroseistest site. After this verification phase, it has been decided to update, optimize and extend this model in order to obtain a more detailed model of the 3D geometry of the entire basin, especially the bedrock 3D geometry which can affect drastically the results of numerical simulations for site effect studies. In our study, we build a 3D geological model of the present-day structure of the entire Mygdonian basin. This "precise" model is 12 km wide, 65 km long and is 400 m deep in average. It has been built using geophysical, geotechnical and geological data. The database is heterogeneous and composed of hydrogeological boreholes, seismic refraction surveys, array microtremor measurements, electrical and geotechnical surveys. We propose an integrated

  13. Paleomagnetism and anisotropy of magnetic susceptibility of Eocene and Miocene sediments in the Qaidam Basin, Northwest China: Implication for the Cenozoic tectonic transition and development of the northern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Yu, X.; Guo, Z.; Huang, B.; Yin, A.; Guan, S.; Zhou, S.; Qiao, Q.; Cheng, F.; Cheng, X.; Zhang, T.

    2013-12-01

    Paleomagnetism and AMS (Anisotropy of Magnetic Susceptibility) results are reported from the middle to late Eocene Xiaganchaigou Formation and the early to middle Miocene Xiayoushashan Formation sediments at eight locations (Xichagou, Gansen, Eboliang, Heishiqiu, Luluohe, Kushuiquan, Hong Shan and Gahai), covering most outcrop regions of these two formations within the Qaidam Basin, Northwest China. These paleomagnetic data indicate that the Qaidam basin has not undergone wholesale tectonic vertical axis rotation relative to Eurasia and North China since at least middle and late Eocene. Local clockwise rotation only took place at some special locations such as Gahai. According to AMS results, 12 of 16 AMS ellipsoids belong to embryonic deformation magnetic fabric, which can be applied to reconstruct tectonic strain. Two epochs of compressive strain have been identified in the Qaidam basin during the Cenozoic: an early N-S strain no later than the Oligocene and a late NE-SW strain mainly after the early to middle Miocene. Further analysis shows that the early N-S compression in northern Qaidam basin is much more intense than that in western Qaidam basin, while the late NE-SW compression, which dominates the NW-SE-trending folds in the modern Qaidam basin, is more intense in western Qaidam basin than that in northern Qaidam basin. The stress concentration transition provides a reasonable explanation of the southeastwards migration of the deposition center in the Qaidam basin during the Cenozoic. The uniform paleomagnetic and AMS results at different localities reveal that the Qaidam basin is a relatively rigid plate, obviously different from the surrounding regions. Moreover, the appearance of E-component stress may be in close relationship with the beginning of the left-lateral Kunlun Fault or the eastwards channel flow south to the Kunlun Fault, implying that the south side of the Kunlun Fault is the active side.

  14. Regional Survey of Structural Properties and Cementation Patterns of Fault Zones in the Northern Part of the Albuquerque Basin, New Mexico - Implications for Ground-Water Flow

    USGS Publications Warehouse

    Minor, Scott A.; Hudson, Mark R.

    2006-01-01

    Motivated by the need to document and evaluate the types and variability of fault zone properties that potentially affect aquifer systems in basins of the middle Rio Grande rift, we systematically characterized structural and cementation properties of exposed fault zones at 176 sites in the northern Albuquerque Basin. A statistical analysis of measurements and observations evaluated four aspects of the fault zones: (1) attitude and displacement, (2) cement, (3) lithology of the host rock or sediment, and (4) character and width of distinctive structural architectural components at the outcrop scale. Three structural architectural components of the fault zones were observed: (1) outer damage zones related to fault growth; these zones typically contain deformation bands, shear fractures, and open extensional fractures, which strike subparallel to the fault and may promote ground-water flow along the fault zone; (2) inner mixed zones composed of variably entrained, disrupted, and dismembered blocks of host sediment; and (3) central fault cores that accommodate most shear strain and in which persistent low- permeability clay-rich rocks likely impede the flow of water across the fault. The lithology of the host rock or sediment influences the structure of the fault zone and the width of its components. Different grain-size distributions and degrees of induration of the host materials produce differences in material strength that lead to variations in width, degree, and style of fracturing and other fault-related deformation. In addition, lithology of the host sediment appears to strongly control the distribution of cement in fault zones. Most faults strike north to north-northeast and dip 55? - 77? east or west, toward the basin center. Most faults exhibit normal slip, and many of these faults have been reactivated by normal-oblique and strike slip. Although measured fault displacements have a broad range, from 0.9 to 4,000 m, most are <100 m, and fault zones appear to

  15. Early Cretaceous shelf-edge deltas of the Baltimore Canyon Trough: Principal sources for sediment gravity deposits of the northern Hatteras Basin

    NASA Astrophysics Data System (ADS)

    Poag, C. Wylie; Swift, B. Ann; Schlee, John S.; Ball, Mahlon M.; Sheetz, Linda L.

    1990-02-01

    We present evidence that the principal sources for Early Cretaceous (Berriasian-Valanginian) gravity-flow deposits of the northern Hatteras Basin were three large shelf-edge deltas located along the outer margin of the Baltimore Canyon Trough, ˜ 100 km southeast of Cape Charles, Virginia, Ocean City, Maryland, and Long Branch, New Jersey. Sedimentary detritus from the central Appalachian highlands and the Maryland-Virginia coastal plain was transported across the Early Cretaceous continental shelf to form the Cape Charles and Ocean City deltas, whereas deposits of the Long Branch delta came chiefly from the Adirondack and New England highlands. Each delta supplied sediment gravity flows to large slope aprons and submarine-fan complexes on the Early Cretaceous continental slope and rise. The most conspicuous distributary of sediment on the Early Cretaceous continental rise extends 500 km basinward from the Ocean City delta, where its distal deposits were cored at Deep Sea Drilling Project Site 603.

  16. Holocene environmental changes inferred from biological and sedimentological proxies in a high elevation Great Basin lake in the northern Ruby Mountains, Nevada, USA

    USGS Publications Warehouse

    Wahl, David B.; Starratt, Scott W.; Anderson, Lysanna; Kusler, Jennifer E.; Fuller, Christopher C.; Addison, Jason A.; Wan, Elmira

    2015-01-01

    Multi-proxy analyses were conducted on a sediment core from Favre Lake, a high elevation cirque lake in the northern Ruby Mountains, Nevada, and provide a ca. 7600 year record of local and regional environmental change. Data indicate that lake levels were lower from 7600-5750 cal yr BP, when local climate was warmer and/or drier than today. Effective moisture increased after 5750 cal yr BP and remained relatively wet, and possibly cooler, until ca. 3750 cal yr BP. Results indicate generally dry conditions but also enhanced climatic variability from 3750-1750 cal yr BP, after which effective moisture increased. The timing of major changes in the Favre Lake proxy data are roughly coeval and in phase with those recorded in several paleoclimate studies across the Great Basin, suggesting regional climatic controls on local conditions and similar responses at high and low altitudes.

  17. Seasonal concentrations of organic contaminants at the fall line of the Susquehanna River basin and estimated fluxes to northern Chesapeake Bay, USA

    SciTech Connect

    Foster, G.D.; Lippa, K.A.; Miller, C.V.

    2000-04-01

    Riverine fluxes of several pesticides and other organic contaminants from above the fall line of the Susquehanna River basin to northern Chesapeake Bay, USA, were quantified in 1994. Base flow and storm flow samples collected at the fall line of the river from February to December 1994 were analyzed for both dissolved and particulate phase contaminants. Measured concentrations of the organonitrogen and organophosphorus pesticides varied mainly in response to the timing of their application to agricultural fields. Conversely, the concentrations of the more particle-sorptive contaminants such as polychlorinated biphenyls (PCBs), organochlorine (OC) insecticides, and polycyclic aromatic hydrocarbons (PAHs) were more directly correlated with river flow throughout the year. Annual fluxes were almost entirely in the dissolved phase for the organonitrogen and organophosphorus pesticides, distributed between the dissolved and particulate phases for the PCBs and OC insecticides, and primarily in the particulate phase for the PAHs.

  18. Genetic mixed-stock analysis of lake-run brown trout Salmo trutta fishery catches in the Inari Basin, northern Finland: implications for conservation and management.

    PubMed

    Swatdipong, A; Vasemägi, A; Niva, T; Koljonen, M-L; Primmer, C R

    2013-09-01

    Genetic mixed-stock analysis (MSA) of wild lake-run brown trout Salmo trutta fishery catches (n = 665) from the Inari Basin (northern Finland) between 2006 and 2008 was carried out using a previously characterized baseline with 30 populations (n = 813) and 13 microsatellite loci. Altogether, 12 populations contributed significantly to mixed-stock fisheries, with the Ivalojoki system being the major contributor (70%) to the total catch. When catches were analysed regionally, geographically nearby populations were the main contributors to the local catches, indicating that a large proportion of S. trutta occupy lacustrine areas near the natal river mouth rather than dispersing throughout the lake. Similarly, far upstream populations contributed insignificantly to catches. These findings have important implications for the conservation and sustainable fishery management of the Inari system. PMID:23991877

  19. Early Cretaceous shelf-edge deltas of the Baltimore Canyon Trough: principal sources for sediment gravity deposits of the northern Hatteras Basin

    USGS Publications Warehouse

    Poag, C. Wylie; Swift, B. Ann; Schlee, John S.; Ball, Mahlon M.; Sheetz, Linda L.

    1990-01-01

    We present evidence that the principal sources for Early Cretaceous (Berriasian-Valanginian) gravity-flow deposits of the northern Hatteras Basin were three large shelf-edge deltas located along the outer margin of the Baltimore Canyon Trough, ∼ 100 km southeast of Cape Charles, Virginia, Ocean City, Maryland, and Long Branch, New Jersey. Sedimentary detritus from the central Appalachian highlands and the Maryland-Virginia coastal plain was transported across the Early Cretaceous continental shelf to form the Cape Charles and Ocean City deltas, whereas deposits of the Long Branch delta came chiefly from the Adirondack and New England highlands. Each delta supplied sediment gravity flows to large slope aprons and submarine-fan complexes on the Early Cretaceous continental slope and rise. The most conspicuous distributary of sediment on the Early Cretaceous continental rise extends 500 km basinward from the Ocean City delta, where its distal deposits were cored at Deep Sea Drilling Project Site 603.

  20. Seasonal concentrations of organic contaminants at the fall line of the Susquehanna River basin and estimated fluxes to northern Chesapeake Bay, USA

    USGS Publications Warehouse

    Foster, G.D.; Lippa, K.A.; Miller, C.V.

    2000-01-01

    Riverine fluxes of several pesticides and other organic contaminants from above the fall line of the Susquehanna River basin to northern Chesapeake Bay, USA, were quantified in 1994. Base flow and storm flow samples collected at the fall line of the river from February to December 1994 were analyzed for both dissolved and particulate phase contaminants. Measured concentrations of the organonitrogen and organophosphorus pesticides varied mainly in response to the timing of their application to agricultural fields. Conversely, the concentrations of the more particle-sorptive contaminants such as polychlorinated biphenyls (PCBs), organochlorine (OC) insecticides, and polycyclic aromatic hydrocarbons (PAHs) were more directly correlated with river flow throughout the year. Annual fluxes were almost entirely in the dissolved phase for the organonitrogen and organophosphorus pesticides, distributed between the dissolved and particulate phases for the PCBs and OC insecticides, and primarily in the particulate phase for the PAHs.

  1. Baltazor KGRA and vicinity, Nevada: geothermal reservoir assessment case study, northern Basin and Range province. Final report, 1 October 1978-31 January 1983

    SciTech Connect

    Wright, T.C.

    1983-01-01

    The Baltazor KGRA and McGee/Painted Hills geothermal prospects are located in northern Humboldt County, Nevada along the northwestern margin of the Basin and Range province. Exploration work other than drilling has included groundwater sampling, a microearthquake study, a geologic literature search and photogeologic mapping, compilation of aeromagnetic and gravity mapping, soil mercury surveying, electrical resistivity and self-potential surveys and detailed hydrothermal alteration mapping. Exploration drilling included 27 shallow temperature gradient holes, four intermediate-depth gradient wells and one 3703-foot deep test, Baltazor 45-14. The deep test penetrated Miocene rhyolite, andesite, basalt and andesitic basalt flows before excessive hold deviation forced an end to drilling and completion as a deep temperature observation well. A temperature survey two weeks after completion obtained a 119.7/sup 0/C (247.4/sup 0/F) reading at survey total depth, 1110 m (3640 feet).

  2. Numerical Simulation of Inter-basin Groundwater Flow into Northern Yucca Flat, Nevada National Security Site, Using the Death Valley Regional Flow System Model

    SciTech Connect

    Pohlmann Karl,Ye Ming

    2012-03-01

    Models of groundwater flow for the Yucca Flat area of the Nevada National Security Site (NNSS) are under development by the U.S. Department of Energy (DOE) for corrective action investigations of the Yucca Flat-Climax Mine Corrective Action Unit (CAU). One important aspect of these models is the quantity of inter-basin groundwater flow from regional systems to the north. This component of flow, together with its uncertainty, must be properly accounted for in the CAU flow models to provide a defensible regional framework for calculations of radionuclide transport that will support determinations of the Yucca Flat-Climax Mine contaminant boundary. Because characterizing flow boundary conditions in northern Yucca Flat requires evaluation to a higher level of detail than the scale of the Yucca Flat-Climax Mine CAU model can efficiently provide, a study more focused on this aspect of the model was required.

  3. Crustal deformation across the Sierra Nevada, northern Walker Lane, Basin and Range transition, western United States measured with GPS, 2000-2004

    NASA Astrophysics Data System (ADS)

    Hammond, William C.; Thatcher, Wayne

    2007-05-01

    Global Positioning System (GPS) data collected in campaigns in 2000 and 2004 were processed and interpreted with other GPS data in the western Basin and Range province to provide new constraints on the rate, style, and pattern of deformation of the central and northern Walker Lane (WL), which lies near the western boundary of the Basin and Range. Across the central WL, near 38°N latitude, the velocities with respect to North America increase westward by ˜10 mm/yr inducing dextral shear. Farther north between 40° and 41°N latitude, a western zone of ˜7 mm/yr relative motion undergoes dextral shear, and an eastern zone of ≤3 mm/yr relative motion undergoes extension and shear. These data show that the northern WL is essentially a dextral shear zone experiencing minor net dilatation (ɛΔ = 2.6 ± 0.8 nstrain/yr). Near most Holocene normal faults, dilatation inferred from the velocity field is not greater than the uncertainties. However, near the central Nevada seismic belt we detect significant dilatation expressed as extension in a direction approximately normal to the range fronts (ɛΔ = 23.0 ± 3.9 nstrain/yr), some of which is attributable to transient postseismic deformation following large historic earthquakes. A block model constrained by velocities corrected for transient effects shows that the sum of dextral slip rates across the Honey Lake, Warm Springs, east Pyramid fault system, and Mohawk Valley faults is ˜7 mm/yr. The WL is a zone whose width and dilatation rate increase northwestward, consistent with counterclockwise rotation of the Sierra Nevada microplate and transfer of deformation into the Pacific Northwest.

  4. Groundwater flow in a closed basin with a saline shallow lake in a volcanic area: Laguna Tuyajto, northern Chilean Altiplano of the Andes.

    PubMed

    Herrera, Christian; Custodio, Emilio; Chong, Guillermo; Lambán, Luis Javier; Riquelme, Rodrigo; Wilke, Hans; Jódar, Jorge; Urrutia, Javier; Urqueta, Harry; Sarmiento, Alvaro; Gamboa, Carolina; Lictevout, Elisabeth

    2016-01-15

    Laguna Tuyajto is a small, shallow saline water lake in the Andean Altiplano of northern Chile. In the eastern side it is fed by springs that discharge groundwater of the nearby volcanic aquifers. The area is arid: rainfall does not exceed 200mm/year in the rainiest parts. The stable isotopic content of spring water shows that the recharge is originated mainly from winter rain, snow melt, and to a lesser extent from some short and intense sporadic rainfall events. Most of the spring water outflowing in the northern side of Laguna Tuyajto is recharged in the Tuyajto volcano. Most of the spring water in the eastern side and groundwater are recharged at higher elevations, in the rims of the nearby endorheic basins of Pampa Colorada and Pampa Las Tecas to the East. The presence of tritium in some deep wells in Pampa Colorada and Pampa Las Tecas indicates recent recharge. Gas emission in recent volcanoes increase the sulfate content of atmospheric deposition and this is reflected in local groundwater. The chemical composition and concentration of spring waters are the result of meteoric water evapo-concentration, water-rock interaction, and mainly the dissolution of old and buried evaporitic deposits. Groundwater flow is mostly shallow due to a low permeability ignimbrite layer of regional extent, which also hinders brine spreading below and around the lake. High deep temperatures near the recent Tuyajto volcano explain the high dissolved silica contents and the δ(18)O shift to heavier values found in some of the spring waters. Laguna Tuyajto is a terminal lake where salts cumulate, mostly halite, but some brine transfer to the Salar de Aguas Calientes-3 cannot be excluded. The hydrogeological behavior of Laguna Tuyajto constitutes a model to understand the functioning of many other similar basins in other areas in the Andean Altiplano. PMID:26410705

  5. Impact of Cenozoic strike-slip tectonics on the evolution of the northern Levant Basin (offshore Lebanon)

    NASA Astrophysics Data System (ADS)

    Ghalayini, Ramadan; Daniel, Jean-Marc; Homberg, Catherine; Nader, Fadi H.; Comstock, John E.

    2014-11-01

    Sedimentary basins adjacent to plate boundaries contain key tectonic and stratigraphic elements to understand how stress is transmitted through plates. The Levant Basin is a place of choice to study such elements because it flanks the Levant Fracture System and the Africa/Anatolia boundary. This