Heterogeneous Factor Analysis Models: A Bayesian Approach.
ERIC Educational Resources Information Center
Ansari, Asim; Jedidi, Kamel; Dube, Laurette
2002-01-01
Developed Markov Chain Monte Carlo procedures to perform Bayesian inference, model checking, and model comparison in heterogeneous factor analysis. Tested the approach with synthetic data and data from a consumption emotion study involving 54 consumers. Results show that traditional psychometric methods cannot fully capture the heterogeneity in…
A Bayesian Shrinkage Approach for AMMI Models.
da Silva, Carlos Pereira; de Oliveira, Luciano Antonio; Nuvunga, Joel Jorge; Pamplona, Andrezza Kéllen Alves; Balestre, Marcio
2015-01-01
Linear-bilinear models, especially the additive main effects and multiplicative interaction (AMMI) model, are widely applicable to genotype-by-environment interaction (GEI) studies in plant breeding programs. These models allow a parsimonious modeling of GE interactions, retaining a small number of principal components in the analysis. However, one aspect of the AMMI model that is still debated is the selection criteria for determining the number of multiplicative terms required to describe the GE interaction pattern. Shrinkage estimators have been proposed as selection criteria for the GE interaction components. In this study, a Bayesian approach was combined with the AMMI model with shrinkage estimators for the principal components. A total of 55 maize genotypes were evaluated in nine different environments using a complete blocks design with three replicates. The results show that the traditional Bayesian AMMI model produces low shrinkage of singular values but avoids the usual pitfalls in determining the credible intervals in the biplot. On the other hand, Bayesian shrinkage AMMI models have difficulty with the credible interval for model parameters, but produce stronger shrinkage of the principal components, converging to GE matrices that have more shrinkage than those obtained using mixed models. This characteristic allowed more parsimonious models to be chosen, and resulted in models being selected that were similar to those obtained by the Cornelius F-test (α = 0.05) in traditional AMMI models and cross validation based on leave-one-out. This characteristic allowed more parsimonious models to be chosen and more GEI pattern retained on the first two components. The resulting model chosen by posterior distribution of singular value was also similar to those produced by the cross-validation approach in traditional AMMI models. Our method enables the estimation of credible interval for AMMI biplot plus the choice of AMMI model based on direct posterior
A Bayesian Shrinkage Approach for AMMI Models
de Oliveira, Luciano Antonio; Nuvunga, Joel Jorge; Pamplona, Andrezza Kéllen Alves
2015-01-01
Linear-bilinear models, especially the additive main effects and multiplicative interaction (AMMI) model, are widely applicable to genotype-by-environment interaction (GEI) studies in plant breeding programs. These models allow a parsimonious modeling of GE interactions, retaining a small number of principal components in the analysis. However, one aspect of the AMMI model that is still debated is the selection criteria for determining the number of multiplicative terms required to describe the GE interaction pattern. Shrinkage estimators have been proposed as selection criteria for the GE interaction components. In this study, a Bayesian approach was combined with the AMMI model with shrinkage estimators for the principal components. A total of 55 maize genotypes were evaluated in nine different environments using a complete blocks design with three replicates. The results show that the traditional Bayesian AMMI model produces low shrinkage of singular values but avoids the usual pitfalls in determining the credible intervals in the biplot. On the other hand, Bayesian shrinkage AMMI models have difficulty with the credible interval for model parameters, but produce stronger shrinkage of the principal components, converging to GE matrices that have more shrinkage than those obtained using mixed models. This characteristic allowed more parsimonious models to be chosen, and resulted in models being selected that were similar to those obtained by the Cornelius F-test (α = 0.05) in traditional AMMI models and cross validation based on leave-one-out. This characteristic allowed more parsimonious models to be chosen and more GEI pattern retained on the first two components. The resulting model chosen by posterior distribution of singular value was also similar to those produced by the cross-validation approach in traditional AMMI models. Our method enables the estimation of credible interval for AMMI biplot plus the choice of AMMI model based on direct posterior
Merging Digital Surface Models Implementing Bayesian Approaches
NASA Astrophysics Data System (ADS)
Sadeq, H.; Drummond, J.; Li, Z.
2016-06-01
In this research different DSMs from different sources have been merged. The merging is based on a probabilistic model using a Bayesian Approach. The implemented data have been sourced from very high resolution satellite imagery sensors (e.g. WorldView-1 and Pleiades). It is deemed preferable to use a Bayesian Approach when the data obtained from the sensors are limited and it is difficult to obtain many measurements or it would be very costly, thus the problem of the lack of data can be solved by introducing a priori estimations of data. To infer the prior data, it is assumed that the roofs of the buildings are specified as smooth, and for that purpose local entropy has been implemented. In addition to the a priori estimations, GNSS RTK measurements have been collected in the field which are used as check points to assess the quality of the DSMs and to validate the merging result. The model has been applied in the West-End of Glasgow containing different kinds of buildings, such as flat roofed and hipped roofed buildings. Both quantitative and qualitative methods have been employed to validate the merged DSM. The validation results have shown that the model was successfully able to improve the quality of the DSMs and improving some characteristics such as the roof surfaces, which consequently led to better representations. In addition to that, the developed model has been compared with the well established Maximum Likelihood model and showed similar quantitative statistical results and better qualitative results. Although the proposed model has been applied on DSMs that were derived from satellite imagery, it can be applied to any other sourced DSMs.
Stochastic model updating utilizing Bayesian approach and Gaussian process model
NASA Astrophysics Data System (ADS)
Wan, Hua-Ping; Ren, Wei-Xin
2016-03-01
Stochastic model updating (SMU) has been increasingly applied in quantifying structural parameter uncertainty from responses variability. SMU for parameter uncertainty quantification refers to the problem of inverse uncertainty quantification (IUQ), which is a nontrivial task. Inverse problem solved with optimization usually brings about the issues of gradient computation, ill-conditionedness, and non-uniqueness. Moreover, the uncertainty present in response makes the inverse problem more complicated. In this study, Bayesian approach is adopted in SMU for parameter uncertainty quantification. The prominent strength of Bayesian approach for IUQ problem is that it solves IUQ problem in a straightforward manner, which enables it to avoid the previous issues. However, when applied to engineering structures that are modeled with a high-resolution finite element model (FEM), Bayesian approach is still computationally expensive since the commonly used Markov chain Monte Carlo (MCMC) method for Bayesian inference requires a large number of model runs to guarantee the convergence. Herein we reduce computational cost in two aspects. On the one hand, the fast-running Gaussian process model (GPM) is utilized to approximate the time-consuming high-resolution FEM. On the other hand, the advanced MCMC method using delayed rejection adaptive Metropolis (DRAM) algorithm that incorporates local adaptive strategy with global adaptive strategy is employed for Bayesian inference. In addition, we propose the use of the powerful variance-based global sensitivity analysis (GSA) in parameter selection to exclude non-influential parameters from calibration parameters, which yields a reduced-order model and thus further alleviates the computational burden. A simulated aluminum plate and a real-world complex cable-stayed pedestrian bridge are presented to illustrate the proposed framework and verify its feasibility.
A Bayesian Approach for Analyzing Longitudinal Structural Equation Models
ERIC Educational Resources Information Center
Song, Xin-Yuan; Lu, Zhao-Hua; Hser, Yih-Ing; Lee, Sik-Yum
2011-01-01
This article considers a Bayesian approach for analyzing a longitudinal 2-level nonlinear structural equation model with covariates, and mixed continuous and ordered categorical variables. The first-level model is formulated for measures taken at each time point nested within individuals for investigating their characteristics that are dynamically…
Bayesian non-parametrics and the probabilistic approach to modelling
Ghahramani, Zoubin
2013-01-01
Modelling is fundamental to many fields of science and engineering. A model can be thought of as a representation of possible data one could predict from a system. The probabilistic approach to modelling uses probability theory to express all aspects of uncertainty in the model. The probabilistic approach is synonymous with Bayesian modelling, which simply uses the rules of probability theory in order to make predictions, compare alternative models, and learn model parameters and structure from data. This simple and elegant framework is most powerful when coupled with flexible probabilistic models. Flexibility is achieved through the use of Bayesian non-parametrics. This article provides an overview of probabilistic modelling and an accessible survey of some of the main tools in Bayesian non-parametrics. The survey covers the use of Bayesian non-parametrics for modelling unknown functions, density estimation, clustering, time-series modelling, and representing sparsity, hierarchies, and covariance structure. More specifically, it gives brief non-technical overviews of Gaussian processes, Dirichlet processes, infinite hidden Markov models, Indian buffet processes, Kingman’s coalescent, Dirichlet diffusion trees and Wishart processes. PMID:23277609
A Bayesian approach to parameter estimation in HIV dynamical models.
Putter, H; Heisterkamp, S H; Lange, J M A; de Wolf, F
2002-08-15
In the context of a mathematical model describing HIV infection, we discuss a Bayesian modelling approach to a non-linear random effects estimation problem. The model and the data exhibit a number of features that make the use of an ordinary non-linear mixed effects model intractable: (i) the data are from two compartments fitted simultaneously against the implicit numerical solution of a system of ordinary differential equations; (ii) data from one compartment are subject to censoring; (iii) random effects for one variable are assumed to be from a beta distribution. We show how the Bayesian framework can be exploited by incorporating prior knowledge on some of the parameters, and by combining the posterior distributions of the parameters to obtain estimates of quantities of interest that follow from the postulated model. PMID:12210633
Bayesian approach for network modeling of brain structural features
NASA Astrophysics Data System (ADS)
Joshi, Anand A.; Joshi, Shantanu H.; Leahy, Richard M.; Shattuck, David W.; Dinov, Ivo; Toga, Arthur W.
2010-03-01
Brain connectivity patterns are useful in understanding brain function and organization. Anatomical brain connectivity is largely determined using the physical synaptic connections between neurons. In contrast statistical brain connectivity in a given brain population refers to the interaction and interdependencies of statistics of multitudes of brain features including cortical area, volume, thickness etc. Traditionally, this dependence has been studied by statistical correlations of cortical features. In this paper, we propose the use of Bayesian network modeling for inferring statistical brain connectivity patterns that relate to causal (directed) as well as non-causal (undirected) relationships between cortical surface areas. We argue that for multivariate cortical data, the Bayesian model provides for a more accurate representation by removing the effect of confounding correlations that get introduced due to canonical dependence between the data. Results are presented for a population of 466 brains, where a SEM (structural equation modeling) approach is used to generate a Bayesian network model, as well as a dependency graph for the joint distribution of cortical areas.
Diagnosing Hybrid Systems: a Bayesian Model Selection Approach
NASA Technical Reports Server (NTRS)
McIlraith, Sheila A.
2005-01-01
In this paper we examine the problem of monitoring and diagnosing noisy complex dynamical systems that are modeled as hybrid systems-models of continuous behavior, interleaved by discrete transitions. In particular, we examine continuous systems with embedded supervisory controllers that experience abrupt, partial or full failure of component devices. Building on our previous work in this area (MBCG99;MBCG00), our specific focus in this paper ins on the mathematical formulation of the hybrid monitoring and diagnosis task as a Bayesian model tracking algorithm. The nonlinear dynamics of many hybrid systems present challenges to probabilistic tracking. Further, probabilistic tracking of a system for the purposes of diagnosis is problematic because the models of the system corresponding to failure modes are numerous and generally very unlikely. To focus tracking on these unlikely models and to reduce the number of potential models under consideration, we exploit logic-based techniques for qualitative model-based diagnosis to conjecture a limited initial set of consistent candidate models. In this paper we discuss alternative tracking techniques that are relevant to different classes of hybrid systems, focusing specifically on a method for tracking multiple models of nonlinear behavior simultaneously using factored sampling and conditional density propagation. To illustrate and motivate the approach described in this paper we examine the problem of monitoring and diganosing NASA's Sprint AERCam, a small spherical robotic camera unit with 12 thrusters that enable both linear and rotational motion.
Nonlinear regression modeling of nutrient loads in streams: A Bayesian approach
Qian, S.S.; Reckhow, K.H.; Zhai, J.; McMahon, G.
2005-01-01
A Bayesian nonlinear regression modeling method is introduced and compared with the least squares method for modeling nutrient loads in stream networks. The objective of the study is to better model spatial correlation in river basin hydrology and land use for improving the model as a forecasting tool. The Bayesian modeling approach is introduced in three steps, each with a more complicated model and data error structure. The approach is illustrated using a data set from three large river basins in eastern North Carolina. Results indicate that the Bayesian model better accounts for model and data uncertainties than does the conventional least squares approach. Applications of the Bayesian models for ambient water quality standards compliance and TMDL assessment are discussed. Copyright 2005 by the American Geophysical Union.
A Bayesian Approach to Person Fit Analysis in Item Response Theory Models. Research Report.
ERIC Educational Resources Information Center
Glas, Cees A. W.; Meijer, Rob R.
A Bayesian approach to the evaluation of person fit in item response theory (IRT) models is presented. In a posterior predictive check, the observed value on a discrepancy variable is positioned in its posterior distribution. In a Bayesian framework, a Markov Chain Monte Carlo procedure can be used to generate samples of the posterior distribution…
Ice Shelf Modeling: A Cross-Polar Bayesian Statistical Approach
NASA Astrophysics Data System (ADS)
Kirchner, N.; Furrer, R.; Jakobsson, M.; Zwally, H. J.
2010-12-01
Ice streams interlink glacial terrestrial and marine environments: embedded in a grounded inland ice such as the Antarctic Ice Sheet or the paleo ice sheets covering extensive parts of the Eurasian and Amerasian Arctic respectively, ice streams are major drainage agents facilitating the discharge of substantial portions of continental ice into the ocean. At their seaward side, ice streams can either extend onto the ocean as floating ice tongues (such as the Drygalsky Ice Tongue/East Antarctica), or feed large ice shelves (as is the case for e.g. the Siple Coast and the Ross Ice Shelf/West Antarctica). The flow behavior of ice streams has been recognized to be intimately linked with configurational changes in their attached ice shelves; in particular, ice shelf disintegration is associated with rapid ice stream retreat and increased mass discharge from the continental ice mass, contributing eventually to sea level rise. Investigations of ice stream retreat mechanism are however incomplete if based on terrestrial records only: rather, the dynamics of ice shelves (and, eventually, the impact of the ocean on the latter) must be accounted for. However, since floating ice shelves leave hardly any traces behind when melting, uncertainty regarding the spatio-temporal distribution and evolution of ice shelves in times prior to instrumented and recorded observation is high, calling thus for a statistical modeling approach. Complementing ongoing large-scale numerical modeling efforts (Pollard & DeConto, 2009), we model the configuration of ice shelves by using a Bayesian Hiearchial Modeling (BHM) approach. We adopt a cross-polar perspective accounting for the fact that currently, ice shelves exist mainly along the coastline of Antarctica (and are virtually non-existing in the Arctic), while Arctic Ocean ice shelves repeatedly impacted the Arctic ocean basin during former glacial periods. Modeled Arctic ocean ice shelf configurations are compared with geological spatial
A Bayesian approach to biokinetic models of internally- deposited radionuclides
NASA Astrophysics Data System (ADS)
Amer, Mamun F.
Bayesian methods were developed and applied to estimate parameters of biokinetic models of internally deposited radionuclides for the first time. Marginal posterior densities for the parameters, given the available data, were obtained and graphed. These densities contain all the information available about the parameters and fully describe their uncertainties. Two different numerical integration methods were employed to approximate the multi-dimensional integrals needed to obtain these densities and to verify our results. One numerical method was based on Gaussian quadrature. The other method was a lattice rule that was developed by Conroy. The lattice rule method is applied here for the first time in conjunction with Bayesian analysis. Computer codes were developed in Mathematica's own programming language to perform the integrals. Several biokinetic models were studied. The first model was a single power function, a/ t-b that was used to describe 226Ra whole body retention data for long periods of time in many patients. The posterior odds criterion for model identification was applied to select, from among some competing models, the best model to represent 226Ra retention in man. The highest model posterior was attained by the single power function. Posterior densities for the model parameters were obtained for each patient. Also, predictive densities for retention, given the available retention values and some selected times, were obtained. These predictive densities characterize the uncertainties in the unobservable retention values taking into consideration the uncertainties of other parameters in the model. The second model was a single exponential function, α e-/beta t, that was used to represent one patient's whole body retention as well as total excretion of 137Cs. Missing observations (censored data) in the two responses were replaced by unknown parameters and were handled in the same way other model parameters are treated. By applying the Bayesian
Bayesian Belief Networks Approach for Modeling Irrigation Behavior
NASA Astrophysics Data System (ADS)
Andriyas, S.; McKee, M.
2012-12-01
Canal operators need information to manage water deliveries to irrigators. Short-term irrigation demand forecasts can potentially valuable information for a canal operator who must manage an on-demand system. Such forecasts could be generated by using information about the decision-making processes of irrigators. Bayesian models of irrigation behavior can provide insight into the likely criteria which farmers use to make irrigation decisions. This paper develops a Bayesian belief network (BBN) to learn irrigation decision-making behavior of farmers and utilizes the resulting model to make forecasts of future irrigation decisions based on factor interaction and posterior probabilities. Models for studying irrigation behavior have been rarely explored in the past. The model discussed here was built from a combination of data about biotic, climatic, and edaphic conditions under which observed irrigation decisions were made. The paper includes a case study using data collected from the Canal B region of the Sevier River, near Delta, Utah. Alfalfa, barley and corn are the main crops of the location. The model has been tested with a portion of the data to affirm the model predictive capabilities. Irrigation rules were deduced in the process of learning and verified in the testing phase. It was found that most of the farmers used consistent rules throughout all years and across different types of crops. Soil moisture stress, which indicates the level of water available to the plant in the soil profile, was found to be one of the most significant likely driving forces for irrigation. Irrigations appeared to be triggered by a farmer's perception of soil stress, or by a perception of combined factors such as information about a neighbor irrigating or an apparent preference to irrigate on a weekend. Soil stress resulted in irrigation probabilities of 94.4% for alfalfa. With additional factors like weekend and irrigating when a neighbor irrigates, alfalfa irrigation
A Bayesian approach to model structural error and input variability in groundwater modeling
NASA Astrophysics Data System (ADS)
Xu, T.; Valocchi, A. J.; Lin, Y. F. F.; Liang, F.
2015-12-01
Effective water resource management typically relies on numerical models to analyze groundwater flow and solute transport processes. Model structural error (due to simplification and/or misrepresentation of the "true" environmental system) and input forcing variability (which commonly arises since some inputs are uncontrolled or estimated with high uncertainty) are ubiquitous in groundwater models. Calibration that overlooks errors in model structure and input data can lead to biased parameter estimates and compromised predictions. We present a fully Bayesian approach for a complete assessment of uncertainty for spatially distributed groundwater models. The approach explicitly recognizes stochastic input and uses data-driven error models based on nonparametric kernel methods to account for model structural error. We employ exploratory data analysis to assist in specifying informative prior for error models to improve identifiability. The inference is facilitated by an efficient sampling algorithm based on DREAM-ZS and a parameter subspace multiple-try strategy to reduce the required number of forward simulations of the groundwater model. We demonstrate the Bayesian approach through a synthetic case study of surface-ground water interaction under changing pumping conditions. It is found that explicit treatment of errors in model structure and input data (groundwater pumping rate) has substantial impact on the posterior distribution of groundwater model parameters. Using error models reduces predictive bias caused by parameter compensation. In addition, input variability increases parametric and predictive uncertainty. The Bayesian approach allows for a comparison among the contributions from various error sources, which could inform future model improvement and data collection efforts on how to best direct resources towards reducing predictive uncertainty.
A General and Flexible Approach to Estimating the Social Relations Model Using Bayesian Methods
ERIC Educational Resources Information Center
Ludtke, Oliver; Robitzsch, Alexander; Kenny, David A.; Trautwein, Ulrich
2013-01-01
The social relations model (SRM) is a conceptual, methodological, and analytical approach that is widely used to examine dyadic behaviors and interpersonal perception within groups. This article introduces a general and flexible approach to estimating the parameters of the SRM that is based on Bayesian methods using Markov chain Monte Carlo…
ERIC Educational Resources Information Center
Lee, Sik-Yum; Song, Xin-Yuan; Cai, Jing-Heng
2010-01-01
Analysis of ordered binary and unordered binary data has received considerable attention in social and psychological research. This article introduces a Bayesian approach, which has several nice features in practical applications, for analyzing nonlinear structural equation models with dichotomous data. We demonstrate how to use the software…
A Robust Bayesian Approach for Structural Equation Models with Missing Data
ERIC Educational Resources Information Center
Lee, Sik-Yum; Xia, Ye-Mao
2008-01-01
In this paper, normal/independent distributions, including but not limited to the multivariate t distribution, the multivariate contaminated distribution, and the multivariate slash distribution, are used to develop a robust Bayesian approach for analyzing structural equation models with complete or missing data. In the context of a nonlinear…
Equifinality of formal (DREAM) and informal (GLUE) bayesian approaches in hydrologic modeling?
Vrugt, Jasper A; Robinson, Bruce A; Ter Braak, Cajo J F; Gupta, Hoshin V
2008-01-01
In recent years, a strong debate has emerged in the hydrologic literature regarding what constitutes an appropriate framework for uncertainty estimation. Particularly, there is strong disagreement whether an uncertainty framework should have its roots within a proper statistical (Bayesian) context, or whether such a framework should be based on a different philosophy and implement informal measures and weaker inference to summarize parameter and predictive distributions. In this paper, we compare a formal Bayesian approach using Markov Chain Monte Carlo (MCMC) with generalized likelihood uncertainty estimation (GLUE) for assessing uncertainty in conceptual watershed modeling. Our formal Bayesian approach is implemented using the recently developed differential evolution adaptive metropolis (DREAM) MCMC scheme with a likelihood function that explicitly considers model structural, input and parameter uncertainty. Our results demonstrate that DREAM and GLUE can generate very similar estimates of total streamflow uncertainty. This suggests that formal and informal Bayesian approaches have more common ground than the hydrologic literature and ongoing debate might suggest. The main advantage of formal approaches is, however, that they attempt to disentangle the effect of forcing, parameter and model structural error on total predictive uncertainty. This is key to improving hydrologic theory and to better understand and predict the flow of water through catchments.
A Bayesian approach to the semi-analytic model of galaxy formation
NASA Astrophysics Data System (ADS)
Lu, Yu
It is believed that a wide range of physical processes conspire to shape the observed galaxy population but it remains unsure of their detailed interactions. The semi-analytic model (SAM) of galaxy formation uses multi-dimensional parameterizations of the physical processes of galaxy formation and provides a tool to constrain these underlying physical interactions. Because of the high dimensionality and large uncertainties in the model, the parametric problem of galaxy formation can be profitably tackled with a Bayesian-inference based approach, which allows one to constrain theory with data in a statistically rigorous way. In this thesis, I present a newly developed method to build SAM upon the framework of Bayesian inference. I show that, aided by advanced Markov-Chain Monte-Carlo algorithms, the method has the power to efficiently combine information from diverse data sources, rigorously establish confidence bounds on model parameters, and provide powerful probability-based methods for hypothesis test. Using various data sets (stellar mass function, conditional stellar mass function, K-band luminosity function, and cold gas mass functions) of galaxies in the local Universe, I carry out a series of Bayesian model inferences. The results show that SAM contains huge degeneracies among its parameters, indicating that some of the conclusions drawn previously with the conventional approach may not be truly valid but need to be revisited by the Bayesian approach. Second, some of the degeneracy of the model can be broken by adopting multiple data sets that constrain different aspects of the galaxy population. Third, the inferences reveal that model has challenge to simultaneously explain some important observational results, suggesting that some key physics governing the evolution of star formation and feedback may still be missing from the model. These analyses show clearly that the Bayesian inference based SAM can be used to perform systematic and statistically
NASA Astrophysics Data System (ADS)
Xu, Tianfang; Valocchi, Albert J.
2015-11-01
Numerical groundwater flow and solute transport models are usually subject to model structural error due to simplification and/or misrepresentation of the real system, which raises questions regarding the suitability of conventional least squares regression-based (LSR) calibration. We present a new framework that explicitly describes the model structural error statistically in an inductive, data-driven way. We adopt a fully Bayesian approach that integrates Gaussian process error models into the calibration, prediction, and uncertainty analysis of groundwater flow models. We test the usefulness of the fully Bayesian approach with a synthetic case study of the impact of pumping on surface-ground water interaction. We illustrate through this example that the Bayesian parameter posterior distributions differ significantly from parameters estimated by conventional LSR, which does not account for model structural error. For the latter method, parameter compensation for model structural error leads to biased, overconfident prediction under changing pumping condition. In contrast, integrating Gaussian process error models significantly reduces predictive bias and leads to prediction intervals that are more consistent with validation data. Finally, we carry out a generalized LSR recalibration step to assimilate the Bayesian prediction while preserving mass conservation and other physical constraints, using a full error covariance matrix obtained from Bayesian results. It is found that the recalibrated model achieved lower predictive bias compared to the model calibrated using conventional LSR. The results highlight the importance of explicit treatment of model structural error especially in circumstances where subsequent decision-making and risk analysis require accurate prediction and uncertainty quantification.
fMRI data analysis with nonstationary noise models: a Bayesian approach.
Luo, Huaien; Puthusserypady, Sadasivan
2007-09-01
The assumption of noise stationarity in the functional magnetic resonance imaging (fMRI) data analysis may lead to the loss of crucial dynamic features of the data and thus result in inaccurate activation detection. In this paper, a Bayesian approach is proposed to analyze the fMRI data with two nonstationary noise models (the time-varying variance noise model and the fractional noise model). The covariance matrices of the time-varying variance noise and the fractional noise after wavelet transform are diagonal matrices. This property is investigated under the Bayesian framework. The Bayesian estimator not only gives an accurate estimate of the weights in general linear model, but also provides posterior probability of activation in a voxel and, hence, avoids the limitations (i.e., using only hypothesis testing) in the classical methods. The performance of the proposed Bayesian methods (under the assumption of different noise models) are compared with the ordinary least squares (OLS) and the weighted least squares (WLS) methods. Results from the simulation studies validate the superiority of the proposed approach to the OLS and WLS methods considering the complex noise structures in the fMRI data. PMID:17867354
Sequential Bayesian Detection: A Model-Based Approach
Sullivan, E J; Candy, J V
2007-08-13
Sequential detection theory has been known for a long time evolving in the late 1940's by Wald and followed by Middleton's classic exposition in the 1960's coupled with the concurrent enabling technology of digital computer systems and the development of sequential processors. Its development, when coupled to modern sequential model-based processors, offers a reasonable way to attack physics-based problems. In this chapter, the fundamentals of the sequential detection are reviewed from the Neyman-Pearson theoretical perspective and formulated for both linear and nonlinear (approximate) Gauss-Markov, state-space representations. We review the development of modern sequential detectors and incorporate the sequential model-based processors as an integral part of their solution. Motivated by a wealth of physics-based detection problems, we show how both linear and nonlinear processors can seamlessly be embedded into the sequential detection framework to provide a powerful approach to solving non-stationary detection problems.
Sequential Bayesian Detection: A Model-Based Approach
Candy, J V
2008-12-08
Sequential detection theory has been known for a long time evolving in the late 1940's by Wald and followed by Middleton's classic exposition in the 1960's coupled with the concurrent enabling technology of digital computer systems and the development of sequential processors. Its development, when coupled to modern sequential model-based processors, offers a reasonable way to attack physics-based problems. In this chapter, the fundamentals of the sequential detection are reviewed from the Neyman-Pearson theoretical perspective and formulated for both linear and nonlinear (approximate) Gauss-Markov, state-space representations. We review the development of modern sequential detectors and incorporate the sequential model-based processors as an integral part of their solution. Motivated by a wealth of physics-based detection problems, we show how both linear and nonlinear processors can seamlessly be embedded into the sequential detection framework to provide a powerful approach to solving non-stationary detection problems.
Optimal speech motor control and token-to-token variability: a Bayesian modeling approach.
Patri, Jean-François; Diard, Julien; Perrier, Pascal
2015-12-01
The remarkable capacity of the speech motor system to adapt to various speech conditions is due to an excess of degrees of freedom, which enables producing similar acoustical properties with different sets of control strategies. To explain how the central nervous system selects one of the possible strategies, a common approach, in line with optimal motor control theories, is to model speech motor planning as the solution of an optimality problem based on cost functions. Despite the success of this approach, one of its drawbacks is the intrinsic contradiction between the concept of optimality and the observed experimental intra-speaker token-to-token variability. The present paper proposes an alternative approach by formulating feedforward optimal control in a probabilistic Bayesian modeling framework. This is illustrated by controlling a biomechanical model of the vocal tract for speech production and by comparing it with an existing optimal control model (GEPPETO). The essential elements of this optimal control model are presented first. From them the Bayesian model is constructed in a progressive way. Performance of the Bayesian model is evaluated based on computer simulations and compared to the optimal control model. This approach is shown to be appropriate for solving the speech planning problem while accounting for variability in a principled way. PMID:26497359
An Application of Bayesian Approach in Modeling Risk of Death in an Intensive Care Unit
Wong, Rowena Syn Yin; Ismail, Noor Azina
2016-01-01
Background and Objectives There are not many studies that attempt to model intensive care unit (ICU) risk of death in developing countries, especially in South East Asia. The aim of this study was to propose and describe application of a Bayesian approach in modeling in-ICU deaths in a Malaysian ICU. Methods This was a prospective study in a mixed medical-surgery ICU in a multidisciplinary tertiary referral hospital in Malaysia. Data collection included variables that were defined in Acute Physiology and Chronic Health Evaluation IV (APACHE IV) model. Bayesian Markov Chain Monte Carlo (MCMC) simulation approach was applied in the development of four multivariate logistic regression predictive models for the ICU, where the main outcome measure was in-ICU mortality risk. The performance of the models were assessed through overall model fit, discrimination and calibration measures. Results from the Bayesian models were also compared against results obtained using frequentist maximum likelihood method. Results The study involved 1,286 consecutive ICU admissions between January 1, 2009 and June 30, 2010, of which 1,111 met the inclusion criteria. Patients who were admitted to the ICU were generally younger, predominantly male, with low co-morbidity load and mostly under mechanical ventilation. The overall in-ICU mortality rate was 18.5% and the overall mean Acute Physiology Score (APS) was 68.5. All four models exhibited good discrimination, with area under receiver operating characteristic curve (AUC) values approximately 0.8. Calibration was acceptable (Hosmer-Lemeshow p-values > 0.05) for all models, except for model M3. Model M1 was identified as the model with the best overall performance in this study. Conclusion Four prediction models were proposed, where the best model was chosen based on its overall performance in this study. This study has also demonstrated the promising potential of the Bayesian MCMC approach as an alternative in the analysis and modeling of
Bayesian approaches to spatial inference: Modelling and computational challenges and solutions
NASA Astrophysics Data System (ADS)
Moores, Matthew; Mengersen, Kerrie
2014-12-01
We discuss a range of Bayesian modelling approaches for spatial data and investigate some of the associated computational challenges. This paper commences with a brief review of Bayesian mixture models and Markov random fields, with enabling computational algorithms including Markov chain Monte Carlo (MCMC) and integrated nested Laplace approximation (INLA). Following this, we focus on the Potts model as a canonical approach, and discuss the challenge of estimating the inverse temperature parameter that controls the degree of spatial smoothing. We compare three approaches to addressing the doubly intractable nature of the likelihood, namely pseudo-likelihood, path sampling and the exchange algorithm. These techniques are applied to satellite data used to analyse water quality in the Great Barrier Reef.
Modelling household finances: A Bayesian approach to a multivariate two-part model
Brown, Sarah; Ghosh, Pulak; Su, Li; Taylor, Karl
2016-01-01
We contribute to the empirical literature on household finances by introducing a Bayesian multivariate two-part model, which has been developed to further our understanding of household finances. Our flexible approach allows for the potential interdependence between the holding of assets and liabilities at the household level and also encompasses a two-part process to allow for differences in the influences on asset or liability holding and on the respective amounts held. Furthermore, the framework is dynamic in order to allow for persistence in household finances over time. Our findings endorse the joint modelling approach and provide evidence supporting the importance of dynamics. In addition, we find that certain independent variables exert different influences on the binary and continuous parts of the model thereby highlighting the flexibility of our framework and revealing a detailed picture of the nature of household finances. PMID:27212801
Bayesian approach to color-difference models based on threshold and constant-stimuli methods.
Brusola, Fernando; Tortajada, Ignacio; Lengua, Ismael; Jordá, Begoña; Peris, Guillermo
2015-06-15
An alternative approach based on statistical Bayesian inference is presented to deal with the development of color-difference models and the precision of parameter estimation. The approach was applied to simulated data and real data, the latter published by selected authors involved with the development of color-difference formulae using traditional methods. Our results show very good agreement between the Bayesian and classical approaches. Among other benefits, our proposed methodology allows one to determine the marginal posterior distribution of each random individual parameter of the color-difference model. In this manner, it is possible to analyze the effect of individual parameters on the statistical significance calculation of a color-difference equation. PMID:26193510
A Bayesian approach for inducing sparsity in generalized linear models with multi-category response
2015-01-01
Background The dimension and complexity of high-throughput gene expression data create many challenges for downstream analysis. Several approaches exist to reduce the number of variables with respect to small sample sizes. In this study, we utilized the Generalized Double Pareto (GDP) prior to induce sparsity in a Bayesian Generalized Linear Model (GLM) setting. The approach was evaluated using a publicly available microarray dataset containing 99 samples corresponding to four different prostate cancer subtypes. Results A hierarchical Sparse Bayesian GLM using GDP prior (SBGG) was developed to take into account the progressive nature of the response variable. We obtained an average overall classification accuracy between 82.5% and 94%, which was higher than Support Vector Machine, Random Forest or a Sparse Bayesian GLM using double exponential priors. Additionally, SBGG outperforms the other 3 methods in correctly identifying pre-metastatic stages of cancer progression, which can prove extremely valuable for therapeutic and diagnostic purposes. Importantly, using Geneset Cohesion Analysis Tool, we found that the top 100 genes produced by SBGG had an average functional cohesion p-value of 2.0E-4 compared to 0.007 to 0.131 produced by the other methods. Conclusions Using GDP in a Bayesian GLM model applied to cancer progression data results in better subclass prediction. In particular, the method identifies pre-metastatic stages of prostate cancer with substantially better accuracy and produces more functionally relevant gene sets. PMID:26423345
NASA Astrophysics Data System (ADS)
Xu, T.; Valocchi, A. J.
2014-12-01
Effective water resource management typically relies on numerical models to analyse groundwater flow and solute transport processes. These models are usually subject to model structure error due to simplification and/or misrepresentation of the real system. As a result, the model outputs may systematically deviate from measurements, thus violating a key assumption for traditional regression-based calibration and uncertainty analysis. On the other hand, model structure error induced bias can be described statistically in an inductive, data-driven way based on historical model-to-measurement misfit. We adopt a fully Bayesian approach that integrates a Gaussian process error model to account for model structure error to the calibration, prediction and uncertainty analysis of groundwater models. The posterior distributions of parameters of the groundwater model and the Gaussian process error model are jointly inferred using DREAM, an efficient Markov chain Monte Carlo sampler. We test the usefulness of the fully Bayesian approach towards a synthetic case study of surface-ground water interaction under changing pumping conditions. We first illustrate through this example that traditional least squares regression without accounting for model structure error yields biased parameter estimates due to parameter compensation as well as biased predictions. In contrast, the Bayesian approach gives less biased parameter estimates. Moreover, the integration of a Gaussian process error model significantly reduces predictive bias and leads to prediction intervals that are more consistent with observations. The results highlight the importance of explicit treatment of model structure error especially in circumstances where subsequent decision-making and risk analysis require accurate prediction and uncertainty quantification. In addition, the data-driven error modelling approach is capable of extracting more information from observation data than using a groundwater model alone.
Finding Bayesian Optimal Designs for Nonlinear Models: A Semidefinite Programming-Based Approach
Duarte, Belmiro P. M.; Wong, Weng Kee
2014-01-01
Summary This paper uses semidefinite programming (SDP) to construct Bayesian optimal design for nonlinear regression models. The setup here extends the formulation of the optimal designs problem as an SDP problem from linear to nonlinear models. Gaussian quadrature formulas (GQF) are used to compute the expectation in the Bayesian design criterion, such as D-, A- or E-optimality. As an illustrative example, we demonstrate the approach using the power-logistic model and compare results in the literature. Additionally, we investigate how the optimal design is impacted by different discretising schemes for the design space, different amounts of uncertainty in the parameter values, different choices of GQF and different prior distributions for the vector of model parameters, including normal priors with and without correlated components. Further applications to find Bayesian D-optimal designs with two regressors for a logistic model and a two-variable generalised linear model with a gamma distributed response are discussed, and some limitations of our approach are noted. PMID:26512159
Model of Conceptual Change for INQPRO: A Bayesian Network Approach
ERIC Educational Resources Information Center
Ting, Choo-Yee; Sam, Yok-Cheng; Wong, Chee-Onn
2013-01-01
Constructing a computational model of conceptual change for a computer-based scientific inquiry learning environment is difficult due to two challenges: (i) externalizing the variables of conceptual change and its related variables is difficult. In addition, defining the causal dependencies among the variables is also not trivial. Such difficulty…
Lifting a veil on diversity: a Bayesian approach to fitting relative-abundance models.
Golicher, Duncan J; O'Hara, Robert B; Ruíz-Montoya, Lorena; Cayuela, Luis
2006-02-01
Bayesian methods incorporate prior knowledge into a statistical analysis. This prior knowledge is usually restricted to assumptions regarding the form of probability distributions of the parameters of interest, leaving their values to be determined mainly through the data. Here we show how a Bayesian approach can be applied to the problem of drawing inference regarding species abundance distributions and comparing diversity indices between sites. The classic log series and the lognormal models of relative- abundance distribution are apparently quite different in form. The first is a sampling distribution while the other is a model of abundance of the underlying population. Bayesian methods help unite these two models in a common framework. Markov chain Monte Carlo simulation can be used to fit both distributions as small hierarchical models with shared common assumptions. Sampling error can be assumed to follow a Poisson distribution. Species not found in a sample, but suspected to be present in the region or community of interest, can be given zero abundance. This not only simplifies the process of model fitting, but also provides a convenient way of calculating confidence intervals for diversity indices. The method is especially useful when a comparison of species diversity between sites with different sample sizes is the key motivation behind the research. We illustrate the potential of the approach using data on fruit-feeding butterflies in southern Mexico. We conclude that, once all assumptions have been made transparent, a single data set may provide support for the belief that diversity is negatively affected by anthropogenic forest disturbance. Bayesian methods help to apply theory regarding the distribution of abundance in ecological communities to applied conservation. PMID:16705973
A study of finite mixture model: Bayesian approach on financial time series data
NASA Astrophysics Data System (ADS)
Phoong, Seuk-Yen; Ismail, Mohd Tahir
2014-07-01
Recently, statistician have emphasized on the fitting finite mixture model by using Bayesian method. Finite mixture model is a mixture of distributions in modeling a statistical distribution meanwhile Bayesian method is a statistical method that use to fit the mixture model. Bayesian method is being used widely because it has asymptotic properties which provide remarkable result. In addition, Bayesian method also shows consistency characteristic which means the parameter estimates are close to the predictive distributions. In the present paper, the number of components for mixture model is studied by using Bayesian Information Criterion. Identify the number of component is important because it may lead to an invalid result. Later, the Bayesian method is utilized to fit the k-component mixture model in order to explore the relationship between rubber price and stock market price for Malaysia, Thailand, Philippines and Indonesia. Lastly, the results showed that there is a negative effect among rubber price and stock market price for all selected countries.
A Bayesian approach to the analysis of quantal bioassay studies using nonparametric mixture models.
Fronczyk, Kassandra; Kottas, Athanasios
2014-03-01
We develop a Bayesian nonparametric mixture modeling framework for quantal bioassay settings. The approach is built upon modeling dose-dependent response distributions. We adopt a structured nonparametric prior mixture model, which induces a monotonicity restriction for the dose-response curve. Particular emphasis is placed on the key risk assessment goal of calibration for the dose level that corresponds to a specified response. The proposed methodology yields flexible inference for the dose-response relationship as well as for other inferential objectives, as illustrated with two data sets from the literature. PMID:24354490
A robust Bayesian approach to modeling epistemic uncertainty in common-cause failure models
Matthias C. M. Troffaes; Gero Walter; Dana Kelly
2014-05-01
In a standard Bayesian approach to the alpha-factor model for common-cause failure, a precise Dirichlet prior distribution models epistemic uncertainty in the alpha-factors. This Dirichlet prior is then updated with observed data to obtain a posterior distribution, which forms the basis for further inferences. In this paper, we adapt the imprecise Dirichlet model of Walley to represent epistemic uncertainty in the alpha-factors. In this approach, epistemic uncertainty is expressed more cautiously via lower and upper expectations for each alpha-factor, along with a learning parameter which determines how quickly the model learns from observed data. For this application, we focus on elicitation of the learning parameter, and find that values in the range of 1 to 10 seem reasonable. The approach is compared with Kelly and Atwood's minimally informative Dirichlet prior for the alpha-factor model, which incorporated precise mean values for the alpha-factors, but which was otherwise quite diffuse. Next, we explore the use of a set of Gamma priors to model epistemic uncertainty in the marginal failure rate, expressed via a lower and upper expectation for this rate, again along with a learning parameter. As zero counts are generally less of an issue here, we find that the choice of this learning parameter is less crucial. Finally, we demonstrate how both epistemic uncertainty models can be combined to arrive at lower and upper expectations for all common-cause failure rates. Thereby, we effectively provide a full sensitivity analysis of common-cause failure rates, properly reflecting epistemic uncertainty of the analyst on all levels of the common-cause failure model.
A Bayesian Modelling Approach with Balancing Informative Prior for Analysing Imbalanced Data
Klein, Kerenaftali; Hennig, Stefanie; Paul, Sanjoy Ketan
2016-01-01
When a dataset is imbalanced, the prediction of the scarcely-sampled subpopulation can be over-influenced by the population contributing to the majority of the data. The aim of this study was to develop a Bayesian modelling approach with balancing informative prior so that the influence of imbalance to the overall prediction could be minimised. The new approach was developed in order to weigh the data in favour of the smaller subset(s). The method was assessed in terms of bias and precision in predicting model parameter estimates of simulated datasets. Moreover, the method was evaluated in predicting optimal dose levels of tobramycin for various age groups in a motivating example. The bias estimates using the balancing informative prior approach were smaller than those generated using the conventional approach which was without the consideration for the imbalance in the datasets. The precision estimates were also superior. The method was further evaluated in a motivating example of optimal dosage prediction of tobramycin. The resulting predictions also agreed well with what had been reported in the literature. The proposed Bayesian balancing informative prior approach has shown a real potential to adequately weigh the data in favour of smaller subset(s) of data to generate robust prediction models. PMID:27070549
NASA Astrophysics Data System (ADS)
Iskandar, Ismed; Satria Gondokaryono, Yudi
2016-02-01
In reliability theory, the most important problem is to determine the reliability of a complex system from the reliability of its components. The weakness of most reliability theories is that the systems are described and explained as simply functioning or failed. In many real situations, the failures may be from many causes depending upon the age and the environment of the system and its components. Another problem in reliability theory is one of estimating the parameters of the assumed failure models. The estimation may be based on data collected over censored or uncensored life tests. In many reliability problems, the failure data are simply quantitatively inadequate, especially in engineering design and maintenance system. The Bayesian analyses are more beneficial than the classical one in such cases. The Bayesian estimation analyses allow us to combine past knowledge or experience in the form of an apriori distribution with life test data to make inferences of the parameter of interest. In this paper, we have investigated the application of the Bayesian estimation analyses to competing risk systems. The cases are limited to the models with independent causes of failure by using the Weibull distribution as our model. A simulation is conducted for this distribution with the objectives of verifying the models and the estimators and investigating the performance of the estimators for varying sample size. The simulation data are analyzed by using Bayesian and the maximum likelihood analyses. The simulation results show that the change of the true of parameter relatively to another will change the value of standard deviation in an opposite direction. For a perfect information on the prior distribution, the estimation methods of the Bayesian analyses are better than those of the maximum likelihood. The sensitivity analyses show some amount of sensitivity over the shifts of the prior locations. They also show the robustness of the Bayesian analysis within the range
NASA Astrophysics Data System (ADS)
Stucchi Boschi, Raquel; Qin, Mingming; Gimenez, Daniel; Cooper, Miguel
2016-04-01
Modeling is an important tool for better understanding and assessing land use impacts on landscape processes. A key point for environmental modeling is the knowledge of soil hydraulic properties. However, direct determination of soil hydraulic properties is difficult and costly, particularly in vast and remote regions such as one constituting the Amazon Biome. One way to overcome this problem is to extrapolate accurately estimated data to pedologically similar sites. The van Genuchten (VG) parametric equation is the most commonly used for modeling SWRC. The use of a Bayesian approach in combination with the Markov chain Monte Carlo to estimate the VG parameters has several advantages compared to the widely used global optimization techniques. The Bayesian approach provides posterior distributions of parameters that are independent from the initial values and allow for uncertainty analyses. The main objectives of this study were: i) to estimate hydraulic parameters from data of pasture and forest sites by the Bayesian inverse modeling approach; and ii) to investigate the extrapolation of the estimated VG parameters to a nearby toposequence with pedologically similar soils to those used for its estimate. The parameters were estimated from volumetric water content and tension observations obtained after rainfall events during a 207-day period from pasture and forest sites located in the southeastern Amazon region. These data were used to run HYDRUS-1D under a Differential Evolution Adaptive Metropolis (DREAM) scheme 10,000 times, and only the last 2,500 times were used to calculate the posterior distributions of each hydraulic parameter along with 95% confidence intervals (CI) of volumetric water content and tension time series. Then, the posterior distributions were used to generate hydraulic parameters for two nearby toposequences composed by six soil profiles, three are under forest and three are under pasture. The parameters of the nearby site were accepted when
Crash risk analysis for Shanghai urban expressways: A Bayesian semi-parametric modeling approach.
Yu, Rongjie; Wang, Xuesong; Yang, Kui; Abdel-Aty, Mohamed
2016-10-01
Urban expressway systems have been developed rapidly in recent years in China; it has become one key part of the city roadway networks as carrying large traffic volume and providing high traveling speed. Along with the increase of traffic volume, traffic safety has become a major issue for Chinese urban expressways due to the frequent crash occurrence and the non-recurrent congestions caused by them. For the purpose of unveiling crash occurrence mechanisms and further developing Active Traffic Management (ATM) control strategies to improve traffic safety, this study developed disaggregate crash risk analysis models with loop detector traffic data and historical crash data. Bayesian random effects logistic regression models were utilized as it can account for the unobserved heterogeneity among crashes. However, previous crash risk analysis studies formulated random effects distributions in a parametric approach, which assigned them to follow normal distributions. Due to the limited information known about random effects distributions, subjective parametric setting may be incorrect. In order to construct more flexible and robust random effects to capture the unobserved heterogeneity, Bayesian semi-parametric inference technique was introduced to crash risk analysis in this study. Models with both inference techniques were developed for total crashes; semi-parametric models were proved to provide substantial better model goodness-of-fit, while the two models shared consistent coefficient estimations. Later on, Bayesian semi-parametric random effects logistic regression models were developed for weekday peak hour crashes, weekday non-peak hour crashes, and weekend non-peak hour crashes to investigate different crash occurrence scenarios. Significant factors that affect crash risk have been revealed and crash mechanisms have been concluded. PMID:26847949
A Bayesian approach to the semi-analytic model of galaxy formation: methodology
NASA Astrophysics Data System (ADS)
Lu, Yu; Mo, H. J.; Weinberg, Martin D.; Katz, Neal
2011-09-01
We believe that a wide range of physical processes conspire to shape the observed galaxy population, but we remain unsure of their detailed interactions. The semi-analytic model (SAM) of galaxy formation uses multidimensional parametrizations of the physical processes of galaxy formation and provides a tool to constrain these underlying physical interactions. Because of the high dimensionality, the parametric problem of galaxy formation may be profitably tackled with a Bayesian-inference-based approach, which allows one to constrain theory with data in a statistically rigorous way. In this paper, we develop a SAM in the framework of Bayesian inference. We show that, with a parallel implementation of an advanced Markov chain Monte Carlo algorithm, it is now possible to rigorously sample the posterior distribution of the high-dimensional parameter space of typical SAMs. As an example, we characterize galaxy formation in the current Λ cold dark matter cosmology using the stellar mass function of galaxies as an observational constraint. We find that the posterior probability distribution is both topologically complex and degenerate in some important model parameters, suggesting that thorough explorations of the parameter space are needed to understand the models. We also demonstrate that because of the model degeneracy, adopting a narrow prior strongly restricts the model. Therefore, the inferences based on SAMs are conditional to the model adopted. Using synthetic data to mimic systematic errors in the stellar mass function, we demonstrate that an accurate observational error model is essential to meaningful inference.
ERIC Educational Resources Information Center
West, Patti; Rutstein, Daisy Wise; Mislevy, Robert J.; Liu, Junhui; Choi, Younyoung; Levy, Roy; Crawford, Aaron; DiCerbo, Kristen E.; Chappel, Kristina; Behrens, John T.
2010-01-01
A major issue in the study of learning progressions (LPs) is linking student performance on assessment tasks to the progressions. This report describes the challenges faced in making this linkage using Bayesian networks to model LPs in the field of computer networking. The ideas are illustrated with exemplar Bayesian networks built on Cisco…
Bayesian Approach for Inconsistent Information
Stein, M.; Beer, M.; Kreinovich, V.
2013-01-01
In engineering situations, we usually have a large amount of prior knowledge that needs to be taken into account when processing data. Traditionally, the Bayesian approach is used to process data in the presence of prior knowledge. Sometimes, when we apply the traditional Bayesian techniques to engineering data, we get inconsistencies between the data and prior knowledge. These inconsistencies are usually caused by the fact that in the traditional approach, we assume that we know the exact sample values, that the prior distribution is exactly known, etc. In reality, the data is imprecise due to measurement errors, the prior knowledge is only approximately known, etc. So, a natural way to deal with the seemingly inconsistent information is to take this imprecision into account in the Bayesian approach – e.g., by using fuzzy techniques. In this paper, we describe several possible scenarios for fuzzifying the Bayesian approach. Particular attention is paid to the interaction between the estimated imprecise parameters. In this paper, to implement the corresponding fuzzy versions of the Bayesian formulas, we use straightforward computations of the related expression – which makes our computations reasonably time-consuming. Computations in the traditional (non-fuzzy) Bayesian approach are much faster – because they use algorithmically efficient reformulations of the Bayesian formulas. We expect that similar reformulations of the fuzzy Bayesian formulas will also drastically decrease the computation time and thus, enhance the practical use of the proposed methods. PMID:24089579
Jiménez, José; García, Emilio J; Llaneza, Luis; Palacios, Vicente; González, Luis Mariano; García-Domínguez, Francisco; Múñoz-Igualada, Jaime; López-Bao, José Vicente
2016-08-01
In many cases, the first step in large-carnivore management is to obtain objective, reliable, and cost-effective estimates of population parameters through procedures that are reproducible over time. However, monitoring predators over large areas is difficult, and the data have a high level of uncertainty. We devised a practical multimethod and multistate modeling approach based on Bayesian hierarchical-site-occupancy models that combined multiple survey methods to estimate different population states for use in monitoring large predators at a regional scale. We used wolves (Canis lupus) as our model species and generated reliable estimates of the number of sites with wolf reproduction (presence of pups). We used 2 wolf data sets from Spain (Western Galicia in 2013 and Asturias in 2004) to test the approach. Based on howling surveys, the naïve estimation (i.e., estimate based only on observations) of the number of sites with reproduction was 9 and 25 sites in Western Galicia and Asturias, respectively. Our model showed 33.4 (SD 9.6) and 34.4 (3.9) sites with wolf reproduction, respectively. The number of occupied sites with wolf reproduction was 0.67 (SD 0.19) and 0.76 (0.11), respectively. This approach can be used to design more cost-effective monitoring programs (i.e., to define the sampling effort needed per site). Our approach should inspire well-coordinated surveys across multiple administrative borders and populations and lead to improved decision making for management of large carnivores on a landscape level. The use of this Bayesian framework provides a simple way to visualize the degree of uncertainty around population-parameter estimates and thus provides managers and stakeholders an intuitive approach to interpreting monitoring results. Our approach can be widely applied to large spatial scales in wildlife monitoring where detection probabilities differ between population states and where several methods are being used to estimate different population
NASA Astrophysics Data System (ADS)
Huang, Yongtai
2014-11-01
A number of general circulation models (GCMs) have been developed to project future global climate change. Unfortunately, projected results are different and it is not known which set of GCM outputs are more creditable than the others. The objective of this work is to present a Bayesian approach to compare GCM outputs and make an ensemble assessment of climate change. This method is applied to Cannonsville Reservoir watershed, New York, USA. The GCM outputs under the 20C3M scenario for a historical time period of 1981-2000 are used to calculate posterior probabilities, and the outputs under the scenarios (A1B, A2 and B1) for the future time period of 2084-2100 are then processed using the Bayesian modeling averaging (BMA) which is a statistical procedure that infers a consensus prediction by weighing individual predictions based on the posterior probabilities, with the better performing predictions receiving higher weights. The obtained results reveal that the posterior probabilities are slightly different for four variables including average, maximum and minimum temperatures, and shortwave radiation, implying that the GCM outputs are qualitatively different for these four variables, but the distributions of posterior probabilities are flat for precipitation and wind speed, suggesting that the GCM outputs are qualitatively similar for these two variables. The results also show that no one set of GCM data are the best for all six meteorological variables. Furthermore, the results indicate that the projected changes are for regional warming, but the changes in precipitation, wind speed, and shortwave radiation depend on the emission scenarios and seasons. The application of the method demonstrates that the Bayesian approach is useful for the comparison of GCM outputs and making ensemble assessments of climate change.
Yi, Nengjun; Shriner, Daniel; Banerjee, Samprit; Mehta, Tapan; Pomp, Daniel; Yandell, Brian S.
2007-01-01
We extend our Bayesian model selection framework for mapping epistatic QTL in experimental crosses to include environmental effects and gene–environment interactions. We propose a new, fast Markov chain Monte Carlo algorithm to explore the posterior distribution of unknowns. In addition, we take advantage of any prior knowledge about genetic architecture to increase posterior probability on more probable models. These enhancements have significant computational advantages in models with many effects. We illustrate the proposed method by detecting new epistatic and gene–sex interactions for obesity-related traits in two real data sets of mice. Our method has been implemented in the freely available package R/qtlbim (http://www.qtlbim.org) to facilitate the general usage of the Bayesian methodology for genomewide interacting QTL analysis. PMID:17483424
Jointly modeling time-to-event and longitudinal data: A Bayesian approach.
Huang, Yangxin; Hu, X Joan; Dagne, Getachew A
2014-03-01
This article explores Bayesian joint models of event times and longitudinal measures with an attempt to overcome departures from normality of the longitudinal response, measurement errors, and shortages of confidence in specifying a parametric time-to-event model. We allow the longitudinal response to have a skew distribution in the presence of measurement errors, and assume the time-to-event variable to have a nonparametric prior distribution. Posterior distributions of the parameters are attained simultaneously for inference based on Bayesian approach. An example from a recent AIDS clinical trial illustrates the methodology by jointly modeling the viral dynamics and the time to decrease in CD4/CD8 ratio in the presence of CD4 counts with measurement errors and to compare potential models with various scenarios and different distribution specifications. The analysis outcome indicates that the time-varying CD4 covariate is closely related to the first-phase viral decay rate, but the time to CD4/CD8 decrease is not highly associated with either the two viral decay rates or the CD4 changing rate over time. These findings may provide some quantitative guidance to better understand the relationship of the virological and immunological responses to antiretroviral treatments. PMID:24611039
Xu, Chengcheng; Wang, Wei; Liu, Pan; Li, Zhibin
2015-12-01
This study aimed to develop a real-time crash risk model with limited data in China by using Bayesian meta-analysis and Bayesian inference approach. A systematic review was first conducted by using three different Bayesian meta-analyses, including the fixed effect meta-analysis, the random effect meta-analysis, and the meta-regression. The meta-analyses provided a numerical summary of the effects of traffic variables on crash risks by quantitatively synthesizing results from previous studies. The random effect meta-analysis and the meta-regression produced a more conservative estimate for the effects of traffic variables compared with the fixed effect meta-analysis. Then, the meta-analyses results were used as informative priors for developing crash risk models with limited data. Three different meta-analyses significantly affect model fit and prediction accuracy. The model based on meta-regression can increase the prediction accuracy by about 15% as compared to the model that was directly developed with limited data. Finally, the Bayesian predictive densities analysis was used to identify the outliers in the limited data. It can further improve the prediction accuracy by 5.0%. PMID:26468977
A seasonal and heteroscedastic gamma model for hydrological time series: A Bayesian approach
NASA Astrophysics Data System (ADS)
Cuervo, Edilberto Cepeda; Andrade, Marinho G.; Achcar, Jorge Alberto
2012-10-01
Time series models are often used in hydrology to model streamflow series in order to forecast and generate synthetic series which are inputs for the analysis of complex water resources systems. In this paper, we introduce a new modeling approach for hydrologic time series assuming a gamma distribution for the data, where both the mean and conditional variance are being modeled. Bayesian methods using standard Markov Chain Monte Carlo Methods (MCMC) and a simulation algorithm introduced by [1] are used to simulate samples of the joint posterior distribution of interest. An example is given with a time series of monthly averages of natural streamflows, measured from 1931 to 2010 in Furnas hydroelectric dam, in southeastern Brazil.
Wendling, Thierry; Dumitras, Swati; Ogungbenro, Kayode; Aarons, Leon
2015-12-01
Mavoglurant (MVG) is an antagonist at the metabotropic glutamate receptor-5 currently under clinical development at Novartis Pharma AG for the treatment of central nervous system diseases. The aim of this study was to develop and optimise a population whole-body physiologically-based pharmacokinetic (WBPBPK) model for MVG, to predict the impact of drug-drug interaction (DDI) and age on its pharmacokinetics. In a first step, the model was fitted to intravenous (IV) data from a clinical study in adults using a Bayesian approach. In a second step, the optimised model was used together with a mechanistic absorption model for exploratory Monte Carlo simulations. The ability of the model to predict MVG pharmacokinetics when orally co-administered with ketoconazole in adults or administered alone in 3-11 year-old children was evaluated using data from three other clinical studies. The population model provided a good description of both the median trend and variability in MVG plasma pharmacokinetics following IV administration in adults. The Bayesian approach offered a continuous flow of information from pre-clinical to clinical studies. Prediction of the DDI with ketoconazole was consistent with the results of a non-compartmental analysis of the clinical data (threefold increase in systemic exposure). Scaling of the WBPBPK model allowed reasonable extrapolation of MVG pharmacokinetics from adults to children. The model can be used to predict plasma and brain (target site) concentration-time profiles following oral administration of various immediate-release formulations of MVG alone or when co-administered with other drugs, in adults as well as in children. PMID:26231433
NASA Astrophysics Data System (ADS)
Stephenson, John; Gallagher, Kerry; Holmes, Chris
2006-10-01
We present a new approach for modelling annealing of fission tracks in apatite, aiming to address various problems with existing models. We cast the model in a fully Bayesian context, which allows us explicitly to deal with data and parameter uncertainties and correlations, and also to deal with the predictive uncertainties. We focus on a well-known annealing algorithm [Laslett, G.M., Green, P.F., Duddy, I.R., Gleadow. A.J.W., 1987. Thermal annealing of fission tracks in apatite. 2. A quantitative-analysis. Chem. Geol., 65 (1), 1-13], and build a hierachical Bayesian model to incorporate both laboratory and geological timescale data as direct constraints. Relative to the original model calibration, we find a better (in terms of likelihood) model conditioned just on the reported laboratory data. We then include the uncertainty on the temperatures recorded during the laboratory annealing experiments. We again find a better model, but the predictive uncertainty when extrapolated to geological timescales is increased due to the uncertainty on the laboratory temperatures. Finally, we explictly include a data set [Vrolijk, P., Donelick, R.A., Quenq, J., Cloos. M., 1992. Testing models of fission track annealing in apatite in a simple thermal setting: site 800, leg 129. In: Larson, R., Lancelet, Y. (Eds.), Proceedings of the Ocean Drilling Program, Scientific Results, vol. 129, pp. 169-176] which provides low-temperature geological timescale constraints for the model calibration. When combined with the laboratory data, we find a model which satisfies both the low-temperature and high-temperature geological timescale benchmarks, although the fit to the original laboratory data is degraded. However, when extrapolated to geological timescales, this combined model significantly reduces the well-known rapid recent cooling artifact found in many published thermal models for geological samples.
A Bayesian approach for temporally scaling climate for modeling ecological systems.
Post van der Burg, Max; Anteau, Michael J; McCauley, Lisa A; Wiltermuth, Mark T
2016-05-01
With climate change becoming more of concern, many ecologists are including climate variables in their system and statistical models. The Standardized Precipitation Evapotranspiration Index (SPEI) is a drought index that has potential advantages in modeling ecological response variables, including a flexible computation of the index over different timescales. However, little development has been made in terms of the choice of timescale for SPEI. We developed a Bayesian modeling approach for estimating the timescale for SPEI and demonstrated its use in modeling wetland hydrologic dynamics in two different eras (i.e., historical [pre-1970] and contemporary [post-2003]). Our goal was to determine whether differences in climate between the two eras could explain changes in the amount of water in wetlands. Our results showed that wetland water surface areas tended to be larger in wetter conditions, but also changed less in response to climate fluctuations in the contemporary era. We also found that the average timescale parameter was greater in the historical period, compared with the contemporary period. We were not able to determine whether this shift in timescale was due to a change in the timing of wet-dry periods or whether it was due to changes in the way wetlands responded to climate. Our results suggest that perhaps some interaction between climate and hydrologic response may be at work, and further analysis is needed to determine which has a stronger influence. Despite this, we suggest that our modeling approach enabled us to estimate the relevant timescale for SPEI and make inferences from those estimates. Likewise, our approach provides a mechanism for using prior information with future data to assess whether these patterns may continue over time. We suggest that ecologists consider using temporally scalable climate indices in conjunction with Bayesian analysis for assessing the role of climate in ecological systems. PMID:27217947
A Bayesian approach for temporally scaling climate for modeling ecological systems
Post van der Burg, Max; Anteau, Michael J.; McCauley, Lisa A.; Wiltermuth, Mark T.
2016-01-01
With climate change becoming more of concern, many ecologists are including climate variables in their system and statistical models. The Standardized Precipitation Evapotranspiration Index (SPEI) is a drought index that has potential advantages in modeling ecological response variables, including a flexible computation of the index over different timescales. However, little development has been made in terms of the choice of timescale for SPEI. We developed a Bayesian modeling approach for estimating the timescale for SPEI and demonstrated its use in modeling wetland hydrologic dynamics in two different eras (i.e., historical [pre-1970] and contemporary [post-2003]). Our goal was to determine whether differences in climate between the two eras could explain changes in the amount of water in wetlands. Our results showed that wetland water surface areas tended to be larger in wetter conditions, but also changed less in response to climate fluctuations in the contemporary era. We also found that the average timescale parameter was greater in the historical period, compared with the contemporary period. We were not able to determine whether this shift in timescale was due to a change in the timing of wet–dry periods or whether it was due to changes in the way wetlands responded to climate. Our results suggest that perhaps some interaction between climate and hydrologic response may be at work, and further analysis is needed to determine which has a stronger influence. Despite this, we suggest that our modeling approach enabled us to estimate the relevant timescale for SPEI and make inferences from those estimates. Likewise, our approach provides a mechanism for using prior information with future data to assess whether these patterns may continue over time. We suggest that ecologists consider using temporally scalable climate indices in conjunction with Bayesian analysis for assessing the role of climate in ecological systems.
Using Bayesian statistical methods to quantify uncertainty and variability in human PBPK model predictions for use in risk assessments requires prior distributions (priors), which characterize what is known or believed about parameters’ values before observing in vivo data. Expe...
Using Bayesian statistical methods to quantify uncertainty and variability in human physiologically-based pharmacokinetic (PBPK) model predictions for use in risk assessments requires prior distributions (priors), which characterize what is known or believed about parameters’ val...
A Bayesian network approach for modeling local failure in lung cancer
NASA Astrophysics Data System (ADS)
Oh, Jung Hun; Craft, Jeffrey; Lozi, Rawan Al; Vaidya, Manushka; Meng, Yifan; Deasy, Joseph O.; Bradley, Jeffrey D.; El Naqa, Issam
2011-03-01
Locally advanced non-small cell lung cancer (NSCLC) patients suffer from a high local failure rate following radiotherapy. Despite many efforts to develop new dose-volume models for early detection of tumor local failure, there was no reported significant improvement in their application prospectively. Based on recent studies of biomarker proteins' role in hypoxia and inflammation in predicting tumor response to radiotherapy, we hypothesize that combining physical and biological factors with a suitable framework could improve the overall prediction. To test this hypothesis, we propose a graphical Bayesian network framework for predicting local failure in lung cancer. The proposed approach was tested using two different datasets of locally advanced NSCLC patients treated with radiotherapy. The first dataset was collected retrospectively, which comprises clinical and dosimetric variables only. The second dataset was collected prospectively in which in addition to clinical and dosimetric information, blood was drawn from the patients at various time points to extract candidate biomarkers as well. Our preliminary results show that the proposed method can be used as an efficient method to develop predictive models of local failure in these patients and to interpret relationships among the different variables in the models. We also demonstrate the potential use of heterogeneous physical and biological variables to improve the model prediction. With the first dataset, we achieved better performance compared with competing Bayesian-based classifiers. With the second dataset, the combined model had a slightly higher performance compared to individual physical and biological models, with the biological variables making the largest contribution. Our preliminary results highlight the potential of the proposed integrated approach for predicting post-radiotherapy local failure in NSCLC patients.
Haddad, Khaled; Egodawatta, Prasanna; Rahman, Ataur; Goonetilleke, Ashantha
2013-04-01
Reliable pollutant build-up prediction plays a critical role in the accuracy of urban stormwater quality modelling outcomes. However, water quality data collection is resource demanding compared to streamflow data monitoring, where a greater quantity of data is generally available. Consequently, available water quality datasets span only relatively short time scales unlike water quantity data. Therefore, the ability to take due consideration of the variability associated with pollutant processes and natural phenomena is constrained. This in turn gives rise to uncertainty in the modelling outcomes as research has shown that pollutant loadings on catchment surfaces and rainfall within an area can vary considerably over space and time scales. Therefore, the assessment of model uncertainty is an essential element of informed decision making in urban stormwater management. This paper presents the application of a range of regression approaches such as ordinary least squares regression, weighted least squares regression and Bayesian weighted least squares regression for the estimation of uncertainty associated with pollutant build-up prediction using limited datasets. The study outcomes confirmed that the use of ordinary least squares regression with fixed model inputs and limited observational data may not provide realistic estimates. The stochastic nature of the dependent and independent variables need to be taken into consideration in pollutant build-up prediction. It was found that the use of the Bayesian approach along with the Monte Carlo simulation technique provides a powerful tool, which attempts to make the best use of the available knowledge in prediction and thereby presents a practical solution to counteract the limitations which are otherwise imposed on water quality modelling. PMID:23454702
NASA Astrophysics Data System (ADS)
Herschtal, A.; Foroudi, F.; Greer, P. B.; Eade, T. N.; Hindson, B. R.; Kron, T.
2012-05-01
Early approaches to characterizing errors in target displacement during a fractionated course of radiotherapy assumed that the underlying fraction-to-fraction variability in target displacement, known as the ‘treatment error’ or ‘random error’, could be regarded as constant across patients. More recent approaches have modelled target displacement allowing for differences in random error between patients. However, until recently it has not been feasible to compare the goodness of fit of alternate models of random error rigorously. This is because the large volumes of real patient data necessary to distinguish between alternative models have only very recently become available. This work uses real-world displacement data collected from 365 patients undergoing radical radiotherapy for prostate cancer to compare five candidate models for target displacement. The simplest model assumes constant random errors across patients, while other models allow for random errors that vary according to one of several candidate distributions. Bayesian statistics and Markov Chain Monte Carlo simulation of the model parameters are used to compare model goodness of fit. We conclude that modelling the random error as inverse gamma distributed provides a clearly superior fit over all alternatives considered. This finding can facilitate more accurate margin recipes and correction strategies.
NASA Astrophysics Data System (ADS)
Freni, Gabriele; Mannina, Giorgio
In urban drainage modelling, uncertainty analysis is of undoubted necessity. However, uncertainty analysis in urban water-quality modelling is still in its infancy and only few studies have been carried out. Therefore, several methodological aspects still need to be experienced and clarified especially regarding water quality modelling. The use of the Bayesian approach for uncertainty analysis has been stimulated by its rigorous theoretical framework and by the possibility of evaluating the impact of new knowledge on the modelling predictions. Nevertheless, the Bayesian approach relies on some restrictive hypotheses that are not present in less formal methods like the Generalised Likelihood Uncertainty Estimation (GLUE). One crucial point in the application of Bayesian method is the formulation of a likelihood function that is conditioned by the hypotheses made regarding model residuals. Statistical transformations, such as the use of Box-Cox equation, are generally used to ensure the homoscedasticity of residuals. However, this practice may affect the reliability of the analysis leading to a wrong uncertainty estimation. The present paper aims to explore the influence of the Box-Cox equation for environmental water quality models. To this end, five cases were considered one of which was the “real” residuals distributions (i.e. drawn from available data). The analysis was applied to the Nocella experimental catchment (Italy) which is an agricultural and semi-urbanised basin where two sewer systems, two wastewater treatment plants and a river reach were monitored during both dry and wet weather periods. The results show that the uncertainty estimation is greatly affected by residual transformation and a wrong assumption may also affect the evaluation of model uncertainty. The use of less formal methods always provide an overestimation of modelling uncertainty with respect to Bayesian method but such effect is reduced if a wrong assumption is made regarding the
A Bayesian Approach for Multigroup Nonlinear Factor Analysis.
ERIC Educational Resources Information Center
Song, Xin-Yuan; Lee, Sik-Yum
2002-01-01
Developed a Bayesian approach for a general multigroup nonlinear factor analysis model that simultaneously obtains joint Bayesian estimates of the factor scores and the structural parameters subjected to some constraints across different groups. (SLD)
Bayesian model-based approach for developing a river water quality index
NASA Astrophysics Data System (ADS)
Ali, Zalina Mohd; Ibrahim, Noor Akma; Mengersen, Kerrie; Shitan, Mahendran; Juahir, Hafizan
2014-09-01
Six main pollutants have been previously identified by expert opinion to determine river condition in Malaysia. The pollutants were Dissolved Oxygen (DO), Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand (COD), Suspended Solid (SS), potential of Hydrogen (pH) and Ammonia (AN). The selected variables together with the respective weights have been applied to calculate the water quality index of all rivers in Malaysia. However, the relative weights established in DOE-WQI formula are subjective in nature and not unanimously agreed upon, as indicated by different weight being proposed for the same variables by various panels of experts. Focusing on the Langat River, a Bayesian model-based approach was introduced for the first time in this study to obtain new objective relative weights. The new weights used in WQI calculation are shown to be capable of capturing similar distributions in water quality compared with the existing DOE-WQI.
Ganjali, Mojtaba; Baghfalaki, Taban; Berridge, Damon
2015-01-01
In this paper, the problem of identifying differentially expressed genes under different conditions using gene expression microarray data, in the presence of outliers, is discussed. For this purpose, the robust modeling of gene expression data using some powerful distributions known as normal/independent distributions is considered. These distributions include the Student’s t and normal distributions which have been used previously, but also include extensions such as the slash, the contaminated normal and the Laplace distributions. The purpose of this paper is to identify differentially expressed genes by considering these distributional assumptions instead of the normal distribution. A Bayesian approach using the Markov Chain Monte Carlo method is adopted for parameter estimation. Two publicly available gene expression data sets are analyzed using the proposed approach. The use of the robust models for detecting differentially expressed genes is investigated. This investigation shows that the choice of model for differentiating gene expression data is very important. This is due to the small number of replicates for each gene and the existence of outlying data. Comparison of the performance of these models is made using different statistical criteria and the ROC curve. The method is illustrated using some simulation studies. We demonstrate the flexibility of these robust models in identifying differentially expressed genes. PMID:25910040
Bayesian Approach to Network Modularity
Hofman, Jake M.; Wiggins, Chris H.
2009-01-01
We present an efficient, principled, and interpretable technique for inferring module assignments and for identifying the optimal number of modules in a given network. We show how several existing methods for finding modules can be described as variant, special, or limiting cases of our work, and how the method overcomes the resolution limit problem, accurately recovering the true number of modules. Our approach is based on Bayesian methods for model selection which have been used with success for almost a century, implemented using a variational technique developed only in the past decade. We apply the technique to synthetic and real networks and outline how the method naturally allows selection among competing models. PMID:18643711
Construction of feasible and accurate kinetic models of metabolism: A Bayesian approach
Saa, Pedro A.; Nielsen, Lars K.
2016-01-01
Kinetic models are essential to quantitatively understand and predict the behaviour of metabolic networks. Detailed and thermodynamically feasible kinetic models of metabolism are inherently difficult to formulate and fit. They have a large number of heterogeneous parameters, are non-linear and have complex interactions. Many powerful fitting strategies are ruled out by the intractability of the likelihood function. Here, we have developed a computational framework capable of fitting feasible and accurate kinetic models using Approximate Bayesian Computation. This framework readily supports advanced modelling features such as model selection and model-based experimental design. We illustrate this approach on the tightly-regulated mammalian methionine cycle. Sampling from the posterior distribution, the proposed framework generated thermodynamically feasible parameter samples that converged on the true values, and displayed remarkable prediction accuracy in several validation tests. Furthermore, a posteriori analysis of the parameter distributions enabled appraisal of the systems properties of the network (e.g., control structure) and key metabolic regulations. Finally, the framework was used to predict missing allosteric interactions. PMID:27417285
Chan, Jennifer S K
2016-05-01
Dropouts are common in longitudinal study. If the dropout probability depends on the missing observations at or after dropout, this type of dropout is called informative (or nonignorable) dropout (ID). Failure to accommodate such dropout mechanism into the model will bias the parameter estimates. We propose a conditional autoregressive model for longitudinal binary data with an ID model such that the probabilities of positive outcomes as well as the drop-out indicator in each occasion are logit linear in some covariates and outcomes. This model adopting a marginal model for outcomes and a conditional model for dropouts is called a selection model. To allow for the heterogeneity and clustering effects, the outcome model is extended to incorporate mixture and random effects. Lastly, the model is further extended to a novel model that models the outcome and dropout jointly such that their dependency is formulated through an odds ratio function. Parameters are estimated by a Bayesian approach implemented using the user-friendly Bayesian software WinBUGS. A methadone clinic dataset is analyzed to illustrate the proposed models. Result shows that the treatment time effect is still significant but weaker after allowing for an ID process in the data. Finally the effect of drop-out on parameter estimates is evaluated through simulation studies. PMID:26467236
Bååth, Rasmus
2016-06-01
The sensorimotor synchronization paradigm is used when studying the coordination of rhythmic motor responses with a pacing stimulus and is an important paradigm in the study of human timing and time perception. Two measures of performance frequently calculated using sensorimotor synchronization data are the average offset and variability of the stimulus-to-response asynchronies-the offsets between the stimuli and the motor responses. Here it is shown that assuming that asynchronies are normally distributed when estimating these measures can result in considerable underestimation of both the average offset and variability. This is due to a tendency for the distribution of the asynchronies to be bimodal and left skewed when the interstimulus interval is longer than 2 s. It is argued that (1) this asymmetry is the result of the distribution of the asynchronies being a mixture of two types of responses-predictive and reactive-and (2) the main interest in a sensorimotor synchronization study is the predictive responses. A Bayesian hierarchical modeling approach is proposed in which sensorimotor synchronization data are modeled as coming from a right-censored normal distribution that effectively separates the predictive responses from the reactive responses. Evaluation using both simulated data and experimental data from a study by Repp and Doggett (2007) showed that the proposed approach produces more precise estimates of the average offset and variability, with considerably less underestimation. PMID:25931279
ERIC Educational Resources Information Center
Bekele, Rahel; McPherson, Maggie
2011-01-01
This research work presents a Bayesian Performance Prediction Model that was created in order to determine the strength of personality traits in predicting the level of mathematics performance of high school students in Addis Ababa. It is an automated tool that can be used to collect information from students for the purpose of effective group…
ERIC Educational Resources Information Center
Tchumtchoua, Sylvie; Dey, Dipak K.
2012-01-01
This paper proposes a semiparametric Bayesian framework for the analysis of associations among multivariate longitudinal categorical variables in high-dimensional data settings. This type of data is frequent, especially in the social and behavioral sciences. A semiparametric hierarchical factor analysis model is developed in which the…
Hu, Yi; Ward, Michael P; Xia, Congcong; Li, Rui; Sun, Liqian; Lynn, Henry; Gao, Fenghua; Wang, Qizhi; Zhang, Shiqing; Xiong, Chenglong; Zhang, Zhijie; Jiang, Qingwu
2016-01-01
Schistosomiasis remains a major public health problem and causes substantial economic impact in east China, particularly along the Yangtze River Basin. Disease forecasting and surveillance can assist in the development and implementation of more effective intervention measures to control disease. In this study, we applied a Bayesian hierarchical spatio-temporal model to describe trends in schistosomiasis risk in Anhui Province, China, using annual parasitological and environmental data for the period 1997-2010. A computationally efficient approach-Integrated Nested Laplace Approximation-was used for model inference. A zero-inflated, negative binomial model best described the spatio-temporal dynamics of schistosomiasis risk. It predicted that the disease risk would generally be low and stable except for some specific, local areas during the period 2011-2014. High-risk counties were identified in the forecasting maps: three in which the risk remained high, and two in which risk would become high. The results indicated that schistosomiasis risk has been reduced to consistently low levels throughout much of this region of China; however, some counties were identified in which progress in schistosomiasis control was less than satisfactory. Whilst maintaining overall control, specific interventions in the future should focus on these refractive counties as part of a strategy to eliminate schistosomiasis from this region. PMID:27053447
Chen, Cong; Zhang, Guohui; Tarefder, Rafiqul; Ma, Jianming; Wei, Heng; Guan, Hongzhi
2015-07-01
Rear-end crash is one of the most common types of traffic crashes in the U.S. A good understanding of its characteristics and contributing factors is of practical importance. Previously, both multinomial Logit models and Bayesian network methods have been used in crash modeling and analysis, respectively, although each of them has its own application restrictions and limitations. In this study, a hybrid approach is developed to combine multinomial logit models and Bayesian network methods for comprehensively analyzing driver injury severities in rear-end crashes based on state-wide crash data collected in New Mexico from 2010 to 2011. A multinomial logit model is developed to investigate and identify significant contributing factors for rear-end crash driver injury severities classified into three categories: no injury, injury, and fatality. Then, the identified significant factors are utilized to establish a Bayesian network to explicitly formulate statistical associations between injury severity outcomes and explanatory attributes, including driver behavior, demographic features, vehicle factors, geometric and environmental characteristics, etc. The test results demonstrate that the proposed hybrid approach performs reasonably well. The Bayesian network reference analyses indicate that the factors including truck-involvement, inferior lighting conditions, windy weather conditions, the number of vehicles involved, etc. could significantly increase driver injury severities in rear-end crashes. The developed methodology and estimation results provide insights for developing effective countermeasures to reduce rear-end crash injury severities and improve traffic system safety performance. PMID:25888994
Strauss, Jillian; Miranda-Moreno, Luis F; Morency, Patrick
2013-10-01
This study proposes a two-equation Bayesian modelling approach to simultaneously study cyclist injury occurrence and bicycle activity at signalized intersections as joint outcomes. This approach deals with the potential presence of endogeneity and unobserved heterogeneities and is used to identify factors associated with both cyclist injuries and volumes. Its application to identify high-risk corridors is also illustrated. Montreal, Quebec, Canada is the application environment, using an extensive inventory of a large sample of signalized intersections containing disaggregate motor-vehicle traffic volumes and bicycle flows, geometric design, traffic control and built environment characteristics in the vicinity of the intersections. Cyclist injury data for the period of 2003-2008 is used in this study. Also, manual bicycle counts were standardized using temporal and weather adjustment factors to obtain average annual daily volumes. Results confirm and quantify the effects of both bicycle and motor-vehicle flows on cyclist injury occurrence. Accordingly, more cyclists at an intersection translate into more cyclist injuries but lower injury rates due to the non-linear association between bicycle volume and injury occurrence. Furthermore, the results emphasize the importance of turning motor-vehicle movements. The presence of bus stops and total crosswalk length increase cyclist injury occurrence whereas the presence of a raised median has the opposite effect. Bicycle activity through intersections was found to increase as employment, number of metro stations, land use mix, area of commercial land use type, length of bicycle facilities and the presence of schools within 50-800 m of the intersection increase. Intersections with three approaches are expected to have fewer cyclists than those with four. Using Bayesian analysis, expected injury frequency and injury rates were estimated for each intersection and used to rank corridors. Corridors with high bicycle volumes
NASA Astrophysics Data System (ADS)
Robertson, D. E.; Wang, Q. J.; Malano, H.; Etchells, T.
2009-02-01
For models to be useful, they need to adequately describe the systems they represent. The probabilistic nature of Bayesian network models has traditionally meant that model validation is difficult. In this paper we present a process to validate Inteca-Farm, a Bayesian network model of farm irrigation that we described in the first paper of this series. We assessed three aspects of the quality of model predictions, namely, bias, accuracy, and skill, for the two variables for which validation data are available directly or indirectly. We also examined model predictions for any systematic errors. The validation results show that the bias and accuracy of the two validated variables are within acceptable tolerances and that systematic errors are minimal. This suggests that Inteca-Farm is a plausible representation of farm irrigation system in the Shepparton Irrigation Region of northern Victoria, Australia.
2008-01-01
Background Marine allopatric speciation is an enigma because pelagic larval dispersal can potentially connect disjunct populations thereby preventing reproductive and morphological divergence. Here we present a new hierarchical approximate Bayesian computation model (HABC) that tests two hypotheses of marine allopatric speciation: 1.) "soft vicariance", where a speciation involves fragmentation of a large widespread ancestral species range that was previously connected by long distance gene flow; and 2.) peripatric colonization, where speciations in peripheral archipelagos emerge from sweepstakes colonizations from central source regions. The HABC approach analyzes all the phylogeographic datasets at once in order to make across taxon-pair inferences about biogeographic processes while explicitly allowing for uncertainty in the demographic differences within each taxon-pair. Our method uses comparative phylogeographic data that consists of single locus mtDNA sequences from multiple co-distributed taxa containing pairs of central and peripheral populations. We use the method on two comparative phylogeographic data sets consisting of cowrie gastropod endemics co-distributed in the Hawaiian (11 taxon-pairs) and Marquesan archipelagos (7 taxon-pairs). Results Given the Marquesan data, we find strong evidence of simultaneous colonization across all seven cowrie gastropod endemics co-distributed in the Marquesas. In contrast, the lower sample sizes in the Hawaiian data lead to greater uncertainty associated with the Hawaiian estimates. Although, the hyper-parameter estimates point to soft vicariance in a subset of the 11 Hawaiian taxon-pairs, the hyper-prior and hyper-posterior are too similar to make a definitive conclusion. Both results are not inconsistent with what is known about the geologic history of the archipelagos. Simulations verify that our method can successfully distinguish these two histories across a wide range of conditions given sufficient sampling
Hu, Ming; Qin, Zhaohui S.
2009-01-01
In microarray gene expression data analysis, it is often of interest to identify genes that share similar expression profiles with a particular gene such as a key regulatory protein. Multiple studies have been conducted using various correlation measures to identify co-expressed genes. While working well for small datasets, the heterogeneity introduced from increased sample size inevitably reduces the sensitivity and specificity of these approaches. This is because most co-expression relationships do not extend to all experimental conditions. With the rapid increase in the size of microarray datasets, identifying functionally related genes from large and diverse microarray gene expression datasets is a key challenge. We develop a model-based gene expression query algorithm built under the Bayesian model selection framework. It is capable of detecting co-expression profiles under a subset of samples/experimental conditions. In addition, it allows linearly transformed expression patterns to be recognized and is robust against sporadic outliers in the data. Both features are critically important for increasing the power of identifying co-expressed genes in large scale gene expression datasets. Our simulation studies suggest that this method outperforms existing correlation coefficients or mutual information-based query tools. When we apply this new method to the Escherichia coli microarray compendium data, it identifies a majority of known regulons as well as novel potential target genes of numerous key transcription factors. PMID:19214232
NASA Astrophysics Data System (ADS)
Thomsen, Nanna I.; Binning, Philip J.; McKnight, Ursula S.; Tuxen, Nina; Bjerg, Poul L.; Troldborg, Mads
2016-05-01
A key component in risk assessment of contaminated sites is in the formulation of a conceptual site model (CSM). A CSM is a simplified representation of reality and forms the basis for the mathematical modeling of contaminant fate and transport at the site. The CSM should therefore identify the most important site-specific features and processes that may affect the contaminant transport behavior at the site. However, the development of a CSM will always be associated with uncertainties due to limited data and lack of understanding of the site conditions. CSM uncertainty is often found to be a major source of model error and it should therefore be accounted for when evaluating uncertainties in risk assessments. We present a Bayesian belief network (BBN) approach for constructing CSMs and assessing their uncertainty at contaminated sites. BBNs are graphical probabilistic models that are effective for integrating quantitative and qualitative information, and thus can strengthen decisions when empirical data are lacking. The proposed BBN approach facilitates a systematic construction of multiple CSMs, and then determines the belief in each CSM using a variety of data types and/or expert opinion at different knowledge levels. The developed BBNs combine data from desktop studies and initial site investigations with expert opinion to assess which of the CSMs are more likely to reflect the actual site conditions. The method is demonstrated on a Danish field site, contaminated with chlorinated ethenes. Four different CSMs are developed by combining two contaminant source zone interpretations (presence or absence of a separate phase contamination) and two geological interpretations (fractured or unfractured clay till). The beliefs in each of the CSMs are assessed sequentially based on data from three investigation stages (a screening investigation, a more detailed investigation, and an expert consultation) to demonstrate that the belief can be updated as more information
NASA Astrophysics Data System (ADS)
Aguayo, M.; Marshall, H.; McNamara, J. P.; Mead, J.; Flores, A. N.
2013-12-01
Estimation of snowpack parameters such as depth, density and grain structure is a central focus of hydrology in seasonally snow-covered lands. These parameters are directly estimated by field observations, indirectly estimated from other parameters using statistical correlations, or simulated with a model. Difficulty in sampling thin layers and uncertainty in the transition between layers can cause significant uncertainty in measurements of these parameters. Snow density is one of the most important parameters to measure because it is strictly related with snow water content, an important component of the global water balance. We develop a mathematical framework to estimate snow density from measurements of temperature and thickness of snowpack layers over a particular time period, in conjunction with a physics-based model of snowpack evolution. We formulate a Bayesian approach to estimate the snowpack density profile, using a full range of possible simulations that incorporate key sources of uncertainty to build in prior snowpack knowledge. The posterior probability density function of the snow density, conditioned on snowpack temperature measurements, is computed by multiplying the likelihoods and assumed prior distribution function. Random sampling is used to generate a range of densities with same probability when prior uniform probability function is assumed. A posterior probability density function calculated directly via Bayes' theorem is used to calculate the probability of every sample generated. The forward model is a 1D, multilayer snow energy and mass balance model, which solves for snow temperature, density, and liquid water content on a finite element mesh. The surface and ground temperature data of snowpack (boundary conditions), are provided by the Center for Snow and Avalanche Studies (CSAS), Silverton CO, from snow pits made at Swamp Angel and Senator Beck study plot sites. Standard errors between field observations and results computed denote the
Thomsen, Nanna I; Binning, Philip J; McKnight, Ursula S; Tuxen, Nina; Bjerg, Poul L; Troldborg, Mads
2016-05-01
A key component in risk assessment of contaminated sites is in the formulation of a conceptual site model (CSM). A CSM is a simplified representation of reality and forms the basis for the mathematical modeling of contaminant fate and transport at the site. The CSM should therefore identify the most important site-specific features and processes that may affect the contaminant transport behavior at the site. However, the development of a CSM will always be associated with uncertainties due to limited data and lack of understanding of the site conditions. CSM uncertainty is often found to be a major source of model error and it should therefore be accounted for when evaluating uncertainties in risk assessments. We present a Bayesian belief network (BBN) approach for constructing CSMs and assessing their uncertainty at contaminated sites. BBNs are graphical probabilistic models that are effective for integrating quantitative and qualitative information, and thus can strengthen decisions when empirical data are lacking. The proposed BBN approach facilitates a systematic construction of multiple CSMs, and then determines the belief in each CSM using a variety of data types and/or expert opinion at different knowledge levels. The developed BBNs combine data from desktop studies and initial site investigations with expert opinion to assess which of the CSMs are more likely to reflect the actual site conditions. The method is demonstrated on a Danish field site, contaminated with chlorinated ethenes. Four different CSMs are developed by combining two contaminant source zone interpretations (presence or absence of a separate phase contamination) and two geological interpretations (fractured or unfractured clay till). The beliefs in each of the CSMs are assessed sequentially based on data from three investigation stages (a screening investigation, a more detailed investigation, and an expert consultation) to demonstrate that the belief can be updated as more information
A Nonparametric Bayesian Approach to Seismic Hazard Modeling Using the ETAS Framework
NASA Astrophysics Data System (ADS)
Ross, G.
2015-12-01
The epidemic-type aftershock sequence (ETAS) model is one of the most popular tools for modeling seismicity and quantifying risk in earthquake-prone regions. Under the ETAS model, the occurrence times of earthquakes are treated as a self-exciting Poisson process where each earthquake briefly increases the probability of subsequent earthquakes occurring soon afterwards, which captures the fact that large mainshocks tend to produce long sequences of aftershocks. A triggering kernel controls the amount by which the probability increases based on the magnitude of each earthquake, and the rate at which it then decays over time. This triggering kernel is usually chosen heuristically, to match the parametric form of the modified Omori law for aftershock decay. However recent work has questioned whether this is an appropriate choice. Since the choice of kernel has a large impact on the predictions made by the ETAS model, avoiding misspecification is crucially important. We present a novel nonparametric version of ETAS which avoids making parametric assumptions, and instead learns the correct specification from the data itself. Our approach is based on the Dirichlet process, which is a modern class of Bayesian prior distribution which allows for efficient inference over an infinite dimensional space of functions. We show how our nonparametric ETAS model can be fit to data, and present results demonstrating that the fit is greatly improved compared to the standard parametric specification. Additionally, we explain how our model can be used to perform probabilistic declustering of earthquake catalogs, to classify earthquakes as being either aftershocks or mainshocks. and to learn the causal relations between pairs of earthquakes.
NASA Technical Reports Server (NTRS)
Littlewood, B.; Sofer, A.
1981-01-01
Maximum likelihood estimation procedures for the Jelinski-Moranda software reliability model often give misleading answers. A reparameterization and a Bayesian analysis eliminate some of the problems incurred by MLE methods and often give better predictions on sets of real and simulated data. Practical difficulties in estimating the initial number of errors N and the failure rate of each error phi by the method of maximum likelihood are: N, the MLE of N, is occasionally infinite (i.e., the routines for calculating N and phi do not converge). It is shown that N is finite sub i only if the regression line of the interevent times t sub i vs. i has positive slope. A serious problem is that often N approximates n, the sample size, and sometimes N = n. Thus the MLE predicts that the program is perfect even when it is far from being so. Only when almost all failures have been removed can N and phi be trusted near the end of debugging.
NASA Astrophysics Data System (ADS)
Wang, Q. J.; Robertson, D. E.; Haines, C. L.
2009-02-01
Irrigation is important to many agricultural businesses but also has implications for catchment health. A considerable body of knowledge exists on how irrigation management affects farm business and catchment health. However, this knowledge is fragmentary; is available in many forms such as qualitative and quantitative; is dispersed in scientific literature, technical reports, and the minds of individuals; and is of varying degrees of certainty. Bayesian networks allow the integration of dispersed knowledge into quantitative systems models. This study describes the development, validation, and application of a Bayesian network model of farm irrigation in the Shepparton Irrigation Region of northern Victoria, Australia. In this first paper we describe the process used to integrate a range of sources of knowledge to develop a model of farm irrigation. We describe the principal model components and summarize the reaction to the model and its development process by local stakeholders. Subsequent papers in this series describe model validation and the application of the model to assess the regional impact of historical and future management intervention.
Gracia, Enrique; López-Quílez, Antonio; Marco, Miriam; Lladosa, Silvia; Lila, Marisol
2014-01-01
This paper uses spatial data of cases of intimate partner violence against women (IPVAW) to examine neighborhood-level influences on small-area variations in IPVAW risk in a police district of the city of Valencia (Spain). To analyze area variations in IPVAW risk and its association with neighborhood-level explanatory variables we use a Bayesian spatial random-effects modeling approach, as well as disease mapping methods to represent risk probabilities in each area. Analyses show that IPVAW cases are more likely in areas of high immigrant concentration, high public disorder and crime, and high physical disorder. Results also show a spatial component indicating remaining variability attributable to spatially structured random effects. Bayesian spatial modeling offers a new perspective to identify IPVAW high and low risk areas, and provides a new avenue for the design of better-informed prevention and intervention strategies. PMID:24413701
Gracia, Enrique; López-Quílez, Antonio; Marco, Miriam; Lladosa, Silvia; Lila, Marisol
2014-01-01
This paper uses spatial data of cases of intimate partner violence against women (IPVAW) to examine neighborhood-level influences on small-area variations in IPVAW risk in a police district of the city of Valencia (Spain). To analyze area variations in IPVAW risk and its association with neighborhood-level explanatory variables we use a Bayesian spatial random-effects modeling approach, as well as disease mapping methods to represent risk probabilities in each area. Analyses show that IPVAW cases are more likely in areas of high immigrant concentration, high public disorder and crime, and high physical disorder. Results also show a spatial component indicating remaining variability attributable to spatially structured random effects. Bayesian spatial modeling offers a new perspective to identify IPVAW high and low risk areas, and provides a new avenue for the design of better-informed prevention and intervention strategies. PMID:24413701
Bayesian kinematic earthquake source models
NASA Astrophysics Data System (ADS)
Minson, S. E.; Simons, M.; Beck, J. L.; Genrich, J. F.; Galetzka, J. E.; Chowdhury, F.; Owen, S. E.; Webb, F.; Comte, D.; Glass, B.; Leiva, C.; Ortega, F. H.
2009-12-01
Most coseismic, postseismic, and interseismic slip models are based on highly regularized optimizations which yield one solution which satisfies the data given a particular set of regularizing constraints. This regularization hampers our ability to answer basic questions such as whether seismic and aseismic slip overlap or instead rupture separate portions of the fault zone. We present a Bayesian methodology for generating kinematic earthquake source models with a focus on large subduction zone earthquakes. Unlike classical optimization approaches, Bayesian techniques sample the ensemble of all acceptable models presented as an a posteriori probability density function (PDF), and thus we can explore the entire solution space to determine, for example, which model parameters are well determined and which are not, or what is the likelihood that two slip distributions overlap in space. Bayesian sampling also has the advantage that all a priori knowledge of the source process can be used to mold the a posteriori ensemble of models. Although very powerful, Bayesian methods have up to now been of limited use in geophysical modeling because they are only computationally feasible for problems with a small number of free parameters due to what is called the "curse of dimensionality." However, our methodology can successfully sample solution spaces of many hundreds of parameters, which is sufficient to produce finite fault kinematic earthquake models. Our algorithm is a modification of the tempered Markov chain Monte Carlo (tempered MCMC or TMCMC) method. In our algorithm, we sample a "tempered" a posteriori PDF using many MCMC simulations running in parallel and evolutionary computation in which models which fit the data poorly are preferentially eliminated in favor of models which better predict the data. We present results for both synthetic test problems as well as for the 2007 Mw 7.8 Tocopilla, Chile earthquake, the latter of which is constrained by InSAR, local high
Bayesian Data-Model Fit Assessment for Structural Equation Modeling
ERIC Educational Resources Information Center
Levy, Roy
2011-01-01
Bayesian approaches to modeling are receiving an increasing amount of attention in the areas of model construction and estimation in factor analysis, structural equation modeling (SEM), and related latent variable models. However, model diagnostics and model criticism remain relatively understudied aspects of Bayesian SEM. This article describes…
Predictability of Regional Climate: A Bayesian Approach to Analysing a WRF Model Ensemble
NASA Astrophysics Data System (ADS)
Bruyere, C. L.; Mesquita, M. D. S.; Paimazumder, D.
2013-12-01
This study investigates aspects of climate predictability with a focus on climatic variables and different characteristics of extremes over nine North American climatic regions and two selected Atlantic sectors. An ensemble of state-of-the-art Weather Research and Forecasting Model (WRF) simulations is used for the analysis. The ensemble is comprised of a combination of various physics schemes, initial conditions, domain sizes, boundary conditions and breeding techniques. The main objectives of this research are: 1) to increase our understanding of the ability of WRF to capture regional climate information - both at the individual and collective ensemble members, 2) to investigate the role of different members and their synergy in reproducing regional climate 3) to estimate the associated uncertainty. In this study, we propose a Bayesian framework to study the predictability of extremes and associated uncertainties in order to provide a wealth of knowledge about WRF reliability and provide further clarity and understanding of the sensitivities and optimal combinations. The choice of the Bayesian model, as opposed to standard methods, is made because: a) this method has a mean square error that is less than standard statistics, which makes it a more robust method; b) it allows for the use of small sample sizes, which are typical in high-resolution modeling; c) it provides a probabilistic view of uncertainty, which is useful when making decisions concerning ensemble members.
Kercel, S.W.
1999-11-07
For several reasons, Bayesian parameter estimation is superior to other methods for inductively learning a model for an anticipatory system. Since it exploits prior knowledge, the analysis begins from a more advantageous starting point than other methods. Also, since "nuisance parameters" can be removed from the Bayesian analysis, the description of the model need not be as complete as is necessary for such methods as matched filtering. In the limit of perfectly random noise and a perfect description of the model, the signal-to-noise ratio improves as the square root of the number of samples in the data. Even with the imperfections of real-world data, Bayesian methods approach this ideal limit of performance more closely than other methods. These capabilities provide a strategy for addressing a major unsolved problem in pump operation: the identification of precursors of cavitation. Cavitation causes immediate degradation of pump performance and ultimate destruction of the pump. However, the most efficient point to operate a pump is just below the threshold of cavitation. It might be hoped that a straightforward method to minimize pump cavitation damage would be to simply adjust the operating point until the inception of cavitation is detected and then to slightly readjust the operating point to let the cavitation vanish. However, due to the continuously evolving state of the fluid moving through the pump, the threshold of cavitation tends to wander. What is needed is to anticipate cavitation, and this requires the detection and identification of precursor features that occur just before cavitation starts.
Analysis of housing price by means of STAR models with neighbourhood effects: a Bayesian approach
NASA Astrophysics Data System (ADS)
Beamonte, Asuncion; Gargallo, Pilar; Salvador, Manuel
2010-06-01
In this paper, we extend the Bayesian methodology introduced by Beamonte et al. (Stat Modelling 8:285-311, 2008) for the estimation and comparison of spatio-temporal autoregressive models (STAR) with neighbourhood effects, providing a more general treatment that uses larger and denser nets for the number of spatial and temporal influential neighbours and continuous distributions for their smoothing weights. This new treatment also reduces the computational time and the RAM necessities of the estimation algorithm in Beamonte et al. (Stat Modelling 8:285-311, 2008). The procedure is illustrated by an application to the Zaragoza (Spain) real estate market, improving the goodness of fit and the outsampling behaviour of the model thanks to a more flexible estimation of the neighbourhood parameters.
NASA Astrophysics Data System (ADS)
Michelioudakis, Dimitrios; Hobbs, Richard; Caiado, Camila
2015-04-01
Determining the depths of key horizons from seismic reflection data is one of the most important aspects of exploration geophysics. Here, we present Bayesian methods based on an elicitation tool and Gaussian processes to build a detailed and robust velocity model of the Mentelle Basin, located south west of Australia, with the ultimate goal to identify possible drilling targets for the Integrated Ocean Drilling Program (IODP). The Mentelle Basin is a deep water sedimentary basin located between the Naturaliste Plateau and the southern part of the Western Australian Shelf. It is among the few regions of the world where we can investigate the effects of the Cretaceous hot-house and its collapse at high latitude. The Mentelle Basin hosts a continuous shale sequence for this period that it is over a kilometer thick, the study of which, is crucial for the correlation between the paleoclimate conditions and the tectonic history of the region. By reprocessing 2D multichannel seismic reflection profiles around the proposed drill - sites, we create a detailed subsurface velocity model which is used as a priori input to the Bayesian approach. The final goal is to build a multi-layered model to estimate the depth and the root mean square velocity of each layer, both for the isotropic and anisotropic cases in terms of a multivariate posterior distribution. Having determined the RMS velocities for each layer, we can calculate, by inference, their interval velocities and finally estimate the depth of each sequence of interest with improved accuracy. The key advantage of the Bayesian approach and the major difference compared to the traditional semblance spectrum velocity analysis procedure is the calculation of uncertainty of the output model. As a result, our statistical approach can construct a robust velocity model which encompasses the noise and the band-limited nature of the data as an error function. We use this model to control the depth migration of the seismic data and
Gas turbine engine prognostics using Bayesian hierarchical models: A variational approach
NASA Astrophysics Data System (ADS)
Zaidan, Martha A.; Mills, Andrew R.; Harrison, Robert F.; Fleming, Peter J.
2016-03-01
Prognostics is an emerging requirement of modern health monitoring that aims to increase the fidelity of failure-time predictions by the appropriate use of sensory and reliability information. In the aerospace industry it is a key technology to reduce life-cycle costs, improve reliability and asset availability for a diverse fleet of gas turbine engines. In this work, a Bayesian hierarchical model is selected to utilise fleet data from multiple assets to perform probabilistic estimation of remaining useful life (RUL) for civil aerospace gas turbine engines. The hierarchical formulation allows Bayesian updates of an individual predictive model to be made, based upon data received asynchronously from a fleet of assets with different in-service lives and for the entry of new assets into the fleet. In this paper, variational inference is applied to the hierarchical formulation to overcome the computational and convergence concerns that are raised by the numerical sampling techniques needed for inference in the original formulation. The algorithm is tested on synthetic data, where the quality of approximation is shown to be satisfactory with respect to prediction performance, computational speed, and ease of use. A case study of in-service gas turbine engine data demonstrates the value of integrating fleet data for accurately predicting degradation trajectories of assets.
Cai, C.; Rodet, T.; Mohammad-Djafari, A.; Legoupil, S.
2013-11-15
Purpose: Dual-energy computed tomography (DECT) makes it possible to get two fractions of basis materials without segmentation. One is the soft-tissue equivalent water fraction and the other is the hard-matter equivalent bone fraction. Practical DECT measurements are usually obtained with polychromatic x-ray beams. Existing reconstruction approaches based on linear forward models without counting the beam polychromaticity fail to estimate the correct decomposition fractions and result in beam-hardening artifacts (BHA). The existing BHA correction approaches either need to refer to calibration measurements or suffer from the noise amplification caused by the negative-log preprocessing and the ill-conditioned water and bone separation problem. To overcome these problems, statistical DECT reconstruction approaches based on nonlinear forward models counting the beam polychromaticity show great potential for giving accurate fraction images.Methods: This work proposes a full-spectral Bayesian reconstruction approach which allows the reconstruction of high quality fraction images from ordinary polychromatic measurements. This approach is based on a Gaussian noise model with unknown variance assigned directly to the projections without taking negative-log. Referring to Bayesian inferences, the decomposition fractions and observation variance are estimated by using the joint maximum a posteriori (MAP) estimation method. Subject to an adaptive prior model assigned to the variance, the joint estimation problem is then simplified into a single estimation problem. It transforms the joint MAP estimation problem into a minimization problem with a nonquadratic cost function. To solve it, the use of a monotone conjugate gradient algorithm with suboptimal descent steps is proposed.Results: The performance of the proposed approach is analyzed with both simulated and experimental data. The results show that the proposed Bayesian approach is robust to noise and materials. It is also
A Bayesian network modeling approach to forecasting the 21st century worldwide status of polar bears
NASA Astrophysics Data System (ADS)
Amstrup, Steven C.; Marcot, Bruce G.; Douglas, David C.
To inform the U.S. Fish and Wildlife Service decision, whether or not to list polar bears as threatened under the Endangered Species Act (ESA), we projected the status of the world's polar bears (Ursus maritimus) for decades centered on future years 2025, 2050, 2075, and 2095. We defined four ecoregions based on current and projected sea ice conditions: seasonal ice, Canadian Archipelago, polar basin divergent, and polar basin convergent ecoregions. We incorporated general circulation model projections of future sea ice into a Bayesian network (BN) model structured around the factors considered in ESA decisions. This first-generation BN model combined empirical data, interpretations of data, and professional judgments of one polar bear expert into a probabilistic framework that identifies causal links between environmental stressors and polar bear responses. We provide guidance regarding steps necessary to refine the model, including adding inputs from other experts. The BN model projected extirpation of polar bears from the seasonal ice and polar basin divergent ecoregions, where ≈2/3 of the world's polar bears currently occur, by mid century. Projections were less dire in other ecoregions. Decline in ice habitat was the overriding factor driving the model outcomes. Although this is a first-generation model, the dependence of polar bears on sea ice is universally accepted, and the observed sea ice decline is faster than models suggest. Therefore, incorporating judgments of multiple experts in a final model is not expected to fundamentally alter the outlook for polar bears described here.
NASA Astrophysics Data System (ADS)
Cha, YoonKyung; Soon Park, Seok; Won Lee, Hye; Stow, Craig A.
2016-01-01
Modeling to accurately predict river phytoplankton distribution and abundance is important in water quality and resource management. Nevertheless, the complex nature of eutrophication processes in highly connected river systems makes the task challenging. To model dynamics of river phytoplankton, represented by chlorophyll a (Chl a) concentration, we propose a Bayesian hierarchical model that explicitly accommodates seasonality and upstream-downstream spatial gradient in the structure. The utility of our model is demonstrated with an application to the Nakdong River (South Korea), which is a eutrophic, intensively regulated river, but functions as an irreplaceable water source for more than 13 million people. Chl a is modeled with two manageable factors, river flow, and total phosphorus (TP) concentration. Our model results highlight the importance of taking seasonal and spatial context into account when describing flow regimes and phosphorus delivery in rivers. A contrasting positive Chl a-flow relationship across stations versus negative Chl a-flow slopes that arose when Chl a was modeled on a station-month basis is an illustration of Simpson's paradox, which necessitates modeling Chl a-flow relationships decomposed into seasonal and spatial components. Similar Chl a-TP slopes among stations and months suggest that, with the flow effect removed, positive TP effects on Chl a are uniform regardless of the season and station in the river. Our model prediction successfully captured the shift in the spatial and monthly patterns of Chl a.
NASA Astrophysics Data System (ADS)
Humphrey, Greer B.; Gibbs, Matthew S.; Dandy, Graeme C.; Maier, Holger R.
2016-09-01
Monthly streamflow forecasts are needed to support water resources decision making in the South East of South Australia, where baseflow represents a significant proportion of the total streamflow and soil moisture and groundwater are important predictors of runoff. To address this requirement, the utility of a hybrid monthly streamflow forecasting approach is explored, whereby simulated soil moisture from the GR4J conceptual rainfall-runoff model is used to represent initial catchment conditions in a Bayesian artificial neural network (ANN) statistical forecasting model. To assess the performance of this hybrid forecasting method, a comparison is undertaken of the relative performances of the Bayesian ANN, the GR4J conceptual model and the hybrid streamflow forecasting approach for producing 1-month ahead streamflow forecasts at three key locations in the South East of South Australia. Particular attention is paid to the quantification of uncertainty in each of the forecast models and the potential for reducing forecast uncertainty by using the hybrid approach is considered. Case study results suggest that the hybrid models developed in this study are able to take advantage of the complementary strengths of both the ANN models and the GR4J conceptual models. This was particularly the case when forecasting high flows, where the hybrid models were shown to outperform the two individual modelling approaches in terms of the accuracy of the median forecasts, as well as reliability and resolution of the forecast distributions. In addition, the forecast distributions generated by the hybrid models were up to 8 times more precise than those based on climatology; thus, providing a significant improvement on the information currently available to decision makers.
The approach of Bayesian model indicates media awareness of medical errors
NASA Astrophysics Data System (ADS)
Ravichandran, K.; Arulchelvan, S.
2016-06-01
This research study brings out the factors behind the increase in medical malpractices in the Indian subcontinent in the present day environment and impacts of television media awareness towards it. Increased media reporting of medical malpractices and errors lead to hospitals taking corrective action and improve the quality of medical services that they provide. The model of Cultivation Theory can be used to measure the influence of media in creating awareness of medical errors. The patient's perceptions of various errors rendered by the medical industry from different parts of India were taken up for this study. Bayesian method was used for data analysis and it gives absolute values to indicate satisfaction of the recommended values. To find out the impact of maintaining medical records of a family online by the family doctor in reducing medical malpractices which creates the importance of service quality in medical industry through the ICT.
A structured approach to Bayesian data fusion
NASA Astrophysics Data System (ADS)
Rubin, Y. N.; Chen, J.; Hubbard, S.; Kowalsky, M. B.; Woodbury, A.
2002-12-01
Stochastic formulations of the inverse problem proved to be a powerful tool for data fusion. Bayesian-based methods are particularly attractive due to their generality and structure. A Bayesian method requires defining a prior pdf for the model parameters and a likelihood function to relate between model parameters and observations. A systematic approach for defining these two functions is needed, which departs from the customary, almost-by-default choice of normal-based models. This talk gives an overview of recent trends in Bayesian model construction. The first part of the talk focuses on identifying a prior using the information-based approach of Woodbury and Ulrych, with an application to the Cape Cod large scale tracer transport field experiment. Here we show how the tracer data can augment direct measurements of the hydraulic conductivity. In the second part, we focus on the likelihood function, and present two different concepts. The first concept defines a non-stationary, multivariate normal likelihood function, and the second employs neural networks and identifies a non-normal likelihood function. Both concepts are employed to fuse geophysical data with conventional well logs.
Bayesian Networks for Social Modeling
Whitney, Paul D.; White, Amanda M.; Walsh, Stephen J.; Dalton, Angela C.; Brothers, Alan J.
2011-03-28
This paper describes a body of work developed over the past five years. The work addresses the use of Bayesian network (BN) models for representing and predicting social/organizational behaviors. The topics covered include model construction, validation, and use. These topics show the bulk of the lifetime of such model, beginning with construction, moving to validation and other aspects of model ‘critiquing’, and finally demonstrating how the modeling approach might be used to inform policy analysis. To conclude, we discuss limitations of using BN for this activity and suggest remedies to address those limitations. The primary benefits of using a well-developed computational, mathematical, and statistical modeling structure, such as BN, are 1) there are significant computational, theoretical and capability bases on which to build 2) ability to empirically critique the model, and potentially evaluate competing models for a social/behavioral phenomena.
Reducing model structural uncertainty in predictions for ungauged basins via Bayesian approach.
NASA Astrophysics Data System (ADS)
Prieto, Cristina; Le Vine, Nataliya; Vitolo, Claudia; García, Eduardo; Medina, Raúl
2016-04-01
A catchment is a complex system where a multitude of interrelated energy, water and vegetation processes occur at different temporal and spatial scales. A rainfall-runoff model is a simplified representation of the system, and serves as a hypothesis about an inner catchment working. In predictions for ungauged basins, a common practice is to use a pre-selected assumed-to-be-perfect model structure to represent all catchments under analysis. However, it is unlikely that the same model structure is appropriate for diverse catchments due to the 'uniqueness of the place'. At the same time, there is no obvious justification to select a single model structure as a suitable description of the system. The contribution of this research is a move forward in the 'one size fits all' problem for predicting flows in ungauged basins. We present a statistical methodology, which allows regionalization that considers the information given by different hydrological model structures. First, the information to be regionalised is compactly represented via Principal Component Analysis. Second, the most significant principal components are regionalised using non-linear regionalisation method based on Random Forests. Third, a regionalisation error structure is derived based on the gauged catchments to be used in the Bayesian condition of the rainfall-runoff structures and their parameters. The methodological developments are demonstrated for predicting flows in ungauged basins of Northern Spain; and the results show that the methodology allows improving the flow prediction.
A Survey of Model Evaluation Approaches with a Tutorial on Hierarchical Bayesian Methods
ERIC Educational Resources Information Center
Shiffrin, Richard M.; Lee, Michael D.; Kim, Woojae; Wagenmakers, Eric-Jan
2008-01-01
This article reviews current methods for evaluating models in the cognitive sciences, including theoretically based approaches, such as Bayes factors and minimum description length measures; simulation approaches, including model mimicry evaluations; and practical approaches, such as validation and generalization measures. This article argues…
Hu, Yi; Ward, Michael P.; Xia, Congcong; Li, Rui; Sun, Liqian; Lynn, Henry; Gao, Fenghua; Wang, Qizhi; Zhang, Shiqing; Xiong, Chenglong; Zhang, Zhijie; Jiang, Qingwu
2016-01-01
Schistosomiasis remains a major public health problem and causes substantial economic impact in east China, particularly along the Yangtze River Basin. Disease forecasting and surveillance can assist in the development and implementation of more effective intervention measures to control disease. In this study, we applied a Bayesian hierarchical spatio-temporal model to describe trends in schistosomiasis risk in Anhui Province, China, using annual parasitological and environmental data for the period 1997–2010. A computationally efficient approach–Integrated Nested Laplace Approximation–was used for model inference. A zero-inflated, negative binomial model best described the spatio-temporal dynamics of schistosomiasis risk. It predicted that the disease risk would generally be low and stable except for some specific, local areas during the period 2011–2014. High-risk counties were identified in the forecasting maps: three in which the risk remained high, and two in which risk would become high. The results indicated that schistosomiasis risk has been reduced to consistently low levels throughout much of this region of China; however, some counties were identified in which progress in schistosomiasis control was less than satisfactory. Whilst maintaining overall control, specific interventions in the future should focus on these refractive counties as part of a strategy to eliminate schistosomiasis from this region. PMID:27053447
Funk, Sebastian; Watson, Conall H; Kucharski, Adam J; Edmunds, W John
2015-01-01
Objectives We investigate the chance of demonstrating Ebola vaccine efficacy in an individually randomised controlled trial implemented in the declining epidemic of Forécariah prefecture, Guinea. Methods We extend a previously published dynamic transmission model to include a simulated individually randomised controlled trial of 100 000 participants. Using Bayesian methods, we fit the model to Ebola case incidence before a trial and forecast the expected dynamics until disease elimination. We simulate trials under these forecasts and test potential start dates and rollout schemes to assess power to detect efficacy, and bias in vaccine efficacy estimates that may be introduced. Results Under realistic assumptions, we found that a trial of 100 000 participants starting after 1 August had less than 5% chance of having enough cases to detect vaccine efficacy. In particular, gradual recruitment precludes detection of vaccine efficacy because the epidemic is likely to go extinct before enough participants are recruited. Exclusion of early cases in either arm of the trial creates bias in vaccine efficacy estimates. Conclusions The very low Ebola virus disease incidence in Forécariah prefecture means any individually randomised controlled trial implemented there is unlikely to be successful, unless there is a substantial increase in the number of cases. PMID:26671958
Sy, Mouhamadou Moustapha; Ancelet, Sophie; Henner, Pascale; Hurtevent, Pierre; Simon-Cornu, Marie
2015-09-01
Uncertainty on the parameters that describe the transfer of radioactive materials into the (terrestrial) environment may be characterized thanks to datasets such as those compiled within International Atomic Energy Agency (IAEA) documents. Nevertheless, the information included in these documents is too poor to derive a relevant and informative uncertainty distribution regarding dry interception of radionuclides by the pasture grass and the leaves of vegetables. In this paper, 145 sets of dry interception measurements by the aboveground biomass of specific plants were collected from published scientific papers. A Bayesian meta-analysis was performed to derive the posterior probability distributions of the parameters that reflect their uncertainty given the collected data. Four competing models were compared in terms of both fitting performances and predictive abilities to reproduce plausible dry interception data. The asymptotic interception factor, applicable whatever the species and radionuclide to the highest aboveground biomass values (e.g. mature leafy vegetables), was estimated with the best model, to be 0.87 with a 95% credible interval (0.85, 0.89). PMID:26043277
Awate, Suyash P; Radhakrishnan, Thyagarajan
2015-01-01
In microscopy imaging, colocalization between two biological entities (e.g., protein-protein or protein-cell) refers to the (stochastic) dependencies between the spatial locations of the two entities in the biological specimen. Measuring colocalization between two entities relies on fluorescence imaging of the specimen using two fluorescent chemicals, each of which indicates the presence/absence of one of the entities at any pixel location. State-of-the-art methods for estimating colocalization rely on post-processing image data using an adhoc sequence of algorithms with many free parameters that are tuned visually. This leads to loss of reproducibility of the results. This paper proposes a brand-new framework for estimating the nature and strength of colocalization directly from corrupted image data by solving a single unified optimization problem that automatically deals with noise, object labeling, and parameter tuning. The proposed framework relies on probabilistic graphical image modeling and a novel inference scheme using variational Bayesian expectation maximization for estimating all model parameters, including colocalization, from data. Results on simulated and real-world data demonstrate improved performance over the state of the art. PMID:26221663
NASA Astrophysics Data System (ADS)
Kim, S. S. H.; Hughes, J. D.; Chen, J.; Dutta, D.; Vaze, J.
2014-12-01
Achieving predictive success is a major challenge in hydrological modelling. Predictive metrics indicate whether models and parameters are appropriate for impact assessment, design, planning and management, forecasting and underpinning policy. It is often found that very different parameter sets and model structures are equally acceptable system representations (commonly described as equifinality). Furthermore, parameters that produce the best goodness of fit during a calibration period may often yield poor results outside of that period. A calibration method is presented that uses a recursive Bayesian filter to estimate the probability of consistent performance of parameter sets in different sub-periods. The result is a probability distribution for each specified performance interval. This generic method utilises more information within time-series data than what is typically used for calibrations, and could be adopted for different types of time-series modelling applications. Where conventional calibration methods implicitly identify the best performing parameterisations on average, the new method looks at the consistency of performance during sub-periods. The proposed calibration method, therefore, can be used to avoid heavy weighting toward rare periods of good agreement. The method is trialled in a conceptual river system model called the Australian Water Resources Assessments River (AWRA-R) model in the Murray-Darling Basin, Australia. The new method is tested via cross-validation and results are compared to a traditional split-sample calibration/validation to evaluate the new technique's ability to predict daily streamflow. The results showed that the new calibration method could produce parameterisations that performed better in validation periods than optimum calibration parameter sets. The method shows ability to improve on predictive performance and provide more realistic flux terms compared to traditional split-sample calibration methods.
Cha, YoonKyung; Kim, Young Mo; Choi, Jae-Woo; Sthiannopkao, Suthipong; Cho, Kyung Hwa
2016-01-01
In the Mekong River basin, groundwater from tube-wells is a major drinking water source. However, arsenic (As) contamination in groundwater resources has become a critical issue in the watershed. In this study, As species such as total As (AsTOT), As(III), and As(V), were monitored across the watershed to investigate their characteristics and inter-relationships with water quality parameters, including pH and redox potential (Eh). The data illustrated a dramatic change in the relationship between AsTOT and Eh over a specific Eh range, suggesting the importance of Eh in predicting AsTOT. Thus, a Bayesian change-point model was developed to predict AsTOT concentrations based on Eh and pH, to determine changes in the AsTOT-Eh relationship. The model captured the Eh change-point (∼-100±15mV), which was compatible with the data. Importantly, the inclusion of this change-point in the model resulted in improved model fit and prediction accuracy; AsTOT concentrations were strongly negatively related to Eh values higher than the change-point. The process underlying this relationship was subsequently posited to be the reductive dissolution of mineral oxides and As release. Overall, AsTOT showed a weak positive relationship with Eh at a lower range, similar to those commonly observed in the Mekong River basin delta. It is expected that these results would serve as a guide for establishing public health strategies in the Mekong River Basin. PMID:25796421
NASA Astrophysics Data System (ADS)
Inglis, Andrew; Ireland, Jack; Dominique, Marie
2015-04-01
Recent work has shown that power-law-like Fourier power spectra are an intrinsic property of solar and stellar flare signals, similarly to other astrophysical objects such as gamma-ray bursts and magnetars. It is therefore critical to account for this in order to understand the nature and significance of short-timescale fluctuations in flares.We present the results of a Bayesian model comparison method for investigating flare time series, fully considering these Fourier power-law properties. Using data from the PROBA2/Large Yield Radiometer, Fermi/Gamma-ray Burst Monitor, Nobeyama Radioheliograph, and Yohkoh/HXT instruments, we study a selection of flares from the literature identified as 'quasi-periodic puslation (QPP)' events. While emphasising that the observed fluctuations are real and of solar origin, we find that, for all but one event tested, an explicit oscillation is not required to explain the observations. Instead, the observed flare signals are adequately described as a manifestation of a power law in the Fourier power spectrum. This evaluation of the QPP phenomenon is markedly different from much of the prior literature.We conclude that the prevalence of oscillatory signatures in solar and stellar flares may be less than previously believed. Furthermore, studying the slope of the observed Fourier power spectrum as a function of energy may provide us with a diagnostic window into the fundamental nature of solar flares.
Toribo, S.G.; Gray, B.R.; Liang, S.
2011-01-01
The N-mixture model proposed by Royle in 2004 may be used to approximate the abundance and detection probability of animal species in a given region. In 2006, Royle and Dorazio discussed the advantages of using a Bayesian approach in modelling animal abundance and occurrence using a hierarchical N-mixture model. N-mixture models assume replication on sampling sites, an assumption that may be violated when the site is not closed to changes in abundance during the survey period or when nominal replicates are defined spatially. In this paper, we studied the robustness of a Bayesian approach to fitting the N-mixture model for pseudo-replicated count data. Our simulation results showed that the Bayesian estimates for abundance and detection probability are slightly biased when the actual detection probability is small and are sensitive to the presence of extra variability within local sites.
Bronson, Jonathan E.; Fei, Jingyi; Hofman, Jake M.; Gonzalez, Ruben L.; Wiggins, Chris H.
2009-01-01
Abstract Time series data provided by single-molecule Förster resonance energy transfer (smFRET) experiments offer the opportunity to infer not only model parameters describing molecular complexes, e.g., rate constants, but also information about the model itself, e.g., the number of conformational states. Resolving whether such states exist or how many of them exist requires a careful approach to the problem of model selection, here meaning discrimination among models with differing numbers of states. The most straightforward approach to model selection generalizes the common idea of maximum likelihood—selecting the most likely parameter values—to maximum evidence: selecting the most likely model. In either case, such an inference presents a tremendous computational challenge, which we here address by exploiting an approximation technique termed variational Bayesian expectation maximization. We demonstrate how this technique can be applied to temporal data such as smFRET time series; show superior statistical consistency relative to the maximum likelihood approach; compare its performance on smFRET data generated from experiments on the ribosome; and illustrate how model selection in such probabilistic or generative modeling can facilitate analysis of closely related temporal data currently prevalent in biophysics. Source code used in this analysis, including a graphical user interface, is available open source via http://vbFRET.sourceforge.net. PMID:20006957
Bayesian approach for neural networks--review and case studies.
Lampinen, J; Vehtari, A
2001-04-01
We give a short review on the Bayesian approach for neural network learning and demonstrate the advantages of the approach in three real applications. We discuss the Bayesian approach with emphasis on the role of prior knowledge in Bayesian models and in classical error minimization approaches. The generalization capability of a statistical model, classical or Bayesian, is ultimately based on the prior assumptions. The Bayesian approach permits propagation of uncertainty in quantities which are unknown to other assumptions in the model, which may be more generally valid or easier to guess in the problem. The case problem studied in this paper include a regression, a classification, and an inverse problem. In the most thoroughly analyzed regression problem, the best models were those with less restrictive priors. This emphasizes the major advantage of the Bayesian approach, that we are not forced to guess attributes that are unknown, such as the number of degrees of freedom in the model, non-linearity of the model with respect to each input variable, or the exact form for the distribution of the model residuals. PMID:11341565
Bayesian Approach to Model CD137 Signaling in Human M. tuberculosis In Vitro Responses
Fernández Do Porto, Darío A.; Auzmendi, Jerónimo; Peña, Delfina; García, Verónica E.; Moffatt, Luciano
2013-01-01
Immune responses are qualitatively and quantitatively influenced by a complex network of receptor-ligand interactions. Among them, the CD137:CD137L pathway is known to modulate innate and adaptive human responses against Mycobacterium tuberculosis. However, the underlying mechanisms of this regulation remain unclear. In this work, we developed a Bayesian Computational Model (BCM) of in vitro CD137 signaling, devised to fit previously gathered experimental data. The BCM is fed with the data and the prior distribution of the model parameters and it returns their posterior distribution and the model evidence, which allows comparing alternative signaling mechanisms. The BCM uses a coupled system of non-linear differential equations to describe the dynamics of Antigen Presenting Cells, Natural Killer and T Cells together with the interpheron (IFN)-γ and tumor necrosis factor (TNF)-α levels in the media culture. Fast and complete mixing of the media is assumed. The prior distribution of the parameters that describe the dynamics of the immunological response was obtained from the literature and theoretical considerations Our BCM applies successively the Levenberg-Marquardt algorithm to find the maximum a posteriori likelihood (MAP); the Metropolis Markov Chain Monte Carlo method to approximate the posterior distribution of the parameters and Thermodynamic Integration to calculate the evidence of alternative hypothesis. Bayes factors provided decisive evidence favoring direct CD137 signaling on T cells. Moreover, the posterior distribution of the parameters that describe the CD137 signaling showed that the regulation of IFN-γ levels is based more on T cells survival than on direct induction. Furthermore, the mechanisms that account for the effect of CD137 signaling on TNF-α production were based on a decrease of TNF-α production by APC and, perhaps, on the increase in APC apoptosis. BCM proved to be a useful tool to gain insight on the mechanisms of CD137 signaling
Bayesian approach to model CD137 signaling in human M. tuberculosis in vitro responses.
Fernández Do Porto, Darío A; Auzmendi, Jerónimo; Peña, Delfina; García, Verónica E; Moffatt, Luciano
2013-01-01
Immune responses are qualitatively and quantitatively influenced by a complex network of receptor-ligand interactions. Among them, the CD137:CD137L pathway is known to modulate innate and adaptive human responses against Mycobacterium tuberculosis. However, the underlying mechanisms of this regulation remain unclear. In this work, we developed a Bayesian Computational Model (BCM) of in vitro CD137 signaling, devised to fit previously gathered experimental data. The BCM is fed with the data and the prior distribution of the model parameters and it returns their posterior distribution and the model evidence, which allows comparing alternative signaling mechanisms. The BCM uses a coupled system of non-linear differential equations to describe the dynamics of Antigen Presenting Cells, Natural Killer and T Cells together with the interpheron (IFN)-γ and tumor necrosis factor (TNF)-α levels in the media culture. Fast and complete mixing of the media is assumed. The prior distribution of the parameters that describe the dynamics of the immunological response was obtained from the literature and theoretical considerations Our BCM applies successively the Levenberg-Marquardt algorithm to find the maximum a posteriori likelihood (MAP); the Metropolis Markov Chain Monte Carlo method to approximate the posterior distribution of the parameters and Thermodynamic Integration to calculate the evidence of alternative hypothesis. Bayes factors provided decisive evidence favoring direct CD137 signaling on T cells. Moreover, the posterior distribution of the parameters that describe the CD137 signaling showed that the regulation of IFN-γ levels is based more on T cells survival than on direct induction. Furthermore, the mechanisms that account for the effect of CD137 signaling on TNF-α production were based on a decrease of TNF-α production by APC and, perhaps, on the increase in APC apoptosis. BCM proved to be a useful tool to gain insight on the mechanisms of CD137 signaling
An Integrated Bayesian Model for DIF Analysis
ERIC Educational Resources Information Center
Soares, Tufi M.; Goncalves, Flavio B.; Gamerman, Dani
2009-01-01
In this article, an integrated Bayesian model for differential item functioning (DIF) analysis is proposed. The model is integrated in the sense of modeling the responses along with the DIF analysis. This approach allows DIF detection and explanation in a simultaneous setup. Previous empirical studies and/or subjective beliefs about the item…
The Bayesian Revolution Approaches Psychological Development
ERIC Educational Resources Information Center
Shultz, Thomas R.
2007-01-01
This commentary reviews five articles that apply Bayesian ideas to psychological development, some with psychology experiments, some with computational modeling, and some with both experiments and modeling. The reviewed work extends the current Bayesian revolution into tasks often studied in children, such as causal learning and word learning, and…
A Bayesian Hierarchical Modeling Approach to Predicting Flow in Ungauged Basins
Recent innovative approaches to identifying and applying regression-based relationships between land use patterns (such as increasing impervious surface area and decreasing vegetative cover) and rainfall-runoff model parameters represent novel and promising improvements to predic...
Bayesian structural equation modeling in sport and exercise psychology.
Stenling, Andreas; Ivarsson, Andreas; Johnson, Urban; Lindwall, Magnus
2015-08-01
Bayesian statistics is on the rise in mainstream psychology, but applications in sport and exercise psychology research are scarce. In this article, the foundations of Bayesian analysis are introduced, and we will illustrate how to apply Bayesian structural equation modeling in a sport and exercise psychology setting. More specifically, we contrasted a confirmatory factor analysis on the Sport Motivation Scale II estimated with the most commonly used estimator, maximum likelihood, and a Bayesian approach with weakly informative priors for cross-loadings and correlated residuals. The results indicated that the model with Bayesian estimation and weakly informative priors provided a good fit to the data, whereas the model estimated with a maximum likelihood estimator did not produce a well-fitting model. The reasons for this discrepancy between maximum likelihood and Bayesian estimation are discussed as well as potential advantages and caveats with the Bayesian approach. PMID:26442771
NASA Astrophysics Data System (ADS)
Abdallh, A.; Crevecoeur, G.; Dupré, L.
2012-03-01
Magnetic material properties of an electromagnetic device can be recovered by solving an inverse problem where measurements are adequately interpreted by a mathematical forward model. The accuracy of these forward models dramatically affects the accuracy of the material properties recovered by the inverse problem. The more accurate the forward model is, the more accurate recovered data are. However, the more accurate ‘fine’ models demand a high computational time and memory storage. Alternatively, less accurate ‘coarse’ models can be used with a demerit of the high expected recovery errors. This paper uses the Bayesian approximation error approach for improving the inverse problem results when coarse models are utilized. The proposed approach adapts the objective function to be minimized with the a priori misfit between fine and coarse forward model responses. In this paper, two different electromagnetic devices, namely a switched reluctance motor and an EI core inductor, are used as case studies. The proposed methodology is validated on both purely numerical and real experimental results. The results show a significant reduction in the recovery error within an acceptable computational time.
A Bayesian approach to earthquake source studies
NASA Astrophysics Data System (ADS)
Minson, Sarah
Bayesian sampling has several advantages over conventional optimization approaches to solving inverse problems. It produces the distribution of all possible models sampled proportionally to how much each model is consistent with the data and the specified prior information, and thus images the entire solution space, revealing the uncertainties and trade-offs in the model. Bayesian sampling is applicable to both linear and non-linear modeling, and the values of the model parameters being sampled can be constrained based on the physics of the process being studied and do not have to be regularized. However, these methods are computationally challenging for high-dimensional problems. Until now the computational expense of Bayesian sampling has been too great for it to be practicable for most geophysical problems. I present a new parallel sampling algorithm called CATMIP for Cascading Adaptive Tempered Metropolis In Parallel. This technique, based on Transitional Markov chain Monte Carlo, makes it possible to sample distributions in many hundreds of dimensions, if the forward model is fast, or to sample computationally expensive forward models in smaller numbers of dimensions. The design of the algorithm is independent of the model being sampled, so CATMIP can be applied to many areas of research. I use CATMIP to produce a finite fault source model for the 2007 Mw 7.7 Tocopilla, Chile earthquake. Surface displacements from the earthquake were recorded by six interferograms and twelve local high-rate GPS stations. Because of the wealth of near-fault data, the source process is well-constrained. I find that the near-field high-rate GPS data have significant resolving power above and beyond the slip distribution determined from static displacements. The location and magnitude of the maximum displacement are resolved. The rupture almost certainly propagated at sub-shear velocities. The full posterior distribution can be used not only to calculate source parameters but also
NASA Astrophysics Data System (ADS)
Kocabas, Verda; Dragicevic, Suzana
2013-10-01
Land-use change models grounded in complexity theory such as agent-based models (ABMs) are increasingly being used to examine evolving urban systems. The objective of this study is to develop a spatial model that simulates land-use change under the influence of human land-use choice behavior. This is achieved by integrating the key physical and social drivers of land-use change using Bayesian networks (BNs) coupled with agent-based modeling. The BNAS model, integrated Bayesian network-based agent system, presented in this study uses geographic information systems, ABMs, BNs, and influence diagram principles to model population change on an irregular spatial structure. The model is parameterized with historical data and then used to simulate 20 years of future population and land-use change for the City of Surrey, British Columbia, Canada. The simulation results identify feasible new urban areas for development around the main transportation corridors. The obtained new development areas and the projected population trajectories with the“what-if” scenario capabilities can provide insights into urban planners for better and more informed land-use policy or decision-making processes.
Rainfall-Runoff Forecast and Model Parameter Estimation: a Dynamic Bayesian Networks Approach
NASA Astrophysics Data System (ADS)
Canon Barriga, J. E.; Morillo Leon, F. C.
2013-12-01
The suggested climate-driven non-stationarities and intrinsic uncertainties of hydrological processes such as precipitation (P) and runoff (R), represent a fruitful context to develop new methods that may be able to detect parametric variations in time series and incorporate them into forecasts. In this research, we developed a method to forecast runoff from precipitation time series based on Dynamic Bayesian Networks (DBN). The purpose of the research was to determine an appropriate structure of the DBN and the optimal lengths of hydrological time series required to establish statistical parameters (i.e., first two moments) of P and optimal fits of forecasted R at daily and weekly intervals. A DBN can be briefly interpreted as a set of nodes (representing conditional probabilistic variables) connected by arrows that establish a causal, time-oriented, relationship among them. A DBN is defined by two components: a static network (structure) and a transition probability matrix between consecutive stages. Similarly to neural networks, DBN must be trained in order to learn about the subjacent process and make useful predictions. To determine the ability of the DBN to forecast R from P we initially generated long synthetic P series and run a deterministic model (HEC-HMS) to generate R. The DBN were then trained with different lengths of these synthetic series to forecast R (using smoothing and filtering methods). Two structures were considered: 1) DBN with P(t), P(t-1) and R(t-1) and 2) DBN with P(t), P(t-1), R(t-1) and ΔR=[R(t-1)-R(t-2)]. Both smoothing and filtering methods were appropriate to make predictions on a daily and weekly basis (filtration performing better). Setting the complexity (number of states of the random variables) in a DBN proves to be a critical issue, since an increase in the number of states, which implies larger training sets, does not always mean an improvement in the prediction. We found that acceptable results could be obtained from DBN
A Bayesian Approach to Learning Scoring Systems.
Ertekin, Şeyda; Rudin, Cynthia
2015-12-01
We present a Bayesian method for building scoring systems, which are linear models with coefficients that have very few significant digits. Usually the construction of scoring systems involve manual effort-humans invent the full scoring system without using data, or they choose how logistic regression coefficients should be scaled and rounded to produce a scoring system. These kinds of heuristics lead to suboptimal solutions. Our approach is different in that humans need only specify the prior over what the coefficients should look like, and the scoring system is learned from data. For this approach, we provide a Metropolis-Hastings sampler that tends to pull the coefficient values toward their "natural scale." Empirically, the proposed method achieves a high degree of interpretability of the models while maintaining competitive generalization performances. PMID:27441407
Berhane, Kiros; Molitor, Nuoo-Ting
2008-01-01
Flexible multilevel models are proposed to allow for cluster-specific smooth estimation of growth curves in a mixed-effects modeling format that includes subject-specific random effects on the growth parameters. Attention is then focused on models that examine between-cluster comparisons of the effects of an ecologic covariate of interest (e.g. air pollution) on nonlinear functionals of growth curves (e.g. maximum rate of growth). A Gibbs sampling approach is used to get posterior mean estimates of nonlinear functionals along with their uncertainty estimates. A second-stage ecologic random-effects model is used to examine the association between a covariate of interest (e.g. air pollution) and the nonlinear functionals. A unified estimation procedure is presented along with its computational and theoretical details. The models are motivated by, and illustrated with, lung function and air pollution data from the Southern California Children's Health Study. PMID:18349036
Bayesian Calibration of Microsimulation Models.
Rutter, Carolyn M; Miglioretti, Diana L; Savarino, James E
2009-12-01
Microsimulation models that describe disease processes synthesize information from multiple sources and can be used to estimate the effects of screening and treatment on cancer incidence and mortality at a population level. These models are characterized by simulation of individual event histories for an idealized population of interest. Microsimulation models are complex and invariably include parameters that are not well informed by existing data. Therefore, a key component of model development is the choice of parameter values. Microsimulation model parameter values are selected to reproduce expected or known results though the process of model calibration. Calibration may be done by perturbing model parameters one at a time or by using a search algorithm. As an alternative, we propose a Bayesian method to calibrate microsimulation models that uses Markov chain Monte Carlo. We show that this approach converges to the target distribution and use a simulation study to demonstrate its finite-sample performance. Although computationally intensive, this approach has several advantages over previously proposed methods, including the use of statistical criteria to select parameter values, simultaneous calibration of multiple parameters to multiple data sources, incorporation of information via prior distributions, description of parameter identifiability, and the ability to obtain interval estimates of model parameters. We develop a microsimulation model for colorectal cancer and use our proposed method to calibrate model parameters. The microsimulation model provides a good fit to the calibration data. We find evidence that some parameters are identified primarily through prior distributions. Our results underscore the need to incorporate multiple sources of variability (i.e., due to calibration data, unknown parameters, and estimated parameters and predicted values) when calibrating and applying microsimulation models. PMID:20076767
Bayesian Calibration of Microsimulation Models
Rutter, Carolyn M.; Miglioretti, Diana L.; Savarino, James E.
2009-01-01
Microsimulation models that describe disease processes synthesize information from multiple sources and can be used to estimate the effects of screening and treatment on cancer incidence and mortality at a population level. These models are characterized by simulation of individual event histories for an idealized population of interest. Microsimulation models are complex and invariably include parameters that are not well informed by existing data. Therefore, a key component of model development is the choice of parameter values. Microsimulation model parameter values are selected to reproduce expected or known results though the process of model calibration. Calibration may be done by perturbing model parameters one at a time or by using a search algorithm. As an alternative, we propose a Bayesian method to calibrate microsimulation models that uses Markov chain Monte Carlo. We show that this approach converges to the target distribution and use a simulation study to demonstrate its finite-sample performance. Although computationally intensive, this approach has several advantages over previously proposed methods, including the use of statistical criteria to select parameter values, simultaneous calibration of multiple parameters to multiple data sources, incorporation of information via prior distributions, description of parameter identifiability, and the ability to obtain interval estimates of model parameters. We develop a microsimulation model for colorectal cancer and use our proposed method to calibrate model parameters. The microsimulation model provides a good fit to the calibration data. We find evidence that some parameters are identified primarily through prior distributions. Our results underscore the need to incorporate multiple sources of variability (i.e., due to calibration data, unknown parameters, and estimated parameters and predicted values) when calibrating and applying microsimulation models. PMID:20076767
Probabilistic Tomography: A Pragmatic Bayesian Approach
NASA Astrophysics Data System (ADS)
Trampert, J.
2014-12-01
'The future lies in uncertainty' (Spiegelhalter, Science, 345, 264, 2014), nothing could be more true for Earth Sciences. We are able to produce ever more sophisticated models but they can only inform us about the Earth in a meaningful way if we can assign uncertainties to the models. Bayesian inference is a natural choice for this task as it handles uncertainty in a natural way by explicitly modeling assumptions. Another desirable property is that Bayes' theorem contains Occam's razor implicitly. I will present our efforts over the that last 10 years to infer Earth properties using an approach we called probabilistic tomography. The word pragmatic has several meanings in this context. In more classical Bayesian inference problems, we usually prescribe subjective or informative priors. I will illustrate this by showing examples which employ the neighborhood algorithm (Sambridge, 1999) or a Metropolis rule (Mosegaard and Tarantola, 1995). Recently we started to use neural networks to parametrize the posterior. In our implementation, we do not sample the posterior directly, but make predictions on some properties of the posterior. The interpretation of the uncertainty is therefore slightly different, but the method informs us on the information gain with respect to the prior. I will show examples on source and structural inversions using so-called mixture density networks.
NASA Astrophysics Data System (ADS)
Lee, Chieh-Han; Yu, Hwa-Lung; Chien, Lung-Chang
2014-05-01
Dengue fever has been identified as one of the most widespread vector-borne diseases in tropical and sub-tropical. In the last decade, dengue is an emerging infectious disease epidemic in Taiwan especially in the southern area where have annually high incidences. For the purpose of disease prevention and control, an early warning system is urgently needed. Previous studies have showed significant relationships between climate variables, in particular, rainfall and temperature, and the temporal epidemic patterns of dengue cases. However, the transmission of the dengue fever is a complex interactive process that mostly understated the composite space-time effects of dengue fever. This study proposes developing a one-week ahead warning system of dengue fever epidemics in the southern Taiwan that considered nonlinear associations between weekly dengue cases and meteorological factors across space and time. The early warning system based on an integration of distributed lag nonlinear model (DLNM) and stochastic Bayesian Maximum Entropy (BME) analysis. The study identified the most significant meteorological measures including weekly minimum temperature and maximum 24-hour rainfall with continuous 15-week lagged time to dengue cases variation under condition of uncertainty. Subsequently, the combination of nonlinear lagged effects of climate variables and space-time dependence function is implemented via a Bayesian framework to predict dengue fever occurrences in the southern Taiwan during 2012. The result shows the early warning system is useful for providing potential outbreak spatio-temporal prediction of dengue fever distribution. In conclusion, the proposed approach can provide a practical disease control tool for environmental regulators seeking more effective strategies for dengue fever prevention.
NASA Astrophysics Data System (ADS)
Hashmi, M. Z.; Shamseldin, A. Y.; Melville, B. W.
2009-10-01
Global Circulation Models (GCMs) are a major tool used for future projections of climate change using different emission scenarios. However, for assessing the hydrological impacts of climate change at the watershed and the regional scale, the GCM outputs cannot be used directly due to the mismatch in the spatial resolution between the GCMs and hydrological models. In order to use the output of a GCM for conducting hydrological impact studies, downscaling is used. However, the downscaling results may contain considerable uncertainty which needs to be quantified before making the results available. Among the variables usually downscaled, precipitation downscaling is quite challenging and is more prone to uncertainty issues than other climatological variables. This paper addresses the uncertainty analysis associated with statistical downscaling of a watershed precipitation (Clutha River above Balclutha, New Zealand) using results from three well reputed downscaling methods and Bayesian weighted multi-model ensemble approach. The downscaling methods used for this study belong to the following downscaling categories; (1) Multiple linear regression; (2) Multiple non-linear regression; and (3) Stochastic weather generator. The results obtained in this study have shown that this ensemble strategy is very efficient in combining the results from multiple downscaling methods on the basis of their performance and quantifying the uncertainty contained in this ensemble output. This will encourage any future attempts on quantifying downscaling uncertainties using the multi-model ensemble framework.
Bayesian Model Averaging for Propensity Score Analysis
ERIC Educational Resources Information Center
Kaplan, David; Chen, Jianshen
2013-01-01
The purpose of this study is to explore Bayesian model averaging in the propensity score context. Previous research on Bayesian propensity score analysis does not take into account model uncertainty. In this regard, an internally consistent Bayesian framework for model building and estimation must also account for model uncertainty. The…
A SEMIPARAMETRIC BAYESIAN MODEL FOR CIRCULAR-LINEAR REGRESSION
We present a Bayesian approach to regress a circular variable on a linear predictor. The regression coefficients are assumed to have a nonparametric distribution with a Dirichlet process prior. The semiparametric Bayesian approach gives added flexibility to the model and is usefu...
Massoudieh, Arash; Visser, Ate; Sharifi, Soroosh; Broers, Hans Peter
2013-10-15
The mixing of groundwaters with different ages in aquifers, groundwater age is more appropriately represented by a distribution rather than a scalar number. To infer a groundwater age distribution from environmental tracers, a mathematical form is often assumed for the shape of the distribution and the parameters of the mathematical distribution are estimated using deterministic or stochastic inverse methods. We found that the prescription of the mathematical form limits the exploration of the age distribution to the shapes that can be described by the selected distribution. In this paper, the use of freeform histograms as groundwater age distributions is evaluated. A Bayesian Markov Chain Monte Carlo approach is used to estimate the fraction of groundwater in each histogram bin. This method was able to capture the shape of a hypothetical gamma distribution from the concentrations of four age tracers. The number of bins that can be considered in this approach is limited based on the number of tracers available. The histogram method was also tested on tracer data sets from Holten (The Netherlands; ^{3}H, ^{3}He, ^{85}Kr, ^{39}Ar) and the La Selva Biological Station (Costa-Rica; SF_{ 6}, CFCs, ^{3}H, ^{4}He and ^{14}C), and compared to a number of mathematical forms. According to standard Bayesian measures of model goodness, the best mathematical distribution performs better than the histogram distributions in terms of the ability to capture the observed tracer data relative to their complexity. Among the histogram distributions, the four bin histogram performs better in most of the cases. The Monte Carlo simulations showed strong correlations in the posterior estimates of bin contributions, indicating that these bins cannot be well constrained using the available age tracers. The fact that mathematical forms overall perform better than the freeform histogram does not undermine the benefit of the
Massoudieh, Arash; Visser, Ate; Sharifi, Soroosh; Broers, Hans Peter
2013-10-15
The mixing of groundwaters with different ages in aquifers, groundwater age is more appropriately represented by a distribution rather than a scalar number. To infer a groundwater age distribution from environmental tracers, a mathematical form is often assumed for the shape of the distribution and the parameters of the mathematical distribution are estimated using deterministic or stochastic inverse methods. We found that the prescription of the mathematical form limits the exploration of the age distribution to the shapes that can be described by the selected distribution. In this paper, the use of freeform histograms as groundwater age distributions is evaluated.more » A Bayesian Markov Chain Monte Carlo approach is used to estimate the fraction of groundwater in each histogram bin. This method was able to capture the shape of a hypothetical gamma distribution from the concentrations of four age tracers. The number of bins that can be considered in this approach is limited based on the number of tracers available. The histogram method was also tested on tracer data sets from Holten (The Netherlands; 3H, 3He, 85Kr, 39Ar) and the La Selva Biological Station (Costa-Rica; SF 6, CFCs, 3H, 4He and 14C), and compared to a number of mathematical forms. According to standard Bayesian measures of model goodness, the best mathematical distribution performs better than the histogram distributions in terms of the ability to capture the observed tracer data relative to their complexity. Among the histogram distributions, the four bin histogram performs better in most of the cases. The Monte Carlo simulations showed strong correlations in the posterior estimates of bin contributions, indicating that these bins cannot be well constrained using the available age tracers. The fact that mathematical forms overall perform better than the freeform histogram does not undermine the benefit of the freeform approach, especially for the cases where a larger amount of observed data is
Posterior Predictive Bayesian Phylogenetic Model Selection
Lewis, Paul O.; Xie, Wangang; Chen, Ming-Hui; Fan, Yu; Kuo, Lynn
2014-01-01
We present two distinctly different posterior predictive approaches to Bayesian phylogenetic model selection and illustrate these methods using examples from green algal protein-coding cpDNA sequences and flowering plant rDNA sequences. The Gelfand–Ghosh (GG) approach allows dissection of an overall measure of model fit into components due to posterior predictive variance (GGp) and goodness-of-fit (GGg), which distinguishes this method from the posterior predictive P-value approach. The conditional predictive ordinate (CPO) method provides a site-specific measure of model fit useful for exploratory analyses and can be combined over sites yielding the log pseudomarginal likelihood (LPML) which is useful as an overall measure of model fit. CPO provides a useful cross-validation approach that is computationally efficient, requiring only a sample from the posterior distribution (no additional simulation is required). Both GG and CPO add new perspectives to Bayesian phylogenetic model selection based on the predictive abilities of models and complement the perspective provided by the marginal likelihood (including Bayes Factor comparisons) based solely on the fit of competing models to observed data. [Bayesian; conditional predictive ordinate; CPO; L-measure; LPML; model selection; phylogenetics; posterior predictive.] PMID:24193892
Bayesian stable isotope mixing models
In this paper we review recent advances in Stable Isotope Mixing Models (SIMMs) and place them into an over-arching Bayesian statistical framework which allows for several useful extensions. SIMMs are used to quantify the proportional contributions of various sources to a mixtur...
Sparse Bayesian infinite factor models
Bhattacharya, A.; Dunson, D. B.
2011-01-01
We focus on sparse modelling of high-dimensional covariance matrices using Bayesian latent factor models. We propose a multiplicative gamma process shrinkage prior on the factor loadings which allows introduction of infinitely many factors, with the loadings increasingly shrunk towards zero as the column index increases. We use our prior on a parameter-expanded loading matrix to avoid the order dependence typical in factor analysis models and develop an efficient Gibbs sampler that scales well as data dimensionality increases. The gain in efficiency is achieved by the joint conjugacy property of the proposed prior, which allows block updating of the loadings matrix. We propose an adaptive Gibbs sampler for automatically truncating the infinite loading matrix through selection of the number of important factors. Theoretical results are provided on the support of the prior and truncation approximation bounds. A fast algorithm is proposed to produce approximate Bayes estimates. Latent factor regression methods are developed for prediction and variable selection in applications with high-dimensional correlated predictors. Operating characteristics are assessed through simulation studies, and the approach is applied to predict survival times from gene expression data. PMID:23049129
Particle identification in ALICE: a Bayesian approach
NASA Astrophysics Data System (ADS)
Adam, J.; Adamová, D.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahmad, S.; Ahn, S. U.; Aiola, S.; Akindinov, A.; Alam, S. N.; Albuquerque, D. S. D.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alfaro Molina, R.; Alici, A.; Alkin, A.; Almaraz, J. R. M.; Alme, J.; Alt, T.; Altinpinar, S.; Altsybeev, I.; Alves Garcia Prado, C.; Andrei, C.; Andronic, A.; Anguelov, V.; Antičić, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Arnaldi, R.; Arnold, O. W.; Arsene, I. C.; Arslandok, M.; Audurier, B.; Augustinus, A.; Averbeck, R.; Azmi, M. D.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Balasubramanian, S.; Baldisseri, A.; Baral, R. C.; Barbano, A. M.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartalini, P.; Barth, K.; Bartke, J.; Bartsch, E.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batista Camejo, A.; Batyunya, B.; Batzing, P. C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bello Martinez, H.; Bellwied, R.; Belmont, R.; Belmont-Moreno, E.; Belyaev, V.; Benacek, P.; Bencedi, G.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Biro, G.; Biswas, R.; Biswas, S.; Bjelogrlic, S.; Blair, J. T.; Blau, D.; Blume, C.; Bock, F.; Bogdanov, A.; Bøggild, H.; Boldizsár, L.; Bombara, M.; Book, J.; Borel, H.; Borissov, A.; Borri, M.; Bossú, F.; Botta, E.; Bourjau, C.; Braun-Munzinger, P.; Bregant, M.; Breitner, T.; Broker, T. A.; Browning, T. A.; Broz, M.; Brucken, E. J.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buncic, P.; Busch, O.; Buthelezi, Z.; Butt, J. B.; Buxton, J. T.; Cabala, J.; Caffarri, D.; Cai, X.; Caines, H.; Calero Diaz, L.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Carena, F.; Carena, W.; Carnesecchi, F.; Castillo Castellanos, J.; Castro, A. J.; Casula, E. A. R.; Ceballos Sanchez, C.; Cepila, J.; Cerello, P.; Cerkala, J.; Chang, B.; Chapeland, S.; Chartier, M.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chauvin, A.; Chelnokov, V.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Cho, S.; Chochula, P.; Choi, K.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Conesa Balbastre, G.; Conesa del Valle, Z.; Connors, M. E.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortés Maldonado, I.; Cortese, P.; Cosentino, M. R.; Costa, F.; Crochet, P.; Cruz Albino, R.; Cuautle, E.; Cunqueiro, L.; Dahms, T.; Dainese, A.; Danisch, M. C.; Danu, A.; Das, D.; Das, I.; Das, S.; Dash, A.; Dash, S.; De, S.; De Caro, A.; de Cataldo, G.; de Conti, C.; de Cuveland, J.; De Falco, A.; De Gruttola, D.; De Marco, N.; De Pasquale, S.; Deisting, A.; Deloff, A.; Dénes, E.; Deplano, C.; Dhankher, P.; Di Bari, D.; Di Mauro, A.; Di Nezza, P.; Diaz Corchero, M. A.; Dietel, T.; Dillenseger, P.; Divià, R.; Djuvsland, Ø.; Dobrin, A.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Drozhzhova, T.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Dupieux, P.; Ehlers, R. J.; Elia, D.; Endress, E.; Engel, H.; Epple, E.; Erazmus, B.; Erdemir, I.; Erhardt, F.; Espagnon, B.; Estienne, M.; Esumi, S.; Eum, J.; Evans, D.; Evdokimov, S.; Eyyubova, G.; Fabbietti, L.; Fabris, D.; Faivre, J.; Fantoni, A.; Fasel, M.; Feldkamp, L.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Feuillard, V. J. G.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Fleck, M. G.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Frankenfeld, U.; Fronze, G. G.; Fuchs, U.; Furget, C.; Furs, A.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gallio, M.; Gangadharan, D. R.; Ganoti, P.; Gao, C.; Garabatos, C.; Garcia-Solis, E.; Gargiulo, C.; Gasik, P.; Gauger, E. F.; Germain, M.; Gheata, A.; Gheata, M.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Giubilato, P.; Gladysz-Dziadus, E.; Glässel, P.; Goméz Coral, D. M.; Gomez Ramirez, A.; Gonzalez, A. S.; Gonzalez, V.; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Grabski, V.; Grachov, O. A.; Graczykowski, L. K.; Graham, K. L.; Grelli, A.; Grigoras, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Gronefeld, J. M.; Grosse-Oetringhaus, J. F.; Grosso, R.; Guber, F.
2016-05-01
We present a Bayesian approach to particle identification (PID) within the ALICE experiment. The aim is to more effectively combine the particle identification capabilities of its various detectors. After a brief explanation of the adopted methodology and formalism, the performance of the Bayesian PID approach for charged pions, kaons and protons in the central barrel of ALICE is studied. PID is performed via measurements of specific energy loss ( d E/d x) and time of flight. PID efficiencies and misidentification probabilities are extracted and compared with Monte Carlo simulations using high-purity samples of identified particles in the decay channels K0S → π-π+, φ→ K-K+, and Λ→ p π- in p-Pb collisions at √{s_{NN}}=5.02 TeV. In order to thoroughly assess the validity of the Bayesian approach, this methodology was used to obtain corrected pT spectra of pions, kaons, protons, and D0 mesons in pp collisions at √{s}=7 TeV. In all cases, the results using Bayesian PID were found to be consistent with previous measurements performed by ALICE using a standard PID approach. For the measurement of D0 → K-π+, it was found that a Bayesian PID approach gave a higher signal-to-background ratio and a similar or larger statistical significance when compared with standard PID selections, despite a reduced identification efficiency. Finally, we present an exploratory study of the measurement of Λc+ → p K-π+ in pp collisions at √{s}=7 TeV, using the Bayesian approach for the identification of its decay products.
BAYESIAN METHODS FOR REGIONAL-SCALE EUTROPHICATION MODELS. (R830887)
We demonstrate a Bayesian classification and regression tree (CART) approach to link multiple environmental stressors to biological responses and quantify uncertainty in model predictions. Such an approach can: (1) report prediction uncertainty, (2) be consistent with the amou...
NASA Astrophysics Data System (ADS)
Cucchi, Karina; Flipo, Nicolas; Rivière, Agnès; Rubin, Yoram
2016-04-01
Hydrothermal properties of the stream-aquifer interface are key information for modeling water and heat transfers in hydrological basins. Our study introduces an algorithm to estimate hydrological and thermal parameters of the hyporheic zone (HZ), as well as their associated uncertainties. Properties of the HZ are inferred from a combination of head differential time series and vertically-distributed temperature time series measured continually in a HZ vertical profile. Head differential and two temperature time series are used as boundary conditions for the vertical profile; the other temperature time series are used as conditioning measurements. Following the Bayesian framework, model parameters are treated as random variables and we seek to characterize their probability density function (PDF) conditional on the temperature time series. Our algorithm follows the Method of Anchored Distributions (MAD) implemented in the MAD# software. In order to cut down the number of simulations needed, we develop a hybrid discrete-continuous inversion approach. We first identify the most sensitive parameters in a sensitivity analysis, these parameters are characterized with continuous PDFs. Less sensitive parameters are represented with a discrete PDFs using a finite number of discrete outcomes. We use a non-parametric likelihood function and time series dimension reduction techniques in order to calculate posterior PDFs of HZ parameters. We demonstrate the approach on a synthetic study using an analytical solution and then apply it to field measurements gathered in the Avenelles basin, France. We present one application of this approach, the uncertainty-quantified time series of localized stream-aquifer exchanges.
Macroscopic hotspots identification: A Bayesian spatio-temporal interaction approach.
Dong, Ni; Huang, Helai; Lee, Jaeyoung; Gao, Mingyun; Abdel-Aty, Mohamed
2016-07-01
This study proposes a Bayesian spatio-temporal interaction approach for hotspot identification by applying the full Bayesian (FB) technique in the context of macroscopic safety analysis. Compared with the emerging Bayesian spatial and temporal approach, the Bayesian spatio-temporal interaction model contributes to a detailed understanding of differential trends through analyzing and mapping probabilities of area-specific crash trends as differing from the mean trend and highlights specific locations where crash occurrence is deteriorating or improving over time. With traffic analysis zones (TAZs) crash data collected in Florida, an empirical analysis was conducted to evaluate the following three approaches for hotspot identification: FB ranking using a Poisson-lognormal (PLN) model, FB ranking using a Bayesian spatial and temporal (B-ST) model and FB ranking using a Bayesian spatio-temporal interaction (B-ST-I) model. The results show that (a) the models accounting for space-time effects perform better in safety ranking than does the PLN model, and (b) the FB approach using the B-ST-I model significantly outperforms the B-ST approach in correctly identifying hotspots by explicitly accounting for the space-time variation in addition to the stable spatial/temporal patterns of crash occurrence. In practice, the B-ST-I approach plays key roles in addressing two issues: (a) how the identified hotspots have evolved over time and (b) the identification of areas that, whilst not yet hotspots, show a tendency to become hotspots. Finally, it can provide guidance to policy decision makers to efficiently improve zonal-level safety. PMID:27110645
Bertherat, E; Perea, W; Soga, G; Souley, R; Dupont, D; Hugonnet, S
2012-01-01
Abstract Objective To develop a tool for evaluating the risk that an outbreak of meningitis will occur in a particular district of the Niger after outbreaks have been reported in other, specified districts of the country. Methods A Bayesian network was represented by a graph composed of 38 nodes (one for each district in the Niger) connected by arrows. In the graph, each node directly influenced each of the “child” nodes that lay at the ends of the arrows arising from that node, according to conditional probabilities. The probabilities between “influencing” and “influenced” districts were estimated by analysis of databases that held weekly records of meningitis outbreaks in the Niger between 1986 and 2005. For each week of interest, each district was given a Boolean-variable score of 1 (if meningitis incidence in the district reached an epidemic threshold in that week) or 0. Findings The Bayesian network approach provided important and original information, allowing the identification of the districts that influence meningitis risk in other districts (and the districts that are influenced by any particular district) and the evaluation of the level of influence between each pair of districts. Conclusion Bayesian networks offer a promising approach to understanding the dynamics of epidemics, estimating the risk of outbreaks in particular areas and allowing control interventions to be targeted at high-risk areas. PMID:22690030
NASA Astrophysics Data System (ADS)
Law, Jane; Quick, Matthew
2013-01-01
This paper adopts a Bayesian spatial modeling approach to investigate the distribution of young offender residences in York Region, Southern Ontario, Canada, at the census dissemination area level. Few geographic researches have analyzed offender (as opposed to offense) data at a large map scale (i.e., using a relatively small areal unit of analysis) to minimize aggregation effects. Providing context is the social disorganization theory, which hypothesizes that areas with economic deprivation, high population turnover, and high ethnic heterogeneity exhibit social disorganization and are expected to facilitate higher instances of young offenders. Non-spatial and spatial Poisson models indicate that spatial methods are superior to non-spatial models with respect to model fit and that index of ethnic heterogeneity, residential mobility (1 year moving rate), and percentage of residents receiving government transfer payments are, respectively, the most significant explanatory variables related to young offender location. These findings provide overwhelming support for social disorganization theory as it applies to offender location in York Region, Ontario. Targeting areas where prevalence of young offenders could or could not be explained by social disorganization through decomposing the estimated risk map are helpful for dealing with juvenile offenders in the region. Results prompt discussion into geographically targeted police services and young offender placement pertaining to risk of recidivism. We discuss possible reasons for differences and similarities between the previous findings (that analyzed offense data and/or were conducted at a smaller map scale) and our findings, limitations of our study, and practical outcomes of this research from a law enforcement perspective.
Fire risk in San Diego County, California: A weighted Bayesian model approach
Kolden, Crystal A.; Weigel, Timothy J.
2007-01-01
Fire risk models are widely utilized to mitigate wildfire hazards, but models are often based on expert opinions of less understood fire-ignition and spread processes. In this study, we used an empirically derived weights-of-evidence model to assess what factors produce fire ignitions east of San Diego, California. We created and validated a dynamic model of fire-ignition risk based on land characteristics and existing fire-ignition history data, and predicted ignition risk for a future urbanization scenario. We then combined our empirical ignition-risk model with a fuzzy fire behavior-risk model developed by wildfire experts to create a hybrid model of overall fire risk. We found that roads influence fire ignitions and that future growth will increase risk in new rural development areas. We conclude that empirically derived risk models and hybrid models offer an alternative method to assess current and future fire risk based on management actions.
ERIC Educational Resources Information Center
Song, Xin-Yuan; Lee, Sik-Yum
2008-01-01
Structural equation models are widely appreciated in behavioral, social, and psychological research to model relations between latent constructs and manifest variables, and to control for measurement errors. Most applications of structural equation models are based on fully observed data that are independently distributed. However, hierarchical…
A Semi-Parametric Bayesian Mixture Modeling Approach for the Analysis of Judge Mediated Data
ERIC Educational Resources Information Center
Muckle, Timothy Joseph
2010-01-01
Existing methods for the analysis of ordinal-level data arising from judge ratings, such as the Multi-Facet Rasch model (MFRM, or the so-called Facets model) have been widely used in assessment in order to render fair examinee ability estimates in situations where the judges vary in their behavior or severity. However, this model makes certain…
A Tutorial Introduction to Bayesian Models of Cognitive Development
ERIC Educational Resources Information Center
Perfors, Amy; Tenenbaum, Joshua B.; Griffiths, Thomas L.; Xu, Fei
2011-01-01
We present an introduction to Bayesian inference as it is used in probabilistic models of cognitive development. Our goal is to provide an intuitive and accessible guide to the "what", the "how", and the "why" of the Bayesian approach: what sorts of problems and data the framework is most relevant for, and how and why it may be useful for…
Bayesian Student Modeling and the Problem of Parameter Specification.
ERIC Educational Resources Information Center
Millan, Eva; Agosta, John Mark; Perez de la Cruz, Jose Luis
2001-01-01
Discusses intelligent tutoring systems and the application of Bayesian networks to student modeling. Considers reasons for not using Bayesian networks, including the computational complexity of the algorithms and the difficulty of knowledge acquisition, and proposes an approach to simplify knowledge acquisition that applies causal independence to…
Frequentist tests for Bayesian models
NASA Astrophysics Data System (ADS)
Lucy, L. B.
2016-04-01
Analogues of the frequentist chi-square and F tests are proposed for testing goodness-of-fit and consistency for Bayesian models. Simple examples exhibit these tests' detection of inconsistency between consecutive experiments with identical parameters, when the first experiment provides the prior for the second. In a related analysis, a quantitative measure is derived for judging the degree of tension between two different experiments with partially overlapping parameter vectors.
A Bayesian Approach for Image Segmentation with Shape Priors
Chang, Hang; Yang, Qing; Parvin, Bahram
2008-06-20
Color and texture have been widely used in image segmentation; however, their performance is often hindered by scene ambiguities, overlapping objects, or missingparts. In this paper, we propose an interactive image segmentation approach with shape prior models within a Bayesian framework. Interactive features, through mouse strokes, reduce ambiguities, and the incorporation of shape priors enhances quality of the segmentation where color and/or texture are not solely adequate. The novelties of our approach are in (i) formulating the segmentation problem in a well-de?ned Bayesian framework with multiple shape priors, (ii) ef?ciently estimating parameters of the Bayesian model, and (iii) multi-object segmentation through user-speci?ed priors. We demonstrate the effectiveness of our method on a set of natural and synthetic images.
A Bayesian group sequential approach to safety signal detection.
Chen, Wenfeng; Zhao, Naiqing; Qin, Guoyou; Chen, Jie
2013-01-01
Clinical safety data, usually reported as clinically manifested adverse events (AEs) according to the Medical Dictionary for Regulatory Activities (MedDRA), are routinely collected during the course of a clinical trial involving comparative groups, and periodical monitoring of the safety events is often required to determine whether excessive occurrence of a set of AEs is associated with treatment. To accommodate the structure of reported AEs with the MedDRA system, a Bayesian hierarchical model has been proposed for the analysis of clinical safety data. However, the characteristics of sequential use of the Bayesian method has not been studied. In this paper the Bayesian hierarchical model is applied in a group sequential manner for multiple interim analyses of safety events. A decision-theoretic approach is employed to determine threshold values in the safety signaling process. The proposed approach is illustrated through simulations and a real example. PMID:23331232
Hierarchical Bayesian model updating for structural identification
NASA Astrophysics Data System (ADS)
Behmanesh, Iman; Moaveni, Babak; Lombaert, Geert; Papadimitriou, Costas
2015-12-01
A new probabilistic finite element (FE) model updating technique based on Hierarchical Bayesian modeling is proposed for identification of civil structural systems under changing ambient/environmental conditions. The performance of the proposed technique is investigated for (1) uncertainty quantification of model updating parameters, and (2) probabilistic damage identification of the structural systems. Accurate estimation of the uncertainty in modeling parameters such as mass or stiffness is a challenging task. Several Bayesian model updating frameworks have been proposed in the literature that can successfully provide the "parameter estimation uncertainty" of model parameters with the assumption that there is no underlying inherent variability in the updating parameters. However, this assumption may not be valid for civil structures where structural mass and stiffness have inherent variability due to different sources of uncertainty such as changing ambient temperature, temperature gradient, wind speed, and traffic loads. Hierarchical Bayesian model updating is capable of predicting the overall uncertainty/variability of updating parameters by assuming time-variability of the underlying linear system. A general solution based on Gibbs Sampler is proposed to estimate the joint probability distributions of the updating parameters. The performance of the proposed Hierarchical approach is evaluated numerically for uncertainty quantification and damage identification of a 3-story shear building model. Effects of modeling errors and incomplete modal data are considered in the numerical study.
A Bayesian Approach to Interactive Retrieval
ERIC Educational Resources Information Center
Tague, Jean M.
1973-01-01
A probabilistic model for interactive retrieval is presented. Bayesian statistical decision theory principles are applied: use of prior and sample information about the relationship of document descriptions to query relevance; maximization of expected value of a utility function, to the problem of optimally restructuring search strategies in an…
Flexible Bayesian Human Fecundity Models
Kim, Sungduk; Sundaram, Rajeshwari; Buck Louis, Germaine M.; Pyper, Cecilia
2016-01-01
Human fecundity is an issue of considerable interest for both epidemiological and clinical audiences, and is dependent upon a couple’s biologic capacity for reproduction coupled with behaviors that place a couple at risk for pregnancy. Bayesian hierarchical models have been proposed to better model the conception probabilities by accounting for the acts of intercourse around the day of ovulation, i.e., during the fertile window. These models can be viewed in the framework of a generalized nonlinear model with an exponential link. However, a fixed choice of link function may not always provide the best fit, leading to potentially biased estimates for probability of conception. Motivated by this, we propose a general class of models for fecundity by relaxing the choice of the link function under the generalized nonlinear model framework. We use a sample from the Oxford Conception Study (OCS) to illustrate the utility and fit of this general class of models for estimating human conception. Our findings reinforce the need for attention to be paid to the choice of link function in modeling conception, as it may bias the estimation of conception probabilities. Various properties of the proposed models are examined and a Markov chain Monte Carlo sampling algorithm was developed for implementing the Bayesian computations. The deviance information criterion measure and logarithm of pseudo marginal likelihood are used for guiding the choice of links. The supplemental material section contains technical details of the proof of the theorem stated in the paper, and contains further simulation results and analysis.
A guide to Bayesian model selection for ecologists
Hooten, Mevin B.; Hobbs, N.T.
2015-01-01
The steady upward trend in the use of model selection and Bayesian methods in ecological research has made it clear that both approaches to inference are important for modern analysis of models and data. However, in teaching Bayesian methods and in working with our research colleagues, we have noticed a general dissatisfaction with the available literature on Bayesian model selection and multimodel inference. Students and researchers new to Bayesian methods quickly find that the published advice on model selection is often preferential in its treatment of options for analysis, frequently advocating one particular method above others. The recent appearance of many articles and textbooks on Bayesian modeling has provided welcome background on relevant approaches to model selection in the Bayesian framework, but most of these are either very narrowly focused in scope or inaccessible to ecologists. Moreover, the methodological details of Bayesian model selection approaches are spread thinly throughout the literature, appearing in journals from many different fields. Our aim with this guide is to condense the large body of literature on Bayesian approaches to model selection and multimodel inference and present it specifically for quantitative ecologists as neutrally as possible. We also bring to light a few important and fundamental concepts relating directly to model selection that seem to have gone unnoticed in the ecological literature. Throughout, we provide only a minimal discussion of philosophy, preferring instead to examine the breadth of approaches as well as their practical advantages and disadvantages. This guide serves as a reference for ecologists using Bayesian methods, so that they can better understand their options and can make an informed choice that is best aligned with their goals for inference.
Ma, Junsheng; Chan, Wenyaw; Tsai, Chu-Lin; Xiong, Momiao; Tilley, Barbara C
2015-11-30
Continuous time Markov chain (CTMC) models are often used to study the progression of chronic diseases in medical research but rarely applied to studies of the process of behavioral change. In studies of interventions to modify behaviors, a widely used psychosocial model is based on the transtheoretical model that often has more than three states (representing stages of change) and conceptually permits all possible instantaneous transitions. Very little attention is given to the study of the relationships between a CTMC model and associated covariates under the framework of transtheoretical model. We developed a Bayesian approach to evaluate the covariate effects on a CTMC model through a log-linear regression link. A simulation study of this approach showed that model parameters were accurately and precisely estimated. We analyzed an existing data set on stages of change in dietary intake from the Next Step Trial using the proposed method and the generalized multinomial logit model. We found that the generalized multinomial logit model was not suitable for these data because it ignores the unbalanced data structure and temporal correlation between successive measurements. Our analysis not only confirms that the nutrition intervention was effective but also provides information on how the intervention affected the transitions among the stages of change. We found that, compared with the control group, subjects in the intervention group, on average, spent substantively less time in the precontemplation stage and were more/less likely to move from an unhealthy/healthy state to a healthy/unhealthy state. PMID:26123093
Bayesian Model Selection for Group Studies
Stephan, Klaas Enno; Penny, Will D.; Daunizeau, Jean; Moran, Rosalyn J.; Friston, Karl J.
2009-01-01
Bayesian model selection (BMS) is a powerful method for determining the most likely among a set of competing hypotheses about the mechanisms that generated observed data. BMS has recently found widespread application in neuroimaging, particularly in the context of dynamic causal modelling (DCM). However, so far, combining BMS results from several subjects has relied on simple (fixed effects) metrics, e.g. the group Bayes factor (GBF), that do not account for group heterogeneity or outliers. In this paper, we compare the GBF with two random effects methods for BMS at the between-subject or group level. These methods provide inference on model-space using a classical and Bayesian perspective respectively. First, a classical (frequentist) approach uses the log model evidence as a subject-specific summary statistic. This enables one to use analysis of variance to test for differences in log-evidences over models, relative to inter-subject differences. We then consider the same problem in Bayesian terms and describe a novel hierarchical model, which is optimised to furnish a probability density on the models themselves. This new variational Bayes method rests on treating the model as a random variable and estimating the parameters of a Dirichlet distribution which describes the probabilities for all models considered. These probabilities then define a multinomial distribution over model space, allowing one to compute how likely it is that a specific model generated the data of a randomly chosen subject as well as the exceedance probability of one model being more likely than any other model. Using empirical and synthetic data, we show that optimising a conditional density of the model probabilities, given the log-evidences for each model over subjects, is more informative and appropriate than both the GBF and frequentist tests of the log-evidences. In particular, we found that the hierarchical Bayesian approach is considerably more robust than either of the other
Probabilistic Damage Characterization Using the Computationally-Efficient Bayesian Approach
NASA Technical Reports Server (NTRS)
Warner, James E.; Hochhalter, Jacob D.
2016-01-01
This work presents a computationally-ecient approach for damage determination that quanti es uncertainty in the provided diagnosis. Given strain sensor data that are polluted with measurement errors, Bayesian inference is used to estimate the location, size, and orientation of damage. This approach uses Bayes' Theorem to combine any prior knowledge an analyst may have about the nature of the damage with information provided implicitly by the strain sensor data to form a posterior probability distribution over possible damage states. The unknown damage parameters are then estimated based on samples drawn numerically from this distribution using a Markov Chain Monte Carlo (MCMC) sampling algorithm. Several modi cations are made to the traditional Bayesian inference approach to provide signi cant computational speedup. First, an ecient surrogate model is constructed using sparse grid interpolation to replace a costly nite element model that must otherwise be evaluated for each sample drawn with MCMC. Next, the standard Bayesian posterior distribution is modi ed using a weighted likelihood formulation, which is shown to improve the convergence of the sampling process. Finally, a robust MCMC algorithm, Delayed Rejection Adaptive Metropolis (DRAM), is adopted to sample the probability distribution more eciently. Numerical examples demonstrate that the proposed framework e ectively provides damage estimates with uncertainty quanti cation and can yield orders of magnitude speedup over standard Bayesian approaches.
A Bayesian approach to reliability and confidence
NASA Technical Reports Server (NTRS)
Barnes, Ron
1989-01-01
The historical evolution of NASA's interest in quantitative measures of reliability assessment is outlined. The introduction of some quantitative methodologies into the Vehicle Reliability Branch of the Safety, Reliability and Quality Assurance (SR and QA) Division at Johnson Space Center (JSC) was noted along with the development of the Extended Orbiter Duration--Weakest Link study which will utilize quantitative tools for a Bayesian statistical analysis. Extending the earlier work of NASA sponsor, Richard Heydorn, researchers were able to produce a consistent Bayesian estimate for the reliability of a component and hence by a simple extension for a system of components in some cases where the rate of failure is not constant but varies over time. Mechanical systems in general have this property since the reliability usually decreases markedly as the parts degrade over time. While they have been able to reduce the Bayesian estimator to a simple closed form for a large class of such systems, the form for the most general case needs to be attacked by the computer. Once a table is generated for this form, researchers will have a numerical form for the general solution. With this, the corresponding probability statements about the reliability of a system can be made in the most general setting. Note that the utilization of uniform Bayesian priors represents a worst case scenario in the sense that as researchers incorporate more expert opinion into the model, they will be able to improve the strength of the probability calculations.
Modeling Diagnostic Assessments with Bayesian Networks
ERIC Educational Resources Information Center
Almond, Russell G.; DiBello, Louis V.; Moulder, Brad; Zapata-Rivera, Juan-Diego
2007-01-01
This paper defines Bayesian network models and examines their applications to IRT-based cognitive diagnostic modeling. These models are especially suited to building inference engines designed to be synchronous with the finer grained student models that arise in skills diagnostic assessment. Aspects of the theory and use of Bayesian network models…
Kim, Seongho; Hall, Stephen D.; Li, Lang
2009-01-01
In this paper, various Bayesian Monte Carlo Markov Chain (MCMC) methods and the proposed algorithm, Gibbs maximum a posteriori (GMAP) algorithm, are compared for implementing the nonlinear mixed-effects model in pharmacokinetics (PK) studies. An intravenous two-compartmental PK model is adopted to fit the PK data from the midazolam (MDZ) studies, which recruited 24 individuals with 9 different time points per subject. The three-stage hierarchical nonlinear mixed model is constructed. Data analysis and model performance comparisons show that GMAP converges the fastest, and provides reliable results. At the mean time, data augmentation (DA) methods are used for the Random-walk Metropolis method. Data analysis shows that the speed of the convergence of Random-walk Metropolis can be improved by DA, but all of them are not as fast as GMAP. The performance of GMAP and various MCMC algorithms are compared through Midazolam data analysis and simulation. PMID:20183435
Rahimi, Azar; Sapp, John; Xu, Jingjia; Bajorski, Peter; Horacek, Milan; Wang, Linwei
2016-01-01
Noninvasive cardiac electrophysiological (EP) imaging aims to mathematically reconstruct the spatiotemporal dynamics of cardiac sources from body-surface electrocardiographic (ECG) data. This ill-posed problem is often regularized by a fixed constraining model. However, a fixed-model approach enforces the source distribution to follow a pre-assumed structure that does not always match the varying spatiotemporal distribution of actual sources. To understand the model-data relation and examine the impact of prior models, we present a multiple-model approach for volumetric cardiac EP imaging where multiple prior models are included and automatically picked by the available ECG data. Multiple models are incorporated as an Lp-norm prior for sources, where p is an unknown hyperparameter with a prior uniform distribution. To examine how different combinations of models may be favored by different measurement data, the posterior distribution of cardiac sources and hyperparameter p is calculated using a Markov Chain Monte Carlo (MCMC) technique. The importance of multiple-model prior was assessed in two sets of synthetic and real-data experiments, compared to fixed-model priors (using Laplace and Gaussian priors). The results showed that the posterior combination of models (the posterior distribution of p) as determined by the ECG data differed substantially when reconstructing sources with different sizes and structures. While the use of fixed models is best suited in situations where the prior assumption fits the actual source structures, the use of an automatically adaptive set of models may have the ability to better address model-data mismatch and to provide consistent performance in reconstructing sources with different properties. PMID:26259018
Jones, Matt; Love, Bradley C
2011-08-01
The prominence of Bayesian modeling of cognition has increased recently largely because of mathematical advances in specifying and deriving predictions from complex probabilistic models. Much of this research aims to demonstrate that cognitive behavior can be explained from rational principles alone, without recourse to psychological or neurological processes and representations. We note commonalities between this rational approach and other movements in psychology - namely, Behaviorism and evolutionary psychology - that set aside mechanistic explanations or make use of optimality assumptions. Through these comparisons, we identify a number of challenges that limit the rational program's potential contribution to psychological theory. Specifically, rational Bayesian models are significantly unconstrained, both because they are uninformed by a wide range of process-level data and because their assumptions about the environment are generally not grounded in empirical measurement. The psychological implications of most Bayesian models are also unclear. Bayesian inference itself is conceptually trivial, but strong assumptions are often embedded in the hypothesis sets and the approximation algorithms used to derive model predictions, without a clear delineation between psychological commitments and implementational details. Comparing multiple Bayesian models of the same task is rare, as is the realization that many Bayesian models recapitulate existing (mechanistic level) theories. Despite the expressive power of current Bayesian models, we argue they must be developed in conjunction with mechanistic considerations to offer substantive explanations of cognition. We lay out several means for such an integration, which take into account the representations on which Bayesian inference operates, as well as the algorithms and heuristics that carry it out. We argue this unification will better facilitate lasting contributions to psychological theory, avoiding the pitfalls
Bayesian Nonparametric Models for Multiway Data Analysis.
Xu, Zenglin; Yan, Feng; Qi, Yuan
2015-02-01
Tensor decomposition is a powerful computational tool for multiway data analysis. Many popular tensor decomposition approaches-such as the Tucker decomposition and CANDECOMP/PARAFAC (CP)-amount to multi-linear factorization. They are insufficient to model (i) complex interactions between data entities, (ii) various data types (e.g., missing data and binary data), and (iii) noisy observations and outliers. To address these issues, we propose tensor-variate latent nonparametric Bayesian models for multiway data analysis. We name these models InfTucker. These new models essentially conduct Tucker decomposition in an infinite feature space. Unlike classical tensor decomposition models, our new approaches handle both continuous and binary data in a probabilistic framework. Unlike previous Bayesian models on matrices and tensors, our models are based on latent Gaussian or t processes with nonlinear covariance functions. Moreover, on network data, our models reduce to nonparametric stochastic blockmodels and can be used to discover latent groups and predict missing interactions. To learn the models efficiently from data, we develop a variational inference technique and explore properties of the Kronecker product for computational efficiency. Compared with a classical variational implementation, this technique reduces both time and space complexities by several orders of magnitude. On real multiway and network data, our new models achieved significantly higher prediction accuracy than state-of-art tensor decomposition methods and blockmodels. PMID:26353255
Bayesian approach to global discrete optimization
Mockus, J.; Mockus, A.; Mockus, L.
1994-12-31
We discuss advantages and disadvantages of the Bayesian approach (average case analysis). We present the portable interactive version of software for continuous global optimization. We consider practical multidimensional problems of continuous global optimization, such as optimization of VLSI yield, optimization of composite laminates, estimation of unknown parameters of bilinear time series. We extend Bayesian approach to discrete optimization. We regard the discrete optimization as a multi-stage decision problem. We assume that there exists some simple heuristic function which roughly predicts the consequences of the decisions. We suppose randomized decisions. We define the probability of the decision by the randomized decision function depending on heuristics. We fix this function with exception of some parameters. We repeat the randomized decision several times at the fixed values of those parameters and accept the best decision as the result. We optimize the parameters of the randomized decision function to make the search more efficient. Thus we reduce the discrete optimization problem to the continuous problem of global stochastic optimization. We solve this problem by the Bayesian methods of continuous global optimization. We describe the applications to some well known An problems of discrete programming, such as knapsack, traveling salesman, and scheduling.
On Bayesian estimation of marginal structural models.
Saarela, Olli; Stephens, David A; Moodie, Erica E M; Klein, Marina B
2015-06-01
The purpose of inverse probability of treatment (IPT) weighting in estimation of marginal treatment effects is to construct a pseudo-population without imbalances in measured covariates, thus removing the effects of confounding and informative censoring when performing inference. In this article, we formalize the notion of such a pseudo-population as a data generating mechanism with particular characteristics, and show that this leads to a natural Bayesian interpretation of IPT weighted estimation. Using this interpretation, we are able to propose the first fully Bayesian procedure for estimating parameters of marginal structural models using an IPT weighting. Our approach suggests that the weights should be derived from the posterior predictive treatment assignment and censoring probabilities, answering the question of whether and how the uncertainty in the estimation of the weights should be incorporated in Bayesian inference of marginal treatment effects. The proposed approach is compared to existing methods in simulated data, and applied to an analysis of the Canadian Co-infection Cohort. PMID:25677103
Radioactive Contraband Detection: A Bayesian Approach
Candy, J; Breitfeller, E; Guidry, B; Manatt, D; Sale, K; Chambers, D; Axelrod, M; Meyer, A
2009-03-16
Radionuclide emissions from nuclear contraband challenge both detection and measurement technologies to capture and record each event. The development of a sequential Bayesian processor incorporating both the physics of gamma-ray emissions and the measurement of photon energies offers a physics-based approach to attack this challenging problem. It is shown that a 'physics-based' structure can be used to develop an effective detection technique, but also motivates the implementation of this approach using or particle filters to enhance and extract the required information.
Bayesian population modeling of drug dosing adherence.
Fellows, Kelly; Stoneking, Colin J; Ramanathan, Murali
2015-10-01
Adherence is a frequent contributing factor to variations in drug concentrations and efficacy. The purpose of this work was to develop an integrated population model to describe variation in adherence, dose-timing deviations, overdosing and persistence to dosing regimens. The hybrid Markov chain-von Mises method for modeling adherence in individual subjects was extended to the population setting using a Bayesian approach. Four integrated population models for overall adherence, the two-state Markov chain transition parameters, dose-timing deviations, overdosing and persistence were formulated and critically compared. The Markov chain-Monte Carlo algorithm was used for identifying distribution parameters and for simulations. The model was challenged with medication event monitoring system data for 207 hypertension patients. The four Bayesian models demonstrated good mixing and convergence characteristics. The distributions of adherence, dose-timing deviations, overdosing and persistence were markedly non-normal and diverse. The models varied in complexity and the method used to incorporate inter-dependence with the preceding dose in the two-state Markov chain. The model that incorporated a cooperativity term for inter-dependence and a hyperbolic parameterization of the transition matrix probabilities was identified as the preferred model over the alternatives. The simulated probability densities from the model satisfactorily fit the observed probability distributions of adherence, dose-timing deviations, overdosing and persistence parameters in the sample patients. The model also adequately described the median and observed quartiles for these parameters. The Bayesian model for adherence provides a parsimonious, yet integrated, description of adherence in populations. It may find potential applications in clinical trial simulations and pharmacokinetic-pharmacodynamic modeling. PMID:26319548
A Bayesian sequential processor approach to spectroscopic portal system decisions
Sale, K; Candy, J; Breitfeller, E; Guidry, B; Manatt, D; Gosnell, T; Chambers, D
2007-07-31
The development of faster more reliable techniques to detect radioactive contraband in a portal type scenario is an extremely important problem especially in this era of constant terrorist threats. Towards this goal the development of a model-based, Bayesian sequential data processor for the detection problem is discussed. In the sequential processor each datum (detector energy deposit and pulse arrival time) is used to update the posterior probability distribution over the space of model parameters. The nature of the sequential processor approach is that a detection is produced as soon as it is statistically justified by the data rather than waiting for a fixed counting interval before any analysis is performed. In this paper the Bayesian model-based approach, physics and signal processing models and decision functions are discussed along with the first results of our research.
A Bayesian approach for combining thermal and hydraulic data
NASA Astrophysics Data System (ADS)
Woodbury, Allan D.
Incorporating temperatures into a modeling effort can take many forms, and both temperatures and hydrologic data can be combined qualitatively and quantitatively. In the latter category, the least formal would be in calibration, followed by parameter estimation and finally by full-inversion. This paper discusses information-based (specifically Bayesian) approaches of incorporating hydraulic parameters and potentials like temperature and hydraulic head together in a formal procedure. This paper reviews the generalized inverse problem for groundwater and heat; discusses Bayesian solutions to inverse problems; empirical and hierarchical Bayes, upscaling and cokriging and Bayesian interpolation. Along these lines, a list of suggested references is provided, along with suitable mentioning of benchmark papers, monographs and textbooks on the subject. The technique described in this paper revolves around shallow, low-temperature groundwater flow systems; and that entails steady 2-D fluid and heat flow. The methodology utilizes a perturbation technique to linearize and then couple the governing equations. For the perturbation approach to work, fluid properties must be decoupled from the temperature field. Once this is done, and through the finite element method, a block-linear system of data, kernel, and model parameters is developed. Two end-members and one set of joint inverse examples are presented. The two end-members are pure heat conduction (an application of Bayesian inversion to Paleoclimate reconstructions), and a pure-groundwater problem which is an example application to the Edwards Aquifer in Texas. Lastly, generic examples of combinations of transmissivity, hydraulic head and temperatures are presented.
Zurlinden, Todd J; Reisfeld, Brad
2016-06-01
The principal aim of this study was to develop, validate, and demonstrate a physiologically based pharmacokinetic (PBPK) model to predict and characterize the absorption, distribution, metabolism, and excretion of acetaminophen (APAP) in humans. A PBPK model was created that included pharmacologically and toxicologically relevant tissue compartments and incorporated mechanistic descriptions of the absorption and metabolism of APAP, such as gastric emptying time, cofactor kinetics, and transporter-mediated movement of conjugated metabolites in the liver. Through the use of a hierarchical Bayesian framework, unknown model parameters were estimated using a large training set of data from human pharmacokinetic studies, resulting in parameter distributions that account for data uncertainty and inter-study variability. Predictions from the model showed good agreement to a diverse test set of data across several measures, including plasma concentrations over time, renal clearance, APAP absorption, and pharmacokinetic and exposure metrics. The utility of the model was then demonstrated through predictions of cofactor depletion, dose response of several pharmacokinetic endpoints, and the relationship between APAP biomarker levels in the plasma and those in the liver. The model addressed several limitations in previous PBPK models for APAP, and it is anticipated that it will be useful in predicting the pharmacokinetics of APAP in a number of contexts, such as extrapolating across doses, estimating internal concentrations, quantifying population variability, assessing possible impacts of drug coadministration, and, when coupled with a suitable pharmacodynamic model, predicting toxicity. PMID:25636597
Experience With Bayesian Image Based Surface Modeling
NASA Technical Reports Server (NTRS)
Stutz, John C.
2005-01-01
Bayesian surface modeling from images requires modeling both the surface and the image generation process, in order to optimize the models by comparing actual and generated images. Thus it differs greatly, both conceptually and in computational difficulty, from conventional stereo surface recovery techniques. But it offers the possibility of using any number of images, taken under quite different conditions, and by different instruments that provide independent and often complementary information, to generate a single surface model that fuses all available information. I describe an implemented system, with a brief introduction to the underlying mathematical models and the compromises made for computational efficiency. I describe successes and failures achieved on actual imagery, where we went wrong and what we did right, and how our approach could be improved. Lastly I discuss how the same approach can be extended to distinct types of instruments, to achieve true sensor fusion.
Yue, Yu Ryan; Wang, Xiao-Feng
2016-05-10
This paper is motivated from a retrospective study of the impact of vitamin D deficiency on the clinical outcomes for critically ill patients in multi-center critical care units. The primary predictors of interest, vitamin D2 and D3 levels, are censored at a known detection limit. Within the context of generalized linear mixed models, we investigate statistical methods to handle multiple censored predictors in the presence of auxiliary variables. A Bayesian joint modeling approach is proposed to fit the complex heterogeneous multi-center data, in which the data information is fully used to estimate parameters of interest. Efficient Monte Carlo Markov chain algorithms are specifically developed depending on the nature of the response. Simulation studies demonstrate the outperformance of the proposed Bayesian approach over other existing methods. An application to the data set from the vitamin D deficiency study is presented. Possible extensions of the method regarding the absence of auxiliary variables, semiparametric models, as well as the type of censoring are also discussed. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26643287
A Bayesian approach to simultaneously quantify assignments and linguistic uncertainty
Chavez, Gregory M; Booker, Jane M; Ross, Timothy J
2010-10-07
Subject matter expert assessments can include both assignment and linguistic uncertainty. This paper examines assessments containing linguistic uncertainty associated with a qualitative description of a specific state of interest and the assignment uncertainty associated with assigning a qualitative value to that state. A Bayesian approach is examined to simultaneously quantify both assignment and linguistic uncertainty in the posterior probability. The approach is applied to a simplified damage assessment model involving both assignment and linguistic uncertainty. The utility of the approach and the conditions under which the approach is feasible are examined and identified.
Brimo, Khaled; Garnier, Patricia; Sun, Siao; Bertrand-Krajewski, Jean-Luc; Cébron, Aurélie; Ouvrard, Stéphanie
2016-08-01
A novel kinetics model that describes the dynamics of polycyclic aromatic hydrocarbons (PAHs) in contaminated soils is presented. The model includes two typical biodegradation pathways: the co-metabolic pathway using pseudo first order kinetics and the specific biodegradation pathway modeled using Monod kinetics. The sorption of PAHs to the solid soil occurs through bi-phasic fist order kinetics, and two types of non-extractible bounded residues are considered: the biogenic and the physically sequestrated into soil matrix. The PAH model was developed in Matlab, parameterized and tested successfully on batch experimental data using a Bayesian approach (DREAM). Preliminary results led to significant model simplifications. They also highlighted that the specific biodegradation pathway was the most efficient at explaining experimental data, as would be expected for an old industrial contaminated soil. Global analysis of sensitivity showed that the amount of PAHs ultimately degraded was mostly governed by physicochemical interactions rather than by biological activity. PMID:27176762
Covariate Balance in Bayesian Propensity Score Approaches for Observational Studies
ERIC Educational Resources Information Center
Chen, Jianshen; Kaplan, David
2015-01-01
Bayesian alternatives to frequentist propensity score approaches have recently been proposed. However, few studies have investigated their covariate balancing properties. This article compares a recently developed two-step Bayesian propensity score approach to the frequentist approach with respect to covariate balance. The effects of different…
Guenole, Nigel
2016-01-01
We describe a Monte Carlo study examining the impact of assuming item isomorphism (i.e., equivalent construct meaning across levels of analysis) on conclusions about homology (i.e., equivalent structural relations across levels of analysis) under varying degrees of non-isomorphism in the context of ordinal indicator multilevel structural equation models (MSEMs). We focus on the condition where one or more loadings are higher on the between level than on the within level to show that while much past research on homology has ignored the issue of psychometric isomorphism, psychometric isomorphism is in fact critical to valid conclusions about homology. More specifically, when a measurement model with non-isomorphic items occupies an exogenous position in a multilevel structural model and the non-isomorphism of these items is not modeled, the within level exogenous latent variance is under-estimated leading to over-estimation of the within level structural coefficient, while the between level exogenous latent variance is overestimated leading to underestimation of the between structural coefficient. When a measurement model with non-isomorphic items occupies an endogenous position in a multilevel structural model and the non-isomorphism of these items is not modeled, the endogenous within level latent variance is under-estimated leading to under-estimation of the within level structural coefficient while the endogenous between level latent variance is over-estimated leading to over-estimation of the between level structural coefficient. The innovative aspect of this article is demonstrating that even minor violations of psychometric isomorphism render claims of homology untenable. We also show that posterior predictive p-values for ordinal indicator Bayesian MSEMs are insensitive to violations of isomorphism even when they lead to severely biased within and between level structural parameters. We highlight conditions where poor estimation of even correctly specified
Bayesian Finite Mixtures for Nonlinear Modeling of Educational Data.
ERIC Educational Resources Information Center
Tirri, Henry; And Others
A Bayesian approach for finding latent classes in data is discussed. The approach uses finite mixture models to describe the underlying structure in the data and demonstrate that the possibility of using full joint probability models raises interesting new prospects for exploratory data analysis. The concepts and methods discussed are illustrated…
Bayesian Estimation of the Logistic Positive Exponent IRT Model
ERIC Educational Resources Information Center
Bolfarine, Heleno; Bazan, Jorge Luis
2010-01-01
A Bayesian inference approach using Markov Chain Monte Carlo (MCMC) is developed for the logistic positive exponent (LPE) model proposed by Samejima and for a new skewed Logistic Item Response Theory (IRT) model, named Reflection LPE model. Both models lead to asymmetric item characteristic curves (ICC) and can be appropriate because a symmetric…
Yang, Guo-Jing; Vounatsou, Penelope; Zhou, Xiao-Nong; Tanner, Marcel; Utzinger, Jürg
2005-02-01
Spatio-temporal variations of Schistosoma japonicum infection risk in Jiangsu province, China, were examined and the relationships between key climatic factors and infection prevalence at the county level were determined. The parasitological data were collected annually by means of cross-sectional surveys carried out in 47 counties from 1990 to 1998. Climatic factors, namely land surface temperature (LST) and normalized difference vegetation index (NDVI), were obtained from remote sensing satellite sensors. Bayesian spatio-temporal models were employed to analyze the data. The best fitting model showed that spatial autocorrelation in Jiangsu province decreased dramatically from 1990 to 1992 and increased gradually thereafter. A likely explanation of this finding arises from the large-scale administration of praziquantel for morbidity control of schistosomiasis. Our analysis suggested a negative association between NDVI and risk of S. japonicum infection. On the other hand, an increase in LST contributed to a significant increase in S. japonicum infection prevalence. We conclude that combining geographic information system, remote sensing and Bayesian-based statistical approaches facilitate integrated risk modeling of S. japonicum, which in turn is of relevance for allocation of scarce resources for control of schistosomiasis japonica in Jiangsu province and elsewhere in China, where the disease remains of public health and economic significance. PMID:15710436
Adam-Poupart, Ariane; Brand, Allan; Fournier, Michel; Jerrett, Michael
2014-01-01
Background: Ambient air ozone (O3) is a pulmonary irritant that has been associated with respiratory health effects including increased lung inflammation and permeability, airway hyperreactivity, respiratory symptoms, and decreased lung function. Estimation of O3 exposure is a complex task because the pollutant exhibits complex spatiotemporal patterns. To refine the quality of exposure estimation, various spatiotemporal methods have been developed worldwide. Objectives: We sought to compare the accuracy of three spatiotemporal models to predict summer ground-level O3 in Quebec, Canada. Methods: We developed a land-use mixed-effects regression (LUR) model based on readily available data (air quality and meteorological monitoring data, road networks information, latitude), a Bayesian maximum entropy (BME) model incorporating both O3 monitoring station data and the land-use mixed model outputs (BME-LUR), and a kriging method model based only on available O3 monitoring station data (BME kriging). We performed leave-one-station-out cross-validation and visually assessed the predictive capability of each model by examining the mean temporal and spatial distributions of the average estimated errors. Results: The BME-LUR was the best predictive model (R2 = 0.653) with the lowest root mean-square error (RMSE ;7.06 ppb), followed by the LUR model (R2 = 0.466, RMSE = 8.747) and the BME kriging model (R2 = 0.414, RMSE = 9.164). Conclusions: Our findings suggest that errors of estimation in the interpolation of O3 concentrations with BME can be greatly reduced by incorporating outputs from a LUR model developed with readily available data. Citation: Adam-Poupart A, Brand A, Fournier M, Jerrett M, Smargiassi A. 2014. Spatiotemporal modeling of ozone levels in Quebec (Canada): a comparison of kriging, land-use regression (LUR), and combined Bayesian maximum entropy–LUR approaches. Environ Health Perspect 122:970–976; http://dx.doi.org/10.1289/ehp.1306566 PMID:24879650
Lindström, Tom; Grear, Daniel A.; Buhnerkempe, Michael; Webb, Colleen T.; Miller, Ryan S.; Portacci, Katie; Wennergren, Uno
2013-01-01
Networks are rarely completely observed and prediction of unobserved edges is an important problem, especially in disease spread modeling where networks are used to represent the pattern of contacts. We focus on a partially observed cattle movement network in the U.S. and present a method for scaling up to a full network based on Bayesian inference, with the aim of informing epidemic disease spread models in the United States. The observed network is a 10% state stratified sample of Interstate Certificates of Veterinary Inspection that are required for interstate movement; describing approximately 20,000 movements from 47 of the contiguous states, with origins and destinations aggregated at the county level. We address how to scale up the 10% sample and predict unobserved intrastate movements based on observed movement distances. Edge prediction based on a distance kernel is not straightforward because the probability of movement does not always decline monotonically with distance due to underlying industry infrastructure. Hence, we propose a spatially explicit model where the probability of movement depends on distance, number of premises per county and historical imports of animals. Our model performs well in recapturing overall metrics of the observed network at the node level (U.S. counties), including degree centrality and betweenness; and performs better compared to randomized networks. Kernel generated movement networks also recapture observed global network metrics, including network size, transitivity, reciprocity, and assortativity better than randomized networks. In addition, predicted movements are similar to observed when aggregated at the state level (a broader geographic level relevant for policy) and are concentrated around states where key infrastructures, such as feedlots, are common. We conclude that the method generally performs well in predicting both coarse geographical patterns and network structure and is a promising method to generate full
Bayesian calibration of a flood inundation model using spatial data
NASA Astrophysics Data System (ADS)
Hall, Jim W.; Manning, Lucy J.; Hankin, Robin K. S.
2011-05-01
Bayesian theory of model calibration provides a coherent framework for distinguishing and encoding multiple sources of uncertainty in probabilistic predictions of flooding. This paper demonstrates the use of a Bayesian approach to computer model calibration, where the calibration data are in the form of spatial observations of flood extent. The Bayesian procedure involves generating posterior distributions of the flood model calibration parameters and observation error, as well as a Gaussian model inadequacy function, which represents the discrepancy between the best model predictions and reality. The approach is first illustrated with a simple didactic example and is then applied to a flood model of a reach of the river Thames in the UK. A predictive spatial distribution of flooding is generated for a flood of given severity.
A Bayesian Approach to Multifractal Extremes
NASA Astrophysics Data System (ADS)
Tchiguirinskaia, Ioulia; Schertzer, Daniel; Lovejoy, Shaun
2013-04-01
Drivers such as climate change and rapid urbanisation will result in increasing flood problems in urban environments through this century. Problems encountered in existing flood defence strategies are often related to the data non-stationary, long range dependencies and the clustering of extremes often resulting in fat tailed (i.e., a power-law tail) probability distributions. We discuss how to better predict the floods by using a physically based approach established on systems that respect a scale symmetry over a wide range of space-time scales to determine the relationship between flood magnitude and return period for a wide range of aggregation periods. The classical quantile distributions unfortunately rely on two hypotheses that are questionable: stationarity and independency of the components of the time series. We pointed out that beyond the classical sampling of the extremes and its limitations, there is the possibility to eliminate long-range dependency by uncovering a white-noise process whose fractional integration generates the observed long-range dependent process. The results were obtained during the CEATI Project "Multifractals and physically based estimates of extreme floods". The ambition of this project was to investigate very large data sets of reasonable quality (e.g., daily stream flow data recorded for at least 20 years for several thousands of gages distributed all over Canada and the USA). The multifractal parameters such as the mean intermittency parameter and the multifractality index were estimated on 8332 time series. The results confirm the dependence of multifractal parameter estimates on the length of available data. Then developing a metric for parameter estimation error became a principal step in uncertainty evaluation with respect to the multifractal estimates. A technique for estimating confidence intervals with the help of a Bayesian approach was developed. A detailed comparison of multifractal quantile plots and paleoflood data
Social Science and the Bayesian Probability Explanation Model
NASA Astrophysics Data System (ADS)
Yin, Jie; Zhao, Lei
2014-03-01
C. G. Hempel, one of the logical empiricists, who builds up his probability explanation model by using the empiricist view of probability, this model encountered many difficulties in the scientific explanation in which Hempel is difficult to make a reasonable defense. Based on the bayesian probability theory, the Bayesian probability model provides an approach of a subjective probability explanation based on the subjective probability, using the subjectivist view of probability. On the one hand, this probability model establishes the epistemological status of the subject in the social science; On the other hand, it provides a feasible explanation model for the social scientific explanation, which has important methodological significance.
A Bayesian model for cluster detection.
Wakefield, Jonathan; Kim, Albert
2013-09-01
The detection of areas in which the risk of a particular disease is significantly elevated, leading to an excess of cases, is an important enterprise in spatial epidemiology. Various frequentist approaches have been suggested for the detection of "clusters" within a hypothesis testing framework. Unfortunately, these suffer from a number of drawbacks including the difficulty in specifying a p-value threshold at which to call significance, the inherent multiplicity problem, and the possibility of multiple clusters. In this paper, we suggest a Bayesian approach to detecting "areas of clustering" in which the study region is partitioned into, possibly multiple, "zones" within which the risk is either at a null, or non-null, level. Computation is carried out using Markov chain Monte Carlo, tuned to the model that we develop. The method is applied to leukemia data in upstate New York. PMID:23476026
2014-01-01
Background Transmission models can aid understanding of disease dynamics and are useful in testing the efficiency of control measures. The aim of this study was to formulate an appropriate stochastic Susceptible-Infectious-Resistant/Carrier (SIR) model for Salmonella Typhimurium in pigs and thus estimate the transmission parameters between states. Results The transmission parameters were estimated using data from a longitudinal study of three Danish farrow-to-finish pig herds known to be infected. A Bayesian model framework was proposed, which comprised Binomial components for the transition from susceptible to infectious and from infectious to carrier; and a Poisson component for carrier to infectious. Cohort random effects were incorporated into these models to allow for unobserved cohort-specific variables as well as unobserved sources of transmission, thus enabling a more realistic estimation of the transmission parameters. In the case of the transition from susceptible to infectious, the cohort random effects were also time varying. The number of infectious pigs not detected by the parallel testing was treated as unknown, and the probability of non-detection was estimated using information about the sensitivity and specificity of the bacteriological and serological tests. The estimate of the transmission rate from susceptible to infectious was 0.33 [0.06, 1.52], from infectious to carrier was 0.18 [0.14, 0.23] and from carrier to infectious was 0.01 [0.0001, 0.04]. The estimate for the basic reproduction ration (R 0 ) was 1.91 [0.78, 5.24]. The probability of non-detection was estimated to be 0.18 [0.12, 0.25]. Conclusions The proposed framework for stochastic SIR models was successfully implemented to estimate transmission rate parameters for Salmonella Typhimurium in swine field data. R 0 was 1.91, implying that there was dissemination of the infection within pigs of the same cohort. There was significant temporal-cohort variability, especially at the
Technical note: Bayesian calibration of dynamic ruminant nutrition models.
Reed, K F; Arhonditsis, G B; France, J; Kebreab, E
2016-08-01
Mechanistic models of ruminant digestion and metabolism have advanced our understanding of the processes underlying ruminant animal physiology. Deterministic modeling practices ignore the inherent variation within and among individual animals and thus have no way to assess how sources of error influence model outputs. We introduce Bayesian calibration of mathematical models to address the need for robust mechanistic modeling tools that can accommodate error analysis by remaining within the bounds of data-based parameter estimation. For the purpose of prediction, the Bayesian approach generates a posterior predictive distribution that represents the current estimate of the value of the response variable, taking into account both the uncertainty about the parameters and model residual variability. Predictions are expressed as probability distributions, thereby conveying significantly more information than point estimates in regard to uncertainty. Our study illustrates some of the technical advantages of Bayesian calibration and discusses the future perspectives in the context of animal nutrition modeling. PMID:27179874
A Bayesian Ensemble Approach for Epidemiological Projections
Lindström, Tom; Tildesley, Michael; Webb, Colleen
2015-01-01
Mathematical models are powerful tools for epidemiology and can be used to compare control actions. However, different models and model parameterizations may provide different prediction of outcomes. In other fields of research, ensemble modeling has been used to combine multiple projections. We explore the possibility of applying such methods to epidemiology by adapting Bayesian techniques developed for climate forecasting. We exemplify the implementation with single model ensembles based on different parameterizations of the Warwick model run for the 2001 United Kingdom foot and mouth disease outbreak and compare the efficacy of different control actions. This allows us to investigate the effect that discrepancy among projections based on different modeling assumptions has on the ensemble prediction. A sensitivity analysis showed that the choice of prior can have a pronounced effect on the posterior estimates of quantities of interest, in particular for ensembles with large discrepancy among projections. However, by using a hierarchical extension of the method we show that prior sensitivity can be circumvented. We further extend the method to include a priori beliefs about different modeling assumptions and demonstrate that the effect of this can have different consequences depending on the discrepancy among projections. We propose that the method is a promising analytical tool for ensemble modeling of disease outbreaks. PMID:25927892
Modeling residual hydrologic errors with Bayesian inference
NASA Astrophysics Data System (ADS)
Smith, Tyler; Marshall, Lucy; Sharma, Ashish
2015-09-01
Hydrologic modelers are confronted with the challenge of producing estimates of the uncertainty associated with model predictions across an array of catchments and hydrologic flow regimes. Formal Bayesian approaches are commonly employed for parameter calibration and uncertainty analysis, but are often criticized for making strong assumptions about the nature of model residuals via the likelihood function that may not be well satisfied (or even checked). This technical note outlines a residual error model (likelihood function) specification framework that aims to provide guidance for the application of more appropriate residual error models through a nested approach that is both flexible and extendible. The framework synthesizes many previously employed residual error models and has been applied to four synthetic datasets (of differing error structure) and a real dataset from the Black River catchment in Queensland, Australia. Each residual error model was investigated and assessed under a top-down approach focused on its ability to properly characterize the errors. The results of these test applications indicate that a multifaceted assessment strategy is necessary to determine the adequacy of an individual likelihood function.
Coggins, Lewis G; Bacheler, Nathan M; Gwinn, Daniel C
2014-01-01
Occupancy models using incidence data collected repeatedly at sites across the range of a population are increasingly employed to infer patterns and processes influencing population distribution and dynamics. While such work is common in terrestrial systems, fewer examples exist in marine applications. This disparity likely exists because the replicate samples required by these models to account for imperfect detection are often impractical to obtain when surveying aquatic organisms, particularly fishes. We employ simultaneous sampling using fish traps and novel underwater camera observations to generate the requisite replicate samples for occupancy models of red snapper, a reef fish species. Since the replicate samples are collected simultaneously by multiple sampling devices, many typical problems encountered when obtaining replicate observations are avoided. Our results suggest that augmenting traditional fish trap sampling with camera observations not only doubled the probability of detecting red snapper in reef habitats off the Southeast coast of the United States, but supplied the necessary observations to infer factors influencing population distribution and abundance while accounting for imperfect detection. We found that detection probabilities tended to be higher for camera traps than traditional fish traps. Furthermore, camera trap detections were influenced by the current direction and turbidity of the water, indicating that collecting data on these variables is important for future monitoring. These models indicate that the distribution and abundance of this species is more heavily influenced by latitude and depth than by micro-scale reef characteristics lending credence to previous characterizations of red snapper as a reef habitat generalist. This study demonstrates the utility of simultaneous sampling devices, including camera traps, in aquatic environments to inform occupancy models and account for imperfect detection when describing factors
Coggins, Lewis G.; Bacheler, Nathan M.; Gwinn, Daniel C.
2014-01-01
Occupancy models using incidence data collected repeatedly at sites across the range of a population are increasingly employed to infer patterns and processes influencing population distribution and dynamics. While such work is common in terrestrial systems, fewer examples exist in marine applications. This disparity likely exists because the replicate samples required by these models to account for imperfect detection are often impractical to obtain when surveying aquatic organisms, particularly fishes. We employ simultaneous sampling using fish traps and novel underwater camera observations to generate the requisite replicate samples for occupancy models of red snapper, a reef fish species. Since the replicate samples are collected simultaneously by multiple sampling devices, many typical problems encountered when obtaining replicate observations are avoided. Our results suggest that augmenting traditional fish trap sampling with camera observations not only doubled the probability of detecting red snapper in reef habitats off the Southeast coast of the United States, but supplied the necessary observations to infer factors influencing population distribution and abundance while accounting for imperfect detection. We found that detection probabilities tended to be higher for camera traps than traditional fish traps. Furthermore, camera trap detections were influenced by the current direction and turbidity of the water, indicating that collecting data on these variables is important for future monitoring. These models indicate that the distribution and abundance of this species is more heavily influenced by latitude and depth than by micro-scale reef characteristics lending credence to previous characterizations of red snapper as a reef habitat generalist. This study demonstrates the utility of simultaneous sampling devices, including camera traps, in aquatic environments to inform occupancy models and account for imperfect detection when describing factors
Two-Stage Bayesian Model Averaging in Endogenous Variable Models.
Lenkoski, Alex; Eicher, Theo S; Raftery, Adrian E
2014-01-01
Economic modeling in the presence of endogeneity is subject to model uncertainty at both the instrument and covariate level. We propose a Two-Stage Bayesian Model Averaging (2SBMA) methodology that extends the Two-Stage Least Squares (2SLS) estimator. By constructing a Two-Stage Unit Information Prior in the endogenous variable model, we are able to efficiently combine established methods for addressing model uncertainty in regression models with the classic technique of 2SLS. To assess the validity of instruments in the 2SBMA context, we develop Bayesian tests of the identification restriction that are based on model averaged posterior predictive p-values. A simulation study showed that 2SBMA has the ability to recover structure in both the instrument and covariate set, and substantially improves the sharpness of resulting coefficient estimates in comparison to 2SLS using the full specification in an automatic fashion. Due to the increased parsimony of the 2SBMA estimate, the Bayesian Sargan test had a power of 50 percent in detecting a violation of the exogeneity assumption, while the method based on 2SLS using the full specification had negligible power. We apply our approach to the problem of development accounting, and find support not only for institutions, but also for geography and integration as development determinants, once both model uncertainty and endogeneity have been jointly addressed. PMID:24223471
Olmos, Antonio; Bertolini, Edson; Ruiz-García, Ana B; Martínez, Carmen; Peiró, Rosa; Vidal, Eduardo
2016-05-01
Grapevine leafroll-associated virus 3 (GLRaV-3) has a worldwide distribution and is the most economically important virus that causes grapevine leafroll disease. Reliable, sensitive, and specific methods are required for the detection of the pathogen in order to assure the production of healthy plant material and control of the disease. Although different serological and nucleic acid-based methods have been developed for the detection of GLRaV-3, diagnostic parameters have not been established, and there is no gold standard method. Therefore, the main aim of this work was to determine the sensitivity, specificity, and likelihood ratios of three commonly used methods, including one serological test (double-antibody sandwich enzyme-linked immunosorbent assay [DAS-ELISA]) and two nucleic acid-based techniques (spot and conventional real-time reverse transcription-polymerase chain reaction [RT-PCR]). Latent class models using a Bayesian approach have been applied to determine diagnostic test parameters and to facilitate decision-making regarding diagnostic test selection. Statistical analysis has been based on the results of a total of 281 samples, which were collected during the dormant period from three different populations. The best-fit model out of the 49 implemented models revealed that DAS-ELISA was the most specific method (value = 0.99) and provided the highest degree of confidence in positive results. Conversely, conventional real-time RT-PCR was the most sensitive method (value = 0.98) and produced the highest degree of confidence in negative results. Furthermore, the estimation of likelihood ratios showed that in populations with low GLRaV-3 prevalence the most appropriate method could be DAS-ELISA, while conventional real-time RT-PCR could be the most appropriate method in medium or high prevalence populations. Combining both techniques significantly increases detection accuracy. The flexibility and power of Bayesian latent class models open new
Smith, David; Woodman, Richard; Drummond, Aaron; Battersby, Malcolm
2016-03-30
Knowledge of a problem gambler's underlying gambling related cognitions plays an important role in treatment planning. The Gambling Related Cognitions Scale (GRCS) is therefore frequently used in clinical settings for screening and evaluation of treatment outcomes. However, GRCS validation studies have generated conflicting results regarding its latent structure using traditional confirmatory factor analyses (CFA). This may partly be due to the rigid constraints imposed on cross-factor loadings with traditional CFA. The aim of this investigation was to determine whether a Bayesian structural equation modelling (BSEM) approach to examination of the GRCS factor structure would better replicate substantive theory and also inform model re-specifications. Participants were 454 treatment-seekers at first presentation to a gambling treatment centre between January 2012 and December 2014. Model fit indices were well below acceptable standards for CFA. In contrast, the BSEM model which included small informative priors for the residual covariance matrix in addition to cross-loadings produced excellent model fit for the original hypothesised factor structure. The results also informed re-specification of the CFA model which provided more reasonable model fit. These conclusions have implications that should be useful to both clinicians and researchers evaluating measurement models relating to gambling related cognitions in treatment-seekers. PMID:26921058
ERIC Educational Resources Information Center
Finch, Holmes; Edwards, Julianne M.
2016-01-01
Standard approaches for estimating item response theory (IRT) model parameters generally work under the assumption that the latent trait being measured by a set of items follows the normal distribution. Estimation of IRT parameters in the presence of nonnormal latent traits has been shown to generate biased person and item parameter estimates. A…
Estimating Tree Height-Diameter Models with the Bayesian Method
Duan, Aiguo; Zhang, Jianguo; Xiang, Congwei
2014-01-01
Six candidate height-diameter models were used to analyze the height-diameter relationships. The common methods for estimating the height-diameter models have taken the classical (frequentist) approach based on the frequency interpretation of probability, for example, the nonlinear least squares method (NLS) and the maximum likelihood method (ML). The Bayesian method has an exclusive advantage compared with classical method that the parameters to be estimated are regarded as random variables. In this study, the classical and Bayesian methods were used to estimate six height-diameter models, respectively. Both the classical method and Bayesian method showed that the Weibull model was the “best” model using data1. In addition, based on the Weibull model, data2 was used for comparing Bayesian method with informative priors with uninformative priors and classical method. The results showed that the improvement in prediction accuracy with Bayesian method led to narrower confidence bands of predicted value in comparison to that for the classical method, and the credible bands of parameters with informative priors were also narrower than uninformative priors and classical method. The estimated posterior distributions for parameters can be set as new priors in estimating the parameters using data2. PMID:24711733
Estimating tree height-diameter models with the Bayesian method.
Zhang, Xiongqing; Duan, Aiguo; Zhang, Jianguo; Xiang, Congwei
2014-01-01
Six candidate height-diameter models were used to analyze the height-diameter relationships. The common methods for estimating the height-diameter models have taken the classical (frequentist) approach based on the frequency interpretation of probability, for example, the nonlinear least squares method (NLS) and the maximum likelihood method (ML). The Bayesian method has an exclusive advantage compared with classical method that the parameters to be estimated are regarded as random variables. In this study, the classical and Bayesian methods were used to estimate six height-diameter models, respectively. Both the classical method and Bayesian method showed that the Weibull model was the "best" model using data1. In addition, based on the Weibull model, data2 was used for comparing Bayesian method with informative priors with uninformative priors and classical method. The results showed that the improvement in prediction accuracy with Bayesian method led to narrower confidence bands of predicted value in comparison to that for the classical method, and the credible bands of parameters with informative priors were also narrower than uninformative priors and classical method. The estimated posterior distributions for parameters can be set as new priors in estimating the parameters using data2. PMID:24711733
Bayesian analysis of the backreaction models
Kurek, Aleksandra; Bolejko, Krzysztof; Szydlowski, Marek
2010-03-15
We present a Bayesian analysis of four different types of backreaction models, which are based on the Buchert equations. In this approach, one considers a solution to the Einstein equations for a general matter distribution and then an average of various observable quantities is taken. Such an approach became of considerable interest when it was shown that it could lead to agreement with observations without resorting to dark energy. In this paper we compare the {Lambda}CDM model and the backreaction models with type Ia supernovae, baryon acoustic oscillations, and cosmic microwave background data, and find that the former is favored. However, the tested models were based on some particular assumptions about the relation between the average spatial curvature and the backreaction, as well as the relation between the curvature and curvature index. In this paper we modified the latter assumption, leaving the former unchanged. We find that, by varying the relation between the curvature and curvature index, we can obtain a better fit. Therefore, some further work is still needed--in particular, the relation between the backreaction and the curvature should be revisited in order to fully determine the feasibility of the backreaction models to mimic dark energy.
Dynamic Bayesian Network Modeling of Game Based Diagnostic Assessments. CRESST Report 837
ERIC Educational Resources Information Center
Levy, Roy
2014-01-01
Digital games offer an appealing environment for assessing student proficiencies, including skills and misconceptions in a diagnostic setting. This paper proposes a dynamic Bayesian network modeling approach for observations of student performance from an educational video game. A Bayesian approach to model construction, calibration, and use in…
Involving stakeholders in building integrated fisheries models using Bayesian methods.
Haapasaari, Päivi; Mäntyniemi, Samu; Kuikka, Sakari
2013-06-01
A participatory Bayesian approach was used to investigate how the views of stakeholders could be utilized to develop models to help understand the Central Baltic herring fishery. In task one, we applied the Bayesian belief network methodology to elicit the causal assumptions of six stakeholders on factors that influence natural mortality, growth, and egg survival of the herring stock in probabilistic terms. We also integrated the expressed views into a meta-model using the Bayesian model averaging (BMA) method. In task two, we used influence diagrams to study qualitatively how the stakeholders frame the management problem of the herring fishery and elucidate what kind of causalities the different views involve. The paper combines these two tasks to assess the suitability of the methodological choices to participatory modeling in terms of both a modeling tool and participation mode. The paper also assesses the potential of the study to contribute to the development of participatory modeling practices. It is concluded that the subjective perspective to knowledge, that is fundamental in Bayesian theory, suits participatory modeling better than a positivist paradigm that seeks the objective truth. The methodology provides a flexible tool that can be adapted to different kinds of needs and challenges of participatory modeling. The ability of the approach to deal with small data sets makes it cost-effective in participatory contexts. However, the BMA methodology used in modeling the biological uncertainties is so complex that it needs further development before it can be introduced to wider use in participatory contexts. PMID:23604267
Involving Stakeholders in Building Integrated Fisheries Models Using Bayesian Methods
NASA Astrophysics Data System (ADS)
Haapasaari, Päivi; Mäntyniemi, Samu; Kuikka, Sakari
2013-06-01
A participatory Bayesian approach was used to investigate how the views of stakeholders could be utilized to develop models to help understand the Central Baltic herring fishery. In task one, we applied the Bayesian belief network methodology to elicit the causal assumptions of six stakeholders on factors that influence natural mortality, growth, and egg survival of the herring stock in probabilistic terms. We also integrated the expressed views into a meta-model using the Bayesian model averaging (BMA) method. In task two, we used influence diagrams to study qualitatively how the stakeholders frame the management problem of the herring fishery and elucidate what kind of causalities the different views involve. The paper combines these two tasks to assess the suitability of the methodological choices to participatory modeling in terms of both a modeling tool and participation mode. The paper also assesses the potential of the study to contribute to the development of participatory modeling practices. It is concluded that the subjective perspective to knowledge, that is fundamental in Bayesian theory, suits participatory modeling better than a positivist paradigm that seeks the objective truth. The methodology provides a flexible tool that can be adapted to different kinds of needs and challenges of participatory modeling. The ability of the approach to deal with small data sets makes it cost-effective in participatory contexts. However, the BMA methodology used in modeling the biological uncertainties is so complex that it needs further development before it can be introduced to wider use in participatory contexts.
Bayesian model selection for LISA pathfinder
NASA Astrophysics Data System (ADS)
Karnesis, Nikolaos; Nofrarias, Miquel; Sopuerta, Carlos F.; Gibert, Ferran; Armano, Michele; Audley, Heather; Congedo, Giuseppe; Diepholz, Ingo; Ferraioli, Luigi; Hewitson, Martin; Hueller, Mauro; Korsakova, Natalia; McNamara, Paul W.; Plagnol, Eric; Vitale, Stefano
2014-03-01
The main goal of the LISA Pathfinder (LPF) mission is to fully characterize the acceleration noise models and to test key technologies for future space-based gravitational-wave observatories similar to the eLISA concept. The data analysis team has developed complex three-dimensional models of the LISA Technology Package (LTP) experiment onboard the LPF. These models are used for simulations, but, more importantly, they will be used for parameter estimation purposes during flight operations. One of the tasks of the data analysis team is to identify the physical effects that contribute significantly to the properties of the instrument noise. A way of approaching this problem is to recover the essential parameters of a LTP model fitting the data. Thus, we want to define the simplest model that efficiently explains the observations. To do so, adopting a Bayesian framework, one has to estimate the so-called Bayes factor between two competing models. In our analysis, we use three main different methods to estimate it: the reversible jump Markov chain Monte Carlo method, the Schwarz criterion, and the Laplace approximation. They are applied to simulated LPF experiments in which the most probable LTP model that explains the observations is recovered. The same type of analysis presented in this paper is expected to be followed during flight operations. Moreover, the correlation of the output of the aforementioned methods with the design of the experiment is explored.
SAR imaging via iterative adaptive approach and sparse Bayesian learning
NASA Astrophysics Data System (ADS)
Xue, Ming; Santiago, Enrique; Sedehi, Matteo; Tan, Xing; Li, Jian
2009-05-01
We consider sidelobe reduction and resolution enhancement in synthetic aperture radar (SAR) imaging via an iterative adaptive approach (IAA) and a sparse Bayesian learning (SBL) method. The nonparametric weighted least squares based IAA algorithm is a robust and user parameter-free adaptive approach originally proposed for array processing. We show that it can be used to form enhanced SAR images as well. SBL has been used as a sparse signal recovery algorithm for compressed sensing. It has been shown in the literature that SBL is easy to use and can recover sparse signals more accurately than the l 1 based optimization approaches, which require delicate choice of the user parameter. We consider using a modified expectation maximization (EM) based SBL algorithm, referred to as SBL-1, which is based on a three-stage hierarchical Bayesian model. SBL-1 is not only more accurate than benchmark SBL algorithms, but also converges faster. SBL-1 is used to further enhance the resolution of the SAR images formed by IAA. Both IAA and SBL-1 are shown to be effective, requiring only a limited number of iterations, and have no need for polar-to-Cartesian interpolation of the SAR collected data. This paper characterizes the achievable performance of these two approaches by processing the complex backscatter data from both a sparse case study and a backhoe vehicle in free space with different aperture sizes.
Evaluating Individualized Reading Programs: A Bayesian Model.
ERIC Educational Resources Information Center
Maxwell, Martha
Simple Bayesian approaches can be applied to answer specific questions in evaluating an individualized reading program. A small reading and study skills program located in the counseling center of a major research university collected and compiled data on student characteristics such as class, number of sessions attended, grade point average, and…
NASA Technical Reports Server (NTRS)
Williford, W. O.; Hsieh, P.; Carter, M. C.
1974-01-01
A Bayesian analysis of the two discrete probability models, the negative binomial and the modified negative binomial distributions, which have been used to describe thunderstorm activity at Cape Kennedy, Florida, is presented. The Bayesian approach with beta prior distributions is compared to the classical approach which uses a moment method of estimation or a maximum-likelihood method. The accuracy and simplicity of the Bayesian method is demonstrated.
Bonangelino, Pablo; Irony, Telba; Liang, Shengde; Li, Xuefeng; Mukhi, Vandana; Ruan, Shiling; Xu, Yunling; Yang, Xiting; Wang, Chenguang
2011-09-01
Challenging statistical issues often arise in the design and analysis of clinical trials to assess safety and effectiveness of medical devices in the regulatory setting. The use of Bayesian methods in the design and analysis of medical device clinical trials has been increasing significantly in the past decade, not only due to the availability of prior information, but mainly due to the appealing nature of Bayesian clinical trial designs. The Center for Devices and Radiological Health at the Food and Drug Administration (FDA) has gained extensive experience with the use of Bayesian statistical methods and has identified some important issues that need further exploration. In this article, we discuss several topics relating to the use of Bayesian statistical methods in medical device trials, based on our experience and real applications. We illustrate the benefits and challenges of Bayesian approaches when incorporating prior information to evaluate the effectiveness and safety of a medical device. We further present an example of a Bayesian adaptive clinical trial and compare it to a traditional frequentist design. Finally, we discuss the use of Bayesian hierarchical models for multiregional trials and highlight the advantages of the Bayesian approach when specifying clinically relevant study hypotheses. PMID:21830924
An approach to quantifying the efficiency of a Bayesian filter
Technology Transfer Automated Retrieval System (TEKTRAN)
Data assimilation is defined as the Bayesian conditioning of uncertain model simulations on observations for the purpose of reducing uncertainty about model states. Practical data assimilation applications require that simplifying assumptions be made about the prior and posterior state distributions...
Application of the Bayesian dynamic survival model in medicine.
He, Jianghua; McGee, Daniel L; Niu, Xufeng
2010-02-10
The Bayesian dynamic survival model (BDSM), a time-varying coefficient survival model from the Bayesian prospective, was proposed in early 1990s but has not been widely used or discussed. In this paper, we describe the model structure of the BDSM and introduce two estimation approaches for BDSMs: the Markov Chain Monte Carlo (MCMC) approach and the linear Bayesian (LB) method. The MCMC approach estimates model parameters through sampling and is computationally intensive. With the newly developed geoadditive survival models and software BayesX, the BDSM is available for general applications. The LB approach is easier in terms of computations but it requires the prespecification of some unknown smoothing parameters. In a simulation study, we use the LB approach to show the effects of smoothing parameters on the performance of the BDSM and propose an ad hoc method for identifying appropriate values for those parameters. We also demonstrate the performance of the MCMC approach compared with the LB approach and a penalized partial likelihood method available in software R packages. A gastric cancer trial is utilized to illustrate the application of the BDSM. PMID:20014356
A Nonparametric Bayesian Approach For Emission Tomography Reconstruction
NASA Astrophysics Data System (ADS)
Barat, Éric; Dautremer, Thomas
2007-11-01
We introduce a PET reconstruction algorithm following a nonparametric Bayesian (NPB) approach. In contrast with Expectation Maximization (EM), the proposed technique does not rely on any space discretization. Namely, the activity distribution—normalized emission intensity of the spatial poisson process—is considered as a spatial probability density and observations are the projections of random emissions whose distribution has to be estimated. This approach is nonparametric in the sense that the quantity of interest belongs to the set of probability measures on Rk (for reconstruction in k-dimensions) and it is Bayesian in the sense that we define a prior directly on this spatial measure. In this context, we propose to model the nonparametric probability density as an infinite mixture of multivariate normal distributions. As a prior for this mixture we consider a Dirichlet Process Mixture (DPM) with a Normal-Inverse Wishart (NIW) model as base distribution of the Dirichlet Process. As in EM-family reconstruction, we use a data augmentation scheme where the set of hidden variables are the emission locations for each observed line of response in the continuous object space. Thanks to the data augmentation, we propose a Markov Chain Monte Carlo (MCMC) algorithm (Gibbs sampler) which is able to generate draws from the posterior distribution of the spatial intensity. A difference with EM is that one step of the Gibbs sampler corresponds to the generation of emission locations while only the expected number of emissions per pixel/voxel is used in EM. Another key difference is that the estimated spatial intensity is a continuous function such that there is no need to compute a projection matrix. Finally, draws from the intensity posterior distribution allow the estimation of posterior functionnals like the variance or confidence intervals. Results are presented for simulated data based on a 2D brain phantom and compared to Bayesian MAP-EM.
Bayesian log-periodic model for financial crashes
NASA Astrophysics Data System (ADS)
Rodríguez-Caballero, Carlos Vladimir; Knapik, Oskar
2014-10-01
This paper introduces a Bayesian approach in econophysics literature about financial bubbles in order to estimate the most probable time for a financial crash to occur. To this end, we propose using noninformative prior distributions to obtain posterior distributions. Since these distributions cannot be performed analytically, we develop a Markov Chain Monte Carlo algorithm to draw from posterior distributions. We consider three Bayesian models that involve normal and Student's t-distributions in the disturbances and an AR(1)-GARCH(1,1) structure only within the first case. In the empirical part of the study, we analyze a well-known example of financial bubble - the S&P 500 1987 crash - to show the usefulness of the three methods under consideration and crashes of Merval-94, Bovespa-97, IPCMX-94, Hang Seng-97 using the simplest method. The novelty of this research is that the Bayesian models provide 95% credible intervals for the estimated crash time.
Survey of Bayesian Models for Modelling of Stochastic Temporal Processes
Ng, B
2006-10-12
This survey gives an overview of popular generative models used in the modeling of stochastic temporal systems. In particular, this survey is organized into two parts. The first part discusses the discrete-time representations of dynamic Bayesian networks and dynamic relational probabilistic models, while the second part discusses the continuous-time representation of continuous-time Bayesian networks.
Yu, Jihnhee; Hutson, Alan D; Siddiqui, Adnan H; Kedron, Mary A
2016-02-01
In some small clinical trials, toxicity is not a primary endpoint; however, it often has dire effects on patients' quality of life and is even life-threatening. For such clinical trials, rigorous control of the overall incidence of adverse events is desirable, while simultaneously collecting safety information. In this article, we propose group sequential toxicity monitoring strategies to control overall toxicity incidents below a certain level as opposed to performing hypothesis testing, which can be incorporated into an existing study design based on the primary endpoint. We consider two sequential methods: a non-Bayesian approach in which stopping rules are obtained based on the 'future' probability of an excessive toxicity rate; and a Bayesian adaptation modifying the proposed non-Bayesian approach, which can use the information obtained at interim analyses. Through an extensive Monte Carlo study, we show that the Bayesian approach often provides better control of the overall toxicity rate than the non-Bayesian approach. We also investigate adequate toxicity estimation after the studies. We demonstrate the applicability of our proposed methods in controlling the symptomatic intracranial hemorrhage rate for treating acute ischemic stroke patients. PMID:22407172
Multivariate Bayesian Models of Extreme Rainfall
NASA Astrophysics Data System (ADS)
Rahill-Marier, B.; Devineni, N.; Lall, U.; Farnham, D.
2013-12-01
Accounting for spatial heterogeneity in extreme rainfall has important ramifications in hydrological design and climate models alike. Traditional methods, including areal reduction factors and kriging, are sensitive to catchment shape assumptions and return periods, and do not explicitly model spatial dependence between between data points. More recent spatially dense rainfall simulators depend on newer data sources such as radar and may struggle to reproduce extremes because of physical assumptions in the model and short historical records. Rain gauges offer the longest historical record, key when considering rainfall extremes and changes over time, and particularly relevant in today's environment of designing for climate change. In this paper we propose a probabilistic approach of accounting for spatial dependence using the lengthy but spatially disparate hourly rainfall network in the greater New York City area. We build a hierarchical Bayesian model allowing extremes at one station to co-vary with concurrent rainfall fields occurring at other stations. Subsequently we pool across the extreme rainfall fields of all stations, and demonstrate that the expected catchment-wide events are significantly lower when considering spatial fields instead of maxima-only fields. We additionally demonstrate the importance of using concurrent spatial fields, rather than annual maxima, in producing covariance matrices that describe true storm dynamics. This approach is also unique in that it considers short duration storms - from one hour to twenty-four hours - rather than the daily values typically derived from rainfall gauges. The same methodology can be extended to include the radar fields available in the past decade. The hierarchical multilevel approach lends itself easily to integration of long-record parameters and short-record parameters at a station or regional level. In addition climate covariates can be introduced to support the relationship of spatial covariance with
Probabilistic climate change predictions applying Bayesian model averaging.
Min, Seung-Ki; Simonis, Daniel; Hense, Andreas
2007-08-15
This study explores the sensitivity of probabilistic predictions of the twenty-first century surface air temperature (SAT) changes to different multi-model averaging methods using available simulations from the Intergovernmental Panel on Climate Change fourth assessment report. A way of observationally constrained prediction is provided by training multi-model simulations for the second half of the twentieth century with respect to long-term components. The Bayesian model averaging (BMA) produces weighted probability density functions (PDFs) and we compare two methods of estimating weighting factors: Bayes factor and expectation-maximization algorithm. It is shown that Bayesian-weighted PDFs for the global mean SAT changes are characterized by multi-modal structures from the middle of the twenty-first century onward, which are not clearly seen in arithmetic ensemble mean (AEM). This occurs because BMA tends to select a few high-skilled models and down-weight the others. Additionally, Bayesian results exhibit larger means and broader PDFs in the global mean predictions than the unweighted AEM. Multi-modality is more pronounced in the continental analysis using 30-year mean (2070-2099) SATs while there is only a little effect of Bayesian weighting on the 5-95% range. These results indicate that this approach to observationally constrained probabilistic predictions can be highly sensitive to the method of training, particularly for the later half of the twenty-first century, and that a more comprehensive approach combining different regions and/or variables is required. PMID:17569647
Integrative variable selection via Bayesian model uncertainty.
Quintana, M A; Conti, D V
2013-12-10
We are interested in developing integrative approaches for variable selection problems that incorporate external knowledge on a set of predictors of interest. In particular, we have developed an integrative Bayesian model uncertainty (iBMU) method, which formally incorporates multiple sources of data via a second-stage probit model on the probability that any predictor is associated with the outcome of interest. Using simulations, we demonstrate that iBMU leads to an increase in power to detect true marginal associations over more commonly used variable selection techniques, such as least absolute shrinkage and selection operator and elastic net. In addition, iBMU leads to a more efficient model search algorithm over the basic BMU method even when the predictor-level covariates are only modestly informative. The increase in power and efficiency of our method becomes more substantial as the predictor-level covariates become more informative. Finally, we demonstrate the power and flexibility of iBMU for integrating both gene structure and functional biomarker information into a candidate gene study investigating over 50 genes in the brain reward system and their role with smoking cessation from the Pharmacogenetics of Nicotine Addiction and Treatment Consortium. PMID:23824835
Liang, Shidong; Jia, Haifeng; Xu, Changqing; Xu, Te; Melching, Charles
2016-08-01
Facing increasingly serious water pollution, the Chinese government is changing the environmental management strategy from solely pollutant concentration control to a Total Maximum Daily Load (TMDL) program, and water quality models are increasingly being applied to determine the allowable pollutant load in the TMDL. Despite the frequent use of models, few studies have focused on how parameter uncertainty in water quality models affect the allowable pollutant loads in the TMDL program, particularly for complicated and high-dimension water quality models. Uncertainty analysis for such models is limited by time-consuming simulation and high-dimensionality and nonlinearity in parameter spaces. In this study, an allowable pollutant load calculation platform was established using the Environmental Fluid Dynamics Code (EFDC), which is a widely applied hydrodynamic-water quality model. A Bayesian approach, i.e. the DiffeRential Evolution Adaptive Metropolis (DREAM) algorithm, which is a high-efficiency, multi-chain Markov Chain Monte Carlo (MCMC) method, was applied to assess the effects of parameter uncertainty on the water quality model simulations and its influence on the allowable pollutant load calculation in the TMDL program. Miyun Reservoir, which is the most important surface drinking water source for Beijing, suffers from eutrophication and was selected as a case study. The relations between pollutant loads and water quality indicators are obtained through a graphical method in the simulation platform. Ranges of allowable pollutant loads were obtained according to the results of parameter uncertainty analysis, i.e. Total Organic Carbon (TOC): 581.5-1030.6t·yr(-1); Total Phosphorus (TP): 23.3-31.0t·yr(-1); and Total Nitrogen (TN): 480-1918.0t·yr(-1). The wide ranges of allowable pollutant loads reveal the importance of parameter uncertainty analysis in a TMDL program for allowable pollutant load calculation and margin of safety (MOS) determination. The sources
Airframe integrity based on Bayesian approach
NASA Astrophysics Data System (ADS)
Hurtado Cahuao, Jose Luis
Aircraft aging has become an immense challenge in terms of ensuring the safety of the fleet while controlling life cycle costs. One of the major concerns in aircraft structures is the development of fatigue cracks in the fastener holes. A probabilistic-based method has been proposed to manage this problem. In this research, the Bayes' theorem is used to assess airframe integrity by updating generic data with airframe inspection data while such data are compiled. This research discusses the methodology developed for assessment of loss of airframe integrity due to fatigue cracking in the fastener holes of an aging platform. The methodology requires a probability density function (pdf) at the end of SAFE life. Subsequently, a crack growth regime begins. As the Bayesian analysis requires information of a prior initial crack size pdf, such a pdf is assumed and verified to be lognormally distributed. The prior distribution of crack size as cracks grow is modeled through a combined Inverse Power Law (IPL) model and lognormal relationships. The first set of inspections is used as the evidence for updating the crack size distribution at the various stages of aircraft life. Moreover, the materials used in the structural part of the aircrafts have variations in their properties due to their calibration errors and machine alignment. A Matlab routine (PCGROW) is developed to calculate the crack distribution growth through three different crack growth models. As the first step, the material properties and the initial crack size are sampled. A standard Monte Carlo simulation is employed for this sampling process. At the corresponding aircraft age, the crack observed during the inspections, is used to update the crack size distribution and proceed in time. After the updating, it is possible to estimate the probability of structural failure as a function of flight hours for a given aircraft in the future. The results show very accurate and useful values related to the reliability
NASA Astrophysics Data System (ADS)
Baresel, Björn; Bucher, Hugo; Brosse, Morgane; Bagherpour, Borhan; Schaltegger, Urs
2016-04-01
Chemical abrasion isotope dilution thermal ionization mass spectrometry (CA-ID-TIMS) U-Pb dating of single-zircon crystals is preferably applied to tephra beds intercalated in sedimentary sequences. By assuming that the zircon crystallization age closely approximate that of the volcanic eruption and ash deposition, U-Pb zircon geochronology is the preferred approach for dating mass extinction events (such as the Permian-Triassic boundary mass extinction) in the sedimentary record. As tephra from large volcanic eruptions is often transported over long distances, it additionally provide an invaluable tool for stratigraphic correlation across distant geologic sections. Therefore, the combination of high-precision zircon geochronology with apatite chemistry of the same tephra bed (so called apatite tephrochronology) provides a robust fingerprint of one particular volcanic eruption. In addition we provide coherent Bayesian model ages for the Permian-Triassic boundary (PTB) mass extinction, then compare it with PTB model ages at Meishan after Burgess et al. (2014). We will present new high-precision U-Pb zircon dates for a series of volcanic ash beds in deep- and shallow-marine Permian-Triassic sections in the Nanpanjiang Basin, South China. In addition, apatite crystals out of the same ash beds were analysed focusing on their halogen (F, Cl) and trace-element (e.g. Fe, Mg, REE) chemistry. We also show that Bayesian age models produce reproducible results from different geologic sections. On the basis of these data, including litho- and biostratigraphic correlations, we can precisely and accurately constrain the Permian-Triassic boundary in an equatorial marine setting, and correlate tephra beds over different sections and facies in the Nanpanjiang Basin independently from litho-, bio- or chemostratigraphic criteria. The results evidence that data produced in laboratories associated to the global EARTHTIME consortium can provide age information at the 0.05% level of 206
Bayesian Analysis of Nonlinear Structural Equation Models with Nonignorable Missing Data
ERIC Educational Resources Information Center
Lee, Sik-Yum
2006-01-01
A Bayesian approach is developed for analyzing nonlinear structural equation models with nonignorable missing data. The nonignorable missingness mechanism is specified by a logistic regression model. A hybrid algorithm that combines the Gibbs sampler and the Metropolis-Hastings algorithm is used to produce the joint Bayesian estimates of…
A Bayesian Hierarchical Approach to Regional Frequency Analysis of Extremes
NASA Astrophysics Data System (ADS)
Renard, B.
2010-12-01
Rainfall and runoff frequency analysis is a major issue for the hydrological community. The distribution of hydrological extremes varies in space and possibly in time. Describing and understanding this spatiotemporal variability are primary challenges to improve hazard quantification and risk assessment. This presentation proposes a general approach based on a Bayesian hierarchical model, following previous work by Cooley et al. [2007], Micevski [2007], Aryal et al. [2009] or Lima and Lall [2009; 2010]. Such a hierarchical model is made up of two levels: (1) a data level modeling the distribution of observations, and (2) a process level describing the fluctuation of the distribution parameters in space and possibly in time. At the first level of the model, at-site data (e.g., annual maxima series) are modeled with a chosen distribution (e.g., a GEV distribution). Since data from several sites are considered, the joint distribution of a vector of (spatial) observations needs to be derived. This is challenging because data are in general not spatially independent, especially for nearby sites. An elliptical copula is therefore used to formally account for spatial dependence between at-site data. This choice might be questionable in the context of extreme value distributions. However, it is motivated by its applicability in spatial highly dimensional problems, where the joint pdf of a vector of n observations is required to derive the likelihood function (with n possibly amounting to hundreds of sites). At the second level of the model, parameters of the chosen at-site distribution are then modeled by a Gaussian spatial process, whose mean may depend on covariates (e.g. elevation, distance to sea, weather pattern, time). In particular, this spatial process allows estimating parameters at ungauged sites, and deriving the predictive distribution of rainfall/runoff at every pixel/catchment of the studied domain. An application to extreme rainfall series from the French
Resolution-matrix-constrained model updates for bayesian seismic tomography
NASA Astrophysics Data System (ADS)
Fontanini, Francesco; Bleibinhaus, Florian
2015-04-01
One of the most important issues of interpreting seismic tomography models is the need to provide a quantification of their uncertainty. Bayesian approach to inverse problems offers a rigorous way to quantitatively estimate this uncertainty at the price of an higher computation time. Optimizing bayesian algorithms is therefore a key problem. We are developing a multivariate model-updating scheme that makes use of the constraints provided by the Model Resolution Matrix , aiming to a more efficient sampling of the model space. The Resolution Matrix relates the true model to the estimate, its off-diagonal values provide a set of trade-off relations between model parameters used in our algorithm to obtain optimized model updates.
Normativity, interpretation, and Bayesian models
Oaksford, Mike
2014-01-01
It has been suggested that evaluative normativity should be expunged from the psychology of reasoning. A broadly Davidsonian response to these arguments is presented. It is suggested that two distinctions, between different types of rationality, are more permeable than this argument requires and that the fundamental objection is to selecting theories that make the most rational sense of the data. It is argued that this is inevitable consequence of radical interpretation where understanding others requires assuming they share our own norms of reasoning. This requires evaluative normativity and it is shown that when asked to evaluate others’ arguments participants conform to rational Bayesian norms. It is suggested that logic and probability are not in competition and that the variety of norms is more limited than the arguments against evaluative normativity suppose. Moreover, the universality of belief ascription suggests that many of our norms are universal and hence evaluative. It is concluded that the union of evaluative normativity and descriptive psychology implicit in Davidson and apparent in the psychology of reasoning is a good thing. PMID:24860519
Bayesian approach to the detection problem in gravitational wave astronomy
Littenberg, Tyson B.; Cornish, Neil J.
2009-09-15
The analysis of data from gravitational wave detectors can be divided into three phases: search, characterization, and evaluation. The evaluation of the detection--determining whether a candidate event is astrophysical in origin or some artifact created by instrument noise--is a crucial step in the analysis. The ongoing analyses of data from ground-based detectors employ a frequentist approach to the detection problem. A detection statistic is chosen, for which background levels and detection efficiencies are estimated from Monte Carlo studies. This approach frames the detection problem in terms of an infinite collection of trials, with the actual measurement corresponding to some realization of this hypothetical set. Here we explore an alternative, Bayesian approach to the detection problem, that considers prior information and the actual data in hand. Our particular focus is on the computational techniques used to implement the Bayesian analysis. We find that the parallel tempered Markov chain Monte Carlo (PTMCMC) algorithm is able to address all three phases of the analysis in a coherent framework. The signals are found by locating the posterior modes, the model parameters are characterized by mapping out the joint posterior distribution, and finally, the model evidence is computed by thermodynamic integration. As a demonstration, we consider the detection problem of selecting between models describing the data as instrument noise, or instrument noise plus the signal from a single compact galactic binary. The evidence ratios, or Bayes factors, computed by the PTMCMC algorithm are found to be in close agreement with those computed using a reversible jump Markov chain Monte Carlo algorithm.
A Bayesian, exemplar-based approach to hierarchical shape matching.
Gavrila, Dariu M
2007-08-01
This paper presents a novel probabilistic approach to hierarchical, exemplar-based shape matching. No feature correspondence is needed among exemplars, just a suitable pairwise similarity measure. The approach uses a template tree to efficiently represent and match the variety of shape exemplars. The tree is generated offline by a bottom-up clustering approach using stochastic optimization. Online matching involves a simultaneous coarse-to-fine approach over the template tree and over the transformation parameters. The main contribution of this paper is a Bayesian model to estimate the a posteriori probability of the object class, after a certain match at a node of the tree. This model takes into account object scale and saliency and allows for a principled setting of the matching thresholds such that unpromising paths in the tree traversal process are eliminated early on. The proposed approach was tested in a variety of application domains. Here, results are presented on one of the more challenging domains: real-time pedestrian detection from a moving vehicle. A significant speed-up is obtained when comparing the proposed probabilistic matching approach with a manually tuned nonprobabilistic variant, both utilizing the same template tree structure. PMID:17568144
A Bayesian Model of Sensory Adaptation
Sato, Yoshiyuki; Aihara, Kazuyuki
2011-01-01
Recent studies reported two opposite types of adaptation in temporal perception. Here, we propose a Bayesian model of sensory adaptation that exhibits both types of adaptation. We regard adaptation as the adaptive updating of estimations of time-evolving variables, which determine the mean value of the likelihood function and that of the prior distribution in a Bayesian model of temporal perception. On the basis of certain assumptions, we can analytically determine the mean behavior in our model and identify the parameters that determine the type of adaptation that actually occurs. The results of our model suggest that we can control the type of adaptation by controlling the statistical properties of the stimuli presented. PMID:21541346
The need to assess large numbers of chemicals for their potential toxicities has resulted in increased emphasis on medium- and high-throughput in vitro screening approaches. For such approaches to be useful, efficient and reliable data analysis and hit detection methods are also ...
Bayesian network modelling of upper gastrointestinal bleeding
NASA Astrophysics Data System (ADS)
Aisha, Nazziwa; Shohaimi, Shamarina; Adam, Mohd Bakri
2013-09-01
Bayesian networks are graphical probabilistic models that represent causal and other relationships between domain variables. In the context of medical decision making, these models have been explored to help in medical diagnosis and prognosis. In this paper, we discuss the Bayesian network formalism in building medical support systems and we learn a tree augmented naive Bayes Network (TAN) from gastrointestinal bleeding data. The accuracy of the TAN in classifying the source of gastrointestinal bleeding into upper or lower source is obtained. The TAN achieves a high classification accuracy of 86% and an area under curve of 92%. A sensitivity analysis of the model shows relatively high levels of entropy reduction for color of the stool, history of gastrointestinal bleeding, consistency and the ratio of blood urea nitrogen to creatinine. The TAN facilitates the identification of the source of GIB and requires further validation.
Multivariate meta-analysis of mixed outcomes: a Bayesian approach.
Bujkiewicz, Sylwia; Thompson, John R; Sutton, Alex J; Cooper, Nicola J; Harrison, Mark J; Symmons, Deborah P M; Abrams, Keith R
2013-09-30
Multivariate random effects meta-analysis (MRMA) is an appropriate way for synthesizing data from studies reporting multiple correlated outcomes. In a Bayesian framework, it has great potential for integrating evidence from a variety of sources. In this paper, we propose a Bayesian model for MRMA of mixed outcomes, which extends previously developed bivariate models to the trivariate case and also allows for combination of multiple outcomes that are both continuous and binary. We have constructed informative prior distributions for the correlations by using external evidence. Prior distributions for the within-study correlations were constructed by employing external individual patent data and using a double bootstrap method to obtain the correlations between mixed outcomes. The between-study model of MRMA was parameterized in the form of a product of a series of univariate conditional normal distributions. This allowed us to place explicit prior distributions on the between-study correlations, which were constructed using external summary data. Traditionally, independent 'vague' prior distributions are placed on all parameters of the model. In contrast to this approach, we constructed prior distributions for the between-study model parameters in a way that takes into account the inter-relationship between them. This is a flexible method that can be extended to incorporate mixed outcomes other than continuous and binary and beyond the trivariate case. We have applied this model to a motivating example in rheumatoid arthritis with the aim of incorporating all available evidence in the synthesis and potentially reducing uncertainty around the estimate of interest. PMID:23630081
A Bayesian model for visual space perception
NASA Technical Reports Server (NTRS)
Curry, R. E.
1972-01-01
A model for visual space perception is proposed that contains desirable features in the theories of Gibson and Brunswik. This model is a Bayesian processor of proximal stimuli which contains three important elements: an internal model of the Markov process describing the knowledge of the distal world, the a priori distribution of the state of the Markov process, and an internal model relating state to proximal stimuli. The universality of the model is discussed and it is compared with signal detection theory models. Experimental results of Kinchla are used as a special case.
A Bayesian population PBPK model for multiroute chloroform exposure
Yang, Yuching; Xu, Xu; Georgopoulos, Panos G.
2011-01-01
A Bayesian hierarchical model was developed to estimate the parameters in a physiologically based pharmacokinetic (PBPK) model for chloroform using prior information and biomarker data from different exposure pathways. In particular, the model provides a quantitative description of the changes in physiological parameters associated with hot-water bath and showering scenarios. Through Bayesian inference, uncertainties in the PBPK parameters were reduced from the prior distributions. Prediction of biomarker data with the calibrated PBPK model was improved by the calibration. The posterior results indicate that blood flow rates varied under two different exposure scenarios, with a two-fold increase of the skin's blood flow rate predicted in the hot-bath scenario. This result highlights the importance of considering scenario-specific parameters in PBPK modeling. To demonstrate the application of a probability approach in toxicological assessment, results from the posterior distributions from this calibrated model were used to predict target tissue dose based on the rate of chloroform metabolized in liver. This study demonstrates the use of the Bayesian approach to optimize PBPK model parameters for typical household exposure scenarios. PMID:19471319
Technology Transfer Automated Retrieval System (TEKTRAN)
The objective was to study alternative models for genetic analyses of carcass traits assessed by ultrasonography in Guzerá cattle. Data from 947 measurements (655 animals) of Rib-eye area (REA), rump fat thickness (RFT) and backfat thickness (BFT) were used. Finite polygenic models (FPM), infinitesi...
Analysis of COSIMA spectra: Bayesian approach
NASA Astrophysics Data System (ADS)
Lehto, H. J.; Zaprudin, B.; Lehto, K. M.; Lönnberg, T.; Silén, J.; Rynö, J.; Krüger, H.; Hilchenbach, M.; Kissel, J.
2015-06-01
We describe the use of Bayesian analysis methods applied to time-of-flight secondary ion mass spectrometer (TOF-SIMS) spectra. The method is applied to the COmetary Secondary Ion Mass Analyzer (COSIMA) TOF-SIMS mass spectra where the analysis can be broken into subgroups of lines close to integer mass values. The effects of the instrumental dead time are discussed in a new way. The method finds the joint probability density functions of measured line parameters (number of lines, and their widths, peak amplitudes, integrated amplitudes and positions). In the case of two or more lines, these distributions can take complex forms. The derived line parameters can be used to further calibrate the mass scaling of TOF-SIMS and to feed the results into other analysis methods such as multivariate analyses of spectra. We intend to use the method, first as a comprehensive tool to perform quantitative analysis of spectra, and second as a fast tool for studying interesting targets for obtaining additional TOF-SIMS measurements of the sample, a property unique to COSIMA. Finally, we point out that the Bayesian method can be thought of as a means to solve inverse problems but with forward calculations, only with no iterative corrections or other manipulation of the observed data.
A Bayesian Networks approach to Operational Risk
NASA Astrophysics Data System (ADS)
Aquaro, V.; Bardoscia, M.; Bellotti, R.; Consiglio, A.; De Carlo, F.; Ferri, G.
2010-04-01
A system for Operational Risk management based on the computational paradigm of Bayesian Networks is presented. The algorithm allows the construction of a Bayesian Network targeted for each bank and takes into account in a simple and realistic way the correlations among different processes of the bank. The internal losses are averaged over a variable time horizon, so that the correlations at different times are removed, while the correlations at the same time are kept: the averaged losses are thus suitable to perform the learning of the network topology and parameters; since the main aim is to understand the role of the correlations among the losses, the assessments of domain experts are not used. The algorithm has been validated on synthetic time series. It should be stressed that the proposed algorithm has been thought for the practical implementation in a mid or small sized bank, since it has a small impact on the organizational structure of a bank and requires an investment in human resources which is limited to the computational area.
A Bayesian nonlinear mixed-effects disease progression model
Kim, Seongho; Jang, Hyejeong; Wu, Dongfeng; Abrams, Judith
2016-01-01
A nonlinear mixed-effects approach is developed for disease progression models that incorporate variation in age in a Bayesian framework. We further generalize the probability model for sensitivity to depend on age at diagnosis, time spent in the preclinical state and sojourn time. The developed models are then applied to the Johns Hopkins Lung Project data and the Health Insurance Plan for Greater New York data using Bayesian Markov chain Monte Carlo and are compared with the estimation method that does not consider random-effects from age. Using the developed models, we obtain not only age-specific individual-level distributions, but also population-level distributions of sensitivity, sojourn time and transition probability. PMID:26798562
Cho, Kang Su; Jung, Hae Do; Ham, Won Sik; Chung, Doo Yong; Kang, Yong Jin; Jang, Won Sik; Kwon, Jong Kyou; Choi, Young Deuk; Lee, Joo Yong
2015-01-01
Objectives To investigate whether skin-to-stone distance (SSD), which remains controversial in patients with ureter stones, can be a predicting factor for one session success following extracorporeal shock wave lithotripsy (ESWL) in patients with upper ureter stones. Patients and Methods We retrospectively reviewed the medical records of 1,519 patients who underwent their first ESWL between January 2005 and December 2013. Among these patients, 492 had upper ureter stones that measured 4–20 mm and were eligible for our analyses. Maximal stone length, mean stone density (HU), and SSD were determined on pretreatment non-contrast computed tomography (NCCT). For subgroup analyses, patients were divided into four groups. Group 1 consisted of patients with SSD<25th percentile, group 2 consisted of patients with SSD in the 25th to 50th percentile, group 3 patients had SSD in the 50th to 75th percentile, and group 4 patients had SSD≥75th percentile. Results In analyses of group 2 patients versus others, there were no statistical differences in mean age, stone length and density. However, the one session success rate in group 2 was higher than other groups (77.9% vs. 67.0%; P = 0.032). The multivariate logistic regression model revealed that shorter stone length, lower stone density, and the group 2 SSD were positive predictors for successful outcomes in ESWL. Using the Bayesian model-averaging approach, longer stone length, lower stone density, and group 2 SSD can be also positive predictors for successful outcomes following ESWL. Conclusions Our data indicate that a group 2 SSD of approximately 10 cm is a positive predictor for success following ESWL. PMID:26659086
Bayesian model selection analysis of WMAP3
Parkinson, David; Mukherjee, Pia; Liddle, Andrew R.
2006-06-15
We present a Bayesian model selection analysis of WMAP3 data using our code CosmoNest. We focus on the density perturbation spectral index n{sub S} and the tensor-to-scalar ratio r, which define the plane of slow-roll inflationary models. We find that while the Bayesian evidence supports the conclusion that n{sub S}{ne}1, the data are not yet powerful enough to do so at a strong or decisive level. If tensors are assumed absent, the current odds are approximately 8 to 1 in favor of n{sub S}{ne}1 under our assumptions, when WMAP3 data is used together with external data sets. WMAP3 data on its own is unable to distinguish between the two models. Further, inclusion of r as a parameter weakens the conclusion against the Harrison-Zel'dovich case (n{sub S}=1, r=0), albeit in a prior-dependent way. In appendices we describe the CosmoNest code in detail, noting its ability to supply posterior samples as well as to accurately compute the Bayesian evidence. We make a first public release of CosmoNest, now available at www.cosmonest.org.
A Bayesian approach to optimizing cryopreservation protocols
2015-01-01
Cryopreservation is beset with the challenge of protocol alignment across a wide range of cell types and process variables. By taking a cross-sectional assessment of previously published cryopreservation data (sample means and standard errors) as preliminary meta-data, a decision tree learning analysis (DTLA) was performed to develop an understanding of target survival using optimized pruning methods based on different approaches. Briefly, a clear direction on the decision process for selection of methods was developed with key choices being the cooling rate, plunge temperature on the one hand and biomaterial choice, use of composites (sugars and proteins as additional constituents), loading procedure and cell location in 3D scaffolding on the other. Secondly, using machine learning and generalized approaches via the Naïve Bayes Classification (NBC) method, these metadata were used to develop posterior probabilities for combinatorial approaches that were implicitly recorded in the metadata. These latter results showed that newer protocol choices developed using probability elicitation techniques can unearth improved protocols consistent with multiple unidimensionally-optimized physical protocols. In conclusion, this article proposes the use of DTLA models and subsequently NBC for the improvement of modern cryopreservation techniques through an integrative approach. PMID:26131379
A bayesian approach to laboratory utilization management
Hauser, Ronald G.; Jackson, Brian R.; Shirts, Brian H.
2015-01-01
Background: Laboratory utilization management describes a process designed to increase healthcare value by altering requests for laboratory services. A typical approach to monitor and prioritize interventions involves audits of laboratory orders against specific criteria, defined as rule-based laboratory utilization management. This approach has inherent limitations. First, rules are inflexible. They adapt poorly to the ambiguity of medical decision-making. Second, rules judge the context of a decision instead of the patient outcome allowing an order to simultaneously save a life and break a rule. Third, rules can threaten physician autonomy when used in a performance evaluation. Methods: We developed an alternative to rule-based laboratory utilization. The core idea comes from a formula used in epidemiology to estimate disease prevalence. The equation relates four terms: the prevalence of disease, the proportion of positive tests, test sensitivity and test specificity. When applied to a laboratory utilization audit, the formula estimates the prevalence of disease (pretest probability [PTP]) in the patients tested. The comparison of PTPs among different providers, provider groups, or patient cohorts produces an objective evaluation of laboratory requests. We demonstrate the model in a review of tests for enterovirus (EV) meningitis. Results: The model identified subpopulations within the cohort with a low prevalence of disease. These low prevalence groups shared demographic and seasonal factors known to protect against EV meningitis. This suggests too many orders occurred from patients at low risk for EV. Conclusion: We introduce a new method for laboratory utilization management programs to audit laboratory services. PMID:25774321
Bayesian analysis of physiologically based toxicokinetic and toxicodynamic models.
Hack, C Eric
2006-04-17
Physiologically based toxicokinetic (PBTK) and toxicodynamic (TD) models of bromate in animals and humans would improve our ability to accurately estimate the toxic doses in humans based on available animal studies. These mathematical models are often highly parameterized and must be calibrated in order for the model predictions of internal dose to adequately fit the experimentally measured doses. Highly parameterized models are difficult to calibrate and it is difficult to obtain accurate estimates of uncertainty or variability in model parameters with commonly used frequentist calibration methods, such as maximum likelihood estimation (MLE) or least squared error approaches. The Bayesian approach called Markov chain Monte Carlo (MCMC) analysis can be used to successfully calibrate these complex models. Prior knowledge about the biological system and associated model parameters is easily incorporated in this approach in the form of prior parameter distributions, and the distributions are refined or updated using experimental data to generate posterior distributions of parameter estimates. The goal of this paper is to give the non-mathematician a brief description of the Bayesian approach and Markov chain Monte Carlo analysis, how this technique is used in risk assessment, and the issues associated with this approach. PMID:16466842
A Bayesian approach to tracking patients having changing pharmacokinetic parameters
NASA Technical Reports Server (NTRS)
Bayard, David S.; Jelliffe, Roger W.
2004-01-01
This paper considers the updating of Bayesian posterior densities for pharmacokinetic models associated with patients having changing parameter values. For estimation purposes it is proposed to use the Interacting Multiple Model (IMM) estimation algorithm, which is currently a popular algorithm in the aerospace community for tracking maneuvering targets. The IMM algorithm is described, and compared to the multiple model (MM) and Maximum A-Posteriori (MAP) Bayesian estimation methods, which are presently used for posterior updating when pharmacokinetic parameters do not change. Both the MM and MAP Bayesian estimation methods are used in their sequential forms, to facilitate tracking of changing parameters. Results indicate that the IMM algorithm is well suited for tracking time-varying pharmacokinetic parameters in acutely ill and unstable patients, incurring only about half of the integrated error compared to the sequential MM and MAP methods on the same example.
A comprehensive Bayesian approach to gravitational wave astronomy
NASA Astrophysics Data System (ADS)
Littenberg, Tyson Bailey
2009-06-01
The challenge of determining whether data from a gravitational wave detector contains signals which are cosmic in origin is the central problem in gravitational wave astronomy. The "detection problem" is particularly challenging for low amplitude signals embedded in "glitchy" instrument noise. It is imperative that we can robustly distinguish between the data being consistent with instrument noise alone, or noise and a weak gravitational wave signal. In response to this challenge we have set out to develop a robust, general purpose approach that can locate and characterize gravitational wave signals, and provided odds that the signal is of cosmic origin. Our approach employs the Markov Chain Monte Carlo family of algorithms to construct a fully Bayesian solution to the challenge - the Parallel Tempered Markov Chain Monte Carlo (PTMCMC) detection algorithm. The PTMCMC detection algorithm establishes which regions of parameter space contain the highest posterior weight, efficiently explores the posterior distribution function of the model parameters, and calculates the marginalized likelihood, or evidence, for the models under consideration. We illustrate our approach using simulated LISA and LIGO-Virgo data.
AutoClass: A Bayesian Approach to Classification
NASA Technical Reports Server (NTRS)
Stutz, John; Cheeseman, Peter; Hanson, Robin; Taylor, Will; Lum, Henry, Jr. (Technical Monitor)
1994-01-01
We describe a Bayesian approach to the untutored discovery of classes in a set of cases, sometimes called finite mixture separation or clustering. The main difference between clustering and our approach is that we search for the "best" set of class descriptions rather than grouping the cases themselves. We describe our classes in terms of a probability distribution or density function, and the locally maximal posterior probability valued function parameters. We rate our classifications with an approximate joint probability of the data and functional form, marginalizing over the parameters. Approximation is necessitated by the computational complexity of the joint probability. Thus, we marginalize w.r.t. local maxima in the parameter space. We discuss the rationale behind our approach to classification. We give the mathematical development for the basic mixture model and describe the approximations needed for computational tractability. We instantiate the basic model with the discrete Dirichlet distribution and multivariant Gaussian density likelihoods. Then we show some results for both constructed and actual data.
NASA Astrophysics Data System (ADS)
Alves, Nelson A.; Morero, Lucas D.; Rizzi, Leandro G.
2015-06-01
Microcanonical thermostatistics analysis has become an important tool to reveal essential aspects of phase transitions in complex systems. An efficient way to estimate the microcanonical inverse temperature β(E) and the microcanonical entropy S(E) is achieved with the statistical temperature weighted histogram analysis method (ST-WHAM). The strength of this method lies on its flexibility, as it can be used to analyse data produced by algorithms with generalised sampling weights. However, for any sampling weight, ST-WHAM requires the calculation of derivatives of energy histograms H(E) , which leads to non-trivial and tedious binning tasks for models with continuous energy spectrum such as those for biomolecular and colloidal systems. Here, we discuss two alternative methods that avoid the need for such energy binning to obtain continuous estimates for H(E) in order to evaluate β(E) by using ST-WHAM: (i) a series expansion to estimate probability densities from the empirical cumulative distribution function (CDF), and (ii) a Bayesian approach to model this CDF. Comparison with a simple linear regression method is also carried out. The performance of these approaches is evaluated considering coarse-grained protein models for folding and peptide aggregation.
Bayesian Kinematic Finite Fault Source Models (Invited)
NASA Astrophysics Data System (ADS)
Minson, S. E.; Simons, M.; Beck, J. L.
2010-12-01
Finite fault earthquake source models are inherently under-determined: there is no unique solution to the inverse problem of determining the rupture history at depth as a function of time and space when our data are only limited observations at the Earth's surface. Traditional inverse techniques rely on model constraints and regularization to generate one model from the possibly broad space of all possible solutions. However, Bayesian methods allow us to determine the ensemble of all possible source models which are consistent with the data and our a priori assumptions about the physics of the earthquake source. Until now, Bayesian techniques have been of limited utility because they are computationally intractable for problems with as many free parameters as kinematic finite fault models. We have developed a methodology called Cascading Adaptive Tempered Metropolis In Parallel (CATMIP) which allows us to sample very high-dimensional problems in a parallel computing framework. The CATMIP algorithm combines elements of simulated annealing and genetic algorithms with the Metropolis algorithm to dynamically optimize the algorithm's efficiency as it runs. We will present synthetic performance tests of finite fault models made with this methodology as well as a kinematic source model for the 2007 Mw 7.7 Tocopilla, Chile earthquake. This earthquake was well recorded by multiple ascending and descending interferograms and a network of high-rate GPS stations whose records can be used as near-field seismograms.
A localization model to localize multiple sources using Bayesian inference
NASA Astrophysics Data System (ADS)
Dunham, Joshua Rolv
Accurate localization of a sound source in a room setting is important in both psychoacoustics and architectural acoustics. Binaural models have been proposed to explain how the brain processes and utilizes the interaural time differences (ITDs) and interaural level differences (ILDs) of sound waves arriving at the ears of a listener in determining source location. Recent work shows that applying Bayesian methods to this problem is proving fruitful. In this thesis, pink noise samples are convolved with head-related transfer functions (HRTFs) and compared to combinations of one and two anechoic speech signals convolved with different HRTFs or binaural room impulse responses (BRIRs) to simulate room positions. Through exhaustive calculation of Bayesian posterior probabilities and using a maximal likelihood approach, model selection will determine the number of sources present, and parameter estimation will result in azimuthal direction of the source(s).
A Bayesian approach to extracting meaning from system behavior
Dress, W.B.
1998-08-01
The modeling relation and its reformulation to include the semiotic hierarchy is essential for the understanding, control, and successful re-creation of natural systems. This presentation will argue for a careful application of Rosen`s modeling relationship to the problems of intelligence and autonomy in natural and artificial systems. To this end, the authors discuss the essential need for a correct theory of induction, learning, and probability; and suggest that modern Bayesian probability theory, developed by Cox, Jaynes, and others, can adequately meet such demands, especially on the operational level of extracting meaning from observations. The methods of Bayesian and maximum Entropy parameter estimation have been applied to measurements of system observables to directly infer the underlying differential equations generating system behavior. This approach by-passes the usual method of parameter estimation based on assuming a functional form for the observable and then estimating the parameters that would lead to the particular observed behavior. The computational savings is great since only location parameters enter into the maximum-entropy calculations; this innovation finesses the need for nonlinear parameters altogether. Such an approach more directly extracts the semantics inherent in a given system by going to the root of system meaning as expressed by abstract form or shape, rather than in syntactic particulars, such as signal amplitude and phase. Examples will be shown how the form of a system can be followed while ignoring unnecessary details. In this sense, the authors are observing the meaning of the words rather than being concerned with their particular expression or language. For the present discussion, empirical models are embodied by the differential equations underlying, producing, or describing the behavior of a process as measured or tracked by a particular variable set--the observables. The a priori models are probability structures that
PREDICTIVE BAYESIAN PATHOGEN DOSE-RESPONSE MODEL FORMS
The use of predictive Bayesian methods in dose-response assessment will be investigated. The predictive Bayesian approach offers an alternative to current approaches in that it does not require the selection of a specific confidence limit, yet provides an answer that is more cons...
Wan, Rongrong; Cai, Shanshan; Li, Hengpeng; Yang, Guishan; Li, Zhaofu; Nie, Xiaofei
2014-01-15
Lake eutrophication has become a very serious environmental problem in China. If water pollution is to be controlled and ultimately eliminated, it is essential to understand how human activities affect surface water quality. A recently developed technique using the Bayesian hierarchical linear regression model revealed the effects of land use and land cover (LULC) on stream water quality at a watershed scale. Six LULC categories combined with watershed characteristics, including size, slope, and permeability were the variables that were studied. The pollutants of concern were nutrient concentrations of total nitrogen (TN) and total phosphorus (TP), common pollutants found in eutrophication. The monthly monitoring data at 41 sites in the Xitiaoxi Watershed, China during 2009-2010 were used for model demonstration. The results showed that the relationships between LULC and stream water quality are so complicated that the effects are varied over large areas. The models suggested that urban and agricultural land are important sources of TN and TP concentrations, while rural residential land is one of the major sources of TN. Certain agricultural practices (excessive fertilizer application) result in greater concentrations of nutrients in paddy fields, artificial grasslands, and artificial woodlands. This study suggests that Bayesian hierarchical modeling is a powerful tool for examining the complicated relationships between land use and water quality on different scales, and for developing land use and water management policies. PMID:24342905
Model Comparison of Bayesian Semiparametric and Parametric Structural Equation Models
ERIC Educational Resources Information Center
Song, Xin-Yuan; Xia, Ye-Mao; Pan, Jun-Hao; Lee, Sik-Yum
2011-01-01
Structural equation models have wide applications. One of the most important issues in analyzing structural equation models is model comparison. This article proposes a Bayesian model comparison statistic, namely the "L[subscript nu]"-measure for both semiparametric and parametric structural equation models. For illustration purposes, we consider…
Zhao, Xiaodong; Pelegri, Assimina A
2016-04-01
Biomechanical imaging techniques based on acoustic radiation force (ARF) have been developed to characterize the viscoelasticity of soft tissue by measuring the motion excited by ARF non-invasively. The unknown stress distribution in the region of excitation limits an accurate inverse characterization of soft tissue viscoelasticity, and single degree-of-freedom simplified models have been applied to solve the inverse problem approximately. In this study, the ARF-induced creep imaging is employed to estimate the time constant of a Voigt viscoelastic tissue model, and an inverse finite element (FE) characterization procedure based on a Bayesian formulation is presented. The Bayesian approach aims to estimate a reasonable quantification of the probability distributions of soft tissue mechanical properties in the presence of measurement noise and model parameter uncertainty. Gaussian process metamodeling is applied to provide a fast statistical approximation based on a small number of computationally expensive FE model runs. Numerical simulation results demonstrate that the Bayesian approach provides an efficient and practical estimation of the probability distributions of time constant in the ARF-induced creep imaging. In a comparison study with the single degree of freedom models, the Bayesian approach with FE models improves the estimation results even in the presence of large uncertainty levels of the model parameters. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26255624
Du, Qingyun; Zhang, Mingxiao; Li, Yayan; Luan, Hui; Liang, Shi; Ren, Fu
2016-01-01
Incorporating the information of hypertension, this paper applies Bayesian multi-disease analysis to model the spatial patterns of Ischemic Heart Disease (IHD) risks. Patterns of harmful alcohol intake (HAI) and overweight/obesity are also modelled as they are common risk factors contributing to both IHD and hypertension. The hospitalization data of IHD and hypertension in 2012 were analyzed with three Bayesian multi-disease models at the sub-district level of Shenzhen. Results revealed that the IHD high-risk cluster shifted slightly north-eastward compared with the IHD Standardized Hospitalization Ratio (SHR). Spatial variations of overweight/obesity and HAI were found to contribute most to the IHD patterns. Identified patterns of IHD risk would benefit IHD integrated prevention. Spatial patterns of overweight/obesity and HAI could supplement the current disease surveillance system by providing information about small-area level risk factors, and thus benefit integrated prevention of related chronic diseases. Middle southern Shenzhen, where high risk of IHD, overweight/obesity, and HAI are present, should be prioritized for interventions, including alcohol control, innovative healthy diet toolkit distribution, insurance system revision, and community-based chronic disease intervention. Related health resource planning is also suggested to focus on these areas first. PMID:27104551
Du, Qingyun; Zhang, Mingxiao; Li, Yayan; Luan, Hui; Liang, Shi; Ren, Fu
2016-04-01
Incorporating the information of hypertension, this paper applies Bayesian multi-disease analysis to model the spatial patterns of Ischemic Heart Disease (IHD) risks. Patterns of harmful alcohol intake (HAI) and overweight/obesity are also modelled as they are common risk factors contributing to both IHD and hypertension. The hospitalization data of IHD and hypertension in 2012 were analyzed with three Bayesian multi-disease models at the sub-district level of Shenzhen. Results revealed that the IHD high-risk cluster shifted slightly north-eastward compared with the IHD Standardized Hospitalization Ratio (SHR). Spatial variations of overweight/obesity and HAI were found to contribute most to the IHD patterns. Identified patterns of IHD risk would benefit IHD integrated prevention. Spatial patterns of overweight/obesity and HAI could supplement the current disease surveillance system by providing information about small-area level risk factors, and thus benefit integrated prevention of related chronic diseases. Middle southern Shenzhen, where high risk of IHD, overweight/obesity, and HAI are present, should be prioritized for interventions, including alcohol control, innovative healthy diet toolkit distribution, insurance system revision, and community-based chronic disease intervention. Related health resource planning is also suggested to focus on these areas first. PMID:27104551