ERIC Educational Resources Information Center
Meyer, Donald L.
Bayesian statistical methodology and its possible uses in the behavioral sciences are discussed in relation to the solution of problems in both the use and teaching of fundamental statistical methods, including confidence intervals, significance tests, and sampling. The Bayesian model explains these statistical methods and offers a consistent…
Information geometry of Bayesian statistics
NASA Astrophysics Data System (ADS)
Matsuzoe, Hiroshi
2015-01-01
A survey of geometry of Bayesian statistics is given. From the viewpoint of differential geometry, a prior distribution in Bayesian statistics is regarded as a volume element on a statistical model. In this paper, properties of Bayesian estimators are studied by applying equiaffine structures of statistical manifolds. In addition, geometry of anomalous statistics is also studied. Deformed expectations and deformed independeces are important in anomalous statistics. After summarizing geometry of such deformed structues, a generalization of maximum likelihood method is given. A suitable weight on a parameter space is important in Bayesian statistics, whereas a suitable weight on a sample space is important in anomalous statistics.
Bayesian Statistics for Biological Data: Pedigree Analysis
ERIC Educational Resources Information Center
Stanfield, William D.; Carlton, Matthew A.
2004-01-01
The use of Bayes' formula is applied to the biological problem of pedigree analysis to show that the Bayes' formula and non-Bayesian or "classical" methods of probability calculation give different answers. First year college students of biology can be introduced to the Bayesian statistics.
Philosophy and the practice of Bayesian statistics
Gelman, Andrew; Shalizi, Cosma Rohilla
2015-01-01
A substantial school in the philosophy of science identifies Bayesian inference with inductive inference and even rationality as such, and seems to be strengthened by the rise and practical success of Bayesian statistics. We argue that the most successful forms of Bayesian statistics do not actually support that particular philosophy but rather accord much better with sophisticated forms of hypothetico-deductivism. We examine the actual role played by prior distributions in Bayesian models, and the crucial aspects of model checking and model revision, which fall outside the scope of Bayesian confirmation theory. We draw on the literature on the consistency of Bayesian updating and also on our experience of applied work in social science. Clarity about these matters should benefit not just philosophy of science, but also statistical practice. At best, the inductivist view has encouraged researchers to fit and compare models without checking them; at worst, theorists have actively discouraged practitioners from performing model checking because it does not fit into their framework. PMID:22364575
Bayesian versus 'plain-vanilla Bayesian' multitarget statistics
NASA Astrophysics Data System (ADS)
Mahler, Ronald P. S.
2004-08-01
Finite-set statistics (FISST) is a direct generalization of single-sensor, single-target Bayes statistics to the multisensor-multitarget realm, based on random set theory. Various aspects of FISST are being investigated by several research teams around the world. In recent years, however, a few partisans have claimed that a "plain-vanilla Bayesian approach" suffices as down-to-earth, "straightforward," and general "first principles" for multitarget problems. Therefore, FISST is mere mathematical "obfuscation." In this and a companion paper I demonstrate the speciousness of these claims. In this paper I summarize general Bayes statistics, what is required to use it in multisensor-multitarget problems, and why FISST is necessary to make it practical. Then I demonstrate that the "plain-vanilla Bayesian approach" is so heedlessly formulated that it is erroneous, not even Bayesian denigrates FISST concepts while unwittingly assuming them, and has resulted in a succession of algorithms afflicted by inherent -- but less than candidly acknowledged -- computational "logjams."
Teaching Bayesian Statistics to Undergraduate Students through Debates
ERIC Educational Resources Information Center
Stewart, Sepideh; Stewart, Wayne
2014-01-01
This paper describes a lecturer's approach to teaching Bayesian statistics to students who were only exposed to the classical paradigm. The study shows how the lecturer extended himself by making use of ventriloquist dolls to grab hold of students' attention and embed important ideas in revealing the differences between the Bayesian and…
Liley, James; Wallace, Chris
2015-01-01
Genome-wide association studies (GWAS) have been successful in identifying single nucleotide polymorphisms (SNPs) associated with many traits and diseases. However, at existing sample sizes, these variants explain only part of the estimated heritability. Leverage of GWAS results from related phenotypes may improve detection without the need for larger datasets. The Bayesian conditional false discovery rate (cFDR) constitutes an upper bound on the expected false discovery rate (FDR) across a set of SNPs whose p values for two diseases are both less than two disease-specific thresholds. Calculation of the cFDR requires only summary statistics and have several advantages over traditional GWAS analysis. However, existing methods require distinct control samples between studies. Here, we extend the technique to allow for some or all controls to be shared, increasing applicability. Several different SNP sets can be defined with the same cFDR value, and we show that the expected FDR across the union of these sets may exceed expected FDR in any single set. We describe a procedure to establish an upper bound for the expected FDR among the union of such sets of SNPs. We apply our technique to pairwise analysis of p values from ten autoimmune diseases with variable sharing of controls, enabling discovery of 59 SNP-disease associations which do not reach GWAS significance after genomic control in individual datasets. Most of the SNPs we highlight have previously been confirmed using replication studies or larger GWAS, a useful validation of our technique; we report eight SNP-disease associations across five diseases not previously declared. Our technique extends and strengthens the previous algorithm, and establishes robust limits on the expected FDR. This approach can improve SNP detection in GWAS, and give insight into shared aetiology between phenotypically related conditions. PMID:25658688
Bayesian statistics in environmental engineering planning
Englehardt, J.D.; Simon, T.W.
1999-07-01
Today's engineer must be able to quantify both uncertainty due to information limitations, and the variability of natural processes, in order to determine risk. Nowhere is this emphasis on risk assessment more evident than in environmental engineering. The use of Bayesian inference for the rigorous assessment of risk based on available information is reviewed in this paper. Several example environmental engineering planning applications are presented: (1) assessment of losses involving the evaluation of proposed revisions to the South Florida Building Code after Hurricane Andrew; (2) development of a model to predict oil spill consequences due to proposed changes in the oil transportation network in the Gulf of Mexico; (3) studies of ambient concentrations of perchloroethylene surrounding dry cleaners and of tire particulates in residential areas near roadways in Miami, FL; (4) risk assessment from contaminated soils at a cleanup of an old transformer dump site.
A BAYESIAN STATISTICAL APPROACH FOR THE EVALUATION OF CMAQ
Bayesian statistical methods are used to evaluate Community Multiscale Air Quality (CMAQ) model simulations of sulfate aerosol over a section of the eastern US for 4-week periods in summer and winter 2001. The observed data come from two U.S. Environmental Protection Agency data ...
Reconstruction in emission tomography via a Bayesian multiscale statistical framework
NASA Astrophysics Data System (ADS)
Kolaczyk, Eric D.; Nowak, Robert D.
2000-12-01
Recently the authors introduced a general Bayesian statistical method for modeling and analysis in linear inverse problems involving certain types of count data. Emission-based tomography is medical imaging is a particularly important and common examples of this type of proem. In this paper we provide an overview of the methodology and illustrate its application to problems in emission tomography through a series of simulated and real- data examples. The framework rests on the special manner in which a multiscale representation of recursive dyadic partitions interacts with the statistical likelihood of data with Poisson noise characteristics. In particular, the likelihood function permits a factorization, with respect to location-scale indexing, analogous to the manner in which, say, an arbitrary signal allows a wavelet transform. Recovery of an object from tomographic data is the posed as a problem involving the statistical estimation of a multiscale parameter vector. A type of statistical shrinkage estimation is used, induced by careful choice of a Bayesian prior probability structure for the parameters. Finally, the ill-posedness of the tomographic imaging problem is accounted for by embedding the above-described framework within a larger, but simpler statistical algorithm problem, via the so-called Expectation-Maximization approach. The resulting image reconstruction algorithm is iterative in nature, entailing the calculation of two closed-form algebraic expression at each iteration. Convergence of the algorithm to a unique solution, under appropriate choice of Bayesian prior, can be assured.
Spectral Analysis of B Stars: An Application of Bayesian Statistics
NASA Astrophysics Data System (ADS)
Mugnes, J.-M.; Robert, C.
2012-12-01
To better understand the processes involved in stellar physics, it is necessary to obtain accurate stellar parameters (effective temperature, surface gravity, abundances…). Spectral analysis is a powerful tool for investigating stars, but it is also vital to reduce uncertainties at a decent computational cost. Here we present a spectral analysis method based on a combination of Bayesian statistics and grids of synthetic spectra obtained with TLUSTY. This method simultaneously constrains the stellar parameters by using all the lines accessible in observed spectra and thus greatly reduces uncertainties and improves the overall spectrum fitting. Preliminary results are shown using spectra from the Observatoire du Mont-Mégantic.
Bayesian statistics and information fusion for GPS-denied navigation
NASA Astrophysics Data System (ADS)
Copp, Brian Lee
It is well known that satellite navigation systems are vulnerable to disruption due to jamming, spoofing, or obstruction of the signal. The desire for robust navigation of aircraft in GPS-denied environments has motivated the development of feature-aided navigation systems, in which measurements of environmental features are used to complement the dead reckoning solution produced by an inertial navigation system. Examples of environmental features which can be exploited for navigation include star positions, terrain elevation, terrestrial wireless signals, and features extracted from photographic data. Feature-aided navigation represents a particularly challenging estimation problem because the measurements are often strongly nonlinear, and the quality of the navigation solution is limited by the knowledge of nuisance parameters which may be difficult to model accurately. As a result, integration approaches based on the Kalman filter and its variants may fail to give adequate performance. This project develops a framework for the integration of feature-aided navigation techniques using Bayesian statistics. In this approach, the probability density function for aircraft horizontal position (latitude and longitude) is approximated by a two-dimensional point mass function defined on a rectangular grid. Nuisance parameters are estimated using a hypothesis based approach (Multiple Model Adaptive Estimation) which continuously maintains an accurate probability density even in the presence of strong nonlinearities. The effectiveness of the proposed approach is illustrated by the simulated use of terrain referenced navigation and wireless time-of-arrival positioning to estimate a reference aircraft trajectory. Monte Carlo simulations have shown that accurate position estimates can be obtained in terrain referenced navigation even with a strongly nonlinear altitude bias. The integration of terrain referenced and wireless time-of-arrival measurements is described along with
Bayesian Tracking of Emerging Epidemics Using Ensemble Optimal Statistical Interpolation
Cobb, Loren; Krishnamurthy, Ashok; Mandel, Jan; Beezley, Jonathan D.
2014-01-01
We present a preliminary test of the Ensemble Optimal Statistical Interpolation (EnOSI) method for the statistical tracking of an emerging epidemic, with a comparison to its popular relative for Bayesian data assimilation, the Ensemble Kalman Filter (EnKF). The spatial data for this test was generated by a spatial susceptible-infectious-removed (S-I-R) epidemic model of an airborne infectious disease. Both tracking methods in this test employed Poisson rather than Gaussian noise, so as to handle epidemic data more accurately. The EnOSI and EnKF tracking methods worked well on the main body of the simulated spatial epidemic, but the EnOSI was able to detect and track a distant secondary focus of infection that the EnKF missed entirely. PMID:25113590
Bayesian tracking of emerging epidemics using ensemble optimal statistical interpolation.
Cobb, Loren; Krishnamurthy, Ashok; Mandel, Jan; Beezley, Jonathan D
2014-07-01
We present a preliminary test of the Ensemble Optimal Statistical Interpolation (EnOSI) method for the statistical tracking of an emerging epidemic, with a comparison to its popular relative for Bayesian data assimilation, the Ensemble Kalman Filter (EnKF). The spatial data for this test was generated by a spatial susceptible-infectious-removed (S-I-R) epidemic model of an airborne infectious disease. Both tracking methods in this test employed Poisson rather than Gaussian noise, so as to handle epidemic data more accurately. The EnOSI and EnKF tracking methods worked well on the main body of the simulated spatial epidemic, but the EnOSI was able to detect and track a distant secondary focus of infection that the EnKF missed entirely. PMID:25113590
Defining statistical perceptions with an empirical Bayesian approach
NASA Astrophysics Data System (ADS)
Tajima, Satohiro
2013-04-01
Extracting statistical structures (including textures or contrasts) from a natural stimulus is a central challenge in both biological and engineering contexts. This study interprets the process of statistical recognition in terms of hyperparameter estimations and free-energy minimization procedures with an empirical Bayesian approach. This mathematical interpretation resulted in a framework for relating physiological insights in animal sensory systems to the functional properties of recognizing stimulus statistics. We applied the present theoretical framework to two typical models of natural images that are encoded by a population of simulated retinal neurons, and demonstrated that the resulting cognitive performances could be quantified with the Fisher information measure. The current enterprise yielded predictions about the properties of human texture perception, suggesting that the perceptual resolution of image statistics depends on visual field angles, internal noise, and neuronal information processing pathways, such as the magnocellular, parvocellular, and koniocellular systems. Furthermore, the two conceptually similar natural-image models were found to yield qualitatively different predictions, striking a note of warning against confusing the two models when describing a natural image.
Bayesian statistical approach to binary asteroid orbit determination
NASA Astrophysics Data System (ADS)
Kovalenko, Irina D.; Stoica, Radu S.; Emelyanov, N. V.; Doressoundiram, A.; Hestroffer, D.
2016-01-01
The problem of binary asteroids orbit determination is of particular interest, given knowledge of the orbit is the best way to derive the mass of the system. Orbit determination from observed points is a classic problem of celestial mechanics. However, in the case of binary asteroids, particularly with a small number of observations, the solution is not evident to derive. In the case of resolved binaries the problem consists in the determination of the relative orbit from observed relative positions of a secondary asteroid with respect to the primary. In this work, the problem is investigated as a statistical inverse problem. Within this context, we propose a method based on Bayesian modelling together with a global optimisation procedure that is based on the simulated annealing algorithm.
Oakland, J.S.
1986-01-01
Addressing the increasing importance for firms to have a thorough knowledge of statistically based quality control procedures, this book presents the fundamentals of statistical process control (SPC) in a non-mathematical, practical way. It provides real-life examples and data drawn from a wide variety of industries. The foundations of good quality management and process control, and control of conformance and consistency during production are given. Offers clear guidance to those who wish to understand and implement modern SPC techniques.
Exploring aftershock properties with depth using Bayesian statistics
NASA Astrophysics Data System (ADS)
Narteau, Clement; Shebalin, Peter; Holschneider, Matthias
2013-04-01
Stress magnitudes and frictional faulting properties vary with depth and may strongly affect earthquake statistics. Nevertheless, if the Anderson faulting theory may be used to define the relative stress magnitudes, it remains extremely difficult to observe significant variations of earthquake properties from the top to the bottom of the seismogenic layer. Here, we concentrate on aftershock sequences in normal, strike-slip and reverse faulting regimes to isolate specific temporal properties of this major relaxation process with respect to depth. More exactly, we use Bayesian statistics of the Modified Omori Law to characterize the exponent p of the power-law aftershock decay rate and the duration c of the early stage of aftershock activity that does not fit with this power-law regime. Preliminary results show that the c-value decreases with depth without any significant variation of the p-value. Then, we infer the duration of a non power-law aftershock decay rate over short times can be related to the level of stress in the seismogenic crust.
NASA Technical Reports Server (NTRS)
He, Yuning
2015-01-01
The behavior of complex aerospace systems is governed by numerous parameters. For safety analysis it is important to understand how the system behaves with respect to these parameter values. In particular, understanding the boundaries between safe and unsafe regions is of major importance. In this paper, we describe a hierarchical Bayesian statistical modeling approach for the online detection and characterization of such boundaries. Our method for classification with active learning uses a particle filter-based model and a boundary-aware metric for best performance. From a library of candidate shapes incorporated with domain expert knowledge, the location and parameters of the boundaries are estimated using advanced Bayesian modeling techniques. The results of our boundary analysis are then provided in a form understandable by the domain expert. We illustrate our approach using a simulation model of a NASA neuro-adaptive flight control system, as well as a system for the detection of separation violations in the terminal airspace.
Bayesian Statistical Approach To Binary Asteroid Orbit Determination
NASA Astrophysics Data System (ADS)
Dmitrievna Kovalenko, Irina; Stoica, Radu S.
2015-08-01
Orbit determination from observations is one of the classical problems in celestial mechanics. Deriving the trajectory of binary asteroid with high precision is much more complicate than the trajectory of simple asteroid. Here we present a method of orbit determination based on the algorithm of Monte Carlo Markov Chain (MCMC). This method can be used for the preliminary orbit determination with relatively small number of observations, or for adjustment of orbit previously determined.The problem consists on determination of a conditional a posteriori probability density with given observations. Applying the Bayesian statistics, the a posteriori probability density of the binary asteroid orbital parameters is proportional to the a priori and likelihood probability densities. The likelihood function is related to the noise probability density and can be calculated from O-C deviations (Observed minus Calculated positions). The optionally used a priori probability density takes into account information about the population of discovered asteroids. The a priori probability density is used to constrain the phase space of possible orbits.As a MCMC method the Metropolis-Hastings algorithm has been applied, adding a globally convergent coefficient. The sequence of possible orbits derives through the sampling of each orbital parameter and acceptance criteria.The method allows to determine the phase space of every possible orbit considering each parameter. It also can be used to derive one orbit with the biggest probability density of orbital elements.
Bayesian statistical ionospheric tomography improved by incorporating ionosonde measurements
NASA Astrophysics Data System (ADS)
Norberg, Johannes; Virtanen, Ilkka I.; Roininen, Lassi; Vierinen, Juha; Orispää, Mikko; Kauristie, Kirsti; Lehtinen, Markku S.
2016-04-01
We validate two-dimensional ionospheric tomography reconstructions against EISCAT incoherent scatter radar measurements. Our tomography method is based on Bayesian statistical inversion with prior distribution given by its mean and covariance. We employ ionosonde measurements for the choice of the prior mean and covariance parameters and use the Gaussian Markov random fields as a sparse matrix approximation for the numerical computations. This results in a computationally efficient tomographic inversion algorithm with clear probabilistic interpretation. We demonstrate how this method works with simultaneous beacon satellite and ionosonde measurements obtained in northern Scandinavia. The performance is compared with results obtained with a zero-mean prior and with the prior mean taken from the International Reference Ionosphere 2007 model. In validating the results, we use EISCAT ultra-high-frequency incoherent scatter radar measurements as the ground truth for the ionization profile shape. We find that in comparison to the alternative prior information sources, ionosonde measurements improve the reconstruction by adding accurate information about the absolute value and the altitude distribution of electron density. With an ionosonde at continuous disposal, the presented method enhances stand-alone near-real-time ionospheric tomography for the given conditions significantly.
Statistical relationship discovery in SNP data using Bayesian networks
NASA Astrophysics Data System (ADS)
Szlendak, Pawel; Nowak, Robert M.
2009-06-01
The aim of this article is to present an application of Bayesian networks for discovery of affinity relationships based on genetic data. The presented solution uses a search and score algorithm to discover the Bayesian network structure which best fits the data i.e. the alleles of single nucleotide polymorphisms detected by DNA microarrays. The algorithm perceives structure learning as a combinatorial optimization problem. It is a randomized local search algorithm, which uses a Bayesian-Dirichlet scoring function. The algorithm's testing procedure encompasses tests on synthetic data, generated from given Bayesian networks by a forward sampling procedure as well as tests on real-world genetic data. The comparison of Bayesian networks generated by the application and the genetic evidence data confirms the usability of the presented methods.
Ockham's razor and Bayesian analysis. [statistical theory for systems evaluation
NASA Technical Reports Server (NTRS)
Jefferys, William H.; Berger, James O.
1992-01-01
'Ockham's razor', the ad hoc principle enjoining the greatest possible simplicity in theoretical explanations, is presently shown to be justifiable as a consequence of Bayesian inference; Bayesian analysis can, moreover, clarify the nature of the 'simplest' hypothesis consistent with the given data. By choosing the prior probabilities of hypotheses, it becomes possible to quantify the scientific judgment that simpler hypotheses are more likely to be correct. Bayesian analysis also shows that a hypothesis with fewer adjustable parameters intrinsically possesses an enhanced posterior probability, due to the clarity of its predictions.
Impaired Bayesian Learning for Cognitive Control in Cocaine Dependence
Ide, Jaime S.; Hu, Sien; Zhang, Sheng; Yu, Angela J.; Li, Chiang-shan R.
2015-01-01
Background Cocaine dependence is associated with cognitive control deficits. Here, we apply a Bayesian model of stop-signal task (SST) performance to further characterize these deficits in a theory-driven framework. Methods A “sequential effect” is commonly observed in SST: encounters with a stop trial tend to prolong reaction time (RT) on subsequent go trials. The Bayesian model accounts for this by assuming that each stop/go trial increases/decreases the subject’s belief about the likelihood of encountering a subsequent stop trial, P(stop), and that P(stop) strategically modulates RT accordingly. Parameters of the model were individually fit, and compared between cocaine-dependent (CD, n=51) and healthy control (HC, n=57) groups, matched in age and gender and both demonstrating a significant sequential effect (p<0.05). Model-free measures of sequential effect, post-error slowing (PES) and post-stop slowing (PSS), were also compared across groups. Results By comparing individually fit Bayesian model parameters, CD were found to utilize a smaller time window of past experiences to anticipate P(stop) (p<0.003), as well as showing less behavioral adjustment in response to P(stop) (p<0.015). PES (p=0.19) and PSS (p=0.14) did not show group differences and were less correlated with the Bayesian account of sequential effect in CD than in HC. Conclusions Cocaine dependence is associated with the utilization of less contextual information to anticipate future events and decreased behavioral adaptation in response to changes in such anticipation. These findings constitute a novel contribution by providing a computationally more refined and statistically more sensitive account of altered cognitive control in cocaine addiction. PMID:25869543
Bayesian reclassification statistics for assessing improvements in diagnostic accuracy.
Huang, Zhipeng; Li, Jialiang; Cheng, Ching-Yu; Cheung, Carol; Wong, Tien-Yin
2016-07-10
We propose a Bayesian approach to the estimation of the net reclassification improvement (NRI) and three versions of the integrated discrimination improvement (IDI) under the logistic regression model. Both NRI and IDI were proposed as numerical characterizations of accuracy improvement for diagnostic tests and were shown to retain certain practical advantage over analysis based on ROC curves and offer complementary information to the changes in area under the curve. Our development is a new contribution towards Bayesian solution for the estimation of NRI and IDI, which eases computational burden and increases flexibility. Our simulation results indicate that Bayesian estimation enjoys satisfactory performance comparable with frequentist estimation and achieves point estimation and credible interval construction simultaneously. We adopt the methodology to analyze a real data from the Singapore Malay Eye Study. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26875442
Ice Shelf Modeling: A Cross-Polar Bayesian Statistical Approach
NASA Astrophysics Data System (ADS)
Kirchner, N.; Furrer, R.; Jakobsson, M.; Zwally, H. J.
2010-12-01
Ice streams interlink glacial terrestrial and marine environments: embedded in a grounded inland ice such as the Antarctic Ice Sheet or the paleo ice sheets covering extensive parts of the Eurasian and Amerasian Arctic respectively, ice streams are major drainage agents facilitating the discharge of substantial portions of continental ice into the ocean. At their seaward side, ice streams can either extend onto the ocean as floating ice tongues (such as the Drygalsky Ice Tongue/East Antarctica), or feed large ice shelves (as is the case for e.g. the Siple Coast and the Ross Ice Shelf/West Antarctica). The flow behavior of ice streams has been recognized to be intimately linked with configurational changes in their attached ice shelves; in particular, ice shelf disintegration is associated with rapid ice stream retreat and increased mass discharge from the continental ice mass, contributing eventually to sea level rise. Investigations of ice stream retreat mechanism are however incomplete if based on terrestrial records only: rather, the dynamics of ice shelves (and, eventually, the impact of the ocean on the latter) must be accounted for. However, since floating ice shelves leave hardly any traces behind when melting, uncertainty regarding the spatio-temporal distribution and evolution of ice shelves in times prior to instrumented and recorded observation is high, calling thus for a statistical modeling approach. Complementing ongoing large-scale numerical modeling efforts (Pollard & DeConto, 2009), we model the configuration of ice shelves by using a Bayesian Hiearchial Modeling (BHM) approach. We adopt a cross-polar perspective accounting for the fact that currently, ice shelves exist mainly along the coastline of Antarctica (and are virtually non-existing in the Arctic), while Arctic Ocean ice shelves repeatedly impacted the Arctic ocean basin during former glacial periods. Modeled Arctic ocean ice shelf configurations are compared with geological spatial
Postscript: Bayesian Statistical Inference in Psychology: Comment on Trafimow (2003)
ERIC Educational Resources Information Center
Lee, Michael D.; Wagenmakers, Eric-Jan
2005-01-01
This paper comments on the response offered by Trafimow on Lee and Wagenmakers comments on Trafimow's original article. It seems our comment should have made it clear that the objective Bayesian approach we advocate views probabilities neither as relative frequencies nor as belief states, but as degrees of plausibility assigned to propositions in…
Yu, Jihnhee; Hutson, Alan D; Siddiqui, Adnan H; Kedron, Mary A
2016-02-01
In some small clinical trials, toxicity is not a primary endpoint; however, it often has dire effects on patients' quality of life and is even life-threatening. For such clinical trials, rigorous control of the overall incidence of adverse events is desirable, while simultaneously collecting safety information. In this article, we propose group sequential toxicity monitoring strategies to control overall toxicity incidents below a certain level as opposed to performing hypothesis testing, which can be incorporated into an existing study design based on the primary endpoint. We consider two sequential methods: a non-Bayesian approach in which stopping rules are obtained based on the 'future' probability of an excessive toxicity rate; and a Bayesian adaptation modifying the proposed non-Bayesian approach, which can use the information obtained at interim analyses. Through an extensive Monte Carlo study, we show that the Bayesian approach often provides better control of the overall toxicity rate than the non-Bayesian approach. We also investigate adequate toxicity estimation after the studies. We demonstrate the applicability of our proposed methods in controlling the symptomatic intracranial hemorrhage rate for treating acute ischemic stroke patients. PMID:22407172
TOWARDS A BAYESIAN PERSPECTIVE ON STATISTICAL DISCLOSURE LIMITATION
National statistical offices and other organizations collect data on individual subjects (person, businesses, organizations), typically while assuring the subject that data pertaining to them will be held confidential. These data provide the raw material for statistical data pro...
Bayesian statistics for the calibration of the LISA Pathfinder experiment
NASA Astrophysics Data System (ADS)
Armano, M.; Audley, H.; Auger, G.; Binetruy, P.; Born, M.; Bortoluzzi, D.; Brandt, N.; Bursi, A.; Caleno, M.; Cavalleri, A.; Cesarini, A.; Cruise, M.; Danzmann, K.; Diepholz, I.; Dolesi, R.; Dunbar, N.; Ferraioli, L.; Ferroni, V.; Fitzsimons, E.; Freschi, M.; García Marirrodriga, C.; Gerndt, R.; Gesa, L.; Gibert, F.; Giardini, D.; Giusteri, R.; Grimani, C.; Harrison, I.; Heinzel, G.; Hewitson, M.; Hollington, D.; Hueller, M.; Huesler, J.; Inchauspé, H.; Jennrich, O.; Jetzer, P.; Johlander, B.; Karnesis, N.; Kaune, B.; Korsakova, N.; Killow, C.; Lloro, I.; Maarschalkerweerd, R.; Madden, S.; Mance, D.; Martin, V.; Martin-Porqueras, F.; Mateos, I.; McNamara, P.; Mendes, J.; Mitchell, E.; Moroni, A.; Nofrarias, M.; Paczkowski, S.; Perreur-Lloyd, M.; Pivato, P.; Plagnol, E.; Prat, P.; Ragnit, U.; Ramos-Castro, J.; Reiche, J.; Romera Perez, J. A.; Robertson, D.; Rozemeijer, H.; Russano, G.; Sarra, P.; Schleicher, A.; Slutsky, J.; Sopuerta, C. F.; Sumner, T.; Texier, D.; Thorpe, J.; Trenkel, C.; Tu, H. B.; Vitale, S.; Wanner, G.; Ward, H.; Waschke, S.; Wass, P.; Wealthy, D.; Wen, S.; Weber, W.; Wittchen, A.; Zanoni, C.; Ziegler, T.; Zweifel, P.
2015-05-01
The main goal of LISA Pathfinder (LPF) mission is to estimate the acceleration noise models of the overall LISA Technology Package (LTP) experiment on-board. This will be of crucial importance for the future space-based Gravitational-Wave (GW) detectors, like eLISA. Here, we present the Bayesian analysis framework to process the planned system identification experiments designed for that purpose. In particular, we focus on the analysis strategies to predict the accuracy of the parameters that describe the system in all degrees of freedom. The data sets were generated during the latest operational simulations organised by the data analysis team and this work is part of the LTPDA Matlab toolbox.
Preferential sampling and Bayesian geostatistics: Statistical modeling and examples.
Cecconi, Lorenzo; Grisotto, Laura; Catelan, Dolores; Lagazio, Corrado; Berrocal, Veronica; Biggeri, Annibale
2016-08-01
Preferential sampling refers to any situation in which the spatial process and the sampling locations are not stochastically independent. In this paper, we present two examples of geostatistical analysis in which the usual assumption of stochastic independence between the point process and the measurement process is violated. To account for preferential sampling, we specify a flexible and general Bayesian geostatistical model that includes a shared spatial random component. We apply the proposed model to two different case studies that allow us to highlight three different modeling and inferential aspects of geostatistical modeling under preferential sampling: (1) continuous or finite spatial sampling frame; (2) underlying causal model and relevant covariates; and (3) inferential goals related to mean prediction surface or prediction uncertainty. PMID:27566774
Statistical detection of EEG synchrony using empirical bayesian inference.
Singh, Archana K; Asoh, Hideki; Takeda, Yuji; Phillips, Steven
2015-01-01
There is growing interest in understanding how the brain utilizes synchronized oscillatory activity to integrate information across functionally connected regions. Computing phase-locking values (PLV) between EEG signals is a popular method for quantifying such synchronizations and elucidating their role in cognitive tasks. However, high-dimensionality in PLV data incurs a serious multiple testing problem. Standard multiple testing methods in neuroimaging research (e.g., false discovery rate, FDR) suffer severe loss of power, because they fail to exploit complex dependence structure between hypotheses that vary in spectral, temporal and spatial dimension. Previously, we showed that a hierarchical FDR and optimal discovery procedures could be effectively applied for PLV analysis to provide better power than FDR. In this article, we revisit the multiple comparison problem from a new Empirical Bayes perspective and propose the application of the local FDR method (locFDR; Efron, 2001) for PLV synchrony analysis to compute FDR as a posterior probability that an observed statistic belongs to a null hypothesis. We demonstrate the application of Efron's Empirical Bayes approach for PLV synchrony analysis for the first time. We use simulations to validate the specificity and sensitivity of locFDR and a real EEG dataset from a visual search study for experimental validation. We also compare locFDR with hierarchical FDR and optimal discovery procedures in both simulation and experimental analyses. Our simulation results showed that the locFDR can effectively control false positives without compromising on the power of PLV synchrony inference. Our results from the application locFDR on experiment data detected more significant discoveries than our previously proposed methods whereas the standard FDR method failed to detect any significant discoveries. PMID:25822617
Statistical Detection of EEG Synchrony Using Empirical Bayesian Inference
Singh, Archana K.; Asoh, Hideki; Takeda, Yuji; Phillips, Steven
2015-01-01
There is growing interest in understanding how the brain utilizes synchronized oscillatory activity to integrate information across functionally connected regions. Computing phase-locking values (PLV) between EEG signals is a popular method for quantifying such synchronizations and elucidating their role in cognitive tasks. However, high-dimensionality in PLV data incurs a serious multiple testing problem. Standard multiple testing methods in neuroimaging research (e.g., false discovery rate, FDR) suffer severe loss of power, because they fail to exploit complex dependence structure between hypotheses that vary in spectral, temporal and spatial dimension. Previously, we showed that a hierarchical FDR and optimal discovery procedures could be effectively applied for PLV analysis to provide better power than FDR. In this article, we revisit the multiple comparison problem from a new Empirical Bayes perspective and propose the application of the local FDR method (locFDR; Efron, 2001) for PLV synchrony analysis to compute FDR as a posterior probability that an observed statistic belongs to a null hypothesis. We demonstrate the application of Efron's Empirical Bayes approach for PLV synchrony analysis for the first time. We use simulations to validate the specificity and sensitivity of locFDR and a real EEG dataset from a visual search study for experimental validation. We also compare locFDR with hierarchical FDR and optimal discovery procedures in both simulation and experimental analyses. Our simulation results showed that the locFDR can effectively control false positives without compromising on the power of PLV synchrony inference. Our results from the application locFDR on experiment data detected more significant discoveries than our previously proposed methods whereas the standard FDR method failed to detect any significant discoveries. PMID:25822617
Cost-sensitive Bayesian control policy in human active sensing
Ahmad, Sheeraz; Huang, He; Yu, Angela J.
2014-01-01
An important but poorly understood aspect of sensory processing is the role of active sensing, the use of self-motion such as eye or head movements to focus sensing resources on the most rewarding or informative aspects of the sensory environment. Here, we present behavioral data from a visual search experiment, as well as a Bayesian model of within-trial dynamics of sensory processing and eye movements. Within this Bayes-optimal inference and control framework, which we call C-DAC (Context-Dependent Active Controller), various types of behavioral costs, such as temporal delay, response error, and sensor repositioning cost, are explicitly minimized. This contrasts with previously proposed algorithms that optimize abstract statistical objectives such as anticipated information gain (Infomax) (Butko and Movellan, 2010) and expected posterior maximum (greedy MAP) (Najemnik and Geisler, 2005). We find that C-DAC captures human visual search dynamics better than previous models, in particular a certain form of “confirmation bias” apparent in the way human subjects utilize prior knowledge about the spatial distribution of the search target to improve search speed and accuracy. We also examine several computationally efficient approximations to C-DAC that may present biologically more plausible accounts of the neural computations underlying active sensing, as well as practical tools for solving active sensing problems in engineering applications. To summarize, this paper makes the following key contributions: human visual search behavioral data, a context-sensitive Bayesian active sensing model, a comparative study between different models of human active sensing, and a family of efficient approximations to the optimal model. PMID:25520640
Cost-sensitive Bayesian control policy in human active sensing.
Ahmad, Sheeraz; Huang, He; Yu, Angela J
2014-01-01
An important but poorly understood aspect of sensory processing is the role of active sensing, the use of self-motion such as eye or head movements to focus sensing resources on the most rewarding or informative aspects of the sensory environment. Here, we present behavioral data from a visual search experiment, as well as a Bayesian model of within-trial dynamics of sensory processing and eye movements. Within this Bayes-optimal inference and control framework, which we call C-DAC (Context-Dependent Active Controller), various types of behavioral costs, such as temporal delay, response error, and sensor repositioning cost, are explicitly minimized. This contrasts with previously proposed algorithms that optimize abstract statistical objectives such as anticipated information gain (Infomax) (Butko and Movellan, 2010) and expected posterior maximum (greedy MAP) (Najemnik and Geisler, 2005). We find that C-DAC captures human visual search dynamics better than previous models, in particular a certain form of "confirmation bias" apparent in the way human subjects utilize prior knowledge about the spatial distribution of the search target to improve search speed and accuracy. We also examine several computationally efficient approximations to C-DAC that may present biologically more plausible accounts of the neural computations underlying active sensing, as well as practical tools for solving active sensing problems in engineering applications. To summarize, this paper makes the following key contributions: human visual search behavioral data, a context-sensitive Bayesian active sensing model, a comparative study between different models of human active sensing, and a family of efficient approximations to the optimal model. PMID:25520640
A BAYESIAN STATISTICAL APPROACHES FOR THE EVALUATION OF CMAQ
This research focuses on the application of spatial statistical techniques for the evaluation of the Community Multiscale Air Quality (CMAQ) model. The upcoming release version of the CMAQ model was run for the calendar year 2001 and is in the process of being evaluated by EPA an...
Applications of Bayesian Statistics to Problems in Gamma-Ray Bursts
NASA Technical Reports Server (NTRS)
Meegan, Charles A.
1997-01-01
This presentation will describe two applications of Bayesian statistics to Gamma Ray Bursts (GRBS). The first attempts to quantify the evidence for a cosmological versus galactic origin of GRBs using only the observations of the dipole and quadrupole moments of the angular distribution of bursts. The cosmological hypothesis predicts isotropy, while the galactic hypothesis is assumed to produce a uniform probability distribution over positive values for these moments. The observed isotropic distribution indicates that the Bayes factor for the cosmological hypothesis over the galactic hypothesis is about 300. Another application of Bayesian statistics is in the estimation of chance associations of optical counterparts with galaxies. The Bayesian approach is preferred to frequentist techniques here because the Bayesian approach easily accounts for galaxy mass distributions and because one can incorporate three disjoint hypotheses: (1) bursts come from galactic centers, (2) bursts come from galaxies in proportion to luminosity, and (3) bursts do not come from external galaxies. This technique was used in the analysis of the optical counterpart to GRB970228.
Bayesian approach for counting experiment statistics applied to a neutrino point source analysis
NASA Astrophysics Data System (ADS)
Bose, D.; Brayeur, L.; Casier, M.; de Vries, K. D.; Golup, G.; van Eijndhoven, N.
2013-12-01
In this paper we present a model independent analysis method following Bayesian statistics to analyse data from a generic counting experiment and apply it to the search for neutrinos from point sources. We discuss a test statistic defined following a Bayesian framework that will be used in the search for a signal. In case no signal is found, we derive an upper limit without the introduction of approximations. The Bayesian approach allows us to obtain the full probability density function for both the background and the signal rate. As such, we have direct access to any signal upper limit. The upper limit derivation directly compares with a frequentist approach and is robust in the case of low-counting observations. Furthermore, it allows also to account for previous upper limits obtained by other analyses via the concept of prior information without the need of the ad hoc application of trial factors. To investigate the validity of the presented Bayesian approach, we have applied this method to the public IceCube 40-string configuration data for 10 nearby blazars and we have obtained a flux upper limit, which is in agreement with the upper limits determined via a frequentist approach. Furthermore, the upper limit obtained compares well with the previously published result of IceCube, using the same data set.
Fine Mapping Causal Variants with an Approximate Bayesian Method Using Marginal Test Statistics.
Chen, Wenan; Larrabee, Beth R; Ovsyannikova, Inna G; Kennedy, Richard B; Haralambieva, Iana H; Poland, Gregory A; Schaid, Daniel J
2015-07-01
Two recently developed fine-mapping methods, CAVIAR and PAINTOR, demonstrate better performance over other fine-mapping methods. They also have the advantage of using only the marginal test statistics and the correlation among SNPs. Both methods leverage the fact that the marginal test statistics asymptotically follow a multivariate normal distribution and are likelihood based. However, their relationship with Bayesian fine mapping, such as BIMBAM, is not clear. In this study, we first show that CAVIAR and BIMBAM are actually approximately equivalent to each other. This leads to a fine-mapping method using marginal test statistics in the Bayesian framework, which we call CAVIAR Bayes factor (CAVIARBF). Another advantage of the Bayesian framework is that it can answer both association and fine-mapping questions. We also used simulations to compare CAVIARBF with other methods under different numbers of causal variants. The results showed that both CAVIARBF and BIMBAM have better performance than PAINTOR and other methods. Compared to BIMBAM, CAVIARBF has the advantage of using only marginal test statistics and takes about one-quarter to one-fifth of the running time. We applied different methods on two independent cohorts of the same phenotype. Results showed that CAVIARBF, BIMBAM, and PAINTOR selected the same top 3 SNPs; however, CAVIARBF and BIMBAM had better consistency in selecting the top 10 ranked SNPs between the two cohorts. Software is available at https://bitbucket.org/Wenan/caviarbf. PMID:25948564
Bayesian Statistical Analysis Applied to NAA Data for Neutron Flux Spectrum Determination
NASA Astrophysics Data System (ADS)
Chiesa, D.; Previtali, E.; Sisti, M.
2014-04-01
In this paper, we present a statistical method, based on Bayesian statistics, to evaluate the neutron flux spectrum from the activation data of different isotopes. The experimental data were acquired during a neutron activation analysis (NAA) experiment [A. Borio di Tigliole et al., Absolute flux measurement by NAA at the Pavia University TRIGA Mark II reactor facilities, ENC 2012 - Transactions Research Reactors, ISBN 978-92-95064-14-0, 22 (2012)] performed at the TRIGA Mark II reactor of Pavia University (Italy). In order to evaluate the neutron flux spectrum, subdivided in energy groups, we must solve a system of linear equations containing the grouped cross sections and the activation rate data. We solve this problem with Bayesian statistical analysis, including the uncertainties of the coefficients and the a priori information about the neutron flux. A program for the analysis of Bayesian hierarchical models, based on Markov Chain Monte Carlo (MCMC) simulations, is used to define the problem statistical model and solve it. The energy group fluxes and their uncertainties are then determined with great accuracy and the correlations between the groups are analyzed. Finally, the dependence of the results on the prior distribution choice and on the group cross section data is investigated to confirm the reliability of the analysis.
Bayesian Bigot? Statistical Discrimination, Stereotypes, and Employer Decision Making
Pager, Devah; Karafin, Diana
2010-01-01
Much of the debate over the underlying causes of discrimination centers on the rationality of employer decision making. Economic models of statistical discrimination emphasize the cognitive utility of group estimates as a means of dealing with the problems of uncertainty. Sociological and social-psychological models, by contrast, question the accuracy of group-level attributions. Although mean differences may exist between groups on productivity-related characteristics, these differences are often inflated in their application, leading to much larger differences in individual evaluations than would be warranted by actual group-level trait distributions. In this study, the authors examine the nature of employer attitudes about black and white workers and the extent to which these views are calibrated against their direct experiences with workers from each group. They use data from fifty-five in-depth interviews with hiring managers to explore employers’ group-level attributions and their direct observations to develop a model of attitude formation and employer learning. PMID:20686633
Bayesian adjustment for exposure misclassification in case-control studies.
Chu, Rong; Gustafson, Paul; Le, Nhu
2010-04-30
Poor measurement of explanatory variables occurs frequently in observational studies. Error-prone observations may lead to biased estimation and loss of power in detecting the impact of explanatory variables on the response. We consider misclassified binary exposure in the context of case-control studies, assuming the availability of validation data to inform the magnitude of the misclassification. A Bayesian adjustment to correct the misclassification is investigated. Simulation studies show that the Bayesian method can have advantages over non-Bayesian counterparts, particularly in the face of a rare exposure, small validation sample sizes, and uncertainty about whether exposure misclassification is differential or non-differential. The method is illustrated via application to several real studies. PMID:20087839
Control Theory and Statistical Generalizations.
ERIC Educational Resources Information Center
Powers, William T.
1990-01-01
Contrasts modeling methods in control theory to the methods of statistical generalizations in empirical studies of human or animal behavior. Presents a computer simulation that predicts behavior based on variables (effort and rewards) determined by the invariable (desired reward). Argues that control theory methods better reflect relationships to…
[Statistical process control in healthcare].
Anhøj, Jacob; Bjørn, Brian
2009-05-18
Statistical process control (SPC) is a branch of statistical science which comprises methods for the study of process variation. Common cause variation is inherent in any process and predictable within limits. Special cause variation is unpredictable and indicates change in the process. The run chart is a simple tool for analysis of process variation. Run chart analysis may reveal anomalies that suggest shifts or unusual patterns that are attributable to special cause variation. PMID:19454196
NASA Astrophysics Data System (ADS)
Albert, Carlo; Ulzega, Simone; Stoop, Ruedi
2016-04-01
Measured time-series of both precipitation and runoff are known to exhibit highly non-trivial statistical properties. For making reliable probabilistic predictions in hydrology, it is therefore desirable to have stochastic models with output distributions that share these properties. When parameters of such models have to be inferred from data, we also need to quantify the associated parametric uncertainty. For non-trivial stochastic models, however, this latter step is typically very demanding, both conceptually and numerically, and always never done in hydrology. Here, we demonstrate that methods developed in statistical physics make a large class of stochastic differential equation (SDE) models amenable to a full-fledged Bayesian parameter inference. For concreteness we demonstrate these methods by means of a simple yet non-trivial toy SDE model. We consider a natural catchment that can be described by a linear reservoir, at the scale of observation. All the neglected processes are assumed to happen at much shorter time-scales and are therefore modeled with a Gaussian white noise term, the standard deviation of which is assumed to scale linearly with the system state (water volume in the catchment). Even for constant input, the outputs of this simple non-linear SDE model show a wealth of desirable statistical properties, such as fat-tailed distributions and long-range correlations. Standard algorithms for Bayesian inference fail, for models of this kind, because their likelihood functions are extremely high-dimensional intractable integrals over all possible model realizations. The use of Kalman filters is illegitimate due to the non-linearity of the model. Particle filters could be used but become increasingly inefficient with growing number of data points. Hamiltonian Monte Carlo algorithms allow us to translate this inference problem to the problem of simulating the dynamics of a statistical mechanics system and give us access to most sophisticated methods
NASA Astrophysics Data System (ADS)
Rubin, D.; Aldering, G.; Barbary, K.; Boone, K.; Chappell, G.; Currie, M.; Deustua, S.; Fagrelius, P.; Fruchter, A.; Hayden, B.; Lidman, C.; Nordin, J.; Perlmutter, S.; Saunders, C.; Sofiatti, C.; Supernova Cosmology Project, The
2015-11-01
While recent supernova (SN) cosmology research has benefited from improved measurements, current analysis approaches are not statistically optimal and will prove insufficient for future surveys. This paper discusses the limitations of current SN cosmological analyses in treating outliers, selection effects, shape- and color-standardization relations, unexplained dispersion, and heterogeneous observations. We present a new Bayesian framework, called UNITY (Unified Nonlinear Inference for Type-Ia cosmologY), that incorporates significant improvements in our ability to confront these effects. We apply the framework to real SN observations and demonstrate smaller statistical and systematic uncertainties. We verify earlier results that SNe Ia require nonlinear shape and color standardizations, but we now include these nonlinear relations in a statistically well-justified way. This analysis was primarily performed blinded, in that the basic framework was first validated on simulated data before transitioning to real data. We also discuss possible extensions of the method.
A Bayesian Formulation of Behavioral Control
ERIC Educational Resources Information Center
Huys, Quentin J. M.; Dayan, Peter
2009-01-01
Helplessness, a belief that the world is not subject to behavioral control, has long been central to our understanding of depression, and has influenced cognitive theories, animal models and behavioral treatments. However, despite its importance, there is no fully accepted definition of helplessness or behavioral control in psychology or…
Predictive data-derived Bayesian statistic-transport model and simulator of sunken oil mass
NASA Astrophysics Data System (ADS)
Echavarria Gregory, Maria Angelica
Sunken oil is difficult to locate because remote sensing techniques cannot as yet provide views of sunken oil over large areas. Moreover, the oil may re-suspend and sink with changes in salinity, sediment load, and temperature, making deterministic fate models difficult to deploy and calibrate when even the presence of sunken oil is difficult to assess. For these reasons, together with the expense of field data collection, there is a need for a statistical technique integrating limited data collection with stochastic transport modeling. Predictive Bayesian modeling techniques have been developed and demonstrated for exploiting limited information for decision support in many other applications. These techniques brought to a multi-modal Lagrangian modeling framework, representing a near-real time approach to locating and tracking sunken oil driven by intrinsic physical properties of field data collected following a spill after oil has begun collecting on a relatively flat bay bottom. Methods include (1) development of the conceptual predictive Bayesian model and multi-modal Gaussian computational approach based on theory and literature review; (2) development of an object-oriented programming and combinatorial structure capable of managing data, integration and computation over an uncertain and highly dimensional parameter space; (3) creating a new bi-dimensional approach of the method of images to account for curved shoreline boundaries; (4) confirmation of model capability for locating sunken oil patches using available (partial) real field data and capability for temporal projections near curved boundaries using simulated field data; and (5) development of a stand-alone open-source computer application with graphical user interface capable of calibrating instantaneous oil spill scenarios, obtaining sets maps of relative probability profiles at different prediction times and user-selected geographic areas and resolution, and capable of performing post
Shen, Jian; Zhao, Yuan
2010-01-01
Nonpoint source load estimation is an essential part of the development of the bacterial total maximum daily load (TMDL) mandated by the Clean Water Act. However, the currently widely used watershed-receiving water modeling approach is usually associated with a high level of uncertainty and requires long-term observational data and intensive training effort. The load duration curve (LDC) method recommended by the EPA provides a simpler way to estimate bacteria loading. This method, however, does not take into consideration the specific fate and transport mechanisms of the pollutant and cannot address the uncertainty. In this study, a Bayesian statistical approach is applied to the Escherichia coli TMDL development of a stream on the Eastern Shore of Virginia to inversely estimate watershed bacteria loads from the in-stream monitoring data. The mechanism of bacteria transport is incorporated. The effects of temperature, bottom slope, and flow on allowable and existing load calculations are discussed. The uncertainties associated with load estimation are also fully described. Our method combines the merits of LDC, mechanistic modeling, and Bayesian statistics, while overcoming some of the shortcomings associated with these methods. It is a cost-effective tool for bacteria TMDL development and can be modified and applied to multi-segment streams as well. PMID:19781737
Li, Ke; Zhang, Qiuju; Wang, Kun; Chen, Peng; Wang, Huaqing
2016-01-01
A new fault diagnosis method for rotating machinery based on adaptive statistic test filter (ASTF) and Diagnostic Bayesian Network (DBN) is presented in this paper. ASTF is proposed to obtain weak fault features under background noise, ASTF is based on statistic hypothesis testing in the frequency domain to evaluate similarity between reference signal (noise signal) and original signal, and remove the component of high similarity. The optimal level of significance α is obtained using particle swarm optimization (PSO). To evaluate the performance of the ASTF, evaluation factor Ipq is also defined. In addition, a simulation experiment is designed to verify the effectiveness and robustness of ASTF. A sensitive evaluation method using principal component analysis (PCA) is proposed to evaluate the sensitiveness of symptom parameters (SPs) for condition diagnosis. By this way, the good SPs that have high sensitiveness for condition diagnosis can be selected. A three-layer DBN is developed to identify condition of rotation machinery based on the Bayesian Belief Network (BBN) theory. Condition diagnosis experiment for rolling element bearings demonstrates the effectiveness of the proposed method. PMID:26761006
Li, Ke; Zhang, Qiuju; Wang, Kun; Chen, Peng; Wang, Huaqing
2016-01-01
A new fault diagnosis method for rotating machinery based on adaptive statistic test filter (ASTF) and Diagnostic Bayesian Network (DBN) is presented in this paper. ASTF is proposed to obtain weak fault features under background noise, ASTF is based on statistic hypothesis testing in the frequency domain to evaluate similarity between reference signal (noise signal) and original signal, and remove the component of high similarity. The optimal level of significance α is obtained using particle swarm optimization (PSO). To evaluate the performance of the ASTF, evaluation factor Ipq is also defined. In addition, a simulation experiment is designed to verify the effectiveness and robustness of ASTF. A sensitive evaluation method using principal component analysis (PCA) is proposed to evaluate the sensitiveness of symptom parameters (SPs) for condition diagnosis. By this way, the good SPs that have high sensitiveness for condition diagnosis can be selected. A three-layer DBN is developed to identify condition of rotation machinery based on the Bayesian Belief Network (BBN) theory. Condition diagnosis experiment for rolling element bearings demonstrates the effectiveness of the proposed method. PMID:26761006
Statistical process control for lathes
Barkman, W.E.; Babelay, E.F.; Woodard, L.M.
1986-12-18
The Oak Ridge Y-12 Plant produces large numbers of hemishell workpieces using precision computer-controlled lathes. In order to improve the quality/productivity of these machines, a pilot project is under way to demonstrate the utility of automatic, on-machine measurement of key workpiece features. This system utilizes tough-trigger probes and on automatic tool changer to generate data for a host data base that monitors and adjusts the machine's operations for variable machining conditions. This paper discusses the individual components, control software and data communications that are used to achieve an automated machining system which incorporates statistical process control.
Application of Bayesian statistical techniques in the analysis of spacecraft pointing errors
NASA Astrophysics Data System (ADS)
Dungate, D. G.
1993-09-01
A key problem in the statistical analysis of spacecraft pointing performance is the justifiable identification of a Probability Density Function (PDF) for each contributing error source. The drawbacks of Gaussian distributions are well known, and more flexible families of distributions have been identified, but often only limited data is available to support PDF assignment. Two methods based on Bayesian statistical principles, each working from alternative viewpoints, are applied to the problem here, and appear to offer significant advantages in the analysis of many error types. In particular, errors such as time-varying thermal distortions, where data is only available via a small number of Finite Element Analyses, appear to be satisfactorily dealt with via one of these methods, which also explicitly allows for the inclusion of estimated errors in quantities formed from the data available for a particular error source.
Ni, Weiping; Yan, Weidong; Bian, Hui; Wu, Junzheng
2014-01-01
A novel fast SAR image change detection method is presented in this paper. Based on a Bayesian approach, the prior information that speckles follow the Nakagami distribution is incorporated into the difference image (DI) generation process. The new DI performs much better than the familiar log ratio (LR) DI as well as the cumulant based Kullback-Leibler divergence (CKLD) DI. The statistical region merging (SRM) approach is first introduced to change detection context. A new clustering procedure with the region variance as the statistical inference variable is exhibited to tailor SAR image change detection purposes, with only two classes in the final map, the unchanged and changed classes. The most prominent advantages of the proposed modified SRM (MSRM) method are the ability to cope with noise corruption and the quick implementation. Experimental results show that the proposed method is superior in both the change detection accuracy and the operation efficiency. PMID:25258740
Exploring the Connection Between Sampling Problems in Bayesian Inference and Statistical Mechanics
NASA Technical Reports Server (NTRS)
Pohorille, Andrew
2006-01-01
The Bayesian and statistical mechanical communities often share the same objective in their work - estimating and integrating probability distribution functions (pdfs) describing stochastic systems, models or processes. Frequently, these pdfs are complex functions of random variables exhibiting multiple, well separated local minima. Conventional strategies for sampling such pdfs are inefficient, sometimes leading to an apparent non-ergodic behavior. Several recently developed techniques for handling this problem have been successfully applied in statistical mechanics. In the multicanonical and Wang-Landau Monte Carlo (MC) methods, the correct pdfs are recovered from uniform sampling of the parameter space by iteratively establishing proper weighting factors connecting these distributions. Trivial generalizations allow for sampling from any chosen pdf. The closely related transition matrix method relies on estimating transition probabilities between different states. All these methods proved to generate estimates of pdfs with high statistical accuracy. In another MC technique, parallel tempering, several random walks, each corresponding to a different value of a parameter (e.g. "temperature"), are generated and occasionally exchanged using the Metropolis criterion. This method can be considered as a statistically correct version of simulated annealing. An alternative approach is to represent the set of independent variables as a Hamiltonian system. Considerab!e progress has been made in understanding how to ensure that the system obeys the equipartition theorem or, equivalently, that coupling between the variables is correctly described. Then a host of techniques developed for dynamical systems can be used. Among them, probably the most powerful is the Adaptive Biasing Force method, in which thermodynamic integration and biased sampling are combined to yield very efficient estimates of pdfs. The third class of methods deals with transitions between states described
Statistical Inference at Work: Statistical Process Control as an Example
ERIC Educational Resources Information Center
Bakker, Arthur; Kent, Phillip; Derry, Jan; Noss, Richard; Hoyles, Celia
2008-01-01
To characterise statistical inference in the workplace this paper compares a prototypical type of statistical inference at work, statistical process control (SPC), with a type of statistical inference that is better known in educational settings, hypothesis testing. Although there are some similarities between the reasoning structure involved in…
Evaluation of Oceanic Transport Statistics By Use of Transient Tracers and Bayesian Methods
NASA Astrophysics Data System (ADS)
Trossman, D. S.; Thompson, L.; Mecking, S.; Bryan, F.; Peacock, S.
2013-12-01
Key variables that quantify the time scales over which atmospheric signals penetrate into the oceanic interior and their uncertainties are computed using Bayesian methods and transient tracers from both models and observations. First, the mean residence times, subduction rates, and formation rates of Subtropical Mode Water (STMW) and Subpolar Mode Water (SPMW) in the North Atlantic and Subantarctic Mode Water (SAMW) in the Southern Ocean are estimated by combining a model and observations of chlorofluorocarbon-11 (CFC-11) via Bayesian Model Averaging (BMA), statistical technique that weights model estimates according to how close they agree with observations. Second, a Bayesian method is presented to find two oceanic transport parameters associated with the age distribution of ocean waters, the transit-time distribution (TTD), by combining an eddying global ocean model's estimate of the TTD with hydrographic observations of CFC-11, temperature, and salinity. Uncertainties associated with objectively mapping irregularly spaced bottle data are quantified by making use of a thin-plate spline and then propagated via the two Bayesian techniques. It is found that the subduction of STMW, SPMW, and SAMW is mostly an advective process, but up to about one-third of STMW subduction likely owes to non-advective processes. Also, while the formation of STMW is mostly due to subduction, the formation of SPMW is mostly due to other processes. About half of the formation of SAMW is due to subduction and half is due to other processes. A combination of air-sea flux, acting on relatively short time scales, and turbulent mixing, acting on a wide range of time scales, is likely the dominant SPMW erosion mechanism. Air-sea flux is likely responsible for most STMW erosion, and turbulent mixing is likely responsible for most SAMW erosion. Two oceanic transport parameters, the mean age of a water parcel and the half-variance associated with the TTD, estimated using the model's tracers as
NASA Astrophysics Data System (ADS)
Zhang, Xianliang; Yan, Xiaodong
2015-11-01
A new statistical downscaling method was developed and applied to downscale monthly total precipitation from 583 stations in China. Generally, there are two steps involved in statistical downscaling: first, the predictors are selected (large-scale variables) and transformed; and second, a model between the predictors and the predictand (in this case, precipitation) is established. In the first step, a selection process of the predictor domain, called the optimum correlation method (OCM), was developed to transform the predictors. The transformed series obtained by the OCM showed much better correlation with the predictand than those obtained by the traditional transform method for the same predictor. Moreover, the method combining OCM and linear regression obtained better downscaling results than the traditional linear regression method, suggesting that the OCM could be used to improve the results of statistical downscaling. In the second step, Bayesian model averaging (BMA) was adopted as an alternative to linear regression. The method combining the OCM and BMA showed much better performance than the method combining the OCM and linear regression. Thus, BMA could be used as an alternative to linear regression in the second step of statistical downscaling. In conclusion, the downscaling method combining OCM and BMA produces more accurate results than the multiple linear regression method when used to statistically downscale large-scale variables.
Bayesian Software Health Management for Aircraft Guidance, Navigation, and Control
NASA Technical Reports Server (NTRS)
Schumann, Johann; Mbaya, Timmy; Menghoel, Ole
2011-01-01
Modern aircraft, both piloted fly-by-wire commercial aircraft as well as UAVs, more and more depend on highly complex safety critical software systems with many sensors and computer-controlled actuators. Despite careful design and V&V of the software, severe incidents have happened due to malfunctioning software. In this paper, we discuss the use of Bayesian networks (BNs) to monitor the health of the on-board software and sensor system, and to perform advanced on-board diagnostic reasoning. We will focus on the approach to develop reliable and robust health models for the combined software and sensor systems.
A Bayesian statistical model for hybrid metrology to improve measurement accuracy
NASA Astrophysics Data System (ADS)
Silver, R. M.; Zhang, N. F.; Barnes, B. M.; Qin, J.; Zhou, H.; Dixson, R.
2011-05-01
We present a method to combine measurements from different techniques that reduces uncertainties and can improve measurement throughput. The approach directly integrates the measurement analysis of multiple techniques that can include different configurations or platforms. This approach has immediate application when performing model-based optical critical dimension (OCD) measurements. When modeling optical measurements, a library of curves is assembled through the simulation of a multi-dimensional parameter space. Parametric correlation and measurement noise lead to measurement uncertainty in the fitting process with fundamental limitations resulting from the parametric correlations. A strategy to decouple parametric correlation and reduce measurement uncertainties is described. We develop the rigorous underlying Bayesian statistical model and apply this methodology to OCD metrology. We then introduce an approach to damp the regression process to achieve more stable and rapid regression fitting. These methods that use a priori information are shown to reduce measurement uncertainty and improve throughput while also providing an improved foundation for comprehensive reference metrology.
Recovery of gastrointestinal tract motility detection using Naive Bayesian and minimum statistics.
Ulusar, Umit D
2014-08-01
Loss of gastrointestinal motility is a significant medical setback for patients who experience abdominal surgery and contributes to the most common reason for prolonged hospital stays. Recent clinical studies suggest that initiating feeding early after abdominal surgery is beneficial. Early feeding is possible when the patients demonstrate bowel motility in the form of bowel sounds (BS). This work provides a data collection, processing and analysis methodology for detection of recovery of gastrointestinal track motility by observing BSs in auscultation recordings. The approach is suitable for real-time long-term continuous monitoring in clinical environments. The system was developed using a Naive Bayesian algorithm for pattern classification, and Minimum Statistics and spectral subtraction for noise attenuation. The solution was tested on 59h of recordings and 94.15% recognition accuracy was observed. PMID:24971526
Shafieloo, Arman
2012-05-01
By introducing Crossing functions and hyper-parameters I show that the Bayesian interpretation of the Crossing Statistics [1] can be used trivially for the purpose of model selection among cosmological models. In this approach to falsify a cosmological model there is no need to compare it with other models or assume any particular form of parametrization for the cosmological quantities like luminosity distance, Hubble parameter or equation of state of dark energy. Instead, hyper-parameters of Crossing functions perform as discriminators between correct and wrong models. Using this approach one can falsify any assumed cosmological model without putting priors on the underlying actual model of the universe and its parameters, hence the issue of dark energy parametrization is resolved. It will be also shown that the sensitivity of the method to the intrinsic dispersion of the data is small that is another important characteristic of the method in testing cosmological models dealing with data with high uncertainties.
How to construct the optimal Bayesian measurement in quantum statistical decision theory
NASA Astrophysics Data System (ADS)
Tanaka, Fuyuhiko
Recently, much more attention has been paid to the study aiming at the application of fundamental properties in quantum theory to information processing and technology. In particular, modern statistical methods have been recognized in quantum state tomography (QST), where we have to estimate a density matrix (positive semidefinite matrix of trace one) representing a quantum system from finite data collected in a certain experiment. When the dimension of the density matrix gets large (from a few hundred to millions), it gets a nontrivial problem. While a specific measurement is often given and fixed in QST, we are also able to choose a measurement itself according to the purpose of QST by using qunatum statistical decision theory. Here we propose a practical method to find the best projective measurement in the Bayesian sense. We assume that a prior distribution (e.g., the uniform distribution) and a convex loss function (e.g., the squared error) are given. In many quantum experiments, these assumptions are not so restrictive. We show that the best projective measurement and the best statistical inference based on the measurement outcome exist and that they are obtained explicitly by using the Monte Carlo optimization. The Grant-in-Aid for Scientific Research (B) (No. 26280005).
NASA Astrophysics Data System (ADS)
Moradkhani, Hamid
2015-04-01
Drought forecasting is vital for resource management and planning. Both societal and agricultural requirements for water weigh heavily on the natural environment, which may become scarce in the event of drought. Although drought forecasts are an important tool for managing water in hydrologic systems, these forecasts are plagued by uncertainties, owing to the complexities of water dynamics and the spatial heterogeneities of pertinent variables. Due to these uncertainties, it is necessary to frame forecasts in a probabilistic manner. Here we present a statistical-dynamical probabilistic drought forecast framework within Bayesian networks. The statistical forecast model applies a family of multivariate distribution functions to forecast future drought conditions given the drought status in the past. The advantage of the statistical forecast model is that it develops conditional probabilities of a given forecast variable, and returns the highest probable forecast along with an assessment of the uncertainty around that value. The dynamical model relies on data assimilation to characterize the initial land surface condition uncertainty which correspondingly reflect on drought forecast. In addition, the recovery of drought will be examined. From these forecasts, it is found that drought recovery is a longer process than suggested in recent literature. Drought in land surface variables (snow, soil moisture) is shown to be persistent up to a year in certain locations, depending on the intensity of the drought. Location within the basin appears to be a driving factor in the ability of the land surface to recover from drought, allowing for differentiation between drought prone and drought resistant regions.
Automated parameter estimation for biological models using Bayesian statistical model checking
2015-01-01
Background Probabilistic models have gained widespread acceptance in the systems biology community as a useful way to represent complex biological systems. Such models are developed using existing knowledge of the structure and dynamics of the system, experimental observations, and inferences drawn from statistical analysis of empirical data. A key bottleneck in building such models is that some system variables cannot be measured experimentally. These variables are incorporated into the model as numerical parameters. Determining values of these parameters that justify existing experiments and provide reliable predictions when model simulations are performed is a key research problem. Domain experts usually estimate the values of these parameters by fitting the model to experimental data. Model fitting is usually expressed as an optimization problem that requires minimizing a cost-function which measures some notion of distance between the model and the data. This optimization problem is often solved by combining local and global search methods that tend to perform well for the specific application domain. When some prior information about parameters is available, methods such as Bayesian inference are commonly used for parameter learning. Choosing the appropriate parameter search technique requires detailed domain knowledge and insight into the underlying system. Results Using an agent-based model of the dynamics of acute inflammation, we demonstrate a novel parameter estimation algorithm by discovering the amount and schedule of doses of bacterial lipopolysaccharide that guarantee a set of observed clinical outcomes with high probability. We synthesized values of twenty-eight unknown parameters such that the parameterized model instantiated with these parameter values satisfies four specifications describing the dynamic behavior of the model. Conclusions We have developed a new algorithmic technique for discovering parameters in complex stochastic models of
NASA Astrophysics Data System (ADS)
Norberg, J.; Virtanen, I. I.; Roininen, L.; Vierinen, J.; Orispää, M.; Kauristie, K.; Lehtinen, M. S.
2015-09-01
We validate two-dimensional ionospheric tomography reconstructions against EISCAT incoherent scatter radar measurements. Our tomography method is based on Bayesian statistical inversion with prior distribution given by its mean and covariance. We employ ionosonde measurements for the choice of the prior mean and covariance parameters, and use the Gaussian Markov random fields as a sparse matrix approximation for the numerical computations. This results in a computationally efficient and statistically clear inversion algorithm for tomography. We demonstrate how this method works with simultaneous beacon satellite and ionosonde measurements obtained in northern Scandinavia. The performance is compared with results obtained with a zero mean prior and with the prior mean taken from the International Reference Ionosphere 2007 model. In validating the results, we use EISCAT UHF incoherent scatter radar measurements as the ground truth for the ionization profile shape. We find that ionosonde measurements improve the reconstruction by adding accurate information about the absolute value and the height distribution of electron density, and outperforms the alternative prior information sources. With an ionosonde at continuous disposal, the presented method enhances stand-alone near real-time ionospheric tomography for the given conditions significantly.
Hewett, Paul; Bullock, William H
2014-01-01
For more than 20 years CSX Transportation (CSXT) has collected exposure measurements from locomotive engineers and conductors who are potentially exposed to diesel emissions. The database included measurements for elemental and total carbon, polycyclic aromatic hydrocarbons, aromatics, aldehydes, carbon monoxide, and nitrogen dioxide. This database was statistically analyzed and summarized, and the resulting statistics and exposure profiles were compared to relevant occupational exposure limits (OELs) using both parametric and non-parametric descriptive and compliance statistics. Exposure ratings, using the American Industrial Health Association (AIHA) exposure categorization scheme, were determined using both the compliance statistics and Bayesian Decision Analysis (BDA). The statistical analysis of the elemental carbon data (a marker for diesel particulate) strongly suggests that the majority of levels in the cabs of the lead locomotives (n = 156) were less than the California guideline of 0.020 mg/m(3). The sample 95th percentile was roughly half the guideline; resulting in an AIHA exposure rating of category 2/3 (determined using BDA). The elemental carbon (EC) levels in the trailing locomotives tended to be greater than those in the lead locomotive; however, locomotive crews rarely ride in the trailing locomotive. Lead locomotive EC levels were similar to those reported by other investigators studying locomotive crew exposures and to levels measured in urban areas. Lastly, both the EC sample mean and 95%UCL were less than the Environmental Protection Agency (EPA) reference concentration of 0.005 mg/m(3). With the exception of nitrogen dioxide, the overwhelming majority of the measurements for total carbon, polycyclic aromatic hydrocarbons, aromatics, aldehydes, and combustion gases in the cabs of CSXT locomotives were either non-detects or considerably less than the working OELs for the years represented in the database. When compared to the previous American
NASA Astrophysics Data System (ADS)
Herschtal, A.; Foroudi, F.; Greer, P. B.; Eade, T. N.; Hindson, B. R.; Kron, T.
2012-05-01
Early approaches to characterizing errors in target displacement during a fractionated course of radiotherapy assumed that the underlying fraction-to-fraction variability in target displacement, known as the ‘treatment error’ or ‘random error’, could be regarded as constant across patients. More recent approaches have modelled target displacement allowing for differences in random error between patients. However, until recently it has not been feasible to compare the goodness of fit of alternate models of random error rigorously. This is because the large volumes of real patient data necessary to distinguish between alternative models have only very recently become available. This work uses real-world displacement data collected from 365 patients undergoing radical radiotherapy for prostate cancer to compare five candidate models for target displacement. The simplest model assumes constant random errors across patients, while other models allow for random errors that vary according to one of several candidate distributions. Bayesian statistics and Markov Chain Monte Carlo simulation of the model parameters are used to compare model goodness of fit. We conclude that modelling the random error as inverse gamma distributed provides a clearly superior fit over all alternatives considered. This finding can facilitate more accurate margin recipes and correction strategies.
Francis, Royce A; Vanbriesen, Jeanne M; Small, Mitchell J
2010-02-15
Statistical models are developed for bromine incorporation in the trihalomethane (THM), trihaloacetic acids (THAA), dihaloacetic acid (DHAA), and dihaloacetonitrile (DHAN) subclasses of disinfection byproducts (DBPs) using distribution system samples from plants applying only free chlorine as a primary or residual disinfectant in the Information Collection Rule (ICR) database. The objective of this study is to characterize the effect of water quality conditions before, during, and post-treatment on distribution system bromine incorporation into DBP mixtures. Bayesian Markov Chain Monte Carlo (MCMC) methods are used to model individual DBP concentrations and estimate the coefficients of the linear models used to predict the bromine incorporation fraction for distribution system DBP mixtures in each of the four priority DBP classes. The bromine incorporation models achieve good agreement with the data. The most important predictors of bromine incorporation fraction across DBP classes are alkalinity, specific UV absorption (SUVA), and the bromide to total organic carbon ratio (Br:TOC) at the first point of chlorine addition. Free chlorine residual in the distribution system, distribution system residence time, distribution system pH, turbidity, and temperature only slightly influence bromine incorporation. The bromide to applied chlorine (Br:Cl) ratio is not a significant predictor of the bromine incorporation fraction (BIF) in any of the four classes studied. These results indicate that removal of natural organic matter and the location of chlorine addition are important treatment decisions that have substantial implications for bromine incorporation into disinfection byproduct in drinking waters. PMID:20095529
NASA Astrophysics Data System (ADS)
Stenning, D. C.; Wagner-Kaiser, R.; Robinson, E.; van Dyk, D. A.; von Hippel, T.; Sarajedini, A.; Stein, N.
2016-07-01
We develop a Bayesian model for globular clusters composed of multiple stellar populations, extending earlier statistical models for open clusters composed of simple (single) stellar populations. Specifically, we model globular clusters with two populations that differ in helium abundance. Our model assumes a hierarchical structuring of the parameters in which physical properties—age, metallicity, helium abundance, distance, absorption, and initial mass—are common to (i) the cluster as a whole or to (ii) individual populations within a cluster, or are unique to (iii) individual stars. An adaptive Markov chain Monte Carlo (MCMC) algorithm is devised for model fitting that greatly improves convergence relative to its precursor non-adaptive MCMC algorithm. Our model and computational tools are incorporated into an open-source software suite known as BASE-9. We use numerical studies to demonstrate that our method can recover parameters of two-population clusters, and also show how model misspecification can potentially be identified. As a proof of concept, we analyze the two stellar populations of globular cluster NGC 5272 using our model and methods. (BASE-9 is available from GitHub: https://github.com/argiopetech/base/releases).
NASA Astrophysics Data System (ADS)
Cunningham, A. C.; Wallinga, J.; Hobo, N.; Versendaal, A. J.; Makaske, B.; Middelkoop, H.
2015-01-01
The optically stimulated luminescence (OSL) signal from fluvial sediment often contains a remnant from the previous deposition cycle, leading to a partially bleached equivalent-dose distribution. Although identification of the burial dose is of primary concern, the degree of bleaching could potentially provide insights into sediment transport processes. However, comparison of bleaching between samples is complicated by sample-to-sample variation in aliquot size and luminescence sensitivity. Here we begin development of an age model to account for these effects. With measurement data from multi-grain aliquots, we use Bayesian computational statistics to estimate the burial dose and bleaching parameters of the single-grain dose distribution. We apply the model to 46 samples taken from fluvial sediment of Rhine branches in the Netherlands, and compare the results with environmental predictor variables (depositional environment, texture, sample depth, depth relative to mean water level, dose rate). Although obvious correlations with predictor variables are absent, there is some suggestion that the best-bleached samples are found close to the modern mean water level, and that the extent of bleaching has changed over the recent past. We hypothesise that sediment deposited near the transition of channel to overbank deposits receives the most sunlight exposure, due to local reworking after deposition. However, nearly all samples are inferred to have at least some well-bleached grains, suggesting that bleaching also occurs during fluvial transport.
Gaggiotti, Oscar E
2010-11-01
Ever since the introduction of allozymes in the 1960s, evolutionary biologists and ecologists have continued to search for more powerful molecular markers to estimate important parameters such as effective population size and migration rates and to make inferences about the demographic history of populations, the relationships between individuals and the genetic architecture of phenotypic variation (Bensch & Akesson 2005; Bonin et al. 2007). Choosing a marker requires a thorough consideration of the trade-offs associated with the different techniques and the type of data obtained from them. Some markers can be very informative but require substantial amounts of start-up time (e.g. microsatellites), while others require very little time but are much less polymorphic. Amplified fragment length polymorphism (AFLP) is a firmly established molecular marker technique that falls in this latter category. AFLPs are widely distributed throughout the genome and can be used on organisms for which there is no a priori sequence information (Meudt & Clarke 2007). These properties together with their moderate cost and short start-up time have made them the method of choice for many molecular ecology studies of wild species (Bensch & Akesson 2005). However, they have a major disadvantage, they are dominant. This represents a very important limitation because many statistical genetics methods appropriate for molecular ecology studies require the use of codominant markers. In this issue, Foll et al. (2010) present an innovative hierarchical Bayesian method that overcomes this limitation. The proposed approach represents a comprehensive statistical treatment of the fluorescence of AFLP bands and leads to accurate inferences about the genetic structure of natural populations. Besides allowing a quasi-codominant treatment of AFLPs, this new method also solves the difficult problems posed by subjectivity in the scoring of AFLP bands. PMID:20958811
NASA Astrophysics Data System (ADS)
Cubillos, Patricio; Harrington, Joseph; Blecic, Jasmina; Stemm, Madison M.; Lust, Nate B.; Foster, Andrew S.; Rojo, Patricio M.; Loredo, Thomas J.
2014-11-01
Multi-wavelength secondary-eclipse and transit depths probe the thermo-chemical properties of exoplanets. In recent years, several research groups have developed retrieval codes to analyze the existing data and study the prospects of future facilities. However, the scientific community has limited access to these packages. Here we premiere the open-source Bayesian Atmospheric Radiative Transfer (BART) code. We discuss the key aspects of the radiative-transfer algorithm and the statistical package. The radiation code includes line databases for all HITRAN molecules, high-temperature H2O, TiO, and VO, and includes a preprocessor for adding additional line databases without recompiling the radiation code. Collision-induced absorption lines are available for H2-H2 and H2-He. The parameterized thermal and molecular abundance profiles can be modified arbitrarily without recompilation. The generated spectra are integrated over arbitrary bandpasses for comparison to data. BART's statistical package, Multi-core Markov-chain Monte Carlo (MC3), is a general-purpose MCMC module. MC3 implements the Differental-evolution Markov-chain Monte Carlo algorithm (ter Braak 2006, 2009). MC3 converges 20-400 times faster than the usual Metropolis-Hastings MCMC algorithm, and in addition uses the Message Passing Interface (MPI) to parallelize the MCMC chains. We apply the BART retrieval code to the HD 209458b data set to estimate the planet's temperature profile and molecular abundances. This work was supported by NASA Planetary Atmospheres grant NNX12AI69G and NASA Astrophysics Data Analysis Program grant NNX13AF38G. JB holds a NASA Earth and Space Science Fellowship.
Harrison, Jay M; Breeze, Matthew L; Berman, Kristina H; Harrigan, George G
2013-03-01
Bayesian approaches to evaluation of crop composition data allow simpler interpretations than traditional statistical significance tests. An important advantage of Bayesian approaches is that they allow formal incorporation of previously generated data through prior distributions in the analysis steps. This manuscript describes key steps to ensure meaningful and transparent selection and application of informative prior distributions. These include (i) review of previous data in the scientific literature to form the prior distributions, (ii) proper statistical model specification and documentation, (iii) graphical analyses to evaluate the fit of the statistical model to new study data, and (iv) sensitivity analyses to evaluate the robustness of results to the choice of prior distribution. The validity of the prior distribution for any crop component is critical to acceptance of Bayesian approaches to compositional analyses and would be essential for studies conducted in a regulatory setting. Selection and validation of prior distributions for three soybean isoflavones (daidzein, genistein, and glycitein) and two oligosaccharides (raffinose and stachyose) are illustrated in a comparative assessment of data obtained on GM and non-GM soybean seed harvested from replicated field sites at multiple locations in the US during the 2009 growing season. PMID:23261475
Bayesian Statistical Analysis of Historical and Late Holocene Rates of Sea-Level Change
NASA Astrophysics Data System (ADS)
Cahill, Niamh; Parnell, Andrew; Kemp, Andrew; Horton, Benjamin
2014-05-01
A fundamental concern associated with climate change is the rate at which sea levels are rising. Studies of past sea level (particularly beyond the instrumental data range) allow modern sea-level rise to be placed in a more complete context. Considering this, we perform a Bayesian statistical analysis on historical and late Holocene rates of sea-level change. The data that form the input to the statistical model are tide-gauge measurements and proxy reconstructions from cores of coastal sediment. The aims are to estimate rates of sea-level rise, to determine when modern rates of sea-level rise began and to observe how these rates have been changing over time. Many of the current methods for doing this use simple linear regression to estimate rates. This is often inappropriate as it is too rigid and it can ignore uncertainties that arise as part of the data collection exercise. This can lead to over confidence in the sea-level trends being characterized. The proposed Bayesian model places a Gaussian process prior on the rate process (i.e. the process that determines how rates of sea-level are changing over time). The likelihood of the observed data is the integral of this process. When dealing with proxy reconstructions, this is set in an errors-in-variables framework so as to take account of age uncertainty. It is also necessary, in this case, for the model to account for glacio-isostatic adjustment, which introduces a covariance between individual age and sea-level observations. This method provides a flexible fit and it allows for the direct estimation of the rate process with full consideration of all sources of uncertainty. Analysis of tide-gauge datasets and proxy reconstructions in this way means that changing rates of sea level can be estimated more comprehensively and accurately than previously possible. The model captures the continuous and dynamic evolution of sea-level change and results show that not only are modern sea levels rising but that the rates
A Bayesian statistical assessment of representative samples for asteroidal or meteoritical material
NASA Astrophysics Data System (ADS)
Carter, Jonathan N.; Sephton, Mark A.
2013-06-01
Primitive substances in asteroid and meteorite materials represent a record of early solar system evolution. To allow the study of these materials, they must be collected and transferred to the laboratory. Collection during sample return missions requires an assessment of the size of samples needed. Meteorite falls or finds must be subdivided into appropriate subsamples for analysis by successive generations of scientists. It is essential, therefore, to determine a representative mass or volume at which the collected or allocated sample is representative of the whole. For the first time, we have used a Bayesian statistical approach and a selected meteorite sample, Murchison, to identify a recommended smallest sample mass that can be used without interferences from sampling bias. Enhancing background knowledge to inform sample selection and analysis is an effective means of increasing the probability of obtaining a positive scientific outcome. The influence of the subdivision mechanism when preparing samples for distribution has also been examined. Assuming a similar size distribution of fragments to that of the Murchison meteorite, cubes can be similarly representative as fragments, but at orders of magnitude smaller sizes. We find that: (1) at all defined probabilities (90%, 95%, and 99%), nanometer-sized particles (where the axes of a three-dimensional sample are less that a nanometer in length) are never representative of the whole; (2) at the intermediate and highest defined probabilities (95% and 99%), micrometer-sized particles are never representative of the whole; and (3) for micrometer-sized samples, the only sample that is representative of the whole is a cube and then only at a 90% probability. The difference between cubes and fragments becomes less important as sample size increases and any >0.5 mm-sized sample will be representative of the whole with a probability of 99.9%. The results provide guidance for sample return mission planners and curators or
An overview of component qualification using Bayesian statistics and energy methods.
Dohner, Jeffrey Lynn
2011-09-01
The below overview is designed to give the reader a limited understanding of Bayesian and Maximum Likelihood (MLE) estimation; a basic understanding of some of the mathematical tools to evaluate the quality of an estimation; an introduction to energy methods and a limited discussion of damage potential. This discussion then goes on to presented a limited presentation as to how energy methods and Bayesian estimation are used together to qualify components. Example problems with solutions have been supplied as a learning aid. Bold letters are used to represent random variables. Un-bolded letter represent deterministic values. A concluding section presents a discussion of attributes and concerns.
Statistical Physics for Adaptive Distributed Control
NASA Technical Reports Server (NTRS)
Wolpert, David H.
2005-01-01
A viewgraph presentation on statistical physics for distributed adaptive control is shown. The topics include: 1) The Golden Rule; 2) Advantages; 3) Roadmap; 4) What is Distributed Control? 5) Review of Information Theory; 6) Iterative Distributed Control; 7) Minimizing L(q) Via Gradient Descent; and 8) Adaptive Distributed Control.
NASA Astrophysics Data System (ADS)
Schöniger, Anneli; Wöhling, Thomas; Nowak, Wolfgang
2015-09-01
Bayesian model averaging (BMA) ranks the plausibility of alternative conceptual models according to Bayes' theorem. A prior belief about each model's adequacy is updated to a posterior model probability based on the skill to reproduce observed data and on the principle of parsimony. The posterior model probabilities are then used as model weights for model ranking, selection, or averaging. Despite the statistically rigorous BMA procedure, model weights can become uncertain quantities due to measurement noise in the calibration data set or due to uncertainty in model input. Uncertain weights may in turn compromise the reliability of BMA results. We present a new statistical concept to investigate this weighting uncertainty, and thus, to assess the significance of model weights and the confidence in model ranking. Our concept is to resample the uncertain input or output data and then to analyze the induced variability in model weights. In the special case of weighting uncertainty due to measurement noise in the calibration data set, we interpret statistics of Bayesian model evidence to assess the distance of a model's performance from the theoretical upper limit. To illustrate our suggested approach, we investigate the reliability of soil-plant model selection following up on a study by Wöhling et al. (2015). Results show that the BMA routine should be equipped with our suggested upgrade to (1) reveal the significant but otherwise undetected impact of measurement noise on model ranking results and (2) to decide whether the considered set of models should be extended with better performing alternatives.
Improving Instruction Using Statistical Process Control.
ERIC Educational Resources Information Center
Higgins, Ronald C.; Messer, George H.
1990-01-01
Two applications of statistical process control to the process of education are described. Discussed are the use of prompt feedback to teachers and prompt feedback to students. A sample feedback form is provided. (CW)
Bayesian Statistical Inference in Ion-Channel Models with Exact Missed Event Correction.
Epstein, Michael; Calderhead, Ben; Girolami, Mark A; Sivilotti, Lucia G
2016-07-26
The stochastic behavior of single ion channels is most often described as an aggregated continuous-time Markov process with discrete states. For ligand-gated channels each state can represent a different conformation of the channel protein or a different number of bound ligands. Single-channel recordings show only whether the channel is open or shut: states of equal conductance are aggregated, so transitions between them have to be inferred indirectly. The requirement to filter noise from the raw signal further complicates the modeling process, as it limits the time resolution of the data. The consequence of the reduced bandwidth is that openings or shuttings that are shorter than the resolution cannot be observed; these are known as missed events. Postulated models fitted using filtered data must therefore explicitly account for missed events to avoid bias in the estimation of rate parameters and therefore assess parameter identifiability accurately. In this article, we present the first, to our knowledge, Bayesian modeling of ion-channels with exact missed events correction. Bayesian analysis represents uncertain knowledge of the true value of model parameters by considering these parameters as random variables. This allows us to gain a full appreciation of parameter identifiability and uncertainty when estimating values for model parameters. However, Bayesian inference is particularly challenging in this context as the correction for missed events increases the computational complexity of the model likelihood. Nonetheless, we successfully implemented a two-step Markov chain Monte Carlo method that we called "BICME", which performs Bayesian inference in models of realistic complexity. The method is demonstrated on synthetic and real single-channel data from muscle nicotinic acetylcholine channels. We show that parameter uncertainty can be characterized more accurately than with maximum-likelihood methods. Our code for performing inference in these ion channel
Wafer, Lucas; Kloczewiak, Marek; Luo, Yin
2016-07-01
Analytical ultracentrifugation-sedimentation velocity (AUC-SV) is often used to quantify high molar mass species (HMMS) present in biopharmaceuticals. Although these species are often present in trace quantities, they have received significant attention due to their potential immunogenicity. Commonly, AUC-SV data is analyzed as a diffusion-corrected, sedimentation coefficient distribution, or c(s), using SEDFIT to numerically solve Lamm-type equations. SEDFIT also utilizes maximum entropy or Tikhonov-Phillips regularization to further allow the user to determine relevant sample information, including the number of species present, their sedimentation coefficients, and their relative abundance. However, this methodology has several, often unstated, limitations, which may impact the final analysis of protein therapeutics. These include regularization-specific effects, artificial "ripple peaks," and spurious shifts in the sedimentation coefficients. In this investigation, we experimentally verified that an explicit Bayesian approach, as implemented in SEDFIT, can largely correct for these effects. Clear guidelines on how to implement this technique and interpret the resulting data, especially for samples containing micro-heterogeneity (e.g., differential glycosylation), are also provided. In addition, we demonstrated how the Bayesian approach can be combined with F statistics to draw more accurate conclusions and rigorously exclude artifactual peaks. Numerous examples with an antibody and an antibody-drug conjugate were used to illustrate the strengths and drawbacks of each technique. PMID:27184576
NASA Astrophysics Data System (ADS)
Joshi, Deepti; St-Hilaire, André; Daigle, Anik; Ouarda, Taha B. M. J.
2013-04-01
SummaryThis study attempts to compare the performance of two statistical downscaling frameworks in downscaling hydrological indices (descriptive statistics) characterizing the low flow regimes of three rivers in Eastern Canada - Moisie, Romaine and Ouelle. The statistical models selected are Relevance Vector Machine (RVM), an implementation of Sparse Bayesian Learning, and the Automated Statistical Downscaling tool (ASD), an implementation of Multiple Linear Regression. Inputs to both frameworks involve climate variables significantly (α = 0.05) correlated with the indices. These variables were processed using Canonical Correlation Analysis and the resulting canonical variates scores were used as input to RVM to estimate the selected low flow indices. In ASD, the significantly correlated climate variables were subjected to backward stepwise predictor selection and the selected predictors were subsequently used to estimate the selected low flow indices using Multiple Linear Regression. With respect to the correlation between climate variables and the selected low flow indices, it was observed that all indices are influenced, primarily, by wind components (Vertical, Zonal and Meridonal) and humidity variables (Specific and Relative Humidity). The downscaling performance of the framework involving RVM was found to be better than ASD in terms of Relative Root Mean Square Error, Relative Mean Absolute Bias and Coefficient of Determination. In all cases, the former resulted in less variability of the performance indices between calibration and validation sets, implying better generalization ability than for the latter.
An absolute chronology for early Egypt using radiocarbon dating and Bayesian statistical modelling
Dee, Michael; Wengrow, David; Shortland, Andrew; Stevenson, Alice; Brock, Fiona; Girdland Flink, Linus; Bronk Ramsey, Christopher
2013-01-01
The Egyptian state was formed prior to the existence of verifiable historical records. Conventional dates for its formation are based on the relative ordering of artefacts. This approach is no longer considered sufficient for cogent historical analysis. Here, we produce an absolute chronology for Early Egypt by combining radiocarbon and archaeological evidence within a Bayesian paradigm. Our data cover the full trajectory of Egyptian state formation and indicate that the process occurred more rapidly than previously thought. We provide a timeline for the First Dynasty of Egypt of generational-scale resolution that concurs with prevailing archaeological analysis and produce a chronometric date for the foundation of Egypt that distinguishes between historical estimates. PMID:24204188
Statistical process control in nursing research.
Polit, Denise F; Chaboyer, Wendy
2012-02-01
In intervention studies in which randomization to groups is not possible, researchers typically use quasi-experimental designs. Time series designs are strong quasi-experimental designs but are seldom used, perhaps because of technical and analytic hurdles. Statistical process control (SPC) is an alternative analytic approach to testing hypotheses about intervention effects using data collected over time. SPC, like traditional statistical methods, is a tool for understanding variation and involves the construction of control charts that distinguish between normal, random fluctuations (common cause variation), and statistically significant special cause variation that can result from an innovation. The purpose of this article is to provide an overview of SPC and to illustrate its use in a study of a nursing practice improvement intervention. PMID:22095634
Bayesian Statistics and Uncertainty Quantification for Safety Boundary Analysis in Complex Systems
NASA Technical Reports Server (NTRS)
He, Yuning; Davies, Misty Dawn
2014-01-01
The analysis of a safety-critical system often requires detailed knowledge of safe regions and their highdimensional non-linear boundaries. We present a statistical approach to iteratively detect and characterize the boundaries, which are provided as parameterized shape candidates. Using methods from uncertainty quantification and active learning, we incrementally construct a statistical model from only few simulation runs and obtain statistically sound estimates of the shape parameters for safety boundaries.
Applied Behavior Analysis and Statistical Process Control?
ERIC Educational Resources Information Center
Hopkins, B. L.
1995-01-01
Incorporating statistical process control (SPC) methods into applied behavior analysis is discussed. It is claimed that SPC methods would likely reduce applied behavior analysts' intimate contacts with problems and would likely yield poor treatment and research decisions. Cases and data presented by Pfadt and Wheeler (1995) are cited as examples.…
Statistical process control for total quality
NASA Astrophysics Data System (ADS)
Ali, Syed W.
1992-06-01
The paper explains the techniques and applications of statistical process control (SPC). Examples of control charts used in the Poseidon program of the NASA ocean topography experiment (TOPEX) and a brief discussion of Taguchi methods are presented. It is noted that SPC involves everyone in process improvement by providing objective, workable data. It permits continuous improvement instead of merely aiming for all parts to be within a tolerance band.
A Dynamic Bayesian Network Model for the Production and Inventory Control
NASA Astrophysics Data System (ADS)
Shin, Ji-Sun; Takazaki, Noriyuki; Lee, Tae-Hong; Kim, Jin-Il; Lee, Hee-Hyol
In general, the production quantities and delivered goods are changed randomly and then the total stock is also changed randomly. This paper deals with the production and inventory control using the Dynamic Bayesian Network. Bayesian Network is a probabilistic model which represents the qualitative dependence between two or more random variables by the graph structure, and indicates the quantitative relations between individual variables by the conditional probability. The probabilistic distribution of the total stock is calculated through the propagation of the probability on the network. Moreover, an adjusting rule of the production quantities to maintain the probability of a lower limit and a ceiling of the total stock to certain values is shown.
New Insights into the Genetic Control of Gene Expression using a Bayesian Multi-tissue Approach
Langley, Sarah R.; Heinig, Matthias; McDermott-Roe, Chris; Sarwar, Rizwan; Pravenec, Michal; Hübner, Norbert; Aitman, Timothy J.; Cook, Stuart A.; Richardson, Sylvia
2010-01-01
The majority of expression quantitative trait locus (eQTL) studies have been carried out in single tissues or cell types, using methods that ignore information shared across tissues. Although global analysis of RNA expression in multiple tissues is now feasible, few integrated statistical frameworks for joint analysis of gene expression across tissues combined with simultaneous analysis of multiple genetic variants have been developed to date. Here, we propose Sparse Bayesian Regression models for mapping eQTLs within individual tissues and simultaneously across tissues. Testing these on a set of 2,000 genes in four tissues, we demonstrate that our methods are more powerful than traditional approaches in revealing the true complexity of the eQTL landscape at the systems-level. Highlighting the power of our method, we identified a two-eQTL model (cis/trans) for the Hopx gene that was experimentally validated and was not detected by conventional approaches. We showed common genetic regulation of gene expression across four tissues for ∼27% of transcripts, providing >5 fold increase in eQTLs detection when compared with single tissue analyses at 5% FDR level. These findings provide a new opportunity to uncover complex genetic regulatory mechanisms controlling global gene expression while the generality of our modelling approach makes it adaptable to other model systems and humans, with broad application to analysis of multiple intermediate and whole-body phenotypes. PMID:20386736
Bayesian statistics applied to the location of the source of explosions at Stromboli Volcano, Italy
Saccorotti, G.; Chouet, B.; Martini, M.; Scarpa, R.
1998-01-01
We present a method for determining the location and spatial extent of the source of explosions at Stromboli Volcano, Italy, based on a Bayesian inversion of the slowness vector derived from frequency-slowness analyses of array data. The method searches for source locations that minimize the error between the expected and observed slowness vectors. For a given set of model parameters, the conditional probability density function of slowness vectors is approximated by a Gaussian distribution of expected errors. The method is tested with synthetics using a five-layer velocity model derived for the north flank of Stromboli and a smoothed velocity model derived from a power-law approximation of the layered structure. Application to data from Stromboli allows for a detailed examination of uncertainties in source location due to experimental errors and incomplete knowledge of the Earth model. Although the solutions are not constrained in the radial direction, excellent resolution is achieved in both transverse and depth directions. Under the assumption that the horizontal extent of the source does not exceed the crater dimension, the 90% confidence region in the estimate of the explosive source location corresponds to a small volume extending from a depth of about 100 m to a maximum depth of about 300 m beneath the active vents, with a maximum likelihood source region located in the 120- to 180-m-depth interval.
Multiple LacI-mediated loops revealed by Bayesian statistics and tethered particle motion
Johnson, Stephanie; van de Meent, Jan-Willem; Phillips, Rob; Wiggins, Chris H.; Lindén, Martin
2014-01-01
The bacterial transcription factor LacI loops DNA by binding to two separate locations on the DNA simultaneously. Despite being one of the best-studied model systems for transcriptional regulation, the number and conformations of loop structures accessible to LacI remain unclear, though the importance of multiple coexisting loops has been implicated in interactions between LacI and other cellular regulators of gene expression. To probe this issue, we have developed a new analysis method for tethered particle motion, a versatile and commonly used in vitro single-molecule technique. Our method, vbTPM, performs variational Bayesian inference in hidden Markov models. It learns the number of distinct states (i.e. DNA–protein conformations) directly from tethered particle motion data with better resolution than existing methods, while easily correcting for common experimental artifacts. Studying short (roughly 100 bp) LacI-mediated loops, we provide evidence for three distinct loop structures, more than previously reported in single-molecule studies. Moreover, our results confirm that changes in LacI conformation and DNA-binding topology both contribute to the repertoire of LacI-mediated loops formed in vitro, and provide qualitatively new input for models of looping and transcriptional regulation. We expect vbTPM to be broadly useful for probing complex protein–nucleic acid interactions. PMID:25120267
Applying statistical process control to the adaptive rate control problem
NASA Astrophysics Data System (ADS)
Manohar, Nelson R.; Willebeek-LeMair, Marc H.; Prakash, Atul
1997-12-01
Due to the heterogeneity and shared resource nature of today's computer network environments, the end-to-end delivery of multimedia requires adaptive mechanisms to be effective. We present a framework for the adaptive streaming of heterogeneous media. We introduce the application of online statistical process control (SPC) to the problem of dynamic rate control. In SPC, the goal is to establish (and preserve) a state of statistical quality control (i.e., controlled variability around a target mean) over a process. We consider the end-to-end streaming of multimedia content over the internet as the process to be controlled. First, at each client, we measure process performance and apply statistical quality control (SQC) with respect to application-level requirements. Then, we guide an adaptive rate control (ARC) problem at the server based on the statistical significance of trends and departures on these measurements. We show this scheme facilitates handling of heterogeneous media. Last, because SPC is designed to monitor long-term process performance, we show that our online SPC scheme could be used to adapt to various degrees of long-term (network) variability (i.e., statistically significant process shifts as opposed to short-term random fluctuations). We develop several examples and analyze its statistical behavior and guarantees.
Statistical Process Control In Photolithography Applications
NASA Astrophysics Data System (ADS)
Pritchard, Lois B.
1987-04-01
Recently there have been numerous papers, articles and books on the benefits and rewards of Statistical Process Control for manufacturing processes. Models are used that quite adequately describe methods appropriate for the factory situation where many discrete and identical items are turned out and where a limited number of parameters are inspected along the line. Photolithographic applications often require different statistical models from the usual factory methods. The difficulties encountered in getting started with SPC lie in determining: 1. what parameters should be tracked 2. what statistical model is appropriate for each of those parameters 3. how to use the models chosen. This paper describes three statistical models that, among them, account for most operations within a photolithographic manufacturing application. The process of determining which model is appropriate is described, along with the basic rules that may be used in making the determination. In addition, the application of each method is shown, and action instructions are covered. Initially the "x-bar, R" model is described. This model is the one most often found in off-the-shelf software packages, and enjoys wide applications in equipment tracking, besides general use process control. Secondly the "x, moving-R" model is described. This is appropriate where a series of measurements of the same parameter is taken on a single item, perhaps at different locations, such as in dimensional uniformity control for wafers or photomasks. In this case, each "x" is a single observation, or a number of measurements of a single observation, as opposed to a mean value taken in a sampling scheme. Thirdly a model for a Poisson distribution is described, which tends to fit defect density data, particulate counts, where count data is accumulated per unit or per unit time. The purpose of the paper is to briefly describe the included models, for those with little or no background in statistics, to enable them to
Dolejsi, Erich; Bodenstorfer, Bernhard; Frommlet, Florian
2014-01-01
The prevailing method of analyzing GWAS data is still to test each marker individually, although from a statistical point of view it is quite obvious that in case of complex traits such single marker tests are not ideal. Recently several model selection approaches for GWAS have been suggested, most of them based on LASSO-type procedures. Here we will discuss an alternative model selection approach which is based on a modification of the Bayesian Information Criterion (mBIC2) which was previously shown to have certain asymptotic optimality properties in terms of minimizing the misclassification error. Heuristic search strategies are introduced which attempt to find the model which minimizes mBIC2, and which are efficient enough to allow the analysis of GWAS data. Our approach is implemented in a software package called MOSGWA. Its performance in case control GWAS is compared with the two algorithms HLASSO and d-GWASelect, as well as with single marker tests, where we performed a simulation study based on real SNP data from the POPRES sample. Our results show that MOSGWA performs slightly better than HLASSO, where specifically for more complex models MOSGWA is more powerful with only a slight increase in Type I error. On the other hand according to our simulations GWASelect does not at all control the type I error when used to automatically determine the number of important SNPs. We also reanalyze the GWAS data from the Wellcome Trust Case-Control Consortium and compare the findings of the different procedures, where MOSGWA detects for complex diseases a number of interesting SNPs which are not found by other methods. PMID:25061809
Dolejsi, Erich; Bodenstorfer, Bernhard; Frommlet, Florian
2014-01-01
The prevailing method of analyzing GWAS data is still to test each marker individually, although from a statistical point of view it is quite obvious that in case of complex traits such single marker tests are not ideal. Recently several model selection approaches for GWAS have been suggested, most of them based on LASSO-type procedures. Here we will discuss an alternative model selection approach which is based on a modification of the Bayesian Information Criterion (mBIC2) which was previously shown to have certain asymptotic optimality properties in terms of minimizing the misclassification error. Heuristic search strategies are introduced which attempt to find the model which minimizes mBIC2, and which are efficient enough to allow the analysis of GWAS data. Our approach is implemented in a software package called MOSGWA. Its performance in case control GWAS is compared with the two algorithms HLASSO and d-GWASelect, as well as with single marker tests, where we performed a simulation study based on real SNP data from the POPRES sample. Our results show that MOSGWA performs slightly better than HLASSO, where specifically for more complex models MOSGWA is more powerful with only a slight increase in Type I error. On the other hand according to our simulations GWASelect does not at all control the type I error when used to automatically determine the number of important SNPs. We also reanalyze the GWAS data from the Wellcome Trust Case-Control Consortium and compare the findings of the different procedures, where MOSGWA detects for complex diseases a number of interesting SNPs which are not found by other methods. PMID:25061809
NASA Astrophysics Data System (ADS)
Schöniger, Anneli; Wöhling, Thomas; Nowak, Wolfgang
2014-05-01
Bayesian model averaging ranks the predictive capabilities of alternative conceptual models based on Bayes' theorem. The individual models are weighted with their posterior probability to be the best one in the considered set of models. Finally, their predictions are combined into a robust weighted average and the predictive uncertainty can be quantified. This rigorous procedure does, however, not yet account for possible instabilities due to measurement noise in the calibration data set. This is a major drawback, since posterior model weights may suffer a lack of robustness related to the uncertainty in noisy data, which may compromise the reliability of model ranking. We present a new statistical concept to account for measurement noise as source of uncertainty for the weights in Bayesian model averaging. Our suggested upgrade reflects the limited information content of data for the purpose of model selection. It allows us to assess the significance of the determined posterior model weights, the confidence in model selection, and the accuracy of the quantified predictive uncertainty. Our approach rests on a brute-force Monte Carlo framework. We determine the robustness of model weights against measurement noise by repeatedly perturbing the observed data with random realizations of measurement error. Then, we analyze the induced variability in posterior model weights and introduce this "weighting variance" as an additional term into the overall prediction uncertainty analysis scheme. We further determine the theoretical upper limit in performance of the model set which is imposed by measurement noise. As an extension to the merely relative model ranking, this analysis provides a measure of absolute model performance. To finally decide, whether better data or longer time series are needed to ensure a robust basis for model selection, we resample the measurement time series and assess the convergence of model weights for increasing time series length. We illustrate
Neural network uncertainty assessment using Bayesian statistics: a remote sensing application
NASA Technical Reports Server (NTRS)
Aires, F.; Prigent, C.; Rossow, W. B.
2004-01-01
Neural network (NN) techniques have proved successful for many regression problems, in particular for remote sensing; however, uncertainty estimates are rarely provided. In this article, a Bayesian technique to evaluate uncertainties of the NN parameters (i.e., synaptic weights) is first presented. In contrast to more traditional approaches based on point estimation of the NN weights, we assess uncertainties on such estimates to monitor the robustness of the NN model. These theoretical developments are illustrated by applying them to the problem of retrieving surface skin temperature, microwave surface emissivities, and integrated water vapor content from a combined analysis of satellite microwave and infrared observations over land. The weight uncertainty estimates are then used to compute analytically the uncertainties in the network outputs (i.e., error bars and correlation structure of these errors). Such quantities are very important for evaluating any application of an NN model. The uncertainties on the NN Jacobians are then considered in the third part of this article. Used for regression fitting, NN models can be used effectively to represent highly nonlinear, multivariate functions. In this situation, most emphasis is put on estimating the output errors, but almost no attention has been given to errors associated with the internal structure of the regression model. The complex structure of dependency inside the NN is the essence of the model, and assessing its quality, coherency, and physical character makes all the difference between a blackbox model with small output errors and a reliable, robust, and physically coherent model. Such dependency structures are described to the first order by the NN Jacobians: they indicate the sensitivity of one output with respect to the inputs of the model for given input data. We use a Monte Carlo integration procedure to estimate the robustness of the NN Jacobians. A regularization strategy based on principal component
Optimal speech motor control and token-to-token variability: a Bayesian modeling approach.
Patri, Jean-François; Diard, Julien; Perrier, Pascal
2015-12-01
The remarkable capacity of the speech motor system to adapt to various speech conditions is due to an excess of degrees of freedom, which enables producing similar acoustical properties with different sets of control strategies. To explain how the central nervous system selects one of the possible strategies, a common approach, in line with optimal motor control theories, is to model speech motor planning as the solution of an optimality problem based on cost functions. Despite the success of this approach, one of its drawbacks is the intrinsic contradiction between the concept of optimality and the observed experimental intra-speaker token-to-token variability. The present paper proposes an alternative approach by formulating feedforward optimal control in a probabilistic Bayesian modeling framework. This is illustrated by controlling a biomechanical model of the vocal tract for speech production and by comparing it with an existing optimal control model (GEPPETO). The essential elements of this optimal control model are presented first. From them the Bayesian model is constructed in a progressive way. Performance of the Bayesian model is evaluated based on computer simulations and compared to the optimal control model. This approach is shown to be appropriate for solving the speech planning problem while accounting for variability in a principled way. PMID:26497359
Applied behavior analysis and statistical process control?
Hopkins, B L
1995-01-01
This paper examines Pfadt and Wheeler's (1995) suggestions that the methods of statistical process control (SPC) be incorporated into applied behavior analysis. The research strategies of SPC are examined and compared to those of applied behavior analysis. I argue that the statistical methods that are a part of SPC would likely reduce applied behavior analysts' intimate contacts with the problems with which they deal and would, therefore, likely yield poor treatment and research decisions. Examples of these kinds of results and decisions are drawn from the cases and data Pfadt and Wheeler present. This paper also describes and clarifies many common misconceptions about SPC, including W. Edwards Deming's involvement in its development, its relationship to total quality management, and its confusion with various other methods designed to detect sources of unwanted variability. PMID:7592156
Beginning a statistical process control program
Davis, H.D.; Burnett, M. )
1989-01-01
Statistical Process Control (SPC) has in recent years become a hot'' topic in the manufacturing world. It has been touted as the means by which Japanese manufacturers have moved to the forefront of world-class quality, and subsequent financial power. Is SPC a business-saving strategy What is SPC What is the cost of quality and can we afford it Is SPC applicable to the petroleum refining and petrochemical manufacturing industry, or are these manufacturing operations so deterministic by nature that the statistics only show the accuracy and precision of the laboratory work If SPC is worthwhile how do we get started, and what problems can we expect to encounter If we begin an SPC Program, how will it benefit us These questions are addressed by the author. The view presented here is a management perspective with emphasis on rationale and implementation methods.
Giambartolomei, Claudia; Vukcevic, Damjan; Schadt, Eric E; Franke, Lude; Hingorani, Aroon D; Wallace, Chris; Plagnol, Vincent
2014-05-01
Genetic association studies, in particular the genome-wide association study (GWAS) design, have provided a wealth of novel insights into the aetiology of a wide range of human diseases and traits, in particular cardiovascular diseases and lipid biomarkers. The next challenge consists of understanding the molecular basis of these associations. The integration of multiple association datasets, including gene expression datasets, can contribute to this goal. We have developed a novel statistical methodology to assess whether two association signals are consistent with a shared causal variant. An application is the integration of disease scans with expression quantitative trait locus (eQTL) studies, but any pair of GWAS datasets can be integrated in this framework. We demonstrate the value of the approach by re-analysing a gene expression dataset in 966 liver samples with a published meta-analysis of lipid traits including >100,000 individuals of European ancestry. Combining all lipid biomarkers, our re-analysis supported 26 out of 38 reported colocalisation results with eQTLs and identified 14 new colocalisation results, hence highlighting the value of a formal statistical test. In three cases of reported eQTL-lipid pairs (SYPL2, IFT172, TBKBP1) for which our analysis suggests that the eQTL pattern is not consistent with the lipid association, we identify alternative colocalisation results with SORT1, GCKR, and KPNB1, indicating that these genes are more likely to be causal in these genomic intervals. A key feature of the method is the ability to derive the output statistics from single SNP summary statistics, hence making it possible to perform systematic meta-analysis type comparisons across multiple GWAS datasets (implemented online at http://coloc.cs.ucl.ac.uk/coloc/). Our methodology provides information about candidate causal genes in associated intervals and has direct implications for the understanding of complex diseases as well as the design of drugs to
Controlling statistical moments of stochastic dynamical networks
NASA Astrophysics Data System (ADS)
Bielievtsov, Dmytro; Ladenbauer, Josef; Obermayer, Klaus
2016-07-01
We consider a general class of stochastic networks and ask which network nodes need to be controlled, and how, to stabilize and switch between desired metastable (target) states in terms of the first and second statistical moments of the system. We first show that it is sufficient to directly interfere with a subset of nodes which can be identified using information about the graph of the network only. Then we develop a suitable method for feedback control which acts on that subset of nodes and preserves the covariance structure of the desired target state. Finally, we demonstrate our theoretical results using a stochastic Hopfield network and a global brain model. Our results are applicable to a variety of (model) networks and further our understanding of the relationship between network structure and collective dynamics for the benefit of effective control.
Controlling statistical moments of stochastic dynamical networks.
Bielievtsov, Dmytro; Ladenbauer, Josef; Obermayer, Klaus
2016-07-01
We consider a general class of stochastic networks and ask which network nodes need to be controlled, and how, to stabilize and switch between desired metastable (target) states in terms of the first and second statistical moments of the system. We first show that it is sufficient to directly interfere with a subset of nodes which can be identified using information about the graph of the network only. Then we develop a suitable method for feedback control which acts on that subset of nodes and preserves the covariance structure of the desired target state. Finally, we demonstrate our theoretical results using a stochastic Hopfield network and a global brain model. Our results are applicable to a variety of (model) networks and further our understanding of the relationship between network structure and collective dynamics for the benefit of effective control. PMID:27575147
Two levels of Bayesian model averaging for optimal control of stochastic systems
NASA Astrophysics Data System (ADS)
Darwen, Paul J.
2013-02-01
Bayesian model averaging provides the best possible estimate of a model, given the data. This article uses that approach twice: once to get a distribution of plausible models of the world, and again to find a distribution of plausible control functions. The resulting ensemble gives control instructions different from simply taking the single best-fitting model and using it to find a single lowest-error control function for that single model. The only drawback is, of course, the need for more computer time: this article demonstrates that the required computer time is feasible. The test problem here is from flood control and risk management.
NASA Astrophysics Data System (ADS)
Hashmi, M. Z.; Shamseldin, A. Y.; Melville, B. W.
2009-10-01
Global Circulation Models (GCMs) are a major tool used for future projections of climate change using different emission scenarios. However, for assessing the hydrological impacts of climate change at the watershed and the regional scale, the GCM outputs cannot be used directly due to the mismatch in the spatial resolution between the GCMs and hydrological models. In order to use the output of a GCM for conducting hydrological impact studies, downscaling is used. However, the downscaling results may contain considerable uncertainty which needs to be quantified before making the results available. Among the variables usually downscaled, precipitation downscaling is quite challenging and is more prone to uncertainty issues than other climatological variables. This paper addresses the uncertainty analysis associated with statistical downscaling of a watershed precipitation (Clutha River above Balclutha, New Zealand) using results from three well reputed downscaling methods and Bayesian weighted multi-model ensemble approach. The downscaling methods used for this study belong to the following downscaling categories; (1) Multiple linear regression; (2) Multiple non-linear regression; and (3) Stochastic weather generator. The results obtained in this study have shown that this ensemble strategy is very efficient in combining the results from multiple downscaling methods on the basis of their performance and quantifying the uncertainty contained in this ensemble output. This will encourage any future attempts on quantifying downscaling uncertainties using the multi-model ensemble framework.
NASA Astrophysics Data System (ADS)
Mugnes, J.-M.; Robert, C.
2015-11-01
Spectral analysis is a powerful tool to investigate stellar properties and it has been widely used for decades now. However, the methods considered to perform this kind of analysis are mostly based on iteration among a few diagnostic lines to determine the stellar parameters. While these methods are often simple and fast, they can lead to errors and large uncertainties due to the required assumptions. Here, we present a method based on Bayesian statistics to find simultaneously the best combination of effective temperature, surface gravity, projected rotational velocity, and microturbulence velocity, using all the available spectral lines. Different tests are discussed to demonstrate the strength of our method, which we apply to 54 mid-resolution spectra of field and cluster B stars obtained at the Observatoire du Mont-Mégantic. We compare our results with those found in the literature. Differences are seen which are well explained by the different methods used. We conclude that the B-star microturbulence velocities are often underestimated. We also confirm the trend that B stars in clusters are on average faster rotators than field B stars.
Statistical Process Control for KSC Processing
NASA Technical Reports Server (NTRS)
Ford, Roger G.; Delgado, Hector; Tilley, Randy
1996-01-01
The 1996 Summer Faculty Fellowship Program and Kennedy Space Center (KSC) served as the basis for a research effort into statistical process control for KSC processing. The effort entailed several tasks and goals. The first was to develop a customized statistical process control (SPC) course for the Safety and Mission Assurance Trends Analysis Group. The actual teaching of this course took place over several weeks. In addition, an Internet version of the same course complete with animation and video excerpts from the course when it was taught at KSC was developed. The application of SPC to shuttle processing took up the rest of the summer research project. This effort entailed the evaluation of SPC use at KSC, both present and potential, due to the change in roles for NASA and the Single Flight Operations Contractor (SFOC). Individual consulting on SPC use was accomplished as well as an evaluation of SPC software for KSC use in the future. A final accomplishment of the orientation of the author to NASA changes, terminology, data format, and new NASA task definitions will allow future consultation when the needs arise.
A statistical process control case study.
Ross, Thomas K
2006-01-01
Statistical process control (SPC) charts can be applied to a wide number of health care applications, yet widespread use has not occurred. The greatest obstacle preventing wider use is the lack of quality management training that health care workers receive. The technical nature of the SPC guarantees that without explicit instruction this technique will not come into widespread use. Reviews of health care quality management texts inform the reader that SPC charts should be used to improve delivery processes and outcomes often without discussing how they are created. Conversely, medical research frequently reports the improved outcomes achieved after analyzing SPC charts. This article is targeted between these 2 positions: it reviews the SPC technique and presents a tool and data so readers can construct SPC charts. After tackling the case, it is hoped that the readers will collect their own data and apply the same technique to improve processes in their own organization. PMID:17047496
Planetary micro-rover operations on Mars using a Bayesian framework for inference and control
NASA Astrophysics Data System (ADS)
Post, Mark A.; Li, Junquan; Quine, Brendan M.
2016-03-01
With the recent progress toward the application of commercially-available hardware to small-scale space missions, it is now becoming feasible for groups of small, efficient robots based on low-power embedded hardware to perform simple tasks on other planets in the place of large-scale, heavy and expensive robots. In this paper, we describe design and programming of the Beaver micro-rover developed for Northern Light, a Canadian initiative to send a small lander and rover to Mars to study the Martian surface and subsurface. For a small, hardware-limited rover to handle an uncertain and mostly unknown environment without constant management by human operators, we use a Bayesian network of discrete random variables as an abstraction of expert knowledge about the rover and its environment, and inference operations for control. A framework for efficient construction and inference into a Bayesian network using only the C language and fixed-point mathematics on embedded hardware has been developed for the Beaver to make intelligent decisions with minimal sensor data. We study the performance of the Beaver as it probabilistically maps a simple outdoor environment with sensor models that include uncertainty. Results indicate that the Beaver and other small and simple robotic platforms can make use of a Bayesian network to make intelligent decisions in uncertain planetary environments.
NASA Astrophysics Data System (ADS)
Wallace, D. J.; Rosenheim, B. E.; Roberts, M. L.; Burton, J. R.; Donnelly, J. P.; Woodruff, J. D.
2014-12-01
Is a small quantity of high-precision ages more robust than a higher quantity of lower-precision ages for sediment core chronologies? AMS Radiocarbon ages have been available to researchers for several decades now, and precision of the technique has continued to improve. Analysis and time cost is high, though, and projects are often limited in terms of the number of dates that can be used to develop a chronology. The Gas Ion Source at the National Ocean Sciences Accelerator Mass Spectrometry Facility (NOSAMS), while providing lower-precision (uncertainty of order 100 14C y for a sample), is significantly less expensive and far less time consuming than conventional age dating and offers the unique opportunity for large amounts of ages. Here we couple two approaches, one analytical and one statistical, to investigate the utility of an age model comprised of these lower-precision ages for paleotempestology. We use a gas ion source interfaced to a gas-bench type device to generate radiocarbon dates approximately every 5 minutes while determining the order of sample analysis using the published Bayesian accumulation histories for deposits (Bacon). During two day-long sessions, several dates were obtained from carbonate shells in living position in a sediment core comprised of sapropel gel from Mangrove Lake, Bermuda. Samples were prepared where large shells were available, and the order of analysis was determined by the depth with the highest uncertainty according to Bacon. We present the results of these analyses as well as a prognosis for a future where such age models can be constructed from many dates that are quickly obtained relative to conventional radiocarbon dates. This technique currently is limited to carbonates, but development of a system for organic material dating is underway. We will demonstrate the extent to which sacrificing some analytical precision in favor of more dates improves age models.
NASA Astrophysics Data System (ADS)
Wahl, E. R.
2008-12-01
A strict process model for pollen as a climate proxy is currently not approachable beyond localized spatial scales; more generally, the canonical model for vegetation-pollen registration itself requires assimilation of empirically-derived information. In this paper, a taxonomically "reduced-space" climate-pollen forward model is developed, based on the performance of a parallel inverse model. The goal is inclusion of the forward model in a Bayesian climate reconstruction framework, following a 4-step process. (1) Ratios of pollen types calibrated to temperature are examined to determine if they can equal or surpass the skill of multi-taxonomic calibrations using the modern analog technique (MAT) optimized with receiver operating characteristic (ROC) analysis. The first phase of this examination, using modern pollen data from SW N America, demonstrates that the ratio method can give calibrations as skillful as the MAT when vegetation representation (and associated climate gradients) are characterized by two dominant pollen taxa, in this case pine and oak. Paleotemperature reconstructions using the ratio method also compare well to MAT reconstructions, showing very minor differences. [Ratio values are defined as pine/(pine + oak), so they vary between 0 and 1.] (2) Uncertainty analysis is carried out in independent steps, which are combined to give overall probabilistic confidence ranges. Monte Carlo (MC) analysis utilizing Poisson distributions to model the inherent variability of pollen representation in relation to climate (assuming defined temperature normals at the modern calibration sites) allows independent statistical estimation of this component of uncertainty, for both the modern calibration and fossil pollen data sets. In turn, MC analysis utilizing normal distributions allows independent estimation of the addition to overall uncertainty from climate variation itself. (3) Because the quality tests in (1) indicate the ratio method has the capacity to carry
Statistical process control for IMRT dosimetric verification
Breen, Stephen L.; Moseley, Douglas J.; Zhang, Beibei; Sharpe, Michael B.
2008-10-15
Patient-specific measurements are typically used to validate the dosimetry of intensity-modulated radiotherapy (IMRT). To evaluate the dosimetric performance over time of our IMRT process, we have used statistical process control (SPC) concepts to analyze the measurements from 330 head and neck (H and N) treatment plans. The objectives of the present work are to: (i) Review the dosimetric measurements of a large series of consecutive head and neck treatment plans to better understand appropriate dosimetric tolerances; (ii) analyze the results with SPC to develop action levels for measured discrepancies; (iii) develop estimates for the number of measurements that are required to describe IMRT dosimetry in the clinical setting; and (iv) evaluate with SPC a new beam model in our planning system. H and N IMRT cases were planned with the PINNACLE{sup 3} treatment planning system versions 6.2b or 7.6c (Philips Medical Systems, Madison, WI) and treated on Varian (Palo Alto, CA) or Elekta (Crawley, UK) linacs. As part of regular quality assurance, plans were recalculated on a 20-cm-diam cylindrical phantom, and ion chamber measurements were made in high-dose volumes (the PTV with highest dose) and in low-dose volumes (spinal cord organ-at-risk, OR). Differences between the planned and measured doses were recorded as a percentage of the planned dose. Differences were stable over time. Measurements with PINNACLE{sup 3} 6.2b and Varian linacs showed a mean difference of 0.6% for PTVs (n=149, range, -4.3% to 6.6%), while OR measurements showed a larger systematic discrepancy (mean 4.5%, range -4.5% to 16.3%) that was due to well-known limitations of the MLC model in the earlier version of the planning system. Measurements with PINNACLE{sup 3} 7.6c and Varian linacs demonstrated a mean difference of 0.2% for PTVs (n=160, range, -3.0%, to 5.0%) and -1.0% for ORs (range -5.8% to 4.4%). The capability index (ratio of specification range to range of the data) was 1.3 for the PTV
Statistical process control for IMRT dosimetric verification.
Breen, Stephen L; Moseley, Douglas J; Zhang, Beibei; Sharpe, Michael B
2008-10-01
Patient-specific measurements are typically used to validate the dosimetry of intensity-modulated radiotherapy (IMRT). To evaluate the dosimetric performance over time of our IMRT process, we have used statistical process control (SPC) concepts to analyze the measurements from 330 head and neck (H&N) treatment plans. The objectives of the present work are to: (i) Review the dosimetric measurements of a large series of consecutive head and neck treatment plans to better understand appropriate dosimetric tolerances; (ii) analyze the results with SPC to develop action levels for measured discrepancies; (iii) develop estimates for the number of measurements that are required to describe IMRT dosimetry in the clinical setting; and (iv) evaluate with SPC a new beam model in our planning system. H&N IMRT cases were planned with the PINNACLE treatment planning system versions 6.2b or 7.6c (Philips Medical Systems, Madison, WI) and treated on Varian (Palo Alto, CA) or Elekta (Crawley, UK) linacs. As part of regular quality assurance, plans were recalculated on a 20-cm-diam cylindrical phantom, and ion chamber measurements were made in high-dose volumes (the PTV with highest dose) and in low-dose volumes (spinal cord organ-at-risk, OR). Differences between the planned and measured doses were recorded as a percentage of the planned dose. Differences were stable over time. Measurements with PINNACLE3 6.2b and Varian linacs showed a mean difference of 0.6% for PTVs (n=149, range, -4.3% to 6.6%), while OR measurements showed a larger systematic discrepancy (mean 4.5%, range -4.5% to 16.3%) that was due to well-known limitations of the MLC model in the earlier version of the planning system. Measurements with PINNACLE3 7.6c and Varian linacs demonstrated a mean difference of 0.2% for PTVs (n=160, range, -3.0%, to 5.0%) and -1.0% for ORs (range -5.8% to 4.4%). The capability index (ratio of specification range to range of the data) was 1.3 for the PTV data, indicating that almost
NASA Astrophysics Data System (ADS)
Eadie, Gwendolyn Marie
This research uses a Bayesian approach to study the biases that may occur when kinematic data is used to estimate the mass of a galaxy. Data is simulated from the Hernquist (1990) distribution functions (DFs) for velocity dispersions of the isotropic, constant anisotropic, and anisotropic Osipkov (1979) and Merritt (1985) type, and then analysed using the isotropic Hernquist model. Biases are explored when i) the model and data come from the same DF, ii) the model and data come from the same DF but tangential velocities are unknown, iii) the model and data come from different DFs, and iv) the model and data come from different DFs and the tangential velocities are unknown. Mock observations are also created from the Gauthier (2006) simulations and analysed with the isotropic Hernquist model. No bias was found in situation (i), a slight positive bias was found in (ii), a negative bias was found in (iii), and a large positive bias was found in (iv). The mass estimate of the Gauthier system when tangential velocities were unknown was nearly correct, but the mass profile was not described well by the isotropic Hernquist model. When the Gauthier data was analysed with the tangential velocities, the mass of the system was overestimated. The code created for the research runs three parallel Markov Chains for each data set, uses the Gelman-Rubin statistic to assess convergence, and combines the converged chains into a single sample of the posterior distribution for each data set. The code also includes two ways to deal with nuisance parameters. One is to marginalize over the nuisance parameter at every step in the chain, and the other is to sample the nuisance parameters using a hybrid-Gibbs sampler. When tangential velocities, v(t), are unobserved in the analyses above, they are sampled as nuisance parameters in the Markov Chain. The v(t) estimates from the Markov chains did a poor job of estimating the true tangential velocities. However, the posterior samples of v
NASA Astrophysics Data System (ADS)
Beramendi-Orosco, Laura E.; Gonzalez-Hernandez, Galia; Urrutia-Fucugauchi, Jaime; Manzanilla, Linda R.; Soler-Arechalde, Ana M.; Goguitchaishvili, Avto; Jarboe, Nick
2009-03-01
A high-resolution 14C chronology for the Teopancazco archaeological site in the Teotihuacan urban center of Mesoamerica was generated by Bayesian analysis of 33 radiocarbon dates and detailed archaeological information related to occupation stratigraphy, pottery and archaeomagnetic dates. The calibrated intervals obtained using the Bayesian model are up to ca. 70% shorter than those obtained with individual calibrations. For some samples, this is a consequence of plateaus in the part of the calibration curve covered by the sample dates (2500 to 1450 14C yr BP). Effects of outliers are explored by comparing the results from a Bayesian model that incorporates radiocarbon data for two outlier samples with the same model excluding them. The effect of outliers was more significant than expected. Inclusion of radiocarbon dates from two altered contexts, 500 14C yr earlier than those for the first occupational phase, results in ages calculated by the model earlier than the archaeological records. The Bayesian chronology excluding these outliers separates the first two Teopancazco occupational phases and suggests that ending of the Xolalpan phase was around cal AD 550, 100 yr earlier than previously estimated and in accordance with previously reported archaeomagnetic dates from lime plasters for the same site.
NASA Astrophysics Data System (ADS)
Gehrmann, Romina A. S.; Schwalenberg, Katrin; Riedel, Michael; Spence, George D.; Spieß, Volkhard; Dosso, Stan E.
2016-01-01
This paper applies nonlinear Bayesian inversion to marine controlled source electromagnetic (CSEM) data collected near two sites of the Integrated Ocean Drilling Program (IODP) Expedition 311 on the northern Cascadia Margin to investigate subseafloor resistivity structure related to gas hydrate deposits and cold vents. The Cascadia margin, off the west coast of Vancouver Island, Canada, has a large accretionary prism where sediments are under pressure due to convergent plate boundary tectonics. Gas hydrate deposits and cold vent structures have previously been investigated by various geophysical methods and seabed drilling. Here, we invert time-domain CSEM data collected at Sites U1328 and U1329 of IODP Expedition 311 using Bayesian methods to derive subsurface resistivity model parameters and uncertainties. The Bayesian information criterion is applied to determine the amount of structure (number of layers in a depth-dependent model) that can be resolved by the data. The parameter space is sampled with the Metropolis-Hastings algorithm in principal-component space, utilizing parallel tempering to ensure wider and efficient sampling and convergence. Nonlinear inversion allows analysis of uncertain acquisition parameters such as time delays between receiver and transmitter clocks as well as input electrical current amplitude. Marginalizing over these instrument parameters in the inversion accounts for their contribution to the geophysical model uncertainties. One-dimensional inversion of time-domain CSEM data collected at measurement sites along a survey line allows interpretation of the subsurface resistivity structure. The data sets can be generally explained by models with 1 to 3 layers. Inversion results at U1329, at the landward edge of the gas hydrate stability zone, indicate a sediment unconformity as well as potential cold vents which were previously unknown. The resistivities generally increase upslope due to sediment erosion along the slope. Inversion
NASA Technical Reports Server (NTRS)
Denning, Peter J.
1989-01-01
In 1983 and 1984, the Infrared Astronomical Satellite (IRAS) detected 5,425 stellar objects and measured their infrared spectra. In 1987 a program called AUTOCLASS used Bayesian inference methods to discover the classes present in these data and determine the most probable class of each object, revealing unknown phenomena in astronomy. AUTOCLASS has rekindled the old debate on the suitability of Bayesian methods, which are computationally intensive, interpret probabilities as plausibility measures rather than frequencies, and appear to depend on a subjective assessment of the probability of a hypothesis before the data were collected. Modern statistical methods have, however, recently been shown to also depend on subjective elements. These debates bring into question the whole tradition of scientific objectivity and offer scientists a new way to take responsibility for their findings and conclusions.
Applying Statistical Process Control to Clinical Data: An Illustration.
ERIC Educational Resources Information Center
Pfadt, Al; And Others
1992-01-01
Principles of statistical process control are applied to a clinical setting through the use of control charts to detect changes, as part of treatment planning and clinical decision-making processes. The logic of control chart analysis is derived from principles of statistical inference. Sample charts offer examples of evaluating baselines and…
Applying Statistical Process Quality Control Methodology to Educational Settings.
ERIC Educational Resources Information Center
Blumberg, Carol Joyce
A subset of Statistical Process Control (SPC) methodology known as Control Charting is introduced. SPC methodology is a collection of graphical and inferential statistics techniques used to study the progress of phenomena over time. The types of control charts covered are the null X (mean), R (Range), X (individual observations), MR (moving…
Wright, David K; MacEachern, Scott; Lee, Jaeyong
2014-01-01
The locations of diy-geδ-bay (DGB) sites in the Mandara Mountains, northern Cameroon are hypothesized to occur as a function of their ability to see and be seen from points on the surrounding landscape. A series of geostatistical, two-way and Bayesian logistic regression analyses were performed to test two hypotheses related to the intervisibility of the sites to one another and their visual prominence on the landscape. We determine that the intervisibility of the sites to one another is highly statistically significant when compared to 10 stratified-random permutations of DGB sites. Bayesian logistic regression additionally demonstrates that the visibility of the sites to points on the surrounding landscape is statistically significant. The location of sites appears to have also been selected on the basis of lower slope than random permutations of sites. Using statistical measures, many of which are not commonly employed in archaeological research, to evaluate aspects of visibility on the landscape, we conclude that the placement of DGB sites improved their conspicuousness for enhanced ritual, social cooperation and/or competition purposes. PMID:25383883
Wright, David K.; MacEachern, Scott; Lee, Jaeyong
2014-01-01
The locations of diy-geδ-bay (DGB) sites in the Mandara Mountains, northern Cameroon are hypothesized to occur as a function of their ability to see and be seen from points on the surrounding landscape. A series of geostatistical, two-way and Bayesian logistic regression analyses were performed to test two hypotheses related to the intervisibility of the sites to one another and their visual prominence on the landscape. We determine that the intervisibility of the sites to one another is highly statistically significant when compared to 10 stratified-random permutations of DGB sites. Bayesian logistic regression additionally demonstrates that the visibility of the sites to points on the surrounding landscape is statistically significant. The location of sites appears to have also been selected on the basis of lower slope than random permutations of sites. Using statistical measures, many of which are not commonly employed in archaeological research, to evaluate aspects of visibility on the landscape, we conclude that the placement of DGB sites improved their conspicuousness for enhanced ritual, social cooperation and/or competition purposes. PMID:25383883
Artificial Intelligence Approach to Support Statistical Quality Control Teaching
ERIC Educational Resources Information Center
Reis, Marcelo Menezes; Paladini, Edson Pacheco; Khator, Suresh; Sommer, Willy Arno
2006-01-01
Statistical quality control--SQC (consisting of Statistical Process Control, Process Capability Studies, Acceptance Sampling and Design of Experiments) is a very important tool to obtain, maintain and improve the Quality level of goods and services produced by an organization. Despite its importance, and the fact that it is taught in technical and…
Control Statistics Process Data Base V4
Energy Science and Technology Software Center (ESTSC)
1998-05-07
The check standard database program, CSP_CB, is a menu-driven program that can acquire measurement data for check standards having a parameter dependence (such as frequency) or no parameter dependence (for example, mass measurements). The program may be run stand-alone or leaded as a subprogram to a Basic program already in memory. The software was designed to require little additional work on the part of the user. The facilitate this design goal, the program is entirelymore » menu-driven. In addition, the user does have control of file names and parameters within a definition file which sets up the basic scheme of file names.« less
Statistical approach to linewidth control in a logic fab
NASA Astrophysics Data System (ADS)
Pitter, Michael; Doleschel, Bernhard; Eibl, Ludwig; Steinkirchner, Erwin; Grassmann, Andreas
1999-04-01
We designed an adaptive line width controller specially tailored to the needs of a highly diversified logic fab. Simulations of different controller types fed with historic CD data show advantages of an SPC based controller over a Run by Run controller. This result confirms the SPC assumption that as long as a process is in statistical control, changing the process parameters will only increase the variability of the output.
Blanc, Guillermo A.; Kewley, Lisa; Vogt, Frédéric P. A.; Dopita, Michael A.
2015-01-10
We present a new method for inferring the metallicity (Z) and ionization parameter (q) of H II regions and star-forming galaxies using strong nebular emission lines (SELs). We use Bayesian inference to derive the joint and marginalized posterior probability density functions for Z and q given a set of observed line fluxes and an input photoionization model. Our approach allows the use of arbitrary sets of SELs and the inclusion of flux upper limits. The method provides a self-consistent way of determining the physical conditions of ionized nebulae that is not tied to the arbitrary choice of a particular SEL diagnostic and uses all the available information. Unlike theoretically calibrated SEL diagnostics, the method is flexible and not tied to a particular photoionization model. We describe our algorithm, validate it against other methods, and present a tool that implements it called IZI. Using a sample of nearby extragalactic H II regions, we assess the performance of commonly used SEL abundance diagnostics. We also use a sample of 22 local H II regions having both direct and recombination line (RL) oxygen abundance measurements in the literature to study discrepancies in the abundance scale between different methods. We find that oxygen abundances derived through Bayesian inference using currently available photoionization models in the literature can be in good (∼30%) agreement with RL abundances, although some models perform significantly better than others. We also confirm that abundances measured using the direct method are typically ∼0.2 dex lower than both RL and photoionization-model-based abundances.
NASA Astrophysics Data System (ADS)
Speegle, Darrin; Steward, Robert
2015-08-01
We propose a semiparametric approach to infer the existence of and estimate the location of a statistical change-point to a nonlinear high dimensional time series contaminated with an additive noise component. In particular, we consider a p―dimensional stochastic process of independent multivariate normal observations where the mean function varies smoothly except at a single change-point. Our approach first involves a dimension reduction of the original time series through a random matrix multiplication. Next, we conduct a Bayesian analysis on the empirical detail coefficients of this dimensionally reduced time series after a wavelet transform. We also present a means to associate confidence bounds to the conclusions of our results. Aside from being computationally efficient and straight forward to implement, the primary advantage of our methods is seen in how these methods apply to a much larger class of time series whose mean functions are subject to only general smoothness conditions.
NASA Technical Reports Server (NTRS)
Vangelder, B. H. W.
1978-01-01
Non-Bayesian statistics were used in simulation studies centered around laser range observations to LAGEOS. The capabilities of satellite laser ranging especially in connection with relative station positioning are evaluated. The satellite measurement system under investigation may fall short in precise determinations of the earth's orientation (precession and nutation) and earth's rotation as opposed to systems as very long baseline interferometry (VLBI) and lunar laser ranging (LLR). Relative station positioning, determination of (differential) polar motion, positioning of stations with respect to the earth's center of mass and determination of the earth's gravity field should be easily realized by satellite laser ranging (SLR). The last two features should be considered as best (or solely) determinable by SLR in contrast to VLBI and LLR.
Towards Validation of an Adaptive Flight Control Simulation Using Statistical Emulation
NASA Technical Reports Server (NTRS)
He, Yuning; Lee, Herbert K. H.; Davies, Misty D.
2012-01-01
Traditional validation of flight control systems is based primarily upon empirical testing. Empirical testing is sufficient for simple systems in which a.) the behavior is approximately linear and b.) humans are in-the-loop and responsible for off-nominal flight regimes. A different possible concept of operation is to use adaptive flight control systems with online learning neural networks (OLNNs) in combination with a human pilot for off-nominal flight behavior (such as when a plane has been damaged). Validating these systems is difficult because the controller is changing during the flight in a nonlinear way, and because the pilot and the control system have the potential to co-adapt in adverse ways traditional empirical methods are unlikely to provide any guarantees in this case. Additionally, the time it takes to find unsafe regions within the flight envelope using empirical testing means that the time between adaptive controller design iterations is large. This paper describes a new concept for validating adaptive control systems using methods based on Bayesian statistics. This validation framework allows the analyst to build nonlinear models with modal behavior, and to have an uncertainty estimate for the difference between the behaviors of the model and system under test.
Bauer, Robert; Gharabaghi, Alireza
2015-01-01
Restorative brain-computer interfaces (BCI) are increasingly used to provide feedback of neuronal states in a bid to normalize pathological brain activity and achieve behavioral gains. However, patients and healthy subjects alike often show a large variability, or even inability, of brain self-regulation for BCI control, known as BCI illiteracy. Although current co-adaptive algorithms are powerful for assistive BCIs, their inherent class switching clashes with the operant conditioning goal of restorative BCIs. Moreover, due to the treatment rationale, the classifier of restorative BCIs usually has a constrained feature space, thus limiting the possibility of classifier adaptation. In this context, we applied a Bayesian model of neurofeedback and reinforcement learning for different threshold selection strategies to study the impact of threshold adaptation of a linear classifier on optimizing restorative BCIs. For each feedback iteration, we first determined the thresholds that result in minimal action entropy and maximal instructional efficiency. We then used the resulting vector for the simulation of continuous threshold adaptation. We could thus show that threshold adaptation can improve reinforcement learning, particularly in cases of BCI illiteracy. Finally, on the basis of information-theory, we provided an explanation for the achieved benefits of adaptive threshold setting. PMID:25729347
Optimal control-based bayesian detection of clinical and behavioral state transitions.
Santaniello, Sabato; Sherman, David L; Thakor, Nitish V; Eskandar, Emad N; Sarma, Sridevi V
2012-09-01
Accurately detecting hidden clinical or behavioral states from sequential measurements is an emerging topic in neuroscience and medicine, which may dramatically impact neural prosthetics, brain-computer interface and drug delivery. For example, early detection of an epileptic seizure from sequential electroencephalographic (EEG) measurements would allow timely administration of anticonvulsant drugs or neurostimulation, thus reducing physical impairment and risks of overtreatment. We develop a Bayesian paradigm for state transition detection that combines optimal control and Markov processes. We define a hidden Markov model of the state evolution and develop a detection policy that minimizes a loss function of both probability of false positives and accuracy (i.e., lag between estimated and actual transition time). Our strategy automatically adapts to each newly acquired measurement based on the state evolution model and the relative loss for false positives and accuracy, thus resulting in a time varying threshold policy. The paradigm was used in two applications: 1) detection of movement onset (behavioral state) from subthalamic single unit recordings in Parkinson's disease patients performing a motor task; 2) early detection of an approaching seizure (clinical state) from multichannel intracranial EEG recordings in rodents treated with pentylenetetrazol chemoconvulsant. Our paradigm performs significantly better than chance and improves over widely used detection algorithms. PMID:22893447
Bauer, Robert; Gharabaghi, Alireza
2015-01-01
Restorative brain-computer interfaces (BCI) are increasingly used to provide feedback of neuronal states in a bid to normalize pathological brain activity and achieve behavioral gains. However, patients and healthy subjects alike often show a large variability, or even inability, of brain self-regulation for BCI control, known as BCI illiteracy. Although current co-adaptive algorithms are powerful for assistive BCIs, their inherent class switching clashes with the operant conditioning goal of restorative BCIs. Moreover, due to the treatment rationale, the classifier of restorative BCIs usually has a constrained feature space, thus limiting the possibility of classifier adaptation. In this context, we applied a Bayesian model of neurofeedback and reinforcement learning for different threshold selection strategies to study the impact of threshold adaptation of a linear classifier on optimizing restorative BCIs. For each feedback iteration, we first determined the thresholds that result in minimal action entropy and maximal instructional efficiency. We then used the resulting vector for the simulation of continuous threshold adaptation. We could thus show that threshold adaptation can improve reinforcement learning, particularly in cases of BCI illiteracy. Finally, on the basis of information-theory, we provided an explanation for the achieved benefits of adaptive threshold setting. PMID:25729347
NASA Astrophysics Data System (ADS)
Culver, R. Lee; Sibul, Leon H.; Bradley, David L.; Ballard, Jeffrey A.; Camin, H. John
2005-09-01
Our goal is to develop a probabilistic sonar performance prediction methodology that can make use of limited knowledge of random or uncertain environment, target, and sonar system parameters, but does not make unwarranted assumptions. The maximum entropy method (MEM) can be used to construct probability density functions (pdfs) for relevant environmental and source parameters, and an ocean acoustic propagation model can use those pdfs to predict the variability of received signal parameter. At this point, the MEM can be used once again to produce signal parameter pdfs. A Bayesian framework allows these pdfs to be incorporated into the signal processor to produce ROC curves in which, for example, the signal-to-noise ratio (SNR) is a random variable for which a pdf has been calculated. One output of such a processor could be a range-dependent probability of detection for fixed probability of false alarm, which would be more useful than the conventional range of the day that is still in use in some areas. [Work supported by ONR Code 321US.
Using Paper Helicopters to Teach Statistical Process Control
ERIC Educational Resources Information Center
Johnson, Danny J.
2011-01-01
This hands-on project uses a paper helicopter to teach students how to distinguish between common and special causes of variability when developing and using statistical process control charts. It allows the student to experience a process that is out-of-control due to imprecise or incomplete product design specifications and to discover how the…
Statistical Process Control: Going to the Limit for Quality.
ERIC Educational Resources Information Center
Training, 1987
1987-01-01
Defines the concept of statistical process control, a quality control method used especially in manufacturing. Generally, concept users set specific standard levels that must be met. Makes the point that although employees work directly with the method, management is responsible for its success within the plant. (CH)
Manufacturing Squares: An Integrative Statistical Process Control Exercise
ERIC Educational Resources Information Center
Coy, Steven P.
2016-01-01
In the exercise, students in a junior-level operations management class are asked to manufacture a simple product. Given product specifications, they must design a production process, create roles and design jobs for each team member, and develop a statistical process control plan that efficiently and effectively controls quality during…
Statistical Design Model (SDM) of satellite thermal control subsystem
NASA Astrophysics Data System (ADS)
Mirshams, Mehran; Zabihian, Ehsan; Aarabi Chamalishahi, Mahdi
2016-07-01
Satellites thermal control, is a satellite subsystem that its main task is keeping the satellite components at its own survival and activity temperatures. Ability of satellite thermal control plays a key role in satisfying satellite's operational requirements and designing this subsystem is a part of satellite design. In the other hand due to the lack of information provided by companies and designers still doesn't have a specific design process while it is one of the fundamental subsystems. The aim of this paper, is to identify and extract statistical design models of spacecraft thermal control subsystem by using SDM design method. This method analyses statistical data with a particular procedure. To implement SDM method, a complete database is required. Therefore, we first collect spacecraft data and create a database, and then we extract statistical graphs using Microsoft Excel, from which we further extract mathematical models. Inputs parameters of the method are mass, mission, and life time of the satellite. For this purpose at first thermal control subsystem has been introduced and hardware using in the this subsystem and its variants has been investigated. In the next part different statistical models has been mentioned and a brief compare will be between them. Finally, this paper particular statistical model is extracted from collected statistical data. Process of testing the accuracy and verifying the method use a case study. Which by the comparisons between the specifications of thermal control subsystem of a fabricated satellite and the analyses results, the methodology in this paper was proved to be effective. Key Words: Thermal control subsystem design, Statistical design model (SDM), Satellite conceptual design, Thermal hardware
NASA Astrophysics Data System (ADS)
Iizumi, T.; Nishimori, M.; Yokozawa, M.; Kotera, A.; Khang, N. D.
2008-12-01
Long-term daily global solar radiation (GSR) data of the same quality in the 20th century has been needed as a baseline to assess the climate change impact on paddy rice production in Vietnamese Mekong Delta area (MKD: 104.5-107.5oE/8.2-11.2oN). However, though sunshine duration data is available, the accessibility of GSR data is quite poor in MKD. This study estimated the daily GSR in MKD for 30-yr (1978- 2007) by applying the statistical downscaling method (SDM). The estimates of GSR was obtained from four different sources: (1) the combined equations with the corrected reanalysis data of daily maximum/minimum temperatures, relative humidity, sea level pressure, and precipitable water; (2) the correction equation with the reanalysis data of downward shortwave radiation; (3) the empirical equation with the observed sunshine duration; and (4) the observation at one site for short term. Three reanalysis data, i.e., NCEP-R1, ERA-40, and JRA-25, were used. Also the observed meteorological data, which includes many missing data, were obtained from 11 stations of the Vietnamese Meteorological Agency for 28-yr and five stations of the Global Summary of the Day for 30-yr. The observed GSR data for 1-yr was obtained from our station. Considering the use of data with many missing data for analysis, the Bayesian inference was used for this study, which has the powerful capability to optimize multiple parameters in a non-linear and hierarchical model. The Bayesian inference provided the posterior distributions of 306 parameter values relating to the combined equations, the empirical equation, and the correction equation. The preliminary result shows that the amplitude of daily fluctuation of modeled GSR was underestimated by the empirical equation and the correction equation. The combination of SDM and Bayesian inference has a potential to estimate the long- term daily GSR of the same quality even though in the area where the observed data is quite limited.
Archer, S C; Mc Coy, F; Wapenaar, W; Green, M J
2014-01-01
The aim of this research was to determine budgets for specific management interventions to control heifer mastitis in Irish dairy herds as an example of evidence synthesis and 1-step Bayesian micro-simulation in a veterinary context. Budgets were determined for different decision makers based on their willingness to pay. Reducing the prevalence of heifers with a high milk somatic cell count (SCC) early in the first lactation could be achieved through herd level management interventions for pre- and peri-partum heifers, however the cost effectiveness of these interventions is unknown. A synthesis of multiple sources of evidence, accounting for variability and uncertainty in the available data is invaluable to inform decision makers around likely economic outcomes of investing in disease control measures. One analytical approach to this is Bayesian micro-simulation, where the trajectory of different individuals undergoing specific interventions is simulated. The classic micro-simulation framework was extended to encompass synthesis of evidence from 2 separate statistical models and previous research, with the outcome for an individual cow or herd assessed in terms of changes in lifetime milk yield, disposal risk, and likely financial returns conditional on the interventions being simultaneously applied. The 3 interventions tested were storage of bedding inside, decreasing transition yard stocking density, and spreading of bedding evenly in the calving area. Budgets for the interventions were determined based on the minimum expected return on investment, and the probability of the desired outcome. Budgets for interventions to control heifer mastitis were highly dependent on the decision maker's willingness to pay, and hence minimum expected return on investment. Understanding the requirements of decision makers and their rational spending limits would be useful for the development of specific interventions for particular farms to control heifer mastitis, and other
NASA Astrophysics Data System (ADS)
Granade, Christopher; Combes, Joshua; Cory, D. G.
2016-03-01
In recent years, Bayesian methods have been proposed as a solution to a wide range of issues in quantum state and process tomography. State-of-the-art Bayesian tomography solutions suffer from three problems: numerical intractability, a lack of informative prior distributions, and an inability to track time-dependent processes. Here, we address all three problems. First, we use modern statistical methods, as pioneered by Huszár and Houlsby (2012 Phys. Rev. A 85 052120) and by Ferrie (2014 New J. Phys. 16 093035), to make Bayesian tomography numerically tractable. Our approach allows for practical computation of Bayesian point and region estimators for quantum states and channels. Second, we propose the first priors on quantum states and channels that allow for including useful experimental insight. Finally, we develop a method that allows tracking of time-dependent states and estimates the drift and diffusion processes affecting a state. We provide source code and animated visual examples for our methods.
Maintenance with the use of statistical control charts
NASA Astrophysics Data System (ADS)
Gromakov, E. I.; Aleksandrova, T. V.; Ivanenko, B. P.
2016-04-01
The possibility of using statistical process control methods for detection of an abnormal condition of the process equipment at early stages of an emergency is shown in the paper. The authors of the paper has concluded that with the use of Shewhart charts it is possible to monitor the real dynamics of the process equipment condition and make decisions on its maintenance and repair
Statistical porcess control in Deep Space Network operation
NASA Technical Reports Server (NTRS)
Hodder, J. A.
2002-01-01
This report describes how the Deep Space Mission System (DSMS) Operations Program Office at the Jet Propulsion Laboratory's (EL) uses Statistical Process Control (SPC) to monitor performance and evaluate initiatives for improving processes on the National Aeronautics and Space Administration's (NASA) Deep Space Network (DSN).
Statistical Process Control in the Practice of Program Evaluation.
ERIC Educational Resources Information Center
Posavac, Emil J.
1995-01-01
A technique developed to monitor the quality of manufactured products, statistical process control (SPC), incorporates several features that may prove attractive to evaluators. This paper reviews the history of SPC, suggests how the approach can enrich program evaluation, and illustrates its use in a hospital-based example. (SLD)
Statistical Process Control. Impact and Opportunities for Ohio.
ERIC Educational Resources Information Center
Brown, Harold H.
The first purpose of this study is to help the reader become aware of the evolution of Statistical Process Control (SPC) as it is being implemented and used in industry today. This is approached through the presentation of a brief historical account of SPC, from its inception through the technological miracle that has occurred in Japan. The…
Statistical Process Control. A Summary. FEU/PICKUP Project Report.
ERIC Educational Resources Information Center
Owen, M.; Clark, I.
A project was conducted to develop a curriculum and training materials to be used in training industrial operatives in statistical process control (SPC) techniques. During the first phase of the project, questionnaires were sent to 685 companies (215 of which responded) to determine where SPC was being used, what type of SPC firms needed, and how…
Real-time statistical quality control and ARM
Blough, D.K.
1992-05-01
An important component of the Atmospheric Radiation Measurement (ARM) Program is real-time quality control of data obtained from meteorological instruments. It is the goal of the ARM program to enhance the predictive capabilities of global circulation models by incorporating in them more detailed information on the radiative characteristics of the earth's atmosphere. To this end, a number of Cloud and Radiation Testbeds (CART's) will be built at various locations worldwide. Each CART will consist of an array of instruments designed to collect radiative data. The large amount of data obtained from these instruments necessitates real-time processing in order to flag outliers and possible instrument malfunction. The Bayesian dynamic linear model (DLM) proves to be an effective way of monitoring the time series data which each instrument generates. It provides a flexible yet powerful approach to detecting in real-time sudden shifts in a non-stationary multivariate time series. An application of these techniques to data arising from a remote sensing instrument to be used in the CART is provided. Using real data from a wind profiler, the ability of the DLM to detect outliers is studied. 5 refs.
Real-time statistical quality control and ARM
Blough, D.K.
1992-05-01
An important component of the Atmospheric Radiation Measurement (ARM) Program is real-time quality control of data obtained from meteorological instruments. It is the goal of the ARM program to enhance the predictive capabilities of global circulation models by incorporating in them more detailed information on the radiative characteristics of the earth`s atmosphere. To this end, a number of Cloud and Radiation Testbeds (CART`s) will be built at various locations worldwide. Each CART will consist of an array of instruments designed to collect radiative data. The large amount of data obtained from these instruments necessitates real-time processing in order to flag outliers and possible instrument malfunction. The Bayesian dynamic linear model (DLM) proves to be an effective way of monitoring the time series data which each instrument generates. It provides a flexible yet powerful approach to detecting in real-time sudden shifts in a non-stationary multivariate time series. An application of these techniques to data arising from a remote sensing instrument to be used in the CART is provided. Using real data from a wind profiler, the ability of the DLM to detect outliers is studied. 5 refs.
Tool compensation using statistical process control on complex milling operations
Reilly, J.M.
1994-03-01
In today`s competitive manufacturing environment, many companies increasingly rely on numerical control (NC) mills to produce products at a reasonable cost. Typically, this is done by producing as many features as possible at each machining operation to minimize the total number of shop hours invested per part. Consequently, the number of cutting tools involved in one operation can become quite large since NC mills have the capacity to use in excess of 100 cutting tools. As the number of cutting tools increases, the difficulty of applying optimum tool compensation grows exponentially, quickly overwhelming machine operators and engineers. A systematic method of managing tool compensation is required. The name statistical process control (SPC) suggests a technique in which statistics are used to stabilize and control a machining operation. Feedback and control theory, the study of the stabilization of electronic and mechanical systems, states that control can be established by way of a feedback network. If these concepts were combined, SPC would stabilize and control manufacturing operations through the incorporation of statistically processed feedback. In its simplest application, SPC has been used as a tool to analyze inspection data. In its most mature application, SPC can be the link that applies process feedback. The approach involves: (1) identifying the significant process variables adjusted by the operator; (2) developing mathematical relationships that convert strategic part measurements into variable adjustments; and (3) implementing SPC charts that record required adjustment to each variable.
77 FR 46096 - Statistical Process Controls for Blood Establishments; Public Workshop
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-02
... HUMAN SERVICES Food and Drug Administration Statistical Process Controls for Blood Establishments... and Drug Administration (FDA) is announcing a public workshop entitled: ``Statistical Process Controls... statistical process controls to validate and monitor manufacturing processes in blood establishments....
A Statistical Project Control Tool for Engineering Managers
NASA Technical Reports Server (NTRS)
Bauch, Garland T.
2001-01-01
This slide presentation reviews the use of a Statistical Project Control Tool (SPCT) for managing engineering projects. A literature review pointed to a definition of project success, (i.e., A project is successful when the cost, schedule, technical performance, and quality satisfy the customer.) The literature review also pointed to project success factors, and traditional project control tools, and performance measures that are detailed in the report. The essential problem is that with resources becoming more limited, and an increasing number or projects, project failure is increasing, there is a limitation of existing methods and systematic methods are required. The objective of the work is to provide a new statistical project control tool for project managers. Graphs using the SPCT method plotting results of 3 successful projects and 3 failed projects are reviewed, with success and failure being defined by the owner.
NASA Technical Reports Server (NTRS)
He, Yuning
2015-01-01
Safety of unmanned aerial systems (UAS) is paramount, but the large number of dynamically changing controller parameters makes it hard to determine if the system is currently stable, and the time before loss of control if not. We propose a hierarchical statistical model using Treed Gaussian Processes to predict (i) whether a flight will be stable (success) or become unstable (failure), (ii) the time-to-failure if unstable, and (iii) time series outputs for flight variables. We first classify the current flight input into success or failure types, and then use separate models for each class to predict the time-to-failure and time series outputs. As different inputs may cause failures at different times, we have to model variable length output curves. We use a basis representation for curves and learn the mappings from input to basis coefficients. We demonstrate the effectiveness of our prediction methods on a NASA neuro-adaptive flight control system.
The HONEYPOT Randomized Controlled Trial Statistical Analysis Plan
Pascoe, Elaine Mary; Lo, Serigne; Scaria, Anish; Badve, Sunil V.; Beller, Elaine Mary; Cass, Alan; Hawley, Carmel Mary; Johnson, David W.
2013-01-01
♦ Background: The HONEYPOT study is a multicenter, open-label, blinded-outcome, randomized controlled trial designed to determine whether, compared with standard topical application of mupirocin for nasal staphylococcal carriage, exit-site application of antibacterial honey reduces the rate of catheter-associated infections in peritoneal dialysis patients. ♦ Objective: To make public the pre-specified statistical analysis principles to be adhered to and the procedures to be performed by statisticians who will analyze the data for the HONEYPOT trial. ♦ Methods: Statisticians and clinical investigators who were blinded to treatment allocation and treatment-related study results and who will remain blinded until the central database is locked for final data extraction and analysis determined the statistical methods and procedures to be used for analysis and wrote the statistical analysis plan. The plan describes basic analysis principles, methods for dealing with a range of commonly encountered data analysis issues, and the specific statistical procedures for analyzing the primary, secondary, and safety outcomes. ♦ Results: A statistical analysis plan containing the pre-specified principles, methods, and procedures to be adhered to in the analysis of the data from the HONEYPOT trial was developed in accordance with international guidelines. The structure and content of the plan provide sufficient detail to meet the guidelines on statistical principles for clinical trials produced by the International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use. ♦ Conclusions: Making public the pre-specified statistical analysis plan for the HONEYPOT trial minimizes the potential for bias in the analysis of trial data and the interpretation and reporting of trial results. PMID:23843589
Statistical physics of human beings in games: Controlled experiments
NASA Astrophysics Data System (ADS)
Liang, Yuan; Huang, Ji-Ping
2014-07-01
It is important to know whether the laws or phenomena in statistical physics for natural systems with non-adaptive agents still hold for social human systems with adaptive agents, because this implies whether it is possible to study or understand social human systems by using statistical physics originating from natural systems. For this purpose, we review the role of human adaptability in four kinds of specific human behaviors, namely, normal behavior, herd behavior, contrarian behavior, and hedge behavior. The approach is based on controlled experiments in the framework of market-directed resource-allocation games. The role of the controlled experiments could be at least two-fold: adopting the real human decision-making process so that the system under consideration could reflect the performance of genuine human beings; making it possible to obtain macroscopic physical properties of a human system by tuning a particular factor of the system, thus directly revealing cause and effect. As a result, both computer simulations and theoretical analyses help to show a few counterparts of some laws or phenomena in statistical physics for social human systems: two-phase phenomena or phase transitions, entropy-related phenomena, and a non-equilibrium steady state. This review highlights the role of human adaptability in these counterparts, and makes it possible to study or understand some particular social human systems by means of statistical physics coming from natural systems.
CRN5EXP: Expert system for statistical quality control
NASA Technical Reports Server (NTRS)
Hentea, Mariana
1991-01-01
The purpose of the Expert System CRN5EXP is to assist in checking the quality of the coils at two very important mills: Hot Rolling and Cold Rolling in a steel plant. The system interprets the statistical quality control charts, diagnoses and predicts the quality of the steel. Measurements of process control variables are recorded in a database and sample statistics such as the mean and the range are computed and plotted on a control chart. The chart is analyzed through patterns using the C Language Integrated Production System (CLIPS) and a forward chaining technique to reach a conclusion about the causes of defects and to take management measures for the improvement of the quality control techniques. The Expert System combines the certainty factors associated with the process control variables to predict the quality of the steel. The paper presents the approach to extract data from the database, the reason to combine certainty factors, the architecture and the use of the Expert System. However, the interpretation of control charts patterns requires the human expert's knowledge and lends to Expert Systems rules.
Utilizing effective statistical process control limits for critical dimension metrology
NASA Astrophysics Data System (ADS)
Buser, Joel T.
2002-12-01
To accurately control critical dimension (CD) metrology in a standard real-time solution across a multi-site operation there is a need to collect measure-to-measure and day-to-day variation across all sites. Each individual site's needs, technologies, and resources can affect the final solution. A preferred statistical process control (SPC) solution for testing measure-to-measure and day-to-day variation is the traditional Mean and Range chart. However, replicating the full measurement process needed for the Mean and Range chart in real-time can strain resources. To solve this problem, an initially proposed measurement methodology was to isolate a point of interest, measure the CD feature n number of times, and continue to the next feature; however, the interdependencies in measure-to-measure variation caused by this methodology resulted in exceedingly narrow control limits. This paper explains how traditional solutions to narrow control limits are statistically problematic and explores the approach of computing control limits for the Mean chart utilizing the moving range of sample means to estimate sigma instead of the traditional range method. Tool monitoring data from multiple CD metrology tools are reported and compared against control limits calculated by the traditional approach, engineering limits, and the suggested approach. The data indicate that the suggested approach is the most accurate of the three solutions.
Ma, Ning; Yu, Angela J.
2015-01-01
Response time (RT) is an oft-reported behavioral measure in psychological and neurocognitive experiments, but the high level of observed trial-to-trial variability in this measure has often limited its usefulness. Here, we combine computational modeling and psychophysics to examine the hypothesis that fluctuations in this noisy measure reflect dynamic computations in human statistical learning and corresponding cognitive adjustments. We present data from the stop-signal task (SST), in which subjects respond to a go stimulus on each trial, unless instructed not to by a subsequent, infrequently presented stop signal. We model across-trial learning of stop signal frequency, P(stop), and stop-signal onset time, SSD (stop-signal delay), with a Bayesian hidden Markov model, and within-trial decision-making with an optimal stochastic control model. The combined model predicts that RT should increase with both expected P(stop) and SSD. The human behavioral data (n = 20) bear out this prediction, showing P(stop) and SSD both to be significant, independent predictors of RT, with P(stop) being a more prominent predictor in 75% of the subjects, and SSD being more prominent in the remaining 25%. The results demonstrate that humans indeed readily internalize environmental statistics and adjust their cognitive/behavioral strategy accordingly, and that subtle patterns in RT variability can serve as a valuable tool for validating models of statistical learning and decision-making. More broadly, the modeling tools presented in this work can be generalized to a large body of behavioral paradigms, in order to extract insights about cognitive and neural processing from apparently quite noisy behavioral measures. We also discuss how this behaviorally validated model can then be used to conduct model-based analysis of neural data, in order to help identify specific brain areas for representing and encoding key computational quantities in learning and decision-making. PMID:26321966
McAloon, Conor G; Doherty, Michael L; Whyte, Paul; O'Grady, Luke; More, Simon J; Messam, Locksley L McV; Good, Margaret; Mullowney, Peter; Strain, Sam; Green, Martin J
2016-06-01
Bovine paratuberculosis is a disease characterised by chronic granulomatous enteritis which manifests clinically as a protein-losing enteropathy causing diarrhoea, hypoproteinaemia, emaciation and, eventually death. Some evidence exists to suggest a possible zoonotic link and a national voluntary Johne's Disease Control Programme was initiated by Animal Health Ireland in 2013. The objective of this study was to estimate herd-level true prevalence (HTP) and animal-level true prevalence (ATP) of paratuberculosis in Irish herds enrolled in the national voluntary JD control programme during 2013-14. Two datasets were used in this study. The first dataset had been collected in Ireland during 2005 (5822 animals from 119 herds), and was used to construct model priors. Model priors were updated with a primary (2013-14) dataset which included test records from 99,101 animals in 1039 dairy herds and was generated as part of the national voluntary JD control programme. The posterior estimate of HTP from the final Bayesian model was 0.23-0.34 with a 95% probability. Across all herds, the median ATP was found to be 0.032 (0.009, 0.145). This study represents the first use of Bayesian methodology to estimate the prevalence of paratuberculosis in Irish dairy herds. The HTP estimate was higher than previous Irish estimates but still lower than estimates from other major dairy producing countries. PMID:27237395
Statistical process control using optimized neural networks: a case study.
Addeh, Jalil; Ebrahimzadeh, Ata; Azarbad, Milad; Ranaee, Vahid
2014-09-01
The most common statistical process control (SPC) tools employed for monitoring process changes are control charts. A control chart demonstrates that the process has altered by generating an out-of-control signal. This study investigates the design of an accurate system for the control chart patterns (CCPs) recognition in two aspects. First, an efficient system is introduced that includes two main modules: feature extraction module and classifier module. In the feature extraction module, a proper set of shape features and statistical feature are proposed as the efficient characteristics of the patterns. In the classifier module, several neural networks, such as multilayer perceptron, probabilistic neural network and radial basis function are investigated. Based on an experimental study, the best classifier is chosen in order to recognize the CCPs. Second, a hybrid heuristic recognition system is introduced based on cuckoo optimization algorithm (COA) algorithm to improve the generalization performance of the classifier. The simulation results show that the proposed algorithm has high recognition accuracy. PMID:24210290
A Gentle Introduction to Bayesian Analysis: Applications to Developmental Research
ERIC Educational Resources Information Center
van de Schoot, Rens; Kaplan, David; Denissen, Jaap; Asendorpf, Jens B.; Neyer, Franz J.; van Aken, Marcel A. G.
2014-01-01
Bayesian statistical methods are becoming ever more popular in applied and fundamental research. In this study a gentle introduction to Bayesian analysis is provided. It is shown under what circumstances it is attractive to use Bayesian estimation, and how to interpret properly the results. First, the ingredients underlying Bayesian methods are…
Structure Learning in Bayesian Sensorimotor Integration
Genewein, Tim; Hez, Eduard; Razzaghpanah, Zeynab; Braun, Daniel A.
2015-01-01
Previous studies have shown that sensorimotor processing can often be described by Bayesian learning, in particular the integration of prior and feedback information depending on its degree of reliability. Here we test the hypothesis that the integration process itself can be tuned to the statistical structure of the environment. We exposed human participants to a reaching task in a three-dimensional virtual reality environment where we could displace the visual feedback of their hand position in a two dimensional plane. When introducing statistical structure between the two dimensions of the displacement, we found that over the course of several days participants adapted their feedback integration process in order to exploit this structure for performance improvement. In control experiments we found that this adaptation process critically depended on performance feedback and could not be induced by verbal instructions. Our results suggest that structural learning is an important meta-learning component of Bayesian sensorimotor integration. PMID:26305797
Statistical Quality Control of Moisture Data in GEOS DAS
NASA Technical Reports Server (NTRS)
Dee, D. P.; Rukhovets, L.; Todling, R.
1999-01-01
A new statistical quality control algorithm was recently implemented in the Goddard Earth Observing System Data Assimilation System (GEOS DAS). The final step in the algorithm consists of an adaptive buddy check that either accepts or rejects outlier observations based on a local statistical analysis of nearby data. A basic assumption in any such test is that the observed field is spatially coherent, in the sense that nearby data can be expected to confirm each other. However, the buddy check resulted in excessive rejection of moisture data, especially during the Northern Hemisphere summer. The analysis moisture variable in GEOS DAS is water vapor mixing ratio. Observational evidence shows that the distribution of mixing ratio errors is far from normal. Furthermore, spatial correlations among mixing ratio errors are highly anisotropic and difficult to identify. Both factors contribute to the poor performance of the statistical quality control algorithm. To alleviate the problem, we applied the buddy check to relative humidity data instead. This variable explicitly depends on temperature and therefore exhibits a much greater spatial coherence. As a result, reject rates of moisture data are much more reasonable and homogeneous in time and space.
NASA Astrophysics Data System (ADS)
Boulanger, Jean-Philippe; Martinez, Fernando; Segura, Enrique C.
2007-02-01
Evaluating the response of climate to greenhouse gas forcing is a major objective of the climate community, and the use of large ensemble of simulations is considered as a significant step toward that goal. The present paper thus discusses a new methodology based on neural network to mix ensemble of climate model simulations. Our analysis consists of one simulation of seven Atmosphere Ocean Global Climate Models, which participated in the IPCC Project and provided at least one simulation for the twentieth century (20c3m) and one simulation for each of three SRES scenarios: A2, A1B and B1. Our statistical method based on neural networks and Bayesian statistics computes a transfer function between models and observations. Such a transfer function was then used to project future conditions and to derive what we would call the optimal ensemble combination for twenty-first century climate change projections. Our approach is therefore based on one statement and one hypothesis. The statement is that an optimal ensemble projection should be built by giving larger weights to models, which have more skill in representing present climate conditions. The hypothesis is that our method based on neural network is actually weighting the models that way. While the statement is actually an open question, which answer may vary according to the region or climate signal under study, our results demonstrate that the neural network approach indeed allows to weighting models according to their skills. As such, our method is an improvement of existing Bayesian methods developed to mix ensembles of simulations. However, the general low skill of climate models in simulating precipitation mean climatology implies that the final projection maps (whatever the method used to compute them) may significantly change in the future as models improve. Therefore, the projection results for late twenty-first century conditions are presented as possible projections based on the “state-of-the-art” of
Statistical process control for hospitals: methodology, user education, and challenges.
Matthes, Nikolas; Ogunbo, Samuel; Pennington, Gaither; Wood, Nell; Hart, Marilyn K; Hart, Robert F
2007-01-01
The health care industry is slowly embracing the use of statistical process control (SPC) to monitor and study causes of variation in health care processes. While the statistics and principles underlying the use of SPC are relatively straightforward, there is a need to be cognizant of the perils that await the user who is not well versed in the key concepts of SPC. This article introduces the theory behind SPC methodology, describes successful tactics for educating users, and discusses the challenges associated with encouraging adoption of SPC among health care professionals. To illustrate these benefits and challenges, this article references the National Hospital Quality Measures, presents critical elements of SPC curricula, and draws examples from hospitals that have successfully embedded SPC into their overall approach to performance assessment and improvement. PMID:17627215
NASA Technical Reports Server (NTRS)
da Silva, Arlindo M.; Norris, Peter M.
2013-01-01
Part I presented a Monte Carlo Bayesian method for constraining a complex statistical model of GCM sub-gridcolumn moisture variability using high-resolution MODIS cloud data, thereby permitting large-scale model parameter estimation and cloud data assimilation. This part performs some basic testing of this new approach, verifying that it does indeed significantly reduce mean and standard deviation biases with respect to the assimilated MODIS cloud optical depth, brightness temperature and cloud top pressure, and that it also improves the simulated rotational-Ramman scattering cloud optical centroid pressure (OCP) against independent (non-assimilated) retrievals from the OMI instrument. Of particular interest, the Monte Carlo method does show skill in the especially difficult case where the background state is clear but cloudy observations exist. In traditional linearized data assimilation methods, a subsaturated background cannot produce clouds via any infinitesimal equilibrium perturbation, but the Monte Carlo approach allows finite jumps into regions of non-zero cloud probability. In the example provided, the method is able to restore marine stratocumulus near the Californian coast where the background state has a clear swath. This paper also examines a number of algorithmic and physical sensitivities of the new method and provides guidance for its cost-effective implementation. One obvious difficulty for the method, and other cloud data assimilation methods as well, is the lack of information content in the cloud observables on cloud vertical structure, beyond cloud top pressure and optical thickness, thus necessitating strong dependence on the background vertical moisture structure. It is found that a simple flow-dependent correlation modification due to Riishojgaard (1998) provides some help in this respect, by better honoring inversion structures in the background state.
Bayesian demography 250 years after Bayes
Bijak, Jakub; Bryant, John
2016-01-01
Bayesian statistics offers an alternative to classical (frequentist) statistics. It is distinguished by its use of probability distributions to describe uncertain quantities, which leads to elegant solutions to many difficult statistical problems. Although Bayesian demography, like Bayesian statistics more generally, is around 250 years old, only recently has it begun to flourish. The aim of this paper is to review the achievements of Bayesian demography, address some misconceptions, and make the case for wider use of Bayesian methods in population studies. We focus on three applications: demographic forecasts, limited data, and highly structured or complex models. The key advantages of Bayesian methods are the ability to integrate information from multiple sources and to describe uncertainty coherently. Bayesian methods also allow for including additional (prior) information next to the data sample. As such, Bayesian approaches are complementary to many traditional methods, which can be productively re-expressed in Bayesian terms. PMID:26902889
Bayesian demography 250 years after Bayes.
Bijak, Jakub; Bryant, John
2016-01-01
Bayesian statistics offers an alternative to classical (frequentist) statistics. It is distinguished by its use of probability distributions to describe uncertain quantities, which leads to elegant solutions to many difficult statistical problems. Although Bayesian demography, like Bayesian statistics more generally, is around 250 years old, only recently has it begun to flourish. The aim of this paper is to review the achievements of Bayesian demography, address some misconceptions, and make the case for wider use of Bayesian methods in population studies. We focus on three applications: demographic forecasts, limited data, and highly structured or complex models. The key advantages of Bayesian methods are the ability to integrate information from multiple sources and to describe uncertainty coherently. Bayesian methods also allow for including additional (prior) information next to the data sample. As such, Bayesian approaches are complementary to many traditional methods, which can be productively re-expressed in Bayesian terms. PMID:26902889
Bayesian neural adjustment of inhibitory control predicts emergence of problem stimulant use.
Harlé, Katia M; Stewart, Jennifer L; Zhang, Shunan; Tapert, Susan F; Yu, Angela J; Paulus, Martin P
2015-11-01
Bayesian ideal observer models quantify individuals' context- and experience-dependent beliefs and expectations about their environment, which provides a powerful approach (i) to link basic behavioural mechanisms to neural processing; and (ii) to generate clinical predictors for patient populations. Here, we focus on (ii) and determine whether individual differences in the neural representation of the need to stop in an inhibitory task can predict the development of problem use (i.e. abuse or dependence) in individuals experimenting with stimulants. One hundred and fifty-seven non-dependent occasional stimulant users, aged 18-24, completed a stop-signal task while undergoing functional magnetic resonance imaging. These individuals were prospectively followed for 3 years and evaluated for stimulant use and abuse/dependence symptoms. At follow-up, 38 occasional stimulant users met criteria for a stimulant use disorder (problem stimulant users), while 50 had discontinued use (desisted stimulant users). We found that those individuals who showed greater neural responses associated with Bayesian prediction errors, i.e. the difference between actual and expected need to stop on a given trial, in right medial prefrontal cortex/anterior cingulate cortex, caudate, anterior insula, and thalamus were more likely to exhibit problem use 3 years later. Importantly, these computationally based neural predictors outperformed clinical measures and non-model based neural variables in predicting clinical status. In conclusion, young adults who show exaggerated brain processing underlying whether to 'stop' or to 'go' are more likely to develop stimulant abuse. Thus, Bayesian cognitive models provide both a computational explanation and potential predictive biomarkers of belief processing deficits in individuals at risk for stimulant addiction. PMID:26336910
Links to sources of cancer-related statistics, including the Surveillance, Epidemiology and End Results (SEER) Program, SEER-Medicare datasets, cancer survivor prevalence data, and the Cancer Trends Progress Report.
Statistical process control of a Kalman filter model.
Gamse, Sonja; Nobakht-Ersi, Fereydoun; Sharifi, Mohammad A
2014-01-01
For the evaluation of measurement data, different functional and stochastic models can be used. In the case of time series, a Kalman filtering (KF) algorithm can be implemented. In this case, a very well-known stochastic model, which includes statistical tests in the domain of measurements and in the system state domain, is used. Because the output results depend strongly on input model parameters and the normal distribution of residuals is not always fulfilled, it is very important to perform all possible tests on output results. In this contribution, we give a detailed description of the evaluation of the Kalman filter model. We describe indicators of inner confidence, such as controllability and observability, the determinant of state transition matrix and observing the properties of the a posteriori system state covariance matrix and the properties of the Kalman gain matrix. The statistical tests include the convergence of standard deviations of the system state components and normal distribution beside standard tests. Especially, computing controllability and observability matrices and controlling the normal distribution of residuals are not the standard procedures in the implementation of KF. Practical implementation is done on geodetic kinematic observations. PMID:25264959
Statistical Process Control of a Kalman Filter Model
Gamse, Sonja; Nobakht-Ersi, Fereydoun; Sharifi, Mohammad A.
2014-01-01
For the evaluation of measurement data, different functional and stochastic models can be used. In the case of time series, a Kalman filtering (KF) algorithm can be implemented. In this case, a very well-known stochastic model, which includes statistical tests in the domain of measurements and in the system state domain, is used. Because the output results depend strongly on input model parameters and the normal distribution of residuals is not always fulfilled, it is very important to perform all possible tests on output results. In this contribution, we give a detailed description of the evaluation of the Kalman filter model. We describe indicators of inner confidence, such as controllability and observability, the determinant of state transition matrix and observing the properties of the a posteriori system state covariance matrix and the properties of the Kalman gain matrix. The statistical tests include the convergence of standard deviations of the system state components and normal distribution beside standard tests. Especially, computing controllability and observability matrices and controlling the normal distribution of residuals are not the standard procedures in the implementation of KF. Practical implementation is done on geodetic kinematic observations. PMID:25264959
Yield enhancement in micromechanical sensor fabrication using statistical process control
NASA Astrophysics Data System (ADS)
Borenstein, Jeffrey T.; Preble, Douglas M.
1997-09-01
Statistical process control (SPC) has gained wide acceptance in recent years as an essential tool for yield improvement in the microelectronics industry. In both manufacturing and research and development settings, statistical methods are extremely useful in process control and optimization. Here we describe the recent implementation of SPC in the micromachining fabrication process at Draper. A wide array of micromachined silicon sensors, including gyroscopes, accelerometers, and microphones, are routinely fabricated at Draper, often with rapidly changing designs and processes. In spite of Draper's requirements for rapid turnaround and relatively small, short production runs, SPC has turned out to be a critical component of the product development process. This paper describes the multipronged SPC approach we have developed and tailored to the particular requirements of an R & D micromachining process line. Standard tools such as Pareto charts, histograms, and cause-and-effect diagrams have been deployed to troubleshoot yield and performance problems in the micromachining process, and several examples of their use are described. More rigorous approaches, such as the use of control charts for variables and attributes, have been instituted with considerable success. The software package CornerstoneR was selected to handle the SPC program at Draper. We describe the highly automated process now in place for monitoring key processes, including diffusion, oxidation, photolithography, and etching. In addition to the process monitoring, gauge capability is applied to critical metrology tools on a regular basis. Applying these tools in the process line has resulted in sharply improved yields and shortened process cycles.
BIE: Bayesian Inference Engine
NASA Astrophysics Data System (ADS)
Weinberg, Martin D.
2013-12-01
The Bayesian Inference Engine (BIE) is an object-oriented library of tools written in C++ designed explicitly to enable Bayesian update and model comparison for astronomical problems. To facilitate "what if" exploration, BIE provides a command line interface (written with Bison and Flex) to run input scripts. The output of the code is a simulation of the Bayesian posterior distribution from which summary statistics e.g. by taking moments, or determine confidence intervals and so forth, can be determined. All of these quantities are fundamentally integrals and the Markov Chain approach produces variates heta distributed according to P( heta|D) so moments are trivially obtained by summing of the ensemble of variates.
Statistical process control program at a ceramics vendor facility
Enke, G.M.
1992-12-01
Development of a statistical process control (SPC) program at a ceramics vendor location was deemed necessary to improve product quality, reduce manufacturing flowtime, and reduce quality costs borne by AlliedSignal Inc., Kansas City Division (KCD), and the vendor. Because of the lack of available KCD manpower and the required time schedule for the project, it was necessary for the SPC program to be implemented by an external contractor. Approximately a year after the program had been installed, the original baseline was reviewed so that the success of the project could be determined.
Larson, Nicholas B; McDonnell, Shannon; Albright, Lisa Cannon; Teerlink, Craig; Stanford, Janet; Ostrander, Elaine A; Isaacs, William B; Xu, Jianfeng; Cooney, Kathleen A; Lange, Ethan; Schleutker, Johanna; Carpten, John D; Powell, Isaac; Bailey-Wilson, Joan; Cussenot, Olivier; Cancel-Tassin, Geraldine; Giles, Graham; MacInnis, Robert; Maier, Christiane; Whittemore, Alice S; Hsieh, Chih-Lin; Wiklund, Fredrik; Catolona, William J; Foulkes, William; Mandal, Diptasri; Eeles, Rosalind; Kote-Jarai, Zsofia; Ackerman, Michael J; Olson, Timothy M; Klein, Christopher J; Thibodeau, Stephen N; Schaid, Daniel J
2016-09-01
Rare variants (RVs) have been shown to be significant contributors to complex disease risk. By definition, these variants have very low minor allele frequencies and traditional single-marker methods for statistical analysis are underpowered for typical sequencing study sample sizes. Multimarker burden-type approaches attempt to identify aggregation of RVs across case-control status by analyzing relatively small partitions of the genome, such as genes. However, it is generally the case that the aggregative measure would be a mixture of causal and neutral variants, and these omnibus tests do not directly provide any indication of which RVs may be driving a given association. Recently, Bayesian variable selection approaches have been proposed to identify RV associations from a large set of RVs under consideration. Although these approaches have been shown to be powerful at detecting associations at the RV level, there are often computational limitations on the total quantity of RVs under consideration and compromises are necessary for large-scale application. Here, we propose a computationally efficient alternative formulation of this method using a probit regression approach specifically capable of simultaneously analyzing hundreds to thousands of RVs. We evaluate our approach to detect causal variation on simulated data and examine sensitivity and specificity in instances of high RV dimensionality as well as apply it to pathway-level RV analysis results from a prostate cancer (PC) risk case-control sequencing study. Finally, we discuss potential extensions and future directions of this work. PMID:27312771
Statistical process control based chart for information systems security
NASA Astrophysics Data System (ADS)
Khan, Mansoor S.; Cui, Lirong
2015-07-01
Intrusion detection systems have a highly significant role in securing computer networks and information systems. To assure the reliability and quality of computer networks and information systems, it is highly desirable to develop techniques that detect intrusions into information systems. We put forward the concept of statistical process control (SPC) in computer networks and information systems intrusions. In this article we propose exponentially weighted moving average (EWMA) type quality monitoring scheme. Our proposed scheme has only one parameter which differentiates it from the past versions. We construct the control limits for the proposed scheme and investigate their effectiveness. We provide an industrial example for the sake of clarity for practitioner. We give comparison of the proposed scheme with EWMA schemes and p chart; finally we provide some recommendations for the future work.
[Statistical Process Control applied to viral genome screening: experimental approach].
Reifenberg, J M; Navarro, P; Coste, J
2001-10-01
During the National Multicentric Study concerning the introduction of NAT for HCV and HIV-1 viruses in blood donation screening which was supervised by the Medical and Scientific departments of the French Blood Establishment (Etablissement français du sang--EFS), Transcription-Mediated transcription Amplification (TMA) technology (Chiron/Gen Probe) was experimented in the Molecular Biology Laboratory of Montpellier, EFS Pyrénées-Méditerranée. After a preliminary phase of qualification of the material and training of the technicians, routine screening of homologous blood and apheresis donations using this technology was applied for two months. In order to evaluate the different NAT systems, exhaustive daily operations and data were registered. Among these, the luminescence results expressed as RLU of the positive and negative calibrators and the associated internal controls were analysed using Control Charts, Statistical Process Control methods, which allow us to display rapidly process drift and to anticipate the appearance of incidents. This study demonstrated the interest of these quality control methods, mainly used for industrial purposes, to follow and to increase the quality of any transfusion process. it also showed the difficulties of the post-investigations of uncontrolled sources of variations of a process which was experimental. Such tools are in total accordance with the new version of the ISO 9000 norms which are particularly focused on the use of adapted indicators for processes control, and could be extended to other transfusion activities, such as blood collection and component preparation. PMID:11729395
A Bayesian Model of Sensory Adaptation
Sato, Yoshiyuki; Aihara, Kazuyuki
2011-01-01
Recent studies reported two opposite types of adaptation in temporal perception. Here, we propose a Bayesian model of sensory adaptation that exhibits both types of adaptation. We regard adaptation as the adaptive updating of estimations of time-evolving variables, which determine the mean value of the likelihood function and that of the prior distribution in a Bayesian model of temporal perception. On the basis of certain assumptions, we can analytically determine the mean behavior in our model and identify the parameters that determine the type of adaptation that actually occurs. The results of our model suggest that we can control the type of adaptation by controlling the statistical properties of the stimuli presented. PMID:21541346
NASA Astrophysics Data System (ADS)
Bell, Kenneth L.; Christensen, Lorna D.
1989-07-01
This paper describes a technique used to determine an optimized microlithographic process using statistical methods which included a statistically designed experiment (SDE); a desirability function, d(θ*) and a rigorous daily statistical process control program, (SPC).
Statistically Controlling for Confounding Constructs Is Harder than You Think.
Westfall, Jacob; Yarkoni, Tal
2016-01-01
Social scientists often seek to demonstrate that a construct has incremental validity over and above other related constructs. However, these claims are typically supported by measurement-level models that fail to consider the effects of measurement (un)reliability. We use intuitive examples, Monte Carlo simulations, and a novel analytical framework to demonstrate that common strategies for establishing incremental construct validity using multiple regression analysis exhibit extremely high Type I error rates under parameter regimes common in many psychological domains. Counterintuitively, we find that error rates are highest-in some cases approaching 100%-when sample sizes are large and reliability is moderate. Our findings suggest that a potentially large proportion of incremental validity claims made in the literature are spurious. We present a web application (http://jakewestfall.org/ivy/) that readers can use to explore the statistical properties of these and other incremental validity arguments. We conclude by reviewing SEM-based statistical approaches that appropriately control the Type I error rate when attempting to establish incremental validity. PMID:27031707
Statistically Controlling for Confounding Constructs Is Harder than You Think
Westfall, Jacob; Yarkoni, Tal
2016-01-01
Social scientists often seek to demonstrate that a construct has incremental validity over and above other related constructs. However, these claims are typically supported by measurement-level models that fail to consider the effects of measurement (un)reliability. We use intuitive examples, Monte Carlo simulations, and a novel analytical framework to demonstrate that common strategies for establishing incremental construct validity using multiple regression analysis exhibit extremely high Type I error rates under parameter regimes common in many psychological domains. Counterintuitively, we find that error rates are highest—in some cases approaching 100%—when sample sizes are large and reliability is moderate. Our findings suggest that a potentially large proportion of incremental validity claims made in the literature are spurious. We present a web application (http://jakewestfall.org/ivy/) that readers can use to explore the statistical properties of these and other incremental validity arguments. We conclude by reviewing SEM-based statistical approaches that appropriately control the Type I error rate when attempting to establish incremental validity. PMID:27031707
LOWER LEVEL INFERENCE CONTROL IN STATISTICAL DATABASE SYSTEMS
Lipton, D.L.; Wong, H.K.T.
1984-02-01
An inference is the process of transforming unclassified data values into confidential data values. Most previous research in inference control has studied the use of statistical aggregates to deduce individual records. However, several other types of inference are also possible. Unknown functional dependencies may be apparent to users who have 'expert' knowledge about the characteristics of a population. Some correlations between attributes may be concluded from 'commonly-known' facts about the world. To counter these threats, security managers should use random sampling of databases of similar populations, as well as expert systems. 'Expert' users of the DATABASE SYSTEM may form inferences from the variable performance of the user interface. Users may observe on-line turn-around time, accounting statistics. the error message received, and the point at which an interactive protocol sequence fails. One may obtain information about the frequency distributions of attribute values, and the validity of data object names from this information. At the back-end of a database system, improved software engineering practices will reduce opportunities to bypass functional units of the database system. The term 'DATA OBJECT' should be expanded to incorporate these data object types which generate new classes of threats. The security of DATABASES and DATABASE SySTEMS must be recognized as separate but related problems. Thus, by increased awareness of lower level inferences, system security managers may effectively nullify the threat posed by lower level inferences.
A journey to statistical process control in the development environment
Hanna, M.; Langston, D.
1996-12-31
Over the past 10 years many organizations have undertaken {open_quotes}process reengineering{close_quotes} activities in an attempt to increase their productivity and quality. Unfortunately, the launching point for these reengineering efforts has been based upon the belief that organizational processes either do not exist or they are grossly inefficient. It is the position of the authors that these beliefs are typically unfounded. All ongoing organizations have processes. These processes are effective, based upon the fact they are producing products (or services) that are being purchased. Therefore, the issue is not to invent or reengineer new processes, rather it is to increase the efficiency of the existing ones. This paper outlines a process (or organizational journey) for continually improving process based upon quantitative management techniques and statistical process control methods.
Application of statistical process control to qualitative molecular diagnostic assays.
O'Brien, Cathal P; Finn, Stephen P
2014-01-01
Modern pathology laboratories and in particular high throughput laboratories such as clinical chemistry have developed a reliable system for statistical process control (SPC). Such a system is absent from the majority of molecular laboratories and where present is confined to quantitative assays. As the inability to apply SPC to an assay is an obvious disadvantage this study aimed to solve this problem by using a frequency estimate coupled with a confidence interval calculation to detect deviations from an expected mutation frequency. The results of this study demonstrate the strengths and weaknesses of this approach and highlight minimum sample number requirements. Notably, assays with low mutation frequencies and detection of small deviations from an expected value require greater sample numbers to mitigate a protracted time to detection. Modeled laboratory data was also used to highlight how this approach might be applied in a routine molecular laboratory. This article is the first to describe the application of SPC to qualitative laboratory data. PMID:25988159
Bayesian Inference: with ecological applications
Link, William A.; Barker, Richard J.
2010-01-01
This text provides a mathematically rigorous yet accessible and engaging introduction to Bayesian inference with relevant examples that will be of interest to biologists working in the fields of ecology, wildlife management and environmental studies as well as students in advanced undergraduate statistics.. This text opens the door to Bayesian inference, taking advantage of modern computational efficiencies and easily accessible software to evaluate complex hierarchical models.
Geological Controls on Glacier Surging?: Statistics and Speculation
NASA Astrophysics Data System (ADS)
Flowers, G. E.; Crompton, J. W.
2015-12-01
Glacier surging represents an end-member behavior in the spectrum of ice dynamics, involving marked acceleration and high flow speeds due to abrupt changes in basal mechanics. Though much effort has been devoted to understanding the role of basal hydrology and thermal regime in fast glacier flow, fewer studies have addressed the potential role of the geologic substrate. One interesting observation is that surge-type glaciers appear almost universally associated with unconsolidated (till) beds, and several large-scale statistical studies have revealed correlations between glacier surging and bedrock properties. We revisit this relationship using field measurements. We selected 20 individual glaciers for sampling in a 40x40 km region of the St. Elias Mountains of Yukon, Canada. Eleven of these glaciers are known to surge and nine are not. The 20 study glaciers are underlain by lithologies that we have broadly classified into two types: metasedimentary only and mixed metasedimentary-granodiorite. We characterized geological and geotechnical properties of the bedrock in each basin, and analyzed the hydrochemistry and mineralogy and grain size distribution (GSD) of the suspended sediments in the proglacial streams. Here we focus on some intriguing results of the GSD analysis. Using statistical techniques, including significance testing and principal component analysis, we find that: (1) lithology determines GSD for non-surge-type glaciers, with metasedimentary basins associated with finer mean grain sizes and mixed-lithology basins with coarser mean grain sizes, but (2) the GSDs associated with surge-type glaciers are intermediate between the distributions described above, and are statistically indistinguishable between metasedimentary and mixed lithology basins. The latter suggests either that surge-type glaciers in our study area occur preferentially in basins where various processes conspire to produce a characteristic GSD, or that the surge cycle itself exerts an
Statistical process control testing of electronic security equipment
Murray, D.W.; Spencer, D.D.
1994-06-01
Statistical Process Control testing of manufacturing processes began back in the 1940`s with the development of Process Control Charts by Dr. Walter A. Shewart. Sandia National Laboratories has developed an application of the SPC method for performance testing of electronic security equipment. This paper documents the evaluation of this testing methodology applied to electronic security equipment and an associated laptop computer-based system for obtaining and analyzing the test data. Sandia developed this SPC sensor performance testing method primarily for use on portal metal detectors, but, has evaluated it for testing of an exterior intrusion detection sensor and other electronic security devices. This method is an alternative to the traditional binomial (alarm or no-alarm) performance testing. The limited amount of information in binomial data drives the number of tests necessary to meet regulatory requirements to unnecessarily high levels. For example, a requirement of a 0.85 probability of detection with a 90% confidence requires a minimum of 19 alarms out of 19 trials. By extracting and analyzing measurement (variables) data whenever possible instead of the more typical binomial data, the user becomes more informed about equipment health with fewer tests (as low as five per periodic evaluation).
A Bayesian Partitioning Model for Detection of Multilocus Effects in Case-Control Studies
Ray, Debashree; Li, Xiang; Pan, Wei; Pankow, James S; Basu, Saonli
2015-01-01
Background Genome-wide association studies (GWASs) have identified hundreds of genetic variants associated with complex diseases, but these variants appear to explain very little of the disease heritability. The typical single locus association analysis in a GWAS fails to detect variants with small effect sizes and to capture higher order interaction among these variants. Multilocus association analysis provides a powerful alternative by jointly modeling the variants within a gene or a pathway and by reducing the burden of multiple hypothesis testing in a GWAS. Methods We have proposed here a powerful and flexible dimension reduction approach to model multilocus association. We use a Bayesian partitioning model which clusters SNPs according to their direction of association, models higher order interactions using a flexible scoring scheme, and uses posterior marginal probabilities to detect association between the SNP-set and the disease. Results We have illustrated our model using extensive simulation studies and applied it detect multilocus interaction in a GWAS study with type 2 diabetes in Atherosclerosis Risk in Communities (ARIC). Conclusion We demonstrate that our approach has better power to detect multilocus interactions than several existing approaches. When applied to ARIC dataset with 9328 individuals to study gene based associations for type 2 diabetes, our method identified some novel variants not detected by conventional single locus association analyses. PMID:26044550
NASA Astrophysics Data System (ADS)
Loredo, Thomas J.
2004-04-01
I describe a framework for adaptive scientific exploration based on iterating an Observation-Inference-Design cycle that allows adjustment of hypotheses and observing protocols in response to the results of observation on-the-fly, as data are gathered. The framework uses a unified Bayesian methodology for the inference and design stages: Bayesian inference to quantify what we have learned from the available data and predict future data, and Bayesian decision theory to identify which new observations would teach us the most. When the goal of the experiment is simply to make inferences, the framework identifies a computationally efficient iterative ``maximum entropy sampling'' strategy as the optimal strategy in settings where the noise statistics are independent of signal properties. Results of applying the method to two ``toy'' problems with simulated data-measuring the orbit of an extrasolar planet, and locating a hidden one-dimensional object-show the approach can significantly improve observational efficiency in settings that have well-defined nonlinear models. I conclude with a list of open issues that must be addressed to make Bayesian adaptive exploration a practical and reliable tool for optimizing scientific exploration.
Impact angle control of interplanetary shock geoeffectiveness: A statistical study
NASA Astrophysics Data System (ADS)
Oliveira, Denny M.; Raeder, Joachim
2015-06-01
We present a survey of interplanetary (IP) shocks using Wind and ACE satellite data from January 1995 to December 2013 to study how IP shock geoeffectiveness is controlled by IP shock impact angles. A shock list covering one and a half solar cycle is compiled. The yearly number of IP shocks is found to correlate well with the monthly sunspot number. We use data from SuperMAG, a large chain with more than 300 geomagnetic stations, to study geoeffectiveness triggered by IP shocks. The SuperMAG SML index, an enhanced version of the familiar AL index, is used in our statistical analysis. The jumps of the SML index triggered by IP shock impacts on the Earth's magnetosphere are investigated in terms of IP shock orientation and speed. We find that, in general, strong (high speed) and almost frontal (small impact angle) shocks are more geoeffective than inclined shocks with low speed. The strongest correlation (correlation coefficient R = 0.78) occurs for fixed IP shock speed and for varied IP shock impact angle. We attribute this result, predicted previously with simulations, to the fact that frontal shocks compress the magnetosphere symmetrically from all sides, which is a favorable condition for the release of magnetic energy stored in the magnetotail, which in turn can produce moderate to strong auroral substorms, which are then observed by ground-based magnetometers.
Statistical models for the control phase of clinical monitoring.
Stevens, Richard J; Oke, Jason; Perera, Rafael
2010-08-01
The rise in the prevalence of chronic conditions means that these are now the leading causes of death and disability worldwide, accounting for almost 60% of all deaths and 43% of the global burden of disease. Management of chronic conditions requires both effective treatment and ongoing monitoring. Although costs related to monitoring are substantial, there is relatively little evidence on its effectiveness. Monitoring is inherently different to diagnosis in its use of regularly repeated tests, and increasing frequency can result in poorer rather than better statistical properties because of multiple testing in the presence of high variability. We present here a general framework for modelling the control phase of a monitoring programme, and for the estimation of quantities of potential clinical interest such as the ratio of false to true positive tests. We show how four recent clinical studies of monitoring cardiovascular disease, hypertension, diabetes and HIV infection can be thought as special cases of this framework; as well as using this framework to clarify the choice of estimation and calculation methods available. Noticeably, in each of the presented examples over-frequent monitoring appears to be a greater problem than under-frequent monitoring. We also present recalculations of results under alternative conditions, illustrating conceptual decisions about modelling the true or observed value of a clinical measure. PMID:20442195
A Statistical Process Control Method for Semiconductor Manufacturing
NASA Astrophysics Data System (ADS)
Kubo, Tomoaki; Ino, Tomomi; Minami, Kazuhiro; Minami, Masateru; Homma, Tetsuya
To maintain stable operation of semiconductor fabrication lines, statistical process control (SPC) methods are recognized to be effective. However, in semiconductor fabrication lines, there exist a huge number of process state signals to be monitored, and these signals contain both normally and non-normally distributed data. Therefore, if we try to apply SPC methods to those signals, we need one which satisfies three requirements: 1) It can deal with both normally distributed data, and non-normally distributed data, 2) It can be set up automatically, 3) It can be easily understood by engineers and technicians. In this paper, we propose a new SPC method which satisfies these three requirements at the same time. This method uses similar rules to the Shewhart chart, but can deal with non-normally distributed data by introducing “effective standard deviations”. Usefulness of this method is demonstrated by comparing false alarm ratios to that of the Shewhart chart method. In the demonstration, we use various kinds of artificially generated data, and real data observed in a chemical vapor deposition (CVD) process tool in a semiconductor fabrication line.
UNIFORMLY MOST POWERFUL BAYESIAN TESTS
Johnson, Valen E.
2014-01-01
Uniformly most powerful tests are statistical hypothesis tests that provide the greatest power against a fixed null hypothesis among all tests of a given size. In this article, the notion of uniformly most powerful tests is extended to the Bayesian setting by defining uniformly most powerful Bayesian tests to be tests that maximize the probability that the Bayes factor, in favor of the alternative hypothesis, exceeds a specified threshold. Like their classical counterpart, uniformly most powerful Bayesian tests are most easily defined in one-parameter exponential family models, although extensions outside of this class are possible. The connection between uniformly most powerful tests and uniformly most powerful Bayesian tests can be used to provide an approximate calibration between p-values and Bayes factors. Finally, issues regarding the strong dependence of resulting Bayes factors and p-values on sample size are discussed. PMID:24659829
2012-01-01
Background A statistical analysis plan (SAP) is a critical link between how a clinical trial is conducted and the clinical study report. To secure objective study results, regulatory bodies expect that the SAP will meet requirements in pre-specifying inferential analyses and other important statistical techniques. To write a good SAP for model-based sensitivity and ancillary analyses involves non-trivial decisions on and justification of many aspects of the chosen setting. In particular, trials with longitudinal count data as primary endpoints pose challenges for model choice and model validation. In the random effects setting, frequentist strategies for model assessment and model diagnosis are complex and not easily implemented and have several limitations. Therefore, it is of interest to explore Bayesian alternatives which provide the needed decision support to finalize a SAP. Methods We focus on generalized linear mixed models (GLMMs) for the analysis of longitudinal count data. A series of distributions with over- and under-dispersion is considered. Additionally, the structure of the variance components is modified. We perform a simulation study to investigate the discriminatory power of Bayesian tools for model criticism in different scenarios derived from the model setting. We apply the findings to the data from an open clinical trial on vertigo attacks. These data are seen as pilot data for an ongoing phase III trial. To fit GLMMs we use a novel Bayesian computational approach based on integrated nested Laplace approximations (INLAs). The INLA methodology enables the direct computation of leave-one-out predictive distributions. These distributions are crucial for Bayesian model assessment. We evaluate competing GLMMs for longitudinal count data according to the deviance information criterion (DIC) or probability integral transform (PIT), and by using proper scoring rules (e.g. the logarithmic score). Results The instruments under study provide excellent
NASA Technical Reports Server (NTRS)
Gupta, Pramod; Guenther, Kurt; Hodgkinson, John; Jacklin, Stephen; Richard, Michael; Schumann, Johann; Soares, Fola
2005-01-01
Modern exploration missions require modern control systems-control systems that can handle catastrophic changes in the system's behavior, compensate for slow deterioration in sustained operations, and support fast system ID. Adaptive controllers, based upon Neural Networks have these capabilities, but they can only be used safely if proper verification & validation (V&V) can be done. In this paper we present our V & V approach and simulation result within NASA's Intelligent Flight Control Systems (IFCS).
Bayesian Magic in Asteroseismology
NASA Astrophysics Data System (ADS)
Kallinger, T.
2015-09-01
Only a few years ago asteroseismic observations were so rare that scientists had plenty of time to work on individual data sets. They could tune their algorithms in any possible way to squeeze out the last bit of information. Nowadays this is impossible. With missions like MOST, CoRoT, and Kepler we basically drown in new data every day. To handle this in a sufficient way statistical methods become more and more important. This is why Bayesian techniques started their triumph march across asteroseismology. I will go with you on a journey through Bayesian Magic Land, that brings us to the sea of granulation background, the forest of peakbagging, and the stony alley of model comparison.
Jow, Howsun; Boys, Richard J; Wilkinson, Darren J
2014-10-01
In this paper we develop a Bayesian statistical inference approach to the unified analysis of isobaric labelled MS/MS proteomic data across multiple experiments. An explicit probabilistic model of the log-intensity of the isobaric labels' reporter ions across multiple pre-defined groups and experiments is developed. This is then used to develop a full Bayesian statistical methodology for the identification of differentially expressed proteins, with respect to a control group, across multiple groups and experiments. This methodology is implemented and then evaluated on simulated data and on two model experimental datasets (for which the differentially expressed proteins are known) that use a TMT labelling protocol. PMID:25153608
NASA Technical Reports Server (NTRS)
Gupta, Pramod; Jacklin, Stephen; Schumann, Johann; Guenther, Kurt; Richard, Michael; Soares, Fola
2005-01-01
Modem aircraft, UAVs, and robotic spacecraft pose substantial requirements on controllers in the light of ever increasing demands for reusability, affordability, and reliability. The individual systems (which are often nonlinear) must be controlled safely and reliably in environments where it is virtually impossible to analyze-ahead of time- all the important and possible scenarios and environmental factors. For example, system components (e.g., gyros, bearings of reaction wheels, valves) may deteriorate or break during autonomous UAV operation or long-lasting space missions, leading to a sudden, drastic change in vehicle performance. Manual repair or replacement is not an option in such cases. Instead, the system must be able to cope with equipment failure and deterioration. Controllability of the system must be retained as good as possible or re-established as fast as possible with a minimum of deactivation or shutdown of the system being controlled. In such situations the control engineer has to employ adaptive control systems that automatically sense and correct themselves whenever drastic disturbances and/or severe changes in the plant or environment occur.
Bayesian Analysis of Individual Level Personality Dynamics
Cripps, Edward; Wood, Robert E.; Beckmann, Nadin; Lau, John; Beckmann, Jens F.; Cripps, Sally Ann
2016-01-01
A Bayesian technique with analyses of within-person processes at the level of the individual is presented. The approach is used to examine whether the patterns of within-person responses on a 12-trial simulation task are consistent with the predictions of ITA theory (Dweck, 1999). ITA theory states that the performance of an individual with an entity theory of ability is more likely to spiral down following a failure experience than the performance of an individual with an incremental theory of ability. This is because entity theorists interpret failure experiences as evidence of a lack of ability which they believe is largely innate and therefore relatively fixed; whilst incremental theorists believe in the malleability of abilities and interpret failure experiences as evidence of more controllable factors such as poor strategy or lack of effort. The results of our analyses support ITA theory at both the within- and between-person levels of analyses and demonstrate the benefits of Bayesian techniques for the analysis of within-person processes. These include more formal specification of the theory and the ability to draw inferences about each individual, which allows for more nuanced interpretations of individuals within a personality category, such as differences in the individual probabilities of spiraling. While Bayesian techniques have many potential advantages for the analyses of processes at the level of the individual, ease of use is not one of them for psychologists trained in traditional frequentist statistical techniques. PMID:27486415
Bayesian Analysis of Individual Level Personality Dynamics.
Cripps, Edward; Wood, Robert E; Beckmann, Nadin; Lau, John; Beckmann, Jens F; Cripps, Sally Ann
2016-01-01
A Bayesian technique with analyses of within-person processes at the level of the individual is presented. The approach is used to examine whether the patterns of within-person responses on a 12-trial simulation task are consistent with the predictions of ITA theory (Dweck, 1999). ITA theory states that the performance of an individual with an entity theory of ability is more likely to spiral down following a failure experience than the performance of an individual with an incremental theory of ability. This is because entity theorists interpret failure experiences as evidence of a lack of ability which they believe is largely innate and therefore relatively fixed; whilst incremental theorists believe in the malleability of abilities and interpret failure experiences as evidence of more controllable factors such as poor strategy or lack of effort. The results of our analyses support ITA theory at both the within- and between-person levels of analyses and demonstrate the benefits of Bayesian techniques for the analysis of within-person processes. These include more formal specification of the theory and the ability to draw inferences about each individual, which allows for more nuanced interpretations of individuals within a personality category, such as differences in the individual probabilities of spiraling. While Bayesian techniques have many potential advantages for the analyses of processes at the level of the individual, ease of use is not one of them for psychologists trained in traditional frequentist statistical techniques. PMID:27486415
A Gentle Introduction to Bayesian Analysis: Applications to Developmental Research
van de Schoot, Rens; Kaplan, David; Denissen, Jaap; Asendorpf, Jens B; Neyer, Franz J; van Aken, Marcel AG
2014-01-01
Bayesian statistical methods are becoming ever more popular in applied and fundamental research. In this study a gentle introduction to Bayesian analysis is provided. It is shown under what circumstances it is attractive to use Bayesian estimation, and how to interpret properly the results. First, the ingredients underlying Bayesian methods are introduced using a simplified example. Thereafter, the advantages and pitfalls of the specification of prior knowledge are discussed. To illustrate Bayesian methods explained in this study, in a second example a series of studies that examine the theoretical framework of dynamic interactionism are considered. In the Discussion the advantages and disadvantages of using Bayesian statistics are reviewed, and guidelines on how to report on Bayesian statistics are provided. PMID:24116396
Bayesian stable isotope mixing models
In this paper we review recent advances in Stable Isotope Mixing Models (SIMMs) and place them into an over-arching Bayesian statistical framework which allows for several useful extensions. SIMMs are used to quantify the proportional contributions of various sources to a mixtur...
Bayesian inference for an emerging arboreal epidemic in the presence of control.
Parry, Matthew; Gibson, Gavin J; Parnell, Stephen; Gottwald, Tim R; Irey, Michael S; Gast, Timothy C; Gilligan, Christopher A
2014-04-29
The spread of Huanglongbing through citrus groves is used as a case study for modeling an emerging epidemic in the presence of a control. Specifically, the spread of the disease is modeled as a susceptible-exposed-infectious-detected-removed epidemic, where the exposure and infectious times are not observed, detection times are censored, removal times are known, and the disease is spreading through a heterogeneous host population with trees of different age and susceptibility. We show that it is possible to characterize the disease transmission process under these conditions. Two innovations in our work are (i) accounting for control measures via time dependence of the infectious process and (ii) including seasonal and host age effects in the model of the latent period. By estimating parameters in different subregions of a large commercially cultivated orchard, we establish a temporal pattern of invasion, host age dependence of the dispersal parameters, and a close to linear relationship between primary and secondary infectious rates. The model can be used to simulate Huanglongbing epidemics to assess economic costs and potential benefits of putative control scenarios. PMID:24711393
Statistical Approach to Quality Control of Large Thermodynamic Databases
NASA Astrophysics Data System (ADS)
Nyman, Henrik; Talonen, Tarja; Roine, Antti; Hupa, Mikko; Corander, Jukka
2012-10-01
In chemistry and engineering, thermodynamic databases are widely used to obtain the basic properties of pure substances or mixtures. Large and reliable databases are the basis of all thermodynamic modeling of complex chemical processes or systems. However, the effort needed in the establishment, maintenance, and management of a database increases exponentially along with the size and scope of the database. Therefore, we developed a statistical modeling approach to assist an expert in the evaluation and management process, which can pinpoint various types of erroneous records in a database. We have applied this method to investigate the enthalpy, entropy, and heat capacity characteristics in a large commercial database for approximately 25,000 chemical species. Our highly successful results show that a statistical approach is a valuable tool (1) for the management of such databases and (2) to create enthalpy, entropy and heat capacity estimates for such species in which thermochemical data are not available.
Bayesian Integrated Microbial Forensics
Jarman, Kristin H.; Kreuzer-Martin, Helen W.; Wunschel, David S.; Valentine, Nancy B.; Cliff, John B.; Petersen, Catherine E.; Colburn, Heather A.; Wahl, Karen L.
2008-06-01
In the aftermath of the 2001 anthrax letters, researchers have been exploring ways to predict the production environment of unknown source microorganisms. Different mass spectral techniques are being developed to characterize components of a microbe’s culture medium including water, carbon and nitrogen sources, metal ions added, and the presence of agar. Individually, each technique has the potential to identify one or two ingredients in a culture medium recipe. However, by integrating data from multiple mass spectral techniques, a more complete characterization is possible. We present a Bayesian statistical approach to integrated microbial forensics and illustrate its application on spores grown in different culture media.
The application of statistical process control to the development of CIS-based photovoltaics
NASA Astrophysics Data System (ADS)
Wieting, R. D.
1996-01-01
This paper reviews the application of Statistical Process Control (SPC) as well as other statistical methods to the development of thin film CuInSe2-based module fabrication processes. These methods have rigorously demonstrated the reproducibility of a number of individual process steps in module fabrication and led to the identification of previously unrecognized sources of process variation. A process exhibiting good statistical control with 11.4% mean module efficiency has been demonstrated.
Bayesian image reconstruction in astronomy
NASA Astrophysics Data System (ADS)
Nunez, Jorge; Llacer, Jorge
1990-09-01
This paper presents the development and testing of a new iterative reconstruction algorithm for astronomy. A maximum a posteriori method of image reconstruction in the Bayesian statistical framework is proposed for the Poisson-noise case. The method uses the entropy with an adjustable 'sharpness parameter' to define the prior probability and the likelihood with 'data increment' parameters to define the conditional probability. The method makes it possible to obtain reconstructions with neither the problem of the 'grey' reconstructions associated with the pure Bayesian reconstructions nor the problem of image deterioration, typical of the maximum-likelihood method. The present iterative algorithm is fast and stable, maintains positivity, and converges to feasible images.
Statistical Process Control Charts for Measuring and Monitoring Temporal Consistency of Ratings
ERIC Educational Resources Information Center
Omar, M. Hafidz
2010-01-01
Methods of statistical process control were briefly investigated in the field of educational measurement as early as 1999. However, only the use of a cumulative sum chart was explored. In this article other methods of statistical quality control are introduced and explored. In particular, methods in the form of Shewhart mean and standard deviation…
Using Statistical Process Control to Make Data-Based Clinical Decisions.
ERIC Educational Resources Information Center
Pfadt, Al; Wheeler, Donald J.
1995-01-01
Statistical process control (SPC), which employs simple statistical tools and problem-solving techniques such as histograms, control charts, flow charts, and Pareto charts to implement continual product improvement procedures, can be incorporated into human service organizations. Examples illustrate use of SPC procedures to analyze behavioral data…
Statistical process control (SPC) for coordinate measurement machines
Escher, R.N.
2000-01-04
The application of process capability analysis, using designed experiments, and gage capability studies as they apply to coordinate measurement machine (CMM) uncertainty analysis and control will be demonstrated. The use of control standards in designed experiments, and the use of range charts and moving range charts to separate measurement error into it's discrete components will be discussed. The method used to monitor and analyze the components of repeatability and reproducibility will be presented with specific emphasis on how to use control charts to determine and monitor CMM performance and capability, and stay within your uncertainty assumptions.
Simultaneous Bayesian analysis of contingency tables in genetic association studies.
Dickhaus, Thorsten
2015-08-01
Genetic association studies lead to simultaneous categorical data analysis. The sample for every genetic locus consists of a contingency table containing the numbers of observed genotype-phenotype combinations. Under case-control design, the row counts of every table are identical and fixed, while column counts are random. The aim of the statistical analysis is to test independence of the phenotype and the genotype at every locus. We present an objective Bayesian methodology for these association tests, which relies on the conjugacy of Dirichlet and multinomial distributions. Being based on the likelihood principle, the Bayesian tests avoid looping over all tables with given marginals. Making use of data generated by The Wellcome Trust Case Control Consortium (WTCCC), we illustrate that the ordering of the Bayes factors shows a good agreement with that of frequentist p-values. Furthermore, we deal with specifying prior probabilities for the validity of the null hypotheses, by taking linkage disequilibrium structure into account and exploiting the concept of effective numbers of tests. Application of a Bayesian decision theoretic multiple test procedure to the WTCCC data illustrates the proposed methodology. Finally, we discuss two methods for reconciling frequentist and Bayesian approaches to the multiple association test problem. PMID:26215535
Statistical methodologies for the control of dynamic remapping
NASA Technical Reports Server (NTRS)
Saltz, J. H.; Nicol, D. M.
1986-01-01
Following an initial mapping of a problem onto a multiprocessor machine or computer network, system performance often deteriorates with time. In order to maintain high performance, it may be necessary to remap the problem. The decision to remap must take into account measurements of performance deterioration, the cost of remapping, and the estimated benefits achieved by remapping. We examine the tradeoff between the costs and the benefits of remapping two qualitatively different kinds of problems. One problem assumes that performance deteriorates gradually, the other assumes that performance deteriorates suddenly. We consider a variety of policies for governing when to remap. In order to evaluate these policies, statistical models of problem behaviors are developed. Simulation results are presented which compare simple policies with computationally expensive optimal decision policies; these results demonstrate that for each problem type, the proposed simple policies are effective and robust.
Statistical analysis of static shape control in space structures
NASA Technical Reports Server (NTRS)
Burdisso, Ricardo A.; Haftka, Raphael T.
1990-01-01
The article addresses the problem of efficient analysis of the statistics of initial and corrected shape distortions in space structures. Two approaches for improving efficiency are considered. One is an adjoint technique for calculating distortion shapes: the second is a modal expansion of distortion shapes in terms of pseudo-vibration modes. The two techniques are applied to the problem of optimizing actuator locations on a 55 m radiometer antenna. The adjoint analysis technique is used with a discrete-variable optimization method. The modal approximation technique is coupled with a standard conjugate-gradient continuous optimization method. The agreement between the two sets of results is good, validating both the approximate analysis and optimality of the results.
Woldegebriel, Michael; Zomer, Paul; Mol, Hans G J; Vivó-Truyols, Gabriel
2016-08-01
In this work, we introduce an automated, efficient, and elegant model to combine all pieces of evidence (e.g., expected retention times, peak shapes, isotope distributions, fragment-to-parent ratio) obtained from liquid chromatography-tandem mass spectrometry (LC-MS/MS/MS) data for screening purposes. Combining all these pieces of evidence requires a careful assessment of the uncertainties in the analytical system as well as all possible outcomes. To-date, the majority of the existing algorithms are highly dependent on user input parameters. Additionally, the screening process is tackled as a deterministic problem. In this work we present a Bayesian framework to deal with the combination of all these pieces of evidence. Contrary to conventional algorithms, the information is treated in a probabilistic way, and a final probability assessment of the presence/absence of a compound feature is computed. Additionally, all the necessary parameters except the chromatographic band broadening for the method are learned from the data in training and learning phase of the algorithm, avoiding the introduction of a large number of user-defined parameters. The proposed method was validated with a large data set and has shown improved sensitivity and specificity in comparison to a threshold-based commercial software package. PMID:27391247
Methods of Statistical Control for Groundwater Quality Indicators
NASA Astrophysics Data System (ADS)
Yankovich, E.; Nevidimova, O.; Yankovich, K.
2016-06-01
The article describes the results of conducted groundwater quality control. Controlled quality indicators included the following microelements - barium, manganese, iron, mercury, iodine, chromium, strontium, etc. Quality control charts - X-bar chart and R chart - were built. For the upper and the lower threshold limits, maximum permissible concentration of components in water and the lower limit of their biologically significant concentration, respectively, were selected. The charts analysis has shown that the levels of microelements content in water at the area of study are stable. Most elements in the underground water are contained in concentrations, significant for human organisms consuming the water. For example, such elements as Ba, Mn, Fe have concentrations that exceed maximum permissible levels for drinking water.
Nonparametric Bayesian evaluation of differential protein quantification
Cansizoglu, A. Ertugrul; Käll, Lukas; Steen, Hanno
2013-01-01
Arbitrary cutoffs are ubiquitous in quantitative computational proteomics: maximum acceptable MS/MS PSM or peptide q–value, minimum ion intensity to calculate a fold change, the minimum number of peptides that must be available to trust the estimated protein fold change (or the minimum number of PSMs that must be available to trust the estimated peptide fold change), and the “significant” fold change cutoff. Here we introduce a novel experimental setup and nonparametric Bayesian algorithm for determining the statistical quality of a proposed differential set of proteins or peptides. By comparing putatively non-changing case-control evidence to an empirical null distribution derived from a control-control experiment, we successfully avoid some of these common parameters. We then apply our method to evaluating different fold change rules and find that, for our data, a 1.2-fold change is the most permissive of the plausible fold change rules. PMID:24024742
NASA Astrophysics Data System (ADS)
Olivares, G.; Teferle, F. N.
2013-12-01
Geodetic time series provide information which helps to constrain theoretical models of geophysical processes. It is well established that such time series, for example from GPS, superconducting gravity or mean sea level (MSL), contain time-correlated noise which is usually assumed to be a combination of a long-term stochastic process (characterized by a power-law spectrum) and random noise. Therefore, when fitting a model to geodetic time series it is essential to also estimate the stochastic parameters beside the deterministic ones. Often the stochastic parameters include the power amplitudes of both time-correlated and random noise, as well as, the spectral index of the power-law process. To date, the most widely used method for obtaining these parameter estimates is based on maximum likelihood estimation (MLE). We present an integration method, the Bayesian Monte Carlo Markov Chain (MCMC) method, which, by using Markov chains, provides a sample of the posteriori distribution of all parameters and, thereby, using Monte Carlo integration, all parameters and their uncertainties are estimated simultaneously. This algorithm automatically optimizes the Markov chain step size and estimates the convergence state by spectral analysis of the chain. We assess the MCMC method through comparison with MLE, using the recently released GPS position time series from JPL and apply it also to the MSL time series from the Revised Local Reference data base of the PSMSL. Although the parameter estimates for both methods are fairly equivalent, they suggest that the MCMC method has some advantages over MLE, for example, without further computations it provides the spectral index uncertainty, is computationally stable and detects multimodality.
Bayesian diagnostic theory using a programmable pocket calculator.
Edwards, F H; Graeber, G M
1987-01-01
A programmable pocket calculator program has been written to serve as an aid in diagnosis. The program uses a Bayesian statistical algorithm to calculate the relative probability of two diagnostic alternatives. The ability to carry out Bayesian statistical calculations at the bedside should make the use of such techniques more attractive to clinical practitioners. PMID:3319380
What Is the Probability You Are a Bayesian?
ERIC Educational Resources Information Center
Wulff, Shaun S.; Robinson, Timothy J.
2014-01-01
Bayesian methodology continues to be widely used in statistical applications. As a result, it is increasingly important to introduce students to Bayesian thinking at early stages in their mathematics and statistics education. While many students in upper level probability courses can recite the differences in the Frequentist and Bayesian…
Hirarchical Bayesian Spatio-Temporal Interpolation including Covariates
NASA Astrophysics Data System (ADS)
Hussain, Ijaz; Mohsin, Muhammad; Spoeck, Gunter; Pilz, Juergen
2010-05-01
The space-time interpolation of precipitation has significant contribution to river control,reservoir operations, forestry interest and flash flood watches etc. The changes in environmental covariates and spatial covariates make space-time estimation of precipitation a challenging task. In our earlier paper [1], we used transformed hirarchical Bayesian sapce-time interpolation method for predicting the amount of precipiation. In present paper, we modified the [2] method to include covarites which varaies with respect to space-time. The proposed method is applied to estimating space-time monthly precipitation in the monsoon periods during 1974 - 2000. The 27-years monthly average data of precipitation, temperature, humidity and wind speed are obtained from 51 monitoring stations in Pakistan. The average monthly precipitation is used response variable and temperature, humidity and wind speed are used as time varying covariates. Moreovere the spatial covarites elevation, latitude and longitude of same monitoring stations are also included. The cross-validation method is used to compare the results of transformed hierarchical Bayesian spatio-temporal interpolation with and without including environmental and spatial covariates. The software of [3] is modified to incorprate enviornmental covariates and spatil covarites. It is observed that the transformed hierarchical Bayesian method including covarites provides more accuracy than the transformed hierarchical Bayesian method without including covarites. Moreover, the five potential monitoring cites are selected based on maximum entropy sampaling design approach. References [1] I.Hussain, J.Pilz,G. Spoeck and H.L.Yu. Spatio-Temporal Interpolation of Precipitation during Monsoon Periods in Pakistan. submitted in Advances in water Resources,2009. [2] N.D. Le, W. Sun, and J.V. Zidek, Bayesian multivariate spatial interpolation with data missing by design. Journal of the Royal Statistical Society. Series B (Methodological
GASP cloud encounter statistics - Implications for laminar flow control flight
NASA Technical Reports Server (NTRS)
Jasperson, W. H.; Nastrom, G. D.; Davis, R. E.; Holdeman, J. D.
1984-01-01
The cloud observation archive from the NASA Global Atmospheric Sampling Program (GASP) is analyzed in order to derive the probability of cloud encounter at altitudes normally flown by commercial airliners, for application to a determination of the feasability of Laminar Flow Control (LFC) on long-range routes. The probability of cloud encounter is found to vary significantly with season. Several meteorological circulation features are apparent in the latitudinal distribution of cloud cover. The cloud encounter data are shown to be consistent with the classical midlatitude cyclone model with more clouds encountered in highs than in lows. Aircraft measurements of route-averaged time-in-clouds fit a gamma probability distribution model which is applied to estimate the probability of extended cloud encounter, and the associated loss of LFC effectiveness along seven high-density routes. The probability is demonstrated to be low.
NASA Astrophysics Data System (ADS)
Isakson, Steve Wesley
2001-12-01
Well-known principles of physics explain why resolution restrictions occur in images produced by optical diffraction-limited systems. The limitations involved are present in all diffraction-limited imaging systems, including acoustical and microwave. In most circumstances, however, prior knowledge about the object and the imaging system can lead to resolution improvements. In this dissertation I outline a method to incorporate prior information into the process of reconstructing images to superresolve the object beyond the above limitations. This dissertation research develops the details of this methodology. The approach can provide the most-probable global solution employing a finite number of steps in both far-field and near-field images. In addition, in order to overcome the effects of noise present in any imaging system, this technique provides a weighted image that quantifies the likelihood of various imaging solutions. By utilizing Bayesian probability, the procedure is capable of incorporating prior information about both the object and the noise to overcome the resolution limitation present in many imaging systems. Finally I will present an imaging system capable of detecting the evanescent waves missing from far-field systems, thus improving the resolution further.
ERIC Educational Resources Information Center
Miller, John
1994-01-01
Presents an approach to document numbering, document titling, and process measurement which, when used with fundamental techniques of statistical process control, reveals meaningful process-element variation as well as nominal productivity models. (SR)
Application of statistical process control charts to monitor changes in animal production systems.
De Vries, A; Reneau, J K
2010-04-01
Statistical process control (SPC) is a method of monitoring, controlling, and improving a process through statistical analysis. An important SPC tool is the control chart, which can be used to detect changes in production processes, including animal production systems, with a statistical level of confidence. This paper introduces the philosophy and types of control charts, design and performance issues, and provides a review of control chart applications in animal production systems found in the literature from 1977 to 2009. Primarily Shewhart and cumulative sum control charts have been described in animal production systems, with examples found in poultry, swine, dairy, and beef production systems. Examples include monitoring of growth, disease incidence, water intake, milk production, and reproductive performance. Most applications describe charting outcome variables, but more examples of control charts applied to input variables are needed, such as compliance to protocols, feeding practice, diet composition, and environmental factors. Common challenges for applications in animal production systems are the identification of the best statistical model for the common cause variability, grouping of data, selection of type of control chart, the cost of false alarms and lack of signals, and difficulty identifying the special causes when a change is signaled. Nevertheless, carefully constructed control charts are powerful methods to monitor animal production systems. Control charts might also supplement randomized controlled trials. PMID:20081080
NASA Astrophysics Data System (ADS)
Gomes, Guilherme J. C.; Vrugt, Jasper A.; Vargas, Eurípedes A.
2016-04-01
The depth to bedrock controls a myriad of processes by influencing subsurface flow paths, erosion rates, soil moisture, and water uptake by plant roots. As hillslope interiors are very difficult and costly to illuminate and access, the topography of the bedrock surface is largely unknown. This essay is concerned with the prediction of spatial patterns in the depth to bedrock (DTB) using high-resolution topographic data, numerical modeling, and Bayesian analysis. Our DTB model builds on the bottom-up control on fresh-bedrock topography hypothesis of Rempe and Dietrich (2014) and includes a mass movement and bedrock-valley morphology term to extent the usefulness and general applicability of the model. We reconcile the DTB model with field observations using Bayesian analysis with the DREAM algorithm. We investigate explicitly the benefits of using spatially distributed parameter values to account implicitly, and in a relatively simple way, for rock mass heterogeneities that are very difficult, if not impossible, to characterize adequately in the field. We illustrate our method using an artificial data set of bedrock depth observations and then evaluate our DTB model with real-world data collected at the Papagaio river basin in Rio de Janeiro, Brazil. Our results demonstrate that the DTB model predicts accurately the observed bedrock depth data. The posterior mean DTB simulation is shown to be in good agreement with the measured data. The posterior prediction uncertainty of the DTB model can be propagated forward through hydromechanical models to derive probabilistic estimates of factors of safety.
The application of statistical process control to the development of CIS-based photovoltaics
Wieting, R.D.
1996-01-01
This paper reviews the application of Statistical Process Control (SPC) as well as other statistical methods to the development of thin film CuInSe{sub 2}-based module fabrication processes. These methods have rigorously demonstrated the reproducibility of a number of individual process steps in module fabrication and led to the identification of previously unrecognized sources of process variation. A process exhibiting good statistical control with 11.4{percent} mean module efficiency has been demonstrated. {copyright} {ital 1996 American Institute of Physics.}
Able, Charles M.; Bright, Megan; Frizzell, Bart
2013-03-01
Purpose: Statistical process control (SPC) is a quality control method used to ensure that a process is well controlled and operates with little variation. This study determined whether SPC was a viable technique for evaluating the proper operation of a high-dose-rate (HDR) brachytherapy treatment delivery system. Methods and Materials: A surrogate prostate patient was developed using Vyse ordnance gelatin. A total of 10 metal oxide semiconductor field-effect transistors (MOSFETs) were placed from prostate base to apex. Computed tomography guidance was used to accurately position the first detector in each train at the base. The plan consisted of 12 needles with 129 dwell positions delivering a prescribed peripheral dose of 200 cGy. Sixteen accurate treatment trials were delivered as planned. Subsequently, a number of treatments were delivered with errors introduced, including wrong patient, wrong source calibration, wrong connection sequence, single needle displaced inferiorly 5 mm, and entire implant displaced 2 mm and 4 mm inferiorly. Two process behavior charts (PBC), an individual and a moving range chart, were developed for each dosimeter location. Results: There were 4 false positives resulting from 160 measurements from 16 accurately delivered treatments. For the inaccurately delivered treatments, the PBC indicated that measurements made at the periphery and apex (regions of high-dose gradient) were much more sensitive to treatment delivery errors. All errors introduced were correctly identified by either the individual or the moving range PBC in the apex region. Measurements at the urethra and base were less sensitive to errors. Conclusions: SPC is a viable method for assessing the quality of HDR treatment delivery. Further development is necessary to determine the most effective dose sampling, to ensure reproducible evaluation of treatment delivery accuracy.
Bayesian structural equation modeling in sport and exercise psychology.
Stenling, Andreas; Ivarsson, Andreas; Johnson, Urban; Lindwall, Magnus
2015-08-01
Bayesian statistics is on the rise in mainstream psychology, but applications in sport and exercise psychology research are scarce. In this article, the foundations of Bayesian analysis are introduced, and we will illustrate how to apply Bayesian structural equation modeling in a sport and exercise psychology setting. More specifically, we contrasted a confirmatory factor analysis on the Sport Motivation Scale II estimated with the most commonly used estimator, maximum likelihood, and a Bayesian approach with weakly informative priors for cross-loadings and correlated residuals. The results indicated that the model with Bayesian estimation and weakly informative priors provided a good fit to the data, whereas the model estimated with a maximum likelihood estimator did not produce a well-fitting model. The reasons for this discrepancy between maximum likelihood and Bayesian estimation are discussed as well as potential advantages and caveats with the Bayesian approach. PMID:26442771
Bayesian analysis for kaon photoproduction
Marsainy, T. Mart, T.
2014-09-25
We have investigated contribution of the nucleon resonances in the kaon photoproduction process by using an established statistical decision making method, i.e. the Bayesian method. This method does not only evaluate the model over its entire parameter space, but also takes the prior information and experimental data into account. The result indicates that certain resonances have larger probabilities to contribute to the process.
Létourneau, Daniel McNiven, Andrea; Keller, Harald; Wang, An; Amin, Md Nurul; Pearce, Jim; Norrlinger, Bernhard; Jaffray, David A.
2014-12-15
Purpose: High-quality radiation therapy using highly conformal dose distributions and image-guided techniques requires optimum machine delivery performance. In this work, a monitoring system for multileaf collimator (MLC) performance, integrating semiautomated MLC quality control (QC) tests and statistical process control tools, was developed. The MLC performance monitoring system was used for almost a year on two commercially available MLC models. Control charts were used to establish MLC performance and assess test frequency required to achieve a given level of performance. MLC-related interlocks and servicing events were recorded during the monitoring period and were investigated as indicators of MLC performance variations. Methods: The QC test developed as part of the MLC performance monitoring system uses 2D megavoltage images (acquired using an electronic portal imaging device) of 23 fields to determine the location of the leaves with respect to the radiation isocenter. The precision of the MLC performance monitoring QC test and the MLC itself was assessed by detecting the MLC leaf positions on 127 megavoltage images of a static field. After initial calibration, the MLC performance monitoring QC test was performed 3–4 times/week over a period of 10–11 months to monitor positional accuracy of individual leaves for two different MLC models. Analysis of test results was performed using individuals control charts per leaf with control limits computed based on the measurements as well as two sets of specifications of ±0.5 and ±1 mm. Out-of-specification and out-of-control leaves were automatically flagged by the monitoring system and reviewed monthly by physicists. MLC-related interlocks reported by the linear accelerator and servicing events were recorded to help identify potential causes of nonrandom MLC leaf positioning variations. Results: The precision of the MLC performance monitoring QC test and the MLC itself was within ±0.22 mm for most MLC leaves
Bayesian classification theory
NASA Technical Reports Server (NTRS)
Hanson, Robin; Stutz, John; Cheeseman, Peter
1991-01-01
The task of inferring a set of classes and class descriptions most likely to explain a given data set can be placed on a firm theoretical foundation using Bayesian statistics. Within this framework and using various mathematical and algorithmic approximations, the AutoClass system searches for the most probable classifications, automatically choosing the number of classes and complexity of class descriptions. A simpler version of AutoClass has been applied to many large real data sets, has discovered new independently-verified phenomena, and has been released as a robust software package. Recent extensions allow attributes to be selectively correlated within particular classes, and allow classes to inherit or share model parameters though a class hierarchy. We summarize the mathematical foundations of AutoClass.
Antal, Péter; Kiszel, Petra Sz.; Gézsi, András; Hadadi, Éva; Virág, Viktor; Hajós, Gergely; Millinghoffer, András; Nagy, Adrienne; Kiss, András; Semsei, Ágnes F.; Temesi, Gergely; Melegh, Béla; Kisfali, Péter; Széll, Márta; Bikov, András; Gálffy, Gabriella; Tamási, Lilla; Falus, András; Szalai, Csaba
2012-01-01
Genetic studies indicate high number of potential factors related to asthma. Based on earlier linkage analyses we selected the 11q13 and 14q22 asthma susceptibility regions, for which we designed a partial genome screening study using 145 SNPs in 1201 individuals (436 asthmatic children and 765 controls). The results were evaluated with traditional frequentist methods and we applied a new statistical method, called Bayesian network based Bayesian multilevel analysis of relevance (BN-BMLA). This method uses Bayesian network representation to provide detailed characterization of the relevance of factors, such as joint significance, the type of dependency, and multi-target aspects. We estimated posteriors for these relations within the Bayesian statistical framework, in order to estimate the posteriors whether a variable is directly relevant or its association is only mediated. With frequentist methods one SNP (rs3751464 in the FRMD6 gene) provided evidence for an association with asthma (OR = 1.43(1.2–1.8); p = 3×10−4). The possible role of the FRMD6 gene in asthma was also confirmed in an animal model and human asthmatics. In the BN-BMLA analysis altogether 5 SNPs in 4 genes were found relevant in connection with asthma phenotype: PRPF19 on chromosome 11, and FRMD6, PTGER2 and PTGDR on chromosome 14. In a subsequent step a partial dataset containing rhinitis and further clinical parameters was used, which allowed the analysis of relevance of SNPs for asthma and multiple targets. These analyses suggested that SNPs in the AHNAK and MS4A2 genes were indirectly associated with asthma. This paper indicates that BN-BMLA explores the relevant factors more comprehensively than traditional statistical methods and extends the scope of strong relevance based methods to include partial relevance, global characterization of relevance and multi-target relevance. PMID:22432035
Bayesianism Versus Confirmation
NASA Astrophysics Data System (ADS)
Strevens, Michael
2014-03-01
The usual Bayesian approach to understanding the confirmation of scientific theories is inadequate. The problem lies not with Bayesian epistemology, but with a simplistic equation of the subjective, individualistic evidential relevance relation that Bayesianism attempts to capture and the more objective relevance relation of confirmation.
Smith, Rebecca Lee; Gröhn, Yrjö Tapio
2015-01-01
Hansen's disease (leprosy) elimination has proven difficult in several countries, including Brazil, and there is a need for a mathematical model that can predict control program efficacy. This study applied the Approximate Bayesian Computation algorithm to fit 6 different proposed models to each of the 5 regions of Brazil, then fitted hierarchical models based on the best-fit regional models to the entire country. The best model proposed for most regions was a simple model. Posterior checks found that the model results were more similar to the observed incidence after fitting than before, and that parameters varied slightly by region. Current control programs were predicted to require additional measures to eliminate Hansen's Disease as a public health problem in Brazil. PMID:26107951
Smith, Rebecca Lee; Gröhn, Yrjö Tapio
2015-01-01
Hansen’s disease (leprosy) elimination has proven difficult in several countries, including Brazil, and there is a need for a mathematical model that can predict control program efficacy. This study applied the Approximate Bayesian Computation algorithm to fit 6 different proposed models to each of the 5 regions of Brazil, then fitted hierarchical models based on the best-fit regional models to the entire country. The best model proposed for most regions was a simple model. Posterior checks found that the model results were more similar to the observed incidence after fitting than before, and that parameters varied slightly by region. Current control programs were predicted to require additional measures to eliminate Hansen’s Disease as a public health problem in Brazil. PMID:26107951
An Automated Statistical Process Control Study of Inline Mixing Using Spectrophotometric Detection
ERIC Educational Resources Information Center
Dickey, Michael D.; Stewart, Michael D.; Willson, C. Grant
2006-01-01
An experiment is described, which is designed for a junior-level chemical engineering "fundamentals of measurements and data analysis" course, where students are introduced to the concept of statistical process control (SPC) through a simple inline mixing experiment. The students learn how to create and analyze control charts in an effort to…
ERIC Educational Resources Information Center
Hantula, Donald A.
1995-01-01
Clinical applications of statistical process control (SPC) in human service organizations are considered. SPC is seen as providing a standard set of criteria that serves as a common interface for data-based decision making, which may bring decision making under the control of established contingencies rather than the immediate contingencies of…
Pulsipher, B.A.; Kuhn, W.L.
1987-02-01
Current planning for liquid high-level nuclear wastes existing in the US includes processing in a liquid-fed ceramic melter to incorporate it into a high-quality glass, and placement in a deep geologic repository. The nuclear waste vitrification process requires assurance of a quality product with little or no final inspection. Statistical process control (SPC) is a quantitative approach to one quality assurance aspect of vitrified nuclear waste. This method for monitoring and controlling a process in the presence of uncertainties provides a statistical basis for decisions concerning product quality improvement. Statistical process control is shown to be a feasible and beneficial tool to help the waste glass producers demonstrate that the vitrification process can be controlled sufficiently to produce an acceptable product. This quantitative aspect of quality assurance could be an effective means of establishing confidence in the claims to a quality product. 2 refs., 4 figs.
The Bayesian bridge between simple and universal kriging
Omre, H.; Halvorsen, K.B. )
1989-10-01
Kriging techniques are suited well for evaluation of continuous, spatial phenomena. Bayesian statistics are characterized by using prior qualified guesses on the model parameters. By merging kriging techniques and Bayesian theory, prior guesses may be used in a spatial setting. Partial knowledge of model parameters defines a continuum of models between what is named simple and universal kriging in geostatistical terminology. The Bayesian approach to kriging is developed and discussed, and a case study concerning depth conversion of seismic reflection times is presented.
2011-01-01
Background This study seeks to increase clinical operational efficiency and accelerator beam consistency by retrospectively investigating the application of statistical process control (SPC) to linear accelerator beam steering parameters to determine the utility of such a methodology in detecting changes prior to equipment failure (interlocks actuated). Methods Steering coil currents (SCC) for the transverse and radial planes are set such that a reproducibly useful photon or electron beam is available. SCC are sampled and stored in the control console computer each day during the morning warm-up. The transverse and radial - positioning and angle SCC for photon beam energies were evaluated using average and range (Xbar-R) process control charts (PCC). The weekly average and range values (subgroup n = 5) for each steering coil were used to develop the PCC. SCC from September 2009 (annual calibration) until two weeks following a beam steering failure in June 2010 were evaluated. PCC limits were calculated using the first twenty subgroups. Appropriate action limits were developed using conventional SPC guidelines. Results PCC high-alarm action limit was set at 6 standard deviations from the mean. A value exceeding this limit would require beam scanning and evaluation by the physicist and engineer. Two low alarms were used to indicate negative trends. Alarms received following establishment of limits (week 20) are indicative of a non-random cause for deviation (Xbar chart) and/or an uncontrolled process (R chart). Transverse angle SCC for 6 MV and 15 MV indicated a high-alarm 90 and 108 days prior to equipment failure respectively. A downward trend in this parameter continued, with high-alarm, until failure. Transverse position and radial angle SCC for 6 and 15 MV indicated low-alarms starting as early as 124 and 116 days prior to failure, respectively. Conclusion Radiotherapy clinical efficiency and accelerator beam consistency may be improved by instituting SPC
Advanced statistical process control: controlling sub-0.18-μm lithography and other processes
NASA Astrophysics Data System (ADS)
Zeidler, Amit; Veenstra, Klaas-Jelle; Zavecz, Terrence E.
2001-08-01
access of the analysis to include the external variables involved in CMP, deposition etc. We then applied yield analysis methods to identify the significant lithography-external process variables from the history of lots, subsequently adding the identified process variable to the signatures database and to the PPC calculations. With these improvements, the authors anticipate a 50% improvement of the process window. This improvement results in a significant reduction of rework and improved yield depending on process demands and equipment configuration. A statistical theory that explains the PPC is then presented. This theory can be used to simulate a general PPC application. In conclusion, the PPC concept is not lithography or semiconductors limited. In fact it is applicable for any production process that is signature biased (chemical industry, car industry, .). Requirements for the PPC are large data collection, a controllable process that is not too expensive to tune the process for every lot, and the ability to employ feedback calculations. PPC is a major change in the process management approach and therefor will first be employed where the need is high and the return on investment is very fast. The best industry to start with is the semiconductors and the most likely process area to start with is lithography.
Research on statistical process control for solvent residual quantity of packaging materials
NASA Astrophysics Data System (ADS)
Xiao, Yingzhe; Huang, Yanan
2013-03-01
Statistical Process Control (SPC) and the basic tool of its controlling - control chart - are discussed in this paper based on the development of quality management, current situation of quality management of Chinese packaging enterprises, and the necessity of applying SPC. On this basis, X-R control chart is used to analyze and control the solvent residual in the compound process. This work may allow field personnel to find the shortcomings in the quality control by noticing the corresponding of fluctuations and slow variations in the process in time. In addition, SPC also provides objective basis for the quality management personnel to assess semi-products or products quality.
NASA Astrophysics Data System (ADS)
Granderson, Jessica Ann
2007-12-01
The need for sustainable, efficient energy systems is the motivation that drove this research, which targeted the design of an intelligent commercial lighting system. Lighting in commercial buildings consumes approximately 13% of all the electricity generated in the US. Advanced lighting controls1 intended for use in commercial office spaces have proven to save up to 45% in electricity consumption. However, they currently comprise only a fraction of the market share, resulting in a missed opportunity to conserve energy. The research goals driving this dissertation relate directly to barriers hindering widespread adoption---increase user satisfaction, and provide increased energy savings through more sophisticated control. To satisfy these goals an influence diagram was developed to perform daylighting actuation. This algorithm was designed to balance the potentially conflicting lighting preferences of building occupants, with the efficiency desires of building facilities management. A supervisory control policy was designed to implement load shedding under a demand response tariff. Such tariffs offer incentives for customers to reduce their consumption during periods of peak demand, trough price reductions. In developing the value function occupant user testing was conducted to determine that computer and paper tasks require different illuminance levels, and that user preferences are sufficiently consistent to attain statistical significance. Approximately ten facilities managers were also interviewed and surveyed to isolate their lighting preferences with respect to measures of lighting quality and energy savings. Results from both simulation and physical implementation and user testing indicate that the intelligent controller can increase occupant satisfaction, efficiency, cost savings, and management satisfaction, with respect to existing commercial daylighting systems. Several important contributions were realized by satisfying the research goals. A general
NASA Technical Reports Server (NTRS)
Shewhart, Mark
1991-01-01
Statistical Process Control (SPC) charts are one of several tools used in quality control. Other tools include flow charts, histograms, cause and effect diagrams, check sheets, Pareto diagrams, graphs, and scatter diagrams. A control chart is simply a graph which indicates process variation over time. The purpose of drawing a control chart is to detect any changes in the process signalled by abnormal points or patterns on the graph. The Artificial Intelligence Support Center (AISC) of the Acquisition Logistics Division has developed a hybrid machine learning expert system prototype which automates the process of constructing and interpreting control charts.
Using Alien Coins to Test Whether Simple Inference Is Bayesian
ERIC Educational Resources Information Center
Cassey, Peter; Hawkins, Guy E.; Donkin, Chris; Brown, Scott D.
2016-01-01
Reasoning and inference are well-studied aspects of basic cognition that have been explained as statistically optimal Bayesian inference. Using a simplified experimental design, we conducted quantitative comparisons between Bayesian inference and human inference at the level of individuals. In 3 experiments, with more than 13,000 participants, we…
Bayesian Inference on Proportional Elections
Brunello, Gabriel Hideki Vatanabe; Nakano, Eduardo Yoshio
2015-01-01
Polls for majoritarian voting systems usually show estimates of the percentage of votes for each candidate. However, proportional vote systems do not necessarily guarantee the candidate with the most percentage of votes will be elected. Thus, traditional methods used in majoritarian elections cannot be applied on proportional elections. In this context, the purpose of this paper was to perform a Bayesian inference on proportional elections considering the Brazilian system of seats distribution. More specifically, a methodology to answer the probability that a given party will have representation on the chamber of deputies was developed. Inferences were made on a Bayesian scenario using the Monte Carlo simulation technique, and the developed methodology was applied on data from the Brazilian elections for Members of the Legislative Assembly and Federal Chamber of Deputies in 2010. A performance rate was also presented to evaluate the efficiency of the methodology. Calculations and simulations were carried out using the free R statistical software. PMID:25786259
Bayesian inference on proportional elections.
Brunello, Gabriel Hideki Vatanabe; Nakano, Eduardo Yoshio
2015-01-01
Polls for majoritarian voting systems usually show estimates of the percentage of votes for each candidate. However, proportional vote systems do not necessarily guarantee the candidate with the most percentage of votes will be elected. Thus, traditional methods used in majoritarian elections cannot be applied on proportional elections. In this context, the purpose of this paper was to perform a Bayesian inference on proportional elections considering the Brazilian system of seats distribution. More specifically, a methodology to answer the probability that a given party will have representation on the chamber of deputies was developed. Inferences were made on a Bayesian scenario using the Monte Carlo simulation technique, and the developed methodology was applied on data from the Brazilian elections for Members of the Legislative Assembly and Federal Chamber of Deputies in 2010. A performance rate was also presented to evaluate the efficiency of the methodology. Calculations and simulations were carried out using the free R statistical software. PMID:25786259
ERIC Educational Resources Information Center
Karimi, Hamid; O'Brian, Sue; Onslow, Mark; Jones, Mark; Menzies, Ross; Packman, Ann
2013-01-01
Purpose: Stuttering varies between and within speaking situations. In this study, the authors used statistical process control charts with 10 case studies to investigate variability of stuttering frequency. Method: Participants were 10 adults who stutter. The authors counted the percentage of syllables stuttered (%SS) for segments of their speech…
ERIC Educational Resources Information Center
Logue, Alexandra W.; Watanabe-Rose, Mari
2014-01-01
This study used a randomized controlled trial to determine whether students, assessed by their community colleges as needing an elementary algebra (remedial) mathematics course, could instead succeed at least as well in a college-level, credit-bearing introductory statistics course with extra support (a weekly workshop). Researchers randomly…
ERIC Educational Resources Information Center
Averitt, Sallie D.
This instructor guide, which was developed for use in a manufacturing firm's advanced technical preparation program, contains the materials required to present a learning module that is designed to prepare trainees for the program's statistical process control module by improving their basic math skills and instructing them in basic calculator…
Analyzing a Mature Software Inspection Process Using Statistical Process Control (SPC)
NASA Technical Reports Server (NTRS)
Barnard, Julie; Carleton, Anita; Stamper, Darrell E. (Technical Monitor)
1999-01-01
This paper presents a cooperative effort where the Software Engineering Institute and the Space Shuttle Onboard Software Project could experiment applying Statistical Process Control (SPC) analysis to inspection activities. The topics include: 1) SPC Collaboration Overview; 2) SPC Collaboration Approach and Results; and 3) Lessons Learned.