Science.gov

Sample records for bayo canyon ta-10

  1. Environmenal analysis of the Bayo Canyon (TA-10) Site, Los Alamos, New Mexico

    SciTech Connect

    Ferenbaugh, R.W.; Buhl, T.E.; Stoker, A.K.; Hansen, W.R.

    1982-05-01

    The radiological survey of the old TA-10 site in Bayo Canyon found low levels of surface contamination in the vicinity of the firing sites and subsurface contamination in the old waste disposal area. The three alternatives proposed for the site are: (1) to take no action; (2) to restrict usage of the area of subsurface contamination to activities that cause no subsurface disturbance (minimal action); and (3) to remove the subsurface conamination to levels below the working criteria. Dose calculations indicate that doses from surface contamination for recreational users of the canyon, permanent residents, and construction workers and doses for workers involved in excavation of contaminated soil under the clean up alternative are only small percentages of applicable guidelines. No environmental impacts are associated with either the no-action or minimal action alternatives. The impact associated with the cleanup alternative is small, especially considering that the area already has been affected by the original TA-10 decommissioning action, but nevertheless, the preferred alternative is the minimal action alternative, where 0.6 hectare of land is restricted to surface activities. This leaves the rest of the canyon available for development with up to 400 homes. The restricted area can be used for a park, tennis courts, etc., and the /sup 90/Sr activity will decay to levels permitting unrestricted usage in about 160 y.

  2. The Bayo Canyon/radioactive lanthanum (RaLa) program

    SciTech Connect

    Dummer, J.E.; Taschner, J.C.; Courtright, C.C.

    1996-04-01

    LANL conducted 254 radioactive lanthanum (RaLa) implosion experiments Sept. 1944-March 1962, in order to test implosion designs for nuclear weapons. High explosives surrounding common metals (surrogates for Pu) and a radioactive source containing up to several thousand curies of La, were involved in each experiment. The resulting cloud was deposited as fallout, often to distances of several miles. This report was prepared to summarize existing records as an aid in evaluating the off-site impact, if any, of this 18-year program. The report provides a historical setting for the program, which was conducted in Technical Area 10, Bayo Canyon about 3 miles east of Los Alamos. A description of the site is followed by a discussion of collateral experiments conducted in 1950 by US Air Force for developing an airborne detector for tracking atmospheric nuclear weapons tests. All known off-site data from the RaLa program are tabulated and discussed. Besides the radiolanthanum, other potential trace radioactive material that may have been present in the fallout is discussed and amounts estimated. Off-site safety considerations are discussed; a preliminary off-site dose assessment is made. Bibliographical data on 33 persons important to the program are presented as footnotes.

  3. Strontium concentrations in chamisa (Chrysothamnus nauseosus) shrub plants growing in a former liquid waste disposal area in Bayo Canyon

    SciTech Connect

    Fresquez, P.R.; Foxx, T.S.; Naranjo, L. Jr.

    1995-11-01

    Chamisa (Chrysothamnus nauseosus) shrub plants growing in a former liquid waste disposal site Solid Waste Management Unit [SWMU] 10-003(c) in Bayo Canyon at Los Alamos National Laboratory (LANL) were collected and analyzed for strontium ({sup 90}Sr) and total uranium. Surface soil samples were also collected from below (understory) and between (interspace) shrub canopies. Both chamisa plants growing over SWMU 10-003(c) contained significantly higher concentrations of {sup 90}Sr than a control plant -- one plant, in particular, contained 90, 500 pCi {sup 90}Sr g{sup {minus}1} ash in top-growth material. Similarly, soil surface samples collected underneath and between plants contained {sup 90}Sr concentrations above background and LANL screening action levels; this probably occurred as a result of chamisa plant leaf fall contaminating the soil understory area followed by water and/or winds moving {sup 90}Sr to the soil interspace area. Although some soil surface migration of {sup 90}Sr from SWMU 10-003(c) has occurred, the level of {sup 90}Sr in sediments collected downstream of SWMU 10-003(c) at the Bayo Canyon/State Road 5 intersection was still within regional (background) concentrations.

  4. Evaluation of TA10 Broth for Recovery of Heat- and Freeze-Injured Salmonella from Beef

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Bacteriological Analytical Manual (BAM) Salmonella pre-enrichment broth (lactose [LAC] broth), buffered peptone water (BPW), and universal preenrichment (UP) broth were compared with TA10 broth, developed in our laboratory, for recovery of heat- and freeze-injured Salmonella (55ºC for 2-20 min a...

  5. Grand Canyon

    Atmospheric Science Data Center

    2014-05-15

    article title:  The Grand Canyon     View Larger Image Northern Arizona and the Grand Canyon are captured in this pair of Multi-angle Imaging SpectroRadiometer ... formats available at JPL December 31, 2000 - Grand Canyon and Lake Powell. project:  MISR ...

  6. Modified fused silicide coatings for tantalum (Ta-10W) reentry heat shields

    NASA Technical Reports Server (NTRS)

    Packer, C. M.; Perkins, R. A.

    1973-01-01

    Results are presented of a program of research to develop a reliable, high performance, fused slurry silicide coating for the Ta-10W alloy. The effort was directed toward developing new and improved formulations for use at 2600 to 2800 F (1700 to 1811 K) in an atmospheric reentry thermal protection system with a 100-mission capability. Based on a thorough characterization of isothermal and cyclic oxidation behavior, bend transition temperatures, room- and elevated-temperature tensile properties, and creep behavior, a 2.5 Mn-33Ti-64.5Si coating (designated MTS) provides excellent protection for the Ta-10W alloy in simulated reentry environments. An extensive analysis of the oxidation behavior and characteristics of the MTS coating in terms of fundamental mechanisms also is presented.

  7. The high-strain-rate and spallation response of tantalum, Ta-10W, and T-111

    SciTech Connect

    Gray, G.T. III; Rollett, A.D.

    1991-01-01

    The compressive true stress-true response of tantalum, Ta-10W, and T-111 were found to depend on the applied strain rate, in the range 0.001 to 7000 s{sup {minus}1}. The strain-rate sensitivities of the flow stress of tantalum, Ta-10W, and T-111 a 1% strain are 0.062, 0.031, and 0.024, respectively. The rates of strain hardening in Tantalum, Ta-10W, and T-111 are seen to exhibit differing behavior with increasing strain rate. The calculated average strain-hardening rate in tantalum, {Theta}, for the quasi-static (0.001 s{sup {minus}1}) data at 25{degrees}C is 2080 MPa/unit strain. The hardening rate at 3000s{sup {minus}1} at 25{degrees}C decreases to 846 MPa/unit strain. Normalizing the work hardening rate in tantalum with the Taylor Factor for a random polycrystal, ({Theta} / (3.07){sup 2}), yields work hardening rates of {mu}/276 at quasi-static strain rates and {mu}/680 at high-rates, assuming a shear modulus of 61 GPa for tantalum at room temperature. While the work hardening of all the tantalum-based materials are similar at quasi-static rates, alloying results in a small reduction in hardening rate. With increasing strain rate, the work hardening rate in tantalum decreases by approximately a factor of two compared to the alloys. Alloying tantalum with substitutional or interstitial elements is thought to result in increased edge dislocation storage and screw dislocation cross-slip due to interactions with the alloying elements at high strain rates. 28 refs.

  8. Hot Canyon

    ScienceCinema

    None

    2013-03-01

    This historical film footage, originally produced in the early 1950s as part of a series by WOI-TV, shows atomic research at Ames Laboratory. The work was conducted in a special area of the Laboratory known as the "Hot Canyon."

  9. Hot Canyon

    SciTech Connect

    2012-01-01

    This historical film footage, originally produced in the early 1950s as part of a series by WOI-TV, shows atomic research at Ames Laboratory. The work was conducted in a special area of the Laboratory known as the "Hot Canyon."

  10. Predicting Texture Evolution in Ta and Ta-10W Alloys Using Polycrystal Plasticity

    NASA Astrophysics Data System (ADS)

    Knezevic, Marko; Zecevic, Miroslav; Beyerlein, Irene J.; Bhattacharyya, Abhishek; McCabe, Rodney J.

    2015-11-01

    We present results of texture characterization and predictions of a multiscale physically based constitutive law developed to predict the mechanical response and texture evolution of body-centered cubic metals. The model is unique in the sense that single crystal deformation results not only from the resolved shear stress along the direction of slip (Schmid law) but also from shear stresses resolved along directions orthogonal to the slip direction as well as the three normal stress components (non-Schmid effects). The single crystal model is implemented into a visco-plastic self-consistent homogenization scheme containing a hardening law for crystallographic slip. The polycrystal model is calibrated using a set of mechanical test data collected on a tantalum-tungsten alloy, Ta-10W, in tension and compression and pure tantalum, Ta, in tension, compression, and cross-rolling. We demonstrate that the model effectively captures the texture evolution in all cases. We show that alloying has the effect of increasing the dislocation friction stress, the trapping rate of dislocations, and activation barrier for recovery.

  11. Constraining the Paleogene of South America: Magnetostratigraphy and paleoclimate proxy records from Cerro Bayo (Provincia de Salta, Argentina)

    NASA Astrophysics Data System (ADS)

    Hyland, E.; Cotton, J. M.; Sheldon, N. D.

    2012-12-01

    Records of rapid climatic and ecological shifts in the past are crucial for understanding global systems and for predicting future impacts of climate change. Transient and broad scale hyperthermal events during the Paleogene, such as the Paleocene-Eocene Thermal Maximum (PETM) and Early Eocene Climatic Optimum (EECO), have been studied extensively through both marine records and a significant terrestrial record from North America. Despite this, little evidence exists from the climatic and ecological histories of other major landmasses, which limits the effectiveness of global climate response predictions. Here we present an integrated paleoenvironmental reconstruction of the early Paleogene from a site in central South America (Cerro Bayo, Argentina), including a new magnetostratigraphic age model, pedological and sedimentological interpretation, whole rock geochemical climate proxies, isotopic environmental proxies, and microfloral assemblages. Cerro Bayo is a 235-meter terrestrial section that exposes the Tunal, Mealla, and Maiz Gordo Formations, and based on magnetostratigraphic interpolation spans roughly 58—50 Mya, including both the PETM and EECO events. These formations are composed primarily of reddish sandstone and siltstone, much of which exhibits features characteristic of a moderate degree of pedogenesis (i.e., Inceptisols and Alfisols). High-resolution climate proxies derived from paleosol geochemical compositions highlight rapid increases in mean annual temperature (>5°C) and precipitation (>300 mm yr-1) during the PETM, as well as more gradual increasing temperature and precipitation trends leading up to the EECO. Carbon isotope stratigraphy through the section also indicates a sizable negative excursion (~4‰) during the PETM, and generally positive isotopic trends during the early Eocene. Phytolith biostratigraphy also details changes in local vegetation composition during climatic events that corresponds to similar patterns seen in terrestrial

  12. Canyon Dust

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Context image for PIA03682 Canyon Dust

    These dust slides are located on the wall of Thithonium Chasma.

    Image information: VIS instrument. Latitude -4.1N, Longitude 275.7E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  13. Canyon Variety

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Context image for PIA03281 Canyon Variety

    This image shows paret of the west end of Melas Chasma. Landslide deposits are visible at the top of the image, with dark dunes appearing at the bottom.

    Image information: VIS instrument. Latitude -8.2N, Longitude 281.0E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  14. Subinertial canyon resonance

    NASA Astrophysics Data System (ADS)

    Clarke, Allan J.; Van Gorder, Stephen

    2016-04-01

    Near the bottom of a narrow canyon currents that oscillate back and forth along the bottom slope hx in a stratified ocean of buoyancy frequency N do so with a natural internal gravitational frequency Nhx. From May 2012 to May 2013 Acoustic Doppler Current Profiler measurements were made at 715 m depth in the deep narrow part of the DeSoto Canyon south of Pensacola, Florida, in water with 2π/Nhx ≈ 2.5 days. Above the canyon the flow follows the large-scale isobaths, but beneath the canyon rim the current oscillates along the canyon axis with 2-3 day periodicity, and is much stronger than and uncorrelated with the overlying flow. A simple theoretical model explains the resonant response. Published observations from the Hudson and Gully canyons suggest that the strong subinertial current oscillations observed in these canyons occur close to the relevant local frequency Nhx, consistent with the proposed simple model physics.

  15. 4. DARK CANYON SIPHON VIEW ACROSS DARK CANYON AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. DARK CANYON SIPHON - VIEW ACROSS DARK CANYON AT LOCATION OF SIPHON. VIEW TO NORTHWEST - Carlsbad Irrigation District, Dark Canyon Siphon, On Main Canal, 1 mile South of Carlsbad, Carlsbad, Eddy County, NM

  16. Non-digestible fraction of cooked bean (Phaseolus vulgaris L.) cultivar Bayo Madero suppresses colonic aberrant crypt foci in azoxymethane-induced rats.

    PubMed

    Vergara-Castañeda, Haydé Azeneth; Guevara-González, Ramón Gerardo; Ramos-Gómez, Minerva; Reynoso-Camacho, Rosalía; Guzmán-Maldonado, Horacio; Feregrino-Pérez, Ana Angélica; Oomah, B Dave; Loarca-Piña, Guadalupe

    2010-12-01

    The non-digestible fraction (NDF) of common bean (Phaseolus vulgaris L.) cultivar Bayo Madero was evaluated for its chemopreventive effect on azoxymethane (AOM) induced aberrant crypt foci (ACF) in rats. Diets containing cooked beans (CB) or its non-digestible fraction (NDF) were fed to 72 male rats after 2 azoxymethane injections (15 mg kg(-1) of body weight once a week for 2 weeks). ACF number, short chain fatty acids (SCFA) and β-glucuronidase activity were measured in colon sections from rats sacrificed 7 weeks after the last AOM injection. Food intake and weight gain of rats were unaffected by CB and NDF. CB and NDF suppressed the AOM-induced formation of ACF (0.8 and 1.5 ACF/distal zone, respectively vs. 6.6 ACF/distal zone based on methylene blue stain) and lowered β-glucuronidase activity in cecal, colonic and fecal content compared to AOM group. SCFA production was not significantly different among fecal, cecal and colonic content. These results indicate that CB and NDF from Bayo Madero provide direct chemoprotection against early stage of azoxymethane (AOM)-induced colon cancer in rats. PMID:21776479

  17. 18. VIEW OF A CANYON IN THE CLEANUP PHASE. CANYONS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. VIEW OF A CANYON IN THE CLEANUP PHASE. CANYONS WERE PROCESSING ROOMS USED TO HOUSE PLUTONIUM HANDLING OPERATIONS THAT WERE NOT CONTAINED WITHIN GLOVE BOXES. CANYONS WERE DESIGNED TO BECOME CONTAMINATED. (5/10/88) - Rocky Flats Plant, Plutonium Recovery Facility, Northwest portion of Rocky Flats Plant, Golden, Jefferson County, CO

  18. Sedimentary facies in submarine canyons

    NASA Astrophysics Data System (ADS)

    Sumner, E.; Paull, C. K.; Gwiazda, R.; Anderson, K.; Lundsten, E. M.; McGann, M.

    2013-12-01

    Submarine canyons are the major conduits by which sediment, pollutants and nutrients are transported from the continental shelf out into the deep sea. The sedimentary facies within these canyons are remarkably poorly understood because it has proven difficult to accurately sample these heterogeneous and bathymetrically complex environments using traditional ship-based coring techniques. This study exploits a suite of over 100 precisely located vibracores collected using remotely operated vehicles in ten canyons along the northern Californian margin, enabling better understanding of the facies that exist within submarine canyons, their distribution, and the processes responsible for their formation. The dataset reveals three major facies types within the submarine canyons: extremely poorly sorted, coarse-grained sands and gravels with complex and indistinct internal grading patterns and abundant floating clasts; classical normally graded thin bedded turbidites; and a variety of fine-grained muddy deposits. Not all facies are observed within individual canyons, in particular coarse-grained deposits occur exclusively in canyons where the canyon head cuts up to the modern day beach, whereas finer grained deposits have a more complex distribution that relates to processes of sediment redistribution on the shelf. Pairs of cores collected within 30 meters elevation of one another reveal that the coarse-grained chaotic deposits are restricted to the basal canyon floor, with finer-grained deposits at higher elevations on the canyon walls. The remarkable heterogeneity of the facies within these sediment cores illustrate that distinctive processes operate locally within the canyon. In the authors' experience the canyon floor facies represent an unusual facies rarely observed in ancient outcrops, which potentially results from the poor preservation of ancient coarse-grained canyon deposits in the geological record.

  19. Flushing submarine canyons.

    PubMed

    Canals, Miquel; Puig, Pere; de Madron, Xavier Durrieu; Heussner, Serge; Palanques, Albert; Fabres, Joan

    2006-11-16

    The continental slope is a steep, narrow fringe separating the coastal zone from the deep ocean. During low sea-level stands, slides and dense, sediment-laden flows erode the outer continental shelf and the continental slope, leading to the formation of submarine canyons that funnel large volumes of sediment and organic matter from shallow regions to the deep ocean(1). During high sea-level stands, such as at present, these canyons still experience occasional sediment gravity flows(2-5), which are usually thought to be triggered by sediment failure or river flooding. Here we present observations from a submarine canyon on the Gulf of Lions margin, in the northwest Mediterranean Sea, that demonstrate that these flows can also be triggered by dense shelf water cascading (DSWC)-a type of current that is driven solely by seawater density contrast. Our results show that DSWC can transport large amounts of water and sediment, reshape submarine canyon floors and rapidly affect the deep-sea environment. This cascading is seasonal, resulting from the formation of dense water by cooling and/or evaporation, and occurs on both high- and low-latitude continental margins(6-8). DSWC may therefore transport large amounts of sediment and organic matter to the deep ocean. Furthermore, changes in the frequency and intensity of DSWC driven by future climate change may have a significant impact on the supply of organic matter to deep-sea ecosystems and on the amount of carbon stored on continental margins and in ocean basins. PMID:17108962

  20. The Whittard Canyon - A case study of submarine canyon processes

    NASA Astrophysics Data System (ADS)

    Amaro, T.; Huvenne, V. A. I.; Allcock, A. L.; Aslam, T.; Davies, J. S.; Danovaro, R.; De Stigter, H. C.; Duineveld, G. C. A.; Gambi, C.; Gooday, A. J.; Gunton, L. M.; Hall, R.; Howell, K. L.; Ingels, J.; Kiriakoulakis, K.; Kershaw, C. E.; Lavaleye, M. S. S.; Robert, K.; Stewart, H.; Van Rooij, D.; White, M.; Wilson, A. M.

    2016-08-01

    Submarine canyons are large geomorphological features that incise continental shelves and slopes around the world. They are often suggested to be biodiversity and biomass hotspots, although there is no consensus about this in the literature. Nevertheless, many canyons do host diverse faunal communities but owing to our lack of understanding of the processes shaping and driving this diversity, appropriate management strategies have yet to be developed. Here, we integrate all the current knowledge of one single system, the Whittard Canyon (Celtic Margin, NE Atlantic), including the latest research on its geology, sedimentology, geomorphology, oceanography, ecology, and biodiversity in order to address this issue. The Whittard Canyon is an active system in terms of sediment transport. The net suspended sediment transport is mainly up-canyon causing sedimentary overflow in some upper canyon areas. Occasionally sediment gravity flow events do occur, some possibly the result of anthropogenic activity. However, the role of these intermittent gravity flows in transferring labile organic matter to the deeper regions of the canyon appears to be limited. More likely, any labile organic matter flushed downslope in this way becomes strongly diluted with bulk material and is therefore of little food value for benthic fauna. Instead, the fresh organic matter found in the Whittard Channel mainly arrives through vertical deposition and lateral transport of phytoplankton blooms that occur in the area during spring and summer. The response of the Whittard Canyon fauna to these processes is different in different groups. Foraminiferal abundances are higher in the upper parts of the canyon and on the slope than in the lower canyon. Meiofaunal abundances in the upper and middle part of the canyon are higher than on adjacent slopes, but lower in the deepest part. Mega- and macrofauna abundances are higher in the canyon compared with the adjacent slope and are higher in the eastern than

  1. Canyon in DCS Color

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released July 26, 2004 This image shows two representations of the same infra-red image covering a portion of Ganges Chasma. On the left is a grayscale image showing surface temperature, and on the right is a false-color composite made from 3 individual THEMIS bands. The false-color image is colorized using a technique called decorrelation stretch (DCS), which emphasizes the spectral differences between the bands to highlight compositional variations.

    The northern canyon at the top of this image is dominated by a bright red/magenta area consisting primarly basaltic materials on the floor of the canyon and atmospheric dust. Within that area, there are patches of purple, on the walls and in the landslides, that may be due to an olivine rich mineral layer. In the middle of the image, the green on the mesa between the two canyons is from a layer of dust. The patchy blue areas in the southern canyon are likely due to water ice clouds.

    Image information: IR instrument. Latitude -6.6, Longitude 316 East (44 West). 100 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics

  2. New York Canyon Stimulation

    SciTech Connect

    Raemy, Bernard

    2012-06-21

    The New York Canyon Stimulation Project was to demonstrate the commercial application of Enhanced Geothermal System techniques in Buena Vista Valley area of Pershing County, Nevada. From October 2009 to early 2012, TGP Development Company aggressively implemented Phase I of Pre-Stimulation and Site/Wellbore readiness. This included: geological studies; water studies and analyses and procurement of initial permits for drilling. Oversubscription of water rights and lack of water needed for implementation of EGS were identified and remained primary obstacles. Despite extended efforts to find alternative solutions, the water supply circumstances could not be overcome and led TGP to determine a "No Go" decision and initiate project termination in April 2012.

  3. Repainting decontaminated canyon cranes

    SciTech Connect

    Not Available

    1984-08-23

    The paint on the H-area hot canyon crane is expected to be at least partially removed during the planned decontamination with high pressure Freon/reg sign/ blasting. Tests to evaluate two candidate finishes, DuPont Imron/reg sign/ polyurethane enamel and DuPont Colar/reg sign/ epoxy were carried out at Quadrex Co., Oak Ridge, TN, March 1984. Three types of 304L stainless steel surface finishes were included in the test (ASTM No. 1, bead blasted ASTM No. 1, and ASTM No. 2B). Two types of contamination were used (diluted dissolver solution, the type of contamination encountered in existing canyons; and raw sludge plus volatiles, the type of contamination expected in DWPF). Some specimens were coated with the type of grease (Mystic JT-6) used on cranes in SRP separations areas. The results of the test indicate that smoother surfaces are easier to decontaminate than rougher surfaces. Statistical analysis of the data from this experiment by R.L. Postles leads to the following conclusions: There is no statistical difference between the decontamination properties of DuPont Imron/reg sign/ polyurethane enamel and DuPont Colar/reg sign/ epoxy; DuPont Imron/reg sign/ polyurethane enamel and perhaps Type 304L stainless steel with an ASTM No. 2B surface finish are easier to decontaminate than Type 304L stainless steel with an ASTM No. 1 surface finish; dilute dissolver solution is harder to remove than raw sludge plus volatiles; specimens with grease are easier to decontaminate than specimens with no grease; and, Freon/reg sign/ blasting pressure has no statistically significant effect. 2 refs., 1 fig., 4 tabs.

  4. Canyon waste dump case study

    SciTech Connect

    Land, M.D.; Brothers, R.R. ); McGinn, C.W. )

    1991-01-01

    This data packet contains the Canyonville Canyon Waste Dump results of the various physical environmental sampling. Core samples were taken from the on site waste material. Vertical grab samples were made from these borings. The waste samples were screened fro volatile organic compounds (VOC) and logged for lithology. Soil samples were also tested for VOC. Composite sediment samples were taken using a coring device known as a clam gun. No surface water was available for testing from the intermittent Canyon Wash. The hydrogeology of the Canyon Waste Dump was inferred from lithologic logs and hydraulic data from the five monitoring wells located along the canyon floor. Groundwater was monitored through five wells. The soil vapor and air screening techniques used were adaptations of the EPA ERT and NIOSH methodologies. 4 figs., 9 tabs.

  5. Anatomy of La Jolla Canyon

    NASA Astrophysics Data System (ADS)

    Paull, C. K.; Caress, D. W.; Ussler, W.; Lundsten, E.; McGann, M. L.; Conrad, J. E.; Edwards, B. D.; Covault, J. A.

    2010-12-01

    High-resolution multibeam bathymetry (vertical precision of 0.15 m and horizontal resolution of 1.0 m) and chirp sub-bottom profiler data collected with an autonomous underwater vehicle (AUV) reveal the fine-scale morphology of La Jolla Canyon, offshore southern California. The AUV was pre-programmed to fly three missions within the canyon while maintaining an altitude of 50 m above bottom in water depths between 365 and 980 m. Sparker seismic reflection profiles define the overall geometry of the canyon and its host sediments. A remotely operated vehicle (ROV) was used to ground truth the AUV surveys by collecting video observations, 25 vibracores ≤1.5 m long and 38 horizontal push cores from outcrops on the canyon walls. These tools outline the shape and near sub-bottom character of the canyon and thus provide insight into the processes that generated the present canyon geomorphology. La Jolla Canyon is ~1.5 km across and contains a smaller-scale sinuous axial channel that varies in width from <50 m to >300 m. The total relief on the canyon walls is ~90 m and most of the elevation changes occur along a few steep faces that separate intervening terraces. Fine scale features include <1 m high steps on the surface of the major terraces and the existence of crescent shaped bedforms within the axial channel. Also notable are the numerous slide scars on the canyon flanks and within its axial channel. The sharpness of the textures seen in the multibeam images and ROV observations suggest the canyon is active and sediment failures play an important role in generating the canyon’s present morphology. Vibracores show that the floor of the axial channel is typically covered with >1 m of medium- to fine-grained sand. While collecting vibracores within the axial channel, the sand within a radius of ~2 m were observed to flow down slope, apparently after becoming fluidized. The ease with which failure can be induced on the relatively gentle slopes (~1.4°) within the

  6. Mineral resources of the Desolation Canyon, Turtle Canyon, and Floy Canyon Wilderness Study Areas, Carbon Emery, and Grand counties, Utah

    SciTech Connect

    Cashion, W.B.; Kilburn, J.E.; Barton, H.N.; Kelley, K.D.; Kulik, D.M. ); McDonnell, J.R. )

    1990-09-01

    This paper reports on the Desolation Canyon, Turtle Canyon, and Floy Canyon Wilderness Study Areas which include 242,000 acres, 33,690 acres, and 23,140 acres. Coal deposits underlie all three study areas. Coal zones in the Blackhawk and Nelsen formations have identified bituminous coal resources of 22 million short tons in the Desolation Canyon Study Area, 6.3 million short tons in the Turtle Canyon Study Area, and 45 million short tons in the Floy Canyon Study Area. In-place inferred oil shale resources are estimated to contain 60 million barrels in the northern part of the Desolation Canyon area. Minor occurrences of uranium have been found in the southeastern part of the Desolation Canyon area and in the western part of the Floy Canyon area. Mineral resource potential for the study areas is estimated to be for coal, high for all areas, for oil and gas, high for the northern tract of the Desolation Canyon area and moderate for all other tracts, for bituminous sandstone, high for the northern part of the Desolation Canyon area, and low for all other tracts, for oil shale, low in all areas, for uranium, moderate for the Floy Canyon area and the southeastern part of the Desolation Canyon area and low for the remainder of the areas, for metals other than uranium, bentonite, zeolites, and geothermal energy, low in all areas, and for coal-bed methane unknown in all three areas.

  7. Academy of the Canyons Report, Fall 2002.

    ERIC Educational Resources Information Center

    Meuschke, Daylene M.; Gribbons, Barry C.

    This report analyzes the Academy of the Canyons (AOC) program at College of the Canyons (COC), California. AOC, a middle college high school, is a collaboration between the William S. Hart High School District and College of the Canyons. The program is designed to provide a supportive, flexible, and academically enriched environment for students…

  8. Currents in monterey submarine canyon

    USGS Publications Warehouse

    Xu, J. P.; Noble, M.A.

    2009-01-01

    Flow fields of mean, subtidal, and tidal frequencies between 250 and 3300 m water depths in Monterey Submarine Canyon are examined using current measurements obtained in three yearlong field experiments. Spatial variations in flow fields are mainly controlled by the topography (shape and width) of the canyon. The mean currents flow upcanyon in the offshore reaches (>1000 m) and downcanyon in the shallow reaches (100-m amplitude isotherm oscillations and associated high-speed rectilinear currents. The 15-day spring-neap cycle and a ???3-day??? band are the two prominent frequencies in subtidal flow field. Neither of them seems directly correlated with the spring-neap cycle of the sea level.

  9. Thomas Moran: "The Grand Canyon."

    ERIC Educational Resources Information Center

    Brubaker, Ann

    1986-01-01

    Presents a lesson plan for introducing students in grades four through six to Thomas Moran's painting, "The Grand Canyon." The goal of the lesson is to illustrate the importance of the American West as a subject for artists in the nineteenth century. (JDH)

  10. Why SRS Matters - H Canyon

    SciTech Connect

    Hunt, Paul; Lewczyk, Mike; Swain, Mike

    2015-02-17

    A video series presenting an overview of the Savannah River Site's (SRS) mission and operations. Each episode features a specific area/operation and how it contributes to help make the world safer. This episode features H Canyon's mission and operations.

  11. The canyon system on Mars

    NASA Technical Reports Server (NTRS)

    Lucchitta, B. K.; Mcewen, A. S.; Clow, G. D.; Geissler, P. E.; Singer, R. B.; Schultz, R. A.; Squyres, S. W.

    1992-01-01

    Individual Martian equatorial troughs are described, and their stratigraphy, geomorphology and structure are discussed. Possible origins and the overall sequence of events are addressed. Wall rock, interior layered deposits, irregular floor deposits, fractured floor material, and surficial deposits are examined. Chasma walls, wall stability, pits and pit chains, tributary canyons, and the transition from troughs to channels are also discussed.

  12. Geomorphic process fingerprints in submarine canyons

    USGS Publications Warehouse

    Brothers, Daniel S.; ten Brink, Uri S.; Andrews, Brian D.; Chaytor, Jason D.; Twichell, David C.

    2013-01-01

    Submarine canyons are common features of continental margins worldwide. They are conduits that funnel vast quantities of sediment from the continents to the deep sea. Though it is known that submarine canyons form primarily from erosion induced by submarine sediment flows, we currently lack quantitative, empirically based expressions that describe the morphology of submarine canyon networks. Multibeam bathymetry data along the entire passive US Atlantic margin (USAM) and along the active central California margin near Monterey Bay provide an opportunity to examine the fine-scale morphology of 171 slope-sourced canyons. Log–log regression analyses of canyon thalweg gradient (S) versus up-canyon catchment area (A) are used to examine linkages between morphological domains and the generation and evolution of submarine sediment flows. For example, canyon reaches of the upper continental slope are characterized by steep, linear and/or convex longitudinal profiles, whereas reaches farther down canyon have distinctly concave longitudinal profiles. The transition between these geomorphic domains is inferred to represent the downslope transformation of debris flows into erosive, canyon-flushing turbidity flows. Over geologic timescales this process appears to leave behind a predictable geomorphic fingerprint that is dependent on the catchment area of the canyon head. Catchment area, in turn, may be a proxy for the volume of sediment released during geomorphically significant failures along the upper continental slope. Focused studies of slope-sourced submarine canyons may provide new insights into the relationships between fine-scale canyon morphology and down-canyon changes in sediment flow dynamics.

  13. Mineral resources of the Coal Canyon, Spruce Canyon, and Flume Canyon Wilderness Study Areas, Grand county, Utah

    SciTech Connect

    Dickerson, R.P.; Gaccetta, J.D.; Kulik, D.M.; Kreidler, T.J.

    1990-01-01

    This paper reports on the Coal Canyon, Spruce Canyon, and Flume Canyon Wilderness Study Areas in the Book and Roan Cliffs in Grand Country, Utah, approximately 12 miles west of the Colorado state line. The wilderness study areas consist of a series of deep, stair-step-sided canyons and high ridges eroded into the flatlying sedimentary rocks of the Book Cliffs. Demonstrated coal reserves totaling 22,060,800 short tons and demonstrated subeconomic coal resources totaling 39,180,000 short tons are in the Coal Canyon Wilderness Study Area. Also, inferred subeconomic coal resources totaling 143,954,000 short tons are within the Coal Canyon Wilderness Study Area. No known deposits of industrial minerals are in any of the study area. All three of the wilderness study areas have a high resource potential for undiscovered deposits of coal and for undiscovered oil and gas.

  14. Bell Canyon test and results

    SciTech Connect

    Christensen, C. L.; Hunter, T. O.

    1980-01-01

    The purposes of the Borehold Plugging Program are: to identify issues associated with sealing boreholes and shafts; to establish a data base from which to assess the importance of these issues; and to develop sealing criteria, materials, and demonstrative test for the Waste Isolation Pilot Plant (WIPP). The Bell Canyon Test described in this report is one part of that program. Its purpose was to evaluate, in situ, the state of the art in borehole plugs and to identify and resolve problems encountered in evaluating a typical plug installation in anhydrite. The test results are summarized from the work of Peterson and Christensen and divided into two portions: system integrity and wellbore characterization tests prior to plug installation, and a series of tests to evaluate isolation characteristics of the 1.8-m-long plug. Conclusions of the Bell Canyon Test are: brine and fresh-water grouts, with acceptable physical properties in the fluid and hardened states, have been developed; the field data, taken together with laboratory data, suggest that the predominant flow into the test region occurs through the cement plug/borehold interface region, with lesser contributions occurring through the wellbore damage zone, the plug core, and the surrounding undisturbed anhydrite bed; and the 1.8-m-long by 20-cm-diameter grout plug, installed in anhydrite at a depth of 1370 m in the AEC-7 borehole, limits flow from the high pressure Bell Canyon aquifer to 0.6 liters/day.

  15. "Internal Waves" Advancing along Submarine Canyons.

    PubMed

    Shepard, F P; Marshall, N F; McLoughlin, P A

    1974-01-18

    Patterns of alternating up- and downcanyon currents have been traced along the axes of submarine canyons off California. The patterns arrive later at stations nearer the heads of coastal canyons. Where a canyon heads between two islands, the patterns advance down the axis. The propagation speeds of these patterns were estimated as 25 to 88 centimeters per second. Internal waves are the probable explanation. PMID:17777263

  16. 2. VIEW OF HIGH FLUME, LOOKING DOWN WARM SPRINGS CANYON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. VIEW OF HIGH FLUME, LOOKING DOWN WARM SPRINGS CANYON TO SANTA ANA RIVER CANYON. VIEW TO WEST-NORTHWEST. - Santa Ana River Hydroelectric System, Warm Springs Canyon-SAR-3 Flumes, Redlands, San Bernardino County, CA

  17. Survey of Interest, Canyon Country College of the Canyons Site, January 2001.

    ERIC Educational Resources Information Center

    Dixon, P. Scott; Gribbons, Barry C.

    In the process of planning a new site to serve students in Canyon Country (California), the College of the Canyons (COC) in Santa Clarita surveyed students to assess their needs. Anonymous questionnaires were mailed to the homes of 1,000 randomly selected students who lived in Canyon Country and had attended COC in fall 2000 or spring 2001. Of the…

  18. Role of submarine canyons in shaping the rise between Lydonia and Oceanographer canyons, Georges Bank

    USGS Publications Warehouse

    McGregor, B.A.

    1985-01-01

    Three large submarine canyons, Oceanographer, Gilbert, and Lydonia, indent the U.S. Atlantic continental shelf and, with four additional canyons, dissect the continental slope in the vicinity of Georges Bank. On the upper rise, these canyons merge at a water depth of approximately 3100 m to form only two valleys. Differences in channel morphology of the canyons on the upper rise imply differences in relative activity, which is inconsistent with observations in the canyon heads. At present, Lydonia Canyon incises the upper rise more deeply than do the other canyons: however, seismic-reflection profiles show buried channels beneath the rise, which suggests that these other six canyons were periodically active during the Neogene. The rise morphology and the thickness of inferred Neogene- and Quaternary-age sediments on the rise are attributed to the presence and activity of the canyons. The erosional and depositional processes and the morphology of these canyons are remarkably similar to those of fluvial systems. Bear Seamount, which has approximately 2000 m of relief on the rise, has acted as a barrier to downslope sediment transport since the Late Cretaceous. Sediment has piled up on the upslope side, whereas much less sediment has accumulated in the "lee shadow" on the downslope side. Seismic-reflection profile data show that Lydonia Canyon has not eroded down to the volcanic rock of Bear Seamount. ?? 1985.

  19. 76 FR 8359 - Boulder Canyon Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-14

    ... kilowattmonth (kWmonth), and the proposed composite rate is 22.16 mills/kWh. \\1\\ 75 FR 57912. \\2\\ 133 FERC ] 62... Area Power Administration Boulder Canyon Project AGENCY: Western Area Power Administration, DOE...) is proposing an adjustment to the Boulder Canyon Project (BCP) electric service base charge and...

  20. Environmental assessment: Davis Canyon site, Utah

    SciTech Connect

    none,

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified the Davis Canyon site in Utah as one of the nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high- level radioactive waste. To determine their suitability, the Davis Canyon site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EA. The Davis Canyon site is in the Paradox Basin, which is one of five distinct geohydrologic settings considered for the first repository. This setting contains one other potentially acceptable site -- the Lavender Canyon site. Although the Lavender Canyon site is suitable for site characterization, the DOE has concluded that the Davis Canyon site is the preferred site in the Paradox Basin. On the basis of the evaluations reported in this EA, the DOE has found that the Davis Canyon site is not disqualified under the guidelines. Furthermore, the DOE has found that the site is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Davis Canyon site as one of the five sites suitable for characterization.

  1. Grand Canyon Monitoring and Research Center

    USGS Publications Warehouse

    Hamill, John F.

    2009-01-01

    The Grand Canyon of the Colorado River, one of the world's most spectacular gorges, is a premier U.S. National Park and a World Heritage Site. The canyon supports a diverse array of distinctive plants and animals and contains cultural resources significant to the region's Native Americans. About 15 miles upstream of Grand Canyon National Park sits Glen Canyon Dam, completed in 1963, which created Lake Powell. The dam provides hydroelectric power for 200 wholesale customers in six western States, but it has also altered the Colorado River's flow, temperature, and sediment-carrying capacity. Over time this has resulted in beach erosion, invasion and expansion of nonnative species, and losses of native fish. Public concern about the effects of Glen Canyon Dam operations prompted the passage of the Grand Canyon Protection Act of 1992, which directs the Secretary of the Interior to operate the dam 'to protect, mitigate adverse impacts to, and improve values for which Grand Canyon National Park and Glen Canyon National Recreation Area were established...' This legislation also required the creation of a long-term monitoring and research program to provide information that could inform decisions related to dam operations and protection of downstream resources.

  2. A proposed Laramide proto-Grand Canyon

    NASA Astrophysics Data System (ADS)

    Hill, C. A.; Ranney, W. D.

    2008-12-01

    The absence of "rim gravels" north of Grand Canyon and of "Canaan Peak-type" gravels south of Grand Canyon suggests that a paleocanyon, which intersected the transport of these gravels north and south, may have begun forming in the Laramide in approximately the same position as today's central Grand Canyon. This Laramide-age canyon is envisioned as having flowed generally from the SW to NE; from the Peach Springs Canyon area to Mile 197 where it was captured by karst; then along a N. 60°E joint system to the Kanab Point area where it converged with drainage coming off the west side of the Kaibab arch. From there it flowed north along the west flank of the Kaibab arch to Paleogene Lake Claron. The critical idea suggested by this proposed model is that the modern Colorado River utilized Laramide paleotopography in establishing its course through the central Grand Canyon, with younger sections of the canyon integrating with it later, in the middle to late Miocene. This paleocanyon route, in association with headward erosion from the Grand Wash Cliffs toward the Kaibab arch after 16-17 Ma, helps account for the total volume of rock eroded from Grand Canyon, which cannot be explained by present-day incision rates.

  3. Environmental assessment: Davis Canyon site, Utah

    SciTech Connect

    none,

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified the Davis Canyon site in Utah as one of the nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. To determine their suitability, the Davis Canyon site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EA. The Davis Canyon site is in the Paradox Basin, which is one of five distinct geohydrologic settings considering for the first repository. This setting contains one other potentially acceptable site -- the Lavender Canyon site. Although the Lavender Canyon site is suitable for site characterization, the DOE has concluded that the Davis Canyon site is the preferred site in the Paradox Basin. On the basis of the evaluations reported in this EA, the DOE has found that the Davis Canyon site is not disqualified under the guidelines. Furthermore, the DOE has found that the site is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Davis Canyon site as one of five sites suitable for characterization.

  4. ACCELERATED PILOT PROJECT FOR U CANYON DEMOLITION

    SciTech Connect

    KEHLER KL

    2011-01-13

    At the U.S. Department of Energy's Hanford Site in southeast Washington State, CH2M HILL Plateau Remediation Company (CH2M HILL) is underway on a first-of-a-kind project with the decommissioning and demolition of the U Canyon. Following the U.S. Environmental Protection Agency's Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) Record of Decision for the final remediation of the canyon, CH2M HILL is combining old and new technology and techniques to prepare U Canyon for demolition. The selected remedial action called first for consolidating and grouting equipment currently in the canyon into lower levels of the plant (openings called cells), after which the cell galleries, hot pipe trench, ventilation tunnel, drains and other voids below the operating deck and crane-way deck levels will be filled with approximately 20,000 cubic yards of grout and the canyon roof and walls demolished down to the approximate level of the canyon deck. The remaining canyon structure will then be buried beneath an engineered barrier designed to control potential contaminant migration for a 500-year life. Methods and lessons learned from this project will set the stage for the future demolition of Hanford's four other canyon-type processing facilities.

  5. DESCHUTES CANYON ROADLESS AREA, OREGON.

    USGS Publications Warehouse

    Walker, George W.; Winters, Richard A.

    1984-01-01

    An examination of the Deschutes Canyon Roadless Area, Oregon indicated that the area is devoid of mines and active mineral prospects or claims and that there is little likelihood for the occurrence of metallic or nonmetallic mineral resources. There is no evidence to indicate that mineral fuels are present in the roadless area. Nearby parts of central Jefferson County on the Warm Springs Indian Reservation are characterized by higher-than-normal heat flow and by numerous thermal springs, some of which have been partly developed. This may indicate that the region has some as yet undefined potential for the development of geothermal energy.

  6. H-Canyon Recovery Crawler

    SciTech Connect

    Kriikku, E. M.; Hera, K. R.; Marzolf, A. D.; Phillips, M. H.

    2015-08-01

    The Nuclear Material Disposition Project group asked the Savannah River National Lab (SRNL) Research and Development Engineering (R&DE) department to help procure, test, and deploy a remote crawler to recover the 2014 Inspection Crawler (IC) that tipped over in the H-Canyon Air Exhaust Tunnel. R&DE wrote a Procurement Specification for a Recovery Crawler (RC) and SRNS Procurement Department awarded the contract to Power Equipment Manufacturing Inc. (PEM). The PEM RC was based on their standard sewer inspection crawler with custom arms and forks added to the front. The arms and forks would be used to upright the 2014 Inspection Crawler. PEM delivered the RC and associated cable reel, 2014 Inspection Crawler mockup, and manuals in late April 2015. R&DE and the team tested the crawler in May of 2015 and made modifications based on test results and Savannah River Site (SRS) requirements. R&DE delivered the RC to H-Area at the end of May. The team deployed the RC on June 9, 10, and 11, 2015 in the H-Canyon Air Exhaust Tunnel. The RC struggled with some obstacles in the tunnel, but eventually made it to the IC. The team spent approximately five hours working to upright the IC and eventually got it on its wheels. The IC travelled approximately 20 feet and struggled to drive over debris on the air tunnel floor. Unfortunately the IC tripped over trying to pass this obstacle. The team decided to leave the IC in this location and inspect the tunnel with the RC. The RC passed the IC and inspected the tunnel as it travelled toward H-Canyon. The team turned the RC around when it was about 20 feet from the H-Canyon crossover tunnel. From that point, the team drove the RC past the manway towards the new sand filter and stopped approximately 20 feet from the new sand filter. The team removed the RC from the tunnel, decontaminated the RC, and stored it the manway building, 294-2H. The RC deployment confirmed the IC was not in a condition to perform useful tunnel inspections and

  7. Urban street canyons: Coupling dynamics, chemistry and within-canyon chemical processing of emissions

    NASA Astrophysics Data System (ADS)

    Bright, Vivien Bianca; Bloss, William James; Cai, Xiaoming

    2013-04-01

    Street canyons, formed by rows of buildings in urban environments, are associated with high levels of atmospheric pollutants emitted primarily from vehicles, and substantial human exposure. The street canyon forms a semi-enclosed environment, within which emissions may be entrained in a re-circulatory system; chemical processing of emitted compounds alters the composition of the air vented to the overlying boundary layer, compared with the primary emissions. As the prevailing atmospheric chemistry is highly non-linear, and the canyon mixing and predominant chemical reaction timescales are comparable, the combined impacts of dynamics and chemistry must be considered to quantify these effects. Here we report a model study of the coupled impacts of dynamical and chemical processing upon the atmospheric composition in a street canyon environment, to assess the impacts upon air pollutant levels within the canyon, and to quantify the extent to which within-canyon chemical processing alters the composition of canyon outflow, in comparison to the primary emissions within the canyon. A new model for the simulation of street canyon atmospheric chemical processing has been developed, by integrating an existing Large-Eddy Simulation (LES) dynamical model of canyon atmospheric motion with a detailed chemical reaction mechanism, a Reduced Chemical Scheme (RCS) comprising 51 chemical species and 136 reactions, based upon a subset of the Master Chemical Mechanism (MCM). The combined LES-RCS model is used to investigate the combined effects of mixing and chemical processing upon air quality within an idealised street canyon. The effect of the combination of dynamical (segregation) and chemical effects is determined by comparing the outputs of the full LES-RCS canyon model with those obtained when representing the canyon as a zero-dimensional box model (i.e. assuming mixing is complete and instantaneous). The LES-RCS approach predicts lower (canyon-averaged) levels of NOx, OH and HO

  8. Geology and biology of Oceanographer submarine canyon.

    USGS Publications Warehouse

    Valentine, P.C.; Uzmann, J.R.; Cooper, R.A.

    1980-01-01

    Santonian beds more than 100 m thick are the oldest rocks collected from the canyon. Quaternary silty clay veneers the canyon walls in many places and is commonly burrowed by benthic organisms that cause extensive erosion of the canyon walls, especially in the depth zone (100-1300 m) inhabited by the crabs Geryon and Cancer. Bioerosion is minimal on high, near-vertical cliffs of sedimentary rock, in areas of continual sediment movement, and where the sea floor is paved by gravel. A thin layer of rippled, unconsolidated silt and sand is commonly present on the canyon walls and in the axis. Shelf sediments are transported from Georges Bank over the E rim and in the Canyon by the SW drift and storm currents; tidal currents and internal waves move the sediment downcanyon along the walls and axis.- from Authors

  9. An experimental approach to submarine canyon evolution

    NASA Astrophysics Data System (ADS)

    Lai, Steven Y. J.; Gerber, Thomas P.; Amblas, David

    2016-03-01

    We present results from a sandbox experiment designed to investigate how sediment gravity flows form and shape submarine canyons. In the experiment, unconfined saline gravity flows were released onto an inclined sand bed bounded on the downstream end by a movable floor that was used to increase relief during the experiment. In areas unaffected by the flows, we observed featureless, angle-of-repose submarine slopes formed by retrogressive breaching processes. In contrast, areas influenced by gravity flows cascading across the shelf break were deeply incised by submarine canyons with well-developed channel networks. Normalized canyon long profiles extracted from successive high-resolution digital elevation models collapse to a single profile when referenced to the migrating shelf-slope break, indicating self-similar growth in the relief defined by the canyon and intercanyon profiles. Although our experimental approach is simple, the resulting canyon morphology and behavior appear similar in several important respects to that observed in the field.

  10. Environmental assessment overview, Davis Canyon site, Utah

    SciTech Connect

    none,

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified the Davis Canyon site in Utah as one of the nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. To determine their suitability, the Davis Canyon site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. The Davis Canyon site is in the Paradox Basin, which is one of five distinct geohydrologic settings considered for the first repository. On the basis of the evaluations reported in this EA, the DOE has found that the Davis Canyon site is not disqualified under the guidelines. On the basis of these findings, the DOE is nominating the Davis Canyon site as one of five sites suitable for characterization. 3 figs.

  11. Prehistoric deforestation at Chaco Canyon?

    PubMed

    Wills, W H; Drake, Brandon L; Dorshow, Wetherbee B

    2014-08-12

    Ancient societies are often used to illustrate the potential problems stemming from unsustainable land-use practices because the past seems rife with examples of sociopolitical "collapse" associated with the exhaustion of finite resources. Just as frequently, and typically in response to such presentations, archaeologists and other specialists caution against seeking simple cause-and effect-relationships in the complex data that comprise the archaeological record. In this study we examine the famous case of Chaco Canyon, New Mexico, during the Bonito Phase (ca. AD 860-1140), which has become a prominent popular illustration of ecological and social catastrophe attributed to deforestation. We conclude that there is no substantive evidence for deforestation at Chaco and no obvious indications that the depopulation of the canyon in the 13th century was caused by any specific cultural practices or natural events. Clearly there was a reason why these farming people eventually moved elsewhere, but the archaeological record has not yet produced compelling empirical evidence for what that reason might have been. Until such evidence appears, the legacy of Ancestral Pueblo society in Chaco should not be used as a cautionary story about socioeconomic failures in the modern world. PMID:25071220

  12. Prehistoric deforestation at Chaco Canyon?

    PubMed Central

    Wills, W. H.; Drake, Brandon L.; Dorshow, Wetherbee B.

    2014-01-01

    Ancient societies are often used to illustrate the potential problems stemming from unsustainable land-use practices because the past seems rife with examples of sociopolitical “collapse” associated with the exhaustion of finite resources. Just as frequently, and typically in response to such presentations, archaeologists and other specialists caution against seeking simple cause-and effect-relationships in the complex data that comprise the archaeological record. In this study we examine the famous case of Chaco Canyon, New Mexico, during the Bonito Phase (ca. AD 860–1140), which has become a prominent popular illustration of ecological and social catastrophe attributed to deforestation. We conclude that there is no substantive evidence for deforestation at Chaco and no obvious indications that the depopulation of the canyon in the 13th century was caused by any specific cultural practices or natural events. Clearly there was a reason why these farming people eventually moved elsewhere, but the archaeological record has not yet produced compelling empirical evidence for what that reason might have been. Until such evidence appears, the legacy of Ancestral Pueblo society in Chaco should not be used as a cautionary story about socioeconomic failures in the modern world. PMID:25071220

  13. 36 CFR 7.19 - Canyon de Chelly National Monument.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Canyon de Chelly National... INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.19 Canyon de Chelly National Monument. (a) Visitors are prohibited from entering the canyons of Canyon de Chelly National Monument...

  14. Predictability of Turbulent Flow in Street Canyons

    NASA Astrophysics Data System (ADS)

    Lo, K. W.; Ngan, K.

    2015-08-01

    Although predictability is a subject of great importance in atmospheric modelling, there has been little research on urban boundary-layer flows. Here the predictability of street-canyon flow is examined numerically via large-eddy simulation of a unit-aspect-ratio canyon and neutrally stratified atmosphere. In spectral space there is indication of cascade-like behaviour away from the canyon at early times, but the error growth is essentially independent of scale inside the canyon; in physical space the error field is rather inhomogeneous and shows clear differences among the canyon, shear layer and inertial sublayer. The error growth is largely driven by the shear layer: errors generated above roof level are advected into the canyon while contributions from intermittent bursting and in situ development within the canyon play a relatively minor role. This work highlights differences between the predictability of urban flows and canonical turbulent flows and should be useful in developing modelling strategies for more realistic time-dependent urban flows.

  15. Flow dynamics around downwelling submarine canyons

    NASA Astrophysics Data System (ADS)

    Spurgin, J. M.; Allen, S. E.

    2014-10-01

    Flow dynamics around a downwelling submarine canyon were analysed with the Massachusetts Institute of Technology general circulation model. Blanes Canyon (northwestern Mediterranean) was used for topographic and initial forcing conditions. Fourteen scenarios were modelled with varying forcing conditions. Rossby and Burger numbers were used to determine the significance of Coriolis acceleration and stratification (respectively) and their impacts on flow dynamics. A new non-dimensional parameter (χ) was introduced to determine the significance of vertical variations in stratification. Some simulations do see brief periods of upwards displacement of water during the 10-day model period; however, the presence of the submarine canyon is found to enhance downwards advection of density in all model scenarios. High Burger numbers lead to negative vorticity and a trapped anticyclonic eddy within the canyon, as well as an increased density anomaly. Low Burger numbers lead to positive vorticity, cyclonic circulation, and weaker density anomalies. Vertical variations in stratification affect zonal jet placement. Under the same forcing conditions, the zonal jet is pushed offshore in more uniformly stratified domains. The offshore jet location generates upwards density advection away from the canyon, while onshore jets generate downwards density advection everywhere within the model domain. Increasing Rossby values across the canyon axis, as well as decreasing Burger values, increase negative vertical flux at shelf break depth (150 m). Increasing Rossby numbers lead to stronger downwards advection of a passive tracer (nitrate), as well as stronger vorticity within the canyon. Results from previous studies are explained within this new dynamic framework.

  16. Flow dynamics around downwelling submarine canyons

    NASA Astrophysics Data System (ADS)

    Spurgin, J. M.; Allen, S. E.

    2014-05-01

    Flow dynamics around a downwelling submarine canyon were analysed with the Massachusetts Institute of Technology general circulation model. Blanes Canyon (Northwest Mediterranean) was used for topographic and initial forcing conditions. Fourteen scenarios were modelled with varying forcing conditions. Rossby number and Burger number were used to determine the significance of Coriolis acceleration and stratification (respectively) and their impacts on flow dynamics. A new non-dimensional parameter (χ) was introduced to determine the significance of vertical variations in stratification. Some simulations do see brief periods of upwards displacement of water during the 10 day model period, however, the presence of the submarine canyon is found to enhance downwards advection of density in all model scenarios. High Burger numbers lead to negative vorticity and a trapped anticyclonic eddy within the canyon, as well as an increased density anomaly. Low Burger numbers lead to positive vorticity, cyclonic circulation and weaker density anomalies. Vertical variations in stratification affect zonal jet placement. Under the same forcing conditions, the zonal jet is pushed offshore in more uniformly stratified domains. Offshore jet location generates upwards density advection away from the canyon, while onshore jets generate downwards density advection everywhere within the model domain. Increasing Rossby values across the canyon axis, as well as decreasing Burger values, increase negative vertical flux at shelf break depth (150 m). Increasing Rossby numbers lead to stronger downwards advection of a passive tracer (nitrate) as well as stronger vorticity within the canyon. Results from previous studies were explained within this new dynamic framework.

  17. Rapid canyon formation by extreme floods

    NASA Astrophysics Data System (ADS)

    Lamb, M. P.; Mackey, B. H.; Lapotre, M. G.

    2012-12-01

    The formation of river gorges generally occurs over geomorphic timescales, with rates of river incision into bedrock infrequently exceeding millimeters per year. This is in contrast to relatively rare examples of bedrock canyons that have been cut in a matter of days or weeks by catastrophic floods. Here we report on several case studies of canyons inferred to have been cut by large magnitude, short-lived flood events. Canyon Lake Gorge, Texas, was cut ~ 10 m into jointed bedrock during a three-day historic flood event, illustrating that short lived floods can efficiently mobilize and transport large quantities of rock. New cosmogenic exposure dating of multiple features at Malad Gorge, Idaho, indicates that it was formed ~ 48 ka, equivalent to the age of Box Canyon located 18 km to the south, suggesting that flooding there was regional in scale. In all cases, we attribute extremely rapid canyon erosion (i.e., meters per day) to the dominance of plucking and toppling of jointed rock rather than the relatively slow process of fluvial abrasion. Large magnitude flows are inferred from the threshold required to topple blocks and transport boulders. The lack of upstream drainage-network development and the lack of fluvial abrasion features indicate the floods must have been short-lived. Canyons cut into plateau terrain by large magnitude, short duration floods appear to have distinctive morphologies including steep canyon headwalls with semi-circular planforms, suggesting flow focusing and toppling at the headwall, despite the largely flat initial topography. In contrast, neighboring canyons undergoing active fluvial abrasion tend to show potholes, polished and fluted rock, headwalls that are pointed in planform, and more gradual knickzones extending into well-developed drainage networks upstream. Modeling suggests that the rate of canyon cutting by large-scale floods in jointed rock may be limited only by the sediment transport capacity of the flow.

  18. The key to Understand Submarine Canyon Evolution

    NASA Astrophysics Data System (ADS)

    Baztan, J.; Berne, S.; Olivet, J.; Rabineau, M.; Aslanian, D.

    2004-12-01

    Submarine canyons are the preferential path of sediment transfer from the shelf to the deep sea, they are the key to understand the source-to-sink sedimentation and, in consequence, the shelf, slope and rise evolution. Pioneer works on submarine canyons described and proposed hypothesis to explain the formation and evolution of them. However, submarine canyons remain a matter of speculation. Our work in the Gulf of Lions (Mediterranean Sea) is based on swath bathymetry data together with sub-bottom profiles, high resolution seismic reflection profiles and cores. These data allow a detailed morphologic and stratigraphic study from the shelf to the rise through time, from 2.600.000 yrs to present. We show that two main erosive features, of very different dimensions, constitute the canyons: the axial incision and the canyon's major valley. The axial incision is interpreted as an erosive path related to the passage of hyperpycnal turbidity currents, generated up-slope by river connection. In the Gulf of Lions such currents are most likely to have formed during each Glacial Maxima (with a cyclicity of 100.000 years for the last 900.000 years and 40.000 years between 900.000 and 2.600.000 years) as both proximity of the shoreline (due to the lowstand of sea level) and high detrital sediment supply (due to glacial abrasion upstream) increased the flow of sediments delivered to the canyon heads. The axial incisions observed at the sea floor and fossil incisions observed on seismic lines, are related to equivalent conditions. The axial incision activity has a key influence on canyon evolution, it triggers mass wasting that affect the canyon's major valley (head and flanks) allowing the progressive widening and deepening of the canyon. Consequently the canyon's major valley (typically bounded by flanks of more than 700 meters in height) is the result of the axial incision activity through successive lowering of sea level. In summary: our cross-disciplinary approach

  19. Mars Science Laboratory at Canyon

    NASA Technical Reports Server (NTRS)

    2003-01-01

    December 2, 2003

    NASA's Mars Science Laboratory travels near a canyon on Mars in this artist's concept. The mission is under development for launch in 2009 and a precision landing on Mars in 2010.

    Once on the ground, the Mars Science Laboratory would analyze dozens of samples scooped up from the soil and cored from rocks as it explores with greater range than any previous Mars rover. It would investigate the past or present ability of Mars to support life. NASA is considering nuclear energy for powering the rover to give it a long operating lifespan.

    NASA's Jet Propulsion Laboratory, Pasadena, Calif., is managing development of the Mars Smart Laboratory for the NASA Office of Space Science, Washington, D.C.

  20. A Diablo Canyon double feature

    SciTech Connect

    Miller, C.

    1996-03-01

    The current controversy and uncertainty surrounding the disposal of low-level radioactive waste makes it ever more prudent to develop methods to minimize its generation in the first place. As the industry is challenged with active opposition, missed deadlines, and political challenges, Pacific Gas and Electric`s Diablo Canyon nuclear station has implemented a plan to reduce waste generation from plant systems, from the modification and removal of plant equipment, and from the use of protective clothing and consumable contamination-control items. Our program has been extremely effective and may serve as a model for other nuclear power plants at a time of increasing processing and disposal costs. In 1994, for example, we were able to cut our radwaste generation in half-twice.

  1. Wintertime meteorology of the Grand Canyon region

    SciTech Connect

    Whiteman, C.D.

    1992-09-01

    The Grand Canyon region of the American Southwest is an interesting region meteorologically, but because of its isolated location, the lack of major population centers in the region, and the high cost of meteorological field experiments, it has historically received little observational attention. In recent years, however, attention has been directed to episodes of visibility degradation in many of the US National parks, and two recent field studies focused on this visibility problem have greatly increased the meteorological data available for the Grand Canyon region. The most recent and comprehensive of these studies is the Navajo Generating Station Winter Visibility Study of 1989--90. This study investigated the sources of visibility degradation in Grand Canyon National Park and the meteorological mechanisms leading to low visibility episodes. In this paper we present analyses of this rich data set to gain a better understanding of the key wintertime meteorological features of the Grand Canyon region.

  2. Satellites See Smoke from Fourmile Canyon Fire

    NASA Video Gallery

    On the morning of September 6, 2010, a wildfire known as the Fourmile Canyon Fire broke out just west of Boulder, Colorado. The Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Terr...

  3. Different Views of the Grand Canyon

    NASA Astrophysics Data System (ADS)

    Elders, Wilfred A.

    Each year the spectacular scenery of the Grand Canyon of Arizona awes its more than 4,000,000 visitors. Just as its enormous scale dwarfs our human sense of space, its geology also dwarfs our human sense of time. Perhaps here, more than anywhere else on the planet, we can experience a sense of ``Deep Time.'' The colorful rocks exposed in the vertical walls of the canyon display a span of 1.8 billion years of Earth's history [Beus and Morales, 2003]. But wait! There is a different view! According to Vail [2003], this time span is only 6,000 years and the Grand Canyon and its rocks are a record of the Biblical 6 days of creation and Noah's flood. During a visit to Grand Canyon, in August 2003, I learned that Vail's book, Grand Canyon: A Different View, is being sold within the National Park. The author and compiler of Grand Canyon: A Different View is a Colorado River guide who is well acquainted with the Grand Canyon at river level. He has produced a book with an attractive layout and beautiful photographs. The book is remarkable because it has 23 co-authors, all male, who comprise a veritable ``Who's Who'' in creationism. For example, Henry Morris and John Whitcomb, the authors of the seminal young Earth creationist text, The Genesis Flood [Whitcomb and Morris, 1961], each contribute a brief introduction. Each chapter of Grand Canyon: A Different View begins with an overview by Vail, followed by brief comments by several contributors that ``have been peer reviewed to ensure a consistent and Biblical perspective.'' This perspective is strict Biblical literalism.

  4. Environmental assessment: Davis Canyon site, Utah

    SciTech Connect

    none,

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified the Davis Canyon site in Utah as one of the nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. To determine their suitability, the Davis Canyon site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EA. The Davis Canyon site is in the Paradox Basin, which is one of five distinct geohydrologic settings considered for the first repository. This setting contains one other potentially acceptable site -- the Lavender Canyon site. Although the Lavender Canyon site is suitable for site characterization, the DOE has concluded that the Davis Canyon site is the preferred site in the Paradox Basin. On the basis of the evaluations reported in this EA, the DOE has found that the Davis Canyon site is not disqualified under the guidelines. Furthermore, the DOE has fond that the site is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Davis Canyon site as one of five sites suitable for characterization. 181 figs., 175 tabs.

  5. Wintertime Boundary Layer Structure in the Grand Canyon.

    NASA Astrophysics Data System (ADS)

    Whiteman, C. David; Zhong, Shiyuan; Bian, Xindi

    1999-08-01

    Wintertime temperature profiles in the Grand Canyon exhibit a neutral to isothermal stratification during both daytime and nighttime, with only rare instances of actual temperature inversions. The canyon warms during daytime and cools during nighttime more or less uniformly through the canyon's entire depth. This weak stability and temperature structure evolution differ from other Rocky Mountain valleys, which develop strong nocturnal inversions and exhibit convective and stable boundary layers that grow upward from the valley floor. Mechanisms that may be responsible for the different behavior of the Grand Canyon are discussed, including the possibility that the canyon atmosphere is frequently mixed to near-neutral stratification when cold air drains into the top of the canyon from the nearby snow-covered Kaibab Plateau. Another feature of canyon temperature profiles is the sharp inversions that often form near the canyon rims. These are generally produced when warm air is advected over the canyon in advance of passing synoptic-scale ridges.Wintertime winds in the main canyon are not classical diurnal along-valley wind systems. Rather, they are driven along the canyon axis by the horizontal synoptic-scale pressure gradient that is superimposed along the canyon's axis by passing synoptic-scale weather disturbances. They may thus bring winds into the canyon from either end at any time of day.The implications of the observed canyon boundary layer structure for air pollution dispersion are discussed.

  6. Wilmington Submarine Canyon: a marine fluvial-like system.

    USGS Publications Warehouse

    McGregor, B.; Stubblefield, W.L.; Ryan, William B. F.; Twichell, D.C.

    1982-01-01

    Midrange sidescan sonar data show that a system of gullies and small channels feeds into large submarine canyons on the Middle Atlantic Continental Slope of the US. The surveyed canyons all have relatively flat floors, but they have different channel morphologies. Wilmington Canyon has a meandering channel that extends down the Continental Slope and across the Continental Rise, whereas two canyons south of Wilmington Canyon have straight channels that trend directly downslope onto the rise. The morphology of these submarine canyon systems is remarkably similar to that of terrestrial fluvial systems.-Authors

  7. Karst hydrology of Grand Canyon, Arizona, USA

    NASA Astrophysics Data System (ADS)

    Hill, C. A.; Polyak, V. J.

    2010-09-01

    SummaryCaves in Grand Canyon, Arizona, USA fall into two main categories: those formed under unconfined conditions and those formed under confined conditions. This study focuses on the hydrology and paleohydrology of the confined caves in the Redwall-Muav aquifer, where the aquifer is overlain by rocks of the Supai Group and underlain by the Bright Angel Shale. Unconfined caves are discussed only in their relation to confined caves. Discharge for confined groundwater was, as it is today, primarily from the Redwall Limestone where it has been incised by the main canyon or its tributaries and where it has converged along a structural low or fault. Descent of the potentiometric surface (or water table) over time is recorded by one ore episode and six cave episodes: (1) emplacement of Cu-U ore, (2) precipitation of iron oxide in cavities, (3) dissolution of cave passages, (4) precipitation of calcite-spar linings over cave passage walls, (5) precipitation of cave mammillary coatings, (6) minor replacement of cave wall and ceiling limestone by gypsum, and (7) deposition of subaerial speleothems. The mammillary episode records the approximate position of the water table when the incision of the canyon was at that level. Discharge toward spring points has reorganized and adjusted with respect to ongoing canyon and side-canyon incision. The dissolution of Grand Canyon confined caves was the result of the mixing of epigene waters with hypogene waters so that undersaturation with respect to calcite was achieved. The karst hydrology of Grand Canyon may be unique compared to other hypogene cave areas of the world.

  8. Grand Canyon Humpback Chub Population Improving

    USGS Publications Warehouse

    Andersen, Matthew E.

    2007-01-01

    The humpback chub (Gila cypha) is a long-lived, freshwater fish found only in the Colorado River Basin. Physical adaptations-large adult body size, large predorsal hump, and small eyes-appear to have helped humpback chub evolve in the historically turbulent Colorado River. A variety of factors, including habitat alterations and the introduction of nonnative fishes, likely prompted the decline of native Colorado River fishes. Declining numbers propelled the humpback chub onto the Federal list of endangered species in 1967, and the species is today protected under the Endangered Species Act of 1973. Only six populations of humpback chub are currently known to exist, five in the Colorado River Basin above Lees Ferry, Ariz., and one in Grand Canyon, Ariz. The U.S. Geological Survey's Grand Canyon Monitoring and Research Center oversees monitoring and research activities for the Grand Canyon population under the auspices of the Glen Canyon Dam Adaptive Management Program (GCDAMP). Analysis of data collected through 2006 suggests that the number of adult (age 4+ years) humpback chub in Grand Canyon increased to approximately 6,000 fish in 2006, following an approximate 40-50 percent decline between 1989 and 2001. Increasing numbers of adult fish appear to be the result of steadily increasing numbers of juvenile fish reaching adulthood beginning in the mid- to late-1990s and continuing through at least 2002.

  9. Modelling Aerosol Dispersion in Urban Street Canyons

    NASA Astrophysics Data System (ADS)

    Tay, B. K.; Jones, D. P.; Gallagher, M. W.; McFiggans, G. B.; Watkins, A. P.

    2009-04-01

    Flow patterns within an urban street canyon are influenced by various micrometeorological factors. It also represents an environment where pollutants such as aerosols accumulate to high levels due to high volumes of traffic. As adverse health effects are being attributed to exposure to aerosols, an investigation of the dispersion of aerosols within such environments is of growing importance. In particular, one is concerned with the vertical structure of the aerosol concentration, the ventilation characteristics of the street canyon and the influence of aerosol microphysical processes. Due to the inherent heterogeneity of the aerosol concentrations within the street canyon and the lack of spatial resolution of measurement campaigns, these issues are an on-going debate. Therefore, a modelling tool is required to represent aerosol dispersion patterns to provide insights to results of past measurement campaigns. Computational Fluid Dynamics (CFD) models are able to predict detailed airflow patterns within urban geometries. This capability may be further extended to include aerosol dispersion, by an Euler-Euler multiphase approach. To facilitate the investigation, a two-dimensional, multiphase CFD tool coupled with the k-epsilon turbulence model and with the capability of modelling mixed convection flow regimes arising from both wind driven flows and buoyancy effects from heated walls was developed. Assuming wind blowing perpendicularly to the canyon axis and treating aerosols as a passive scalar, an attempt will be made to assess the sensitivities of aerosol vertical structure and ventilation characteristics to the various flow conditions. Numerical studies were performed using an idealized 10m by 10m canyon to represent a regular canyon and 10m by 5m to represent a deep one. An aerosol emission source was assigned on the centerline of the canyon to represent exhaust emissions. The vertical structure of the aerosols would inform future directives regarding the

  10. Origin of Florida Canyon and the role of spring sapping on the formation of submarine box canyons

    USGS Publications Warehouse

    Paull, Charles K.; Spiess, Fred N.; Curray, Joseph R.; Twichell, David C.

    1990-01-01

    Florida Canyon, one of a series of major submarine canyons on the southwestern edge of the Florida Platform, was surveyed using GLORIA, SeaBeam, and Deep-Tow technologies, and it was directly observed during three DSRV Alvin dives. Florida Canyon exhibits two distinct morphologies: a broad V-shaped upper canyon and a deeply entrenched, flat-floored, U-shaped lower canyon. The flat- floored lower canyon extends 20 km into the Florida Platform from the abyssal Gulf. The lower canyon ends abruptly at an ∼3 km in diameter semicircular headwall that rises 750 m with a >60° slope angle to the foot of the upper canyon. The sides of the lower canyon are less steep than its headwall and are characterized by straight faces that occur along preferred orientations and indicate a strong joint control. The upper canyon is characterized by a gently sloping, straight V-shaped central valley cut into a broad terrace. The flat floor of the upper canyon continues as terraces along the upper walls of the lower canyon. On the flanks of the upper canyon, there are five >50-m-deep, >0.5-km-wide, closed sink-hole-like depressions which indicate subsurface dissolution within the platform. The origin of the lower canyon is difficult to explain with traditional models of submarine canyon formation by external physical processes. The movement of ground water, probably with high salinities and reduced compounds along regional joints, may have focused the corrosive force of submarine spring sapping at the head of the lower canyon to produce the canyon's present shape.

  11. Contemporary sediment-transport processes in submarine canyons.

    PubMed

    Puig, Pere; Palanques, Albert; Martín, Jacobo

    2014-01-01

    Submarine canyons are morphological incisions into continental margins that act as major conduits of sediment from shallow- to deep-sea regions. However, the exact mechanisms involved in sediment transfer within submarine canyons are still a subject of investigation. Several studies have provided direct information about contemporary sedimentary processes in submarine canyons that suggests different modes of transport and various triggering mechanisms. Storm-induced turbidity currents and enhanced off-shelf advection, hyperpycnal flows and failures of recently deposited fluvial sediments, dense shelf-water cascading, canyon-flank failures, and trawling-induced resuspension largely dominate present-day sediment transfer through canyons. Additionally, internal waves periodically resuspend ephemeral deposits within canyons and contribute to dispersing particles or retaining and accumulating them in specific regions. These transport processes commonly deposit sediments in the upper- and middle-canyon reaches for decades or centuries before being completely or partially flushed farther down-canyon by large sediment failures. PMID:23937169

  12. 43. and Design, Grand Canyon National Park, dated August 23, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    43. and Design, Grand Canyon National Park, dated August 23, 1934, and September 17, 1934 (original located at Federal Records Center, Denver, Colorado, #113/3084-set of 2) SEWAGE PLANT ADDITION. - Water Reclamation Plant, Grand Canyon, Coconino County, AZ

  13. Overview of the Colorado River Canyon from the helicopter pad. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Overview of the Colorado River Canyon from the helicopter pad. View of the Nevada side where new bridge will cross canyon, view northwest - Hoover Dam, Spanning Colorado River at Route 93, Boulder City, Clark County, NV

  14. Tectonic activity and the evolution of submarine canyons: The Cook Strait Canyon system, New Zealand

    NASA Astrophysics Data System (ADS)

    Micallef, Aaron; Mountjoy, Joshu; Barnes, Philip; Canals, Miquel; Lastras, Galderic

    2016-04-01

    Submarine canyons are Earth's most dramatic erosional features, comprising steep-walled valleys that originate in the continental shelf and slope. They play a key role in the evolution of continental margins by transferring sediments into deep water settings and are considered important biodiversity hotspots, pathways for nutrients and pollutants, and analogues of hydrocarbon reservoirs. Although comprising only one third of continental margins worldwide, active margins host more than half of global submarine canyons. We still lack of thorough understanding of the coupling between active tectonics and submarine canyon processes, which is necessary to improve the modelling of canyon evolution in active margins and derive tectonic information from canyon morphology. The objectives of this study are to: (i) understand how tectonic activity influences submarine canyon morphology, processes, and evolution in an active margin, and (2) formulate a generalised model of canyon development in response to tectonic forcing based on morphometric parameters. We fulfil these objectives by analysing high resolution geophysical data and imagery from Cook Strait Canyon system, offshore New Zealand. Using these data, we demonstrate that tectonic activity, in the form of major faults and structurally-generated tectonic ridges, leaves a clear topographic signature on submarine canyon location and morphology, in particular their dendritic and sinuous planform shapes, steep and linear longitudinal profiles, and cross-sectional asymmetry and width. We also report breaks/changes in canyon longitudinal slope gradient, relief and slope-area regression models at the intersection with faults. Tectonic activity gives rise to two types of knickpoints in the Cook Strait Canyon. The first type consists of low slope gradient, rounded and diffusive knickpoints forming as a result of short wavelength folds or fault break outs and being restored to an equilibrium profile by upstream erosion and

  15. Nomograms for calculating pollution within street canyons

    NASA Astrophysics Data System (ADS)

    Buckland, A. T.; Middleton, D. R.

    The Environment Act 1995 has introduced the notion of local air quality management which requires that air quality in towns be reviewed and assessed. There is a need to identify those streets that are worst affected by vehicular pollutants. Such worst cases are likely to be narrow congested streets with tall buildings on each side. A nomogram presented here allows rapid screening of pollution in congested street canyons. The strong dependence on wind direction is reduced to the two extremes, namely wind along and wind across the canyon. Then canyon concentrations are estimated according to street geometry and traffic flow. The nomogram is designed for use by local authorities, is quick and easy to use, and paper or computer versions are available. It is suggested that detailed monitoring or modelling may only be required when simple screening methods predict high air pollution.

  16. 27 CFR 9.152 - Malibu-Newton Canyon.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Malibu-Newton Canyon. 9... Malibu-Newton Canyon. (a) Name. The name of the viticultural area described in this petition is “Malibu-Newton Canyon.” (b) Approved maps. The appropriate map for determining the boundary of the...

  17. 27 CFR 9.152 - Malibu-Newton Canyon.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Malibu-Newton Canyon. 9... Malibu-Newton Canyon. (a) Name. The name of the viticultural area described in this petition is “Malibu-Newton Canyon.” (b) Approved maps. The appropriate map for determining the boundary of the...

  18. 77 FR 22801 - Glen Canyon Dam Adaptive Management Work Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-17

    ... Bureau of Reclamation Glen Canyon Dam Adaptive Management Work Group AGENCY: Bureau of Reclamation... Management Work Group (AMWG) makes recommendations to the Secretary of the Interior concerning Glen Canyon Dam operations and other management actions to protect resources downstream of Glen Canyon...

  19. 76 FR 24516 - Glen Canyon Dam Adaptive Management Work Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-02

    ... Bureau of Reclamation Glen Canyon Dam Adaptive Management Work Group AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meeting. SUMMARY: The Glen Canyon Dam Adaptive Management Work Group... other management actions to protect resources downstream of Glen Canyon Dam, consistent with the...

  20. 78 FR 21415 - Glen Canyon Dam Adaptive Management Work Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-10

    ... Bureau of Reclamation Glen Canyon Dam Adaptive Management Work Group AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meeting. SUMMARY: The Glen Canyon Dam Adaptive Management Work Group... other management actions to protect resources downstream of Glen Canyon Dam, consistent with the...

  1. 77 FR 9265 - Glen Canyon Dam Adaptive Management Work Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-16

    ... Bureau of Reclamation Glen Canyon Dam Adaptive Management Work Group AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meeting. SUMMARY: The Glen Canyon Dam Adaptive Management Work Group... other management actions to protect resources downstream of Glen Canyon Dam, consistent with the...

  2. 78 FR 7810 - Glen Canyon Dam Adaptive Management Work Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-04

    ... Bureau of Reclamation Glen Canyon Dam Adaptive Management Work Group AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meeting. SUMMARY: The Glen Canyon Dam Adaptive Management Work Group... other management actions to protect resources downstream of Glen Canyon Dam, consistent with the...

  3. 77 FR 43117 - Glen Canyon Dam Adaptive Management Work Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-23

    ... Bureau of Reclamation Glen Canyon Dam Adaptive Management Work Group AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meeting. SUMMARY: The Glen Canyon Dam Adaptive Management Work Group... other management actions to protect resources downstream of Glen Canyon Dam, consistent with the...

  4. 5. DARK CANYON SIPHON Photographic copy of historic photo, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. DARK CANYON SIPHON - Photographic copy of historic photo, November 11, 1906 (original print located at the Carlsbad Irrigation District offices, Carlsbad, New Mexico) photographer unknown 'LOWER END OF DARK CANYON SIPHON CONSTRUCTION' - Carlsbad Irrigation District, Dark Canyon Siphon, On Main Canal, 1 mile South of Carlsbad, Carlsbad, Eddy County, NM

  5. 7. DARK CANYON SIPHON Photographic copy of construction drawing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. DARK CANYON SIPHON - Photographic copy of construction drawing c1907 (from Record Group 115, Box 17, Denver Branch of the National Archives, Denver) DARK CANYON SIPHON PLAN, ELEVATION, AND SECTIONS - Carlsbad Irrigation District, Dark Canyon Siphon, On Main Canal, 1 mile South of Carlsbad, Carlsbad, Eddy County, NM

  6. 6. DARK CANYON SIPHON Photographic copy of historic photo, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. DARK CANYON SIPHON - Photographic copy of historic photo, January 29, 1907 (original print filed in Record Group 115, National Archives, Washington, D.C.) W.J.Lubken, photographer 'RIPRAP AT THE ENTRANCE END OF DARK CANYON PRESSURE PIPE' - Carlsbad Irrigation District, Dark Canyon Siphon, On Main Canal, 1 mile South of Carlsbad, Carlsbad, Eddy County, NM

  7. HELLS CANYON STUDY AREA, OREGON AND IDAHO.

    USGS Publications Warehouse

    Simmons, George C.; Close, Terry J.

    1984-01-01

    The Hells Canyon study area occupies nearly 950 sq mi along and near Hells Canyon of the Snake River in northeast Oregon and west-central Idaho. Geologic, geochemical, aeromagnetic, and mine and prospect investigations to determine the mineral-resource potential of the area were carried out. As a result, 42 sq mi or about 4 percent of the lands, in 21 separate areas, were classified as having probable or substantiated resource potential for base and precious metals, molybdenum, and tungsten. No energy resource potential was identified in this study.

  8. Let's Bet on Sediments! Hudson Canyon Cruise--Grades 9-12. Focus: Sediments of Hudson Canyon.

    ERIC Educational Resources Information Center

    National Oceanic and Atmospheric Administration (DOC), Rockville, MD.

    These activities are designed to teach about the sediments of Hudson Canyon. Students investigate and analyze the patterns of sedimentation in the Hudson Canyon, observe how heavier particles sink faster than finer particles, and learn that submarine landslides are avalanches of sediment in deep ocean canyons. The activity provides learning…

  9. Morphology of Neptune Node Sites, Barkley Canyon, Cascadia Margin

    NASA Astrophysics Data System (ADS)

    Lundsten, E. M.; Anderson, K.; Paull, C. K.; Caress, D. W.; Thomas, H. J.; Riedel, M.

    2014-12-01

    High-resolution multibeam bathymetry and chirp seismic reflection profiles collected with MBARI's mapping autonomous underwater vehicle reveal the fine-scale morphology and shallow seafloor structure of the flanks and floor of Barkley Canyon on the Cascadia continental margin off British Columbia. The surveys characterize the environment surrounding three nodes on the Neptune Canada cabled observatory located within the canyon. The canyon floor between 960 and 1020 m water depth lacks channeling and contains ≥ 24 m of acoustically uniform sediment fill, which is ponded between the canyon's steep sidewalls. The fill overlies a strong reflector that outlines an earlier, now buried, canyon floor channel system. Debris flow tongues contain meter scale blocks sticking-up through the fill. Apparently the present geomorphology surrounding the Canyon Axis node in 985 m is attributable to local debris flows, rather than organized down canyon processes. In the survey area the canyon sidewalls extend ~300 m up and in places the slope of the canyons sides exceed 40°. Both the Hydrate node in 870 m water depths and the Mid-Canyon node at 890 m are located on a headland that forms intermediate depth terraces on the canyon's western flank. While the seafloor immediately surrounding the Mid-canyon node is smooth, the Hydrate node is marked by 10 circular mounds up to 2 m high and 10 m in diameter, presumable associated with hydrate formation. Although wedges of sediment drape occur in places on the canyon sides, the chirp profiles show no detectible sediment drape at either node site and suggest these nodes are situated on older, presumably pre-Quaternary strata. The lack of reflectors in the chirp profiles indicates most of the canyon's sidewalls are largely sediment-bare. Lineations in the bathymetry mark the exposed edges of truncated beds. Rough, apparently fresh textures, within slide scarps show the importance of erosion on the development of the canyon flanks.

  10. Geohydrology of White Rock Canyon of the Rio Grande from Otowi to Frijoles Canyon

    SciTech Connect

    Purtymun, W.D.; Peters, R.J.; Owens, J.W.

    1980-12-01

    Twenty-seven springs discharge from the Totavi Lentil and Tesuque Formation in White Rock Canyon. Water generally acquires its chemical characteristics from rock units that comprise the spring aquifer. Twenty-two of the springs are separated into three groups of similar aquifer-related chemical quality. The five remaining springs make up a fourth group with a chemical quality that differs due to localized conditions in the aquifer. Localized conditions may be related to recharge or discharge in or near basalt intrusion or through faults. Streams from Pajarito, Ancho, and Frijoles Canyons discharge into the Rio Grande in White Rock Canyon. The base flow in the streams is from springs. Sanitary effluent in Mortandad Canyon from the treatment plant at White Rock also reaches the Rio Grande.

  11. Navajo generating plant and Grand Canyon haze

    SciTech Connect

    Norris, J.E.

    1991-01-15

    This article examines the question of whether the Navajo generating plant pollution is contributing to pollution of the air in the Grand Canyon region. The topics include the regulatory context of the plant, the experiment known as the Winter Haze Intensive Tracer Experiment (WHITEX), the National Research Council evaluation of the WHITEX, and The Navajo Generating Station Visibility Study.

  12. The Colorado River in the Grand Canyon.

    ERIC Educational Resources Information Center

    Speece, Susan

    1991-01-01

    An assessment of the water quality of the Colorado River in the Grand Canyon was made, using the following parameters: dissolved oxygen, water temperature, hydrogen ion concentration, total dissolved solids, turbidity, and ammonium/nitrogen levels. These parameters were used to provide some clue as to the "wellness" and stability of the aquatic…

  13. 78 FR 7775 - Boulder Canyon Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-04

    .... \\1\\ 75 FR 57912 (September 23, 2010). \\2\\ 133 FERC ] 62,229. The proposed BCP electric service base... in power rate adjustments (10 CFR part 903) were published on September 18, 1985 (50 FR 87835... Area Power Administration Boulder Canyon Project AGENCY: Western Area Power Administration, DOE....

  14. 77 FR 2533 - Boulder Canyon Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-18

    ... composite rate is 20.45 mills/kWh. \\1\\ 75 FR 57912 (Sept. 23, 2010). \\2\\ 133 FERC ] 62,229. The proposed BCP... 18, 1985 (50 FR 87835). Availability of Information All brochures, studies, comments, letters... Area Power Administration Boulder Canyon Project AGENCY: Western Area Power Administration, DOE....

  15. Map Your Way to the Grand Canyon

    ERIC Educational Resources Information Center

    Yoder, Holly

    2005-01-01

    In the introductory assignment, each randomly assigned group spends about 10 to 15 minutes at each station. The author incorporates as much sensory stimulation in the activity as possible. At the first station, students view a PowerPoint show from a geology class the author participated in at the Grand Canyon. At station two, students look at a…

  16. Grand Canyon, Lake Powell, and Lake Mead

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A snowfall in the American West provides contrast to the landscape's muted earth tones and indicates changes in topography and elevation across (clockwise from top left) Nevada, Utah, Colorado, New Mexico, Arizona, and California. In Utah, the southern ranges of the Wasatch Mountains are covered in snow, and the Colorado River etches a dark ribbon across the red rock of the Colorado Plateau. In the center of the image is the reservoir created by the Glen Canyon Dam. To the east are the gray-colored slopes of Navaho Mountain, and to the southeast, dusted with snow is the region called Black Mesa. Southwest of Glen Canyon, the Colorado enters the Grand Canyon, which cuts westward through Arizona. At a deep bend in the river, the higher elevations of the Keibab Plateau have held onto snow. At the end of the Grand Canyon lies another large reservoir, Lake Mead, which is formed by the Hoover Dam. Credit: Jacques Descloitres, MODIS Land Rapid Response Team, NASA/GSFC

  17. North Atlantic slope and canyon study. Volume 1. Executive summary

    SciTech Connect

    Butman, B.

    1986-12-01

    A field program to investigate the currents and sediment transport along the outershelf and upper slope along the southern flank of Georges Bank was conducted between 1980 and 1984. A major part of the field experiment was conducted in Lydonia Canyon, a large submarine canyon which cuts northward about 20 km into the continental shelf from the shelfbreak. A smaller experiment was conducted in Oceanographer Canyon to compare the currents in these two major canyons. The long-term current observations made in Lydonia and Oceanographer Canyons show that the current regime in these topographic features differs from the adjacent slope, and between canyons. Sediments near the head (depths shallower than about 600 m) in both Lydonia and Oceanographer are frequently resuspended. This frequent resuspension may allow the sediments to strip pollutants from the water column. Currents in Oceanographer Canyon are stronger and the sediments coarser than in Lydonia at comparable depths.

  18. Creationism in the Grand Canyon, Texas Textbooks

    NASA Astrophysics Data System (ADS)

    Folger, Peter

    2004-01-01

    AGU President Bob Dickinson, together with presidents of six other scientific societies, have written to Joseph Alston, Superintendent of Grand Canyon National Park, pointing out that a creationist book, The Grand Canyon: A Different View, is being sold in bookstores within the borders of the park as a scientific explanation about Grand Canyon geologic history. President Dickinson's 16 December letter urges that Alston clearly separate The Grand Canyon: A Different View from books and materials that discuss the legitimate scientific understanding of the origin of the Grand Canyon. The letter warns the Park Service against giving the impression that it approves of the anti-science movement known as young-Earth creationism, or that it endorses the advancement of religious tenets disguised as science. The text of the letter is on AGU's Web site http://www.agu.org/sci_soc/policy/sci_pol.html. Also, this fall, AGU sent an alert to Texas members about efforts by intelligent design creationists aimed at weakening the teaching of biological evolution in textbooks used in Texas schools. The alert pointed scientists to a letter, drafted by AGU, together with the American Institute of Physics, the American Physical Society, the Optical Society of America, and the American Astronomical Society, that urged the Texas State Board of Education to adopt textbooks that presented only accepted, peer-reviewed science and pedagogical expertise. Over 550 scientists in Texas added their names to the letter (http://www.agu.org/sci_soc/policy/texas_textbooks.pdf ), sent to the Board of Education on 1 November prior to their vote to adopt a slate of new science textbooks. The Board voted 11-5 in favor of keeping the textbooks free of changes advocated by groups supporting intelligent design creationism.

  19. Anatomy of La Jolla submarine canyon system; offshore southern California

    USGS Publications Warehouse

    Paull, C.K.; Caress, D.W.; Lundsten, E.; Gwiazda, R.; Anderson, K.; McGann, M.; Conrad, J.; Edwards, B.; Sumner, E.J.

    2013-01-01

    An autonomous underwater vehicle (AUV) carrying a multibeam sonar and a chirp profiler was used to map sections of the seafloor within the La Jolla Canyon, offshore southern California, at sub-meter scales. Close-up observations and sampling were conducted during remotely operated vehicle (ROV) dives. Minisparker seismic-reflection profiles from a surface ship help to define the overall geometry of the La Jolla Canyon especially with respect to the pre-canyon host sediments. The floor of the axial channel is covered with unconsolidated sand similar to the sand on the shelf near the canyon head, lacks outcrops of the pre-canyon host strata, has an almost constant slope of 1.0° and is covered with trains of crescent shaped bedforms. The presence of modern plant material entombed within these sands confirms that the axial channel is presently active. The sand on the canyon floor liquefied during vibracore collection and flowed downslope, illustrating that the sediment filling the channel can easily fail even on this gentle slope. Data from the canyon walls help constrain the age of the canyon and extent of incision. Horizontal beds of moderately cohesive fine-grained sediments exposed on the steep canyon walls are consistently less than 1.232 million years old. The lateral continuity of seismic reflectors in minisparker profiles indicate that pre-canyon host strata extend uninterrupted from outside the canyon underneath some terraces within the canyon. Evidence of abandoned channels and point bar-like deposits are noticeably absent on the inside bend of channel meanders and in the subsurface of the terraces. While vibracores from the surface of terraces contain thin (< 10 cm) turbidites, they are inferred to be part of a veneer of recent sediment covering pre-canyon host sediments that underpin the terraces. The combined use of state of the art seafloor mapping and exploration tools provides a uniquely detailed view of the morphology within an active submarine canyon.

  20. Hydraulics of floods upstream of horseshoe canyons and waterfalls

    NASA Astrophysics Data System (ADS)

    Lapotre, Mathieu G. A.; Lamb, Michael P.

    2015-07-01

    Horseshoe waterfalls are ubiquitous in natural streams, bedrock canyons, and engineering structures. Nevertheless, water flow patterns upstream of horseshoe waterfalls are poorly known and likely differ from the better studied case of a one-dimensional linear step because of flow focusing into the horseshoe. This is a significant knowledge gap because the hydraulics at waterfalls controls sediment transport and bedrock incision, which can compromise the integrity of engineered structures and influence the evolution of river canyons on Earth and Mars. Here we develop new semiempirical theory for the spatial acceleration of water upstream of, and the cumulative discharge into, horseshoe canyons and waterfalls. To this end, we performed 110 numerical experiments by solving the 2-D depth-averaged shallow-water equations for a wide range of flood depths, widths and discharges, and canyon lengths, widths and bed gradients. We show that the upstream, normal flow Froude number is the dominant control on lateral flow focusing and acceleration into the canyon head and that focusing is limited when the flood width is small compared to a cross-stream backwater length scale. In addition, for sheet floods much wider than the canyon, flow focusing into the canyon head leads to reduced discharge (and drying in cases) across the canyon sidewalls, which is especially pronounced for canyons that are much longer than they are wide. Our results provide new expectations for morphodynamic feedbacks between floods and topography, and thus canyon formation.

  1. 3D View of Grand Canyon, Arizona

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The Grand Canyon is one of North America's most spectacular geologic features. Carved primarily by the Colorado River over the past six million years, the canyon sports vertical drops of 5,000 feet and spans a 445-kilometer-long stretch of Arizona desert. The strata along the steep walls of the canyon form a record of geologic time from the Paleozoic Era (250 million years ago) to the Precambrian (1.7 billion years ago).

    The above view was acquired by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument aboard the Terra spacecraft. Visible and near infrared data were combined to form an image that simulates the natural colors of water and vegetation. Rock colors, however, are not accurate. The image data were combined with elevation data to produce this perspective view, with no vertical exaggeration, looking from above the South Rim up Bright Angel Canyon towards the North Rim. The light lines on the plateau at lower right are the roads around the Canyon View Information Plaza. The Bright Angel Trail, which reaches the Colorado in 11.3 kilometers, can be seen dropping into the canyon over Plateau Point at bottom center. The blue and black areas on the North Rim indicate a forest fire that was smoldering as the data were acquired on May 12, 2000.

    Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, Calif., is the U.S. Science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land

  2. Lava Flows in the Grand Canyon

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Over vast expanses of time, natural processes like floods and volcanoes deposit layers of rock on the Earth's surface. To delve down through layers of rock is to explore our planet's history. Sometimes rock layers are exposed through human activity, such as drilling or excavation. Other times, rivers carve through the rock. One of the best, and most well-known, examples of a river exposing ancient rocks is Colorado River in Arizona's Grand Canyon. What fewer people know is that the Grand Canyon also has a history of relatively recent (on geologic time scales) volcanism. The evidence--hardened lava--spills down the canyon walls all the way to the river. On June 22, 2003, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite captured this image of the Grand Canyon, near 36.2 degrees north latitude and 113.2 degrees west longitude. ASTER detects light visible to human eyes as well as 'invisible' infrared light. Because different minerals reflect different portions of the light spectrum, ASTER can see varying mineral compositions of the rocks it observes, as well as detecting vegetation. In this three-dimensional visualization, lava fields appear brownish gray, darker than the layers of limestone, sandstone and other rock in the canyon. Vegetation appears green, and sparsely vegetated areas appear mustard. Water in the Colorado River is blue-purple. Geologists estimate that between 1.8 million and 400,000 years ago, lava flows actually dammed the Colorado River more than a dozen times. Some of the lava dams were as high as 600 meters (about 1,969 feet), forming immense reservoirs. Over time, enough water and sediment built up to push the river flow over the tops of these dams and eventually erode them away. Today, remnants of these lava dams remain throughout the area, along with the much older rock layers they cover. Among the most well known examples of these 'frozen' lava cascades is Lava Falls, which spills down to the

  3. Surprise and opportunity for learning in Grand Canyon: the Glen Canyon Dam Adaptive Management Program

    USGS Publications Warehouse

    Melis, Theodore S.; Walters, Carl; Korman, Josh

    2015-01-01

    With a focus on resources of the Colorado River ecosystem below Glen Canyon Dam, the Glen Canyon Dam Adaptive Management Program has included a variety of experimental policy tests, ranging from manipulation of water releases from the dam to removal of non-native fish within Grand Canyon National Park. None of these field-scale experiments has yet produced unambiguous results in terms of management prescriptions. But there has been adaptive learning, mostly from unanticipated or surprising resource responses relative to predictions from ecosystem modeling. Surprise learning opportunities may often be viewed with dismay by some stakeholders who might not be clear about the purpose of science and modeling in adaptive management. However, the experimental results from the Glen Canyon Dam program actually represent scientific successes in terms of revealing new opportunities for developing better river management policies. A new long-term experimental management planning process for Glen Canyon Dam operations, started in 2011 by the U.S. Department of the Interior, provides an opportunity to refocus management objectives, identify and evaluate key uncertainties about the influence of dam releases, and refine monitoring for learning over the next several decades. Adaptive learning since 1995 is critical input to this long-term planning effort. Embracing uncertainty and surprise outcomes revealed by monitoring and ecosystem modeling will likely continue the advancement of resource objectives below the dam, and may also promote efficient learning in other complex programs.

  4. Canyon-confined pockmarks on the western Niger Delta slope

    NASA Astrophysics Data System (ADS)

    Benjamin, Uzochukwu; Huuse, Mads; Hodgetts, David

    2015-07-01

    Fluid flow phenomena in the deepwater Niger Delta are important for the safe and efficient exploration, development and production of hydrocarbons in the area. Utilizing 3D seismic data from the western Niger Delta slope, we have identified pockmarks that are confined within a NE-SW oriented submarine canyon system that has been active since the early Quaternary. The pockmarks, subdivided into 'canyon-margin' pockmarks and 'intra-canyon' pockmarks, on the basis of their plan-form distribution patterns, are found to be spatially and stratigraphically related to stratigraphic discontinuities created by erosion cuts associated with the submarine canyon system. We infer that stratigraphic discontinuities provided pathways for fluid migration within the buried canyon system, allowing fluids from deeper parts of the basin to reach the seafloor as indicated by abundant pockmarks above the partly buried canyon. The transportation of fluids from deeper parts of the basin into the buried segment of the canyon system was facilitated by carrier beds expressed as high amplitude reflection packages and by extensional normal faults. The prevalence of the 'canyon margin' pockmarks over the 'intra-canyon' pockmarks is attributed to the direct connection of the buried canyon margins with truncated reservoir facies in hydraulic connection with deeper reservoir facies. The formation of the 'intra-canyon' pockmarks is interpreted to have been limited by fluid flow disconnection often caused by stratigraphic alternation of sand-rich and shale-rich channel deposits that constitute the canyon fill. Muddy canyon fill units act as baffles to fluid flow, while connected sandy infill units constitute pathways for fluid migration. Occurrence of pockmarks throughout the length of the submarine canyon system is an indication of shallow fluid flow within buried reservoir facies. Systematic alignment of seafloor pockmarks are clues to buried reservoirs and provide insights into reservoir

  5. NO2 photolysis frequencies in street canyons

    NASA Astrophysics Data System (ADS)

    Koepke, P.; Garhammer, M.; Hess, M.; Roeth, E.-P.

    2010-05-01

    Photolysis frequencies for NO2 are modeled for the conditions in urban streets, which are taken into account as canyons with variable height and width. The effect of a street canyon is presented with absolute values and as a ratio RJ of the photolysis frequency within the street against those with free horizon, which allows further use of the existing photolysis parameterizations. Values are presented for variable solar elevation and azimuth angles, varying atmospheric conditions and different street properties. The NO2 photolysis frequency in the street, averaged over atmospheric conditions and street orientation, is reduced to less than 20% for narrow streets, to about 40% for typical urban streets, and only to about 80% for garden streets, each with about ±5% uncertainty. A parameterization of RJ with the global solar irradiance is given for values that are averaged over the meteorological conditions and the street orientation.

  6. NO2 photolysis frequencies in street canyons

    NASA Astrophysics Data System (ADS)

    Koepke, P.; Garhammer, M.; Hess, M.; Roeth, E.-P.

    2010-08-01

    Photolysis frequencies for NO2 are modeled for the conditions in urban streets, which are taken into account as canyons with variable height and width. The effect of a street canyon is presented with absolute values and as a ratio RJ of the photolysis frequency within the street compared to that with free horizon. This allows further use of the existing photolysis parameterizations. Values are presented for variable solar elevation and azimuth angles, varying atmospheric conditions and different street properties. The NO2 photolysis frequency in a street depends strongly on the relative width of the street and its orientation towards the sun. Averaged over atmospheric conditions and street orientation, the NO2 photolysis frequency is reduced in comparison with the values for free horizon: to less than 20% for narrow skyscraper streets, to about 40% for typical urban streets, and only to about 80% for garden streets. A parameterization with the global solar irradiance is given for the averaged RJ values.

  7. Focusing of baroclinic tidal energy in a canyon

    NASA Astrophysics Data System (ADS)

    Vlasenko, Vasiliy; Stashchuk, Nataliya; Inall, Mark E.; Porter, Marie; Aleynik, Dmitry

    2016-04-01

    Strong three-dimensional focusing of internal tidal energy in the Petite Sole Canyon in the Celtic Sea is analyzed using observational data and numerical modeling. In a deep layer (500-800 m) in the center of the canyon, shear variance was elevated by an order of magnitude. Corresponding large vertical oscillations of deep isotherms and a local maximum of horizontal velocity were replicated numerically using the MITgcm. The elevated internal tidal activity in the deep part of the canyon is explained in terms of the downward propagation and focusing of multiple internal tidal beams generated at the shelf break. The near-circular shape of the canyon head and steep bottom topography throughout the canyon (steeper than the tidal beam) create favorable conditions for the lens-like focusing of tidal energy in the canyon's center. Observations and modeling show that the energy focusing greatly intensifies local diapycnal mixing that leads to local formation of a baroclinic eddy.

  8. The marine soundscape of the Perth Canyon

    NASA Astrophysics Data System (ADS)

    Erbe, Christine; Verma, Arti; McCauley, Robert; Gavrilov, Alexander; Parnum, Iain

    2015-09-01

    The Perth Canyon is a submarine canyon off Rottnest Island in Western Australia. It is rich in biodiversity in general, and important as a feeding and resting ground for great whales on migration. Australia's Integrated Marine Observing System (IMOS) has moorings in the Perth Canyon monitoring its acoustical, physical and biological oceanography. Data from these moorings, as well as weather data from a near-by Bureau of Meteorology weather station on Rottnest Island and ship traffic data from the Australian Maritime Safety Authority were correlated to characterise and quantify the marine soundscape between 5 and 3000 Hz, consisting of its geophony, biophony and anthrophony. Overall, biological sources are a strong contributor to the soundscape at the IMOS site, with whales dominating seasonally at low (15-100 Hz) and mid frequencies (200-400 Hz), and fish or invertebrate choruses dominating at high frequencies (1800-2500 Hz) at night time throughout the year. Ships contribute significantly to the 8-100 Hz band at all times of the day, all year round, albeit for a few hours at a time only. Wind-dependent noise is significant at 200-3000 Hz; winter rains are audible underwater at 2000-3000 Hz. We discuss how passive acoustic data can be used as a proxy for ocean weather. Passive acoustics is an efficient way of monitoring animal visitation times and relative densities, and potential anthropogenic influences.

  9. Greening of the Grand Canyon -- developing a sustainable design for the Grand Canyon National Park

    SciTech Connect

    Gordon, H.T.

    1995-11-01

    The Grand Canyon National Park (GCNP) is faced with increasing visitor demand that is threatening the natural and cultural resources of one of the most popular recreation sites in the United States. The National Park Service (NPS) developed a draft General Management Plan (GMP), which provides management objectives and visions for the entire park, with alternative plans for the park`s developed areas. With the GMP as a starting point, a Grand Canyon Sustainable Design Workshop was conducted to make the Grand Canyon National Park more environmentally and economically sustainable. The workshop, which used the Environmental Design Charrette process, addressed integrated environmental solutions and their implementation in three primary areas: Integrated Information, Visitor Experience, and Resource Efficiency. This paper describes the Environmental Design Charrette process and the efforts of the Resource Efficiency group.

  10. Holocene sedimentary activity in a non-terrestrially coupled submarine canyon: Cook Strait Canyon system, New Zealand

    NASA Astrophysics Data System (ADS)

    Mountjoy, J. J.; Micallef, A.; Stevens, C. L.; Stirling, M. W.

    2014-06-01

    The Cook Strait Canyon system, located between the North and South islands of New Zealand, is a large (1800 km2), multi-branching, shelf-indenting canyon on an active subduction margin. The canyon comes within 1 km of the coast, but does not intercept fluvial or littoral sediment systems and is therefore defined as a non-terrestrially coupled system. Sediment transport associated with a strong tidal stream, and seafloor disturbance related to numerous high-activity faults, is known from previous studies. Little is known, however, about the rates of sedimentary activity in the canyon and the processes driving it. A substantial dataset of EM300 multibeam bathymetry, gravity cores, 3.5 kHz seismic reflection profiles, camera and video transects and current meter data have been collected across the region between 2002 and 2011. The canyon system therefore provides an excellent study area for understanding sediment transport in a non-coupled submarine canyon system. Analysis of the data reveals a two-staged sediment transport system where: (1) oceanographic (tidal) processes mobilise sediment from the continental shelf and transport it to depocentres in the upper-central canyons, and (2) tectonic (earthquake) processes remobilise sediment that is transported through the lower canyon to the deep ocean. Tidal boundary-layer currents within the canyon reach velocities up to 0.53 m/s and are capable of mobilising fine sand in the central reach of the upper canyons. The velocity is higher at the canyon rim and capable of mobilising coarse sand. Sediment depocentres resulting from this tidally forced sediment transport have a well formed geomorphology within the mid-upper canyon arms of Cook Strait and Nicholson Canyons. Pseudo-static stability modelling, supported by sediment core analysis, indicates that sediment accumulated in the upper canyons fails during seismic events approximately every 100 years. The 100 year return period ground shaking-level (peak ground

  11. Ventilation Processes in a Three-Dimensional Street Canyon

    NASA Astrophysics Data System (ADS)

    Nosek, Štěpán; Kukačka, Libor; Kellnerová, Radka; Jurčáková, Klára; Jaňour, Zbyněk

    2016-05-01

    The ventilation processes in three different street canyons of variable roof geometry were investigated in a wind tunnel using a ground-level line source. All three street canyons were part of an urban-type array formed by courtyard-type buildings with pitched roofs. A constant roof height was used in the first case, while a variable roof height along the leeward or windward walls was simulated in the two other cases. All street-canyon models were exposed to a neutrally stratified flow with two approaching wind directions, perpendicular and oblique. The complexity of the flow and dispersion within the canyons of variable roof height was demonstrated for both wind directions. The relative pollutant removals and spatially-averaged concentrations within the canyons revealed that the model with constant roof height has higher re-emissions than models with variable roof heights. The nomenclature for the ventilation processes according to quadrant analysis of the pollutant flux was introduced. The venting of polluted air (positive fluctuations of both concentration and velocity) from the canyon increased when the wind direction changed from perpendicular to oblique, irrespective of the studied canyon model. Strong correlations (>0.5) between coherent structures and ventilation processes were found at roof level, irrespective of the canyon model and wind direction. This supports the idea that sweep and ejection events of momentum bring clean air in and detrain the polluted air from the street canyon, respectively.

  12. Ascension Submarine Canyon, California - Evolution of a multi-head canyon system along a strike-slip continental margin

    USGS Publications Warehouse

    Nagel, D.K.; Mullins, H.T.; Greene, H. Gary

    1986-01-01

    Ascension Submarine Canyon, which lies along the strike-slip (transform) dominated continental margin of central California, consists of two discrete northwestern heads and six less well defined southeastern heads. These eight heads coalesce to form a single submarine canyon near the 2700 m isobath. Detailed seismic stratigraphic data correlated with 19 rock dredge hauls from the walls of the canyon system, suggest that at least one of the two northwestern heads was initially eroded during a Pliocene lowstand of sea level ???3.8 m.y. B.P. Paleogeographic reconstructions indicate that at this time, northwestern Ascension Canyon formed the distal channel of nearby Monterey Canyon and has subsequently been offset by right-lateral, strike-slip faulting along the San Gregorio fault zone. Some of the six southwestern heads of Ascension Canyon may also have been initially eroded as the distal portions of Monterey Canyon during late Pliocene-early Pleistocene sea-level lowstands (???2.8 and 1.75 m.y. B.P.) and subsequently truncated and offset to the northwest. There have also been a minimum of two canyon-cutting episodes within the past 750,000 years, after the entire Ascension Canyon system migrated to the northwest past Monterey Canyon. We attribute these late Pleistocene erosional events to relative lowstands of sea level 750,000 and 18,000 yrs B.P. The late Pleistocene and Holocene evolution of the six southeastern heads also appears to have been controlled by structural uplift of the Ascension-Monterey basement high at the southeastern terminus of the Outer Santa Cruz Basin. We believe that uplift of this basement high sufficiently oversteepened submarine slopes to induce gravitational instability and generate mass movements that resulted in the erosion of the canyon heads. Most significantly, though, our results and interpretations support previous proposals that submarine canyons along strike-slip continental margins can originate by tectonic trunction and lateral

  13. Strategic guidelines for street canyon geometry to achieve sustainable street air quality—part II: multiple canopies and canyons

    NASA Astrophysics Data System (ADS)

    Chan, Andy T.; Au, William T. W.; So, Ellen S. P.

    The flow field and pollutant dispersion characteristics in a three-dimensional urban street canyon are investigated for various building array geometries. The street canyon in consideration is located in a multi-canopy building array that is similar to realistic estate situations. The pollutant dispersion characteristics are studied for various canopy aspect ratios, namely: the canyon height to width ratio, canyon length to height ratio, canyon breadth ratio and crossroad locations are studied. A three-dimensional field-size canyon has been analysed through numerical simulations using k- ɛ turbulence model. As expected, the wind flow and mode of pollutant dispersion is strongly dependent on the various flow geometric configurations and that the results can be different from that of a single canyon system. For example, it is found that the pollutant retention value is minimum when the canyon height-to-width ratio is approximately 0.8, or that the building height ratio is 0.5. Various rules of thumbs on urban canyon geometry have been established for good pollutant dispersion.

  14. Grant Canyon oil field, Nye County, Nevada

    SciTech Connect

    Duey, H.D.; Veal, H.K.; Bortz, L.C.; Foster, N.H.

    1988-03-01

    The Grant Canyon field is located on the east side of Railroad Valley, Nevada, 8 mi south of the Eagle Springs oil field. The discovery well, 1 Grant Canyon Unit (SW1/4NW1/4, Sec. 21, T7S, T57E), was completed by Northwest Exploration Company on September 11, 1983, flowing 1816 BOPD, probably from the Devonian Simonson Dolomite (4375-4448 ft). Two additional wells have been completed in the field. Cumulative oil production through December 31, 1986, is 5,260,430 bbl of oil. During December 1986, wells 3 and 4 flowed an average of 5189 BOPD. Well 4 averaged 4065 BOPD for a recent month. The discovery well has been shut-in. The productive area is about 240 ac. The trap is a high fault block in the boundary fault zone that separates Railroad Valley from the Grant Range to the east. The Devonian Simonson reservoir is an intensely fractured, vuggy dolomite with some intercrystalline porosity. The top seal is the Tertiary valley fill, which unconformably overlies the Simonson Dolomite. The oil column is about 400 ft and the field apparently has an active water drive, inasmuch as the 1 Grant Canyon Unit had to be shut-in because of water production. The oil is black, 26/sup 0/API gravity, with a pour point of 10/sup 0/F and 0.5% sulfur. Estimated ultimate recoverable oil reserves are 13,000,000 bbl. The adjacent Bacon Flat field is a one-well field (SW1/4SW1/4, Sec. 17, T7N, R57E) that was completed by Northwest Exploration Company on July 5, 1981, for 200 BOPD and 1050 BWPD from the Devonian Guilmette Limestone (5316-5333 ft). Cumulative production through December 31, 1986, was 209,649 bbl of oil. This well averaged 215 BOPD during December 1986.

  15. 36 CFR 7.4 - Grand Canyon National Park.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Grand Canyon National Park. 7.4 Section 7.4 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.4 Grand Canyon National Park. (a)...

  16. 75 FR 34476 - Glen Canyon Dam Adaptive Management Work Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-17

    ... Bureau of Reclamation Glen Canyon Dam Adaptive Management Work Group AGENCY: Bureau of Reclamation... Interior (Secretary) is renewing the charter for the Glen Canyon Dam Adaptive Management Work Group. The purpose of the Adaptive Management Work Group is to advise and to provide recommendations to the...

  17. Bridge 223, view looking east up Rock Creek Canyon at ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Bridge 22-3, view looking east up Rock Creek Canyon at Milepost 22.82. The line passes through tunnel 4 onto Bridge 22-3 and heads eastward up Rock Creek Canyon out onto the Camas Prairie - Camas Prairie Railroad, Second Subdivision, From Spalding in Nez Perce County, through Lewis County, to Grangeville in Idaho County, Spalding, Nez Perce County, ID

  18. 36 CFR 7.4 - Grand Canyon National Park.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Grand Canyon National Park. 7.4 Section 7.4 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.4 Grand Canyon National Park. (a) Commercial passenger-carrying motor vehicles....

  19. 36 CFR 7.4 - Grand Canyon National Park.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Grand Canyon National Park. 7.4 Section 7.4 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.4 Grand Canyon National Park. (a) Commercial passenger-carrying motor vehicles....

  20. 4. VISTA POINT AND INTERPRETIVE PLAQUE AT LEE VINING CANYON. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VISTA POINT AND INTERPRETIVE PLAQUE AT LEE VINING CANYON. NOTE ROAD CUT ON CANYON WALL. LOOKING NNE. GIS: N-37 56 30.3 / 119 13 44.8 - Tioga Road, Between Crane Flat & Tioga Pass, Yosemite Village, Mariposa County, CA

  1. River resource management in the Grand Canyon

    SciTech Connect

    1996-07-01

    The objective of GCES was to identify and predict the effects of variations in operating strategies on the riverine environment below Glen Canyon Dam within the physical and legal constraints under which the dam must operate. Critical elements for the development of GCES and other such projects include a list of resources directly or indirectly affected by management, a list of management options, and an ecosystem framework showing the causal connections among system components, potential management strategies that include humans as integral parts of the environment.

  2. 20140430_Green Machine Florida Canyon Hourly Data

    SciTech Connect

    Thibedeau, Joe

    2014-05-05

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 April to 30 April 2014.

  3. Big Canyon Creek Ecological Restoration Strategy.

    SciTech Connect

    Rasmussen, Lynn; Richardson, Shannon

    2007-10-01

    He-yey, Nez Perce for steelhead or rainbow trout (Oncorhynchus mykiss), are a culturally and ecologically significant resource within the Big Canyon Creek watershed; they are also part of the federally listed Snake River Basin Steelhead DPS. The majority of the Big Canyon Creek drainage is considered critical habitat for that DPS as well as for the federally listed Snake River fall chinook (Oncorhynchus tshawytscha) ESU. The Nez Perce Soil and Water Conservation District (District) and the Nez Perce Tribe Department of Fisheries Resources Management-Watershed (Tribe), in an effort to support the continued existence of these and other aquatic species, have developed this document to direct funding toward priority restoration projects in priority areas for the Big Canyon Creek watershed. In order to achieve this, the District and the Tribe: (1) Developed a working group and technical team composed of managers from a variety of stakeholders within the basin; (2) Established geographically distinct sub-watershed areas called Assessment Units (AUs); (3) Created a prioritization framework for the AUs and prioritized them; and (4) Developed treatment strategies to utilize within the prioritized AUs. Assessment Units were delineated by significant shifts in sampled juvenile O. mykiss (steelhead/rainbow trout) densities, which were found to fall at fish passage barriers. The prioritization framework considered four aspects critical to determining the relative importance of performing restoration in a certain area: density of critical fish species, physical condition of the AU, water quantity, and water quality. It was established, through vigorous data analysis within these four areas, that the geographic priority areas for restoration within the Big Canyon Creek watershed are Big Canyon Creek from stream km 45.5 to the headwaters, Little Canyon from km 15 to 30, the mainstem corridors of Big Canyon (mouth to 7km) and Little Canyon (mouth to 7km). The District and the Tribe

  4. Green Machine Florida Canyon Hourly Data

    DOE Data Explorer

    Vanderhoff, Alex

    2013-07-15

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 6/1/13 to 6/30/13

  5. Green Machine Florida Canyon Hourly Data 20130731

    DOE Data Explorer

    Vanderhoff, Alex

    2013-08-30

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 7/1/13 to 7/31/13.

  6. 20130416_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer

    Vanderhoff, Alex

    2013-04-24

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 4/16/13.

  7. Transfer processes in a simulated urban street canyon

    NASA Astrophysics Data System (ADS)

    Solazzo, E.; Britter, R. E.

    2007-07-01

    The transfer processes within and above a simulated urban street canyon were investigated in a generic manner. Computational fluid dynamics (CFD) was used to aid understanding and to produce some simple operational parameterisations. In this study we addressed specifically the commonly met situation where buoyancy effects arising from elevated surface temperatures are not important, i.e. when mechanical forces outweigh buoyancy forces. In a geophysical context this requires that some suitably defined Richardson number is small. From an engineering perspective this is interpreted as the important case when heat transfer within and above urban street canyons is by forced convection. Surprisingly, this particular scenario (for which the heat transfer coefficient between buildings and the flow is largest), has been less well studied than the situation where buoyancy effects are important. The CFD technique was compared against wind-tunnel experiments to provide model evaluation. The height-to-width ratio of the canyon was varied through the range 0.5 5 and the flow was normal to the canyon axis. By setting the canyon’s facets to have the same or different temperatures or to have a partial temperature distribution, simulations were carried out to investigate: (a) the influence of geometry on the flow and mixing within the canyon and (b) the exchange processes within the canyon and across the canyon top interface. Results showed that the vortex-type circulation and turbulence developed within the canyon produced a temperature distribution that was, essentially, spatially uniform (apart from a relatively thin near-wall thermal boundary layer) This allowed the temperatures within the street canyon to be specified by just one value T can , the canyon temperature. The variation of T can with wind speed, surface temperatures and geometry was extensively studied. Finally, the exchange velocity u E across the interface between the canyon and the flow above was calculated

  8. Pleistocene entrenched valley/canyon systems, Gulf of Mexico

    SciTech Connect

    Steffens, G.S.

    1986-09-01

    The Mississippi Submarine Canyon is the seaward extension of the late Wisconsin entrenched alluvial valley. Geophysical and geologic data provide evidence for the continuity of the Mississippi entrenched valley, the Timbalier channel, and the submarine canyon. The Mississippi entrenched valley/canyon system is one of several systems recognized in the Pleistocene section of offshore Louisiana. Most of these systems were produced by the ancestral Mississippi River. They typically exhibit a three-gradient profile with their maximum erosional relief at the preexisting shelf margin. The canyons extend onto the pre-existing shelf for 20 to 50 mi, with erosion commonly exceeding 1000 ft. All of these systems delivered large quantities of sediment to the Pleistocene slope and abyssal plain. The fan deposits are the products of sediment passing through and being removed from the entrenched valley/canyon systems.

  9. North Atlantic slope and canyon study. Volume 2. Final report

    SciTech Connect

    Butman, B.

    1986-12-01

    A field program to investigate the currents and sediment transport along the outershelf and upper slope along the southern flank of Georges Bank was conducted between 1980 and 1984. A major part of the field experiment was conducted in Lydonia Canyon, a large submarine canyon which cuts northward about 20 km into the continental shelf from the shelfbreak. A smaller experiment was conducted in Oceanographer Canyon to compare the currents in these two major canyons. Long-term current observations were made at 20 locations in or adjacent to Lydonia Canyon, and at 9 stations on the continental slope. Detailed semi-synoptic hydrographic observations were made on 9 cruises. The currents associated with Gulf Stream warm core rings (WCR's) strongly affect the flow along the outer shelf and upper slope; eastward currents in excess of 75cm/s were associated with WCR's.

  10. Dispersion and photochemical evolution of reactive pollutants in street canyons

    NASA Astrophysics Data System (ADS)

    Kwak, Kyung-Hwan; Baik, Jong-Jin; Lee, Kwang-Yeon

    2013-05-01

    Dispersion and photochemical evolution of reactive pollutants in street canyons with canyon aspect ratios of 1 and 2 are investigated using a computational fluid dynamics (CFD) model coupled with the carbon bond mechanism IV (CBM-IV). Photochemical ages of NOx and VOC are expressed as a function of the NO2-to-NOx and toluene-to-xylene ratios, respectively. These are found to be useful for analyzing the O3 and OH oxidation processes in the street canyons. The OH oxidation process (O3 oxidation process) is more pronounced in the upper (lower) region of the street canyon with a canyon aspect ratio of 2, which is characterized by more (less) aged air. In the upper region of the street canyon, O3 is chemically produced as well as transported downward across the roof level, whereas O3 is chemically reduced in the lower region of the street canyon. The O3 chemical production is generally favorable when the normalized photochemical ages of NOx and VOC are larger than 0.55 and 0.28, respectively. The sensitivities of O3 chemical characteristics to NOx and VOC emission rates, photolysis rate, and ambient wind speed are examined for the lower and upper regions of the street canyon with a canyon aspect ratio of 2. The O3 concentration and the O3 chemical production rate divided by the O3 concentration increase as the NOx emission rate decreases and the VOC emission rate and photolysis rate increase. The O3 concentration is less sensitive to the ambient wind speed than to other factors considered. The relative importance of the OH oxidation process compared to the O3 oxidation process increases with increasing NOx emission rate and photolysis rate and decreasing VOC emission rate. In this study, both O3 and OH oxidation processes are found to be important in street-canyon scale chemistry. The methodology of estimating the photochemical ages can potentially be adopted to neighborhood scale chemistry.

  11. Active geologic processes in Barrow Canyon, northeast Chukchi Sea

    USGS Publications Warehouse

    Eittreim, S.; Grantz, A.; Greenberg, J.

    1982-01-01

    Circulation patterns on the shelf and at the shelf break appear to dominate the Barrow Canyon system. The canyon's shelf portion underlies and is maintained by the Alaska Coastal Current (A.C.C.), which flows northeastward along the coast toward the northeast corner of the broad Chukchi Sea. Offshelf and onshelf advective processes are indicated by oceanographic measurements of other workers. These advective processes may play an important role in the production of bedforms that are found near the canyon head as well as in processes of erosion or non-deposition in the deeper canyon itself. Coarse sediments recovered from the canyon axis at 400 to 570 m indicate that there is presently significant flow along the canyon. The canyon hooks left at a point north of Point Barrow where the A.C.C. loses its coastal constriction. The left hook, as well as preferential west-wall erosion, continues down to the abyssal plain of the Canada Basin at 3800 m. A possible explanation for the preferential west-wall erosion along the canyon, at least for the upper few hundred meters, is that the occasional upwelling events, which cause nutrient-rich water to flow along the west wall would in turn cause larger populations of burrowing organisms to live there than on the east wall, and that these organisms cause high rates of bioerosion. This hypothesis assumes that the dominant factor in the canyon's erosion is biological activity, not current velocity. Sedimentary bedforms consisting of waves and furrows are formed in soft mud in a region on the shelf west of the canyon head; their presence there perhaps reflects: (a) the supply of fine suspended sediments delivered by the A.C.C. from sources to the south, probably the Yukon and other rivers draining northwestern Alaska; and (b) the westward transport of these suspended sediments by the prevailing Beaufort Gyre which flows along the outer shelf. ?? 1982.

  12. Morphology, distribution, and development of submarine canyons on the United States Atlantic continental slope between Hudson arid Baltimore Canyons

    NASA Astrophysics Data System (ADS)

    Twichell, David C.; Roberts, David G.

    1982-08-01

    The distribution and morphology of submarine canyons off the eastern United States between Hudson and Baltimore Canyons have been mapped by long-range sidescan sonar. In this area canyons are numerous, and their spacing correlates with overall slope gradient; they are absent where the gradient is less than 3°, are 2 to 10 km apart where the gradient is 3° to 5°, and are 1.5 to 4 km apart where the gradient exceeds 6°. Canyons range from straight to sinuous; those having sinuous axes indent the edge of the continental shelf and appear to be older than those that head on the upper slope and have straighter axes. A difference in canyon age would suggest that canyons are initiated on the continental slope and only with greater age erode headward to indent the shelf. Shallow gullies on the middle and upper slope parts of the canyon walls suggest that submarine erosion has been a major process in a recent phase of canyon development. *Present address: British Petroleum, Moorgate, London EC2Y 9BU, England

  13. Hanging canyons of Haida Gwaii, British Columbia, Canada: Fault-control on submarine canyon geomorphology along active continental margins

    NASA Astrophysics Data System (ADS)

    Harris, Peter T.; Barrie, J. Vaughn; Conway, Kim W.; Greene, H. Gary

    2014-06-01

    Faulting commonly influences the geomorphology of submarine canyons that occur on active continental margins. Here, we examine the geomorphology of canyons located on the continental margin off Haida Gwaii, British Columbia, that are truncated on the mid-slope (1200-1400 m water depth) by the Queen Charlotte Fault Zone (QCFZ). The QCFZ is an oblique strike-slip fault zone that has rates of lateral motion of around 50-60 mm/yr and a small convergent component equal to about 3 mm/yr. Slow subduction along the Cascadia Subduction Zone has accreted a prism of marine sediment against the lower slope (1500-3500 m water depth), forming the Queen Charlotte Terrace, which blocks the mouths of submarine canyons formed on the upper slope (200-1400 m water depth). Consequently, canyons along this margin are short (4-8 km in length), closely spaced (around 800 m), and terminate uniformly along the 1400 m isobath, coinciding with the primary fault trend of the QCFZ. Vertical displacement along the fault has resulted in hanging canyons occurring locally. The Haida Gwaii canyons are compared and contrasted with the Sur Canyon system, located to the south of Monterey Bay, California, on a transform margin, which is not blocked by any accretionary prism, and where canyons thus extend to 4000 m depth, across the full breadth of the slope.

  14. Atmospheric Fragmentation of the Canyon Diablo Meteoroid

    NASA Technical Reports Server (NTRS)

    Pierazzo, E.; Artemieva, N. A.

    2005-01-01

    About 50 kyr ago the impact of an iron meteoroid excavated Meteor Crater, Arizona, the first terrestrial structure widely recognized as a meteorite impact crater. Recent studies of ballistically dispersed impact melts from Meteor Crater indicate a compositionally unusually heterogeneous impact melt with high SiO2 and exceptionally high (10 to 25% on average) levels of projectile contamination. These are observations that must be explained by any theoretical modeling of the impact event. Simple atmospheric entry models for an iron meteorite similar to Canyon Diablo indicate that the surface impact speed should have been around 12 km/s [Melosh, personal comm.], not the 15-20 km/s generally assumed in previous impact models. This may help explaining the unusual characteristics of the impact melt at Meteor Crater. We present alternative initial estimates of the motion in the atmosphere of an iron projectile similar to Canyon Diablo, to constraint the initial conditions of the impact event that generated Meteor Crater.

  15. Inner gorge-slot canyon system produced by repeated stream incision (eastern Alps): Significance for development of bedrock canyons

    NASA Astrophysics Data System (ADS)

    Sanders, Diethard; Wischounig, Lukas; Gruber, Alfred; Ostermann, Marc

    2014-06-01

    Many inner bedrock gorges of the Alps show abrupt downstream changes in gorge width, as well as channel type and gradient, as a result of epigenetic incision of slot canyons. Many slot canyons also are associated with older gorge reaches filled with Quaternary deposits. The age of slot canyons and inner bedrock gorges, however, commonly is difficult to constrain. For the inner-bedrock gorge system of the Steinberger Ache catchment (eastern Alps), active slot canyons as well as older, abandoned gorge reaches filled with upper Würmian proglacial deposits record three phases of gorge development and slot-canyon incision. A 234U/230Th age of cement of 29.7 ± 1.8 ka in fluvial conglomerates onlapping the flank of an inner gorge fits with late Würmian valley-bottom aggradation shortly before pleniglacial conditions; in addition, the age indicates that at least the corresponding canyon reach must be older. During advance of ice streams in the buildup of the Last Glacial Maximum (LGM), the catchment was blocked, and a proglacial lake formed. Bedrock gorges submerged in that lake were filled with fluviolacustrine deposits. During the LGM, the entire catchment was overridden by ice. During post-glacial reincision, streams largely found again their preexisting inner bedrock canyons. In some areas, however, the former stream course was 'missed', and a slot canyon formed. The distribution of Pleistocene deposits, the patterns of canyon incision, and the mentioned U/Th cementation age, however, together record a further discrete phase of base-level rise and stream incision well before the LGM. The present course of Steinberger Ache and its tributaries is a patchwork of (1) slot canyons incised during post-glacial incision; (2) vestiges of slot canyons cut upon an earlier (middle to late Würmian?) cycle of base-level rise and fall; (3) reactivated reaches up to ~ 200 m in width of inner bedrock gorge that are watershed at present, and more than at least ~ 30 ka in age; and (4

  16. Physiographic rim of the Grand Canyon, Arizona: a digital database

    USGS Publications Warehouse

    Billingsley, George H.; Hampton, Haydee M.

    1999-01-01

    This Open-File report is a digital physiographic map database. This pamphlet serves to introduce and describe the digital data. There is no paper map included in the Open-File report. The report does include, however, PostScript and PDF format plot files, each containing an image of the map. For those interested in a paper plot of information contained in the database or in obtaining the PostScript plot files, please see the section entitled "For Those Who Don't Use Digital Geologic Map Databases" below. This physiographic map of the Grand Canyon is modified from previous versions by Billingsley and Hendricks (1989), and Billingsley and others (1997). The boundary is drawn approximately along the topographic rim of the Grand Canyon and its tributary canyons between Lees Ferry and Lake Mead (shown in red). Several isolated small mesas, buttes, and plateaus are within this area, which overall encompasses about 2,600 square miles. The Grand Canyon lies within the southwestern part of the Colorado Plateaus of northern Arizona between Lees Ferry, Colorado River Mile 0, and Lake Mead, Colorado River Mile 277. The Colorado River is the corridor for raft trips through the Grand Canyon. Limestone rocks of the Kaibab Formation form most of the north and south rims of the Grand Canyon, and a few volcanic rocks form the north rim of parts of the Uinkaret and Shivwits Plateaus. Limestones of the Redwall Limestone and lower Supai Group form the rim of the Hualapai Plateau area, and Limestones of Devonian and Cambrian age form the boundary rim near the mouth of Grand Canyon at the Lake Mead. The natural physiographic boundary of the Grand Canyon is roughly the area a visitor would first view any part of the Grand Canyon and its tributaries.

  17. Upper Los Alamos canyon fact sheet

    SciTech Connect

    Berger, Jeffrey H

    2007-01-01

    Los Alamos National Laboratory is planning to make environmental assessments in portions of Upper Los Alamos Canyon. Upper Los Alamos Canyon is one of the areas included in the 2005 Consent Order agreed to by Los Alamos National Laboratory, the National Nuclear Security Administration, and the New Mexico Environment Department. As such, it must be evaluated for potential contamination. The area is located within and south of the Los Alamos townsite in Technical Areas 00, 01, 03, 32, 41, 43, and 61 of Los Alamos National Laboratory and includes a total of 115 solid waste management units and areas of concern. This area was home to some of the earliest operations at Los Alamos, dating from the 1940s. Of the 115 solid-waste management units and areas of concern, 54 have been addressed previously. The remaining 61 are the focus of this project. These include septic tanks and outfalls, sanitary and industrial waste lines, storm drains, soil contamination areas, landfill and surface disposal areas, transformer sites, and incinerators. The Consent Order requires the Laboratory to evaluate historical work sites for the potential presence of residual contamination. It also requires the Laboratory to identify and implement corrective actions should contamination be found. The Laboratory began performing these types of activities in the 1990s. The Upper Los Alamos Canyon project entails: (1) collecting soil and rock samples using the most efficient and least-invasive methods practicable; (2) defining the nature and extent of any residual contamination associated with each solid waste management unit or area of concern; and (3) gathering additional data if needed to evaluate potential remedial alternatives. A variety of methods, including studies of engineering drawings, nonintrusive geophysical surveys, and trenching, may be used to identify the final sampling locations. The field team then determines which collection method to use at each location, based on such site

  18. Report Summary, Final Hells Canyon Environmental Investigation.

    SciTech Connect

    United States. Bonneville Power Administration.

    1985-01-01

    The Northwest Electric Power Planning and Conservation Act of 1980 provided for the establishment of a Regional Power Planning Council (Regional Council) and mandated the development of a Columbia River Basin Fish and Wildlife Program (F&W Program). The F&W Program was adopted by the Regional Council in November 1982. and is intended to mitigate fish and wildlife losses resulting from the development of hydroelectric dams on the Columbia and Snake Rivers. One element of the FLW Program is the Water Budget. It calls for additional flows in the Columbia and Snake Rivers between April 15 and June 15 to improve the survival of juvenile salmon and steelhead migrating downstream. The Snake River's contribution to the Water Budget is 20,000 cubic feet per second-months (A volume of water equal to a flow of 20.000 cubic feet per second, 24 hours per day, for a period of a month) over and above water that would normally flow for power production. The water for the Water Budget would come out of Idaho Power Company's (IPCo) Hells Canyon Complex and the Corps of Engineers' (Corps) Dvorshak Reservoir. IPCo's Hells Canyon Complex consists of three dams, Brownlee, Oxbow, and Hells Canyon. Brownlee, at the upstream end, contains a large reservoir and controls flow to the lower dams. IPCo's participation in the Water Budget could affect the level of the Brownlee Reservoir and flows downstream of the Hells Canyon Complex on the Snake River. In light of this, Bonneville Power Administration (BPA) and IPCo contracted with the consulting firm of CH2!4 Hill to study the potential changes that could occur to the environment. The Environmental Investigation (EI) takes into account concerns that were expressed by the public at a series of public meetings held in the Snake River area during June 1983 and again during September 1984. Existing information and consultations with agencies which have management responsibilities in the project area formed the basis for the data used in the EI

  19. Liquid-filled Canyons on Titan

    NASA Astrophysics Data System (ADS)

    Poggiali, Valerio; Mastrogiuseppe, Marco; Hayes, Alexander; Seu, Roberto; Birch, Samuel; Lorenz, Ralph; Grima, Cyril; Kargel, Jeffrey; Hofgartner, Jason

    2016-04-01

    During a close flyby, Cassini's RADAR altimeter observed a system of channels pertaining to the Vid Flumina system that drain into Titan's Ligeia Mare. While SAR images have been used to identify fluvial valleys in networks that extend for hundreds of kilometers, they can't directly prove the presence and/or physical extent of liquid channels filling them. Analysis of altimeter echoes shows that the channels are located in deep (~500 m) canyons and have strongly specular surface reflections that indicate they are currently liquid-filled. Liquid elevations in Vid Flumina and its lower tributaries are at the same level of Ligeia Mare to within the altimeter's vertical accuracy of ~15m, which is a function of both the RADAR instrument as well as the precision of Cassini's reconstructed ephemeris. Specular reflections are also observed in higher order tributaries that occur hundred meters above the level of Ligeia Mare, consistent with drainage feeding into the main channel system.

  20. Pollen taphonomy in a canyon stream

    NASA Astrophysics Data System (ADS)

    Fall, Patricia L.

    1987-11-01

    Surface soil samples from the forested Chuska Mountains to the arid steppe of the Chinle Valley, Northeastern Arizona, show close correlation between modern pollen rain and vegetation. In contrast, modern alluvium is dominated by Pinus pollen throughout the canyon; it reflects neither the surrounding floodplain nor plateau vegetation. Pollen in surface soils is deposited by wind; pollen grains in alluvium are deposited by a stream as sedimentary particles. Clay-size particles correlate significantly with Pinus, Quercus, and Populus pollen. These pollen types settle, as clay does, in slack water. Chenopodiaceae- Amaranthus, Artemisia, other Tubuliflorae, and indeterminate pollen types correlate with sand-size particles, and are deposited by more turbulent water. Fluctuating pollen frequencies in alluvial deposits are related to sedimentology and do not reflect the local or regional vegetation where the sediments were deposited. Alluvial pollen is unreliable for reconstruction of paleoenvironments.

  1. Compositional range in the Canyon Diablo meteoroid

    NASA Astrophysics Data System (ADS)

    Wasson, John T.; Ouyang, Xinwei

    1990-11-01

    The compositional range within the Canyon Diablo (CD) iron meteorites associated with the formation of the Meteor Crater (Arizona) was examined, using the INAA to analyze a set of CD samples consisting of nine irons collected within 7 km of the Meteor Crater, four Arizona IAB irons that were identified by Wasson (1968) as transported CD fragments, and irons from Las Vegas (Nevada) and Moab (Utah) that Buchwald (1975) suggested to be transported CD fragments. Results show that the irons named Helt Township, Idaho, Las Vegas, Mamaroneck, Moab, and Pulaski County are, most likely, mislabeled CD specimens. On the other hand, meteorites named Alexander County, Allan Hills A77283, Ashfork, Fairfield, and Rifle are identified as compositionally distinct independent falls.

  2. Compositional range in the Canyon Diablo meteoroid

    NASA Technical Reports Server (NTRS)

    Wasson, John T.; Ouyang, Xinwei

    1990-01-01

    The compositional range within the Canyon Diablo (CD) iron meteorites associated with the formation of the Meteor Crater (Arizona) was examined, using the INAA to analyze a set of CD samples consisting of nine irons collected within 7 km of the Meteor Crater, four Arizona IAB irons that were identified by Wasson (1968) as transported CD fragments, and irons from Las Vegas (Nevada) and Moab (Utah) that Buchwald (1975) suggested to be transported CD fragments. Results show that the irons named Helt Township, Idaho, Las Vegas, Mamaroneck, Moab, and Pulaski County are, most likely, mislabeled CD specimens. On the other hand, meteorites named Alexander County, Allan Hills A77283, Ashfork, Fairfield, and Rifle are identified as compositionally distinct independent falls.

  3. Grant Canyon oil field, Nye County, Nevada

    SciTech Connect

    Veal, H.K.; Duey, H.D.; Bortz, L.C.; Foster, N.H.

    1987-08-01

    The Grant Canyon field is located on the east side of Railroad Valley, 8 mi south of the Eagle Springs oil field. The discovery well, 1 Grant Canyon Unit (SW 1/4 NW 1/4, Sec. 21, T7S, R57E), was completed by Northwest Exploration Co. on September 11, 1983, flowing 1816 BOPD from the Devonian Simonson(.) dolomite (4374-4448 ft). Two additional wells have been completed in the field. Cumulative oil production through December 31, 1986, is 5,260,430 bbl of oil. During December 1986, wells 3 and 4 flowed an average of 5189 BOPD. Well 4 averaged 4065 BOPD for a recent monthly total. The discovery well (1) has been shut-in. The productive area is about 240 acres. The trap is a high fault block in the boundary fault zone that separates Railroad Valley from the Grant Range to the east. The Devonian Simonson(.) reservoir is an intensely fractured, vuggy dolomite with some intercrystalline porosity. The top seal is the Tertiary valley fill which unconformably overlies the Simonson(.) dolomite. The oil column is about 400 ft thick and the field apparently has an active water drive, inasmuch as the 1 Unit had to be shut-in because of water production. The oil is black, 26/sup 0/ API gravity, a pour point of 10/sup 0/F and 0.5% sulfur. Estimated ultimate recoverable oil reserves are 13,000,000 bbl of oil. The adjacent Bacon Flat field is a one-well field (SW 1/4 SW 1/4, Sec. 17, T7N, R57E) that was completed by Northwest Exploration Co. on July 5, 1981, for 200 BOPD and 1050 BWPD from the Devonian Guilmette(.) limestone (5316-5333 ft). Cumulative production through December 31, 1986, is 209,649 bbl of oil, and this well averaged 215 BOPD during December 1986.

  4. Recent Canyon Heads at the Bosphorus Outlet

    NASA Astrophysics Data System (ADS)

    Lericolais, G.; Le Drezen, E.; Nouze, H.; Gillet, H.; Ergun, M.; Cific, G.; Avci, M.; Dondurur, D.; Okay, S.

    2002-12-01

    The Black and Marmara Seas have witnessed increased scientific interest in last decade due to improved cooperation between the riparian countries and western scientific institutions but also due to the controversy existing about the origin of the reconnection of the Black Sea and Mediterranean seas after the last Glacial Maximum and its ensuing sea level rise. The Black Sea is linked to the global ocean only through the Bosphorus-Dardanelles system of straits. The Bosphorus is narrow (0.76 to 3.6 km wide) and shallow (32 m) at the sill, restricting the two-way water exchange between the brackish Black Sea and the very saline Mediterranean Sea. The Bosphorus sill was responsible for the behaviour of the Black Sea during the global glaciations and deglaciations, during which the Black Sea level followed the global sea level changes as long as they were higher than the sill. When global sea level was lower than the Bosphorus sill the variations of the Black Sea level reflected specific regional climate conditions without being coupled to the ocean changes. Recent studies suggest that a rapid flooding event may have occurred in the Black Sea during the Holocene. In 1998, a French-Romanian survey collected 4500 km of high-resolution seismic profiles, multibeam bathymetry, and sediment cores on the northern margin of the Black Sea where the shelf is sufficiently wide to preserve ancient shorelines in the vicinity of the shelf edge. If rapid flooding occurred through the Bosphorus Strait to drown these shorelines, it should have created a cataract. In August 2002, the French research vessel "Le Suroit" equipped with a EM 300 multibeam echosounder and a TritonElics Chirp Sonar mapped the Bosphorus outlet at the shelf edge. The results show a large retrogressive canyon deeply incised into the shelf which can be followed landward towards the Bosphorus outlet. Coring on the shelf and in the canyon revealed mega-ripples of shell debris of recent origin.

  5. Bridge 213, view looking south in Lapwai Canyon at Milepost ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Bridge 21-3, view looking south in Lapwai Canyon at Milepost 21.42 - Camas Prairie Railroad, Second Subdivision, From Spalding in Nez Perce County, through Lewis County, to Grangeville in Idaho County, Spalding, Nez Perce County, ID

  6. INTERIOR VIEW OF GLINES CANYON POWERHOUSE FROM TOP OF ENTRANCE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW OF GLINES CANYON POWERHOUSE FROM TOP OF ENTRANCE STAIRS. PHOTO BY JET LOWE, HAER, 1995. - Elwha River Hydroelectric System, Glines Hydroelectric Dam & Plant, Port Angeles, Clallam County, WA

  7. 1. GENERAL VIEW OF SHOSHONE HYDROELECTRIC PLANT IN GLENWOOD CANYON, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. GENERAL VIEW OF SHOSHONE HYDROELECTRIC PLANT IN GLENWOOD CANYON, VIEW TO THE NORTHEAST ALONG U.S. 6 AND THE COLORADO RIVER. - Shoshone Hydroelectric Plant Complex, 60111 U.S. Highway 6, Garfield County, CO

  8. View of Nevada side of Colorado River Canyon showing US ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of Nevada side of Colorado River Canyon showing US 93, Visitor Center parking lot, transmission lines, and static towers in background, view west - Hoover Dam, Spanning Colorado River at Route 93, Boulder City, Clark County, NV

  9. View of the Colorado River Canyon form the Nevada side ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of the Colorado River Canyon form the Nevada side showing the Nevada rim towers and portions of US 93, view south - Hoover Dam, Spanning Colorado River at Route 93, Boulder City, Clark County, NV

  10. View of Nevada side of Colorado River Canyon showing US ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of Nevada side of Colorado River Canyon showing US 93 in foreground, transmission towers and static towers in background, view west - Hoover Dam, Spanning Colorado River at Route 93, Boulder City, Clark County, NV

  11. View of Nevada side of Colorado River Canyon taken from ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of Nevada side of Colorado River Canyon taken from Lower Portal Road looking up towards area where new bridge will be located, view northwest - Hoover Dam, Spanning Colorado River at Route 93, Boulder City, Clark County, NV

  12. View of the Colorado River Canyon showing lower portal road ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of the Colorado River Canyon showing lower portal road in background taken from the rim of Hoover Dam, view south - Hoover Dam, Spanning Colorado River at Route 93, Boulder City, Clark County, NV

  13. View of Arizona side of Colorado River Canyon taken from ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of Arizona side of Colorado River Canyon taken from Lower Portal Road looking up towards area where new bridge will be located, view northeast - Hoover Dam, Spanning Colorado River at Route 93, Boulder City, Clark County, NV

  14. 78 FR 60693 - Establishment of the Ballard Canyon Viticultural Area

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-02

    ... Federal Register on January 16, 2013 (78 FR 3370), proposing to establish the Ballard Canyon viticultural... approximately 0.25 mile to the intersection of Chalk Hill Road and an unnamed, light- duty road known locally...

  15. View of Inverted Siphon crossing Hot Water (or White) Canyon. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of Inverted Siphon crossing Hot Water (or White) Canyon. Looking northeast - Childs-Irving Hydroelectric Project, Irving System, Inverted Siphon, Forest Service Road 708/502, Camp Verde, Yavapai County, AZ

  16. 36 CFR 7.70 - Glen Canyon National Recreation Area.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Juan River upstream of Clay Hills pullout. (iv) On the Escalante River upstream of Coyote Creek. (v) On... in excess of flat wake speed on the Escalante River from Cow Canyon to Coyote Creek. (3)...

  17. 36 CFR 7.70 - Glen Canyon National Recreation Area.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Juan River upstream of Clay Hills pullout. (iv) On the Escalante River upstream of Coyote Creek. (v) On... in excess of flat wake speed on the Escalante River from Cow Canyon to Coyote Creek. (3)...

  18. 36 CFR 7.70 - Glen Canyon National Recreation Area.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Juan River upstream of Clay Hills pullout. (iv) On the Escalante River upstream of Coyote Creek. (v) On... in excess of flat wake speed on the Escalante River from Cow Canyon to Coyote Creek. (3)...

  19. 36 CFR 7.70 - Glen Canyon National Recreation Area.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Juan River upstream of Clay Hills pullout. (iv) On the Escalante River upstream of Coyote Creek. (v) On... in excess of flat wake speed on the Escalante River from Cow Canyon to Coyote Creek. (3)...

  20. 36 CFR 7.70 - Glen Canyon National Recreation Area.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Juan River upstream of Clay Hills pullout. (iv) On the Escalante River upstream of Coyote Creek. (v) On... in excess of flat wake speed on the Escalante River from Cow Canyon to Coyote Creek. (3)...

  1. 14. MAIN CANAL CANAL CHECKGATES, JUST BELOW DARK CANYON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. MAIN CANAL - CANAL CHECKGATES, JUST BELOW DARK CANYON SIPHON, VIEW TO NORTHEAST - Carlsbad Irrigation District, Main Canal, 4 miles North to 12 miles Southeast of Carlsbad, Carlsbad, Eddy County, NM

  2. VIEW TO THE SOUTH OVER CAJON CANYON THROUGH BLOOMING YUCCA, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW TO THE SOUTH OVER CAJON CANYON THROUGH BLOOMING YUCCA, TOWARDS THE BNSF RAILROAD TRACKS. 124 - Burlington Northern Santa Fe Railroad, Cajon Subdivision, Between Cajon Summit and Keenbrook, Devore, San Bernardino County, CA

  3. 37. PRATER CANYON AND CIVILIAN CONSERVATION CORPS CAMP SITE FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    37. PRATER CANYON AND CIVILIAN CONSERVATION CORPS CAMP SITE FROM PRATER GRADE, FACING E. SAME CAMERA LOCATION AS No. 35 AND No. 36. - Mesa Verde National Park Main Entrance Road, Cortez, Montezuma County, CO

  4. 3. VIEW OF DIABLO CANYON LOOKING DOWNSTREAM FROM THE VALVE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. VIEW OF DIABLO CANYON LOOKING DOWNSTREAM FROM THE VALVE HOUSE AT ELEVATION 1044, 1989. - Skagit Power Development, Diablo Dam, On Skagit River, 6.9 miles upstream from Newhalem, Newhalem, Whatcom County, WA

  5. A view in Lapwai Canyon at Milepost 18 of the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    A view in Lapwai Canyon at Milepost 18 of the grade cut through basalt - Camas Prairie Railroad, Second Subdivision, From Spalding in Nez Perce County, through Lewis County, to Grangeville in Idaho County, Spalding, Nez Perce County, ID

  6. Flow Focusing as a Control on the Width of Canyons Formed by Outburst Floods

    NASA Astrophysics Data System (ADS)

    Lapotre, M. G.; Lamb, M. P.; Halliday, C. K.

    2012-12-01

    Spectacular canyons exist on the surfaces of Earth and Mars that were carved by ancient outburst megafloods. These canyons often have steep headwalls and were eroded into jointed rock. This suggests that canyon formation is driven by upstream retreat of waterfalls through toppling failure. Discharge reconstructions remain difficult, however, because we do not understand quantitatively the links between canyon formation and canyon morphology. Here we propose that the width of canyon headwalls is set by the shear stress distribution around the rim of the canyon, which governs the propensity for toppling failure, and that this distribution is controlled by focusing of flood water into the canyon head. To test this hypothesis, we performed a series of numerical simulations of 2-D, depth-averaged, turbulent flow using the hydraulic numerical modeling suite ANUGA Hydro and mapped the shear stresses along the rim of canyons of various geometries. The numerical simulations were designed to explore three dimensionless variables: the aspect ratio of the canyon (length normalized by width), the canyon width relative to the normal flow depth, and the Froude number. Preliminary results show that flow focusing at the head of a canyon can lead to heightened shear stresses there compared to the sides of the canyon. Flow focusing is most efficient for subcritical flows with large canyon aspect ratios, suggesting that canyons grow in all directions until they reach a critical length which depends on the Froude number only. Canyons longer than this critical length maintain a uniform width during canyon formation. Earth-analog canyons, where flood depths were constrained from previous paleo-hydraulic studies, show good agreement with our numerical predictions, suggesting that flow focusing may set the width of canyons during megafloods. Model results allow a link between process and form that will enable us to constrain better flood discharges on Earth and Mars, where other robust

  7. H CANYON PROCESSING IN CORRELATION WITH FH ANALYTICAL LABS

    SciTech Connect

    Weinheimer, E.

    2012-08-06

    Management of radioactive chemical waste can be a complicated business. H Canyon and F/H Analytical Labs are two facilities present at the Savannah River Site in Aiken, SC that are at the forefront. In fact H Canyon is the only large-scale radiochemical processing facility in the United States and this processing is only enhanced by the aid given from F/H Analytical Labs. As H Canyon processes incoming materials, F/H Labs provide support through a variety of chemical analyses. Necessary checks of the chemical makeup, processing, and accountability of the samples taken from H Canyon process tanks are performed at the labs along with further checks on waste leaving the canyon after processing. Used nuclear material taken in by the canyon is actually not waste. Only a small portion of the radioactive material itself is actually consumed in nuclear reactors. As a result various radioactive elements such as Uranium, Plutonium and Neptunium are commonly found in waste and may be useful to recover. Specific processing is needed to allow for separation of these products from the waste. This is H Canyon's specialty. Furthermore, H Canyon has the capacity to initiate the process for weapons-grade nuclear material to be converted into nuclear fuel. This is one of the main campaigns being set up for the fall of 2012. Once usable material is separated and purified of impurities such as fission products, it can be converted to an oxide and ultimately turned into commercial fuel. The processing of weapons-grade material for commercial fuel is important in the necessary disposition of plutonium. Another processing campaign to start in the fall in H Canyon involves the reprocessing of used nuclear fuel for disposal in improved containment units. The importance of this campaign involves the proper disposal of nuclear waste in order to ensure the safety and well-being of future generations and the environment. As processing proceeds in the fall, H Canyon will have a substantial

  8. 1. 'SANTA ANA RIVER IN SANTA ANA CANYON. ORANGE COUNTY.' ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. 'SANTA ANA RIVER IN SANTA ANA CANYON. ORANGE COUNTY.' This is an oblique aerial view to the northeast taken from the northeast extremity of the canyon, showing, in the middle distance, the confluence of Chino Creek and the Santa Ana River, site of the future Prado Dam. File number written on negative: R & H 80 026. - Prado Dam, Santa Ana River near junction of State Highways 71 & 91, Corona, Riverside County, CA

  9. CHAMA RIVER CANYON WILDERNESS AND CONTIGUOUS ROADLESS AREA, NEW MEXICO.

    USGS Publications Warehouse

    Ridgley, Jennie L.; Light, Thomas D.

    1984-01-01

    Results of mineral surveys indicate that the Chama River Canyon Wilderness and contiguous roadless area in new Mexico have a probable mineral-resource potential for copper with associated uranium and silver. Gypsum occurs throughout the area, exposed in the canyon walls. Further study of the wilderness should concentrate on exploratory drilling to test the oil and gas potential of Pennsylvanian strata and evaluate vanadium anomalies in the Todilto as a prospecting guide for locating uranium.

  10. B-Plant Canyon Ventilation Control System Description

    SciTech Connect

    MCDANIEL, K.S.

    1999-08-31

    Project W-059 installed a new B Plant Canyon Ventilation System. Monitoring and control of the system is implemented by the Canyon Ventilation Control System (CVCS). This document describes the CVCS system components which include a Programmable Logic Controller (PLC) coupled with an Operator Interface Unit (OIU) and application software. This document also includes an Alarm Index specifying the setpoints and technical basis for system analog and digital alarms.

  11. Safety Evaluation for Packaging (onsite) T Plant Canyon Items

    SciTech Connect

    OBRIEN, J.H.

    2000-07-14

    This safety evaluation for packaging (SEP) evaluates and documents the ability to safely ship mostly unique inventories of miscellaneous T Plant canyon waste items (T-P Items) encountered during the canyon deck clean off campaign. In addition, this SEP addresses contaminated items and material that may be shipped in a strong tight package (STP). The shipments meet the criteria for onsite shipments as specified by Fluor Hanford in HNF-PRO-154, Responsibilities and Procedures for all Hazardous Material Shipments.

  12. Brighty, donkeys and conservation in the Grand Canyon.

    PubMed

    Wills, John

    2006-09-01

    The Grand Canyon is a vast place. It is almost incomprehensible in size. And yet it can also seem strangely crowded. Millions of tourists flock to the Grand Canyon in northern Arizona every year. In 1999, almost 5 million people visited, the highest figure in Canyon history. And each one of them expected to see a wild, free and untrammelled landscape. Despite the obvious natural resources, this expectation has proved anything but easy to satisfy. The US National Park Service (NPS), responsible for the management of most large North American parks (along with several historic sites and museums), has struggled to make or keep the canyon "grand". Park rangers have grappled with a multitude of issues during the past century, including automobile congestion, drying of the Colorado River and uranium mining inside the park. Conservation has posed a unique set of challenges. On a fundamental level, "restoring" the Grand Canyon to its "original" wilderness setting has proved intensely problematic. In the field of wildlife management, restoring the Canyon to its pre-Columbian splendour has entailed some tough decisions--none more so than a 1976 plan to eliminate a sizeable population of feral burros (wild donkeys) roaming the preserve, animals classified as exotics by the NPS. PMID:16904748

  13. Submarine canyons: multiple causes and long-time persistence

    SciTech Connect

    Shepard, F.P.

    1981-06-01

    Submarine canyons are of composite origin and that many of the hypotheses suggested in the past were partly correct but did not appreciate that coordination of other processes was required. Thus there is growing evidence that, in the history of many canyons, there was a period in which subaerial erosion was an important precursor, but that present features are predominantly the result of marine erosion. Those advocating turbidity currents as the unique cause of canyons failed to appreciate that debris flows down the incipient valleys, as well as other types of landslides, could be an almost equally important factor in marine erosion. The great effect of biologic activity on the rock walls of incipient canyons has been almost completely neglected in explanations, and various types of currents such as those of the tides have been left largely out of the picture. Perhaps the most important feature absent in these various hypotheses has been the realization that canyons may well be the result of a long period of formation, much longer than the short episodes of Pleistocene glacial sea-level lowering usually considered explanation enough of these giant features which commonly cut into hard crystalline rock. New information is showing that the canyons may date back to at least the Cretaceous. (JMT)

  14. 2008 High-Flow Experiment at Glen Canyon Dam Benefits Colorado River Resources in Grand Canyon National Park

    USGS Publications Warehouse

    Melis, Theodore S.; Topping, David J.; Grams, Paul E.; Rubin, David M.; Wright, Scott A.; Draut, Amy E.; Hazel, Joseph E., Jr.; Ralston, Barbara E.; Kennedy, Theodore A.; Rosi-Marshall, Emma; Korman, Josh; Hilwig, Kara D.; Schmit, Lara M.

    2010-01-01

    On March 5, 2008, the Department of the Interior began a 60-hour high-flow experiment at Glen Canyon Dam, Arizona, to determine if water releases designed to mimic natural seasonal flooding could be used to improve downstream resources in Glen Canyon National Recreation Area and Grand Canyon National Park. U.S. Geological Survey (USGS) scientists and their cooperators undertook a wide range of physical and biological resource monitoring and research activities before, during, and after the release. Scientists sought to determine whether or not high flows could be used to rebuild Grand Canyon sandbars, create nearshore habitat for the endangered humpback chub, and benefit other resources such as archaeological sites, rainbow trout, aquatic food availability, and riverside vegetation. This fact sheet summarizes research completed by January 2010.

  15. Is Canyon Width a Diagnostic Indicator of the Discharge of Megafloods on Earth and Mars?

    NASA Astrophysics Data System (ADS)

    Lapotre, M. G.; Lamb, M. P.

    2013-12-01

    On Earth, large floods have carved steep-walled and amphitheater-headed canyons from the Pleistocene (e.g. Box Canyon, ID) through the Holocene (e.g. Asbyrgi Canyon, Iceland), to historic times (e.g. Canyon Lake Gorge, TX). The geologic record on Mars suggests that similar floods have carved canyons by waterfall retreat about 3.5 billion years ago, when the red planet was wetter and possibly warmer. We currently lack robust paleo-hydraulic tools to reconstruct the discharge of ancient floods, especially on Mars where sediment sizes are obscured from observation. To address this issue, we hypothesize that the width of canyon escarpment is controlled by the hydraulics of the canyon-carving flood due to focusing of the flood into the canyon head. We compiled field data from multiple canyons and floods on Earth and Mars and show that there is a correlation between estimated flood discharge and canyon headwall width. To explore what sets this relationship, we identified five important parameters using dimensional analysis: the Froude number, the ratio of backwater length to canyon length, the ratio of backwater length to flood width, the ratio of canyon width to flood width, and the topographic slope upstream of the canyon. We used the hydraulic numerical modeling suite ANUGA to simulate overland flow over different canyon geometries and flood parameters to systematically explore the relative bed shear stresses along the canyon rim as a metric for flow focusing. Results show that canyons that exceed a certain length, scaling with the hydraulic backwater length, have shear stresses at their heads that are significantly higher than near the canyon mouth. Shear stresses along the rim of the canyon sidewalls are limited, in comparison to stresses along the canyon head, when the flood width is of the order of the backwater length. Flow focusing only occurs for subcritical flow. Together, these results suggest that canyons may only grow from a perturbation that is large

  16. SRTM Anaglyph: Pinon Canyon region, Colorado

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Erosional features are prominent in this view of southern Colorado taken by the Shuttle Radar Topography Mission (SRTM). The area covers about 20,000square kilometers and is located about 50 kilometers south of Pueblo, Colorado. The prominent mountains near the left edge of the image are the Spanish Peaks, remnants of a 20 million year old volcano. Rising 2,100 meters (7,000 feet) above the plains to the east, these igneous rock formations with intrusions of eroded sedimentary rock historically served as guiding landmarks for travelers on the Mountain Branch of the Santa Fe Trail.

    Near the center of the image is the Pinon Canyon Maneuver Site, a training area for soldiers of the U.S. Army from nearby Fort Carson. The site supports a diverse ecosystem with large numbers of big and small game, fisheries, non-game wildlife, forest, range land and mineral resources. It is bounded on the east by the dramatic topography of the Purgatoire River Canyon, a 100 meter (328 feet) deep scenic red canyon with flowing streams, sandstone formations and exposed geologic processes.

    This anaglyph was produced by first shading a preliminary SRTM elevation model. The stereoscopic effect was then created by generating two differing perspectives, one for each eye. When viewed through special glasses, the result is a vertically exaggerated view of the Earth's surface in its full three dimensions. Anaglyph glasses cover the left eye with a red filter and cover the right eye with a blue filter.

    Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR)that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast

  17. Regional depositional history of the Miocene-Pleistocene Louisiana Slope, Green Canyon and Mississippi Canyon

    SciTech Connect

    Risch, D.L.; Chowdhury, A.N.; Hannan, A.E.

    1994-09-01

    A regional sequence-stratigraphic analysis was recently completed for the Tertiary slope sediments in Green Canyon, Ewing Bank, and Mississippi Canyon to provide a chronostratigraphic framework for basin reconstructions and predict lithofacies distributions of reservoir and seal rocks. Sixteen third-order sequences of lowstand deep-water deposits were interpreted for the middle Miocene-Pleistocene section. Thirty regional lithofacies maps were made of predominantly lowstand deposits showing the distribution of shale and sand-prone sediments, slumping, channel levee systems, and fan lobes based on distinctive seismic reflection and well log patterns. These maps were combined with isochrons of selected sequences to identify depositional fairways, depocenters, and paleosalt positions that constantly changed through time. Depositional trends were principally north to south but were also observed to be east-west as salt modified the gradient on the gently dipping slope. In some cases, the structural and stratigraphic trends could be projected under allochthonous tabular salt. Miocene channel and fan lobe sands were found concentrated on the middle-lower paleoslope across the study area. The sedimentation rate doubled (0.7 m/1000 yr) in the early-middle Pliocene, which caused large-scale salt movements and trapped sand-prone turbidites along the upper-middle slope. A four-fold decrease in sediment influx during the late Pliocene-early Pleistocene produced a stacked condensed section of four sequences over the eastern Louisiana slope. A return to rapid sedimentation (up to 2.1 m/1000 yr.) during the Pleistocene reactivated salt movements and depocenters in the Green Canyon, Ewing Bank, and Mississippi Trough areas.

  18. Regional depositional history of the miocene-pleistocene Louisiana slope, Green Canyon-Mississippi Canyon

    SciTech Connect

    Risch, D.L.; Choudhury, A.N.; Hannan, A.E.

    1994-12-31

    A regional sequence stratigraphic analysis was recently completed for the Tertiary slope sediments in Green Canyon, Ewing Bank, and Mississippi Canyon to provide a chronostratigraphic framework for basin reconstructions and to predict lithofacies distributions of reservoir and seal rocks. Sixteen third-order sequences of lowstand deepwater deposits were interpreted for the Middle Miocene-Pleistocene section. Thirty regional lithofacies maps were made of predominantly lowstand deposits showing the distribution of shale and sand-prone sediments, slumps, channel/levee systems, and fan lobes based on distinctive seismic reflection and well log patterns. These maps were combined with isochrons of selected sequences to identify depositional fairways, depocenters, and paleosalt positions that constantly changed through time. Depositional trends were principally north-south but were also observed to be east-west as salt modified the gradient on the gently dipping slope. In some cases, the structural and stratigraphic trends could be projected under allochthonous tabular salt. Miocene channel and fan lobe sands were concentrated on the middle-lower paleoslope across the study area. The sedimentation rate doubled to 2.3 m/1000 yr in the early Middle Pliocene, which caused large-scale salt movements and trapped sand-prone turbidities along the upper to middle slope. A four-fold decrease in sediment influx during the Late Pliocene-Early Pleistocene produced a stacked condensed section of four sequences over the eastern Louisiana slope. A return to rapid sedimentation (up to 6.9 m/1,000 yr) during the Late Pleistocene reactivated salt movements and depocenters in the Green Canyon, Ewing Bank, and Mississippi Trough areas.

  19. Metamorphic signature of the Gneiss Canyon Shear Zone, Lower Granite Gorge, Grand Canyon, Arizona

    SciTech Connect

    Robinson, K.; Williams, M.L. . Dept. of Geology and Geography)

    1992-01-01

    The Proterozoic orogen in Arizona consists of structural blocks separated by NE trending shear zones. The Gneiss Canyon Shear Zone (GCSZ) is important because it appears to define in part the boundary between the amphibolite facies Yavapai Province and the granulite facies Mojave Province. An early NW striking foliation is clearly visible in many samples from the Lower Granite Gorge (LGG). In Travertine Canyon, east of the GCSZ, pelitic schists contain And-Sil-Crd-Bi and Gar-Sil-Sta-Bi. Mafic rocks exhibit complex phase relations between cummingtonite, anthophyllite, gedrite, garnet, and cordierite. The coexistence of cordierite-cummingtonite is indicative of low pressure metamorphism. Microprobe analyses of garnets reveal prograde growth zoning profiles. Temperature and pressure estimates of peak metamorphism are 550--600 C and 3 kb. Just east of the GCSZ, pelitic assemblages contain Gar-Bi [+-] Sil [+-] Mus, and garnet zoning profiles are flat in the cores. In Spencer Canyon, west of the GCSZ, samples commonly contain Gar-Bi-Sil-Crd, and in many samples cordierite is being replaced by sillimanite. Thermobarometric calculations yield temperature and pressure estimates of 650 C and 3.5 kb. Mineral assemblages and quantitative thermobarometry suggest higher peak metamorphic temperature west of the GCSZ but relatively constant pressures across the LGG. On the east side of the GCSZ, temperatures increase toward the Shear Zone, probably due to the presence of extensive dikes, pods, and veins of variably deformed granite. Peak mineral assemblages are syntectonic with respect to the NE-striking GCSZ fabric. If a suture exists in the LGG, the GCSZ fabrics apparently reflect post-accretionary tectonism, with accretion occurring prior to the peak of metamorphism.

  20. The bathypelagic community of Monterey Canyon

    NASA Astrophysics Data System (ADS)

    Robison, Bruce H.; Sherlock, Rob E.; Reisenbichler, Kim R.

    2010-08-01

    We used a quiet, deep-diving remotely operated vehicle (ROV) to conduct oblique, quantitative video transects of the bathypelagic fauna at depths between 1000 and 3500 m at a site over the Monterey Submarine Canyon, in the eastern North Pacific off central California. Fifteen such dives were made over a two-year period. Analyses of the video data revealed a rich and diverse fauna dominated by gelatinous animals. In particular, the holopelagic polychaete Poeobius meseres was an important detritivore in the upper half of this depth range. As Poeobius abundance eventually declined with increasing depth, larvacean abundance increased. In contrast, the relative numbers of crustacean grazers, principally copepods and mysids, remained relatively constant with depth. Medusae were most abundant and most diverse among the gelatinous predators, which also included ctenophores, and siphonophores. Chaetognaths occurred chiefly in the upper half of the depth range. While there is considerable overlap, the bathypelagic fauna can be separated into upper (1000 to 2300 m) and lower (2400 to 3300 m) zones, as well as a distinct and populous benthic boundary layer. Within the overall bathypelagic community is a complex web of trophic links involving gelatinous predators that feed on both gelatinous and hard-bodied particle feeders, as well as on each other. The amount of organic carbon contained in this jelly web is substantial but its ecological fate is uncertain. The assessment of bathypelagic communities will be important for establishing baselines to conserve deep pelagic biodiversity within high-seas protected areas.

  1. Circulation in Vilkitsky Canyon in the eastern Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Janout, Markus; Hölemann, Jens

    2016-04-01

    The eastern Arctic Ocean is characterized by steep continental slopes and vast shallow shelf seas that receive a large amount of riverine freshwater from some of the largest rivers on earth. The northwestern Laptev Sea is of particular interest, as it is a freshwater transport pathway for a swift surface-intensified current from the Kara Sea toward the Arctic Basin, as was recently highlighted by high-resolution model studies. The region features complex bathymetry including a narrow strait and a large submarine canyon, strong tides, polynyas and severe sea ice conditions throughout much of the year. A year-long mooring record as well as detailed hydrographic shipboard measurements resulted from summer expeditions to the area in 2013 and 2014, and now provide a detailed picture of the region's water properties and circulation. The hydrography is characterized by riverine Kara Sea freshwater near the surface in the southern part of the canyon, while warmer (~0°C) saline Atlantic-derived waters dominate throughout the canyon at depths >150m. Cold shelf-modified waters near the freezing point are found along the canyon edges. The mean flow at the 300 m-deep mooring location near the southern edge of the canyon is swift (30 cm/s) and oriented eastward near the surface as suggested by numerical models, while the deeper flow follows the canyon topography towards the north-east. Wind-driven deviations from the mean flow coincide with sudden changes in temperature and salinity. This study characterizes the general circulation in Vilkitsky Canyon and investigates its potential as a conduit for upwelling of Atlantic-derived waters from the Arctic Basin to the Laptev Sea shelf.

  2. An Experimental Study of Submarine Canyon Evolution on Continental Slopes

    NASA Astrophysics Data System (ADS)

    Lai, S. Y.; Gerber, T. P.; Amblas, D.

    2013-12-01

    Submarine canyons define the morphology of many continental slopes and are conduits for the transport of sediment from shallow to deep water. Though the origin and evolution of submarine canyons is still debated, there is general agreement that sediment gravity flows play an important role. Here we present results from a simple, reduced-scale sandbox experiment designed to investigate how sediment gravity flows generate submarine canyons. In the experiments, gravity flows were modeled using either sediment-free or turbid saline currents. Unconfined flows were released onto an inclined bed of sand bounded on the downstream end by a movable floor that was incrementally lowered during the course of an experiment to produce an escarpment. This design was developed to represent the growth of relief across the continental slope. To monitor canyon evolution on the slope, we placed an overhead DSLR camera to record vivid time-lapse videos. At the end of each experimental stage we scanned the topography by imaging a series of submerged laser stripes, each projected from a motor-driven transverse laser sheet, onto a calibrated Cartesian coordinate system to produce high resolution bathymetry without draining the ambient water. In areas unaffected by the flows, we observe featureless, angle-of-repose submarine slopes formed by retrogressive breaching processes. In contrast, areas influenced by gravity flows cascading across the shelf break are deeply incised by submarine canyons with well-developed channel networks. Our results show that downslope gravity flows and submarine falling base level are both required to produce realistic canyon morphologies at laboratory scale. Though our mechanism for generating relief may be a rather crude analogue for the processes driving slope evolution, we hope our novel approach can stimulate new questions about the coevolution of canyons and slopes and motivate further experimental work to address them.

  3. Formation of the Grand Canyon 5 to 6 million years ago through integration of older palaeocanyons

    NASA Astrophysics Data System (ADS)

    Karlstrom, Karl E.; Lee, John P.; Kelley, Shari A.; Crow, Ryan S.; Crossey, Laura J.; Young, Richard A.; Lazear, Greg; Beard, L. Sue; Ricketts, Jason W.; Fox, Matthew; Shuster, David L.

    2014-03-01

    The timing of formation of the Grand Canyon, USA, is vigorously debated. In one view, most of the canyon was carved by the Colorado River relatively recently, in the past 5-6 million years. Alternatively, the Grand Canyon could have been cut by precursor rivers in the same location and to within about 200 m of its modern depth as early as 70-55 million years ago. Here we investigate the time of formation of four out of five segments of the Grand Canyon, using apatite fission-track dating, track-length measurements and apatite helium dating: if any segment is young, the old canyon hypothesis is falsified. We reconstruct the thermal histories of samples taken from the modern canyon base and the adjacent canyon rim 1,500 m above, to constrain when the rocks cooled as a result of canyon incision. We find that two of the three middle segments, the Hurricane segment and the Eastern Grand Canyon, formed between 70 and 50 million years ago and between 25 and 15 million years ago, respectively. However, the two end segments, the Marble Canyon and the Westernmost Grand Canyon, are both young and were carved in the past 5-6 million years. Thus, although parts of the canyon are old, we conclude that the integration of the Colorado River through older palaeocanyons carved the Grand Canyon, beginning 5-6 million years ago.

  4. Discovery of two new large submarine canyons in the Bering Sea

    USGS Publications Warehouse

    Carlson, P.R.; Karl, Herman A.

    1984-01-01

    The Beringian continental margin is incised by some of the world's largest submarine canyons. Two newly discovered canyons, St. Matthew and Middle, are hereby added to the roster of Bering Sea canyons. Although these canyons are smaller and not cut back into the Bering shelf like the five very large canyons, they are nonetheless comparable in size to most of the canyons that have been cut into the U.S. eastern continental margin and much larger than the well-known southern California canyons. Both igneous and sedimentary rocks of Eocene to Pliocene age have been dredged from the walls of St. Matthew and Middle Canyons as well as from the walls of several of the other Beringian margin canyons, thus suggesting a late Tertiary to Quaternary genesis of the canyons. We speculate that the ancestral Yukon and possibly Anadyr Rivers were instrumental in initiating the canyon-cutting processes, but that, due to restrictions imposed by island and subsea bedrock barriers, cutting of the two newly discovered canyons may have begun later and been slower than for the other five canyons. ?? 1984.

  5. Sandwave migration in Monterey Submarine Canyon, Central California

    USGS Publications Warehouse

    Xu, J. P.; Wong, F.L.; Kvitek, R.; Smith, D.P.; Paull, C.K.

    2008-01-01

    Repeated high-resolution multibeam bathymetric surveys from 2002 through 2006 at the head of the Monterey Submarine Canyon reveal a sandwave field along the canyon axis between 20 and 250??m water depth. These sandwaves range in wavelength from 20 to 70??m and 1 to 3??m in height. A quantitative measure was devised to determine the direction of sandwave migration based on the asymmetry of their profiles. Despite appreciable spatial variation the sandwaves were found to migrate in a predominantly down-canyon direction, regardless of season and tidal phases. A yearlong ADCP measurement at 250??m water depth showed that intermittent internal tidal oscillations dominated the high-speed canyon currents (50-80??cm/s), which are not correlated with the spring-neap tidal cycle. Observed currents of 50??cm/s or higher were predominantly down-canyon. Applying a simple empirical model, flows of such magnitudes were shown to be able to generate sandwaves of a size similar to the observed ones. ?? 2007 Elsevier B.V. All rights reserved.

  6. Origin of Hot Creek Canyon, Long Valley caldera, California

    SciTech Connect

    Maloney, N.J. . Dept. of Geological Sciences)

    1993-04-01

    Hot Creek has eroded a canyon some thirty meters deep across the Hot Creek rhyolite flows located in the southeastern moat of Long Valley Caldera. Maloney (1987) showed that the canyon formed by headward erosion resulting from spring sapping along hydrothermally altered fractures in the rhyolite, and the capture of Mammoth Creek. This analysis ignored the continuing uplift of the central resurgent dome. Reid (1992) concluded that the downward erosion of the canyon must have kept pace with the uplift. Long Valley Lake occupied the caldera until 100,000 to 50,000 years before present. The elevation of the shoreline, determined by trigonometric leveling, is 2,166 m where the creek enters the canyon and 2,148 m on the downstream side of the rhyolite. The slope of the strand line is about equal to the stream gradient. The hill was lower and the stream gradient less at the time of stream capture. Rotational uplift increased the stream gradient which increased the rate of downward erosion and formed the V-shaped canyon

  7. Geomorphology and Mapping of Canyon Lake Gorge from Flood Events

    NASA Astrophysics Data System (ADS)

    Gunawan, A. P.

    2015-12-01

    A large volume of runoff causes flood that exceed the capacity of flood control reservoir. Canyon Lake Gorge, Canyon Lake, TX was formed as a result of a major erosional event in 2002. A low-pressure system combined with a flow of tropical air hit over central Texas causing precipitation, recent flooding in 2015 has changed the structure of the channel. Here, channel changes in the canyon are evaluated using hydrologic conductivity, ground penetrating radar (GPR), and photogrammetry. Mapping and field reconnaissance will be used to map out changes over the years of when the flood had occurred in the past (1998, 2002, and 2015) as well as to study the flood surrounding Canyon Lake Gorge and Guadalupe River. A demographic survey will be used to analyzed the damage that was caused by the flood and compare the severity of the event. The justification for this is that the Canyon Lake Gorge have a unique formation, geologic time scale before and after the flood has changed. The recent flood in 2015 gives an opportunity to study the changes that is currently occurring.

  8. 77 FR 59607 - Black Canyon Hydro, LLC; Notice of Environmental Site Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-28

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Black Canyon Hydro, LLC; Notice of Environmental Site Review On Wednesday... proposed Black Canyon Hydroelectric Project. All interested participants should meet at 44937...

  9. Software Configuration Management Plan for the B-Plant Canyon Ventilation Control System

    SciTech Connect

    MCDANIEL, K.S.

    1999-08-31

    Project W-059 installed a new B Plant Canyon Ventilation System. Monitoring and control of the system is implemented by the Canyon Ventilation Control System (CVCS). This Software Configuration Management Plan provides instructions for change control of the CVCS.

  10. Directed urban canyons in megacities and its applications in meteorological modeling

    NASA Astrophysics Data System (ADS)

    Samsonov, Timofey; Konstantinov, Pavel; Varentsov, Mikhail

    2015-04-01

    Directed urban canyons study applies object-oriented analysis to extraction of urban canyons and introduces the concept of directed urban canyon which is then experimentally applied in urban meteorological modeling. Observation of current approach to description of urban canyon geometry is provided. Then a new theoretical approach to canyon delineation is presented that allows chaining the spaces between buildings into directed canyons that comprise three-level hierarchy. An original methodology based on triangular irregular network (TIN) is presented that allows extraction of regular and directed urban canyons from cartographic data, estimation of their geometric characteristics, including local and averaged height-width ratio, primary and secondary canyon directions. Obtained geometric properties of canyons are then applied in micro-scale temperature and wind modeling using URB-MOS model and estimation of possible wind accelerations along canyons. Extraction and analysis of directed canyons highly depends on the presence of linear street network. Thus, in the absence of this GIS layer, it should be reconstructed from another data sources. The future studies should give us an answer to the question, where the limits of directed canyons are and how they can be classified further in terms of the street longitudinal shape. For now all computations are performed in separate scripts and programs. We plan to develop comprehensive automation of described methods of urban canyon description in specialized software. The most perspective extension of proposed methodology seemes to be canyon -based analysis which is truely object-oriented. Various geometric properties of micro-, meso- and macro-scale canyons should be investigated and their applicability in urban climate modeling should be assesed. Object-oriented canyon analysis can also be applied in architectural studies, urban morphology, planning and various physical and social aspects that are concerned with human in

  11. Hudson submarine canyon head offshore New York and New Jersey: A physical and geochemical investigation

    NASA Astrophysics Data System (ADS)

    Rona, Peter; Guida, Vincent; Scranton, Mary; Gong, Donglai; Macelloni, Leonardo; Pierdomenico, Martina; Diercks, Arne-R.; Asper, Vernon; Haag, Scott

    2015-11-01

    Hudson Canyon is the largest shelf-sourced canyon system off the east coast of the United States, and hosts a productive ecosystem that supports key fisheries. Here we report the results of a multi-year interdisciplinary study of the geological, geochemical, and physical oceanographic features and processes in the canyon that underpin that ecosystem. High-resolution multi-beam bathymetric and backscatter data show that the contrasting morphology of the two perpendicularly oriented branches at the head of the Hudson Canyon is indicative of different states of geomorphological activity and sediment transport. Tightly spaced ridges and gullies extend perpendicularly towards the canyon axis from the canyon walls. Numerous depressions are found at the base of the canyon walls or along the canyon axis at depths from 300 m to 600 m. Elevated concentrations of dissolved methane in the water column, where the highest density of depressions occur, suggests that methane is actively venting there. The topography and reflective floors of circular depressions in canyon walls and their association with methane maxima suggest that these represent active methane gas release-collapse pockmarks with carbonate floors. Patterns of irregular, low-relief, reflective depressions on the canyon floor may also represent methane release points, either as gas release or cold-seep features. The presence of methane maxima in a region of strong advective currents suggests continuous and substantial methane supply. Hydrographic observations in the canyon show that multiple layers of distinct inter-leaved shelf (cold, fresh) and slope (warm, salty) water masses occupy the head of the canyon during the summer. Their interactions with the canyon and with each other produce shifting fronts, internal waves, and strong currents that are influenced by canyon topography. Strong tidal currents with along-canyon-axis flow shear help to drive the advection, dispersion and mixing of dissolved materials in the

  12. Origin of Izu-Bonin forearc submarine canyons

    SciTech Connect

    Fujioka, Kantaro ); Yoshida, Haruko )

    1990-06-01

    Submarine canyons on the Izu-Bonin forearc are morphologically divided from north to south into four types based on their morphology, long profiles, and seismic profiles: Mikura, Aogashima, Sofu, and Chichijima types, respectively. These types of canyons are genetically different from each other. Mikura group is formed by the faults related to bending of the subducting Philippine Sea Plate. Aogashima type genetically relates to the activity of large submarine calderas that supply large amounts of volcaniclastic material to the consequent forearc slope. The third, Sofu group, is thought to be formed by the large-scale mega mass wasting in relation to the recent movement of the Sofugan tectonic line. The last, Chichijima group, is formed by collision of the Uyeda Ridge and the Ogasawara Plateau on the subducting Pacific Plate with Bonin Arc. Long profiles of four types of submarine canyons also support this.

  13. Small-scale turbidity currents in a big submarine canyon

    USGS Publications Warehouse

    Xu, Jingping; Barry, James P.; Paull, Charles K.

    2013-01-01

    Field measurements of oceanic turbidity currents, especially diluted currents, are extremely rare. We present a dilute turbidity current recorded by instrumented moorings 14.5 km apart at 1300 and 1860 m water depth. The sediment concentration within the flow was 0.017%, accounting for 18 cm/s gravity current speed due to density excess. Tidal currents of ∼30 cm/s during the event provided a "tailwind" that assisted the down-canyon movement of the turbidity current and its sediment plume. High-resolution velocity measurements suggested that the turbidity current was likely the result of a local canyon wall slumping near the 1300 m mooring. Frequent occurrences, in both space and time, of such weak sediment transport events could be an important mechanism to cascade sediment and other particles, and to help sustain the vibrant ecosystems in deep-sea canyons.

  14. 76 FR 23623 - Backcountry Management Plan, Environmental Impact Statement, Grand Canyon National Park, Arizona

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-27

    ... National Park Service Backcountry Management Plan, Environmental Impact Statement, Grand Canyon National... prepare an Environmental Impact Statement for the Backcountry Management Plan, Grand Canyon National Park... for Grand Canyon National Park. This plan will help guide park decisions on protecting natural...

  15. Measuring currents in submarine canyons: technological and scientific progress in the past 30 years

    USGS Publications Warehouse

    Xu, J. P.

    2011-01-01

    The development and application of acoustic and optical technologies and of accurate positioning systems in the past 30 years have opened new frontiers in the submarine canyon research communities. This paper reviews several key advancements in both technology and science in the field of currents in submarine canyons since the1979 publication of Currents in Submarine Canyons and Other Sea Valleys by Francis Shepard and colleagues. Precise placements of high-resolution, high-frequency instruments have not only allowed researchers to collect new data that are essential for advancing and generalizing theories governing the canyon currents, but have also revealed new natural phenomena that challenge the understandings of the theorists and experimenters in their predictions of submarine canyon flow fields. Baroclinic motions at tidal frequencies, found to be intensified both up canyon and toward the canyon floor, dominate the flow field and control the sediment transport processes in submarine canyons. Turbidity currents are found to frequently occur in active submarine canyons such as Monterey Canyon. These turbidity currents have maximum speeds of nearly 200 cm/s, much smaller than the speeds of turbidity currents in geological time, but still very destructive. In addition to traditional Eulerian measurements, Lagrangian flow data are essential in quantifying water and sediment transport in submarine canyons. A concerted experiment with multiple monitoring stations along the canyon axis and on nearby shelves is required to characterize the storm-trigger mechanism for turbidity currents.

  16. 33 CFR 165.1171 - Copper Canyon, Lake Havasu, Colorado River-Regulated Navigation Area.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Copper Canyon, Lake Havasu... Guard District § 165.1171 Copper Canyon, Lake Havasu, Colorado River—Regulated Navigation Area. (a) Location. The following is a regulated navigation area: (1) In the water area of Copper Canyon, Lake...

  17. 33 CFR 165.1171 - Copper Canyon, Lake Havasu, Colorado River-Regulated Navigation Area.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Copper Canyon, Lake Havasu... Guard District § 165.1171 Copper Canyon, Lake Havasu, Colorado River—Regulated Navigation Area. (a) Location. The following is a regulated navigation area: (1) In the water area of Copper Canyon, Lake...

  18. 33 CFR 165.1171 - Copper Canyon, Lake Havasu, Colorado River-Regulated Navigation Area.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Copper Canyon, Lake Havasu... Guard District § 165.1171 Copper Canyon, Lake Havasu, Colorado River—Regulated Navigation Area. (a) Location. The following is a regulated navigation area: (1) In the water area of Copper Canyon, Lake...

  19. 33 CFR 165.1171 - Copper Canyon, Lake Havasu, Colorado River-Regulated Navigation Area.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Copper Canyon, Lake Havasu... Guard District § 165.1171 Copper Canyon, Lake Havasu, Colorado River—Regulated Navigation Area. (a) Location. The following is a regulated navigation area: (1) In the water area of Copper Canyon, Lake...

  20. 33 CFR 165.1171 - Copper Canyon, Lake Havasu, Colorado River-Regulated Navigation Area.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Copper Canyon, Lake Havasu... Guard District § 165.1171 Copper Canyon, Lake Havasu, Colorado River—Regulated Navigation Area. (a) Location. The following is a regulated navigation area: (1) In the water area of Copper Canyon, Lake...

  1. 78 FR 42799 - Glen Canyon Dam Adaptive Management Work Group Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-17

    ... Bureau of Reclamation Glen Canyon Dam Adaptive Management Work Group Meetings AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meeting. SUMMARY: The Glen Canyon Dam Adaptive Management Work... AMWG, a technical work group (TWG), a Grand Canyon Monitoring and Research Center, and...

  2. 76 FR 54487 - Charter Renewal, Glen Canyon Dam Adaptive Management Work Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-01

    ... Bureau of Reclamation Charter Renewal, Glen Canyon Dam Adaptive Management Work Group AGENCY: Bureau of... the Glen Canyon Dam Adaptive Management Work Group. The purpose of the Adaptive Management Work Group... of the Glen Canyon Dam Adaptive Management Work Group is in the public interest in connection...

  3. 78 FR 54482 - Charter Renewal, Glen Canyon Dam Adaptive Management Work Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-04

    ... Bureau of Reclamation Charter Renewal, Glen Canyon Dam Adaptive Management Work Group AGENCY: Bureau of... the Glen Canyon Dam Adaptive Management Work Group. The purpose of the Adaptive Management Work Group... Canyon Dam Adaptive Management Work Group is in the public interest in connection with the performance...

  4. 75 FR 39147 - Establishment of Class E Airspace; Bryce Canyon, UT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-08

    ... Positioning System (GPS) Standard Instrument Approach Procedures (SIAPs) at Bryce Canyon Airport. This will... Bryce Canyon, UT (74 FR 59492). The comments received prompted the FAA on April 26, 2010, to publish in... airspace at Bryce Canyon, UT (75 FR 21532). Interested parties were invited to participate in...

  5. 78 FR 3879 - Ochoco National Forest, Paulina Ranger District; Oregon; Fox Canyon Cluster Allotment Management...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-17

    ... Forest Service Ochoco National Forest, Paulina Ranger District; Oregon; Fox Canyon Cluster Allotment... Ranger District. The Fox Canyon Cluster project area is located approximately 35 miles east of Prineville, south of Big Summit Prairie. The four allotments are Antler, Brush Creek, Fox Canyon, and Gray...

  6. Paleogene canyons of Tethyan margin and their hydrocarbon potential, Czechoslovakia

    SciTech Connect

    Picha, F.J. )

    1991-03-01

    Two Paleogene canyons buried below the Neogene foredeep and the Carpathian thrust belt in Southern Moravia have been outlined by drilling and seismic profiling. The features, as much as 12 km wide and over 1000 m deep, have been traced for 40 km. They are cut into Mesozoic and Paleozoic carbonate and clastic deposits and underlying Precambrian crystalline rocks. The sedimentary fill is made of late Eocene and early oligocene marine deposits, predominantly silty mudstones and siltstones. Sandstones and conglomerates are distributed mainly in the lower axial part of the valleys. Proximal and distal turbidites, grain-flow and debris-flow deposits have been identified in the fill. The common occurrence of slump folds, pebbly mudstones, and chaotic slump deposits indicate that mass movement played a significant role in sediment transport inside the canyons. The canyons are interpreted as being cut by rivers, then submerged and further developed by submarine processes. The organic rich mudstones of the canyon fill are significant source rocks (1-10% TOC). They reached the generative stage only after being tectonically buried below the Carpathian thrust belt in middle Miocene time. Channelized sandstones and proximal turbidities provide reservoirs of limited extent, although more substantial accumulations of sands are possible further downslope at the mouth of these canyons. Several oil fields have been discovered both within the canyon fill and the surrounding rocks. Similar Paleogene valleys may be present elsewhere along the ancient Tethyan margins buried below the Neogene foredeeps and frontal zones of the Alps and Carpathians. Their recognition could prove fruitful in the search for hydrocarbons.

  7. Fluvial erosion of physically modeled abrasion-dominated slot canyons

    NASA Astrophysics Data System (ADS)

    Carter, Carissa L.; Anderson, Robert S.

    2006-11-01

    Abrasion-dominated fluvial erosion generates slot canyons in massive bedrock with intricately undulating walls. Flows in slot canyons are unusual in that the walls comprise a significant portion of the wetted perimeter of the flow during geomorphically effective floods. In Wire Pass, Utah, the upper Paria River incises through massive, crossbedded Navajo Sandstone. Incision in Wire Pass and related slots occurs only during flash floods; paleoflood debris indicates that the width/depth ratios of these flows are at times as low as 1:1. Submeter resolution field mapping of a 20-m length of Wire Pass shows that the wall morphology is a complicated combination of in-phase (meander-like) and out-of-phase (pinch and swell) undulations. In order to investigate evolution of slot canyons and the influence of their wall shapes on flow dynamics, we recorded the evolution of four distinct canyon wall morphologies in a 2.4 m flume box at the St. Anthony Falls Laboratory. In a substrate consisting of ˜ 3:2 mixtures of F110 sand and Plaster of Paris, we molded canyons with in-phase and out-of-phase undulations, and wide (6.5 cm) and narrow (4 cm) straight initial wall profiles. Discharges ranged from 1.4 L/s to 2.9 L/s, and wall and bed morphology were measured at 5 h intervals at 0.5 cm resolution. Results show efficient back-eddy erosion in the undulating canyon walls and related erosional bedforms in all channels created by vortices in the flow. Maximum filaments of velocity are depressed and asymmetric, and the implied shear stress distribution varied in space and time on the channel beds. Flow width/depth ratios strongly influence the flow structure and distribution of shear stress in a slot and appear to be a factor in dictating whether a bedrock channel widens its walls or incises its bed.

  8. Regional economic impacts of Grand Canyon river runners.

    PubMed

    Hjerpe, Evan E; Kim, Yeon-Su

    2007-10-01

    Economic impact analysis (EIA) of outdoor recreation can provide critical social information concerning the utilization of natural resources. Outdoor recreation and other non-consumptive uses of resources are viewed as environmentally friendly alternatives to extractive-type industries. While outdoor recreation can be an appropriate use of resources, it generates both beneficial and adverse socioeconomic impacts on rural communities. The authors used EIA to assess the regional economic impacts of rafting in Grand Canyon National Park. The Grand Canyon region of northern Arizona represents a rural US economy that is highly dependent upon tourism and recreational expenditures. The purpose of this research is twofold. The first is to ascertain the previously unknown regional economic impacts of Grand Canyon river runners. The second purpose is to examine attributes of these economic impacts in terms of regional multipliers, leakage, and types of employment created. Most of the literature on economic impacts of outdoor recreation has focused strictly on the positive economic impacts, failing to illuminate the coinciding adverse and constraining economic impacts. Examining the attributes of economic impacts can highlight deficiencies and constraints that limit the economic benefits of recreation and tourism. Regional expenditure information was obtained by surveying non-commercial boaters and commercial outfitters. The authors used IMPLAN input-output modeling to assess direct, indirect, and induced effects of Grand Canyon river runners. Multipliers were calculated for output, employment, and income. Over 22,000 people rafted on the Colorado River through Grand Canyon National Park in 2001, resulting in an estimated $21,100,000 of regional expenditures to the greater Grand Canyon economy. However, over 50% of all rafting-related expenditures were not captured by the regional economy and many of the jobs created by the rafting industry are lower-wage and seasonal. Policy

  9. Are amphitheater headed canyons indicative of a particular formative process?

    NASA Astrophysics Data System (ADS)

    Ryan, A. J.; Whipple, K. X.; Johnson, J. P.

    2012-12-01

    Tributary canyons with amphitheater-shaped heads have previously been interpreted as evidence for groundwater seepage erosion, particularly in environments where fluvial processes are assumed to be negligible. However, some have questioned whether this canyon morphology is truly diagnostic of a particular formative process. We seek to determine the relative roles of fluvial and groundwater-related processes and the strength of stratigraphic control on the Colorado Plateau through a combination of fieldwork and GIS analysis. Amphitheater valleys may have overhanging or steep-sided headwalls with a semicircular plan-view pattern. It is reasonable to assume that this form is a result of focused erosion at the base of the headwall (i.e. sapping). Two frequently cited agents may lead to undermining: plunge-pool scour at the base of waterfalls and seepage induced weathering and erosion where the groundwater table intersects the land surface. Both processes are enhanced where weaker, less permeable layers underlie stronger cap rock. We conducted preliminary fieldwork in two locations on the Colorado Plateau, where there are many classic examples of amphitheater headed canyons. The Escalante River landscape is highly variable with a range of canyon and valley-head forms, many of which cut through the thick Navajo Sandstone into the underlying shale and sand of the Kayenta Formation. Northeast of Escalante National Monument, at the base of the Henry Mountains, is Tarantula Mesa. The canyons there are also considerably variable, with nearly all containing at least one abrupt amphitheater knickpoint at the valley head or farther downstream. Our observations are presented here with an analysis of the canyon profiles, surrounding topography, and potential structural controls. We have found that nearly all amphitheaters in both locales show signs of groundwater seepage weathering and plausibly seepage erosion. However, many also contain plunge pools and evidence of substantial

  10. Review of the Diablo Canyon probabilistic risk assessment

    SciTech Connect

    Bozoki, G.E.; Fitzpatrick, R.G.; Bohn, M.P.; Sabek, M.G.; Ravindra, M.K.; Johnson, J.J.

    1994-08-01

    This report details the review of the Diablo Canyon Probabilistic Risk Assessment (DCPRA). The study was performed under contract from the Probabilistic Risk Analysis Branch, Office of Nuclear Reactor Research, USNRC by Brookhaven National Laboratory. The DCPRA is a full scope Level I effort and although the review touched on all aspects of the PRA, the internal events and seismic events received the vast majority of the review effort. The report includes a number of independent systems analyses sensitivity studies, importance analyses as well as conclusions on the adequacy of the DCPRA for use in the Diablo Canyon Long Term Seismic Program.

  11. BLANCO MOUNTAIN AND BLACK CANYON ROADLESS AREAS, CALIFORNIA.

    USGS Publications Warehouse

    Diggles, Michael F.; Rains, Richard L.

    1984-01-01

    The mineral survey of the Blanco Mountain and Black Canyon Roadless Areas, California indicated that areas of probable and substantiated mineral-resource potential exist only in the Black Canyon Roadless Area. Gold with moderate amounts of lead, silver, zinc, and tungsten, occurs in vein deposits and in tactite. The nature of the geological terrain indicates little likelihood for the occurrence of energy resources in the roadless areas. Detailed geologic mapping might better define the extent of gold mineralization. Detailed stream-sediment sampling and analysis of heavy-mineral concentrations could better define tungsten resource potential.

  12. Early Agriculture in the Eastern Grand Canyon of Arizona, USA

    USGS Publications Warehouse

    Davis, S.W.; Davis, M.E.; Lucchitta, I.; Finkel, R.; Caffee, M.

    2000-01-01

    Abandoned fields in Colorado River alluvium in the eastern Grand Canyon show signs of primitive agriculture. Presence of maize pollen in association with buried soils near Comanche Creek suggests that farming began prior to 3130 yr B.P. Cotton pollen, identified in buried soils near Nankoweap Creek, dates to 1310 yr B.P., approximately 500 years earlier than previously reported anywhere on the Colorado Plateau. Farming spanned three millennia in this reach of the canyon. Entrenchment, starting approximately 700 yr B.P., making water diversion to fields infeasible, was likely responsible for field abandonment. ?? 2000 John Wiley & Sons, Inc.

  13. Recent sediment studies refute Glen Canyon Dam hypothesis

    USGS Publications Warehouse

    Rubin, David M.; Topping, David J.; Schmidt, John C.; Hazel, Joe; Kaplinski, Matt; Melis, Theodore S.

    2002-01-01

    Recent studies of sedimentology hydrology, and geomorphology indicate that releases from Glen Canyon Dam are continuing to erode sandbars and beaches in the Colorado River in Grand Canyon National Park, despite attempts to restore these resources. The current strategy for dam operations is based on the hypothesis that sand supplied by tributaries of the Colorado River downstream from the dam will accumulate in the channel during normal dam operations and remain available for restoration floods. Recent work has shown that this hypothesis is false, and that tributary sand inputs are exported downstream rapidly typically within weeks or months under the current flow regime.

  14. Thermopower signatures and spectroscopy of the canyon of conductance suppression

    NASA Astrophysics Data System (ADS)

    Kiršanskas, G.; Hammarberg, S.; Karlström, O.; Wacker, A.

    2016-07-01

    Interference effects in quantum dots between different transport channels can lead to a strong suppression of conductance, which cuts like a canyon through the common conductance plot [Phys. Rev. Lett. 104, 186804 (2010), 10.1103/PhysRevLett.104.186804]. In the present work we consider the thermoelectric transport properties of the canyon of conductance suppression using the second-order von Neumann approach. We observe a characteristic signal for the zeros of the thermopower. This demonstrates that thermoelectric measurements are an interesting complimentary tool to study complex phenomena for transport through confined systems.

  15. Reviewing the success of intentional flooding of the Grand Canyon

    SciTech Connect

    Wirth, B.D.

    1997-04-01

    A description and evaluation of the results of an intentional flooding experiment at the Grand Canyon are described. The purpose of the 7-day release of flood waters from the Glen Canyon Dam was to determine if managed floods have the ability to predictably restore the riverine environment. A summary of environmental conditions leading to the experiment is provided and flood results are listed. Initial results showed significant improvement in the size and number of the river`s beaches, creation of backwater habitat for endangered species, and no adverse impact to the trout fishery, Indian cultural sites, and other resources.

  16. Surprise and Opportunity for Learning in Grand Canyon: the Glen Canyon Dam Adaptive Management Program

    NASA Astrophysics Data System (ADS)

    Melis, T. S.; Walters, C. J.; Korman, J.

    2013-12-01

    With a focus on resources of the Colorado River ecosystem downstream of Glen Canyon Dam in Glen Canyon National Recreation Area (GCNRA) and Grand Canyon National Park (GCNP) of northern Arizona, the Glen Canyon Dam Adaptive Management Program has evaluated experimental flow and nonflow policy tests since 1990. Flow experiments have consisted of a variety of water releases from the dam within pre-existing annual downstream delivery agreements. The daily experimental dam operation, termed the Modified Low Fluctuating Flow (MLFF), implemented in 1996 to increase daily low flows and decrease daily peaks were intended to limit daily flow range to conserve tributary sand inputs and improve navigation among other objectives, including hydropower energy. Other flow tests have included controlled floods with some larger releases bypassing the dam's hydropower plant to rebuild and maintain eroded sandbars in GCNP. Experimental daily hydropeaking tests beyond MLFF have also been evaluated for managing the exotic recreational rainbow trout fishery in the dam's GCNRA tailwater. Experimental nonflow policies, such as physical removal of exotic fish below the tailwater, and experimental translocation of endangered native humpback chub from spawning habitats in the Little Colorado River (the largest natal origin site for chub in the basin) to other tributaries within GCNP have also been monitored. None of these large-scale field experiments has yet produced unambiguous results in terms of management prescriptions, owing to inadequate monitoring programs and confounding of treatment effects with effects of ongoing natural changes; most notably, a persistent warming of the river resulting from reduced storage in the dam's reservoir after 2003. But there have been several surprising results relative to predictions from models developed to identify monitoring needs and evaluate experimental design options at the start of the adaptive ecosystem assessment and management program in 1997

  17. Geotechnical Considerations of Canyon Formation: the Case of Cap de Creus Canyon, Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Sansoucy, M.; Locat, J.; Lee, H. J.

    2006-12-01

    A portion of the Cap de Creus has been selected for a detailed analysis of slope instability. The selected area is located on the north side of the Canyon between water depth ranging between 150 m and 750 m. This sector, which presents geomorphic evidences of landsliding, has been sampled at three different water depths along a line perpendicular to the axis of the canyon. These cores have been analyzed in order to determine the nature of the sediments along with their geotechnical and rheological properties. At the top of the slope, the geotechnical signature suggests that clay sediments are normally consolidated as a result of a regular and steady sedimentation. In contrast, a highly overconsolidated clayey sediment has been encountered in the core taken on the slope, about 60 m below the headwall escarpment which is about 30 m high with a slope of 27 degrees. The third sampling site is at the toe where the slope is 3 degrees. The geotechnical profile of this zone suggests that depositional events, such as debris flows and turbidity currents, occur frequently, under a more or less erosive regime. The geotechnical and rheological properties have been used for failure (sliding conditions) and post-failure analyses (mobility). The stability of the flank has been analyzed with Slope/W, using limit equilibrium methods. The analysis of the initial geometry with drained conditions indicates that the flank is stable, with a static safety factor of 1,7 (neglecting any seismic our excess pore pressure effects). Results of various scenarios on failure development have been tested, and show that axial incision appears to be the main process, largely as drained failures. Post-failure evolution has been modeled with Bing software. Final length and height of the deposit has been analyzed for different initial sliding mass geometries. The analysis has shown that the deposition of soft mudflow layers could only occur by considering superficial failures originating just above the

  18. Multi-stage uplift of the Colorado Plateau and the age of Grand Canyon and precursor canyons

    NASA Astrophysics Data System (ADS)

    Karlstrom, K. E.; Lee, J. P.; Kelley, S. A.; Crow, R.

    2012-12-01

    Debates about the age of Grand Canyon link to debates about the timing of surface uplift(s) of the Colorado Plateau- Rocky Mountain (CP-RM) region. One "old Grand Canyon" model proposes that a paleocanyon of almost the same depth and location as today's Grand Canyon was carved by a NE-flowing "California" paleoriver 80-70 Ma, then was re-used at ~55 Ma by a SW-flowing "Arizona" paleoriver. This model postulates the CP-RM region was uplifted to near modern elevations during the Laramide orogeny. A second model postulates a 17 Ma Grand Canyon; this time corresponds to Basin and Range extension and postulated mantle-driven surface uplift. The "young Grand Canyon" model postulates that >2/3 of modern Grand Canyon was carved by W-flowing Colorado River that became integrated to the Gulf of California at 5-6 Ma during Neogene mantle-driven uplift of the CP/RM region. Thermochronologic data are poised to substantially resolve these debates. Our thermochronology dataset combines published and new apatite fission-track and helium analyses, and joint thermal history modeling using both systems. This dataset reveals three major cooling episodes: 1) a multi-stage Sevier-Laramide contraction episode from about 90 Ma to 50 Ma with structural relief on upwarps on the order 0.5-1 km, compatible with a similar magnitude of surface uplift; 2) 30-20 Ma cooling that was associated with denudation and northward cliff retreat of most of the Mesozoic section from Grand Canyon region; 3) <10 Ma cooling that is best documented in eastern Grand Canyon as part of a general pattern of decreasing age of cooling/denudation to the NE. Combined geologic and thermochronologic data define the age and 3-D geometry of Cenozoic paleotopography that led to Grand Canyon carving. Combined AHe and AFT data indicate 2-4 km of sedimentary rocks covered the Grand Canyon region until about 40 Ma, negating the California River model. These strata were not removed from the Marble Canyon area until after about

  19. An analysis of the potential for Glen Canyon Dam releases to inundate archaeological sites in the Grand Canyon, Arizona

    USGS Publications Warehouse

    Sondossi, Hoda A.; Fairley, Helen C.

    2014-01-01

    The development of a one-dimensional flow-routing model for the Colorado River between Lees Ferry and Diamond Creek, Arizona in 2008 provided a potentially useful tool for assessing the degree to which varying discharges from Glen Canyon Dam may inundate terrestrial environments and potentially affect resources located within the zone of inundation. Using outputs from the model, a geographic information system analysis was completed to evaluate the degree to which flows from Glen Canyon Dam might inundate archaeological sites located along the Colorado River in the Grand Canyon. The analysis indicates that between 4 and 19 sites could be partially inundated by flows released from Glen Canyon Dam under current (2014) operating guidelines, and as many as 82 archaeological sites may have been inundated to varying degrees by uncontrolled high flows released in June 1983. Additionally, the analysis indicates that more of the sites currently (2014) proposed for active management by the National Park Service are located at low elevations and, therefore, tend to be more susceptible to potential inundation effects than sites not currently (2014) targeted for management actions, although the potential for inundation occurs in both groups of sites. Because of several potential sources of error and uncertainty associated with the model and with limitations of the archaeological data used in this analysis, the results are not unequivocal. These caveats, along with the fact that dam-related impacts can involve more than surface-inundation effects, suggest that the results of this analysis should be used with caution to infer potential effects of Glen Canyon Dam on archaeological sites in the Grand Canyon.

  20. Submarine canyons as important habitat for cetaceans, with special reference to the Gully: A review

    NASA Astrophysics Data System (ADS)

    Moors-Murphy, Hilary B.

    2014-06-01

    There has been much research interest in the use of submarine canyons by cetaceans, particularly beaked whales (family Ziphiidae), which appear to be especially attracted to canyon habitats in some areas. However, not all submarine canyons are associated with large numbers of cetaceans and the mechanisms through which submarine canyons may attract cetaceans are not clearly understood. This paper reviews some of the cetacean associations with submarine canyons that have been anecdotally described or presented in scientific literature and discusses the physical, oceanographic and biological mechanisms that may lead to enhanced cetacean abundance around these canyons. Particular attention is paid to the Gully, a large submarine canyon and Marine Protected Area off eastern Canada for which there exists some of the strongest evidence available for submarine canyons as important cetacean habitat. Studies demonstrating increased cetacean abundance in the Gully and the processes that are likely to attract cetaceans to this relatively well-studied canyon are discussed. This review provides some limited evidence that cetaceans are more likely to associate with larger canyons; however, further studies are needed to fully understand the relationship between the physical characteristics of canyons and enhanced cetacean abundance. In general, toothed whales (especially beaked whales and sperm whales) appear to exhibit the strongest associations with submarine canyons, occurring in these features throughout the year and likely attracted by concentrating and aggregating processes. By contrast, baleen whales tend to occur in canyons seasonally and are most likely attracted to canyons by enrichment and concentrating processes. Existing evidence thus suggests that at least some submarine canyons are important foraging areas for cetaceans, and should be given special consideration for cetacean conservation and protection.

  1. Giant submarine canyons: is size any clue to their importance in the rock record?

    USGS Publications Warehouse

    Normark, William R.; Carlson, Paul R.

    2003-01-01

    Submarine canyons are the most important conduits for funneling sediment from continents to oceans. Submarine canyons, however, are zones of sediment bypassing, and little sediment accumulates in the canyon until it ceases to be an active conduit. To understand the potential importance in the rock record of any given submarine canyon, it is necessary to understand sediment-transport processes in, as well as knowledge of, deep-sea turbidite and related deposits that moved through the canyons. There is no straightforward correlation between the final volume of the sedimentary deposits and size o fthe associated submarine canyons. Comparison of selected modern submarine canyons together with their deposits emphasizes the wide range of scale differences between canyons and their impact on the rock record. Three of the largest submarine canyons in the world are incised into the Beringian (North American) margin of the Bering Sea. Zhemchug Canyon has the largest cross-section at the shelf break and greatest volume of incision of slope and shelf. The Bering Canyon, which is farther south in the Bering Sea, is first in length and total area. In contrast, the largest submarine fans-e.g., Bengal, Indus, and Amazon-have substantially smaller, delta-front submarine canyons that feed them; their submarine drainage areas are one-third to less than one-tenth the area of Bering Canyon. some very large deep-sea channells and tubidite deposits are not even associated with a significant submarine canyon; examples include Horizon Channel in the northeast Pacific and Laurentian Fan Valley in the North Atlantic. Available data suggest that the size of turbidity currents (as determined by volume of sediment transported to the basins) is also not a reliable indicator of submarine canyon size.

  2. Titanite petrochronology in the Fish Canyon Tuff

    NASA Astrophysics Data System (ADS)

    Schmitz, M. D.; Crowley, J. L.

    2014-12-01

    The petrologic complexity of the archtypical 'monotonous intermediate' Fish Canyon Tuff (FCT) has been previously established by a variety of mineralogical and geochemical proxies [1-2], and the unusual storage and eruptive dynamics of the FCT have been delineated by several geochronological studies [3-5]. Titanite is an apparent equilibrium phase in the penultimate FCT magma, and can be linked petrographically to hornblende crystals that preserve up-temperature core-to-rim zoning profiles. As a reactive, trace element-rich phase, we hypothesized that titanite may record an intracrystalline record of magma chamber dynamics. Titanite crystals from the same separate analyzed in [4] were oriented and doubly-polished to yield characteristic wedge-shaped cross-sectional wafers approximately 300 µm in thickness. BSE imaging guided LA-ICPMS analyses of a full suite of trace elements using a 25 µm beam diameter and crater depth on multiple locations across both sides of the wafer. Most titanite crystals are characterized by large variations in trace elements, including at least two generations of REE-enriched, actinide-poor, low Sr, large Eu anomaly cores overgrown by REE-depleted, actinide-rich, high Sr domains with small Eu anomalies and distinctive concave-up middle to heavy REE patterns. Trace element contents and patterns correlate strongly with Eu anomaly; intermediate compositions are abundant and spatially correlated to reaction zones between core and rim domains. Within the context of the batholithic rejuvenation model for the FCT magma [1-2], these trace element variations are interpreted to record the partial melting of a differentiated crystalline FCT precursor and its hybridization with a more 'mafic' flux. ID-TIMS dating of end-member titanites confirm older ages (ca 28.4 to 29.0 Ma) for cores and define a younger age for rejuvenation of ca 28.2 Ma, consistent with recent U-Pb zircon and 40Ar/39Ar studies [5-7]. [1] Bachmann & Dungan (2002) Am Mineral 87

  3. Water-Temperature Data for the Colorado River and Tributaries Between Glen Canyon Dam and Spencer Canyon, Northern Arizona, 1988-2005

    USGS Publications Warehouse

    Voichick, Nicholas; Wright, Scott A.

    2007-01-01

    The regulation of flow of the Colorado River by Glen Canyon Dam began in 1963. This resulted in significant changes to the downstream ecosystem of the Colorado River in Grand Canyon, contributing to the initiation of the Glen Canyon Environmental Studies program in 1982, followed by establishment of the Glen Canyon Dam Adaptive Management Program in 1996. This report describes a water-temperature dataset collected through these programs for the reach of the Colorado River and selected tributaries between Glen Canyon Dam and Spencer Canyon (approximately 261 river miles) in northern Arizona from 1988 to 2005. The primary purposes of the report are to summarize the methods of data collection, processing, and editing; to present summary statistics; and to make the data described in the report available.

  4. Habitat characterization of deep-water coral reefs in La Gaviera Canyon (Avilés Canyon System, Cantabrian Sea)

    NASA Astrophysics Data System (ADS)

    Sánchez, Francisco; González-Pola, Cesar; Druet, María; García-Alegre, Ana; Acosta, Juan; Cristobo, Javier; Parra, Santiago; Ríos, Pilar; Altuna, Álvaro; Gómez-Ballesteros, María; Muñoz-Recio, Araceli; Rivera, Jesus; del Río, Guillermo Díaz

    2014-08-01

    Surveys conducted at the complex Avilés Canyon System (southern Bay of Biscay) in order to identify vulnerable habitats and biological communities revealed the presence of noteworthy deep-water coral reefs in one of the tributaries of the system (La Gaviera Canyon). The aim of the present study is to determine why this deep-sea canyon provides suitable environmental conditions for corals to grow. This hanging canyon is characterized by an irregular U-shaped floor with two narrow differentiated flanks. Sand ripples and rocky outcrops structured in diverse W-E directed steps are observed on the canyon floor, suggesting intense hydrodynamic activity. Accordingly, high-frequency near-bottom current and thermal structure profiles showed that there occur strong shifts in currents/hydrography behaving as front-like features at each tidal cycle. These involve the sudden increase of along-axis velocities to over 50 cm/s and vertical velocities of over 5 cm/s in each tidal cycle associated with the passage of sharp thermal fronts and thermal inversions suggesting overturning. A year-long near-bottom current record showed events with near-bottom velocities well over 1 m/s lasting for several days. Three cold-water coral settings were distinguished: a dense coral reef located on stepped rocky bottoms of the eastern and western flanks, carbonate mounds (20-30 m high) located on the canyon floor, and a cluster of shallower water dead coral framework at the head sector of the canyon. Video and still images from a towed sled and ROV verified the presence of dropstones and rippled sand sheets surrounding the mounds and revealed changes in the coral population (alive or dead; total or patchy coverage) in coral reef and carbonate mound areas. The dominant species of the reef are Lophelia pertusa and Madrepora oculata, which considerably increase the habitat‧s complexity and biodiversity in relation to other facies described in the canyon. The presence of living cold-water reefs is

  5. 77 FR 32629 - Black Canyon Hydro, LLC; Notice of Intent To File License Application, Filing of Pre-Application...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-01

    ... Energy Regulatory Commission Black Canyon Hydro, LLC; Notice of Intent To File License Application...-filing Process. b. Project No.: 14110-001. c. Date Filed: March 27, 2012. d. Submitted By: Black Canyon Hydro, LLC (Black Canyon). e. Name of Project: Black Canyon Hydroelectric Project. f. Location: On...

  6. National Uranium Resource Evaluation, Grand Canyon Quadrangle, Arizona

    SciTech Connect

    Baillieul, T.A.; Zollinger, R.C.

    1982-06-01

    The Grand Canyon Quadrangle (2/sup 0/), northwestern Arizona, was evaluated to identify environments and delineate areas favorable for the occurrence of uranium deposits. This was done using criteria developed for the National Uranium Resource Evaluation. General surface reconnaissance and geochemical sampling were carried out in all geologic environments within the quadrangle. Aerial radiometric and hydrochemical and stream-sediment reconnaissance surveys were performed, although results were not available in time for field checking. The results of this investigation indicate environments favorable for: channel-controlled, peneconcordant sandstone deposits in the Petrified Forest Member of the Chinle Formation in the north-central part of the quadrangle, vein-type deposits in collapse breccias in all areas underlain by the Redwall Limestone, and unconformity-related deposits in the metasediments of the Vishnu Group within the Grand Canyon. All other rock units examined are considered unfavorable for hosting uranium deposits. Younger Precambrian rocks of the Grand Canyon Supergroup, exposed only within the Grand Canyon National Park, remain unevaluated.

  7. Crisscrossing "Grand Canyon": Bridging the Gaps with Computer Conferencing.

    ERIC Educational Resources Information Center

    Minock, Mary; Shor, Francis

    1995-01-01

    Notes that Interdisciplinary Studies Program faculty at Wayne State University devised courses and assignments using computer conferencing to create a collaborative, democratic, and nonauthoritarian learning community. Discusses an assignment based on the film "Grand Canyon" that encouraged students to take on roles of their racial and gender…

  8. Water's arrival to prompt drilling in Nevada's Grant Canyon field

    SciTech Connect

    Petzet, G.A.

    1991-08-12

    This paper reports that water has sharply reduced the oil flow in Nevada at what for several years has been the highest producing rate well in the Lower 48 states, and a well will be drilled in an attempt to reestablish higher oil flow rates. Apache Corp., which operates three well Grant Canyon field in Railroad Valley 65 miles southwest of Ely, staked two close in locations but plans to drill only one well. Estimates of the areal extent of the structure are from less than 200 acres to about 240 acres, making the new well a risky proposition. Grant Canyon field has been important ever since its discovery in 1983. Four authors involved in the field's discovery, in an exploration paper published in 1988, indicated that the field's ultimate reserves might be about 13 million bbl of black, 26{degrees} gravity crude oil with 0.5% sulfur and a pour point of 10{degrees} F. The producing zone is intensely fractured Devonian Guilmette dolomite at about 4,400 ft. Through February 1991 it had produced more than 8.7 million bbl through the 3 Grant Canyon and 5.1 million bbl through the 4 Grant Canyon. One well Bacon Flat field, a Guilmette reservoir in a separate, structurally lower fault block, is shut-in. It was discovered in 1981.

  9. Grand Canyon, Colorado as seen from STS-62

    NASA Technical Reports Server (NTRS)

    1994-01-01

    In this view, the Colorado River can be seen flowing southwest from top left to bottom center-right. The dark wider sections of the river are the water surface of Lake Powell (center, and top left), 110 miles long in a straight line. Grand Canyon National Monument lies lower right, centered on the Grand Canyon of the Colorado River, a 10 mile-wide gash carved more than 5,000 feet deep by the Colorado. The Canyon has cut into the Kaibab Plateau, an uplifted area visible here as a forested area with snow on the highest northern parts. The surrounding parts of the Colorado Plateau are sparsely occupied by brush vegetation and appear yellow-brown. The dark area top right is the wooded country of Black Mesa in Navajoland, divided from Lake Powell by the San Juan River. Four Corners is just outside the pictures (top) where the states of Arizona, Utah, Colorado and New Mexico meet. The Henry Mountains appear top left. Apart from Grand Canyon National Monument, several other famous national mo

  10. Context view from NE ridge of Daybreak Canyon running NE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Context view from NE ridge of Daybreak Canyon running NE from lookout tower shows fire line on right and NE side of lookout tower in the far distance. Tree in foreground is Pondaross Pine that survived fires of 1991 and 1994. Camera is pointed SW with wide-angle lens. - Chelan Butte Lookout, Summit of Chelan Butte, Chelan, Chelan County, WA

  11. Martian canyons and African rifts: Structural comparisons and implications

    NASA Technical Reports Server (NTRS)

    Frey, H. V.

    1978-01-01

    The resistant parts of the canyon walls of the Martian rift complex Valled Marineris were used to infer an earlier, less eroded reconstruction of the major roughs. The individual canyons were then compared with individual rifts of East Africa. When measured in units of planetary radius, Martian canyons show a distribution of lengths nearly identical to those in Africa, both for individual rifts and for compound rift systems. A common mechanism which scales with planetary radius is suggested. Martian canyons are significantly wider than African rifts. The overall pattern of the rift systems of Africa and Mars are quite different in that the African systems are composed of numerous small faults with highly variable trend. On Mars the trends are less variable; individual scarps are straighter for longer than on earth. This is probably due to the difference in tectonic histories of the two planets: the complex history of the earth and the resulting complicated basement structures influence the development of new rifts. The basement and lithosphere of Mars are inferred to be simple, reflecting a relatively inactive tectonic history prior to the formation of the canyonlands.

  12. College of the Canyons Survey of Teaching Practices, Spring 1993.

    ERIC Educational Resources Information Center

    Mattice, Nancy J.; Richardson, Russell C.

    The Associate Program for Adjunct Faculty (APAF) at College of the Canyons (CC) in Santa Clarita, California, includes instructional skills workshops and advanced teaching workshops designed to promote good teaching practices among part-time faculty. In March 1993, CC conducted a survey of teaching practices among the college's 160 part-time…

  13. Grand Canyon Trekkers: School-Based Lunchtime Walking Program

    ERIC Educational Resources Information Center

    Hawthorne, Alisa; Shaibi, Gabriel; Gance-Cleveland, Bonnie; McFall, Sarah

    2011-01-01

    The incidence of childhood overweight is especially troubling among low income Latino youth. Grand Canyon Trekkers (GCT) was implemented as a quasi-experimental study in 10 Title 1 elementary schools with a large Latino population to examine the effects of a 16-week structured walking program on components of health-related physical fitness: Body…

  14. Properties of Saltstone Prepared Containing H-Canyon Waste

    SciTech Connect

    Cozzi, A

    2005-04-05

    Saltstone slurries were prepared from solutions made from H-Canyon waste and evaluated for processing properties. Salt solutions prepared with a 1:1 ratio of Tank 50H simulant and H-Canyon blended waste produced slurries that met the processing requirements in Table 2 of the Task Technical and Quality Assurance Plan (TTQAP). Additions of set retarder and antifoam were necessary to meet these processing requirements. The water to premix ratio used to achieve acceptable processing properties was 0.63. Slurries prepared solely with H-Canyon blended waste as the salt solution met the gel time and bleed water requirements, but did not set in the allotted time. Compressive strength samples prepared from the mix with acceptable processing properties had an average compressive strength of 814 psi (Samples with a compressive strength value of >200 psi are acceptable.). Analysis for mercury of the leachate of samples analyzed by the Toxic Characteristic Leaching Procedure (TCLP) indicated a concentration of mercury in the leachate <0.11 mg/L (The limit set by the Environmental Protection Agency (EPA) Resource Conservation and Recovery Act (RCRA) for mercury to require treatment is 0.2 mg/L.). It is recommended that without further testing; Tank 50H be limited to no more than 50 wt% H-Canyon material. It is also recommended that prior to the transfer of Tank 50H to the Saltstone Processing Facility; a sample of the Tank 50H waste be evaluated for processing properties.

  15. Frequency and initiation of debris flows in Grand Canyon, Arizona

    NASA Astrophysics Data System (ADS)

    Griffiths, Peter G.; Webb, Robert H.; Melis, Theodore S.

    2004-12-01

    Debris flows from 740 tributaries transport sediment into the Colorado River in Grand Canyon, Arizona, creating rapids that control its longitudinal profile. Debris flows mostly occur when runoff triggers failures in colluvium by a process termed "the fire hose effect." Debris flows originate from a limited number of geologic strata, almost exclusively shales or other clay-rich, fine-grained formations. Observations from 1984 through 2003 provide a 20 year record of all debris flows that reached the Colorado River in Grand Canyon, and repeat photography provides a 100 year record of debris flows from 147 tributaries. Observed frequencies are 5.1 events/year from 1984 to 2003, and historic frequencies are 5.0 events/year from 1890 to 1983. Logistic regression is used to model historic frequencies based on drainage basin parameters observed to control debris flow initiation and transport. From 5 to 7 of the 16 parameters evaluated are statistically significant, including drainage area, basin relief, and the height of and gradient below debris flow source areas, variables which reflect transport distance and potential energy. The aspect of the river channel, which at least partially reflects storm movement within the canyon, is also significant. Model results are used to calculate the probability of debris flow occurrence at the river over a century for all 740 tributaries. Owing to the variability of underlying geomorphic controls, the distribution of this probability is not uniform among tributaries of the Colorado River in Grand Canyon.

  16. Anomalous topography on the continental shelf around Hudson Canyon

    USGS Publications Warehouse

    Knebel, H. J.

    1979-01-01

    Recent seismic-reflection data show that the topography on the Continental Shelf around Hudson Canyon is composed of a series of depressions having variable spacings (< 100 m to 2 km), depths (1-10 m), outlines, and bottom configurations that give the sea floor an anomalous "jagged" appearance in profile. The acoustic and sedimentary characteristics, the proximity to relict shores, and the areal distribution indicate that this rough topography is an erosional surface formed on Upper Pleistocene silty sands about 13,000 to 15,000 years ago by processes related to Hudson Canyon. The pronounced southward extension of the surface, in particular, may reflect a former increase in the longshore-current erosion capacity caused by the loss of sediments over the canyon. Modern erosion or nondeposition of sediments has prevented the ubiquitous sand sheet on the Middle Atlantic shelf from covering the surface. The "anomalous" topography may, in fact, be characteristic of areas near other submarine canyons that interrupt or have interrupted the longshore drift of sediments. ?? 1979.

  17. 36 CFR 7.19 - Canyon de Chelly National Monument.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Monument. 7.19 Section 7.19 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.19 Canyon de Chelly National Monument... accompanied by National Park Service employees or by authorized guides: Provided, however, That...

  18. College of the Canyons New Faculty Survey. Report #104.

    ERIC Educational Resources Information Center

    Dixon, P. Scott; Gribbons, Barry C.

    In 2001, the College of the Canyons (COC) (California) surveyed all faculty members hired between May 2000 and March 2001 to gather information about the experiences of newly hired faculty. Thirty-eight anonymous questionnaires (with both open- and closed-ended questions) were placed in the mailboxes of new faculty; 23 were completed and returned,…

  19. A scale model study of parallel urban street canyons

    NASA Astrophysics Data System (ADS)

    Hornikx, Maarten; Forssen, Jens; Kropp, Wolfgang

    2005-04-01

    The access to quiet areas in cities is of increasing importance. Recently, the equivalent sources method for a two dimensional situation of parallel urban street canyons has been developed. One canyon represents a busy road, whereas the other is one without traffic; the quiet side. With the model, the transfer function between the two canyons can be calculated, as well as the influence of diffusion, absorption, and atmospheric turbulence on the transfer function. A scale model study of two parallel canyons has now been executed. A scale of 1:40 has been chosen and the maximum length sequence technique has been applied using the MLSSA system. Results of the scale model study have been compared to calculations with the equivalent sources method. The difference between a two-dimensional and a three-dimensional quiet side, between a coherent and an incoherent line source and the influence of absorption and diffusion has been investigated. The scale model study also gives insight in the evolution of the sound field in the time domain. [Work supported by the Swedish Foundation for Strategic Environmental Research (MISTRA).

  20. A modeling of air flow in a street canyon

    NASA Astrophysics Data System (ADS)

    Nuterman, R. B.; Starchenko, Alexander V.

    2004-02-01

    Steady plane-parallel isothermal turbulent flow of a viscous incompressible liquid above a surface with elements of a roughness is considered. Buildings and road with vehicle emissions for a city canyon. Reynolds equations and Boussinesq assumption are used to solve the considered problem. We apply the no-slip boundary conditions on the rigid walls, simple gradient conditions on the upper and outflow boundaries and known distributions of flow parameters on inflow boundary. Turbulent parameters are calculated on the basis of "k--ɛ" model of turbulence with near-wall functions approach for energy of turbulence k and dissipation ɛ. A numerical solution of the problem is found with using of finite-volume method and the SIMPLE algorithm. Influence of atmospheric parameters on pollutant dispersion in a street canyon is investigated. Also influences of the geometrical factors of a city street canyon on a pattern of turbulent flow and distribution of harmful impurity concentration emitting from urban vehicles are investigated. The adverse meteorological situations resulting in accumulation of the harmful substances in street canyon are shown.

  1. Carbonaceous aerosol particles from common vegetation in the Grand Canyon

    SciTech Connect

    Hallock, K.A.; Mazurek, M.A. ); Cass, G.R. . Dept. of Environmental Engineering Science)

    1992-05-01

    The problem of visibility reduction in the Grand Canyon due to fine organic aerosol particles in the atmosphere has become an area of increased environmental concern. Aerosol particles can be derived from many emission sources. In this report, we focus on identifying organic aerosols derived from common vegetation in the Grand Canyon. These aerosols are expected to be significant contributors to the total atmospheric organic aerosol content. Aerosol samples from living vegetation were collected by resuspension of surface wax and resin components liberated from the leaves of vegetation common to areas of the Grand Canyon. The samples were analyzed using high-resolution gas chromatography/mass spectrometry (GC/MS). Probable identification of compounds was made by comparison of sample spectra with National Institute of Standards and Technology (NIST) mass spectral references and positive identification of compounds was made when possible by comparison with authentic standards as well as NIST references. Using these references, we have been able to positively identify the presence of n-alkane and n-alkanoic acid homolog series in the surface waxes of the vegetation sampled. Several monoterpenes, sesquiterpenes, and diterpenes were identified also as possible biogenic aerosols which may contribute to the total organic aerosol abundance leading to visibility reduction in the Grand Canyon.

  2. Thirty-five years at Pajarito Canyon Site

    SciTech Connect

    Paxton, H.C.

    1981-05-01

    A history of the research activities performed at the Pajarito Canyon Site from 1946 to 1981 is presented. Critical assemblies described include: the Topsy assembly; Lady Godiva; Godiva 2; Jezebel; Flattop; the Honeycomb assembly for Rover studies; Kiwi-TNT; PARKA reactor; Big Ten; and Plasma Cavity Assembly.

  3. Context view of Powerhouse from west slope of canyon showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Context view of Powerhouse from west slope of canyon showing west facade and inclined railroad tracks. View to east-southeast - Mystic Lake Hydroelectric Facility, Powerhouse, Along West Rosebud Creek, 1 3/4 miles northeast of Mystic Lake Dam, Fishtail, Stillwater County, MT

  4. HELL'S CANYON STUDY, IDAHO AND NEZ PERCE COUNTIES, IDAHO, 1977

    EPA Science Inventory

    In September of 1975 and again in March and June of 1976, water quality survey runs were made in Hells Canyon (17060103, 17060101) to obtain information on the Snake River and its major tributaries within the area. The surveys included 5 Snake River stations from above Johnson B...

  5. 9. COULTERVILLE ROAD VIEW AND MERCED RIVER CANYON. NOTE CUT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. COULTERVILLE ROAD VIEW AND MERCED RIVER CANYON. NOTE CUT FACE OF STANDING ROCK AT RIGHT. LOOKING N. GIS: N-37 42 52.1 / W-119 43 17.5 - Coulterville Road, Between Foresta & All-Weather Highway, Yosemite Village, Mariposa County, CA

  6. Photocatalytic abatement results from a model street canyon.

    PubMed

    Gallus, M; Ciuraru, R; Mothes, F; Akylas, V; Barmpas, F; Beeldens, A; Bernard, F; Boonen, E; Boréave, A; Cazaunau, M; Charbonnel, N; Chen, H; Daële, V; Dupart, Y; Gaimoz, C; Grosselin, B; Herrmann, H; Ifang, S; Kurtenbach, R; Maille, M; Marjanovic, I; Michoud, V; Mellouki, A; Miet, K; Moussiopoulos, N; Poulain, L; Zapf, P; George, C; Doussin, J F; Kleffmann, J

    2015-11-01

    During the European Life+ project PhotoPAQ (Demonstration of Photocatalytic remediation Processes on Air Quality), photocatalytic remediation of nitrogen oxides (NOx), ozone (O3), volatile organic compounds (VOCs), and airborne particles on photocatalytic cementitious coating materials was studied in an artificial street canyon setup by comparing with a colocated nonactive reference canyon of the same dimension (5 × 5 × 53 m). Although the photocatalytic material showed reasonably high activity in laboratory studies, no significant reduction of NOx, O3, and VOCs and no impact on particle mass, size distribution, and chemical composition were observed in the field campaign. When comparing nighttime and daytime correlation plots of the two canyons, an average upper limit NOx remediation of ≤2% was derived. This result is consistent only with three recent field studies on photocatalytic NOx remediation in the urban atmosphere, whereas much higher reductions were obtained in most other field investigations. Reasons for the controversial results are discussed, and a more consistent picture of the quantitative remediation is obtained after extrapolation of the results from the various field campaigns to realistic main urban street canyon conditions. PMID:26178827

  7. 36 CFR 7.4 - Grand Canyon National Park.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Park. The National Park Service reserves the right to limit the number of such permits issued, or the... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Grand Canyon National Park. 7.4 Section 7.4 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE...

  8. 36 CFR 7.4 - Grand Canyon National Park.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Park. The National Park Service reserves the right to limit the number of such permits issued, or the... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false Grand Canyon National Park. 7.4 Section 7.4 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE...

  9. 33. VIEW OF TIOGA ROAD DESCENDING LEE VINING CANYON. SAME ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    33. VIEW OF TIOGA ROAD DESCENDING LEE VINING CANYON. SAME VIEW AS CA-149-3. LOOKING ESE. GIS: N-37 56 58.2 / W-119 13 28.1 - Tioga Road, Between Crane Flat & Tioga Pass, Yosemite Village, Mariposa County, CA

  10. Microorganisms from the late precambrian of the grand canyon, Arizona.

    PubMed

    Schopf, J W; Ford, T D; Breed, W J

    1973-03-30

    An assemblage of cellularly well-preserved, filamentous and spheroidal plant microfossils has been detected in a cherty pisolite bed of the late Precambrian Chuar Group from the eastern Grand Canyon of the Colorado River. This newly discovered microflora, probably among the youngest Precambrian biological communities now known, appears to be of both evolutionary and biostratigraphic significance. PMID:17835936