Science.gov

Sample records for bdz receptor binding

  1. Effects of vitamin B-6 nutrition on benzodiazepine (BDZ) receptor binding in the developing rat brain

    SciTech Connect

    Borek, J.P.; Guilarte, T.R. )

    1990-02-26

    A dietary deficiency of vitamin B-6 promotes seizure activity in neonatal animals and human infants. Previous studied have shown that neonatal vitamin B-6 deprivation results in reduced levels of brain gamma-aminobutyric acid (GABA) and increased binding at the GABA site of the GABA/BDZ receptor complex. Since the GABA and BDZ receptors are allosterically linked, this study was undertaken to determine if vitamin B-6 deprivation had an effect on BDZ receptor binding. Benzodiazepine receptor binding isotherms using {sup 3}H-flunitrazepam as ligand were performed in the presence and absence of 10 {mu}M GABA. The results indicate a significant increase in the binding affinity (Kd) in the presence of GABA in cerebellar membranes from deficient rat pups at 14 days of age with no effect on receptor number (Bmax). By 28 days of age, the increase in Kd was no longer present. No change in Kd or Bmax was observed in cortical tissue from deficient animals at 14 or 28 days of age. Preliminary studies of GABA-enhancement of {sup 3}H-flunitrazepam binding indicate that vitamin B-6 deficiency also induces alterations in the ability of GABA to enhance BZD receptor binding. In summary, these results indicate that the effects of vitamin B-6 deprivation on BDZ receptor binding are region specific and age related.

  2. Platelet peripheral benzodiazepine receptors are decreased in Parkinson's disease

    SciTech Connect

    Bonuccelli, U.; Nuti, A.; Del Dotto, P.; Piccini, P.; Martini, C.; Giannacccini, G.; Lucacchini, A.; Muratorio, A. )

    1991-01-01

    Peripheral benzodiazepine (BDZ) receptors are located in a variety of tissues, including platelets, in the nuclear and/or mitochondrial membranes. The authors studied the density of peripheral BDZ receptors in platelets of 10 de novo Parkinson's disease (PD) patients, 18 PD patients treated with a levodopa/carbidopa combination, and in 15 healthy subjects matched for sex and age. The binding assay was conducted using ({sup 3}H)PK 11195, a specific ligand for peripheral BDZ receptors. A significant decrease in the density of ({sup 3}H)PK 11195 binding sites has been observed in PD patients with respect to controls but not between de novo and treated PD patients. No correlation has been found between the decrease in density of ({sup 3}H)PK 11195 binding sites in platelets and either the duration or severity of PD. Peripheral BDZ receptors are implicated in the regulation of mitochondrial respiratory function. Thus, their decrease in PD might parallel the abnormalities in mitochondrial function recently found in this neurologic disease.

  3. Molecular size of benzodiazepine receptor in rat brain in situ: evidence for a functional dimer?

    NASA Astrophysics Data System (ADS)

    Doble, A.; Iversen, L. L.

    1982-02-01

    Benzodiazepine tranquillizers such as diazepam and chlordiazepoxide interact with high-affinity binding sites in nervous tissue1,2. The correlation between the affinities of various benzodiazepines for these sites with their clinical potencies and activity in behavioural and electrophysiological tests in animals suggests that the sites represent the functional `receptor' whereby benzodiazepines exert their effects3. The intimate involvement of benzodiazepines with γ-aminobutyric acid (GABA) and chloride channels raised the possibility that the benzodiazepine binding site (BDZ-R) may be a protein in the GABA receptor-effector complex4,5. GABA agonists enhance the affinity of BDZ-R for benzodiazepines6, although BDZ-R is distinct from the GABA receptor itself3. However, electrophysiological evidence suggests that the action of benzodiazepines is chloride channel, rather than receptor, directed7-10. Several attempts have been made to measure the molecular weight (Mr) of BDZ-R after solubilization from brain membranes: treatment with 1% Triton X-100 followed by assay of binding activity in solute fractions separated according to molecular weight suggested11 a value of ~200,000, photoaffinity labelling of BDZ-R with 3H-flunitrazepam (3H-FNZ) followed by more rigorous solubilization and gel chromatography indicated12,13 an apparent Mr of ~55,000 and a third approach14 a value of ~100,000. The measured molecular weight seems to depend critically on the solubilization procedure used. Chang et al.15 recently described the use of radiation inactivation to determine the size of BDZ-R in situ in calf brain membranes, and estimated a Mr, of 216,000. We have also used this approach; the results reported here indicate a Mr of between 90,000 and 100,000, but this is reduced to 60,000-63,000 in membranes pretreated with GABA, suggesting the disaggregation of a normally dimeric form.

  4. Regulation of GABA and benzodiazepine receptors following neurotoxin-induced striatal and medial forebrain bundle lesions

    SciTech Connect

    Pan, H.S.I.

    1985-01-01

    GABA, a major inhibitory transmitter, is used by many projection neurons of the striatum. To investigate the role of GABA in striatal function, the GABA receptor complex was studied after lesions of the striatum or the nigrostriatal neurons. Quantitative receptor autoradiography using thaw-mounted tissue slices was developed for the study of GABA and benzodiazepine (BDZ) receptors. With the technique established, binding to GABA and BDZ receptors after unilateral striatal kainate lesions was examined. Subsequently, changes in GABA and BDZ receptors were studied following the destruction of dopaminergic nigrostriatal cells by unilateral 6-hydroxydopamine lesion of the medial forebrain bundle. In summary, quantitative receptor autoradiography allowed the detection of GABA and BDZ receptor changes in multiple small areas in each lesioned brain. This technique made it feasible to carry out kinetic saturation, and competition studies using less than 1 mg of tissue. The data suggest that dopamine is functionally inhibitory on striatopallidal neurons but is functionally excitatory on striatoentopeduncular and striatonigral cells which in turn inhibit the thalamus. This quantitative autoradiographic technique can be generalized to study other transmitter receptors and can be combined with 2-deoxyglucose uptake studies.

  5. Binding of ATP to the progesterone receptor.

    PubMed Central

    Moudgil, V K; Toft, D O

    1975-01-01

    The possible interaction of progesterone--receptor complexes with nucleotides was tested by affinity chromatography. The cytosol progesterone receptor from hen oviduct was partially purified by ammonium sulfate precipitation before use. When progesterone was bound to the receptor, the resulting complex could be selectively adsorbed onto columns of ATP-Sepharose. This interaction was reversible and of an ionic nature since it could be disrupted by high-salt conditions. A competitive binding assay was used to test the specificity of receptor binding to several other nucleotides, including ADP, AMP, and cAMP. A clear specificity for binding ATP was evident from these studies. When ATP was added to receptor preparations, the nucleotide did not affect the sedimentation properties or hormone binding characteristics of the receptor. Although the function of ATP remains unknown, these studies indicate a role of this nucleotide in some aspect of hormone receptor activity. PMID:165493

  6. Binding of the Ah receptor to receptor binding factors in chromatin.

    PubMed

    Dunn, R T; Ruh, T S; Ruh, M F

    1993-03-01

    Dioxin induces biological responses through interaction with a specific intracellular receptor, the Ah receptor, and the subsequent interaction of the Ah receptor with chromatin. We report the binding of the Ah receptor, partially purified from rabbit liver, to receptor binding factors in chromatin. Rabbit liver chromatin proteins (CP) were isolated by adsorption of chromatin to hydroxylapatite followed by sequential extraction with 1-8 M GdnHCl. To assay for receptor binding a portion of each CP fraction was reconstituted to rabbit double-stranded DNA using a reverse gradient dialysis of 7.5 to 0 M GdnHCl. These reconstituted nucleoacidic proteins were then examined for binding to [3H]-2,3,7,8-tetrachlorodibenzo-p-dioxin ([3H]TCDD)-receptor complexes by the streptomycin filter assay. Prior to the binding assay, [3H]TCDD-receptor complexes were partially purified by step elution from DEAE-cellulose columns. CP fractions 2, 5, and 7 were found to bind to the Ah receptor with high affinity. Scatchard analysis yielded Kd values in the nanomolar range. Competition with 2-fold excess unlabeled TCDD-receptor complexes was demonstrated, and binding was reduced markedly when the receptor was prepared in the presence of 10 mM molybdate. Such chromatin receptor binding factors (RBFs) may participate in the interaction of receptor with specific DNA sequences resulting in modulation of specific gene expression. PMID:8384852

  7. Peptide binding at the GLP-1 receptor.

    PubMed

    Mann, R; Nasr, N; Hadden, D; Sinfield, J; Abidi, F; Al-Sabah, S; de Maturana, R López; Treece-Birch, J; Willshaw, A; Donnelly, D

    2007-08-01

    The receptor for GLP-1 [glucagon-like peptide-1-(7-36)-amide] is a member of the 'Family B' of GPCRs (G-protein-coupled receptors) comprising an extracellular N-terminal domain containing six conserved cysteine residues (the N-domain) and a core domain (or J-domain) comprising the seven transmembrane helices and interconnecting loop regions. According to the two-domain model for peptide binding, the N-domain is primarily responsible for providing most of the peptide binding energy, whereas the core domain is responsible for binding the N-terminal region of the peptide agonists and transmitting the signal to the intracellular G-protein. Two interesting differences between the binding properties of two GLP-1 receptor agonists, GLP-1 and EX-4 (exendin-4), can be observed. First, while GLP-1 requires its full length to maintain high affinity, the eight N-terminal residues of EX-4 can be removed with little reduction in affinity. Secondly, EX-4 (but not GLP-1) can bind to the fully isolated N-domain of the receptor with an affinity matching that of the full-length receptor. In order to better understand these differences, we have studied the interaction between combinations of full-length or truncated ligands with full-length or truncated receptors. PMID:17635131

  8. Collective binding properties of receptor arrays.

    PubMed Central

    Agmon, N; Edelstein, A L

    1997-01-01

    Binding kinetics of receptor arrays can differ dramatically from that of the isolated receptor. We simulate synaptic transmission using a microscopically accurate Brownian dynamics routine. We study the factors governing the rise and decay of the activation probability as a function of the number of transmitter molecules released. Using a realistic receptor array geometry, the simulation reproduces the time course of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor-mediated excitatory postsynaptic currents. A consistent interpretation of experimentally observed synaptic currents in terms of rebinding and spatial correlations is discussed. Images FIGURE 1 FIGURE 4 FIGURE 5 PMID:9083663

  9. Follitropin receptors contain cryptic ligand binding sites.

    PubMed

    Lin, Win; Bernard, Michael P; Cao, Donghui; Myers, Rebecca V; Kerrigan, John E; Moyle, William R

    2007-01-01

    Human choriogonadotropin (hCG) and follitropin (hFSH) have been shown to contact different regions of the extracellular domains of G-protein coupled lutropin (LHR) and follitropin (FSHR) receptors. We report here that hCG and hFSH analogs interact with different regions of an FSHR/LHR chimera having only two unique LHR residues and that binds both hormones with high affinity. hCG and hFSH analogs dock with this receptor chimera in a manner similar to that in which they bind LHR and FSHR, respectively. This shows that although the FSHR does not normally bind hCG, it contains a cryptic lutropin binding site that has the potential to recognize hCG in a manner similar to the LHR. The presence of this cryptic site may explain why equine lutropins bind many mammalian FSHR and why mutations in the transmembrane domain distant from the extracellular domain enable the FSHR to bind hCG. The leucine-rich repeat domain (LRD) of the FSHR also appears to contain a cryptic FSH binding site that is obscured by other parts of the extracellular domain. This will explain why contacts seen in crystals of hFSH complexed with an LRD fragment of the human FSHR are hard to reconcile with the abilities of FSH analogs to interact with membrane G-protein coupled FSHR. We speculate that cryptic lutropin binding sites in the FSHR, which are also likely to be present in thyrotropin receptors (TSHR), permit the physiological regulation of ligand binding specificity. Cryptic FSH binding sites in the LRD may enable alternate spliced forms of the FSHR to interact with FSH. PMID:17059863

  10. Receptor-binding sites: bioinformatic approaches.

    PubMed

    Flower, Darren R

    2006-01-01

    It is increasingly clear that both transient and long-lasting interactions between biomacromolecules and their molecular partners are the most fundamental of all biological mechanisms and lie at the conceptual heart of protein function. In particular, the protein-binding site is the most fascinating and important mechanistic arbiter of protein function. In this review, I examine the nature of protein-binding sites found in both ligand-binding receptors and substrate-binding enzymes. I highlight two important concepts underlying the identification and analysis of binding sites. The first is based on knowledge: when one knows the location of a binding site in one protein, one can "inherit" the site from one protein to another. The second approach involves the a priori prediction of a binding site from a sequence or a structure. The full and complete analysis of binding sites will necessarily involve the full range of informatic techniques ranging from sequence-based bioinformatic analysis through structural bioinformatics to computational chemistry and molecular physics. Integration of both diverse experimental and diverse theoretical approaches is thus a mandatory requirement in the evaluation of binding sites and the binding events that occur within them. PMID:16671408

  11. Stabilized Interleukin-6 receptor binding RNA aptamers

    PubMed Central

    Meyer, Cindy; Berg, Katharina; Eydeler-Haeder, Katja; Lorenzen, Inken; Grötzinger, Joachim; Rose-John, Stefan; Hahn, Ulrich

    2014-01-01

    Interleukin-6 (IL-6) is a multifunctional cytokine that is involved in the progression of various inflammatory diseases, such as rheumatoid arthritis and certain cancers; for example, multiple myeloma or hepatocellular carcinoma. To interfere with IL-6-dependent diseases, targeting IL-6 receptor (IL-6R)-presenting tumor cells using aptamers might be a valuable strategy to broaden established IL-6- or IL-6R-directed treatment regimens. Recently, we reported on the in vitro selection of RNA aptamers binding to the human IL-6 receptor (IL-6R) with nanomolar affinity. One aptamer, namely AIR-3A, was 19 nt in size and able to deliver bulky cargos into IL-6R-presenting cells. As AIR-3A is a natural RNA molecule, its use for in vivo applications might be limited due to its susceptibility to ubiquitous ribonucleases. Aiming at more robust RNA aptamers targeting IL-6R, we now report on the generation of stabilized RNA aptamers for potential in vivo applications. The new 2'-F-modified RNA aptamers bind to IL-6R via its extracellular portion with low nanomolar affinity comparable to the previously identified unmodified counterpart. Aptamers do not interfere with the IL-6 receptor complex formation. The work described here represents one further step to potentially apply stabilized IL-6R-binding RNA aptamers in IL-6R-connected diseases, like multiple myeloma and hepatocellular carcinoma. PMID:24440854

  12. Structural Analysis of Botulinum Neurotoxin Type G Receptor Binding

    SciTech Connect

    Schmitt, John; Karalewitz, Andrew; Benefield, Desire A.; Mushrush, Darren J.; Pruitt, Rory N.; Spiller, Benjamin W.; Barbieri, Joseph T.; Lacy, D. Borden

    2010-10-19

    Botulinum neurotoxin (BoNT) binds peripheral neurons at the neuromuscular junction through a dual-receptor mechanism that includes interactions with ganglioside and protein receptors. The receptor identities vary depending on BoNT serotype (A-G). BoNT/B and BoNT/G bind the luminal domains of synaptotagmin I and II, homologous synaptic vesicle proteins. We observe conditions under which BoNT/B binds both Syt isoforms, but BoNT/G binds only SytI. Both serotypes bind ganglioside G{sub T1b}. The BoNT/G receptor-binding domain crystal structure provides a context for examining these binding interactions and a platform for understanding the physiological relevance of different Syt receptor isoforms in vivo.

  13. Bladder endothelin-1 receptor binding of bosentan and ambrisentan.

    PubMed

    Osano, Ayaka; Yokoyama, Yoshinari; Hayashi, Hideki; Itoh, Kunihiko; Okura, Takashi; Deguchi, Yoshiharu; Ito, Yoshihiko; Yamada, Shizuo

    2014-01-01

    The present study aimed to characterize bladder endothelin-1 (ET-1) receptor binding of clinically used ET-1 receptor antagonists by using [(125)I]ET-1. The inhibition of specific [(125)I]ET-1 binding was measured in the presence of ET-1 and its receptor antagonists. Specific binding of [(125)I]ET-1 in rat bladder was saturable and of high affinity, which characterized selective labeling of bladder ET-1 receptors. ET-1, bosentan, ambrisentan, and CI-1020 inhibited specific [(125)I]ET-1 binding in a concentration-dependent manner at nanomolar ranges of IC50. Nonlinear least squares regression analysis revealed the presence of high- and low-affinity ET-1 receptor sites for ambrisentan and CI-1020. Bosentan and ambrisentan significantly increased the dissociation constant for bladder [(125)I]ET-1 binding without affecting maximal number of binding sites (Bmax). Thus, bosentan and ambrisentan seem to bind to bladder ET-1 receptor in a competitive and reversible manner. Oral administration of bosentan caused a dose-dependent decrease in Bmax for bladder [(125)I]ET-1 binding, suggesting significant binding of bladder ET-1 receptors in vivo. A significant amount of pharmacologically relevant ET-1 receptors may exist in the bladder. These receptors may be implicated in the pathogenesis of lower urinary tract symptoms and may also be promising targets for the development of therapeutic agents. PMID:24389822

  14. NMDA receptor binding in focal epilepsies

    PubMed Central

    McGinnity, C J; Koepp, M J; Hammers, A; Riaño Barros, D A; Pressler, R M; Luthra, S; Jones, P A; Trigg, W; Micallef, C; Symms, M R; Brooks, D J; Duncan, J S

    2015-01-01

    Objective To demonstrate altered N-methyl-d-aspartate (NMDA) receptor availability in patients with focal epilepsies using positron emission tomography (PET) and [18F]GE-179, a ligand that selectively binds to the open NMDA receptor ion channel, which is thought to be overactive in epilepsy. Methods Eleven patients (median age 33 years, 6 males) with known frequent interictal epileptiform discharges had an [18F]GE-179 PET scan, in a cross-sectional study. MRI showed a focal lesion but discordant EEG changes in two, was non-localising with multifocal EEG abnormalities in two, and was normal in the remaining seven patients who all had multifocal EEG changes. Individual patient [18F]GE-179 volume-of-distribution (VT) images were compared between individual patients and a group of 10 healthy controls (47 years, 7 males) using Statistical Parametric Mapping. Results Individual analyses revealed a single cluster of focal VT increase in four patients; one with a single and one with multifocal MRI lesions, and two with normal MRIs. Post hoc analysis revealed that, relative to controls, patients not taking antidepressants had globally increased [18F]GE-179 VT (+28%; p<0.002), and the three patients taking an antidepressant drug had globally reduced [18F]GE-179 VT (−29%; p<0.002). There were no focal abnormalities common to the epilepsy group. Conclusions In patients with focal epilepsies, we detected primarily global increases of [18F]GE-179 VT consistent with increased NMDA channel activation, but reduced availability in those taking antidepressant drugs, consistent with a possible mode of action of this class of drugs. [18F]GE-179 PET showed focal accentuations of NMDA binding in 4 out of 11 patients, with difficult to localise and treat focal epilepsy. PMID:25991402

  15. Enhanced human receptor binding by H5 haemagglutinins.

    PubMed

    Xiong, Xiaoli; Xiao, Haixia; Martin, Stephen R; Coombs, Peter J; Liu, Junfeng; Collins, Patrick J; Vachieri, Sebastien G; Walker, Philip A; Lin, Yi Pu; McCauley, John W; Gamblin, Steven J; Skehel, John J

    2014-05-01

    Mutant H5N1 influenza viruses have been isolated from humans that have increased human receptor avidity. We have compared the receptor binding properties of these mutants with those of wild-type viruses, and determined the structures of their haemagglutinins in complex with receptor analogues. Mutants from Vietnam bind tighter to human receptor by acquiring basic residues near the receptor binding site. They bind more weakly to avian receptor because they lack specific interactions between Asn-186 and Gln-226. In contrast, a double mutant, Δ133/Ile155Thr, isolated in Egypt has greater avidity for human receptor while retaining wild-type avidity for avian receptor. Despite these increases in human receptor binding, none of the mutants prefers human receptor, unlike aerosol transmissible H5N1 viruses. Nevertheless, mutants with high avidity for both human and avian receptors may be intermediates in the evolution of H5N1 viruses that could infect both humans and poultry. PMID:24889237

  16. Enhanced human receptor binding by H5 haemagglutinins

    PubMed Central

    Xiong, Xiaoli; Xiao, Haixia; Martin, Stephen R.; Coombs, Peter J.; Liu, Junfeng; Collins, Patrick J.; Vachieri, Sebastien G.; Walker, Philip A.; Lin, Yi Pu; McCauley, John W.; Gamblin, Steven J.; Skehel, John J.

    2014-01-01

    Mutant H5N1 influenza viruses have been isolated from humans that have increased human receptor avidity. We have compared the receptor binding properties of these mutants with those of wild-type viruses, and determined the structures of their haemagglutinins in complex with receptor analogues. Mutants from Vietnam bind tighter to human receptor by acquiring basic residues near the receptor binding site. They bind more weakly to avian receptor because they lack specific interactions between Asn-186 and Gln-226. In contrast, a double mutant, Δ133/Ile155Thr, isolated in Egypt has greater avidity for human receptor while retaining wild-type avidity for avian receptor. Despite these increases in human receptor binding, none of the mutants prefers human receptor, unlike aerosol transmissible H5N1 viruses. Nevertheless, mutants with high avidity for both human and avian receptors may be intermediates in the evolution of H5N1 viruses that could infect both humans and poultry. PMID:24889237

  17. Unexpected binding of an octapeptide to the angiotensin II receptor

    SciTech Connect

    Soffer, R.L.; Bandyopadhyay, S.; Rosenberg, E.; Hoeprich, P.; Teitelbaum, A.; Brunck, T.; Colby, C.B.; Gloff, C.

    1987-12-01

    An octapeptide, TBI-22 (Lys-Gly-Val-Tyr-Ile, His-Ala-Leu), inhibited binding of angiotensin II by a solubilized angiotensin receptor partially purified from rabbit liver. This inhibition appears to result from competition for binding to the same receptor. Radioiodinated TBI-22, like angiotensin II, bound to the solubilized receptor with an affinity such that the binding was inhibited 50% by unlabeled TBI-22 or angiotensin II at nanomolar concentrations. The binding reaction, like that for angiotensin II, required p-chloromercuriphenylsulfonic acid and was reversed in the presence of dithiothreitol. TBI-22 and angiotensin II share the sequence Val-Tyr-Ile-His; this tetrapeptide alone, however, did not inhibit binding of angiotensin II. Replacement of the tyrosine residue by aspartic acid in TBI-22 greatly reduced the ability of the peptide to compete with angiotensin II for binding, suggesting an important contribution of this residue to the configuration required for recognition by the receptor.

  18. Characterization of pulmonary sigma receptors by radioligand binding

    PubMed Central

    Lever, John R.; Litton, Tyler P.; Fergason-Cantrell, Emily A.

    2015-01-01

    This study establishes the expression of appreciable populations of sites on mouse lung membranes that exhibit radioligand binding properties and pharmacology consistent with assignment as sigma1 and sigma2 receptors. Specific binding of the sigma1 receptor radioligand [3H](+)-pentazocine reached steady state within 6 h at 37 °C. Saturation studies revealed high affinity binding to a single class of sites (Kd 1.36 ± 0.04 nM; Bmax 967 ± 11 fmol / mg protein). Inhibition studies showed appropriate sigma1 receptor pharmacology, including higher affinity for (+)-N-allylnormetazocine with respect to the (−)-enantiomer, and positive allosteric modulation of dextromethorphan binding by phenytoin. Using [3H]1,3-di(2-tolyl)guanidine in the presence of (+)-pentazocine to assess sigma2 receptor binding, steady state was achieved within 2 min at 25 °C. Cold saturation studies revealed one high affinity, low capacity binding site (Kd 31.8 ± 8.3 nM; Bmax 921 ± 228 fmol / mg protein) that displayed sigma2 receptor pharmacology. A very low affinity, high capacity interaction also was observed that represents saturable, but not sigma receptor specific, binding. A panel of ligands showed rank order inhibition of radioligand binding appropriate for the sigma2 receptor, with ifenprodil displaying the highest apparent affinity. In vivo, dextromethorphan inhibited the specific binding of a radioiodinated sigma1 receptor ligand in lung with an ED50 of 1.2 µmol / kg, a value near the recommended dosage for the drug as a cough suppressant. Overall, the present work provides a foundation for studies of drug interactions with pulmonary sigma1 and sigma2 receptors in vitro and in vivo. PMID:26004528

  19. Characterization of pulmonary sigma receptors by radioligand binding.

    PubMed

    Lever, John R; Litton, Tyler P; Fergason-Cantrell, Emily A

    2015-09-01

    This study establishes the expression of appreciable populations of sites on mouse lung membranes that exhibit radioligand binding properties and pharmacology consistent with assignment as sigma1 and sigma2 receptors. Specific binding of the sigma1 receptor radioligand [(3)H](+)-pentazocine reached steady state within 6h at 37°C. Saturation studies revealed high affinity binding to a single class of sites (Kd 1.36±0.04nM; Bmax 967±11fmol/mg protein). Inhibition studies showed appropriate sigma1 receptor pharmacology, including higher affinity for (+)-N-allylnormetazocine with respect to the (-)-enantiomer, and positive allosteric modulation of dextromethorphan binding by phenytoin. Using [(3)H]1,3-di(2-tolyl)guanidine in the presence of (+)-pentazocine to assess sigma2 receptor binding, steady state was achieved within 2min at 25°C. Cold saturation studies revealed one high affinity, low capacity binding site (Kd 31.8±8.3nM; Bmax 921±228fmol/mg protein) that displayed sigma2 receptor pharmacology. A very low affinity, high capacity interaction also was observed that represents saturable, but not sigma receptor specific, binding. A panel of ligands showed rank order inhibition of radioligand binding appropriate for the sigma2 receptor, with ifenprodil displaying the highest apparent affinity. In vivo, dextromethorphan inhibited the specific binding of a radioiodinated sigma1 receptor ligand in lung with an ED50 of 1.2μmol/kg, a value near the recommended dosage for the drug as a cough suppressant. Overall, the present work provides a foundation for studies of drug interactions with pulmonary sigma1 and sigma2 receptors in vitro and in vivo. PMID:26004528

  20. Estrophilin immunoreactivity versus estrogen receptor binding activity in meningiomas: evidence for multiple estrogen binding sites

    SciTech Connect

    Lesch, K.P.; Schott, W.; Gross, S.

    1987-09-01

    The existence of estrogen receptors in human meningiomas has long been a controversial issue. This may be explained, in part, by apparent heterogeneity of estrogen binding sites in meningioma tissue. In this study, estrogen receptors were determined in 58 meningiomas with an enzyme immunoassay using monoclonal antibodies against human estrogen receptor protein (estrophilin) and with a sensitive radioligand binding assay using /sup 125/I-labeled estradiol (/sup 125/I-estradiol) as radioligand. Low levels of estrophilin immunoreactivity were found in tumors from 62% of patients, whereas radioligand binding activity was demonstrated in about 46% of the meningiomas examined. In eight (14%) tissue samples multiple binding sites for estradiol were observed. The immunoreactive binding sites correspond to the classical, high affinity estrogen receptors: the Kd for /sup 125/I-estradiol binding to the receptor was approximately 0.2 nM and the binding was specific for estrogens. The second, low affinity class of binding sites considerably influenced measurement of the classical receptor even at low ligand concentrations. The epidemiological and clinical data from patients with meningiomas, and the existence of specific estrogen receptors confirmed by immunochemical detection, may be important factors in a theory of oncogenesis.

  1. Mu opioid receptor binding sites in human brain

    SciTech Connect

    Pilapil, C.; Welner, S.; Magnan, J.; Zamir, N.; Quirion, R.

    1986-01-01

    Our experiments focused on the examination of the distribution of mu opioid receptor binding sites in normal human brain using the highly selective ligand (/sup 3/H)DAGO, in both membrane binding assay and in vitro receptor autoradiography. Mu opioid binding sites are very discretely distributed in human brain with high densities of sites found in the posterior amygdala, caudate, putamen, hypothalamus and certain cortical areas. Moreover the autoradiographic distribution of (/sup 3/H)DAGO binding sites clearly reveals the discrete lamination (layers I and III-IV) of mu sites in cortical areas.

  2. CONTAMINANT INTERACTIONS WITH STEROID RECEPTORS: EVIDENCE FOR RECEPTOR BINDING.

    EPA Science Inventory

    Steroid receptors are important determinants of endocrine disrupter consequences. As the most frequently proposed mechanism of endocrine-disrupting contaminant (EDC) action, steroid receptors are not only targets of natural steroids but are also commonly sites of nonsteroidal com...

  3. Sex Differences in Serotonin 1 Receptor Binding in Rat Brain

    NASA Astrophysics Data System (ADS)

    Fischette, Christine T.; Biegon, Anat; McEwen, Bruce S.

    1983-10-01

    Male and female rats exhibit sex differences in binding by serotonin 1 receptors in discrete areas of the brain, some of which have been implicated in the control of ovulation and of gonadotropin release. The sex-specific changes in binding, which occur in response to the same hormonal (estrogenic) stimulus, are due to changes in the number of binding sites. Castration alone also affects the number of binding sites in certain areas. The results lead to the conclusion that peripheral hormones modulate binding by serotonin 1 receptors. The status of the serotonin receptor system may affect the reproductive capacity of an organism and may be related to sex-linked emotional disturbances in humans.

  4. Functional and receptor binding characterization of recombinant murine macrophage inflammatory protein 2: sequence analysis and mutagenesis identify receptor binding epitopes.

    PubMed Central

    Jerva, L. F.; Sullivan, G.; Lolis, E.

    1997-01-01

    Murine macrophage inflammatory protein-2 (MIP-2), a member of the alpha-chemokine family, is one of several proteins secreted by cells in response to lipopolysaccharide. Many of the alpha-chemokines, such as interleukin-8, gro-alpha/MGSA, and neutrophil activating peptide-2 (NAP-2), are associated with neutrophil activation and chemotaxis. We describe the expression, purification, and characterization of murine MIP-2 from Pichia pastoris. Circular dichroism spectroscopy reveals that MIP-2 exhibits a highly ordered secondary structure consistent with the alpha/beta structures of other chemokines. Recombinant MIP-2 is chemotactic for human and murine neutrophils and up-regulates cell surface expression of Mac-1. MIP-2 binds to human and murine neutrophils with dissociation constants of 6.4 nM and 2.9 nM, respectively. We further characterize the binding of MIP-2 to the human types A and B IL-8 receptors and the murine homologue of the IL-8 receptor. MIP-2 displays low-affinity binding to the type A IL-8 receptor (Kd > 120 nM) and high-affinity binding to the type B IL-8 receptor (Kd 5.7 nM) and the murine receptor (Kd 6.8 nM). The three-dimensional structure of IL-8 and sequence analysis of six chemokines (IL-8, gro-alpha, NAP-2, ENA-78, KC, and MIP-2) that display high-affinity binding to the IL-8 type B receptor are used to identify an extended N-terminal surface that interacts with this receptor. Two mutants of MIP-2 establish that this region is also involved in binding and activating the murine homologue of the IL-8 receptor. Differences in the sequence between IL-8 and related chemokines identify a unique hydrophobic/aromatic region surrounded by charged residues that is likely to impart specificity to IL-8 for binding to the type A receptor. PMID:9260277

  5. Sigma 1 receptor modulation of G-protein-coupled receptor signaling: potentiation of opioid transduction independent from receptor binding.

    PubMed

    Kim, Felix J; Kovalyshyn, Ivanka; Burgman, Maxim; Neilan, Claire; Chien, Chih-Cheng; Pasternak, Gavril W

    2010-04-01

    sigma Ligands modulate opioid actions in vivo, with agonists diminishing morphine analgesia and antagonists enhancing the response. Using human BE(2)-C neuroblastoma cells that natively express opioid receptors and human embryonic kidney (HEK) cells transfected with a cloned mu opioid receptor, we now demonstrate a similar modulation of opioid function, as assessed by guanosine 5'-O-(3-[(35)S]thio)triphosphate ([(35)S]GTP gamma S) binding, by sigma(1) receptors. sigma Ligands do not compete opioid receptor binding. Administered alone, neither sigma agonists nor antagonists significantly stimulated [(35)S]GTP gamma S binding. Yet sigma receptor selective antagonists, but not agonists, shifted the EC(50) of opioid-induced stimulation of [(35)S]GTP gamma S binding by 3- to 10-fold to the left. This enhanced potency was seen without a change in the efficacy of the opioid, as assessed by the maximal stimulation of [(35)S]GTP gamma S binding. sigma(1) Receptors physically associate with mu opioid receptors, as shown by coimmunoprecipitation studies in transfected HEK cells, implying a direct interaction between the proteins. Thus, sigma receptors modulate opioid transduction without influencing opioid receptor binding. RNA interference knockdown of sigma(1) in BE(2)-C cells also potentiated mu opioid-induced stimulation of [(35)S]GTP gamma S binding. These modulatory actions are not limited to mu and delta opioid receptors. In mouse brain membrane preparations, sigma(1)-selective antagonists also potentiated both opioid receptor and muscarinic acetylcholine receptor-mediated stimulation of [(35)S]GTP gamma S binding, suggesting a broader role for sigma receptors in modulating G-protein-coupled receptor signaling. PMID:20089882

  6. σ1 Receptor Modulation of G-Protein-Coupled Receptor Signaling: Potentiation of Opioid Transduction Independent from Receptor Binding

    PubMed Central

    Kim, Felix J.; Kovalyshyn, Ivanka; Burgman, Maxim; Neilan, Claire; Chien, Chih-Cheng

    2010-01-01

    σ Ligands modulate opioid actions in vivo, with agonists diminishing morphine analgesia and antagonists enhancing the response. Using human BE(2)-C neuroblastoma cells that natively express opioid receptors and human embryonic kidney (HEK) cells transfected with a cloned μ opioid receptor, we now demonstrate a similar modulation of opioid function, as assessed by guanosine 5′-O-(3-[35S]thio)triphosphate ([35S]GTPγS) binding, by σ1 receptors. σ Ligands do not compete opioid receptor binding. Administered alone, neither σ agonists nor antagonists significantly stimulated [35S]GTPγS binding. Yet σ receptor selective antagonists, but not agonists, shifted the EC50 of opioid-induced stimulation of [35S]GTPγS binding by 3- to 10-fold to the left. This enhanced potency was seen without a change in the efficacy of the opioid, as assessed by the maximal stimulation of [35S]GTPγS binding. σ1 Receptors physically associate with μ opioid receptors, as shown by coimmunoprecipitation studies in transfected HEK cells, implying a direct interaction between the proteins. Thus, σ receptors modulate opioid transduction without influencing opioid receptor binding. RNA interference knockdown of σ1 in BE(2)-C cells also potentiated μ opioid-induced stimulation of [35S]GTPγS binding. These modulatory actions are not limited to μ and δ opioid receptors. In mouse brain membrane preparations, σ1-selective antagonists also potentiated both opioid receptor and muscarinic acetylcholine receptor-mediated stimulation of [35S]GTPγS binding, suggesting a broader role for σ receptors in modulating G-protein-coupled receptor signaling. PMID:20089882

  7. Estradiol Binds to Insulin and Insulin Receptor Decreasing Insulin Binding in vitro

    PubMed Central

    Root-Bernstein, Robert; Podufaly, Abigail; Dillon, Patrick F.

    2014-01-01

    Rationale: Insulin (INS) resistance associated with hyperestrogenemias occurs in gestational diabetes mellitus, polycystic ovary syndrome, ovarian hyperstimulation syndrome, estrogen therapies, metabolic syndrome, and obesity. The mechanism by which INS and estrogen interact is unknown. We hypothesize that estrogen binds directly to INS and the insulin receptor (IR) producing INS resistance. Objectives: To determine the binding constants of steroid hormones to INS, the IR, and INS-like peptides derived from the IR; and to investigate the effect of estrogens on the binding of INS to its receptor. Methods: Ultraviolet spectroscopy, capillary electrophoresis, and NMR demonstrated estrogen binding to INS and its receptor. Horse-radish peroxidase-linked INS was used in an ELISA-like procedure to measure the effect of estradiol on binding of INS to its receptor. Measurements: Binding constants for estrogens to INS and the IR were determined by concentration-dependent spectral shifts. The effect of estradiol on INS binding to its receptor was determined by shifts in the INS binding curve. Main Results: Estradiol bound to INS with a Kd of 12 × 10−9 M and to the IR with a Kd of 24 × 10−9 M, while other hormones had significantly less affinity. Twenty-two nanomolars of estradiol shifted the binding curve of INS to its receptor 0.8 log units to the right. Conclusion: Estradiol concentrations in hyperestrogenemic syndromes may interfere with INS binding to its receptor producing significant INS resistance. PMID:25101056

  8. Effect of desipramine on dopamine receptor binding in vivo

    SciTech Connect

    Suhara, Tetsuya Jikei Univ., Tokyo ); Inoue, Osamu; Kobayasi, Kaoru )

    1990-01-01

    Effect of desipramine on the in vivo binding of {sup 3}H-SCH23390 and {sup 3}H-N-methylspiperone ({sup 3}H-NMSP) in mouse striatum was studied. The ratio of radioactivity in the striatum to that in the cerebellum at 15 min after i.v. injection of {sup 3}H-SCH23390 or 45 min after injection of {sup 3}H-NMSP were used as indices of dopamine D1 or D2 receptor binding in vivo, respectively. In vivo binding of D1 and D2 receptors was decreased in a dose-dependent manner by acute treatment with desipramine (DMI). A saturation experiment suggested that the DMI-induced reduction in the binding was mainly due to the decrease in the affinity of both receptors. No direct interactions between the dopamine receptors and DMI were observed in vitro by the addition of 1 mM of DMI into striatal homogenate. Other antidepressants such as imipramine, clomipramine, maprotiline and mianserin also decreased the binding of dopamine D1 and D2 receptors. The results indicated an important role of dopamine receptors in the pharmacological effect of antidepressants.

  9. Extra-helical binding site of a glucagon receptor antagonist.

    PubMed

    Jazayeri, Ali; Doré, Andrew S; Lamb, Daniel; Krishnamurthy, Harini; Southall, Stacey M; Baig, Asma H; Bortolato, Andrea; Koglin, Markus; Robertson, Nathan J; Errey, James C; Andrews, Stephen P; Teobald, Iryna; Brown, Alastair J H; Cooke, Robert M; Weir, Malcolm; Marshall, Fiona H

    2016-05-12

    Glucagon is a 29-amino-acid peptide released from the α-cells of the islet of Langerhans, which has a key role in glucose homeostasis. Glucagon action is transduced by the class B G-protein-coupled glucagon receptor (GCGR), which is located on liver, kidney, intestinal smooth muscle, brain, adipose tissue, heart and pancreas cells, and this receptor has been considered an important drug target in the treatment of diabetes. Administration of recently identified small-molecule GCGR antagonists in patients with type 2 diabetes results in a substantial reduction of fasting and postprandial glucose concentrations. Although an X-ray structure of the transmembrane domain of the GCGR has previously been solved, the ligand (NNC0640) was not resolved. Here we report the 2.5 Å structure of human GCGR in complex with the antagonist MK-0893 (ref. 4), which is found to bind to an allosteric site outside the seven transmembrane (7TM) helical bundle in a position between TM6 and TM7 extending into the lipid bilayer. Mutagenesis of key residues identified in the X-ray structure confirms their role in the binding of MK-0893 to the receptor. The unexpected position of the binding site for MK-0893, which is structurally similar to other GCGR antagonists, suggests that glucagon activation of the receptor is prevented by restriction of the outward helical movement of TM6 required for G-protein coupling. Structural knowledge of class B receptors is limited, with only one other ligand-binding site defined--for the corticotropin-releasing hormone receptor 1 (CRF1R)--which was located deep within the 7TM bundle. We describe a completely novel allosteric binding site for class B receptors, providing an opportunity for structure-based drug design for this receptor class and furthering our understanding of the mechanisms of activation of these receptors. PMID:27111510

  10. Differential effect of glucocorticoid receptor antagonists on glucocorticoid receptor nuclear translocation and DNA binding

    PubMed Central

    Spiga, Francesca; Knight, David M; Droste, Susanne K; Conway-Campbell, Becky; Kershaw, Yvonne; MacSweeney, Cliona P; Thomson, Fiona J; Craighead, Mark; Peeters, Bernard WMM; Lightman, Stafford L

    2016-01-01

    The effects of RU486 and S-P, a more selective glucocorticoid receptor antagonist from Schering-Plough, were investigated on glucocorticoid receptor nuclear translocation and DNA binding. In the in vitro study, AtT20 cells were treated with vehicle or with RU486, S-P or corticosterone (3–300 nM) or co-treated with vehicle or glucocorticoid receptor antagonists (3–300 nM) and 30 nM corticosterone. Both glucocorticoid receptor antagonists induced glucocorticoid receptor nuclear translocation but only RU486 induced DNA binding. RU486 potentiated the effect of corticosterone on glucocorticoid receptor nuclear translocation and DNA binding, S-P inhibited corticosterone-induced glucocorticoid receptor nuclear translocation, but not glucocorticoid receptor-DNA binding. In the in vivo study, adrenalectomized rats were treated with vehicle, RU486 (20 mg/kg) and S-P (50 mg/kg) alone or in combination with corticosterone (3 mg/kg). RU486 induced glucocorticoid receptor nuclear translocation in the pituitary, hippocampus and prefrontal cortex and glucocorticoid receptor-DNA binding in the hippocampus, whereas no effect of S-P on glucocorticoid receptor nuclear translocation or DNA binding was observed in any of the areas analysed. These findings reveal differential effects of RU486 and S-P on areas involved in regulation of hypothalamic–pituitary–adrenal axis activity in vivo and they are important in light of the potential use of this class of compounds in the treatment of disorders associated with hyperactivity of the hypothalamic–pituitary–adrenal axis. PMID:20093322

  11. Rapid screening of environmental chemicals for estrogen receptor binding capacity.

    PubMed Central

    Bolger, R; Wiese, T E; Ervin, K; Nestich, S; Checovich, W

    1998-01-01

    Over the last few years, an increased awareness of endocrine disrupting chemicals (EDCs) and their potential to affect wildlife and humans has produced a demand for practical screening methods to identify endocrine activity in a wide range of environmental and industrial chemicals. While it is clear that in vivo methods will be required to identify adverse effects produced by these chemicals, in vitro assays can define particular mechanisms of action and have the potential to be employed as rapid and low-cost screens for use in large scale EDC screening programs. Traditional estrogen receptor (ER) binding assays are useful for characterizing a chemical's potential to be an estrogen-acting EDC, but they involve displacement of a radioactive ligand from crude receptor preparations at low temperatures. The usefulness of these assays for realistically determining the ER binding interactions of weakly estrogenic environmental and industrial compounds that have low aqueous solubility is unclear. In this report, we present a novel fluorescence polarization (FP) method that measures the capacity of a competitor chemical to displace a high affinity fluorescent ligand from purified, recombinant human ER-[alpha] at room temperature. The ER-[alpha] binding interactions generated for 15 natural and synthetic compounds were found to be similar to those determined with traditional receptor binding assays. We also discuss the potential to employ this FP technology to binding studies involving ER-ss and other receptors. Thus, the assay introduced in this study is a nonradioactive receptor binding method that shows promise as a high throughput screening method for large-scale testing of environmental and industrial chemicals for ER binding interactions. Images Figure 2 Figure 3 Figure 4 PMID:9721254

  12. Novel Drosophila receptor that binds multiple growth factors

    SciTech Connect

    Rosner, M.R.; Thompson, K.L.; Garcia, V.; Decker, S.J.

    1986-05-01

    The authors have recently reported the identification of a novel growth factor receptor from Drosophila cell cultures that has dual binding specificity for both insulin and epidermal growth factor (EGF). This 100 kDa protein is also antigenically related to the cytoplasmic region of the mammalian EGF receptor-tyrosine kinase. They now report that this protein binds to mammalian nerve growth factor and human transforming growth factor alpha as well as insulin and EGF with apparent dissociation constants ranging from 10/sup -6/ to 10/sup -8/ M. The 100 kDa protein can be affinity-labeled with these /sup 125/I-labeled growth factors after immunoprecipitation with anti-EGF receptor antiserum. These four growth factors appear to share a common binding site, as evidenced by their ability to block affinity labelling by /sup 125/I-insulin. No significant binding to the 100 kDa protein was observed with platelet-derived growth factor, transforming growth factor beta, or glucagon. The 100 kDa Drosophila protein has a unique ligand-binding spectrum with no direct counterpart in mammalian cells and may represent an evolutionary precursor of the mammalian receptors for these growth factors.

  13. Radioiodination of chicken luteinizing hormone without affecting receptor binding potency

    SciTech Connect

    Kikuchi, M.; Ishii, S. )

    1989-12-01

    By improving the currently used lactoperoxidase method, we were able to obtain radioiodinated chicken luteinizing hormone (LH) that shows high specific binding and low nonspecific binding to a crude plasma membrane fraction of testicular cells of the domestic fowl and the Japanese quail, and to the ovarian granulosa cells of the Japanese quail. The change we made from the original method consisted of (1) using chicken LH for radioiodination that was not only highly purified but also retained a high receptor binding potency; (2) controlling the level of incorporation of radioiodine into chicken LH molecules by employing a short reaction time and low temperature; and (3) fractionating radioiodinated chicken LH further by gel filtration using high-performance liquid chromatography. Specific radioactivity of the final {sup 125}I-labeled chicken LH preparation was 14 microCi/micrograms. When specific binding was 12-16%, nonspecific binding was as low as 2-4% in the gonadal receptors. {sup 125}I-Labeled chicken LH was displaced by chicken LH and ovine LH but not by chicken follicle-stimulating hormone. The equilibrium association constant of quail testicular receptor was 3.6 x 10(9) M-1. We concluded that chicken LH radioiodinated by the present method is useful for studies of avian LH receptors.

  14. Structural Allostery and Binding of the Transferring Receptor Complex

    SciTech Connect

    Xu,G.; Liu, R.; Zak, O.; Aisen, P.; Chance, M.

    2005-01-01

    The structural allostery and binding interface for the human serum transferrin (Tf){center_dot}transferrin receptor (TfR) complex were identified using radiolytic footprinting and mass spectrometry. We have determined previously that the transferrin C-lobe binds to the receptor helical domain. In this study we examined the binding interactions of full-length transferrin with receptor and compared these data with a model of the complex derived from cryoelectron microscopy (cryo-EM) reconstructions. The footprinting results provide the following novel conclusions. First, we report characteristic oxidations of acidic residues in the C-lobe of native Tf and basic residues in the helical domain of TfR that were suppressed as a function of complex formation; this confirms ionic interactions between these protein segments as predicted by cryo-EM data and demonstrates a novel method for detecting ion pair interactions in the formation of macromolecular complexes. Second, the specific side-chain interactions between the C-lobe and N-lobe of transferrin and the corresponding interactions sites on the transferrin receptor predicted from cryo-EM were confirmed in solution. Last, the footprinting data revealed allosteric movements of the iron binding C- and N-lobes of Tf that sequester iron as a function of complex formation; these structural changes promote tighter binding of the metal ion and facilitate efficient ion transport during endocytosis.

  15. Development of a homogeneous binding assay for histamine receptors.

    PubMed

    Crane, Kathy; Shih, Daw-Tsun

    2004-12-01

    Histamine is critically involved in a wide range of physiological and pathological processes through its actions at different receptors. Thus, histamine receptors have been actively pursued as therapeutic targets in the pharmaceutical industry for the treatment of a variety of diseases. There are currently four histamine receptors that have been cloned, all of which are G protein-coupled receptors. Studies from both academia and pharmaceutical companies have identified compounds that modulate the function of specific histamine receptors. These efforts led to the successful introduction of histamine H(1) and H(2) receptor antagonists for the treatment of allergy and excess gastric acid secretion, respectively. Histamine H(3) receptor ligands are currently under investigation for the treatment of obesity and neurological disorders. The recently identified histamine H(4) receptor is preferentially expressed in the immune tissues, suggesting a potential role in normal immune functions and possibly in the pathogenesis of inflammatory diseases. Even with the long history of histamine research and the important applications of histamine receptor ligands, assays to measure the affinity of compounds binding to histamine receptors are still routinely analyzed using a filtration assay, a very low-throughput assay involving washing and filtration steps. This article describes a simple, robust, and homogeneous binding assay based on the scintillation proximity assay (SPA) technology that provides results equivalent to those obtained using the more complex filtration assay. The SPA format is easily adapted to high-throughput screening because it is amenable to automation. In summary, this technique allows high-throughput screening of compounds against multiple histamine receptors and, thus, facilitates drug discovery efforts. PMID:15519569

  16. The Quantum Nature of Drug-Receptor Interactions: Deuteration Changes Binding Affinities for Histamine Receptor Ligands

    PubMed Central

    Repič, Matej; Zakšek, Maja; Kotnik, Kristina; Fijan, Estera; Mavri, Janez

    2016-01-01

    In this article we report a combined experimental and computational study concerning the effects of deuteration on the binding of histamine and two other histaminergic agonists to 3H-tiotidine-labeled histamine H2 receptor in neonatal rat astrocytes. Binding affinities were measured by displacing radiolabeled tiotidine from H2 receptor binding sites present on cultured neonatal rat astrocytes. Quantum-chemical calculations were performed by employing the empirical quantization of nuclear motion within a cluster model of the receptor binding site extracted from the homology model of the entire H2 receptor. Structure of H2 receptor built by homology modelling is attached in the supporting information (S1 Table) Experiments clearly demonstrate that deuteration affects the binding by increasing the affinity for histamine and reducing it for 2-methylhistamine, while basically leaving it unchanged for 4-methylhistamine. Ab initio quantum-chemical calculations on the cluster system extracted from the homology H2 model along with the implicit quantization of the acidic N–H and O–H bonds demonstrate that these changes in the binding can be rationalized by the altered strength of the hydrogen bonding upon deuteration known as the Ubbelohde effect. Our computational analysis also reveals a new mechanism of histamine binding, which underlines an important role of Tyr250 residue. The present work is, to our best knowledge, the first study of nuclear quantum effects on ligand receptor binding. The ligand H/D substitution is relevant for therapy in the context of perdeuterated and thus more stable drugs that are expected to enter therapeutic practice in the near future. Moreover, presented approach may contribute towards understanding receptor activation, while a distant goal remains in silico discrimination between agonists and antagonists based on the receptor structure. PMID:27159606

  17. The Quantum Nature of Drug-Receptor Interactions: Deuteration Changes Binding Affinities for Histamine Receptor Ligands.

    PubMed

    Kržan, Mojca; Vianello, Robert; Maršavelski, Aleksandra; Repič, Matej; Zakšek, Maja; Kotnik, Kristina; Fijan, Estera; Mavri, Janez

    2016-01-01

    In this article we report a combined experimental and computational study concerning the effects of deuteration on the binding of histamine and two other histaminergic agonists to 3H-tiotidine-labeled histamine H2 receptor in neonatal rat astrocytes. Binding affinities were measured by displacing radiolabeled tiotidine from H2 receptor binding sites present on cultured neonatal rat astrocytes. Quantum-chemical calculations were performed by employing the empirical quantization of nuclear motion within a cluster model of the receptor binding site extracted from the homology model of the entire H2 receptor. Structure of H2 receptor built by homology modelling is attached in the supporting information (S1 Table) Experiments clearly demonstrate that deuteration affects the binding by increasing the affinity for histamine and reducing it for 2-methylhistamine, while basically leaving it unchanged for 4-methylhistamine. Ab initio quantum-chemical calculations on the cluster system extracted from the homology H2 model along with the implicit quantization of the acidic N-H and O-H bonds demonstrate that these changes in the binding can be rationalized by the altered strength of the hydrogen bonding upon deuteration known as the Ubbelohde effect. Our computational analysis also reveals a new mechanism of histamine binding, which underlines an important role of Tyr250 residue. The present work is, to our best knowledge, the first study of nuclear quantum effects on ligand receptor binding. The ligand H/D substitution is relevant for therapy in the context of perdeuterated and thus more stable drugs that are expected to enter therapeutic practice in the near future. Moreover, presented approach may contribute towards understanding receptor activation, while a distant goal remains in silico discrimination between agonists and antagonists based on the receptor structure. PMID:27159606

  18. The receptor binding domain of botulinum neurotoxin serotype C binds phosphoinositides.

    PubMed

    Zhang, Yanfeng; Varnum, Susan M

    2012-03-01

    Botulinum neurotoxins (BoNTs) are the most toxic proteins known for humans and animals with an extremely low LD(50) of ∼1 ng/kg. BoNTs generally require a protein and a ganglioside on the cell membrane surface for binding, which is known as a "dual receptor" mechanism for host intoxication. Recent studies have suggested that in addition to gangliosides, other membrane lipids such as phosphoinositides may be involved in the interactions with the receptor binding domain (HCR) of BoNTs for better membrane penetration. Using two independent lipid-binding assays, we tested the interactions of BoNT/C-HCR with lipids in vitro domain. BoNT/C-HCR was found to bind negatively charged phospholipids, preferentially phosphoinositides in both assays. Interactions with phosphoinositides may facilitate tighter binding between neuronal membranes and BoNT/C. PMID:22120109

  19. A binding question: the evolution of the receptor concept

    PubMed Central

    Maehle, Andreas-Holger

    2009-01-01

    In present-day pharmacology and medicine, it is usually taken for granted that cells contain a host of highly specific receptors. These are defined as proteins on or within the cell that bind with specificity to particular drugs, chemical messenger substances or hormones and mediate their effects on the body. However, it is only relatively recently that the notion of drug-specific receptors has become widely accepted, with considerable doubts being expressed about their existence as late as the 1960s. When did the receptor concept emerge, how did it evolve and why did it take so long to become established? PMID:19837460

  20. Radioligand binding to muscarinic receptors of bovine aortic endothelial cells.

    PubMed

    Brunner, F; Kukovetz, W R

    1991-02-01

    1. Muscarinic receptors on endothelial cells of bovine thoracic aorta were characterized by binding assays in which (-)-[3H]-N-methyl quinuclidinyl benzilate ([3H]-NMeQNB) was used as radioligand. 2. Binding of [3H]-NMeQNB to crude membranes of freshly isolated endothelial cells was atropine-displaceable and of high affinity (KD = 0.48 nM) to a single class of sites (maximum binding capacity: 14 +/- 3 fmol mg-1 protein). Stereospecificity of the binding sites was demonstrated in experiments in which [3H]-NMeQNB binding was inhibited by dexetimide in the nanomolar range (KI = 0.63 nM) and by levetimide, its stereoisomer in the micromolar range (KI = 3.2 microM) (selectivity factor: approximately 5000). 3. Drug competition curves indicated a single class of binding sites for antagonists and the following apparent affinities (KI, nM): methyl atropine: 1.1: 4-diphenylacetoxy N-methyl piperidine methyl bromide (4-DAMP): 3.4; pirenzepine: 16; 11-[2-diethylamino-methyl)-1-piperidinyl- acetyl]-5,11-dihydro-6H-pyrido(2,3-b)1,4-benzodiazepine-6-one (AF-DX 116); 2.500. Competition of acetylcholine with [3H]-NMeQNB was best described by two affinity sites (or states) (KH = 0.82 microM, KL = 1.6 microM). In the presence of guanylimido diphosphate [Gpp(NH)p] (100 microM), acetylcholine affinity (IC50) was slightly, but significantly reduced (factor approximately 4). 4. Binding of [3H]-NMeQNB to freshly harvested intact cells was also atropine-displaceable, stereospecific (selectivity factor: approximately 3500) and of high affinity (KD = 0.35 nM). The maximum binding capacity (9 +/- 2 fmol mg-1 total cell protein) was comparable to that of membranes and corresponded to approximately 900 binding sites per endothelial cell. Binding to enzymatically harvested and cultured endothelial cells, or membranes derived therefrom, showed no atropine-displaceable binding. 5. The results suggest that (1) bovine aortic endothelial cells contain muscarinic binding sites with all necessary

  1. Evidence for a second receptor binding site on human prolactin.

    PubMed

    Goffin, V; Struman, I; Mainfroid, V; Kinet, S; Martial, J A

    1994-12-23

    The existence of a second receptor binding site on human prolactin (hPRL) was investigated by site-directed mutagenesis. First, 12 residues of helices 1 and 3 were mutated to alanine. Since none of the resulting mutants exhibit reduced bioactivity in the Nb2 cell proliferation bioassay, the mutated residues do not appear to be functionally necessary. Next, small residues surrounding the helix 1-helix 3 interface were replaced with Arg and/or Trp, the aim being to sterically hinder the second binding site. Several of these mutants exhibit only weak agonistic properties, supporting our hypothesis that the channel between helices 1 and 3 is involved in a second receptor binding site. We then analyzed the antagonistic and self-antagonistic properties of native hPRL and of several hPRLs analogs altered at binding site 1 or 2. Even at high concentrations (approximately 10 microM), no self-inhibition was observed with native hPRL; site 2 hPRL mutants self-antagonized while site 1 mutants did not. From these data, we propose a model of hPRL-PRL receptor interaction which slightly differs from that proposed earlier for the homologous human growth hormone (hGH) (Fuh, G., Cunningham, B. C., Fukunaga, R., Nagata, S., and Goeddel, D. V., and Well, J. A. (1992) Science 256, 1677-1680). Like hGH, hPRL would bind sequentially to two receptor molecules, first through site 1, then through site 2, but we would expect the two sites of hPRL to display, unlike the two binding sites of hGH, about the same binding affinity, thus preventing self-antagonism at high concentrations. PMID:7798264

  2. Selective binding of estrogen receptor α to ubiquitin chains.

    PubMed

    Pesiri, Valeria; Di Muzio, Elena; Polticelli, Fabio; Acconcia, Filippo

    2016-07-01

    Ubiquitin (Ub)-binding domains (UBDs) noncovalently contact the Ub modification on binding partners. Ub possesses seven lysine (K) residues (i.e., K6, K11, K27, K29, K33, K48, and K63) that can be used to form different chains based on different Ub linkage types (e.g., monoubiquitination/polyubiquitination). Thus, different Ub-based signals exist and are decoded by UBDs. Recently, we have reported the existence of two Ub binding surfaces located within the estrogen receptor α (ERα) protein. We have shown that the leucine (L) 429 and alanine (A) 430 ERα residues direct noncovalent receptor binding to K63-based Ub chains in vitro. However, mutation of L429 and A430 residues did not completely abolish the ability of ERα to associate with Ub in cell lines. Thus, we evaluated the possibility that one or both ERα Ub binding surfaces could non-covalently interact with other Ub chains. Here, we report that ERα selectively binds to specific Ub chains based on different Ub linkages and that ERα monoubiquitination requires non-covalent ERα:Ub binding. Considering the importance of the UBD:Ub interaction in the initiation and progression of many diseases (e.g., cancer), our data provide novel insights into ERα functions that could be relevant to ERα-related diseases. © 2016 IUBMB Life, 68(7):569-577, 2016. PMID:27193211

  3. Structure of the heterodimeric ecdysone receptor DNA-binding complex

    PubMed Central

    Devarakonda, Srikripa; Harp, Joel M.; Kim, Youngchang; Ożyhar, Andrzej; Rastinejad, Fraydoon

    2003-01-01

    Ecdysteroids initiate molting and metamorphosis in insects via a heterodimeric receptor consisting of the ecdysone receptor (EcR) and ultraspiracle (USP). The EcR–USP heterodimer preferentially mediates transcription through highly degenerate pseudo-palindromic response elements, resembling inverted repeats of 5′-AGGTCA-3′ separated by 1 bp (IR-1). The requirement for a heterodimeric arrangement of EcR–USP subunits to bind to a symmetric DNA is unusual within the nuclear receptor superfamily. We describe the 2.24 Å structure of the EcR–USP DNA-binding domain (DBD) heterodimer bound to an idealized IR-1 element. EcR and USP use similar surfaces, and rely on the deformed minor groove of the DNA to establish protein–protein contacts. As retinoid X receptor (RXR) is the mammalian homolog of USP, we also solved the 2.60 Å crystal structure of the EcR–RXR DBD heterodimer on IR-1 and found the dimerization and DNA-binding interfaces to be the same as in the EcR–USP complex. Sequence alignments indicate that the EcR–RXR heterodimer is an important model for understanding how the FXR–RXR heterodimer binds to IR-1 sites. PMID:14592980

  4. RELATIVE BINDING AFFINITY OF ALKYLPHENOLS TO RAINBOW TROUT ESTROGEN RECEPTOR

    EPA Science Inventory

    RELATIVE BINDING AFFINITY OF ALKYLPHENOLS TO RAINBOW TROUT ESTROGEN RECEPTOR. T R Henry1, J S Denny2 and P K Schmieder2. USEPA, ORD, NHEERL, 1Experimental Toxicology Division and 2Mid-Continent Ecology Division, Duluth, MN, USA.
    The USEPA has been mandated to screen industria...

  5. A tricatecholic receptor for carbohydrate recognition: synthesis and binding studies.

    PubMed

    Cacciarini, Martina; Cordiano, Elisa; Nativi, Cristina; Roelens, Stefano

    2007-05-11

    A new tripodal receptor bearing three catechol subunits on a benzene platform has been synthesized in four steps from 1,3,5-triethylbenzene and pyrogallol. The binding ability of the tricatecholic receptor was investigated toward several monosaccharides in CDCl3, where multiple equilibria were detected, and compared to that of a previously reported trisureidic receptor of analogous structure. Association constants were measured by 1H NMR titrations, and the corresponding affinities were assessed through the BC50 parameter, a binding descriptor univocally defining the affinity of a host for a guest in multi-equilibrium systems. Results show that the tripodal catecholic receptor binds the octyl glycosides with affinities ranging from 0.87 to 5.2 mM and with a 6-fold selectivity factor for the alpha-mannoside over the beta-glucoside. Although the affinity for glycosides was not appreciably improved with respect to the ureidic receptor, a significant change in selectivity was obtained by the H-bonding group replacement. PMID:17444686

  6. Crystal structure of mouse coronavirus receptor-binding domain complexed with its murine receptor

    SciTech Connect

    Peng, Guiqing; Sun, Dawei; Rajashankar, Kanagalaghatta R.; Qian, Zhaohui; Holmes, Kathryn V.; Li, Fang

    2011-09-28

    Coronaviruses have evolved diverse mechanisms to recognize different receptors for their cross-species transmission and host-range expansion. Mouse hepatitis coronavirus (MHV) uses the N-terminal domain (NTD) of its spike protein as its receptor-binding domain. Here we present the crystal structure of MHV NTD complexed with its receptor murine carcinoembryonic antigen-related cell adhesion molecule 1a (mCEACAM1a). Unexpectedly, MHV NTD contains a core structure that has the same {beta}-sandwich fold as human galectins (S-lectins) and additional structural motifs that bind to the N-terminal Ig-like domain of mCEACAM1a. Despite its galectin fold, MHV NTD does not bind sugars, but instead binds mCEACAM1a through exclusive protein-protein interactions. Critical contacts at the interface have been confirmed by mutagenesis, providing a structural basis for viral and host specificities of coronavirus/CEACAM1 interactions. Sugar-binding assays reveal that galectin-like NTDs of some coronaviruses such as human coronavirus OC43 and bovine coronavirus bind sugars. Structural analysis and mutagenesis localize the sugar-binding site in coronavirus NTDs to be above the {beta}-sandwich core. We propose that coronavirus NTDs originated from a host galectin and retained sugar-binding functions in some contemporary coronaviruses, but evolved new structural features in MHV for mCEACAM1a binding.

  7. Crystal structure of NL63 respiratory coronavirus receptor-binding domain complexed with its human receptor

    SciTech Connect

    Wu, Kailang; Li, Weikai; Peng, Guiqing; Li, Fang

    2010-03-04

    NL63 coronavirus (NL63-CoV), a prevalent human respiratory virus, is the only group I coronavirus known to use angiotensin-converting enzyme 2 (ACE2) as its receptor. Incidentally, ACE2 is also used by group II SARS coronavirus (SARS-CoV). We investigated how different groups of coronaviruses recognize the same receptor, whereas homologous group I coronaviruses recognize different receptors. We determined the crystal structure of NL63-CoV spike protein receptor-binding domain (RBD) complexed with human ACE2. NL63-CoV RBD has a novel {beta}-sandwich core structure consisting of 2 layers of {beta}-sheets, presenting 3 discontinuous receptor-binding motifs (RBMs) to bind ACE2. NL63-CoV and SARS-CoV have no structural homology in RBD cores or RBMs; yet the 2 viruses recognize common ACE2 regions, largely because of a 'virus-binding hotspot' on ACE2. Among group I coronaviruses, RBD cores are conserved but RBMs are variable, explaining how these viruses recognize different receptors. These results provide a structural basis for understanding viral evolution and virus-receptor interactions.

  8. Mutational analysis of hsp90 binding to the progesterone receptor.

    PubMed

    Sullivan, W P; Toft, D O

    1993-09-25

    The 90-kDa heat shock protein, hsp90, is known to associate with steroid receptors that are in the inactive state. While the biochemical function of hsp90 is unclear, this association is believed to be significant because dissociation of hsp90 occurs when receptors are activated by hormone. Complexes between hsp90 and the progesterone receptor can be formed in vitro in rabbit reticulocyte lysate. This has been shown to be an ATP-dependent process, and dissociation of the complex occurs when progesterone is added to the system. We now show that hsp90 synthesized by in vitro translation in reticulocyte lysate can form complexes with progesterone receptor that are sensitive to hormone. This system was used to analyze several mutant forms of hsp90. A series of NH2-terminal deletions showed that amino acids 1-380 can be removed from hsp90 without substantial loss of receptor binding activity. However, several deletions in the COOH-terminal half of hsp90 resulted in a partial or complete loss of this activity. Two regions, amino acids 381-441 and 601-677, appear to be particularly important for receptor binding. These studies describe a convenient and reliable method for the initial screening of hsp90 mutants, and they provide important clues to the identification of domains on hsp90 that interact with other proteins. PMID:8376394

  9. Evidence for an intrinsic binding force between dodecaborate dianions and receptors with hydrophobic binding pockets.

    PubMed

    Warneke, Jonas; Jenne, Carsten; Bernarding, Johannes; Azov, Vladimir A; Plaumann, Markus

    2016-05-01

    A gas phase binding study revealed strong intrinsic intermolecular interactions between dianionic halogenated closo-dodecaborates [B12X12](2-) and several neutral organic receptors. Oxidation of a tetrathiafulvalene host allowed switching between two host-guest binding modes in a supramolecular complex. Complexes of β-cyclodextrin with [B12F12](2-) show remarkable stability in the gas phase and were successfully tested as carriers for the delivery of boron clusters into cancer cells. PMID:27087168

  10. Binding properties of androgen receptors. Evidence for identical receptors in rat testis, epididymis, and prostate.

    PubMed

    Wilson, E M; French, F S

    1976-09-25

    Androgen receptors in crude and partially purified 105,000 X g supernatant fractions from rat testis, epididymis, and prostate were studied in vitro using a charcoal adsorption assay and sucrose gradient centrifugation. Androgen metabolism was eliminated during receptor purification allowing determination of the kinetics of [3H]-androgen-receptor complex formation. In all three tissues, receptors were found to have essentially identical capabilities to bind androgen, with the affinity for [3H] dihydrotestosterone being somewhat higher than for [3H] testosterone. Equilibrium dissociation constants for [3H] dihydrotestosterone and [3H] testosterone (KD = 2 to 5 X 10(-10) M) were estimated from independently determined rates of association (ka congruent to 6 X 10(7) M-1 h-1 for [3H] dihydrotestosterone and 2 X 10(8) M-1 h-1 for [3H] testosterone) and dissociation (t 1/2 congruent to 40 hr for [3H] dihydrotestosterone and 15 h [3H] testosterone). Evaluation of the effect of temperature on androgen receptor binding of [3H]testosterone allowed estimation of several thermodynamic parameters, including activation energies of association and dissociation (delta H congruent to 14 kcal/mol), the apparent free energy (delta G congruent to -12 kcal/mol), enthalpy (delta H congruent to -2.5 kcal/mol), and entropy (delta S congruent to 35 cal col-1 K-1). Optimum receptor binding occurred at a pH of 8. Receptor stability was greatly enhanced when bound with androgen. Receptor specificity for testosterone and dihydrotestosterone was demonstrated by competitive binding assays. The potent synthetic androgen, 7 alpha, 17 alpha-dimethyl-19-nortestosterone, inhibited binding of [3H] testosterone or [3H] dihydrotesterone nearly as well as testosterone and dihydrotestosterone while larger amounts of 5 alpha-androstane-3alpha, 17 beta-diol and nonandrogenic steroids were required. Sedimentation coefficients of androgen receptors in all unfractionated supernatants were 4 and 5 to 8 S

  11. Allelic association of the D2 dopamine receptor gene with receptor-binding characteristics in alcoholism

    SciTech Connect

    Noble, E.P.; Blum, K.; Ritchie, T.; Montgomery, A.; Sheridan, P.J. )

    1991-07-01

    The allelic association of the human D2 dopamine receptor gene with the binding characteristics of the D2 dopamine receptor was determined in 66 brains of alcoholic and non-alcoholic subjects. In a blinded experiment, DNA from the cerebral cortex was treated with the restriction endonuclease Taql and probed with a 1.5-kilobase (kb) digest of a clone (lambda hD2G1) of the human D2 dopamine receptor gene. The binding characteristics (Kd (binding affinity) and Bmax (number of binding sites)) of the D2 dopamine receptor were determined in the caudate nuclei of these brains using tritiated spiperone as the ligand. The adjusted Kd was significantly lower in alcoholic than in nonalcoholic subjects. In subjects with the A1 allele, in whom a high association with alcoholism was found, the Bmax was significantly reduced compared with the Bmax of subjects with the A2 allele. Moreover, a progressively reduced Bmax was found in subjects with A2/A2, A1/A2, and A1/A1 alleles, with subjects with A2/A2 having the highest mean values, and subjects with A1/A1, the lowest. The polymorphic pattern of the D2 dopamine receptor gene and its differential expression of receptors suggests the involvement of the dopaminergic system in conferring susceptibility to at least one subtype of severe alcoholism.

  12. FOLLITROPIN RECEPTORS CONTAIN CRYPTIC LIGAND BINDING SITES1

    PubMed Central

    Lin, Win; Bernard, Michael P.; Cao, Donghui; Myers, Rebecca V.; Kerrigan, John E.; Moyle, William R.

    2007-01-01

    Human choriogonadotropin (hCG) and follitropin (hFSH) have been shown to contact different regions of the extracellular domains of G-protein coupled lutropin (LHR) and follitropin (FSHR) receptors. We report here that hCG and hFSH analogs interact with an FSHR/LHR chimera having only two unique LHR residues similar to the manners in which they dock with LHR and FSHR, respectively. This shows that although the FSHR does not normally bind hCG, it contains a cryptic lutropin binding site that has the potential to recognize hCG in a manner similar to the LHR. The presence of this cryptic site may explain why equine lutropins bind many mammalian FSHR and why mutations in the transmembrane domain distant from the extracellular domain enable the FSHR to bind hCG. The leucine-rich repeat domain (LRD) of the FSHR also appears to contain a cryptic FSH binding site that is obscured by other parts of the extracellular domain. This will explain why contacts seen in crystals of hFSH complexed with an LRD fragment of the human FSHR are hard to reconcile with the abilities of FSH analogs to interact with membrane G-protein coupled FSHR. We speculate that cryptic lutropin binding sites in the FSHR, which are also likely to be present in thyrotropin receptors (TSHR), permit the physiological regulation of ligand binding specificity. Cryptic FSH binding sites in the LRD may enable alternate spliced forms of the FSHR to interact with FSH. PMID:17059863

  13. Recombinant Collagen Engineered to Bind to Discoidin Domain Receptor Functions as a Receptor Inhibitor*

    PubMed Central

    An, Bo; Abbonante, Vittorio; Xu, Huifang; Gavriilidou, Despoina; Yoshizumi, Ayumi; Bihan, Dominique; Farndale, Richard W.; Kaplan, David L.; Balduini, Alessandra; Leitinger, Birgit; Brodsky, Barbara

    2016-01-01

    A bacterial collagen-like protein Scl2 has been developed as a recombinant collagen model system to host human collagen ligand-binding sequences, with the goal of generating biomaterials with selective collagen bioactivities. Defined binding sites in human collagen for integrins, fibronectin, heparin, and MMP-1 have been introduced into the triple-helical domain of the bacterial collagen and led to the expected biological activities. The modular insertion of activities is extended here to the discoidin domain receptors (DDRs), which are collagen-activated receptor tyrosine kinases. Insertion of the DDR-binding sequence from human collagen III into bacterial collagen led to specific receptor binding. However, even at the highest testable concentrations, the construct was unable to stimulate DDR autophosphorylation. The recombinant collagen expressed in Escherichia coli does not contain hydroxyproline (Hyp), and complementary synthetic peptide studies showed that replacement of Hyp by Pro at the critical Gly-Val-Met-Gly-Phe-Hyp position decreased the DDR-binding affinity and consequently required a higher concentration for the induction of receptor activation. The ability of the recombinant bacterial collagen to bind the DDRs without inducing kinase activation suggested it could interfere with the interactions between animal collagen and the DDRs, and such an inhibitory role was confirmed in vitro and with a cell migration assay. This study illustrates that recombinant collagen can complement synthetic peptides in investigating structure-activity relationships, and this system has the potential for the introduction or inhibition of specific biological activities. PMID:26702058

  14. Recombinant Collagen Engineered to Bind to Discoidin Domain Receptor Functions as a Receptor Inhibitor.

    PubMed

    An, Bo; Abbonante, Vittorio; Xu, Huifang; Gavriilidou, Despoina; Yoshizumi, Ayumi; Bihan, Dominique; Farndale, Richard W; Kaplan, David L; Balduini, Alessandra; Leitinger, Birgit; Brodsky, Barbara

    2016-02-26

    A bacterial collagen-like protein Scl2 has been developed as a recombinant collagen model system to host human collagen ligand-binding sequences, with the goal of generating biomaterials with selective collagen bioactivities. Defined binding sites in human collagen for integrins, fibronectin, heparin, and MMP-1 have been introduced into the triple-helical domain of the bacterial collagen and led to the expected biological activities. The modular insertion of activities is extended here to the discoidin domain receptors (DDRs), which are collagen-activated receptor tyrosine kinases. Insertion of the DDR-binding sequence from human collagen III into bacterial collagen led to specific receptor binding. However, even at the highest testable concentrations, the construct was unable to stimulate DDR autophosphorylation. The recombinant collagen expressed in Escherichia coli does not contain hydroxyproline (Hyp), and complementary synthetic peptide studies showed that replacement of Hyp by Pro at the critical Gly-Val-Met-Gly-Phe-Hyp position decreased the DDR-binding affinity and consequently required a higher concentration for the induction of receptor activation. The ability of the recombinant bacterial collagen to bind the DDRs without inducing kinase activation suggested it could interfere with the interactions between animal collagen and the DDRs, and such an inhibitory role was confirmed in vitro and with a cell migration assay. This study illustrates that recombinant collagen can complement synthetic peptides in investigating structure-activity relationships, and this system has the potential for the introduction or inhibition of specific biological activities. PMID:26702058

  15. Defining a minimal estrogen receptor DNA binding domain.

    PubMed Central

    Mader, S; Chambon, P; White, J H

    1993-01-01

    The estrogen receptor (ER) is a transcriptional regulator which binds to cognate palindromic DNA sequences known as estrogen response elements (EREs). A 66 amino acid core region which contains two zinc fingers and is highly conserved among the nuclear receptors is essential for site specific DNA recognition. However, it remains unclear how many flanking amino acids in addition to the zinc finger core are required for DNA binding. Here, we have characterized the minimal DNA binding region of the human ER by analysing the DNA binding properties of a series of deletion mutants expressed in bacteria. We find that the 66 amino acid zinc finger core of the DBD fails to bind DNA, and that the C-terminal end of the minimal ER DBD required for binding to perfectly palindromic EREs corresponds to the limit of 100% amino acid homology between the chicken and human receptors, which represents the boundary between regions C and D in the ER. Moreover, amino acids of region D up to 30 residues C-terminal to the zinc fingers greatly stabilize DNA binding by the DBD to perfectly palindromic EREs and are absolutely required for formation of gel retardation complexes by the DBD on certain physiological imperfectly palindromic EREs. These results indicate that in addition to the zinc finger core, amino acids C-terminal to the core in regions C and D play a key role in DNA binding by the ER, particularly to imperfectly palindromic response elements. The ER DBD expressed in E. coli binds as a dimer to ERE palindromes in a highly cooperative manner and forms only low levels of monomeric protein-DNA complexes on either palindromic or half-palindromic response elements. Conversion of ER amino acids 222 to 226, which lie within region C, to the corresponding residues of the human RAR alpha abolishes formation of dimeric protein-DNA complexes. Conversely, replacement of the same region of RAR alpha with ER residues 222 to 226 creates a derivative that, unlike the RAR alpha DBD, binds

  16. MODELING THE BINDING OF THE METABOLITES OF SOME POLYCYCLIC AROMTIC HYDROCARBONS TO THE LIGAND BINDING DOMAIN OF THE ESTROGEN RECEPTOR

    EPA Science Inventory

    Modeling the binding of the metabolites of some Polycyclic Aromatic Hydrocarbons to the ligand binding domain of the estrogen receptor
    James Rabinowitz, Stephen Little, Katrina Brown, National Health and Environmental Effects Research Laboratory, Research Triangle Park, NC; Un...

  17. Viral receptor-binding site antibodies with diverse germline origins

    PubMed Central

    Schmidt, Aaron G.; Therkelsen, Matthew D.; Stewart, Shaun; Kepler, Thomas B.; Liao, Hua-Xin; Moody, M. Anthony; Haynes, Barton F.; Harrison, Stephen C.

    2015-01-01

    Vaccines for rapidly evolving pathogens will confer lasting immunity if they elicit antibodies recognizing conserved epitopes, such as a receptor-binding site (RBS). From characteristics of an influenza-virus RBS-directed antibody, we devised a signature motif to search for similar antibodies. We identified, from three vaccinees, over 100 candidates encoded by eleven different VH genes. Crystal structures show that antibodies in this class engage the hemagglutinin RBS and mimic binding of the receptor, sialic acid, by supplying a critical dipeptide on their projecting, heavy-chain third complementarity determining region. They share contacts with conserved, receptor-binding residues but contact different residues on the RBS periphery, limiting the likelihood of viral escape when several such antibodies are present. These data show that related modes of RBS recognition can arise from different germline origins and mature through diverse affinity maturation pathways. Immunogens focused on an RBS-directed response will thus have a broad range of B-cell targets. PMID:25959776

  18. Viral receptor-binding site antibodies with diverse germline origins.

    PubMed

    Schmidt, Aaron G; Therkelsen, Matthew D; Stewart, Shaun; Kepler, Thomas B; Liao, Hua-Xin; Moody, M Anthony; Haynes, Barton F; Harrison, Stephen C

    2015-05-21

    Vaccines for rapidly evolving pathogens will confer lasting immunity if they elicit antibodies recognizing conserved epitopes, such as a receptor-binding site (RBS). From characteristics of an influenza-virus RBS-directed antibody, we devised a signature motif to search for similar antibodies. We identified, from three vaccinees, over 100 candidates encoded by 11 different VH genes. Crystal structures show that antibodies in this class engage the hemagglutinin RBS and mimic binding of the receptor, sialic acid, by supplying a critical dipeptide on their projecting, heavy-chain third complementarity determining region. They share contacts with conserved, receptor-binding residues but contact different residues on the RBS periphery, limiting the likelihood of viral escape when several such antibodies are present. These data show that related modes of RBS recognition can arise from different germline origins and mature through diverse affinity maturation pathways. Immunogens focused on an RBS-directed response will thus have a broad range of B cell targets. PMID:25959776

  19. Recognition and Accommodation at the Androgen Receptor Coactivator Binding Interface

    PubMed Central

    Hur, Eugene; Pfaff, Samuel J; Payne, E. Sturgis; Grøn, Hanne; Buehrer, Benjamin M

    2004-01-01

    Prostate cancer is a leading killer of men in the industrialized world. Underlying this disease is the aberrant action of the androgen receptor (AR). AR is distinguished from other nuclear receptors in that after hormone binding, it preferentially responds to a specialized set of coactivators bearing aromatic-rich motifs, while responding poorly to coactivators bearing the leucine-rich “NR box” motifs favored by other nuclear receptors. Under normal conditions, interactions with these AR-specific coactivators through aromatic-rich motifs underlie targeted gene transcription. However, during prostate cancer, abnormal association with such coactivators, as well as with coactivators containing canonical leucine-rich motifs, promotes disease progression. To understand the paradox of this unusual selectivity, we have derived a complete set of peptide motifs that interact with AR using phage display. Binding affinities were measured for a selected set of these peptides and their interactions with AR determined by X-ray crystallography. Structures of AR in complex with FxxLF, LxxLL, FxxLW, WxxLF, WxxVW, FxxFF, and FxxYF motifs reveal a changing surface of the AR coactivator binding interface that permits accommodation of both AR-specific aromatic-rich motifs and canonical leucine-rich motifs. Induced fit provides perfect mating of the motifs representing the known family of AR coactivators and suggests a framework for the design of AR coactivator antagonists. PMID:15328534

  20. Characterization of DNA Binding and Retinoic Acid Binding Properties of Retinoic Acid Receptor

    NASA Astrophysics Data System (ADS)

    Yang, Na; Schule, Roland; Mangelsdorf, David J.; Evans, Ronald M.

    1991-05-01

    High-level expression of the full-length human retinoic acid receptor (RAR) α and the DNA binding domain of the RAR in Escherichia coli was achieved by using a T7 RNA polymerase-directed expression system. After induction, full-length RAR protein was produced at an estimated level of 20% of the total bacterial proteins. Both intact RAR molecules and the DNA binding domain bind to the cognate DNA response element with high specificity in the absence of retinoic acid. However, this binding is enhanced to a great extent upon the addition of eukaryotic cell extracts. The factor responsible for this enhancement is heat-sensitive and forms a complex with RAR that binds to DNA and exhibits a distinct migration pattern in the gel-mobility-shift assay. The interaction site of the factor with RAR is localized in the 70-amino acid DNA binding region of RAR. The hormone binding ability of the RARα protein was assayed by a charcoal absorption assay and the RAR protein was found to bind to retinoic acid with a K_d of 2.1 x 10-10 M.

  1. Binding Mode Prediction of Evodiamine within Vanilloid Receptor TRPV1

    PubMed Central

    Wang, Zhanli; Sun, Lidan; Yu, Hui; Zhang, Yanhui; Gong, Wuzhuang; Jin, Hongwei; Zhang, Liangren; Liang, Huaping

    2012-01-01

    Accurate assessment of the potential binding mode of drugs is crucial to computer-aided drug design paradigms. It has been reported that evodiamine acts as an agonist of the vanilloid receptor Transient receptor potential vanilloid-1 (TRPV1). However, the precise interaction between evodiamine and TRPV1 was still not fully understood. In this perspective, the homology models of TRPV1 were generated using the crystal structure of the voltage-dependent shaker family K+ channel as a template. We then performed docking and molecular dynamics simulation to gain a better understanding of the probable binding modes of evodiamine within the TRPV1 binding pocket. There are no significant interspecies differences in evodiamine binding in rat, human and rabbit TRPV1 models. Pharmacophore modeling further provided confidence for the validity of the docking studies. This study is the first to shed light on the structural determinants required for the interaction between TRPV1 and evodiamine, and gives new suggestions for the rational design of novel TRPV1 ligands. PMID:22942745

  2. The Receptor Binding Domain of Botulinum Neurotoxin Stereotype C Binds Phosphoinositides

    SciTech Connect

    Zhang, Yanfeng; Varnum, Susan M.

    2012-03-01

    Botulinum neurotoxins (BoNTs) are the most toxic proteins known for humans and animals with an extremely low LD50 of {approx} 1 ng/kg. BoNTs generally require a protein and a ganglioside on the cell membrane surface for binding, which is known as a 'dual receptor' mechanism for host intoxication. Recent studies have suggested that in addition to gangliosides, other membrane lipids such as phosphoinositides may be involved in the interactions with the receptor binding domain (HCR) of BoNTs for better membrane penetration. Here, using two independent lipid-binding assays, we tested the interactions of BoNT/C-HCR with lipids in vitro. BoNT/C-HCR was found to bind negatively charged phospholipids, preferentially phosphoinositides. Additional interactions to phosphoinositides may help BoNT/C bind membrane more tightly and transduct signals for subsequent steps of intoxication. Our results provide new insights into the mechanisms of host cell membrane recognition by BoNTs.

  3. Development of Gamma-Emitting Receptor Binding Radiopharmace

    SciTech Connect

    Reba, Richard

    2003-02-20

    The long-term objective is to develop blood-brain barrier (BBB) permeable m2-selective (relative to m1, m3, and m4) receptor-binding radiotracers and utilize these radiotracers for quantifying receptor concentrations obtained from PET or SPECT images of human brain. In initial studies, we concluded that the lipophilicity and high affinity prevented (R,S)-I-QNB from reaching a flow-independent and receptor-dependent state in a reasonable time. Thus, it was clear that (R,S)-I-QNB should be modified. Therefore, during the last portion of this funded research, we proposed that more polar heterocycles should help accomplish that. Since reports of others concluded that radiobromination and radiofluorination of the unactivated phenyl ring is not feasible (Newkome et al,,1982), we, therefore, explored during this grant period a series of analogues of (R)-QNB in which one or both of the six-membered phenyl rings is replaced by a five-membered thienyl (Boulay et al., 1995), or furyl ring. The chemistry specific aims were to synthesize novel compounds designed to be m2-selective mAChR ligands capable of penetrating into the CNS, and develop methods for efficient radiolabeling of promising m2-selective muscarinic ligands. The pharmacology specific aims were to determine the affinity and subtype-selectivity of the novel compounds using competition binding studies with membranes from cells that express each of the five muscarinic receptor subtypes, to determine the ability of the promising non-radioactive compounds and radiolabeled novel compounds to cross the BBB, to determine the biodistribution, in-vivo pharmacokinetics, and in-vitm kinetics of promising m2-selective radioligands and to determine the distribution of receptors for the novel m2-selective radioligands using quantitative autoradiography of rat brain, and compare this distribution to the distribution of known m2-selective compounds.

  4. Predicting Binding to P-Glycoprotein by Flexible Receptor Docking

    PubMed Central

    Dolghih, Elena; Bryant, Clifford; Renslo, Adam R.; Jacobson, Matthew P.

    2011-01-01

    P-glycoprotein (P-gp) is an ATP-dependent transport protein that is selectively expressed at entry points of xenobiotics where, acting as an efflux pump, it prevents their entering sensitive organs. The protein also plays a key role in the absorption and blood-brain barrier penetration of many drugs, while its overexpression in cancer cells has been linked to multidrug resistance in tumors. The recent publication of the mouse P-gp crystal structure revealed a large and hydrophobic binding cavity with no clearly defined sub-sites that supports an “induced-fit” ligand binding model. We employed flexible receptor docking to develop a new prediction algorithm for P-gp binding specificity. We tested the ability of this method to differentiate between binders and nonbinders of P-gp using consistently measured experimental data from P-gp efflux and calcein-inhibition assays. We also subjected the model to a blind test on a series of peptidic cysteine protease inhibitors, confirming the ability to predict compounds more likely to be P-gp substrates. Finally, we used the method to predict cellular metabolites that may be P-gp substrates. Overall, our results suggest that many P-gp substrates bind deeper in the cavity than the cyclic peptide in the crystal structure and that specificity in P-gp is better understood in terms of physicochemical properties of the ligands (and the binding site), rather than being defined by specific sub-sites. PMID:21731480

  5. Midbrain dopamine D2/3 receptor binding in schizophrenia.

    PubMed

    Tuppurainen, Heli; Kuikka, Jyrki T; Laakso, Mikko P; Viinamäki, Heimo; Husso, Minna; Tiihonen, Jari

    2006-09-01

    Several studies suggest that dysregulation of dopaminergic transmission in the midbrain and thalamus may contribute to the symptomatology of schizophrenia. The objective of this study was to examine the putative alteration of dopamine D(2/3 )receptor densities in the thalamus and midbrain of drug-naïve schizophrenic patients. We used the high-affinity single-photon emission tomography ligand [(123)I]epidepride for imaging D(2/3 )receptor binding sites in six neuroleptic-naïve schizophrenic patients, and seven healthy controls. Schizophrenic symptoms were evaluated by the Positive and Negative Syndrome Scale. Significantly lower D(2/3 )values were observed in the midbrain of patients with schizophrenia compared to controls (P = 0.02). No statistically significant difference was observed in the thalamus between two groups. Negative correlations were found between thalamic D(2/3 )receptor binding and general psychopathological schizophrenic symptoms (r from -0.78 to -0.92). These observations implicate altered dopaminergic activity in the midbrain of schizophrenic patients. PMID:16783502

  6. The glycocalyx promotes cooperative binding and clustering of adhesion receptors.

    PubMed

    Xu, Guang-Kui; Qian, Jin; Hu, Jinglei

    2016-05-18

    Cell adhesion plays a pivotal role in various biological processes, e.g., immune responses, cancer metastasis, and stem cell differentiation. The adhesion behaviors depend subtly on the binding kinetics of receptors and ligands restricted at the cell-substrate interfaces. Although much effort has been directed toward investigating the kinetics of adhesion molecules, the role of the glycocalyx, anchored on cell surfaces as an exterior layer, is still unclear. In this paper, we propose a theoretical approach to study the collective binding kinetics of a few and a large number of binders in the presence of the glycocalyx, representing the cases of initial and mature adhesions of cells, respectively. The analytical results are validated by finding good agreement with our Monte Carlo simulations. In the force loading case, the on-rate and affinity increase as more bonds form, whereas this cooperative effect is not observed in the displacement loading case. The increased thickness and stiffness of the glycocalyx tend to decrease the affinity for a few bonds, while they have less influence on the affinity for a large number of bonds. Moreover, for a flexible membrane with thermally-excited shape fluctuations, the glycocalyx is exhibited to promote the formation of bond clusters, mainly due to the cooperative binding of binders. This study helps to understand the cooperative kinetics of adhesion receptors under physiologically relevant loading conditions and sheds light on the novel role of the glycocalyx in cell adhesion. PMID:27102288

  7. Ligand Binding Ensembles Determine Graded Agonist Efficacies at a G Protein-coupled Receptor.

    PubMed

    Bock, Andreas; Bermudez, Marcel; Krebs, Fabian; Matera, Carlo; Chirinda, Brian; Sydow, Dominique; Dallanoce, Clelia; Holzgrabe, Ulrike; De Amici, Marco; Lohse, Martin J; Wolber, Gerhard; Mohr, Klaus

    2016-07-29

    G protein-coupled receptors constitute the largest family of membrane receptors and modulate almost every physiological process in humans. Binding of agonists to G protein-coupled receptors induces a shift from inactive to active receptor conformations. Biophysical studies of the dynamic equilibrium of receptors suggest that a portion of receptors can remain in inactive states even in the presence of saturating concentrations of agonist and G protein mimetic. However, the molecular details of agonist-bound inactive receptors are poorly understood. Here we use the model of bitopic orthosteric/allosteric (i.e. dualsteric) agonists for muscarinic M2 receptors to demonstrate the existence and function of such inactive agonist·receptor complexes on a molecular level. Using all-atom molecular dynamics simulations, dynophores (i.e. a combination of static three-dimensional pharmacophores and molecular dynamics-based conformational sampling), ligand design, and receptor mutagenesis, we show that inactive agonist·receptor complexes can result from agonist binding to the allosteric vestibule alone, whereas the dualsteric binding mode produces active receptors. Each agonist forms a distinct ligand binding ensemble, and different agonist efficacies depend on the fraction of purely allosteric (i.e. inactive) versus dualsteric (i.e. active) binding modes. We propose that this concept may explain why agonist·receptor complexes can be inactive and that adopting multiple binding modes may be generalized also to small agonists where binding modes will be only subtly different and confined to only one binding site. PMID:27298318

  8. Binding of indolylalkylamines at 5-HT2 serotonin receptors: examination of a hydrophobic binding region.

    PubMed

    Glennon, R A; Chaurasia, C; Titeler, M

    1990-10-01

    Taking advantage of a proposed hydrophobic region on 5-HT2 receptors previously identified by radioligand-binding studies utilizing various phenylisopropylamine derivatives, we prepared and evaluated several N1 - and/or C7-alkyl-substituted derivatives of alpha-methyltryptamine in order to improve its affinity and selectivity. It was determined that substitution of an n-propyl or amyl group has similar effect on affinity regardless of location (i.e., N1 or C7). The low affinity of several N1-alkylpyrroleethylamines suggests that the benzene portion of the alpha-methyltryptamines is necessary for significant affinity. Whereas tryptamine derivatives generally display little selectivity for the various populations of 5-HT receptors, N1-n-propyl-5-methoxy-alpha-methyltryptamine (3h) binds with significant affinity (Ki = 12 nM) and selectivity at 5-HT2 receptors relative to 5-HT1A (Ki = 7100 nM), 5-HT1B (Ki = 5000 nM), 5-HT1C (Ki = 120 nM), and 5-HT1D (Ki greater than 10,000 nM) receptors. As a consequence, this is the most 5-HT2-selective indolylalkylamine derivative reported to date. PMID:2213830

  9. Tc-99m-galactosyl-neoglycoalbumin: in vivo characterization of receptor-mediated binding to hepatocyctes

    SciTech Connect

    Vera, D.R.; Krohn, K.A.; Stadalnik, R.C.; Scheibe, P.O.

    1984-04-01

    The biodistribution and kinetics of a receptor-binding hepatic radiopharmaceutical, Tc-99m-galactosyl-neoglycoalbumin (Tc-NGA), were investigated using mammalian and avian models. The radiopharmaceutical exhibited four significant features associated with receptor-mediated binding at the hepatocyte membrane in mammals: (a) high tissue specificity, (b) high molecular specificity, (c) affinity-dependent uptake, and (d) dose-dependent uptake. Diminished hepatic uptake by the avian model illustrated low nonspecific binding. The kinetic sensitivity to ligand-receptor affinity and stoichiometry illustrated the principal feature of receptor-binding radiopharmaceuticals, namely, quantitative assessment of tissue function based upon the biochemical interaction of a ligand and its specific receptor.

  10. 1918 Influenza receptor binding domain variants bind and replicate in primary human airway cells regardless of receptor specificity.

    PubMed

    Davis, A Sally; Chertow, Daniel S; Kindrachuk, Jason; Qi, Li; Schwartzman, Louis M; Suzich, Jon; Alsaaty, Sara; Logun, Carolea; Shelhamer, James H; Taubenberger, Jeffery K

    2016-06-01

    The 1918 influenza pandemic caused ~50 million deaths. Many questions remain regarding the origin, pathogenicity, and mechanisms of human adaptation of this virus. Avian-adapted influenza A viruses preferentially bind α2,3-linked sialic acids (Sia) while human-adapted viruses preferentially bind α2,6-linked Sia. A change in Sia preference from α2,3 to α2,6 is thought to be a requirement for human adaptation of avian influenza viruses. Autopsy data from 1918 cases, however, suggest that factors other than Sia preference played a role in viral binding and entry to human airway cells. Here, we evaluated binding and entry of five 1918 influenza receptor binding domain variants in a primary human airway cell model along with control avian and human influenza viruses. We observed that all five variants bound and entered cells efficiently and that Sia preference did not predict entry of influenza A virus to primary human airway cells evaluated in this model. PMID:27062579

  11. Menthol Binding and Inhibition of α7-Nicotinic Acetylcholine Receptors

    PubMed Central

    Ashoor, Abrar; Nordman, Jacob C.; Veltri, Daniel; Yang, Keun-Hang Susan; Al Kury, Lina; Shuba, Yaroslav; Mahgoub, Mohamed; Howarth, Frank C.; Sadek, Bassem; Shehu, Amarda; Kabbani, Nadine; Oz, Murat

    2013-01-01

    Menthol is a common compound in pharmaceutical and commercial products and a popular additive to cigarettes. The molecular targets of menthol remain poorly defined. In this study we show an effect of menthol on the α7 subunit of the nicotinic acetylcholine (nACh) receptor function. Using a two-electrode voltage-clamp technique, menthol was found to reversibly inhibit α7-nACh receptors heterologously expressed in Xenopus oocytes. Inhibition by menthol was not dependent on the membrane potential and did not involve endogenous Ca2+-dependent Cl− channels, since menthol inhibition remained unchanged by intracellular injection of the Ca2+ chelator BAPTA and perfusion with Ca2+-free bathing solution containing Ba2+. Furthermore, increasing ACh concentrations did not reverse menthol inhibition and the specific binding of [125I] α-bungarotoxin was not attenuated by menthol. Studies of α7- nACh receptors endogenously expressed in neural cells demonstrate that menthol attenuates α7 mediated Ca2+ transients in the cell body and neurite. In conclusion, our results suggest that menthol inhibits α7-nACh receptors in a noncompetitive manner. PMID:23935840

  12. A mutant influenza virus that uses an N1 neuraminidase as the receptor-binding protein.

    PubMed

    Hooper, Kathryn A; Bloom, Jesse D

    2013-12-01

    In the vast majority of influenza A viruses characterized to date, hemagglutinin (HA) is the receptor-binding and fusion protein, whereas neuraminidase (NA) is a receptor-cleaving protein that facilitates viral release but is expendable for entry. However, the NAs of some recent human H3N2 isolates have acquired receptor-binding activity via the mutation D151G, although these isolates also appear to retain the ability to bind receptors via HA. We report here the laboratory generation of a mutation (G147R) that enables an N1 NA to completely co-opt the receptor-binding function normally performed by HA. Viruses with this mutant NA grow to high titers even in the presence of extensive mutations to conserved residues in HA's receptor-binding pocket. When the receptor-binding NA is paired with this binding-deficient HA, viral infectivity and red blood cell agglutination are blocked by NA inhibitors. Furthermore, virus-like particles expressing only the receptor-binding NA agglutinate red blood cells in an NA-dependent manner. Although the G147R NA receptor-binding mutant virus that we characterize is a laboratory creation, this same mutation is found in several natural clusters of H1N1 and H5N1 viruses. Our results demonstrate that, at least in tissue culture, influenza virus receptor-binding activity can be entirely shifted from HA to NA. PMID:24027333

  13. Fluorescent Receptor Binding Assay for Detecting Ciguatoxins in Fish

    PubMed Central

    Hardison, D. Ransom; Holland, William C.; McCall, Jennifer R.; Bourdelais, Andrea J.; Baden, Daniel G.; Darius, H. Taiana; Chinain, Mireille; Tester, Patricia A.; Shea, Damian; Flores Quintana, Harold A.; Morris, James A.; Litaker, R. Wayne

    2016-01-01

    Ciguatera fish poisoning is an illness suffered by > 50,000 people yearly after consumption of fish containing ciguatoxins (CTXs). One of the current methodologies to detect ciguatoxins in fish is a radiolabeled receptor binding assay (RBA(R)). However, the license requirements and regulations pertaining to radioisotope utilization can limit the applicability of the RBA(R) in certain labs. A fluorescence based receptor binding assay (RBA(F)) was developed to provide an alternative method of screening fish samples for CTXs in facilities not certified to use radioisotopes. The new assay is based on competition binding between CTXs and fluorescently labeled brevetoxin-2 (BODIPY®- PbTx-2) for voltage-gated sodium channel receptors at site 5 instead of a radiolabeled brevetoxin. Responses were linear in fish tissues spiked from 0.1 to 1.0 ppb with Pacific ciguatoxin-3C (P-CTX-3C) with a detection limit of 0.075 ppb. Carribean ciguatoxins were confirmed in Caribbean fish by LC-MS/MS analysis of the regional biomarker (C-CTX-1). Fish (N = 61) of six different species were screened using the RBA(F). Results for corresponding samples analyzed using the neuroblastoma cell-based assay (CBA-N2a) correlated well (R2 = 0.71) with those of the RBA(F), given the low levels of CTX present in positive fish. Data analyses also showed the resulting toxicity levels of P-CTX-3C equivalents determined by CBA-N2a were consistently lower than the RBA(F) affinities expressed as % binding equivalents, indicating that a given amount of toxin bound to the site 5 receptors translates into corresponding lower cytotoxicity. Consequently, the RBA(F), which takes approximately two hours to perform, provides a generous estimate relative to the widely used CBA-N2a which requires 2.5 days to complete. Other RBA(F) advantages include the long-term (> 5 years) stability of the BODIPY®- PbTx-2 and having similar results as the commonly used RBA(R). The RBA(F) is cost-effective, allows high sample

  14. Fluorescent Receptor Binding Assay for Detecting Ciguatoxins in Fish.

    PubMed

    Hardison, D Ransom; Holland, William C; McCall, Jennifer R; Bourdelais, Andrea J; Baden, Daniel G; Darius, H Taiana; Chinain, Mireille; Tester, Patricia A; Shea, Damian; Quintana, Harold A Flores; Morris, James A; Litaker, R Wayne

    2016-01-01

    Ciguatera fish poisoning is an illness suffered by > 50,000 people yearly after consumption of fish containing ciguatoxins (CTXs). One of the current methodologies to detect ciguatoxins in fish is a radiolabeled receptor binding assay (RBA(R)). However, the license requirements and regulations pertaining to radioisotope utilization can limit the applicability of the RBA(R) in certain labs. A fluorescence based receptor binding assay (RBA(F)) was developed to provide an alternative method of screening fish samples for CTXs in facilities not certified to use radioisotopes. The new assay is based on competition binding between CTXs and fluorescently labeled brevetoxin-2 (BODIPY®-PbTx-2) for voltage-gated sodium channel receptors at site 5 instead of a radiolabeled brevetoxin. Responses were linear in fish tissues spiked from 0.1 to 1.0 ppb with Pacific ciguatoxin-3C (P-CTX-3C) with a detection limit of 0.075 ppb. Carribean ciguatoxins were confirmed in Caribbean fish by LC-MS/MS analysis of the regional biomarker (C-CTX-1). Fish (N = 61) of six different species were screened using the RBA(F). Results for corresponding samples analyzed using the neuroblastoma cell-based assay (CBA-N2a) correlated well (R2 = 0.71) with those of the RBA(F), given the low levels of CTX present in positive fish. Data analyses also showed the resulting toxicity levels of P-CTX-3C equivalents determined by CBA-N2a were consistently lower than the RBA(F) affinities expressed as % binding equivalents, indicating that a given amount of toxin bound to the site 5 receptors translates into corresponding lower cytotoxicity. Consequently, the RBA(F), which takes approximately two hours to perform, provides a generous estimate relative to the widely used CBA-N2a which requires 2.5 days to complete. Other RBA(F) advantages include the long-term (> 5 years) stability of the BODIPY®-PbTx-2 and having similar results as the commonly used RBA(R). The RBA(F) is cost-effective, allows high sample

  15. Ligand-binding assays for cyanobacterial neurotoxins targeting cholinergic receptors.

    PubMed

    Aráoz, Rómulo; Vilariño, Natalia; Botana, Luis M; Molgó, Jordi

    2010-07-01

    Toxic cyanobacterial blooms are a threat to public health because of the capacity of some cyanobacterial species to produce potent hepatotoxins and neurotoxins. Cyanobacterial neurotoxins are involved in the rapid death of wild and domestic animals by targeting voltage gated sodium channels and cholinergic synapses, including the neuromuscular junction. Anatoxin-a and its methylene homologue homoanatoxin-a are potent agonists of nicotinic acetylcholine receptors. Since the structural determination of anatoxin-a, several mass spectrometry-based methods have been developed for detection of anatoxin-a and, later, homoanatoxin-a. Mass spectrometry-based techniques provide accuracy, precision, selectivity, sensitivity, reproducibility, adequate limit of detection, and structural and quantitative information for analyses of cyanobacterial anatoxins from cultured and environmental cyanobacterial samples. However, these physicochemical techniques will only detect known toxins for which toxin standards are commercially available, and they require highly specialized laboratory personnel and expensive equipment. Receptor-based assays are functional methods that are based on the mechanism of action of a class of toxins and are thus, suitable tools for survey of freshwater reservoirs for cyanobacterial anatoxins. The competition between cyanobacterial anatoxins and a labelled ligand for binding to nicotinic acetylcholine receptors is measured radioactively or non-radioactively providing high-throughput screening formats for routine detection of this class of neurotoxins. The mouse bioassay is the method of choice for marine toxin monitoring, but has to be replaced by fully validated functional methods. In this paper we review the ligand-binding assays developed for detection of cyanobacterial and algal neurotoxins targeting the nicotinic acetylcholine receptors and for high-throughput screening of novel nicotinic agents. PMID:20238109

  16. Hormone Binding to Recombinant Estrogen Receptors from Human, Alligator, Quail, Salamander, and Fathead Minnow

    EPA Science Inventory

    In this work, a 96-well plate estrogen receptor binding assay was developed to facilitate the direct comparison of chemical binding to full-length recombinant estrogen receptors across vertebrate classes. Receptors were generated in a baculovirus expression system. This approach ...

  17. Persistent Binding of Ligands to the Aryl Hydrocarbon Receptor

    PubMed Central

    Bohonowych, Jessica E.; Denison, Michael S.

    2010-01-01

    The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that mediates many of the biological and toxic effects of halogenated aromatic hydrocarbons (HAHs), polycyclic aromatic hydrocarbons (PAHs), and other structurally diverse ligands. While HAHs are several orders of magnitude more potent in producing AhR-dependent biochemical effects than PAHs or other AhR agonists, only the HAHs have been observed to produce AhR-dependent toxicity in vivo. Here we have characterized the dissociation of a prototypical HAH ligand ([3H] 2,3,7,8-tetrachlorodibenzo-p-dioxin [TCDD]) and PAH-like ligand ([3H] β-naphthoflavone [βNF]) from the guinea pig, hamster, mouse, and rat hepatic cytosolic AhR in order to elucidate the relationship between the apparent ligand-binding affinities and the divergent potency of these chemicals. Both compounds dissociated very slowly from the AhR with the amount of specific binding remaining at 96 h ranging from 53% to 70% for [3H]TCDD and 26% to 85% for [3H] βNF, depending upon the species examined. The rate of ligand dissociation was unaffected by protein concentration or incubation temperature. Preincubation of cytosol with 2,3,7,8-tetrachlorodibenzofuran, carbaryl, or primaquine, prior to the addition of [3H]TCDD, shifted the apparent IC50 of these compounds as competitive AhR ligands by ∼10- to 50-fold. Our results support the need for reassessment of previous AhR ligand-binding affinity calculations and competitive binding analysis since these measurements are not carried out at equilibrium binding conditions. Our studies suggest that AhR binding affinity/occupancy has little effect on the observed differences in the persistence of gene expression by HAHs and PAHs. PMID:17431010

  18. Fibronectin receptors of mononuclear phagocytes: Binding characteristics and biochemical isolation

    SciTech Connect

    Garcia-Pardo, A.; Ferreira, O.C.; Valinsky, J.; Bianco, C. )

    1989-04-01

    Fibronectin receptors on mononuclear phagocytes are involved in the localization of monocytes at inflammatory sites and in the subsequent expression of macrophage-like phenotypes. In this study, the authors have investigated the hypothesis that preteolytically derived fragments of fibronectin may interfere with binding of fibronectin to monocytes in the extracellular matrix. They report on the reactivity of U937 cells with an 80-kDa tryptic fragment of fibronectin which contains the cell-binding domain but lacks the gelatin/collagen-binding domain. U937 cells attached to surfaces coated with the 80-kDa fragment as well as with intact fibronectin. Preincubation of the cells with the 80-kDa fragment inhibited attachment to both surfaces while intact fibronectin had little or no inhibitory effect. This complex resolved into a single diffuse band of 144 kDa upon reduction. Binding of the protein complex to the affinity column required divalent cations. The complex bound to wheat germ agglutinin and could be specifically eluted by N-acetylglucosamine. Similar cell-surface proteins were isolated from peripheral blood monocytes.

  19. Functional differences between neurotransmitter binding sites of muscle acetylcholine receptors

    PubMed Central

    Nayak, Tapan K.; Bruhova, Iva; Chakraborty, Srirupa; Gupta, Shaweta; Zheng, Wenjun; Auerbach, Anthony

    2014-01-01

    A muscle acetylcholine receptor (AChR) has two neurotransmitter binding sites located in the extracellular domain, at αδ and either αε (adult) or αγ (fetal) subunit interfaces. We used single-channel electrophysiology to measure the effects of mutations of five conserved aromatic residues at each site with regard to their contribution to the difference in free energy of agonist binding to active versus resting receptors (ΔGB1). The two binding sites behave independently in both adult and fetal AChRs. For four different agonists, including ACh and choline, ΔGB1 is ∼−2 kcal/mol more favorable at αγ compared with at αε and αδ. Only three of the aromatics contribute significantly to ΔGB1 at the adult sites (αY190, αY198, and αW149), but all five do so at αγ (as well as αY93 and γW55). γW55 makes a particularly large contribution only at αγ that is coupled energetically to those contributions of some of the α-subunit aromatics. The hydroxyl and benzene groups of loop C residues αY190 and αY198 behave similarly with regard to ΔGB1 at all three kinds of site. ACh binding energies estimated from molecular dynamics simulations are consistent with experimental values from electrophysiology and suggest that the αγ site is more compact, better organized, and less dynamic than αε and αδ. We speculate that the different sensitivities of the fetal αγ site versus the adult αε and αδ sites to choline and ACh are important for the proper maturation and function of the neuromuscular synapse. PMID:25422413

  20. Radioligand binding to muscarinic receptors of bovine aortic endothelial cells.

    PubMed Central

    Brunner, F.; Kukovetz, W. R.

    1991-01-01

    1. Muscarinic receptors on endothelial cells of bovine thoracic aorta were characterized by binding assays in which (-)-[3H]-N-methyl quinuclidinyl benzilate ([3H]-NMeQNB) was used as radioligand. 2. Binding of [3H]-NMeQNB to crude membranes of freshly isolated endothelial cells was atropine-displaceable and of high affinity (KD = 0.48 nM) to a single class of sites (maximum binding capacity: 14 +/- 3 fmol mg-1 protein). Stereospecificity of the binding sites was demonstrated in experiments in which [3H]-NMeQNB binding was inhibited by dexetimide in the nanomolar range (KI = 0.63 nM) and by levetimide, its stereoisomer in the micromolar range (KI = 3.2 microM) (selectivity factor: approximately 5000). 3. Drug competition curves indicated a single class of binding sites for antagonists and the following apparent affinities (KI, nM): methyl atropine: 1.1: 4-diphenylacetoxy N-methyl piperidine methyl bromide (4-DAMP): 3.4; pirenzepine: 16; 11-[2-diethylamino-methyl)-1-piperidinyl- acetyl]-5,11-dihydro-6H-pyrido(2,3-b)1,4-benzodiazepine-6-one (AF-DX 116); 2.500. Competition of acetylcholine with [3H]-NMeQNB was best described by two affinity sites (or states) (KH = 0.82 microM, KL = 1.6 microM). In the presence of guanylimido diphosphate [Gpp(NH)p] (100 microM), acetylcholine affinity (IC50) was slightly, but significantly reduced (factor approximately 4). 4. Binding of [3H]-NMeQNB to freshly harvested intact cells was also atropine-displaceable, stereospecific (selectivity factor: approximately 3500) and of high affinity (KD = 0.35 nM). The maximum binding capacity (9 +/- 2 fmol mg-1 total cell protein) was comparable to that of membranes and corresponded to approximately 900 binding sites per endothelial cell.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2015420

  1. Binding affinity prediction of novel estrogen receptor ligands using receptor-based 3-D QSAR methods.

    PubMed

    Sippl, Wolfgang

    2002-12-01

    We have recently reported the development of a 3-D QSAR model for estrogen receptor ligands showing a significant correlation between calculated molecular interaction fields and experimentally measured binding affinity. The ligand alignment obtained from docking simulations was taken as basis for a comparative field analysis applying the GRID/GOLPE program. Using the interaction field derived with a water probe and applying the smart region definition (SRD) variable selection procedure, a significant and robust model was obtained (q(2)(LOO)=0.921, SDEP=0.345). To further analyze the robustness and the predictivity of the established model several recently developed estrogen receptor ligands were selected as external test set. An excellent agreement between predicted and experimental binding data was obtained indicated by an external SDEP of 0.531. Two other traditionally used prediction techniques were applied in order to check the performance of the receptor-based 3-D QSAR procedure. The interaction energies calculated on the basis of receptor-ligand complexes were correlated with experimentally observed affinities. Also ligand-based 3-D QSAR models were generated using program FlexS. The interaction energy-based model, as well as the ligand-based 3-D QSAR models yielded models with lower predictivity. The comparison with the interaction energy-based model and with the ligand-based 3-D QSAR models, respectively, indicates that the combination of receptor-based and 3-D QSAR methods is able to improve the quality of prediction. PMID:12413831

  2. Estrogen receptor transcription and transactivation: Structure-function relationship in DNA- and ligand-binding domains of estrogen receptors

    PubMed Central

    Ruff, Marc; Gangloff, Monique; Marie Wurtz, Jean; Moras, Dino

    2000-01-01

    Estrogen receptors are members of the nuclear receptor steroid family that exhibit specific structural features, ligand-binding domain sequence identity and dimeric interactions, that single them out. The crystal structures of their DNA-binding domains give some insight into how nuclear receptors discriminate between DNA response elements. The various ligand-binding domain crystal structures of the two known estrogen receptor isotypes (α and β) allow one to interpret ligand specificity and reveal the interactions responsible for stabilizing the activation helix H12 in the agonist and antagonist positions. PMID:11250728

  3. Muscarinic acetylcholine receptors: location of the ligand binding site

    SciTech Connect

    Hulme, E.; Wheatley, M.; Curtis, C.; Birdsall, N.

    1987-05-01

    The key to understanding the pharmacological specificity of muscarinic acetylcholine receptors (mAChR's) is the location within the receptor sequence of the amino acid residues responsible for ligand binding. To approach this problem, they have purified mAChR's from rat brain to homogeneity by sequential ion-exchange chromatography, affinity chromatography and molecular weight fractionation. Following labelling of the binding site with an alkylating affinity label, /sup 3/H-propylbenzilycholine mustard aziridinium ion (/sup 3/H-PrBCM), the mAChR was digested with a lysine-specific endoproteinase, and a ladder of peptides of increasing molecular weight, each containing the glycosylated N-terminus, isolated by chromatography on wheat-germ agglutinin sepharose. The pattern of labelling showed that a residue in the peptides containing transmembrane helices 2 and/or 3 of the mAChR was alkylated. The linkage was cleaved by 1 M hydroxylamine, showing that /sup 3/H-PrBCM was attached to an acidic residue, whose properties strongly suggested it to be embedded in a hydrophobic intramembrane region of the mAChR. Examination of the cloned sequence of the mAChR reveals several candidate residues, the most likely of which is homologous to an aspartic acid residue thought to protonate the retinal Schiff's base in the congeneric protein rhodopsin.

  4. Dendroaspis natriuretic peptide binds to the natriuretic peptide clearance receptor

    SciTech Connect

    Johns, Douglas G. . E-mail: Douglas.G.Johns@gsk.com; Ao, Zhaohui; Heidrich, Bradley J.; Hunsberger, Gerald E.; Graham, Taylor; Payne, Lisa; Elshourbagy, Nabil; Lu, Quinn; Aiyar, Nambi; Douglas, Stephen A.

    2007-06-22

    Dendroaspis natriuretic peptide (DNP) is a newly-described natriuretic peptide which lowers blood pressure via vasodilation. The natriuretic peptide clearance receptor (NPR-C) removes natriuretic peptides from the circulation, but whether DNP interacts with human NPR-C directly is unknown. The purpose of this study was to test the hypothesis that DNP binds to NPR-C. ANP, BNP, CNP, and the NPR-C ligands AP-811 and cANP(4-23) displaced [{sup 125}I]-ANP from NPR-C with pM-to-nM K {sub i} values. DNP displaced [{sup 125}I]-ANP from NPR-C with nM potency, which represents the first direct demonstration of binding of DNP to human NPR-C. DNP showed high pM affinity for the GC-A receptor and no affinity for GC-B (K {sub i} > 1000 nM). DNP was nearly 10-fold more potent than ANP at stimulating cGMP production in GC-A expressing cells. Blockade of NPR-C might represent a novel therapeutic approach in augmenting the known beneficial actions of DNP in cardiovascular diseases such as hypertension and heart failure.

  5. Differential estrogen receptor binding of estrogenic substances: a species comparison.

    PubMed

    Matthews, J; Celius, T; Halgren, R; Zacharewski, T

    2000-11-15

    The study investigated the ability of 34 natural and synthetic chemicals to compete with [3H]17beta-estradiol (E2) for binding to bacterially expressed glutathione-S-transferase (GST)-estrogen receptors (ER) fusion proteins from five different species. Fusion proteins consisted of the ER D, E and F domains of human alpha (GST-hERalphadef), mouse alpha (GST-mERalphadef), chicken (GST-cERdef), green anole (GST-aERdef) and rainbow trout ERs (GST-rtERdef). All five fusion proteins displayed high affinity for E2 with dissociation constants (K(d)) ranging from 0.3 to 0.9 nM. Although, the fusion proteins exhibited similar binding preferences and binding affinities for many of the chemicals, several differences were observed. For example, alpha-zearalenol bound with greater affinity to GST-rtERdef than E2, which was in contrast to other GST-ERdef fusion proteins examined. Coumestrol, genistein and naringenin bound with higher affinity to the GST-aERdef, than to the other GST-ERdef fusion proteins. Many of the industrial chemicals examined preferentially bound to GST-rtERdef. Bisphenol A, 4-t-octylphenol and o,p' DDT bound with approximately a ten-fold greater affinity to GST-rtERdef than to other GST-ERdefs. Methoxychlor, p,p'-DDT, o,p'-DDE, p,p'-DDE, alpha-endosulfan and dieldrin weakly bound to the ERs from the human, mouse, chicken and green anole. In contrast, these compounds completely displaced [3H]E2 from GST-rtERdef. These results demonstrate that ERs from different species exhibit differential ligand preferences and relative binding affinities for estrogenic compounds and that these differences may be due to the variability in the amino acid sequence within their respective ER ligand binding domains. PMID:11162928

  6. Substitution of synthetic chimpanzee androgen receptor for human androgen receptor in competitive binding and transcriptional activation assays for EDC screening

    EPA Science Inventory

    The potential effect of receptor-mediated endocrine modulators across species is of increasing concern. In attempts to address these concerns we are developing androgen and estrogen receptor binding assays using recombinant hormone receptors from a number of species across differ...

  7. The opioid receptor selectivity for trimebutine in isolated tissues experiments and receptor binding studies.

    PubMed

    Kaneto, H; Takahashi, M; Watanabe, J

    1990-07-01

    Differences of affinity to and selectivity for trimebutine between peripheral and central opioid receptors have been investigated. Trimebutine inhibited electrically induced contraction of guinea-pig ileum (GPI) and mouse vas deferens (MVD) but not of rabbit vas deferens, and the inhibition was antagonized by naloxone and, to lesser extent, by nor-binaltorphimine (nor-BNI). The pA2 values for morphine and trimebutine with naloxone were higher than the values for these compounds with nor-BNI in both GPI and MVD preparations. GPI preparations incubated with a high concentration of morphine or trimebutine developed tolerance; however, there was no cross-tolerance between them, suggesting difference in the underlying mechanisms. In mouse and guinea-pig brain homogenate trimebutine was about 1/13 as potent as morphine to displace the [3H]naloxone binding, while it has no appreciable affinity for kappa-opioid receptors in [3H]U-69593, a selective kappa-receptor agonist. These results suggest that trimebutine, showing its low affinity to opioid receptors, possesses mu-receptor selective properties rather than those of kappa-opioid receptor in the peripheral tissues and in the central brain homogenate. PMID:1963196

  8. Endothelin B receptors on human endothelial and smooth-muscle cells show equivalent binding pharmacology.

    PubMed

    Flynn, M A; Haleen, S J; Welch, K M; Cheng, X M; Reynolds, E E

    1998-07-01

    We have described the pharmacologic profiles of endothelin B receptors in human endothelial cells and vascular and nonvascular smooth-muscle cells. First, by amplifying endothelin B receptor numbers through the use of phosphoramidon and intact cell-binding techniques, we demonstrated the presence of these receptors in human umbilical vein endothelial cells (100% endothelin B receptors), human aortic smooth-muscle cells (22% endothelin B, 78% endothelin A receptors), and human bronchial smooth-muscle cells (55% endothelin B, 45% endothelin A receptors) by using [125I]-endothelin-1 radioligand binding. The typical binding profiles of the endothelin B receptors were established through competition binding curve analysis with endothelin-1, endothelin-3, sarafotoxin 6c, and the endothelin A receptor-selective antagonist BQ-123. In the presence of BQ-123, a diverse group of antagonists, including PD 142893, BQ-788, SB 209670, and Ro 47-0203, were used to probe for binding differences indicative of multiple endothelin B-receptor subtypes. The results indicate a rank order of potency for the antagonists of BQ-788 > SB 209670 > PD 142893 > Ro 47-0203 for each cell line, and that between any of these human cell lines, measurements of [125I]-endothelin-1-binding antagonism for each of the four test compounds differed by less than twofold. Although this study cannot discount the possibility of more than one endothelin B-receptor subtype in humans, it does indicate that these tissues express receptors that show equivalent binding pharmacology. PMID:9676729

  9. Collagenase-3 binds to a specific receptor and requires the low density lipoprotein receptor-related protein for internalization

    NASA Technical Reports Server (NTRS)

    Barmina, O. Y.; Walling, H. W.; Fiacco, G. J.; Freije, J. M.; Lopez-Otin, C.; Jeffrey, J. J.; Partridge, N. C.

    1999-01-01

    We have previously identified a specific receptor for collagenase-3 that mediates the binding, internalization, and degradation of this ligand in UMR 106-01 rat osteoblastic osteosarcoma cells. In the present study, we show that collagenase-3 binding is calcium-dependent and occurs in a variety of cell types, including osteoblastic and fibroblastic cells. We also present evidence supporting a two-step mechanism of collagenase-3 binding and internalization involving both a specific collagenase-3 receptor and the low density lipoprotein receptor-related protein. Ligand blot analysis shows that (125)I-collagenase-3 binds specifically to two proteins ( approximately 170 kDa and approximately 600 kDa) present in UMR 106-01 cells. Western blotting identified the 600-kDa protein as the low density lipoprotein receptor-related protein. Our data suggest that the 170-kDa protein is a specific collagenase-3 receptor. Low density lipoprotein receptor-related protein-null mouse embryo fibroblasts bind but fail to internalize collagenase-3, whereas UMR 106-01 and wild-type mouse embryo fibroblasts bind and internalize collagenase-3. Internalization, but not binding, is inhibited by the 39-kDa receptor-associated protein. We conclude that the internalization of collagenase-3 requires the participation of the low density lipoprotein receptor-related protein and propose a model in which the cell surface interaction of this ligand requires a sequential contribution from two receptors, with the collagenase-3 receptor acting as a high affinity primary binding site and the low density lipoprotein receptor-related protein mediating internalization.

  10. Analysis of the hormone-binding domain of steroid receptors using chimeras generated by homologous recombination

    SciTech Connect

    Martinez, Elisabeth D.; Pattabiraman, Nagarajan; Danielsen, Mark . E-mail: dan@bc.georgetown.edu

    2005-08-15

    The glucocorticoid receptor and the mineralocorticoid receptor are members of the steroid receptor family that exhibit ligand cross-reactivity. Specificity of steroid receptor action is investigated in the present work by the construction and characterization of chimeras between the glucocorticoid receptor and the mineralocorticoid receptor. We used an innovative approach to make novel steroid receptor proteins in vivo that in general, contrary to our expectations, show increased ligand specificity compared to the parental receptors. We describe a receptor that is specific for the potent synthetic glucocorticoid triamcinolone acetonide and does not bind aldosterone. A further set of chimeras has an increased ability to discriminate between ligands, responding potently to mineralocorticoids and only very weakly to synthetic glucocorticoids. A chimera with the fusion site in the hinge highlights the importance of the region between the DNA-binding and the hormone-binding domains since, unlike both the glucocorticoid and mineralocorticoid receptors, it only responds to mineralocorticoids. One chimera has reduced specificity in that it acts as a general corticoid receptor, responding to glucocorticoids and mineralocorticoids with similar potency and efficacy. Our data suggest that regions of the glucocorticoid and mineralocorticoid receptor hormone-binding domains are functionally non-reciprocal. We present transcriptional, hormone-binding, and structure-modeling evidence that suggests that receptor-specific interactions within and across domains mediate aspects of specificity in transcriptional responses to steroids.

  11. A Single Amino Acid Substitution in 1918 Influenza Virus Hemagglutinin Changes Receptor Binding Specificity

    PubMed Central

    Glaser, Laurel; Stevens, James; Zamarin, Dmitriy; Wilson, Ian A.; García-Sastre, Adolfo; Tumpey, Terrence M.; Basler, Christopher F.; Taubenberger, Jeffery K.; Palese, Peter

    2005-01-01

    The receptor binding specificity of influenza viruses may be important for host restriction of human and avian viruses. Here, we show that the hemagglutinin (HA) of the virus that caused the 1918 influenza pandemic has strain-specific differences in its receptor binding specificity. The A/South Carolina/1/18 HA preferentially binds the α2,6 sialic acid (human) cellular receptor, whereas the A/New York/1/18 HA, which differs by only one amino acid, binds both the α2,6 and the α2,3 sialic acid (avian) cellular receptors. Compared to the conserved consensus sequence in the receptor binding site of avian HAs, only a single amino acid at position 190 was changed in the A/New York/1/18 HA. Mutation of this single amino acid back to the avian consensus resulted in a preference for the avian receptor. PMID:16103207

  12. Disentangling Viral Membrane Fusion from Receptor Binding Using Synthetic DNA-Lipid Conjugates.

    PubMed

    Rawle, Robert J; Boxer, Steven G; Kasson, Peter M

    2016-07-12

    Enveloped viruses must bind to a receptor on the host membrane to initiate infection. Membrane fusion is subsequently initiated by a conformational change in the viral fusion protein, triggered by receptor binding, an environmental change, or both. Here, we present a strategy to disentangle the two processes of receptor binding and fusion using synthetic DNA-lipid conjugates to bind enveloped viruses to target membranes in the absence of receptor. This permits direct testing of whether receptor engagement affects the fusion mechanism as well as a comparison of fusion behavior across viruses with different receptor binding specificities. We demonstrate this approach by binding X-31 influenza virus to target vesicles and measuring the rates of individual pH-triggered lipid mixing events using fluorescence microscopy. Influenza lipid mixing kinetics are found to be independent of receptor binding, supporting the common yet previously unproven assumption that receptor binding does not produce any clustering or spatial rearrangement of viral hemagglutinin, which affects the rate-limiting step of pH-triggered fusion. This DNA-lipid tethering strategy should also allow the study of viruses where challenging receptor reconstitution has previously prevented single-virus fusion experiments. PMID:27410740

  13. Receptor Concentration and Diffusivity Control Multivalent Binding of Sv40 to Membrane Bilayers

    PubMed Central

    Szklarczyk, Oliwia M.; González-Segredo, Nélido; Kukura, Philipp; Oppenheim, Ariella; Choquet, Daniel; Sandoghdar, Vahid; Helenius, Ari; Sbalzarini, Ivo F.; Ewers, Helge

    2013-01-01

    Abstract Incoming Simian Virus 40 particles bind to their cellular receptor, the glycolipid GM1, in the plasma membrane and thereby induce membrane deformation beneath the virion leading to endocytosis and infection. Efficient membrane deformation depends on receptor lipid structure and the organization of binding sites on the internalizing particle. To determine the role of receptor diffusion, concentration and the number of receptors required for stable binding in this interaction, we analyze the binding of SV40 to GM1 in supported membrane bilayers by computational modeling based on experimental data. We measure the diffusion rates of SV40 virions in solution by fluorescence correlation spectroscopy and of the receptor in bilayers by single molecule tracking. Quartz-crystal microbalance with dissipation (QCM-D) is used to measure binding of SV40 virus-like particles to bilayers containing the viral receptor GM1. We develop a phenomenological stochastic dynamics model calibrated against this data, and use it to investigate the early events of virus attachment to lipid membranes. Our results indicate that SV40 requires at least 4 attached receptors to achieve stable binding. We moreover find that receptor diffusion is essential for the establishment of stable binding over the physiological range of receptor concentrations and that receptor concentration controls the mode of viral motion on the target membrane. Our results provide quantitative insight into the initial events of virus-host interaction at the nanoscopic level. PMID:24244125

  14. Structure of human Aichi virus and implications for receptor binding.

    PubMed

    Zhu, Ling; Wang, Xiangxi; Ren, Jingshan; Kotecha, Abhay; Walter, Thomas S; Yuan, Shuai; Yamashita, Teruo; Tuthill, Tobias J; Fry, Elizabeth E; Rao, Zihe; Stuart, David I

    2016-01-01

    Aichi virus (AiV), an unusual and poorly characterized picornavirus, classified in the genus Kobuvirus, can cause severe gastroenteritis and deaths in children below the age of five years, especially in developing countries(1,2). The seroprevalence of AiV is approximately 60% in children under the age of ten years and reaches 90% later in life(3,4). There is no available vaccine or effective antiviral treatment. Here, we describe the structure of AiV at 3.7 Å. This first high-resolution structure for a kobuvirus is intermediate between those of the enteroviruses and cardioviruses, with a shallow, narrow depression bounded by the prominent VP0 CD loops (linking the C and D strands of the β-barrel), replacing the depression known as the canyon, frequently the site of receptor attachment in enteroviruses. VP0 is not cleaved to form VP2 and VP4, so the 'VP2' β-barrel structure is complemented with a unique extended structure on the inside of the capsid. On the outer surface, a polyproline helix structure, not seen previously in picornaviruses is present at the C terminus of VP1, a position where integrin binding motifs are found in some other picornaviruses. A peptide corresponding to this polyproline motif somewhat attenuates virus infectivity, presumably blocking host-cell attachment. This may guide cellular receptor identification. PMID:27595320

  15. An aprotinin binding site localized in the hormone binding domain of the estrogen receptor from calf uterus.

    PubMed

    Nigro, V; Medici, N; Abbondanza, C; Minucci, S; Moncharmont, B; Molinari, A M; Puca, G A

    1990-07-31

    It has been proposed that the estrogen receptor bears proteolytic activity responsible for its own transformation. This activity was inhibited by aprotinin. Incubation of transformed ER with aprotinin modified the proteolytic digestion of the hormone binding subunit by proteinase K. The smallest hormone-binding fragment of the ER, obtained by tryptic digestion, was still able to bind to aprotinin. These results suggest that aprotinin interacts with ER and the hormone-binding domain of ER is endowed with a specific aprotinin-binding site. PMID:1696480

  16. THE INFLUENCE OF SERUM BINDING PROTEINS AND CLEARANCE ON THE COMPARATIVE RECEPTOR BINDING POTENCY OF ENDOCRINE ACTIVE COMPOUNDS

    EPA Science Inventory

    THE INFLUENCE OF SERUM BINDING PROTEINS AND CLEARANCE ON THE COMPARATIVE RECEPTOR BINDING POTENCY OF ENDOCRINE ACTIVE COMPOUNDS. JG Teeguarden1 and HA Barton2. 1ENVIRON International, Ruston LA; 2US EPA, ORD, NHEERL, ETD, Pharmacokinetics Branch, RTP, NC.

    One measure of th...

  17. A rapid filtration method for receptor binding: characterization with mu and delta opiate receptors.

    PubMed

    Zadina, J E; Kastin, A J

    1984-12-01

    A commercially available (Skatron) cell harvester was adapted for use in mu (3H-naloxone-labeled) and delta (3H-DADLE-labeled) opiate receptor assays and compared with a widely used conventional manifold for a number of binding characteristics. Whatman GF/B glass fiber filters and the less expensive filters available with the harvester were also compared and produced similar binding characteristics on the harvester and manifold if the harvester filters were used double-ply, and if the rinse time was less than 12.5 sec. Longer rinse times produced lower binding with 2-ply Skatron filters. Kd values, Hill coefficients, and Scatchard plot regression coefficients were very similar for the two filtration devices and filter types. A significantly reduced maximum number of sites (Bmax) was observed after filtration on the harvester, reflecting the smaller filter surface area relative to that of the manifold. The filter surface area on the harvester, nevertheless, is considerably larger than that of other manifolds with microplate spacing. This provides the advantages of rapid filtration with less restriction on tissue concentrations. Specific binding was linear with protein concentration up to at least 800 micrograms protein, which is well within the range of most neurotransmitter and peptide receptor binding studies. At about 1 mg protein the rinse buffer flow was slower due to the high tissue concentration. Although the results of filtration with the harvester and the conventional manifold were similar, the time requirements differed considerably. With the harvester, one experimenter could conduct the filtration process 2-3 times faster than 2 experimenters using the manifold.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:6097920

  18. Cycloxaprid insecticide: nicotinic acetylcholine receptor binding site and metabolism.

    PubMed

    Shao, Xusheng; Swenson, Tami L; Casida, John E

    2013-08-21

    Cycloxaprid (CYC) is a novel neonicotinoid prepared from the (nitromethylene)imidazole (NMI) analogue of imidacloprid. In this study we consider whether CYC is active per se or only as a proinsecticide for NMI. The IC50 values (nM) for displacing [(3)H]NMI binding are 43-49 for CYC and 2.3-3.2 for NMI in house fly and honeybee head membranes and 302 and 7.2, respectively, in mouse brain membranes, potency relationships interpreted as partial conversion of some CYC to NMI under the assay conditions. The 6-8-fold difference in toxicity of injected CYC and NMI to house flies is consistent with their relative potencies as in vivo nicotinic acetylcholine receptor (nAChR) inhibitors in brain measured with [(3)H]NMI binding assays. CYC metabolism in mice largely involves cytochrome P450 pathways without NMI as a major intermediate. Metabolites of CYC tentatively assigned are five monohydroxy derivatives and one each of dihydroxy, nitroso, and amino modifications. CYC appears be a proinsecticide, serving as a slow-release reservoir for NMI with selective activity for insect versus mammalian nAChRs. PMID:23889077

  19. A humanized antibody that binds to the interleukin 2 receptor.

    PubMed Central

    Queen, C; Schneider, W P; Selick, H E; Payne, P W; Landolfi, N F; Duncan, J F; Avdalovic, N M; Levitt, M; Junghans, R P; Waldmann, T A

    1989-01-01

    The anti-Tac monoclonal antibody is known to bind to the p55 chain of the human interleukin 2 receptor and to inhibit proliferation of T cells by blocking interleukin 2 binding. However, use of anti-Tac as an immunosuppressant drug would be impaired by the human immune response against this murine antibody. We have therefore constructed a "humanized" antibody by combining the complementarity-determining regions (CDRs) of the anti-Tac antibody with human framework and constant regions. The human framework regions were chosen to maximize homology with the anti-Tac antibody sequence. In addition, a computer model of murine anti-Tac was used to identify several amino acids which, while outside the CDRs, are likely to interact with the CDRs or antigen. These mouse amino acids were also retained in the humanized antibody. The humanized anti-Tac antibody has an affinity for p55 of 3 x 10(9) M-1, about 1/3 that of murine anti-Tac. Images PMID:2513570

  20. A sensitive equilibrium binding assay for soluble beta-adrenergic receptors

    SciTech Connect

    Witkin, K.M.; Harden, T.K.

    1981-01-01

    An equilibrium binding assay has been developed for digitonin-solubilized beta-adrenergic receptors using 125 I-pindolol (IPIN) as a radioligand. Up to 50% of the beta-adrenergic receptors from rat lung membranes could be solubilized using 1% digitonin. Following incubation of soluble fractions with IPIN at 25 degree, protein associated radioactivity was identified by column chromatography using Sephadex G-50. The solubilized receptors bound IPIN with properties similar but not identical to those of the membrane bound receptor. The Kd determined for IPIN binding to soluble receptors was 113 pM while the Kd for membrane associated receptors was 36 pM. The rate constant for association (k1) of IPIN was 0.15x10(9) M-1 for soluble receptors and 2.2x10(9) M-1 min-1 for lung membrane receptors. The rate constant for dissociation (k2) was 0.025 min-1 for soluble receptors and 0.048 min-1 for membrane receptors. Agonists and antagonist of beta-adrenergic receptors inhibited in a stereoselective manner the binding of IPIN to both soluble and membrane bound receptors. The affinities of individual drugs determined for soluble receptors were similar to those determined for membrane receptors. Not only could digitonin-solubilized receptors be identified in soluble preparations from rat lung, but also from rat cerebral cortex and liver, and from L6 muscle, C6 rat glioma, and 1321N1 astrocytoma cell membranes.

  1. Analysis of Influenza Virus Hemagglutinin Receptor Binding Mutants with Limited Receptor Recognition Properties and Conditional Replication Characteristics▿

    PubMed Central

    Bradley, Konrad C.; Galloway, Summer E.; Lasanajak, Yi; Song, Xuezheng; Heimburg-Molinaro, Jamie; Yu, Hai; Chen, Xi; Talekar, Ganesh R.; Smith, David F.; Cummings, Richard D.; Steinhauer, David A.

    2011-01-01

    To examine the range of selective processes that potentially operate when poorly binding influenza viruses adapt to replicate more efficiently in alternative environments, we passaged a virus containing an attenuating mutation in the hemagglutinin (HA) receptor binding site in mice and characterized the resulting mutants with respect to the structural locations of mutations selected, the replication phenotypes of the viruses, and their binding properties on glycan microarrays. The initial attenuated virus had a tyrosine-to-phenylalanine mutation at HA1 position 98 (Y98F), located in the receptor binding pocket, but viruses that were selected contained second-site pseudoreversion mutations in various structural locations that revealed a range of molecular mechanisms for modulating receptor binding that go beyond the scope that is generally mapped using receptor specificity mutants. A comparison of virus titers in the mouse respiratory tract versus MDCK cells in culture showed that the mutants displayed distinctive replication properties depending on the system, but all were less attenuated in mice than the Y98F virus. An analysis of receptor binding properties confirmed that the initial Y98F virus bound poorly to several different species of erythrocytes, while all mutants reacquired various degrees of hemagglutination activity. Interestingly, both the Y98F virus and pseudoreversion mutants were shown to bind very inefficiently to standard glycan microarrays containing an abundance of binding substrates for most influenza viruses that have been characterized to date, provided by the Consortium for Functional Glycomics. The viruses were also examined on a recently developed microarray containing glycans terminating in sialic acid derivatives, and limited binding to a potentially interesting subset of glycans was revealed. The results are discussed with respect to mechanisms for HA-mediated receptor binding, as well as regarding the species of molecules that may act

  2. Substance P receptor binding sites are expressed by glia in vivo after neuronal injury

    SciTech Connect

    Mantyh, P.W.; Johnson, D.J.; Boehmer, C.G.; Catton, M.D.; Vinters, H.V.; Maggio, J.E.; Too, Hengphon; Vigna, S.R. )

    1989-07-01

    In vitro studies have demonstrated that glia can express functional receptors for a variety of neurotransmitters. To determine whether similar neurotransmitter receptors are also expressed by glia in vivo, the authors examined the glial scar in the transected optic nerve of the albino rabbit by quantitative receptor autoradiography. Receptor binding sites for radiolabeled calcitonin gene-related peptide, cholecystokinin, galanin, glutamate, somatostatin, substance P, and vasoactive intestinal peptide were examined. Specific receptor binding sites for each of these neurotransmitters were identified in the rabbit forebrain but were not detected in the normal optic nerve or tract. In the transected optic nerve and tract, only receptor binding sites for substance P were expressed at detectable levels. The density of substance P receptor binding sites observed in this glial scar is among the highest observed in the rabbit forebrain. Ligand displacement and saturation experiments indicate that the substance P receptor binding site expressed by the glial scar has pharmacological characteristics similar to those of substance P receptors in the rabbit striatum, rat brain, and rat and canine gut. The present study demonstrates that glial cells in vivo express high concentrations of substance P receptor binding sites after transection of retinal ganglion cell axons. Because substance P has been shown to regulate inflammatory and immune responses in peripheral tissues, substance P may also, by analogy, be involved in regulating the glial response to injury in the central nervous system.

  3. Substance P Receptor Binding Sites are Expressed by Glia in vivo after Neuronal Injury

    NASA Astrophysics Data System (ADS)

    Mantyh, Patrick W.; Johnson, Donald J.; Boehmer, Christian G.; Catton, Mark D.; Vinters, Harry V.; Maggio, John E.; Too, Heng-Phon; Vigna, Steven R.

    1989-07-01

    In vitro studies have demonstrated that glia can express functional receptors for a variety of neurotransmitters. To determine whether similar neurotransmitter receptors are also expressed by glia in vivo, we examined the glial scar in the transected optic nerve of the albino rabbit by quantitative receptor autoradiography. Receptor binding sites for radiolabeled calcitonin gene-related peptide, cholecystokinin, galanin, glutamate, somatostatin, substance P, and vasoactive intestinal peptide were examined. Specific receptor binding sites for each of these neurotransmitters were identified in the rabbit forebrain but were not detected in the normal optic nerve or tract. In the transected optic nerve and tract, only receptor binding sites for substance P were expressed at detectable levels. The density of substance P receptor binding sites observed in this glial scar is among the highest observed in the rabbit forebrain. Ligand displacement and saturation experiments indicate that the substance P receptor binding site expressed by the glial scar has pharmacological characteristics similar to those of substance P receptors in the rabbit striatum, rat brain, and rat and canine gut. The present study demonstrates that glial cells in vivo express high concentrations of substance P receptor binding sites after transection of retinal ganglion cell axons. Because substance P has been shown to regulate inflammatory and immune responses in peripheral tissues, substance P may also, by analogy, be involved in regulating the glial response to injury in the central nervous system.

  4. Plasma binding proteins for platelet-derived growth factor that inhibit its binding to cell-surface receptors.

    PubMed Central

    Raines, E W; Bowen-Pope, D F; Ross, R

    1984-01-01

    Evidence is presented that the binding of platelet-derived growth factor (PDGF) to plasma constituents inhibits the binding of PDGF to its cell-surface mitogen receptor. Approximately equivalent amounts of PDGF-binding activity were found in plasma from a number of different species known by radioreceptor assay to contain PDGF homologues in their clotted blood. Activation of the coagulation cascade did not significantly alter the PDGF-binding activity of the plasma components. Three molecular weight classes of plasma fractions that inhibit PDGF binding to its cell-surface receptor were defined by gel filtration: approximately equal to 40,000, 150,000, and greater than 500,000. Specific binding of 125I-labeled PDGF to the highest molecular weight plasma fraction could also be demonstrated by gel filtration. The binding of PDGF to these plasma components was reversible under conditions of low pH or with guanidine X HCl, and active PDGF could be recovered from the higher molecular weight fractions. Immunologic and functional evidence is presented that the highest molecular weight plasma fraction may be alpha 2-macroglobulin. A model is proposed in which the activity of PDGF released in vivo may be regulated by association with these plasma binding components and by high-affinity binding to cell-surface PDGF receptors. PMID:6203121

  5. Differential effects of exercise on brain opioid receptor binding and activation in rats.

    PubMed

    Arida, Ricardo Mario; Gomes da Silva, Sérgio; de Almeida, Alexandre Aparecido; Cavalheiro, Esper Abrão; Zavala-Tecuapetla, Cecilia; Brand, Serge; Rocha, Luisa

    2015-01-01

    Physical exercise stimulates the release of endogenous opioid peptides supposed to be responsible for changes in mood, anxiety, and performance. Exercise alters sensitivity to these effects that modify the efficacy at the opioid receptor. Although there is evidence that relates exercise to neuropeptide expression in the brain, the effects of exercise on opioid receptor binding and signal transduction mechanisms downstream of these receptors have not been explored. Here, we characterized the binding and G protein activation of mu opioid receptor, kappa opioid receptor or delta opioid receptor in several brain regions following acute (7 days) and chronic (30 days) exercise. As regards short- (acute) or long-term effects (chronic) of exercise, overall, higher opioid receptor binding was observed in acute-exercise animals and the opposite was found in the chronic-exercise animals. The binding of [(35) S]GTPγS under basal conditions (absence of agonists) was elevated in sensorimotor cortex and hippocampus, an effect more evident after chronic exercise. Divergence of findings was observed for mu opioid receptor, kappa opioid receptor, and delta opioid receptor receptor activation in our study. Our results support existing evidence of opioid receptor binding and G protein activation occurring differentially in brain regions in response to diverse exercise stimuli. We characterized the binding and G protein activation of mu, kappa, and delta opioid receptors in several brain regions following acute (7 days) and chronic (30 days) exercise. Higher opioid receptor binding was observed in the acute exercise animal group and opposite findings in the chronic exercise group. Higher G protein activation under basal conditions was noted in rats submitted to chronic exercise, as visible in the depicted pseudo-color autoradiograms. PMID:25330347

  6. Bioluminescent Ligand-Receptor Binding Assays for Protein or Peptide Hormones.

    PubMed

    Liu, Ya-Li; Guo, Zhan-Yun

    2016-01-01

    Bioluminescence has been widely used in biomedical research due to its high sensitivity, low background, and broad linear range. In recent studies, we applied bioluminescence to ligand-receptor binding assays for some protein or peptide hormones based on a newly developed small monomeric Nanoluciferase (NanoLuc) reporter that has the so far brightest bioluminescence. The conventional ligand-receptor binding assays rely on radioligands that have drawbacks, such as radioactive hazards and short shelf lives. In contrast, the novel bioluminescent binding assays use the NanoLuc-based protein or peptide tracers that are safe, stable, and ultrasensitive. Thus, the novel bioluminescent ligand-receptor binding assay would be applied to more and more protein or peptide hormones for ligand-receptor interaction studies in future. In the present article, we provided detailed protocols for setting up the novel bioluminescent ligand-receptor binding assays using two representative protein hormones as examples. PMID:27424896

  7. Competitive inhibition of (TH)dexamethasone binding to mammary glucocorticoid receptor by leupeptin

    SciTech Connect

    Hsieh, L.C.C.; Su, C.; Markland, F.S. Jr.

    1987-03-01

    The inhibitory effect of leupeptin on (TH)dexamethasone binding to the glucocorticoid receptor from lactating goat mammary cytosol has been studied. Leupeptin (10 mM) caused a significant (about 35%) inhibition of (TH)dexamethasone binding to glucocorticoid receptor. Binding inhibition is further increased following filtration of unlabeled cytosolic receptor through a Bio-Gel A 0.5-m column. Binding inhibition was partially reversed by monothioglycerol at 10 mM concentration. A double reciprocal plot revealed that leupeptin appears to be a competitive inhibitor of (TH)dexamethasone binding to the glucocorticoid receptor. Low salt sucrose density gradient centrifugation revealed that the leupeptin-treated sample formed a slightly larger (approximately 9 S) receptor complex (leupeptin-free complex sediments at 8 S).

  8. Metal binding sites of the estradiol receptor from calf uterus and their possible role in the regulation of receptor function

    SciTech Connect

    Medici, N.; Minucci, S.; Nigro, V.; Abbondanza, C.; Armetta, I.; Molinari, A.M.; Puca, G.A. )

    1989-01-10

    The existence of putative metal binding sites on the estradiol receptor (ER) molecule from calf uterus was evaluated by immobilizing various divalent metals to iminodiacetate-Sepharose. ER from both crude and highly purified preparations binds to metal-containing adsorbents complexed with Zn(II), Ni(II), Co(II), and Cu(II), but not to those complexed with Fe(II) and Cd(II). Analysis of affinity-labeled ER by ({sup 3}H)tamoxifen aziridine after elution from a column of Zn(II)-charged iminodiacetate-Sepharose showed that ER fragments obtained by extensive trypsinization were also bound. Zn(II) and the same other metals able to bind ER, when immobilized on resins, inhibit the binding of estradiol to the receptor at micromolar concentration. This inhibition is noncompetitive and can be reversed by EDTA. The inhibition of the hormone binding was still present after trypsin treatment of the cytosol, and it was abolished by preincubation with the hormone. Micromolar concentrations of these metals were able to block those chemical-physical changes occurring during the process of ER transformation in vitro. The presence of metal binding sites that modulate the ER activity in the hormone binding domain of ER is speculated. Since progesterone receptor showed the same pattern of binding and elution from metal-containing adsorbents, the presence of metal binding regulatory sites could be a property of all steroid receptors.

  9. Novel bioluminescent receptor-binding assays for peptide hormones: using ghrelin as a model.

    PubMed

    Liu, Yu; Shao, Xiao-Xia; Zhang, Lei; Song, Ge; Liu, Ya-Li; Xu, Zeng-Guang; Guo, Zhan-Yun

    2015-10-01

    Peptide hormones perform important biological functions by binding specific cell membrane receptors. For hormone-receptor interaction studies, receptor-binding assays are widely used. However, conventional receptor-binding assays rely on radioactive tracers that have drawbacks. In recent studies, we established novel non-radioactive receptor-binding assays for some recombinant protein hormones based on the ultrasensitive bioluminescence of a newly developed nanoluciferase (NanoLuc) reporter. In the present work, we extended the novel bioluminescent receptor-binding assay to peptide hormones that have small size and can be conveniently prepared by chemical synthesis. Human ghrelin, a 28-amino acid peptide hormone carrying a special O-fatty acid modification, was used as a model. To prepare a bioluminescent ghrelin tracer, a chemically synthesized ghrelin analog with a unique cysteine residue at the C-terminus was site-specifically conjugated with an engineered NanoLuc with a unique exposed cysteine residue at the C-terminus via a reversible disulfide linkage. The NanoLuc-conjugated ghrelin retained high binding affinity with the ghrelin receptor GHSR1a (K d = 1.14 ± 0.13 nM, n = 3) and was able to sensitively monitor the receptor-binding of various GHSR1a ligands. The novel bioluminescent receptor-binding assay will facilitate the interaction studies of ghrelin with its receptor. We also proposed general procedures for convenient conjugation of other peptide hormones with NanoLuc for novel bioluminescent receptor-binding assays. PMID:26002812

  10. Molecular basis of agonist binding to the type A cholecystokinin receptor.

    PubMed

    Miller, Laurence J; Lybrand, Terry P

    2002-12-01

    The receptors for cholecystokinin (CCK) peptides are guanine nucleotide-binding protein-coupled receptors in the rhodopsin/beta-adrenergic receptor family. The molecular basis of natural ligand binding to the type A CCK receptor has been studied using ligand structure-activity series, receptor mutagenesis, and photoaffinity labeling studies. These have focused attention on the extracellular loop and tail domains, with the most direct insights coming from intrinsic photoaffinity labeling studies. A model of the binding of CCK to this receptor is consistent with all these studies. This model places the carboxyl terminus of CCK adjacent to the amino-terminal tail outside of transmembrane segment 1, the mid-region of the peptide adjacent to the third extracellular loop outside of transmembrane segment 7, and includes a charge-charge interaction between peptide residue tyrosine-sulfate 27 and the arginine residue in the second extracellular loop of the receptor in position 197. PMID:12688369

  11. Hemagglutinin Receptor Binding of a Human Isolate of Influenza A(H10N8) Virus

    PubMed Central

    Mansour, Mena; Wohlbold, Teddy J.; Ermler, Megan E.; Hirsh, Ariana; Runstadler, Jonathan A.; Fernandez-Sesma, Ana

    2015-01-01

    Three cases of influenza A(H10N8) virus infection in humans have been reported; 2 of these infected persons died. Characterization of the receptor binding pattern of H10 hemagglutinin from avian and human isolates showed that both interact weakly with human-like receptors and maintain strong affinity for avian-like receptors. PMID:26079843

  12. Hemagglutinin Receptor Binding of a Human Isolate of Influenza A(H10N8) Virus.

    PubMed

    Ramos, Irene; Mansour, Mena; Wohlbold, Teddy J; Ermler, Megan E; Hirsh, Ariana; Runstadler, Jonathan A; Fernandez-Sesma, Ana; Krammer, Florian

    2015-07-01

    Three cases of influenza A(H10N8) virus infection in humans have been reported; 2 of these infected persons died. Characterization of the receptor binding pattern of H10 hemagglutinin from avian and human isolates showed that both interact weakly with human-like receptors and maintain strong affinity for avian-like receptors. PMID:26079843

  13. Aprotinin inhibits the hormone binding of the estrogen receptor from calf uterus.

    PubMed

    Nigro, V; Medici, N; Abbondanza, C; Minucci, S; Molinari, A M; Puca, G A

    1989-11-15

    Micromolar concentrations of the proteinase inhibitor, aprotinin, produced a dose-dependent inhibition in the binding capacity of the estrogen receptor from calf uterus. Aprotinin inhibition was greater at 28 degrees C than at 4 degrees C and only occurred when conditions allowed the receptor transformation. When aprotinin was tested in the presence of transformation inhibitors, its effect was no longer seen. The binding capacity of the highly purified estrogen-binding subunit was similarly inhibited. PMID:2480113

  14. Inhibition by synthetic peptides from human IgG Fc of OKT4 binding and Fc receptor binding

    SciTech Connect

    Gaarde, W.A.; McClurg, M.R.; Hahn, G.S.; Plummer, J.M.

    1986-03-05

    Synthetic peptides from the Fc region of human IgG were tested for the ability to inhibit IgG rosette formation, /sup 125/I-IgG binding to Fc receptors on lymphocytes, and expression of the T4 cell determinant. The Fc/sub ..gamma../ peptides inhibited IgG rosette formation and competitively inhibited both /sup 125/I-IgG binding to Fc receptors and OKT4 binding to the T4 cell determinant. Peptides containing D-amino acids did not inhibit IgG rosettes, OKT4 binding or /sup 125/I-IgG binding. OKT4 binding to T4 on MNC was inhibited by heat aggregated IgG but not by monomeric IgG. OKT3, OKT8 and OKT11 binding to their determinants was not altered by Fc/sub ..gamma../ peptides, aggregated IgG or monomeric IgG. These results suggest that T4 antigen, Fc receptor for IgG and the Fc/sub ..gamma../ peptide binding site are in close proximity on the cell surface and when occupied by their respective ligands may sterically hinder binding to other sites. Alternatively, Fc/sub ..gamma../ peptides may indirectly regulate cell surface expression of T4 and/or Fc receptors for IgG. These Fc/sub ..gamma../ peptides inhibit the MLR, inhibit antigen induced T cell proliferation and reverse animal models of autoimmune disease. The immunoregulatory activities of these peptides may be related to their selective action on T4 helper/inducer lymphocytes expressing Fc receptors.

  15. Molecular Conversion of Muscarinic Acetylcholine Receptor M5 to Muscarinic Toxin 7 (MT7)-Binding Protein

    PubMed Central

    Rondinelli, Sergio; Näreoja, Katja; Näsman, Johnny

    2011-01-01

    Muscarinic toxin 7 (MT7) is a mamba venom peptide that binds selectively to the M1 muscarinic acetylcholine receptor. We have previously shown that the second (ECL2) and third (ECL3) extracellular loops of the M1 receptor are critically involved in binding the peptide. In this study we used a mutagenesis approach on the M5 subtype of the receptor family to find out if this possesses a similar structural architecture in terms of toxin binding as the M1 receptor. An M5 receptor construct (M5-E175Y184E474), mutated at the formerly deciphered critical residues on ECL2 and 3, gained the ability to bind MT7, but with rather low affinity as determined in a functional assay (apparent Ki = 24 nM; apparent Ki for M1 = 0.5 nM). After screening for different domains and residues, we found a specific residue (P179 to L in M5) in the middle portion of ECL2 that was necessary for high affinity binding of MT7 (M5-EL179YE, apparent Ki = 0.5 nM). Mutation of P179 to A confirmed a role for the leucine side chain in the binding of MT7. Together the results reveal new binding interactions between receptors and the MT7 peptide and strengthen the hypothesis that ECL2 sequence is of utmost importance for MT binding to muscarinic receptors. PMID:22174976

  16. Combined sodium ion sensitivity in agonist binding and internalization of vasopressin V1b receptors.

    PubMed

    Koshimizu, Taka-Aki; Kashiwazaki, Aki; Taniguchi, Junichi

    2016-01-01

    Reducing Na(+) in the extracellular environment may lead to two beneficial effects for increasing agonist binding to cell surface G-protein coupled receptors (GPCRs): reduction of Na(+)-mediated binding block and reduce of receptor internalization. However, such combined effects have not been explored. We used Chinese Hamster Ovary cells expressing vasopressin V1b receptors as a model to explore Na(+) sensitivity in agonist binding and receptor internalization. Under basal conditions, a large fraction of V1b receptors is located intracellularly, and a small fraction is in the plasma membrane. Decreases in external Na(+) increased cell surface [(3)H]AVP binding and decreased receptor internalization. Substitution of Na(+) by Cs(+) or NH4(+) inhibited agonist binding. To suppress receptor internalization, the concentration of NaCl, but not of CsCl, had to be less than 50 mM, due to the high sensitivity of the internalization machinery to Na(+) over Cs(+). Iso-osmotic supplementation of glucose or NH4Cl maintained internalization of the V1b receptor, even in a low-NaCl environment. Moreover, iodide ions, which acted as a counter anion, inhibited V1b agonist binding. In summary, we found external ionic conditions that could increase the presence of high-affinity state receptors at the cell surface with minimum internalization during agonist stimulations. PMID:27138239

  17. Combined sodium ion sensitivity in agonist binding and internalization of vasopressin V1b receptors

    PubMed Central

    Koshimizu, Taka-aki; Kashiwazaki, Aki; Taniguchi, Junichi

    2016-01-01

    Reducing Na+ in the extracellular environment may lead to two beneficial effects for increasing agonist binding to cell surface G-protein coupled receptors (GPCRs): reduction of Na+-mediated binding block and reduce of receptor internalization. However, such combined effects have not been explored. We used Chinese Hamster Ovary cells expressing vasopressin V1b receptors as a model to explore Na+ sensitivity in agonist binding and receptor internalization. Under basal conditions, a large fraction of V1b receptors is located intracellularly, and a small fraction is in the plasma membrane. Decreases in external Na+ increased cell surface [3H]AVP binding and decreased receptor internalization. Substitution of Na+ by Cs+ or NH4+ inhibited agonist binding. To suppress receptor internalization, the concentration of NaCl, but not of CsCl, had to be less than 50 mM, due to the high sensitivity of the internalization machinery to Na+ over Cs+. Iso-osmotic supplementation of glucose or NH4Cl maintained internalization of the V1b receptor, even in a low-NaCl environment. Moreover, iodide ions, which acted as a counter anion, inhibited V1b agonist binding. In summary, we found external ionic conditions that could increase the presence of high-affinity state receptors at the cell surface with minimum internalization during agonist stimulations. PMID:27138239

  18. Apparent dopamine D1 and D2 receptors in the weaver mutant mouse: receptor binding and coupling to adenylyl cyclase.

    PubMed

    Dewar, K M; Paquet, M; Sequeira, A

    1999-01-01

    Weaver mutant mice have a selective degeneration of the nigrostriatal dopamine pathway arising between 7-21 days after birth. The goal of this study was to investigate the effects of this mutation on different parameters of the nigrostriatal and mesolimbic dopamine system: apparent D1 and D2 receptor binding sites as well as their signal transduction pathway. Using quantitative autoradiography of ligands for dopamine D1, D2 receptors and the dopamine uptake site, we found a significant loss in apparent D1 receptor binding sites throughout the neostriatum, significant increase of apparent D2 receptor binding in the dorsal aspect of the neostriatum, and almost complete loss of DA uptake sites in these regions of the weaver mouse. In contrast to the neostriatum, the density of dopamine receptors and uptake sites in the nucleus accumbens of the weaver mouse did not differ from controls. Despite alterations in the binding of apparent D1 and D2 receptors, there was no significant difference in either basal, DA stimulated or GTPgammaS stimulated cAMP production. These findings suggest the down-regulation of apparent D1 receptor binding sites reported in this model, probably does not reflect an important physiological mechanism through which these animals compensate for loss of dopamine innervation. PMID:10443552

  19. Binding of serotonin and N1-benzenesulfonyltryptamine-related analogs at human 5-HT6 serotonin receptors: receptor modeling studies.

    PubMed

    Dukat, Małgorzata; Mosier, Philip D; Kolanos, Renata; Roth, Bryan L; Glennon, Richard A

    2008-02-14

    A population of 100 graphics models of the human 5-HT6 serotonin receptor was constructed based on the structure of bovine rhodopsin. The endogenous tryptamine-based agonist serotonin (5-HT; 1) and the benzenesulfonyl-containing tryptamine-derived 5-HT6 receptor antagonist MS-245 (4a) were automatically docked with each of the 100 receptor models using a genetic algorithm approach. Similar studies were conducted with the more selective 5-HT6 receptor agonist EMDT (5) and optical isomers of EMDT-related analog 8, as well as with optical isomers of MS-245 (4a)-related and benzenesulfonyl-containing pyrrolidine 6 and aminotetralin 7. Although associated with the same general aromatic/hydrophobic binding cluster, 5-HT (1) and MS-245 (4a) were found to preferentially bind with distinct receptor conformations, and did so with different binding orientations (i.e., poses). A 5-HT pose/model was found to be common to EMDT (5) and its analogs, whereas that identified for MS-245 (4a) was found common to benzenesulfonyl-containing compounds. Specific amino acid residues were identified that can participate in binding, and evaluation of a sulfenamide analog of MS-245 indicates for the first time that the presence of the sulfonyl oxygen atoms enhances receptor affinity. The results indicate that the presence or absence of an N1-benzenesulfonyl group is a major determinant of the manner in which tryptamine-related agents bind at 5-HT6 serotonin receptors. PMID:18201064

  20. Identification of the synaptic vesicle glycoprotein 2 receptor binding site in botulinum neurotoxin A.

    PubMed

    Strotmeier, Jasmin; Mahrhold, Stefan; Krez, Nadja; Janzen, Constantin; Lou, Jianlong; Marks, James D; Binz, Thomas; Rummel, Andreas

    2014-04-01

    Botulinum neurotoxins (BoNTs) inhibit neurotransmitter release by hydrolysing SNARE proteins. The most important serotype BoNT/A employs the synaptic vesicle glycoprotein 2 (SV2) isoforms A-C as neuronal receptors. Here, we identified their binding site by blocking SV2 interaction using monoclonal antibodies with characterised epitopes within the cell binding domain (HC). The site is located on the backside of the conserved ganglioside binding pocket at the interface of the HCC and HCN subdomains. The dimension of the binding pocket was characterised in detail by site directed mutagenesis allowing the development of potent inhibitors as well as modifying receptor binding properties. PMID:24583011

  1. RAINBOW TROUT ANDROGEN RECEPTOR ALPHA AND THE HUMAN ANDROGEN RECEPTOR: COMPARISONS IN THE COS WHOLE CELL BINDING ASSAY

    EPA Science Inventory

    Rainbow Trout Androgen Receptor Alpha And Human Androgen Receptor: Comparisons in the COS Whole Cell Binding Assay
    Mary C. Cardon, L. Earl Gray, Jr. and Vickie S. Wilson
    U.S. Environmental Protection Agency, ORD, NHEERL, Reproductive Toxicology Division, Research Triangle...

  2. RAINBOW TROUT ANDROGEN RECEPTOR ALPHA AND THE HUMAN ANDROGEN RECEPTOR: COMPARISONS IN THE COS WHOLE CELL BINDING ASSAY

    EPA Science Inventory

    RAINBOW TROUT ANDROGEN RECEPTOR ALPHA AND HUMAN ANDROGEN RECEPTOR: COMPARISONS IN THE COS WHOLE CELL BINDING ASSAY.
    MC Cardon, PC Hartig,LE Gray, Jr. and VS Wilson.
    U.S. EPA, ORD, NHEERL, RTD, Research Triangle Park, NC, USA.
    Typically, in vitro hazard assessments for ...

  3. Detection of persistent organic pollutants binding modes with androgen receptor ligand binding domain by docking and molecular dynamics

    PubMed Central

    2013-01-01

    Background Persistent organic pollutants (POPs) are persistent in the environment after release from industrial compounds, combustion productions or pesticides. The exposure of POPs has been related to various reproductive disturbances, such as reduced semen quality, testicular cancer, and imbalanced sex ratio. Among POPs, dichlorodiphenyldichloroethylene (4,4’-DDE) and polychlorinated biphenyls (PCBs) are the most widespread and well-studied compounds. Recent studies have revealed that 4,4’-DDE is an antagonist of androgen receptor (AR). However, the mechanism of the inhibition remains elusive. CB-153 is the most common congener of PCBs, while the action of CB-153 on AR is still under debate. Results Molecular docking and molecular dynamics (MD) approaches have been employed to study binding modes and inhibition mechanism of 4,4’-DDE and CB-153 against AR ligand binding domain (LBD). Several potential binding sites have been detected and analyzed. One possible binding site is the same binding site of AR natural ligand androgen 5α-dihydrotestosterone (DHT). Another one is on the ligand-dependent transcriptional activation function (AF2) region, which is crucial for the co-activators recruitment. Besides, a novel possible binding site was observed for POPs with low binding free energy with the receptor. Detailed interactions between ligands and the receptor have been represented. The disrupting mechanism of POPs against AR has also been discussed. Conclusions POPs disrupt the function of AR through binding to three possible biding sites on AR/LBD. One of them shares the same binding site of natural ligand of AR. Another one is on AF2 region. The third one is in a cleft near N-terminal of the receptor. Significantly, values of binding free energy of POPs with AR/LBD are comparable to that of natural ligand androgen DHT. PMID:24053684

  4. Impact of D2 Receptor Internalization on Binding Affinity of Neuroimaging Radiotracers

    PubMed Central

    Guo, Ningning; Guo, Wen; Kralikova, Michaela; Jiang, Man; Schieren, Ira; Narendran, Raj; Slifstein, Mark; Abi-Dargham, Anissa; Laruelle, Marc; Javitch, Jonathan A; Rayport, Stephen

    2010-01-01

    Synaptic dopamine (DA) levels seem to affect the in vivo binding of many D2 receptor radioligands. Thus, release of endogenous DA induced by the administration of amphetamine decreases ligand binding, whereas DA depletion increases binding. This is generally thought to be due to competition between endogenous DA and the radioligands for D2 receptors. However, the temporal discrepancy between amphetamine-induced increases in DA as measured by microdialysis, which last on the order of 2 h, and the prolonged decrease in ligand binding, which lasts up to a day, has suggested that agonist-induced D2 receptor internalization may contribute to the sustained decrease in D2 receptor-binding potential seen following a DA surge. To test this hypothesis, we developed an in vitro system showing robust agonist-induced D2 receptor internalization following treatment with the agonist quinpirole. Human embryonic kidney 293 (HEK293) cells were stably co-transfected with human D2 receptor, G-protein-coupled receptor kinase 2 and arrestin 3. Agonist-induced D2 receptor internalization was demonstrated by fluorescence microscopy, flow cytometry, and radioligand competition binding. The binding of seven D2 antagonists and four agonists to the surface and internalized receptors was measured in intact cells. All the imaging ligands bound with high affinity to both surface and internalized D2 receptors. Affinity of most of the ligands to internalized receptors was modestly lower, indicating that internalization would reduce the binding potential measured in imaging studies carried out with these ligands. However, between-ligand differences in the magnitude of the internalization-associated affinity shift only partly accounted for the data obtained in neuroimaging experiments, suggesting the involvement of mechanisms beyond competition and internalization. PMID:19956086

  5. Selective CGRP and adrenomedullin peptide binding by tethered RAMP-calcitonin receptor-like receptor extracellular domain fusion proteins

    PubMed Central

    Moad, Heather E; Pioszak, Augen A

    2013-01-01

    Calcitonin gene-related peptide (CGRP) and adrenomedullin (AM) are related peptides that are potent vasodilators. The CGRP and AM receptors are heteromeric protein complexes comprised of a shared calcitonin receptor-like receptor (CLR) subunit and a variable receptor activity modifying protein (RAMP) subunit. RAMP1 enables CGRP binding whereas RAMP2 confers AM specificity. How RAMPs determine peptide selectivity is unclear and the receptor stoichiometries are a topic of debate with evidence for 1:1, 2:2, and 2:1 CLR:RAMP stoichiometries. Here, we describe bacterial production of recombinant tethered RAMP-CLR extracellular domain (ECD) fusion proteins and biochemical characterization of their peptide binding properties. Tethering the two ECDs ensures complex stability and enforces defined stoichiometry. The RAMP1-CLR ECD fusion purified as a monomer, whereas the RAMP2-CLR ECD fusion purified as a dimer. Both proteins selectively bound their respective peptides with affinities in the low micromolar range. Truncated CGRP(27-37) and AM(37-52) fragments were identified as the minimal ECD complex binding regions. The CGRP C-terminal amide group contributed to, but was not required for, ECD binding, whereas the AM C-terminal amide group was essential for ECD binding. Alanine-scan experiments identified CGRP residues T30, V32, and F37 and AM residues P43, K46, I47, and Y52 as critical for ECD binding. Our results identify CGRP and AM determinants for receptor ECD complex binding and suggest that the CGRP receptor functions as a 1:1 heterodimer. In contrast, the AM receptor may function as a 2:2 dimer of heterodimers, although our results cannot rule out 2:1 or 1:1 stoichiometries. PMID:24115156

  6. Binding and surface exposure characteristics of the gonococcal transferrin receptor are dependent on both transferrin-binding proteins.

    PubMed Central

    Cornelissen, C N; Sparling, P F

    1996-01-01

    Neisseria gonorrhoeae is capable of iron utilization from human transferrin in a receptor-mediated event. Transferrin-binding protein 1 (Tbp1) and Tbp2 have been implicated in transferrin receptor function, but their specific roles in transferrin binding and transferrin iron utilization have not yet been defined. We utilized specific gonococcal mutants lacking Tbp1 or Tbp2 to assess the relative transferrin-binding properties of each protein independently of the other. The apparent affinities of the wild-type transferrin receptor and of Tbp1 and Tbp2 individually were much higher than previously estimated for the gonococcal receptor and similar to the estimates for the mammalian transferrin receptor. The binding parameters of both of the mutants were distinct from those of the parent, which expressed two transferrin-binding sites. Tbp2 discriminated between ferrated transferrin and apotransferrin, while Tbp1 did not. Results of transferrin-binding affinity purification, and protease accessibility experiments were consistent with the hypothesis that Tbp1 and Tbp2 interact in the wild-type strain, although both proteins were capable of binding to transferrin independently when separated in the mutants. The presence of Tbp1 partially protected Tbp2 from trypsin proteolysis, and Tbp2 also protected Tbp1 from trypsin exposure. Addition of transferrin to wild-type but not mutant cells protected Tbp1 from trypsin but increased the trypsin susceptibility of Tbp2. These observations indicate that Tbp1 and Tbp2 function together in the wild-type strain to evoke binding conformations that are distinct from those expressed by the mutants lacking either protein. PMID:8631722

  7. Growth hormone receptor/binding protein: Physiology and function

    SciTech Connect

    Herington, A.C.; Ymer, S.I.; Stevenson, J.L.; Roupas, P.

    1994-12-31

    Soluble truncated forms of the growth hormone receptor (GHR) are present in the circulation of many species and are also produced by many tissues/cell types. The major high-affinity forms of these GH-binding proteins (GHBP) are derived by alternative splicing of GHR mRNA in rodents, but probably by proteolytic cleavage in other species. Questions still remain with respect to the origins, native molecular forms(s), physiology, and function of the GHBPs, however. The observation that GH induces dimerization of the soluble GHBP and a membrane GHR, and that dimerization of GHR appears to be critical for GH bioactivity suggests that the presentation of GH to target cells, in an unbound form or as a monomeric or dimeric complex with GHBP, may have significant implications for the ability of GH to activate specific postreceptor signaling pathways (tyrosine kinase, protein kinase C, G-protein pathways) known to be utilized by GH for its diverse biological effects. This minireview addresses some of these aspects and highlights several new questions which have arisen as a result of recent advances in our understanding of the structure, function, and signaling mechanisms of the membrane bound GHR. 43 refs.

  8. Evidence for a vasopressin receptor-GTP binding protein complex

    SciTech Connect

    Fitzgerald, T.J.; Uhing, R.J.; Exton, J.H.

    1986-05-01

    Plasma membranes from the livers of rats were able to hydrolyze the ..gamma..-phosphate from guanosine-5'-triphosphate (GTP). The rate of GTP hydrolysis could be decreased to 10% of its initial rate by the addition of adenosine-5'-triphosphate with a concomitant decrease in the K/sub m/ for GTP from approx. 10/sup -3/ M to 10/sup -6/ M. The low K/sub m/ GTPase activity was inhibited by the addition of nonhydrolyzable analogs of GTP. In addition, the GTPase activity was stimulated from 10 to 30% over basal by the addition of vasopressin. A dose dependency curve showed that the maximum stimulation was obtained with 10/sup -8/ M vasopressin. Identical results were obtained from plasma membranes that had been solubilized with 1% digitonin. When membranes that had been solubilized in the presence of (Phenylalanyl-3,4,5-/sup 3/H(N))vasopressin were subjected to sucrose gradient centrifugation, the majority of bound (/sup 3/H)vasopressin migrated with an approximate molecular weight of 300,000. Moreover, there was a GTPase activity that migrated with the bound (/sup 3/H)vasopressin. This peak of bound (/sup 3/H)vasopressin was decreased by 90% when the sucrose gradient centrifugation was run in the presence of 10/sup -5/ M guanosine-5'-O-(3-thiotriphosphate). These results support the conclusion that liver plasma membranes contain a GTP-binding protein that can complex with the vasopressin receptor.

  9. MDM2 binds and inhibits vitamin D receptor

    PubMed Central

    Heyne, Kristina; Heil, Tessa-Carina; Bette, Birgit; Reichrath, Jörg; Roemer, Klaus

    2015-01-01

    The E3 ubiquitin ligase and transcriptional repressor MDM2 is a potent inhibitor of the p53 family of transcription factors and tumor suppressors. Herein, we report that vitamin D receptor (VDR), another transcriptional regulator and probably, tumor suppressor, is also bound and inhibited by MDM2. This interaction was not affected by vitamin D ligand. VDR was ubiquitylated in the cell and its steady-state level was controlled by the proteasome. Strikingly, overproduced MDM2 reduced the level of VDR whereas knockdown of endogenous MDM2 increased the level of VDR. In addition to ubiquitin-marking proteins for degradation, MDM2, once recruited to promoters by DNA-binding interaction partners, can inhibit the transactivation of genes. Transient transfections with a VDR-responsive luciferase reporter revealed that low levels of MDM2 potently suppress VDR-mediated transactivation. Conversely, knockdown of MDM2 resulted in a significant increase of transcript from the CYP24A1 and p21 genes, noted cellular targets of transactivation by liganded VDR. Our findings suggest that MDM2 negatively regulates VDR in some analogy to p53. PMID:25969952

  10. Binding of polychlorinated biphenyls to the aryl hydrocarbon receptor.

    PubMed Central

    Kafafi, S A; Afeefy, H Y; Ali, A H; Said, H K; Kafafi, A G

    1993-01-01

    A new thermodynamic model for calculating the dissociation constants of complexes formed between the aryl hydrocarbon receptor (AhR) and polychlorinated biphenyls (PCBs) is reported. The free energies of binding of PCBs to AhR are controlled by their lipophilicities, electron affinities, and entropies. The corresponding physicochemical properties of polychlorinated dibenzo-p-dioxins and dibenzofurans also control their interactions with AhR. We present evidence supporting the hypothesis that the majority of PCBs are likely to interact with AhR in their nonplanar conformations. In addition, we demonstrate that the affinities of PCBs for AhR relative to 2,3,7,8-tetrachlorodibenzo-p-dioxin correlate with corresponding toxic equivalency factors in animals. The reported methodology is likely to be applicable to other polyhalogenated and mixed polyhalogenated bi- and terphenyls and related xenobiotics; thus, it could minimize the number of in vivo studies in laboratory animals and facilitate the identification of potentially hazardous aromatic xenobiotics. Images p422-a Figure 2. PMID:8119253

  11. Neurotensin receptor binding levels in basal ganglia are not altered in Huntington's chorea or schizophrenia

    SciTech Connect

    Palacios, J.M.; Chinaglia, G.; Rigo, M.; Ulrich, J.; Probst, A. )

    1991-02-01

    Autoradiographic techniques were used to examine the distribution and levels of neurotensin receptor binding sites in the basal ganglia and related regions of the human brain. Monoiodo ({sup 125}I-Tyr3)neurotensin was used as a ligand. High amounts of neurotensin receptor binding sites were found in the substantia nigra pars compacta. Lower but significant quantities of neurotensin receptor binding sites characterized the caudate, putamen, and nucleus accumbens, while very low quantities were seen in both medial and lateral segments of the globus pallidus. In Huntington's chorea, the levels of neurotensin receptor binding sites were found to be comparable to those of control cases. Only slight but not statistically significant decreases in amounts of receptor binding sites were detected in the dorsal part of the head and in the body of caudate nucleus. No alterations in the levels of neurotensin receptor binding sites were observed in the substantia nigra pars compacta and reticulata. These results suggest that a large proportion of neurotensin receptor binding sites in the basal ganglia are located on intrinsic neurons and on extrinsic afferent fibers that do not degenerate in Huntington's disease.

  12. Stacking interaction and its role in kynurenic acid binding to glutamate ionotropic receptors.

    PubMed

    Zhuravlev, Alexander V; Zakharov, Gennady A; Shchegolev, Boris F; Savvateeva-Popova, Elena V

    2012-05-01

    Stacking interaction is known to play an important role in protein folding, enzyme-substrate and ligand-receptor complex formation. It has been shown to make a contribution into the aromatic antagonists binding with glutamate ionotropic receptors (iGluRs), in particular, the complex of NMDA receptor NR1 subunit with the kynurenic acid (KYNA) derivatives. The specificity of KYNA binding to the glutamate receptors subtypes might partially result from the differences in stacking interaction. We have calculated the optimal geometry and binding energy of KYNA dimers with the four types of aromatic amino acid residues in Rattus and Drosophila ionotropic iGluR subunits. All ab initio quantum chemical calculations were performed taking into account electron correlations at MP2 and MP4 perturbation theory levels. We have also investigated the potential energy surfaces (PES) of stacking and hydrogen bonds (HBs) within the receptor binding site and calculated the free energy of the ligand-receptor complex formation. The energy of stacking interaction depends both on the size of aromatic moieties and the electrostatic effects. The distribution of charges was shown to determine the geometry of polar aromatic ring dimers. Presumably, stacking interaction is important at the first stage of ligand binding when HBs are weak. The freedom of ligand movements and rotation within receptor site provides the precise tuning of the HBs pattern, while the incorrect stacking binding prohibits the ligand-receptor complex formation. PMID:21833825

  13. MS Binding Assays for D1 and D5 Dopamine Receptors.

    PubMed

    Neiens, Patrick; Höfner, Georg; Wanner, Klaus Theodor

    2015-11-01

    MS Binding Assays are a label-free alternative to radioligand binding assays. They provide basically the same capabilities as the latter, but an unlabeled reporter ligand is used instead of a radioligand. The study presented herein describes the development of MS Binding Assays that address D1 and D5 dopamine receptors. A highly sensitive, rapid and robust LC-ESI-MS/MS quantification method for the selective D1 dopamine receptor antagonist SCH23390 ((5R)-8-chloro-3-methyl-5-phenyl-1,2,4,5-tetrahydro-3-benzazepin-7-ol) was established and validated, using its 8-bromo analogue SKF83566 as an internal standard. This quantification method proved to be suitable for the characterization of SCH23390 binding to human D1 and D5 receptors. Following the concept of MS Binding Assays, saturation experiments for D1 and D5 receptors were performed, as well as competition experiments for D1 receptors. The results obtained are in good agreement with results from radioligand binding assays and therefore indicate that the established MS Binding Assays addressing D1 and D5 receptors are well-suited substitutes for radioligand binding assays, the technique that has so far dominated affinity determinations toward these targets. PMID:26332653

  14. Partial separation of platelet and placental adenosine receptors from adenosine A2-like binding protein

    SciTech Connect

    Zolnierowicz, S.; Work, C.; Hutchison, K.; Fox, I.H. )

    1990-04-01

    The ubiquitous adenosine A2-like binding protein obscures the binding properties of adenosine receptors assayed with 5'-N-({sup 3}H)ethylcarboxamidoadenosine (({sup 3}H)NECA). To solve this problem, we developed a rapid and simple method to separate adenosine receptors from the adenosine A2-like binding protein. Human platelet and placental membranes were solubilized with 1% 3-((3-cholamidopropyl)dimethylammonio)-1-propanesulfonate. The soluble platelet extract was precipitated with polyethylene glycol and the fraction enriched in adenosine receptors was isolated from the precipitate by differential centrifugation. The adenosine A2-like binding protein was removed from the soluble placental extract with hydroxylapatite and adenosine receptors were precipitated with polyethylene glycol. The specificity of the ({sup 3}H)NECA binding is typical of an adenosine A2 receptor for platelets and an adenosine A1 receptor for placenta. This method leads to enrichment of adenosine A2 receptors for platelets and adenosine A1 receptors for placenta. This provides a useful preparation technique for pharmacologic studies of adenosine receptors.

  15. Human myometrial adrenergic receptors during pregnancy: identification of the alpha-adrenergic receptor by (/sup 3/H) dihydroergocryptine binding

    SciTech Connect

    Jacobs, M.M.; Hayashida, D.; Roberts, J.M.

    1985-07-15

    The radioactive alpha-adrenergic antagonist (/sup 3/H) dihydroergocryptine binds to particulate preparations of term pregnant human myometrium in a manner compatible with binding to the alpha-adrenergic receptor (alpha-receptor). (/sup 3/H) Dihydroergocryptine binds with high affinity (KD = 2 nmol/L and low capacity (receptor concentration = 100 fmol/mg of protein). Adrenergic agonists compete for (/sup 3/H) dihydroergocryptine binding sites stereo-selectively ((-)-norepinephrine is 100 times as potent as (+)-norepinephrine) and in a manner compatible with alpha-adrenergic potencies (epinephrine approximately equal to norepinephrine much greater than isoproterenol). Studies in which prazosin, an alpha 1-antagonist, and yohimbine, and alpha 2-antagonist, competed for (/sup 3/H) dihydroergocryptine binding sites in human myometrium indicated that approximately 70% are alpha 2-receptors and that 30% are alpha 1-receptors. (/sup 3/H) dihydroergocryptine binding to human myometrial membrane particulate provides an important tool with which to study the molecular mechanisms of uterine alpha-adrenergic response.

  16. Molecular characterization of the receptor binding structure-activity relationships of influenza B virus hemagglutinin.

    PubMed

    Carbone, V; Kim, H; Huang, J X; Baker, M A; Ong, C; Cooper, M A; Li, J; Rockman, S; Velkov, T

    2013-01-01

    Selectivity of α2,6-linked human-like receptors by B hemagglutinin (HA) is yet to be fully understood. This study integrates binding data with structure-recognition models to examine the impact of regional-specific sequence variations within the receptor-binding pocket on selectivity and structure activity relationships (SAR). The receptor-binding selectivity of influenza B HAs corresponding to either B/Victoria/2/1987 or the B/Yamagata/16/88 lineages was examined using surface plasmon resonance, solid-phase ELISA and gel-capture assays. Our SAR data showed that the presence of asialyl sugar units is the main determinant of receptor preference of α2,6 versus α2,3 receptor binding. Changes to the type of sialyl-glycan linkage present on receptors exhibit only a minor effect upon binding affinity. Homology-based structural models revealed that structural properties within the HA pocket, such as a glyco-conjugate at Asn194 on the 190-helix, sterically interfere with binding to avian receptor analogs by blocking the exit path of the asialyl sugars. Similarly, naturally occurring substitutions in the C-terminal region of the 190-helix and near the N-terminal end of the 140-loop narrows the horizontal borders of the binding pocket, which restricts access of the avian receptor analog LSTa. This study helps bridge the gap between ligand structure and receptor recognition for influenza B HA; and provides a consensus SAR model for the binding of human and avian receptor analogs to influenza B HA. PMID:24020757

  17. Calcitonin receptor binding properties in bone and kidney of the chicken during the oviposition cycle.

    PubMed

    Yasuoka, T; Kawashima, M; Takahashi, T; Tatematsu, N; Tanaka, K

    1998-09-01

    The binding property of calcitonin (CT) in the membrane fraction of calvaria and kidney of egg-laying and nonlaying hens was analyzed using a [125I] CT binding assay system. Binding properties of CT receptors in both tissues satisfy the authentic criteria of a receptor-ligand interaction in terms of specificity, reversibility, and saturation. Scatchard plots revealed a single class of binding sites. Values of the equilibrium dissociation constant (Kd) and binding capacity (Bmax) in laying hens showed a decrease during the period between 3 h before and 2 h after oviposition. No change was observed in nonlaying hens. In vivo administration of 17beta-estradiol or progesterone caused the decrease in Kd and Bmax values. The results suggest that the binding affinity and capacity of the CT receptor in the calvaria and the kidney of the hen may be modulated by the ovarian steroid hormone. PMID:9738513

  18. Binding of type II nuclear receptors and estrogen receptor to full and half-site estrogen response elements in vitro.

    PubMed Central

    Klinge, C M; Bodenner, D L; Desai, D; Niles, R M; Traish, A M

    1997-01-01

    The mechanism by which retinoids, thyroid hormone (T3) and estrogens modulate the growth of breast cancer cells is unclear. Since nuclear type II nuclear receptors, including retinoic acid receptor (RAR), retinoid X receptor (RXR) and thyroid hormone receptor (TR), bind direct repeats (DR) of the estrogen response elements (ERE) half-site (5'-AGGTCA-3'), we examined the ability of estrogen receptor (ER) versus type II nuclear receptors, i.e. RARalpha, beta and gamma, RXRbeta, TRalpha and TRbeta, to bind various EREs in vitro . ER bound a consensus ERE, containing a perfectly palindromic 17 bp inverted repeat (IR), as a homodimer. In contrast, ER did not bind to a single ERE half-site. Likewise, ER did not bind two tandem (38 bp apart) half-sites, but low ER binding was detected to three tandem copies of the same half-site. RARalpha,beta or gamma bound both ERE and half-site constructs as a homodimer. RXRbeta did not bind full or half-site EREs, nor did RXRbeta enhance RARalpha binding to a full ERE. However, RARalpha and RXRbeta bound a half-site ERE cooperatively forming a dimeric complex. The RARalpha-RXRbeta heterodimer bound the Xenopus vitellogenin B1 estrogen responsive unit, with two non-consensus EREs, with higher affinity than one or two copies of the full or half-site ERE. Both TRalpha and TRbeta bound the full and the half-site ERE as monomers and homodimers and cooperatively as heterodimers with RXRbeta. We suggest that the cellular concentrations of nuclear receptors and their ligands, and the nature of the ERE or half-site sequence and those of its flanking sequences determine the occupation of EREs in estrogen-regulated genes in vivo . PMID:9115356

  19. Origin and evolution of the ligand-binding ability of nuclear receptors.

    PubMed

    Markov, Gabriel V; Laudet, Vincent

    2011-03-01

    The origin of the ligand-binding ability of nuclear receptors is still a matter of discussion. Current opposing models are the early evolution of an ancestral receptor that would bind a specific ligand with high affinity and the early evolution of an ancestral orphan that was a constitutive transcription factor. Here we review the arguments in favour or against these two hypotheses, and we discuss an alternative possibility that the ancestor was a ligand sensor, which would be able to explain the apparently contradictory data generated in previous models for the evolution of ligand binding in nuclear receptors. PMID:21055443

  20. Coupling the Torpedo Microplate-Receptor Binding Assay with Mass Spectrometry to Detect Cyclic Imine Neurotoxins

    PubMed Central

    Aráoz, Rómulo; Ramos, Suzanne; Pelissier, Franck; Guérineau, Vincent; Benoit, Evelyne; Vilariño, Natalia; Botana, Luis M.; Zakarian, Armen; Molgó, Jordi

    2014-01-01

    Cyclic imine neurotoxins constitute an emergent family of neurotoxins of dinoflagellate origin that are potent antagonists of nicotinic acetylcholine receptors. We developed a target-directed functional method based on the mechanism of action of competitive agonists/antagonists of nicotinic acetylcholine receptors for the detection of marine cyclic imine neurotoxins. The key step for method development was the immobilization of Torpedo electrocyte membranes rich in nicotinic acetylcholine receptors on the surface of microplate wells and the use of biotinylated-α-bungarotoxin as tracer. Cyclic imine neurotoxins competitively inhibit biotinylated-α-bungarotoxin binding to Torpedo-nicotinic acetylcholine receptors in a concentration-dependent manner. The microplate-receptor binding assay allowed rapid detection of nanomolar concentrations of cyclic imine neurotoxins directly in shellfish samples. Although highly sensitive and specific for the detection of neurotoxins targeting nicotinic acetylcholine receptors as a class, the receptor binding assay cannot identify a given analyte. To address the low selectivity of the microplate-receptor binding assay, the cyclic imine neurotoxins tightly bound to the coated Torpedo nicotinic receptor were eluted with methanol, and the chemical nature of the eluted ligands was identified by mass spectrometry. The immobilization of Torpedo electrocyte membranes on the surface of microplate wells proved to be a high-throughput format for the survey of neurotoxins targeting nicotinic acetylcholine receptors directly in shellfish matrixes with high sensitivity and reproducibility. PMID:23131021

  1. Coupling the Torpedo microplate-receptor binding assay with mass spectrometry to detect cyclic imine neurotoxins.

    PubMed

    Aráoz, Rómulo; Ramos, Suzanne; Pelissier, Franck; Guérineau, Vincent; Benoit, Evelyne; Vilariño, Natalia; Botana, Luis M; Zakarian, Armen; Molgó, Jordi

    2012-12-01

    Cyclic imine neurotoxins constitute an emergent family of neurotoxins of dinoflagellate origin that are potent antagonists of nicotinic acetylcholine receptors. We developed a target-directed functional method based on the mechanism of action of competitive agonists/antagonists of nicotinic acetylcholine receptors for the detection of marine cyclic imine neurotoxins. The key step for method development was the immobilization of Torpedo electrocyte membranes rich in nicotinic acetylcholine receptors on the surface of microplate wells and the use of biotinylated-α-bungarotoxin as tracer. Cyclic imine neurotoxins competitively inhibit biotinylated-α-bungarotoxin binding to Torpedo-nicotinic acetylcholine receptors in a concentration-dependent manner. The microplate-receptor binding assay allowed rapid detection of nanomolar concentrations of cyclic imine neurotoxins directly in shellfish samples. Although highly sensitive and specific for the detection of neurotoxins targeting nicotinic acetylcholine receptors as a class, the receptor binding assay cannot identify a given analyte. To address the low selectivity of the microplate-receptor binding assay, the cyclic imine neurotoxins tightly bound to the coated Torpedo nicotinic receptor were eluted with methanol, and the chemical nature of the eluted ligands was identified by mass spectrometry. The immobilization of Torpedo electrocyte membranes on the surface of microplate wells proved to be a high-throughput format for the survey of neurotoxins targeting nicotinic acetylcholine receptors directly in shellfish matrixes with high sensitivity and reproducibility. PMID:23131021

  2. Binding of Cryptococcus neoformans by human cultured macrophages. Requirements for multiple complement receptors and actin.

    PubMed Central

    Levitz, S M; Tabuni, A

    1991-01-01

    We studied the receptors on human cultured macrophages (MO-M phi) responsible for binding encapsulated and isogenic mutant acapsular strains of Cryptococcus neoformans, and whether such binding leads to a phagocytic event. Both strains required opsonization with complement components in normal human serum in order for binding to occur. Binding of the acapsular, but not the encapsulated, strain led to phagocytosis. MAb directed against any of the three defined complement receptors (CR) on MO-M phi (CR1, CR3, and CR4) profoundly inhibited binding of serum-opsonized encapsulated (and to a lesser extent acapsular) organisms to MO-M phi. Immunofluorescence studies demonstrated migration of CR to the area of the cryptococcal binding site. Trypsin and elastase inhibited binding of encapsulated and, to a lesser extent, acapsular yeasts to MO-M phi. Binding of encapsulated C. neoformans was profoundly inhibited by incubation in the cold or by inhibitors of receptor capping and actin microfilaments. Thus, multiple CR appear to contribute to binding of serum-opsonized encapsulated C. neoformans by MO-M phi. Binding is an energy-dependent process that requires conformational changes in actin yet does not lead to phagocytosis of the organism. In contrast, energy is not required for binding of acapsular yeasts by MO-M phi and binding triggers phagocytosis. Images PMID:1991837

  3. Non-peptide ligand binding to the formyl peptide receptor FPR2--A comparison to peptide ligand binding modes.

    PubMed

    Stepniewski, Tomasz M; Filipek, Slawomir

    2015-07-15

    Ligands of the FPR2 receptor initiate many signaling pathways including activation of phospholipase C, protein kinase C, the mitogen-activated protein kinase, and phosphatidylinositol 3-kinase/protein kinase B pathway. The possible actions include also calcium flux, superoxide generation, as well as migration and proliferation of monocytes. FPR2 activation may induce a pro- and anti-inflammatory effect depending on the ligand type. It is also found that this receptor is involved in tumor growth. Most of currently known FPR2 ligands are agonists since they were designed based on N-formyl peptides, which are natural agonists of formyl receptors. Since the non-peptide drugs are indispensable for effective treatment strategies, we performed a docking study of such ligands employing a generated dual template homology model of the FPR2 receptor. The study revealed different binding modes of particular classes of these drugs. Based on the obtained docking poses we proposed a detailed location of three hydrophobic pockets in orthosteric binding site of FPR2. Our model emphasizes the importance of aromatic stacking, especially with regard to residues His102(3.29) and Phe257(6.51), for binding of FPR2 ligands. We also identified other residues important for non-peptide ligand binding in the binding site of FPR2. PMID:25882522

  4. Adaptation of avian influenza A (H6N1) virus from avian to human receptor-binding preference.

    PubMed

    Wang, Fei; Qi, Jianxun; Bi, Yuhai; Zhang, Wei; Wang, Min; Zhang, Baorong; Wang, Ming; Liu, Jinhua; Yan, Jinghua; Shi, Yi; Gao, George F

    2015-06-12

    The receptor-binding specificity of influenza A viruses is a major determinant for the host tropism of the virus, which enables interspecies transmission. In 2013, the first human case of infection with avian influenza A (H6N1) virus was reported in Taiwan. To gather evidence concerning the epidemic potential of H6 subtype viruses, we performed comprehensive analysis of receptor-binding properties of Taiwan-isolated H6 HAs from 1972 to 2013. We propose that the receptor-binding properties of Taiwan-isolated H6 HAs have undergone three major stages: initially avian receptor-binding preference, secondarily obtaining human receptor-binding capacity, and recently human receptor-binding preference, which has been confirmed by receptor-binding assessment of three representative virus isolates. Mutagenesis work revealed that E190V and G228S substitutions are important to acquire the human receptor-binding capacity, and the P186L substitution could reduce the binding to avian receptor. Further structural analysis revealed how the P186L substitution in the receptor-binding site of HA determines the receptor-binding preference change. We conclude that the human-infecting H6N1 evolved into a human receptor preference. PMID:25940072

  5. Mu receptor binding of some commonly used opioids and their metabolites

    SciTech Connect

    Chen, Zhaorong; Irvine, R.J. ); Somogyi, A.A.; Bochner, F. Royal Adelaide Hospital )

    1991-01-01

    The binding affinity to the {mu} receptor of some opioids chemically related to morphine and some of their metabolites was examined in rat brain homogenates with {sup 3}H-DAMGO. The chemical group at position 6 of the molecule had little effect on binding. Decreasing the length of the alkyl group at position 3 decreased the K{sub i} values (morphine < codeine < ethylmorphine < pholcodine). Analgesics with high clinical potency containing a methoxyl group at position 3 had relatively weak receptor binding, while their O-demethylated metabolites had much stronger binding. Many opioids may exert their pharmacological actions predominantly through metabolites.

  6. Proposed Mode of Binding and Action of Positive Allosteric Modulators at Opioid Receptors.

    PubMed

    Shang, Yi; Yeatman, Holly R; Provasi, Davide; Alt, Andrew; Christopoulos, Arthur; Canals, Meritxell; Filizola, Marta

    2016-05-20

    Available crystal structures of opioid receptors provide a high-resolution picture of ligand binding at the primary ("orthosteric") site, that is, the site targeted by endogenous ligands. Recently, positive allosteric modulators of opioid receptors have also been discovered, but their modes of binding and action remain unknown. Here, we use a metadynamics-based strategy to efficiently sample the binding process of a recently discovered positive allosteric modulator of the δ-opioid receptor, BMS-986187, in the presence of the orthosteric agonist SNC-80, and with the receptor embedded in an explicit lipid-water environment. The dynamics of BMS-986187 were enhanced by biasing the potential acting on the ligand-receptor distance and ligand-receptor interaction contacts. Representative lowest-energy structures from the reconstructed free-energy landscape revealed two alternative ligand binding poses at an allosteric site delineated by transmembrane (TM) helices TM1, TM2, and TM7, with some participation of TM6. Mutations of amino acid residues at these proposed allosteric sites were found to either affect the binding of BMS-986187 or its ability to modulate the affinity and/or efficacy of SNC-80. Taken together, these combined experimental and computational studies provide the first atomic-level insight into the modulation of opioid receptor binding and signaling by allosteric modulators. PMID:26841170

  7. IL-3 specifically inhibits GM-CSF binding to the higher affinity receptor

    SciTech Connect

    Taketazu, F.; Chiba, S.; Shibuya, K.; Kuwaki, T.; Tsumura, H.; Miyazono, K.; Miyagawa, K.; Takaku, F. )

    1991-02-01

    The inhibition of binding between human granulocyte-macrophage colony-stimulating factor (GM-CSF) and its receptor by human interleukin-3 (IL-3) was observed in myelogenous leukemia cell line KG-1 which bore the receptors both for GM-CSF and IL-3. In contrast, this phenomenon was not observed in histiocytic lymphoma cell line U-937 or in gastric carcinoma cell line KATO III, both of which have apparent GM-CSF receptor but an undetectable IL-3 receptor. In KG-1 cells, the cross-inhibition was preferentially observed when the binding of GM-CSF was performed under the high-affinity binding condition; i.e., a low concentration of 125I-GM-CSF was incubated. Scatchard analysis of 125I-GM-CSF binding to KG-1 cells in the absence and in the presence of unlabeled IL-3 demonstrated that IL-3 inhibited GM-CSF binding to the higher-affinity component of GM-CSF receptor on KG-1 cells. Moreover, a chemical cross-linking study has revealed that the cross-inhibition of the GM-CSF binding observed in KG-1 cells is specific for the beta-chain, Mr 135,000 binding protein which has been identified as a component forming the high-affinity GM-CSF receptor existing specifically on hemopoietic cells.

  8. Binding-site analysis of opioid receptors using monoclonal anti-idiotypic antibodies

    SciTech Connect

    Conroy, W.G.

    1988-01-01

    Structural relatedness between the variable region of anti-ligand antibodies and opioid binding sites allowed the generation of anti-idiotypic antibodies which recognized opioid receptors. The IgG{sub 3}k antibodies which bound to opioid receptors were obtained when an anti-morphine antiserum was the idiotype. Both antibodies bound to opioid receptors, but only one of these blocked the binding of ({sup 3}H)naloxone. The antibody which did not inhibit the binding of ({sup 3}H)naloxone was itself displaced from the receptor by opioid ligands. The unique binding properties displayed by this antibody indicated that anti-idiotypic antibodies are not always a perfect image of the original ligand, and therefore may be more useful than typical ligands as probes for the receptor. An auto-anti-idiotypic technique was successfully used to obtain anti-opioid receptor antibodies. Another IgG{sub 3}k antibody that blocked the binding of ({sup 3}H)naloxone to rat brain opioid receptors was obtained when a mouse was immunized with naloxone conjugated to bovine serum albumin. These data confirmed that an idiotype-anti-idiotype network which can generate an anti-receptor antibody normally functions when an opioid ligand is introduced into an animal in an immunogenic form.

  9. Nerve growth factor binding domain of the nerve growth factor receptor

    SciTech Connect

    Welcher, A.A.; Bitler, C.M.; Radeke, M.J.; Shooter, E.M. )

    1991-01-01

    A structural analysis of the rat low-affinity nerve growth factor (NGF) receptor was undertaken to define the NGF binding domain. Mutant NGF receptor DNA constructs were expressed in mouse fibroblasts or COS cells, and the ability of the mutant receptors to bind NGF was assayed. In the first mutant, all but 16 amino acid residues of the intracellular domain of the receptor were removed. This receptor bound NGF with a K{sub d} comparable to that of the wild-type receptor. A second mutant contained only the four cysteine-rich sequences from the extracellular portion of the protein. This mutant was expressed in COS cells and the resultant protein was a secreted soluble form of the receptor that was able to bind NGF. Two N-terminal deletions, in which either the first cystein-rich sequence or the first and part of the second cystein-rich sequences were removed, bound NGF. However, a mutant lacking all four cysteine-rich sequences was unable to bind NGF. These results show that the four cysteine-rich sequences of the NGF receptor contain the NGF binding domain.

  10. Analyzing machupo virus-receptor binding by molecular dynamics simulations.

    PubMed

    Meyer, Austin G; Sawyer, Sara L; Ellington, Andrew D; Wilke, Claus O

    2014-01-01

    In many biological applications, we would like to be able to computationally predict mutational effects on affinity in protein-protein interactions. However, many commonly used methods to predict these effects perform poorly in important test cases. In particular, the effects of multiple mutations, non alanine substitutions, and flexible loops are difficult to predict with available tools and protocols. We present here an existing method applied in a novel way to a new test case; we interrogate affinity differences resulting from mutations in a host-virus protein-protein interface. We use steered molecular dynamics (SMD) to computationally pull the machupo virus (MACV) spike glycoprotein (GP1) away from the human transferrin receptor (hTfR1). We then approximate affinity using the maximum applied force of separation and the area under the force-versus-distance curve. We find, even without the rigor and planning required for free energy calculations, that these quantities can provide novel biophysical insight into the GP1/hTfR1 interaction. First, with no prior knowledge of the system we can differentiate among wild type and mutant complexes. Moreover, we show that this simple SMD scheme correlates well with relative free energy differences computed via free energy perturbation. Second, although the static co-crystal structure shows two large hydrogen-bonding networks in the GP1/hTfR1 interface, our simulations indicate that one of them may not be important for tight binding. Third, one viral site known to be critical for infection may mark an important evolutionary suppressor site for infection-resistant hTfR1 mutants. Finally, our approach provides a framework to compare the effects of multiple mutations, individually and jointly, on protein-protein interactions. PMID:24624315

  11. Metal binding sites of the estradiol receptor from calf uterus and their possible role in the regulation of receptor function.

    PubMed

    Medici, N; Minucci, S; Nigro, V; Abbondanza, C; Armetta, I; Molinari, A M; Puca, G A

    1989-01-10

    The existence of putative metal binding sites on the estradiol receptor (ER) molecule from calf uterus was evaluated by immobilizing various divalent metals to iminodiacetate-Sepharose. ER from both crude and highly purified preparations binds to metal-containing adsorbents complexed with Zn(II), Ni(II), Co(II), and Cu(II), but not to those complexed with Fe(II) and Cd(II). Elution of ER was obtained by chelating agents or by imidazole, thus indicating that histidine residues on the ER molecule are involved in the interaction with the metal. Analysis of affinity-labeled ER by [3H]tamoxifen aziridine after elution from a column of Zn(II)-charged iminodiacetate-Sepharose showed that ER fragments obtained by extensive trypsinization were also bound. Zn(II) and the same other metals able to bind ER, when immobilized on resins, inhibit the binding of estradiol to the receptor at micromolar concentrations. This inhibition is noncompetitive and can be reversed by EDTA. The inhibition of the hormone binding was still present after trypsin treatment of the cytosol, and it was abolished by preincubation with the hormone. Micromolar concentrations of these metals were able to block those chemical-physical changes occurring during the process of ER transformation in vitro. Furthermore, if added to pretransformed ER-hormone complex, they strongly inhibited the binding of the complex to isolated nuclei. The presence of metal binding sites that modulate the ER activity in the hormone binding domain of ER is therefore speculated. Since progesterone receptor showed the same pattern of binding and elution from metal-containing adsorbents, the presence of metal binding regulatory sites could be a property of all steroid receptors. PMID:2706244

  12. Characterization of ( sup 3 H)alprazolam binding to central benzodiazepine receptors

    SciTech Connect

    McCabe, R.T.; Mahan, D.R.; Smith, R.B.; Wamsley, J.K. )

    1990-10-01

    The binding of the triazolobenzodiazepine ({sup 3}H)alprazolam was studied to characterize the in vitro interactions with benzodiazepine receptors in membrane preparations of rat brain. Studies using nonequilibrium and equilibrium binding conditions for ({sup 3}H)alprazolam resulted in high specific to nonspecific (signal to noise) binding ratios. The binding of ({sup 3}H)alprazolam was saturable and specific with a low nanomolar affinity for benzodiazepine receptors in the rat brain. The Kd was 4.6 nM and the Bmax was 2.6 pmol/mg protein. GABA enhanced ({sup 3}H)alprazolam binding while several benzodiazepine receptor ligands were competitive inhibitors of this drug. Compounds that bind to other receptor sites had a very weak or negligible effect on ({sup 3}H)alprazolam binding. Alprazolam, an agent used as an anxiolytic and in the treatment of depression, acts in vitro as a selective and specific ligand for benzodiazepine receptors in the rat brain. The biochemical binding profile does not appear to account for the unique therapeutic properties which distinguish this compound from the other benzodiazepines in its class.

  13. Building a Better Halide Receptor: Optimum Choice of Spacer, Binding Unit, and Halosubstitution.

    PubMed

    Nepal, Binod; Scheiner, Steve

    2016-03-16

    Quantum calculations are used to measure the binding of halides to a number of bipodal dicationic receptors, constructed as a pair of binding units separated by a spacer group. A number of variations are studied. A H atom on each binding unit (imidazolium or triazolium) is replaced by Br or I. Benzene, thiophene, carbazole, and dimethylnaphthalene are considered as spacer groups. Each receptor is paired with halides F(-) , Cl(-) , Br(-) , and I(-) . Substitution with I on the binding unit yields a large enhancement of binding, as much as 13 orders of magnitude; a much smaller increase occurs for substitution with Br. Imidazolium is a more effective binding agent than is triazolium. Benzene and dimethylnaphthalene represent the best spacers, followed by thiophene and carbazole. F(-) binds much more strongly than do the other halides, which obey the order Cl(-) >Br(-) >I(-) . PMID:26676206

  14. Evolution of the receptor binding properties of the influenza A(H3N2) hemagglutinin.

    PubMed

    Lin, Yi Pu; Xiong, Xiaoli; Wharton, Stephen A; Martin, Stephen R; Coombs, Peter J; Vachieri, Sebastien G; Christodoulou, Evangelos; Walker, Philip A; Liu, Junfeng; Skehel, John J; Gamblin, Steven J; Hay, Alan J; Daniels, Rodney S; McCauley, John W

    2012-12-26

    The hemagglutinin (HA) of influenza A(H3N2) virus responsible for the 1968 influenza pandemic derived from an avian virus. On introduction into humans, its receptor binding properties had changed from a preference for avian receptors (α2,3-linked sialic acid) to a preference for human receptors (α2,6-linked sialic acid). By 2001, the avidity of human H3 viruses for avian receptors had declined, and since then the affinity for human receptors has also decreased significantly. These changes in receptor binding, which correlate with increased difficulties in virus propagation in vitro and in antigenic analysis, have been assessed by virus hemagglutination of erythrocytes from different species and quantified by measuring virus binding to receptor analogs using surface biolayer interferometry. Crystal structures of HA-receptor analog complexes formed with HAs from viruses isolated in 2004 and 2005 reveal significant differences in the conformation of the 220-loop of HA1, relative to the 1968 structure, resulting in altered interactions between the HA and the receptor analog that explain the changes in receptor affinity. Site-specific mutagenesis shows the HA1 Asp-225→Asn substitution to be the key determinant of the decreased receptor binding in viruses circulating since 2005. Our results indicate that the evolution of human influenza A(H3N2) viruses since 1968 has produced a virus with a low propensity to bind human receptor analogs, and this loss of avidity correlates with the marked reduction in A(H3N2) virus disease impact in the last 10 y. PMID:23236176

  15. Substance P and substance K receptor binding sites in the human gastrointestinal tract: localization by autoradiography

    SciTech Connect

    Gates, T.S.; Zimmerman, R.P.; Mantyh, C.R.; Vigna, S.R.; Maggio, J.E.; Welton, M.L.; Passaro, E.P. Jr.; Mantyh, P.W.

    1988-11-01

    Quantitative receptor autoradiography was used to localize and quantify the distribution of binding sites for /sup 125/I-radiolabeled substance P (SP), substance K (SK) and neuromedin K (NK) in the human GI tract using histologically normal tissue obtained from uninvolved margins of resections for carcinoma. The distribution of SP and SK binding sites is different for each gastrointestinal (GI) segment examined. Specific SP binding sites are expressed by arterioles and venules, myenteric plexus, external circular muscle, external longitudinal muscle, muscularis mucosa, epithelial cells of the mucosa, and the germinal centers of lymph nodules. SK binding sites are distributed in a pattern distinct from SP binding sites and are localized to the external circular muscle, external longitudinal muscle, and the muscularis mucosa. Binding sites for NK were not detected in any part of the human GI tract. These results demonstrate that: (1) surgical specimens from the human GI tract can be effectively processed for quantitative receptor autoradiography; (2) of the three mammalian tachykinins tested, SP and SK, but not NK binding sites are expressed in detectable levels in the human GI tract; (3) whereas SK receptor binding sites are expressed almost exclusively by smooth muscle, SP binding sites are expressed by smooth muscle cells, arterioles, venules, epithelial cells of the mucosa and cells associated with lymph nodules; and (4) both SP and SK binding sites expressed by smooth muscle are more stable than SP binding sites expressed by blood vessels, lymph nodules, and mucosal cells.

  16. Ascorbic acid enables reversible dopamine receptor /sup 3/H-agonist binding

    SciTech Connect

    Leff, S.; Sibley, D.R.; Hamblin, M.; Creese, I.

    1981-11-16

    The effects of ascorbic acid on dopaminergic /sup 3/H-agonist receptor binding were studied in membrane homogenates of bovine anterior pituitary and caudate, and rat striatum. In all tissues virtually no stereospecific binding (defined using 1uM (+)butaclamol) of the /sup 3/H-agonists N-propylnorapomorphine (NPA), apomorphine, or dopamine could be demonstrated in the absence of ascorbic acid. Although levels of total /sup 3/H-agonist binding were three to five times greater in the absence than in the presence of 0.1% ascorbic acid, the increased binding was entirely non-stereospecific. Greater amounts of dopamine-inhibitable /sup 3/H-NPA binding could be demonstrated in the absence of 0.1% ascorbic acid, but this measure of ''specific binding'' was demonstrated not to represent dopamine receptor binding since several other catecholamines and catechol were equipotent with dopamine and more potent than the dopamine agonist (+/-)amino-6,7-dihydroxy-1,2,3,4-tetrahydronapthalene (ADTN) in inhibiting this binding. High levels of dopamine-displaceable /sup 3/H-agonist binding were detected in fresh and boiled homogenates of cerebellum, an area of brain which receives no dopaminergic innervation, further demonstrating the non-specific nature of /sup 3/H-agonist binding in the absence of ascorbic acid. These studies emphasize that under typical assay conditions ascorbic acid is required in order to demonstrate reversible and specific /sup 3/H-agonist binding to dopamine receptors.

  17. Central phencyclidine (PCP) receptor binding is glutamate dependent: evidence for a PCP/excitatory amino acid receptor (EAAR) complex

    SciTech Connect

    Loo, P.; Braunwalder, A.; Lehmann, J.; Williams, M.

    1986-03-01

    PCP and other dissociative anesthetica block the increase in neuronal firing rate evoked by the EAAR agonist, N-methyl-Daspartate. NMDA and other EAAs such as glutamate (glu) have not been previously shown to affect PCP ligand binding. In the present study, using once washed rat forebrain membranes, 10 ..mu..M-glu was found to increase the binding of (/sup 3/H)TCP, a PCP analog, to defined PCP recognition sites by 20%. Removal of glu and aspartate (asp) by extensive washing decreased TCP binding by 75-90%. In these membranes, 10 ..mu..M L-glu increased TCP binding 3-fold. This effect was stereospecific and evoked by other EAAs with the order of activity, L-glu > D-asp > L- asp > NMDA > D-glu > quisqualate. Kainate, GABA, NE, DA, 5-HT, 2-chloroadenosine, oxotremorine and histamine had no effect on TCP binding at concentrations up to 100 ..mu..M. The effects of L-glu were attenuated by the NMDA-type receptor antagonist, 2-amino-7--phosphonoheptanoate (AP7; 10 ..mu..M-1 mM). These findings indicate that EAAS facilitate TCP binding, possibly through NMDA-type receptors. The observed interaction between the PCP receptor and EAARs may reflect the existence of a macromolecular receptor complex similar to that demonstrated for the benzodiazepines and GABA.

  18. Potential ligand-binding residues in rat olfactory receptors identified by correlated mutation analysis

    NASA Technical Reports Server (NTRS)

    Singer, M. S.; Oliveira, L.; Vriend, G.; Shepherd, G. M.

    1995-01-01

    A family of G-protein-coupled receptors is believed to mediate the recognition of odor molecules. In order to identify potential ligand-binding residues, we have applied correlated mutation analysis to receptor sequences from the rat. This method identifies pairs of sequence positions where residues remain conserved or mutate in tandem, thereby suggesting structural or functional importance. The analysis supported molecular modeling studies in suggesting several residues in positions that were consistent with ligand-binding function. Two of these positions, dominated by histidine residues, may play important roles in ligand binding and could confer broad specificity to mammalian odor receptors. The presence of positive (overdominant) selection at some of the identified positions provides additional evidence for roles in ligand binding. Higher-order groups of correlated residues were also observed. Each group may interact with an individual ligand determinant, and combinations of these groups may provide a multi-dimensional mechanism for receptor diversity.

  19. ( sup 3 H)cytisine binding to nicotinic cholinergic receptors in brain

    SciTech Connect

    Pabreza, L.A.; Dhawan, S.; Kellar, K.J. )

    1991-01-01

    Cytisine, a ganglionic agonist, competes with high affinity for brain nicotinic cholinergic receptors labeled by any of several nicotinic {sup 3}H-agonist ligands. Here we have examined the binding of ({sup 3}H)cytisine in rat brain homogenates. ({sup 3}H)Cytisine binds with high affinity (Kd less than 1 nM), and specific binding represented 60-90% of total binding at all concentrations examined up to 15 nM. The nicotinic cholinergic agonists nicotine, acetylcholine, and carbachol compete with high affinity for ({sup 3}H)cytisine binding sites, whereas among nicotinic receptor antagonists only dihydro-beta-erythroidine competes with high affinity (in the nanomolar range). Comparison of binding in several brain regions showed that ({sup 3}H)cytisine binding is higher in the thalamus, striatum, and cortex than in the hippocampus, cerebellum, or hypothalamus. The pharmacology and brain regional distribution of ({sup 3}H)cytisine binding sites are those predicted for neuronal nicotinic receptor agonist recognition sites. The high affinity and low nonspecific binding of ({sup 3}H)cytisine should make it a very useful ligand for studying neuronal nicotinic receptors.

  20. Binding kinetics of membrane-anchored receptors and ligands: Molecular dynamics simulations and theory

    NASA Astrophysics Data System (ADS)

    Hu, Jinglei; Xu, Guang-Kui; Lipowsky, Reinhard; Weikl, Thomas R.

    2015-12-01

    The adhesion of biological membranes is mediated by the binding of membrane-anchored receptor and ligand proteins. Central questions are how the binding kinetics of these proteins is affected by the membranes and by the membrane anchoring of the proteins. In this article, we (i) present detailed data for the binding of membrane-anchored proteins from coarse-grained molecular dynamics simulations and (ii) provide a theory that describes how the binding kinetics depends on the average separation and thermal roughness of the adhering membranes and on the anchoring, lengths, and length variations of the proteins. An important element of our theory is the tilt of bound receptor-ligand complexes and transition-state complexes relative to the membrane normals. This tilt results from an interplay of the anchoring energy and rotational entropy of the complexes and facilitates the formation of receptor-ligand bonds at membrane separations smaller than the preferred separation for binding. In our simulations, we have considered both lipid-anchored and transmembrane receptor and ligand proteins. We find that the binding equilibrium constant and binding on-rate constant of lipid-anchored proteins are considerably smaller than the binding constant and on-rate constant of rigid transmembrane proteins with identical binding domains.

  1. Absence of serum growth hormone binding protein in patients with growth hormone receptor deficiency (Laron dwarfism)

    SciTech Connect

    Daughaday, W.H.; Trivedi, B.

    1987-07-01

    It has recently been recognized that human serum contains a protein that specifically binds human growth hormone (hGH). This protein has the same restricted specificity for hGH as the membrane-bound GH receptor. To determine whether the GH-binding protein is a derivative of, or otherwise related to, the GH receptor, the authors have examined the serum of three patients with Laron-type dwarfism, a condition in which GH refractoriness has been attributed to a defect in the GH receptor. The binding of /sup 125/I-labeled hGH incubated with serum has been measured after gel filtration of the serum through an Ultrogel AcA 44 minicolumn. Results are expressed as percent of specifically bound /sup 125/I-hGH and as specific binding relative to that of a reference serum after correction is made for endogenous GH. The mean +/- SEM of specific binding of sera from eight normal adults (26-46 years of age) was 21.6 +/- 0.45%, and the relative specific binding was 101.1 +/- 8.6%. Sera from 11 normal children had lower specific binding of 12.5 +/- 1.95% and relative specific binding of 56.6 +/- 9.1%. Sera from three children with Laron-type dwarfism lacked any demonstrable GH binding, whereas sera from 10 other children with other types of nonpituitary short stature had normal relative specific binding. They suggest that the serum GH-binding protein is a soluble derivative of the GH receptor. Measurement of the serum GH-binding protein may permit recognition of other abnormalities of the GH receptor.

  2. Trigger factor binds to ribosome–signal-recognition particle (SRP) complexes and is excluded by binding of the SRP receptor

    PubMed Central

    Buskiewicz, Iwona; Deuerling, Elke; Gu, Shan-Qing; Jöckel, Johannes; Rodnina, Marina V.; Bukau, Bernd; Wintermeyer, Wolfgang

    2004-01-01

    Trigger factor (TF) and signal recognition particle (SRP) bind to the bacterial ribosome and are both crosslinked to protein L23 at the peptide exit, where they interact with emerging nascent peptide chains. It is unclear whether TF and SRP exclude one another from their ribosomal binding site(s). Here we show that SRP and TF can bind simultaneously to ribosomes or ribosome nascent-chain complexes exposing a SRP-specific signal sequence. Based on changes of the crosslinking pattern and on results obtained by fluorescence measurements using fluorescence-labeled SRP, TF binding induces structural changes in the ribosome–SRP complex. Furthermore, we show that binding of the SRP receptor, FtsY, to ribosome-bound SRP excludes TF from the ribosome. These results suggest that TF and SRP sample nascent chains on the ribosome in a nonexclusive fashion. The decision for ribosome nascent-chain complexes exposing a signal sequence to enter SRP-dependent membrane targeting seems to be determined by the binding of SRP, which is stabilized by signal sequence recognition, and promoted by the exclusion of TF due to the binding of the SRP receptor to ribosome-bound SRP. PMID:15148364

  3. Changes in parathyroid hormone receptor binding affinity during egg laying: implications for calcium homeostasis in chicken.

    PubMed

    Yasuoka, T; Kawashima, M; Takahashi, T; Iwata, A; Oka, N; Tanaka, K

    1996-12-01

    Parathyroid hormone (PTH) receptor bindings were examined in the membrane fraction of the calvaria and the kidney of the hen by the use of [125I]PTH-related protein (PTHrP) binding assays. The binding specificity, reversibility, and saturation of the receptor were demonstrated. The equilibrium dissociation constant (Kd) and the maximum binding capacity (Bmax) were obtained by Scatchard analyses. In both calvaria and kidney, Kd and Bmax values decreased at 3 h before oviposition in egg-laying hens, but not in nonlaying hens. Administration of 17 beta-estradiol or progesterone in vivo caused a decrease in the Kd and Bmax values. Ionized calcium concentrations in the blood plasma showed a decrease at 13 h before oviposition. The results suggest that the PTH receptor binding in the calvaria and the kidney is affected by ovarian steroid hormones and may play a role in maintaining the calcium homeostasis in the egg-laying hen. PMID:8970893

  4. Structural Analysis of the Receptor Binding Domain of Botulinum Neurotoxin Serotype D

    SciTech Connect

    Y Zhang; G Buchko; L Qin; H Robinson; S Varnum

    2011-12-31

    Botulinum neurotoxins (BoNTs) are the most toxic proteins known. The mechanism for entry into neuronal cells for serotypes A, B, E, F, and G involves a well understood dual receptor (protein and ganglioside) process, however, the mechanism of entry for serotypes C and D remains unclear. To provide structural insights into how BoNT/D enters neuronal cells, the crystal structure of the receptor binding domain (S863-E1276) for this serotype (BoNT/D-HCR) was determined at 1.65{angstrom} resolution. While BoNT/D-HCR adopts an overall fold similar to that observed in other known BoNT HCRs, several major structural differences are present. These structural differences are located at, or near, putative receptor binding sites and may be responsible for BoNT/D host preferences. Two loops, S1195-I1204 and K1236-N1244, located on both sides of the putative protein receptor binding pocket, are displaced >10{angstrom} relative to the corresponding residues in the crystal structures of BoNT/B and G. Obvious clashes were observed in the putative protein receptor binding site when the BoNT/B protein receptor synaptotagmin II was modeled into the BoNT/D-HCR structure. Although a ganglioside binding site has never been unambiguously identified in BoNT/D-HCR, a shallow cavity in an analogous location to the other BoNT serotypes HCR domains is observed in BoNT/D-HCR that has features compatible with membrane binding. A portion of a loop near the putative receptor binding site, K1236-N1244, is hydrophobic and solvent-exposed and may directly bind membrane lipids. Liposome-binding experiments with BoNT/D-HCR demonstrate that this membrane lipid may be phosphatidylethanolamine.

  5. Structural analysis of the receptor binding domain of botulinum neurotoxin serotype D

    SciTech Connect

    Zhang, Yanfeng; Buchko, Garry W.; Qin, Lin; Robinson, Howard; Varnum, Susan M.

    2010-10-28

    Botulinum neurotoxins (BoNTs) are the most toxic proteins known. The mechanism for entry into neuronal cells for serotypes A, B, E, F, and G involves a well understood dual receptor (protein and ganglioside) process, however, the mechanism of entry for serotypes C and D remains unclear. To provide structural insights into how BoNT/D enters neuronal cells, the crystal structure of the receptor binding domain (S863-E1276) for this serotype (BoNT/D-HCR) was determined at 1.65 Å resolution. While BoNT/D-HCR adopts an overall fold similar to that observed in other known BoNT HCRs, several major structural differences are present. These structural differences are located at, or near, putative receptor binding sites and may be responsible for BoNT/D host preferences. Two loops, S1195-I1204 and K1236-N1244, located on both sides of the putative protein receptor binding pocket, are displaced >10 Å relative to the corresponding residues in the crystal structures of BoNT/B and G. Obvious clashes were observed in the putative protein receptor binding site when the BoNT/B protein receptor synaptotagmin II was modeled into the BoNT/D-HCR structure. Although a ganglioside binding site has never been unambiguously identified in BoNT/D-HCR, a shallow cavity in an analogous location to the other BoNT serotypes HCR domains is observed in BoNT/D-HCR that has features compatible with membrane binding. A portion of a loop near the putative receptor binding site, K1236-N1244, is hydrophobic and solvent-exposed and may directly bind membrane lipids. Liposome-binding experiments with BoNT/D-HCR demonstrate that this membrane lipid may be phosphatidylethanolamine.

  6. ( sup 3 H)SCH39166, a D1 dopamine receptor antagonist: Binding characteristics and localization

    SciTech Connect

    Wamsley, J.K.; Hunt, M.E.; McQuade, R.D.; Alburges, M.E. )

    1991-02-01

    Schering-Plough Research has developed a new, more specific analogue of SCH23390. This compound, SCH39166, has been shown to be a potent, specific, D1 receptor antagonist with several features which are advantageous over its predecessor. In this report, the binding characteristics of (3H)SCH39166 are described by in vitro analysis in rat brain tissues. The binding was shown to be of high affinity (Kd in the low nM range), saturable, and specific (readily displaceable with SCH23390, but not with the D2 receptor antagonists sulpiride or haloperidol). The binding of SCH39166 is more selective for binding to D1 receptors than SCH23390 with regard to overlap of the latter compound onto 5HT2 and 5HT1C receptors. Autoradiographic localization of D1 receptor sites labeled with (3H)SCH39166 showed a very specific distribution in areas known to contain high quantities of D1 receptors. These regions included the deepest layer of the cerebral cortex, the caudate-putamen, nucleus accumbens, olfactory tubercle, entopeduncular nucleus, and substantia nigra-pars reticulata, as well as less dense binding in a few other areas. At the concentration of ligand used (1 nM), there was a noticeable paucity of labeling in lamina IV of the cerebral cortex and in the choroid plexus, regions of high 5HT2 and 5HT1C receptor binding, respectively. Thus, SCH39166 represents a new D1 receptor antagonist which shows a greater specificity for the D1 receptor than its predecessor SCH23390. As previously shown, another distinct advantage of this compound is its stability in primates which should allow the determination of the effects and utility of D1 receptor antagonism in vivo.

  7. Stereospecificity in binding studies. A useful criterion though insufficient to prove the presence of receptors.

    PubMed

    Laduron, P M

    1988-01-01

    In binding studies, stereospecificity is not a property restricted to receptor sites; indeed stereospecific binding has also been observed for acceptor sites. Therefore it does not represent a decisive criterion to make a binding site, a receptor site. However, in some well established cases, it can be useful especially when the difference between the active and inactive enantiomer exceeds 1000-fold as is the case for dexetimide and levetimide on muscarinic receptors. Stereospecific effect is also detectable with acceptor sites, e.g. spirodecanone sites, levocabastine displaceable neurotensin and, presumably, many other ones. Since the membrane is chiral (L-aminoacid) one should expect that non-specific displaceable binding would also display stereospecificity. In this regard, as most of the Scatchard plots reported throughout the literature are curvilinear, even if a straight line is drawn, one may assume that this is due to the presence of acceptor sites that are labelled by the ligand in addition to receptor sites. One cannot exclude the repetition of another "levocabastine story" with other neuropeptides. Hence, as the biochemical criteria like high affinity, saturability, reversibility and stereospecificity cannot differentiate a receptor from an acceptor (see Table 1), the most important and decisive criteria remain: (1) the drug displacement with compounds belonging to different pharmacological classes but mostly to different chemical classes, and (2) the functional correlates between the binding affinity and the potency in pharmacological or physiological tests in vitro or in vivo. When these points are fulfilled a binding site may be called a receptor site. PMID:2827683

  8. Kit receptor dimerization is driven by bivalent binding of stem cell factor.

    PubMed

    Lemmon, M A; Pinchasi, D; Zhou, M; Lax, I; Schlessinger, J

    1997-03-01

    Most growth factors and cytokines activate their receptors by inducing dimerization upon binding. We have studied binding of the dimeric cytokine stem cell factor (SCF) to the extracellular domain of its receptor Kit, which is a receptor tyrosine kinase similar to the receptors for platelet-derived growth factor and colony-stimulating factor-1. Calorimetric studies show that one SCF dimer binds simultaneously to two molecules of the Kit extracellular domain. Gel filtration and other methods show that this results in Kit dimerization. It has been proposed that SCF-induced Kit dimerization proceeds via a conformational change that exposes a key receptor dimerization site in the fourth of the five immunoglobulin (Ig)-like domains in Kit. We show that a form of Kit containing just the first three Ig domains (Kit-123) binds to SCF with precisely the same thermodynamic parameters as does Kit-12345. Analytical ultracentrifugation, light scattering, and gel filtration show that Kit-123 dimerizes upon SCF binding in a manner indistinguishable from that seen with Kit-12345. These data argue that the fourth Ig-like domain of Kit is not required for SCF-induced receptor dimerization and provide additional support for a model in which bivalent binding of the SCF dimer provides the driving force for Kit dimerization. PMID:9045650

  9. The different ligand-binding modes of relaxin family peptide receptors RXFP1 and RXFP2.

    PubMed

    Scott, Daniel J; Rosengren, K Johan; Bathgate, Ross A D

    2012-11-01

    Relaxin and insulin-like peptide 3 (INSL3) are peptide hormones with a number of important physiological roles in reproduction, regulation of extracellular matrix turnover, and cardiovascular function. Relaxin and INSL3 mediate their actions through the closely related G-protein coupled receptors, relaxin family peptide receptors 1 and 2 (RXFP1 and RXFP2), respectively. These receptors have large extracellular domains (ECD) that contain high-affinity ligand-binding sites within their 10 leucine-rich repeat (LRR)-containing modules. Although relaxin can bind and activate both RXFP1 and RXFP2, INSL3 can only bind and activate RXFP2. To investigate whether this difference is related to the nature of the high-affinity ECD binding site or to differences in secondary binding sites involving the receptor transmembrane (TM) domain, we created a suite of constructs with RXFP1/2 chimeric ECD attached to single TM helices. We show that by changing as little as one LRR, representing four amino acid substitutions, we were able to engineer a high-affinity INSL3-binding site into the ECD of RXFP1. Molecular modeling of the INSL3-RXFP2 interaction based on extensive experimental data highlights the differences in the binding mechanisms of relaxin and INSL3 to the ECD of their cognate receptors. Interestingly, when the engineered RXFP1/2 ECD were introduced into full-length RXFP1 constructs, INSL3 exhibited only low affinity and efficacy on these receptors. These results highlight critical differences both in the ECD binding and in the coordination of the ECD-binding site with the TM domain, and provide new mechanistic insights into the binding and activation events of RXFP1 and RXFP2 by their native hormone ligands. PMID:22973049

  10. Evaluation of the In Vivo and Ex Vivo Binding of Novel BC1 Cannabinoid Receptor Radiotracers

    SciTech Connect

    Miller, A.; Gatley, J.; Gifford, A.

    2002-01-01

    The primary active ingredient of marijuana, 9-tetrahydrocannabinol, exerts its psychoactive effects by binding to cannabinoid CB1 receptors. These receptors are found throughout the brain with high concentrations in the hippocampus and cerebellum. The current study was conducted to evaluate the binding of a newly developed putative cannabinoid antagonist, AM630, and a classical cannabinoid 8-tetrahydrocannabinol as potential PET and/or SPECT imaging agents for brain CB1 receptors. For both of these ligands in vivo and ex vivo studies in mice were conducted. AM630 showed good overall brain uptake (as measure by %IA/g) and a moderately rapid clearance from the brain with a half-clearance time of approximately 30 minutes. However, AM630 did not show selective binding to CB1 cannabinoid receptors. Ex vivo autoradiography supported the lack of selective binding seen in the in vivo study. Similar to AM630, 8-tetrahydrocanibol also failed to show selective binding to CB1 receptor rich brain areas. The 8-tetrahydrocanibol showed moderate overall brain uptake and relatively slow brain clearance as compared to AM630. Further studies were done with AM2233, a cannabinoid ligand with a similar structure as AM630. These studies were done to develop an ex vivo binding assay to quantify the displacement of [131I]AM2233 binding by other ligands in Swiss-Webster and CB1 receptor knockout mice. By developing this assay we hoped to determine the identity of an unknown binding site for AM2233 present in the hippocampus of CB1 knockout mice. Using an approach based on incubation of brain slices prepared from mice given intravenous [131I]AM2233 in either the presence or absence of AM2233 (unlabelled) it was possible to demonstrate a significant AM2233-displacable binding in the Swiss-Webster mice. Future studies will determine if this assay is appropriate for identifying the unknown binding site for AM2233 in the CB1 knockout mice.

  11. A Binding Site Model and Structure-Activity Relationships for the Rat A3 Adenosine Receptor

    PubMed Central

    VAN GALEN, PHILIP J. M.; VAN BERGEN, ANDREW H.; GALLO-RODRIGUEZ, CAROLA; MELMAN, NELI; OLAH, MARK E.; IJZERMAN, AD P.; STILES, GARY L.; JACOBSON, KENNETH A.

    2012-01-01

    SUMMARY A novel adenosine receptor, the A3 receptor, has recently been cloned. We have systematically investigated the hitherto largely unexplored structure-activity relationships (SARs) for binding at A3 receptors, using 125I-N6-2-(4-aminophenyl)ethyladenosine as a radioligand and membranes from Chinese hamster ovary cells stably transfected with the rat A3-cDNA. As is the case for A1 and A2a, receptors, substitutions at the N6 and 5′ positions of adenosine, the prototypic agonist ligand, may yield fairly potent compounds. However, the highest affinity and A3 selectivity is found for N6,5′-disubstituted compounds, in contrast to A1 and A2a receptors. Thus, N6-benzyladenosine-5′-N-ethylcarboxamide is highly potent (Ki, 6.8 nM) and moderately selective (13- and 14-fold versus A1 and A2a). The N6 region of the A3 receptor also appears to tolerate hydrophilic substitutions, in sharp contrast to the other subtypes. Potencies of N6,5′-disubstituted compounds in inhibition of adenylate cyclase via A3 receptors parallel their high affinity in the binding assay. None of the typical xanthine or nonxanthine (A1/A2) antagonists tested show any appreciable affinity for rat A3 receptors. 1,3-Dialkylxanthines did not antagonize the A3 agonist-induced inhibition of adenylate cyclase. A His residue in helix 6 that is absent in A3 receptors but present in A1/A2 receptors may be causal in this respect. In a molecular model for the rat A3 receptor, this mutation, together with an increased bulkiness of residues surrounding the ligand, make antagonist binding unfavorable when compared with a previously developed A1 receptor model. Second, this A3 receptor model predicted similarities with A1 and A2 receptors in the binding requirements for the ribose moiety and that xanthine-7-ribosides would bind to rat A3 receptors. This hypothesis was supported experimentally by the moderate affinity (Ki 6 μM) of 7-riboside of 1,3-dibutylxanthine, which appears to be a partial agonist at

  12. Inhibition of mu and delta opioid receptor ligand binding by the peptide aldehyde protease inhibitor, leupeptin.

    PubMed

    Christoffers, Keith H; Khokhar, Arshia; Chaturvedi, Kirti; Howells, Richard D

    2002-04-15

    We reported recently that the ubiquitin-proteasome pathway is involved in agonist-induced down regulation of mu and delta opioid receptors [J. Biol. Chem. 276 (2001) 12345]. While evaluating the effects of various protease inhibitors on agonist-induced opioid receptor down regulation, we observed that while the peptide aldehyde, leupeptin (acetyl-L-Leucyl-L-Leucyl-L-Arginal), did not affect agonist-induced down regulation, leupeptin at submillimolar concentrations directly inhibited radioligand binding to opioid receptors. In this study, the inhibitory activity of leupeptin on radioligand binding was characterized utilizing human embryonic kidney (HEK) 293 cell lines expressing transfected mu, delta, or kappa opioid receptors. The rank order of potency for leupeptin inhibition of [3H]bremazocine binding to opioid receptors was mu > delta > kappa. In contrast to the effect of leupeptin, the peptide aldehyde proteasome inhibitor, MG 132 (carbobenzoxy-L-Leucyl-L-Leucyl-L-Leucinal), had significantly less effect on bremazocine binding to mu, delta, or kappa opioid receptors. We propose that leupeptin inhibits ligand binding by reacting reversibly with essential sulfhydryl groups that are necessary for high-affinity ligand/receptor interactions. PMID:11853866

  13. Oestradiol stimulates tyrosine phosphorylation and hormone binding activity of its own receptor in a cell-free system.

    PubMed Central

    Auricchio, F; Migliaccio, A; Di Domenico, M; Nola, E

    1987-01-01

    Recent experiments have shown that calf uterus oestrogen receptor exists in a tyrosine-phosphorylated hormone binding form and in non-phosphorylated, non-hormone binding form. We report here that physiological concentrations of oestradiol in complex with the receptor stimulate the calf uterus receptor kinase that converts the non-hormone binding receptor into hormone binding receptor through phosphorylation of the receptor on tyrosine. The activity of this enzyme has been followed by reactivation of hormone binding sites and phosphorylation on tyrosine of calf uterus phosphatase-inactivated receptor. Phosphorylation of the receptor has been demonstrated by interaction of kinase 32P-phosphorylated proteins with anti-receptor antibody followed either by sucrose gradient centrifugation or SDS-PAGE of the immunoprecipitated proteins. Hormone stimulation of the kinase is inhibited by receptor occupancy of the anti-oestrogen tamoxifen. Oestradiol-receptor complex increases the affinity of the kinase for the dephosphorylated receptor. Findings of this report are consistent with the observation that several protein tyrosine kinases that are associated with peptide hormone receptors are stimulated by the binding of the hormone to the receptor. This is the first report on the activation of a tyrosine kinase by a steroid hormone. The finding that hormones can regulate their own receptor binding activity through a tyrosine kinase is also new. Images Fig. 2. Fig. 4. Fig. 5. PMID:3691476

  14. Localization and synthesis of the hormone-binding regions of the human thyrotropin receptor

    SciTech Connect

    Atassi, M.Z.; Manshouri, T. ); Sakata, Shigeki )

    1991-05-01

    Two regions of human thyrotropin (thyroid-stimulating hormone, TSH) receptor (TSHR) were selected on the basis that they exhibit no sequence resemblance to luteinizing hormone/chorionic gonadotropin receptor. Five synthetic overlapping peptides (12-30, 24-44, 308-328, 324-344, and 339-364) were studied for their ability to bind {sup 125}I-labeled human TSH (hTSH), its isolated {alpha} and {beta} subunits, bovine TSH, ovine TSH, human luteinizing hormone, and human follicle-stimulating hormone. The human TSHR peptides 12-30 and 324-344 exhibited remarkable binding activity to human, bovine, and ovine TSH and to the {beta} chain of hTSH. Lower binding activity resided in the adjacent overlapping peptides, probably due to the contribution of the shared overlap to the binding. The specificity of TSH binding to these peptides was confirmed by their inability to bind human luteinizing hormone, human follicle-stimulating hormone, and the {alpha} chain of hTSH. Thyrotropins did not bind to bovine serum albumin or to peptide controls unrelated to the TSHR system. It is concluded that the binding of TSH to its receptor involves extensive contacts and that the TSHR peptides 12-30 and 324-344 contain specific binding regions for TSH that might be either independent sites or two faces (subsites) within a large binding site.

  15. Insulin Mimetic Peptide Disrupts the Primary Binding Site of the Insulin Receptor.

    PubMed

    Lawrence, Callum F; Margetts, Mai B; Menting, John G; Smith, Nicholas A; Smith, Brian J; Ward, Colin W; Lawrence, Michael C

    2016-07-22

    Sets of synthetic peptides that interact with the insulin receptor ectodomain have been discovered by phage display and reported in the literature. These peptides were grouped into three classes termed Site 1, Site 2, and Site 3 based on their mutual competition of binding to the receptor. Further refinement has yielded, in particular, a 36-residue Site 2-Site 1 fusion peptide, S519, that binds the insulin receptor with subnanomolar affinity and exhibits agonist activity in both lipogenesis and glucose uptake assays. Here, we report three-dimensional crystallographic detail of the interaction of the C-terminal, 16-residue Site 1 component (S519C16) of S519 with the first leucine-rich repeat domain (L1) of the insulin receptor. Our structure shows that S519C16 binds to the same site on the L1 surface as that occupied by a critical component of the primary binding site, namely the helical C-terminal segment of the insulin receptor α-chain (termed αCT). In particular, the two phenylalanine residues within the FYXWF motif of S519C16 are seen to engage the insulin receptor L1 domain surface in a fashion almost identical to the respective αCT residues Phe(701) and Phe(705) The structure provides a platform for the further development of peptidic and/or small molecule agents directed toward the insulin receptor and/or the type 1 insulin-like growth factor receptor. PMID:27281820

  16. Development of a Competitive Binding Assay System with Recombinant Estrogen Receptors from Multiple Species

    EPA Science Inventory

    ABSTRACT In the current study, we developed a new system using full-length recombinant baculovirus-expressed estrogen receptors which allows for direct comparison of binding across species. Estrogen receptors representing five vertebrate classes were compared: human (hERα), quai...

  17. Binding and transactivation of the largemouth bass estrogen receptors by model compounds

    EPA Science Inventory

    Environmental estrogens (EEs) are chemicals in the environment that can elicit adverse effects on estrogen (E2) signaling by binding with the estrogen receptors (ERs). In largemouth bass (LMB), the physiological actions of E2 are primarily mediated via three receptors (ERα, ERßb ...

  18. Altered (/sup 125/I)epidermal growth factor binding and receptor distribution in psoriasis

    SciTech Connect

    Nanney, L.B.; Stoscheck, C.M.; Magid, M.; King, L.E. Jr.

    1986-03-01

    Stimulation of growth and differentiation of human epidermis by epidermal growth factor (EGF) is mediated by its binding to specific receptors. Whether EGF receptors primarily mediate cell division or differentiation in hyperproliferative disease such as psoriasis vulgaris is unclear. To study the pathogenesis of psoriasis, 4-mm2 punch biopsy specimens of normal, uninvolved, and involved psoriatic skin were assayed for EGF receptors by autoradiographic, immunohistochemical, and biochemical methods. Using autoradiographic and immunohistochemical methods, basal keratinocytes were found to contain the greatest number of EGF binding sites and immunoreactive receptors as compared to the upper layers of the epidermis in both normal epidermis and psoriatic skin. No EGF receptor differences between normal and psoriatic epidermis were observed in this layer. In the upper layers of the epidermis, a 2-fold increase in EGF binding capacity was observed in psoriatic skin as compared with normal thin or thick skin. Biochemical methods indicated that (/sup 125/I)EGF binding was increased in psoriatic epidermis as compared with similar thickness normal epidermis when measured on a protein basis. Epidermal growth factor was shown to increase phosphorylation of the EGF receptor in skin. EGF receptors retained in the nonmitotic stratum spinosum and parakeratotic stratum corneum may reflect the incomplete, abnormal differentiation that occurs in active psoriatic lesions. Alternatively, retained EGF receptors may play a direct role in inhibiting cellular differentiation in the suprabasal layers.

  19. Specific beta-adrenergic receptor binding of carazolol measured with PET

    SciTech Connect

    Berridge, M.S.; Nelson, A.D.; Zheng, L.

    1994-10-01

    Carazolol is a promising high-affinity beta-adrenergic receptor ligand for the noninvasive determination of beta receptor status using PET> Earlier investigations demonstrated specific receptor binding of carazolol in mice. These PET studies with S(-)-[2{double_prime}-{sup 11}C]carazolol in pigs were performed to explore the utility of the tracer for PET receptor studies. Tracer uptake in the heart and lung was measured by PET as a function of time. Receptors were blocked with propranolol and different doses of ICI 118,551 to estimate specific binding. Fluorine-18-1{double_prime}-Fluorocarazolol and the less active R-enantiomer of [{sup 11}C]-carazolol were also studied. Specific receptor binding was 75% of the total uptake in the heart, preventable and displaceable by propranolol. Dose-dependent competition showed that carazolol binds in vivo to {beta}{sub 1} and to {beta}{sub 2} subtypes. Uptake of the labeled R(=) enantiomer of carazolol was not receptor-specific. Carazolol labeled with {sup 11}C or {sup 18}F is a strong candidate for use in receptor estimation with PET. The in vivo observations were consistent with its known high affinity and slow receptor dissociation rate. Its high specific receptor uptake and low metabolism allow existing kinetic models to be applied for receptor measurements. The {sup 11}C label is convenient for repeated administrations, though {sup 13}F allowed the long observation periods necessary for measurement of the receptor dissociation rate. If needed, nonspecific uptake can be estimated without pharmacologic intervention by using the labeled R enantiomer. 32 refs., 11 figs.

  20. Structural Studies of GABAA Receptor Binding Sites: Which Experimental Structure Tells us What?

    PubMed

    Puthenkalam, Roshan; Hieckel, Marcel; Simeone, Xenia; Suwattanasophon, Chonticha; Feldbauer, Roman V; Ecker, Gerhard F; Ernst, Margot

    2016-01-01

    Atomic resolution structures of cys-loop receptors, including one of a γ-aminobutyric acid type A receptor (GABAA receptor) subtype, allow amazing insights into the structural features and conformational changes that these pentameric ligand-gated ion channels (pLGICs) display. Here we present a comprehensive analysis of more than 30 cys-loop receptor structures of homologous proteins that revealed several allosteric binding sites not previously described in GABAA receptors. These novel binding sites were examined in GABAA receptor homology models and assessed as putative candidate sites for allosteric ligands. Four so far undescribed putative ligand binding sites were proposed for follow up studies based on their presence in the GABAA receptor homology models. A comprehensive analysis of conserved structural features in GABAA and glycine receptors (GlyRs), the glutamate gated ion channel, the bacterial homologs Erwinia chrysanthemi (ELIC) and Gloeobacter violaceus GLIC, and the serotonin type 3 (5-HT3) receptor was performed. The conserved features were integrated into a master alignment that led to improved homology models. The large fragment of the intracellular domain that is present in the structure of the 5-HT3 receptor was utilized to generate GABAA receptor models with a corresponding intracellular domain fragment. Results of mutational and photoaffinity ligand studies in GABAA receptors were analyzed in the light of the model structures. This led to an assignment of candidate ligands to two proposed novel pockets, candidate binding sites for furosemide and neurosteroids in the trans-membrane domain were identified. The homology models can serve as hypotheses generators, and some previously controversial structural interpretations of biochemical data can be resolved in the light of the presented multi-template approach to comparative modeling. Crystal and cryo-EM microscopic structures of the closest homologs that were solved in different conformational

  1. High-affinity binding of (/sup 3/H)acetylcholine to muscarinic cholinergic receptors

    SciTech Connect

    Kellar, K.J.; Martino, A.M.; Hall, D.P. Jr.; Schwartz, R.D.; Taylor, R.L.

    1985-06-01

    High-affinity binding of (/sup 3/H)acetylcholine to muscarinic cholinergic sites in rat CNS and peripheral tissues was measured in the presence of cytisin, which occupies nicotinic cholinergic receptors. The muscarinic sites were characterized with regard to binding kinetics, pharmacology, anatomical distribution, and regulation by guanyl nucleotides. These binding sites have characteristics of high-affinity muscarinic cholinergic receptors with a Kd of approximately 30 nM. Most of the muscarinic agonist and antagonist drugs tested have high affinity for the (/sup 3/H)acetylcholine binding site, but pirenzepine, an antagonist which is selective for M-1 receptors, has relatively low affinity. The ratio of high-affinity (/sup 3/H)acetylcholine binding sites to total muscarinic binding sites labeled by (/sup 3/H)quinuclidinyl benzilate varies from 9 to 90% in different tissues, with the highest ratios in the pons, medulla, and heart atrium. In the presence of guanyl nucleotides, (/sup 3/H) acetylcholine binding is decreased, but the extent of decrease varies from 40 to 90% in different tissues, with the largest decreases being found in the pons, medulla, cerebellum, and heart atrium. The results indicate that (/sup 3/H)acetylcholine binds to high-affinity M-1 and M-2 muscarinic receptors, and they suggest that most M-2 sites have high affinity for acetylcholine but that only a small fraction of M-1 sites have such high affinity.

  2. Computational Exploration of a Protein Receptor Binding Space with Student Proposed Peptide Ligands

    ERIC Educational Resources Information Center

    King, Matthew D.; Phillips, Paul; Turner, Matthew W.; Katz, Michael; Lew, Sarah; Bradburn, Sarah; Andersen, Tim; McDougal, Owen M.

    2016-01-01

    Computational molecular docking is a fast and effective "in silico" method for the analysis of binding between a protein receptor model and a ligand. The visualization and manipulation of protein to ligand binding in three-dimensional space represents a powerful tool in the biochemistry curriculum to enhance student learning. The…

  3. Receptor binding sites for atrial natriuretic factor are expressed by brown adipose tissue

    SciTech Connect

    Bacay, A.C.; Mantyh, C.R.; Vigna, S.R.; Mantyh, P.W. )

    1988-09-01

    To explore the possibility that atrial natriuretic factor (ANF) is involved in thermoregulation we used quantitative receptor autoradiography and homogenate receptor binding assays to identify ANF bindings sites in neonatal rat and sheep brown adipose tissue, respectively. Using quantitative receptor autoradiography were were able to localize high levels of specific binding sites for {sup 125}I-rat ANF in neonatal rat brown adipose tissue. Homogenate binding assays on sheep brown fat demonstrated that the radioligand was binding to the membrane fraction and that the specific binding was not due to a lipophilic interaction between {sup 125}I-rat ANF and brown fat. Specific binding of {sup 125}I-rat ANF to the membranes of brown fat cells was inhibited by unlabeled rat ANF with a Ki of 8.0 x 10(-9) M, but not by unrelated peptides. These studies demonstrate that brown fat cells express high levels of ANF receptor binding sites in neonatal rat and sheep and suggest that ANF may play a role in thermoregulation.

  4. G-protein mediates voltage regulation of agonist binding to muscarinic receptors: effects on receptor-Na/sup +/ channel interaction

    SciTech Connect

    Cohen-Armon, M.; Garty, H.; Sokolovsky, M.

    1988-01-12

    The authors previous experiments in membranes prepared from rat heart and brain led them to suggest that the binding of agonist to the muscarinic receptors and to the Na/sup +/ channels is a coupled event mediated by guanine nucleotide binding protein(s) (G-protein(s)). These in vitro findings prompted us to employ synaptoneurosomes from brain stem tissue to examine (i) the binding properties of (/sup 3/H) acetylcholine at resting potential and under depolarization conditions in the absence and presence of pertussis toxin; (ii) the binding of (/sup 3/H)batrachotoxin to Na/sup +/ channel(s) in the presence of the muscarinic agonists; and (iii) muscarinically induced /sup 22/Na/sup +/ uptake in the presence and absence of tetrodotoxin, which blocks Na/sup +/ channels. The findings indicate that agonist binding to muscarinic receptors is voltage dependent, that this process is mediated by G-protein(s), and that muscarinic agonists induce opening of Na/sup +/channels. The latter process persists even after pertussis toxin treatment, indicating that it is not likely to be mediated by pertussis toxin sensitive G-protein(s). The system with its three interacting components-receptor, G-protein, and Na/sup +/ channel-is such that at resting potential the muscarinic receptor induces opening of Na/sup +/ channels; this property may provide a possible physiological mechanism for the depolarization stimulus necessary for autoexcitation or repetitive firing in heart or brain tissues.

  5. Structural Basis for Negative Cooperativity in Growth Factor Binding to an EGF Receptor

    SciTech Connect

    Alvarado, Diego; Klein, Daryl E.; Lemmon, Mark A.

    2010-09-27

    Transmembrane signaling by the epidermal growth factor receptor (EGFR) involves ligand-induced dimerization and allosteric regulation of the intracellular tyrosine kinase domain. Crystallographic studies have shown how ligand binding induces dimerization of the EGFR extracellular region but cannot explain the high-affinity and low-affinity classes of cell-surface EGF-binding sites inferred from curved Scatchard plots. From a series of crystal structures of the Drosophila EGFR extracellular region, we show here how Scatchard plot curvature arises from negatively cooperative ligand binding. The first ligand-binding event induces formation of an asymmetric dimer with only one bound ligand. The unoccupied site in this dimer is structurally restrained, leading to reduced affinity for binding of the second ligand, and thus negative cooperativity. Our results explain the cell-surface binding characteristics of EGF receptors and suggest how individual EGFR ligands might stabilize distinct dimeric species with different signaling properties.

  6. DIFFERENCES IN SENSITIVITY BUT NOT SELECTIVITY OF XENOESTROGEN BINDING TO ALLIGATOR VERSUS HUMAN ESTROGEN RECEPTOR ALPHA

    PubMed Central

    Rider, Cynthia V.; Hartig, Phillip C.; Cardon, Mary C.; Lambright, Christy R.; Bobseine, Kathy L.; Guillette, Louis J.; Gray, L. Earl; Wilson, Vickie S.

    2010-01-01

    Reproductive abnormalities in alligators exposed to contaminants in Lake Apopka, Florida, USA represent a clear example of endocrine disruption in wildlife. Several of these contaminants that are not able to bind to mammalian estrogen receptors (such as atrazine and cyanazine) have previously been reported to bind to the alligator estrogen receptor from oviductal tissue. Binding of known Lake Apopka contaminants to full length estrogen receptors alpha from human (hERα) and alligator (aERα) was assessed in a side-by-side comparison within the same assay system. Baculovirus-expressed recombinant hERα and aERα were used in a competitive binding assay. Atrazine and cyanazine were not able to bind to either receptor. p,p′-Dicofol was able to bind to aERα with a concentration inhibiting 50% of binding (IC50) of 4 μM, while only partially displacing 17β-estradiol (E2) from hERα and yielding a projected IC50 of 45 μM. Chemicals that only partially displaced E2 from either receptor, including some dichlorodiphenyltrichloroethane (DDT) metabolites and trans-nonachlor, appeared to have higher affinity for aERα than hERα. p,p′-Dicofol-mediated transcriptional activation through aERα and hERα was assessed to further explore the preferential binding of p,p′-dicofol to aERα over hERα. p,p′-Dicofol was able to stimulate transcriptional activation in a similar manner with both receptors. However, the in vitro results obtained with p,p′-dicofol were not reflected in an in vivo mammalian model, where Kelthane™ (mixed o,p′-and p,p′-dicofol isomers) did not elicit estrogenic effects. In conclusion, although there was no evidence of exclusively species-specific estrogen receptor binders, some xenoestrogens, especially p,p′-dicofol, had a higher affinity for aERα than for hERα. PMID:20821664

  7. Binding properties of solubilized gonadotropin-releasing hormone receptor: role of carboxylic groups

    SciTech Connect

    Hazum, E.

    1987-11-03

    The interaction of /sup 125/I-buserelin, a superactive agonist of gonadotropin-releasing hormone (GnRH), with solubilized GnRH receptor was studied. The highest specific binding of /sup 125/I-buserelin to solubilized GnRH receptor is evident at 4/sup 0/C, and equilibrium is reached after 2 h of incubation. The soluble receptor retained 100% of the original binding activity when kept at 4 or 22/sup 0/C for 60 min. Mono- and divalent cations inhibited, in a concentration-dependent manner, the binding of /sup 125/I-buserelin to solubilized GnRH receptor. Monovalent cations require higher concentrations than divalent cations to inhibit the binding. Since the order of potency with the divalent cations was identical with that of their association constants to dicarboxylic compounds, it is suggested that there are at least two carboxylic groups of the receptor that participate in the binding of the hormone. The carboxyl groups of sialic acid residues are not absolutely required for GnRH binding since the binding of /sup 125/I-buserelin to solubilized GnRH receptor was only slightly affected by pretreatment with neuraminidase and wheat germ agglutinin. The finding that polylysines stimulate luteinizing hormone (LH) release from pituitary cell cultures with the same efficacy as GnRH suggest that simple charge interactions can induce LH release. According to these results, the authors propose that the driving force for the formation of the hormone-receptor complex is an ionic interaction between the positively charged amino acid arginine in position 8 and the carboxyl groups in the binding site.

  8. The effect of diffusion on the binding of membrane-bound receptors to coated pits.

    PubMed Central

    Keizer, J; Ramirez, J; Peacock-López, E

    1985-01-01

    We have formulated a kinetic model for the primary steps that occur at the cell membrane during receptor-mediated endocytosis. This model includes the diffusion of receptor molecules, the binding of receptors to coated pits, the loss of coated pits by invagination, and random reinsertion of receptors and coated pits. Using the mechanistic statistical theory of nonequilibrium thermodynamics, we employ this mechanism to calculate the two-dimensional radial distribution of receptors around coated pits at steady state. From this we obtain an equation that describes the effect of receptor diffusion on the rate of binding to coated pits. Our equation does not assume that ligand binding is instantaneous and can be used to assess the effect of diffusion on the binding rate. Using experimental data for low density lipoprotein receptors on fibroblast cells, we conclude that the effect of diffusion on the binding of these receptors to coated pits is no more than 84% diffusion controlled. This corresponds to a dissociation rate constant for receptors on coated pits (k-) that is much less than the rate constant for invagination of the pits (lambda = 3.3 X 10(-3)/s) and a correlation length for the radial distribution function of six times the radius of a coated pit. Although the existing experimental data are compatible with any value of k-, we obtain a lower bound for the value of the binding constant (k+) of 2.3 X 10(-2)(micron)2/s. Comparison of the predicted radial distributions with experiment should provide a clear indication of the effect of diffusion on k+. PMID:2858230

  9. Platelet-derived growth factor binds specifically to receptors on vascular smooth muscle cells and the binding becomes nondissociable.

    PubMed Central

    Williams, L T; Tremble, P; Antoniades, H N

    1982-01-01

    Radioiodinated platelet-derived growth factor (125I-PDGF) was used in studies of PDGF binding sites on vascular smooth muscle cells. There was an excellent correlation between the ability of 125I-PDGF to stimulate cell proliferation and to bind specifically to cultured vascular smooth muscle cells. The half-maximal concentration for both processes was 0.1 nM. There were 50,000 binding sites per cell. Reduced PDGF, prepared by treatment of PDGF with 20 mM dithiothreitol, had neither the ability to bind to smooth muscle cells nor to stimulate cellular proliferation. Epidermal growth factor, nerve growth factor, fibroblast growth factor, and histone B did not compete for the binding sites at a concentration of 10 nM. 125I-PDGF binding was slowly reversible at 4 degrees C and was rapidly and totally reversible after a 1-min incubation at 37 degrees C. After continued incubation at 37 degrees C, the binding became irreversible. The half-time for formation of the nondissociable state of 125I-PDGF binding was approximately equal to 5 min at 37 degrees C. The nondissociable state of binding was not formed at 4 degrees C even after 1 hr of incubation. These data suggest that the sites we labeled are the PDGF receptors that mediate PDGF's mitogenic action and that a nondissociable state of PDGF binding is formed at 37 degrees C. It is likely that nondissociable PDGF represents internalized ligand or binding to sites that are converted to a high-affinity state after the ligand binds. PMID:6310551

  10. Expression of gastric antisecretory and prostaglandin E receptor binding activity of misoprostol by misoprostol free acid.

    PubMed

    Tsai, B S; Kessler, L K; Stolzenbach, J; Schoenhard, G; Bauer, R F

    1991-05-01

    In enriched canine parietal cell preparations, misoprostol, an analog of prostaglandin E1 methyl ester, was rapidly deesterified to misoprostol free acid. Under this circumstance, misoprostol and misoprostol free acid exhibited equal antisecretory potency against histamine-stimulated acid secretion and bound equally well to prostaglandin E receptors. When the deesterification of misoprostol was inhibited by paraoxon, an esterase inhibitor, the antisecretory and receptor binding activity of misoprostol was markedly reduced, with potency much less than misoprostol free acid. These results indicate that misoprostol free acid is the active biological form of misoprostol that binds to prostaglandin E receptors and mediates the antisecretory action of misoprostol. PMID:1850690

  11. Different behavior toward muscarinic receptor binding between quaternary anticholinergics and their tertiary analogues.

    PubMed

    Ensing, K; de Zeeuw, R A

    1986-12-01

    A number of corresponding tertiary and quaternary anticholinergic analogues were examined for their ability to inhibit specific (3)H-dexetimide binding to calf brain muscarinic receptors. In all cases the tertiary antagonists (except pirenzepine) showed steep and monophasic inhibition curves, whereas those of the quaternary derivatives were shallow (thiazinamium, methylbenactyzine) or even biphasic (oxyphenonium, methylatropine, methylscopolamine). These observations show that the addition of a methyl group to the nitrogen atom changes the mode of interaction of the anticholinergics to muscarinic receptor binding sites. Whether there are separate binding sites present or differences in interaction mode for only the quaternary moiety is discussed. PMID:24271831

  12. Identification of a Binding Site for Unsaturated Fatty Acids in the Orphan Nuclear Receptor Nurr1.

    PubMed

    de Vera, Ian Mitchelle S; Giri, Pankaj K; Munoz-Tello, Paola; Brust, Richard; Fuhrmann, Jakob; Matta-Camacho, Edna; Shang, Jinsai; Campbell, Sean; Wilson, Henry D; Granados, Juan; Gardner, William J; Creamer, Trevor P; Solt, Laura A; Kojetin, Douglas J

    2016-07-15

    Nurr1/NR4A2 is an orphan nuclear receptor, and currently there are no known natural ligands that bind Nurr1. A recent metabolomics study identified unsaturated fatty acids, including arachidonic acid and docosahexaenoic acid (DHA), that interact with the ligand-binding domain (LBD) of a related orphan receptor, Nur77/NR4A1. However, the binding location and whether these ligands bind other NR4A receptors were not defined. Here, we show that unsaturated fatty acids also interact with the Nurr1 LBD, and solution NMR spectroscopy reveals the binding epitope of DHA at its putative ligand-binding pocket. Biochemical assays reveal that DHA-bound Nurr1 interacts with high affinity with a peptide derived from PIASγ, a protein that interacts with Nurr1 in cellular extracts, and DHA also affects cellular Nurr1 transactivation. This work is the first structural report of a natural ligand binding to a canonical NR4A ligand-binding pocket and indicates a natural ligand can bind and affect Nurr1 function. PMID:27128111

  13. Differential receptor binding characteristics of consecutive phenylalanines in micro-opioid specific peptide ligand endomorphin-2.

    PubMed

    Honda, Takeshi; Shirasu, Naoto; Isozaki, Kaname; Kawano, Michiaki; Shigehiro, Daiki; Chuman, Yoshiro; Fujita, Tsugumi; Nose, Takeru; Shimohigashi, Yasuyuki

    2007-06-01

    Endogenous opioid peptides consist of a conserved amino acid residue of Phe(3) and Phe(4), although their binding modes for opioid receptors have not been elucidated in detail. Endomorphin-2, which is highly selective and specific for the mu opioid receptor, possesses two Phe residues at the consecutive positions 3 and 4. In order to clarify the role of Phe(3) and Phe(4) in binding to the mu receptor, we synthesized a series of analogs in which Phe(3) and Phe(4) were replaced by various amino acids. It was found that the aromaticity of the Phe-beta-phenyl groups of Phe(3) and Phe(4) is a principal determinant of how strongly it binds to the receptor, although better molecular hydrophobicity reinforces the activity. The receptor binding subsites of Phe(3) and Phe(4) of endomorphin-2 were found to exhibit different structural requirements. The results suggest that [Trp(3)]endomorphin-2 (native endomorphin-1) and endomorphin-2 bind to different receptor subclasses. PMID:17395470

  14. A comprehensive ligand based mapping of the σ₂ receptor binding pocket.

    PubMed

    Rhoades, Derek J; Kinder, David H; Mahfouz, Tarek M

    2014-01-01

    The sigma (σ) receptor system consists of at least two major receptor subtypes: σ₁ and σ₂. Several potential therapeutic applications would benefit from structural knowledge of the σ₂ receptor but gaining this knowledge has been hampered by the difficulties associated with its isolation and, thus, characterization. Here, a ligand based approach has been adopted using the program PHASE® and a group of 41 potent and structurally diverse σ₂ ligands to develop several pharmacophore models for different families of σ₂ ligands. These pharmacophores were analyzed to identify the different binding modes to the receptor and were combined together to construct a comprehensive pharmacophore that was used to develop a structural model for the σ₂ binding pocket. A total of six binding modes were identified and could be classified as neutral or charged modes. The results presented here also indicate the significance of hydrophobic interactions to σ₂ binding and the requirement of hydrogen bonding interactions to increase the affinity for this receptor subtype. This work adds breadth to our knowledge of this receptor's binding site, and should contribute significantly to the development of novel selective σ₂ ligands. PMID:23521001

  15. Characterization of a second ligand binding site of the insulin receptor

    SciTech Connect

    Hao Caili; Whittaker, Linda; Whittaker, Jonathan . E-mail: jonathan.whittaker@case.edu

    2006-08-18

    Insulin binding to its receptor is characterized by high affinity, curvilinear Scatchard plots, and negative cooperativity. These properties may be the consequence of binding of insulin to two receptor binding sites. The N-terminal L1 domain and the C-terminus of the {alpha} subunit contain one binding site. To locate a second site, we examined the binding properties of chimeric receptors in which the L1 and L2 domains and the first Fibronectin Type III repeat of the insulin-like growth factor-I receptor were replaced by corresponding regions of the insulin receptor. Substitutions of the L2 domain and the first Fibronectin Type III repeat together with the L1 domain produced 80- and 300-fold increases in affinity for insulin. Fusion of these domains to human immunoglobulin Fc fragment produced a protein which bound insulin with a K {sub d} of 2.9 nM. These data strongly suggest that these domains contain an insulin binding site.

  16. Novel Bioluminescent Binding Assays for Ligand–Receptor Interaction Studies of the Fibroblast Growth Factor Family

    PubMed Central

    Song, Ge; Shao, Xiao-Xia; Wu, Qing-Ping; Xu, Zeng-Guang; Liu, Ya-Li; Guo, Zhan-Yun

    2016-01-01

    We recently developed novel bioluminescent binding assays for several protein/peptide hormones to study their interactions with receptors using the so far brightest NanoLuc reporter. To validate the novel bioluminescent binding assay using a variety of protein/peptide hormones, in the present work we applied it to the fibroblast growth factor (FGF) family using the prototype member FGF2 as an example. A fully active recombinant FGF2 retaining a unique exposed cysteine (Cys) residue was chemically conjugated with an engineered NanoLuc carrying a unique exposed Cys residue at the C-terminus via formation of an intermolecular disulfide linkage. The NanoLuc-conjugated FGF2 (FGF2-Luc) retained high binding affinity to the overexpressed FGFR1 and the endogenous FGF receptor with the calculated dissociation constants of 161 ± 21 pM (n = 3) and 25 ± 4 pM (n = 3), respectively. In competition binding assays using FGF2-Luc as a tracer, receptor-binding potencies of wild-type or mutant FGF2s were accurately quantified. Thus, FGF2-Luc represents a novel non-radioactive tracer for the quantitative measurement of ligand–receptor interactions in the FGF family. These data suggest that the novel bioluminescent binding assay can be applied to a variety of protein/peptide hormones for ligand–receptor interaction studies. PMID:27414797

  17. GABA binding to an insect GABA receptor: a molecular dynamics and mutagenesis study.

    PubMed

    Ashby, Jamie A; McGonigle, Ian V; Price, Kerry L; Cohen, Netta; Comitani, Federico; Dougherty, Dennis A; Molteni, Carla; Lummis, Sarah C R

    2012-11-21

    RDL receptors are GABA-activated inhibitory Cys-loop receptors found throughout the insect CNS. They are a key target for insecticides. Here, we characterize the GABA binding site in RDL receptors using computational and electrophysiological techniques. A homology model of the extracellular domain of RDL was generated and GABA docked into the binding site. Molecular dynamics simulations predicted critical GABA binding interactions with aromatic residues F206, Y254, and Y109 and hydrophilic residues E204, S176, R111, R166, S176, and T251. These residues were mutated, expressed in Xenopus oocytes, and their functions assessed using electrophysiology. The data support the binding mechanism provided by the simulations, which predict that GABA forms many interactions with binding site residues, the most significant of which are cation-π interactions with F206 and Y254, H-bonds with E204, S205, R111, S176, T251, and ionic interactions with R111 and E204. These findings clarify the roles of a range of residues in binding GABA in the RDL receptor, and also show that molecular dynamics simulations are a useful tool to identify specific interactions in Cys-loop receptors. PMID:23200041

  18. Novel Bioluminescent Binding Assays for Ligand-Receptor Interaction Studies of the Fibroblast Growth Factor Family.

    PubMed

    Song, Ge; Shao, Xiao-Xia; Wu, Qing-Ping; Xu, Zeng-Guang; Liu, Ya-Li; Guo, Zhan-Yun

    2016-01-01

    We recently developed novel bioluminescent binding assays for several protein/peptide hormones to study their interactions with receptors using the so far brightest NanoLuc reporter. To validate the novel bioluminescent binding assay using a variety of protein/peptide hormones, in the present work we applied it to the fibroblast growth factor (FGF) family using the prototype member FGF2 as an example. A fully active recombinant FGF2 retaining a unique exposed cysteine (Cys) residue was chemically conjugated with an engineered NanoLuc carrying a unique exposed Cys residue at the C-terminus via formation of an intermolecular disulfide linkage. The NanoLuc-conjugated FGF2 (FGF2-Luc) retained high binding affinity to the overexpressed FGFR1 and the endogenous FGF receptor with the calculated dissociation constants of 161 ± 21 pM (n = 3) and 25 ± 4 pM (n = 3), respectively. In competition binding assays using FGF2-Luc as a tracer, receptor-binding potencies of wild-type or mutant FGF2s were accurately quantified. Thus, FGF2-Luc represents a novel non-radioactive tracer for the quantitative measurement of ligand-receptor interactions in the FGF family. These data suggest that the novel bioluminescent binding assay can be applied to a variety of protein/peptide hormones for ligand-receptor interaction studies. PMID:27414797

  19. The heterodimeric sweet taste receptor has multiple potential ligand binding sites.

    PubMed

    Cui, Meng; Jiang, Peihua; Maillet, Emeline; Max, Marianna; Margolskee, Robert F; Osman, Roman

    2006-01-01

    The sweet taste receptor is a heterodimer of two G protein coupled receptors, T1R2 and T1R3. This discovery has increased our understanding at the molecular level of the mechanisms underlying sweet taste. Previous experimental studies using sweet receptor chimeras and mutants show that there are at least three potential binding sites in this heterodimeric receptor. Receptor activity toward the artificial sweeteners aspartame and neotame depends on residues in the amino terminal domain of human T1R2. In contrast, receptor activity toward the sweetener cyclamate and the sweet taste inhibitor lactisole depends on residues within the transmembrane domain of human T1R3. Furthermore, receptor activity toward the sweet protein brazzein depends on the cysteine rich domain of human T1R3. Although crystal structures are not available for the sweet taste receptor, useful homology models can be developed based on appropriate templates. The amino terminal domain, cysteine rich domain and transmembrane helix domain of T1R2 and T1R3 have been modeled based on the crystal structures of metabotropic glutamate receptor type 1, tumor necrosis factor receptor, and bovine rhodopsin, respectively. We have used homology models of the sweet taste receptors, molecular docking of sweet ligands to the receptors, and site-directed mutagenesis of the receptors to identify potential ligand binding sites of the sweet taste receptor. These studies have led to a better understanding of the structure and function of this heterodimeric receptor, and can act as a guide for rational structure-based design of novel non-caloric sweeteners, which can be used in the fighting against obesity and diabetes. PMID:17168764

  20. Effect of estradiol-17β on calcitonin receptor bindings in the hen neurohypophysis.

    PubMed

    Nakayama, H; Takahashi, T; Nakagawa-Mizuyachi, K; Kawashima, M

    2011-01-01

    The present study was performed to elucidate whether estradiol-17β (E₂) would affect calcitonin (CT) receptor binding in the hen neurohypophysis. The equilibrium dissociation constant (K(d)) and the maximum binding capacity (B(max)) of the CT receptor in the plasma membrane fraction of the hen neurohypophysis were examined by Scatchard analysis of specific binding of (125)I-labeled chicken CT. A single i.m. injection of E₂ into nonlaying hens caused a decrease in K(d) and B(max) values of the CT receptor. The K(d) and B(max) values of the CT receptor were smaller in laying hens than in nonlaying hens. The present study suggests that E₂ may increase the action of CT on the neurohypophysis in hens. PMID:21177459

  1. Ivermectin binding sites in human and invertebrate Cys-loop receptors.

    PubMed

    Lynagh, Timothy; Lynch, Joseph W

    2012-08-01

    Ivermectin is a gold standard antiparasitic drug that has been used successfully to treat billions of humans, livestock and pets. Until recently, the binding site on its Cys-loop receptor target had been a mystery. Recent protein crystal structures, site-directed mutagenesis data and molecular modelling now explain how ivermectin binds to these receptors and reveal why it is selective for invertebrate members of the Cys-loop receptor family. Combining this with emerging genomic information, we are now in a position to predict species sensitivity to ivermectin and better understand the molecular basis of ivermectin resistance. An understanding of the molecular structure of the ivermectin binding site, which is formed at the interface of two adjacent subunits in the transmembrane domain of the receptor, should also aid the development of new lead compounds both as anthelmintics and as therapies for a wide variety of human neurological disorders. PMID:22677714

  2. Imaging G protein-coupled receptors while quantifying their ligand-binding free-energy landscape.

    PubMed

    Alsteens, David; Pfreundschuh, Moritz; Zhang, Cheng; Spoerri, Patrizia M; Coughlin, Shaun R; Kobilka, Brian K; Müller, Daniel J

    2015-09-01

    Imaging native membrane receptors and testing how they interact with ligands is of fundamental interest in the life sciences but has proven remarkably difficult to accomplish. Here, we introduce an approach that uses force-distance curve-based atomic force microscopy to simultaneously image single native G protein-coupled receptors in membranes and quantify their dynamic binding strength to native and synthetic ligands. We measured kinetic and thermodynamic parameters for individual protease-activated receptor-1 (PAR1) molecules in the absence and presence of antagonists, and these measurements enabled us to describe PAR1's ligand-binding free-energy landscape with high accuracy. Our nanoscopic method opens an avenue to directly image and characterize ligand binding of native membrane receptors. PMID:26167642

  3. Structure and receptor binding of the hemagglutinin from a human H6N1 influenza virus.

    PubMed

    Tzarum, Netanel; de Vries, Robert P; Zhu, Xueyong; Yu, Wenli; McBride, Ryan; Paulson, James C; Wilson, Ian A

    2015-03-11

    Avian influenza viruses that cause infection and are transmissible in humans involve changes in the receptor binding site (RBS) of the viral hemagglutinin (HA) that alter receptor preference from α2-3-linked (avian-like) to α2-6-linked (human-like) sialosides. A human case of avian-origin H6N1 influenza virus was recently reported, but the molecular mechanisms contributing to it crossing the species barrier are unknown. We find that, although the H6 HA RBS contains D190V and G228S substitutions that potentially promote human receptor binding, recombinant H6 HA preferentially binds α2-3-linked sialosides, indicating no adaptation to human receptors. Crystal structures of H6 HA with avian and human receptor analogs reveal that H6 HA preferentially interacts with avian receptor analogs. This binding mechanism differs from other HA subtypes due to a unique combination of RBS residues, highlighting additional variation in HA-receptor interactions and the challenges in predicting which influenza strains and subtypes can infect humans and cause pandemics. PMID:25766295

  4. GHB receptor targets in the CNS: focus on high-affinity binding sites.

    PubMed

    Bay, Tina; Eghorn, Laura F; Klein, Anders B; Wellendorph, Petrine

    2014-01-15

    γ-Hydroxybutyric acid (GHB) is an endogenous compound in the mammalian brain with both low- and high-affinity receptor targets. GHB is used clinically in the treatment of symptoms of narcolepsy and alcoholism, but also illicitly abused as the recreational drug Fantasy. Major pharmacological effects of exogenous GHB are mediated by GABA subtype B (GABAB) receptors that bind GHB with low affinity. The existence of GHB high-affinity binding sites has been known for more than three decades, but the uncovering of their molecular identity has only recently begun. This has been prompted by the generation of molecular tools to selectively study high-affinity sites. These include both genetically modified GABAB knock-out mice and engineered selective GHB ligands. Recently, certain GABA subtype A (GABAA) receptor subtypes emerged as high-affinity GHB binding sites and potential physiological mediators of GHB effects. In this research update, a description of the various reported receptors for GHB is provided, including GABAB receptors, certain GABAA receptor subtypes and other reported GHB receptors. The main focus will thus be on the high-affinity binding targets for GHB and their potential functional roles in the mammalian brain. PMID:24269284

  5. Sedative-Hypnotic and Receptor Binding Studies of Fermented Marine Organisms.

    PubMed

    Joung, Hye-Young; Kang, Young Mi; Lee, Bae-Jin; Chung, Sun Yong; Kim, Kyung-Soo; Shim, Insop

    2015-09-01

    This study was performed to investigate the sedative-hypnotic activity of γ-aminobutyric acid (GABA)-enriched fermented marine organisms (FMO), including sea tangle (FST) and oyster (FO) by Lactobacillus brevis BJ20 (L. brevis BJ20). FST and FO were tested for their binding activity of the GABAA-benzodiazepine and 5-HT2C receptors, which are well-known molecular targets for sleep aids. We also measured the sleep latency and sleep duration during pentobarbital-induced sleep in mice after oral administration of FST and FO. In GABAA and 5-HT2C receptor binding assays, FST displayed an effective concentration-dependent binding affinity to GABAA receptor, similar to the binding affinity to 5-HT2C receptor. FO exhibited higher affinity to 5-HT2C receptor, compared with the GABAA receptor. The oral administration of FST and FO produced a dose-dependent decrease in sleep latency and increase in sleep duration in pentobarbital-induced hypnosis. The data demonstrate that FST and FO possess sedative-hypnotic activity possibly by modulating GABAA and 5-HT2C receptors. We propose that FST and FO might be effective agents for treatment of insomnia. PMID:26336589

  6. Sedative-Hypnotic and Receptor Binding Studies of Fermented Marine Organisms

    PubMed Central

    Joung, Hye-Young; Kang, Young Mi; Lee, Bae-Jin; Chung, Sun Yong; Kim, Kyung-Soo; Shim, Insop

    2015-01-01

    This study was performed to investigate the sedative-hypnotic activity of γ-aminobutyric acid (GABA)-enriched fermented marine organisms (FMO), including sea tangle (FST) and oyster (FO) by Lactobacillus brevis BJ20 (L. brevis BJ20). FST and FO were tested for their binding activity of the GABAA-benzodiazepine and 5-HT2C receptors, which are well-known molecular targets for sleep aids. We also measured the sleep latency and sleep duration during pentobarbital-induced sleep in mice after oral administration of FST and FO. In GABAA and 5-HT2C receptor binding assays, FST displayed an effective concentration-dependent binding affinity to GABAA receptor, similar to the binding affinity to 5-HT2C receptor. FO exhibited higher affinity to 5-HT2C receptor, compared with the GABAA receptor. The oral administration of FST and FO produced a dose-dependent decrease in sleep latency and increase in sleep duration in pentobarbital-induced hypnosis. The data demonstrate that FST and FO possess sedative-hypnotic activity possibly by modulating GABAA and 5-HT2C receptors. We propose that FST and FO might be effective agents for treatment of insomnia. PMID:26336589

  7. Multiple opioid receptor binding in dissociated intact guinea pig brain cells

    SciTech Connect

    Tam, S.W.; James, D.W.

    1986-03-05

    Dissociated intact guinea pig brain cells were prepared by the method of Rogers and El-Fakahany. Over 95% of these cells are viable as demonstrated by their exclusion of the dye trypan blue. Opioid receptor binding assays were performed in a modified Kreb-Ringers physiological buffer. The following radiolabeled ligands and conditions were used to selectively labeled multiple opioid receptors: mu binding, 1 nM (/sup 3/H)naloxone + 20 nM DADLE + 300 nM U50,488H; kappa binding, 4 nM (-)-(/sup 3/H)-EKC + 100 nM DAGO + 500 nM DADLE; delta binding, 2 nM (/sup 3/H)-DADLE + 100 nM DAGO + 300 nM U50,488H; sigma binding, 4 nM (+)-(/sup 3/H)SKF 10,047. The intact brain cells in physiological buffer demonstrated specific binding for mu, kappa, delta, and sigma receptors. The relative binding potency of naloxone for each of the receptor types is arbitrarily set at 1.

  8. Human corpus luteum: presence of epidermal growth factor receptors and binding characteristics

    SciTech Connect

    Ayyagari, R.R.; Khan-Dawood, F.S.

    1987-04-01

    Epidermal growth factor receptors are present in many reproductive tissues but have not been demonstrated in the human corpus luteum. To determine the presence of epidermal growth factor receptors and its binding characteristics, we carried out studies on the plasma cell membrane fraction of seven human corpora lutea (days 16 to 25) of the menstrual cycle. Specific epidermal growth factor receptors were present in human corpus luteum. Insulin, nerve growth factor, and human chorionic gonadotropin did not competitively displace epidermal growth factor binding. The optimal conditions for corpus luteum-epidermal growth factor receptor binding were found to be incubation for 2 hours at 4 degrees C with 500 micrograms plasma membrane protein and 140 femtomol /sup 125/I-epidermal growth factor per incubate. The number (mean +/- SEM) of epidermal growth factor binding sites was 12.34 +/- 2.99 X 10(-19) mol/micrograms protein; the dissociation constant was 2.26 +/- 0.56 X 10(-9) mol/L; the association constant was 0.59 +/- 0.12 X 10(9) L/mol. In two regressing corpora lutea obtained on days 2 and 3 of the menstrual cycle, there was no detectable specific epidermal growth factor receptor binding activity. Similarly no epidermal growth factor receptor binding activity could be detected in ovarian stromal tissue. Our findings demonstrate that specific receptors for epidermal growth factor are present in the human corpus luteum. The physiologic significance of epidermal growth factor receptors in human corpus luteum is unknown, but epidermal growth factor may be involved in intragonadal regulation of luteal function.

  9. Familial Risk for Major Depression is Associated with Lower Striatal 5-HT4 Receptor Binding

    PubMed Central

    Madsen, Karine; Torstensen, Eva; Holst, Klaus K.; Haahr, Mette E.; Knorr, Ulla; Frokjaer, Vibe G.; Brandt-Larsen, Malene; Iversen, Pernille; Fisher, Patrick M.

    2015-01-01

    Background: The 5-HT4 receptor provides a novel potential target for antidepressant treatment. No studies exist to elucidate the 5-HT4 receptor’s in vivo distribution in the depressed state or in populations that may display trait markers for major depression disorder (MDD). The aim of this study was to determine whether familial risk for MDD is associated with cerebral 5-HT4 receptor binding as measured with [11C]SB207145 brain PET imaging. Familial risk is the most potent risk factor of MDD. Methods: We studied 57 healthy individuals (mean age 36 yrs, range 20–86; 21 women), 26 of which had first-degree relatives treated for MDD. Results: We found that having a family history of MDD was associated with lower striatal 5-HT4 receptor binding (p = 0.038; in individuals below 40 years, p = 0.013). Further, we found evidence for a “risk-dose effect” on 5-HT4 receptor binding, since the number of first-degree relatives with a history of MDD binding correlated negatively with 5-HT4 receptor binding in both the striatum (p = 0.001) and limbic regions (p = 0.012). Conclusions: Our data suggest that the 5-HT4 receptor is involved in the neurobiological mechanism underlying familial risk for depression, and that lower striatal 5-HT4 receptor binding is associated with increased risk for developing MDD. The finding is intriguing considering that the 5-HT4 receptor has been suggested to be an effective target for antidepressant treatment. PMID:25522384

  10. Cargo binding promotes KDEL receptor clustering at the mammalian cell surface

    PubMed Central

    Becker, Björn; Shaebani, M. Reza; Rammo, Domenik; Bubel, Tobias; Santen, Ludger; Schmitt, Manfred J.

    2016-01-01

    Transmembrane receptor clustering is a ubiquitous phenomenon in pro- and eukaryotic cells to physically sense receptor/ligand interactions and subsequently translate an exogenous signal into a cellular response. Despite that receptor cluster formation has been described for a wide variety of receptors, ranging from chemotactic receptors in bacteria to growth factor and neurotransmitter receptors in mammalian cells, a mechanistic understanding of the underlying molecular processes is still puzzling. In an attempt to fill this gap we followed a combined experimental and theoretical approach by dissecting and modulating cargo binding, internalization and cellular response mediated by KDEL receptors (KDELRs) at the mammalian cell surface after interaction with a model cargo/ligand. Using a fluorescent variant of ricin toxin A chain as KDELR-ligand (eGFP-RTAH/KDEL), we demonstrate that cargo binding induces dose-dependent receptor cluster formation at and subsequent internalization from the membrane which is associated and counteracted by anterograde and microtubule-assisted receptor transport to preferred docking sites at the plasma membrane. By means of analytical arguments and extensive numerical simulations we show that cargo-synchronized receptor transport from and to the membrane is causative for KDELR/cargo cluster formation at the mammalian cell surface. PMID:27353000

  11. Muscarinic cholinergic receptor binding sites differentiated by their affinity for pirenzepine do not interconvert

    SciTech Connect

    Gil, D.W.; Wolfe, B.B.

    1986-05-01

    Although it has been suggested by many investigators that subtypes of muscarinic cholinergic receptors exist, physical studies of solubilized receptors have indicated that only a single molecular species may exist. To test the hypothesis that the putative muscarinic receptor subtypes in rat forebrain are interconvertible states of the same receptor, the selective antagonist pirenzepine (PZ) was used to protect muscarinic receptors from blockade by the irreversible muscarinic receptor antagonist propylbenzilylcholine mustard (PBCM). If interconversion of high (M1) and low (M2) affinity binding sites for PZ occurs, incubation of cerebral cortical membranes with PBCM in the presence of PZ should not alter the proportions of M1 and M2 binding sites that are unalkylated (i.e., protected). If, on the other hand, the binding sites are not interconvertible, PZ should be able to selectively protect M1 sites and alter the proportions of unalkylated M1 and M2 binding sites. In the absence of PZ, treatment of cerebral cortical membranes with 20 nM PBCM at 4 degrees C for 50 min resulted in a 69% reduction in the density of M1 binding sites and a 55% reduction in the density of M2 binding sites with no change in the equilibrium dissociation constants of the radioligands (/sup 3/H)quinuclidinyl benzilate or (/sup 3/H)PZ. The reasons for this somewhat selective effect of PBCM are not apparent. In radioligand binding experiments using cerebral cortical membranes, PZ inhibited the binding of (/sup 3/H)quinuclidinyl benzilate in a biphasic manner.

  12. PREDICTING RETINOID RECEPTOR BINDING AFFINITY: COREPA-M APPLICATION

    EPA Science Inventory

    Retinoic acid and associated vitamin A derivatives comprise a class of endogenous hormones that activate different retinoic acid receptors RARs). Transcriptional events subsequent to this activation are key to controlling several aspects of vertebrate development. As such, identi...

  13. Novel DNA-binding element within the C-terminal extension of the nuclear receptor DNA-binding domain

    PubMed Central

    Jakób, Michał; Kołodziejczyk, Robert; Orłowski, Marek; Krzywda, Szymon; Kowalska, Agnieszka; Dutko-Gwóźdź, Joanna; Gwóźdź, Tomasz; Kochman, Marian; Jaskólski, Mariusz; Ożyhar, Andrzej

    2007-01-01

    The heterodimer of the ecdysone receptor (EcR) and ultraspiracle (Usp), members of the nuclear receptors superfamily, is considered as the functional receptor for ecdysteroids initiating molting and metamorphosis in insects. Here we report the 1.95 Å structure of the complex formed by the DNA-binding domains (DBDs) the EcR and the Usp, bound to the natural pseudopalindromic response element. Comparison of the structure with that obtained previously, using an idealized response element, shows how the EcRDBD, which has been previously reported to possess extraordinary flexibility, accommodates DNA-induced structural changes. Part of the C-terminal extension (CTE) of the EcRDBD folds into an α-helix whose location in the minor groove does not match any of the locations previously observed for nuclear receptors. Mutational analyses suggest that the α-helix is a component of EcR-box, a novel element indispensable for DNA-binding and located within the nuclear receptor CTE. This element seems to be a general feature of all known EcRs. PMID:17426125

  14. Doubling the Size of the Glucocorticoid Receptor Ligand Binding Pocket by Deacylcortivazol

    SciTech Connect

    Suino-Powell, Kelly; Xu, Yong; Zhang, Chenghai; Tao, Yong-guang; Tolbert, W. David; Simons, Jr., S. Stoney; Xu, H. Eric

    2010-03-08

    A common feature of nuclear receptor ligand binding domains (LBD) is a helical sandwich fold that nests a ligand binding pocket within the bottom half of the domain. Here we report that the ligand pocket of glucocorticoid receptor (GR) can be continuously extended into the top half of the LBD by binding to deacylcortivazol (DAC), an extremely potent glucocorticoid. It has been puzzling for decades why DAC, which contains a phenylpyrazole replacement at the conserved 3-ketone of steroid hormones that are normally required for activation of their cognate receptors, is a potent GR activator. The crystal structure of the GR LBD bound to DAC and the fourth LXXLL motif of steroid receptor coactivator 1 reveals that the GR ligand binding pocket is expanded to a size of 1,070 {angstrom}{sup 3}, effectively doubling the size of the GR dexamethasone-binding pocket of 540 {angstrom}{sup 3} and yet leaving the structure of the coactivator binding site intact. DAC occupies only {approx}50% of the space of the pocket but makes intricate interactions with the receptor around the phenylpyrazole group that accounts for the high-affinity binding of DAC. The dramatic expansion of the DAC-binding pocket thus highlights the conformational adaptability of GR to ligand binding. The new structure also allows docking of various nonsteroidal ligands that cannot be fitted into the previous structures, thus providing a new rational template for drug discovery of steroidal and nonsteroidal glucocorticoids that can be specifically designed to reach the unoccupied space of the expanded pocket.

  15. Sequence similarity between the erythrocyte binding domain of the Plasmodium vivax Duffy binding protein and the V3 loop of HIV-1 strain MN reveals a functional heparin binding motif involved in binding to the Duffy antigen receptor for chemokines

    PubMed Central

    2011-01-01

    Background The HIV surface glycoprotein gp120 (SU, gp120) and the Plasmodium vivax Duffy binding protein (PvDBP) bind to chemokine receptors during infection and have a site of amino acid sequence similarity in their binding domains that often includes a heparin binding motif (HBM). Infection by either pathogen has been found to be inhibited by polyanions. Results Specific polyanions that inhibit HIV infection and bind to the V3 loop of X4 strains also inhibited DBP-mediated infection of erythrocytes and DBP binding to the Duffy Antigen Receptor for Chemokines (DARC). A peptide including the HBM of PvDBP had similar affinity for heparin as RANTES and V3 loop peptides, and could be specifically inhibited from heparin binding by the same polyanions that inhibit DBP binding to DARC. However, some V3 peptides can competitively inhibit RANTES binding to heparin, but not the PvDBP HBM peptide. Three other members of the DBP family have an HBM sequence that is necessary for erythrocyte binding, however only the protein which binds to DARC, the P. knowlesi alpha protein, is inhibited by heparin from binding to erythrocytes. Heparitinase digestion does not affect the binding of DBP to erythrocytes. Conclusion The HBMs of DBPs that bind to DARC have similar heparin binding affinities as some V3 loop peptides and chemokines, are responsible for specific sulfated polysaccharide inhibition of parasite binding and invasion of red blood cells, and are more likely to bind to negative charges on the receptor than cell surface glycosaminoglycans. PMID:22122911

  16. Structure-activity studies on the potentiation of benzodiazepine receptor binding by ethylenediamine analogues and derivatives.

    PubMed Central

    Morgan, P. F.; Stone, T. W.

    1983-01-01

    The effect of ethylenediamine analogues on in vitro binding of [3H]-diazepam to crude cerebral cortical synaptosomal membranes in the rat was studied. Ethylenediamine significantly increased [3H]-diazepam binding to a maximum potentiation of 154% control (EC50 = 1.8 X 10(-4) M) and was the most active compound studied in terms of both potency and the maximum potentiation observed. Potentiation of [3H]-diazepam binding by ethylenediamine analogues is dependent on carbon-chain length, appears to require two terminal amino groups, and is not observed in the rigid analogues studied. Potentiation of [3H]-diazepam binding by ethylenediamine analogues is mediated largely by a change in receptor number and not receptor affinity. Results are discussed in terms of the possible nature of the ethylenediamine binding site. PMID:6317124

  17. Sequence-specific DNA binding by glucocorticoid receptor "zinc finger peptides".

    PubMed

    Archer, T K; Hager, G L; Omichinski, J G

    1990-10-01

    Steroid hormone receptors can activate or repress transcription from responsive loci by binding to DNA. We have examined the mechanism of DNA binding by individually synthesizing the putative "zinc finger peptides" from the rat glucocorticoid receptor. Atomic absorption studies show that the peptides will bind zinc on an equimolar basis, and circular dichroism experiments demonstrate a significant alteration in secondary structure in the presence of zinc. The results from a series of experiments establish that metal ion is required for binding to DNA and that the amino-terminal zinc finger shows a significantly greater affinity for glucocorticoid response element-containing DNA over control DNA. These observations indicate that a single synthetic "zinc finger peptide" is able to bind to DNA in a sequence-specific manner. PMID:2120703

  18. A receptor binding assay applied to monitoring the neurotoxicity of parathion to Peromyscus after oral exposure

    USGS Publications Warehouse

    Jett, D.A.; Eldefrawi, A.T.; Eldefrawi, M.E.

    1993-01-01

    Many naturally occurring toxins, as well as pesticides, metals, and other compounds that occur in our environment from anthropogenic activities, stimulate or antagonize neuro-receptors to produce acute and/or chronic toxicities. Recent advances in laboratory instrumentation and the availability of a variety of radiolabeled ligands and type-specific drugs for numerous receptors make it possible to easily screen large numbers of samples and detect changes in sensitivity and density of receptor types and subtypes. A receptor binding assay for examining the chronic dietary toxicity of parathion will be used as a model to describe the methodology.

  19. Differential utilization of binding loop flexibility in T cell receptor ligand selection and cross-reactivity.

    PubMed

    Ayres, Cory M; Scott, Daniel R; Corcelli, Steven A; Baker, Brian M

    2016-01-01

    Complementarity determining region (CDR) loop flexibility has been suggested to play an important role in the selection and binding of ligands by T cell receptors (TCRs) of the cellular immune system. However, questions remain regarding the role of loop motion in TCR binding, and crystallographic structures have raised questions about the extent to which generalizations can be made. Here we studied the flexibility of two structurally well characterized αβ TCRs, A6 and DMF5. We found that the two receptors utilize loop motion very differently in ligand binding and cross-reactivity. While the loops of A6 move rapidly in an uncorrelated fashion, those of DMF5 are substantially less mobile. Accordingly, the mechanisms of binding and cross-reactivity are very different between the two TCRs: whereas A6 relies on conformational selection to select and bind different ligands, DMF5 uses a more rigid, permissive architecture with greater reliance on slower motions or induced-fit. In addition to binding site flexibility, we also explored whether ligand-binding resulted in common dynamical changes in A6 and DMF5 that could contribute to TCR triggering. Although binding-linked motional changes propagated throughout both receptors, no common features were observed, suggesting that changes in nanosecond-level TCR structural dynamics do not contribute to T cell signaling. PMID:27118724

  20. Differential utilization of binding loop flexibility in T cell receptor ligand selection and cross-reactivity

    PubMed Central

    Ayres, Cory M.; Scott, Daniel R.; Corcelli, Steven A.; Baker, Brian M.

    2016-01-01

    Complementarity determining region (CDR) loop flexibility has been suggested to play an important role in the selection and binding of ligands by T cell receptors (TCRs) of the cellular immune system. However, questions remain regarding the role of loop motion in TCR binding, and crystallographic structures have raised questions about the extent to which generalizations can be made. Here we studied the flexibility of two structurally well characterized αβ TCRs, A6 and DMF5. We found that the two receptors utilize loop motion very differently in ligand binding and cross-reactivity. While the loops of A6 move rapidly in an uncorrelated fashion, those of DMF5 are substantially less mobile. Accordingly, the mechanisms of binding and cross-reactivity are very different between the two TCRs: whereas A6 relies on conformational selection to select and bind different ligands, DMF5 uses a more rigid, permissive architecture with greater reliance on slower motions or induced-fit. In addition to binding site flexibility, we also explored whether ligand-binding resulted in common dynamical changes in A6 and DMF5 that could contribute to TCR triggering. Although binding-linked motional changes propagated throughout both receptors, no common features were observed, suggesting that changes in nanosecond-level TCR structural dynamics do not contribute to T cell signaling. PMID:27118724

  1. Characteristics of albumin binding to opossum kidney cells and identification of potential receptors.

    PubMed

    Brunskill, N J; Nahorski, S; Walls, J

    1997-02-01

    Albumin re-absorption in the kidney proximal tubule may be pathophysiological in disease. Opossum kidney (OK) cell monolayers were used to investigate the characteristics of [125I]-labelled albumin binding at 4 degrees C. Two binding sites were identified, one with high affinity (KD 154.8 +/-7 mg/l) and low capacity, the other with low affinity (KD 8300 +/- 1000 mg/l) and high capacity. Binding was sensitive to lectins Glycine max and Ulex europaeus I, but not other lectins, indicating involvement of a glycoprotein(s) in the binding process. Binding was also sensitive to a number of agents known to inhibit binding to scavenger receptors. [125I]-Labelled albumin ligand blotting of OK cell membrane proteins identified several albumin-binding proteins with identical lectin affinities to those proteins mediating albumin binding to OK cell monolayers. These results provide initial evidence of the identity of albumin receptors in kidney tubules, and suggest that they may be members of the family of scavenger receptors. PMID:9000429

  2. Opioid binding properties of the purified kappa receptor from human placenta

    SciTech Connect

    Ahmed, M.S.; Zhou, D.; Cavinato, A.G.; Maulik, D.

    1989-01-01

    A glycoprotein with a molecular weight of 63,000 has been purified, in an active form, from human placental villus tissue membranes. The binding properties of this glycoprotein to opioid alkaloids and peptides indicates that it is the kappa opiate receptor of human placenta. The receptor binds the tritiated ligands etorphine, bremazocine, ethylketocyclazocine and naloxone specifically and reversibly with Kd values of 3.3, 4.4, 5.1 and 7.0nM, respectively. The binding of /sup 3/H-Bremazocine to the purified receptor is inhibited by the following compounds with the corresponding Ki values EKC, 1.3 x 10/sup -8/M; Dynorphin 1-8, 3.03 x 10/sup -7/; U50,488H, 4.48 x 10/sup -9/; U69-593,2.28 x 10/sup -8/, morphine, 4.05 x 10/sup -6/ DADLE, 6.47 x 10/sup -6/ and naloxone, 2.64 x 10/sup -8/. The purified receptor binds 8 nmole of /sup 3/H-Etorphine and 1.7 nmole /sup 3/H-BZC per mg protein. The theoretical binding capacity of a protein of this molecular weight is 15.8. Although the iodinated purified receptor appears by autoradiography as one band on SDS-PAGE, yet homogeneity of the preparation is not claimed.

  3. Novel bioluminescent binding assays for interaction studies of protein/peptide hormones with their receptors.

    PubMed

    Liu, Ya-Li; Guo, Zhan-Yun

    2016-05-01

    Protein/peptide hormones are the largest group of endogenous signaling molecules and exert various biological functions by binding to specific cell membrane receptors. To study the interactions between these hormones and their receptors, quantitative ligand-receptor binding assays have been widely used for decades. However, the assays conventionally relied on the use of radioligands, which have some major drawbacks and can only be used in laboratories with a radioactive material license. We recently developed novel bioluminescent binding assays for several protein/peptide hormones using the brightest bioluminescent reporter known to date, nanoluciferase (NanoLuc). The NanoLuc reporter can be either chemically conjugated to an appropriate position, or genetically fused at one terminus, of protein/peptide hormones. Compared to conventional radioligands, these bioluminescent ligands have higher sensitivity, better safety, and longer shelf lives, and thus, represent a novel class of non-radioactive tracers for quantitative receptor binding assays. In the present review, we provide some general considerations and specific examples for setting up the bioluminescent binding assays. Such techniques can be applied to other protein/peptide hormones in future to facilitate their interaction studies with their receptors. PMID:27020777

  4. Molecular mechanism of ATP binding and ion channel activation in P2X receptors

    SciTech Connect

    Hattori, Motoyuki; Gouaux, Eric

    2012-10-24

    P2X receptors are trimeric ATP-activated ion channels permeable to Na{sup +}, K{sup +} and Ca{sup 2+}. The seven P2X receptor subtypes are implicated in physiological processes that include modulation of synaptic transmission, contraction of smooth muscle, secretion of chemical transmitters and regulation of immune responses. Despite the importance of P2X receptors in cellular physiology, the three-dimensional composition of the ATP-binding site, the structural mechanism of ATP-dependent ion channel gating and the architecture of the open ion channel pore are unknown. Here we report the crystal structure of the zebrafish P2X4 receptor in complex with ATP and a new structure of the apo receptor. The agonist-bound structure reveals a previously unseen ATP-binding motif and an open ion channel pore. ATP binding induces cleft closure of the nucleotide-binding pocket, flexing of the lower body {beta}-sheet and a radial expansion of the extracellular vestibule. The structural widening of the extracellular vestibule is directly coupled to the opening of the ion channel pore by way of an iris-like expansion of the transmembrane helices. The structural delineation of the ATP-binding site and the ion channel pore, together with the conformational changes associated with ion channel gating, will stimulate development of new pharmacological agents.

  5. Prediction of receptor properties and binding affinity of ligands to benzodiazepine/GABAA receptors using artificial neural networks.

    PubMed

    Maddalena, D J; Johnston, G A

    1995-02-17

    To date the use of artificial neural networks (ANNs) in quantitative structure-activity relationship (QSAR) studies has been primarily concerned in comparing the predictive accuracy of the technique using known data sets where the data set parameters had been preselected and optimized for use with other statistical methods. Little effort has been directed at optimizing the input parameters for use with ANNs or exploring other potential strengths of ANNs. In this study, back-propagation ANNs and multilinear regression (MLR) were used to examine the QSAR between substituent constants and random noise at six positions on 57 1,4-benzodiazepin-2-ones (1,4-BZs) and their binding affinities (log IC50) for benzodiazepine GABAA receptor preparations. By using selective pruning and cross-validation techniques, it was found possible to use ANNs to indicate an optimum set of 10 input parameters from a choice of 48 which were then used to train back-propagation ANNs that best predicted the receptor binding affinity with a high correlation between known and predicted data sets. Using the optimum set of input parameters, three-layer ANNs performed no better than the two-layer ANNs which gave marginally better results than MLR. Using the trained ANNs to examine the individual parameters showed that increases in the lipophilicity and F polar value at position 7, F polar value at position 2', and dipole at position 1 on the molecule all enhanced receptor binding affinity of 1,4-BZ ligands. Increases in molar refractivity and resonance parameters at position 1, molar refractivity at positions 6' and 2', Hammet meta constant at position 3', and Hammet para constant at position 8 on the molecule all caused decreases in receptor binding affinity. By considering the optimal ANNs as pharmacophore models representing the internal physicochemical structure of the receptor site, it was found that they could be used to critically examine the properties of the receptor site. PMID:7861419

  6. The role of antigenically different virus neuraminidases as structures implicated in receptor-binding processes.

    PubMed

    Coimbra, M V; Luiz, M O; Cabral, M C; Couceiro, J N

    1995-06-01

    Influenza A viruses exhibit segmented nucleic acid coding for eight different proteins, two of them as glycoproteins exposed on their lipoprotein envelopes, hemagglutinin (HA) and neuraminidase (NA). Hemagglutinin exhibits receptor-binding activity while neuraminidase develops sialidase cleavage activity which acts on cell receptors. Influenza A strains responsible for human, avian, equine and porcine respiratory infections all over the world present antigenically different hemagglutinin (H1 to H14) and neuraminidase (N1 to N9) structures on their surface. The objective of the present investigation was to study the role of N2, N8, and N9, antigenically diverse neuraminidase structures of human (N2) and animal (N8 and N9) influenza viruses, in the receptor-binding process. Receptor-binding activity of N2 and N8 was analyzed by crossed tests using H3N2 and H3N8 antisera and the hemagglutination inhibition test as a model. Hemagglutinating activity of antigenically different N2 and N8 structures was demonstrable and was inhibited by homologous antisera (N2-H3N2, N8-H3N8) but not by heterologous antisera (N2-H3N8,N8-H3N2). This previously demonstrated N9 hemagglutinating activity was analyzed for receptor-binding specificity using hemagglutination tests and NeuAc alpha2,3Gal and NeuAc alpha2,6Gal derivatized erythrocytes. This highly purified N9 strain was obtained from a virus strain isolated from terns by Dr. Peter Colman (CSIRO Division of Biomolecular Engineering, Parkville, Victoria, Australia). It exhibited receptor-binding specificity for NeuAc alpha2,3Gal sequences, a property similar to that observed in hemagglutinins from avian strains. These results indicate the importance of antigenically different neuraminidase structures as alternative agents for developing receptor-binding activity.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8547843

  7. Binding characteristics of gamma-hydroxybutyric acid as a weak but selective GABAB receptor agonist.

    PubMed

    Mathivet, P; Bernasconi, R; De Barry, J; Marescaux, C; Bittiger, H

    1997-02-19

    The aim of this study was to reexamine the concept that gamma-hydroxybutyric acid (GHB) is a weak but selective agonist at gamma-aminobutyric acidB (GABAB) receptors, using binding experiments with several radioligands. Ki values of GHB were similar (approximately equal to 100 microM) in three agonist radioligand assays for GABAB receptors, [3H]baclofen (beta-para-chlorophenyl-gamma-aminobutyric acid), [3H]CGP 27492 (3-aminopropyl-phosphinic acid) and [3H]GABA, in the presence of the GABAA receptor agonist isoguvacine with rat cortical, cerebellar and hippocampal membranes. In competition experiments between GHB and the GABAB receptor antagonist, [3H]CGP 54626 (3-N [1-{(S)-3,4-dichlorophenyl}-ethylamino]-2-(S)-hydroxypropyl cyclo-hexylmethyl phosphinic acid), the IC50 values were significantly increased with 300 microM of 5'-guanyl-imidodiphosphate (Gpp(NH)p), which suggested that guanine nucleotide binding proteins (G-proteins) modulate GHB binding on GABAB receptors. The inhibition by GHB of [3H]CGP 27492 binding in cortical membranes was not altered in the presence of 0.3 or 3 mM of the two GHB dehydrogenase inhibitors, valproate and ethosuximide. Thus, GHB is not reconverted into GABA by GHB dehydrogenase. Taken together, the results of this study demonstrated that GHB is an endogenous weak but selective agonist at GABAB receptors. PMID:9083788

  8. Purification of high affinity benzodiazepine receptor binding site fragments from rat brain

    SciTech Connect

    Klotz, K.L.

    1984-01-01

    In central nervous system benzodiazepine recognition sites occur on neuronal cell surfaces as one member of a multireceptor complex, including recognition sites for benzodiazepines, gamma aminobutyric acid (GABA), barbiturates and a chloride ionophore. During photoaffinity labelling, the benzodiazepine agonist, /sup 3/H-flunitrazepam, is irreversibly bound to central benzodiazepine high affinity recognition sites in the presence of ultraviolet light. In these studies a /sup 3/H-flunitrazepam radiolabel was used to track the isolation and purification of high affinity agonist binding site fragments from membrane-bound benzodiazepine receptor in rat brain. The authors present a method for limited proteolysis of /sup 3/H-flunitrazepam photoaffinity labeled rat brain membranes, generating photolabeled benzodiazepine receptor fragments containing the agonist binding site. Using trypsin chymotrypsin A/sub 4/, or a combination of these two proteases, they have demonstrated the extent and time course for partial digestion of benzodiazepine receptor, yielding photolabeled receptor binding site fragments. These photolabeled receptor fragments have been further purified on the basis of size, using ultrafiltration, gel permeation chromatography, and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) as well as on the basis of hydrophobicity, using a high performance liquid chromatography (HPLC) precolumn, several HPLC elution schemes, and two different HPLC column types. Using these procedures, they have purified three photolabeled benzodiazepine receptor fragments containing the agonist binding site which appear to have a molecular weight of less than 2000 daltons each.

  9. MANAGING TIGHT BINDING RECEPTORS FOR NEW SPEARATIONS TECHNOLOGIES

    SciTech Connect

    DARYLE H BUSCH RICHARD S GIVENS

    2004-12-10

    Much of the earth's pollution involves compounds of the metallic elements, including actinides, strontium, cesium, technetium, and RCRA metals. Metal ions bind to molecules called ligands, which are the molecular tools that can manipulate the metal ions under most conditions. This DOE-EMSP sponsored program strives (1) to provide the foundations for using the most powerful ligands in transformational separations technologies and (2) to produce seminal examples of their applications to separations appropriate to the DOE EM mission. These ultra tight-binding ligands can capture metal ions in the most competitive of circumstances (from mineralized sites, lesser ligands, and even extremely dilute solutions), but they react so slowly that they are useless in traditional separations methodologies. Two attacks on this problem are underway. The first accommodates to the challenging molecular lethargy by developing a seminal slow separations methodology termed the soil poultice. The second designs ligands that are only tight-binding while wrapped around the targeted metal ion, but can be put in place by switch-binding and removed by switch-release. We envision a kind of molecular switching process to accelerate the union between metal ion and tight-binding ligand. Molecular switching processes are suggested for overcoming the slow natural equilibration rate with which ultra tight-binding ligands combine with metal ions. Ligands that bind relatively weakly combine with metal ions rapidly, so the trick is to convert a ligand from a weak, rapidly binding species to a powerful, slow releasing ligand--during the binding of the ligand to the metal ion. Such switch-binding ligands must react with themselves, and the reaction must take place under the influence of the metal ion. For example, our generation 1 ligands showed that a well-designed linear ligand with ends that readily combine, forms a cyclic molecule when it wraps around a metal ion. Our generation 2 ligands are even

  10. Aging-induced changes in brain regional serotonin receptor binding: Effect of Carnosine.

    PubMed

    Banerjee, S; Poddar, M K

    2016-04-01

    Monoamine neurotransmitter, serotonin (5-HT) has its own specific receptors in both pre- and post-synapse. In the present study the role of carnosine on aging-induced changes of [(3)H]-5-HT receptor binding in different brain regions in a rat model was studied. The results showed that during aging (18 and 24 months) the [(3)H]-5-HT receptor binding was reduced in hippocampus, hypothalamus and pons-medulla with a decrease in their both Bmax and KD but in cerebral cortex the [(3)H]-5-HT binding was increased with the increase of its only Bmax. The aging-induced changes in [(3)H]-5-HT receptor binding with carnosine (2.0 μg/kg/day, intrathecally, for 21 consecutive days) attenuated in (a) 24-month-aged rats irrespective of the brain regions with the attenuation of its Bmax except hypothalamus where both Bmax and KD were significantly attenuated, (b) hippocampus and hypothalamus of 18-month-aged rats with the attenuation of its Bmax, and restored toward the [(3)H]-5-HT receptor binding that observed in 4-month-young rats. The decrease in pons-medullary [(3)H]-5-HT binding including its Bmax of 18-month-aged rats was promoted with carnosine without any significant change in its cerebral cortex. The [(3)H]-5-HT receptor binding with the same dosages of carnosine in 4-month-young rats (a) increased in the cerebral cortex and hippocampus with the increase in their only Bmax whereas (b) decreased in hypothalamus and pons-medulla with a decrease in their both Bmax and KD. These results suggest that carnosine treatment may (a) play a preventive role in aging-induced brain region-specific changes in serotonergic activity (b) not be worthy in 4-month-young rats in relation to the brain regional serotonergic activity. PMID:26808776

  11. Synthesis and aryl hydrocarbon receptor binding properties of radiolabeled polychlorinated dibenzofuran congeners

    SciTech Connect

    Farrell, K.; Safe, L.; Safe, S.

    1987-11-15

    Microchlorination of 1,4,9(/sup 3/H)dibenzofuran gave several polychlorinated dibenzofuran (PCDF) products and 2,3,7,8-(/sup 3/H)tetrachlorodibenzofuran (TCDF), 1,2,3,7,8-(/sup 3/H)pentachlorodibenzofuran (PeCDF), and 1,2,3,6,7,8-/1,2,3,4,7,8-hexachlorodibenzofuran (HCDF) of high specific activity (57, 34, and 32.5 Ci/mmol, respectively) were purified by preparative high-pressure liquid chromatography. These compounds were investigated as radioligands for the rat liver cytosolic aryl hydrocarbon (Ah) receptor protein. Like 2,3,7,8-(/sup 3/H)tetrachlorodibenzo-p-dioxin (TCDD), the radiolabeled PCDF congeners exhibited saturable binding with the receptor protein and sucrose density gradient analysis of the radiolabeled ligand-receptor complexes gave specific binding peaks with comparable sedimentation profiles. The rank order of radioligand binding affinities (Kd values) was 2,3,7,8-TCDD greater than 2,3,7,8-TCDF greater than 1,2,3,6,7,8-HCDF greater than 1,2,3,7,8-PeCDF and the maximum difference in Kd values for the four radioligands was less than 13-fold (0.44-5.9 nM). The interactions of the PCDF radioligands with the cytosolic receptor all exhibited saturable binding curves and linear Scatchard plots and the slopes of their Hill plots were in the range 1.0-1.1, thus indicating that cooperativity was not a factor in these binding interactions. The relative stabilities and dissociation kinetics of the radioligand-receptor complexes were highly dependent on the structure of the radioligand. The dissociation curves of the 2,3,7,8-(/sup 3/H)TCDD and PCDF receptor complexes were biphasic and this suggests that there may be a temporal shift in ligand binding affinities. However, the rates of dissociation did not correlate with the rank order of ligand binding affinities.

  12. Varenicline Interactions at the 5-HT3 Receptor Ligand Binding Site are Revealed by 5-HTBP

    PubMed Central

    2015-01-01

    Cys-loop receptors are the site of action of many therapeutic drugs. One of these is the smoking cessation agent varenicline, which has its major therapeutic effects at nicotinic acetylcholine (nACh) receptors but also acts at 5-HT3 receptors. Here, we report the X-ray crystal structure of the 5-HT binding protein (5-HTBP) in complex with varenicline, and test the predicted interactions by probing the potency of varenicline in a range of mutant 5-HT3 receptors expressed in HEK293 cells and Xenopus oocytes. The structure reveals a range of interactions between varenicline and 5-HTBP. We identified residues within 5 Å of varenicline and substituted the equivalent residues in the 5-HT3 receptor with Ala or a residue with similar chemical properties. Functional characterization of these mutant 5-HT3 receptors, using a fluorescent membrane potential dye in HEK cells and voltage clamp in oocytes, supports interactions between varenicline and the receptor that are similar to those in 5-HTBP. The structure also revealed C-loop closure that was less than in the 5-HT-bound 5-HTBP, and hydrogen bonding between varenicline and the complementary face of the binding pocket via a water molecule, which are characteristics consistent with partial agonist behavior of varenicline in the 5-HT3 receptor. Together, these data reveal detailed insights into the molecular interaction of varenicline in the 5-HT3 receptor. PMID:25648658

  13. Insulin receptor binding and protein kinase activity in muscles of trained rats

    SciTech Connect

    Dohm, G.L.; Sinha, M.K.; Caro, J.F.

    1987-02-01

    Exercise has been shown to increase insulin sensitivity, and muscle is quantitatively the most important tissue of insulin action. Since the first step in insulin action is the binding to a membrane receptor, the authors postulated that exercise training would change insulin receptors in muscle and in this study they have investigated this hypothesis. Female rats initially weighing approx. 100 g were trained by treadmill running for 2 h/day, 6 days/wk for 4 wk at 25 m/min (0 grade). Insulin receptors from vastus intermedius muscles were solubilized by homogenizing in a buffer containing 1% Triton X-100 and then partially purified by passing the soluble extract over a wheat germ agglutinin column. The 4 wk training regimen resulted in a 65% increase in citrate synthase activity in red vastus lateralis muscle, indicating an adaptation to exercise ( SVI). Insulin binding by the partially purified receptor preparations was approximately doubled in muscle of trained rats at all insulin concentrations, suggesting an increase in the number of receptors. Training did not alter insulin receptor structure as evidenced by electrophoretic mobility under reducing and nonreducing conditions. Basal insulin receptor protein kinase activity was higher in trained than untrained animals and this was likely due to the greater number of receptors. However, insulin stimulation of the protein kinase activity was depressed by training. These results demonstrate that endurance training does alter receptor number and function in muscle and these changes may be important in increasing insulin sensitivity after exercise training.

  14. Guanine nucleotide-binding protein regulation of melatonin receptors in lizard brain

    SciTech Connect

    Rivkees, S.A.; Carlson, L.L.; Reppert, S.M. )

    1989-05-01

    Melatonin receptors were identified and characterized in crude membrane preparations from lizard brain by using {sup 125}I-labeled melatonin ({sup 125}I-Mel), a potent melatonin agonist. {sup 125}I-Mel binding sites were saturable; Scatchard analysis revealed high-affinity and lower affinity binding sites, with apparent K{sub d} of 2.3 {plus minus} 1.0 {times} 10{sup {minus}11} M and 2.06 {plus minus} 0.43 {times} 10{sup {minus}10} M, respectively. Binding was reversible and inhibited by melatonin and closely related analogs but not by serotonin or norepinephrine. Treatment of crude membranes with the nonhydrolyzable GTP analog guanosine 5{prime}-({gamma}-thio)triphosphate (GTP({gamma}S)), significantly reduced the number of high-affinity receptors and increased the dissociation rate of {sup 125}I-Mel from its receptor. Furthermore, GTP({gamma}S) treatment of ligand-receptor complexes solubilized by Triton X-100 also led to a rapid dissociation of {sup 125}I-Mel from solubilized ligand-receptor complexes. Gel filtration chromatography of solubilized ligand-receptor complexes revealed two major peaks of radioactivity corresponding to M{sub r} > 400,000 and M{sub r} ca. 110,000. This elution profile was markedly altered by pretreatment with GTP({gamma}S) before solubilization; only the M{sub r} 110,000 peak was present in GTP({gamma}S)-pretreated membranes. The results strongly suggest that {sup 125}I-mel binding sites in lizard brain are melatonin receptors, with agonist-promoted guanine nucleotide-binding protein (G protein) coupling and that the apparent molecular size of receptors uncoupled from G proteins is about 110,000.

  15. Identification of the A2 adenosine receptor binding subunit by photoaffinity crosslinking

    SciTech Connect

    Barrington, W.W.; Jacobson, K.A.; Hutchison, A.J.; Williams, M.; Stiles, G.L. )

    1989-09-01

    A high-affinity iodinated agonist radioligand for the A2 adenosine receptor has been synthesized to facilitate studies of the A2 adenosine receptor binding subunit. The radioligand 125I-labeled PAPA-APEC (125I-labeled 2-(4-(2-(2-((4- aminophenyl)methylcarbonylamino)ethylaminocarbonyl)- ethyl)phenyl)ethylamino-5'-N-ethylcarboxamidoadenosine) was synthesized and found to bind to the A2 adenosine receptor in bovine striatal membranes with high affinity (Kd = 1.5 nM) and A2 receptor selectivity. Competitive binding studies reveal the appropriate A2 receptor pharmacologic potency order with 5'-N-ethylcarboxamidoadenosine (NECA) greater than (-)-N6-((R)-1-methyl- 2-phenylethyl)adenosine (R-PIA) greater than (+)-N6-((S)-1-methyl-2- phenylethyl)adenosine (S-PIA). Adenylate cyclase assays, in human platelet membranes, demonstrate a dose-dependent stimulation of cAMP production. PAPA-APEC (1 microM) produces a 43% increase in cAMP production, which is essentially the same degree of increase produced by 5'-N- ethylcarboxamidoadenosine (the prototypic A2 receptor agonist). These findings combined with the observed guanine nucleotide-mediated decrease in binding suggest that PAPA-APEC is a full A2 agonist. The A2 receptor binding subunit was identified by photoaffinity-crosslinking studies using 125I-labeled PAPA-APEC and the heterobifunctional crosslinking agent N-succinimidyl 6-(4'-azido-2'-nitrophenylamino)hexanoate (SANPAH). After covalent incorporation, a single specifically radiolabeled protein with an apparent molecular mass of 45 kDa was observed on NaDodSO4/PAGE/autoradiography. Incorporation of 125I-labeled PAPA-APEC into this polypeptide is blocked by agonists and antagonists with the expected potency for A2 receptors and is decreased in the presence of 10(-4) M guanosine 5'-(beta, gamma-imido)triphosphate.

  16. Differentiation between ligand trapping into intact cells and binding on muscarinic receptors.

    PubMed

    Gossuin, A; Maloteaux, J M; Trouet, A; Laduron, P

    1984-05-22

    Binding properties of [3H] dexetimide , L-quinuclidinyl[phenyl-4-3H] benzilate and [3H]methylscopolamine were compared with intact 108 CC 15 cells and membrane preparations of those. The ability of the three ligands to label specifically muscarinic receptors on membrane fractions was quite similar. By contrast, when performed with intact cells, [3H] dexetimide and L-quinuclidinyl [phenyl-4-3H]benzilate revealed higher nonspecific binding which was prevented by methylamine, suggesting a trapping of the ligands within the cells presumably in the lysosomes. To the contrary, such nonspecific 'binding' or trapping was not detectable when [3H]methylscopolamine was used as ligand, a fact which makes this ligand particularly appropriate for labelling cell surface muscarinic receptors. It is concluded that more caution is needed in binding studies when performed with intact cells; indeed, besides specific binding on receptor sites, [3H]ligand can be entrapped within the cell and can even sometimes give the illusion of specific binding. The use of lysosomal agents which do not interfere with specific receptors on membrane preparations should allow one, in most cases, to discard the possibility of a trapping phenomenon in intact cells. PMID:6722181

  17. Effects of antiparkinsonian drugs on muscarinic receptor binding in rat brain, heart and lung.

    PubMed

    Syvälahti, E K; Kunelius, R; Laurén, L

    1988-02-01

    The anticholinergic antiparkinsonian drugs biperiden, benztropine, trihexyphenidyl, methixene, and procyclidine were compared with atropine and pirenzepine, as well as with orphenadrine, amantadine and some standard antidepressives and neuroleptics in their ability to inhibit the binding of tritiated quinuclidinyl benzilate (QNB) to the muscarinic receptors in rat brain cortical tissue. Most of the antiparkinsonian drugs studied were potent inhibitors of (-)3H-QNB binding, when compared to atropine (IC50-value = 0.22 microM), the IC50-values ranging from 0.0084 microM (biperiden) to 0.07 microM (procyclidine). Orphenadrine had a low and amantadine no evident affinity for muscarinic receptors. With the exception of pirenzepine and biperiden the inhibition curves were steep and parallel, giving linear Hill plots with coefficients close to unity. The binding profile of atropine, pirenzepine, and biperiden was further studied in heart and lung tissues, atropine showing only small divergences in its binding to the different tissues, but biperiden and pirenzepine having five to ten times lower affinity in the peripheral tissues than in the brain. The results confirm the high affinity of most of the antiparkinsonian drugs for brain muscarinic receptors. The dissociation constants agree with the average clinical doses of the drugs. It must be remembered, however, that the binding data may represent multiple events at receptor sites because most of the drugs used are mixtures of stereoisomers. Thus further studies using individual enantiomers are needed to compare more directly binding data between the compounds. PMID:3353357

  18. The DNA-bending protein HMG-1 enhances progesterone receptor binding to its target DNA sequences.

    PubMed Central

    Oñate, S A; Prendergast, P; Wagner, J P; Nissen, M; Reeves, R; Pettijohn, D E; Edwards, D P

    1994-01-01

    Steroid hormone receptors are ligand-dependent transcriptional activators that exert their effects by binding as dimers to cis-acting DNA sequences termed hormone response elements. When human progesterone receptor (PR), expressed as a full-length protein in a baculovirus system, was purified to homogeneity, it retained its ability to bind hormonal ligand and to dimerize but exhibited a dramatic loss in DNA binding activity for specific progesterone response elements (PREs). Addition of nuclear extracts from several cellular sources restored DNA binding activity, suggesting that PR requires a ubiquitous accessory protein for efficient interaction with specific DNA sequences. Here we have demonstrated that the high-mobility-group chromatin protein HMG-1, as a highly purified protein, dramatically enhanced binding of purified PR to PREs in gel mobility shift assays. This effect appeared to be highly selective for HMG-1, since a number of other nonspecific proteins failed to enhance PRE binding. Moreover, HMG-1 was effective when added in stoichiometric amounts with receptor, and it was capable of enhancing the DNA binding of both the A and B amino-terminal variants of PR. The presence of HMG-1 measurably increased the binding affinity of purified PR by 10-fold when a synthetic palindromic PRE was the target DNA. The increase in binding affinity for a partial palindromic PRE present in natural target genes was greater than 10-fold. Coimmunoprecipitation assays using anti-PR or anti-HMG-1 antibodies demonstrated that both PR and HMG-1 are present in the enhanced complex with PRE. HMG-1 protein has two conserved DNA binding domains (A and B), which recognize DNA structure rather than specific sequences. The A- or B-box domain expressed and purified from Escherichia coli independently stimulated the binding of PR to PRE, and the B box was able to functionally substitute for HMG-1 in enhancing PR binding. DNA ligase-mediated ring closure assays demonstrated that both the

  19. Assessment of angiotensin II receptor blockade in humans using a standardized angiotensin II receptor-binding assay.

    PubMed

    Maillard, M P; Mazzolai, L; Daven, V; Centeno, C; Nussberger, J; Brunner, H R; Burnier, M

    1999-12-01

    An in vitro angiotensin II (AngII) receptor-binding assay was developed to monitor the degree of receptor blockade in standardized conditions. This in vitro method was validated by comparing its results with those obtained in vivo with the injection of exogenous AngII and the measurement of the AngII-induced changes in systolic blood pressure. For this purpose, 12 normotensive subjects were enrolled in a double-blind, four-way cross-over study comparing the AngII receptor blockade induced by a single oral dose of losartan (50 mg), valsartan (80 mg), irbesartan (150 mg), and placebo. A significant linear relationship between the two methods was found (r = 0.723, n = 191, P<.001). However, there exists a wide scatter of the in vivo data in the absence of active AngII receptor blockade. Thus, the relationship between the two methods is markedly improved (r = 0.87, n = 47, P<.001) when only measurements done 4 h after administration of the drugs are considered (maximal antagonist activity observed in vivo) suggesting that the two methods are equally effective in assessing the degree of AT-1 receptor blockade, but with a greatly reduced variability in the in vitro assay. In addition, the pharmacokinetic/pharmacodynamic analysis performed with the three antagonists suggest that the AT-1 receptor-binding assay works as a bioassay that integrates the antagonistic property of all active drug components of the plasma. This standardized in vitro-binding assay represents a simple, reproducible, and precise tool to characterize the pharmacodynamic profile of AngII receptor antagonists in humans. PMID:10619583

  20. Increased cytosolic androgen receptor binding in rat striated muscle following denervation and disuse

    NASA Technical Reports Server (NTRS)

    Bernard, P. A.; Fishman, P. S.; Max, S. R.; Rance, N. E.

    1984-01-01

    The effects of denervation and disuse on cytosolic androgen receptor binding by rat striated muscle are investigated. Denervation of the extensor digitorum longus and tibialis anterior muscles caused by a 40-50-percent increase in cytosolic androgen receptor concentration with no change in apparent binding affinity. This effect was evident at 6 h postdenervation, maximal at 24 h, and declined to 120 percent of the control level 72 h after denervation. A 40-percent increase in cytosolic androgen receptor concentration was also noted 24 hr after denervation of the hormone-sensitive levator ani muscle. The effect of denervation on androgen receptors was blocked by in vivo injection of cycloheximide; therefore, de novo receptor synthesis probably is not involved in the observed increase. Disuse, produced by subperineurial injection of tetrodotoxin into the tibial and common peroneal branches of the sciatic nerve, mimicked the effect of denervation on androgen receptor binding, suggesting that neuromuscular activity is important in regulation of receptor concentration. Possible mechanisms subserving this effect are discussed.

  1. Effect of synthetic steroids on GABAA receptor binding in rat brain.

    PubMed

    Rey, M; Veleiro, A S; Ghini, A A; Kruse, M S; Burton, G; Coirini, H

    2015-04-01

    Neuroactive steroids, like allopregnanolone (A) and pregnanolone (P), bind to specifics sites on the GABAA receptor complex and modulate receptor function. They are capable to inhibit or stimulate the binding of GABAA receptor-specific ligands, like t-butyl-bicyclophosphorothionate, flunitrazepam and muscimol. We have previously characterized a set of oxygen-bridged synthetic steroids (SS) analogs to A or P using synaptosomes. Considering that the subunit composition of the GABAA receptor throughout the central nervous system affects the magnitude of the modulation of the GABAA receptor by NAS, we evaluated the action of two selected SS, in brain sections containing the cerebral cortex (CC) and hippocampus (HC) using quantitative receptor autoradiography. Both SS affected the binding of the three ligands in a similar way to A and P, with some differences on certain CC layers according to the ligand used. One of the SS, the 3α-hydroxy-6,19-epoxypregn-4-ene-20-one (compound 5), behaved similarly to the natural neuroactive steroids. However, significant differences with compound 5 were observed on the HC CA2 region, making it steroid suitable for a specific action. Those differences may be related to structural conformation of the SS and the subunits' composition present on the receptor complex. PMID:25617652

  2. Insulin binding and receptor tyrosine kinase activity in skeletal muscle of carnivorous and omnivorous fish.

    PubMed

    Párrizas, M; Planas, J; Plisetskaya, E M; Gutiérrez, J

    1994-06-01

    We characterized the insulin receptors in skeletal muscle from several fish species with different nutritional preferences: brown trout (Salmo trutta fario), gilthead sea bream (Sparus aurata), tilapia (Tilapia mossambica), and carp (Cyprinus carpio), semipurified by affinity chromatography (wheat germ agglutinin-agarose). Total specific binding and number of receptors per unit weight of piscine white skeletal muscle were lower than those values found in mammalian skeletal muscle. The same parameters in carp muscle receptor preparations were severalfold higher than in trout muscle (binding capacity 440 +/- 47 fmol/mg glycoprotein in carp and 82 +/- 23 fmol/mg glycoprotein in trout). Piscine insulin receptors phosphorylated exogenous substrate poly(Glu,Tyr) but less so than mammalian receptors. Tyrosine kinase activity of receptors, calculated as percent of 32P incorporated into substrate in the presence of insulin compared with basal incorporation, was also highest in carp (210 +/- 4%) and lowest in trout (150 +/- 2%). In both trout and carp deprived of food for 15 days, specific binding of insulin decreased. Nevertheless, differences between the two species were retained. Our results demonstrate that particular properties of insulin receptors in fish skeletal muscle may be related to nutritional preferences. This finding coincides with the phenomenon of differential glucose tolerance in fish: carnivorous fish, such as trout, are less tolerant, whereas omnivorous fish, such as carp, readily utilize a carbohydrate-rich diet. PMID:8024051

  3. Identification of the PGRMC1 protein complex as the putative sigma-2 receptor binding site

    PubMed Central

    Xu, Jinbin; Zeng, Chenbo; Chu, Wenhua; Pan, Fenghui; Rothfuss, Justin M.; Zhang, Fanjie; Tu, Zhude; Zhou, Dong; Zeng, Dexing; Vangveravong, Suwanna; Johnston, Fabian; Spitzer, Dirk; Chang, Katherine C.; Hotchkiss, Richard S.; Hawkins, William G.; Wheeler, Kenneth T.; Mach, Robert H.

    2013-01-01

    The sigma-2 receptor, whose gene remains to be cloned, has been validated as a biomarker for tumor cell proliferation. Here we report the use of a novel photoaffinity probe, WC-21, to identify the sigma-2 receptor binding site. WC-21, a sigma-2 ligand containing both a photoactive moiety azide and a fluorescein isothiocyanate group, irreversibly labels sigma-2 receptors in rat liver; the membrane-bound protein was then identified as PGRMC1 (progesterone receptor membrane component-1). Immunocytochemistry reveals that both PGRMC1 and SW120, a fluorescent sigma-2 receptor ligand, colocalizes with molecular markers of the endoplasmic reticulum and mitochondria in HeLa cells. Overexpression and knockdown of the PGRMC1 protein results in an increase and a decrease in binding of a sigma-2 selective radioligand, respectively. The identification of the putative sigma-2 receptor binding site as PGRMC1 should stimulate the development of unique imaging agents and cancer therapeutics that target the sigma-2 receptor/PGRMC1 complex. PMID:21730960

  4. A molecular characterization of the agonist binding site of a nematode cys-loop GABA receptor

    PubMed Central

    Kaji, Mark D; Kwaka, Ariel; Callanan, Micah K; Nusrat, Humza; Desaulniers, Jean-Paul; Forrester, Sean G

    2015-01-01

    Background and Purpose Cys-loop GABA receptors represent important targets for human chemotherapeutics and insecticides and are potential targets for novel anthelmintics (nematicides). However, compared with insect and mammalian receptors, little is known regarding the pharmacological characteristics of nematode Cys-loop GABA receptors. Here we have investigated the agonist binding site of the Cys-loop GABA receptor UNC-49 (Hco-UNC-49) from the parasitic nematode Haemonchus contortus. Experimental Approach We used two-electrode voltage-clamp electrophysiology to measure channel activation by classical GABA receptor agonists on Hco-UNC-49 expressed in Xenopus laevis oocytes, along with site-directed mutagenesis and in silico homology modelling. Key Results The sulphonated molecules P4S and taurine had no effect on Hco-UNC-49. Other classical Cys-loop GABAA receptor agonists tested on the Hco-UNC-49B/C heteromeric channel had a rank order efficacy of GABA > trans-4-aminocrotonic acid > isoguvacine > imidazole-4-acetic acid (IMA) > (R)-(−)-4-amino-3-hydroxybutyric acid [R(−)-GABOB] > (S)-(+)-4-amino-3-hydroxybutyric acid [S(+)-GABOB] > guanidinoacetic acid > isonipecotic acid > 5-aminovaleric acid (DAVA) (partial agonist) > β-alanine (partial agonist). In silico ligand docking revealed some variation in binding between agonists. Mutagenesis of a key serine residue in binding loop C to threonine had minimal effects on GABA and IMA but significantly increased the maximal response to DAVA and decreased twofold the EC50 for R(−)- and S(+)-GABOB. Conclusions and Implications The pharmacological profile of Hco-UNC-49 differed from that of vertebrate Cys-loop GABA receptors and insect resistance to dieldrin receptors, suggesting differences in the agonist binding pocket. These findings could be exploited to develop new drugs that specifically target GABA receptors of parasitic nematodes. PMID:25850584

  5. A mollusk retinoic acid receptor (RAR) ortholog sheds light on the evolution of ligand binding.

    PubMed

    Gutierrez-Mazariegos, Juliana; Nadendla, Eswar Kumar; Lima, Daniela; Pierzchalski, Keely; Jones, Jace W; Kane, Maureen; Nishikawa, Jun-Ichi; Hiromori, Youhei; Nakanishi, Tsuyoshi; Santos, Miguel M; Castro, L Filipe C; Bourguet, William; Schubert, Michael; Laudet, Vincent

    2014-11-01

    Nuclear receptors are transcription factors that regulate networks of target genes in response to small molecules. There is a strong bias in our knowledge of these receptors because they were mainly characterized in classical model organisms, mostly vertebrates. Therefore, the evolutionary origins of specific ligand-receptor couples still remain elusive. Here we present the identification and characterization of a retinoic acid receptor (RAR) from the mollusk Nucella lapillus (NlRAR). We show that this receptor specifically binds to DNA response elements organized in direct repeats as a heterodimer with retinoid X receptor. Surprisingly, we also find that NlRAR does not bind all-trans retinoic acid or any other retinoid we tested. Furthermore, NlRAR is unable to activate the transcription of reporter genes in response to stimulation by retinoids and to recruit coactivators in the presence of these compounds. Three-dimensional modeling of the ligand-binding domain of NlRAR reveals an overall structure that is similar to vertebrate RARs. However, in the ligand-binding pocket (LBP) of the mollusk receptor, the alteration of several residues interacting with the ligand has apparently led to an overall decrease in the strength of the interaction with the ligand. Accordingly, mutations of NlRAR at key positions within the LBP generate receptors that are responsive to retinoids. Altogether our data suggest that, in mollusks, RAR has lost its affinity for all-trans retinoic acid, highlighting the evolutionary plasticity of its LBP. When put in an evolutionary context, our results reveal new structural and functional features of nuclear receptors validated by millions of years of evolution that were impossible to reveal in model organisms. PMID:25116705

  6. A Mollusk Retinoic Acid Receptor (RAR) Ortholog Sheds Light on the Evolution of Ligand Binding

    PubMed Central

    Gutierrez-Mazariegos, Juliana; Nadendla, Eswar Kumar; Lima, Daniela; Pierzchalski, Keely; Jones, Jace W.; Kane, Maureen; Nishikawa, Jun-Ichi; Hiromori, Youhei; Nakanishi, Tsuyoshi; Santos, Miguel M.; Castro, L. Filipe C.; Bourguet, William

    2014-01-01

    Nuclear receptors are transcription factors that regulate networks of target genes in response to small molecules. There is a strong bias in our knowledge of these receptors because they were mainly characterized in classical model organisms, mostly vertebrates. Therefore, the evolutionary origins of specific ligand-receptor couples still remain elusive. Here we present the identification and characterization of a retinoic acid receptor (RAR) from the mollusk Nucella lapillus (NlRAR). We show that this receptor specifically binds to DNA response elements organized in direct repeats as a heterodimer with retinoid X receptor. Surprisingly, we also find that NlRAR does not bind all-trans retinoic acid or any other retinoid we tested. Furthermore, NlRAR is unable to activate the transcription of reporter genes in response to stimulation by retinoids and to recruit coactivators in the presence of these compounds. Three-dimensional modeling of the ligand-binding domain of NlRAR reveals an overall structure that is similar to vertebrate RARs. However, in the ligand-binding pocket (LBP) of the mollusk receptor, the alteration of several residues interacting with the ligand has apparently led to an overall decrease in the strength of the interaction with the ligand. Accordingly, mutations of NlRAR at key positions within the LBP generate receptors that are responsive to retinoids. Altogether our data suggest that, in mollusks, RAR has lost its affinity for all-trans retinoic acid, highlighting the evolutionary plasticity of its LBP. When put in an evolutionary context, our results reveal new structural and functional features of nuclear receptors validated by millions of years of evolution that were impossible to reveal in model organisms. PMID:25116705

  7. Distinct ETA receptor binding mode of macitentan as determined by site directed mutagenesis.

    PubMed

    Gatfield, John; Mueller Grandjean, Celia; Bur, Daniel; Bolli, Martin H; Nayler, Oliver

    2014-01-01

    The competitive endothelin receptor antagonists (ERA) bosentan and ambrisentan, which have long been approved for the treatment of pulmonary arterial hypertension, are characterized by very short (1 min) occupancy half-lives at the ET(A) receptor. The novel ERA macitentan, displays a 20-fold increased receptor occupancy half-life, causing insurmountable antagonism of ET-1-induced signaling in pulmonary arterial smooth muscle cells. We show here that the slow ET(A) receptor dissociation rate of macitentan was shared with a set of structural analogs, whereas compounds structurally related to bosentan displayed fast dissociation kinetics. NMR analysis showed that macitentan adopts a compact structure in aqueous solution and molecular modeling suggests that this conformation tightly fits into a well-defined ET(A) receptor binding pocket. In contrast the structurally different and negatively charged bosentan-type molecules only partially filled this pocket and expanded into an extended endothelin binding site. To further investigate these different ET(A) receptor-antagonist interaction modes, we performed functional studies using ET(A) receptor variants harboring amino acid point mutations in the presumed ERA interaction site. Three ET(A) receptor residues significantly and differentially affected ERA activity: Mutation R326Q did not affect the antagonist activity of macitentan, however the potencies of bosentan and ambrisentan were significantly reduced; mutation L322A rendered macitentan less potent, whereas bosentan and ambrisentan were unaffected; mutation I355A significantly reduced bosentan potency, but not ambrisentan and macitentan potencies. This suggests that--in contrast to bosentan and ambrisentan--macitentan-ET(A) receptor binding is not dependent on strong charge-charge interactions, but depends predominantly on hydrophobic interactions. This different binding mode could be the reason for macitentan's sustained target occupancy and insurmountable

  8. Computational Analysis of the Ligand Binding Site of the Extracellular ATP Receptor, DORN1.

    PubMed

    Nguyen, Cuong The; Tanaka, Kiwamu; Cao, Yangrong; Cho, Sung-Hwan; Xu, Dong; Stacey, Gary

    2016-01-01

    DORN1 (also known as P2K1) is a plant receptor for extracellular ATP, which belongs to a large gene family of legume-type (L-type) lectin receptor kinases. Extracellular ATP binds to DORN1 with strong affinity through its lectin domain, and the binding triggers a variety of intracellular activities in response to biotic and abiotic stresses. However, information on the tertiary structure of the ligand binding site of DORN1is lacking, which hampers efforts to fully elucidate the mechanism of receptor action. Available data of the crystal structures from more than 50 L-type lectins enable us to perform an in silico study of molecular interaction between DORN1 and ATP. In this study, we employed a computational approach to develop a tertiary structure model of the DORN1 lectin domain. A blind docking analysis demonstrated that ATP binds to a cavity made by four loops (defined as loops A B, C and D) of the DORN1 lectin domain with high affinity. In silico target docking of ATP to the DORN1 binding site predicted interaction with 12 residues, located on the four loops, via hydrogen bonds and hydrophobic interactions. The ATP binding pocket is structurally similar in location to the carbohydrate binding pocket of the canonical L-type lectins. However, four of the residues predicted to interact with ATP are not conserved between DORN1 and the other carbohydrate-binding lectins, suggesting that diversifying selection acting on these key residues may have led to the ATP binding activity of DORN1. The in silico model was validated by in vitro ATP binding assays using the purified extracellular lectin domain of wild-type DORN1, as well as mutated DORN1 lacking key ATP binding residues. PMID:27583834

  9. Immunochemical analysis of the glucocorticoid receptor: identification of a third domain separate from the steroid-binding and DNA-binding domains.

    PubMed Central

    Carlstedt-Duke, J; Okret, S; Wrange, O; Gustafsson, J A

    1982-01-01

    The glucocorticoid-receptor complex can be subdivided into three separate domains by limited proteolysis with trypsin or alpha-chymotrypsin. The following characteristics can be separated: steroid-binding activity (domain A), DNA-binding activity (domain B), and immunoactivity (domain C). We have previously reported the separation of the steroid-binding domain from the DNA-binding domain by limited proteolysis of the receptor with trypsin. In this paper, we report the detection by immunochemical analysis of a third domain of the glucocorticoid receptor, which does not bind hormone. Immunoactivity was detected by using specific antiglucocorticoid receptor antibodies raised in rabbits against purified rat liver glucocorticoid receptor and the assay used was an enzyme-linked immunosorbent assay. After digestion with alpha-chymotrypsin, the immunoactive region of the receptor (domain C) was separated from the other two domains (A and B). The immunoactive fragment was found to have a Stokes radius of 2.6 nm. Further digestion with alpha-chymotrypsin resulted in separation of the immunoactive fragment to give a fragment having a Stokes radius of 1.4 nm. The immunoactive domain could be separated from the half of the glucocorticoid receptor containing the steroid-binding and the DNA-binding domains (Stokes radius, 3.3 nm), by limited proteolysis of the receptor by alpha-chymotrypsin followed by gel filtration or chromatography on DNA-cellulose. PMID:6181503

  10. Receptor-Binding Profiles of H7 Subtype Influenza Viruses in Different Host Species

    PubMed Central

    Gambaryan, Alexandra S.; Matrosovich, Tatyana Y.; Philipp, Jennifer; Munster, Vincent J.; Fouchier, Ron A. M.; Cattoli, Giovanni; Capua, Ilaria; Krauss, Scott L.; Webster, Robert G.; Banks, Jill; Bovin, Nicolai V.; Klenk, Hans-Dieter

    2012-01-01

    Influenza viruses of gallinaceous poultry and wild aquatic birds usually have distinguishable receptor-binding properties. Here we used a panel of synthetic sialylglycopolymers and solid-phase receptor-binding assays to characterize receptor-binding profiles of about 70 H7 influenza viruses isolated from aquatic birds, land-based poultry, and horses in Eurasia and America. Unlike typical duck influenza viruses with non-H7 hemagglutinin (HA), all avian H7 influenza viruses, irrespective of the host species, displayed a poultry-virus-like binding specificity, i.e., preferential binding to sulfated oligosaccharides Neu5Acα2-3Galβ1-4(6-O-HSO3)GlcNAc and Neu5Acα2-3Galβ1-4(Fucα1-3)(6-O-HSO3)GlcNAc. This phenotype correlated with the unique amino acid sequence of the amino acid 185 to 189 loop of H7 HA and seemed to be dependent on ionic interactions between the sulfate group of the receptor and Lys193 and on the lack of sterical clashes between the fucose residue and Gln222. Many North American and Eurasian H7 influenza viruses displayed weak but detectable binding to the human-type receptor moiety Neu5Acα2-6Galβ1-4GlcNAc, highlighting the potential of H7 influenza viruses for avian-to-human transmission. Equine H7 influenza viruses differed from other viruses by preferential binding to the N-glycolyl form of sialic acid. Our data suggest that the receptor-binding site of contemporary H7 influenza viruses in aquatic and terrestrial birds was formed after the introduction of their common precursor from ducks to a new host, presumably, gallinaceous poultry. The uniformity of the receptor-binding profile of H7 influenza viruses in various wild and domestic birds indicates that there is no strong receptor-mediated host range restriction in birds on viruses with this HA subtype. This notion agrees with repeated interspecies transmission of H7 influenza viruses from aquatic birds to poultry. PMID:22345462

  11. Truncated forms of DNA-binding estrogen receptors in human breast cancer.

    PubMed Central

    Scott, G K; Kushner, P; Vigne, J L; Benz, C C

    1991-01-01

    The likelihood a breast cancer will respond to antiestrogen therapy depends on the tumor content of immunoreactive or ligand-binding estrogen receptor (ER). To investigate the failure of many ER-positive breast cancers to respond to antiestrogen therapy, we examined by gel-shift assay the ability of tumor ER to bind its cognate estrogen response element (ERE). Analysis of 38 primary breast cancers showed that some tumors containing abundant immunoreactive ER failed to demonstrate DNA binding ER. In many other ER-positive tumors, the fraction of DNA binding ER was low and consisted primarily of truncated receptor forms, which on Western analysis were revealed to be 50 kD homodimers and 67-50 kD ER heterodimers. The use of protease inhibitors during tumor extraction and the demonstration of nuclear-localizing ER and ERE-binding COUP (chicken ovalbumin upstream promoter) protein in these tumors indicated that the truncated forms of ER were likely present in vivo. The presence of intact DNA binding ER correlated with higher tumor content of immunoreactive sex steroid receptors (ER and/or PR), standard predictors of tumor responsiveness to antiestrogen, suggesting that loss or truncation of DNA binding ER may be an important prognostic parameter accounting for some forms of clinical resistance to antiestrogen therapy. Images PMID:1864980

  12. Modulatory effects of unsaturated fatty acids on the binding of glucocorticoids to rat liver glucocorticoid receptors.

    PubMed

    Vallette, G; Vanet, A; Sumida, C; Nunez, E A

    1991-09-01

    Binding of the synthetic glucocorticoid dexamethasone to the rat liver cytosol glucocorticoid receptor was inhibited by physiological concentrations of nonesterified fatty acids as a function of increasing dose, degree of unsaturation, and chain length of the fatty acid. Polyunsaturated fatty acids were the most potent inhibitors. Scatchard analysis and Line-weaver-Burk plots of the binding data revealed that both the association constants and number of binding sites decreased and that polyunsaturated fatty acids inhibition was of a mixed non-competitive type. The dissociation rate constant of [3H]dexamethasone from glucocorticoid receptors was increased by up to 10 times in the presence of docosahexaenoic acid, whereas a competitive inhibitor like the glucocorticoid antagonist RU 38486 had no effect. Moreover, sucrose density gradient analysis showed that docosahexaenoic acid inhibited the binding of [3H] dexamethasone to both the 8.8S and 4S forms. The results strongly suggest that unsaturated fatty acids are interacting at a site on the receptor different from the hormone binding site and the heat shock protein and that by binding to a second site unsaturated fatty acids greatly change the conformation of the hormone binding site to reduce its affinity for the hormone, either partially or completely depending on the concentration and the class of the fatty acid. PMID:1874175

  13. Tall Fescue Alkaloids Bind Serotonin Receptors in Cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The serotonin (5HT) receptor 5HT2A is involved in the tall fescue alkaloid-induced vascular contraction in the bovine periphery. This was determined by evaluating the contractile responses of lateral saphenous veins biopsied from cattle grazing different tall fescue/endophyte combinations. The contr...

  14. Miniaturizing VEGF: Peptides mimicking the discontinuous VEGF receptor-binding site modulate the angiogenic response

    NASA Astrophysics Data System (ADS)

    De Rosa, Lucia; Finetti, Federica; Diana, Donatella; di Stasi, Rossella; Auriemma, Sara; Romanelli, Alessandra; Fattorusso, Roberto; Ziche, Marina; Morbidelli, Lucia; D’Andrea, Luca Domenico

    2016-08-01

    The angiogenic properties of VEGF are mediated through the binding of VEGF to its receptor VEGFR2. The VEGF/VEGFR interface is constituted by a discontinuous binding region distributed on both VEGF monomers. We attempted to reproduce this discontinuous binding site by covalently linking into a single molecular entity two VEGF segments involved in receptor recognition. We designed and synthesized by chemical ligation a set of peptides differing in length and flexibility of the molecular linker joining the two VEGF segments. The biological activity of the peptides was characterized in vitro and in vivo showing a VEGF-like activity. The most biologically active mini-VEGF was further analyzed by NMR to determine the atomic details of its interaction with the receptor.

  15. Miniaturizing VEGF: Peptides mimicking the discontinuous VEGF receptor-binding site modulate the angiogenic response

    PubMed Central

    De Rosa, Lucia; Finetti, Federica; Diana, Donatella; Di Stasi, Rossella; Auriemma, Sara; Romanelli, Alessandra; Fattorusso, Roberto; Ziche, Marina; Morbidelli, Lucia; D’Andrea, Luca Domenico

    2016-01-01

    The angiogenic properties of VEGF are mediated through the binding of VEGF to its receptor VEGFR2. The VEGF/VEGFR interface is constituted by a discontinuous binding region distributed on both VEGF monomers. We attempted to reproduce this discontinuous binding site by covalently linking into a single molecular entity two VEGF segments involved in receptor recognition. We designed and synthesized by chemical ligation a set of peptides differing in length and flexibility of the molecular linker joining the two VEGF segments. The biological activity of the peptides was characterized in vitro and in vivo showing a VEGF-like activity. The most biologically active mini-VEGF was further analyzed by NMR to determine the atomic details of its interaction with the receptor. PMID:27498819

  16. Synthesis, binding studies and molecular modeling of novel cannabinoid receptor ligands.

    PubMed

    Osman, Noha A; Mahmoud, Amr H; Allarà, Marco; Niess, Raimund; Abouzid, Khaled A; Di Marzo, Vincenzo; Abadi, Ashraf H

    2010-12-15

    In the present work, we report upon the design, synthesis and biological evaluation of new anandamide derivatives obtained by modifications of the fatty acyl chain and/or of the ethanolamide 'tail'. The compounds are of the general formula: 6-(substituted-phenyl)/naphthyl-4-oxohex-5-enoic acid N-substituted amide and 7-naphthyl-5-oxohept-6-enoicacid N-substituted amide. The novel compounds had been evaluated for their binding affinity to CB1/CB2 cannabinoid receptors, binding studies showed that some of the newly developed compounds have measurable affinity and selectivity for the CB2 receptor. Compounds XI and XVIII showed the highest binding affinity for CB2 receptor. None of the compounds exhibited inhibitory activity towards anandamide hydrolysis, thus arguing in favor of their enzymatic stability. The structure-activity relationship has been extensively studied through a tailor-made homological model using constrained docking in addition to pharmacophore analysis, both feature and field based. PMID:21074998

  17. Miniaturizing VEGF: Peptides mimicking the discontinuous VEGF receptor-binding site modulate the angiogenic response.

    PubMed

    De Rosa, Lucia; Finetti, Federica; Diana, Donatella; Di Stasi, Rossella; Auriemma, Sara; Romanelli, Alessandra; Fattorusso, Roberto; Ziche, Marina; Morbidelli, Lucia; D'Andrea, Luca Domenico

    2016-01-01

    The angiogenic properties of VEGF are mediated through the binding of VEGF to its receptor VEGFR2. The VEGF/VEGFR interface is constituted by a discontinuous binding region distributed on both VEGF monomers. We attempted to reproduce this discontinuous binding site by covalently linking into a single molecular entity two VEGF segments involved in receptor recognition. We designed and synthesized by chemical ligation a set of peptides differing in length and flexibility of the molecular linker joining the two VEGF segments. The biological activity of the peptides was characterized in vitro and in vivo showing a VEGF-like activity. The most biologically active mini-VEGF was further analyzed by NMR to determine the atomic details of its interaction with the receptor. PMID:27498819

  18. Gentamicin Binds to the Megalin Receptor as a Competitive Inhibitor Using the Common Ligand Binding Motif of Complement Type Repeats

    PubMed Central

    Dagil, Robert; O'Shea, Charlotte; Nykjær, Anders; Bonvin, Alexandre M. J. J.; Kragelund, Birthe B.

    2013-01-01

    Gentamicin is an aminoglycoside widely used in treatments of, in particular, enterococcal, mycobacterial, and severe Gram-negative bacterial infections. Large doses of gentamicin cause nephrotoxicity and ototoxicity, entering the cell via the receptor megalin. Until now, no structural information has been available to describe the interaction with gentamicin in atomic detail, and neither have any three-dimensional structures of domains from the human megalin receptor been solved. To address this gap in our knowledge, we have solved the NMR structure of the 10th complement type repeat of human megalin and investigated its interaction with gentamicin. Using NMR titration data in HADDOCK, we have generated a three-dimensional model describing the complex between megalin and gentamicin. Gentamicin binds to megalin with low affinity and exploits the common ligand binding motif previously described (Jensen, G. A., Andersen, O. M., Bonvin, A. M., Bjerrum-Bohr, I., Etzerodt, M., Thogersen, H. C., O'Shea, C., Poulsen, F. M., and Kragelund, B. B. (2006) J. Mol. Biol. 362, 700–716) utilizing the indole side chain of Trp-1126 and the negatively charged residues Asp-1129, Asp-1131, and Asp-1133. Binding to megalin is highly similar to gentamicin binding to calreticulin. We discuss the impact of this novel insight for the future structure-based design of gentamicin antagonists. PMID:23275343

  19. Differential Binding Activity of TGF-β Family Proteins to Select TGF-β Receptors.

    PubMed

    Khalil, Ashraf M; Dotimas, Hyna; Kahn, Julius; Lamerdin, Jane E; Hayes, David B; Gupta, Priyanka; Franti, Michael

    2016-09-01

    Growth differentiation factor-11 (GDF11) and myostatin (MSTN) are highly related transforming growth factor-β (TGF-β) ligands with 89% amino acid sequence homology. They have different biologic activities and diverse tissue distribution patterns. However, the activities of these ligands are indistinguishable in in vitro assays. SMAD2/3 signaling has been identified as the canonical pathway for GDF11 and MSTN, However, it remains unclear which receptor heterodimer and which antagonists preferentially mediate and regulate signaling. In this study, we investigated the initiation and regulation of GDF11 and MSTN signaling at the receptor level using a novel receptor dimerization detection technology. We used the dimerization platform to link early receptor binding events to intracellular downstream signaling. This approach was instrumental in revealing differential receptor binding activity within the TGF-β family. We verified the ActR2b/ALK5 heterodimer as the predominant receptor for GDF11- and MSTN-induced SMAD2/3 signaling. We also showed ALK7 specifically mediates activin-B signaling. We verified follistatin as a potent antagonist to neutralize both SMAD2/3 signaling and receptor dimerization. More remarkably, we showed that the two related antagonists, growth and differentiation factor-associated serum protein (GASP)-1 and GASP2, differentially regulate GDF11 (and MSTN) signaling. GASP1 blocks both receptor dimerization and downstream signaling. However, GASP2 blocks only downstream signaling without interference from receptor dimerization. Our data strongly suggest that physical binding of GDF11 (and MSTN) to both ActR2b and ALK5 receptors is required for initiation of signaling. PMID:27340210

  20. Binding and functional properties of hexocyclium and sila-hexocyclium derivatives to muscarinic receptor subtypes.

    PubMed Central

    Waelbroeck, M.; Camus, J.; Tastenoy, M.; Feifel, R.; Mutschler, E.; Tacke, R.; Strohmann, C.; Rafeiner, K.; Rodrigues de Miranda, J. F.; Lambrecht, G.

    1994-01-01

    1. We have compared the binding properties of several hexocyclium and sila-hexocyclium derivatives to muscarinic M1 receptors (in rat brain, human neuroblastoma (NB-OK 1) cells and calf superior cervical ganglia), rat heart M2 receptors, rat pancreas M3 receptors and M4 receptors in rat striatum, with their functional antimuscarinic properties in rabbit vas deferens (M1/M4-like), guinea-pig atria (M2), and guinea-pig ileum (M3) muscarinic receptors. 2. Sila-substitution (C/Si exchange) of hexocyclium (-->sila-hexocyclium) and demethyl-hexocyclium (-->demethyl-sila-hexocyclium) did not significantly affect their affinities for muscarinic receptors. By contrast, sila-substitution of o-methoxy-hexocyclium increased its affinity 2 to 3 fold for all the muscarinic receptor subtypes studied. 3. The p-fluoro- and p-chloro-derivatives of sila-hexocyclium had lower affinities than the parent compound at the four receptor subtypes, in binding and pharmacological studies. 4. In binding studies, o-methoxy-sila-hexocyclium (M1 = M4 > or = M3 > or = M2) had a much lower affinity than sila-hexocyclium for the four receptor subtypes, and discriminated the receptor subtypes more poorly than sila-hexocyclium (M1 = M3 > M4 > M2). This is in marked contrast with the very clear selectivity of o-methoxy-sila-hexocyclium for the prejunctional M1/M4-like heteroreceptors in rabbit vas deferens. 5. The tertiary amines demethyl-hexocyclium, demethyl-sila-hexocyclium and demethyl-o-methoxy-sila-hexocyclium had 10 to 30 fold lower affinities than the corresponding quaternary ammonium derivatives. PMID:8075869

  1. Two Affinity Sites of the Cannabinoid Subtype 2 Receptor Identified by a Novel Homogeneous Binding Assay.

    PubMed

    Martínez-Pinilla, Eva; Rabal, Obdulia; Reyes-Resina, Irene; Zamarbide, Marta; Navarro, Gemma; Sánchez-Arias, Juan A; de Miguel, Irene; Lanciego, José L; Oyarzabal, Julen; Franco, Rafael

    2016-09-01

    Endocannabinoids act on G protein-coupled receptors that are considered potential targets for a variety of diseases. There are two different cannabinoid receptor types: ligands for cannabinoid type 2 receptors (CB2Rs) show more promise than those for cannabinoid type 1 receptors (CB1Rs) because they lack psychotropic actions. However, the complex pharmacology of these receptors, coupled with the lipophilic nature of ligands, is delaying the translational success of medications targeting the endocannabinoid system. We here report the discovery and synthesis of a fluorophore-conjugated CB2R-selective compound, CM-157 (3-[[4-[2-tert-butyl-1-(tetrahydropyran-4-ylmethyl)benzimidazol-5-yl]sulfonyl-2-pyridyl]oxy]propan-1-amine), which was useful for pharmacological characterization of CB2R by using a time-resolved fluorescence resonance energy transfer assay. This methodology does not require radiolabeled compounds and may be undertaken in homogeneous conditions and in living cells (i.e., without the need to isolate receptor-containing membranes). The affinity of the labeled compound was similar to that of the unlabeled molecule. Time-resolved fluorescence resonance energy transfer assays disclosed a previously unreported second affinity site and showed conformational changes in CB2R forming receptor heteromers with G protein-coupled receptor GPR55, a receptor for l-α-lysophosphatidylinositol. The populations displaying subnanomolar and nanomolar affinities were undisclosed in competitive assays using a well known cannabinoid receptor ligand, AM630 (1-[2-(morpholin-4-yl)ethyl]-2-methyl-3-(4-methoxybenzoyl)-6-iodoindole), and TH-chrysenediol, not previously tested on binding to cannabinoid receptors. Variations in binding parameters upon formation of dimers with GPR55 may reflect decreases in binding sites or alterations of the quaternary structure of the macromolecular G protein-coupled receptor complexes. In summary, the homogeneous binding assay described here may

  2. MANAGING TIGHT-BINDING RECEPTORS FOR NEW SEPARATIONS TECHNOLOGIES

    EPA Science Inventory

    The overall purpose of the chemistry described here is to learn ways in which the most powerful ligands can be made useful in the service of separations science. Advantages of powerful ligands include: metal ions can be taken away from other reasonably strong binding sites, metal...

  3. Computational Characterization and Prediction of Estrogen Receptor Coactivator Binding Site Inhibitors

    SciTech Connect

    Bennion, B J; Kulp, K S; Cosman, M; Lightstone, F C

    2005-08-26

    Many carcinogens have been shown to cause tissue specific tumors in animal models. The mechanism for this specificity has not been fully elucidated and is usually attributed to differences in organ metabolism. For heterocyclic amines, potent carcinogens that are formed in well-done meat, the ability to either bind to the estrogen receptor and activate or inhibit an estrogenic response will have a major impact on carcinogenicity. Here we describe our work with the human estrogen receptor alpha (hERa) and the mutagenic/carcinogenic heterocyclic amines PhIP, MeIQx, IFP, and the hydroxylated metabolite of PhIP, N2-hydroxy-PhIP. We found that PhIP, in contrast to the other heterocyclic amines, increased cell-proliferation in MCF-7 human breast cancer cells and activated the hERa receptor. We show mechanistic data supporting this activation both computationally by homology modeling and docking, and by NMR confirmation that PhIP binds with the ligand binding domain (LBD). This binding competes with estradiol (E2) in the native E2 binding cavity of the receptor. We also find that other heterocyclic amines and N2-hydroxy-PhIP inhibit ER activation presumably by binding into another cavity on the LBD. Moreover, molecular dynamics simulations of inhibitory heterocyclic amines reveal a disruption of the surface of the receptor protein involved with protein-protein signaling. We therefore propose that the mechanism for the tissue specific carcinogenicity seen in the rat breast tumors and the presumptive human breast cancer associated with the consumption of well-done meat maybe mediated by this receptor activation.

  4. Dynamics of Virus-Receptor Interactions in Virus Binding, Signaling, and Endocytosis

    PubMed Central

    Boulant, Steeve; Stanifer, Megan; Lozach, Pierre-Yves

    2015-01-01

    During viral infection the first challenge that viruses have to overcome is gaining access to the intracellular compartment. The infection process starts when the virus contacts the surface of the host cell. A complex series of events ensues, including diffusion at the host cell membrane surface, binding to receptors, signaling, internalization, and delivery of the genetic information. The focus of this review is on the very initial steps of virus entry, from receptor binding to particle uptake into the host cell. We will discuss how viruses find their receptor, move to sub-membranous regions permissive for entry, and how they hijack the receptor-mediated signaling pathway to promote their internalization. PMID:26043381

  5. Dopamine Receptors in Human Lymphocytes: Radioligand Binding and Quantitative RT-PCR Assays

    PubMed Central

    Kirillova, Galina P.; Hrutkay, Rebecca J.; Shurin, Michael R.; Shurin, Galina V.; Tourkova, Irina L.; Vanyukov, Michael M.

    2008-01-01

    Analysis of dopamine receptors (DR) in lymphocytes of the human peripheral blood mononuclear cell (PBMC) fraction is an attractive tool for evaluation of functional properties of dopaminergic function underlying variation in complex psychological/psychopathological traits. Receptor binding assays (RBA) with selective radioligands, which are widely used in CNS studies, have not produced consistent results when applied to isolated PBMC. We tested the assay conditions that could be essential for detection of DR in human PBMC and their membrane preparations. Using [3H]SCH23390, a dopamine D1-like receptor antagonist, we demonstrated the presence of two binding sites in PBMC-derived membrane fraction. One of them is characterized by the Kd value consistent with that reported for D5 dopamine receptors in human lymphocytes, whereas the other Kd value possibly corresponds to serotonin receptor(s). Although D5 receptor binding sites in PBMC membranes could be characterized by binding assays, the low protein expression and the large volume of blood needed for membrane preparation render the binding method impracticable for individual phenotyping. In contrast, real-time RT-PCR may be used for this purpose, contingent on the relationship between DR expression in the brain and in lymphocytes. The expression of the DRD2-DRD5 genes, as detected by this method, varied widely among samples, whereas the DRD1 expression was not detected. The expression levels were comparable with those in the brain for DRD3 and DRD4, and were significantly lower for DRD2 and DRD5. PMID:18721826

  6. Marlin-1, a novel RNA-binding protein associates with GABA receptors.

    PubMed

    Couve, Andrés; Restituito, Sophie; Brandon, Julia M; Charles, Kelly J; Bawagan, Hinayana; Freeman, Katie B; Pangalos, Menelas N; Calver, Andrew R; Moss, Stephen J

    2004-04-01

    GABA(B) receptors are heterodimeric G protein-coupled receptors that mediate slow synaptic inhibition in the central nervous system. Whereas heterodimerization between GABA(B) receptor GABA(B)R1 and GABA(B)R2 subunits is essential for functional expression, how neurons coordinate the assembly of these critical receptors remains to be established. Here we have identified Marlin-1, a novel GABA(B) receptor-binding protein that associates specifically with the GABA(B)R1 subunit in yeast, tissue culture cells, and neurons. Marlin-1 is expressed in the brain and exhibits a granular distribution in cultured hippocampal neurons. Marlin-1 binds different RNA species including the 3'-untranslated regions of both the GABA(B)R1 and GABA(B)R2 mRNAs in vitro and also associates with RNA in cultured neurons. Inhibition of Marlin-1 expression via small RNA interference technology results in enhanced intracellular levels of the GABA(B)R2 receptor subunit without affecting the level of GABA(B)R1. Together our results suggest that Marlin-1 functions to regulate the cellular levels of GABA(B) R2 subunits, which may have significant effects on the production of functional GABA(B) receptor heterodimers. Therefore, our observations provide an added level of regulation for the control of GABA(B) receptor expression and for the efficacy of inhibitory synaptic transmission. PMID:14718537

  7. Expression and Purification of Functional Ligand-binding Domains of T1R3 Taste Receptors

    SciTech Connect

    Nie,Y.; Hobbs, J.; Vigues, S.; Olson, W.; Conn, G.; Munger, S.

    2006-01-01

    Chemosensory receptors, including odor, taste, and vomeronasal receptors, comprise the largest group of G protein-coupled receptors (GPCRs) in the mammalian genome. However, little is known about the molecular determinants that are critical for the detection and discrimination of ligands by most of these receptors. This dearth of understanding is due in part to difficulties in preparing functional receptors suitable for biochemical and biophysical analyses. Here we describe in detail two strategies for the expression and purification of the ligand-binding domain of T1R taste receptors, which are constituents of the sweet and umami taste receptors. These class C GPCRs contain a large extracellular N-terminal domain (NTD) that is the site of interaction with most ligands and that is amenable to expression as a separate polypeptide in heterologous cells. The NTD of mouse T1R3 was expressed as two distinct fusion proteins in Escherichia coli and purified by column chromatography. Spectroscopic analysis of the purified NTD proteins shows them to be properly folded and capable of binding ligands. This methodology should not only facilitate the characterization of T1R ligand interactions but may also be useful for dissecting the function of other class C GPCRs such as the large family of orphan V2R vomeronasal receptors.

  8. Unusual features of Self-Peptide/MHC Binding by Autoimmune T Cell Receptors

    SciTech Connect

    Nicholson,M.; Hahn, M.; Wucherpfennig, K.

    2005-01-01

    Structural studies on T cell receptors (TCRs) specific for foreign antigens demonstrated a remarkably similar topology characterized by a central, diagonal TCR binding mode that maximizes interactions with the MHC bound peptide. However, three recent structures involving autoimmune TCRs demonstrated unusual interactions with self-peptide/MHC complexes. Two TCRs from multiple sclerosis patients bind with unconventional topologies, and both TCRs are shifted toward the peptide N terminus and the MHC class II {beta} chain helix. A TCR from the experimental autoimmune encephalomyelitis (EAE) model binds in a conventional orientation, but the structure is unusual because the self-peptide only partially fills the binding site. For all three TCRs, interaction with the MHC bound self-peptide is suboptimal, and only two or three TCR loops contact the peptide. Optimal TCR binding modes confer a competitive advantage for antimicrobial T cells during an infection, whereas altered binding properties may permit survival of a subset of autoreactive T cells during thymic selection.

  9. The ligand binding domain of the nicotinic acetylcholine receptor. Immunological analysis.

    PubMed

    Kachalsky, S G; Aladjem, M; Barchan, D; Fuchs, S

    1993-03-01

    The interaction of the acetylcholine receptor (AChR) binding site domain with specific antibodies and with alpha-bungarotoxin (alpha-BTX) has been compared. The cloned and expressed ligand binding domain of the mouse AChR alpha-subunit binds alpha-BTX, whereas the mongoose-expressed domain is not recognized by alpha-BTX. On the other hand, both the mouse and mongoose domains bind to the site-specific monoclonal antibody 5.5. These results demonstrate that the structural requirements for binding of alpha-BTX and mcAb 5.5, both of which interact with the AChR binding site, are distinct from each other. PMID:8440381

  10. Binding characteristics of [3H]14-methoxymetopon, a high affinity mu-opioid receptor agonist.

    PubMed

    Spetea, Mariana; Tóth, Fanni; Schütz, Johannes; Otvös, Ferenc; Tóth, Géza; Benyhe, Sandor; Borsodi, Anna; Schmidhammer, Helmut

    2003-07-01

    The highly potent micro -opioid receptor agonist 14-methoxymetopon (4,5alpha-epoxy-3-hydroxy-14beta-methoxy-5beta,17-dimethylmorphinan-6-one) was prepared in tritium labelled form by a catalytic dehalogenation method resulting in a specific radioactivity of 15.9 Ci/mmol. Opioid binding characteristics of [3H]14-methoxymetopon were determined using radioligand binding assay in rat brain membranes. [3H]14-Methoxymetopon specifically labelled a single class of opioid sites with affinity in low subnanomolar range (Ki = 0.43 nm) and maximal number of binding sites of 314 fmol/mg protein. Binding of [3H]14-methoxymetopon was inhibited by ligands selective for the micro -opioid receptor with high potency, while selective kappa-opioids and delta-opioids were weaker inhibitors. 14-Methoxymetopon increased guanosine-5'-O-(3-[35S]thio)-triphosphate ([35S]GTPgammaS) binding with an EC50 of 70.9 nm, thus, providing evidence for the agonist character of this ligand. The increase of [35S]GTPgammaS binding was inhibited by naloxone and selective micro -opioid antagonists, indicating a micro -opioid receptor-mediated action. [3H]14-Methoxymetopon is one of the few nonpeptide mu-opioid receptor agonists available in radiolabelled form up to now. Due to its high affinity and selectivity, high stability and extremely low nonspecific binding (<10%), this radioligand would be an important and useful tool in probing mu-opioid receptor mechanisms, as well as to promote a further understanding of the opioid system at the cellular and molecular level. PMID:12887410

  11. Site-specific basicities regulate molecular recognition in receptor binding: in silico docking of thyroid hormones.

    PubMed

    Tóth, Gergő; Baska, Ferenc; Schretner, András; Rácz, Akos; Noszál, Béla

    2013-09-01

    Interactions between thyroid hormone α and β receptors and the eight protonation microspecies of each of the main thyroid hormones (thyroxine, liothyronine, and reverse liothyronine) were investigated and quantitated by molecular modeling. Flexible docking of the various protonation forms of thyroid hormones and high-affinity thyromimetics to the two thyroid receptors was carried out. In this method the role of the ionization state of each basic site could be studied in the composite process of molecular recognition. Our results quantitate at the molecular level how the ionization state and the charge distribution influence the protein binding. The anionic form of the carboxyl group (i.e., carboxylate site) is essential for protein binding, whereas the protonated form of amino group worsens the binding. The protonation state of the phenolate plays a less important role in the receptor affinity; its protonation, however, alters the electron density and the concomitant stacking propensity of the aromatic rings, resulting in a different binding score. The combined results of docking and microspeciation studies show that microspecies with the highest concentration at the pH of blood are not the strongest binding ones. The calculated binding free energy values can be well interpreted in terms of the interactions between the actual sites of the microspecies and the receptor amino acids. Our docking results were validated and compared with biological data from the literature. Since the thyroid hormone receptors influence several physiologic functions, such as metabolic rate, cholesterol and triglyceride levels, and heart frequency, our binding results provide a molecular basis for drug design and development in related therapeutic indications. PMID:23907234

  12. Heterogeneous receptor binding of classical quaternary muscarinic antagonists. I. Bovine tissue distribution.

    PubMed

    Roffel, A F; Ensing, K; in 't Hout, W G; de Zeeuw, R A; Zaagsma, J

    1991-01-01

    In competition experiments with the tertiary radioligand [3H]dexetimide, classical quaternary muscarinic antagonists like ipratropium bromide and N-methylscopolamine bromide distinguished two muscarinic binding sites in bovine brain (total brain minus cerebellum) membranes, in contrast to their tertiary analogues, atropine and scopolamine, which recognized only one binding site. This binding behavior was found to be almost identical in bovine striatal membranes, both in terms of binding affinities and proportions of high (Q1) and low (Q2) affinity binding sites. Both in total brain and in striatal membranes, the Q1/Q2 binding heterogeneity was independent of pirenzepine binding heterogeneity (M1/M2). In peripheral tissues, the binding properties of quaternary muscarinic antagonists varied. Whereas tertiary as well as quaternary compounds showed only high affinity binding towards muscarinic receptors in bovine atrial and left ventricular membranes, heterogeneous binding behavior was observed with quaternary but not with tertiary antagonists in bovine tracheal smooth muscle membranes. The tissue distribution found in the present study suggests that bovine tracheal smooth muscle contraction studies might shed light on the functional significance of the anomalous binding behavior of quaternary muscarinic antagonists. PMID:1824191

  13. Identification and Characterization of Pheromone Receptors and Interplay between Receptors and Pheromone Binding Proteins in the Diamondback Moth, Plutella xyllostella

    PubMed Central

    Sun, Mengjing; Liu, Yang; Walker, William B.; Liu, Chengcheng; Lin, Kejian; Gu, Shaohua; Zhang, Yongjun; Zhou, Jingjiang; Wang, Guirong

    2013-01-01

    Moths depend on olfactory cues such as sex pheromones to find and recognize mating partners. Pheromone receptors (PRs) and Pheromone binding proteins (PBPs) are thought to be associated with olfactory signal transduction of pheromonal compounds in peripheral olfactory reception. Here six candidate pheromone receptor genes in the diamondback moth, Plutella xyllostella were identified and cloned. All of the six candidate PR genes display male-biased expression, which is a typical characteristic of pheromone receptors. In the Xenopus-based functional study and in situ hybridization, PxylOR4 is defined as another pheromone receptor in addition to the previously characterized PxylOR1. In the study of interaction between PRs and PBPs, PxylPBPs could increase the sensitivity of the complex expressing oocyte cells to the ligand pheromone component while decreasing the sensitivity to pheromone analogs. We deduce that activating pheromone receptors in olfactory receptor neurons requires some role of PBPs to pheromone/PBP complex. If the chemical signal is not the pheromone component, but instead, a pheromone analog with a similar structure, the complex would have a decreased ability to activate downstream pheromone receptors. PMID:23626773

  14. A Three-Site Mechanism for Agonist/Antagonist Selective Binding to Vasopressin Receptors.

    PubMed

    Saleh, Noureldin; Saladino, Giorgio; Gervasio, Francesco L; Haensele, Elke; Banting, Lee; Whitley, David C; Sopkova-de Oliveira Santos, Jana; Bureau, Ronan; Clark, Timothy

    2016-07-01

    Molecular-dynamics simulations with metadynamics enhanced sampling reveal three distinct binding sites for arginine vasopressin (AVP) within its V2 -receptor (V2 R). Two of these, the vestibule and intermediate sites, block (antagonize) the receptor, and the third is the orthosteric activation (agonist) site. The contacts found for the orthosteric site satisfy all the requirements deduced from mutagenesis experiments. Metadynamics simulations for V2 R and its V1a R-analog give an excellent correlation with experimental binding free energies by assuming that the most stable binding site in the simulations corresponds to the experimental binding free energy in each case. The resulting three-site mechanism separates agonists from antagonists and explains subtype selectivity. PMID:27184628

  15. Dynamic Inversion of Stereoselective Phosphate Binding to a Bisurea Receptor Controlled by Light and Heat.

    PubMed

    Vlatković, Matea; Feringa, Ben L; Wezenberg, Sander J

    2016-01-18

    A chiral bisurea anion receptor, derived from a first-generation molecular motor, can undergo photochemical and thermal isomerization operating as a reconfigurable system. The two possible cis configurations in the isomerization cycle are opposite in helicity, as is shown by CD spectroscopy. (1)H NMR titrations demonstrate that the P and M helical cis isomers hold opposite enantioselectivity in the binding of binol phosphate, while anion complexation by the intermediate trans isomer is not selective. The difference in the binding affinity of the enantiomers was rationalized by DFT calculations, revealing very distinct binding modes. Thus, the enantiopreferred substrate binding in this receptor can be inverted in a dynamic fashion using light and heat. PMID:26636270

  16. Site-directed alkylation of multiple opioid receptors. I. Binding selectivity

    SciTech Connect

    James, I.F.; Goldstein, A.

    1984-05-01

    A method for measuring and expressing the binding selectivity of ligands for mu, delta, and kappa opioid binding sites is reported. Radioligands are used that are partially selective for these sites in combination with membrane preparations enriched in each site. Enrichment was obtained by treatment of membranes with the alkylating agent beta-chlornaltrexamine in the presence of appropriate protecting ligands. After enrichment for mu receptors, (/sup 3/H) dihydromorphine bound to a single type of site as judged by the slope of competition binding curves. After enrichment for delta or kappa receptors, binding sites for (/sup 3/H) (D-Ala2, D-Leu5)enkephalin and (3H)ethylketocyclazocine, respectively, were still not homogeneous. There were residual mu sites in delta-enriched membranes but no evidence for residual mu or delta sites in kappa-enriched membranes were found. This method was used to identify ligands that are highly selective for each of the three types of sites.

  17. Does the tissue concentration in receptor binding studies change the affinity of the labelled ligand?

    PubMed

    Ensing, K; De Zeeuw, R A

    1984-12-14

    When the tissue concentration in a radioreceptor assay for anticholinergic drugs was varied in order to obtain optimum conditions, and the receptor concentration Cr and the equilibrium dissociation constant KD were determined by Scatchard analysis, the KD increased with increasing tissue concentrations. This phenomenon was considered as an artefact caused by non-specific binding of the labelled ligand to constituents of the receptor preparation which were not completely retained on the glass-fibre filters used for the separation of bound and free fraction of radio-labelled ligand. The increase in KD in these experiments could be described with a mathematical model of the binding experiments. PMID:6514542

  18. CORAL: prediction of binding affinity and efficacy of thyroid hormone receptor ligands.

    PubMed

    Toropova, A P; Toropov, A A; Benfenati, E

    2015-08-28

    Quantitative structure - activity relationships (QSARs) for binding affinity of thyroid hormone receptors based on attributes of molecular structure extracted from simplified molecular input-line entry systems (SMILES) are established using the CORAL software (http://www.insilico.eu/coral). The half maximal inhibitory concentration (IC50) is used as the measure of the binding affinity of thyroid hormone receptors. Molecular features which are statistically reliable promoters of increase and decrease for IC50 are suggested. The examples of modifications of molecular structure which lead to the increase or to the decrease of the endpoint are represented. PMID:26188619

  19. Temporal cortex dopamine D2/3 receptor binding in major depression.

    PubMed

    Lehto, Soili M; Kuikka, Jyrki; Tolmunen, Tommi; Hintikka, Jukka; Viinamäki, Heimo; Vanninen, Ritva; Haatainen, Kaisa; Koivumaa-Honkanen, Heli; Honkalampi, Kirsi; Tiihonen, Jari

    2008-06-01

    The aim of this study was to assess the dopamine function of the temporal cortex in major depressive disorder using [(123)I]epidepride to image D(2/3) receptor binding sites. Ten major depressives and 10 healthy controls were selected from a general population sample for single-photon emission computed tomography imaging. Among the major depressives there was a strong bilateral correlation between the scores on the 21-item Hamilton Depression Rating Scale and D(2/3) receptor binding. Dopaminergic abnormalities may be present in the temporal cortices of major depressives. PMID:18588596

  20. QSAR studies on benzodiazepine receptor binding of purines and amino acid derivatives.

    PubMed

    Saha, R N; Meera, J; Agrawal, N; Gupta, S P

    1991-01-01

    Quantitative structure-activity relationship (QSAR) studies are reported on the benzodiazepine receptor binding of a series of substituted 9-benzyl-6-dimethylamino-9H-purines and N-(indol-3-ylglyoxylyl)amino acid derivatives. The nitrogen of the five membered heterocyclic ring and the polar substituent in the aromatic ring, present in both series of compounds, form important centres in the binding interaction. We conclude that the receptor must possess a strong nucleophilic centre and a polar site, and that a hydrophobic pocket exists to accommodate hydrophobic moieties. PMID:1654919

  1. Anandamide, an endogenous cannabimimetic eicosanoid, binds to the cloned human cannabinoid receptor and stimulates receptor-mediated signal transduction.

    PubMed Central

    Felder, C C; Briley, E M; Axelrod, J; Simpson, J T; Mackie, K; Devane, W A

    1993-01-01

    Arachidonylethanolamide (anandamide), a candidate endogenous cannabinoid ligand, has recently been isolated from porcine brain and displayed cannabinoid-like binding activity to synaptosomal membrane preparations and mimicked cannabinoid-induced inhibition of the twitch response in isolated murine vas deferens. In this study, anandamide and several congeners were evaluated as cannabinoid agonists by examining their ability to bind to the cloned cannabinoid receptor, inhibit forskolin-stimulated cAMP accumulation, inhibit N-type calcium channels, and stimulate one or more functional second messenger responses. Synthetic anandamide, and all but one congener, competed for [3H]CP55,940 binding to plasma membranes prepared from L cells expressing the rat cannabinoid receptor. The ability of anandamide to activate receptor-mediated signal transduction was evaluated in Chinese hamster ovary (CHO) cells expressing the human cannabinoid receptor (HCR, termed CHO-HCR cells) and compared to control CHO cells expressing the muscarinic m5 receptor (CHOm5 cells). Anandamide inhibited forskolin-stimulated cAMP accumulation in CHO-HCR cells, but not in CHOm5 cells, and this response was blocked with pertussis toxin. N-type calcium channels were inhibited by anandamide and several active congeners in N18 neuroblastoma cells. Anandamide stimulated arachidonic acid and intracellular calcium release in both CHOm5 and CHO-HCR cells and had no effect on the release of inositol phosphates or phosphatidylethanol, generated after activation of phospholipase C and D, respectively. Anandamide appears to exhibit the essential criteria required to be classified as a cannabinoid/anandamide receptor agonist and shares similar nonreceptor effects on arachidonic acid and intracellular calcium release as other cannabinoid agonists. PMID:8395053

  2. Selectivity in progesterone and androgen receptor binding of progestagens used in oral contraceptives

    SciTech Connect

    Kloosterboer, H.J.; Vonk-Noordegraaf, C.A.; Turpijn, E.W.

    1988-09-01

    The relative binding affinities (RBAs) of four progestational compounds (norethisterone, levonorgestrel, 3-keto-desogestrel and gestodene) for the human progesterone and androgen receptors were measured in MCF-7 cytosol and intact MCF-7 cells. For the binding to the progesterone receptor, both Org 2058 and Org 3236 (or 3-keto-desogestrel) were used as labelled ligands. The following ranking (low to high) for the RBA of the nuclear (intact cells) progesterone receptor irrespective of the ligand used is found: norethisterone much less than levonorgestrel less than 3-keto-destogestrel less than gestodene. The difference between the various progestagens is significant with the exception of that between 3-keto-desogestrel and gestodene, when Org 2058 is used as ligand. For the cytosolic progesterone receptor, the same order is found with the exception that similar RBAs are found for gestodene and 3-keto-desogestrel. The four progestagens clearly differ with respect to binding to the androgen receptor using dihydrotestosterone as labelled ligand in intact cells; the ranking (low to high) is: norethisterone less than 3 keto-desogestrel less than levonorgestrel and gestodene. The difference between 3-keto-desogestrel and levonorgestrel or gestodene is significant. The selectivity indices (ratio of the mean RBA for the progesterone receptor to that of androgen receptor) in intact cells are significantly higher for 3-keto-desogestrel and gestodene than for levonorgestrel and norethisterone. From these results we conclude that the introduction of the 18-methyl in norethisterone (levonorgestel) increases both the binding to the progesterone and androgen receptors.

  3. Mechanism of phencyclidine binding to the acetylcholine receptor from Torpedo electroplaque.

    PubMed

    Oswald, R E; Bamberger, M J; McLaughlin, J T

    1984-05-01

    The mechanism of phencyclidine binding to Torpedo acetylcholine receptor-rich membranes was investigated. The rate of [3H]phencyclidine association is 10(3)- to 10(4)-fold more rapid when phencyclidine and carbamoylcholine are added simultaneously to acetylcholine receptor-rich membranes than when phencyclidine is added to membranes previously equilibrated with carbamoylcholine or membranes in the absence of carbamoylcholine. The mechanism of binding under conditions in which the slower rate was observed was studied with thermodynamic, viscosity, and kinetic experiments. Association and dissociation rates were highly dependent on temperature with activation energies of 26-30 kcal/mole. Viscosity had no effect on the association rate but increased the dissociation rate. These studies suggest that the binding is not diffusion-controlled but rather is limited by a significant energy barrier. The association rate was determined as a function of the concentration of acetylcholine receptor-rich membranes and the concentration of phencyclidine. In the presence of carbamoylcholine, the association rate was highly dependent upon the concentration of acetylcholine receptor but virtually insensitive to the concentration of phencyclidine. In the absence of carbamoylcholine, the association rate seemed to be a hyperbolic function of both the phencyclidine and the acetylcholine receptor concentration. The minimal model capable of explaining the data is a mechanism by which phencyclidine binds to two conformations of the acetylcholine receptor, one conformation having a higher affinity and constituting a lower percentage of receptors and the other having a lower affinity and constituting a higher percentage. The data are consistent with the possibility that the high-affinity conformation is the open-channel state of the acetylcholine receptor. PMID:6727862

  4. Importin {beta}-type nuclear transport receptors have distinct binding affinities for Ran-GTP

    SciTech Connect

    Hahn, Silvia; Schlenstedt, Gabriel

    2011-03-18

    Highlights: {yields} Determination of binding properties of nuclear transport receptor/Ran-GTP complexes. {yields} Biosensor measurements provide constants for dissociation, on-rates, and off-rates. {yields} The affinity of receptors for Ran-GTP is widely divergent. {yields} Dissociation constants differ for three orders of magnitude. {yields} The cellular concentration of yeast Ran is not limiting. -- Abstract: Cargos destined to enter or leave the cell nucleus are typically transported by receptors of the importin {beta} family to pass the nuclear pore complex. The yeast Saccharomyces cerevisiae comprises 14 members of this protein family, which can be divided in importins and exportins. The Ran GTPase regulates the association and dissociation of receptors and cargos as well as the transport direction through the nuclear pore. All receptors bind to Ran exclusively in its GTP-bound state and this event is restricted to the nuclear compartment. We determined the Ran-GTP binding properties of all yeast transport receptors by biosensor measurements and observed that the affinity of importins for Ran-GTP differs significantly. The dissociation constants range from 230 pM to 270 nM, which is mostly based on a variability of the off-rate constants. The divergent affinity of importins for Ran-GTP suggests the existence of a novel mode of nucleocytoplasmic transport regulation. Furthermore, the cellular concentration of {beta}-receptors and of other Ran-binding proteins was determined. We found that the number of {beta}-receptors altogether about equals the amounts of yeast Ran, but Ran-GTP is not limiting in the nucleus. The implications of our results for nucleocytoplasmic transport mechanisms are discussed.

  5. Influence of acetylcholine on binding of 4-[125I]iododexetimide to muscarinic brain receptors.

    PubMed

    Weckesser, M; Fixmann, A; Holschbach, M; Müller-Gärtner, H W

    1998-11-01

    The distribution of nicotinic and muscarinic cholinergic receptors in the human brain in vivo has been successfully characterized using radiolabeled tracers and emission tomography. The effect of acetylcholine release into the synaptic cleft on receptor binding of these tracers has not yet been investigated. The present study examined the influence of acetylcholine on binding of 4-[125I]iododexetimide to muscarinic cholinergic receptors of porcine brain synaptosomes in vitro. 4-Iododexetimide is a subtype-unspecific muscarinic receptor antagonist with high affinity. Acetylcholine competed with 4-[125I]iododexetimide in a dose-dependent manner. A concentration of 500 microM acetylcholine inhibited 50% of total specific 4-[125I]iododexetimide binding to synaptosomes when both substances were given simultaneously. An 800 microM acetylcholine solution reduced total specific 4-[125I]iododexetimide binding by about 35%, when acetylcholine was given 60 min after incubation of synaptosomes with 4-[125I]iododexetimide. Variations in the synaptic acetylcholine concentration might influence muscarinic cholinergic receptor imaging in vivo using 4-[123I]iododexetimide. Conversely, 4-[123I]iododexetimide might be an appropriate molecule to investigate alterations of acetylcholine release into the synaptic cleft in vivo using single photon emission computed tomography. PMID:9863566

  6. Identifying and quantifying two ligand-binding sites while imaging native human membrane receptors by AFM

    NASA Astrophysics Data System (ADS)

    Pfreundschuh, Moritz; Alsteens, David; Wieneke, Ralph; Zhang, Cheng; Coughlin, Shaun R.; Tampé, Robert; Kobilka, Brian K.; Müller, Daniel J.

    2015-11-01

    A current challenge in life sciences is to image cell membrane receptors while characterizing their specific interactions with various ligands. Addressing this issue has been hampered by the lack of suitable nanoscopic methods. Here we address this challenge and introduce multifunctional high-resolution atomic force microscopy (AFM) to image human protease-activated receptors (PAR1) in the functionally important lipid membrane and to simultaneously localize and quantify their binding to two different ligands. Therefore, we introduce the surface chemistry to bifunctionalize AFM tips with the native receptor-activating peptide and a tris-N-nitrilotriacetic acid (tris-NTA) group binding to a His10-tag engineered to PAR1. We further introduce ways to discern between the binding of both ligands to different receptor sites while imaging native PAR1s. Surface chemistry and nanoscopic method are applicable to a range of biological systems in vitro and in vivo and to concurrently detect and localize multiple ligand-binding sites at single receptor resolution.

  7. Identifying and quantifying two ligand-binding sites while imaging native human membrane receptors by AFM

    PubMed Central

    Pfreundschuh, Moritz; Alsteens, David; Wieneke, Ralph; Zhang, Cheng; Coughlin, Shaun R.; Tampé, Robert; Kobilka, Brian K.; Müller, Daniel J.

    2015-01-01

    A current challenge in life sciences is to image cell membrane receptors while characterizing their specific interactions with various ligands. Addressing this issue has been hampered by the lack of suitable nanoscopic methods. Here we address this challenge and introduce multifunctional high-resolution atomic force microscopy (AFM) to image human protease-activated receptors (PAR1) in the functionally important lipid membrane and to simultaneously localize and quantify their binding to two different ligands. Therefore, we introduce the surface chemistry to bifunctionalize AFM tips with the native receptor-activating peptide and a tris-N-nitrilotriacetic acid (tris-NTA) group binding to a His10-tag engineered to PAR1. We further introduce ways to discern between the binding of both ligands to different receptor sites while imaging native PAR1s. Surface chemistry and nanoscopic method are applicable to a range of biological systems in vitro and in vivo and to concurrently detect and localize multiple ligand-binding sites at single receptor resolution. PMID:26561004

  8. Genome-Wide Tissue-Specific Farnesoid X Receptor Binding in Mouse Liver and Intestine

    PubMed Central

    Thomas, Ann M.; Hart, Steven N.; Kong, Bo; Fang, Jianwen; Zhong, Xiao-bo; Guo, Grace L.

    2016-01-01

    Farnesoid X receptor (FXR) is a bile acid-activated transcription factor belonging to the nuclear receptor superfamily. FXR is highly expressed in liver and intestine and crosstalk mediated by FXR in these two organs is critical in maintaining bile acid homeostasis. FXR deficiency has been implicated in many liver and intestine diseases. However, regulation of transcription by FXR at the genomic level is not known. This study analyzed genome-wide FXR binding in liver and intestine of mice treated with a synthetic FXR ligand (GW4064) by chromatin immunoprecipitation coupled to massively parallel sequencing (ChIP-seq). The results showed a large degree of tissue-specific FXR binding, with only 11% of total sites shared between liver and intestine. The sites were widely distributed between intergenic, upstream, intragenic, and downstream of genes, with novel sites identified within even known FXR target genes. Motif analysis revealed a half nuclear receptor binding site, normally bound by a few orphan nuclear receptors, adjacent to the FXR response elements, indicating possible involvement of some orphan nuclear receptors in modulating FXR function. Furthermore, pathway analysis indicated that FXR may be extensively involved in multiple cellular metabolic pathways. Conclusion This study reports genome-wide FXR binding in vivo and the results clearly demonstrate tissue-specific FXR/gene interaction. In addition, FXR may be involved in regulating broader biological pathways in maintaining hepatic and intestinal homeostasis. PMID:20091679

  9. Multiple binding sites in the nicotinic acetylcholine receptors: An opportunity for polypharmacolgy.

    PubMed

    Iturriaga-Vásquez, Patricio; Alzate-Morales, Jans; Bermudez, Isabel; Varas, Rodrigo; Reyes-Parada, Miguel

    2015-11-01

    For decades, the development of selective compounds has been the main goal for chemists and biologists involved in drug discovery. However, diverse lines of evidence indicate that polypharmacological agents, i.e. those that act simultaneously at various protein targets, might show better profiles than selective ligands, regarding both efficacy and side effects. On the other hand, the availability of the crystal structure of different receptors allows a detailed analysis of the main interactions between drugs and receptors in a specific binding site. Neuronal nicotinic acetylcholine receptors (nAChRs) constitute a large and diverse family of ligand-gated ion channels (LGICs) that, as a product of its modulation, regulate neurotransmitter release, which in turns produce a global neuromodulation of the central nervous system. nAChRs are pentameric protein complexes in such a way that expression of compatible subunits can lead to various receptor assemblies or subtypes. The agonist binding site, located at the extracellular region, exhibits different properties depending on the subunits that conform the receptor. In the last years, it has been recognized that nAChRs could also contain one or more allosteric sites which could bind non-classical nicotinic ligands including several therapeutically useful drugs. The presence of multiple binding sites in nAChRs offers an interesting possibility for the development of novel polypharmacological agents with a wide spectrum of actions. PMID:26318763

  10. A novel ultrasensitive bioluminescent receptor-binding assay of INSL3 through chemical conjugation with nanoluciferase.

    PubMed

    Zhang, Lei; Song, Ge; Xu, Ting; Wu, Qing-Ping; Shao, Xiao-Xia; Liu, Ya-Li; Xu, Zeng-Guang; Guo, Zhan-Yun

    2013-12-01

    Insulin-like peptide 3 (INSL3) is a reproduction-related peptide hormone belonging to the insulin/relaxin superfamily, which mediates testicular descent in the male fetus, suppresses male germ cell apoptosis and promotes oocyte maturation in adults by activating the relaxin family peptide receptor 2 (RXFP2). To establish an ultrasensitive receptor-binding assay for INSL3-RXFP2 interaction studies, in the present work we labeled a recombinant INSL3 peptide with a newly developed nanoluciferase (NanoLuc) reporter through a convenient chemical conjugation approach, including the introduction of an active disulfide bond to INSL3 by chemical modification and engineering of a 6× His-Cys-NanoLuc carrying a unique exposed cysteine at the N-terminus. The bioluminescent NanoLuc-conjugated INSL3 retained high binding affinity with the target receptor RXFP2 (Kd = 2.0 ± 0.1 nM, n = 3) and was able to sensitively monitor the receptor-binding of a variety of ligands, representing a novel ultrasensitive tracer for non-radioactive receptor-binding assays. Our present chemical conjugation approach could readily be adapted for conjugation of NanoLuc with other proteins, even other macrobiomolecules, for various highly sensitive bioluminescent assays. PMID:24056075

  11. A Drug Delivery Strategy: Binding Enkephalin to Asialoglycoprotein Receptor by Enzymatic Galactosylation

    PubMed Central

    Christie, Michelle P.; Simerská, Pavla; Jen, Freda E.-C.; Hussein, Waleed M.; Rawi, Mohamad F. M.; Hartley-Tassell, Lauren E.; Day, Christopher J.; Jennings, Michael P.; Toth, Istvan

    2014-01-01

    Glycosylation of biopharmaceuticals can mediate cell specific delivery by targeting carbohydrate receptors. Additionally, glycosylation can improve the physico-chemical (drug-like) properties of peptide based drug candidates. The main purpose of this study was to examine if glycosylation of the peptide enkephalin could facilitate its binding to the carbohydrate receptor, asialoglycoprotein. Firstly, we described the one-pot enzymatic galactosylation of lactose modified enkephalin in the presence of uridine-5′-diphosphogalactose 4-epimerase and lipopolysaccharyl α-1,4-galactosyltransferase. Stability experiments using human plasma and Caco-2 cell homogenates showed that glycosylation considerably improved the stability of enkephalin (at least 60% remained stable after a 2 hr incubation at 37°C). In vitro permeability experiments using Caco-2 cells revealed that the permeability of mono- and trisaccharide conjugated enkephalins was 14 and 28 times higher, respectively, than that of enkephalin alone (Papp 3.1×10−8 cm/s). By the methods of surface plasmon resonance and molecular modeling, we demonstrated that the enzymatic glycosylation of enkephalin enabled binding the asialoglycoprotein receptor. The addition of a trisaccharide moiety to enkephalin improved the binding of enkephalin to the asialoglycoprotein receptor two fold (KD = 91 µM). The docking scores from molecular modeling showed that the binding modes and affinities of the glycosylated enkephalin derivatives to the asialoglycoprotein receptor complemented the results from the surface plasmon resonance experiments. PMID:24736570

  12. Taste substance binding elicits conformational change of taste receptor T1r heterodimer extracellular domains

    PubMed Central

    Nango, Eriko; Akiyama, Shuji; Maki-Yonekura, Saori; Ashikawa, Yuji; Kusakabe, Yuko; Krayukhina, Elena; Maruno, Takahiro; Uchiyama, Susumu; Nuemket, Nipawan; Yonekura, Koji; Shimizu, Madoka; Atsumi, Nanako; Yasui, Norihisa; Hikima, Takaaki; Yamamoto, Masaki; Kobayashi, Yuji; Yamashita, Atsuko

    2016-01-01

    Sweet and umami tastes are perceived by T1r taste receptors in oral cavity. T1rs are class C G-protein coupled receptors (GPCRs), and the extracellular ligand binding domains (LBDs) of T1r1/T1r3 and T1r2/T1r3 heterodimers are responsible for binding of chemical substances eliciting umami or sweet taste. However, molecular analyses of T1r have been hampered due to the difficulties in recombinant expression and protein purification, and thus little is known about mechanisms for taste perception. Here we show the first molecular view of reception of a taste substance by a taste receptor, where the binding of the taste substance elicits a different conformational state of T1r2/T1r3 LBD heterodimer. Electron microscopy has showed a characteristic dimeric structure. Förster resonance energy transfer and X-ray solution scattering have revealed the transition of the dimerization manner of the ligand binding domains, from a widely spread to compactly organized state upon taste substance binding, which may correspond to distinct receptor functional states. PMID:27160511

  13. In vivo receptor binding of opioid drugs at the mu site.

    PubMed

    Rosenbaum, J S; Holford, N H; Sadée, W

    1985-06-01

    The in vivo receptor binding of a series of opioid drugs was investigated in intact rats after s.c. administration of [3H]etorphine tracer, which selectively binds to mu sites in vivo. Receptor binding was determined by a membrane filtration assay immediately after sacrifice of the animals and brain homogenization. Coadministration of unlabeled opioid drugs together with tracer led to a dose-dependent decrease of in vivo tracer binding. Estimates of the doses required to occupy 50% of the mu sites in vivo established the following potency rank order: diprenorphine, naloxone, buprenorphine, etorphine, levallorphan, cyclazocine, sufentanil, nalorphine, ethylketocyclazocine, ketocyclazocine, pentazocine, morphine. In vivo-in vitro differences among the relative receptor binding potencies were only partially accounted for by differences in their access to the brain and the regulatory effects of Na+ and GTP, which are expected to reduce agonist affinities in vivo. The relationship among mu receptor occupancy in vivo and pharmacological effects of the opioid drugs is described. PMID:2989495

  14. In vivo receptor binding of opioid drugs at the mu site

    SciTech Connect

    Rosenbaum, J.S.; Holford, N.H.; Sadee, W.

    1985-06-01

    The in vivo receptor binding of a series of opioid drugs was investigated in intact rats after s.c. administration of (/sup 3/H)etorphine tracer, which selectively binds to mu sites in vivo. Receptor binding was determined by a membrane filtration assay immediately after sacrifice of the animals and brain homogenization. Coadministration of unlabeled opioid drugs together with tracer led to a dose-dependent decrease of in vivo tracer binding. Estimates of the doses required to occupy 50% of the mu sites in vivo established the following potency rank order: diprenorphine, naloxone, buprenorphine, etorphine, levallorphan, cyclazocine, sufentanil, nalorphine, ethylketocyclazocine, ketocyclazocine, pentazocine, morphine. In vivo-in vitro differences among the relative receptor binding potencies were only partially accounted for by differences in their access to the brain and the regulatory effects of Na+ and GTP, which are expected to reduce agonist affinities in vivo. The relationship among mu receptor occupancy in vivo and pharmacological effects of the opioid drugs is described.

  15. Structural Analysis on the Pathologic Mutant Glucocorticoid Receptor Ligand-Binding Domains.

    PubMed

    Hurt, Darrell E; Suzuki, Shigeru; Mayama, Takafumi; Charmandari, Evangelia; Kino, Tomoshige

    2016-02-01

    Glucocorticoid receptor (GR) gene mutations may cause familial or sporadic generalized glucocorticoid resistance syndrome. Most of the missense forms distribute in the ligand-binding domain and impair its ligand-binding activity and formation of the activation function (AF)-2 that binds LXXLL motif-containing coactivators. We performed molecular dynamics simulations to ligand-binding domain of pathologic GR mutants to reveal their structural defects. Several calculated parameters including interaction energy for dexamethasone or the LXXLL peptide indicate that destruction of ligand-binding pocket (LBP) is a primary character. Their LBP defects are driven primarily by loss/reduction of the electrostatic interaction formed by R611 and T739 of the receptor to dexamethasone and a subsequent conformational mismatch, which deacylcortivazol resolves with its large phenylpyrazole moiety and efficiently stimulates transcriptional activity of the mutant receptors with LBP defect. Reduced affinity of the LXXLL peptide to AF-2 is caused mainly by disruption of the electrostatic bonds to the noncore leucine residues of this peptide that determine the peptide's specificity to GR, as well as by reduced noncovalent interaction against core leucines and subsequent exposure of the AF-2 surface to solvent. The results reveal molecular defects of pathologic mutant receptors and provide important insights to the actions of wild-type GR. PMID:26745667

  16. Taste substance binding elicits conformational change of taste receptor T1r heterodimer extracellular domains.

    PubMed

    Nango, Eriko; Akiyama, Shuji; Maki-Yonekura, Saori; Ashikawa, Yuji; Kusakabe, Yuko; Krayukhina, Elena; Maruno, Takahiro; Uchiyama, Susumu; Nuemket, Nipawan; Yonekura, Koji; Shimizu, Madoka; Atsumi, Nanako; Yasui, Norihisa; Hikima, Takaaki; Yamamoto, Masaki; Kobayashi, Yuji; Yamashita, Atsuko

    2016-01-01

    Sweet and umami tastes are perceived by T1r taste receptors in oral cavity. T1rs are class C G-protein coupled receptors (GPCRs), and the extracellular ligand binding domains (LBDs) of T1r1/T1r3 and T1r2/T1r3 heterodimers are responsible for binding of chemical substances eliciting umami or sweet taste. However, molecular analyses of T1r have been hampered due to the difficulties in recombinant expression and protein purification, and thus little is known about mechanisms for taste perception. Here we show the first molecular view of reception of a taste substance by a taste receptor, where the binding of the taste substance elicits a different conformational state of T1r2/T1r3 LBD heterodimer. Electron microscopy has showed a characteristic dimeric structure. Förster resonance energy transfer and X-ray solution scattering have revealed the transition of the dimerization manner of the ligand binding domains, from a widely spread to compactly organized state upon taste substance binding, which may correspond to distinct receptor functional states. PMID:27160511

  17. Tension-compression asymmetry in the binding affinity of membrane-anchored receptors and ligands

    NASA Astrophysics Data System (ADS)

    Xu, Guang-Kui; Liu, Zishun; Feng, Xi-Qiao; Gao, Huajian

    2016-03-01

    Cell adhesion plays a crucial role in many biological processes of cells, e.g., immune responses, tissue morphogenesis, and stem cell differentiation. An essential problem in the molecular mechanism of cell adhesion is to characterize the binding affinity of membrane-anchored receptors and ligands under different physiological conditions. In this paper, a theoretical model is presented to study the binding affinity between a large number of anchored receptors and ligands under both tensile and compressive stresses, and corroborated by demonstrating excellent agreement with Monte Carlo simulations. It is shown that the binding affinity becomes lower as the magnitude of the applied stress increases, and drops to zero at a critical tensile or compressive stress. Interestingly, the critical compressive stress is found to be substantially smaller than the critical tensile stress for relatively long and flexible receptor-ligand complexes. This counterintuitive finding is explained by using the Euler instability theory of slender columns under compression. The tension-compression asymmetry in the binding affinity of anchored receptors and ligands depends subtly on the competition between the breaking and instability of their complexes. This study helps in understanding the role of mechanical forces in cell adhesion mediated by specific binding molecules.

  18. Characterization of the Binding Site of Aspartame in the Human Sweet Taste Receptor.

    PubMed

    Maillet, Emeline L; Cui, Meng; Jiang, Peihua; Mezei, Mihaly; Hecht, Elizabeth; Quijada, Jeniffer; Margolskee, Robert F; Osman, Roman; Max, Marianna

    2015-10-01

    The sweet taste receptor, a heterodimeric G protein-coupled receptor comprised of T1R2 and T1R3, binds sugars, small molecule sweeteners, and sweet proteins to multiple binding sites. The dipeptide sweetener, aspartame binds in the Venus Flytrap Module (VFTM) of T1R2. We developed homology models of the open and closed forms of human T1R2 and human T1R3 VFTMs and their dimers and then docked aspartame into the closed form of T1R2's VFTM. To test and refine the predictions of our model, we mutated various T1R2 VFTM residues, assayed activity of the mutants and identified 11 critical residues (S40, Y103, D142, S144, S165, S168, Y215, D278, E302, D307, and R383) in and proximal to the binding pocket of the sweet taste receptor that are important for ligand recognition and activity of aspartame. Furthermore, we propose that binding is dependent on 2 water molecules situated in the ligand pocket that bridge 2 carbonyl groups of aspartame to residues D142 and L279. These results shed light on the activation mechanism and how signal transmission arising from the extracellular domain of the T1R2 monomer of the sweet receptor leads to the perception of sweet taste. PMID:26377607

  19. Alterations in alpha-adrenergic and muscarinic cholinergic receptor binding in rat brain following nonionizing radiation

    SciTech Connect

    Gandhi, V.C.; Ross, D.H.

    1987-01-01

    Microwave radiation produces hyperthermia. The mammalian thermoregulatory system defends against changes in temperature by mobilizing diverse control mechanisms. Neurotransmitters play a major role in eliciting thermoregulatory responses. The involvement of adrenergic and muscarinic cholinergic receptors was investigated in radiation-induced hyperthermia. Rats were subjected to radiation at 700 MHz frequency and 15 mW/cm/sup 2/ power density and the body temperature was raised by 2.5 degrees C. Of six brain regions investigated only the hypothalamus showed significant changes in receptor states, confirming its pivotal role in thermoregulation. Adrenergic receptors, studied by (/sup 3/H)clonidine binding, showed a 36% decrease in binding following radiation after a 2.5 degrees C increase in body temperature, suggesting a mechanism to facilitate norepinephrine release. Norepinephrine may be speculated to maintain thermal homeostasis by activating heat dissipation. Muscarinic cholinergic receptors, studied by (3H)quinuclidinyl benzilate binding, showed a 65% increase in binding at the onset of radiation. This may be attributed to the release of acetylcholine in the hypothalamus in response to heat cumulation. The continued elevated binding during the period of cooling after radiation was shut off may suggest the existence of an extra-hypothalamic heat-loss pathway.

  20. Transferrin Binding to Peripheral Blood Lymphocytes Activated by Phytohemagglutinin Involves a Specific Receptor

    PubMed Central

    Galbraith, Robert M.; Werner, Phillip; Arnaud, Philippe; Galbraith, Gillian M. P.

    1980-01-01

    Immunohistological studies have indicated that membrane sites binding transferrin are present upon activated human peripheral blood lymphocytes. In this study, we have investigated transferrin uptake in human lymphocytes exposed to phytohemagglutinin (PHA), by quantitative radiobinding and immunofluorescence in parallel. In stimulated lymphocytes, binding was maximal after a 30-min incubation, being greatest at 37°C, and greater at 22°C than at 4°C. Although some shedding and endocytosis of transferrin occurred at 22° and 37°C, these factors, and resulting synthesis of new sites, did not affect measurement of binding which was found to be saturable, reversible, and specific for transferrin (Ka 0.5-2.5 × 108 M−1). Binding was greater after a 48-h exposure to PHA than after 24 h, and was maximal at 66 h. Sequential Scatchard analysis revealed no significant elevation in affinity of interaction. However, although the total number of receptors increased, the proportion of cells in which binding of ligand was detected immunohistologically increased in parallel, and after appropriate correction, the cellular density of receptors remained relatively constant throughout (60,000-80,000 sites/cell). Increments in binding during the culture period were thus due predominantly to expansion of a population of cells bearing receptors. Similar differences in binding were apparent upon comparison of cells cultured in different doses of PHA, and in unstimulated cells binding was negligible. Transferrin receptors appear, therefore, to be readily detectable only upon lymphocytes that have been activated. Images PMID:6253523

  1. Receptor-mediated binding of C1 q on pulmonary endothelial cells

    SciTech Connect

    Zhang, S.C.; Schultz, D.; Ryan, U.

    1986-03-01

    Normal undamaged pulmonary endothelial cells (EC) do not express receptors for C3b or the Fc portion of IgG, but both receptors become unmasked after viral infection or exposure to white cell lysates. Here, highly purified human C1q was labeled with /sup 125/I, and the globular subunits were separated from the collagenous portion by collagenase digestion and chromatography. Bovine pulmonary artery EC were cultured without exposure to proteolytic enzymes. Binding assays were carried out at 0/sup 0/C, pH 7.4, ..mu.. = 0.15. Results showed that /sup 125/I-C1q binds to EC, the binding is dose-dependent, and the receptor is saturable. Saturation was approached at a C1q concentration of ca 0.1 ug. By Scatchard analysis, maximum binding was 0.219 pmoles in a volume of 250 ..mu..l for 7 x 10/sup 5/ cells, and the average number of binding sites per cell was 1.88 x 10/sup 5/. Isolated /sup 125/I-C1q heads do not bind, and when native /sup 125/I-C1q was bound to EC radioactivity was eliminated after collagenase treatment for 4 h at 37/sup 0/C. Thus, C1q binds to EC via the collagenous portion. That Fc receptors (globular heads) are exposed was shown by rosette formation with EA and EC bound C1q. Using similar conditions, native C1(C1w x 2C1r x 2C1s) did not bind to EC. These results suggest a mechanism for localizing immune complexes on undamaged pulmonary vessels which may be important for initiation of the inflammatory response.

  2. Receptors for vasoactive intestinal peptide in rat anterior pituitary glands: Localization of binding to lactotropes

    SciTech Connect

    Wanke, I.E.; Rorstad, O.P. )

    1990-04-01

    Vasoactive intestinal peptide (VIP) has been implicated as a physiological PRL-releasing factor; however, characterization of VIP receptors on normal pituitaries using radioligand-binding methods has been problematic. In this study we demonstrated specific receptors for VIP in anterior pituitary glands of female rats using HPLC-purified monoiodinated (Tyr(125I)10)VIP. Binding of VIP was reversible, saturable to receptor and radioligand, regulated by guanine nucleotides, and dependent on time and temperature. Scatchard analysis of competitive binding studies indicated high and low affinity binding sites, with equilibrium dissociation constants (Kd) of 0.19 +/- 0.03 and 28 +/- 16 nM, respectively. The corresponding maximum numbers of binding sites were 158 +/- 34 fmol/mg and 11.7 +/- 6.9 pmol/mg. Binding was specific, as peptides with structural homology to VIP were less than 100th as potent as VIP. The rank order of potency of the peptides tested was VIP greater than rat (r) peptide histidine isoleucine = human (h) PHI greater than rGRF greater than bovine GRF = porcine PHI = VIP-(10-28) greater than hGRF greater than secretin greater than apamin greater than glucagon. Radioligand binding was associated primarily with lactotrope-enriched fractions prepared by unit gravity sedimentation of dispersed anterior pituitary cells. VIP stimulated PRL release from cultured rat anterior pituitary cells, with an ED50 of 1 nM. These results, comprising the first identification of specific VIP receptors in normal rat anterior pituitary tissue using radioligand-binding methods, provide additional support for a biological role of VIP in lactotrope function.

  3. Interaction of nicotinic receptor affinity reagents with central nervous system. cap alpha. -bungarotoxin-binding entities

    SciTech Connect

    Lukas, R.J.; Bennett, E.L.

    1980-01-01

    Membrane-bound ..cap alpha..-bungarotoxin-binding entities derived from rat brain are found to interact specifically with the affinity reagents maleimidobenzyltrimethylammonium (MBTA) and bromoacetylcholine (BAC), originally designed to label nicotinic acetylcholine receptors from electroplax and skeletal muscle. Following treatment of membranes with dithiothreitol, all specific toxin binding sites are irreversibly blocked by reaction with MBTA or BAC. Affinity reagent labeling of dithiothreitol-reduced membranes is prevented (toxin binding sites are not blocked) by prior alkylaction with N-ethylmaleimide, by prior oxidation with dithiobis(2-nitrobenzoic acid), or by incubation with neurotoxin. Reversibly associating cholinergic agonists and antagonists retard the rate of affinity reagent interaction with toxin receptors. The apparent rates of affinity reagent alkylation of toxin receptors, and the influences of other sulfhydryl/disulfide reagents on affinity labeling are comparable to those observed for reaction with nicotinic acetylcholine receptors in the periphery. The results provide further evidence that central nervous system ..cap alpha..-bungarotoxin receptors share a remarkable number of biochemical properties with nicotinic receptors from the periphery.

  4. Time course of the estradiol-dependent induction of oxytocin receptor binding in the ventromedial hypothalamic nucleus of the rat

    SciTech Connect

    Johnson, A.E.; Ball, G.F.; Coirini, H.; Harbaugh, C.R.; McEwen, B.S.; Insel, T.R. )

    1989-09-01

    Oxytocin (OT) transmission is involved in the steroid-dependent display of sexual receptivity in rats. One of the biochemical processes stimulated by the ovarian steroid 17 beta-estradiol (E2) that is relevant to reproduction is the induction of OT receptor binding in the ventromedial hypothalamic nucleus (VMN). The purpose of these experiments was to determine if E2-induced changes in OT receptor binding in the VMN occur within a time frame relevant to cyclic changes in ovarian steroid secretion. OT receptor binding was measured in the VMN of ovariectomized rats implanted for 0-96 h with E2-containing Silastic capsules. The rate of decay of OT receptor binding was measured in another group of animals 6-48 h after capsule removal. Receptors were labeled with the specific OT receptor antagonist ({sup 125}I)d(CH2)5(Tyr(Me)2,Thr4,Tyr-NH2(9))OVT, and binding was measured with quantitative autoradiographic methods. In addition, plasma E2 levels and uterine weights were assessed in animals from each treatment condition. Significant increases in E2-dependent OT receptor binding and uterine weight occurred within 24 h of steroid treatment. After E2 withdrawal, OT receptor binding and uterine weight decreased significantly within 24 h. These results are consistent with the hypothesis that steroid modulation of OT receptor binding is necessary for the induction of sexual receptivity.

  5. Few Residues within an Extensive Binding Interface Drive Receptor Interaction and Determine the Specificity of Arrestin Proteins*

    PubMed Central

    Vishnivetskiy, Sergey A.; Gimenez, Luis E.; Francis, Derek J.; Hanson, Susan M.; Hubbell, Wayne L.; Klug, Candice S.; Gurevich, Vsevolod V.

    2011-01-01

    Arrestins bind active phosphorylated forms of G protein-coupled receptors, terminating G protein activation, orchestrating receptor trafficking, and redirecting signaling to alternative pathways. Visual arrestin-1 preferentially binds rhodopsin, whereas the two non-visual arrestins interact with hundreds of G protein-coupled receptor subtypes. Here we show that an extensive surface on the concave side of both arrestin-2 domains is involved in receptor binding. We also identified a small number of residues on the receptor binding surface of the N- and C-domains that largely determine the receptor specificity of arrestins. We show that alanine substitution of these residues blocks the binding of arrestin-1 to rhodopsin in vitro and of arrestin-2 and -3 to β2-adrenergic, M2 muscarinic cholinergic, and D2 dopamine receptors in intact cells, suggesting that these elements critically contribute to the energy of the interaction. Thus, in contrast to arrestin-1, where direct phosphate binding is crucial, the interaction of non-visual arrestins with their cognate receptors depends to a lesser extent on phosphate binding and more on the binding to non-phosphorylated receptor elements. PMID:21471193

  6. Bio-inspired Dynamic Gradients Regulated by Supramolecular Bindings in Receptor-Embedded Hydrogel Matrices.

    PubMed

    Luan, Xinglong; Zhang, Yihe; Wu, Jing; Jonkheijm, Pascal; Li, Guangtao; Jiang, Lei; Huskens, Jurriaan; An, Qi

    2016-08-01

    The kinetics of supramolecular bindings are fundamentally important for molecular motions and spatial-temporal distributions in biological systems, but have rarely been employed in preparing artificial materials. This report proposes a bio-inspired concept to regulate dynamic gradients through the coupled supramolecular binding and diffusion process in receptor-embedded hydrogel matrices. A new type of hydrogel that uses cyclodextrin (CD) as both the gelling moiety and the receptors is prepared as the diffusion matrices. The diffusible guest, 4-aminoazobenzene, quickly and reversibly binds to matrices-bound CD during diffusion and generates steeper gradients than regular diffusion. Weakened bindings induced through UV irradiation extend the gradients. Combined with numerical simulation, these results indicate that the coupled binding-diffusion could be viewed as slowed diffusion, regulated jointly by the binding constant and the equilibrium receptor concentrations, and gradients within a bio-relevant extent of 4 mm are preserved up to 90 h. This report should inspire design strategies of biomedical or cell-culturing materials. PMID:27547643

  7. How Does Confinement Change Ligand-Receptor Binding Equilibrium? Protein Binding in Nanopores and Nanochannels.

    PubMed

    Tagliazucchi, Mario; Szleifer, Igal

    2015-10-01

    We present systematic studies for the binding of small model proteins to ligands attached to the inner walls of long nanochannels and short nanopores by polymeric tethers. Binding of proteins to specific ligands inside nanometric channels and pores leads to changes in their ionic conductance, which have been exploited in sensors that quantify the concentration of the proteins in solution. The theoretical predictions presented in this work are aimed to provide a fundamental understanding of protein binding under geometrically confined environments and to guide the design of this kind of nanochannel-based sensors. The theory predicts that the fraction of the channel volume filled by bound proteins is a nonmonotonic function of the channel radius, the length of the tethers, the surface density of the ligands and the size of the proteins. Notably, increasing the density of ligands, decreasing the size of the channel or increasing the size of the protein may lead to a decrease of the fraction of the channel volume filled by bound proteins. These results are explained from the incomplete binding of proteins to the ligands due to repulsive protein-protein and protein-ligand steric interactions. Our work suggests strategies to optimize the change in conductance due to protein binding, for example: (i) proteins much smaller than the radius of the channel may effectively block the channel if tethers of appropriate length are used, and (ii) a large decrease in conductance upon protein binding can be achieved if the channel and the protein are oppositely charged. PMID:26368839

  8. Testin, a novel binding partner of the calcium-sensing receptor, enhances receptor-mediated Rho-kinase signalling

    SciTech Connect

    Magno, Aaron L.; Ingley, Evan; Brown, Suzanne J.; Conigrave, Arthur D.; Ratajczak, Thomas; Ward, Bryan K.

    2011-09-09

    Highlights: {yields} A yeast two-hybrid screen revealed testin bound to the calcium-sensing receptor. {yields} The second zinc finger of LIM domain 1 of testin is critical for interaction. {yields} Testin bound to a region of the receptor tail important for cell signalling. {yields} Testin and receptor interaction was confirmed in mammalian (HEK293) cells. {yields} Overexpression of testin enhanced receptor-mediated Rho signalling in HEK293 cells. -- Abstract: The calcium-sensing receptor (CaR) plays an integral role in calcium homeostasis and the regulation of other cellular functions including cell proliferation and cytoskeletal organisation. The multifunctional nature of the CaR is manifested through ligand-dependent stimulation of different signalling pathways that are also regulated by partner binding proteins. Following a yeast two-hybrid library screen using the intracellular tail of the CaR as bait, we identified several novel binding partners including the focal adhesion protein, testin. Testin has not previously been shown to interact with cell surface receptors. The sites of interaction between the CaR and testin were mapped to the membrane proximal region of the receptor tail and the second zinc-finger of LIM domain 1 of testin, the integrity of which was found to be critical for the CaR-testin interaction. The CaR-testin association was confirmed in HEK293 cells by coimmunoprecipitation and confocal microscopy studies. Ectopic expression of testin in HEK293 cells stably expressing the CaR enhanced CaR-stimulated Rho activity but had no effect on CaR-stimulated ERK signalling. These results suggest an interplay between the CaR and testin in the regulation of CaR-mediated Rho signalling with possible effects on the cytoskeleton.

  9. Muscarinic receptors of the vascular bed: radioligand binding studies on bovine splenic veins.

    PubMed

    Brunner, F; Kukovetz, W R

    1986-01-01

    Despite an obvious lack of parasympathetic innervation to the spleen, pharmacological evidence suggests the presence of cholinergic receptors in isolated bovine splenic veins. We therefore studied muscarinic cholinergic binding sites in a bovine splenic vein preparation by direct radioligand binding techniques using [3H]quinuclidinyl benzilate ([3H]QNB) as radioactive probe. Saturation experiments indicated one homogeneous class of high-affinity binding sites, with a KD of 0.11 nM and a binding site density Bmax of 55 fmol/mg protein. The rate constants at 37 degrees C for formation and dissociation of the [3H]QNB receptor complex were 2.7 X 10(9) M-1 h-1 and 0.38 h-1, respectively, yielding a KD of 0.14 nM. The binding sites showed a high stereospecificity, which was evident from competition experiments with dexetimide (KI = 1.3 nM) and levetimide (KI = 4.6 microM). In competition experiments with muscarinic and nicotinic antagonists and some antidepressants, only one binding site was found, whereas with muscarinic agonists, two binding sites were detected. In the presence of 0.1 mM guanyl-imido-diphosphate, only one binding site could be identified with the muscarinic agonist carbamylcholine. The affinity of [3H]QNB, on the other hand, was slightly decreased, and Bmax values were unchanged. It is concluded that specific, saturable, high-affinity muscarinic binding sites in the bovine splenic vein have been identified and characterized that exhibit properties similar to cholinergic receptors of brain and peripheral tissues and probably mediate acetylcholine-induced relaxation of splenic veins. PMID:2427809

  10. Alterations in Hemagglutinin Receptor-Binding Specificity Accompany the Emergence of Highly Pathogenic Avian Influenza Viruses

    PubMed Central

    Mochalova, Larisa; Harder, Timm; Tuzikov, Alexander; Bovin, Nicolai; Wolff, Thorsten; Matrosovich, Mikhail; Schweiger, Brunhilde

    2015-01-01

    ABSTRACT Highly pathogenic avian influenza viruses (HPAIVs) of hemagglutinin H5 and H7 subtypes emerge after introduction of low-pathogenic avian influenza viruses (LPAIVs) from wild birds into poultry flocks, followed by subsequent circulation and evolution. The acquisition of multiple basic amino acids at the endoproteolytical cleavage site of the hemagglutinin (HA) is a molecular indicator for high pathogenicity, at least for infections of gallinaceous poultry. Apart from the well-studied significance of the multibasic HA cleavage site, there is only limited knowledge on other alterations in the HA and neuraminidase (NA) molecules associated with changes in tropism during the emergence of HPAIVs from LPAIVs. We hypothesized that changes in tropism may require alterations of the sialyloligosaccharide specificities of HA and NA. To test this hypothesis, we compared a number of LPAIVs and HPAIVs for their HA-mediated binding and NA-mediated desialylation of a set of synthetic receptor analogs, namely, α2-3-sialylated oligosaccharides. NA substrate specificity correlated with structural groups of NAs and did not correlate with pathogenic potential of the virus. In contrast, all HPAIVs differed from LPAIVs by a higher HA receptor-binding affinity toward the trisaccharides Neu5Acα2-3Galβ1-4GlcNAcβ (3′SLN) and Neu5Acα2-3Galβ1-3GlcNAcβ (SiaLec) and by the ability to discriminate between the nonfucosylated and fucosylated sialyloligosaccharides 3′SLN and Neu5Acα2-3Galβ1-4(Fucα1-3)GlcNAcβ (SiaLex), respectively. These results suggest that alteration of the receptor-binding specificity accompanies emergence of the HPAIVs from their low-pathogenic precursors. IMPORTANCE Here, we have found for the first time correlations of receptor-binding properties of the HA with a highly pathogenic phenotype of poultry viruses. Our study suggests that enhanced receptor-binding affinity of HPAIVs for a typical “poultry-like” receptor, 3′SLN, is provided by

  11. Serotonin 2A receptor agonist binding in the human brain with [11C]Cimbi-36

    PubMed Central

    Ettrup, Anders; da Cunha-Bang, Sophie; McMahon, Brenda; Lehel, Szabolcs; Dyssegaard, Agnete; Skibsted, Anine W; Jørgensen, Louise M; Hansen, Martin; Baandrup, Anders O; Bache, Søren; Svarer, Claus; Kristensen, Jesper L; Gillings, Nic; Madsen, Jacob; Knudsen, Gitte M

    2014-01-01

    [11C]Cimbi-36 was recently developed as a selective serotonin 2A (5-HT2A) receptor agonist radioligand for positron emission tomography (PET) brain imaging. Such an agonist PET radioligand may provide a novel, and more functional, measure of the serotonergic system and agonist binding is more likely than antagonist binding to reflect 5-HT levels in vivo. Here, we show data from a first-in-human clinical trial with [11C]Cimbi-36. In 29 healthy volunteers, we found high brain uptake and distribution according to 5-HT2A receptors with [11C]Cimbi-36 PET. The two-tissue compartment model using arterial input measurements provided the most optimal quantification of cerebral [11C]Cimbi-36 binding. Reference tissue modeling was feasible as it induced a negative but predictable bias in [11C]Cimbi-36 PET outcome measures. In five subjects, pretreatment with the 5-HT2A receptor antagonist ketanserin before a second PET scan significantly decreased [11C]Cimbi-36 binding in all cortical regions with no effects in cerebellum. These results confirm that [11C]Cimbi-36 binding is selective for 5-HT2A receptors in the cerebral cortex and that cerebellum is an appropriate reference tissue for quantification of 5-HT2A receptors in the human brain. Thus, we here describe [11C]Cimbi-36 as the first agonist PET radioligand to successfully image and quantify 5-HT2A receptors in the human brain. PMID:24780897

  12. Identification of the Receptor Binding Domain of the Mouse Mammary Tumor Virus Envelope Protein

    PubMed Central

    Zhang, Yuanming; Rassa, John C.; deObaldia, Maria Elena; Albritton, Lorraine M.; Ross, Susan R.

    2003-01-01

    Mouse mammary tumor virus (MMTV) is a betaretrovirus that infects rodent cells and uses mouse transferrin receptor 1 for cell entry. To characterize the interaction of MMTV with its receptor, we aligned the MMTV envelope surface (SU) protein with that of Friend murine leukemia virus (F-MLV) and identified a putative receptor-binding domain (RBD) that included a receptor binding sequence (RBS) of five amino acids and a heparin-binding domain (HBD). Mutation of the HBD reduced virus infectivity, and soluble heparan sulfate blocked infection of cells by wild-type pseudovirus. Interestingly, some but not all MMTV-like elements found in primary and cultured human breast cancer cell lines, termed h-MTVs, had sequence alterations in the putative RBS. Single substitution of one of the amino acids found in an h-MTV RBS variant in the RBD of MMTV, Phe40 to Ser, did not alter species tropism but abolished both virus binding to cells and infectivity. Neutralizing anti-SU monoclonal antibodies also recognized a glutathione S-transferase fusion protein that contained the five-amino-acid RBS region from MMTV. The critical Phe40 residue is located on a surface of the MMTV RBD model that is distant from and may be structurally more rigid than the region of F-MLV RBD that contains its critical binding site residues. This suggests that, in contrast to other murine retroviruses, binding to its receptor may result in few or no changes in MMTV envelope protein conformation. PMID:12970432

  13. Herpesvirus orthologues of CD200 bind host CD200R but not related activating receptors.

    PubMed

    Kwong, Lai Shan; Akkaya, Munir; Barclay, A Neil; Hatherley, Deborah

    2016-01-01

    Several herpesviruses have acquired the gene for the CD200 membrane protein from their hosts and can downregulate myeloid activity through interaction of this viral CD200 orthologue with the host receptor for CD200, namely CD200R, which can give inhibitory signals. This receptor is a 'paired receptor', meaning proteins related to the inhibitory CD200R are present but differ in that they can give activating signals and also give a negligible interaction with CD200. We showed that the viral orthologues e127 from rat cytomegalovirus and K14 from human herpesvirus 8 do not bind the activating CD200R-like proteins from their respective species, although they do bind the inhibitory receptors. It is thought that the activating receptors have evolved in response to pathogens targeting the inhibitory receptor. In this case, the CD200 orthologue is not trapped by the activating receptor but has maintained the specificity of the host from which it was acquired, suggesting that the activating members of the CD200R family have evolved to protect against a different pathogen. PMID:26538068

  14. Metal binding 'finger' structures in the glucocorticoid receptor defined by site-directed mutagenesis.

    PubMed Central

    Severne, Y; Wieland, S; Schaffner, W; Rusconi, S

    1988-01-01

    The glucocorticoid receptor and the other members of the steroid receptor super-family share a highly conserved, cysteine-rich region which coincides with the DNA binding/transactivating domain. It has been postulated that this region is folded into two 'zinc finger' structures, similar to those originally reported for the transcription factor TFIIIA. The first potential finger domain contains four conserved cysteines and one conserved histidine, while the second contains five conserved cysteines. Using site-directed mutagenesis, we have analysed the consequences of altering the proposed finger-like structures. Our results show that most of the mutations affecting the conserved cysteines result in a total loss of glucocorticoid receptor function. In one important exception, however, a conserved cysteine (Cys500) is dispensable for glucocorticoid receptor activity and therefore cannot be involved in complexing a metal ion to form a finger structure. Moreover, the replacement of either Cys476 or Cys482 by His residues maintains partial in vivo activity of the glucocorticoid receptor, while their exchange for an alanine or serine residue, respectively, eliminates receptor function. These results support, at a genetic level, the involvement of cysteines of the glucocorticoid receptor DNA binding domain in metal ion complexation and define the candidate residues involved in such coordination. Images PMID:3191912

  15. Regulation of formyl peptide receptor binding to rabbit neutrophil plasma membranes. Use of monovalent cations, guanine nucleotides, and bacterial toxins to discriminate among different states of the receptor

    SciTech Connect

    Feltner, D.E.; Marasco, W.A.

    1989-06-01

    The regulation by monovalent cations, guanine nucleotides, and bacterial toxins of (3H)FMLP binding to rabbit neutrophil plasma membranes was studied by using dissociation techniques to identify regulatory effects on separate receptor states. Under conditions of low receptor occupancy (1 nM (3H)FMLP) and in both Na+ and K+ buffers, dissociation is heterogenous, displaying two distinct, statistically significant off rates. (3H)FMLP binding was enhanced by substituting other monovalent cations for Na+. In particular, enhanced binding in the presence of K+ relative to Na+ was caused by additional binding to both rapidly and slowly dissociating receptors. Three receptor dissociation rates, two of which appear to correspond to the two affinity states detected in equilibrium binding studies, were defined by specific GTP and pertussis toxin (PT) treatments. Neither GTP, nor PT or cholera toxins (CT) had an effect on the rate of dissociation of (3H)FMLP from the rapidly dissociating form of the receptor. Both 100 microM GTP and PT treatments increased the percentage of rapidly dissociating receptors, correspondingly decreasing the percentage of slowly dissociating receptors. The observed changes in the rapidly and slowly dissociating receptors after GTP, PT, and CT treatments were caused by an absolute decrease in the amount of binding to the slowly dissociating receptors. However, complete inhibition of slowly dissociating receptor binding by GTP, PT, or both was never observed. Both GTP and PT treatments, but not CT treatment, increased by two-fold the rate of dissociation of 1 nM (3H)FMLP from the slowly dissociating form of the receptor, resulting in a third dissociation rate. Thus, slowly dissociating receptors comprise two different receptor states, a G protein-associated guanine nucleotide and PT-sensitive state and a guanine nucleotide-insensitive state.

  16. FKBP12.6 binding of ryanodine receptors carrying mutations associated with arrhythmogenic cardiac disease.

    PubMed

    Zissimopoulos, Spyros; Thomas, N Lowri; Jamaluddin, Wan W; Lai, F Anthony

    2009-04-15

    In the present paper we show that distinct human RyR2 (ryanodine receptor type 2) inherited mutations expressed in mammalian cells exhibit either unaltered or increased FKBP12.6 (12.6 kDa FK506-binding protein) binding compared with the wild-type. Oxidizing conditions result in decreased FKBP12.6 binding, but to the same extent as for the wild-type. Our findings suggest that FKBP12.6 regulation of RyR2 is unlikely to be the primary defect in inherited arrhythmogenic cardiac disease. PMID:19226252

  17. Clostridium perfringens epsilon toxin H149A mutant as a platform for receptor binding studies

    PubMed Central

    Bokori-Brown, Monika; Kokkinidou, Maria C; Savva, Christos G; Fernandes da Costa, Sérgio; Naylor, Claire E; Cole, Ambrose R; Moss, David S; Basak, Ajit K; Titball, Richard W

    2013-01-01

    Clostridium perfringens epsilon toxin (Etx) is a pore-forming toxin responsible for a severe and rapidly fatal enterotoxemia of ruminants. The toxin is classified as a category B bioterrorism agent by the U.S. Government Centres for Disease Control and Prevention (CDC), making work with recombinant toxin difficult. To reduce the hazard posed by work with recombinant Etx, we have used a variant of Etx that contains a H149A mutation (Etx-H149A), previously reported to have reduced, but not abolished, toxicity. The three-dimensional structure of H149A prototoxin shows that the H149A mutation in domain III does not affect organisation of the putative receptor binding loops in domain I of the toxin. Surface exposed tyrosine residues in domain I of Etx-H149A (Y16, Y20, Y29, Y30, Y36 and Y196) were mutated to alanine and mutants Y30A and Y196A showed significantly reduced binding to MDCK.2 cells relative to Etx-H149A that correlated with their reduced cytotoxic activity. Thus, our study confirms the role of surface exposed tyrosine residues in domain I of Etx in binding to MDCK cells and the suitability of Etx-H149A for further receptor binding studies. In contrast, binding of all of the tyrosine mutants to ACHN cells was similar to that of Etx-H149A, suggesting that Etx can recognise different cell surface receptors. In support of this, the crystal structure of Etx-H149A identified a glycan (β-octyl-glucoside) binding site in domain III of Etx-H149A, which may be a second receptor binding site. These findings have important implications for developing strategies designed to neutralise toxin activity. PMID:23504825

  18. Changes in angiotensin II receptor bindings in the hen neurohypophysis before and after oviposition.

    PubMed

    Takahashi, T; Nozaki, Y; Nakagawa-Mizuyachi, K; Nakayama, H; Kawashima, M

    2011-11-01

    The present study was performed to elucidate whether the angiotensin II (ANG II) receptor exists in the plasma membrane fraction of the neurohypophysis in hens, to estimate the time of action of ANG II on the neurohypophysis before and after oviposition, and to examine relationships between the action of ANG II on the neurohypophysis and those of estrogen and prostaglandin F(2α) (PGF(2α)) in relation to arginine vasotocin (AVT) release. The specific binding had a binding specificity to chicken ANG II (cANG II), reversibility, and saturation in the [(125)I]cANG II binding assay. Scatchard analysis revealed that the binding sites are of a single class. The equilibrium dissociation constant (K(d)) obtained by kinetic analysis and Scatchard analysis suggested a high affinity, and the maximum binding capacity (B(max)) obtained by Scatchard analysis suggested a limited capacity. These results suggest that an ANG II receptor exists in the neurohypophysis of hens. The K(d) and the B(max) value was significantly smaller in laying hens than in nonlaying hens, which suggests that bindings of the cANG II receptor change, depending on the difference in laying condition. Values of the K(d) and the B(max) decreased approximately 15 min before oviposition in laying hens, and decreased 1 h after an intramuscular injection of estradiol-17β and 5 min after an intravenous injection of cANG II in nonlaying hens. The amount of specific binding of PGF(2α) receptor in the neurohypophysis also decreased and AVT concentration in blood increased after the cANG II injection. It seems likely that the action of cANG II in the neurohypophysis increases due to the effect of estrogen approximately 15 min before oviposition, and the cANG II action stimulates AVT release through the increase in the PGF(2α) action in this tissue. PMID:22010242

  19. Clostridium perfringens epsilon toxin H149A mutant as a platform for receptor binding studies.

    PubMed

    Bokori-Brown, Monika; Kokkinidou, Maria C; Savva, Christos G; Fernandes da Costa, Sérgio; Naylor, Claire E; Cole, Ambrose R; Moss, David S; Basak, Ajit K; Titball, Richard W

    2013-05-01

    Clostridium perfringens epsilon toxin (Etx) is a pore-forming toxin responsible for a severe and rapidly fatal enterotoxemia of ruminants. The toxin is classified as a category B bioterrorism agent by the U.S. Government Centres for Disease Control and Prevention (CDC), making work with recombinant toxin difficult. To reduce the hazard posed by work with recombinant Etx, we have used a variant of Etx that contains a H149A mutation (Etx-H149A), previously reported to have reduced, but not abolished, toxicity. The three-dimensional structure of H149A prototoxin shows that the H149A mutation in domain III does not affect organisation of the putative receptor binding loops in domain I of the toxin. Surface exposed tyrosine residues in domain I of Etx-H149A (Y16, Y20, Y29, Y30, Y36 and Y196) were mutated to alanine and mutants Y30A and Y196A showed significantly reduced binding to MDCK.2 cells relative to Etx-H149A that correlated with their reduced cytotoxic activity. Thus, our study confirms the role of surface exposed tyrosine residues in domain I of Etx in binding to MDCK cells and the suitability of Etx-H149A for further receptor binding studies. In contrast, binding of all of the tyrosine mutants to ACHN cells was similar to that of Etx-H149A, suggesting that Etx can recognise different cell surface receptors. In support of this, the crystal structure of Etx-H149A identified a glycan (β-octyl-glucoside) binding site in domain III of Etx-H149A, which may be a second receptor binding site. These findings have important implications for developing strategies designed to neutralise toxin activity. PMID:23504825

  20. Managing Tight Binding Receptors for New Separations Technologies

    SciTech Connect

    Busch, Daryl H.; Givens, Richard S.

    2004-06-01

    This report summarizes work for the 12 months from 6/15/03 to 6/14/04, within a 42-month funding period, including a 1-year no-cost extension. This project aims at greatly expanding the applications of the strongest ligands in separations technologies through two major goals: (1) The Soil Poultice--a program to develop a new technology that can make good use of the slow equilibration of the strongest ligands, and (2) Switch-binding and Release--a program to design fast molecular-switch pathways to replace the very slow ligand/metal ion equilibrations.

  1. Comparison of nicotinic receptor binding and biotransformation of coniine in the rat and chick.

    PubMed

    Forsyth, C S; Speth, R C; Wecker, L; Galey, F D; Frank, A A

    1996-12-31

    Coniine, an alkaloid from Conium maculatum (poison hemlock), is a known teratogen in many domestic species with maternal ingestion resulting in arthrogryposis of the offspring. We have previously shown that rats are not susceptible and rabbits only weakly susceptible to coniine-induced arthrogryposis. However, the chick embryo does provide a reproducible laboratory animal model of coniine-induced teratogenesis. The reason for this cross-species variation is unknown. The purpose of this study was to evaluate coniine binding to nicotinic receptors and to measure coniine metabolism in vitro between susceptible and non-susceptible species. Using the chick model, neither the peripheral nicotinic receptor antagonist d-tubocurarine chloride nor the central nicotinic receptor antagonist trimethaphan camsylate blocked the teratogenesis or lethality of 1.5% coniine (50 microliters/egg). Trimethaphan camsylate enhanced coniine-induced lethality in a dose-dependent manner. Neither nicotinic receptor blocker prevented nicotine sulfate-induced malformations but d-tubocurarine chloride did block lethality in a dose-dependent manner. Competition by coniine for [125I]-alpha-bungarotoxin to nicotinic receptors isolated from adult rat diaphragm and chick thigh muscle and competition by coniine for [3H]-cytisine to receptors from rat and chick brain were used to assess coniine binding to nicotinic receptors. The IC50 for coniine in rat diaphragm was 314 microM while that for chick leg muscle was 70 microM. For neuronal nicotinic receptors, the IC50s of coniine for maternal rat brain, fetal rat brain, and chick brain were 1100 microM, 820 microM, and 270 microM, respectively. There were no differences in coniine biotransformation in vitro by microsomes from rat or chick livers. Differences in apparent affinity of coniine for nicotinic receptors or differences in the quantity of the nicotinic receptor between the rat and chick may explain, in part, the differences in susceptibility of

  2. Receptor binding characteristics of tritiated misoprostol free acid in enriched canine parietal cells

    SciTech Connect

    Tsai, B.S.; Kessler, L.K.; Conway, R.G.; Schoenhard, G.; Stolzenbach, J.; Collins, P.; Kramer, S.; Butchko, G.M.; Bauer, R.F.

    1986-03-01

    Misoprostol (MISO) is a synthetic prostaglandin (PG) E/sub 1/ methyl ester with gastric antisecretory and mucosal protective properties. MISO is rapidly de-esterified to misoprostol free acid (MISO-FA) in enriched (65-80%) canine parietal cell preparations. Both forms appear to possess equivalent antisecretory potency and (/sup 3/H) MISO-FA is stable in these preparations. (/sup 3/H) MISO-FA binding was reversible and saturable with a maximal number of binding sites estimated at 8138 +/- 1893 per cell. The scatchard plot was linear, indicating a single, high affinity receptor population with a dissociation constant of 11 +/- 2.6 x 10/sup -9/ M. Unlabeled MISO-FA and MISO were equally potent inhibitors (IC/sub 50/, approx. 10/sup -8/M) of (/sup 3/H) MISO-FA binding. At 10/sup -5/ M, the dinor and tetranor ..beta..-oxidation metabolites of MISO were weak binding inhibitors. Strict stereospecific binding was shown by MISO stereoisomers, and the 11R, 16S isomer was most active. Both PGE/sub 1/ and 16,16 dimethyl PGE/sub 2/ were potent binding inhibitors, but PGF/sub 1/..cap alpha.. (10/sup -6/ M) and Hoe 892 (10/sup -5/ M), a stable PGI/sub 2/ analog, were weak inhibitors. Neither histamine or cimetidine competed for binding sites. These data indicate the presence of stereospecific E-type prostaglandin receptors in enriched canine parietal cell preparations.

  3. Regulation of CYP3A4 by pregnane X receptor: The role of nuclear receptors competing for response element binding

    SciTech Connect

    Istrate, Monica A.; Nussler, Andreas K.; Eichelbaum, Michel; Burk, Oliver

    2010-03-19

    Induction of the major drug metabolizing enzyme CYP3A4 by xenobiotics contributes to the pronounced interindividual variability of its expression and often results in clinically relevant drug-drug interactions. It is mainly mediated by PXR, which regulates CYP3A4 expression by binding to several specific elements in the 5' upstream regulatory region of the gene. Induction itself shows a marked interindividual variability, whose underlying determinants are only partly understood. In this study, we investigated the role of nuclear receptor binding to PXR response elements in CYP3A4, as a potential non-genetic mechanism contributing to interindividual variability of induction. By in vitro DNA binding experiments, we showed that several nuclear receptors bind efficiently to the proximal promoter ER6 and distal xenobiotic-responsive enhancer module DR3 motifs. TR{alpha}1, TR{beta}1, COUP-TFI, and COUP-TFII further demonstrated dose-dependent repression of PXR-mediated CYP3A4 enhancer/promoter reporter activity in transient transfection in the presence and absence of the PXR inducer rifampin, while VDR showed this effect only in the absence of treatment. By combining functional in vitro characterization with hepatic expression analysis, we predict that TR{alpha}1, TR{beta}1, COUP-TFI, and COUP-TFII show a strong potential for the repression of PXR-mediated activation of CYP3A4 in vivo. In summary, our results demonstrate that nuclear receptor binding to PXR response elements interferes with PXR-mediated expression and induction of CYP3A4 and thereby contributes to the interindividual variability of induction.

  4. Modulation of agonist binding to human dopamine receptor subtypes by L-prolyl-L-leucyl-glycinamide and a peptidomimetic analog.

    PubMed

    Verma, Vaneeta; Mann, Amandeep; Costain, Willard; Pontoriero, Giuseppe; Castellano, Jessica M; Skoblenick, Kevin; Gupta, Suresh K; Pristupa, Zdenek; Niznik, Hyman B; Johnson, Rodney L; Nair, Venugopalan D; Mishra, Ram K

    2005-12-01

    The present study was undertaken to investigate the role of the hypothalamic tripeptide L-prolyl-L-leucyl-glycinamide (PLG) and its conformationally constrained analog 3(R)-[(2(S)-pyrrolidinylcarbonyl)amino]-2-oxo-1-pyrrolidineacetamide (PAOPA) in modulating agonist binding to human dopamine (DA) receptor subtypes using human neuroblastoma SH-SY5Y cells stably transfected with respective cDNAs. Both PLG and PAOPA enhanced agonist [3H]N-propylnorapomorphine (NPA) and [3H]quinpirole binding in a dose-dependent manner to the DA D2L,D2S, and D4 receptors. However, agonist binding to the D1 and D3 receptors and antagonist binding to the D2L receptors by PLG were not significantly affected. Scatchard analysis of [3H]NPA binding to membranes in the presence of PLG revealed a significant increase in affinity of the agonist binding sites for the D2L, D2S, and D4 receptors. Analysis of agonist/antagonist competition curves revealed that PLG and PAOPA increased the population and affinity of the high-affinity form of the D2L receptor and attenuated guanosine 5'-(beta,gamma-imido)-triphosphate-induced inhibition of high-affinity agonist binding sites for the DA D2L receptor. Furthermore, direct NPA binding with D2L cell membranes pretreated with suramin, a compound that can uncouple receptor/G protein complexes, and incubated with and without DA showed that both PLG and PAOPA had only increased agonist binding in membranes pretreated with both suramin and DA, suggesting that PLG requires the D2L receptor/G protein complex to increase agonist binding. These results suggest that PLG possibly modulates DA D2S, D2L, and D4 receptors in an allosteric manner and that the coupling of D2 receptors to the G protein is essential for this modulation to occur. PMID:16126839

  5. Quail carry sialic acid receptors compatible with binding of avian and human influenza viruses

    PubMed Central

    Wan, Hongquan; Perez, Daniel R.

    2016-01-01

    There is growing evidence that some terrestrial avian species may play a role in the genesis of influenza viruses with pandemic potential. In the present investigation, we examined whether quail, a widespread-farmed poultry, possess the proper characteristics for serving as an intermediate host for the zoonotic transmission of influenza viruses. Using a lectin-based staining based on specific agglutinins, we found that, in addition to the presence of sialic acid α2,3-galactose (SAα2,3-gal) linked receptors, there are abundant sialic acid α2,6-galactose (SAα2,6-gal) linked receptors in quail trachea and intestine. The presence of abundant SAα2,6-gal-linked receptors explains, at least in part, the circulation of avian influenza viruses with human-like receptor specificity in quail. In quail trachea, SAα2,3-gal linked receptors are present primarily in non-ciliated cells, while SAα2,6-gal linked receptors are localized predominantly on the surface of ciliated cells. In quail intestine, both types of receptors were found on epithelial cells as well as in crypts. In a solid-phase overlay binding assay, both avian and human influenza viruses bind to plasma membranes prepared from epithelial cells of quail trachea and intestine, strongly suggesting that these receptors are functional for binding of influenza viruses from different species. Together with previous observations, these results are consistent with the notion that quail could provide an environment for the spread of reassortants between avian and human influenza viruses, thus acting as a potential intermediate host. PMID:16325879

  6. Genetic variation in cholinergic muscarinic-2 receptor gene modulates M2 receptor binding in vivo and accounts for reduced binding in bipolar disorder.

    PubMed

    Cannon, D M; Klaver, J K; Gandhi, S K; Solorio, G; Peck, S A; Erickson, K; Akula, N; Savitz, J; Eckelman, W C; Furey, M L; Sahakian, B J; McMahon, F J; Drevets, W C

    2011-04-01

    Genetic variation in the cholinergic muscarinic-2 (M(2)) receptor gene (CHRM2) has been associated with the risk for developing depression. We previously reported that M(2)-receptor distribution volume (V(T)) was reduced in depressed subjects with bipolar disorder (BD) relative to depressed subjects with major depressive disorder (MDD) and healthy controls (HCs). In this study, we investigated the effects of six single-nucleotide polymorphisms (SNPs) for CHRM2 on M(2)-receptor binding to test the hypotheses that genetic variation in CHRM2 influences M(2)-receptor binding and that a CHRM2 polymorphism underlies the deficits in M(2)-receptor V(T) observed in BD. The M(2)-receptor V(T) was measured using positron emission tomography and [(18)F]FP-TZTP in unmedicated, depressed subjects with BD (n=16) or MDD (n=24) and HCs (n=25), and the effect of genotype on V(T) was assessed. In the controls, one SNP (with identifier rs324650, in which the ancestral allele adenine (A) is replaced with one or two copies of thymine (T), showed a significant allelic effect on V(T) in the pregenual and subgenual anterior cingulate cortices in the direction AAreceptor V(T) in BD is associated with genetic variation within CHRM2. The differential impact of the M(2)-receptor polymorphism at rs324650 in the BD and HC samples suggests interactive effects with an unidentified vulnerability factor for BD. PMID:20351719

  7. Binding of the cyclic AMP receptor protein of Escherichia coli to RNA polymerase.

    PubMed Central

    Pinkney, M; Hoggett, J G

    1988-01-01

    Fluorescence polarization studies were used to study the interaction of a fluorescein-labelled conjugate of the Escherichia coli cyclic AMP receptor protein (F-CRP) and RNA polymerase. Under conditions of physiological ionic strength, F-CRP binds to RNA polymerase holoenzyme in a cyclic AMP-dependent manner; the dissociation constant was about 3 microM in the presence of cyclic AMP and about 100 microM in its absence. Binding to core RNA polymerase under the same conditions was weak (Kdiss. approx. 80-100 microM) and independent of cyclic AMP. Competition experiments established that native CRP and F-CRP compete for the same binding site on RNA polymerase holoenzyme and that the native protein binds about 3 times more strongly than does F-CRP. Analytical ultracentrifuge studies showed that CRP binds predominantly to the monomeric rather than the dimeric form of RNA polymerase. PMID:2839152

  8. Binding of the cyclic AMP receptor protein of Escherichia coli to RNA polymerase.

    PubMed

    Pinkney, M; Hoggett, J G

    1988-03-15

    Fluorescence polarization studies were used to study the interaction of a fluorescein-labelled conjugate of the Escherichia coli cyclic AMP receptor protein (F-CRP) and RNA polymerase. Under conditions of physiological ionic strength, F-CRP binds to RNA polymerase holoenzyme in a cyclic AMP-dependent manner; the dissociation constant was about 3 microM in the presence of cyclic AMP and about 100 microM in its absence. Binding to core RNA polymerase under the same conditions was weak (Kdiss. approx. 80-100 microM) and independent of cyclic AMP. Competition experiments established that native CRP and F-CRP compete for the same binding site on RNA polymerase holoenzyme and that the native protein binds about 3 times more strongly than does F-CRP. Analytical ultracentrifuge studies showed that CRP binds predominantly to the monomeric rather than the dimeric form of RNA polymerase. PMID:2839152

  9. Glycan-Receptor Binding of the Influenza A Virus H7N9 Hemagglutinin

    PubMed Central

    Tharakaraman, Kannan; Jayaraman, Akila; Raman, Rahul; Viswanathan, Karthik; Stebbins, Nathan W.; Johnson, David; Shriver, Zachary; Sasisekharan, V.; Sasisekharan, Ram

    2013-01-01

    SUMMARY The advent of H7N9, in early 2013, is of concern for a number of reasons, including its capability to infect humans, the etiology of infection is unclear, and that, broadly the human population does not have pre-existing immunity to the H7 subtype. Earlier sequence analyses of H7N9 hemagglutinin (HA) point to amino acid changes that predicted human receptor binding and impinge on the antigenic characteristics of the HA. Herein we report that the H7N9 HA shows limited binding to human receptors; however, should a single amino acid mutation occur, this would result in structural changes within the receptor binding site that allow for extensive binding to human receptors present in upper respiratory tract. Furthermore, a subset of the H7N9 HA sequences demarcating coevolving amino acids appear to be in the antigenic regions of H7, which in turn could impact effectiveness of the current WHO recommended pre-pandemic H7 vaccines. PMID:23746830

  10. MODELING THE EFFECTS OF FLEXIBILITY ON THE BINDING OF ENVIRONMENTAL ESTROGENS TO THE ESTROGEN RECEPTOR

    EPA Science Inventory

    Modeling the effects of flexibility on the binding of environmental estrogens to the estrogen receptor
    There are many reports of environmental endocrine disruption in the literature, yet it has been difficult to identify the specific chemicals responsible for these effects. ...

  11. NATURE OF BINDING INTERACTION OF SELECTED CHEMICALS WITH RAT ESTROGEN RECEPTORS

    EPA Science Inventory

    The US EPA is currently validating a rat uterine estrogen receptor (ER) binding assay as part of the Tier 1 Screening Battery for the Endocrine Disruptor Program. An eventual goal is to use interactive data to create computerized structure-activity models. However, more informati...

  12. Nature of the binding interaction for 50 structurally diverse chemicals with rat estrogen receptors

    EPA Science Inventory

    This study was conducted to characterize the estrogen receptor (ER)-binding affinities of 50 chemicals selected from among the high production volume chemicals under the U.S. EPA's (U.S. Environmental Protection Agency's) Toxic Substances Control Act inventory. The chemicals were...

  13. Variable ligand- and receptor-binding hot spots in key strains of influenza neuraminidase

    PubMed Central

    Votapka, Lane; Demir, Özlem; Swift, Robert V; Walker, Ross C; Amaro, Rommie E

    2012-01-01

    Influenza A continues to be a major public health concern due to its ability to cause epidemic and pandemic disease outbreaks in humans. Computational investigations of structural dynamics of the major influenza glycoproteins, especially the neuraminidase (NA) enzyme, are able to provide key insights beyond what is currently accessible with standard experimental techniques. In particular, all-atom molecular dynamics simulations reveal the varying degrees of flexibility for such enzymes. Here we present an analysis of the relative flexibility of the ligand- and receptor-binding area of three key strains of influenza A: highly pathogenic H5N1, the 2009 pandemic H1N1, and a human N2 strain. Through computational solvent mapping, we investigate the various ligand- and receptor-binding “hot spots” that exist on the surface of NA which interacts with both sialic acid receptors on the host cells and antiviral drugs. This analysis suggests that the variable cavities found in the different strains and their corresponding capacities to bind ligand functional groups may play an important role in the ability of NA to form competent reaction encounter complexes with other species of interest, including antiviral drugs, sialic acid receptors on the host cell surface, and the hemagglutinin protein. Such considerations may be especially useful for the prediction of how such complexes form and with what binding capacity. PMID:22872804

  14. Possible differences in modes of agonist and antagonist binding at human 5-HT6 receptors.

    PubMed

    Pullagurla, Manik R; Westkaemper, Richard B; Glennon, Richard A

    2004-09-01

    A graphics model of the human 5-HT6 receptor was constructed and automated docking studies were performed. The model suggests that 5-HT6 antagonist arylsulfonyltryptamines might bind differently than that of the agonist serotonin. Furthermore, the model explains many of the empirical results from our previous structure-affinity studies. PMID:15357994

  15. Alpha-1 adrenergic receptor: Binding and phosphoinositide breakdown in human myometrium

    SciTech Connect

    Breuiller-Fouche, M.; Doualla-Bell Kotto Maka, F.; Geny, B.; Ferre, F. )

    1991-07-01

    Alpha-1 adrenergic receptors were examined in both inner and outer layers of human pregnant myometrium using radioligand binding of (3H)prazosin. (3H)prazosin bound rapidly and reversibly to a single class of high affinity binding sites in myometrial membrane preparations. Scatchard analysis gave similar values of equilibrium dissociation constants in both myometrial layers. In contrast, more alpha-1 adrenergic receptors were detected in the outer layer than in the inner layer. Antagonist inhibited (3H)prazosin binding with an order of potency of prazosin greater than phentolamine greater than idazoxan. Competition experiments have also revealed that a stable guanine nucleotide decreases the apparent affinity of norepinephrine for myometrial (3H)prazosin binding sites. The functional status of these alpha-1 adrenergic receptors was also assessed by measuring the norepinephrine-induced accumulation of inositol phosphates in myometrial tissue. Norepinephrine produced a concentration-dependent accumulation of inositol phosphates in both myometrial layers. However, norepinephrine-induced increases in inositol 1,4,5-triphosphate were only observed in the outer layer. These results indicate that alpha-1 adrenergic receptors in human myometrium at the end of pregnancy are linked to phosphoinositide hydrolysis and that this response occurs mainly in the outer layer.

  16. The effect of hyperthyroidism on opiate receptor binding and pain sensitivity

    SciTech Connect

    Edmondson, E.A. ); Bonnet, K.A.; Friedhoff, A.J. )

    1990-01-01

    This study was conducted to determine the effect of thyroid hormone on opiate receptor ligand-binding and pain sensitivity. Specific opiate receptor-binding was performed on brain homogenates of Swiss-Webster mice. There was a significant increase in {sup 3}H-naloxone-binding in thyroxine-fed subjects (hyperthyroid). Scatchard analysis revealed that the number of opiate receptors was increased in hyperthyroid mice (Bmax = 0.238 nM for hyperthyroid samples vs. 0.174 nM for controls). Binding affinity was unaffected (Kd = 1.54 nM for hyperthyroid and 1.58 nM for control samples). When mice were subjected to hotplate stimulation, the hyperthyroid mice were noted to be more sensitive as judged by pain aversion response latencies which were half that of control animals. After morphine administration, the hyperthyroid animals demonstrated a shorter duration of analgesia. These findings demonstrate that thyroxine increases opiate receptor number and native pain sensitivity but decreases the duration of analgesia from morphine.

  17. BINDING OF POLYCHLORINATED BIPHENYLS CLASSIFIED AS EITHER PHENOBARBITONE-, 3-METHYLCHOLANTHRENE- OR MIXED-TYPE INDUCERS TO CYTOSOLIC AH RECEPTOR

    EPA Science Inventory

    It has been postulated that reversible, high-affinity binding of 3-methyl-cholanthrene (MC)-type inducers to a receptor protein (the Ah receptor) in hepatic cytosol is essential for induction of aryl hydrocarbon hydroxylase (AHH) enzymic activity. To test this postulate, the bind...

  18. Identification of ciliary neurotrophic factor (CNTF) residues essential for leukemia inhibitory factor receptor binding and generation of CNTF receptor antagonists.

    PubMed Central

    Di Marco, A; Gloaguen, I; Graziani, R; Paonessa, G; Saggio, I; Hudson, K R; Laufer, R

    1996-01-01

    Ciliary neurotrophic factor (CNTF) drives the sequential assembly of a receptor complex containing the ligand-specific alpha-receptor subunit (CNTFR alpha) and the signal transducers gp130 and leukemia inhibitory factor receptor-beta (LIFR). The D1 structural motif, located at the beginning of the D-helix of human CNTF, contains two amino acid residues, F152 and K155, which are conserved among all cytokines that signal through LIFR. The functional importance of these residues was assessed by alanine mutagenesis. Substitution of either F152 or K155 with alanine was found to specifically inhibit cytokine interaction with LIFR without affecting binding to CNTFR alpha or gp130. The resulting variants behaved as partial agonists with varying degrees of residual bioactivity in different cell-based assays. Simultaneous alanine substitution of both F152 and K155 totally abolished biological activity. Combining these mutations with amino acid substitutions in the D-helix, which enhance binding affinity for the CNTFR alpha, gave rise to a potent competitive CNTF receptor antagonist. This protein constitutes a new tool for studies of CNTF function in normal physiology and disease. Images Fig. 1 Fig. 6 PMID:8799186

  19. Binding specificity of Bacillus thuringiensis Cry1Aa for purified, native Bombyx mori aminopeptidase N and cadherin-like receptors

    PubMed Central

    Jenkins, Jeremy L; Dean, Donald H

    2001-01-01

    Background To better understand the molecular interactions of Bt toxins with non-target insects, we have examined the real-time binding specificity and affinity of Cry1 toxins to native silkworm (Bombyx mori) midgut receptors. Previous studies on B. mori receptors utilized brush border membrane vesicles or purifed receptors in blot-type assays. Results The Bombyx mori (silkworm) aminopeptidase N (APN) and cadherin-like receptors for Bacillus thuringiensis insecticidal Cry1Aa toxin were purified and their real-time binding affinities for Cry toxins were examined by surface plasmon resonance. Cry1Ab and Cry1Ac toxins did not bind to the immobilized native receptors, correlating with their low toxicities. Cry1Aa displayed moderate affinity for B. mori APN (75 nM), and unusually tight binding to the cadherin-like receptor (2.6 nM), which results from slow dissociation rates. The binding of a hybrid toxin (Aa/Aa/Ac) was identical to Cry1Aa. Conclusions These results indicate domain II of Cry1Aa is essential for binding to native B. mori receptors and for toxicity. Moreover, the high-affinity binding of Cry1Aa to native cadherin-like receptor emphasizes the importance of this receptor class for Bt toxin research. PMID:11722800

  20. Role of receptor binding specificity in influenza A virus transmission and pathogenesis

    PubMed Central

    de Graaf, Miranda; Fouchier, Ron A M

    2014-01-01

    The recent emergence of a novel avian A/H7N9 influenza virus in poultry and humans in China, as well as laboratory studies on adaptation and transmission of avian A/H5N1 influenza viruses, has shed new light on influenza virus adaptation to mammals. One of the biological traits required for animal influenza viruses to cross the species barrier that received considerable attention in animal model studies, in vitro assays, and structural analyses is receptor binding specificity. Sialylated glycans present on the apical surface of host cells can function as receptors for the influenza virus hemagglutinin (HA) protein. Avian and human influenza viruses typically have a different sialic acid (SA)-binding preference and only few amino acid changes in the HA protein can cause a switch from avian to human receptor specificity. Recent experiments using glycan arrays, virus histochemistry, animal models, and structural analyses of HA have added a wealth of knowledge on receptor binding specificity. Here, we review recent data on the interaction between influenza virus HA and SA receptors of the host, and the impact on virus host range, pathogenesis, and transmission. Remaining challenges and future research priorities are also discussed. PMID:24668228

  1. New insights into the stereochemical requirements of the bradykinin B1 receptor antagonists binding.

    PubMed

    Lupala, Cecylia S; Gomez-Gutierrez, Patricia; Perez, Juan J

    2016-07-01

    Bradykinin (BK) is a nonapeptide involved in several pathophysiological conditions including among others, septic and haemorrhagic shock, anaphylaxis, arthritis, rhinitis, asthma, inflammatory bowel disease. Accordingly, BK antagonists have long been sought after for therapeutic intervention. Action of BK is mediated through two different G-protein coupled receptors known as B1 and B2. Although there are several B1 antagonists reported in literature, their pharmacological profile is not yet optimal so that new molecules need to be discovered. In the present work we have constructed an atomistic model of the B1 receptor and docked diverse available non-peptide antagonists in order to get a deeper insight into the structure-activity relationships involving binding to this receptor. The model was constructed by homology modeling using the chemokine CXC4 and bovine rhodopsin receptors as template. The model was further refined using molecular dynamics for 600ns with the protein embedded in a POPC bilayer. From the refinement process we obtained an average structure that was used for docking studies using the Glide software. Antagonists selected for the docking studies include Compound 11, Compound 12, Chroman28, SSR240612, NPV-SAA164 and PS020990. The results of the docking study underline the role of specific receptor residues in ligand binding. The results of this study permitted to define a pharmacophore that describes the stereochemical requirements of antagonist binding, and can be used for the discovery of new compounds. PMID:27469392

  2. DNA binding triggers tetramerization of the glucocorticoid receptor in live cells.

    PubMed

    Presman, Diego M; Ganguly, Sourav; Schiltz, R Louis; Johnson, Thomas A; Karpova, Tatiana S; Hager, Gordon L

    2016-07-19

    Transcription factors dynamically bind to chromatin and are essential for the regulation of genes. Although a large percentage of these proteins appear to self-associate to form dimers or higher order oligomers, the stoichiometry of DNA-bound transcription factors has been poorly characterized in vivo. The glucocorticoid receptor (GR) is a ligand-regulated transcription factor widely believed to act as a dimer or a monomer. Using a unique set of imaging techniques coupled with a cell line containing an array of DNA binding elements, we show that GR is predominantly a tetramer when bound to its target DNA. We find that DNA binding triggers an interdomain allosteric regulation within the GR, leading to tetramerization. We therefore propose that dynamic changes in GR stoichiometry represent a previously unidentified level of regulation in steroid receptor activation. Quaternary structure analysis of other members of the steroid receptor family (estrogen, androgen, and progesterone receptors) reveals variation in oligomerization states among this family of transcription factors. Because GR's oligomerization state has been implicated in therapy outcome, our findings open new doors to the rational design of novel GR ligands and redefine the quaternary structure of steroid receptors. PMID:27382178

  3. Mood stabilizer treatment increases serotonin type 1A receptor binding in bipolar depression

    PubMed Central

    Nugent, Allison C; Carlson, Paul J; Bain, Earle E; Eckelman, William; Herscovitch, Peter; Manji, Husseini; Zarate, Carlos A; Drevets, Wayne C

    2013-01-01

    Abnormal serotonin type 1A (5-HT1A) receptor function and binding have been implicated in the pathophysiology of mood disorders. Preclinical studies have consistently shown that stress decreases the gene expression of 5-HT1A receptors in experimental animals, and that the associated increase in hormone secretion plays a crucial role in mediating this effect. Chronic administration of the mood stabilizers lithium and divalproex (valproate semisodium) reduces glucocorticoid signaling and function in the hippocampus. Lithium has further been shown to enhance 5-HT1A receptor function. To assess whether these effects translate to human subject with bipolar disorder (BD), positron emission tomography (PET) and [18F]trans-4-fluoro-N-(2-[4-(2-methoxyphenyl) piperazino]-ethyl)-N-(2-pyridyl) cyclohexanecarboxamide ([18F]FCWAY) were used to acquire PET images of 5-HT1A receptor binding in 10 subjects with BD, before and after treatment with lithium or divalproex. Mean 5-HT1A binding potential (BPP) significantly increased following mood stabilizer treatment, most prominently in the mesiotemporal cortex (hippocampus plus amygdala). When mood state was also controlled for, treatment was associated with increases in BPP in widespread cortical areas. These preliminary findings are consistent with the hypothesis that these mood stabilizers enhance 5-HT1A receptor expression in BD, which may underscore an important component of these agents' mechanism of action. PMID:23926239

  4. Defining the functional binding sites of interleukin 12 receptor β1 and interleukin 23 receptor to Janus kinases.

    PubMed

    Floss, Doreen M; Klöcker, Tobias; Schröder, Jutta; Lamertz, Larissa; Mrotzek, Simone; Strobl, Birgit; Hermanns, Heike; Scheller, Jürgen

    2016-07-15

    The interleukin (IL)-12-type cytokines IL-12 and IL-23 are involved in T-helper (Th) 1 and Th17 immunity, respectively. They share the IL-12 receptor β1 (IL-12Rβ1) as one component of their receptor signaling complexes, with IL-12Rβ2 as second receptor for IL-12 and IL-23R for IL-23 signal transduction. Stimulation with IL-12 and IL-23 results in activation of receptor-associated Janus kinases (Jak) and phosphorylation of STAT proteins in target cells. The Janus kinase tyrosine kinase (Tyk) 2 associates with IL-12Rβ1, whereas Jak2 binds to IL-23R and also to IL-12Rβ2. Receptor association of Jak2 is mediated by Box1 and Box2 motifs located within the intracellular domain of the receptor chains. Here we define the Box1 and Box2 motifs in IL-12Rβ1 and an unusual Jak2-binding site in IL-23R by the use of deletion and site-directed mutagenesis. Our data show that nonfunctional box motifs abolish IL-12- and IL-23-induced STAT3 phosphorylation and cytokine-dependent proliferation of Ba/F3 cells. Coimmunoprecipitation of Tyk2 by IL-12Rβ1 and Jak2 by IL‑23R supported these findings. In addition, our data demonstrate that association of Jak2 with IL-23R is mandatory for IL-12 and/or IL-23 signaling, whereas Tyk2 seems to be dispensable. PMID:27193299

  5. Can thermodynamic measurements of receptor binding yield information on drug affinity and efficacy?

    PubMed

    Borea, P A; Dalpiaz, A; Varani, K; Gilli, P; Gilli, G

    2000-12-01

    The present commentary surveys the methods for obtaining the thermodynamic parameters of the drug-receptor binding equilibrium, DeltaG degrees, DeltaH degrees, DeltaS degrees, and DeltaC degrees (p) (standard free energy, enthalpy, entropy, and heat capacity, respectively). Moreover, it reviews the available thermodynamic data for the binding of agonists and antagonists to several G-protein coupled receptors (GPCRs) and ligand-gated ion channel receptors (LGICRs). In particular, thermodynamic data for five GPCRs (beta-adrenergic, adenosine A(1), adenosine A(2A), dopamine D(2), and 5-HT(1A)) and four LGICRs (glycine, GABA(A), 5-HT(3), and nicotinic) have been collected and analyzed. Among these receptor systems, seven (three GPCRs and all LGICRs) show "thermodynamic agonist-antagonist discrimination": when the agonist binding to a given receptor is entropy-driven, the binding of its antagonist is enthalpy-driven, or vice versa. A scatter plot of all entropy versus enthalpy values of the database gives a regression line with the equation TDeltaS degrees (kJ mol(-1); T = 298.15 K) = 40.3 (+/- 0.7) + 1.00 (+/-0.01) DeltaH degrees (kJ mol(-1)); N = 184; r = 0.981; P < 0.0001 - which is of the form DeltaH degrees = beta. DeltaS degrees, revealing the presence of the "enthalpy-entropy compensation" phenomenon. This means that any decrease of binding enthalpy is compensated for by a parallel decrease of binding entropy, and vice versa, in such a manner that affinity constant values (K(A)) of drug-receptor equilibrium (DeltaG degrees = -RT ln K(A) = DeltaH degrees - TDeltaS degrees ) cannot be greater than 10(11) M(-1). According to the most recent hypotheses concerning drug-receptor interaction mechanisms, these thermodynamic phenomena appear to be a consequence of the rearrangement of solvent molecules that occurs during the binding. PMID:11077036

  6. Characterization and screening of IgG binding to the neonatal Fc receptor.

    PubMed

    Neuber, Tobias; Frese, Katrin; Jaehrling, Jan; Jäger, Sebastian; Daubert, Daniela; Felderer, Karin; Linnemann, Mechthild; Höhne, Anne; Kaden, Stefan; Kölln, Johanna; Tiller, Thomas; Brocks, Bodo; Ostendorp, Ralf; Pabst, Stefan

    2014-01-01

    The neonatal Fc receptor (FcRn) protects immunoglobulin G (IgG) from degradation and increases the serum half-life of IgG, thereby contributing to a higher concentration of IgG in the serum. Because altered FcRn binding may result in a reduced or prolonged half-life of IgG molecules, it is advisable to characterize Fc receptor binding of therapeutic antibody lead candidates prior to the start of pre-clinical and clinical studies. In this study, we characterized the interactions between FcRn of different species (human, cynomolgus monkey, mouse and rat) and nine IgG molecules from different species and isotypes with common variable heavy (VH) and variable light chain (VL) domains. Binding was analyzed at acidic and neutral pH using surface plasmon resonance (SPR) and biolayer interferometry (BLI). Furthermore, we transferred the well-accepted, but low throughput SPR-based method for FcRn binding characterization to the BLI-based Octet platform to enable a higher sample throughput allowing the characterization of FcRn binding already during early drug discovery phase. We showed that the BLI-based approach is fit-for-purpose and capable of discriminating between IgG molecules with significant differences in FcRn binding affinities. Using this high-throughput approach we investigated FcRn binding of 36 IgG molecules that represented all VH/VL region combinations available in the fully human, recombinant antibody library Ylanthia®. Our results clearly showed normal FcRn binding profiles for all samples. Hence, the variations among the framework parts, complementarity-determining region (CDR) 1 and CDR2 of the fragment antigen binding (Fab) domain did not significantly change FcRn binding. PMID:24802048

  7. Distribution of cholecystokinin receptor binding sites in the human brain: an autoradiographic study

    SciTech Connect

    Dietl, M.M.; Probst, A.; Palacios, J.M.

    1987-01-01

    Cholecystokinin (CCK) binding sites were localized by in vitro autoradiography in human postmortem brain materials from 12 patients without reported neurological diseases using (125I)Bolton-Hunter CCK octapeptide (BHCCK-8) as a ligand. The pharmacological characteristics of BHCCK-8 binding to mounted tissue sections were comparable to those previously reported in the rat. CCK-8 being the most potent displacer, followed by caerulein, CCK-4, and gastrin I. The distribution of BHCCK-8 binding sites was heterogeneous. These sites were highly concentrated in a limited number of gray matter areas and nuclei. The highest binding densities were seen in the glomerular and external plexiform layers of the olfactory bulb. BHCCK-8 binding sites were also enriched in the neocortex, where they presented a laminar distribution with low levels in lamina I, moderate concentration in laminae II to IV, high density in lamina V, and low levels in lamina VI. A different laminar distribution was seen in the visual cortex, where a low receptor density was observed in lamina IV but higher density in laminae II and VI. In the basal ganglia the nucleus accumbens, caudatus, and the putamen presented moderate to high densities of binding sites, while the globus pallidus lacked sites of BHCCK-8 binding. In the limbic system the only area presenting moderate to high density was the amygdaloid complex, particularly in the granular nucleus, while most of the thalamic nuclei were extremely poor or lacked BHCCK-8 binding. The hippocampal formation showed low (CA1-3) to moderate (subiculum) densities. Midbrain areas generally disclosed very low levels of BHCCK-8 binding sites. The pontine gray and the nucleus reticularis tegmenti pontis showed a relatively high density of CCK-8 receptor specific binding.

  8. Computational exploration of a protein receptor binding space with student proposed peptide ligands.

    PubMed

    King, Matthew D; Phillips, Paul; Turner, Matthew W; Katz, Michael; Lew, Sarah; Bradburn, Sarah; Andersen, Tim; McDougal, Owen M

    2016-01-01

    Computational molecular docking is a fast and effective in silico method for the analysis of binding between a protein receptor model and a ligand. The visualization and manipulation of protein to ligand binding in three-dimensional space represents a powerful tool in the biochemistry curriculum to enhance student learning. The DockoMatic tutorial described herein provides a framework by which instructors can guide students through a drug screening exercise. Using receptor models derived from readily available protein crystal structures, docking programs have the ability to predict ligand binding properties, such as preferential binding orientations and binding affinities. The use of computational studies can significantly enhance complimentary wet chemical experimentation by providing insight into the important molecular interactions within the system of interest, as well as guide the design of new candidate ligands based on observed binding motifs and energetics. In this laboratory tutorial, the graphical user interface, DockoMatic, facilitates docking job submissions to the docking engine, AutoDock 4.2. The purpose of this exercise is to successfully dock a 17-amino acid peptide, α-conotoxin TxIA, to the acetylcholine binding protein from Aplysia californica-AChBP to determine the most stable binding configuration. Each student will then propose two specific amino acid substitutions of α-conotoxin TxIA to enhance peptide binding affinity, create the mutant in DockoMatic, and perform docking calculations to compare their results with the class. Students will also compare intermolecular forces, binding energy, and geometric orientation of their prepared analog to their initial α-conotoxin TxIA docking results. PMID:26537635

  9. Mapping of the alpha-bungarotoxin binding site within the alpha subunit of the acetylcholine receptor.

    PubMed Central

    Neumann, D; Barchan, D; Safran, A; Gershoni, J M; Fuchs, S

    1986-01-01

    Synthetic peptides and their respective antibodies have been used in order to map the alpha-bungarotoxin binding site within the alpha subunit of the acetylcholine receptor. By using antibodies to a synthetic peptide corresponding to residues 169-181 of the alpha subunit, we demonstrate that this sequence is included within the 18-kDa toxin binding fragment previously reported. Furthermore, the 18-kDa fragment was also found to bind a monoclonal antibody (5.5) directed against the cholinergic binding site. Sequential proteolysis of the acetylcholine receptor with trypsin, prior to Staphylococcus aureus V8 protease digestion, resulted in a 15-kDa toxin binding fragment that is included within the 18-kDa fragment but is shorter than it only at its carboxyl terminus. This 15-kDa fragment therefore initiates beyond Asp-152 and terminates in the region of Arg-313/Lys-314. In addition, experiments are reported that indicate that in the intact acetylcholine receptor, Cys-128 and/or Cys-142 are not crosslinked by disulfide bridges with any of the cysteines (at positions 192, 193, and 222) that reside in the 15-kDa toxin binding fragment. Finally, the synthetic dodecapeptide Lys-His-Trp-Val-Tyr-Tyr-Thr-Cys-Cys-Pro-Asp-Thr, which is present in the 15-kDa fragment (corresponding to residues 185-196 of the alpha subunit) was shown to bind alpha-bungarotoxin directly. This binding was completely inhibited by competition with d-tubocurarine. Images PMID:3458258

  10. Mapping of the alpha-bungarotoxin binding site within the alpha subunit of the acetylcholine receptor.

    PubMed

    Neumann, D; Barchan, D; Safran, A; Gershoni, J M; Fuchs, S

    1986-05-01

    Synthetic peptides and their respective antibodies have been used in order to map the alpha-bungarotoxin binding site within the alpha subunit of the acetylcholine receptor. By using antibodies to a synthetic peptide corresponding to residues 169-181 of the alpha subunit, we demonstrate that this sequence is included within the 18-kDa toxin binding fragment previously reported. Furthermore, the 18-kDa fragment was also found to bind a monoclonal antibody (5.5) directed against the cholinergic binding site. Sequential proteolysis of the acetylcholine receptor with trypsin, prior to Staphylococcus aureus V8 protease digestion, resulted in a 15-kDa toxin binding fragment that is included within the 18-kDa fragment but is shorter than it only at its carboxyl terminus. This 15-kDa fragment therefore initiates beyond Asp-152 and terminates in the region of Arg-313/Lys-314. In addition, experiments are reported that indicate that in the intact acetylcholine receptor, Cys-128 and/or Cys-142 are not crosslinked by disulfide bridges with any of the cysteines (at positions 192, 193, and 222) that reside in the 15-kDa toxin binding fragment. Finally, the synthetic dodecapeptide Lys-His-Trp-Val-Tyr-Tyr-Thr-Cys-Cys-Pro-Asp-Thr, which is present in the 15-kDa fragment (corresponding to residues 185-196 of the alpha subunit) was shown to bind alpha-bungarotoxin directly. This binding was completely inhibited by competition with d-tubocurarine. PMID:3458258

  11. The Role of Protonation States in Ligand-Receptor Recognition and Binding

    PubMed Central

    Petukh, Marharyta; Stefl, Shannon

    2013-01-01

    In this review we discuss the role of protonation states in receptor-ligand interactions, providing experimental evidences and computational predictions that complex formation may involve titratable groups with unusual pKa’s and that protonation states frequently change from unbound to bound states. These protonation changes result in proton uptake/release, which in turn causes the pH-dependence of the binding. Indeed, experimental data strongly suggests that almost any binding is pH-dependent and to be correctly modeled, the protonation states must be properly assigned prior to and after the binding. One may accurately predict the protonation states when provided with the structures of the unbound proteins and their complex; however, the modeling becomes much more complicated if the bound state has to be predicted in a docking protocol or if the structures of either bound or unbound receptor-ligand are not available. The major challenges that arise in these situations are the coupling between binding and protonation states, and the conformational changes induced by the binding and ionization states of titratable groups. In addition, any assessment of the protonation state, either before or after binding, must refer to the pH of binding, which is frequently unknown. Thus, even if the pKa’s of ionizable groups can be correctly assigned for both unbound and bound state, without knowing the experimental pH one cannot assign the corresponding protonation states, and consequently one cannot calculate the resulting proton uptake/release. It is pointed out, that while experimental pH may not be the physiological pH and binding may involve proton uptake/release, there is a tendency that the native receptor-ligand complexes have evolved toward specific either subcellular or tissue characteristic pH at which the proton uptake/release is either minimal or absent. PMID:23170880

  12. The complex binding mode of the peptide hormone H2 relaxin to its receptor RXFP1.

    PubMed

    Sethi, Ashish; Bruell, Shoni; Patil, Nitin; Hossain, Mohammed Akhter; Scott, Daniel J; Petrie, Emma J; Bathgate, Ross A D; Gooley, Paul R

    2016-01-01

    H2 relaxin activates the relaxin family peptide receptor-1 (RXFP1), a class A G-protein coupled receptor, by a poorly understood mechanism. The ectodomain of RXFP1 comprises an N-terminal LDLa module, essential for activation, tethered to a leucine-rich repeat (LRR) domain by a 32-residue linker. H2 relaxin is hypothesized to bind with high affinity to the LRR domain enabling the LDLa module to bind and activate the transmembrane domain of RXFP1. Here we define a relaxin-binding site on the LDLa-LRR linker, essential for the high affinity of H2 relaxin for the ectodomain of RXFP1, and show that residues within the LDLa-LRR linker are critical for receptor activation. We propose H2 relaxin binds and stabilizes a helical conformation of the LDLa-LRR linker that positions residues of both the linker and the LDLa module to bind the transmembrane domain and activate RXFP1. PMID:27088579

  13. Progesterone receptor induces bcl-x expression through intragenic binding sites favoring RNA polymerase II elongation.

    PubMed

    Bertucci, Paola Y; Nacht, A Silvina; Alló, Mariano; Rocha-Viegas, Luciana; Ballaré, Cecilia; Soronellas, Daniel; Castellano, Giancarlo; Zaurin, Roser; Kornblihtt, Alberto R; Beato, Miguel; Vicent, Guillermo P; Pecci, Adali

    2013-07-01

    Steroid receptors were classically described for regulating transcription by binding to target gene promoters. However, genome-wide studies reveal that steroid receptors-binding sites are mainly located at intragenic regions. To determine the role of these sites, we examined the effect of progestins on the transcription of the bcl-x gene, where only intragenic progesterone receptor-binding sites (PRbs) were identified. We found that in response to hormone treatment, the PR is recruited to these sites along with two histone acetyltransferases CREB-binding protein (CBP) and GCN5, leading to an increase in histone H3 and H4 acetylation and to the binding of the SWI/SNF complex. Concomitant, a more relaxed chromatin was detected along bcl-x gene mainly in the regions surrounding the intragenic PRbs. PR also mediated the recruitment of the positive elongation factor pTEFb, favoring RNA polymerase II (Pol II) elongation activity. Together these events promoted the re-distribution of the active Pol II toward the 3'-end of the gene and a decrease in the ratio between proximal and distal transcription. These results suggest a novel mechanism by which PR regulates gene expression by facilitating the proper passage of the polymerase along hormone-dependent genes. PMID:23640331

  14. Molecular environment of the phencyclidine binding site in the nicotinic acetylcholine receptor membrane

    SciTech Connect

    Palma, A.L.; Wang, H.H. )

    1991-06-01

    Phencyclidine is a highly specific noncompetitive inhibitor of the nicotinic acetylcholine receptor. In a novel approach to study this site, a spin-labeled analogue of phencyclidine, 4-phenyl-4-(1-piperidinyl)-2,2,6,6-tetramethylpiperidinoxyl (PPT) was synthesized. The binding of PPT inhibits 86Rb flux (IC50 = 6.6 microM), and (3H)phencyclidine binding to both resting and desensitized acetylcholine receptor (IC50 = 17 microM and 0.22 microM, respectively). From an indirect Hill plot of the inhibition of (3H)phencyclidine binding by PPT, a Hill coefficient of approximately one was obtained in the presence of carbamylcholine and 0.8 in alpha-bungarotoxin-treated preparations. Taken together, these results indicate that PPT mimics phencyclidine in its ability to bind to the noncompetitive inhibitor site and is functionally active in blocking ion flux across the acetylcholine receptor channel. Analysis of the electron spin resonance signal of the bound PPT suggests that the environment surrounding the probe within the ion channel is hydrophobic, with a hydrophobicity parameter of 1.09. A dielectric constant for the binding site was estimated to be in the range of 2-3 units.

  15. Two disparate ligand binding sites in the human P2Y1 receptor

    PubMed Central

    Zhang, Dandan; Gao, Zhan-Guo; Zhang, Kaihua; Kiselev, Evgeny; Crane, Steven; Wang, Jiang; Paoletta, Silvia; Yi, Cuiying; Ma, Limin; Zhang, Wenru; Han, Gye Won; Liu, Hong; Cherezov, Vadim; Katritch, Vsevolod; Jiang, Hualiang; Stevens, Raymond C.; Jacobson, Kenneth A.; Zhao, Qiang; Wu, Beili

    2015-01-01

    In response to adenosine 5′-diphosphate, the P2Y1 receptor (P2Y1R) facilitates platelet aggregation, and thus serves as an important antithrombotic drug target. Here we report the crystal structures of the human P2Y1R in complex with a nucleotide antagonist MRS2500 at 2.7Å resolution, and with a non-nucleotide antagonist BPTU at 2.2Å resolution. The structures reveal two distinct ligand binding sites, providing atomic details of P2Y1R’s unique ligand binding modes. MRS2500 recognizes a binding site within the seven transmembrane bundle of P2Y1R, which, however, is different in shape and location from the nucleotide binding site in previously determined P2Y12R structure. BPTU binds to an allosteric pocket on the external receptor interface with the lipid bilayer, making it the first structurally characterized selective G protein-coupled receptor (GPCR) ligand located entirely outside of the helical bundle. These high-resolution insights into P2Y1R should enable discovery of new orthosteric and allosteric antithrombotic drugs with reduced adverse effects. PMID:25822790

  16. Intact brain cells: a novel model system for studying opioid receptor binding

    SciTech Connect

    Rogers, N.F.; El-Fakahany, E.E.

    1985-07-29

    The use of a novel tissue preparation to study opioid receptor binding in viable, intact cells derived from whole brains of adult rats is presented. Mechanically dissociated and sieved cells, which were not homogenized at any stage of the experimental protocol, and iso-osmotic physiological buffer were used in these experiments. This system was adapted in order to avoid mechanical and chemical disruption of cell membranes, cytoskeletal ultrastructure or receptor topography by homogenization or by the use of nonphysiological buffers, and to mimic in vivo binding conditions as much as possible. Using (/sup 3/H)naloxone as the radioligand, the studies showed saturable and stereospecific high-affinity binding of this opioid antagonist in intact cells, which in turn showed consistently high viability. (/sup 3/H)Naloxone binding was also linear over a wide range of tissue concentrations. This technique provides a very promising model for future studies of the binding of opioids and of many other classes of drugs to brain tissue receptors in a more physiologically relevant system than those commonly used to date.

  17. The complex binding mode of the peptide hormone H2 relaxin to its receptor RXFP1

    PubMed Central

    Sethi, Ashish; Bruell, Shoni; Patil, Nitin; Hossain, Mohammed Akhter; Scott, Daniel J.; Petrie, Emma J.; Bathgate, Ross A. D.; Gooley, Paul R.

    2016-01-01

    H2 relaxin activates the relaxin family peptide receptor-1 (RXFP1), a class A G-protein coupled receptor, by a poorly understood mechanism. The ectodomain of RXFP1 comprises an N-terminal LDLa module, essential for activation, tethered to a leucine-rich repeat (LRR) domain by a 32-residue linker. H2 relaxin is hypothesized to bind with high affinity to the LRR domain enabling the LDLa module to bind and activate the transmembrane domain of RXFP1. Here we define a relaxin-binding site on the LDLa-LRR linker, essential for the high affinity of H2 relaxin for the ectodomain of RXFP1, and show that residues within the LDLa-LRR linker are critical for receptor activation. We propose H2 relaxin binds and stabilizes a helical conformation of the LDLa-LRR linker that positions residues of both the linker and the LDLa module to bind the transmembrane domain and activate RXFP1. PMID:27088579

  18. Progesterone receptor induces bcl-x expression through intragenic binding sites favoring RNA polymerase II elongation

    PubMed Central

    Bertucci, Paola Y.; Nacht, A. Silvina; Alló, Mariano; Rocha-Viegas, Luciana; Ballaré, Cecilia; Soronellas, Daniel; Castellano, Giancarlo; Zaurin, Roser; Kornblihtt, Alberto R.; Beato, Miguel; Vicent, Guillermo P.; Pecci, Adali

    2013-01-01

    Steroid receptors were classically described for regulating transcription by binding to target gene promoters. However, genome-wide studies reveal that steroid receptors-binding sites are mainly located at intragenic regions. To determine the role of these sites, we examined the effect of progestins on the transcription of the bcl-x gene, where only intragenic progesterone receptor-binding sites (PRbs) were identified. We found that in response to hormone treatment, the PR is recruited to these sites along with two histone acetyltransferases CREB-binding protein (CBP) and GCN5, leading to an increase in histone H3 and H4 acetylation and to the binding of the SWI/SNF complex. Concomitant, a more relaxed chromatin was detected along bcl-x gene mainly in the regions surrounding the intragenic PRbs. PR also mediated the recruitment of the positive elongation factor pTEFb, favoring RNA polymerase II (Pol II) elongation activity. Together these events promoted the re-distribution of the active Pol II toward the 3′-end of the gene and a decrease in the ratio between proximal and distal transcription. These results suggest a novel mechanism by which PR regulates gene expression by facilitating the proper passage of the polymerase along hormone-dependent genes. PMID:23640331

  19. Differential changes in atrial natriuretic peptide and vasopressin receptor bindings in kidney of spontaneously hypertensive rat

    SciTech Connect

    Ogura, T.; Mitsui, T.; Yamamoto, I.; Katayama, E.; Ota, Z.; Ogawa, N.

    1987-01-19

    To elucidate the role of atrial natriuretic peptide (ANP) and vasopressin (VP) in a hypertensive state, ANP and VP receptor bindings in spontaneously hypertensive rat (SHR) kidney were analyzed using the radiolabeled receptor assay (RRA) technique. Systolic blood pressure of SHR aged 12 weeks was statistically higher than that of age-matched Wistar Kyoto (WKY) rats. Maximum binding capacity (Bmax) of (/sup 125/I)-ANP binding to the SHR kidney membrane preparations was statistically lower than that of WKY rats, but dissociation constant (Kd) was not significantly different. On the other hand, Bmax of (/sup 3/H)-VP binding to the SHR kidney membrane preparations was statistically higher than that of WKY rats, but Kd were similar. Since the physiological action of ANP is natriuresis and VP is the most important antidiuretic hormone in mammalia, these opposite changes of ANP and VP receptor bindings in SHR kidney suggested that these peptides may play an important role in the pathophysiology of the hypertensive state, although it has not been confirmed as yet.

  20. Diazepam-bound GABAA receptor models identify new benzodiazepine binding-site ligands

    PubMed Central

    Richter, Lars; de Graaf, Chris; Sieghart, Werner; Varagic, Zdravko; Mörzinger, Martina; de Esch, Iwan J P; Ecker, Gerhard F; Ernst, Margot

    2012-01-01

    Benzodiazepines exert their anxiolytic, anticonvulsant, muscle-relaxant and sedative-hypnotic properties by allosterically enhancing the action of GABA at GABAA receptors via their benzodiazepine-binding site. Although these drugs have been used clinically since 1960, the molecular basis of this interaction is still not known. By using multiple homology models and an un biased docking protocol, we identified a binding hypothesis for the diazepam-bound structure of the benzodiazepine site, which was confirmed by experimental evidence. Moreover, two independent virtual screening approaches based on this structure identified known benzodiazepine-site ligands from different structural classes and predicted potential new ligands for this site. Receptor-binding assays and electrophysiological studies on recombinant receptors confirmed these predictions and thus identified new chemotypes for the benzodiazepine-binding site. Our results support the validity of the diazepam-bound structure of the benzodiazepine-binding pocket, demonstrate its suitability for drug discovery and pave the way for structure-based drug design. PMID:22446838

  1. Structure and receptor binding preferences of recombinant human A(H3N2) virus hemagglutinins.

    PubMed

    Yang, Hua; Carney, Paul J; Chang, Jessie C; Guo, Zhu; Villanueva, Julie M; Stevens, James

    2015-03-01

    A(H3N2) influenza viruses have circulated in humans since 1968, and antigenic drift of the hemagglutinin (HA) protein continues to be a driving force that allows the virus to escape the human immune response. Since the major antigenic sites of the HA overlap into the receptor binding site (RBS) of the molecule, the virus constantly struggles to effectively adapt to host immune responses, without compromising its functionality. Here, we have structurally assessed the evolution of the A(H3N2) virus HA RBS, using an established recombinant expression system. Glycan binding specificities of nineteen A(H3N2) influenza virus HAs, each a component of the seasonal influenza vaccine between 1968 and 2012, were analyzed. Results suggest that while its receptor-binding site has evolved from one that can bind a broad range of human receptor analogs to one with a more restricted binding profile for longer glycans, the virus continues to circulate and transmit efficiently among humans. PMID:25617824

  2. Temperature dependence of estrogen binding: importance of a subzone in the ligand binding domain of a novel piscine estrogen receptor.

    PubMed

    Tan, N S; Frecer, V; Lam, T J; Ding, J L

    1999-11-11

    The full length estrogen receptor from Oreochromis aureus (OaER) was cloned and expressed in vitro and in vivo as a functional transcription factor. Amino acid residues involved in the thermal stability of the receptor are located at/near subzones beta1 and beta3, which are highly conserved in other non-piscine species but not in OaER. Hormone binding studies, however, indicate that OaER is thermally stable but exhibited a approximately 3-fold reduced affinity for estrogen at elevated temperatures. Transfection of OaER into various cell lines cultured at different temperatures displayed a significant estrogen dose-response shift compared with that of chicken ER (cER). At 37 degrees C, OaER requires approximately 80-fold more estrogen to achieve half-maximal stimulation of CAT. Lowering of the incubation temperature from 37 degrees C to 25 degrees C or 20 degrees C resulted in a 4-fold increase in its affinity for estrogen. The thermally deficient transactivation of OaER at temperatures above 25 degrees C was fully prevented by high levels of estrogen. Thus, compared to cER, the OaER exhibits reduced affinity for estrogen at elevated temperature as reflected in its deficient transactivation capability. Amino acid replacements of OaER beta3 subzones with corresponding amino acids from cER could partially rescue this temperature sensitivity. The three-dimensional structure of the OaER ligand binding domain (LBD) was modelled based on conformational similarity and sequence homology with human RXRalpha apo, RARgamma holo and ERalpha LBDs. Unliganded and 17beta-estradiol-liganded OaER LBD retained the overall folding pattern of the nuclear receptor LBDs. The residues at/near the subzone beta3 of the LBD constitute the central core of OaER structure. Thus, amino acid alteration at this region potentially alters the structure and consequently its temperature-dependent ligand binding properties. PMID:10559464

  3. Identification of the Receptor-Binding Domain of the Spike Glycoprotein of Human Betacoronavirus HKU1

    PubMed Central

    Ou, Xiuyuan; Góes, Luiz Gustavo Bentim; Osborne, Christina; Castano, Anna; Holmes, Kathryn V.

    2015-01-01

    ABSTRACT Coronavirus spike (S) glycoproteins mediate receptor binding, membrane fusion, and virus entry and determine host range. Murine betacoronavirus (β-CoV) in group A uses the N-terminal domain (NTD) of S protein to bind to its receptor, whereas the β-CoVs severe acute respiratory syndrome CoV in group B and Middle East respiratory syndrome CoV in group C and several α-CoVs use the downstream C domain in their S proteins to recognize their receptor proteins. To identify the receptor-binding domain in the spike of human β-CoV HKU1 in group A, we generated and mapped a panel of monoclonal antibodies (MAbs) to the ectodomain of HKU1 spike protein. They did not cross-react with S proteins of any other CoV tested. Most of the HKU1 spike MAbs recognized epitopes in the C domain between amino acids 535 and 673, indicating that this region is immunodominant. Two of the MAbs blocked HKU1 virus infection of primary human tracheal-bronchial epithelial (HTBE) cells. Preincubation of HTBE cells with a truncated HKU1 S protein that includes the C domain blocked infection with HKU1 virus, but preincubation of cells with truncated S protein containing only the NTD did not block infection. These data suggest that the receptor-binding domain (RBD) of HKU1 spike protein is located in the C domain, where the spike proteins of α-CoVs and β-CoVs in groups B and C bind to their specific receptor proteins. Thus, two β-CoVs in group A, HKU1 and murine CoV, have evolved to use different regions of their spike glycoproteins to recognize their respective receptor proteins. IMPORTANCE Mouse hepatitis virus, a β-CoV in group A, uses the galectin-like NTD in its spike protein to bind its receptor protein, while HCoV-OC43, another β-CoV in group A, uses the NTD to bind to its sialic-acid containing receptor. In marked contrast, the NTD of the spike glycoprotein of human respiratory β-CoV HKU1, which is also in group A, does not bind sugar. In this study, we showed that for the

  4. Impact of IgG2 high molecular weight species on neonatal Fc receptor binding assays.

    PubMed

    Zhang, Yuling; Mathur, Abhishek; Maher, Gwen; Arroll, Thomas; Bailey, Robert

    2015-11-15

    A cell-based assay and a solution neonatal Fc receptor (FcRn) binding assay were implemented for the characterization of an IgG2 antibody after observation that different product lots exhibited unexpected differences in FcRn binding in the cell-based format with membrane-bound FcRn. The experiments described here suggest that the apparent differences observed in the FcRn binding across different product lots in the cell-based format can be attributed to the different levels of the higher order high molecular weight species (HMWs) in them. A strong correlation between FcRn binding in the cell-based format and the percentage (%) higher order HMWs suggests that small amounts (∼0.1%) of the latter could cause the enhanced apparent FcRn binding (% relative binding ranging from 50 to 100%) in the format. However, when the binding was assessed with recombinant FcRn in soluble form, avidity effects were minimal and the assay format exhibited less sensitivity toward the differences in higher order HMWs levels across product lots. In conclusion, a solution-based assay may be a more appropriate assay to assess FcRn binding of the dominant species of an Fc-fusion protein or monoclonal antibody if minor differences in product variants such as higher order HMWs are shown to affect the binding significantly. PMID:26255698

  5. Uncoupling the Structure-Activity Relationships of β2 Adrenergic Receptor Ligands from Membrane Binding.

    PubMed

    Dickson, Callum J; Hornak, Viktor; Velez-Vega, Camilo; McKay, Daniel J J; Reilly, John; Sandham, David A; Shaw, Duncan; Fairhurst, Robin A; Charlton, Steven J; Sykes, David A; Pearlstein, Robert A; Duca, Jose S

    2016-06-23

    Ligand binding to membrane proteins may be significantly influenced by the interaction of ligands with the membrane. In particular, the microscopic ligand concentration within the membrane surface solvation layer may exceed that in bulk solvent, resulting in overestimation of the intrinsic protein-ligand binding contribution to the apparent/measured affinity. Using published binding data for a set of small molecules with the β2 adrenergic receptor, we demonstrate that deconvolution of membrane and protein binding contributions allows for improved structure-activity relationship analysis and structure-based drug design. Molecular dynamics simulations of ligand bound membrane protein complexes were used to validate binding poses, allowing analysis of key interactions and binding site solvation to develop structure-activity relationships of β2 ligand binding. The resulting relationships are consistent with intrinsic binding affinity (corrected for membrane interaction). The successful structure-based design of ligands targeting membrane proteins may require an assessment of membrane affinity to uncouple protein binding from membrane interactions. PMID:27239696

  6. Improved receptor analysis in PET using a priori information from in vitro binding assays

    NASA Astrophysics Data System (ADS)

    Litton, J.-E.; Hall, H.; Blomqvist, G.

    1997-08-01

    An accurate determination of non-specific binding is required for the analysis of in vitro and in vivo receptor binding data. For some radioligands the non-specific binding is of the same magnitude as the specific binding. Furthermore, in vitro measurements have shown that the non-specific binding can be different in different brain regions. If this is the case in a PET study for determining and , a correction for the non-specific binding has to be applied. The aim of the present communication is to present a means for determining corrected and with Scatchard analysis using in vitro binding studies. The influence of non-specific binding on the free and specifically bound radioligand is expressed with the aid of a correction factor, which can be calculated from measurable quantities. Introduction of the corrected free and specifically bound radioligand should give binding parameters closer to reality than previously obtained results.

  7. Label-free impedimetric biosensor for thrombin using the thrombin-binding aptamer as receptor

    NASA Astrophysics Data System (ADS)

    Frense, D.; Kang, S.; Schieke, K.; Reich, P.; Barthel, A.; Pliquett, U.; Nacke, T.; Brian, C.; Beckmann, D.

    2013-04-01

    This study presents the further establishment of impedimetric biosensors with aptamers as receptors. Aptamers are short single-stranded oligonucleotides which bind analytes with a specific region of their 3D structure. Electrical impedance spectroscopy is a sensitive method for analyzing changes on the electrode surface, e.g. caused by receptor-ligand-interactions. Fast and inexpensive prototyping of electrodes on the basis of commercially available compact discs having a 24 carat gold reflective layer was investigated. Electrode structures (CDtrodes [1]) in the range from few millimetres down to 100 microns were realized. The well-studied thrombin-binding aptamer (TBA) was used as receptor for characterizing these micro- and macro-electrodes. The impedance signal showed a linear correlation for concentrations of thrombin between 1.0 nM to 100 nM. This range corresponds well with most of the references and may be useful for the point-of-care testing (POCT).

  8. Estrogen binding, receptor mRNA, and biologic response in osteoblast-like osteosarcoma cells

    SciTech Connect

    Komm, B.S.; Terpening, C.M.; Benz, D.J.; Graeme, K.A.; Gallegos, A.; Korc, M.; Greene, G.L.; O'Malley, B.W.; Haussler, M.R.

    1988-07-01

    High specific activity estradiol labeled with iodine-125 was used to detect approximately 200 saturable, high-affinity (dissociation constant approximately equal to 1.0 nM) nuclear binding sites in rat (ROS 17/2.8) and human (HOS TE85) clonal osteoblast-like osteosarcoma cells. Of the steroids tested, only testosterone exhibited significant cross-reactivity with estrogen binding. RNA blot analysis with a complementary DNA probe to the human estrogen receptor revealed putative receptor transcripts of 6 to 6.2 kilobases in both rat and human osteosarcoma cells. Type I procollagen and transforming growth factor-beta messenger RNA levels were enhanced in cultured human osteoblast-like cells treated with 1 nM estradiol. Thus, estrogen can act directly on osteoblasts by a receptor-mediated mechanism and thereby modulate the extracellular matrix and other proteins involved in the maintenance of skeletal mineralization and remodeling.

  9. Proteolytic activity of the purified hormone-binding subunit in the estrogen receptor.

    PubMed Central

    Molinari, A M; Abbondanza, C; Armetta, I; Medici, N; Minucci, S; Moncharmont, B; Nigro, V; Puca, G A

    1991-01-01

    The hormone-binding subunit of the calf uterus estradiol receptor was purified as a hormone-free molecule. Immunoaffinity chromatography with a specific monoclonal antibody was used as the final step. The purified subunit was specifically labeled by radioactive diisopropyl fluorophosphate. The diisopropyl fluorophosphate-labeled amino acid was serine. The purified receptor was able to release the fluorogenic or chromogenic group from synthetic peptides containing phenylalanine at the carboxyl terminus. This occurred only in the presence of estradiol and was hampered by aprotinin and diisopropyl fluorophosphate. Estradiol-dependent hydrolytic activity was also found in the eluate from gel slices after SDS/PAGE of purified receptor. This activity comigrated with the renaturable estradiol-binding activity. The estradiol antagonists 4-hydroxytamoxifen and ICI 164,384 as well as other steroid hormones were unable to activate this hydrolytic activity. Images PMID:1709742

  10. Proteolytic activity of the purified hormone-binding subunit in the estrogen receptor.

    PubMed

    Molinari, A M; Abbondanza, C; Armetta, I; Medici, N; Minucci, S; Moncharmont, B; Nigro, V; Puca, G A

    1991-05-15

    The hormone-binding subunit of the calf uterus estradiol receptor was purified as a hormone-free molecule. Immunoaffinity chromatography with a specific monoclonal antibody was used as the final step. The purified subunit was specifically labeled by radioactive diisopropyl fluorophosphate. The diisopropyl fluorophosphate-labeled amino acid was serine. The purified receptor was able to release the fluorogenic or chromogenic group from synthetic peptides containing phenylalanine at the carboxyl terminus. This occurred only in the presence of estradiol and was hampered by aprotinin and diisopropyl fluorophosphate. Estradiol-dependent hydrolytic activity was also found in the eluate from gel slices after SDS/PAGE of purified receptor. This activity comigrated with the renaturable estradiol-binding activity. The estradiol antagonists 4-hydroxytamoxifen and ICI 164,384 as well as other steroid hormones were unable to activate this hydrolytic activity. PMID:1709742

  11. Muscarinic M2 receptors in bovine tracheal smooth muscle: discrepancies between binding and function.

    PubMed

    Roffel, A F; Elzinga, C R; Van Amsterdam, R G; De Zeeuw, R A; Zaagsma, J

    1988-08-01

    Previous work showing that AF-DX 116, a cardioselective muscarinic antagonist in functional experiments, does not discriminate between muscarinic receptors in bovine cardiac and tracheal membranes has been extended. In addition to AF-DX 116 we used the muscarinic antagonists, atropine, pirenzepine, 4-DAMP methobromide, gallamine, hexahydrosiladifenidol and methoctramine, in radioligand binding experiments on bovine cardiac left ventricular and tracheal smooth muscle membranes. The functional antagonism of the methacholine-induced contraction of bovine tracheal smooth muscle strips was also evaluated. An excellent correlation was found for all compounds between the binding affinities for muscarinic receptors in cardiac and tracheal smooth muscle membranes; moreover, the affinities found in cardiac membranes correspond with the pA2 values reported for atrial preparations of rat and guinea pig. However, significant and occasionally marked discrepancies were found between binding and functional affinities of these muscarinic antagonists on bovine tracheal smooth muscle. PMID:3215279

  12. Loss of Glycosaminoglycan Receptor Binding after Mosquito Cell Passage Reduces Chikungunya Virus Infectivity

    PubMed Central

    Acharya, Dhiraj; Paul, Amber M.; Anderson, John F.; Huang, Faqing; Bai, Fengwei

    2015-01-01

    Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that can cause fever and chronic arthritis in humans. CHIKV that is generated in mosquito or mammalian cells differs in glycosylation patterns of viral proteins, which may affect its replication and virulence. Herein, we compare replication, pathogenicity, and receptor binding of CHIKV generated in Vero cells (mammal) or C6/36 cells (mosquito) through a single passage. We demonstrate that mosquito cell-derived CHIKV (CHIKVmos) has slower replication than mammalian cell-derived CHIKV (CHIKVvero), when tested in both human and murine cell lines. Consistent with this, CHIKVmos infection in both cell lines produce less cytopathic effects and reduced antiviral responses. In addition, infection in mice show that CHIKVmos produces a lower level of viremia and less severe footpad swelling when compared with CHIKVvero. Interestingly, CHIKVmos has impaired ability to bind to glycosaminoglycan (GAG) receptors on mammalian cells. However, sequencing analysis shows that this impairment is not due to a mutation in the CHIKV E2 gene, which encodes for the viral receptor binding protein. Moreover, CHIKVmos progenies can regain GAG receptor binding capability and can replicate similarly to CHIKVvero after a single passage in mammalian cells. Furthermore, CHIKVvero and CHIKVmos no longer differ in replication when N-glycosylation of viral proteins was inhibited by growing these viruses in the presence of tunicamycin. Collectively, these results suggest that N-glycosylation of viral proteins within mosquito cells can result in loss of GAG receptor binding capability of CHIKV and reduction of its infectivity in mammalian cells. PMID:26484530

  13. Cytoplasmic domains determine signal specificity, cellular routing characteristics and influence ligand binding of epidermal growth factor and insulin receptors.

    PubMed Central

    Riedel, H; Dull, T J; Honegger, A M; Schlessinger, J; Ullrich, A

    1989-01-01

    The cell surface receptors for insulin and epidermal growth factor (EGF) both employ a tyrosine-specific protein kinase activity to fulfil their distinct biological roles. To identify the structural domains responsible for various receptor activities, we have generated chimeric receptor polypeptides consisting of major EGF and insulin receptor structural domains and examined their biochemical properties and cellular signalling activities. The EGF-insulin receptor hybrids are properly synthesized and transported to the cell surface, where they form binding competent structures that are defined by the origin of their extracellular domains. While their ligand binding affinities are altered, we find that these chimeric receptors are fully functional in transmitting signals across the plasma membrane and into the cell. Thus, EGF receptor and insulin receptor cytoplasmic domain signalling capabilities are independent of their new heterotetrameric or monomeric environments respectively. Furthermore, the cytoplasmic domains carry the structural determinants that define kinase specificity, mitogenic and transforming potential, and receptor routing. Images PMID:2583088

  14. Ondansetron and Granisetron Binding Orientation in the 5-HT3 Receptor Determined by Unnatural Amino Acid Mutagenesis

    PubMed Central

    Duffy, Noah H.; Lester, Henry A.; Dougherty, Dennis A.

    2012-01-01

    The serotonin type 3 receptor (5-HT3R) is a ligand-gated ion channel that mediates fast synaptic transmission in the central and peripheral nervous systems. The 5-HT3R is a therapeutic target, and the clinically available drugs ondansetron and granisetron inhibit receptor activity. Their inhibitory action is through competitive binding to the native ligand binding site, although the binding orientation of the drugs at the receptor has been a matter of debate. Here we heterologously express mouse 5-HT3A receptors in Xenopus oocytes and use unnatural amino acid mutagenesis to establish a cation-π interaction for both ondansetron and granisetron to tryptophan 183 in the ligand binding pocket. This cation-π interaction establishes a binding orientation for both ondansetron and granisetron within the binding pocket. PMID:22873819

  15. Heterogeneity and probabilistic binding contributions to receptor-mediated cell detachment kinetics.

    PubMed Central

    Saterbak, A; Kuo, S C; Lauffenburger, D A

    1993-01-01

    Biospecific cell adhesion is mediated by receptor-ligand bonds. Early theoretical work presented a deterministic analysis of receptor-mediated cell attachment and detachment for a homogeneous cell population. However, initial comparison of a deterministic framework to experimental detachment profiles of model "cells" (antibody-coated latex beads) did not show qualitative or quantitative agreement (Cozens-Roberts, C., D.A. Lauffenburger, and J.A. Quinn. 1990. Biophys. J. 58:857-872). Hence, we determine the contributions of population heterogeneity and probabilistic binding to the detachment behavior of this experimental system which was designed to minimize experimental and theoretical complications. This work also corrects an error in the numerical solution of the probabilistic model of receptor-mediated cell attachment and detachment developed previously (Cozens-Roberts, C., D.A. Lauffenburger, and J.A. Quinn. 1990. Biophys J. 58:841-856). Measurement of the population distribution of the number of receptors per bead has enabled us to explicitly consider the effect of receptor number heterogeneity within the cell-surface contact area. A deterministic framework that incorporates receptor number heterogeneity qualitatively and quantitatively accounts in large part for the model cell detachment data. Using measured and estimated parameter values for the model cell system, we estimate that about 90% of the observed kinetic detachment behavior originates from heterogeneity effects, while about 10% is due to probabilistic binding effects. In general, these relative contributions may differ for other systems. PMID:8396454

  16. Synthesis and binding characteristics of [(3)H]neuromedin N, a NTS2 receptor ligand.

    PubMed

    Tóth, Fanni; Mallareddy, Jayapal Reddy; Tourwé, Dirk; Lipkowski, Andrzej W; Bujalska-Zadrozny, Magdalena; Benyhe, Sándor; Ballet, Steven; Tóth, Géza; Kleczkowska, Patrycja

    2016-06-01

    Neurotensin (NT) and its analog neuromedin N (NN) are formed by the processing of a common precursor in mammalian brain tissue and intestines. The biological effects mediated by NT and NN (e.g. analgesia, hypothermia) result from the interaction with G protein-coupled receptors. The goal of this study consisted of the synthesis and radiolabeling of NN, as well as the determination of the binding characteristics of [(3)H]NN and G protein activation by the cold ligand. In homologous displacement studies a weak affinity was determined for NN, with IC50 values of 454nM in rat brain and 425nM in rat spinal cord membranes. In saturation binding experiments the Kd value proved to be 264.8±30.18nM, while the Bmax value corresponded to 3.8±0.2pmol/mg protein in rat brain membranes. The specific binding of [(3)H]NN was saturable, interacting with a single set of homogenous binding sites. In sodium sensitivity experiments, a very weak inhibitory effect of Na(+) ions was observed on the binding of [(3)H]NN, resulting in an IC50 of 150.6mM. In [(35)S]GTPγS binding experiments the Emax value was 112.3±1.4% in rat brain and 112.9±2.4% in rat spinal cord membranes and EC50 values of 0.7nM and 0.79nM were determined, respectively. NN showed moderate agonist activities in stimulating G proteins. The stimulatory effect of NN could be maximally inhibited via use of the NTS2 receptor antagonist levocabastine, but not by the opioid receptor specific antagonist naloxone, nor by the NTS1 antagonist SR48692. These observations allow us to conclude that [(3)H]NN labels NTS2 receptors in rat brain membranes. PMID:26707235

  17. A 67 kDa non-hormone binding estradiol receptor is present in human mammary cancers.

    PubMed

    Castoria, G; Migliaccio, A; Bilancio, A; Pagano, M; Abbondanza, C; Auricchio, F

    1996-03-01

    The presence of large amounts of a 67 kDa estradiol receptor that does not bind hormone was observed in 8 to 37 human mammary tumors (34 malignant and 3 benign). This form of receptor was detected by its conversion to hormone binding receptor by an endogenous tyrosine kinase in vitro. All 8 tumors were malignant. In these, the incubation of cytosol with ATP was seen to cause a 1- to 5-fold increase in estradiol-specific binding sites. These sites bound estradiol with physiological affinity, and their appearance was associated with tyrosine phosphorylation of estradiol receptor. The enzyme converting the non-hormone binding receptor into the hormone binding receptor is largely present in cytosol and scarce in membranes. It has been extensively purified. It is a 67 kDa protein under denaturating conditions, binds calmodulin-Sepharose in a Ca2+-dependent manner, is stimulated by Ca2+ and calmodulin, phosphorylates exogenous actin, is activated by the estradiol-receptor complex. The enzyme interacts with antibodies directed against the carboxy-terminal and catalytic domains of c-src. Therefore, it is a putative new member of the large c-src-related kinase family. Human mammary cancers with significant amounts of 67 kDa non-hormone binding receptor show relatively low levels of hormone binding estradiol receptor. The presence of non-hormone binding receptor that can be activated by in vitro tyrosine phosphorylation suggests that functional interaction of estradiol receptor with tyrosine kinases is altered in malignant tumors and has bearing on loss of hormone dependence and progression of the mammary cancer malignancy. PMID:8598306

  18. In silico binding characteristics between human histamine H1 receptor and antagonists.

    PubMed

    Wang, Xiaojian; Yang, Qian; Li, Minyong; Yin, Dali; You, Qidong

    2010-09-01

    It is widely acknowledged that the H(1) receptor antagonists have important therapeutic significance in the treatment of various allergic disorders, but little was known about the binding mode between the receptor and antagonists since the crystal structure of G-protein coupling receptors (GPCRs) were hard to obtain. In this paper, a theoretical three-dimensional model of human histamine H(1) receptor (HHR1) was developed on the basis of recently reported high resolution structures of human A(2A) adenosine receptor, human beta(2)-adrenoceptor and turkey beta(1)-adrenoceptor. Furthermore, three representative H(1) receptor antagonists were chosen for docking studies. Subsequently, a qualitative pharmacophore model was developed by Hiphop algorithm based on the docking conformations of these three antagonists. In this paper, active environment, certain key residues, and the corresponding pharmacophore features of H(1) receptor were identified by such combinations of receptor-based and ligand-based approaches, which would give sufficient guidance for the rational design of novel antihistamine agents. PMID:20179978

  19. GABA{sub A} receptor open-state conformation determines non-competitive antagonist binding

    SciTech Connect

    Chen Ligong; Xue Ling; Giacomini, Kathleen M.; Casida, John E.

    2011-02-01

    The {gamma}-aminobutyric acid (GABA) type A receptor (GABA{sub A}R) is one of the most important targets for insecticide action. The human recombinant {beta}3 homomer is the best available model for this binding site and 4-n-[{sup 3}H]propyl-4'-ethynylbicycloorthobenzoate ([{sup 3}H]EBOB) is the preferred non-competitive antagonist (NCA) radioligand. The uniquely high sensitivity of the {beta}3 homomer relative to the much-less-active but structurally very-similar {beta}1 homomer provides an ideal comparison to elucidate structural and functional features important for NCA binding. The {beta}1 and {beta}3 subunits were compared using chimeragenesis and mutagenesis and various combinations with the {alpha}1 subunit and modulators. Chimera {beta}3/{beta}1 with the {beta}3 subunit extracellular domain and the {beta}1 subunit transmembrane helices retained the high [{sup 3}H]EBOB binding level of the {beta}3 homomer while chimera {beta}1/{beta}3 with the {beta}1 subunit extracellular domain and the {beta}3 subunit transmembrane helices had low binding activity similar to the {beta}1 homomer. GABA at 3 {mu}M stimulated heteromers {alpha}1{beta}1 and {alpha}1{beta}3 binding levels more than 2-fold by increasing the open probability of the channel. Addition of the {alpha}1 subunit rescued the inactive {beta}1/{beta}3 chimera close to wildtype {alpha}1{beta}1 activity. EBOB binding was significantly altered by mutations {beta}1S15'N and {beta}3N15'S compared with wildtype {beta}1 and {beta}3, respectively. However, the binding activity of {alpha}1{beta}1S15'N was insensitive to GABA and {alpha}1{beta}3N15'S was stimulated much less than wildtype {alpha}1{beta}3 by GABA. The inhibitory effect of etomidate on NCA binding was reduced more than 5-fold by the mutation {beta}3N15'S. Therefore, the NCA binding site is tightly regulated by the open-state conformation that largely determines GABA{sub A} receptor sensitivity. - Graphical Abstract: Display Omitted Research Highlights

  20. Mass spectrometry-based ligand binding assays on adenosine A1 and A2A receptors.

    PubMed

    Massink, A; Holzheimer, M; Hölscher, A; Louvel, J; Guo, D; Spijksma, G; Hankemeier, T; IJzerman, A P

    2015-12-01

    Conventional methods to measure ligand-receptor binding parameters typically require radiolabeled ligands as probes. Despite the robustness of radioligand binding assays, they carry inherent disadvantages in terms of safety precautions, expensive synthesis, special lab requirements, and waste disposal. Mass spectrometry (MS) is a method that can selectively detect ligands without the need of a label. The sensitivity of MS equipment increases progressively, and currently, it is possible to detect low ligand quantities that are usually found in ligand binding assays. We developed a label-free MS ligand binding (MS binding) assay on the adenosine A(1) and A(2A) receptors (A(1)AR and A(2A)AR), which are well-characterized members of the class A G protein-coupled receptor (GPCR) family. Radioligand binding assays for both receptors are well established, and ample data is available to compare and evaluate the performance of an MS binding assay. 1,3-Dipropyl-8-cyclopentyl-xanthine (DPCPX) and 4-(2-((7-amino-2-(furan-2-yl)-[1,2,4]triazolo[1,5-a]-[1,3,5]triazin-5-yl)amino)ethyl)phenol (ZM-241,385) are high-affinity ligands selective for the A(1)AR and A(2A)AR, respectively. To proof the feasibility of MS binding on the A(1)AR and A(2A)AR, we first developed an MS detection method for unlabeled DPCPX and ZM-241,385. To serve as internal standards, both compounds were also deuterium-labeled. Subsequently, we investigated whether the two unlabeled compounds could substitute for their radiolabeled counterparts as marker ligands in binding experiments, including saturation, displacement, dissociation, and competition association assays. Furthermore, we investigated the accuracy of these assays if the use of internal standards was excluded. The results demonstrate the feasibility of the MS binding assay, even in the absence of a deuterium-labeled internal standard, and provide great promise for the further development of label-free assays based on MS for other GPCRs. PMID

  1. Sequence similarity between the erythrocyte binding domain 1 of the Plasmodium vivax Duffy binding protein and the V3 loop of HIV-1 strain MN reveals binding residues for the Duffy Antigen Receptor for Chemokines

    PubMed Central

    2011-01-01

    Background The surface glycoprotein (SU, gp120) of the human immunodeficiency virus (HIV) must bind to a chemokine receptor, CCR5 or CXCR4, to invade CD4+ cells. Plasmodium vivax uses the Duffy Binding Protein (DBP) to bind the Duffy Antigen Receptor for Chemokines (DARC) and invade reticulocytes. Results Variable loop 3 (V3) of HIV-1 SU and domain 1 of the Plasmodium vivax DBP share a sequence similarity. The site of amino acid sequence similarity was necessary, but not sufficient, for DARC binding and contained a consensus heparin binding site essential for DARC binding. Both HIV-1 and P. vivax can be blocked from binding to their chemokine receptors by the chemokine, RANTES and its analog AOP-RANTES. Site directed mutagenesis of the heparin binding motif in members of the DBP family, the P. knowlesi alpha, beta and gamma proteins abrogated their binding to erythrocytes. Positively charged residues within domain 1 are required for binding of P. vivax and P. knowlesi erythrocyte binding proteins. Conclusion A heparin binding site motif in members of the DBP family may form part of a conserved erythrocyte receptor binding pocket. PMID:21281498

  2. Sigma-2 receptor binding is decreased in female, but not male, APP/PS1 mice.

    PubMed

    Sahlholm, Kristoffer; Liao, Fan; Holtzman, David M; Xu, Jinbin; Mach, Robert H

    2015-05-01

    The sigma-2 receptor is a steroid-binding membrane-associated receptor which has been implicated in cell survival. Sigma-2 has recently been shown to bind amyloid-β (Aβ) oligomers in Alzheimer's disease (AD) brain. Furthermore, blocking this interaction was shown to prevent or reverse the effects of Aβ to cause cognitive impairment in mouse models and synaptic loss in neuronal cultures. In the present work, the density of sigma-2 receptors was measured in a double transgenic mouse model of amyloid-β deposition (APP/PS1). Comparisons were made between males and females and between transgenic and wt animals. Sigma-2 receptor density was assessed by quantitative autoradiography performed on coronal brain slices using [(3)H]N-[4-(3,4-dihydro-6,7-dimethoxyisoquinolin-2(1H)-yl)butyl]-2-methoxy-5-methyl-benzamide ([(3)H]RHM-1), which has a 300-fold selectivity for the sigma-2 receptor over the sigma-1 receptor. The translocator protein of 18 kDa (TSPO) is expressed on activated microglia and is a marker for neuroinflammation. TSPO has been found to be upregulated in neurodegenerative disorders, including AD. Therefore, in parallel with the sigma-2 autoradiography experiments, we measured TSPO expression using the selective radioligand, [(3)H]PBR28. We also quantified Aβ plaque burden in the same animals using a monoclonal antibody raised against aggregated Aβ. Sigma-2 receptor density was significantly decreased in piriform and motor cortices as well as striata of 16-month old female, but not male, APP/PS1 mice as compared to their wt counterparts. [(3)H]PBR28 binding and immunostaining for Aβ plaques were significantly increased in piriform and motor cortices of both male and female transgenic mice. In striatum however, significant increases were observed only in females. PMID:25796326

  3. Ring size in cyclic endomorphin-2 analogs modulates receptor binding affinity and selectivity.

    PubMed

    Piekielna, Justyna; Kluczyk, Alicja; Gentilucci, Luca; Cerlesi, Maria Camilla; Calo', Girolamo; Tomböly, Csaba; Łapiński, Krzysztof; Janecki, Tomasz; Janecka, Anna

    2015-06-01

    The study reports the solid-phase synthesis and biological evaluation of a series of new side chain-to-side chain cyclized opioid peptide analogs of the general structure Tyr-[D-Xaa-Phe-Phe-Asp]NH2, where Xaa = Lys (1), Orn (2), Dab (3), or Dap (4) (Dab = 2,4-diaminobutyric acid, Dap = 2,3-diaminopropionic acid), containing 17- to 14-membered rings. The influence of the ring size on binding to the MOP, DOP and KOP opioid receptors was studied. In general, the reduction of the size of the macrocyclic ring increased the selectivity for the MOP receptor. The cyclopeptide incorporating Xaa = Lys displayed subnanomolar MOP affinity but modest selectivity over the KOP receptor, while the analog with the Orn residue showed increased affinity and selectivity for MOP. The analog with Dab was a weak MOP agonist and did not bind to the other two opioid receptors. Finally, the peptide with Xaa = Dap was completely MOP receptor-selective with subnanomolar affinity. Interestingly, the deletion of one Phe residue from 1 led to the 14-membered Tyr-c[D-Lys-Phe-Asp]NH2 (5), a potent and selective MOP receptor ligand. The in vitro potencies of the new analogs were determined in a calcium mobilization assay performed in Chinese Hamster Ovary (CHO) cells expressing human recombinant opioid receptors and chimeric G proteins. A good correlation between binding and the functional test results was observed. The influence of the ring size, solid support and the N-terminal protecting group on the formation of cyclodimers was studied. PMID:25948019

  4. S100A1 and Calmodulin Compete for the Same Binding Site on Ryanodine Receptor*

    PubMed Central

    Wright, Nathan T.; Prosser, Benjamin L.; Varney, Kristen M.; Zimmer, Danna B.; Schneider, Martin F.; Weber, David J.

    2008-01-01

    In heart and skeletal muscle an S100 protein family member, S100A1, binds to the ryanodine receptor (RyR) and promotes Ca2+ release. Using competition binding assays, we further characterized this system in skeletal muscle and showed that Ca2+-S100A1 competes with Ca2+-calmodulin (CaM) for the same binding site on RyR1. In addition, the NMR structure was determined for Ca2+-S100A1 bound to a peptide derived from this CaM/S100A1 binding domain, a region conserved in RyR1 and RyR2 and termed RyRP12 (residues 3616-3627 in human RyR1). Examination of the S100A1-RyRP12 complex revealed residues of the helical RyRP12 peptide (Lys-3616, Trp-3620, Lys-3622, Leu-3623, Leu-3624, and Lys-3626) that are involved in favorable hydrophobic and electrostatic interactions with Ca2+-S100A1. These same residues were shown previously to be important for RyR1 binding to Ca2+-CaM. A model for regulating muscle contraction is presented in which Ca2+-S100A1 and Ca2+-CaM compete directly for the same binding site on the ryanodine receptor. PMID:18650434

  5. Computational study of the binding modes of caffeine to the adenosine A2A receptor.

    PubMed

    Liu, Yuli; Burger, Steven K; Ayers, Paul W; Vöhringer-Martinez, Esteban

    2011-12-01

    Using the recently solved crystal structure of the human adenosine A(2A) receptor, we applied MM/PBSA to compare the binding modes of caffeine with those of the high-affinity selective antagonist ZM241385. MD simulations were performed in the environment of the lipid membrane bilayer. Four low-energy binding modes of caffeine-A(2A) were found, all of which had similar energies. Assuming an equal contribution of each binding mode of caffeine, the computed binding free energy difference between caffeine and ZM241385 is -2.4 kcal/mol, which compares favorably with the experimental value, -3.6 kcal/mol. The configurational entropy contribution of -0.9 kcal/mol from multiple binding modes of caffeine helps explain how a small molecule like caffeine can compete with a significantly larger molecule, ZM241385, which can form many more interactions with the receptor. We also performed residue-wise energy decomposition and found that Phe168, Leu249, and Ile274 contribute most significantly to the binding modes of caffeine and ZM241385. PMID:21970461

  6. Changes in the hemagglutinin of H5N1 viruses during human infection--influence on receptor binding.

    PubMed

    Crusat, Martin; Liu, Junfeng; Palma, Angelina S; Childs, Robert A; Liu, Yan; Wharton, Stephen A; Lin, Yi Pu; Coombs, Peter J; Martin, Stephen R; Matrosovich, Mikhail; Chen, Zi; Stevens, David J; Hien, Vo Minh; Thanh, Tran Tan; Nhu, Le Nguyen Truc; Nguyet, Lam Anh; Ha, Do Quang; van Doorn, H Rogier; Hien, Tran Tinh; Conradt, Harald S; Kiso, Makoto; Gamblin, Steve J; Chai, Wengang; Skehel, John J; Hay, Alan J; Farrar, Jeremy; de Jong, Menno D; Feizi, Ten

    2013-12-01

    As avian influenza A(H5N1) viruses continue to circulate in Asia and Africa, global concerns of an imminent pandemic persist. Recent experimental studies suggest that efficient transmission between humans of current H5N1 viruses only requires a few genetic changes. An essential step is alteration of the virus hemagglutinin from preferential binding to avian receptors for the recognition of human receptors present in the upper airway. We have identified receptor-binding changes which emerged during H5N1 infection of humans, due to single amino acid substitutions, Ala134Val and Ile151Phe, in the hemagglutinin. Detailed biological, receptor-binding, and structural analyses revealed reduced binding of the mutated viruses to avian-like receptors, but without commensurate increased binding to the human-like receptors investigated, possibly reflecting a receptor-binding phenotype intermediate in adaptation to more human-like characteristics. These observations emphasize that evolution in nature of avian H5N1 viruses to efficient binding of human receptors is a complex multistep process. PMID:24050651

  7. (/sup 3/H)Ethylketocyclazocine binding to mouse brain membranes: evidence for a kappa opioid receptor type

    SciTech Connect

    Garzon, J.; Sanchez-Blazquez, P.; Lee, N.M.

    1984-10-01

    The binding of the putative kappa agonist ethylketocyclazocine (EKC) to synaptosomal membranes of mouse brain was studied. This benzomorphan was able to bind to different opioid receptors. A portion of this binding was not inhibited by the agonist naloxone, even at high concentrations (10 microM). This population of receptors, to which opioate alkaloids and opiod peptides display very low affinity, is probably the sigma receptor. Another class of binding sites was identified by the simultaneous addition of the selective agonists Sandoz FK-33824 and D-Ala2-D-Leu5-enkephalin, which blocked the access of EKC to mu and delta opioid receptors, respectively, leaving a portion of naloxone-displaceable benzomorphan binding still detectable. Analysis of this remaining binding revealed a small population of receptors of high affinity, the kappa receptor. Therefore, EKC binds to the mu, delta, kappa and sigma receptors in the mouse brain, with similar affinities for the mu and kappa (0.22 and 0.15 nM). These results confirm the existence of a kappa opioid receptor type in the mouse brain.

  8. A Complete Backbone Assignment of the Apolipoprotein E LDL Receptor Binding Domain [Letter to the Editor

    SciTech Connect

    Xu, Chao; Sivashanmugam, Arun; Hoyt, David W.; Wang, Jianjun

    2005-06-01

    Human apolipoprotein E (apoE) is a 299-residue exchangeable apolipoprotein that was initially recognized as a major determinant in lipoprotein metabolism and cardiovascular diseases. Recent evidence has indicated that apoE also plays critical roles in several other important biological processes not directly related to its lipid transport function, including Alzheimer's disease, cognitive function, immunoregulation, cell signaling, and possibly even infectious diseases. ApoE contains two structural/functional domains: A N-terminal domain spanning residues 1-191 that is responsible for apoE's LDL receptor binding activity and a C-terminal domain (residues 216-199) that is responsible for lipoprotein-binding (1). The x-ray crystal structure of the lipid-free apoE N-terminal domain was solved by Wilson et al in 1991 which represented the only high-resolution structure of this protein. This structure showed an unusually elongated four-helix bundle (2) that was organized in such 2 a way that its hydrophobic faces were directed towards the protein interior, whereas the hydrophilic faces were oriented towards the solvent. The major receptor-binding region, residues 130-150, was located on the fourth helix. The amphipathic a-helices were connected by short loops, giving rise to a compact, globular structure. However, this structure only contained residues 23-165. Recent studies have shown that residues beyond residues 23-165 are also very important to the apoE LDL receptor binding activity. For example, a mutation at position R172 reduces the receptor binding activity of apoE to only {approx}2% (3). In addition, an E3K mutant significantly increased the apoE receptor binding activity as well (4). While the x-ray crystal structure of the apoE N-terminal domain provided detailed structural information for most region of this domain, this structure does not provide an explanation of the above experimental results regarding the structural contribution to apoE's LDL receptor

  9. The muscarinic receptor of chick embryo cells: correlation between ligand binding and calcium mobilization

    PubMed Central

    1985-01-01

    In this report we characterize muscarinic cholinergic receptor on embryonic cells. We established dose-response curves by fluorometric measurement of Ca2+ mobilization in cell suspensions of whole chick embryos stage 23/24. Ca2+ mobilization was quantitated by standardization of chlorotetracycline (CTC) fluorescence changes after stimulation with muscarinic agonists. We determined ED50 values for the agonists acetylcholine and carbachol as 3.4 X 10(-6) and 2.7 X 10(-5) M, respectively. Pilocarpine and oxotremorine were found to act as reversible competitive antagonists with inhibition constants (Kl) of 5.0 X 10(-6) and 1.4 X 10(-6) M, respectively. Bethanechol, which induced only 23% of the maximal effect obtained by acetylcholine, was a partial agonist with an ED50 of 4.8 X 10(-4) M. Its antagonistic component is expressed by an inhibition constant of 1.9 X 10(-4) M. In parallel, binding studies were performed in a competition assay with [3H]-quinuclidinylbenzilate. For the agonists acetylcholine and carbachol, binding parameters were best fitted by a "two binding-sites model." Comparison with dose-response curves indicated that Ca2+ mobilization was triggered via the high-affinity binding site. The inhibition constants of antagonists derived from the shift of dose- response curves corresponded to the fitted KD values of the binding studies when a "one binding-site model" was applied. Combination of dose-response and binding data showed close proportionality between receptor occupancy and calcium mobilization. No spare receptors were present. PMID:2858487

  10. Different binding of stimulatory-type and blocking-type TSH receptor antibody with guinea-pig testis membrane.

    PubMed

    Inui, T; Ochi, Y; Hachiya, T; Chen, W; Nakajima, Y; Kajita, Y; Ogura, H

    1991-11-01

    A receptor assay using [125I]bTSH-binding to guinea-pig testis membrane was developed. Unlabelled hCG and FSH inhibited [125I]bTSH binding. In patients with Graves' disease and in untreated hyperthyroid patients, almost all long-acting thyroid stimulators and thyroid-stimulating antibodies, respectively did not inhibit [125I]bTSH binding, which on the other hand was inhibited by thyroid stimulation blocking antibodies in patients with primary hypothyroidism. When the inhibitory effect on the binding of [125I]hCG and 125I-synthetic alpha-subunit peptide (alpha 26-46) of hCG to testis membrane was examined, bTSH resulted in a significant inhibition. However, all three kinds of TSH receptor antibodies had no inhibitory effect. This study demonstrated 1. interaction of alpha-subunit of TSH and hCG with the testicular receptor; 2. binding of thyroid stimulation-blocking antibody and lack of binding of thyroid-stimulating antibody to the testicular TSH receptor in spite of binding of these TSH receptor antibodies to the thyroidal TSH receptor, and 3. lack of binding of thyroid-stimulating antibody and thyroid stimulation-blocking antibody to the testicular gonadotropin receptor. PMID:1684686

  11. 4.1N binding regions of inositol 1,4,5-trisphosphate receptor type 1.

    PubMed

    Fukatsu, Kazumi; Bannai, Hiroko; Inoue, Takafumi; Mikoshiba, Katsuhiko

    2006-04-01

    Zhang et al. and Maximov et al. [S. Zhang, A. Mizutani, C. Hisatsune, T. Higo, H. Bannai, T. Nakayama, M. Hattori, and K. Mikoshiba, Protein 4.1N is required for translocation of inositol 1,4,5-trisphosphate receptor type 1 to the basolateral membrane domain in polarized Madin-Darby canine kidney cells, J. Biol. Chem. 278 (2003) 4048-4056; A. Maximov, T. S. Tang, and I. Bezprozvanny, Association of the type 1 inositol (1,4,5)-trisphosphate receptor with 4.1N protein in neurons, Mol. Cell. Neurosci. 22 (2003) 271-283.] reported that 4.1N is a binding partner of inositol 1,4,5-trisphosphate receptor type 1 (IP(3)R1), however the binding site of IP(3)R1 differed: the former determined the C-terminal 14 amino acids of the cytoplasmic tail (CTT14aa) as the binding site, while the latter assigned another segment, cytoplasmic tail middle 1 (CTM1). To solve this discrepancy, we performed immunoprecipitation and found that both the segments had binding activity to 4.1N. Both segments also interfered the 4.1N-regulated IP(3)R1 diffusion in neuronal dendrites. However, IP(3)R1 lacking the CTT14aa (IP(3)R1-DeltaCTT14aa) does not bind to 4.1N [S. Zhang, A. Mizutani, C. Hisatsune, T. Higo, H. Bannai, T. Nakayama, M. Hattori, and K. Mikoshiba, Protein 4.1N is required for translocation of inositol 1,4,5-trisphosphate receptor type 1 to the basolateral membrane domain in polarized Madin-Darby canine kidney cells, J. Biol. Chem. 278 (2003) 4048-4056.] and its diffusion constant is larger than that of IP(3)R1 full-length in neuronal dendrites [K. Fukatsu, H. Bannai, S. Zhang, H. Nakamura, T. Inoue, and K. Mikoshiba, Lateral diffusion of inositol 1,4,5-trisphosphate receptor type 1 is regulated by actin filaments and 4.1N in neuronal dendrites, J. Biol. Chem. 279 (2004) 48976-48982.]. We conclude that both the CTT14aa and CTM1 sequences can bind to 4.1N in peptide fragment forms. However, we propose that the responsible binding site for 4.1N binding in full-length tetramer form of IP

  12. Repression of DNA-binding dependent glucocorticoid receptor-mediated gene expression

    PubMed Central

    Muzikar, Katy A.; Nickols, Nicholas G.; Dervan, Peter B.

    2009-01-01

    The glucocorticoid receptor (GR) affects the transcription of genes involved in diverse processes, including energy metabolism and the immune response, through DNA-binding dependent and independent mechanisms. The DNA-binding dependent mechanism occurs by direct binding of GR to glucocorticoid response elements (GREs) at regulatory regions of target genes. The DNA-binding independent mechanism involves binding of GR to transcription factors and coactivators that, in turn, contact DNA. A small molecule that competes with GR for binding to GREs could be expected to affect the DNA-dependent pathway selectively by interfering with the protein-DNA interface. We show that a DNA-binding polyamide that targets the consensus GRE sequence binds the glucocorticoid-induced zipper (GILZ) GRE, inhibits expression of GILZ and several other known GR target genes, and reduces GR occupancy at the GILZ promoter. Genome-wide expression analysis of the effects of this polyamide on a set of glucocorticoid-induced and -repressed genes could help to elucidate the mechanism of GR regulation for these genes. PMID:19805343

  13. Multiple tyrosine residues at the GABA binding pocket influence surface expression and mediate kinetics of the GABAA receptor.

    PubMed

    Laha, Kurt T; Tran, Phu N

    2013-01-01

    The prevalence of aromatic residues in the ligand binding site of the GABA(A) receptor, as with other cys-loop ligand-gated ion channels, is undoubtedly important for the ability of neurotransmitters to bind and trigger channel opening. Here, we have examined three conserved tyrosine residues at the GABA binding pocket (β(2) Tyr97, β(2) Tyr157, and β(2) Tyr205), making mutations to alanine and phenylalanine. We fully characterized the effects each mutation had on receptor function using heterologous expression in HEK-293 cells, which included examining surface expression, kinetics of macroscopic currents, microscopic binding and unbinding rates for an antagonist, and microscopic binding rates for an agonist. The assembly or trafficking of GABA(A) receptors was disrupted when tyrosine mutants were expressed as αβ receptors, but interestingly not when expressed as αβγ receptors. Mutation of each tyrosine accelerated deactivation and slowed GABA binding. This provides strong evidence that these residues influence the binding of GABA. Qualitatively, mutation of each tyrosine has a very similar effect on receptor function; however, mutations at β(2) Tyr157 and β(2) Tyr205 are more detrimental than β(2) Tyr97 mutations, particularly to the GABA binding rate. Overall, the results suggest that interactions involving multiple tyrosine residues are likely during the binding process. PMID:23121119

  14. Effects of neonatal methylmercury exposure on adrenergic-receptor binding sites in peripheral tissues of the developing rat

    SciTech Connect

    Slotkin, T.A.; Kavlock, R.J.; Cowdery, T.; Orband, L.; Bartolome, M.

    1986-01-01

    Neonatal exposure to methylmercury produces changes in patterns of tissue growth and function, in part, due to alterations in adrenergic neuronal input. To explore the mechanisms by which these changes come about, newborn rats were exposed to methylmercury (1 or 2.5 mg/kg/day) throughout the preweaning stage and the ontogeny of adrenergic receptor binding sites evaluated in liver, kidney, heart and lung, using (/sup 3/H)prazosin (alpha 1-receptors), (/sup 3/H)rauwolscine (alpha 2-receptors) and (/sup 125/I)pindolol (beta-receptors). In the kidney, methylmercury caused decreases in beta- and alpha 1-receptor binding and increases in alpha 2-binding, and the alterations persisted into adulthood; previous work has shown that beta-receptor-mediated responses are generally enhanced in methylmercury-exposed pups, and the down-regulation of beta-receptor binding thus probably represents a compensatory action secondary to alterations in post-receptor coupling mechanisms. The effects of methylmercury on hepatic adrenergic receptors were different from those seen in the kidney, with substantial elevations in beta- and alpha-receptor binding apparent in the preweaning stage; this agrees also with the differences in effects of the mercurial on trophic reactivity and growth in the two tissues.

  15. New insights into the GABAA receptor structure and orthosteric ligand binding: Receptor modeling guided by experimental data

    PubMed Central

    Sander, Tommy; Frølund, Bente; Bruun, Anne Techau; Ivanov, Ivaylo; McCammon, J. Andrew; Balle, Thomas

    2011-01-01

    GABAA receptors (GABAARs) are ligand gated chloride ion channels that mediate overall inhibitory signaling in the CNS. A detailed understanding of their structure is important to gain insights in e.g. ligand binding and functional properties of this pharmaceutically important target. Homology modeling is a necessary tool in this regard because experimentally determined structures are lacking. Here we present an exhaustive approach for creating a high quality model of the α1β2γ2 subtype of the GABAAR ligand binding domain, and we demonstrate its usefulness in understanding details of orthosteric ligand binding. The model was constructed by using multiple templates and by incorporation of knowledge from biochemical/pharmacological experiments. It was validated on the basis of objective energy functions, its ability to account for available residue specific information, and its stability in molecular dynamics (MD) compared to that of two homologous crystal structures. We then combined the model with extensive structure-activity relationships available from two homologous series of orthosteric GABAAR antagonists to create a detailed hypothesis for their binding modes. Excellent agreement with key experimental data was found, including the ability of the model to accommodate and explain a previously developed pharmacophore model. A coupling to agonist binding was thereby established and discussed in relation to activation mechanisms. Our results highlight the importance of critical evaluation and optimization of each step in the homology modeling process. The approach taken here can greatly aid in increasing the understanding of GABAARs and related receptors where structural insight is limited and reliable models are difficult to obtain. PMID:21365676

  16. In Vivo Quantification of Tumor Receptor Binding Potential with Dual-Reporter Molecular Imaging

    PubMed Central

    Tichauer, Kenneth M.; Samkoe, Kimberley S.; Sexton, Kristian J.; Hextrum, Shannon K.; Yang, Harold H.; Klubben, W. Spencer; Gunn, Jason R.; Hasan, Tayyaba; Pogue, Brian W.

    2012-01-01

    Purpose Receptor availability represents a key component of current cancer management. However, no approaches have been adopted to do this clinically, and the current standard of care is invasive tissue biopsy. A dual-reporter methodology capable of quantifying available receptor binding potential of tumors in vivo within a clinically relevant time scale is presented. Procedures To test the methodology, a fluorescence imaging-based adaptation was validated against ex vivo and in vitro measures of epidermal growth factor receptor (EGFR) binding potential in four tumor lines in mice, each line expected to express a different level of EGFR. Results A strong correlation was observed between in vivo and ex vivo measures of binding potential for all tumor lines (r=0.99, p<0.01, slope=1.80±0.48, and intercept=−0.58±0.84) and between in vivo and in vitro for the three lines expressing the least amount of EGFR (r=0.99, p<0.01, slope=0.64±0.32, and intercept=0.47±0.51). Conclusions By providing a fast and robust measure of receptor density in tumors, the presented methodology has powerful implications for improving choices in cancer intervention, evaluation, and monitoring, and can be scaled to the clinic with an imaging modality like SPECT. PMID:22203241

  17. Structural Studies of Nicotinic Acetylcholine Receptors: Using Acetylcholine-Binding Protein as a Structural Surrogate.

    PubMed

    Shahsavar, Azadeh; Gajhede, Michael; Kastrup, Jette S; Balle, Thomas

    2016-06-01

    Nicotinic acetylcholine receptors (nAChRs) are members of the pentameric ligand-gated ion channel superfamily that play important roles in the control of neurotransmitter release in the central and peripheral nervous system. These receptors are important therapeutic targets for the development of drugs against a number of mental health disorders and for marketed smoking cessation aids. Unfortunately, drug discovery has been hampered by difficulties in obtaining sufficiently selective compounds. Together with functional complexity of the receptors, this has made it difficult to obtain drugs with sufficiently high-target to off-target affinity ratios. The recent and ongoing progress in structural studies holds promise to help understand structure-function relationships of nAChR drugs at the atomic level. This will undoubtedly lead to the design of more efficient drugs with fewer side effects. As a high-resolution structure of a nAChR is yet to be determined, structural studies are to a large extent based on acetylcholine-binding proteins (AChBPs) that despite low overall sequence identity display a high degree of conservation of overall structure and amino acids at the ligand-binding site. Further, AChBPs reproduce relative binding affinities of ligands at nAChRs. Over the past decade, AChBPs have been used extensively as models for nAChRs and have aided the understanding of drug receptor interactions at nAChRs significantly. PMID:26572235

  18. Reversibly bound chloride in the atrial natriuretic peptide receptor hormone-binding domain: Possible allosteric regulation and a conserved structural motif for the chloride-binding site

    PubMed Central

    Ogawa, Haruo; Qiu, Yue; Philo, John S; Arakawa, Tsutomu; Ogata, Craig M; Misono, Kunio S

    2010-01-01

    The binding of atrial natriuretic peptide (ANP) to its receptor requires chloride, and it is chloride concentration dependent. The extracellular domain (ECD) of the ANP receptor (ANPR) contains a chloride near the ANP-binding site, suggesting a possible regulatory role. The bound chloride, however, is completely buried in the polypeptide fold, and its functional role has remained unclear. Here, we have confirmed that chloride is necessary for ANP binding to the recombinant ECD or the full-length ANPR expressed in CHO cells. ECD without chloride (ECD(−)) did not bind ANP. Its binding activity was fully restored by bromide or chloride addition. A new X-ray structure of the bromide-bound ECD is essentially identical to that of the chloride-bound ECD. Furthermore, bromide atoms are localized at the same positions as chloride atoms both in the apo and in the ANP-bound structures, indicating exchangeable and reversible halide binding. Far-UV CD and thermal unfolding data show that ECD(−) largely retains the native structure. Sedimentation equilibrium in the absence of chloride shows that ECD(−) forms a strongly associated dimer, possibly preventing the structural rearrangement of the two monomers that is necessary for ANP binding. The primary and tertiary structures of the chloride-binding site in ANPR are highly conserved among receptor-guanylate cyclases and metabotropic glutamate receptors. The chloride-dependent ANP binding, reversible chloride binding, and the highly conserved chloride-binding site motif suggest a regulatory role for the receptor bound chloride. Chloride-dependent regulation of ANPR may operate in the kidney, modulating ANP-induced natriuresis. PMID:20066666

  19. Reversibly Bound Chloride in the Atrial Natriuretic Peptide Receptor Hormone Binding Domain: Possible Allosteric Regulation and a Conserved Structural Motif for the Chloride-binding Site

    SciTech Connect

    Ogawa, H.; Qiu, Y; Philo, J; Arakawa, T; Ogata, C; Misono, K

    2010-01-01

    The binding of atrial natriuretic peptide (ANP) to its receptor requires chloride, and it is chloride concentration dependent. The extracellular domain (ECD) of the ANP receptor (ANPR) contains a chloride near the ANP-binding site, suggesting a possible regulatory role. The bound chloride, however, is completely buried in the polypeptide fold, and its functional role has remained unclear. Here, we have confirmed that chloride is necessary for ANP binding to the recombinant ECD or the full-length ANPR expressed in CHO cells. ECD without chloride (ECD(-)) did not bind ANP. Its binding activity was fully restored by bromide or chloride addition. A new X-ray structure of the bromide-bound ECD is essentially identical to that of the chloride-bound ECD. Furthermore, bromide atoms are localized at the same positions as chloride atoms both in the apo and in the ANP-bound structures, indicating exchangeable and reversible halide binding. Far-UV CD and thermal unfolding data show that ECD(-) largely retains the native structure. Sedimentation equilibrium in the absence of chloride shows that ECD(-) forms a strongly associated dimer, possibly preventing the structural rearrangement of the two monomers that is necessary for ANP binding. The primary and tertiary structures of the chloride-binding site in ANPR are highly conserved among receptor-guanylate cyclases and metabotropic glutamate receptors. The chloride-dependent ANP binding, reversible chloride binding, and the highly conserved chloride-binding site motif suggest a regulatory role for the receptor bound chloride. Chloride-dependent regulation of ANPR may operate in the kidney, modulating ANP-induced natriuresis.

  20. Methodological considerations for the human platelet 5-HT2A receptor binding kinetic assay.

    PubMed

    Khait, V D; Huang, Y Y; Mann, J J

    1999-01-01

    Analysis of an extensive database of human platelet 5-HT2A receptor binding assays has been conducted in order to identify factors that may affect the assay results. Despite anecdotal reports that storage of frozen platelet pellets may affect 5-HT2A binding affinity and capacity, no quantitative study has been reported in the literature. Analysis of binding data for 373 frozen samples with a storage time up to three years is presented in this paper. It is shown that prolonged storage significantly decreases binding. The loss of binding capacity begins in the first six month of storage. Bmax declines by half after 17 month. The impact of storage time on the binding affinity is much smaller. There is only about 20% increase in the value of affinity K(D) during the half-life of Bmax. Differences in sample storage time may partly explain discrepancies in results between different research groups. Nonspecific binding due to binding to filter material diminishes accuracy and reliability of the binding assays as a result of a decrease in the ratio of specific to nonspecific ratio. A data analysis based on our suggested mathematical model shows that this effect depends on tissue concentration in test tube and becomes pronounced when the concentration is below 0.1 mg protein/ml (at 0.2 nM of ligand). Above 0.1 mg protein/ml, percentage of specific to total binding exceeds 65%, which is an acceptable level for the ratio. The majority of the binding studies reported in the literature employed a tissue concentration more than 0.5 mg/ml, well above the minimal limit sufficient for a reliable assay. However, development of microassays to conserve precious tissue must take the limit into consideration. PMID:10619369

  1. Membrane Environment Can Enhance the Interaction of Glycan Binding Protein to Cell Surface Glycan Receptors

    PubMed Central

    2015-01-01

    The binding of lectins to glycan receptors on the host cell surface is a key step contributing to the virulence and species specificity of most viruses. This is exemplified by the viral protein hemagglutinin (HA) of the influenza A virus, whose binding specificity is modulated by the linkage pattern of terminal sialic acids on glycan receptors of host epithelial cells. Such specificity dictates whether transmission is confined to a particular animal species or jumps between species. Here, we show, using H5N1 avian influenza as a model, that the specific binding of recombinant HA to α2-3 linked sialic acids can be enhanced dramatically by interaction with the surface of the lipid membrane. This effect can be quantitatively accounted for by a two-stage process in which weak association of HA with the membrane surface precedes more specific and tighter binding to the glycan receptor. The weak protein–membrane interaction discovered here in the model system may play an important secondary role in the infection and pathogenesis of the influenza A virus. PMID:24949798

  2. Transcription Factor AP1 Potentiates Chromatin Accessibility and Glucocorticoid Receptor Binding

    PubMed Central

    Biddie, Simon C.; John, Sam; Sabo, Pete J.; Thurman, Robert E.; Johnson, Thomas A.; Schiltz, R. Louis; Miranda, Tina B.; Sung, Myong-Hee; Trump, Saskia; Lightman, Stafford L.; Vinson, Charles; Stamatoyannopoulos, John A.; Hager, Gordon L.

    2011-01-01

    Summary Ligand-dependent transcription by the nuclear receptor glucocorticoid receptor (GR) is mediated by interactions with co-regulators. The role of these interactions in determining selective binding of GR to regulatory elements remains unclear. Recent findings indicate a large fraction of genomic GR binding coincides with chromatin that is accessible prior to hormone treatment, suggesting that receptor binding is dictated by proteins that maintain chromatin in an open state. Combining DNaseI accessibility and chromatin immunoprecipitation with high-throughput sequencing, we identify the activator protein 1 (AP1) as a major partner for productive GR-chromatin interactions. AP1 is critical for GR-regulated transcription and recruitment to co-occupied regulatory elements, illustrating an extensive AP1-GR interaction network. Importantly, the maintenance of baseline chromatin accessibility facilitates GR recruitment and is dependent on AP1 binding. We propose a model where the basal occupancy of transcription factors act to prime chromatin and direct inducible transcription factors to select regions in the genome. PMID:21726817

  3. Overlapping binding sites drive allosteric agonism and positive cooperativity in type 4 metabotropic glutamate receptors.

    PubMed

    Rovira, Xavier; Malhaire, Fanny; Scholler, Pauline; Rodrigo, Jordi; Gonzalez-Bulnes, Patricia; Llebaria, Amadeu; Pin, Jean-Philippe; Giraldo, Jesús; Goudet, Cyril

    2015-01-01

    Type 4 metabotropic glutamate (mGlu4) receptors are emerging targets for the treatment of various disorders. Accordingly, numerous mGlu4-positive allosteric modulators (PAMs) have been identified, some of which also display agonist activity. To identify the structural bases for their allosteric action, we explored the relationship between the binding pockets of mGlu4 PAMs with different chemical scaffolds and their functional properties. By use of innovative mGlu4 biosensors and second-messenger assays, we show that all PAMs enhance agonist action on the receptor through different degrees of allosteric agonism and positive cooperativity. For example, whereas VU0155041 and VU0415374 display equivalent efficacies [log(τ(B)) = 1.15 ± 0.38 and 1.25 ± 0.44, respectively], they increase the ability of L-AP4 to stabilize the active conformation of the receptor by 4 and 39 times, respectively. Modeling and docking studies identify 2 overlapping binding pockets as follows: a first site homologous to the pocket of natural agonists of class A GPCRs linked to allosteric agonism and a second one pointing toward a site topographically homologous to the Na(+) binding pocket of class A GPCRs, occupied by PAMs exhibiting the strongest cooperativity. These results reveal that intrinsic efficacy and cooperativity of mGlu4 PAMs are correlated with their binding mode, and vice versa, integrating structural and functional knowledge from different GPCR classes. PMID:25342125

  4. Binding of a C-end rule peptide to neuropilin-1 receptor: A molecular modeling approach

    PubMed Central

    Haspel, Nurit; Zanuy, David; Nussinov, Ruth; Teesalu, Tambet; Ruoslahti, Erkki; Aleman, Carlos

    2011-01-01

    Neuropilin-1 (NRP-1) is a receptor that plays an essential role in angiogenesis, vascular permeability and nervous system development. Previous studies have shown that peptides with an N-terminal Arg, especially peptides with the four residue consensus sequence R/K/XXR/K bind to NRP-1 cell surfaces. Peptides containing such consensus sequences promote binding and internalization into cells, while blocking the C-terminal Arg (or Lys) prevents the internalization. In this study we use molecular dynamics simulations to model the structural properties of the NRP-1 complex with a prototypic CendR peptide, RPAR. Our simulations show that RPAR binds NRP-1 through specific interactions of the RPAR C-terminus: three hydrogen bonds and a salt bridge anchor the ligand in the receptor pocket. The modeling results were used as the starting point for a systematic computational study of new RPAR analogs based on chemical modifications of its natural amino acids. Comparison of the structural properties of the new peptide - receptor complexes with the original organization suggest that some of the analogs can increase the binding affinity while reducing the natural sensitivity of RXXR to endogenous proteases. PMID:21247217

  5. Chronic brief restraint decreases in vivo binding of benzodiazepine receptor ligand to mouse brain.

    PubMed

    Mosaddeghi, M; Burke, T F; Moerschbaecher, J M

    1993-01-01

    This study examines the effects of chronic brief restraint on in vivo benzodiazepine (BZD) receptor binding in mouse brain. Three groups of mice were used. Mice in group 1 were neither restrained nor injected (ACUTE control). Mice in group 2 were restrained for 5-6 s by grabbing the back skin and holding the subject upside-down at a 45 degrees angle as if to be injected (CHRONIC SHAM control) for 7 d. Mice in group 3 (CHRONIC SALINE) received daily single intraperitoneal (ip) injections of saline (5 mL/kg) for 7 d. On d 8 BZD receptors were labeled in vivo by administration of 3 microCi [3H]flumazenil (ip). The levels of ligand bound in vivo to cerebral cortex (CX), cerebellum (CB), brain stem (BS), striatum (ST), hippocampus (HP), and hypothalamus (HY) were determined. Results indicated that the level of binding was significantly (p < 0.01) lower by 30-50% (depending on the brain region) in saline-injected or sham control groups compared to acute control animals. Furthermore, the values for sham control were similar to the saline-treated group. Our data suggest that exposure to chronic mild restraint produces a decrease in in vivo binding of [3H]flumazenil in mouse brain and supports the hypothesis that chronic mild stress produces a decrease in BZD receptor binding sites. PMID:8385464

  6. Liver Retinol Transporter and Receptor for Serum Retinol-binding Protein (RBP4)*

    PubMed Central

    Alapatt, Philomena; Guo, Fangjian; Komanetsky, Susan M.; Wang, Shuping; Cai, Jinjin; Sargsyan, Ashot; Rodríguez Díaz, Eduardo; Bacon, Brandon T.; Aryal, Pratik; Graham, Timothy E.

    2013-01-01

    Vitamin A (retinol) is absorbed in the small intestine, stored in liver, and secreted into circulation bound to serum retinol-binding protein (RBP4). Circulating retinol may be taken up by extrahepatic tissues or recycled back to liver multiple times before it is finally metabolized or degraded. Liver exhibits high affinity binding sites for RBP4, but specific receptors have not been identified. The only known high affinity receptor for RBP4, Stra6, is not expressed in the liver. Here we report discovery of RBP4 receptor-2 (RBPR2), a novel retinol transporter expressed primarily in liver and intestine and induced in adipose tissue of obese mice. RBPR2 is structurally related to Stra6 and highly conserved in vertebrates, including humans. Expression of RBPR2 in cultured cells confers high affinity RBP4 binding and retinol transport, and RBPR2 knockdown reduces RBP4 binding/retinol transport. RBPR2 expression is suppressed by retinol and retinoic acid and correlates inversely with liver retinol stores in vivo. We conclude that RBPR2 is a novel retinol transporter that potentially regulates retinol homeostasis in liver and other tissues. In addition, expression of RBPR2 in liver and fat suggests a possible role in mediating established metabolic actions of RBP4 in those tissues. PMID:23105095

  7. Dopamine receptors in the guinea-pig heart. A binding study

    SciTech Connect

    Sandrini, M.; Benelli, A.; Baraldi, M.

    1984-10-29

    The binding of dopaminergic agonists and antagonists to guinea-pig myocardial membrane preparations was studied using /sup 3/H-dopamine and /sup 3/H-spiperone as radioligand. /sup 3/H-Dopamine bound specifically to heart membranes while /sup 3/H-spiperone did not. A Scatchard analysis of /sup 3/H-dopamine binding showed a curvilinear plot indicating the presence of two dopamine receptor populations that we have termed high- (K/sub d/ = 1.2 nM, B/sub mx/ = 52.9 fmol/mg prot.) and low- (K/sub d/ = 11.8 nM, B/sub mx/ = 267.3 fmol/gm prot.) affinity binding sites, respectively. The charactization of the high-affinity component of /sup 3/H-dopamine binding indicated tha

  8. Computational Prediction of Alanine Scanning and Ligand Binding Energetics in G-Protein Coupled Receptors

    PubMed Central

    Boukharta, Lars; Gutiérrez-de-Terán, Hugo; Åqvist, Johan

    2014-01-01

    Site-directed mutagenesis combined with binding affinity measurements is widely used to probe the nature of ligand interactions with GPCRs. Such experiments, as well as structure-activity relationships for series of ligands, are usually interpreted with computationally derived models of ligand binding modes. However, systematic approaches for accurate calculations of the corresponding binding free energies are still lacking. Here, we report a computational strategy to quantitatively predict the effects of alanine scanning and ligand modifications based on molecular dynamics free energy simulations. A smooth stepwise scheme for free energy perturbation calculations is derived and applied to a series of thirteen alanine mutations of the human neuropeptide Y1 receptor and series of eight analogous antagonists. The robustness and accuracy of the method enables univocal interpretation of existing mutagenesis and binding data. We show how these calculations can be used to validate structural models and demonstrate their ability to discriminate against suboptimal ones. PMID:24743773

  9. Tc-99m galactosyl-neoglycoalbumin: in vitro characterization of receptor-mediated binding

    SciTech Connect

    Vera, D.R.; Krohn, K.A.; Stadalnik, R.C.; Scheibe, P.O.

    1984-07-01

    Hepatic binding protein (HBP) is a membrane receptor that binds and transports plasma glycoproteins from hepatic blood to hepatocellular lysosomes. The authors have characterized the in vitro binding of Tc-99m galactosyl-neoglycoalbumin (Tc-NGA), a synthetic HBP ligand, to liver membrane. Membrane displacement studies, using carrier ligands in contrast to previously bound Tc-NGA or I-NGA, correlated with the binding characteristics of a native HBP ligand, asialo-orosomucoid. They used computer simulation to study the detectibility of the changes in HBP concentration at different values of k/sub b/. The simulations indicated that radiopharmacokinetic sensitivity to alterations in (HBP) should be possible using a neoglycoalbumin preparation with a carbohydrate density within the range of 15 to 25 galactose units per albumin molecule.

  10. Electrostatics and Intrinsic Disorder Drive Translocon Binding of the SRP Receptor FtsY.

    PubMed

    Lakomek, Nils-Alexander; Draycheva, Albena; Bornemann, Thomas; Wintermeyer, Wolfgang

    2016-08-01

    Integral membrane proteins in bacteria are co-translationally targeted to the SecYEG translocon for membrane insertion via the signal recognition particle (SRP) pathway. The SRP receptor FtsY and its N-terminal A domain, which is lacking in any structural model of FtsY, were studied using NMR and fluorescence spectroscopy. The A domain is mainly disordered and highly flexible; it binds to lipids via its N terminus and the C-terminal membrane targeting sequence. The central A domain binds to the translocon non-specifically and maintains disorder. Translocon targeting and binding of the A domain is driven by electrostatic interactions. The intrinsically disordered A domain tethers FtsY to the translocon, and because of its flexibility, allows the FtsY NG domain to scan a large area for binding to the NG domain of ribosome-bound SRP, thereby promoting the formation of the quaternary transfer complex at the membrane. PMID:27346853

  11. Functional reconstitution of prostaglandin E receptor from bovine adrenal medulla with guanine nucleotide binding proteins

    SciTech Connect

    Negishi, M.; Ito, S.; Yokohama, H.; Hayashi, H.; Katada, T.; Ui, M.; Hayaishi, O.

    1988-05-15

    Prostaglandin E/sub 2/ (PEG/sub 2/) was found to bind specifically to a 100,000 x g pellet prepared from bovine adrenal medulla. The PGE receptor was associated with a GTP-binding protein (G-protein) and could be covalently cross-linked with this G-protein by dithiobis(succinimidyl propionate) in the 100,000 x g pellet. In order to characterize the G-protein associated with the PGE receptor and reconstitute these proteins in phospholipid vesicles, the authors purified the G-protein to apparent homogeneity from the 100,000 x g pellet. The G-protein served as a substrate of pertussis toxin but differed in its ..cap alpha.. subunit from two known pertussis toxin substrate G-proteins (G/sub i/ and G/sub 0/) purified from bovine brain. The molecular weight of the ..cap alpha.. subunit was 40,000, which is between those of G/sub i/ and G/sub 0/. The purified protein was also distinguished immunologically from G/sub i/ and G/sub 0/ and was referred to as G/sub am/. Reconstitution of the PGE receptor with pure C/sub am/, G/sub i/, or G/sub 0/ in phospholipid vesicles resulted in a remarkable restoration of (/sup 3/H)PGE/sub 2/ binding activity in a GTP-dependent manner. The efficiency of these three G-proteins in this capacity was roughly equal. When pertussis toxin- or N-ethylmaleimide-treated G-proteins, instead of the native ones, were reconstituted into vesicles, the restoration of binding activity was no longer observed. These results indicate that the PGE receptor can couple functionally with G/sub am/, G/sub i/, or G/sub 0/ in phospholipid vesicles and suggest that G/sub am/ may be involved in signal transduction of the PGE receptor in bovine adrenal medulla.

  12. Identification of common ligand binding determinants of the insulin and insulin-like growth factor 1 receptors. Insights into mechanisms of ligand binding.

    PubMed

    Mynarcik, D C; Williams, P F; Schaffer, L; Yu, G Q; Whittaker, J

    1997-07-25

    Insulin and insulin-like growth factor 1 (IGF-1) are peptides that share nearly 50% sequence homology. However, although their cognate receptors also exhibit significant overall sequence homology, the affinity of each peptide for the non-cognate receptor is 2-3 orders of magnitude lower than for the cognate receptor. The molecular basis for this discrimination is unclear, as are the molecular mechanisms underlying ligand binding. We have recently identified a major ligand binding site of the insulin receptor by alanine scannning mutagenesis. These studies revealed that a number of amino acids critical for insulin binding are conserved in the IGF-1 receptor, suggesting that they may play a role in ligand binding. We therefore performed alanine mutagenesis of these amino acids to determine whether this is the case. cDNAs encoding alanine-substituted secreted recombinant IGF-1 receptors were expressed in 293 EBNA cells, and the ligand binding properties of the expressed proteins were evaluated. Mutation of Phe701 resulted in a receptor with undetectable IGF-1 binding; alanine substitution of the corresponding amino acid of the insulin receptor, Phe714, produces a 140-fold reduction in affinity for insulin. Mutation of Asp8, Asn11, Phe58, Phe692, Glu693, His697, and Asn698 produces a 3.5-6-fold reduction in affinity for IGF-1. In contrast, alanine mutation of the corresponding amino acids of the insulin receptor with the exception of Asp12 produces reductions in affinity that are 50-fold or greater. The affinity of insulin for these mutants relative to wild type receptor was similar to that of their relative affinity for IGF-1 with two exceptions; the IC50 values for insulin binding to the mutants of Arg10, which has normal affinity for IGF-1, and His697, which has a 6-fold reduction in affinity for IGF-1, were both at least 2 orders of magnitude greater than for wild type receptor. The Kd values for insulin of the corresponding alanine mutants of the insulin receptor

  13. The predicted 3D structure of the human D2 dopamine receptor and the binding site and binding affinities for agonists and antagonists

    NASA Astrophysics Data System (ADS)

    Kalani, M. Yashar S.; Vaidehi, Nagarajan; Hall, Spencer E.; Trabanino, Rene J.; Freddolino, Peter L.; Kalani, Maziyar A.; Floriano, Wely B.; Tak Kam, Victor Wai; Goddard, William A., III

    2004-03-01

    Dopamine neurotransmitter and its receptors play a critical role in the cell signaling process responsible for information transfer in neurons functioning in the nervous system. Development of improved therapeutics for such disorders as Parkinson's disease and schizophrenia would be significantly enhanced with the availability of the 3D structure for the dopamine receptors and of the binding site for dopamine and other agonists and antagonists. We report here the 3D structure of the long isoform of the human D2 dopamine receptor, predicted from primary sequence using first-principles theoretical and computational techniques (i.e., we did not use bioinformatic or experimental 3D structural information in predicting structures). The predicted 3D structure is validated by comparison of the predicted binding site and the relative binding affinities of dopamine, three known dopamine agonists (antiparkinsonian), and seven known antagonists (antipsychotic) in the D2 receptor to experimentally determined values. These structures correctly predict the critical residues for binding dopamine and several antagonists, identified by mutation studies, and give relative binding affinities that correlate well with experiments. The predicted binding site for dopamine and agonists is located between transmembrane (TM) helices 3, 4, 5, and 6, whereas the best antagonists bind to a site involving TM helices 2, 3, 4, 6, and 7 with minimal contacts to TM helix 5. We identify characteristic differences between the binding sites of agonists and antagonists.

  14. Both host and parasite MIF molecules bind to chicken macrophages via CD74 surface receptor.

    PubMed

    Kim, Sungwon; Cox, Chasity M; Jenkins, Mark C; Fetterer, Ray H; Miska, Katarzyna B; Dalloul, Rami A

    2014-12-01

    Macrophage migration inhibitory factor (MIF) is recognized as a soluble protein that inhibits the random migration of macrophages and plays a pivotal immunoregulatory function in innate and adaptive immunity. Our group has identified both chicken and Eimeria MIFs, and characterized their function in enhancing innate immune responses during inflammation. In this study, we report that chicken CD74 (ChCD74), a type II transmembrane protein, functions as a macrophage surface receptor that binds to MIF molecules. First, to examine the binding of MIF to chicken monocytes/macrophages, fresh isolated chicken peripheral blood mononuclear cells (PBMCs) were stimulated with rChIFN-γ and then incubated with recombinant chicken MIF (rChMIF). Immunofluorescence staining with anti-ChMIF followed by flow cytometry revealed the binding of MIF to stimulated PBMCs. To verify that ChCD74 acts as a surface receptor for MIF molecules, full-length ChCD74p41 was cloned, expressed and its recombinant protein (rChCD74p41) transiently over-expressed with green fluorescent protein in chicken fibroblast DF-1 cells. Fluorescence analysis revealed a higher population of cells double positive for CD74p41 and rChMIF, indicating the binding of rChMIF to DF-1 cells via rChCD74p41. Using a similar approach, it was found that Eimeria MIF (EMIF), which is secreted by Eimeria sp. during infection, bound to chicken macrophages via ChCD74p41 as a surface receptor. Together, this study provides conclusive evidence that both host and parasite MIF molecules bind to chicken macrophages via the surface receptor ChCD74. PMID:25086294

  15. Structurally conserved erythrocyte-binding domain in Plasmodium provides a versatile scaffold for alternate receptor engagement

    PubMed Central

    Gruszczyk, Jakub; Lim, Nicholas T. Y.; Arnott, Alicia; He, Wen-Qiang; Nguitragool, Wang; Roobsoong, Wanlapa; Mok, Yee-Foong; Murphy, James M.; Smith, Katherine R.; Lee, Stuart; Bahlo, Melanie; Mueller, Ivo; Barry, Alyssa E.

    2016-01-01

    Understanding how malaria parasites gain entry into human red blood cells is essential for developing strategies to stop blood stage infection. Plasmodium vivax preferentially invades reticulocytes, which are immature red blood cells. The organism has two erythrocyte-binding protein families: namely, the Duffy-binding protein (PvDBP) and the reticulocyte-binding protein (PvRBP) families. Several members of the PvRBP family bind reticulocytes, specifically suggesting a role in mediating host cell selectivity of P. vivax. Here, we present, to our knowledge, the first high-resolution crystal structure of an erythrocyte-binding domain from PvRBP2a, solved at 2.12 Å resolution. The monomeric molecule consists of 10 α-helices and one short β-hairpin, and, although the structural fold is similar to that of PfRh5—the essential invasion ligand in Plasmodium falciparum—its surface properties are distinct and provide a possible mechanism for recognition of alternate receptors. Sequence alignments of the crystallized fragment of PvRBP2a with other PvRBPs highlight the conserved placement of disulfide bonds. PvRBP2a binds mature red blood cells through recognition of an erythrocyte receptor that is neuraminidase- and chymotrypsin-resistant but trypsin-sensitive. By examining the patterns of sequence diversity within field isolates, we have identified and mapped polymorphic residues to the PvRBP2a structure. Using mutagenesis, we have also defined the critical residues required for erythrocyte binding. Characterization of the structural features that govern functional erythrocyte binding for the PvRBP family provides a framework for generating new tools that block P. vivax blood stage infection. PMID:26715754

  16. Structures of Receptor Complexes of a North American H7N2 Influenza Hemagglutinin with a Loop Deletion in the Receptor Binding Site

    SciTech Connect

    Yang, Hua; Chen, Li-Mei; Carney, Paul J.; Donis, Ruben O.; Stevens, James

    2012-02-21

    Human infections with subtype H7 avian influenza viruses have been reported as early as 1979. In 1996, a genetically stable 24-nucleotide deletion emerged in North American H7 influenza virus hemagglutinins, resulting in an eight amino acid deletion in the receptor-binding site. The continuous circulation of these viruses in live bird markets, as well as its documented ability to infect humans, raises the question of how these viruses achieve structural stability and functionality. Here we report a detailed molecular analysis of the receptor binding site of the North American lineage subtype H7N2 virus A/New York/107/2003 (NY107), including complexes with an avian receptor analog (3'-sialyl-N-acetyllactosamine, 3'SLN) and two human receptor analogs (6'-sialyl-N-acetyllactosamine, 6'SLN; sialyllacto-N-tetraose b, LSTb). Structural results suggest a novel mechanism by which residues Arg220 and Arg229 (H3 numbering) are used to compensate for the deletion of the 220-loop and form interactions with the receptor analogs. Glycan microarray results reveal that NY107 maintains an avian-type ({alpha}2-3) receptor binding profile, with only moderate binding to human-type ({alpha}2-6) receptor. Thus despite its dramatically altered receptor binding site, this HA maintains functionality and confirms a need for continued influenza virus surveillance of avian and other animal reservoirs to define their zoonotic potential.

  17. Substituent Effects on the Binding of Halides by Neutral and Dicationic Bis(triazolium) Receptors.

    PubMed

    Nepal, Binod; Scheiner, Steve

    2015-12-31

    The effects of substituent and overall charge upon the binding of a halide anion by a bis(triazolium) receptor are studied by M06-2X DFT calculations, with the aug-cc-pVDZ basis set. Comparison is also made between a receptor that engages in H-bonds, with a halogen-bonding species. Fluoride is clearly most strongly bound, followed by Cl(-), Br(-), and I(-) in that order. The dicationic receptor engages in stronger complexes, but not by a very wide margin compared to its neutral counterpart. The binding is enhanced as the substituent on the two triazolium rings becomes progressively more electron-withdrawing. Halogen-substituted receptors, whether neutral or cationic, display a greater sensitivity to substituent than do their H-bonding counterparts. Both Coulombic and charge transfer factors obey the latter trends but do not correctly reproduce the stronger halogen vs hydrogen bonding. Both H-bonds and halogen bonds are nearly linear within the complexes, due in part to bond rotations within the receptor that bring the two triazole rings closer to coplanarity with the central benzene ring. PMID:26645536

  18. Reduced D2/D3 Receptor Binding of Extrastriatal and Striatal Regions in Temporal Lobe Epilepsy

    PubMed Central

    Bernedo Paredes, Viviane E.; Buchholz, Hans-Georg; Gartenschläger, Martin; Breimhorst, Markus

    2015-01-01

    Objective Dopamine is an endogenous neuromodulator in cortical circuits and the basal ganglia. In animal models of temporal lobe epilepsy (TLE), seizure threshold is modulated to some extent by dopamine, with D1-receptors having a pro- and D2-receptors an anticonvulsant effect. We aimed to extend our previously reported results on decreased D2/D3 receptor binding in the lateral epileptogenic temporal lobe and to correlate them with demographic and seizure variables to gain a more comprehensive understanding of the underlying involvement of the dopaminergic system in the epileptogenesis of TLE. Methods To quantify D2/D3 receptor binding, we studied 21 patients with TLE and hippocampal sclerosis (13 left- and eight right-sided) and 18 controls using PET with the high-affinity dopamine D2/D3-receptor ligand 18F-Fallypride to image striatal and extrastriatal binding. TLE was defined by interictal and ictal video-EEG, MRI and 18F-Fluorodeoxyglucose PET. Voxel-based statistical and regions-of-interest analyses were performed. Results 18F-Fallypride binding potential was significantly reduced in the affected temporal lobe and bilateral putamen. A positive correlation between age at onset of epilepsy and [18F]FP BPnd (binding potential non-displaceable) in temporal regions on the epileptogenic side was found, as well as a negative correlation between epilepsy duration and [18F]FP BPnd in the temporal pole on the epileptogenic side and a positive correlation between the estimated number of lifetime GTCS and [18F]FP BPnd in the hippocampus on the epileptogenic side. Significance The areas of reduced D2/D3 receptor availability correspond to “the irritative zone” surrounding the epileptogenic area. Moreover, reduced D2/D3 receptor availability was detectable in the basal ganglia, which are suspected to be involved in a control circuit for epileptic seizures. The correlational analysis additionally suggests that increased epilepsy duration leads to increasing impairment of

  19. The rat adenine receptor: pharmacological characterization and mutagenesis studies to investigate its putative ligand binding site.

    PubMed

    Knospe, Melanie; Müller, Christa E; Rosa, Patrizia; Abdelrahman, Aliaa; von Kügelgen, Ivar; Thimm, Dominik; Schiedel, Anke C

    2013-09-01

    The rat adenine receptor (rAdeR) was the first member of a family of G protein-coupled receptors (GPCRs) activated by adenine and designated as P0-purine receptors. The present study aimed at gaining insights into structural aspects of ligand binding and function of the rAdeR. We exchanged amino acid residues predicted to be involved in ligand binding (Phe110(3.24), Asn115(3.29), Asn173(4.60), Phe179(45.39), Asn194(5.40), Phe195(5.41), Leu201(5.47), His252(6.54), and Tyr268(7.32)) for alanine and expressed them in Spodoptera frugiperda (Sf9) insect cells. Membrane preparations subjected to [(3)H]adenine binding studies revealed only minor effects indicating that none of the exchanged amino acids is part of the ligand binding pocket, at least in the inactive state of the receptor. Furthermore, we coexpressed the rAdeR and its mutants with mammalian Gi proteins in Sf9 insect cells to probe receptor activation. Two amino acid residues, Asn194(5.40) and Leu201(5.47), were found to be crucial for activation since their alanine mutants did not respond to adenine. Moreover we showed that-in contrast to most other rhodopsin-like GPCRs-the rAdeR does not contain essential disulfide bonds since preincubation with dithiothreitol neither altered adenine binding in Sf9 cell membranes, nor adenine-induced inhibition of adenylate cyclase in 1321N1 astrocytoma cells transfected with the rAdeR. To detect rAdeRs by Western blot analysis, we developed a specific antibody. Finally, we were able to show that the extended N-terminal sequence of the rAdeR constitutes a putative signal peptide of unknown function that is cleaved off in the mature receptor. Our results provide important insights into this new, poorly investigated family of purinergic receptors. PMID:23413038

  20. How the mongoose can fight the snake: the binding site of the mongoose acetylcholine receptor.

    PubMed Central

    Barchan, D; Kachalsky, S; Neumann, D; Vogel, Z; Ovadia, M; Kochva, E; Fuchs, S

    1992-01-01

    The ligand binding site of the nicotinic acetylcholine receptor (AcChoR) is within a short peptide from the alpha subunit that includes the tandem cysteine residues at positions 192 and 193. To elucidate the molecular basis of the binding properties of the AcChoR, we chose to study nonclassical muscle AcChoRs from animals that are resistant to alpha-neurotoxins. We have previously reported that the resistance of snake AcChoR to alpha-bungarotoxin (alpha-BTX) may be accounted for by several major substitutions in the ligand binding site of the receptor. In the present study, we have analyzed the binding site of AcChoR from the mongoose, which is also resistant to alpha-neurotoxins. It was shown that mongoose AcChoR does not bind alpha-BTX in vivo or in vitro. cDNA fragments of the alpha subunit of mongoose AcChoR corresponding to codons 122-205 and including the presumed ligand binding site were cloned, sequenced, and expressed in Escherichia coli. The expressed protein fragments of the mongoose, as well as of snake receptors, do not bind alpha-BTX. The mongoose fragment is highly homologous (greater than 90%) to the respective mouse fragment. Out of the seven amino acid differences between the mongoose and mouse in this region, five cluster in the presumed ligand binding site, close to cysteines 192 and 193. These changes are at positions 187 (Trp----Asn), 189 (Phe----Thr), 191 (Ser----Ala), 194 (Pro----Leu), and 197 (Pro----His). The mongoose like the snake AcChoR has a potential glycosylation site in the binding site domain. Sequence comparison between species suggests that substitutions at positions 187, 189, and 194 are important in determining the resistance of mongoose and snake AcChoR to alpha-BTX. In addition, it was shown that amino acid residues that had been reported to be necessary for acetylcholine binding are conserved in the toxin-resistant animals as well. Images PMID:1380164

  1. How the mongoose can fight the snake: the binding site of the mongoose acetylcholine receptor.

    PubMed

    Barchan, D; Kachalsky, S; Neumann, D; Vogel, Z; Ovadia, M; Kochva, E; Fuchs, S

    1992-08-15

    The ligand binding site of the nicotinic acetylcholine receptor (AcChoR) is within a short peptide from the alpha subunit that includes the tandem cysteine residues at positions 192 and 193. To elucidate the molecular basis of the binding properties of the AcChoR, we chose to study nonclassical muscle AcChoRs from animals that are resistant to alpha-neurotoxins. We have previously reported that the resistance of snake AcChoR to alpha-bungarotoxin (alpha-BTX) may be accounted for by several major substitutions in the ligand binding site of the receptor. In the present study, we have analyzed the binding site of AcChoR from the mongoose, which is also resistant to alpha-neurotoxins. It was shown that mongoose AcChoR does not bind alpha-BTX in vivo or in vitro. cDNA fragments of the alpha subunit of mongoose AcChoR corresponding to codons 122-205 and including the presumed ligand binding site were cloned, sequenced, and expressed in Escherichia coli. The expressed protein fragments of the mongoose, as well as of snake receptors, do not bind alpha-BTX. The mongoose fragment is highly homologous (greater than 90%) to the respective mouse fragment. Out of the seven amino acid differences between the mongoose and mouse in this region, five cluster in the presumed ligand binding site, close to cysteines 192 and 193. These changes are at positions 187 (Trp----Asn), 189 (Phe----Thr), 191 (Ser----Ala), 194 (Pro----Leu), and 197 (Pro----His). The mongoose like the snake AcChoR has a potential glycosylation site in the binding site domain. Sequence comparison between species suggests that substitutions at positions 187, 189, and 194 are important in determining the resistance of mongoose and snake AcChoR to alpha-BTX. In addition, it was shown that amino acid residues that had been reported to be necessary for acetylcholine binding are conserved in the toxin-resistant animals as well. PMID:1380164

  2. Interactions of. beta. -adrenergic receptors with guanine nucleotide-binding proteins

    SciTech Connect

    Abramson, S.N.

    1985-01-01

    The properties of ..beta..-adrenergic receptors were investigated with radioligand binding assays using the agonists (/sup 3/H)hydroxybenzyl-isoproterenol (/sup 3/H-HBI) and (/sup 3/H)epinephrine (/sup 3/H-EPI), and the antagonist (/sup 125/I)iodopindolol (/sup 125/I-IPIN). Membranes prepared from L6 myoblasts bound (/sup 3/H)HBI, (/sup 3/H)EPI, and (/sup 125/I)IPIN with high affinity and Scatchard plots revealed densities of 222 +/- 23, 111 +/- 7, and 325 +/- 37 fmol/mg of protein, respectively. Binding of (/sup 3/H)HBI and (/sup 3/H)EPI was inhibited allosterically by guanine nucleotides. Membranes prepared from wild-type S49 lymphoma cells bound (/sup 3/H)HBI and (/sup 125/I)IPIN with high affinity and Scatchard plots revealed densities of 48.9 +/- 7.1 and 196 +/- 29 fmol/mg of protein, respectively. Binding of (/sup 3/H)HBI was inhibited allosterically by GTP. Similar results were obtained with membranes prepared from the adenylate cyclase deficient variant of S49 lymphoma cells (cyc-), which does not contain a functional stimulatory guanine nucleotide-binding protein (N/sub s/), but does contain a functional inhibitory guanine nucleotide-binding protein (N/sub i/). Binding of (/sup 3/H)HBI to membranes prepared from cyc- S49 cells was inhibited by pretreatment of cells with pertussis toxin. These results suggest that ..beta..-adrenergic receptors on membranes prepared from cyc- S49 cells interact with N/sub i/ to form a ternary complex composed of agonist, receptor, and N/sub i/.

  3. A receptor-binding region in Escherichia coli alpha-haemolysin.

    PubMed

    Cortajarena, Aitziber L; Goni, Félix M; Ostolaza, Helena

    2003-05-23

    Escherichia coli alpha-hemolysin (HlyA) is a 107-kDa protein toxin with a wide range of mammalian target cells. Previous work has shown that glycophorin is a specific receptor for HlyA in red blood cells (Cortajarena, A. L., Goñi, F. M., and Ostolaza, H. (2001) J. Biol. Chem. 276, 12513-12519). The present study was aimed at identifying the glycophorin-binding region in the toxin. Data in the literature pointed to a short amino acid sequence near the C terminus as a putative receptor-binding domain. Previous sequence analyses of several homologous toxins that belong, like HlyA, to the so-called RTX toxin family revealed a conserved region that corresponded to residues 914-936 of HlyA. We therefore prepared a deletion mutant lacking these residues (HlyA Delta 914-936) and found that its hemolytic activity was decreased by 10,000-fold with respect to the wild type. This deletion mutant was virtually unable to bind human and horse red blood cells or to bind pure glycophorin in an affinity column. The peptide Trp914-Arg936 had no lytic activity of its own, but it could bind glycophorin reconstituted in lipid vesicles. Moreover, the peptide Trp914-Arg936 protected red blood cells from hemolysis induced by wild type HlyA. It was concluded that amino acid residues 914-936 constitute a major receptor-binding region in alpha-hemolysin. PMID:12582172

  4. Computer modeling of the neurotoxin binding site of acetylcholine receptor spanning residues 185 through 196

    NASA Technical Reports Server (NTRS)

    Garduno-Juarez, R.; Shibata, M.; Zielinski, T. J.; Rein, R.

    1987-01-01

    A model of the complex between the acetylcholine receptor and the snake neurotoxin, cobratoxin, was built by molecular model building and energy optimization techniques. The experimentally identified functionally important residues of cobratoxin and the dodecapeptide corresponding to the residues 185-196 of acetylcholine receptor alpha subunit were used to build the model. Both cis and trans conformers of cyclic L-cystine portion of the dodecapeptide were examined. Binding residues independently identified on cobratoxin are shown to interact with the dodecapeptide AChR model.

  5. Assessing the Conformational Changes of pb5, the Receptor-binding Protein of Phage T5, upon Binding to Its Escherichia coli Receptor FhuA*

    PubMed Central

    Breyton, Cécile; Flayhan, Ali; Gabel, Frank; Lethier, Mathilde; Durand, Grégory; Boulanger, Pascale; Chami, Mohamed; Ebel, Christine

    2013-01-01

    Within tailed bacteriophages, interaction of the receptor-binding protein (RBP) with the target cell triggers viral DNA ejection into the host cytoplasm. In the case of phage T5, the RBP pb5 and the receptor FhuA, an outer membrane protein of Escherichia coli, have been identified. Here, we use small angle neutron scattering and electron microscopy to investigate the FhuA-pb5 complex. Specific deuteration of one of the partners allows the complete masking in small angle neutron scattering of the surfactant and unlabeled proteins when the complex is solubilized in the fluorinated surfactant F6-DigluM. Thus, individual structures within a membrane protein complex can be described. The solution structure of FhuA agrees with its crystal structure; that of pb5 shows an elongated shape. Neither displays significant conformational changes upon interaction. The mechanism of signal transduction within phage T5 thus appears different from that of phages binding cell wall saccharides, for which structural information is available. PMID:24014030

  6. Heterosubtypic antibody recognition of the influenza virus hemagglutinin receptor binding site enhanced by avidity

    PubMed Central

    Lee, Peter S.; Yoshida, Reiko; Ekiert, Damian C.; Sakai, Naoki; Suzuki, Yasuhiko; Takada, Ayato; Wilson, Ian A.

    2012-01-01

    Continual and rapid mutation of seasonal influenza viruses by antigenic drift necessitates the almost annual reformulation of flu vaccines, which may offer little protection if the match to the dominant circulating strain is poor. S139/1 is a cross-reactive antibody that neutralizes multiple HA strains and subtypes, including those from H1N1 and H3N2 viruses that currently infect humans. The crystal structure of the S139/1 Fab in complex with the HA from the A/Victoria/3/1975 (H3N2) virus reveals that the antibody targets highly conserved residues in the receptor binding site and contacts antigenic sites A, B, and D. Binding and plaque reduction assays show that the monovalent Fab alone can protect against H3 strains, but the enhanced avidity from binding of bivalent IgG increases the breadth of neutralization to additional strains from the H1, H2, H13, and H16 subtypes. Thus, antibodies making relatively low affinity Fab interactions with the receptor binding site can have significant antiviral activity when enhanced by avidity through bivalent interactions of the IgG, thereby extending the breadth of binding and neutralization to highly divergent influenza virus strains and subtypes. PMID:23027945

  7. Decreased benzodiazepine receptor binding in epileptic El mice: A quantitative autoradiographic study

    SciTech Connect

    Shirasaka, Y.; Ito, M.; Tsuda, H.; Shiraishi, H.; Oguro, K.; Mutoh, K.; Mikawa, H. )

    1990-09-01

    Benzodiazepine receptors and subtypes were examined in El mice and normal ddY mice with a quantitative autoradiographic technique. Specific (3H)flunitrazepam binding in stimulated El mice, which had experienced repeated convulsions, was significantly lower in the cortex and hippocampus than in ddY mice and unstimulated El mice. In the amygdala, specific ({sup 3}H)flunitrazepam binding in stimulated El mice was lower than in ddY mice. There was a tendency for the ({sup 3}H)flunitrazepam binding in these regions in unstimulated El mice to be intermediate between that in stimulated El mice and that in ddY mice, but there was no significant difference between unstimulated El mice and ddY mice. ({sup 3}H)Flunitrazepam binding displaced by CL218,872 was significantly lower in the cortex of stimulated El mice than in that of the other two groups, and in the hippocampus of stimulated than of unstimulated El mice. These data suggest that the decrease in ({sup 3}H)flunitrazepam binding in stimulated El mice may be due mainly to that of type 1 receptor and may be the result of repeated convulsions.

  8. Receptor-like function of heparin in the binding and uptake of neutral lipids

    SciTech Connect

    Bosner, M.S.; Gulick, T.; Riley, D.J.S.; Spilburg, C.A.; Lange, L.G. III )

    1988-10-01

    Molecular mechanisms regulating the binding, amphipathic stabilization, and metabolism of the major neutral lipids are well studied, but the details of their movement from a binding compartment to a metabolic compartment deserve further attention. Since all neutral lipids must cross hydrophilic segments of plasma membranes during such movement, the authors postulate that a critical receptor-like site exists on the plasma membrane to mediate a step between binding and metabolism and that membrane-associated heparin is a key part of this mediator. For example, intestinal brush border membranes containing heparin bind homogeneous human pancreatic {sup 125}I-labeled cholesterol esterase and {sup 125}I-labeled triglyceride lipase. This interaction is enzyme concentration-dependent, specific, and saturable and is reversed upon addition of soluble heparin. Scatchard analysis demonstrates a single class of receptors with a K{sub d} of 100 nM and a B{sub max} of approximately 50-60 pmol per mg of vesicle protein. They conclude that a physiological role for intestinal heparin is that of a mediator to bind neutral lipolytic enzymes at the brush border and thus promote absorption of the subsequent hydrolyzed nutrients in the intestine. This mechanism may be a generalized pathway for transport of neutral lipids into endothelial and other cells.

  9. Cholecystokinin-8 suppressed /sup 3/H-etorphine binding to rat brain opiate receptors

    SciTech Connect

    Wang, X.J.; Fan, S.G.; Ren, M.F.; Han, J.S.

    1989-01-01

    Radioreceptor assay (RRA) was adopted to analyze the influence of CCK-8 on /sup 3/H-etorphine binding to opiate receptors in rat brain synaptosomal membranes (P2). In the competition experiment CCK-8 suppressed the binding of /sup 3/H-etorphine. This effect was completely reversed by proglumide at 1/mu/M. Rosenthal analysis for saturation revealed two populations of /sup 3/H-etorphine binding sites. CCK-8 inhibited /sup 3/H-etorphine binding to the high affinity sites by an increase in Kd and decrease in Bmax without significant changes in the Kd and Bmax of the low affinity sites. This effect of CCK-8 was also completely reversed by proglumide at 1/mu/M. Unsulfated CCK-8 produced only a slight increase in Kd of the high affinity sites without affecting Bmax. The results suggest that CCK-8 might be capable of suppressing the high affinity opioid binding sites via the activation of CCK receptor.

  10. Application of the novel bioluminescent ligand-receptor binding assay to relaxin-RXFP1 system for interaction studies.

    PubMed

    Wu, Qing-Ping; Zhang, Lei; Shao, Xiao-Xia; Wang, Jia-Hui; Gao, Yu; Xu, Zeng-Guang; Liu, Ya-Li; Guo, Zhan-Yun

    2016-04-01

    Relaxin is a prototype of the relaxin family peptide hormones and plays important biological functions by binding and activating the G protein-coupled receptor RXFP1. To study their interactions, in the present work, we applied the newly developed bioluminescent ligand-receptor binding assay to the relaxin-RXFP1 system. First, a fully active easily labeled relaxin, in which three Lys residues of human relaxin-2 were replaced by Arg, was prepared through overexpression of a single-chain precursor in Pichia pastoris and in vitro enzymatic maturation. Thereafter, the B-chain N-terminus of the easily labeled relaxin was chemically cross-linked with a C-terminal cysteine residue of an engineered NanoLuc through a disulfide linkage. Receptor-binding assays demonstrated that the NanoLuc-conjugated relaxin retained high binding affinity with the receptor RXFP1 (K d = 1.11 ± 0.08 nM, n = 3) and was able to sensitively monitor binding of a variety of ligands with RXFP1. Using the novel bioluminescent binding assay, we demonstrated that three highly conserved B-chain Arg residues of relaxin-3 had distinct contributions to binding of the receptor RXFP1. In summary, our present work provides a novel bioluminescent ligand-receptor binding assay for the relaxin-RXFP1 system to facilitate their interaction studies, such as characterization of relaxin analogues or screening novel agonists or antagonists of RXFP1. PMID:26767372

  11. Chiral recognition in adrenergic receptor binding mimics prepared by molecular imprinting.

    PubMed

    Ramström, O; Yu, C; Mosbach, K

    1996-01-01

    Molecularly imprinted polymers were prepared against the adrenomimetic agents ephedrine and pseudoephedrine. These compounds each incorporate two chiral centres. The polymers were evaluated with respect to enantiodiscrimination of various adrenergic ligands. The selectivity of the polymeric binding sites for the imprinted molecules was very high, and it was found that binding of both the enantiomeric and diastereomeric isomers of the imprint species were effectively obstructed, it was found that these polymers could selectively recognize the enantiomers of the endogenous adrenergic ligand epinephrine as well as several beta-adrenergic blockers. These observations suggest that these polymers effectively mimic the recognition patterns exhibited by natural adrenergic receptors. PMID:9174958

  12. Differential binding of prohibitin-2 to estrogen receptor α and to drug-resistant ERα mutants

    SciTech Connect

    Chigira, Takeru; Nagatoishi, Satoru; Tsumoto, Kouhei

    2015-08-07

    Endocrine resistance is one of the most challenging problems in estrogen receptor alpha (ERα)-positive breast cancer. The transcriptional activity of ERα is controlled by several coregulators, including prohibitin-2 (PHB2). Because of its ability to repress the transcriptional activity of activated ERα, PHB2 is a promising antiproliferative agent. In this study, were analyzed the interaction of PHB2 with ERα and three mutants (Y537S, D538G, and E380Q) that are frequently associated with a lack of sensitivity to hormonal treatments, to help advance novel drug discovery. PHB2 bound to ERα wild-type (WT), Y537S, and D538G, but did not bind to E380Q. The binding thermodynamics of Y537S and D538G to PHB2 were favorably altered entropically compared with those of WT to PHB2. Our results show that PHB2 binds to the ligand binding domain of ERα with a conformational change in the helix 12 of ERα. - Highlights: • Molten globule-likeness of an ERα repressor Prohibitin-2 (PHB2) is identified. • The thermodynamics is validated for the interaction between ERα and PHB2. • PHB2 binds to Y537S and D538G mutants of ERα commonly found in breast cancer. • ERα WT and mutants showed different thermodynamic parameters in the binding to PHB2. • ERα binds to PHB2 with conformational change involving packing of helix 12.

  13. Similar serotonin-2A receptor binding in rats with different coping styles or levels of aggression.

    PubMed

    Visser, Anniek K D; Ettrup, Anders; Klein, Anders B; van Waarde, Aren; Bosker, Fokko J; Meerlo, Peter; Knudsen, Gitte M; de Boer, Sietse F

    2015-04-01

    Individual differences in coping style emerge as a function of underlying variability in the activation of a mesocorticolimbic brain circuitry. Particularly serotonin seems to play an important role. For this reason, we assessed serotonin-2A receptor (5-HT2A R) binding in the brain of rats with different coping styles. We compared proactive and reactive males of two rat strains, Wild-type Groningen (WTG) and Roman high- and low avoidance (RHA, RLA). 5-HT2A R binding in (pre)frontal cortex (FC) and hippocampus was investigated using a radiolabeled antagonist ([(3) H]MDL-100907) and agonist ([(3) H]Cimbi-36) in binding assays. No differences in 5-HT2A R binding were observed in male animals with different coping styles. [(3) H]MDL-100907 displayed a higher specific-to-nonspecific binding ratio than [(3) H]Cimbi-36. Our findings suggest that in these particular rat strains, 5-HT2A R binding is not an important molecular marker for coping style. Because neither an antagonist nor an agonist tracer showed any binding differences, it is unlikely that the affinity state of the 5-HT2A R is co-varying with levels of aggression or active avoidance in WTG, RHA and RLA. PMID:25684736

  14. Identification and characterization of DNA sequences that prevent glucocorticoid receptor binding to nearby response elements.

    PubMed

    Telorac, Jonas; Prykhozhij, Sergey V; Schöne, Stefanie; Meierhofer, David; Sauer, Sascha; Thomas-Chollier, Morgane; Meijsing, Sebastiaan H

    2016-07-27

    Out of the myriad of potential DNA binding sites of the glucocorticoid receptor (GR) found in the human genome, only a cell-type specific minority is actually bound, indicating that the presence of a recognition sequence alone is insufficient to specify where GR binds. Cooperative interactions with other transcription factors (TFs) are known to contribute to binding specificity. Here, we reasoned that sequence signals preventing GR recruitment to certain loci provide an alternative means to confer specificity. Motif analyses uncovered candidate Negative Regulatory Sequences (NRSs) that interfere with genomic GR binding. Subsequent functional analyses demonstrated that NRSs indeed prevent GR binding to nearby response elements. We show that NRS activity is conserved across species, found in most tissues and that they also interfere with the genomic binding of other TFs. Interestingly, the effects of NRSs appear not to be a simple consequence of changes in chromatin accessibility. Instead, we find that NRSs interact with proteins found at sub-nuclear structures called paraspeckles and that these proteins might mediate the repressive effects of NRSs. Together, our studies suggest that the joint influence of positive and negative sequence signals partition the genome into regions where GR can bind and those where it cannot. PMID:27016732

  15. Fibronectin and asialoglyprotein receptor mediate hepatitis B surface antigen binding to the cell surface.

    PubMed

    Yang, Jing; Wang, Feng; Tian, Linlin; Su, Jing; Zhu, Xiangqian; Lin, Li; Ding, Xiaoran; Wang, Xuejun; Wang, Shengqi

    2010-06-01

    Both fibronectin and the asialoglycoprotein receptor (ASGPR) have been identified by some investigators as partners for hepatitis B virus (HBV) envelope proteins. Because fibronectin is a natural ligand for ASGPR, we speculated that HBV might attach to ASGPR expressed on the hepatocyte surface via fibronectin. To test this hypothesis, we first confirmed by co-immunoprecipitation that ASGPR, fibronectin and HBsAg bind to each other in HepG2.2.15 cells, and possible binding domains were identified by GST pull-down. In addition, by measuring binding of HBsAg to cells, we found that ASGPR and fibronectin enhanced the binding capability of HBsAg to HepG2 cells, and even to 293T and CHO cells, which normally do not bind HBV. In conclusion, our findings suggest that both fibronectin and ASGPR mediate HBsAg binding to the cell surface, which provides further evidence for the potential roles of these two proteins in mediating HBV binding to liver cells. PMID:20364278

  16. In vivo binding of /sup 3/H-N-methylspiperone to dopamine and serotonin receptors

    SciTech Connect

    Frost, J.J.; Smith, A.C.; Kuhar, M.J.; Dannals, R.F.; Wagner, H.N. Jr.

    1987-03-09

    /sup 3/H-N-methylspiperone (/sup 3/H-NMSP) was used to label dopamine-2 and serotonin-2 in vivo in the mouse. The striatum/cerebellum binding ratio reached a maximum of 80 eight hours after intravenous administration of /sup 3/H-NMSP. The frontal cortex/cerebellum ratio was 5 one hour after injection. The binding of /sup 3/H-NMSP was saturable in the frontal cortex and cerebellum between doses of 10 and 1000 ..mu..g/kg. Between 0.01 and 10 ..mu..g/kg the ratio total/nonspecific binding increased from 14 to 21. Inhibition of /sup 3/H-NMSP binding in the frontal cortex and striatum by ketanserin, a selective serotonin-2 antagonist, demonstrated that 20% of the total binding in the striatum was to serotonin-2 rectors and 91% of the total binding in the frontal cortex was to serotonin-2 receptors. Compared to /sup 3/H-spiperone, /sup 3/H-NMSP 1) results in a much higher specific/nonspecific binding ratio in the striatum and frontal cortex and 2) displays more than a two-fold higher brain uptake. 18 references, 4 figures.

  17. Binding of /sup 3/H-acetylcholine to cholinergic receptors in bovine cerebral arteries

    SciTech Connect

    Shimohama, S.; Tsukahara, T.; Taniguchi, T.; Fujiwara, M.

    1985-11-18

    Cholinergic receptor sites in bovine cerebral arteries were analyzed using radioligand binding techniques with the cholinergic agonist, /sup 3/H-acetylcholine (ACh), as the ligand. Specific binding of /sup 3/H-ACh to membrane preparations of bovine cerebral arteries was saturable, of two binding sites, with dissociation constant (K/sub D/) values of 0.32 and 23.7 nM, and maximum binding capacity (Bmax) values of 67 and 252 fmol/mg protein, respectively. Specific binding of /sup 3/H-ACh was displaced effectively by muscarinic cholinergic agents and less effectively by nicotinic cholinergic agents. IC/sub 50/ values of cholinergic drugs for /sup 3/H-ACh binding were as follows: atropine, 38.5 nM; ACh, 59.8 nM; oxotremorine, 293 nM; scopolamine 474 nM; carbamylcholine, 990 nM. IC/sub 50/ values of nicotinic cholinergic agents such as nicotine, cytisine and ..cap alpha..-bungarotoxin exceeded 50 ..mu..M. Choline acetyltransferase activity was 1.09 nmol/mg protein/hour in the cerebral arteries. These findings suggest that the cholinergic nerves innervate the bovine cerebral arteries and that there are at least two classes of ACh binding sites of different affinities on muscarinic reporters in these arteries. 18 references, 2 figures, 2 tables.

  18. The Sigma-2 Receptor and Progesterone Receptor Membrane Component 1 are Different Binding Sites Derived From Independent Genes

    PubMed Central

    Chu, Uyen B.; Mavlyutov, Timur A.; Chu, Ming-Liang; Yang, Huan; Schulman, Amanda; Mesangeau, Christophe; McCurdy, Christopher R.; Guo, Lian-Wang; Ruoho, Arnold E.

    2015-01-01

    The sigma-2 receptor (S2R) is a potential therapeutic target for cancer and neuronal diseases. However, the identity of the S2R has remained a matter of debate. Historically, the S2R has been defined as (1) a binding site with high affinity to 1,3-di-o-tolylguanidine (DTG) and haloperidol but not to the selective sigma-1 receptor ligand (+)-pentazocine, and (2) a protein of 18–21 kDa, as shown by specific photolabeling with [3H]-Azido-DTG and [125I]-iodoazido-fenpropimorph ([125I]-IAF). Recently, the progesterone receptor membrane component 1 (PGRMC1), a 25 kDa protein, was reported to be the S2R (Nature Communications, 2011, 2:380). To confirm this identification, we created PGRMC1 knockout NSC34 cell lines using the CRISPR/Cas9 technology. We found that in NSC34 cells devoid of or overexpressing PGRMC1, the maximum [3H]-DTG binding to the S2R (Bmax) as well as the DTG-protectable [125I]-IAF photolabeling of the S2R were similar to those of wild-type control cells. Furthermore, the affinities of DTG and haloperidol for PGRMC1 (KI = 472 μM and 350 μM, respectively), as determined in competition with [3H]-progesterone, were more than 3 orders of magnitude lower than those reported for the S2R (20–80 nM). These results clarify that PGRMC1 and the S2R are distinct binding sites expressed by different genes. PMID:26870805

  19. Muscarinic receptor binding increases in anterior thalamus and cingulate cortex during discriminative avoidance learning

    SciTech Connect

    Vogt, B.A.; Gabriel, M.; Vogt, L.J.; Poremba, A.; Jensen, E.L.; Kubota, Y.; Kang, E. )

    1991-06-01

    Training-induced neuronal activity develops in the mammalian limbic system during discriminative avoidance conditioning. This study explores behaviorally relevant changes in muscarinic ACh receptor binding in 52 rabbits that were trained to one of five stages of conditioned response acquisition. Sixteen naive and 10 animals yoked to criterion performance served as control cases. Upon reaching a particular stage of training, the brains were removed and autoradiographically assayed for 3H-oxotremorine-M binding with 50 nM pirenzepine (OxO-M/PZ) or for 3H-pirenzepine binding in nine limbic thalamic nuclei and cingulate cortex. Specific OxO-M/PZ binding increased in the parvocellular division of the anterodorsal nucleus early in training when the animals were first exposed to pairing of the conditional and unconditional stimuli. Elevated binding in this nucleus was maintained throughout subsequent training. In the parvocellular division of the anteroventral nucleus (AVp), OxO-M/PZ binding progressively increased throughout training, reached a peak at the criterion stage of performance, and returned to control values during extinction sessions. Peak OxO-M/PZ binding in AVp was significantly elevated over that for cases yoked to criterion performance. In the magnocellular division of the anteroventral nucleus (AVm), OxO-M/PZ binding was elevated only during criterion performance of the task, and it was unaltered in any other limbic thalamic nuclei. Specific OxO-M/PZ binding was also elevated in most layers in rostral area 29c when subjects first performed a significant behavioral discrimination. Training-induced alterations in OxO-M/PZ binding in AVp and layer Ia of area 29c were similar and highly correlated.

  20. beta. -adrenergic receptor binding characteristics and responsiveness in cultured Wistar-Kyoto rat arterial smooth muscle cells

    SciTech Connect

    Jazayeri, A.; Meyer, W.J. III

    1988-01-01

    The tone of arterial blood vessels is regulated by the catecholamines through their receptors on arterial smooth muscle cells (ASMC). ..beta..-/sub 2/-adrenergic receptors of ASMC mediate vasodilation through agonist mediated c-AMP production. Previous reports have described these receptors on freshly isolated blood vessels. This study demonstrates the presence of ..beta../sub 2/-adrenergic receptors on cultured rat ASMC and that these receptors are functional. ..beta..-adrenergic receptor binding was measured using (/sup 3/H)-dihydroalprenolol (DHA) binding to the membrane of cultured ASMC from normotensive Wistar-Kyoto rats. The ASMC ..beta..-adrenergic receptors have a Kd of 0.56 +/- 0.16 nM and a Bmax of 57.2 +/- 21.7 fmol/mg protein. Competition binding studies revealed a much greater affinity of these receptors for epinephrine than norepinephrine, indicating the preponderance of a ..beta../sub 2/-adrenergic receptor subtype. Isoproterenol stimulation of cultured ASMC resulted in a 14 +/- 7 fold increase in intracellular c-AMP content of these cells indicating these receptors are functional. ..beta..-adrenergic receptors of cultured ASMC provide an excellent system in which the association between hypertension and observed ..beta..-adrenergic receptor differences can be further explored.

  1. Comparison of chemical binding to recombinant fathead minnow and human estrogen receptors alpha in whole cell and cell-free binding assays.

    PubMed

    Rider, Cynthia V; Hartig, Phillip C; Cardon, Mary C; Wilson, Vickie S

    2009-10-01

    Mammalian receptors and assay systems are generally used for in vitro screening of endocrine-disrupting chemicals with the assumption that minor differences in amino acid sequences among species do not translate into significant differences in receptor function. Objectives of the present study were to evaluate the performance of two different in vitro assay systems (a whole cell and a cell-free competitive binding assay) in assessing whether binding of chemicals differs significantly between full-length recombinant estrogen receptors from fathead minnows (fhERalpha) and those from humans (hERalpha). It was confirmed that 17beta-estradiol displays a reduction in binding to fhERalpha at an elevated temperature (37 degrees C), as has been reported with other piscine estrogen receptors. Several of the chemicals (17beta-estradiol, ethinylestradiol, alpha-zearalanol, fulvestrant, dibutyl phthalate, benzyl butyl phthalate, and cadmium chloride) displayed higher affinity for fhERalpha than for hERalpha in the whole cell assay, while only dibutyl phthalate had a higher affinity for fhERalpha than for hERalpha in the cell-free assay. Both assays were effective in identifying strong binders, weak binders, and nonbinders to the two receptors. However, the cell-free assay provided a less complicated and more efficient binding platform and is, therefore, recommended over the whole cell binding assay. In conclusion, no strong evidence showed species-specific binding among the chemicals tested. PMID:19453209

  2. Calcitonin and Amylin Receptor Peptide Interaction Mechanisms: INSIGHTS INTO PEPTIDE-BINDING MODES AND ALLOSTERIC MODULATION OF THE CALCITONIN RECEPTOR BY RECEPTOR ACTIVITY-MODIFYING PROTEINS.

    PubMed

    Lee, Sang-Min; Hay, Debbie L; Pioszak, Augen A

    2016-04-15

    Receptor activity-modifying proteins (RAMP1-3) determine the selectivity of the class B G protein-coupled calcitonin receptor (CTR) and the CTR-like receptor (CLR) for calcitonin (CT), amylin (Amy), calcitonin gene-related peptide (CGRP), and adrenomedullin (AM) peptides. RAMP1/2 alter CLR selectivity for CGRP/AM in part by RAMP1 Trp-84 or RAMP2 Glu-101 contacting the distinct CGRP/AM C-terminal residues. It is unclear whether RAMPs use a similar mechanism to modulate CTR affinity for CT and Amy, analogs of which are therapeutics for bone disorders and diabetes, respectively. Here, we reproduced the peptide selectivity of intact CTR, AMY1 (CTR·RAMP1), and AMY2 (CTR·RAMP2) receptors using purified CTR extracellular domain (ECD) and tethered RAMP1- and RAMP2-CTR ECD fusion proteins and antagonist peptides. All three proteins bound salmon calcitonin (sCT). Tethering RAMPs to CTR enhanced binding of rAmy, CGRP, and the AMY antagonist AC413. Peptide alanine-scanning mutagenesis and modeling of receptor-bound sCT and AC413 supported a shared non-helical CGRP-like conformation for their TN(T/V)G motif prior to the C terminus. After this motif, the peptides diverged; the sCT C-terminal Pro was crucial for receptor binding, whereas the AC413/rAmy C-terminal Tyr had little or no influence on binding. Accordingly, mutant RAMP1 W84A- and RAMP2 E101A-CTR ECD retained AC413/rAmy binding. ECD binding and cell-based signaling assays with antagonist sCT/AC413/rAmy variants with C-terminal residue swaps indicated that the C-terminal sCT/rAmy residue identity affects affinity more than selectivity. rAmy(8-37) Y37P exhibited enhanced antagonism of AMY1 while retaining selectivity. These results reveal unexpected differences in how RAMPs determine CTR and CLR peptide selectivity and support the hypothesis that RAMPs allosterically modulate CTR peptide affinity. PMID:26895962

  3. Two high-affinity ligand binding states of uterine estrogen receptor distinguished by modulation of hydrophobic environment

    SciTech Connect

    Hutchens, T.W.; Li, C.M.; Zamah, N.M.; Besch, P.K.

    1987-02-10

    The steroid binding function of soluble (cytosolic) estrogen receptors from calf uteri was evaluated under conditions known to modify the extent of hydrophobic interaction with receptor-associated proteins. Receptor preparations were equilibrated into 6 M urea buffers and control buffers by chromatography through small columns of Sephadex G-25 or by dialysis at 0.6 /sup 0/C. Equilibrium dissociation constants (K/sub d/) and binding capacities (n) of experimental and control receptor preparations were determined by 13-point Scatchard analyses using concentrations of 17..beta..-(/sup 3/H)estradiol from 0.05 to 10 nM. Nonspecific binding was determined at each concentration by parallel incubations with a 200-fold molar excess of the receptor-specific competitor diethylstilbestrol. The control receptor population was consistently found to be a single class of binding sites with a high affinity for estradiol which was unaffected by G-25 chromatography, by dialysis, by dilution, or by the presence of 0.4 M KCl. However, equilibration into 6 M urea induced a discrete (10-fold) reduction in receptor affinity to reveal a second, thermodynamically stable, high-affinity binding state. The presence of 0.4 M KCl did not significantly influence the discrete change in receptor affinity induced by urea. The effects of urea on both receptor affinity and binding capacity were reversible, suggesting a lack of covalent modification. These results demonstrate nonenzymatic means by which not only the binding capacity but also the affinity of receptor for estradiol can be reversibly controlled, suggesting that high concentrations of urea might be more effectively utilized during the physicochemical characterization and purification of steroid receptor proteins.

  4. Interactions of xenobiotics with steroid hormone receptors and the sex-steroid binding protein in spotted seatrout

    SciTech Connect

    Thomas, P.; Ghosh, S.; Pinter, J.; Sperry, T.; Breckenridge-Miller, D.; Laidley, C.W.

    1995-12-31

    A variety of xenobiotics, such as DDT, methoxychlor and PCB mixtures and Kepone have estrogenic actions and disrupt reproduction in mammals by binding to nuclear estrogen receptors (ER). These xenobiotics were tested for their ability to bind to the hepatic ER of a marine fish, spotted seatrout (Cynoscion nebulosus). Several of the DDT derivatives, Kepone and PCB mixtures also bound to the seatrout ER over a range of 10{sup {minus}5}--10{sup {minus}3}M. Moreover, Kepone was shown to have both estrogenic and antiestrogenic actions in an in vitro liver slice vitellogenesis assay. These estrogenic compounds were also tested for their ability to bind to nuclear and plasma membrane progestogen (20{beta}-S) receptors in ovarian tissues and to the sex-steroid binding protein in seatrout plasma. Kepone, methoxychlor and o,p{prime}-DDT caused concentration dependent displacement of {sup 3}H2O{beta}-S from its plasma membrane receptor and inhibition of 20{beta}-S induced final maturation in an in vitro assay over the range of 10{sup {minus}7}--10{sup {minus}3}M, but did not alter steroid binding to the nuclear progestogen receptor. Significant binding of methoxychlor and the other organochlorines to the sex steroid binding protein was also observed. It is concluded from these studies that a variety of xenobiotics with estrogenic actions can also bind to other steroid receptors and binding proteins to influence other endocrine-mediated processes.

  5. The Interaction between the Drosophila Secreted Protein Argos and the Epidermal Growth Factor Receptor Inhibits Dimerization of the Receptor and Binding of Secreted Spitz to the Receptor

    PubMed Central

    Jin, Ming-hao; Sawamoto, Kazunobu; Ito, Mikiko; Okano, Hideyuki

    2000-01-01

    Drosophila Argos (Aos), a secreted protein with an epidermal growth factor (EGF)-like domain, has been shown to inhibit the activation of the Drosophila EGF receptor (DER). However, it has not been determined whether Aos binds directly to DER or whether regulation of the DER activation occurs through some other mechanism. Using DER-expressing cells (DER/S2) and a recombinant DER extracellular domain-Fc fusion protein (DER-Fc), we have shown that Aos binds directly to the extracellular domain of DER with its carboxyl-terminal region, including the EGF-like domain. Furthermore, Aos can block the binding of secreted Spitz (sSpi), a transforming growth factor α-like ligand of DER, to the extracellular domain of DER. We observed that sSpi stimulates the dimerization of both the soluble DER extracellular domain (sDER) and the intact DER in the DER/S2 cells and that Aos can block the sSpi-induced dimerization of both sDER and intact DER. Moreover, we have shown that, by directly interacting with DER, Aos and SpiAos (a chimeric protein that is composed of the N-terminal region of Spi and the C-terminal region of Aos) inhibit the dimerization and phosphorylation of DER that are induced by DER's overexpression in the absence of sSpi. These results indicate that Aos exerts its inhibitory function through dual molecular mechanisms: by blocking both the receptor dimerization and the binding of activating ligand to the receptor. This is the first description of this novel inhibitory mechanism for receptor tyrosine kinases. PMID:10688656

  6. Why a diaminopyrrolic tripodal receptor binds mannosides in acetonitrile but not in water?

    PubMed Central

    Vila-Viçosa, Diogo; Francesconi, Oscar

    2014-01-01

    Summary Intermolecular interactions involving carbohydrates and their natural receptors play important roles in several biological processes. The development of synthetic receptors is very useful to study these recognition processes. Recently, it was synthetized a diaminopyrrolic tripodal receptor that is selective for mannosides, which are obtained from mannose, a sugar with significant relevance in living systems. However, this receptor is significantly more active in acetonitrile than in water. In this work, we performed several molecular dynamics and constant-pH molecular dynamics simulations in acetonitrile and water to evaluate the conformational space of the receptor and to understand the molecular detail of the receptor–mannoside interaction. The protonation states sampled by the receptor show that the positive charges are always as distant as possible in order to avoid large intramolecular repulsions. Moreover, the conformational spac