Science.gov

Sample records for beach erosion control

  1. Backshore sill beach and dune erosion control system

    SciTech Connect

    Sample, J.W.

    1988-03-08

    A backshore sill beach and dune erosion control system is described comprising: a supporting protective apron formed of weather and water resistant cloth. The apron includes a flat base portion and an angularly sloped portion extending seaward of the base portion, a toe scour anchor tube connected to the seaward end of the apron sloped portion, and longitudinal sand-filled geotextile containers placed upon the apron base portion each extending longitudinally shore parallel to the incoming surf. The sand-filled geotextile containers are specifically placed upon the beach in a pyramidal longitudinally extending shore parallel relation to an area being protected whereby wave action impacts upon relatively soft surfaces of the containers and is dissipated before normally impacting surfaces that would otherwise be eroded.

  2. 33 CFR 263.26 - Small beach erosion control project authority (Section 103).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Small beach erosion control project authority (Section 103). 263.26 Section 263.26 Navigation and Navigable Waters CORPS OF ENGINEERS....26 Small beach erosion control project authority (Section 103). (a) Legislative authority....

  3. 33 CFR 263.26 - Small beach erosion control project authority (Section 103).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Small beach erosion control project authority (Section 103). 263.26 Section 263.26 Navigation and Navigable Waters CORPS OF ENGINEERS....26 Small beach erosion control project authority (Section 103). (a) Legislative authority....

  4. 33 CFR 263.26 - Small beach erosion control project authority (Section 103).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Small beach erosion control project authority (Section 103). 263.26 Section 263.26 Navigation and Navigable Waters CORPS OF ENGINEERS....26 Small beach erosion control project authority (Section 103). (a) Legislative authority....

  5. 33 CFR 263.26 - Small beach erosion control project authority (Section 103).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Small beach erosion control project authority (Section 103). 263.26 Section 263.26 Navigation and Navigable Waters CORPS OF ENGINEERS....26 Small beach erosion control project authority (Section 103). (a) Legislative authority....

  6. 33 CFR 263.26 - Small beach erosion control project authority (Section 103).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Small beach erosion control project authority (Section 103). 263.26 Section 263.26 Navigation and Navigable Waters CORPS OF ENGINEERS....26 Small beach erosion control project authority (Section 103). (a) Legislative authority....

  7. Beach erosion control study at Pass Christian. [using remote sensors and satellite observation

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The methods of measuring the existence of erosion and the effects of sand stabilization control systems are described. The mechanics of sand movement, the nature of sand erosion, and the use of satellite data to measure these factors and their surrogates are discussed using the locational and control aspects of aeolian and litoral erosion zones along the sand beach of the Mississippi coast. The aeolian erosion is highlighted due to the redeposition of the sand which causes high cleanup costs, property damage, and safety and health hazards. The areas of differential erosion and the patterns of beach sand movement are illustrated and the use of remote sensing methods to identify the areas of erosion are evaluated.

  8. An holistic approach to beach erosion vulnerability assessment.

    PubMed

    Alexandrakis, George; Poulos, Serafim Ε

    2014-01-01

    Erosion is a major threat for coasts worldwide, beaches in particular, which constitute one of the most valuable coastal landforms. Vulnerability assessments related to beach erosion may contribute to planning measures to counteract erosion by identifying, quantifying and ranking vulnerability. Herein, we present a new index, the Beach Vulnerability Index (BVI), which combines simplicity in calculations, easily obtainable data and low processing capacity. This approach provides results not only for different beaches, but also for different sectors of the same beach and enables the identification of the relative significance of the processes involved. It functions through the numerical approximation of indicators that correspond to the mechanisms related to the processes that control beach evolution, such as sediment availability, wave climate, beach morhodynamics and sea level change. The BVI is also intended to be used as a managerial tool for beach sustainability, including resilience to climate change impact on beach erosion. PMID:25123815

  9. Sea level anomalies exacerbate beach erosion

    NASA Astrophysics Data System (ADS)

    Theuerkauf, Ethan J.; Rodriguez, Antonio B.; Fegley, Stephen R.; Luettich, Richard A.

    2014-07-01

    Sea level anomalies are intra-seasonal increases in water level forced by meteorological and oceanographic processes unrelated to storms. The effects of sea level anomalies on beach morphology are unknown but important to constrain because these events have been recognized over large stretches of continental margins. Here, we present beach erosion measurements along Onslow Beach, a barrier island on the U.S. East Coast, in response to a year with frequent sea level anomalies and no major storms. The anomalies enabled extensive erosion, which was similar and in most places greater than the erosion that occurred during a year with a hurricane. These results highlight the importance of sea level anomalies in facilitating coastal erosion and advocate for their inclusion in beach-erosion models and management plans. Sea level anomalies amplify the erosive effects of accelerated sea level rise and changes in storminess associated with global climate change.

  10. Erosion in the Beaches of Crete

    NASA Astrophysics Data System (ADS)

    Synolakis, C. E.; Foteinis, S.; Voukouvalas, V.; Kalligeris, N.

    2009-04-01

    In the past decade, erosion rates for the coastlines of Greece are rapidly increasing. Many beaches on the northern coast of the island have substantially retreated, while others have disappeared or will disappear within the present or the following decade if no action is taken. For the better understanding and visualization of the current situation, specific examples of rapid erosion are described and afterwards we speculate as to the causes. We infer that, as in other parts of the Mediterranean, the causes are anthropogenic and include removal of sand dunes to build roads, sand mining from beaches and rivers, permanent building construction within the active coastal zone, on or too close to shoreline, and poor design of coastal structures. The reason behind the rapid erosion of Greece coastlines is the complete lack of any semblance of coastal zone management and antiquated legislation. We conclude that unless urgent measures for the protection and even salvation of the beaches are taken and if the sand mining and dune removal does not stop, then several beaches will disappear within the present and the following decade.

  11. Erosion of the beaches of Crete

    NASA Astrophysics Data System (ADS)

    Skanavis, V.; Kalligeris, N.; Maravelakis, N.; Foteinis, S.; Sartzetakis, G.; Papadogiannis, K.; Synolakis, C.

    2014-12-01

    The coastlines of Greece face a substantial erosion problem with some shoreline retreating at rates up to 1m/year. This problem remains largely unrecognized for quantitative measurements of shoreline retreat rates are scarce, while coastal wave measurements for extended period of time are entirely non existent. Most if not all coastal engineering studies rely on SMB type forecasts. Worse, structures are still designed with simple laboratory models that purport to even model coastal erosion, without the benefit of any numerical simulations. As a result, in some areas, the structures have accelerated the erosion in adjacent beaches. We present the first ever coastal wave measurements in shallow waters in Greece. From December 2010 to April 2014, three AWACs - instruments that measure wave heights, directions and three dimensional velocity profiles were deployed in 20-25m water depths in the Bay of Chanea, Crete. The measurements revealed waves higher than expected from simple forecasting models. We also present estimates of coastline retreat for the Bay of Chanea and other regions in Crete.

  12. Kennedy Space Center ocean beach erosion

    NASA Technical Reports Server (NTRS)

    Mehta, A. J.; Obrien, M. P.

    1973-01-01

    Dune barrier erosion and possible breakthrough due to storm and hurricane wave activity is studied near Mosquito Lagoon, in Kennedy Space Center property. The results of a geological as well as hydrodynamic appraisal of the problem area indicate that no inlet has existed across the dune barrier since 500 A.D., and that there is little likelihood of a possible breakthrough inlet remaining open permanently, primarily because the relatively shallow lagoon does not contain enough volume of water to maintain an inlet between the ocean and the lagoon. It is therefore recommended that only minimal measures, such as closing up the man-made passes across the dunes, be carried out to ensure continuation of the action of natural beach maintaining processes.

  13. Mechanisms for beach erosion during storms

    NASA Astrophysics Data System (ADS)

    Russell, Paul E.

    1993-11-01

    Simultaneous time-series measurements of waves, currents, and suspended sediment concentrations (SSCs) were obtained from the surf zone of a high energy, macrotidal, dissipative beach (Llangennith, Gower, South Wales, U.K.) during "storm" and "calm" conditions. A collocated pressure transducer (PT), electromagnetic current meter (EMCM) and optical backscatter sensor (OBS) were used to measure waves, bi-directional currents and SSCs respectively. Incident wave heights were found to be saturated in the inner surf zone. As the incident waves decayed shorewards, low frequency (infragravity) oscillations in water level and current velocity grew. During the storm, the inner surf zone was dominated by strong (± 1m s -1), low frequency (≈0.01Hz), cross-shore fluid motions which accounted for up to 80% of the total spectral energy. Suspension events associated with the infragravity motions reached peak concentrations of over 70 g l -1, 0.04 m above the bed, and persisted for periods of 30-40 s. Co-spectra between the SSC and cross-shore velocity time-series were computed and used to examine the frequency dependence of the near-bed cross-shore (suspended) sediment transport rate, which was seen to be composed of mainly onshore transport due to asymmetric flows at incident wave frequencies, and predominantly offshore transport coupled with infragravity oscillations in the cross-shore current velocity. A mean (steady) transport component was also measured in association with the undertow (directed offshore). The combined effect of the infragravity band and mean offshore transport components was responsible for the erosion of the beach during the storm

  14. Field studies of beach cones as coastal erosion control/reversal devices for areas with significant oil and gas activities. [Annual report], February 24, 1992--February 23, 1993

    SciTech Connect

    Law, V.J.

    1993-03-15

    The primary objective of this project is to evaluate the utility of a device called the ``beach cone`` in combating coastal erosion. Seven initial sites were selected for testing beach cones in a variety of geometric configurations. Permits were obtained from the State of Louisiana and the US Army Corps of Engineers to perform the work associated with this study. Six hundred beach cones were actually installed at six of the sites in late July and early August, 1992. One of the initial sites was abandoned because it was found to be unsuitable for beach cone placement. The test sites have been observed for six months and preliminary findings indicate that beach cones accreted significant amounts of materials along the beach of a barrier island. At other test sites, accretion rates have been less dramatic but importantly, no significant additional erosion has occurred, which is a positive result. It is too soon to state the categorical success of the beach cones, but results to date are encouraging.

  15. Synthesis study of an erosion hot spot, Ocean Beach, California

    USGS Publications Warehouse

    Barnard, Patrick L.; Hansen, Jeff E.; Erikson, Li H.

    2012-01-01

    A synthesis of multiple coastal morphodynamic research efforts is presented to identify the processes responsible for persistent erosion along a 1-km segment of 7-km-long Ocean Beach in San Francisco, California. The beach is situated adjacent to a major tidal inlet and in the shadow of the ebb-tidal delta at the mouth of San Francisco Bay. Ocean Beach is exposed to a high-energy wave climate and significant alongshore variability in forcing introduced by varying nearshore bathymetry, tidal forcing, and beach morphology (e.g., beach variably backed by seawall, dunes, and bluffs). In addition, significant regional anthropogenic factors have influenced sediment supply and tidal current strength. A variety of techniques were employed to investigate the erosion at Ocean Beach, including historical shoreline and bathymetric analysis, monthly beach topographic surveys, nearshore and regional bathymetric surveys, beach and nearshore grain size analysis, two surf-zone hydrodynamic experiments, four sets of nearshore wave and current experiments, and several numerical modeling approaches. Here, we synthesize the results of 7 years of data collection to lay out the causes of persistent erosion, demonstrating the effectiveness of integrating an array of data sets covering a huge range of spatial scales. The key findings are as follows: anthropogenic influences have reduced sediment supply from San Francisco Bay, leading to pervasive contraction (i.e., both volume and area loss) of the ebb-tidal delta, which in turn reduced the regional grain size and modified wave focusing patterns along Ocean Beach, altering nearshore circulation and sediment transport patterns. In addition, scour associated with an exposed sewage outfall pipe causes a local depression in wave heights, significantly modifying nearshore circulation patterns that have been shown through modeling to be key drivers of persistent erosion in that area.

  16. Field studies of beach cones as coastal erosion control/reversal devices for areas with significant oil and gas activities. Final report, February 24, 1992--September 18, 1995

    SciTech Connect

    Law, V.J.

    1995-09-18

    The primary objective of this project was to evaluate the utility of a device called the {open_quotes}beach cone{close_quotes} in combating coastal erosion. Seven initial sites were selected for testing beach cones in a variety of geometric configurations. Permits were obtained from the State of Louisiana and the U.S. Army Corps of Engineers to perform the work associated with this study. Six hundred beach cones were actually installed at six of the sites in late July and early August, 1992. Findings indicate that beach cones accreted significant amounts of materials along the beach of a barrier island, and they might have been instrumental in repairing an approximately 200 meter gap in the island. At the eighth installation the amount of accreted material was measured by surveys to be 2200 cubic meters (2900 cubic yards) in February of 1993, when the cones were found to have been completely covered by the material. At other test sites, accretion rates have been less dramatic but importantly, no significant additional erosion has occurred, which is a positive result. The cost of sediment accretion using beach cones was found to be about $13.72 per cubic yard, which would be much lower if the cones were mass produced (on the order of $3.00 per cubic yard). The survival of the cones through the fringes of Hurricane Andrew indicates that they can be anchored sufficiently to survive significant storms. The measurements of the cones settling rates indicate that this effect is not significant enough to hinder their effectiveness. A subcontract to Xavier University to assess the ecological quality of the experimental sites involved the study of the biogeochemical cycle of trace metals. The highest concentration of heavy metals were near a fishing camp while the lowest levels were in the beach sand of a barrier island. This suggests that the metals do not occur naturally in these areas, but have been placed in the sediments by man`s activities.

  17. Two-Dimensional Numerical Modeling of Anthropogenic Beach Berm Erosion

    NASA Astrophysics Data System (ADS)

    Shakeri Majd, M.; Schubert, J.; Gallien, T.; Sanders, B. F.

    2014-12-01

    Anthropogenic beach berms (sometimes called artificial berms or artificial dunes) temporarily enhance the ability of beaches to withstand overtopping and thus guard against coastal flooding. However, the combination of a rising tide, storm surge, and/or waves may erode anthropogenic berms in a matter of hours or less and cause flooding [1]. Accurate forecasts of coastal flooding therefore demand the ability to predict where and when berms fail and the volume of water that overtops into defended coastal lowlands. Here, a two-dimensional numerical model of swash zone waves and erosion is examined as a tool for predicting the erosion of anthropogenic beach berms. The 2D model is known as a Debris Flow Model (DFM) because it tightly couples flow and sediment transport within an approximate Riemann solver and is able to resolve shocks in fluid/sediment interface [2]. The DFM also includes a two dimensional avalanching scheme to account for gravity-driven slumping of steep slopes. The performance of the DFM is examined with field-scale anthropogenic berm erosion data collected at Newport Beach, California. Results show that the DFM can be applied in the swash zone to resolve wave-by-wave flow and sediment transport. Results also show that it is possible to calibrate the model for a particular event, and then predict erosion for another event, but predictions are sensitive to model parameters, such as erosion and avalanching. References: [1] Jochen E. Schubert, Timu W. Gallien, Morteza Shakeri Majd, and Brett F. Sanders. Terrestrial laser scanning of anthropogenic beach berm erosion and overtopping. Journal of Coastal Research In-Press, 2014. [2] Morteza Shakeri Majd and Brett F. Sanders. The LHLLC scheme for Two-Layer and Two-Phase transcritical flows over a mobile bed with avalanching, wetting and drying. Advances in Water Resources, 64, 16-31, 2014.

  18. One dimensional modeling of anthropogenic beach berm erosion

    NASA Astrophysics Data System (ADS)

    Shakeri Majd, M.; Sanders, B. F.

    2013-12-01

    Anthropogenic beach berms (sometimes called artificial berms or artificial dunes) are in use internationally to guard against beach overtopping and consequent coastal flooding. Berms can be constructed on a seasonal basis or in anticipation of a hazardous event, e.g., when a storm is expected to arrive coincident with an astronomical high tide. In either case, a common approach is to scrape sand from the foreshore with heavy equipment and deposit it on the crest of the natural beach dune, thus providing added protection from the possibility of wave overtopping. Given the potential for higher sea levels globally and more extreme storm events, anthropogenic berms will surely be tested to their limits and will ultimately fail, causing flooding. A better understanding of the conditions under which these berms fail is therefore needed to support coastal flood risk management. An experimental campaign in Newport Beach, California was conducted to document the dynamic erosion of prototype beach berms under a rising tide and mild to moderate wave conditions. Terrestrial laser scanning (TLS) of the berm produced a digital model of how the berm shape evolved over time. Here, a numerical model of swash zone hydromorphodynamics based on shallow-water flow physics is presented to evaluate whether and to what extent the timing and degree of berm erosion and overtopping can be predicted from first principles. The model tightly couples flow and sediment transport within an approximate Riemann solver, and thus is of the Godunov-type variety of finite volume schemes. Additionally, the model includes an avalanching scheme to account for non-hydrodynamic slumping down the angle of repose. Results indicate that it is possible to calibrate the model for a particular event, and then successfully predict erosion for another event, but due to parameter sensitivities, it is unlikely that the model can be applied at a site without calibration (true prediction).

  19. Accelerated beach erosion in the south Atlantic coastal zone: is mitigation of artificially renourished beaches in SE Florida a rational practice or folly

    SciTech Connect

    Finkl, C.W. Jr.; Matlack, P.A.

    1985-01-01

    The natural erosion of sandy beaches is a world wide problem that is often exacerbated by the structural controls that are designed to mitigate shoreline recession. As seen elsewhere, the deployment of groins and other erosion-control structures has met meager success along the Atlantic coast of south Florida. Artificial renourishment, placement of sand on the beach from land or offshore borrows, is a relatively new nonstructural attempt to reduce shoreline retreat. Our study of sandy shores lying downdrift of jettied inlets identifies restricted sand bypassing that results in classical shoreline offsets. Many of the beaches that were previously renourished are again classified, by the Corps of Engineers, as critically eroded and local governments are now requesting additional rounds of renourishment. Attempts to stabilize renourished shores by planting dune grass, beach scraping, and scarp reduction, as in the Port Everglades area, have failed. Sediment loss at the John U. Lloyd Beach since 1976, for example, is in excess of 500,000 m/sup 3/. In this area, erosion is accelerated and chronic. The severity of localized erosion is highlighted here by assuming a worst case scenario without renourishment or structural control. Hurricane-induced storm surge and overwash could, before renourishment is attempted in 1986 or 1987, cut through the barrier even sooner. Such a breach would expose the port facilities to direct effects of the sea. Joint studies by geoscientists and planners are needed to determine whether continued renourishment of eroded beaches in developed areas is essential, practical, or even advisable.

  20. Integrated protecting plan for beach erosion. A case study in Plaka beach, E. Crete, Greece

    NASA Astrophysics Data System (ADS)

    Petrakis, Stelios; Alexandrakis, George; Kozyrakis, George; Hatziyanni, Eleni; Kampanis, Nikolaos

    2015-04-01

    Coastal zones are among the most active areas on Earth, being subjected to extreme wind / wave conditions, thus vulnerable to erosion. In Greece and Crete in particular, beach zones are extremely important for the welfare of the inhabitants, since, apart for the important biological and archaeological value of the beach zones, the socio-economic value is critical since a great number of human activities are concentrated in such areas (touristic facilities, fishing harbors etc.). The present study investigates the erosional procedures observed in Plaka beach, E. Crete, Greece, a highly touristic developed area with great archaeological interest and proposes a cost-effective solution. The factors taken into consideration for the proposed solution in reducing the erosion of the beach were the study of the climatological, geological and geomorphological regime of the area, the recent (~70 years) shifting of the coastline through the study of topographic maps, aerial photographs and satellite images, the creation of detailed bathymetric and seabed classification maps of the area and finally, a risk analysis in terms of erosional phenomena. On the basis of the above, it is concluded that the area under investigation is subjected to an erosional rate of about 1 m/10 years and the total land-loss for the past 70 years is about 4600 m2. Through the simulation of the wave regime we studied 3 possible scenarios, the "do-nothing" scenario, the construction of a detached submerged breakwater at the depth of 3 meters and, finally, the armoring of the existing beach-wall through the placement of appropriate size and material boulders, forming an artificial slope for the reducing of the wave breaking energy and a small scale nourishment plan. As a result, through the modeling of the above, the most appropriate and cost-effective solution was found to be the third, armoring of the existing coastal wall and nourishment of the beach periodically, thus the further undermining of the

  1. Emergency wind erosion control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    February through May is the critical time for wind erosion in Kansas, but wind erosion can happen any time when high winds occur on smooth, wide fields with low vegetation and poor soil structure. The most effective wind erosion control is to ensure a protective cover of residue or growing crop thro...

  2. Impact of erosion and accretion on the distribution of enterococci in beach sands

    NASA Astrophysics Data System (ADS)

    Gast, Rebecca J.; Gorrell, Levi; Raubenheimer, Britt; Elgar, Steve

    2011-09-01

    Bacterial pathogens in coastal sediments may pose a health risk to users of beaches. Although recent work shows that beach sands harbor both indicator bacteria and potential pathogens, it is neither known how deep within beach sands the organisms may persist nor if they may be exposed during natural physical processes. In this study, sand cores of approximately 100 cm depth were collected at three sites across the beach face in Kitty Hawk, North Carolina, before, during, and after large waves from an offshore hurricane. The presence of DNA from the fecal indicator bacterium Enterococci was detected in subsamples at different depths within the cores by PCR amplification. Erosion and accretion of beach sand at the three sites were also determined for each sampling day. The results indicate that ocean beach sands with persisting enterococci signals could be exposed and redistributed when wind, waves, and currents cause beach erosion or accretion.

  3. Modeling the Economics of Beach Nourishment Decisions in Response to Coastal Erosion

    NASA Astrophysics Data System (ADS)

    Ware, M.; Ashton, A. D.; Hoagland, P.; Jin, D.; Kite-Powell, H.; Lorenzo-Trueba, J.

    2012-12-01

    Beaches are constantly moving and changing. The dynamic transformations of beaches are mostly the result of the erosion of sand, which can occur through movements alongshore caused by waves, movements off-shore due to storms, or submersion due to sea-level rise. Predicted climate change impacts include potential changes in storminess and accelerated sea-level rise, which will lead to increased coastal erosion. At the same time, the number of people residing in coastal communities is increasing. The risks from eroding beaches (increased coastal flooding, damage to infrastructure, and displaced residents) are therefore increasing in number and scale; and coastal residents are taking actions to protect their homes. One such action is beach nourishment, where sand is added to a resident's property in order to widen the beach. We have developed an economic model of beach nourishment decision-making to investigate the relationship between the optimal volume and timing of beach nourishment and factors such as property value, erosion rate, and initial beach width. In this model, waterfront property owners nourish a beach when the losses in net rental income exceed the costs incurred from nourishing the beach. (Rental income is a function of property value, which in turn depends upon the width of the beach.) It is assumed that erosion and sea-level rise are related. We examine different nourishment scenarios, including one-time nourishment in the first year; constant annual nourishment; and a myopic decision process in which the homeowner nourishes the beach if property losses from erosion over the next five years are expected to exceed the cost of nourishment. One-time nourishment delays property flooding for both constant and accelerating sea level rise; however, this delay is more substantial under constant sea level rise. With continual nourishment, the beach can be maintained under constant sea-level rise, provided that the erosion rate is comparable to the additional

  4. Field experiments of beach scarp erosion during oblique wave, stormy conditions (Normandy, France)

    NASA Astrophysics Data System (ADS)

    Bonte, Yoann; Levoy, Franck

    2015-05-01

    A field-based experimental study of beach scarp morphodynamic evolution was conducted on the shoreface of a macrotidal sandy beach subject to storms combined with spring tide events (Luc-sur-Mer, France). Both video and in-situ measurements on an artificial berm are used to understand beach scarp evolution over one tide during stormy conditions. Image time stacks are used to analyze the swash action on the beach scarp and topographical data of the scarp are recorded with a terrestrial scanner laser to quantify the morphodynamic response of the beach scarp to wave action. This work provides a new and unique dataset about beach scarp changes and berm morphology in particular under rising tide and oblique wind-wave conditions. During one stormy event, the berm was completely destroyed. However, contrasting alongshore changes were measured during the erosive phase with different crest and foot scarp retreats and eroded volumes between the west and the east side of the berm. The beach in front of the scarp also shows a contrasting residual evolution, indicating an evident longshore sediment transport on the study area as a consequence of incident oblique wave conditions. A strong connection between beach evolution and beach scarp changes is clearly identified. The scarp erosion increases on the west side of the berm when the beach level is lowered and reduces when the beach surface rises on the east side. The beach slope and foreshore elevation as a result of a longshore sediment transport between east and west profiles, influence swash activity. Overall, water depth and swash activity became progressively different along the scarp during the experiment. Swash measurements indicate that the presence of the beach scarp strongly influences the swash motion. At high tide, the reflection of the uprush on the scarp front induces a collision between the reflected backwash and the following uprush dynamic. These collisions reduce and sometimes stop the motion of the following

  5. Coastal erosion vulnerability and risk assessment focusing in tourism beach use.

    NASA Astrophysics Data System (ADS)

    Alexandrakis, George

    2016-04-01

    It is well established that the global market for tourism services is a key source of economic growth. Especially among Mediterranean countries, the tourism sector is one of the principal sectors driving national economies. With the majority of the mass tourism activities concentrated around coastal areas, coastal erosion, inter alia, poses a significant threat to coastal economies that depend heavily on revenues from tourism. The economic implications of beach erosion were mainly focused in the cost of coastal protection measures, instead of the revenue losses from tourism. For this, the vulnerability of the coast to sea level rise and associated erosion, in terms of expected land loss and economic activity need to be identified. To achieve this, a joint environmental and economic evaluation approach of the problem can provide a managerial tool to mitigate the impact of beach erosion in tourism, through realistic cost-benefit scenarios for planning alternative protection measures. Such a multipurpose tool needs to consider social, economic and environmental factors, which relationships can be better understood when distributed and analyzed along the geographical space. The risk assessment is implemented through the estimation of the vulnerability and exposure variables of the coast in two scales. The larger scale estimates the vulnerability in a regional level, with the use environmental factors with the use of CVI. The exposure variable is estimated by the use of socioeconomic factors. Subsequently, a smaller scale focuses on highly vulnerable beaches with high social and economic value. The assessment of the natural processes to the environmental characteristics of the beach is estimated with the use of the Beach Vulnerability Index (BVI) method. As exposure variable, the value of beach width that is capitalized in revenues is implemented through a hedonic pricing model. In this econometric modelling, Beach Value is related with economic and environmental

  6. Towards improved prediction and mitigation of beach overwash: Terrestrial LiDAR observation of dynamic beach berm erosion

    NASA Astrophysics Data System (ADS)

    Schubert, J. E.; Gallien, T.; Shakeri Majd, M.; Sanders, B. F.

    2012-12-01

    Globally, over 20 million people currently reside below high tide levels and 200 million are below storm tide levels. Future climate change along with the pressures of urbanization will exacerbate flooding in low lying coastal communities. In Southern California, coastal flooding is triggered by a combination of high tides, storm surge, and waves and recent research suggests that a current 100 year flood event may be experienced on a yearly basis by 2050 due to sea level rise adding a positive offset to return levels. Currently, Southern California coastal communities mitigate the threat of beach overwash, and consequent backshore flooding, with a combination of planning and operational activities such as protective beach berm construction. Theses berms consist of temporary alongshore sand dunes constructed days or hours before an extreme tide or wave event. Hydraulic modeling in urbanized embayments has shown that coastal flooding predictions are extremely sensitive to the presence of coastal protective infrastructure, requiring parameterization of the hard infrastructure elevations at centimetric accuracy. Beach berms are an example of temporary dynamic structures which undergo severe erosion during extreme events and are typically not included in flood risk assessment. Currently, little is known about the erosion process and performance of these structures, which adds uncertainty to flood hazard delineation and flood forecasts. To develop a deeper understanding of beach berm erosion dynamics, three trapezoidal shaped berms, approximately 35 m long and 1.5 m high, were constructed and failure during rising tide conditions was observed using terrestrial laser scanning. Concurrently, real-time kinematic GPS, high-definition time lapse photography, a local tide gauge and wave climate data were collected. The result is a rich and unique observational dataset capturing berm erosion dynamics. This poster highlights the data collected and presents methods for processing

  7. Modeling extreme beach retreat and erosion volumes. A tool for susceptibility analysis.

    NASA Astrophysics Data System (ADS)

    Trindade, J.; Ramos-Pereira, A.

    2012-04-01

    Beaches are among the most dynamic systems in the coastal zone. This is due to the great variability in the main triggering factors that contribute to morphological change. Dramatic coast line retreat can occur in a short period of time due to episodic extreme wave events endangering people and property and therefore defining the local susceptibility to erosion. This research aims to determinate beach recession and volume erosion due to sediment loss during extreme wave events in non artificialized beaches of the Portuguese west coast, for susceptibility analysis. The central west coast of Portugal is a wave dominated high energetic coastal environment. Storm frequency and magnitude are very important features on the definition of the annual local sediment budget and on the anthropogenic elements exposure to the direct action of waves through momentary or permanent coastline retreat. Winter offshore mean significant wave values reach 2.5m and waves with a 5 year recurrence period can be higher than 9m. Results of cross- shore beach profile modeling using storm-induced beach change model (SBEACH) are presented for 3 beach systems, namely Sta. Rita beach, Azul beach and Foz do Lizandro. The calibration tests and the validation process are described and presented. The model run results are based on high definition natural beach profile data of pre- and post-storm measured morphology, on local characteristics of beach sediments and on hydrodynamic variables related to onshore extreme wave data and local tide heights. Results point out the crucial importance of the local calibration process for the model application, with adjusted values of the transport rate coefficient, K, and the coefficient for slope dependent term, ɛ, differing from the "recommended" values by excess. In most cases validation values show that the locally calibrated SBEACH model explains 90% of the observed volume changes between pre- and post-storm profiles, computing sediment loss by slight

  8. Rates and Mechanisms of Erosion Generating a Wave-Cut Platform at Sargent Beach, Texas, USA

    NASA Astrophysics Data System (ADS)

    Palermo, R.; Mohrig, D. C.; Piliouras, A.; Swanson, T.

    2015-12-01

    Sargent Beach is characterized by a wave-cut platform and bluff that exemplifies beaches with the highest rates of coastline retreat in Texas. This shoreline topography is being cut into a substrate of weak, Holocene mudstone associated with the nearby coastal river. The mudstone is composed of horizontal beds, centimeters to decimeters in thickness. Its compressive strength ranges from immeasurably small when submerged and water saturated, to 206 kPa when moist, and 412 kPa when dry. Retreat rates for the face of the 1.5-m-high bluff are estimated using repeat aerial images collected from 2010 - 2014; these rates are 9.39 m/yr, 4.63 m/yr, and 3.73 m/yr. Retreat rates are also measured monthly using erosion pins; monthly rates are 0.009 m/month and 0.053 m/month. Extrapolated over one year these rates equal 0.114 m/yr and 0.644 m/yr. The platform has a characteristic basinward dip between 1 and 1.5 degrees. Depending on the location, the platform may include centimeter - decimeter steps associated with discrete beds of varying strength in the mudstone or slope-parallel runnels with 0.05 - 0.10 m spacing and 0.03 - 0.05 m relief. All of these morphologies are produced by shell hash and concretion tools that abrade the mudstone within the zone of swash and backwash. Focused abrasion by shell and sediment tools leads to undercutting and ultimately failure of the bluff. It also produces the runnels and grinds small potholes. These erosional processes are shut off when sections of the beach become covered with a layer of sand of sufficient thickness; its aerial coverage varies from month to month. We will examine how the widely variable rates of shoreline retreat and mudstone erosion are jointly controlled by changes in sand coverage and wave intensity associated with storms and cold fronts.

  9. Heightened North Pacific Storminess during Synchronous Late Holocene Erosion of Northwest Alaska Beach Ridges

    NASA Astrophysics Data System (ADS)

    Mason, Owen K.; Jordan, James W.

    1993-07-01

    A progradational regime of falling sea level and/or high sediment input has produced extensive beach ridge plains in northwest Alaska during the last 4000 yr. Eleven Chukchi Sea beach ridge complexes, oriented at various angles to wind fetch, provide a cumulative history of longshore transport and erosion. Archaeological and geological upper limiting radiocarbon ages ( n = 59) allow correlations between depositional units on seven beach ridge complexes. Progradation started 4000 yr B.P. at nearly all complexes, as eustatic sea level stabilized. Two disconformities or truncations are found on most of the complexes, providing time-parallel storm horizons, dated at 3300-1700 and 1200-900 14C yr B.P. Between 1700 and 1200 14C yr B.P. most of the complexes prograded, indicating the predominance of less-stormy conditions. Modern synoptic patterns that produce Chukchi beach ridge erosion are linked to northerly shifts in North Pacific storm tracks. The regionwide beach ridge erosional truncations correlate with records of glacier expansion, heightened precipitation evident in tree-rings, stream flooding, and shelf deposits reworked by storm surges.

  10. The erosion of the beaches on the coast of Alicante: Study of the mechanisms of weathering by accelerated laboratory tests.

    PubMed

    López, I; López, M; Aragonés, L; García-Barba, J; López, M P; Sánchez, I

    2016-10-01

    One of the main problems that coasts around the world present, is the regression and erosion of beaches. However, the factors involved in these processes are unclear. In this study, the influence of sediment erosion on beach regression has been analysed. In order to do that, a three-step investigation has been carried out. Firstly, coastline variations of four Spanish beaches have been analysed. Secondly, a study on sediment position along the beach profile has been developed. Finally, the process that beach sediments undergo along the surf zone when they are hit by the incident waves has been simulated by an accelerated particle weathering test. Samples of sand and shells were subjected to this accelerated particle weathering test. Results were supplemented with those from carbonate content test, XRD, SEM and granulometric analysis. Results shows a cross-shore classification of sediments along the beach profile in which finer particles move beyond offshore limit. Besides, it was observed that sediment erosion process is divided into three sages: i) particles wear due to crashes ii) dissolution of the carbonate fraction, and iii) breakage and separation of mineral and carbonate parts of particles. All these processes lead to a reduction of particle size. The mechanism responsible of beach erosion would consist of multiples and continuous particle location exchanges along the beach profile as a consequence of grain-size decrease due to erosion. PMID:27220096

  11. Mid-El Niño erosion at nourished and unnourished Southern California beaches

    NASA Astrophysics Data System (ADS)

    Ludka, B. C.; Gallien, T. W.; Crosby, S. C.; Guza, R. T.

    2016-05-01

    Wave conditions in Southern California during the 2015-2016 El Niño were similar to the 2009-2010 El Niño, previously the most erosive (minimum beach widths and subaerial sand levels) in a 7 year record. As of February 2016, Torrey Pines Beach had eroded slightly below 2009-2010 levels, threatening the shoulder of a major highway. However, Cardiff, Solana, and Imperial Beaches, nourished with imported sand in 2012, were on average 1-2 m more elevated and more than 10 m wider than in 2009-2010. Monthly subaerial sand elevation observations showed that the nourished beaches remained consistently wider than unnourished beaches under similar wave conditions. In contrast to a 2001 nourishment at Torrey Pines built with native sized sand that was removed from the beach face during a single storm, these relatively coarse grained nourishments protected shorelines for several years, and during the significant wave attack of the 2015-2016 El Niño, as of February 2016.

  12. Beach morphodynamics and types of foredune erosion generated by storms along the Emilia-Romagna coastline, Italy

    NASA Astrophysics Data System (ADS)

    Armaroli, Clara; Grottoli, Edoardo; Harley, Mitchell D.; Ciavola, Paolo

    2013-10-01

    the main factor controlling changes in the beach and dune slope. The most significant storm was recorded in March 2010 with a peak significant wave height of 3.91 m. Contrary to the seasonal dune trend, several foredune slopes were observed to flatten following this event, which can be attributed to the action of dune slumping from the already weakened dune state. Modelling of foredune erosion, using a process-based model (XBeach), reproduced the erosion of the upper beach and dune toe reasonably well, but is currently limited by the acceptable slope value for dune stability, which does not account for biotic factors (e.g. plant roots). The comparison between the storm impact categories of Sallenger (2000) and the DSF (Dune Stability Factor) of Armaroli et al. (2012) shows a very good correspondence between the effects of the winter 2008-2009 storms and the vulnerability of the dune system predicted using both classifications.

  13. Effectiveness of postfire erosion control treatments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To mitigate potential postfire erosion and flooding, various erosion control treatments are applied on highly erodible areas with downstream resources in need of protection. Recent efforts to evaluate the effectiveness of postfire erosion mitigation treatments have used natural rainfall experiments...

  14. Longshore transport gradients and erosion processes along the Ilha Comprida (Brazil) beach system

    NASA Astrophysics Data System (ADS)

    Silva, Filipe Galiforni; de Oliveira Sousa, Paulo Henrique Gomes; Siegle, Eduardo

    2016-07-01

    The aim of this study is to assess the longshore transport gradients and wave power distribution along the Ilha Comprida beach system and relate it to the distribution of the current erosion process along this barrier island. The study is based on quantitative analysis of the potential longshore drift and the wave power distribution, as well as on the morpho-sedimentary seasonal variations in the beach system. Therefore, the 30-year wave reanalysis database from the global wave generation model WAVEWATCH III (NOAA/NCEP) has been extracted and analyzed for the region, as well as field surveys with topographic measurements and sediment samples. The numerical model MIKE 21 SW has been applied to propagate waves onshore and recognize the longshore transport tendencies and the nearshore wave power distribution. Results show an overall transport trend to the NE, being larger in the southern sector than in the northern sector of the island. Varying transport magnitudes prove to generate gradients in longshore drift. Two positive gradients in the longshore drift, resulting in local sediment losses, are observed. One is found in the central-southern area and another in the northern part of the island. Both areas coincide with erosive spots, as observed through field surveys. The central-southern positive gradient becomes larger and migrates to the south during the most energetic months, while the northern gradient presents only variations in magnitude, being relatively stable in position throughout the year. Nearshore wave power results show two main areas with higher values that coincide with the positive longshore transport gradients. Sediment data presents low temporal variability, although spatial variations have been found reflecting the local hydrodynamic conditions, while the volumetric data shows largest values in the central-northern sector, being smaller in the central-southern and northern regions. Moreover, the central portions are more stable than the extreme

  15. Longshore transport gradients and erosion processes along the Ilha Comprida (Brazil) beach system

    NASA Astrophysics Data System (ADS)

    Silva, Filipe Galiforni; de Oliveira Sousa, Paulo Henrique Gomes; Siegle, Eduardo

    2016-05-01

    The aim of this study is to assess the longshore transport gradients and wave power distribution along the Ilha Comprida beach system and relate it to the distribution of the current erosion process along this barrier island. The study is based on quantitative analysis of the potential longshore drift and the wave power distribution, as well as on the morpho-sedimentary seasonal variations in the beach system. Therefore, the 30-year wave reanalysis database from the global wave generation model WAVEWATCH III (NOAA/NCEP) has been extracted and analyzed for the region, as well as field surveys with topographic measurements and sediment samples. The numerical model MIKE 21 SW has been applied to propagate waves onshore and recognize the longshore transport tendencies and the nearshore wave power distribution. Results show an overall transport trend to the NE, being larger in the southern sector than in the northern sector of the island. Varying transport magnitudes prove to generate gradients in longshore drift. Two positive gradients in the longshore drift, resulting in local sediment losses, are observed. One is found in the central-southern area and another in the northern part of the island. Both areas coincide with erosive spots, as observed through field surveys. The central-southern positive gradient becomes larger and migrates to the south during the most energetic months, while the northern gradient presents only variations in magnitude, being relatively stable in position throughout the year. Nearshore wave power results show two main areas with higher values that coincide with the positive longshore transport gradients. Sediment data presents low temporal variability, although spatial variations have been found reflecting the local hydrodynamic conditions, while the volumetric data shows largest values in the central-northern sector, being smaller in the central-southern and northern regions. Moreover, the central portions are more stable than the extreme

  16. A global analysis of erosion of sandy beaches and sea-level rise: An application of DIVA

    NASA Astrophysics Data System (ADS)

    Hinkel, Jochen; Nicholls, Robert J.; Tol, Richard S. J.; Wang, Zheng B.; Hamilton, Jacqueline M.; Boot, Gerben; Vafeidis, Athanasios T.; McFadden, Loraine; Ganopolski, Andrey; Klein, Richard J. T.

    2013-12-01

    This paper presents a first assessment of the global effects of climate-induced sea-level rise on the erosion of sandy beaches, and its consequent impacts in the form of land loss and forced migration of people. We consider direct erosion on open sandy coasts and indirect erosion near selected tidal inlets and estuaries, using six global mean sea-level scenarios (in the range of 0.2-0.8 m) and six SRES socio-economic development scenarios for the 21st century. Impacts are assessed both without and with adaptation in the form of shore and beach nourishment, based on cost-benefit analysis that includes the benefits of maintaining sandy beaches for tourism. Without nourishment, global land loss would amount to about 6000-17,000 km2 during the 21st century, leading to 1.6-5.3 million people being forced to migrate and migration costs of US 300-1000 billion (not discounted). Optimal beach and shore nourishment would cost about US 65-220 billion (not discounted) during the 21st century and would reduce land loss by 8-14%, forced migration by 56-68% and the cost of forced migration by 77-84% (not discounted). The global share of erodible coast that is nourished increases from about 4% in 2000 to 18-33% in 2100, with beach nourishment being 3-4 times more frequent than shore nourishment, reflecting the importance of tourism benefits. In absolute terms, with or without nourishment, large countries with long shorelines appear to have the largest costs, but in relative terms, small island states appear most impacted by erosion. Considerable uncertainty remains due to the limited availability of basic coastal geomorphological data and models on a global scale. Future work should also further explore the effects of beach tourism, including considering sub-national distributions of beach tourists.

  17. Controls on sediment dynamics and medium-term morphological change in a barred microtidal beach (Cala Millor, Mallorca, Western Mediterranean)

    NASA Astrophysics Data System (ADS)

    Gómez-Pujol, Lluís; Orfila, Alejandro; Álvarez-Ellacuría, Amaya; Tintoré, Joaquín

    2011-09-01

    This paper describes the sedimentological and morphological evolution of a microtidal beach over an eight-month period under varying hydrodynamic conditions. During the monitoring a set of transverse to crescentic bars migrated onshore welded to the upper beach and then they were flattened under energetic wave conditions. The grain size distribution of surficial sediments did vary consistently across the beach profile and temporal changes in the sedimentology were mostly related to the seasonal morphological response. From our results we can state that changes in the beach morphology resulting from erosion and deposition might induce, at least to some degree, concomitant changes in the beach when hydrodynamics exceed some intensity and duration levels (Hs > 1 m). Wave climate, rather than wave forcing is the major control on sediment and morphological change co-variation.

  18. Erosion characteristics of fine-grained, beach-building sediment along the Colorado River in Grand Canyon

    NASA Astrophysics Data System (ADS)

    Akahori, R.; Schmeeckle, M. W.; Topping, D. J.

    2004-12-01

    In the Grand Canyon segment of the Colorado River, eddy sandbars, which form in lateral recirculation eddies, are important for endangered fish habitat, riparian habitat, protection of archeological sites, and recreation. By virtue of the 1963 closure of Glen Canyon Dam, sediment (i.e., sand, silt, and clay) supply to the Colorado River at the upstream boundary of Grand Canyon National Park has been reduced to about 5% of the pre-dam supply. This has caused substantial reduction in the size of eddy sandbars. The major supplier of sediment in the first 123 km downstream from Glen Canyon Dam is the Paria River, and its sediment consists mainly of clay, silt, and finer sand. During large floods on the Paria River, about 50% of the load is silt and clay, and the median size of the sand is about 0.11-0.12 mm. In order to restore the eroded eddy sandbars in the upper portion of Grand Canyon, an experimental controlled flood, i.e., Beach Habitat Building Flow (BHBF), has been proposed following enrichment of the sediment supply by flooding on the Paria River. Deposits produced by this BHBF should be fine-grained and cohesive. Understanding the sediment-transport behavior of this cohesive sediment is essential for the prediction and evaluation of the influence of the BHBF on rebuilding bars and increasing turbidity in the main channel. In this study, cohesive sediment samples of beach bars were collected from bars in the Colorado River in the Lake Mead delta. Laboratory experiments have tested the bulk density, erosion rate, and critical shear stress of these collected samples. The erosion rate of each sample was tested several times at different boundary shear stresses in a laboratory flume, allowing for estimation of the critical shear stress. Samples were placed in a 10-cm diameter cylinder below the flume. The sample was pushed out of the cylinder as it was eroded, such that the sample surface remained at the same height as the flume floor. Boundary shear stresses were

  19. Are beach erosion rates and sea-level rise related in Hawaii?

    NASA Astrophysics Data System (ADS)

    Romine, Bradley M.; Fletcher, Charles H.; Barbee, Matthew M.; Anderson, Tiffany R.; Frazer, L. Neil

    2013-09-01

    The islands of Oahu and Maui, Hawaii, with significantly different rates of localized sea-level rise (SLR, approximately 65% higher rate on Maui) over the past century due to lithospheric flexure and/or variations in upper ocean water masses, provide a unique setting to investigate possible relations between historical shoreline changes and SLR. Island-wide and regional historical shoreline trends are calculated for the islands using shoreline positions measured from aerial photographs and survey charts. Historical shoreline data are optimized to reduce anthropogenic influences on shoreline change measurements. Shoreline change trends are checked for consistency using two weighted regression methods and by systematic exclusion of coastal regions based on coastal aspect (wave exposure) and coastal geomorphology. Maui experienced the greatest extent of beach erosion over the past century with 78% percent of beaches eroding compared to 52% on Oahu. Maui also had a significantly higher island-wide average shoreline change rate at - 0.13 ± 0.05 m/yr compared to Oahu at - 0.03 ± 0.03 m/yr (at the 95% Confidence Interval). Differing rates of relative SLR around Oahu and Maui remain as the best explanation for the difference in overall shoreline trends after examining other influences on shoreline change including waves, sediment supply and littoral processes, and anthropogenic changes; though, these other influences certainly remain important to shoreline change in Hawaii. The results of this study show that SLR is an important factor in historical shoreline change in Hawaii and that historical rates of shoreline change are about two orders of magnitude greater than SLR.

  20. Sea-Level Anomalies Facilitate Beach Erosion and Increase Barrier Island Vulnerability to Storms and Sea-Level Rise

    NASA Astrophysics Data System (ADS)

    Theuerkauf, E. J.; Rodriguez, A. B.; Fegley, S. R.; Luettich, R. A., Jr.

    2014-12-01

    Sea-level anomalies are intra-seasonal (weeks to months) periods of high water level induced by oceanographic and meteorological processes, such as reduced Gulf Stream transport strength or persistent northeasterly winds. Although flooding associated with sea-level anomalies has been documented along continental coastlines (e.g. U.S. East Coast), these phenomena are not presently included in coastal models and management plans. We present the first measurements of beach erosion after a year with frequent sea-level anomalies. Erosion during this year, which was not impacted by large storms, was similar to a year with a hurricane, indicating that sea-level anomalies are important facilitators of coastal erosion. Beach erosion was measured at Onslow Beach, NC (OB) in a year with frequent sea-level anomalies (2009-2010) and compared to erosion during a year with no major events (2010-2011) and the year with Hurricane Irene (2011-2012). Sea-level anomalies were identified in water level data from a NOAA tide gauge in Wrightsville Beach, NC. From 2009-2010 anomalously high sea level occurred ~40% of the time, compared to ~8% from 2010-2011 and ~10% from 2011-2012. Significant wave heights, measured from an acoustic wave and current profiler and NOAA buoys offshore of OB, were not statistically different among these 3 years. The average backshore, high intertidal, and mid intertidal maximum depth of erosion for all sites along OB in the year with frequent sea-level anomalies were ~25, 50, and 55 cm, respectively. These values are greater than those measured after the year with no major events (~13, 29, and 32 cm) and similar to those measured after the year with Hurricane Irene (~27, 49, and 40 cm). OB has high along-strike variability in barrier island morphology, thus results apply to many beaches and barrier islands. Our results suggest that anomalies are important mechanisms of coastal change and likely amplify erosion in response to accelerated sea-level rise and

  1. [Research progress on wind erosion control].

    PubMed

    Yi, Xiao-Yong; Zhao, Ha-Lin; Li, Yu-Qiang

    2007-04-01

    Wind erosion is the main inducement and an important process of desertification, and also, a main environmental problem needed to be controlled in many countries and areas. Based on the formation mechanisms of wind erosion and some important research results, this paper reviewed the biological, chemical, and mechanical measures in wind erosion control, which could be applied individually or integrated together to decrease or prevent wind erosion. It was suggested that management should be strengthened to ensure a better effect in applying these measures to further improve ecological environment. PMID:17615892

  2. Robotic weld overlay coatings for erosion control

    SciTech Connect

    Levin, B.F.; Dupont, J.N.; Marder, A.R.

    1993-04-18

    Twelve weld overlay hardfacing alloys have been selected for preliminary erosion testing based on a literature review These alloys have been separated into three major groups: (1) Cobalt containing alloys, (2) Nickel-base alloys, (3) Iron base alloys. These alloys are being applied to carbon steel substrates and will undergo preliminary erosion testing to identify candidates weld overlay alloys for erosion control in CFB boilers. The candidate alloys selected from the preliminary erosion tests will then undergo more detailed evaluations in future research.

  3. Evaluation of the physical process controlling beach changes adjacent to nearshore dredge pits

    USGS Publications Warehouse

    Benedet, L.; List, J.H.

    2008-01-01

    Numerical modeling of a beach nourishment project is conducted to enable a detailed evaluation of the processes associated with the effects of nearshore dredge pits on nourishment evolution and formation of erosion hot spots. A process-based numerical model, Delft3D, is used for this purpose. The analysis is based on the modification of existing bathymetry to simulate "what if" scenarios with/without the bathymetric features of interest. Borrow pits dredged about 30??years ago to provide sand for the nourishment project have a significant influence on project performance and formation of erosional hot spots. It was found that the main processes controlling beach response to these offshore bathymetric features were feedbacks between wave forces (roller force or alongshore component of the radiation stress), pressure gradients due to differentials in wave set-up/set-down and bed shear stress. Modeling results also indicated that backfilling of selected borrow sites showed a net positive effect within the beach fill limits and caused a reduction in the magnitude of hot spot erosion. ?? 2008 Elsevier B.V. All rights reserved.

  4. Airphoto analysis of erosion control practices

    NASA Technical Reports Server (NTRS)

    Morgan, K. M.; Morris-Jones, D. R.; Lee, G. B.; Kiefer, R. W.

    1980-01-01

    The Universal Soil Loss Equation (USLE) is a widely accepted tool for erosion prediction and conservation planning. In this study, airphoto analysis of color and color infrared 70 mm photography at a scale of 1:60,000 was used to determine the erosion control practice factor in the USLE. Information about contour tillage, contour strip cropping, and grass waterways was obtained from aerial photography for Pheasant Branch Creek watershed in Dane County, Wisconsin.

  5. Sea-cliff erosion as a function of beach changes and extreme wave runup during the 1997-1998 El Nino

    USGS Publications Warehouse

    Sallenger, A.H., Jr.; Krabill, W.; Brock, J.; Swift, R.; Manizade, S.; Stockdon, H.

    2002-01-01

    Over time scales of hundreds to thousands of years, the net longshore sand transport direction along the central California coast has been driven to the south by North Pacific winter swell. In contrast, during the El Nin??o winter of 1997-1998, comparisons of before and after airborne lidar surveys showed sand was transported from south to north and accumulated on the south sides of resistant headlands bordering pocket beaches. This resulted in significant beach erosion at the south ends of pocket beaches and deposition in the north ends. Coincident with the south-to-north redistribution of sand, shoreline morphology became prominently cuspate with longshore wavelengths of 400-700 m. The width and elevation of beaches were least where maximum shoreline erosion occurred, preferentially exposing cliffs to wave attack. The resulting erosional hotspots typically were located in the embayments of giant cusps in the southern end of the pocket beaches. The observed magnitude of sea cliff retreat, which reached 14 m, varied with the number of hours that extreme wave runup exceeded certain thresholds representing the protective capacity of the beach during the El Nin??o winter. A threshold representing the width of the beach performed better than a threshold representing the elevation of the beach. The magnitude of cliff erosion can be scaled using a simple model based on the cross-shore distance that extreme wave runup exceeded the pre-winter cliff position. Cliff erosion appears to be a balance between terrestrial mass wasting processes, which tend to decrease the cliff slope, and wave attack, which removes debris and erodes the cliff base increasing the cliff slope. ?? 2002 Elsevier Science B.V. All rights reserved.

  6. Modifying Erosion Control Structures for Ecological Benefits

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Edge-of-field water control structures known as drop pipes are widely employed to control gully erosion, particularly along incised streams. Previous research showed that incidental habitats created by installation of these structures supplemented stream corridors by supporting large numbers of inv...

  7. Factors controlling storm impacts on coastal barriers and beaches - A preliminary basis for near real-time forecasting

    USGS Publications Warehouse

    Morton, R.A.

    2002-01-01

    Analysis of ground conditions and meteorological and oceanographic parameters for some of the most severe Atlantic and Gulf Coast storms in the U.S. reveals the primary factors affecting morphological storm responses of beaches and barrier islands. The principal controlling factors are storm characteristics, geographic position relative to storm path, timing of storm events, duration of wave exposure, wind stress, degree of flow confinement, antecedent topography and geologic framework, sediment textures, vegetative cover, and type and density of coastal development. A classification of commonly observed storm responses demonstrates the sequential interrelations among (1) land elevations, (2) water elevations in the ocean and adjacent lagoon (if present), and (3) stages of rising water during the storm. The predictable coastal responses, in relative order from high frequency beach erosion to low frequency barrier inundation, include: beach erosion, berm migration, dune erosion, washover terrace construction, perched fan deposition, sheetwash, washover channel incision, washout formation, and forced and unforced ebb flow. Near real-time forecasting of expected storm impacts is possible if the following information is available for the coast: a detailed morphological and topographic characterization, accurate storm-surge and wave-runup models, the real-time reporting of storm parameters, accurate forecasts of the storm position relative to a particular coastal segment, and a conceptual model of geological processes that encompasses observed morphological changes caused by extreme storms.

  8. Beach Volume Change Using Uav Photogrammetry Songjung Beach, Korea

    NASA Astrophysics Data System (ADS)

    Yoo, C. I.; Oh, T. S.

    2016-06-01

    Natural beach is controlled by many factors related to wave and tidal forces, wind, sediment, and initial topography. For this reason, if numerous topographic data of beach is accurately collected, coastal erosion/acceleration is able to be assessed and clarified. Generally, however, many studies on coastal erosion have limitation to analyse the whole beach, carried out of partial area as like shoreline (horizontal 2D) and beach profile (vertical 2D) on account of limitation of numerical simulation. This is an important application for prevention of coastal erosion, and UAV photogrammetry is also used to 3D topographic data. This paper analyses the use of unmanned aerial vehicles (UAV) to 3D map and beach volume change. UAV (Quadcopter) equipped with a non-metric camera was used to acquire images in Songjung beach which is located south-east Korea peninsula. The dynamics of beach topography, its geometric properties and estimates of eroded and deposited sand volumes were determined by combining elevation data with quarterly RTK-VRS measurements. To explore the new possibilities for assessment of coastal change we have developed a methodology for 3D analysis of coastal topography evolution based on existing high resolution elevation data combined with low coast, UAV and on-ground RTK-VRS surveys. DSMs were obtained by stereo-matching using Agisoft Photoscan. Using GCPs the vertical accuracy of the DSMs was found to be 10 cm or better. The resulting datasets were integrated in a local coordinates and the method proved to be a very useful fool for the detection of areas where coastal erosion occurs and for the quantification of beach change. The value of such analysis is illustrated by applications to coastal of South Korea sites that face significant management challenges.

  9. Principles of Wind Erosion and its Control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nearly sixty years after the Dust Bowl ended, wind erosion continues to threaten the sustainability of our nations' natural resources. This publication presents a review of the current state of wind erosion science by describing the problem of wind erosion, the physical basis of wind erosion proces...

  10. 7 CFR 3201.68 - Erosion control materials.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 15 2012-01-01 2012-01-01 false Erosion control materials. 3201.68 Section 3201.68... Designated Items § 3201.68 Erosion control materials. (a) Definition. Woven or non-woven fiber materials manufactured for use on construction, demolition, or other sites to prevent wind or water erosion of...

  11. 7 CFR 3201.68 - Erosion control materials.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false Erosion control materials. 3201.68 Section 3201.68... Designated Items § 3201.68 Erosion control materials. (a) Definition. Woven or non-woven fiber materials manufactured for use on construction, demolition, or other sites to prevent wind or water erosion of...

  12. 7 CFR 3201.68 - Erosion control materials.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Erosion control materials. 3201.68 Section 3201.68... Designated Items § 3201.68 Erosion control materials. (a) Definition. Woven or non-woven fiber materials manufactured for use on construction, demolition, or other sites to prevent wind or water erosion of...

  13. Virginia Erosion and Sediment Control Handbook. Standards, Criteria and Guidelines.

    ERIC Educational Resources Information Center

    Virginia State Soil and Water Conservation Commission, Richmond, VA.

    Guidelines and technical standards for development of local erosion and sediment control programs and conservation standards to meet the goals established by the Virginia Erosion and Sediment Control law are presented in this handbook. Part I defines natural and manmade erosion, sedimentation, and the hazards of uncontrolled wear and damage to the…

  14. 75 FR 20826 - Notice of Intent To Prepare a Draft Environmental Impact Statement on Beach and Dune Restoration...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-21

    ... Erosion Control District (County) to construct a beach nourishment and dune restoration project along St... this area has experienced long-term erosion due to waves and intense tropical storms. b. Background:...

  15. Regularity and predictability of Holocene beach-ridge building and erosion

    SciTech Connect

    Fairbridge, R.W.

    1985-01-01

    The history of the behavior of the world sea level during the Holocene Epoch, independent of glacioisostatic, hydroisostatic, neotectonic and compactional processes, is of considerable contemporary interest: both from scientific and humanitarian (political) points of view. If a rapid rise is imminent, plans and preparations are in order. If a long-term record of fluctuating sea level is demonstrable, ways must be discovered to discriminate between natural and anthropogenically activated components in modern tide-gauge data. In sites of abundant sand and gravel supply, beach ridges have been building prograded coastal plains for the last 6000 year or more. These exceptional landforms are found from high latitudes (Alaska, Baffin Island, Hudson Bay), to the subtropics (Mexico, Western Australia) and to the equatorial belt (Brazil, West Africa, Bay of Bengal, Java Sea). The ridges number up to 100 or more, displaying remarkable uniformity in elevation and separation, to suggest regular hydrodynamic cyclicity triggered by variable storminess and wave incidence, current gyre velocity, eustatic change of MSL, and geoidal effect due to changing spin rate of the globe. Radiocarbon dating suggests cycles related to both lunar tidal periods (18.6, 558 yr) and solar radiation/planetary periods (11, 22, 45, 90, 180, 360 yr). Interdisciplinary studies should facilitate predictability. Recent spectral analyses of sea level and climate proxies demonstrate critical phase relationships, especially with respect to the lunar 18.6 year and solar 11/22 year periodicities.

  16. Erosion and deposition on a beach raised by the 1964 earthquake, Montague Island, Alaska: Chapter H in The Alaska earthquake, March 27, 1964: regional effects

    USGS Publications Warehouse

    Kirkby, M.J.; Kirkby, Anne V.

    1969-01-01

    During the 1964 Alaska earthquake, tectonic deformation uplifted the southern end of Montague Island as much as 33 feet or more. The uplifted shoreline is rapidly being modified by subaerial and marine processes. The new raised beach is formed in bedrock, sand, gravel, and deltaic bay-head deposits, and the effect of each erosional process was measured in each material. Fieldwork was concentrated in two areas—MacLeod Harbor on the northwest side and Patton Bay on the southeast side of Montague Island. In the unconsolidated deltaic deposits of MacLeod Harbor, 97 percent of the erosion up to June 1965, 15 months after the earthquake, was fluvial, 2.2 percent was by rainwash, and only 0.8 percent was marine; 52 percent of the total available raised beach material had already been removed. The volume removed by stream erosion was proportional to low-flow discharge raised to the power of 0.75 to 0.95, and this volume increased as the bed material became finer. Stream response to the relative fall in base level was very rapid, most of the downcutting in unconsolidated materials occurring within 48 hours of the uplift for streams with low flows greater than 10 cubic feet per second. Since then, erosion by these streams has been predominantly lateral. Streams with lower discharges, in unconsolidated materials, still had knickpoints after 15 months. No response to uplift could be detected in stream courses above the former preearthquake sea level. Where the raised beach is in bedrock, it is being destroyed principally by marine action but at such a low rate that no appreciable erosion of bedrock was found 15 months after the earthquake. A dated rock platform raised earlier has eroded at a mean rate of 0.49 foot per year. In this area the factor limiting the rate of erosion was rock resistance rather than the transporting capacity of the waves. The break in slope between the top of the raised beach and the former seacliff is being obliterated by debris which is

  17. Targeting Erosion Control: Adoption of Erosion Control Practices. A Report from a National Research Project.

    ERIC Educational Resources Information Center

    West, Peter; And Others

    Research analyzed adoption of erosion control practices by farm operators in two counties in each of four states: Alabama, Missouri, Tennessee, and Washington. Analysis was based on farm survey data and technical and financial assistance information from county Soil Conservation Service (SCS) and Agricultural Stabilization and Conservation Service…

  18. Controlling erosion in the Missouri River Basin

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2012-09-01

    The most pervasive conservation concern in the vast 510,000 square mile Missouri River basin in the western United States is excessive rates of wind erosion during dry periods, though conservation efforts can help control erosion, according to a 30 August report by the U.S. Department of Agriculture's (USDA) Conservation Effects Assessment Project. During some dry years, rates of wind erosion—which include nitrogen and phosphorus losses—can be higher than 4 tons per acre on 12% and higher than 2 tons per acre on 20% of the approximately 148,000 square miles of cultivated cropland, notes the report Assessment of the Effects of Conservation Practices on Cultivated Cropland in the Missouri River Basin. Between 2003 and 2006, conservation practices, including reducing tillage and building terraces, yielded about a 75% reduction in sediment runoff and phosphorus loss and a 68% reduction in nitrogen loss, according to the report. About 15 million acres in the region—18% of cultivated cropland—are considered to have either a high or moderate level of need for conservation treatment, and efforts in those areas in particular could result in additional reductions in sediment, phosphorus, and nitrogen loss, the report states.

  19. Robotic weld overlay coatings for erosion control

    NASA Astrophysics Data System (ADS)

    Levin, B. F.; Dupont, J. N.; Marder, A. R.

    1994-01-01

    Research is being conducted to develop criteria for selecting weld overlay coatings for erosion mitigation in circulated fluidized beds. Twelve weld overlay alloys were deposited on 1018 steel substrates using plasma arc welding. Ten samples from each coating were prepared for erosion testing. All selected coatings were erosion tested at 400C and their erosion resistance and microstructure evaluated. Steady state erosion rates were similar for several weld overlay coatings (Ultimet, Inconel-625, Iron-Aluminide, 316L SS, and High Chromium Cast Iron) and were considerably lower than the remaining coating evaluated. These coatings had different base (Co, Fe, Ni-base). No correlations were found between room temperature microhardness of the weld overlay coatings and their erosion resistance at elevated temperature, although this criteria is often thought to be an indicator of erosion resistance. It was suggested that the coatings that showed similar erosion rates may have similar mechanical properties such as fracture strength, toughness and work hardening rates at this temperature. During the past quarter, Iron-Aluminide, Inconel-625, and 316L SS coatings were selected for more detailed investigations based upon the preliminary erosion test results. Microhardness tests were performed on eroded samples to determine the size of the work hardened zone and change in coatings hardness due to erosion. The work hardened zone was correlated with erosion resistance of the coatings. Additional Iron-Aluminide, Inconel-625, and 316L SS coatings were deposited on 1018 steel substrates.

  20. Beach profile variation on Hawaiian carbonate beaches

    USGS Publications Warehouse

    Gibbs, A.E.; Richmond, B.M.; Fletcher, C.H.

    2000-01-01

    Beach profiles from selected Oahu and Maui beaches quantitatively document beach volume variation and change between 1994 and 1999. Along exposed, high-energy beaches, large fluctuations in beach volume, characterized primarily by the formation and erosion of extensive berms, dominate the seasonal changes. Beaches along more protected stretches of coastline show much less variation in profile morphology. Beaches on the west (leeward) coast of Oahu experienced the most seasonal variation in profile volume, followed by the north shore, east (windward) shore, and south shore. Similar to Oahu, beaches along the west coast of Maui showed the greatest overall profile variation. However, the mean variation for profiles along a single coastal reach showed little difference compared to other coastal segments. Although some beaches showed net gain or loss during the study period, most beaches remained relatively stable with change limited to a finite envelope. No island-wide trends in beach erosion or accretion were observed during the study period. However, no extreme events, such as tropical storms or hurricanes, directly influenced the Hawaiian Islands during the study period. This data set should therefore be considered as representative of typical annual beach activity. Greater variation and possible long-term change would be expected during extreme events.

  1. Impact of the winter 2013-2014 series of severe Western Europe storms on a double-barred sandy coast: Beach and dune erosion and megacusp embayments

    NASA Astrophysics Data System (ADS)

    Castelle, Bruno; Marieu, Vincent; Bujan, Stéphane; Splinter, Kristen D.; Robinet, Arhur; Sénéchal, Nadia; Ferreira, Sophie

    2015-06-01

    The winter of 2013/2014 was characterized by a striking pattern of temporal and spatial extreme storm wave clustering in Western Europe. The 110-km long Gironde coast, SW France, was exposed to the most energetic wave conditions over the last 18 years. The period was outstanding in terms of the available energy to move sediment and cause large-scale erosion with the 2-month average significant wave height (Hs) exceeding 3.6 m, just below the 0.95 quantile, and 4 distinct 10-year return period storms with Hs > 9 m. These storm waves caused unprecedented beach and dune erosion along the Gironde coast, including severely damaged sea defences at the coastal towns. At the end of the winter, dune erosion scarp height was highly variable alongshore and often exceeded 10 m. Megacusp embayments were observed along the Gironde coast with an average alongshore spacing of 1000 m in the south progressively decreasing to 500 m in the north, with an average cross-shore amplitude of 20 m. While beach megacusps were previously observed to systematically couple to the inner bar along the Gironde coast during low- to moderate-energy wave conditions, severe storm-driven megacusp embayments cutting the dune were found to be enforced and coupled to the outer crescentic bar. A detailed inspection of the 1500 m-long bimonthly topographic surveys of Truc Vert beach shows that in early January 2014 the outstanding shore-normal incident storm swell 'Hercules', with Hs and peak wave period Tp peaking at 9.6 m and 22 s, respectively, triggered the formation of a localized megacusp embayment with the erosion scarp height exceeding 6 m in its centre where the dune retreat reached 30 m. The subsequent storms progressively smoothed the megacusp by the end of the winter, mostly through severe erosion of the megacusp horns. Because of the very long period (16 s < Tp < 23 s) storm waves with persistent shore-normal incidence, the well-developed outer crescentic bar observed prior to the winter did

  2. Robotic weld overlay coatings for erosion control

    SciTech Connect

    Not Available

    1994-11-01

    The erosion of materials by the impact of solid particles has received increasing attention during the past twenty years. Recently, research has been initiated with the event of advanced coal conversion processes in which erosion plays an important role. The resulting damage, termed Solid Particle Erosion (SPE), is of concern primarily because of the significantly increased operating costs which result in material failures. Reduced power plant efficiency due to solid particle erosion of boiler tubes and waterfalls has led to various methods to combat SPE. One method is to apply coatings to the components subjected to erosive environments. Protective weld overlay coatings are particularly advantageous in terms of coating quality. The weld overlay coatings are essentially immune to spallation due to a strong metallurgical bond with the substrate material. By using powder mixtures, multiple alloys can be mixed in order to achieve the best performance in an erosive environment. However, a review of the literature revealed a lack of information on weld overlay coating performance in erosive environments which makes the selection of weld overlay alloys a difficult task. The objective of this project is to determine the effects of weld overlay coating composition and microstructure on erosion resistance. These results will lead to a better understanding of erosion mitigation in CFB`s.

  3. Robotic weld overlay coatings for erosion control

    NASA Astrophysics Data System (ADS)

    The erosion of materials by the impact of solid particles has received increasing attention during the past twenty years. Recently, research has been initiated with the event of advanced coal conversion processes in which erosion plays an important role. The resulting damage, termed Solid Particle Erosion (SPE), is of concern primarily because of the significantly increased operating costs which result in material failures. Reduced power plant efficiency due to solid particle erosion of boiler tubes and waterfalls has led to various methods to combat SPE. One method is to apply coatings to the components subjected to erosive environments. Protective weld overlay coatings are particularly advantageous in terms of coating quality. The weld overlay coatings are essentially immune to spallation due to a strong metallurgical bond with the substrate material. By using powder mixtures, multiple alloys can be mixed in order to achieve the best performance in an erosive environment. However, a review of the literature revealed a lack of information on weld overlay coating performance in erosive environments which makes the selection of weld overlay alloys a difficult task. The objective of this project is to determine the effects of weld overlay coating composition and microstructure on erosion resistance. These results will lead to a better understanding of erosion mitigation in CFB's.

  4. Erosion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Erosion is the detachment of soil particles and transportation to another location. Wind erosion occurs when wind speed exceeds a critical threshold level, and loose soil particles or soil particles removed by abrasion then move in one of three ways: creep, saltation, and suspension. Erosion by wate...

  5. Evaluation of soil factors controlling gully erosion

    NASA Astrophysics Data System (ADS)

    Ollobarren, Paul; Giménez, Rafael; Ángel Campo, Miguel; Casalí, Javier

    2015-04-01

    Current models for prediction of (ephemeral) gully erosion rely mainly on topographic factors while soil conditions are almost neglected. However, soil erodibility is essential for analyzing and properly modeling gully erosion. But, despite the wealth of studies to characterize soil vulnerability to gully erosion, a universal approach is still lacking. Moreover, a useful and feasible soil characterization for gully erosion prediction at large scale should be based on simple, quick, repeatable and relatively inexpensive tests to perform. In this work an experimental approach to quantify soil contribution on gully erosion is proposed. From simple methodologies and techniques found in the literature for assessing physical-chemical properties of the soil, a large pool of variables -that presumably underpin gully erosion- were defined. These methodologies includes the use of vane shear apparatus, penetrometers and a mini-rain simulator as well as some current (modified) laboratory tests for assessing soil crustability and erodibility. Thirteen ephemeral gullies developed under different soil condition in agricultural fields of Navarre (Spain) were selected for experiments. Then, the aforementioned variables were calculated for each of the gullies through field and lab experiments. Furthermore, the most relevant variables were detected by means of multivariate analysis and their contribution to gully erosion was finally quantified by using multiple regression analysis. In addition, gully erosion rates of typical agricultural fields are given.

  6. Weld overlay coatings for erosion control

    SciTech Connect

    Levin, B.; DuPont, J.N.; Marder, A.R.

    1993-03-03

    A literature review was made. In spite of similarities between abrasive wear and solid particle erosion, weld overlay hardfacing alloys that exhibit high abrasion resistance may not necessarily have good erosion resistance. The performance of weld overlay hardfacing alloys in erosive environments has not been studied in detail. It is believed that primary-solidified hard phases such as carbides and intermetallic compounds have a strong influence on erosion resistance of weld overlay hardfacing alloys. However, relationships between size, shape, and volume fraction of hard phases in a hardfacing alloys and erosion resistance were not established. Almost all hardfacing alloys can be separated into two major groups based upon chemical compositions of the primary solidified hard phases: (a) carbide hardening alloys (Co-base/carbide, WC-Co and some Fe base superalloys); and (b) intermetallic hardening alloys (Ni-base alloys, austenitic steels, iron-aluminides).

  7. Can control of soil erosion mitigate water pollution by sediments?

    PubMed

    Rickson, R J

    2014-01-15

    The detrimental impact of sediment and associated pollutants on water quality is widely acknowledged, with many watercourses in the UK failing to meet the standard of 'good ecological status'. Catchment sediment budgets show that hill slope erosion processes can be significant sources of waterborne sediment, with rates of erosion likely to increase given predicted future weather patterns. However, linking on-site erosion rates with off-site impacts is complicated because of the limited data on soil erosion rates in the UK and the dynamic nature of the source-pathway-receptor continuum over space and time. Even so, soil erosion control measures are designed to reduce sediment production (source) and mobilisation/transport (pathway) on hill slopes, with consequent mitigation of pollution incidents in watercourses (receptors). The purpose of this paper is to review the scientific evidence of the effectiveness of erosion control measures used in the UK to reduce sediment loads of hill slope origin in watercourses. Although over 73 soil erosion mitigation measures have been identified from the literature, empirical data on erosion control effectiveness are limited. Baseline comparisons for the 18 measures where data do exist reveal erosion control effectiveness is highly variable over time and between study locations. Given the limitations of the evidence base in terms of geographical coverage and duration of monitoring, performance of the different measures cannot be extrapolated to other areas. This uncertainty in effectiveness has implications for implementing erosion/sediment risk reduction policies, where quantified targets are stipulated, as is the case in the EU Freshwater Fish and draft Soil Framework Directives. Also, demonstrating technical effectiveness of erosion control measures alone will not encourage uptake by land managers: quantifying the costs and benefits of adopting erosion mitigation is equally important, but these are uncertain and difficult to

  8. Erosion by water and sediment control: Amendment techniques

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil erosion by water and wind are worldwide problems and serious threats to profitability and sustainability of agriculture. Soil amendments are effective means for controlling soil erosion and improving crop production. Soil amendments are materials added to soil to improve chemical, physical, a...

  9. Can we manipulate root system architecture to control soil erosion?

    NASA Astrophysics Data System (ADS)

    Ola, A.; Dodd, I. C.; Quinton, J. N.

    2015-09-01

    Soil erosion is a major threat to soil functioning. The use of vegetation to control erosion has long been a topic for research. Much of this research has focused on the above-ground properties of plants, demonstrating the important role that canopy structure and cover plays in the reduction of water erosion processes. Less attention has been paid to plant roots. Plant roots are a crucial yet under-researched factor for reducing water erosion through their ability to alter soil properties, such as aggregate stability, hydraulic function and shear strength. However, there have been few attempts to specifically manipulate plant root system properties to reduce soil erosion. Therefore, this review aims to explore the effects that plant roots have on soil erosion and hydrological processes, and how plant root architecture might be manipulated to enhance its erosion control properties. We demonstrate the importance of root system architecture for the control of soil erosion. We also show that some plant species respond to nutrient-enriched patches by increasing lateral root proliferation. The erosional response to root proliferation will depend upon its location: at the soil surface dense mats of roots may reduce soil erodibility but block soil pores thereby limiting infiltration, enhancing runoff. Additionally, in nutrient-deprived regions, root hair development may be stimulated and larger amounts of root exudates released, thereby improving aggregate stability and decreasing erodibility. Utilizing nutrient placement at specific depths may represent a potentially new, easily implemented, management strategy on nutrient-poor agricultural land or constructed slopes to control erosion, and further research in this area is needed.

  10. Controlling template erosion with advanced cleaning methods

    NASA Astrophysics Data System (ADS)

    Singh, SherJang; Yu, Zhaoning; Wähler, Tobias; Kurataka, Nobuo; Gauzner, Gene; Wang, Hongying; Yang, Henry; Hsu, Yautzong; Lee, Kim; Kuo, David; Dress, Peter

    2012-03-01

    We studied the erosion and feature stability of fused silica patterns under different template cleaning conditions. The conventional SPM cleaning is compared with an advanced non-acid process. Spectroscopic ellipsometry optical critical dimension (SE-OCD) measurements were used to characterize the changes in pattern profile with good sensitivity. This study confirmed the erosion of the silica patterns in the traditional acid-based SPM cleaning mixture (H2SO4+H2O2) at a rate of ~0.1nm per cleaning cycle. The advanced non-acid clean process however only showed CD shift of ~0.01nm per clean. Contamination removal & pattern integrity of sensitive 20nm features under MegaSonic assisted cleaning is also demonstrated.

  11. Environmental stochasticity controls soil erosion variability

    NASA Astrophysics Data System (ADS)

    Kim, Jongho; Ivanov, Valeriy Y.; Fatichi, Simone

    2016-03-01

    Understanding soil erosion by water is essential for a range of research areas but the predictive skill of prognostic models has been repeatedly questioned because of scale limitations of empirical data and the high variability of soil loss across space and time scales. Improved understanding of the underlying processes and their interactions are needed to infer scaling properties of soil loss and better inform predictive methods. This study uses data from multiple environments to highlight temporal-scale dependency of soil loss: erosion variability decreases at larger scales but the reduction rate varies with environment. The reduction of variability of the geomorphic response is attributed to a ‘compensation effect’: temporal alternation of events that exhibit either source-limited or transport-limited regimes. The rate of reduction is related to environment stochasticity and a novel index is derived to reflect the level of variability of intra- and inter-event hydrometeorologic conditions. A higher stochasticity index implies a larger reduction of soil loss variability (enhanced predictability at the aggregated temporal scales) with respect to the mean hydrologic forcing, offering a promising indicator for estimating the degree of uncertainty of erosion assessments.

  12. Environmental stochasticity controls soil erosion variability

    PubMed Central

    Kim, Jongho; Ivanov, Valeriy Y.; Fatichi, Simone

    2016-01-01

    Understanding soil erosion by water is essential for a range of research areas but the predictive skill of prognostic models has been repeatedly questioned because of scale limitations of empirical data and the high variability of soil loss across space and time scales. Improved understanding of the underlying processes and their interactions are needed to infer scaling properties of soil loss and better inform predictive methods. This study uses data from multiple environments to highlight temporal-scale dependency of soil loss: erosion variability decreases at larger scales but the reduction rate varies with environment. The reduction of variability of the geomorphic response is attributed to a ‘compensation effect’: temporal alternation of events that exhibit either source-limited or transport-limited regimes. The rate of reduction is related to environment stochasticity and a novel index is derived to reflect the level of variability of intra- and inter-event hydrometeorologic conditions. A higher stochasticity index implies a larger reduction of soil loss variability (enhanced predictability at the aggregated temporal scales) with respect to the mean hydrologic forcing, offering a promising indicator for estimating the degree of uncertainty of erosion assessments. PMID:26925542

  13. Environmental stochasticity controls soil erosion variability.

    PubMed

    Kim, Jongho; Ivanov, Valeriy Y; Fatichi, Simone

    2016-01-01

    Understanding soil erosion by water is essential for a range of research areas but the predictive skill of prognostic models has been repeatedly questioned because of scale limitations of empirical data and the high variability of soil loss across space and time scales. Improved understanding of the underlying processes and their interactions are needed to infer scaling properties of soil loss and better inform predictive methods. This study uses data from multiple environments to highlight temporal-scale dependency of soil loss: erosion variability decreases at larger scales but the reduction rate varies with environment. The reduction of variability of the geomorphic response is attributed to a 'compensation effect': temporal alternation of events that exhibit either source-limited or transport-limited regimes. The rate of reduction is related to environment stochasticity and a novel index is derived to reflect the level of variability of intra- and inter-event hydrometeorologic conditions. A higher stochasticity index implies a larger reduction of soil loss variability (enhanced predictability at the aggregated temporal scales) with respect to the mean hydrologic forcing, offering a promising indicator for estimating the degree of uncertainty of erosion assessments. PMID:26925542

  14. Geophysical Assessment of the Control of a Jetty on a Barrier Beach and Estuary System

    NASA Astrophysics Data System (ADS)

    Ulrich, C.; Hubbard, S.; Delaney, C.; Seymour, D.; Blom, K.; Black, W.

    2013-12-01

    An evaluation is underway at the Goat Rock State Beach, which is located at the mouth of the Russian River near Jenner, CA. The study focuses on quantifying the influence of a man made jetty on the functioning of a barrier beach and associated implications for estuary fish habitat and flood control. Flow through the beach results from water level differences between the estuary and the ocean. When the estuary is closed or perched, one of the potential major sources of outflow from the lagoon is seepage flow through the barrier beach. The location and design of the jetty could be altering subsurface flow paths through the jetty and possibly impeding or enhancing subsurface flow where the jetty is still intact. This will result in unnatural connectivity between the ocean and the estuary leading to atypical surface water elevations and possibly salinity imbalance. Results of the assessment will enable the Sonoma County Water Agency to understand how the jetty affects formation of the barrier beach and water surface elevations within the estuary. As one aspect of the evaluation, we are using geophysical methods to monitor seepage through the jetty as well as through the beach berm. We are using multiple surface geophysical methods, including: electrical resistivity, seismic refraction, ground penetrating radar, and electromagnetic methods. In general, seismic data are being used to characterize deeper bedrock controls on beach barrier functioning such as, channeling of estuarine water beneath the barrier beach. Electrical and electromagnetic methods are being used to characterize the beach sediment layers that could contribute to preferential flow paths during tide cycles in addition to preferential flow paths created by the jetty structure. Time-lapse electrical and electromagnetic data are being used to monitor moisture changes and mixing of saline and fresh water within the beach berm. Ground penetrating radar data are being used to delineate the geometry of the

  15. Effects of beach replenishment on intertidal invertebrates: A 15-month, eight beach study.

    NASA Astrophysics Data System (ADS)

    Wooldridge, Tyler; Henter, Heather J.; Kohn, Joshua R.

    2016-06-01

    Beach replenishment is an increasingly popular means to remediate coastal erosion, but no consensus exists regarding how long replenishment affects sandy beach intertidal invertebrates, key components of beach ecosystems. We monitored the intertidal invertebrate community for fifteen months following a replenishment project at eight beaches, each with replenished and control sections, across San Diego County. Nearly all taxa showed major declines in abundance immediately following replenishment. Populations of talitrid amphipods and the bean clam Donax gouldii recovered within one year, sooner than in previous studies. On some beaches, populations of the mole crab Emerita analoga bloomed four months after replenishment and were more numerous on replenished portions of beaches at that time. Mole crab populations subsequently declined and no longer differed by treatment. The polychaete community, composed of Scolelepis sp. and several other numerically important taxa, showed a strong replenishment-induced reduction in abundance that persisted through the end of the study. The large negative effect of replenishment on polychaetes, coupled with their overall importance to the invertebrate community, resulted in a more than twofold reduction in overall invertebrate abundance on replenished beaches at 15 months. Such reductions may have far reaching consequences for sandy beach ecosystems, as community declines can reduce prey availability for shorebirds and fish. As this and other recent studies have revealed longer times for the recovery of intertidal invertebrates than previously observed, longer study periods and more cautious estimates regarding the magnitude, variability, and duration of impacts of beach replenishment for management decision-making are warranted.

  16. Field observation of morpho-dynamic processes during storms at a Pacific beach, Japan: Role of long-period waves in storm-induced berm erosion

    PubMed Central

    MIZUGUCHI, Masaru; SEKI, Katsumi

    2015-01-01

    Many ultrasonic wave gages were placed with a small spacing across the swash zone to monitor either sand level or water level. Continuous monitoring conducted for a few years enabled the collection of data on the change in wave properties as well as swash-zone profiles. Data sets including two cases of large-scale berm erosion were analyzed. The results showed that 1) shoreline erosion started when high waves with significant power in long-period (1 to 2 min.) waves reached the top of a well-developed berm with the help of rising tide; 2) the beach in the swash zone was eroded with higher elevation being more depressed, while the bottom elevation just outside the swash zone remained almost unchanged; and 3) erosion stopped in a few hours after the berm was completely eroded or the swash-zone slope became uniformly mild. These findings strongly suggest that long waves play a dominant role in the swash-zone dynamics associated with these erosional events. PMID:25748583

  17. Morphodynamics of Prograding Beaches

    NASA Astrophysics Data System (ADS)

    Ruggiero, P.

    2012-12-01

    Long-term coastal evolution often results from the cumulative effects of small residual differences between relatively large signals. In light of dire projections of sea level rise over the next several decades to century, there is a strong societal need for accurate forecasts of net interannual- to decadal-scale coastal change. However, our present understanding of the processes responsible for storm-induced erosion and coastal recession is significantly more advanced than our knowledge of coastal recovery during calm periods. To investigate the processes and morphodynamics associated with progading beaches we synthesize findings from a long-term (15 years) beach morphology monitoring program in the U.S. Pacific Northwest. Most of the beaches along the Columbia River littoral cell (northwest Oregon and southwest Washington) were eroded during the two intense winters of 1997/1998 (a major El Niño event) and 1998/1999 (a moderate La Niña event). Subsequent to these winters the beaches have exhibited net residual progradation of several meters per year resulting in significant shoreline advance. During this same period as many as two to three new foredunes formed with backshore beach profiles accumulating sand at rates of well over 10 m3/m/yr. Interestingly, these large signals of horizontal and vertical coastal advance have occurred on beaches in which nearshore morphological variability is dominated by net offshore sandbar migration. Net offshore sandbar migration follows a three-stage process; bar generation near the shoreline, seaward migration, and bar degeneration in the outer nearshore with a cyclic return period of approximately 4 to 5 years in the region. Gradients in alongshore sediment transport, net onshore directed cross-shore sediment transport within the surf zone, and cross-shore feeding from a shoreface out of equilibrium with forcing conditions may each be partially responsible for the sediment supplied to the beaches and dunes during the study

  18. Geophysical Assessment of the Control of a Jetty on a Barrier Beach and Estuary System

    NASA Astrophysics Data System (ADS)

    Ulrich, C.; Hubbard, S. S.; Peterson, J.; Blom, K.; Black, W.; Delaney, C.; Mendoza, J.

    2014-12-01

    An evaluation is underway at the Goat Rock State Park, located at the mouth of the Russian River near Jenner, CA, to quantify the influence of a man made jetty on the functioning of a barrier beach and associated implications for estuary fish habitat and flood control. Flow through the beach results from water level differences between the estuary and the ocean. When the estuary is closed or perched, one of the major sources of outflow from the lagoon is seepage flow through the barrier beach. The location and design of the jetty could be altering subsurface flow paths through the jetty and possibly impeding subsurface flow where the jetty is still intact. This will result in unnatural connectivity between the ocean and the estuary leading to atypical surface water elevations and possibly salinity imbalance. We are monitoring seepage through the jetty and beach berm with multiple surface and borehole geophysical methods, including: electrical resistivity (ERT), seismic refraction (SR), ground penetrating radar (GPR), and electromagnetic methods (EM). We use SR data to characterize deeper bedrock controls on beach barrier functioning; ERT and EM methods to characterize the beach sediment layers that could contribute to preferential flow paths during tide cycles in addition to preferential flow paths created by the jetty structure; time-lapse ERT and EM data to monitor moisture changes and mixing of saline and fresh water within the beach berm, and borehole ERT and GPR data to delineate the geometry of the (often buried) jetty. Preliminary ERT and EM results indicate two preferential flow paths through zones of missing jetty structure, while time-lapse borehole ERT data is expected to image saltwater flow impedance in zones of intact jetty structure. All data are being integrated with topography, tidal, borehole, and hydrological information and the results of the assessment will enable the Sonoma County Water Agency to develop the feasibility of alternatives to the

  19. Soil erosion assessment and control in Northeast Wollega, Ethiopia

    NASA Astrophysics Data System (ADS)

    Adugna, A.; Abegaz, A.; Cerdà, A.

    2015-12-01

    Soil erosion is the main driver of land degradation in Ethiopia, and in the whole region of East Africa. This study was conducted at the Northeast Wollega in West Ethiopia to estimate the soil losses by means of the Revised Universal Soil Loss Equation (RUSLE). The purpose of this paper is to identify erosion spot areas and target locations for appropriate development of soil and water conservation measures. Fieldwork and household survey were conducted to identify major determinants of soil erosion control. Six principal factors were used to calculate soil loss per year, such as rainfallerosivity, soil erodiblity, slope length, slope steepness, crop management and erosion-control practices. The soil losses have shown spatio-temporal variations that range from 4.5 Mg ha-1 yr-1 in forest to 65.9 Mg ha-1 yr-1 in cropland. Results from the analysis of stepwise multiple linear regression show that sustainable soil erosion control are determined byknowledge of farmers about soil conservation, land tenure security and off-farm income at community level. Thus, policy aim at keeping land productivity will need to focus on terracing, inter-cropping and improved agro-forestry practices.

  20. Plastics and beaches: a degrading relationship.

    PubMed

    Corcoran, Patricia L; Biesinger, Mark C; Grifi, Meriem

    2009-01-01

    Plastic debris in Earth's oceans presents a serious environmental issue because breakdown by chemical weathering and mechanical erosion is minimal at sea. Following deposition on beaches, plastic materials are exposed to UV radiation and physical processes controlled by wind, current, wave and tide action. Plastic particles from Kauai's beaches were sampled to determine relationships between composition, surface textures, and plastics degradation. SEM images indicated that beach plastics feature both mechanically eroded and chemically weathered surface textures. Granular oxidation textures were concentrated along mechanically weakened fractures and along the margins of the more rounded plastic particles. Particles with oxidation textures also produced the most intense peaks in the lower wavenumber region of FTIR spectra. The textural results suggest that plastic debris is particularly conducive to both chemical and mechanical breakdown in beach environments, which cannot be said for plastics in other natural settings on Earth. PMID:18834997

  1. CO₂ laser emission modes to control enamel erosion.

    PubMed

    Scatolin, Renata Siqueira; Alonso-Filho, Fernando Luiz; Galo, Rodrigo; Rios, Daniela; Borsatto, Maria Cristina; Corona, Silmara Aparecida Milori

    2015-08-01

    Considering the importance and prevalence of dental erosion, the aim of this in vitro study was to evaluate the influence of different modes of pulse emission of CO2 laser associated or not to acidulated phosphate fluoride (APF) 1.23% gel, in controlling enamel erosion by profilometry. Ninety-six fragments of bovine enamel were flattened and polished, and the specimens were subjected to initial erosive challenge with hydrochloric acid (pH = 2). Specimens were randomly assigned according to surface treatment: APF 1.23% gel and gel without fluoride (control), and subdivided according to the modes of pulse CO2 laser irradiation: no irradiation (control), continuous, ultrapulse, and repeated pulse (n = 12). After surface treatment, further erosive challenges were performed for 5 days, 4 × 2 min/day. Enamel structure loss was quantitatively determined by a profilometer, after surface treatment and after 5 days of erosive challenges. Two-away ANOVA revealed a significant difference between the pulse emission mode of the CO2 laser and the presence of fluoride (P ≤ 0.05). The Duncan's test showed that CO2 laser irradiation in continuous mode and the specimens only received fluoride, promoted lower enamel loss than that other treatments. A lower dissolution of the enamel prisms was observed when it was irradiated with CO2 laser in continuous mode compared other groups. It can be concluded that CO2 laser irradiation in continuous mode was the most effective to control the enamel structure loss submitted to erosive challenges with hydrochloric acid. PMID:25988247

  2. Using lake sedimentation rates to quantify the effectiveness of erosion control in watersheds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effectiveness of erosion control methods is difficult to measure, hampering the development of management practices and preventing accurate assessment of the value of erosion control structures over time. Surface erosion can vary widely over an area, particularly if gully erosion is present, an...

  3. Geologic controls of erosion and sedimentation on Mars

    NASA Technical Reports Server (NTRS)

    Tanaka, K. L.; Dohm, J. M.; Carr, M. H.

    1993-01-01

    Because Mars has had a history of diverse erosional and depositional styles, a variety of erosional landforms and sedimentary deposits can be seen on Viking orbiter images. Here we review how geologic processes involving rock, water, and structure have controlled erosion and sedimentation on Mars. Additionally, we review how further studies will help refine our understanding of these processes.

  4. LONG-TERM EVALUATION OF REGIONAL EROSION CONTROL

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Under legislation passed in 1984, three federal agencies constructed more than $300 million worth of channel erosion control measures in 16 watersheds in northern Mississippi between 1985 and 2003. Most work was completed between 1985 and 1995, and was confined to six larger watersheds. Flows of w...

  5. Cover crops for erosion control in bioenergy hardwood plantations

    SciTech Connect

    Malik, R.K.; Green, T.H.; Mays, D.

    1996-12-31

    The use of cover crops between tree rows has been suggested as a means of reducing soil erosion in short-rotation woody crops (SRWC) plantations for bioenergy production. This study is designed to test whether cover crops could reduce erosion without significantly reducing the growth and biomass yield of sweetgum (Liquidambar styraciflua L.) planted as the SRWC at a 1.5 X 3 in spacing. Four cover crops, winter rye grass (Lolium multigeonum L., a winter annual grass); tall fescue (Fescuta eliator L., a winter perennial grass); crimson clover (Trifolium incarnatum L., a winter annual legume); and interstate sericea (Lespedeza ameata L., a growing season perennial legume), are tested at two different strip widths (1.22 and 2.44 m) as well as a control with complete competition control. Small berms were built to direct runoff to a sediment fence installed at the down slope ends of each plot. Soil erosion is measured by sediment accumulation near the fence. Height, ground-line diameter and crown width of trees were measured on a monthly basis. During the first growing season all cover crops reduced growth of trees. There were some significant differences among cover crop regimes. Slight differences in soil erosion were detected during the first growing season. The control plots lost more soil per hectare than cover crops, however, strip widths and cover crops did not show any significant difference.

  6. Erosion control and watershed management by Spacelab photography

    NASA Astrophysics Data System (ADS)

    Koelbl, O.; Depury, P.

    1985-04-01

    The interpretability of false color Spacelab photographs for erosion control and water shed management was assessed using photos taken over Nepal and the Mount Everest Massif. The thematic interpretation was done by a geologist working in this region. Scale limitations, image reproduction, and filtering of the photographs are discussed. Results show that much information can be extracted using relatively simple means. Color infrared photography must be used since panchromatic imagery does not show enough detail.

  7. 48 CFR 452.236-74 - Control of Erosion, Sedimentation, and Pollution.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 4 2012-10-01 2012-10-01 false Control of Erosion....236-74 Control of Erosion, Sedimentation, and Pollution. As prescribed in 436.574, insert the following clause: Control of Erosion, Sedimentation, and Pollution (NOV 1996) (a) Operations shall...

  8. 48 CFR 452.236-74 - Control of Erosion, Sedimentation, and Pollution.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 4 2013-10-01 2013-10-01 false Control of Erosion....236-74 Control of Erosion, Sedimentation, and Pollution. As prescribed in 436.574, insert the following clause: Control of Erosion, Sedimentation, and Pollution (NOV 1996) (a) Operations shall...

  9. 48 CFR 452.236-74 - Control of Erosion, Sedimentation, and Pollution.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 4 2014-10-01 2014-10-01 false Control of Erosion....236-74 Control of Erosion, Sedimentation, and Pollution. As prescribed in 436.574, insert the following clause: Control of Erosion, Sedimentation, and Pollution (NOV 1996) (a) Operations shall...

  10. 48 CFR 452.236-74 - Control of Erosion, Sedimentation, and Pollution.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 4 2011-10-01 2011-10-01 false Control of Erosion....236-74 Control of Erosion, Sedimentation, and Pollution. As prescribed in 436.574, insert the following clause: Control of Erosion, Sedimentation, and Pollution (NOV 1996) (a) Operations shall...

  11. Seasonality controls on glacial erosion in the Himalaya and Karakoram

    NASA Astrophysics Data System (ADS)

    Scherler, D.; Bookhagen, B.; Strecker, M. R.

    2009-04-01

    The waxing and waning of mountain glaciers during the Quaternary left a clear imprint of glacial erosion in form of deeply incised, U-shaped valleys in many mountain ranges around the world. Temperature changes and the availability of moisture are generally thought of as the limiting factors for the geomorphic work that glaciers accomplish. Here, we present evidence that the seasonality of moisture supply strongly affects glacial flow velocities, and thus the erosional efficiency of glaciers. We used ASTER satellite imagery to measure flow velocities of glaciers in the Himalaya and Karakoram during the last decade. Being situated in the transition between moisture sources rooted in the Indian Summer Monsoon and the Northern Hemisphere Westerlies, this region provides a natural laboratory to study the influence of seasonally different moisture sources on glacier dynamics. We interpret the measured surface velocities to reflect ice flux, and use them as a proxy for glacial erosion. We tie our observations to east-west gradients in climate and how they affect the mass balance of glaciers. In the central Himalaya, glaciers characterized by summer accumulation, flow at generally lower velocities compared to glaciers in the Karakoram in a winter accumulation regime. The data also show that most ice flux occurs near the equilibrium line altitude (ELA), and thereby provide empirical support for focused glacial erosion at distinct, climate controlled altitudinal sectors. These zones are presently located at approx. 4.8-5 +/- 0.5 km in the Karakoram and western Himalaya, and at approx. 5.5 +/- 0.5 km in the central and eastern Himalaya. A mean position of the Quaternary ELA, depressed by approx. 500 m, delineates a zone of focused glacial erosion that corresponds well with areas of <0.5 m annual rainfall, but high local relief. These areas dominate the western end of the Asian highlands, including the western Himalaya, the Karakoram, eastern Hindukush, and the Pamir. Here

  12. 18 CFR 1304.202 - General sediment and erosion control provisions.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... erosion control provisions. 1304.202 Section 1304.202 Conservation of Power and Water Resources TENNESSEE... OTHER ALTERATIONS TVA-Owned Residential Access Shoreland § 1304.202 General sediment and erosion control provisions. (a) During construction activities, TVA shall require that appropriate erosion and...

  13. 18 CFR 1304.202 - General sediment and erosion control provisions.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... erosion control provisions. 1304.202 Section 1304.202 Conservation of Power and Water Resources TENNESSEE... OTHER ALTERATIONS TVA-Owned Residential Access Shoreland § 1304.202 General sediment and erosion control provisions. (a) During construction activities, TVA shall require that appropriate erosion and...

  14. 18 CFR 1304.202 - General sediment and erosion control provisions.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... erosion control provisions. 1304.202 Section 1304.202 Conservation of Power and Water Resources TENNESSEE... OTHER ALTERATIONS TVA-Owned Residential Access Shoreland § 1304.202 General sediment and erosion control provisions. (a) During construction activities, TVA shall require that appropriate erosion and...

  15. 18 CFR 1304.202 - General sediment and erosion control provisions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... erosion control provisions. 1304.202 Section 1304.202 Conservation of Power and Water Resources TENNESSEE... OTHER ALTERATIONS TVA-Owned Residential Access Shoreland § 1304.202 General sediment and erosion control provisions. (a) During construction activities, TVA shall require that appropriate erosion and...

  16. 18 CFR 1304.202 - General sediment and erosion control provisions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... erosion control provisions. 1304.202 Section 1304.202 Conservation of Power and Water Resources TENNESSEE... OTHER ALTERATIONS TVA-Owned Residential Access Shoreland § 1304.202 General sediment and erosion control provisions. (a) During construction activities, TVA shall require that appropriate erosion and...

  17. Control of Eolian soil erosion from waste site surface barriers

    SciTech Connect

    Ligotke, M.W.

    1994-11-01

    Physical models were tested in a wind tunnel to determine optimum surface-ravel admixtures for protecting silt-loam soil from erosion by, wind and saltating, sand stresses. The tests were performed to support the development of a natural-material surface barrier for and waste sites. Plans call for a 2-m deep silt-loam soil reservoir to retain infiltrating water from rainfall and snowmelt. The objective of the study was to develop a gravel admixture that would produce an erosion-resistant surface layer during, periods of extended dry climatic stress. Thus, tests were performed using simulated surfaces representing dry, unvegetated conditions present just after construction, after a wildfire, or during an extended drought. Surfaces were prepared using silt-loam soil mixed with various grades of sand and Travel. Wind-induced surface shear stresses were controlled over the test surfaces, as were saltating, sand mass flow rates and intensities. Tests were performed at wind speeds that approximated and exceeded local 100-year peak gust intensities. Surface armors produced by pea gravel admixtures were shown to provide the best protection from wind and saltating sand stresses. Compared with unprotected silt-loam surfaces, armored surfaces reduced erosion rates by more than 96%. Based in part on wind tunnel results, a pea gravel admixture of 15% will be added to the top 1 in of soil in a prototype barrier under construction in 1994. Field tests are planned at the prototype site to provide data for comparison with wind tunnel results.

  18. Building erosion control measures in land consolidation projects

    NASA Astrophysics Data System (ADS)

    Ščepita, O.

    2011-06-01

    Anti-erosion protection is understood as a set of measures serving as process management to prevent soil loss and degradation of its productive and environmental potential. Anti-erosion protection is generally based on the influence of the subject of the erosion (soil) and erosion conditions, so in order to decrease the intensity of the erosion, it consists of a diverse set of measures, which are classified according to how they affect erosion. Soil erosion measures on agricultural land are divided as follows: - Organizational measures: delimitation of land resources, cultural erosion and crop distribution, the size, shape and arrangement of land, the communication network, organization of grazing. - Agrotechnical measures: Contour agrotechnics. - Soil-protecting agrotechnics. - Biological measures: crop belt, belt stabilizers, erosion crop rotations, conservation gins, protective afforestation. .- Technical measures: erosion channels, ditches, terraces.

  19. Assessment of beach and dune erosion and accretion using LiDAR: Impact of the stormy 2013-14 winter and longer term trends on the Sefton Coast, UK

    NASA Astrophysics Data System (ADS)

    Pye, Kenneth; Blott, Simon J.

    2016-08-01

    An important question for coastal management concerns the importance of individual storms and clusters of storms on longer term beach sediment budgets, beach and dune erosion, and coastal flood risk. Between October 2013 and March 2014 a series of deep Atlantic low pressure systems crossed the Northeast Atlantic, and strong winds, high waves and high water levels affected many coastal areas in the UK and other parts of western Europe. Net dune recession of up to 12.1 m occurred around Formby Point. On 5 December 2013 the highest water level ever recorded at Liverpool (6.22 m ODN) coincided with waves of Hs of 4.55 m and Tp of 9.3 s in Liverpool Bay. Wave trimming of the dune toe occurred along the entire length of the Sefton coast, but significant dune erosion occurred only where the upper beach (between the mean high water spring tide level and the dune toe) was < 25 m wide. Sediment budget calculations based on LiDAR surveys in October 2013 and May 2014 indicated a net loss of 127 × 103 m3 of sediment from the beach (above 0 m ODN) and a loss of 268 × 103 m3 from the frontal dune system, mostly at Formby Point. However, some parts of the beach to the south of Formby Point gained sediment, indicating net north to south transport over the winter. When considered in a longer term context, the 2013-14 winter represents only a small perturbation on the longer-term coast trend of erosion at Formby Point and progradation to the north and south. Analysis of LiDAR data over a longer time period 1999-2014 indicated upper beach and dune sediment loss of 780 × 103 m3 from the north-central part of Formby Point, with net gains of 806 × 103 m3 and 2116 × 103 m3 in areas to the north and south, respectively. This indicates a net onshore transport of 2142 × 103 m3 from Liverpool Bay towards the coast between Birkdale and Altcar, with a further net total of 210 × 103 m3 transported towards the shore between Altcar and Crosby. In view of the demonstrated value of airborne

  20. Global carbon export from the terrestrial biosphere controlled by erosion.

    PubMed

    Galy, Valier; Peucker-Ehrenbrink, Bernhard; Eglinton, Timothy

    2015-05-14

    Riverine export of particulate organic carbon (POC) to the ocean affects the atmospheric carbon inventory over a broad range of timescales. On geological timescales, the balance between sequestration of POC from the terrestrial biosphere and oxidation of rock-derived (petrogenic) organic carbon sets the magnitude of the atmospheric carbon and oxygen reservoirs. Over shorter timescales, variations in the rate of exchange between carbon reservoirs, such as soils and marine sediments, also modulate atmospheric carbon dioxide levels. The respective fluxes of biospheric and petrogenic organic carbon are poorly constrained, however, and mechanisms controlling POC export have remained elusive, limiting our ability to predict POC fluxes quantitatively as a result of climatic or tectonic changes. Here we estimate biospheric and petrogenic POC fluxes for a suite of river systems representative of the natural variability in catchment properties. We show that export yields of both biospheric and petrogenic POC are positively related to the yield of suspended sediment, revealing that POC export is mostly controlled by physical erosion. Using a global compilation of gauged suspended sediment flux, we derive separate estimates of global biospheric and petrogenic POC fluxes of 157(+74)(-50) and 43(+61)(-25) megatonnes of carbon per year, respectively. We find that biospheric POC export is primarily controlled by the capacity of rivers to mobilize and transport POC, and is largely insensitive to the magnitude of terrestrial primary production. Globally, physical erosion rates affect the rate of biospheric POC burial in marine sediments more strongly than carbon sequestration through silicate weathering. We conclude that burial of biospheric POC in marine sediments becomes the dominant long-term atmospheric carbon dioxide sink under enhanced physical erosion. PMID:25971513

  1. Global carbon export from the terrestrial biosphere controlled by erosion

    NASA Astrophysics Data System (ADS)

    Galy, Valier; Peucker-Ehrenbrink, Bernhard; Eglinton, Timothy

    2015-05-01

    Riverine export of particulate organic carbon (POC) to the ocean affects the atmospheric carbon inventory over a broad range of timescales. On geological timescales, the balance between sequestration of POC from the terrestrial biosphere and oxidation of rock-derived (petrogenic) organic carbon sets the magnitude of the atmospheric carbon and oxygen reservoirs. Over shorter timescales, variations in the rate of exchange between carbon reservoirs, such as soils and marine sediments, also modulate atmospheric carbon dioxide levels. The respective fluxes of biospheric and petrogenic organic carbon are poorly constrained, however, and mechanisms controlling POC export have remained elusive, limiting our ability to predict POC fluxes quantitatively as a result of climatic or tectonic changes. Here we estimate biospheric and petrogenic POC fluxes for a suite of river systems representative of the natural variability in catchment properties. We show that export yields of both biospheric and petrogenic POC are positively related to the yield of suspended sediment, revealing that POC export is mostly controlled by physical erosion. Using a global compilation of gauged suspended sediment flux, we derive separate estimates of global biospheric and petrogenic POC fluxes of and megatonnes of carbon per year, respectively. We find that biospheric POC export is primarily controlled by the capacity of rivers to mobilize and transport POC, and is largely insensitive to the magnitude of terrestrial primary production. Globally, physical erosion rates affect the rate of biospheric POC burial in marine sediments more strongly than carbon sequestration through silicate weathering. We conclude that burial of biospheric POC in marine sediments becomes the dominant long-term atmospheric carbon dioxide sink under enhanced physical erosion.

  2. Effects of erosion control structures along a portion of the northern Chesapeake Bay shoreline

    USGS Publications Warehouse

    Zabawa, C.F.; Kerhin, R.T.; Bayley, S.

    1981-01-01

    A 6.500-meter reach of western Chesapeake Bay shoreline (lower Mayo Peninsula) lost about 1.1??106 cubic meters of sediment (equivalent to 170 cubic meters lost per meter of shoreline) between 1846 and 1932, when the first aerial photographs show the shoreline already substantially protected by a system of groins and intermittent bulkheading. These structures have eliminated the fastland as a source of erodable material, and have starved the supply of sand for littoral drift, thus limiting the extent of the beaches to the remaining groin fields. Volumes of sediment involved in these impacts are small in the overall sediment budget. Bulkheads produce no deficit in the budget since scouring of the beaches on their seaward sides makes up for the decreased erosion of protected fastland. Groins trap little of the potential littoral drift (computed to be about 104 cubic meters per meter of shoreline per year). The sand supply in the remaining beaches is nearly equivalent to the annual loss of sediment from the entire shoreline system due to the long-term rate of erosion of the shoreline and nearshore between 1846 and 1932. ?? 1981 Springer-Verlag New York Inc.

  3. Complex, Dynamic Combination of Physical, Chemical and Nutritional Variables Controls Spatio-Temporal Variation of Sandy Beach Community Structure

    PubMed Central

    Ortega Cisneros, Kelly; Smit, Albertus J.; Laudien, Jürgen; Schoeman, David S.

    2011-01-01

    Sandy beach ecological theory states that physical features of the beach control macrobenthic community structure on all but the most dissipative beaches. However, few studies have simultaneously evaluated the relative importance of physical, chemical and biological factors as potential explanatory variables for meso-scale spatio-temporal patterns of intertidal community structure in these systems. Here, we investigate macroinfaunal community structure of a micro-tidal sandy beach that is located on an oligotrophic subtropical coast and is influenced by seasonal estuarine input. We repeatedly sampled biological and environmental variables at a series of beach transects arranged at increasing distances from the estuary mouth. Sampling took place over a period of five months, corresponding with the transition between the dry and wet season. This allowed assessment of biological-physical relationships across chemical and nutritional gradients associated with a range of estuarine inputs. Physical, chemical, and biological response variables, as well as measures of community structure, showed significant spatio-temporal patterns. In general, bivariate relationships between biological and environmental variables were rare and weak. However, multivariate correlation approaches identified a variety of environmental variables (i.e., sampling session, the C∶N ratio of particulate organic matter, dissolved inorganic nutrient concentrations, various size fractions of photopigment concentrations, salinity and, to a lesser extent, beach width and sediment kurtosis) that either alone or combined provided significant explanatory power for spatio-temporal patterns of macroinfaunal community structure. Overall, these results showed that the macrobenthic community on Mtunzini Beach was not structured primarily by physical factors, but instead by a complex and dynamic blend of nutritional, chemical and physical drivers. This emphasises the need to recognise ocean-exposed sandy

  4. Complex, dynamic combination of physical, chemical and nutritional variables controls spatio-temporal variation of sandy beach community structure.

    PubMed

    Ortega Cisneros, Kelly; Smit, Albertus J; Laudien, Jürgen; Schoeman, David S

    2011-01-01

    Sandy beach ecological theory states that physical features of the beach control macrobenthic community structure on all but the most dissipative beaches. However, few studies have simultaneously evaluated the relative importance of physical, chemical and biological factors as potential explanatory variables for meso-scale spatio-temporal patterns of intertidal community structure in these systems. Here, we investigate macroinfaunal community structure of a micro-tidal sandy beach that is located on an oligotrophic subtropical coast and is influenced by seasonal estuarine input. We repeatedly sampled biological and environmental variables at a series of beach transects arranged at increasing distances from the estuary mouth. Sampling took place over a period of five months, corresponding with the transition between the dry and wet season. This allowed assessment of biological-physical relationships across chemical and nutritional gradients associated with a range of estuarine inputs. Physical, chemical, and biological response variables, as well as measures of community structure, showed significant spatio-temporal patterns. In general, bivariate relationships between biological and environmental variables were rare and weak. However, multivariate correlation approaches identified a variety of environmental variables (i.e., sampling session, the C∶N ratio of particulate organic matter, dissolved inorganic nutrient concentrations, various size fractions of photopigment concentrations, salinity and, to a lesser extent, beach width and sediment kurtosis) that either alone or combined provided significant explanatory power for spatio-temporal patterns of macroinfaunal community structure. Overall, these results showed that the macrobenthic community on Mtunzini Beach was not structured primarily by physical factors, but instead by a complex and dynamic blend of nutritional, chemical and physical drivers. This emphasises the need to recognise ocean-exposed sandy

  5. Control of fan erosion in coal-fired power plants, Phase 2: Final report

    SciTech Connect

    Sverdrup, E.F.; Albertin, L.; Chamberlin, R.M.; D'Amico, N.J.; El Masri, M.A.; Glasser, A.D.; Menguturk, M.; Rane, A.; Racki, R.; Petlevich, W.J.

    1988-11-01

    The Electric Power Research Institute contracted with Westinghouse to address the problems electric utilities experience caused by fan erosion. The objective of this phase of the research program was to understand how to control erosion damage to coal-fired power plant fans by: Developing fan design modifications that raise the tolerance of fans to fly-ash erosion and that simultaneously improve fan performance. Understanding why fly ashes vary in their erosivities and developing the ability to predict the erosivity of the fly ash from core borings of the fuel to be fired; Evaluating the performance of erosion protection systems we have installed on a number of fans suffering severe fly-ash erosion damage; Developing a method to armor centrifugal fans against fly-ash erosion while providing for easy field replacement of the blade liners; and Developing a computer model that calculates particle trajectories through the inlet box of a fan. 18 refs., 74 figs., 18 tabs.

  6. Engineering geomorphology at the cutting edge of land disturbance: erosion and sediment control on construction sites

    NASA Astrophysics Data System (ADS)

    Harbor, Jon

    1999-12-01

    Construction site management, traditionally dominated by professional engineers, provides an important opportunity for engineers and geomorphologists to work together in minimizing the environmental impacts of land disturbance. Areas disturbed for construction activity have soil erosion rates from 2 to 40,000 times greater than pre-construction conditions, and are important components of nonpoint source (NPS) pollution that degrades surface water quality. Despite significant local-to-watershed-scale environmental and economic impacts, the lack of an individual economic incentive for land developers to control erosion has limited voluntary adoption of erosion and sediment control measures. However, increased regulatory requirements, combined with efforts to identify and publicize the benefits of erosion control, are increasing the number of construction sites on which erosion control efforts are being implemented. Geomorphologists have the opportunity to play an active role in erosion and sediment control by implementing knowledge of erosion and sedimentation processes and of the variables that effect these processes. Pre-project geomorphological site assessments allow project designers to work around areas with high erosion potential, and to stage and schedule land disturbing activities to minimize erosion potential. Combined engineering and geomorphological analyses can increase the likelihood that streams and drainage channels are stable under altered hydrologic conditions, both during and after land use change, and can be used to design a drainage plan that minimizes surface water flow through disturbed areas. A variety of temporary measures to reduce erosion and to trap sediment on site can be designed and implemented, such as temporary surface covers, silt fence, and sedimentation basins. However, design and implementation of these measures require an understanding of erosion and sedimentation processes, and in many cases incorrect installation and maintenance

  7. Spatio-Temporal Variability in Accretion and Erosion of Coastal Foredunes in the Netherlands: Regional Climate and Local Topography

    PubMed Central

    Keijsers, Joep G. S.; Poortinga, Ate; Riksen, Michel J. P. M.; Maroulis, Jerry

    2014-01-01

    Depending on the amount of aeolian sediment input and dune erosion, dune size and morphology change over time. Since coastal foredunes play an important role in the Dutch coastal defence, it is important to have good insight in the main factors that control these changes. In this paper the temporal variations in foredune erosion and accretion were studied in relation to proxies for aeolian transport potential and storminess using yearly elevation measurements from 1965 to 2012 for six sections of the Dutch coast. Longshore differences in the relative impacts of erosion and accretion were examined in relation to local beach width. The results show that temporal variability in foredune accretion and erosion is highest in narrow beach sections. Here, dune erosion alternates with accretion, with variability displaying strong correlations with yearly values of storminess (maximum sea levels). In wider beach sections, dune erosion is less frequent, with lower temporal variability and stronger correlations with time series of transport potential. In erosion dominated years, eroded volumes decrease from narrow to wider beaches. When accretion dominates, dune-volume changes are relatively constant alongshore. Dune erosion is therefore suggested to control spatial variability in dune-volume changes. On a scale of decades, the volume of foredunes tends to increase more on wider beaches. However, where widths exceed 200 to 300 m, this trend is no longer observed. PMID:24603812

  8. Hawaii Beach Monitoring Program: Beach Profile Data

    USGS Publications Warehouse

    Gibbs, Ann E.; Richmond, Bruce M.; Fletcher, Charles H.; Hillman, Kindra P.

    2001-01-01

    Coastal erosion is widespread and locally severe in Hawaii and other low-latitude areas. Typical erosion rates in Hawaii are in the range of 15 to 30 cm/yr (0.5 to 1 ft/yr; Hwang, 1981; Sea Engineering, Inc., 1988; Makai Ocean Engineering, Inc. and Sea Engineering, Inc.,1991). Recent studies on Oahu (Fletcher et al., 1997; Coyne et al., 1996) have shown that nearly 24%, or 27.5 km (17.1 mi) of an original 115 km (71.6 mi) of sandy shoreline (1940's) has been either significantly narrowed (17.2 km; 10.7 mi) or lost (10.3 km; 6.4 mi). Nearly one-quarter of the islands' beaches have been significantly degraded over the last half-century and all shorelines have been affected to some degree. Oahu shorelines are by far the most studied, however, beach loss has been identified on the other islands as well, with nearly 13 km (8 mi) of beach likely lost due to shoreline hardening on Maui (Makai Engineering, Inc. and Sea Engineering, Inc., 1991). Causes of coastal erosion and beach loss in Hawaii are numerous but, unfortunately, poorly understood and rarely quantified. Construction of shoreline protection structures limits coastal land loss, but does not alleviate beach loss and may actually accelerate the problem by prohibiting sediment deposition in front of the structures. Other factors contributing to beach loss include: a) reduced sediment supply; b) large storms; and, c) sea-level rise. Reduction in sand supply, either from landward or seaward (primarily reef) sources, can have a myriad of causes. Obvious causes such as beach sand mining and emplacement of structures that interrupt natural sediment transport pathways or prevent access to backbeach sand deposits, remove sediment from the active littoral system. More complex issues of sediment supply can be related to reef health and carbonate production which, in turn, may be linked to changes in water quality. Second, the accumulated effect of large storms is to transport sediment beyond the littoral system. Third

  9. Variation of the Beach Profile, Ocean Beach, San Francisco, California

    NASA Astrophysics Data System (ADS)

    Hansen, J. E.; Ho, T.; Li, A.; Perez, A.; Wong, Y.; Bissell, M.

    2006-12-01

    Ocean Beach is a 7-km-long stretch of beach that is the western boundary of the city of San Francisco with the Pacific Ocean. This beach is exposed to large winter waves produced in the North Pacific and smaller summer waves from both the North and South Pacific. Recent decades have seen an increased rate of erosion at the south end of the beach that has led to the partial collapse of a parking lot, and continued erosion threatens both public and private infrastructure. To gain an understanding of the variation in beach profiles we established six cross-shore profiles approximately 1 km apart. Each profile represents a part of the beach that experiences different wave conditions, caused by refraction across the San Francisco Bar, and thus has a different morphologic response to offshore sea conditions. The six sub-aerial profiles were measured using a total station one week apart in August 2006. All profiles increased in elevation and five of the six profiles showed the early formation or continued growth of berms. The same profiles will be re-analyzed in the autumn to determine further change, and compared to data collected by a 2004 SF-ROCKS group that also studied Ocean Beach. We will relate beach profile change to wave conditions measured at an offshore buoy to determine what wave conditions cause profile accretion or erosion. The results of this study will shed light on the processes occurring at Ocean Beach and will help us to understand why the south end of the beach is eroding.

  10. Structural practices for controlling sediment transport from erosion

    NASA Astrophysics Data System (ADS)

    Gabriels, Donald; Verbist, Koen; Van de Linden, Bruno

    2013-04-01

    Erosion on agricultural fields in the hilly regions of Flanders, Belgium has been recognized as an important economical and ecological problem that requires effective control measures. This has led to the implementation of on-site and off-site measures such as reduced tillage and the installation of grass buffers trips, and dams made of vegetative materials. Dams made out of coir (coconut) and wood chips were evaluated on three different levels of complexity. Under laboratory conditions, one meter long dams were submitted to two different discharges and three sediment concentrations under two different slopes, to assess the sediment delivery ratios under variable conditions. At the field scale, discharge and sediment concentrations were monitored under natural rainfall conditions on six 3 m wide plots, of which three were equipped with coir dams, while the other three served as control plots. The same plots were also used for rainfall simulations, which allowed controlling sediment delivery boundary conditions more precisely. Results show a clear advantage of these dams to reduce discharge by minimum 49% under both field and laboratory conditions. Sediment delivery ratios (SDR) were very small under laboratory and field rainfall simulations (4-9% and 2% respectively), while larger SDRs were observed under natural conditions (43%), probably due to the small sediment concentrations (1-5 g l-1) observed and as such a larger influence of boundary effects. Also a clear enrichment of larger sand particles (+167%) could be observed behind the dams, showing a significant selective filtering effect.

  11. No-till spring barley to control wind erosion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wind erosion is a major concern for growers and communities in the Pacific Northwest. Wind erosion not only degrades the soil resource which can affect the long-term productivity of agricultural lands, but it also degrades air quality in the region. Continuous no-till spring cereal cropping systems ...

  12. Probabilistic assessment of beach and dune changes

    USGS Publications Warehouse

    Sallenger, A.H., Jr.; Stockdon, H.; Haines, J.; Krabill, W.; Swift, R.; Brock, J.

    2004-01-01

    The recent availability of spatially-dense airborne lidar data makes assessment of the vulnerability of beaches and dunes to storm impacts practical over long reaches of coast. As an initial test, elevations of the tops (D high) and bases (Dlow) of foredune ridges along a 55-km reach on the northern Outer Banks, NC were found to have considerable spatial variability suggesting that different parts of the barrier island would respond differently to storms. Comparing statistics of storm wave runup to D high and Dlow, we found that net erosion due to overwash and dune retreat should be greatest at the northern and southern ends of the study area and least in the central section. This predicted spatial pattern of storm-induced erosion is similar to the spatial pattern of long-term erosion of the shoreline which may be controlled by additional processes (such as gradients in longshore transport) as well as the cross-shore processes considered here. However, consider feedback where at erosional hot spots there is a deficit of sand (caused by gradients in longshore transport) which lead to lower dunes and enhanced erosional cross-shore processes, such as overwash. Hence, the erosional hot spots would be exacerbated, further increasing the vulnerability of the beach and dunes to net erosion.

  13. Assessing and improving the wind erosion control attributes of tillage ridges

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tillage ridges are a major wind erosion control practice that may be used alone or in conjunction with other practices. Their use and importance ins erosion control will likely increase in the future because of residue and manure removal for use in biofuel production, decreases in water available f...

  14. 77 FR 47063 - Notice of Availability of Draft Revisions; Upland Erosion Control, Revegetation, and Maintenance...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-07

    ... FR 26572. The Plan and Procedures are referred to at 18 Code of Federal Regulations (CFR) 380.12(i)(5... Energy Regulatory Commission Notice of Availability of Draft Revisions; Upland Erosion Control... Comments The staff of the Office of Energy Projects is revising its Upland Erosion Control,...

  15. 48 CFR 436.574 - Control of erosion, sedimentation, and pollution.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., sedimentation, and pollution. 436.574 Section 436.574 Federal Acquisition Regulations System DEPARTMENT OF... 436.574 Control of erosion, sedimentation, and pollution. The contracting officer shall insert the clause at 452.236-74, Control of Erosion, Sedimentation and Pollution, if there is a need for...

  16. 48 CFR 436.574 - Control of erosion, sedimentation, and pollution.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., sedimentation, and pollution. 436.574 Section 436.574 Federal Acquisition Regulations System DEPARTMENT OF... 436.574 Control of erosion, sedimentation, and pollution. The contracting officer shall insert the clause at 452.236-74, Control of Erosion, Sedimentation and Pollution, if there is a need for...

  17. 48 CFR 436.574 - Control of erosion, sedimentation, and pollution.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., sedimentation, and pollution. 436.574 Section 436.574 Federal Acquisition Regulations System DEPARTMENT OF... 436.574 Control of erosion, sedimentation, and pollution. The contracting officer shall insert the clause at 452.236-74, Control of Erosion, Sedimentation and Pollution, if there is a need for...

  18. 48 CFR 436.574 - Control of erosion, sedimentation, and pollution.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., sedimentation, and pollution. 436.574 Section 436.574 Federal Acquisition Regulations System DEPARTMENT OF... 436.574 Control of erosion, sedimentation, and pollution. The contracting officer shall insert the clause at 452.236-74, Control of Erosion, Sedimentation and Pollution, if there is a need for...

  19. How two single events control the erosion process on citrus orchards in the Montesa soil erosion research station

    NASA Astrophysics Data System (ADS)

    Cerdà, A.; Giménez-Morera, A.; Domínguez-Gento, A.

    2010-05-01

    Single events control the soil erosion processes on Mediterranean type ecosystems. They contribute with the largest soil and water losses. A five year research carried out on the soil erosion experimental station of Montesa, eastern Spain demonstrates that the soil erosion by water is mainly concentrated on high intensity (> 100 mm day-1) thunderstorms. Six plots (300 m2) were built in 2003 to collect runoff and sediments after each rainfall event. The measurements show that 91.34 % of the total soil loss and the 76.32 % of the runoff collected from 2004 to 2008 was collected during two rainfall events that surpassed 160 mm day-1. The six plots were under organic farming strategies and then the soil losses were always lower than 1 Mg ha-1 year-1. Under dense vegetation cover found on organic farming orchards the soil erosion process is concentrated on short periods of time. In fact, two days of rainfall contributed with 9-times more runoff and soil losses than the 345 days of rainfall during the 5 year times of the study.

  20. Robotic weld overlay coatings for erosion control. Quarterly technical progress report, January 1993--March 1993

    SciTech Connect

    Levin, B.F.; Dupont, J.N.; Marder, A.R.

    1993-04-18

    Twelve weld overlay hardfacing alloys have been selected for preliminary erosion testing based on a literature review These alloys have been separated into three major groups: (1) Cobalt containing alloys, (2) Nickel-base alloys, (3) Iron base alloys. These alloys are being applied to carbon steel substrates and will undergo preliminary erosion testing to identify candidates weld overlay alloys for erosion control in CFB boilers. The candidate alloys selected from the preliminary erosion tests will then undergo more detailed evaluations in future research.

  1. Popham Beach, Maine: An example of engineering activity that saved beach property without harming the beach

    NASA Astrophysics Data System (ADS)

    Kelley, Joseph T.

    2013-10-01

    Beach and property erosion on coasts is a widespread and chronic problem. Historical approaches to this issue, including seawalls and sand replenishment, are often inappropriate or too expensive. In Maine, seawalls were banned in 1983 and replenishment is too costly to employ. Replacement of storm-damaged buildings is also not allowed, and a precedent case on Popham Beach, Maine required that the owner remove an unpermitted building from a site where an earlier structure was damaged. When the most popular park in Maine, Popham Beach State Park, experienced inlet associated erosion that threatened park infrastructure (a bathhouse), temporary measures were all that the law allowed. Because it was clear that the inlet channel causing the erosion would eventually change course, the state opted to erect a temporary seawall with fallen trees at the site. This may or may not have slowed the erosion temporarily, but reassured the public that "something was being done". Once a storm cut a new tidal inlet channel and closed off the old one, tidal water still entered the former channel and continued to threaten the bathhouse. To ultimately save the property, beach scraping was employed. Sand was scraped from the lower beach to construct a sand berm that deflected the tidal current away from the endangered property. This action created enough time for natural processes to drive the remains of the former spit onto the beach and widen it significantly. Whereas many examples of engineering practices exist that endanger instead of saving beaches, this example is one of an appropriate engineering effort to rescue unwisely located beach-front property.

  2. Ecology of exposed sandy beaches in northern Spain: Environmental factors controlling macrofauna communities

    NASA Astrophysics Data System (ADS)

    Lastra, M.; de La Huz, R.; Sánchez-Mata, A. G.; Rodil, I. F.; Aerts, K.; Beloso, S.; López, J.

    2006-02-01

    Thirty-four exposed sandy beaches on the northern coast of Spain (from 42°11' to 43°44'N, and from 2°04' to 8°52' W; ca. 1000 km) were sampled over a range of beach sizes, beach morphodynamics and exposure rates. Ten equally spaced intertidal shore levels along six replicated transects were sampled at each beach. Sediment and macrofauna samples were collected using corers to a depth of 15 cm. Morphodynamic characteristics such as the beach face slope, wave environment, exposure rates, Dean's parameter and Beach State Index were estimated. Biotic results indicated that in all the beaches the community was dominated by isopods, amphipods and polychaetes, mostly belonging to the detritivorous-opportunistic trophic group. The number of intertidal species ranged from 9 to 31, their density being between 31 and 618 individuals m - 2 , while individuals per linear metre (m - 1 ) ranged from 4962 to 17 2215. The biomass, calculated as total ash-free dry weight (AFDW) varied from 0.027 to 2.412 g m - 2 , and from 3.6 to 266.6 g m - 1 . Multiple regression analysis indicated that number of species significantly increased with proximity to the wind-driven upwelling zone located to the west, i.e., west-coast beaches hosted more species than east-coast beaches. The number of species increased with decreasing mean grain size and increasing beach length. The density of individuals m - 2 increased with decreasing mean grain size, while biomass m - 2 increased with increasing food availability estimated as chlorophyll-a concentration in the water column of the swash zone. Multiple-regression analysis indicated that chlorophyll-a in the water column increased with increasing western longitude. Additional insights provided by single-regression analysis showed a positive relationship between the number of species and chlorophyll-a, while increasing biomass occurred with increasing mean grain size of the beach. The results indicate that community characteristics in the exposed

  3. Quantitative evaluation of strategies for erosion control on a railway embankment batter

    NASA Astrophysics Data System (ADS)

    Gyasi-Agyei, Y.; Sibley, J.; Ashwath, N.

    2001-12-01

    Strategies for erosion control on a railway embankment batter (side slope) are quantitatively evaluated in this paper. The strategies were centred on control (do nothing treatment), grass seeding, gypsum application, jute mat (an erosion control blanket) placement and planting hedgerows of Monto vetiver grass. Rainfall and runoff were monitored at 1 min intervals on 10 m wide embankment batter plots during 1998 and 1999. Total bedload and suspended sediment eroded from the plots were also measured but only for a group of storm events within sampling intervals. It has been demonstrated that vetiver grass is not cost-effective in controlling erosion on railway batters within Central Queensland region. Seeding alone could cause 60% reduction in the erosion rate compared with the control treatment. Applying gypsum to the calcium-deficient soil before seeding yielded an additional 25% reduction in the erosion rate. This is the result, primarily, of 100% grass cover establishment within seven months of sowing. Therefore, for railway embankment batter erosion control, the emphasis needs to be on rapid establishment of 100% grass cover. For rapid establishment of grass cover, irrigation is necessary during the initial stages of growth as the rainfall is unpredictable and the potential evaporation exceeds rainfall in the study region. The risk of seeds and fertilizers being washed out by short-duration and high-intensity rainfall events during the establishment phase may be reduced by the use of erosion control blankets on sections of the batters. Accidental burning of grasses on some plots caused serious erosion problems, resulting in very slow recovery of grass growth. It is therefore recommended that controlled burning of grasses on railway batters should be avoided to protect batters from being exposed to severe erosion.

  4. Precise spatial control of cavitation erosion in a vessel phantom by using an ultrasonic standing wave.

    PubMed

    Shi, Aiwei; Huang, Peixuan; Guo, Shifang; Zhao, Lu; Jia, Yingjie; Zong, Yujin; Wan, Mingxi

    2016-07-01

    In atherosclerotic inducement in animal models, the conventionally used balloon injury is invasive, produces excessive vessel injuries at unpredictable locations and is inconvenient in arterioles. Fortunately, cavitation erosion, which plays an important role in therapeutic ultrasound in blood vessels, has the potential to induce atherosclerosis noninvasively at predictable sites. In this study, precise spatial control of cavitation erosion for superficial lesions in a vessel phantom was realised by using an ultrasonic standing wave (USW) with the participation of cavitation nuclei and medium-intensity ultrasound pulses. The superficial vessel erosions were restricted between adjacent pressure nodes, which were 0.87 mm apart in the USW field of 1 MHz. The erosion positions could be shifted along the vessel by nodal modulation under a submillimetre-scale accuracy without moving the ultrasound transducers. Moreover, the cavitation erosion of the proximal or distal wall could be determined by the types of cavitation nuclei and their corresponding cavitation pulses, i.e., phase-change microbubbles with cavitation pulses of 5 MHz and SonoVue microbubbles with cavitation pulses of 1 MHz. Effects of acoustic parameters of the cavitation pulses on the cavitation erosions were investigated. The flow conditions in the experiments were considered and discussed. Compared to only using travelling waves, the proposed method in this paper improves the controllability of the cavitation erosion and reduces the erosion depth, providing a more suitable approach for vessel endothelial injury while avoiding haemorrhage. PMID:26964937

  5. Is Sandy Beach Macrofauna Only Physically Controlled? Role of Substrate and Competition in Isopods

    NASA Astrophysics Data System (ADS)

    Defeo, O.; Brazeiro, A.; de Alava, A.; Riestra, G.

    1997-10-01

    Exposed sandy beaches have been defined as physically stressful environments, so that benthic populations living there are thought to be regulated mainly by physical factors, biological interactions being minimal. However, recent long-term studies indicate that potential intra- and interspecific interactions should also play a role in structuring populations and communities. This paper evaluates the role of sediment characteristics and potential interactions in determining the abundance and distribution patterns of the cirolanid isopods Excirolana armataand Excirolana braziliensisin sandy beaches of Uruguay. Results from concurrent field sampling and laboratory experiments showed that: (1) at a macroscale (between beaches), E. armataoccurred only in beaches with fine sands, whereas E. braziliensiswas observed in both fine and coarse sand beaches, reaching its highest density in the latter; (2) at a mesoscale (within beaches) and in sympatry (fine sands), both cirolanids showed maximum densities at different tidal heights, with E. braziliensisrestricted to the upper beach levels; (3) both isopods showed a clear preference for fine sands, when tested in isolation or combined; (4) survivorship of E. armatawas higher when tested in the preferred sediment under co-occurrence with E. braziliensis, which in turn presented higher survivorship in coarse sand, either in isolation or combined with E. armata; and (5) individual mean length of both species was consistently higher in allopatry, and similar body lengths were observed in sympatric populations. A geographical analysis of the abundance of E. braziliensisalong Pan-American beaches showed that this isopod is most abundant in fine sands; this overall pattern supports conclusions derived from sediment preference experiments, implicating a greater niche breadth than that observed in Uruguayan beaches. It was concluded that E. armatacould be defined as a high substrate-specific species in which intraspecific interactions

  6. Inner shelf morphologic controls on the dynamics of the beach and bar system, Fire Island, New York

    USGS Publications Warehouse

    Hapke, Cheryl J.; Schwab, William C.; Gayes, P.; McCoy, Clay; Viso, Richard; Lentz, Erika E.

    2011-01-01

    he mechanism of sediment exchange between offshore sand ridges and the beach at Fire Island, New York is largely unknown. However, recent evidence from repeat nearshore bathymetry surveys, coupled with the complex but consistent bar morphology and patterns of shoreline change demonstrate that there is a feedback occurring between the regional geologic framework and modern processes. Analysis of bathymetric survey data provides direct confirmation that the offshore ridges are connected to the shoreface and are spatially persistent. The fixed nature of the nearshore morphology is further supported by time series camera data that indicate persistent bars with breaks that re-form in the same locations. A long-term time series of shoreline change shows distinct zones of erosion and accretion that are pervasive over time scales greater than a half-century, and their length-scales are similar to the spacing of the offshore ridge-trough system. The first-order geologic framework is responsible for the existence and locations of the ridges and troughs, which then influence the morphodynamics of the beach and bar system.

  7. Control of water erosion and sediment in open cut coal mines in tropical areas

    SciTech Connect

    Ueda, T.; Nugraha, C.; Matsui, K.; Shimada, H.; Ichinose, M.; Gottfried, J.

    2005-07-01

    The purpose is to reduce the environmental impacts from open cut mining in tropical areas, such as Indonesia and Vietnam. Research conducted on methods for the control of water erosion and sediment from open cut coal mines is described. Data were collected on climate and weathering in tropical areas, mechanism of water erosion and sedimentation, characteristics of rocks in coal measures under wet conditions, water management at pits and haul roads and ramps, and construction of waste dumps and water management. The results will be applied to the optimum control and management of erosion and sediments in open cut mining. 6 refs., 8 figs.

  8. Cloud forest restoration for erosion control in a Kichwa community of the Ecuadorian central Andes Mountains

    NASA Astrophysics Data System (ADS)

    Backus, L.; Giordanengo, J.; Sacatoro, I.

    2013-12-01

    The Denver Professional Chapter of Engineers Without Borders (EWB) has begun conducting erosion control projects in the Kichwa communities of Malingua Pamba in the Andes Mountains south of Quito, Ecuador. In many high elevation areas in this region, erosion of volcanic soils on steep hillsides (i.e., < 40%) is severe and often associated with roads, water supply systems, and loss of native cloud forests followed by burning and cultivation of food crops. Following a 2011 investigation of over 75 erosion sites, the multidisciplinary Erosion Control team traveled to Malingua Pamba in October 2012 to conduct final design and project implementation at 5 sites. In partnership with the local communities, we installed woody cloud forest species, grass (sig-sig) contour hedges, erosion matting, and rock structures (toe walls, plunge pools, bank armoring, cross vanes, contour infiltration ditches, etc.) to reduce incision rates and risk of slump failures, facilitate aggradation, and hasten revegetation. In keeping with the EWB goal of project sustainability, we used primarily locally available resources. High school students of the community grew 5000 native trees and some naturalized shrubs in a nursery started by the school principal, hand weavers produced jute erosion mats, and rocks were provided by a nearby quarry. Where possible, local rock was harvested from landslide areas and other local erosion features. Based on follow up reports and photographs from the community and EWB travelers, the approach of using locally available materials installed by the community is successful; plants are growing well and erosion control structures have remained in place throughout the November to April rainy season. The community has continued planting native vegetation at several additional erosion sites. Formal monitoring will be conducted in October 2013, followed by analysis of data to determine if induced meandering and other low-maintenance erosion control techniques are working

  9. Can anti-erosion dentifrices also provide effective plaque control?

    PubMed Central

    Bellamy, PG; Prendergast, M; Strand, R; Yu, Z; Day, TN; Barker, ML; Mussett, AJ

    2011-01-01

    Objective: While gingivitis and caries continue to be prevalent issues, there is growing concern about dental erosion induced by dietary acids. An oral hygiene product that protects against all these conditions would be beneficial. This study investigated the potential of two anti-erosion dentifrices to inhibit plaque. Methods: This was a randomized, three-period, two-treatment, double-blind, crossover study evaluating a stannous chloride/sodium fluoride dentifrice (SnCl2/NaF, blend-a-med® Pro Expert) and a popular anti-erosion dentifrice (NaF, Sensodyne® ProNamel™). During Period 3, subjects were randomized to repeat one treatment to evaluate any product carryover effects. Each treatment period was 17 days. Test dentifrices were used with a standard manual toothbrush. Digital plaque image analysis (DPIA) was employed at the end of each period to evaluate plaque levels (i) overnight (am prebrush); (ii) post-brushing with the test product (am post-brush); and (iii) mid-afternoon (pm). Analysis was conducted via an objective computer algorithm, which calculated total area of visible plaque. Results: Twenty-seven subjects completed the study. At all time points, subjects had statistically significantly (P ≤ 0.0001) lower plaque levels after using the SnCl2/NaF dentifrice than the NaF dentifrice. The antiplaque benefit for the SnCl2/NaF dentifrice versus the NaF dentifrice was: am prebrush = 26.0%; am post-brushing = 27.9%; pm = 25.7%. Conclusions: The SnCl2/NaF dentifrice provided significantly greater daytime and overnight plaque inhibition than the NaF toothpaste. When recommending dentifrice to patients susceptible to dental erosion, clinicians can consider one that also inhibits plaque. PMID:21356021

  10. Cover crops effectiveness for soil erosion control in Sicilian vineyard

    NASA Astrophysics Data System (ADS)

    Gristina, L.; Novara, A.; Saladino, S.; Santoro, A.

    2009-04-01

    In vineyards, which are very common in Mediterranean area, cover crops are becoming increasingly used to reduce soil erosion. Cover crops reduce runoff by increasing infiltration and increasing roughness and then reducing the ovelandflow velocity. The aim of the present study was to quantify soil and water losses under different soil managements systems on vineyards. The study site was a Sauvignon blanc winegrape vineyard located in Southwestern Sicily. Vineyards were managed both traditionally (conventional tillage) and alternative management using cover crops: 1) Vicia faba ; 2) Vicia faba and Vicia sativa; 3) Trifolium subterraneum, Lolium perenne, Festuca rubra; 4)Trifolium subterraneum, Festuca rubra and Festuca ovina, 5) Triticum durum, 6) Triticum durum and Vicia sativa. To monitor water and sediment yield, a Gerlach trough was installed at each treatment on the vineyard inter-row, with the row vineyard used as a border (topographical border). Runoff was measured after each rainfall event (raingauge 0.2 mm accuracy) from November 2005 to April 2007. And sediments were measured after desiccation. The results show that runoff and erosion were reduced considerably under the treatments with Trifolium subterraneum, Lolium perenne, Festuca rubra and Trifolium subterraneum, Festuca rubra and Festuca ovina (treatments 3 and 4). The soil losses were reduced by 73% under treatment 4 compared to the tillage plot. Conventional tillage and alternative management using Vicia faba cover crop (treatment 1) result the most ineffective treatment to soil erosion. These results show that the use of a cover crop can be a simple soil and water conservation practice in Sicilian vineyards. Key words: soil erosion, cover crops, vineyard, Mediterranean area.

  11. Tectonic control on 10Be-derived erosion rates in the Garhwal Himalaya, India

    NASA Astrophysics Data System (ADS)

    Scherler, Dirk; Bookhagen, Bodo; Strecker, Manfred R.

    2014-02-01

    Erosion in the Himalaya is responsible for one of the greatest mass redistributions on Earth and has fueled models of feedback loops between climate and tectonics. Although the general trends of erosion across the Himalaya are reasonably well known, the relative importance of factors controlling erosion is less well constrained. Here we present 25 10Be-derived catchment-averaged erosion rates from the Yamuna catchment in the Garhwal Himalaya, northern India. Tributary erosion rates range between ~0.1 and 0.5 mm yr-1 in the Lesser Himalaya and ~1 and 2 mm yr-1 in the High Himalaya, despite uniform hillslope angles. The erosion-rate data correlate with catchment-averaged values of 5 km radius relief, channel steepness indices, and specific stream power but to varying degrees of nonlinearity. Similar nonlinear relationships and coefficients of determination suggest that topographic steepness is the major control on the spatial variability of erosion and that twofold to threefold differences in annual runoff are of minor importance in this area. Instead, the spatial distribution of erosion in the study area is consistent with a tectonic model in which the rock uplift pattern is largely controlled by the shortening rate and the geometry of the Main Himalayan Thrust fault (MHT). Our data support a shallow dip of the MHT underneath the Lesser Himalaya, followed by a midcrustal ramp underneath the High Himalaya, as indicated by geophysical data. Finally, analysis of sample results from larger main stem rivers indicates significant variability of 10Be-derived erosion rates, possibly related to nonproportional sediment supply from different tributaries and incomplete mixing in main stem channels.

  12. Morphodynamics of Accreting Beaches

    NASA Astrophysics Data System (ADS)

    Ruggiero, P.; Gelfenbaum, G.; Sherwood, C. R.; Kaminsky, G. M.

    2002-12-01

    morphological response. Instrumented tripods were deployed to collect time series of waves, near-bottom velocities, and proxies for suspended sediment on the inner shelf. Morphology measurements were made with RTK-DGPS techniques that resolve alongshore length scales of ~10 m to ~10 km and cross-shore length scales of ~1 m to ~1 km. During the experiments inter-tidal bars were observed to form, migrate onshore at rates of 2-5 m/day and eventually weld to the beach face. During each of the two-month long experiments shoreline progradation of approximately 10 m was measured. We are comparing the magnitudes of this relatively short-term (event- seasonal) morphologic change with the direct relationships between shoreface erosion and barrier progradation revealed by detailed shoreline and bathymetric change analyses at decadal-scale.

  13. Large-scale performance and design for construction activity erosion control best management practices.

    PubMed

    Faucette, L B; Scholl, B; Beighley, R E; Governo, J

    2009-01-01

    The National Pollutant Discharge Elimination System (NPDES) Phase II requires construction activities to have erosion and sediment control best management practices (BMPs) designed and installed for site storm water management. Although BMPs are specified on storm water pollution prevention plans (SWPPPs) as part of the construction general permit (GP), there is little evidence in the research literature as to how BMPs perform or should be designed. The objectives of this study were to: (i) comparatively evaluate the performance of common construction activity erosion control BMPs under a standardized test method, (ii) evaluate the performance of compost erosion control blanket thickness, (iii) evaluate the performance of compost erosion control blankets (CECBs) on a variety of slope angles, and (iv) determine Universal Soil Loss Equation (USLE) cover management factors (C factors) for these BMPs to assist site designers and engineers. Twenty-three erosion control BMPs were evaluated using American Society of Testing and Materials (ASTM) D-6459, standard test method for determination of ECB performance in protecting hill slopes from rainfall induced erosion, on 4:1 (H:V), 3:1, and 2:1 slopes. Soil loss reduction for treatments exposed to 5 cm of rainfall on a 2:1 slope ranged from-7 to 99%. For rainfall exposure of 10 cm, treatment soil loss reduction ranged from 8 to 99%. The 2.5 and 5 cm CECBs significantly reduced erosion on slopes up to 2:1, while CECBs < 2.5 cm are not recommended on slopes >or= 4:1 when rainfall totals reach 5 cm. Based on the soil loss results, USLE C factors ranged from 0.01 to 0.9. These performance and design criteria should aid site planners and designers in decision-making processes. PMID:19398523

  14. Deposition by the 2011 Tohoku-oki tsunami on coastal lowland controlled by beach ridges near Sendai, Japan

    NASA Astrophysics Data System (ADS)

    Takashimizu, Yasuhiro; Urabe, Atsushi; Suzuki, Koji; Sato, Yoshiki

    2012-12-01

    A study of the 2011 Tohoku-oki tsunami deposits on the coastal lowland of the Sendai Plain, Japan was carried out along a shore-perpendicular survey line in the Arahama area. Field descriptions and tsunami water depth measurements were complemented by sedimentary analyses, including grain size, grain fabric and diatom analysis. The tsunami deposits show a generally fining-inland trend along the 3.4 km long transect. The depositional facies, grain size analysis and grain fabric data suggest that most of the tsunami deposits were laid down during the tsunami inflow, except at one site. These tsunami deposits are characterized by parallel-laminated or massive sand and silt with pieces of woods, fragments of glass, rip-up mud clasts and an erosional base. Minor backwash deposits overlying the inflow sand layer were only observed on one beach ridge and attributed to the topographic high. Marine diatom species comprised only approximately 2% of the diatom assemblage in tsunami deposits and their content decreased landward. In this study, diatom assemblages were similar in the rice field soil and tsunami layers, suggesting that the muddy fraction of the deposits mainly consists of sediments derived from the tsunami-eroded rice field soil. As a result of soil erosion, the tsunami had a high suspended sediment load. Furthermore, after the first tsunami inundation, seawater left by the tsunami did not drain completely to the sea because of the high coastal beach ridge and/or coastal subsidence due to the massive earthquake. Therefore, strong tsunami outflows to the sea did not occur and these areas were covered by mud deposited from stagnant water.

  15. Does beach nourishment have long-term effects on intertidal macroinvertebrate species abundance?

    NASA Astrophysics Data System (ADS)

    Leewis, Lies; van Bodegom, Peter M.; Rozema, Jelte; Janssen, Gerard M.

    2012-11-01

    Coastal squeeze is the largest threat for sandy coastal areas. To mitigate seaward threats, erosion and sea level rise, sand nourishment is commonly applied. However, its long-term consequences for macroinvertebrate fauna, critical to most ecosystem services of sandy coasts, are still unknown. Seventeen sandy beaches - nourished and controls - were sampled along a chronosequence to investigate the abundance of four dominant macrofauna species and their relations with nourishment year and relevant coastal environmental variables. Dean's parameter and latitude significantly explained the abundance of the spionid polychaete Scolelepis squamata, Beach Index (BI), sand skewness, beach slope and latitude explained the abundance of the amphipod Haustorius arenarius and Relative Tide Range (RTR), recreation and sand sorting explained the abundance of Bathyporeia sarsi. For Eurydice pulchra, no environmental variable explained its abundance. For H. arenarius, E. pulchra and B. sarsi, there was no relation with nourishment year, indicating that recovery took place within a year after nourishment. Scolelepis squamata initially profited from the nourishment with "over-recolonisation". This confirms its role as an opportunistic species, thereby altering the initial community structure on a beach after nourishment. We conclude that the responses of the four dominant invertebrates studied in the years following beach nourishment are species specific. This shows the importance of knowing the autecology of the sandy beach macroinvertebrate fauna in order to be able to mitigate the effects of beach nourishment and other environmental impacts.

  16. Beach morphology and change along the mixed grain-size delta of the dammed Elwha River, Washington

    USGS Publications Warehouse

    Warrick, J.A.; George, D.A.; Gelfenbaum, G.; Ruggiero, P.; Kaminsky, G.M.; Beirne, M.

    2009-01-01

    Sediment supply provides a fundamental control on the morphology of river deltas, and humans have significantly modified these supplies for centuries. Here we examine the effects of almost a century of sediment supply reduction from the damming of the Elwha River in Washington on shoreline position and beach morphology of its wave-dominated delta. The mean rate of shoreline erosion during 1939-2006 is ~ 0.6??m/yr, which is equivalent to ~ 24,000??m3/yr of sediment divergence in the littoral cell, a rate approximately equal to 25-50% of the littoral-grade sediment trapped by the dams. Semi-annual surveys between 2004 and 2007 show that most erosion occurs during the winter with lower rates of change in the summer. Shoreline change and morphology also differ spatially. Negligible shoreline change has occurred updrift (west) of the river mouth, where the beach is mixed sand to cobble, cuspate, and reflective. The beach downdrift (east) of the river mouth has had significant and persistent erosion, but this beach differs in that it has a reflective foreshore with a dissipative low-tide terrace. Downdrift beach erosion results from foreshore retreat, which broadens the low-tide terrace with time, and the rate of this kind of erosion has increased significantly from ~ 0.8??m/yr during 1939-1990 to ~ 1.4??m/yr during 1990-2006. Erosion rates for the downdrift beach derived from the 2004-2007 topographic surveys vary between 0 and 13??m/yr, with an average of 3.8??m/yr. We note that the low-tide terrace is significantly coarser (mean grain size ~ 100??mm) than the foreshore (mean grain size ~ 30??mm), a pattern contrary to the typical observation of fining low-tide terraces in the region and worldwide. Because this cobble low-tide terrace is created by foreshore erosion, has been steady over intervals of at least years, is predicted to have negligible longshore transport compared to the foreshore portion of the beach, and is inconsistent with oral history of abundant

  17. Climatic controls on steady state erosion using the relationship between channel steepness and cosmogenic 10Be-derived catchment averaged erosion rates

    NASA Astrophysics Data System (ADS)

    Rossi, M. W.; Whipple, K. X.; DiBiase, R. A.; Heimsath, A. M.

    2011-12-01

    To understand landscape response to climate change, baseline controls on erosion rates must be established for given climate conditions. Theory suggests a number of climate metrics should be important to erosion (i.e. precipitation, temperature, storminess, seasonality, snow fraction). Nevertheless, definitive field evidence quantifying how climate affects erosion rate has proven difficult to obtain. This is at least partly due to the difficulty of isolating climatic influences on erosion rates from topographic and rock strength influences. We circumvent this problem by evaluating how climate influences the relationship between erosion rate and topography in settings with similar rock types. At steady state, tectonic uplift dictates erosion rate, and climate and rock strength are manifest as changes in erosional efficiency - the topographic relief necessary to maintain the tectonically imposed erosion rate. In fluvial landscapes, bedrock rivers set the relevant scale of topographic relief, which can be described by the channel steepness index. A number of recent studies have shown that the relationship between channel steepness and millennial scale erosion rates is non-linear, implying that erosional efficiency increases with relief. Work in the San Gabriel Mountains suggests this relationship is due to erosion thresholds that limit incision of channels in low relief landscapes. By using a fluvial incision model that incorporates a range of daily discharge events coupled with an erosion threshold (Lague et al., 2005), the influence of flood frequency on the relationship between channel steepness and erosion rate can be explored. We apply this same modeling approach to five other landscapes that exhibit a range of channel steepness, have similar rock types (granitoids), but that are in dramatically different climate regimes ranging from desert to rainforest (annual rainfall, P, from 0.25 to 3 m/yr). Specifically, we present new cosmogenic 10Be erosion rate data from

  18. 48 CFR 436.574 - Control of erosion, sedimentation, and pollution.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 4 2013-10-01 2013-10-01 false Control of erosion, sedimentation, and pollution. 436.574 Section 436.574 Federal Acquisition Regulations System DEPARTMENT OF AGRICULTURE SPECIAL CATEGORIES OF CONTRACTING CONSTRUCTION AND ARCHITECT-ENGINEER CONTRACTS Contract Clauses 436.574 Control of...

  19. 48 CFR 452.236-74 - Control of Erosion, Sedimentation, and Pollution.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 4 2010-10-01 2010-10-01 false Control of Erosion, Sedimentation, and Pollution. 452.236-74 Section 452.236-74 Federal Acquisition Regulations System DEPARTMENT OF AGRICULTURE CLAUSES AND FORMS SOLICITATION PROVISIONS AND CONTRACT CLAUSES Texts of Provisions and Clauses 452.236-74 Control of...

  20. Environmental evaluation of flue gas desulfurization gypsum as a BMP for erosion control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Flue Gas Desulfurization Gypsum (FGDG) is produced from pollution control systems reducing sulfur dioxide emissions from thermo-electric coal-fired power plants. Natural gypsum and FGDG both have been shown to be useful in control of soil erosion. However, concerns have been raised recently by envir...

  1. Controls on slope-wash erosion rates in the Mojave Desert

    NASA Astrophysics Data System (ADS)

    Crouvi, O.; Polyakov, V. O.; Pelletier, J. D.; Rasmussen, C.

    2014-06-01

    This study estimates the rates of soil erosion by slope wash in an arid region and the various factors that control these rates. Decadal-scale erosion rates were estimated on hillslope scales using inventories of 137Cs that were sampled from 46 soil profiles in four different study sites in the Mojave Desert. Calculated mean soil erosion rates per site range from -3.6 to -24.3 t ha-1 yr-1. Higher mean rates were associated with gently sloping sites that exhibit low percentage of rock and vegetation coverage, whereas lower mean rates corresponded to steep and rocky sites. Individual erosion rates were not correlated to slope gradient or curvature but were negatively correlated with the volume fraction of rocks in the upper soil profile (i.e., upslope rock coverage). Since the slopes get rockier as they get steeper, any increase in erosion rates with increasing slope is outweighed by the inhibiting effect of greater rock cover. This, together with sandy-loam soil texture on the steep slopes hinders runoff and erosion. Our findings are supported by soil data that show greater heterogeneity in the degree of calcic soil development and higher soluble salt contents in more gently sloping sites that are characterized by high erosion rates. The erosion rates reported here for the gently sloping sites are higher than rates calculated for semi-arid regions, probably due to the lower rock and vegetation coverage in these sites compared to wetter areas. These rates are also higher than millennial-scale rates estimated for the Mojave Desert on watershed scales, and suggest that at least part of the eroded sediments are stored in the adjacent streams and do not reach the piedmonts.

  2. Erosion risk assessment of controlled burning of grasses established on steep slopes

    NASA Astrophysics Data System (ADS)

    Gyasi-Agyei, Yeboah

    2006-02-01

    It is a standard practice to establish grasses on steep slopes (batters) of embankments and cuttings to minimise erosion problems. However, the increase in grass density (high biomass) on the steep slopes poses a greater risk of fire. Controlled burning is a common fuel hazard reduction program employed to minimise the fire risks. The increased risk of erosion on the steep slopes after controlled burning has received little attention if any. This paper assesses the erosion risks associated with controlled burning of grasses established on steep slopes. Grasses, with and without the aid of waste ballast rock mulch, were established on 10 m wide railway embankment batter experiment plots. Two-and-a-half years after the grass establishment, selected plots were controlled burned. Runoff and soil loss from the experimental plots were monitored throughout the 3½-year period of the experiment. After one year the grass cover on the burned plots has hardly exceeded 60%, far below the average pre-burn levels of about 80%. All treatments achieved an incredible soil loss reduction of over 95% (compared with the bare scenario) without controlled burning at the end of the 3½-year period. This percentage value was decreased numerically by 14 where controlled burning was implemented. Compared with the 100% grass cover treatment, runoff rates tripled while erosion rates increased by nine-fold for the waste ballast treatment, and 17-fold for the non-waste ballast treatment, during the first year following controlled burning.

  3. Biogeochemical Controls on Biodegradation of MC252 Oil:Sand Aggregates on a Rapidly Eroding Coastal Headland Beach

    NASA Astrophysics Data System (ADS)

    Pardue, J.; Elango, V.; Urbano, M.; Lemelle, K.

    2012-12-01

    The research described below was conducted on Fourchon Beach, a coastal headland consisting of nine miles of fairly pristine sandy beaches and dunes, backed by wetlands and tidal channels, located between Belle Pass tidal inlet on the west and Elmer's Island on the east in Lafourche Parish, Louisiana. MC252 oil first arrived in large quantities on Fourchon Beach on or around May 20, 2010. A unique oil form created under these conditions was an aggregate of sand and emulsified oil, typically 0.1-10 cm in diameter, termed small surface residue balls (SSRBs). The work from this project made critical measurements on the factors controlling biodegradability of these SSRB aggregates. SSRB aggregates were sampled across transects perpendicular to the beach from the intertidal to the supratidal. Areas in the supratidal that were sampled initially were set aside for research purposes and not altered by any clean-up activities. Chemical composition of SSRBs was measured including concentrations of n-alkanes, PAHs, hopanes, nutrients (nitrate, nitrite, ammonium and orthophosphate measured on water extracts of SSRBs), and electron acceptor concentrations (O2 microprofiles measured on intact SSRBs and sulfate). Physical characterization of the SSRBs including length and area dimensions, mass, density, porosity, moisture content, and salinity using standard methods. Microbial characterization of SSRBs was also conducted using denaturing gradient gel electrophoresis and sequencing of dominant bands. SSRBs were sampled from various locations across the beach profile deposited by 2 significant tropical events in 2010; Hurricane Alex and TS Bonnie, and one event in 2011, TS Lee. Sampling focused on comparing and contrasting impacts of biogeochemistry on weathering of oil stranded in three beach microenvironments; supratidal surface; subtidal subsurface which is permanently inundated and intertidal subsurface samples which are intermittently inundated. The three types of oil are

  4. Erosion control on a steeply sloped pipeline right-of-way in southwestern Pennsylvania

    SciTech Connect

    Zellmer, S.D.; Edgar, D.E. ); Isaacson, H.R. )

    1991-01-01

    The results of precipitation on steeply sloped pipeline rights-of-way (ROWs) during the time between ROW rehabilitation and the establishment of a dense, self-sustaining vegetative ground cover can cause locally severe soil erosion. This erosion results in elevated sediment loads in receiving streams and increases the difficulty and costs of ROW maintenance. A field study was completed that compared the environmental effectiveness of nine treatments on a 28% ROW slope in southwestern Pennsylvania. The six erosion-control methods investigated in the study, selected to represent a wide range in material type and installation cost, were (1) heavy application of straw mulch, (2) light application of straw mulch, (3) processed wood fiber, (4) chemical soil binder, (5) paper strips in netting, and (6) light straw mulch with a tacking agent. Each of the test plots also received the basic treatment of limestone, fertilizer, and a seed mixture commonly used to rehabilitate ROWs in the region. Precipitation, runoff volumes, and sediment yields were measured on each of 51 plots for 45 precipitation events during the 18-month study. Vegetation data were collected by the point-intercept method four times during the study to determine the amount of plant cover and species composition. Differences in sediment yield were observed among methods and between ROW location, but plant cover development was not influenced by erosion-control method or location. The relationship between environmental and cost data indicated that, of the six erosion-control methods tested, a light application of straw mulch was the most effective erosion-control treatment. 19 refs., 2 figs., 6 tabs.

  5. Differentiating Experts' Anticipatory Skills in Beach Volleyball

    ERIC Educational Resources Information Center

    Canal-Bruland, Rouwen; Mooren, Merel; Savelsbergh, Geert J. P.

    2011-01-01

    In this study, we examined how perceptual-motor expertise and watching experience contribute to anticipating the outcome of opponents' attacking actions in beach volleyball. To this end, we invited 8 expert beach volleyball players, 8 expert coaches, 8 expert referees, and 8 control participants with no beach volleyball experience to watch videos…

  6. Sediment storage dam: A structural gully erosion control and sediment trapping measure, northern Ethiopia

    NASA Astrophysics Data System (ADS)

    Mekonnen, Mulatie; Keesstra, Saskia; Baartman, Jantiene; Ritsema, Coen

    2014-05-01

    Gully erosion is a prime problem in Ethiopia. This study assessed the severity of gully erosion and the role of sediment storage dams (SSD) in restoring gullies and preventing further gully development, its sediment trapping efficacy (STE) and its capacity in converting degraded gully lands to productive land. On average 2.5 m deep, 6.6 m wide and 28.3 m long gullies were formed in Minizr watershed, northwest Ethiopia, in 2013. Concentrated surface runoff, traditional ditches, graded terraces without suitable water ways and road construction are the main causes of such serious gully erosion. Over grazing, tunnel flow and lack of proper immediate gully treatment actions after gully initiation are found to be additional causes of the problem. Gully erosion was also found as the major source of sediment for downstream rivers and water reservoirs. The annual volume of soil eroded from only four gullies was 1941.3 m3. To control gully erosion, SSDs were found to be important physical structures, which can trap significant amount of sediment within gullies and they can convert unproductive gully land to productive agricultural land for fruit and crop production. Eight SSDs trapped about 44*103 m3 of sediment within 2 to 8 years. Two representative SSDs constructed using gabion and stone were tested for their STE. Results showed that their efficacy was 74.1% and 66.4% for the gabion and stone SSDs, respectively. Six of the older SSDs were already full of sediment and created 0.75 ha of productive land within 2 to 8 years. SSDs best fits to treat large size and deep gullies where other gully control measures, check dams, could not function well. To prevent gully formation, controlling its causes that is avoiding traditional ditches, practicing grassed water ways to safely remove runoff water from graded terraces, integrated watershed and road side management practices are important solutions. KEY WORDS: Sediment storage dam, gully erosion, sediment trapping efficacy

  7. DEMONSTRATION OF EROSION AND SEDIMENT CONTROL TECHNOLOGY. LAKE TAHOE REGION OF CALIFORNIA

    EPA Science Inventory

    A three-year project was conducted by the California State Water Resources Control Board to determine methods of preventing and correcting erosion problems which severely effect the quality of the waters of the State of California. Two-project sites were chosen in the vicinity of...

  8. Comprehensive Erosion and Sediment Control Training Program for Job Superintendents and Inspectors.

    ERIC Educational Resources Information Center

    Porter, Harry L., Jr.

    One of two training program texts built around the Virginia Erosion and Sediment Control Law and Program, this guide presents a program designed to meet the needs of job superintendents and inspectors. (The other guide, containing a program for engineers, architects, and planners, was designed to train professional people who need engineering and…

  9. Comprehensive Erosion and Sediment Control Training Program for Engineers, Architects and Planners.

    ERIC Educational Resources Information Center

    Porter, Harry L., Jr.

    This program training text was designed to provide uniform instruction to the engineer, architect, planner, and others who will be helping to implement an erosion and sediment control program. Although tailored for use in Virginia, the basic principles covered are universal, and the material is adaptable to meet the needs in any State. The 11…

  10. An Economic Analysis of USDA Erosion Control Programs: A New Perspective. Agricultural Economic Report No. 560.

    ERIC Educational Resources Information Center

    Strohbehn, Roger, Ed.

    A study analyzed the total (public and private) economic costs and benefits of three U.S. Department of Agriculture erosion control programs. These were the Conservation Technical Assistance Program, Great Plains Conservation Program, and Agricultural Conservation Program. Significant efforts at funding for current programs were directed to…

  11. ACOUSTIC PROFILING OF SEDIMENT ACCUMULATION IN THREE SMALL EROSION CONTROL RESERVOIRS IN NORTH MISSISSIPPI

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In Northern Mississippi, as part of a preventative erosion control program, the Yazoo-Little Tallahatchie Project (YLTP) created a system of small dams and reservoirs to regulate stream flow and to stop the movement of sediment over large distances. These structures were designed to have a lifetime ...

  12. Using computer models to design gully erosion control structures for humid northern Ethiopia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Classic gully erosion control measures such as check dams have been unsuccessful in halting gully formation and growth in the humid northern Ethiopian highlands. Gullies are typically formed in vertisols and flow often bypasses the check dams as elevated groundwater tables make gully banks unstable....

  13. Erosion control practices integrated with polyacrylamide for nutrient reduction in rill irrigation runoff

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this research was to assess soil conservation practices for improving water quality of return flows from rill irrigation in the Yakima River Basin, Washington, by combining patch application of polyacrylamide (PAM) with an additional erosion control practice. A two-year field study ...

  14. USDA-ARS EROSION CONTROL AND WATER QUALITY STUDIES AT HOLLY SPRINGS, MS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The erosion control effectiveness of no-till(NT) crops and grass buffer strips studies at MAFES, Holly Springs, MS on idle land being returned to row-crop production provided useful information related to the potential return to row-crop production of land previously in the conservation reserve prog...

  15. Processes and controls of ditch erosion and suspended sediment transport in drained peatland forests

    NASA Astrophysics Data System (ADS)

    Tuukkanen, Tapio; Stenberg, Leena; Marttila, Hannu; Finér, Leena; Piirainen, Sirpa; Koivusalo, Harri; Kløve, Bjørn

    2016-04-01

    Drainage and periodic ditch cleaning are needed in peatland forests to allow adequate tree growth. The downside is that these practices usually increase erosion and transport of organic and inorganic matter to downstream waterbodies. In this study, our aim was to assess the role of hydrological factors and ditch-level bed and bank erosion processes in controlling suspended sediment (SS) transport in peatland forests after ditch cleaning. To do this, a 113 ha catchment and a nested sub-catchment (5.2 ha) in eastern Finland were instrumented for continuous hydrological and SS concentration (turbidity) measurements and for the detection of ditch bed and bank erosion with erosion pins. The impacts of ditch cleaning on instantaneous unit hydrographs were also assessed against two reference catchments. The results suggested that, in small intensively drained catchments, SS transport is likely to be limited by the availability of easily erodible sediment in the ditch network, and that ditch cleaning operations as well as preparatory bank erosion processes such as peat desiccation and frost action can be important in producing erodible sediment for transport. Detachment of soil particle from ditch banks by raindrop impact can also be an important factor explaining variations in SS concentrations in small catchments. In larger drainage areas, peak runoff characteristics may play a more dominant role in SS transport. The results give new insights into the dynamics of sediment transport in drained peatland catchments, which can be useful, for example, for planning and implementation of water conservation measures.

  16. 7Be and hydrological model for more efficient implementation of erosion control measure

    NASA Astrophysics Data System (ADS)

    Al-Barri, Bashar; Bode, Samuel; Blake, William; Ryken, Nick; Cornelis, Wim; Boeckx, Pascal

    2014-05-01

    Increased concern about the on-site and off-site impacts of soil erosion in agricultural and forested areas has endorsed interest in innovative methods to assess in an unbiased way spatial and temporal soil erosion rates and redistribution patterns. Hence, interest in precisely estimating the magnitude of the problem and therefore applying erosion control measures (ECM) more efficiently. The latest generation of physically-based hydrological models, which fully couple overland flow and subsurface flow in three dimensions, permit implementing ECM in small and large scales more effectively if coupled with a sediment transport algorithm. While many studies focused on integrating empirical or numerical models based on traditional erosion budget measurements into 3D hydrological models, few studies evaluated the efficiency of ECM on watershed scale and very little attention is given to the potentials of environmental Fallout Radio-Nuclides (FRNs) in such applications. The use of FRN tracer 7Be in soil erosion/deposition research proved to overcome many (if not all) of the problems associated with the conventional approaches providing reliable data for efficient land use management. This poster will underline the pros and cones of using conventional methods and 7Be tracers to evaluate the efficiency of coconuts dams installed as ECM in experimental field in Belgium. It will also outline the potentials of 7Be in providing valuable inputs for evolving the numerical sediment transport algorithm needed for the hydrological model on field scale leading to assess the possibility of using this short-lived tracer as a validation tool for the upgraded hydrological model on watershed scale in further steps. Keywords: FRN, erosion control measures, hydrological modes

  17. Lincoln Park shoreline erosion control project: Monitoring for surface substrate, infaunal bivalves and eelgrass, 1993

    SciTech Connect

    Antrim, L.D.; Thom, R.M.; Gardiner, W.W.

    1993-09-01

    In 1988, the US Army Corps of Engineers and the City of Seattle placed material on the upper beach at Lincoln Park, in West Seattle, Washington. The fill served to mitigate shoreline erosion that had caused undercutting and collapse of the seawall in several places. A series of pre- and post-construction studies have been conducted to assess the impacts to marine biota of fill placement and movement of surface substrate. This study was designed to monitor infaunal bivalves and eelgrass from intertidal areas in and adjacent to the area of original fill placement. Findings from this survey were compared to previous survey results to determine (1) if recruitment of infaunal bivalves to the fill area has occurred, (2) if infaunal bivalve densities outside the fill area are stable, and (3) if eelgrass distribution and abundance have remained stable along the adjacent shoreline. To maximize comparability of findings from this survey with previous studies, sampling techniques, transects, and tidal elevations were consistent with previous studies at this site.

  18. Sedimentation in three small erosion control reservoirs in northern Mississippi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The water storage capacity and dam integrity of thousands of flood control reservoirs built since 1950 are potentially compromised by excessive impounded sediments. The fate of these structures depends on the amount and characteristics of this accumulated material. To aid in understanding the scop...

  19. Soil erosion and sediment control laws. A review of state laws and their natural resource data requirements

    NASA Technical Reports Server (NTRS)

    Klein, S. B.

    1980-01-01

    Twenty states, the District of Columbia, and the Virgin Islands enacted erosion and sediment control legislation during the past decade to provide for the implementation or the strengthening of statewide erosion and sediment control plans for rural and/or urban lands. That legislation and the state programs developed to implement these laws are quoted and reviewed. The natural resource data requirements of each program are also extracted. The legislation includes amendments to conservation district laws, water quality laws, and erosion and sediment control laws. Laws which provides for legislative review of administrative regulations and LANDSAT applications and/or information systems that were involved in implementing or gathering data for a specific soil erosion and sediment control program are summarized as well as principal concerns affecting erosion and sediment control laws.

  20. The Different Faces of San Francisco's Ocean Beach: Analyzing Sand Size and Beach Shape

    NASA Astrophysics Data System (ADS)

    Grove, K.; Labit, R.; Lui, S.; Rodriquez, I.; Yi, C.; Yu, M.

    2004-12-01

    Ocean Beach is located along the western edge of San Francisco adjacent to the Pacific Ocean. Erosion along the southern part of the beach is threatening a nearby highway and water treatment plant. To better understand this beach and the processes that form it, our SF-ROCKS research group collected data from seven locations along its length. We used an auto-level surveying instrument to measure beach profiles and we collected sand samples that were measured using sieves and a sieve shaker. We plotted profiles and grain-size data using Excel and Surfer software. The sediment is mostly fine sand, and the means of all samples range between 0.19-0.26 mm. There may be little variation along the beach because only small sand grains have survived the long journey from their Sierra Nevada source. Profile shape does vary along the beach. The profile at the northern end is about three times wider than the profile at the southern end. The northern profile is flatter overall, but all profiles had a steep beach face in August, when the data were collected. The differences in beach profiles may be related to position relative to the offshore bar, which appears to provide sand to the northern part of the beach. Our group will collect more data in November to see what changes have occurred after the large-wave season has begun. We will use Surfer software to compare summer and fall profiles, to see where sediment has been added and where sediment has been removed. We will also compare our results to the data collected by Dr. Patrick Barnard and his research group at the U.S. Geological Survey, who are using an All-Terrain Vehicle to measure beach profiles and a camera to measure sediment size. We will use our analysis of beach variations to make recommendations for reducing beach erosion.

  1. Processes of barrier island erosion

    SciTech Connect

    Sallenger, A.H. Jr. ); Williams, S.J. )

    1989-09-01

    During 1986, the US Geological Survey and the Louisiana Geological Survey began a 5-year study of the processes causing the extreme rates (up to 20 m/year) of erosion of Louisiana's barrier islands. These processes must be better understood in order to predict future erosion and to assess management and erosion mitigation plans. The study is divided into three parts: the geologic development of barrier islands, the critical processes leading to erosion, and applications of results. This paper provides an overview of the part of the study on critical processes. The process part includes modeling erosion of the barrier islands due to sea level rise, the net loss of sand offshore, gradients in longshore transport, and overwash. Evidence indicates that the low-lying barrier beaches on much of the Louisiana coast do not approach an equilibrium configuration. These beaches, which, in many places, are not protected by dunes, are overwashed even during moderate storms and apparently are not evolving to a configuration that limits overwash. As a result, even with stable sea level, the beaches will continue to overwash and migrate landward during storms. Commonly used methods of modeling beach response to rising sea level assume beaches approach an equilibrium configuration, hence applying these methods to coastal Louisiana is problematical.

  2. Chosing erosion control nets. Can't you decide? Ask the lab.

    NASA Astrophysics Data System (ADS)

    Simkova, Jana; Jacka, Lukas

    2015-04-01

    Geotextiles (GTXs) have been used to protect steep slopes against soil erosion for about 60 years and many products have become available. The choice of individual product is always based on its ratio of cost versus effectiveness. Generally applicable recommendations for specific site conditions are missing and testing the effectiveness of GTXs in the field is time consuming and costly. Due to various site conditions, results of numerous case-studies cannot be generalized. One of the major and site-specific factors affecting the erosion process, and hence the effectiveness of GTXs, is the soil. This study aimed to determine the rate of influence of three natural erosion control nets on the volume and velocity of surface runoff caused by rainfall. The nets were installed on slope under laboratory conditions and then exposed to simulated rainfall. An impermeable plastic film was used as a substrate instead of soil to simulate non-infiltrating conditions. A comparison of the influence of tested GTX samples on surface runoff may indicate to their erosion control effect. Thus, the results could help with choosing a particular product. Under real conditions, the effect of erosion control nets would be increased by the infiltration capacity of the soil, equally for all samples. Therefore, the order of effectiveness of the samples should stay unchanged. To validate this theory, a field experiment was carried out where soil loss was recorded along with runoff characteristics. The data trends of discharge culmination under natural conditions were similar to trends under laboratory conditions and corresponded to soil loss records.

  3. Physical processes and landforms on beaches in short fetch environments in estuaries, small lakes and reservoirs: A review

    NASA Astrophysics Data System (ADS)

    Nordstrom, Karl F.; Jackson, Nancy L.

    2012-02-01

    This review is intended to identify differences between beaches in short-fetch environments and beaches on exposed coasts, while also distinguishing between the different subcategories of fetch-limited beaches. Subcategories are discussed largely in terms of estuaries, lakes and reservoirs. The term fetch-limited refers to basins that are small enough that distance rather than wind duration is always a limitation to wave generation. Attention is focused on basins where fetch distances are < 50 km. The dimensions of small basins provide a limit on the energy potential of the waves, causing geologic and biologic controls to be more significant and wind-induced currents, tidal currents and ice to be relatively more effective than on exposed beaches. Shoreline orientations differ greatly over short distances, causing great differences in exposure to dominant winds and isolating beach segments. Limited longshore sediment exchanges result in beach sediments that closely resemble local source materials. The absence of high-energy waves causes beaches and bar forms to be smaller, and the absence of swell waves following storms and the relatively calm conditions reduces the speed of recovery of post-storm profiles and the cyclic nature of beach response. The beaches are often fronted by flat shallow platforms that undergo little morphologic change and help dissipate waves at low water levels. The narrow beaches are poor sources of sediment for wind-blown sand and dunes are small or frequently absent. The narrow beaches and reduced wave energies allow upland vegetation and algae and seagrass to grow close to the active foreshore. This vegetation, the wrack deposited on the beach, and driftwood logs are better able to resist the low-energy waves and are more effective in resisting beach change. Erosion rates of 2-3 m yr- 1 are common in some estuaries and can be > 7 m yr- 1. Rates of up to 1.5 m yr- 1 can occur in small lakes and reservoirs. Shore parallel protection

  4. Controls of dust emission fluxes and wind erosion threshold on a wet playa

    NASA Astrophysics Data System (ADS)

    Wiggs, G.; King, J.; Thomas, D. S.; Washington, R.

    2012-12-01

    The control of dust emissions from crusted surfaces is both highly variable and difficult to measure directly. Seasonal changes in moisture availability, temperature, evaporation, surface roughness, and sediment supply result in a highly complex surface condition that remains to be fully described in the context of wind erosion potential. A highly intensive project on Sua Pan, Botswana using the PI-SWERL (portable wind tunnel) combined with surface measurements of crust and soil properties has led to a new understanding of the controls on wind erosion from these surfaces. The PI-SWERL is a highly portable wind tunnel that applies a wind shear to the surface using a motor-controlled rotating annular blade and measures resulting dust emissions with a DustTrak dust monitor. We undertook a sequence of tests with the PI-SWERL to obtain both the wind erosion threshold (using a slowly increasing shear velocity) and a dust emission flux (using a constant shear velocity) across a 12 km by 12 km grid across the pan surface. A total of just under 1000 wind tunnel tests and 2000 correlated measurements of a variety of surface properties including crust thickness, surface and subsurface soil moisture, shearing strength (shear vane), normal stress resistance (penetrometer), and surface roughness were conducted in August 2011. These results show that wind erosion potential is best described by measurements of normal stress resistance rather than shearing strength at low dust emission fluxes, but despite their frequent use in wind erosion studies of crusted surfaces neither metric provided a good explanation of higher dust emission fluxes. Surface soil moisture explained the most variation in both dust emissions and wind erosion threshold although much variation remains unexplained. Our results suggested that combining measurements of surface roughness, soil moisture, and crust thickness provided a reasonable explanation of wind erosion potential on the salt pan surface. As pan

  5. Quantifying Beach Response to Episodic Large Wave Events, a Predictive Empirical Model, Ocean Beach, San Francisco, CA

    NASA Astrophysics Data System (ADS)

    Hansen, J. E.; Barnard, P. L.

    2006-12-01

    Predicting beach response on an event scale is extremely difficult due to highly variable spatial and temporal conditions, lack of data on antecedent beach morphology, generic model shortcomings, and uncertainty of local forcing parameters. Each beach system is unique and classical beach erosion models may not be applicable to many high-energy beaches, especially those receiving large long-period waves. Therefore, developing an empirical model is the best way to predict future beach response at a given site. Based on 12 closely spaced (temporally) GPS topographic surveys during the winter of 2005-2006 at Ocean Beach, in San Francisco, California, we have developed a predictive empirical model that relates sub-aerial beach response to observed wave height, period, and direction. The model will provide important information to coastal managers, who will be able to better predict and mitigate possible loss from a forecasted wave event. Ocean Beach, located immediately south of the Golden Gate in San Francisco, is a high-energy, intermediate- slope beach that is exposed to waves generated in both the North and South Pacific. Winter breaking wave heights frequently reach 4 m and can exceed 7 m, with periods sometimes greater than 20 s. Our observations demonstrate that large seasonal variations in the sub-aerial beach profile are likely forced by several single large wave events. These events have led to the partial destruction of a recreational parking lot at the south end of the beach where an erosion hot spot is currently located, and continued erosion will threaten other parts of public infrastructure. This study, in combination with other ongoing research at Ocean Beach, will provide valuable insight that will not only aid local personnel in their management decisions but also contribute to a better understanding of sediment transport at high-energy beaches.

  6. Hydrological and sedimentary controls over fluvial thermal erosion, the Lena River, central Yakutia

    NASA Astrophysics Data System (ADS)

    Tananaev, Nikita I.

    2016-01-01

    Water regime and sedimentary features of the middle Lena River reach near Yakutsk, central Yakutia, were studied to assess their control over fluvial thermal erosion. The Lena River floodplain in the studied reach has complex structure and embodies multiple levels varying in height and origin. Two key sites, corresponding to high and medium floodplain levels, were surveyed in 2008 to describe major sedimentary units and properties of bank material. Three units are present in both profiles, corresponding to topsoil, overbank (cohesive), and channel fill (noncohesive) deposits. Thermoerosional activity is mostly confined to a basal layer of frozen channel fill deposits and in general occurs within a certain water level interval. Magnitude-frequency analysis of water level data from Tabaga gauging station shows that a single interval can be deemed responsible for the initiation of thermal action and development of thermoerosional notches. This interval corresponds to the discharges between 21,000 and 31,000 m3 s- 1, observed normally during spring meltwater peak and summer floods. Competence of fluvial thermal erosion depends on the height of floodplain level being eroded, as it acts preferentially in high floodplain banks. In medium floodplain banks, thermal erosion during spring flood is constrained by insufficient bank height, and erosion is essentially mechanical during summer flood season. Bank retreat rate is argued to be positively linked with bank height under periglacial conditions.

  7. Modeling of technical soil-erosion control measures and its impact on soil erosion off-site effects within urban areas

    NASA Astrophysics Data System (ADS)

    Dostal, Tomas; Devaty, Jan

    2013-04-01

    The paper presents results of surface runoff, soil erosion and sediment transport modeling using Erosion 3D software - physically based mathematical simulation model, event oriented, fully distributed. Various methods to simulate technical soil-erosion conservation measures were tested, using alternative digital elevation models of different precision and resolution. Ditches and baulks were simulated by three different approaches, (i) by change of the land-cover parameters to increase infiltration and decrease flow velocity, (ii) by change of the land-cover parameters to completely infiltrate the surface runoff and (iii) by adjusting the height of the digital elevation model by "burning in" the channels of the ditches. Results show advantages and disadvantages of each approach and conclude suitable methods for combinations of particular digital elevation model and purpose of the simulations. Further on a set of simulations was carried out to model situations before and after technical soil-erosion conservation measures application within a small catchment of 4 km2. These simulations were focused on quantitative and qualitative assessment of technical soil-erosion control measures impact on soil erosion off-site effects within urban areas located downstream of intensively used agricultural fields. The scenarios were built upon a raster digital elevation model with spatial resolution of 3 meters derived from LiDAR 5G vector point elevation data. Use of this high-resolution elevation model allowed simulating the technical soil-erosion control measures by direct terrain elevation adjustment. Also the structures within the settlements were emulated by direct change in the elevation of the terrain model. The buildings were lifted up to simulate complicated flow behavior of the surface runoff within urban areas, using approach of Arévalo (Arévalo, 2011) but focusing on the use of commonly available data without extensive detailed editing. Application of the technical

  8. Behaviour of Talitrus saltator (Crustacea: Amphipoda) on a rehabilitated sandy beach on the European Atlantic Coast (Portugal)

    NASA Astrophysics Data System (ADS)

    Bessa, Filipa; Rossano, Claudia; Nourisson, Delphine; Gambineri, Simone; Marques, João Carlos; Scapini, Felicita

    2013-01-01

    Environmental and human controls are widely accepted as the main structuring forces of the macrofauna communities on sandy beaches. A population of the talitrid amphipod Talitrus saltator (Montagu, 1808) was investigated on an exposed sandy beach on the Atlantic coast of Portugal (Leirosa beach) to estimate orientation capabilities and endogenous rhythms in conditions of recent changes in the landscape (artificial reconstruction of the foredune) and beach morphodynamics (stabilization against erosion from the sea). We tested sun orientation of talitrids on the beach and recorded their locomotor activity rhythms under constant conditions in the laboratory. The orientation data were analysed with circular statistics and multiple regression models adapted to angular distributions, to highlight the main factors and variables influencing the variation of orientation. The talitrids used the sun compass, visual cues (landscape and sun visibility) to orient and the precision of orientation varied according to the tidal regime (rising or ebbing tides). A well-defined free-running rhythm (circadian with in addition a bimodal rhythmicity, likely tidal) was highlighted in this population. This showed a stable behavioural adaptation on a beach that has experienced a process of artificial stabilization of the dune through nourishment actions over a decade. Monitoring the conditions of such dynamic environments and the resilience capacity of the inhabiting macroinfauna is a main challenge for sandy beach ecologists.

  9. 76 FR 68745 - Notice of Intent To Update the Upland Erosion Control and Revegetation and Maintenance Plan and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-07

    ... May 14, 1999. 64 FR 26572. The Plan and Procedures are referred to at 18 Code of Federal Regulations... Energy Regulatory Commission Notice of Intent To Update the Upland Erosion Control and Revegetation and... The staff of the Office of Energy Projects is in the process of reviewing its Upland Erosion...

  10. The Beach--A Natural Protection from the Sea.

    ERIC Educational Resources Information Center

    Sensabaugh, William M.

    1983-01-01

    The beach and sand dunes are the first line of defense protecting the land from the sea. The effectiveness of the beach is caused by its sloping surface which dissipates the energy of waves and by the flexibility of the slope which changes as the waves change. The process and rate of accretion and erosion are dependent on the size and frequency of…

  11. Evaluation of different techniques for erosion control on different roadcuts in its first year of implantation

    NASA Astrophysics Data System (ADS)

    Gomez, Jose Alfonso; Rodríguez, Abraham; Viedma, Antonio; Contreras, Valentin; Vanwalleghem, Tom; Taguas, Encarnación V.; Giráldez, Juan Vicente

    2014-05-01

    Linear infrastructures, such as highways and railways, present a large environmental impact. Among this impact is the effect on landscape and the modification of the hydrological conditions of the area and an increase in erosive processes (Martin et al., 2011). The increase of erosive processes is specially significant in roadbanks, resulting in high maintenance costs as well as security risks for the use of the infrastructure if it is not properly controlled. Among roadbanks, roadcuts are specially challenging areas for erosion control and ecological restoration, due to their usually steep slope gradient and poor conditions for establishment of vegetation. There are several studies in Mediterranean conditions indicating how the combination of semiarid conditions with, sporadic, intense rainfall events makes a successful vegetation development and erosion control in motorway roadbanks extremely difficult (e.g. Andrés and Jorbat, 2000; Bochet and García-Fayos, 2004). This communication presents the results of the first year evaluation (hydrological year 2012-2013) of five different erosion control strategies on six different locations under different materials on roadcuts of motorways or railways in Andalusia during 2012-2013 using natural rainfall and simulated rainfall. The six sites were located on roadcuts between 10 and 20 m long on slope steepness ranging from 40 to 90%, in motorways and railways spread over different materials in Andalusia. Site 1, Huelva was located on consolidated sand material, sites 2, Osuna I, site 3, Osuna II and site 4, Mancha Real, on marls. Sites 5, Guadix, and 6, Fiñana, were located on phyllites, in comparison a harder material. At each site 12 plots (10 m long and 2 m wide) were installed using metal sheets buried 10 cm within the soil with their longest side in the direction of the roadcut maximum slope. Six different treatments were evaluated at each site, two replications each. These treatments were: 1- A control with bare

  12. Earthquakes and beach ridges on Kamchatka

    NASA Astrophysics Data System (ADS)

    Bourgeois, J.; Ortuno, M.; Thibault, C.; Higman, B.; Pinegina, T.

    2003-04-01

    There are several proposed origins for beach ridges, or berms, with the majority of studies focused on Atlantic-type margins. Primary factors invoked for beach-ridge formation include changes in sea-level, in wave climate, and in sediment supply. On subduction-zone margins, co-seismic deformation can force any of these three factors. For example, subsidence of the shoreline (local sea level rise) will generally lead to coastal erosion, whereas shoreline uplift (subduing local wave climate) will strand beach ridges. Earthquake-triggered landslides may significantly increase sediment supply. Some authors working on Pacific margins have correlated either beach ridges (e.g., A. Kurbatov on Kamchatka; P. Saltonstall and G. Carver on Kodiak), or buried erosional scarps (e.g. R.A. Meyers et al., Washington State) with subduction-zone earthquakes and the seismic cycle. Our work on Kamchatka provides examples where buried scarps and beach ridges are superimposed, each pair of which we interpret to be the result of a single seismic cycle, apparently consistent with some other data and interpretations (Kodiak, particularly). That is, in a setting where the shoreline subsides during an earthquake and recovers thereafter, beach ridges overlie buried scarps. In one case on Kamchatka, in southern Vestnik Bay, there is a spectacular outcrop illustrating this relationship. This model by no means explains all beach ridges, so identifying earthquake-forced beach ridges remains a challenge.

  13. Managing the Arroyo Seco for Flood Prevention, Erosion Control, Waterway and Habitat Restoration

    SciTech Connect

    Sanchez, L; Wang, C; Laurant, J

    2003-02-06

    One of the most important tasks for a site facility manager is to ensure that appropriate channel erosion controls are applied to on-site drainage channels. These erosion controls must minimize risks to the public and structures. Water and sediment loads commonly originate from off-site sources and many of the traditional reactionary measures (installing rip-rap or some other form of bed or bank armor) simply transfer or delay the problem. State and federal agency requirements further complicate the management solution. One case in point is the Arroyo Seco, an intermittent stream that runs along the southwest corner of the Lawrence Livermore National Laboratory (LLNL) in Livermore, California. In 2001, LLNL contracted Questa Engineering Corporation to conduct hydraulic, geomorphic, and biological investigations and to prepare an alternatives and constraints analysis. From these investigations, LLNL has selected a water management plan that encompasses overall flood prevention, erosion control, and waterway and habitat restoration and enhancement elements. The most unique aspect of the Arroyo Seco management plan is its use of non-traditional and biotechnical techniques.

  14. [Mechanisms of grass in slope erosion control in Loess sandy soil region of Northwest China].

    PubMed

    Zhao, Chun-Hong; Gao, Jian-En; Xu, Zhen

    2013-01-01

    By adopting the method of simulated precipitation and from the viewpoint of slope hydrodynamics, in combining with the analysis of soil resistance to erosion, a quantitative study was made on the mechanisms of grass in controlling the slope erosion in the cross area of wind-water erosion in Loess Plateau of Northwest China under different combinations of rainfall intensity and slope gradient, aimed to provide basis to reveal the mechanisms of vegetation in controlling soil erosion and to select appropriate vegetation for the soil and water conservation in Loess Plateau. The grass Astragalus adsurgens with the coverage about 40% could effectively control the slope erosion. This grass had an efficiency of more than 70% in reducing sediment, and the grass root had a greater effect than grass canopy. On bare slope and on the slopes with the grass plant or only the grass root playing effect, there existed a functional relation between the flow velocity on the slopes and the rainfall intensity and slope gradient (V = DJ(0.33 i 0.5), where V is flow velocity, D is the comprehensive coefficient which varies with different underlying surfaces, i is rainfall intensity, and J is slope gradient). Both the grass root and the grass canopy could markedly decrease the flow velocity on the slopes, and increase the slope resistance, but the effect of grass root in decreasing flow velocity was greater while the effect in increasing resistance was smaller than that of grass canopy. The effect of grass root in increasing slope resistance was mainly achieved by increasing the sediment grain resistance, while the effect of canopy was mainly achieved by increasing the slope form resistance and wave resistance. The evaluation of the soil resistance to erosion by using a conceptual model of sediment generation by overland flow indicated that the critical shear stress value of bare slope and of the slopes with the grass plant or only the grass root playing effect was 0.533, 1.672 and 0

  15. Meta-analysis of the effects of plant roots in controlling concentrated flow erosion rates

    NASA Astrophysics Data System (ADS)

    Vannoppen, Wouter; Poesen, Jean; Vanmaercke, Matthias; De Baets, Sarah

    2015-04-01

    Vegetation is often used in ecological restoration programs to control various soil erosion processes. During the last two decades several studies reported on the effects of plant roots in controlling concentrated flow erosion rates. However a global analysis of the now available data on root effects is still lacking. Yet, a meta-data analysis will contribute to a better understanding of the soil-root interactions as our capability to assess the effectiveness of roots in reducing soil erosion rates due to concentrated flow in different environments remains difficult. The objectives of this study are therefore i) to provide a state of the art on studies quantifying the effectiveness of roots in reducing soil erosion rates due to concentrated flow; and ii) to explore the overall trends in erosion reduction as a function of the root (length) density, root system architecture and soil texture, based on a global analysis of published research data. We therefore compiled a dataset of measured relative soil detachment rates (RSD) for the root density (RD; 822 observations) as well as the root length density (RLD; 274 observations). Non-linear regression analyses showed that decreases in RSD as a function of RD and RLD could be best described with the Hill curve model. However, a large proportion of the variability in RSD could not be attributed to RD or RLD, resulting in a relatively low predictive accuracy of the Hill curve model with model efficiencies of 0.11 and 0.17 for RD and RLD respectively. Considering root architecture and soil texture yielded a better predictive model especially for RLD with ME of 0.37 for fibrous roots in a non-sandy soil. The unexplained variance is to a large extent attributable to measuring errors and differences in experimental set ups that could not be explicitly accounted for (e.g. tested plant species, soil and flow characteristics). However, using a Monte Carlo simulation approach, we were able to establish relationships that allow

  16. Controls on Quaternary Sediment Erosion and Provenance in the Himalayan Rain Shadow, Zanskar River, Northwest India

    NASA Astrophysics Data System (ADS)

    Jonell, T. N.; Clift, P. D.; Carter, A.

    2015-12-01

    The Asian Summer Monsoon exerts strong control over erosion in the frontal Himalaya and possibly farther onto the periphery of the Tibetan Plateau in the Himalayan rain shadow. This study evaluates the Zanskar River, a large rain shadow tributary to the Indus River system, to establish how monsoonal precipitation controls erosion patterns, sediment yield, and sediment composition in the Himalayan rain shadow. Bulk sediment petrography and U-Pb detrital zircon ages demonstrate that Zanskar River sands are overwhelmingly dominated by 600-850 Ma zircon, which is consistent with material eroding from Greater Himalayan lithologies. In particular, modern sediment production appears to be heavily concentrated in the wettest and most glaciated subcatchment. River terrace sands indicate that no significant change in the area of sediment production and basin-wide provenance signal has occurred since ~11.5 ka, despite changes in monsoon strength. Variability in subcatchment provenance signals, however, do shift locally with enhanced precipitation around the time of the Monsoon Maximum (10-8 ka). Detrital apatite fission track ages suggest rates of erosion typical for the northwest Indian Himalaya for the last 6.4 M.y. in Zanskar, in spite of the changing monsoonal climate. Together these data indicate most sediment in the Zanskar River is freshly-eroded and transmitted immediately downstream into the Indus River with only modest buffering in terraces.

  17. Environmental control on fish and macrocrustacean spring community-structure, on an intertidal sandy beach.

    PubMed

    Benazza, Achwak; Selleslagh, Jonathan; Breton, Elsa; Rabhi, Khalef; Cornille, Vincent; Bacha, Mahmoud; Lecuyer, Eric; Amara, Rachid

    2015-01-01

    The inter-annual variability of the fish and macrocrustacean spring community on an intertidal sandy beach near the Canche estuary (North of France) was studied from 2000 to 2013 based on weekly spring sampling over an 11-year period. Twenty-eight species representing 21 families were collected during the course of the study. The community was dominated by a few abundant species accounting for > 99% of the total species densities. Most individuals caught were young-of-the-year indicating the importance of this ecosystem for juvenile fishes and macrocrustaceans. Although standard qualitative community ecology metrics (species composition, richness, diversity, evenness and similarity) indicated notable stability over the study period, community structure showed a clear change since 2009. Densities of P. platessa, P. microps and A. tobianus decreased significantly since 2009, whereas over the period 2010-2013, the contribution of S. sprattus to total species density increased 4-fold. Co-inertia and generalised linear model analyses identified winter NAO index, water temperature, salinity and suspended particular matter as the major environmental factors explaining these changes. Although the recurrent and dense spring blooms of the Prymnesiophyte Phaeocystis globosa is one of the main potential threats in shallow waters of the eastern English Channel, no negative impact of its temporal change was detected on the fish and macrocrustacean spring community structure. PMID:25617852

  18. Environmental Control on Fish and Macrocrustacean Spring Community-Structure, on an Intertidal Sandy Beach

    PubMed Central

    Benazza, Achwak; Selleslagh, Jonathan; Breton, Elsa; Rabhi, Khalef; Cornille, Vincent; Bacha, Mahmoud; Lecuyer, Eric; Amara, Rachid

    2015-01-01

    The inter-annual variability of the fish and macrocrustacean spring community on an intertidal sandy beach near the Canche estuary (North of France) was studied from 2000 to 2013 based on weekly spring sampling over an 11-year period. Twenty-eight species representing 21 families were collected during the course of the study. The community was dominated by a few abundant species accounting for > 99% of the total species densities. Most individuals caught were young-of-the-year indicating the importance of this ecosystem for juvenile fishes and macrocrustaceans. Although standard qualitative community ecology metrics (species composition, richness, diversity, evenness and similarity) indicated notable stability over the study period, community structure showed a clear change since 2009. Densities of P. platessa, P. microps and A. tobianus decreased significantly since 2009, whereas over the period 2010-2013, the contribution of S. sprattus to total species density increased 4-fold. Co-inertia and generalised linear model analyses identified winter NAO index, water temperature, salinity and suspended particular matter as the major environmental factors explaining these changes. Although the recurrent and dense spring blooms of the Prymnesiophyte Phaeocystis globosa is one of the main potential threats in shallow waters of the eastern English Channel, no negative impact of its temporal change was detected on the fish and macrocrustacean spring community structure. PMID:25617852

  19. Performance and efficiency of geotextile-supported erosion control measures during simulated rainfall events

    NASA Astrophysics Data System (ADS)

    Obriejetan, Michael; Rauch, Hans Peter; Florineth, Florin

    2013-04-01

    Erosion control systems consisting of technical and biological components are widely accepted and proven to work well if installed properly with regard to site-specific parameters. A wide range of implementation measures for this specific protection purpose is existent and new, in particular technical solutions are constantly introduced into the market. Nevertheless, especially vegetation aspects of erosion control measures are frequently disregarded and should be considered enhanced against the backdrop of the development and realization of adaptation strategies in an altering environment due to climate change associated effects. Technical auxiliaries such as geotextiles typically used for slope protection (nettings, blankets, turf reinforcement mats etc.) address specific features and due to structural and material diversity, differing effects on sediment yield, surface runoff and vegetational development seem evident. Nevertheless there is a knowledge gap concerning the mutual interaction processes between technical and biological components respectively specific comparable data on erosion-reducing effects of technical-biological erosion protection systems are insufficient. In this context, an experimental arrangement was set up to study the correlated influences of geotextiles and vegetation and determine its (combined) effects on surface runoff and soil loss during simulated heavy rainfall events. Sowing vessels serve as testing facilities which are filled with top soil under application of various organic and synthetic geotextiles and by using a reliable drought resistant seed mixture. Regular vegetational monitoring as well as two rainfall simulation runs with four repetitions of each variant were conducted. Therefore a portable rainfall simulator with standardized rainfall intensity of 240 mm h-1 and three minute rainfall duration was used to stress these systems on different stages of plant development at an inclination of 30 degrees. First results show

  20. Impacts of storm chronology on the morphological changes of the Formby beach and dune system, UK

    NASA Astrophysics Data System (ADS)

    Dissanayake, P.; Brown, J.; Karunarathna, H.

    2015-04-01

    Impacts of storm chronology within a storm cluster on beach/dune erosion are investigated by applying the state-of-the-art numerical model XBeach to the Sefton coast, northwest England. Six temporal storm clusters of different storm chronologies were formulated using three storms observed during the 2013/14 winter. The storm power values of these three events nearly halve from the first to second event and from the second to third event. Cross-shore profile evolution was simulated in response to the tide, surge and wave forcing during these storms. The model was first calibrated against the available post-storm survey profiles. Cumulative impacts of beach/dune erosion during each storm cluster were simulated by using the post-storm profile of an event as the pre-storm profile for each subsequent event. For the largest event the water levels caused noticeable retreat of the dune toe due to the high water elevation. For the other events the greatest evolution occurs over the bar formations (erosion) and within the corresponding troughs (deposition) of the upper beach profile. The sequence of events impacting the size of this ridge-runnel feature is important as it consequently changes the resilience of the system to the most extreme event that causes dune retreat. The highest erosion during each single storm event was always observed when that storm initialised the storm cluster. The most severe storm always resulted in the most erosion during each cluster, no matter when it occurred within the chronology, although the erosion volume due to this storm was reduced when it was not the primary event. The greatest cumulative cluster erosion occurred with increasing storm severity; however, the variability in cumulative cluster impact over a beach/dune cross-section due to storm chronology is minimal. Initial storm impact can act to enhance or reduce the system resilience to subsequent impact, but overall the cumulative impact is controlled by the magnitude and number of

  1. Impacts of storm chronology on the morphological changes of the Formby beach and dune system, UK

    NASA Astrophysics Data System (ADS)

    Dissanayake, P.; Brown, J.; Karunarathna, H.

    2015-07-01

    Impacts of storm chronology within a storm cluster on beach/dune erosion are investigated by applying the state-of-the-art numerical model XBeach to the Sefton coast, northwest England. Six temporal storm clusters of different storm chronologies were formulated using three storms observed during the 2013/2014 winter. The storm power values of these three events nearly halve from the first to second event and from the second to third event. Cross-shore profile evolution was simulated in response to the tide, surge and wave forcing during these storms. The model was first calibrated against the available post-storm survey profiles. Cumulative impacts of beach/dune erosion during each storm cluster were simulated by using the post-storm profile of an event as the pre-storm profile for each subsequent event. For the largest event the water levels caused noticeable retreat of the dune toe due to the high water elevation. For the other events the greatest evolution occurs over the bar formations (erosion) and within the corresponding troughs (deposition) of the upper-beach profile. The sequence of events impacting the size of this ridge-runnel feature is important as it consequently changes the resilience of the system to the most extreme event that causes dune retreat. The highest erosion during each single storm event was always observed when that storm initialised the storm cluster. The most severe storm always resulted in the most erosion during each cluster, no matter when it occurred within the chronology, although the erosion volume due to this storm was reduced when it was not the primary event. The greatest cumulative cluster erosion occurred with increasing storm severity; however, the variability in cumulative cluster impact over a beach/dune cross section due to storm chronology is minimal. Initial storm impact can act to enhance or reduce the system resilience to subsequent impact, but overall the cumulative impact is controlled by the magnitude and number

  2. Determining discharge-coefficient ratings for selected coastal control structures in Broward and Palm Beach counties, Florida

    USGS Publications Warehouse

    Tillis, G.M.; Swain, E.D.

    1998-01-01

    Discharges through 10 selected coastal control structures in Broward and Palm Beach Counties, Florida, are presently computed using the theoretical discharge-coefficient ratings developed from scale modeling, theoretical discharge coefficients, and some field calibrations whose accuracies for specific sites are unknown. To achieve more accurate discharge-coefficient ratings for the coastal control structures, field discharge measurements were taken with an Acoustic Doppler Current Profiler at the coastal control structures under a variety of flow conditions. These measurements were used to determine computed discharge-coefficient ratings for the coastal control structures under different flow regimes: submerged orifice flow, submerged weir flow, free orifice flow, and free weir flow. Theoretical and computed discharge-coefficient ratings for submerged orifice and weir flows were determined at seven coastal control structures, and discharge ratings for free orifice and weir flows were determined at three coastal control structures. The difference between the theoretical and computed discharge-coefficient ratings varied from structure to structure. The theoretical and computed dischargecoefficient ratings for submerged orifice flow were within 10 percent at four of seven coastal control structures; however, differences greater than 20 percent were found at two of the seven structures. The theoretical and computed discharge-coefficient ratings for submerged weir flow were within 10 percent at three of seven coastal control structures; however, differences greater than 20 percent were found at four of the seven coastal control structures. The difference between theoretical and computed discharge-coefficient ratings for free orifice and free weir flows ranged from 5 to 32 percent. Some differences between the theoretical and computed discharge-coefficient ratings could be better defined with more data collected over a greater distribution of measuring conditions.

  3. Morphodynamics of a mesotidal rocky beach: Palmeras beach, Gorgona Island National Natural Park, Colombia

    NASA Astrophysics Data System (ADS)

    Gómez-García, A. M.; Bernal, G. R.; Osorio, A. F.; Botero, V.

    2014-10-01

    The response of a rocky beach to different possible combinations of hydrodynamic conditions (tides, waves, oceanic currents) has been little studied. In this work, the morphodynamic response to different hydrodynamic forcing is evaluated from sedimentological and geomorphological analysis in seasonal and medium term (19 years) scale in Palmeras beach, located in the southwest of Gorgona Island National Natural Park (NNP), a mesotidal rocky island on the Colombian Pacific continental shelf. Palmeras is an important nesting area of two types of marine turtles, with no anthropogenic stress. In the last years, coastal erosion has reduced the beach width, restricting the safe areas for nesting and conservation of these species. Until now, the sinks, sources, reservoirs, rates, and paths of sediments were unknown, as well as their hydrodynamic forcing. The beach seasonal variability, from October 2010 to August 2012, was analyzed based on biweekly or monthly measurements of five beach profiles distributed every 200 m along the 1.2 km of beach length. The main paths for sediment transport were defined from the modeling of wave currents with the SMC model (Coastal Modeling System), as well as the oceanic currents, simulated for the dry and wet seasons of 2011 using the ELCOM model (Estuary and Lake COmputer Model). Extreme morphologic variations over a time span of 19 years were analyzed with the Hsu and Evans beach static equilibrium parabolic model, from one wave diffraction point which dominates the general beach plan shape. The beach lost 672 m3/m during the measuring period, and erosional processes were intensified during the wet season. The beach trends responded directly to a wave mean energy flux change, resulting in an increase of up to 14 m in the width northward and loss of sediments in the beach southward. This study showed that to obtain the integral morphodynamic behavior of a rocky beach it is necessary to combine information of hydrodynamic, sedimentology

  4. Emergent behavior in a coupled economic and coastline model for beach nourishment

    NASA Astrophysics Data System (ADS)

    Lazarus, E. D.; McNamara, D. E.; Smith, M. D.; Gopalakrishnan, S.; Murray, A. B.

    2011-12-01

    Developed coastal areas often exhibit a strong systemic coupling between shoreline dynamics and economic dynamics. "Beach nourishment", a common erosion-control practice, involves mechanically depositing sediment from outside the local littoral system onto an actively eroding shoreline to alter shoreline morphology. Natural sediment-transport processes quickly rework the newly engineered beach, causing further changes to the shoreline that in turn affect subsequent beach-nourishment decisions. To the limited extent that this landscape/economic coupling has been considered, evidence suggests that towns tend to employ spatially myopic economic strategies under which individual towns make isolated decisions that do not account for their neighbors. What happens when an optimization strategy that explicitly ignores spatial interactions is incorporated into a physical model that is spatially dynamic? The long-term attractor that develops for the coupled system (the state and behavior to which the system evolves over time) is unclear. We link an economic model, in which town-manager agents choose economically optimal beach-nourishment intervals according to past observations of their immediate shoreline, to a simplified coastal-dynamics model that includes alongshore sediment transport and background erosion (e.g. from sea-level rise). Simulations suggest that feedbacks between these human and natural coastal processes can generate emergent behaviors. When alongshore sediment transport and spatially myopic nourishment decisions are coupled, increases in the rate of sea-level rise can destabilize economically optimal nourishment practices into a regime characterized by the emergence of chaotic shoreline evolution.

  5. The contribution of mulches to control high soil erosion rates in vineyards in Eastern Spain

    NASA Astrophysics Data System (ADS)

    Cerdà, Artemi; Jordán, Antonio; Zavala, Lorena; José Marqués, María; Novara, Agata

    2014-05-01

    Soil erosion take place in degraded ecosystem where the lack of vegetation, drought, erodible parent material and deforestation take place (Borelli et al., 2013; Haregeweyn et al., 2013; Zhao et al., 2013). Agriculture management developed new landscapes (Ore and Bruins, 2012) and use to trigger non-sustainable soil erosion rates (Zema et al., 2012). High erosion rates were measured in agriculture land (Cerdà et al., 2009), but it is also possible to develop managements that will control the soil and water losses, such as organic amendments (Marqués et al., 2005), plant cover (Marqués et al., 2007) and geotextiles (Giménez Morera et al., 2010). The most successful management to restore the structural stability and the biological activity of the agriculture soil has been the organic mulches (García Orenes et al; 2009; 2010; 2012). The straw mulch is also very successful on bare fire affected soil (Robichaud et al., 2013a; 2013b), which also contributes to a more stable soil moisture content (García-Moreno et al., 2013). The objective of this research is to determine the impact of two mulches: wheat straw and chipped branches, on the soil erosion rates in a rainfed vineyard in Eastern Spain. The research site is located in the Les Alcusses Valley within the Moixent municipality. The Mean annual temperature is 13 ºC, and the mean annual rainfall 455 mm. Soil are sandy loam, and are developed at the foot-slope of a Cretaceous limestone range, the Serra Grossa range. The soils use to be ploughed and the features of soil erosion are found after each thunderstorm. Rills are removed by ploughing. Thirty rainfall simulation experiments were carried out in summer 2011 during the summer drought period. The simulated rainfall lasted during 1 hour at a 45 mmh-1 intensity on 1 m2 plots (Cerdà and Doerr, 2010; Cerdà and Jurgensen 2011). Ten experiments were carried out on the control plots (ploughed), 10 on straw mulch covered plots, and 10 on chipped branches covered

  6. Hydrodynamic, neotectonic and climatic control of the evolution of a barrier beach in the microtidal environment of the NE Ionian Sea (eastern Mediterranean)

    NASA Astrophysics Data System (ADS)

    Poulos, Serafim E.; Ghionis, George; Verykiou, Efthymia; Roussakis, Grigoris; Sakellariou, Dimitrios; Karditsa, Aikaterini; Alexandrakis, George; Petrakis, Stelios; Sifnioti, Dafni; Panagiotopoulos, Ioannis P.; Andris, Periklis; Georgiou, Panos

    2015-02-01

    The existence of barrier beaches is crucial, as they act as a buffer zone to the associated wetlands, whilst they are sensitive to climate change. The present study offers an insight into the processes controlling the formation and evolution of the Gyra barrier beach (NW coast of the island of Lefkada) in the microtidal, tectonically very active Ionian Sea under the influence of regional climate change and human interference. Such investigations are sparse in the literature. Existing information regarding regional geology, sediment availability and human intervention is combined with the collection of geophysical data, field observations and simulations of nearshore hydro- and sediment dynamics, analysis of climatic variations with respect to offshore wind/wave patterns (including storminess), in situ measurements of recent morphometric changes (2006-2008) and historical shoreline changes (since the 1960s). The recent formation and evolution (mostly under retreat) of the Gyra barrier beach is shown to be the combined result of the regional seismotectonic setting, relative increase of sea level, coastal sediment transport patterns, as well as human impact (negative) on primarily terrestrial sediment influxes. The current erosional trend of the barrier beach is associated with a shift in the wind and wave direction (from SW to NW) of extreme storm events in the Ionian Sea since the 1980s. The regional climatic variations of the last decades are well correlated with the trend of the North Atlantic Oscillation.

  7. Does Rock Mass Strength Control the Rate of Alpine Cliff Erosion?

    NASA Astrophysics Data System (ADS)

    Moore, J. R.; Sanders, J. W.; Dietrich, W. E.; Glaser, S. D.

    2007-12-01

    Collapse of cliff faces by rockfall is a primary mode of bedrock erosion in alpine environments and plays a controlling role in mass removal from these systems. In this work we investigate the influence of rock mass strength on the retreat rate of alpine rock slopes. To quantify rockwall competence we employed the Slope Mass Rating (SMR) geomechanical strength index, which combines numerous factors that affect the strength of a rock mass, such as intact rock strength, joint frequency, joint condition, and more. The magnitude of cliff retreat was calculated by estimating the volume of talus at the toe of each rockwall and projecting that material back onto the cliff face, while accounting for the loss of production area as talus buries the base of the wall. Selecting sites within basins swept clean by advancing LGM glaciers allowed us to estimate the time period over which talus accumulation occurred (i.e. the production time). Dividing the magnitude of normal cliff retreat by the production time, we calculated erosion rates for each site. Our study area included a portion of the Sierra Nevada from Yosemite National Park in the south to Lake Tahoe in the north. Rockwall recession rates determined for 40 alpine cliffs in this region varied from 0.02 to 1.22 mm/year, with an average value of 0.28 mm/year. We found good correlation between rockwall recession rate and SMR that is best characterized by an exponential decrease in erosion rate with increasing rock mass strength. Analysis of the individual components of the SMR reveals that joint orientation (with respect to the cliff face) is the most important parameter affecting the rockwall erosion rate. The complete SMR score, however, best synthesizes the lithologic variables that contribute to the strength and erodibility of these rock slopes. Our data reveal no strong independent correlation between the measured rockwall retreat rate and environmental attributes (such as site elevation, aspect, cliff slope length

  8. Can warmwater streams be rehabilitated using watershed-scale standard erosion control measures alone?

    PubMed

    Shields, F Douglas; Knight, Scott S; Cooper, Charles M

    2007-07-01

    Degradation of warmwater streams in agricultural landscapes is a pervasive problem, and reports of restoration effectiveness based on monitoring data are rare. Described is the outcome of rehabilitation of two deeply incised, unstable sand-and-gravel-bed streams. Channel networks of both watersheds were treated using standard erosion control measures, and aquatic habitats within 1-km-long reaches of each stream were further treated by addition of instream structures and planting woody vegetation on banks ("habitat rehabilitation"). Fish and their habitats were sampled semiannually during 1-2 years before rehabilitation, 3-4 years after rehabilitation, and 10-11 years after rehabilitation. Reaches with only erosion control measures located upstream from the habitat measure reaches and in similar streams in adjacent watersheds were sampled concurrently. Sediment concentrations declined steeply throughout both watersheds, with means > or = 40% lower during the post-rehabilitation period than before. Physical effects of habitat rehabilitation were persistent through time, with pool habitat availability much higher in rehabilitated reaches than elsewhere. Fish community structure responded with major shifts in relative species abundance: as pool habitats increased after rehabilitation, small-bodied generalists and opportunists declined as certain piscivores and larger-bodied species such as centrarchids and catostomids increased. Reaches without habitat rehabilitation were significantly shallower, and fish populations there were similar to the rehabilitated reaches prior to treatment. These findings are applicable to incised, warmwater streams draining agricultural watersheds similar to those we studied. Rehabilitation of warmwater stream ecosystems is possible with current knowledge, but a major shift in stream corridor management strategies will be needed to reverse ongoing degradation trends. Apparently, conventional channel erosion controls without instream habitat

  9. Can Warmwater Streams Be Rehabilitated Using Watershed-Scale Standard Erosion Control Measures Alone?

    NASA Astrophysics Data System (ADS)

    Shields, F. Douglas; Knight, Scott S.; Cooper, Charles M.

    2007-07-01

    Degradation of warmwater streams in agricultural landscapes is a pervasive problem, and reports of restoration effectiveness based on monitoring data are rare. Described is the outcome of rehabilitation of two deeply incised, unstable sand-and-gravel-bed streams. Channel networks of both watersheds were treated using standard erosion control measures, and aquatic habitats within 1-km-long reaches of each stream were further treated by addition of instream structures and planting woody vegetation on banks (“habitat rehabilitation”). Fish and their habitats were sampled semiannually during 1-2 years before rehabilitation, 3-4 years after rehabilitation, and 10-11 years after rehabilitation. Reaches with only erosion control measures located upstream from the habitat measure reaches and in similar streams in adjacent watersheds were sampled concurrently. Sediment concentrations declined steeply throughout both watersheds, with means ≥40% lower during the post-rehabilitation period than before. Physical effects of habitat rehabilitation were persistent through time, with pool habitat availability much higher in rehabilitated reaches than elsewhere. Fish community structure responded with major shifts in relative species abundance: as pool habitats increased after rehabilitation, small-bodied generalists and opportunists declined as certain piscivores and larger-bodied species such as centrarchids and catostomids increased. Reaches without habitat rehabilitation were significantly shallower, and fish populations there were similar to the rehabilitated reaches prior to treatment. These findings are applicable to incised, warmwater streams draining agricultural watersheds similar to those we studied. Rehabilitation of warmwater stream ecosystems is possible with current knowledge, but a major shift in stream corridor management strategies will be needed to reverse ongoing degradation trends. Apparently, conventional channel erosion controls without instream habitat

  10. Monsoonal versus Anthropogenic Controls on Erosion Patterns and Sediment Flux in the Song Gianh, Vietnam

    NASA Astrophysics Data System (ADS)

    Clift, Peter; Jonell, Tara; Carter, Andrew; Van Hoang, Long; Böning, Philipp

    2016-04-01

    The Song Gianh is a small drainage on the northern central coast of Vietnam that delivers sediment into the Gulf of Tonkin. The basin provides the opportunity to evaluate what surface processes control continental erosion rates and patterns because there is a strong monsoonal precipitation gradient from the SW to NE. We apply several complimentary provenance methods to modern siliciclastic sediments of the Song Gianh to pinpoint regions of focused sediment generation and evaluate how sediment is mixed downstream and delivered to the ocean. We find that detrital zircon populations of Song Gianh main channel change radically downstream of the confluence with the northern Rao Tro tributary, which is dominated by 100-300 Ma grains eroded from granite bedrock. This tributary provides almost as much zircon to the main channel as all the headwater tributaries combined, despite being a much smaller, drier, and flatter sub-basin. In contrast, bulk sediment Nd and Sr isotopes indicate that most sediment is derived from the wetter headwater tributaries. Contribution from the southern tributaries to the net siliciclastic river flux is negligible. Precipitation and topography do not appear to modulate zircon production in the modern river although regions controlling bulk Nd and Sr compositions are wetter and have higher local relief. This apparent contrast in regions of sediment production suggests disequilibrium and differential travel times for zircon and mineral phases rich in Nd and Sr. Optically Stimulated Luminescence (OSL) dating of alluvial terraces on the main channel show that the valleys aggraded rapidly from ~7-9 ka during a period of strong summer monsoon, suggesting that heavy rainfall generated large sediment volumes. Younger terraces dated to 500-1000 yrs BP are interpreted to reflect erosion and aggradation driven by extensive human agriculture. We speculate that agriculture, together with bedrock compositions, are the most likely control on producing the

  11. Evaluation of different techniques for erosion control on different roadcuts in its first year of implantation

    NASA Astrophysics Data System (ADS)

    Gomez, Jose Alfonso; Rodríguez, Abraham; Viedma, Antonio; Contreras, Valentin; Vanwalleghem, Tom; Taguas, Encarnación V.; Giráldez, Juan Vicente

    2014-05-01

    Linear infrastructures, such as highways and railways, present a large environmental impact. Among this impact is the effect on landscape and the modification of the hydrological conditions of the area and an increase in erosive processes (Martin et al., 2011). The increase of erosive processes is specially significant in roadbanks, resulting in high maintenance costs as well as security risks for the use of the infrastructure if it is not properly controlled. Among roadbanks, roadcuts are specially challenging areas for erosion control and ecological restoration, due to their usually steep slope gradient and poor conditions for establishment of vegetation. There are several studies in Mediterranean conditions indicating how the combination of semiarid conditions with, sporadic, intense rainfall events makes a successful vegetation development and erosion control in motorway roadbanks extremely difficult (e.g. Andrés and Jorbat, 2000; Bochet and García-Fayos, 2004). This communication presents the results of the first year evaluation (hydrological year 2012-2013) of five different erosion control strategies on six different locations under different materials on roadcuts of motorways or railways in Andalusia during 2012-2013 using natural rainfall and simulated rainfall. The six sites were located on roadcuts between 10 and 20 m long on slope steepness ranging from 40 to 90%, in motorways and railways spread over different materials in Andalusia. Site 1, Huelva was located on consolidated sand material, sites 2, Osuna I, site 3, Osuna II and site 4, Mancha Real, on marls. Sites 5, Guadix, and 6, Fiñana, were located on phyllites, in comparison a harder material. At each site 12 plots (10 m long and 2 m wide) were installed using metal sheets buried 10 cm within the soil with their longest side in the direction of the roadcut maximum slope. Six different treatments were evaluated at each site, two replications each. These treatments were: 1- A control with bare

  12. Erosion controls on the metamorphic core complex dynamics and its relationship with syn- rift basin evolution

    NASA Astrophysics Data System (ADS)

    Wang, Kun; Burov, Evgueni; Gumiaux, Charles; Chen, Yan; Zhao, Liang

    2015-04-01

    below the sedimentary cover. The experiments also demonstrate strong dependence of the system evolution on the initial thermo-rheological structure. The geometry and topography of the rift system is largely controlled by syn-extensional erosion that also strongly affects vertical and lateral movements during the rifting phase. The predicted rift dynamics can be compared to the case of the wide rift system of the eastern part of North China Craton.

  13. Corrective measures technology for shallow land burial at arid sites: field studies of biointrusion barriers and erosion control

    SciTech Connect

    Nyhan, J.W.; Hakonson, T.E.; Lopez, E.A.

    1986-03-01

    The field research program involving corrective measures technologies for arid shallow land burial (SLB) sites is described. Results of field testing of a biointrusion barrier installed at a close-out waste disposal site (Area B) at Los Alamos are presented. Soil erosion and infiltration of water into a simulated trench cap with various surface treatments were measured, and the interaction between erosion control and subsurface water dynamics is discussed relative to waste management.

  14. The influence of anthropic actions on the evolution of an urban beach: Case study of Marineta Cassiana beach, Spain.

    PubMed

    Pagán, J I; Aragonés, L; Tenza-Abril, A J; Pallarés, P

    2016-07-15

    Coastal areas have been historically characterized as being a source of wealth. Nowadays, beaches have become more relevant as a place for rest and leisure. This had led to a very high population pressure due to rapid urbanisation processes. The impacts associated with coastal tourism, demand the development of anthropic actions to protect the shoreline. This paper has studied the impacts of these actions on the Marineta Cassiana beach, in Denia, Spain. This particular Mediterranean beach has traditionally suffered a major shoreline regression, and the beach nourishments carried out in the 1980s would not have achieved the reliability desired. This research has analysed the historic evolution of the beach and its environment for a period of 65years (1950-2015). A Geographic Information System (GIS) has been used to integrate and perform a spatial analysis of urban development, soil erosion, stream flow, swell, longshore transport, submerged vegetation species and shoreline evolution. The results show how the anthropic actions have affected the shoreline. After the excessive urban development of the catchments, there is no natural sediment supply to the beach. The change in the typology of the sediment, from pebbles to sand, during the beach nourishments has led to a crucial imbalance in the studied area. Moreover, the beach area gained has disappeared, affecting the Posidonia oceanica meadow, and incrementing the erosion rates. The findings obtained are relevant, not only in the management and maintenance of the beaches, but also, in the decision-making for future nourishments. PMID:27065444

  15. Factors controlling gully erosion at different spatial and temporal scales in rangelands of SW Spain

    NASA Astrophysics Data System (ADS)

    Gómez Gutiérrez, Á.; Schnabel, S.; Lavado Contador, J. F.; Pulido Fernández, M.

    2009-04-01

    Mediterranean climate with Atlantic influences. Results showed that at the catchment scale, and for a short period (1-10 years), rainfall and soil moisture were the most important factors controlling gully erosion rates. In fact, gully erosion was highly related with the rainfall amount (r=0,90), with the number of times event discharge exceeded 1000 cubic meters (r=0,76) and with the number of times peak discharge exceeded 100 l/s (r=0,72). However, when the temporal scale was extended to several decades (from 1945 to 2006), land use and vegetation cover (specially the extension of cultivated area and livestock density) proved to be the most important factors determining the area affected by gullying. With respect to the spatial variation of gullying at the regional scale, the model results indicate lithology as being the most important variable, followed by vegetation structure and summer rainfall. This model was able to explain a large portion of the spatial distribution of gullies at the regional scale. Concluding, at different spatial and temporal scales the importance of factors which determine gully erosion intensity, extension and rates varies notably. At the short-term rainfall and runoff dynamics and the moisture content of the sediments are the dominant factors, whereas at the medium-term land use and vegetation cover become more important. At the regional scale lithology and vegetation turned out to be the dominant factors in determining the location of areas susceptible to gully erosion in rangelands of Extremadura.

  16. Erosion rates as a potential bottom-up control of forest structural characteristics in the Sierra Nevada Mountains.

    PubMed

    Milodowski, David T; Mudd, Simon M; Mitchard, Edward T A

    2015-01-01

    The physical characteristics of landscapes place fundamental constraints on vegetation growth and ecosystem function. In actively eroding landscapes, many of these characteristics are controlled by long-term erosion rates: increased erosion rates generate steeper topography and reduce the depth and extent of weathering, limiting moisture storage capacity and impacting nutrient availability. Despite the potentially important bottom-up control that erosion rates place on substrate characteristics, the relationship between the two is largely unexplored. We investigate spatial variations in aboveground biomass (AGB) across a structurally diverse mixed coniferous/deciduous forest with an order of magnitude erosion-rate gradient in the Northern Californian Sierra Nevada, USA, using high resolution LiDAR data and field plots. Mean basin slope, a proxy for erosion rate, accounts for 32% of variance in AGB within our field area (P < 0.001), considerably outweighing the effects of mean annual precipitation, temperature, and bedrock lithology. This highlights erosion rate as a potentially important, but hitherto unappreciated, control on AGB and forest structure. PMID:26236887

  17. Assessment of water quality in the South Indian River Water Control District, Palm Beach County, Florida, 1989-94

    USGS Publications Warehouse

    Lietz, A.C.

    1996-01-01

    A study was conducted to assess ground-water and surface-water quality in the South Indian River Water Control District in northern Palm Beach County from 1989 to 1994. Contamination of the surficial aquifer system and availability of a potable water supply have become of increasing concern. The study consisted of sampling 11 ground-water wells and 14 surface- water sites for determination of major inorganic constituents and physical characteristics, trace metals, nitrogen and phosphorus species, and synthetic organic compounds. Sodium and chloride concentrations exceeded Florida drinking-water standards in ground water at two wells, dissolved- solids concentrations at five ground-water wells and one surface-water site, and color values at all 11 ground-water wells and all 14 surface-water sites. Other constituents also exhibited concentrations that exceeded drinking-water standards. Cadmium and zinc concentrations exceeded the standards in ground water at one well, and lead concentrations exceeded the standard in ground water at five wells. Nitrogen and phosphorus specie concentrations did not exceed respective drinking-water standards in any ground-water or surface-water samples. Several synthetic organic compounds were detected at or above 50 micrograms per liter in water samples collected from six ground-water wells and three surface-water sites.

  18. Use of a mobile terrestrial laser system to quantify the impact of rigid coastal protective structures on sandy beaches, Quebec, Canada

    NASA Astrophysics Data System (ADS)

    Van-Wierts, S.; Bernatchez, P.

    2012-04-01

    Coastal erosion is an important issue within the St-Lawrence estuary and gulf, especially in zones of unconsolidated material. Wide beaches are important coastal environments; they act as a buffer against breaking waves by absorbing and dissipating their energy, thus reducing the rate of coastal erosion. They also offer protection to humans and nearby ecosystems, providing habitat for plants, animals and lifeforms such as algae and microfauna. Conventional methods, such as aerial photograph analysis, fail to adequately quantify the morphosedimentary behavior of beaches at the scale of a hydrosedimentary cells. The lack of reliable and quantitative data leads to considerable errors of overestimation and underestimation of sediment budgets. To address these gaps and to minimize acquisition costs posed by airborne LiDAR survey, a mobile terrestrial LiDAR has been set up to acquire topographic data of the coastal zone. The acquisition system includes a LiDAR sensor, a high precision navigation system (GPS-INS) and a video camera. Comparison of LiDAR data with 1050 DGPS control points shows a vertical mean absolute error of 0.1 m in beach areas. The extracted data is used to calculate sediment volumes, widths, slopes, and a sediment budget index. A high accuracy coastal characterization is achieved through the integration of laser data and video. The main objective of this first project using this system is to quantify the impact of rigid coastal protective structures on sediment budget and beach morphology. Results show that the average sediment volume of beaches located before a rock armour barrier (12 m3/m) were three times narrower than for natural beaches (35,5 m3/m). Natural beaches were also found to have twice the width (25.4 m) of the beaches bordering inhabited areas (12.7 m). The development of sediment budget index for beach areas is an excellent proxy to quickly identify deficit areas and therefore the coastal segments most at risk of erosion. The obtained

  19. Robotic weld overlay coatings for erosion control. [Quarterly report, July--September 1993

    SciTech Connect

    Levin, B.F.; DuPont, J.N.; Marder, A.R.

    1993-10-20

    In the previous period of work, twelve overlay hardfacing alloys were selected for erosion testing based upon a literature review. All twelve coatings were deposited on 1018 steel substrates using the plasma arc welding process. Ten samples from each coating were prepared for erosion testing. The coating deposition and sample preparation procedures were described in the previous quarterly report. During the past quarter, all the coatings were erosion tested at 400 C. The erosion resistance of each coating was evaluated by determining the steady state erosion rate. In addition, the microstructure of each coating was characterized before and after the erosion tests. This progress report describes the erosion test results and coating microstructures. Also, a preliminary analysis on the relationships, between weld overlay coating hardness, microstructure, and erosion resistance will be discussed.

  20. Ecosystem services in Mediterranean river basin: climate change impact on water provisioning and erosion control.

    PubMed

    Bangash, Rubab F; Passuello, Ana; Sanchez-Canales, María; Terrado, Marta; López, Alfredo; Elorza, F Javier; Ziv, Guy; Acuña, Vicenç; Schuhmacher, Marta

    2013-08-01

    The Mediterranean basin is considered one of the most vulnerable regions of the world to climate change and such changes impact the capacity of ecosystems to provide goods and services to human society. The predicted future scenarios for this region present an increased frequency of floods and extended droughts, especially at the Iberian Peninsula. This paper evaluates the impacts of climate change on the water provisioning and erosion control services in the densely populated Mediterranean Llobregat river basin of. The assessment of ecosystem services and their mapping at the basin scale identify the current pressures on the river basin including the source area in the Pyrenees Mountains. Drinking water provisioning is expected to decrease between 3 and 49%, while total hydropower production will decrease between 5 and 43%. Erosion control will be reduced by up to 23%, indicating that costs for dredging the reservoirs as well as for treating drinking water will also increase. Based on these data, the concept for an appropriate quantification and related spatial visualization of ecosystem service is elaborated and discussed. PMID:23660520

  1. Control technology for integrated circuit fabrication at Micro-Circuit Engineering, Incorporated, West Palm Beach, Florida

    NASA Astrophysics Data System (ADS)

    Mihlan, G. I.; Mitchell, R. I.; Smith, R. K.

    1984-07-01

    A survey to assess control technology for integrated circuit fabrication was conducted. Engineering controls included local and general exhaust ventilation, shielding, and personal protective equipment. Devices or work stations that contained toxic materials that were potentially dangerous were controlled by local exhaust ventilation. Less hazardous areas were controlled by general exhaust ventilation. Process isolation was used in the plasma etching, low pressure chemical vapor deposition, and metallization operations. Shielding was used in ion implantation units to control X-ray emissions, in contact mask alignes to limit ultraviolet (UV) emissions, and in plasma etching units to control radiofrequency and UV emissions. Most operations were automated. Use of personal protective equipment varied by job function.

  2. Influence of Gully Erosion Control on Amphibian and Reptile Communities Within Riparian Zones of Channelized Streams

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Riparian zones of streams in northern Mississippi have been impacted by agriculture, channelization, channel incision, and gully erosion. Gully erosion is the most severe form of erosion and has resulted in the fragmentation of remnant riparian zones within agricultural watersheds. One widely used c...

  3. Influence of gully erosion control on amphibian and reptile communities within riparian zones of channelized streams

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Riparian zones of streams in northern Mississippi have been impacted by agriculture, channelization, channel incision, and gully erosion. Gully erosion is the most severe form of erosion and has resulted in the fragmentation of remnant riparian zones within agricultural watersheds. One widely used c...

  4. Soil tillage conservation and its effect on erosion control, water management and carbon sequestration

    NASA Astrophysics Data System (ADS)

    Rusu, Dr.; Gus, Dr.; Bogdan, Dr.; Moraru, Dr.; Pop, Dr.; Clapa, Dr.; Pop, Drd.

    2009-04-01

    fuel for preparing the germination bed. Presently it is necessary a change concerning the concept of conservation practices and a new approach regarding the control of erosion. The real conservation of soil must be expanded beyond the traditional understanding of soil erosion. The real soil conservation is represented by carbon management. We need to focus to another level concerning conservation by focusing on of soil quality. Carbon management is necessary for a complex of matters including soil, water management, field productivity, biological fuel and climatic change. Profound research is necessary in order to establish the carbon sequestration practices and their implementation impact.

  5. Soil tillage conservation and its effect on erosion control, water management and carbon sequestration

    NASA Astrophysics Data System (ADS)

    Rusu, T.; Gus, P.; Bogdan, I.; Moraru, P.; Pop, A.; Clapa, D.; Pop, L.

    2009-04-01

    fuel for preparing the germination bed. Presently it is necessary a change concerning the concept of conservation practices and a new approach regarding the control of erosion. The real conservation of soil must be expanded beyond the traditional understanding of soil erosion. The real soil conservation is represented by carbon management. We need to focus to another level concerning conservation by focusing on of soil quality. Carbon management is necessary for a complex of matters including soil, water management, field productivity, biological fuel and climatic change.

  6. Morphodynamic rotation of an embayed sandy beach in a mud-dominated setting

    NASA Astrophysics Data System (ADS)

    Brunier, Guillaume; Anthony, Edward; Gardel, Antoine; Millet, Bertrand; Fleury, Jules; Dussouillez, Philippe

    2016-04-01

    The morphodynamics of beaches between bedrock headlands along the muddy French Guiana coast in South America are controlled by rotation induced by the alongshore migration of mud banks from the mouths of the Amazon River. As they migrate alongshore, these mud banks generate changes in shore-incident wave angles, resulting in reversals in longshore drift. A poor appreciation of the problems caused by this process has resulted in the past in damages to the highly urbanized sea-fronts on these beaches, including erosion and flooding. This work enhances our understanding of this rather unusual type of mud-induced rotation based on surveys of the 4 km-long Montjoly beach near Cayenne, in French Guiana, in the course of an approaching mud bank between October 2013 and October 2014. Our method was based on innovative high-resolution topographic surveys from airborne Structure-from-Motion (SfM) photogrammetry over the beach in October 2013, March 2014 and October 2014. We produced digital surface models (DSM) with a resolution of 10 cm/pixel and an accuracy less than 10 cm from RTK-GPS measurements. We further measured incident wave heights from pressure sensors and conducted a bathymetric survey of the nearshore zone in October 2014. We also modelled high-tide wave propagation over the bathymetry using the REF/DIF v2.5 model. The results show the transfer of sand from the northern part of beach to the south between October 2013 and March 2014. The October 2013 DSM shows a reflective beach in the north indicative of erosion, with a narrow 50 m-wide upper beach. The southern sector was smoother and up to 90 m-wide. Between October 2013 and March 2014, the beach rotated under the influence of a mud bank, with a 30-m retreat of the berm in the north and an advance of 40 m in the south. We quantified a loss of ≈66,000 m³ of sand in the north and a gain of ≈22,000 m³ in the south over this six-month period. The October 2014 DSM shows minor morphological changes, thus

  7. Organic soil amendments and fiber wattles for enhanced revegetation and erosion control

    SciTech Connect

    Miller, S.M.; Steinbacher, J.; McRae, P.

    1998-12-31

    Disturbed sites at surface mines that typically require special attention to erosion control include cut and fill soil slopes, runoff-diversion swales or ditches, and other similar areas where revegetation is hampered by the surface exposure of sterile subsoils and by the lack of topsoil. Recent field work in the western US has demonstrated that organic soil amendments and biostimulants can significantly enhance sustainable revegetation at such sites. These additives help restore healthy microbial activity in the soil to encourage plant growth and decomposition, as well as to promote the recovery of mycorrhizae in the soil, a critical component for successful revegetation. When soft structural controls are needed to slow runoff and protect new vegetation, the use of fiber wattles has proven to be economical and effective.

  8. The contribution of mulches to control high soil erosion rates in vineyards in Eastern Spain

    NASA Astrophysics Data System (ADS)

    Cerdà, Artemi; Jordán, Antonio; Zavala, Lorena; José Marqués, María; Novara, Agata

    2014-05-01

    Soil erosion take place in degraded ecosystem where the lack of vegetation, drought, erodible parent material and deforestation take place (Borelli et al., 2013; Haregeweyn et al., 2013; Zhao et al., 2013). Agriculture management developed new landscapes (Ore and Bruins, 2012) and use to trigger non-sustainable soil erosion rates (Zema et al., 2012). High erosion rates were measured in agriculture land (Cerdà et al., 2009), but it is also possible to develop managements that will control the soil and water losses, such as organic amendments (Marqués et al., 2005), plant cover (Marqués et al., 2007) and geotextiles (Giménez Morera et al., 2010). The most successful management to restore the structural stability and the biological activity of the agriculture soil has been the organic mulches (García Orenes et al; 2009; 2010; 2012). The straw mulch is also very successful on bare fire affected soil (Robichaud et al., 2013a; 2013b), which also contributes to a more stable soil moisture content (García-Moreno et al., 2013). The objective of this research is to determine the impact of two mulches: wheat straw and chipped branches, on the soil erosion rates in a rainfed vineyard in Eastern Spain. The research site is located in the Les Alcusses Valley within the Moixent municipality. The Mean annual temperature is 13 ºC, and the mean annual rainfall 455 mm. Soil are sandy loam, and are developed at the foot-slope of a Cretaceous limestone range, the Serra Grossa range. The soils use to be ploughed and the features of soil erosion are found after each thunderstorm. Rills are removed by ploughing. Thirty rainfall simulation experiments were carried out in summer 2011 during the summer drought period. The simulated rainfall lasted during 1 hour at a 45 mmh-1 intensity on 1 m2 plots (Cerdà and Doerr, 2010; Cerdà and Jurgensen 2011). Ten experiments were carried out on the control plots (ploughed), 10 on straw mulch covered plots, and 10 on chipped branches covered

  9. Toxicity of anionic polyacrylamide formulations when used for erosion control in agriculture.

    PubMed

    Weston, Donald P; Lentz, Rodrick D; Cahn, Michael D; Ogle, R Scott; Rothert, Amanda K; Lydy, Michael J

    2009-01-01

    Addition of anionic polyacrylamide (PAM) to agricultural irrigation water can dramatically reduce erosion of soils. However, the toxicity of PAM to aquatic life, while often claimed to be low, has not been thoroughly evaluated. Five PAM formulations, including two oil-based products, one water-based product, one granular product and one tablet product, were evaluated for acute and/or chronic toxicity to five species commonly used for freshwater toxicity testing [Hyalella azteca (Saussure), Chironomus dilutus (Shobanov et al.), Ceriodaphnia dubia (Richard), Pimephales promelas (Rafinesque), and Selenastrum capricornutum (Printz)]. When applied as an oil-based product, acute toxicity was seen to four of the five species at concentrations less than the 10 mg/L that is often used for erosion control. Toxicity was diminished, but still remained, after passage of the irrigation water across an agricultural field, indicating a potential impact to nearby surface waters. Results from the non-oil-based products indicated minimal toxicity associated with PAM even at concentrations 10 times those used in agriculture when applied in the granular form, as a tablet, or in a water-based liquid. These data suggest that other agents in the oil-based products, such as surfactants or emulsifiers, rather than the PAM itself, contribute to the toxicity. Care is required in selecting an appropriate PAM formulation when the potential exists for entry of tailwater to nearby surface waters. PMID:19141814

  10. Cropping systems and control of soil erosion in a Mediterranean environment

    NASA Astrophysics Data System (ADS)

    Cosentino, Salvatore; Copani, Venera; Testa, Giorgio; Scalici, Giovanni

    2013-04-01

    The research has been carried out over the years 1996-2010 in an area of the internal hill of Sicily region (Enna, c.da Geracello, 550 m a. s. l. 37° 23' N. Lat, 14° 21' E. Long) in the center of Mediterranean Sea, mainly devoted to durum wheat cultivation, using the experimental plots, established in 1996 on a slope of 26-28%, equipped to determine surface runoff and soil losses. The establishment consists of twelve plots, having 40 m length and 8 m width. In order to study the effect of different field crop systems in controlling soil erosion in slopes subjected to water erosion, the following systems were studied: permanent crops, tilled annual crops, no-tilled annual crops, set-aside. The used crops were: durum wheat, faba bean, rapeseed, subterranean clover, Italian ryegrass, alfalfa, sweetvetch, moon trefoil, barley, sweet sorghum, sunflower. The results pointed out that the cropping systems with perennial crops allowed to keep low the soil loss, while annual crop rotation determined a high amount of soil loss. Sod seeding showed promising results also for annual crop rotations.

  11. Robotic weld overlay coatings for erosion control. Quarterly progress report, October 1993--December 1993

    SciTech Connect

    Levin, B.F.; DuPont, J.N.; Marder, A.R.

    1994-01-20

    Research is being conducted to develop criteria for selecting weld overlay coatings for erosion mitigation in Circulated Fluidized Beds. Twelve weld overlay alloys were deposited on 1018 steel substrates using plasma arc welding. Ten samples from each coating were prepared for erosion testing. All selected coatings were erosion tested at 400C and their erosion resistance and microstructure evaluated. Steady state erosion rates were similar for several weld overlay coatings (Ultimet, Inconel-625, Iron-Aluminide, 316L SS, and High Chromium Cast Iron) and were considerably lower than the remaining coating evaluated. These coatings had different base (Co, Fe, Ni-base). No correlations were found between room temperature microhardness of the weld overlay coatings and their erosion resistance at elevated temperature, although this criteria is often thought to be an indicator of erosion resistance. It was suggested that the coatings that showed similar erosion rates may have similar mechanical properties such as fracture strength, toughness and work hardening rates at this temperature. During the past quarter, Iron-Aluminide, Inconel-625, and 316L SS coatings were selected for more detailed investigations based upon the preliminary erosion test results. Microhardness tests were performed on eroded samples to determine the size of the work hardened zone and change in coatings hardness due to erosion. The work hardened zone was to correlated with erosion resistance of the coatings. Additional Iron-Aluminide, Inconel-625, and 316L SS coatings were deposited on 1018 steel substrates.

  12. Robotic weld overlay coatings for erosion control. Final technical progress report, July 1992--July 1995

    SciTech Connect

    Levin, B.F.; DuPont, J.N.; Marder, A.R.

    1995-10-15

    The erosion behavior of weld overlay coatings has been studied. Eleven weld overlay alloys were deposited on 1018 steel substrates using the plasma arc welding process and erosion tested at 400{degrees}C at 90{degrees} and 30{degrees} particle impact angles. The microstructure of each coating was characterized before erosion testing. A relative ranking of the coatings erosion resistance was developed by determining the steady state erosion rates. Ultimet, Inconel-625, and 316L SS coatings showed the best erosion resistance at both impact angles. It was found that weld overlays that exhibit good abrasion resistance did not show good erosion resistance. Erosion tests were also performed for selected wrought materials with chemical composition similar to weld overlays. Eroded surfaces of the wrought and weld alloys were examined by Scanning Electron Microscopy (SEM). Microhardness tests were performed on the eroded samples below the erosion surface to determine size of the plastically deformed region. It was found that one group of coatings experienced significant plastic deformation as a result of erosion while the other did not. It was also established that, in the steady state erosion regime, the size of the plastically deformed region is constant.

  13. Robotic weld overlay coatings for erosion control. Quarterly technical progress report, July--September, 1994

    SciTech Connect

    Levin, B.F.; Dupont, J.N.; Marder, A.R.

    1994-10-26

    Research is presently being conducted to develop a criteria for selecting weld overlay coatings for erosion mitigation in Circulated Fluidized Beds. Initially, eleven weld overlay alloys were selected for erosion testing based upon a literature review. All eleven coatings were deposited on 1018 steel substrates using the plasma arc welding process. Ten samples from each coating were prepared for erosion testing. All selected coatings were erosion tested at 400 C and their erosion resistance was evaluated by determining the steady state erosion rate. In addition, the microstructure of each coating was characterized before and after the erosion tests. No correlations were found between room temperature hardness of the weld overlay coatings and their erosion resistance at elevated temperature. It was suggested that weld overlays mechanical properties such as fracture strength, toughness and work hardening rates may contributed to their erosion resistance. During the previous two quarters the microhardness tests were performed on the eroded samples in order to determine the size of the work hardened zone and the change in the coatings hardness due to erosion. As a result of these measurements it was established that one group of coatings deformed plastically, while another did not. In addition, the measurements of the weld overlays microhardness at 400 C were made. The coatings microhardness at 400 C was plotted versus their volume erosion rates. During the last quarter, erosion tests were performed for Inconel-625, 316L SS, and Iron-Aluminide wrought alloys in order to compare their erosion behavior with similar weld overlays. The results of microhardness profile measurements for all weld overlay coatings were analyzed. The factors that contribute to the erosion resistance of the coatings that deformed plastically are discussed in this progress report.

  14. Extreme soil erosion rates in citrus slope plantations and control strategies. A literature review

    NASA Astrophysics Data System (ADS)

    Cerdà, Artemi; Ángel González Peñaloza, Félix; Pereira, Paulo; Reyes Ruiz Gallardo, José; García Orenes, Fuensanta; Burguet, María

    2013-04-01

    Soil Erosion is a natural process that shapes the Earth. Due to the impact of agriculture, soil erosion rates increase, landforms show gullies and rills, and soils are depleted. In the Mediterranean, wheat, olive and vineyards were the main agriculture products, but new plantations are being found in sloping terrain due to the drip-irrigation. This new strategy results in the removal of the traditional terraces in order to make suitable for mechanization the agriculture plantation. Citrus is a clear example of the impact of the new chemical agriculture with a high investment in herbicides, pesticides, mechanisation, land levelling and drip computer controlled irrigation systems. The new plantation of citrus orchards is found in the Mediterranean, but also in California, Florida, China and Brazil. Chile, Argentina, and South Africa are other producers that are moving to an industrial production of citrus. This paper shows how the citrus plantations are found as one of the most aggressive plantation due to the increase in soil erosion, and how we can apply successful control strategies. The research into the high erosion rates of citrus orchard built on the slopes are mainly found in China (Wu et al., 1997; Xu et al., 2010; Wang et al., 2011; Wu et al., 2011; Liu et al., 2011; Lü et al., 2011; Xu et al., 2012) and in the Mediterranean (Cerdà and Jurgensen, 2008; 2009; Cerdà et al., 2009a; 2009b; Cerdà et al., 2011; 2012) Most of the research done devoted to the measurements of the soil losses but also some research is done related to the soil properties (Lu et al., 1997; Lü et al., 2012; Xu et al., 2012) and the impact of cover crops to reduce the soil losses (Lavigne et al., 2012; Le Bellec et al., 2012) and the use of residues such as dried citrus peel in order to reduce the soil losses. There are 116 million tonnes of citrus produced yearly, and this affects a large surface of the best land. The citrus orchards are moving from flood irrigated to drip

  15. Post-storm beach and dune recovery: Implications for barrier island resilience

    NASA Astrophysics Data System (ADS)

    Houser, Chris; Wernette, Phil; Rentschlar, Elizabeth; Jones, Hannah; Hammond, Brianna; Trimble, Sarah

    2015-04-01

    The ability of beaches and dunes to recover following an extreme storm is a primary control of barrier island response to sea-level rise and changes in the frequency and/or magnitude of storm surges. Whereas erosion of the beach and dune occurs over hours and days, it can be years to decades before the beach and dune are able to recover to their pre-storm state. As a consequence, there are numerous descriptions of near-instantaneous beach and dune erosion due to storms, the immediate onshore transport of sand, and the initial phases of beach and dune recovery following a storm, but a paucity of data on long-term beach and dune recovery. A combination of previously published data from Galveston Island, Texas and new remotely sensed data from Santa Rosa Island, Florida is used in the present study to quantify the rate of dune recovery for dissipative and intermediate beach types, respectively. Recovery of the dune height and volume on Galveston Island was observed within two years following Hurricane Alicia (1983) and was largely complete within six years of the storm, despite extensive washover. In contrast, the dunes on Santa Rosa Island in Northwest Florida began to recover four years after Hurricane Ivan (2004), and only after the profile approached its pre-storm level and the rate of vegetation recovery (regrowth) was at a maximum. Results show that complete recovery of the largest dunes (in height and volume) will take approximately 10 years on Santa Rosa Island, which suggests that these sections of the island are particularly vulnerable to significant change in island morphology if there is also a change in the frequency and magnitude of storm events. In contrast, the areas of the island with the smallest dunes before Hurricane Ivan exhibited a rapid recovery, but no further growth in profile volume and dune height beyond the pre-storm volume and height, despite continued recovery of the largest dunes to their pre-storm height. A change in storm magnitude and

  16. Extreme soil erosion rates in citrus slope plantations and control strategies. A literature review

    NASA Astrophysics Data System (ADS)

    Cerdà, Artemi; Ángel González Peñaloza, Félix; Pereira, Paulo; Reyes Ruiz Gallardo, José; García Orenes, Fuensanta; Burguet, María

    2013-04-01

    Soil Erosion is a natural process that shapes the Earth. Due to the impact of agriculture, soil erosion rates increase, landforms show gullies and rills, and soils are depleted. In the Mediterranean, wheat, olive and vineyards were the main agriculture products, but new plantations are being found in sloping terrain due to the drip-irrigation. This new strategy results in the removal of the traditional terraces in order to make suitable for mechanization the agriculture plantation. Citrus is a clear example of the impact of the new chemical agriculture with a high investment in herbicides, pesticides, mechanisation, land levelling and drip computer controlled irrigation systems. The new plantation of citrus orchards is found in the Mediterranean, but also in California, Florida, China and Brazil. Chile, Argentina, and South Africa are other producers that are moving to an industrial production of citrus. This paper shows how the citrus plantations are found as one of the most aggressive plantation due to the increase in soil erosion, and how we can apply successful control strategies. The research into the high erosion rates of citrus orchard built on the slopes are mainly found in China (Wu et al., 1997; Xu et al., 2010; Wang et al., 2011; Wu et al., 2011; Liu et al., 2011; Lü et al., 2011; Xu et al., 2012) and in the Mediterranean (Cerdà and Jurgensen, 2008; 2009; Cerdà et al., 2009a; 2009b; Cerdà et al., 2011; 2012) Most of the research done devoted to the measurements of the soil losses but also some research is done related to the soil properties (Lu et al., 1997; Lü et al., 2012; Xu et al., 2012) and the impact of cover crops to reduce the soil losses (Lavigne et al., 2012; Le Bellec et al., 2012) and the use of residues such as dried citrus peel in order to reduce the soil losses. There are 116 million tonnes of citrus produced yearly, and this affects a large surface of the best land. The citrus orchards are moving from flood irrigated to drip

  17. BEACHES HEALTH SURVEY

    EPA Science Inventory

    Baterial samples were taken at swimming beaches (primarily freshwater beaches) in Region 10 while evaluating potential bacterial sources (e.g., people, cattle, pets, septic systems, runoff, birds). For each beach selected, the preferred sampling is: background, low/no use period...

  18. Virtual Beach Manager Toolset

    EPA Science Inventory

    The Virtual Beach Manager Toolset (VB) is a set of decision support software tools developed to help local beach managers make decisions as to when beaches should be closed due to predicted high levels of water borne pathogens. The tools are being developed under the umbrella of...

  19. Robotic weld overlay coatings for erosion control. Quarterly technical progress report, October 1994--December 1994

    SciTech Connect

    Levin, B.F.; Dupont, J.N.; Marder, A.R.

    1995-01-25

    Research is presently being conducted to develop a criteria for selecting weld overlay coatings for erosion mitigation in Circulated Fluidized Beds. Initially, eleven weld overlay alloys were selected for erosion testing based upon a literature review. All eleven coatings were deposited on 1018 steel substrates using the plasma arc welding process. Ten samples from each coating were prepared for erosion testing. The coating deposition and sample preparation procedures were described in the second quarterly report. All selected coatings were erosion tested at 400{degree}C and their erosion resistance was evaluated by determining the steady state erosion rate. In addition, the microstructure of each coating was characterized before and after the erosion tests. The results of the tests are discussed in the third quarterly report. No correlations were found between room temperature hardness of the weld overlay coatings and their erosion resistance at elevated temperature. During the last quarter tensile tests were performed at 400{degree}C for the Ultimet, Inconel-625, 316L SS, C-22, and Stellite-6 wrought alloys. The erosion tests for these materials at 400{degree}C are in progress. The results of mechanical and erosion tests will be used to correlate mechanical properties of selected wrought alloys such as tensile toughness, ductility, strain hardening coefficient and yield strength to their erosion resistance at 400{degree}C. Also, the erosion behavior of the wrought alloys compared with similar weld alloys will be analyzed. The experimental procedure and results of the tensile tests are presented in this progress report.

  20. Robotic weld overlay coatings for erosion control. Quarterly technical progress report, January 1994--March 1994

    SciTech Connect

    Levin, B.F.; Dupont, J.N.; Marder, A.R.

    1994-04-21

    The erosion of materials by the impact of solid particles has received increasing attention during the past twenty years. Recently, research has been initiated with the event of advanced coal conversion processes in which erosion plays an important role. The resulting damage, termed Solid Particle Erosion (SPE), is of concern primarily because of the significantly increased operating costs which result in material failures. Reduced power plant efficiency due to solid particle erosion of boiler tubes and waterwalls has led to various methods to combat SPE. One method is to apply coatings to the components subjected to erosive environments. Protective weld overlay coatings are particularly advantageous in terms of coating quality. The weld overlay coatings are essentially immune to spallation due to a strong metallurgical bond with the substrate material. By using powder mixtures, multiple alloys can be mixed in order to achieve the best performance in an erosive environment. However, a review of the literature revealed a lack of information on weld overlay coating performance in erosive environments which makes the selection of weld overlay alloys a difficult task. The objective of this project is to determine the effects of weld overlay coating composition and microstructure on erosion resistance. These results will lead to a better understanding of erosion mitigation in circulated fluidized beds.

  1. The effectiveness of jute and coir blankets for erosion control in different field and laboratory conditions

    NASA Astrophysics Data System (ADS)

    Kalibová, Jana; Jačka, Lukáš; Petrů, Jan

    2016-03-01

    Vegetation cover is found to be an ideal solution to most problems of erosion on steep slopes. Biodegradable geotextiles (GTXs) have been proved to provide sufficient protection against soil loss in the period before vegetation reaches maturity, so favouring soil formation processes. In this study, 500 g m-2 jute (J500), 400 g m-2 (C400), and 700 g m-2 coir (C700) GTXs were first installed on a 9° slope under "no-infiltration" laboratory conditions, then on a 27° slope under natural field conditions. The impact of GTXs on run-off and soil loss was investigated to compare the performance of GTXs under different conditions. Laboratory run-off ratio (percentage portion of control plot) equalled 78, 83, and 91 %, while peak discharge ratio equalled 83, 91, and 97 % for J500, C700, and C400 respectively. In the field, a run-off ratio of 31, 62, and 79 %, and peak discharge ratio of 37, 74, and 87 % were recorded for C700, J500, and C400 respectively. All tested GTXs significantly decreased soil erosion. The greatest soil loss reduction in the field was observed for J500 (by 99.4 %), followed by C700 (by 97.9 %) and C400 (by 93.8 %). Irrespective of slope gradient or experimental condition, C400 performed with lower run-off and peak discharge reduction than J500 and C700. The performance ranking of J500 and C700 in the laboratory differed from the field, which may be explained by different slope gradients, and also by the role of soil, which was not included in the laboratory experiment.

  2. Factors controlling erosion/deposition phenomena related to lahars at Volcán de Colima, Mexico

    NASA Astrophysics Data System (ADS)

    Vázquez, Rosario; Capra, Lucia; Coviello, Velio

    2016-08-01

    One of the most common phenomena at Volcán de Colima is the annual development of lahars that runs mainly through the southern ravines of the edifice. Since 2011 the study and the monitoring of these flows and of the associated rainfall has been achieved by means of an instrumented station located along the Montegrande ravine, together with the systematic surveying of cross-topographic profiles of the main channel. From these, we present the comparison of the morphological changes experimented by this ravine during the 2013, 2014 and 2015 rainy seasons. The erosion/deposition effects of 11 lahars that occurred during this period of time were quantified by means of the topographic profiles taken at the beginning and at the end of the rainy seasons and before and after the major lahar event of 11 June 2013. We identified (i) an erosive zone between 2100 and 1950 m a.s.l., 8° in slope, with an annual erosional rate of 10.3 % mainly due to the narrowness of the channel and to its high slope angle and (ii) an erosive-depositional zone, between 1900 and 1700 m a.s.l., ( ˜ 8 % erosion and ˜ 16 % deposition), characterized by a wider channel that decreases in slope angle (4°). Based on these observations, the major factors controlling the erosion/deposition rates in the Montegrande ravine are the morphology of the gully (i.e., channel bed slope and the cross section width) and the joint effect of sediment availability and accumulated rainfall. On the distal reach of the ravine, the erosion/deposition processes tend to be promoted preferentially one over the other, mostly depending on the width of the active channel. Only for extraordinary rainfall events are the largest lahars mostly erosive all along the ravine up to the distal fan where the deposition takes place. In addition, as well as the morphological characteristics of the ravine, the flow depth is a critical factor in controlling erosion, as deeper flows will promote erosion against deposition. Finally, by

  3. Integrated watershed management for saturation excess generated runoff, erosion and nutrient control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Understanding the basic hydrology and erosion is vital for effective management and utilization of water resources and soil conservation planning. An important question for judging effectiveness of soil and water conservation practices is whether runoff erosion and nutrient loss is affected by infil...

  4. Control of upland bank erosion through tidal marsh construction on restored shores: Application in the maryland portion of Chesapeake Bay

    NASA Astrophysics Data System (ADS)

    Garbisch, Edgar W.; Garbisch, Joanna L.

    1994-09-01

    During the period of 1972 through 1993, Environmental Concern Inc. (EC) and its recent (1989) affiliate Environmental Construction Company (ECC) have completed 216 marsh construction projects to control upland bank erosion in tributaries of the Maryland portion of Chesapeake Bay. Of these projects, 26 have involved marsh construction on unaltered existing shores and 190 have utilized marsh construction on shores that have been restored to former increased elevations through shoreline filling and grading. This paper describes the latter restoration technique. Throughout the 21-year period of applying the technique for long-term upland bank erosion control, refinements to the design standards and criteria for site suitability have been made so as to optimize its successful application. As a result of this experience, a reliable bioengineering restoration technique has evolved to control upland bank erosion. This paper describes the details of this successful technique through a review of: (1) its objectives and benefits, (2) suitability of sites for its application, (3) the design of its shore restoration, (4) its construction, (5) its maintenance, and (6) comparison of its cost with those of structural techniques for bank erosion control. Although the technique has only been applied in the Maryland portions of Chesapeake Bay, its applicability should, with modifications, be broadly applicable to all water bodies.

  5. Short-term soil moisture response to low-tech erosion control structures in a semi arid rangeland

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although rock check dams have been used for centuries to control erosion and support subsistence agriculture on western US rangelands, there is a lack of data for quantifying their impact on soil moisture distribution. The purpose of this study was to measure and document soil moisture in associatio...

  6. Internal structure of a barrier beach as revealed by ground penetrating radar (GPR): Chesil beach, UK

    NASA Astrophysics Data System (ADS)

    Bennett, Matthew R.; Cassidy, Nigel J.; Pile, Jeremy

    2009-03-01

    Chesil Beach (Dorset) is one of the most famous coastal landforms on the British coast. The gravel beach is over 18 km long and is separated for much of its length from land by a tidal lagoon known as The Fleet. The beach links the Isle of Portland in the east to the mainland in the west. Despite its iconic status there is little available information on its internal geometry and evolutionary history. Here we present a three-fold model for the evolution of Chesil Beach based on a series of nine ground penetrating radar (GPR) traverses located at three sites along its length at Abbotsbury, Langton Herring and at Ferry Bridge. The GPR traverses reveal a remarkably consistent picture of the internal structure of this barrier beach. The first phase of evolution involves the landward transgression of a small sand and gravel beach which closed upon the coast leading to deposition of freshwater peat between 5 and 7 k yr BP. The second evolutionary phase involves the 'bulking-out' of the beach during continued sea level rise, but in the presence of abundant gravel supplied by down-drift erosion of periglacial slope deposits. This episode of growth was associated with a series of washover fans which accumulated on the landward flank of the barrier increasing its breadth and height but without significant landward transgression of the barrier as a whole. The final phase in the evolution of Chesil Beach involves the seaward progradation of the beach crest and upper beach face associated with continued sediment abundance, but during a still-stand or slight fall in relative sea level. This phase may provide further evidence of a slight fall in relative sea level noted elsewhere along the South Coast of Britain and dated to between 1.2 and 2.4 k yr BP. Subsequently the barrier appears to have become largely inactive, except for the reworking of sediment on the beach face during storm events. The case study not only refines the evolutionary picture of Chesil Beach, but

  7. Robotic weld overlay coatings for erosion control. Quarterly technical progress report, January 1995--March 1995

    SciTech Connect

    Levin, B.F.; Dupont, J.N.; Marder, A.R.

    1995-04-25

    Research is presently being conducted to develop a criteria for selecting weld overlay coatings for erosion mitigation in Circulated Fluidized Beds. During the last two quarters tensile tests were performed at 400{degrees}C for the Ultimet, Inconel-625, 316L SS, C-22, and Stellite-6 wrought alloys. Also, the erosion tests for these materials at 400{degrees}C were completed. The results of mechanical and erosion tests are used to correlate mechanical properties of selected wrought alloys such as tensile toughness, ductility, strain hardening coefficient and yield strength to their erosion resistance at 400{degrees}C. Preliminary results of correlations between erosion resistance of wrought alloys at 400{degrees}C and their mechanical properties are presented in this progress report.

  8. Weld overlay coatings for erosion control. Task A: Literature review, progress report

    SciTech Connect

    Levin, B.; DuPont, J.N.; Marder, A.R.

    1993-03-03

    A literature review was made. In spite of similarities between abrasive wear and solid particle erosion, weld overlay hardfacing alloys that exhibit high abrasion resistance may not necessarily have good erosion resistance. The performance of weld overlay hardfacing alloys in erosive environments has not been studied in detail. It is believed that primary-solidified hard phases such as carbides and intermetallic compounds have a strong influence on erosion resistance of weld overlay hardfacing alloys. However, relationships between size, shape, and volume fraction of hard phases in a hardfacing alloys and erosion resistance were not established. Almost all hardfacing alloys can be separated into two major groups based upon chemical compositions of the primary solidified hard phases: (a) carbide hardening alloys (Co-base/carbide, WC-Co and some Fe base superalloys); and (b) intermetallic hardening alloys (Ni-base alloys, austenitic steels, iron-aluminides).

  9. Evaluation of potential sources and transport mechanisms of fecal indicator bacteria to beach water, Murphy Park Beach, Door County, Wisconsin

    USGS Publications Warehouse

    Juckem, Paul F.; Corsi, Steven R.; McDermott, Colleen; Kleinheinz, Gregory; Fogarty, Lisa R.; Haack, Sheridan K.; Johnson, Heather E.

    2013-01-01

    Fecal Indicator Bacteria (FIB) concentrations in beach water have been used for many years as a criterion for closing beaches due to potential health concerns. Yet, current understanding of sources and transport mechanisms that drive FIB occurrence remains insufficient for accurate prediction of closures at many beaches. Murphy Park Beach, a relatively pristine beach on Green Bay in Door County, Wis., was selected for a study to evaluate FIB sources and transport mechanisms. Although the relatively pristine nature of the beach yielded no detection of pathogenic bacterial genes and relatively low FIB concentrations during the study period compared with other Great Lakes Beaches, its selection limited the number of confounding FIB sources and associated transport mechanisms. The primary sources of FIB appear to be internal to the beach rather than external sources such as rivers, storm sewer outfalls, and industrial discharges. Three potential FIB sources were identified: sand, swash-zone groundwater, and Cladophora mats. Modest correlations between FIB concentrations in these potential source reservoirs and FIB concentrations at the beach from the same day illustrate the importance of understanding transport mechanisms between FIB sources and the water column. One likely mechanism for transport and dispersion of FIB from sand and Cladophora sources appears to be agitation of Cladophora mats and erosion of beach sand due to storm activity, as inferred from storm indicators including turbidity, wave height, current speed, wind speed, sky visibility, 24-hour precipitation, and suspended particulate concentration. FIB concentrations in beach water had a statistically significant relation (p-value ‹0.05) with the magnitude of these storm indicators. In addition, transport of FIB in swash-zone groundwater into beach water appears to be driven by groundwater recharge associated with multiday precipitation and corresponding increased swash-zone groundwater discharge at

  10. Coastal erosion and accretion rates in Greece

    NASA Astrophysics Data System (ADS)

    Foteinis, Spyros; Papadopoulos, Costas; Koutsogiannaki, Irini; Synolakis, Costas

    2010-05-01

    Erosion threatens many coastal regions of Greece. Anthropogenic changes of landforms such as coastal roads built on even narrow beaches, sand mining for construction, poor design of coastal structures that interfere with sediment, and dams without sediment bypasses have significantly reduced beach widths. We present erosion rates for different beaches, some of which are in sensitive ecosystems, otherwise "protected" by local and EU ordinances. By comparing inferences of beach widths in varying intervals from 1933 to 2006, we infer that the construction of dams in Acheloos river in western Greece, built in a faraonic attempt to partially divert its flows to eastern Greece, this is responsible for up to 20m/year erosion rates observed in certain locales in the Acheloos delta. More characteristic erosion rates in the region are ~ 2m/year. By contrast, there appears rapid accretion of up to 4m/year in the beaches around the Nestos delta in northern Greece (Papadopoulos, 2009). In beaches that are not near large river deltas, erosion rates range from 0.5m/year to 1m/year. While we have not done comprehensive comparisons among coastlines with different levels of coastal development, it does appear that rapid coastal development correlates well with erosion rates. The underlying problem is the complete lack of any semblance of coastal zone management in Greece and substandard design of coastal structures, which are often sited without any measurements of waves and currents offshore (Synolakis et al, 2008). Beach maintenance remains an exotic concept for most local authorities, who invariably prefer to build hard coastal structures to "protect" versus nourish, siting lack of experience with nourishment and "environmental" concerns. In certain cases, choices are dictated by costs, the larger the cost the easier the project gets approved by regulatory authorities, hence the preference for concrete or rubble structures. We conclude that, unless urgent salvage measures are

  11. VIEW OF THE AREA BETWEEN THE BEACH (LEFT) AND BEACH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF THE AREA BETWEEN THE BEACH (LEFT) AND BEACH ROAD. NOTE THE RESIDENCES ON OPPOSITE SIDE OF BEACH ROAD. VIEW FACING NORTH. - Hickam Field, Fort Kamehameha Historic Housing, Along Worchester Avenue & Hope Street, Honolulu, Honolulu County, HI

  12. Influence of Gully Erosion Control on Amphibian and Reptile Communities within Riparian Zones of Channelized Streams

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Riparian zones of streams in northwestern Mississippi have been impacted by agriculture, channelization, channel incision, and gully erosion. Riparian gully formation has resulted in the fragmentation of remnant riparian zones within agricultural watersheds. One widely used conservation practice for...

  13. Holocene Fire, Climate and Erosion in the Jemez Mountains, New Mexico: Natural and Anthropogenic Controls

    NASA Astrophysics Data System (ADS)

    Meyer, G. A.; Fitch, E. P.

    2013-12-01

    Ponderosa pine and mixed-conifer forests in the Jemez Mountains have been ravaged by extensive severe fires in the last two decades, which burned almost 1000 km2, roughly 30% of this middle-elevation range. Tree-ring fire history reconstructions indicate that a low-severity fire regime characterized the ca. 400 years before Euroamerican settlement, and that fuel buildup from fire suppression and land-use impacts contributed to increased fire severity in recent years. In order to better understand natural variability, climatic influences, and erosional effects of wildfire activity since ~5000 cal yr BP, we identified and 14C-dated fire-related alluvial deposits in the 2002 Lakes Fire area in the southwestern Jemez Mountains. These deposits indicate that most late Holocene fire-related erosional events were relatively minor, consistent with the low-severity burns that dominate the tree-ring record, but larger debris flows also occurred, suggesting at least small areas of high-severity fire. Although changes in postfire sedimentation are not so clearly related to millennial-scale Holocene climatic changes as in the Northern Rocky Mountains, peaks in fire-event probability correspond with severe regional multidecadal droughts ca. 1800 and 375 cal yr BP. Local microclimatic controls on vegetation, soils, and post-fire sedimentation are also evident. Relatively dense mixed-conifer stands including Douglas-fir typify moister north-facing basins, where soils are apparently thicker and more permeable than on southerly aspects. Alluvial fans of these basins are dominated by fire-related deposits (77% of measured stratigraphic thickness), thus we interpret that little erosion occurs in the absence of wildfires. Holocene fire-related events from north slopes are also of somewhat lower frequency, and possibly of higher severity. In contrast, in ponderosa pine-dominated south-facing basins, fire-related deposits make up only 39% of measured fan deposits. On drier south aspects

  14. Erosional channels on the shoreface of Nauset Beach, Cape Cod, Massachusetts

    USGS Publications Warehouse

    Needell, S. W.; Dillon, William P.; Knebel, H. J.

    1982-01-01

    Many channels (1 to 3 m relief)_are located offshore of Nauset Beach, Cape Cod, Massachusetts, in water 4 to 18 m deep. The channels are oblique to the shoreline, are spaced approximately 260 m apart, and deepen seaward. The southern flank of each channel is rippled whereas the northern flank and interchannel areas are smooth. The origin of the channels is unknown. They probably formed by erosion of the shoreface, perhaps by rip-current circulation during storm conditions or by rip-current circulation under quiet conditions. The channels may control current flow and thereby maintain themselves even though formative conditions may no longer exist.

  15. Natural and human controls of the Holocene evolution of the beach, aeolian sand and dunes of Caesarea (Israel)

    NASA Astrophysics Data System (ADS)

    Roskin, J.; Sivan, D.; Shtienberg, G.; Roskin, E.; Porat, N.; Bookman, R.

    2015-12-01

    The study focuses on the Holocene appearance, chronology and drivers of beach sand deposition and inland aeolian sand transport around the Roman-Byzantine ruins of Caesarea, Israel. Beach sand, sand sheets, nebkha, linear and transverse dunes as well as parabolic and transverse interdunes along two transects were sampled in the current study down to their substrate. Sixteen new optically stimulated luminescence ages cluster at ∼5.9-3.3 ka, ∼1.2-1.1 ka (800-900 AD) and ∼190-120 years ago (1825-1895 AD) indicating times of middle and late Holocene sand sheet depositions and historical dune stabilization. The first age cluster indicates that beach sand accumulated when rates of global sea level rise declined around 6-5 ka. Until ∼4 ka sand sheets encroached up to 2.5 km inland. Historical and archaeological evidence points to sand mobilization since the first century AD. Sand sheets dating to 1.2-1.1 ka, coevally found throughout the dunefield represent sand stabilization due to vegetation reestablishment attributed to gradual and fluctuating decline in human activity from the middle Early Islamic period until the 10th century. Historical and chronological evidence of the existence of transverse and coppice dunes from the 19th century suggest that dunes only formed in the last few centuries. The study illustrates the initial role of natural processes, in this case decline in global sea level rise and the primary and later role of fluctuating human activity upon coastal sand mobility. The study distinguishes between sand sheets and dunes and portrays them as sensors of environmental changes.

  16. Proposal for an integral quality index for urban and urbanized beaches.

    PubMed

    Ariza, Eduard; Jimenez, Jose A; Sarda, Rafael; Villares, Miriam; Pinto, Josep; Fraguell, Rosa; Roca, Elisabet; Marti, Carolina; Valdemoro, Herminia; Ballester, Ramon; Fluvia, Modest

    2010-05-01

    A composite index, based on function analysis and including thirteen sub-indices, was developed to assess the overall quality of urban and urbanized beaches in the Mediterranean area. The aggregation of components and sub-indices was based on two questionnaires completed by beach users and experts. Applying the new Beach Quality Index (BQI) demonstrated that the quality of beaches could be improved. In general, the strongest aspects of the beaches assessed were those related to short-term user demand, and the weakest were those related to the consequences of human pressure on the area, in particular, erosion problems. The composite index is intended to be used together with Environmental Management Beach Systems (EMBs) as a hierarchical management scorecard and in monitoring programs. This new tool could also make planning more proactive by synthesizing the state of the most important beach processes. PMID:20383636

  17. Proposal for an Integral Quality Index for Urban and Urbanized Beaches

    NASA Astrophysics Data System (ADS)

    Ariza, Eduard; Jimenez, Jose A.; Sarda, Rafael; Villares, Miriam; Pinto, Josep; Fraguell, Rosa; Roca, Elisabet; Marti, Carolina; Valdemoro, Herminia; Ballester, Ramon; Fluvia, Modest

    2010-05-01

    A composite index, based on function analysis and including thirteen sub-indices, was developed to assess the overall quality of urban and urbanized beaches in the Mediterranean area. The aggregation of components and sub-indices was based on two questionnaires completed by beach users and experts. Applying the new Beach Quality Index (BQI) demonstrated that the quality of beaches could be improved. In general, the strongest aspects of the beaches assessed were those related to short-term user demand, and the weakest were those related to the consequences of human pressure on the area, in particular, erosion problems. The composite index is intended to be used together with Environmental Management Beach Systems (EMBs) as a hierarchical management scorecard and in monitoring programs. This new tool could also make planning more proactive by synthesizing the state of the most important beach processes.

  18. INNOVATIVE IN-SITU REMEDIATION OF CONTAMINATED SEDIMENTS FOR SIMULTANEOUS CONTROL OF CONTAMINATION AND EROSION

    SciTech Connect

    Knox, A; Michael Paller, M; Danny D. Reible, D; Ioana G. Petrisor, I

    2007-11-28

    organoclays have high potential for controlling organic contaminants. Measured partitioning coefficients were used to model the time required for a contaminant to penetrate sediment caps composed of organoclay. The results showed that a thin layer of highly sorptive organoclay can lead to very long migration times, perhaps longer than the expected lifetime of the contaminant in the sediment environment. A one-dimensional numerical model was used to examine the diffusion of metals through several cap material based on measured and assumed material and transport properties. These studies showed that active caps composed of apatite or organoclay have the potential to delay contaminant breakthrough due to diffusion by hundreds of years or more compared with passive caps composed of sand. Advectively dominated column experiments are currently underway to define effective sorption related retardation factors in promising amendments for various hydrophobic organic compounds. Upon completion of these experiments, advection transient models will be used to estimate the time required for the breakthrough of various contaminants in caps composed of different experimental materials. Biopolymer products for inclusion in active caps were evaluated on the basis of resistance to biodegradation, sorption capacity for organic and inorganic contaminants, and potential for erosion control. More than 20 biopolymer products were evaluated resulting in the selection of chitosan/guar gum cross-linked with borax and xanthan/chitosan cross-linked with calcium chloride for inclusion in active caps to produce a barrier that resists mechanical disturbance. A process was developed for coating sand with cross-linked biopolymers to provide a means for delivery to the sediment surface. Properties of biopolymer coated sand such as carbon fraction (indicating biopolymer coverage), porosity, bulk density, and biodegradability have been evaluated, and experiments are currently underway to assess the resistance

  19. Nourishment practices on Australian sandy beaches: a review.

    PubMed

    Cooke, Belinda C; Jones, Alan R; Goodwin, Ian D; Bishop, Melanie J

    2012-12-30

    It is predicted that the coastal zone will be among the environments worst affected by projected climate change. Projected losses in beach area will negatively impact on coastal infrastructure and continued recreational use of beaches. Beach nourishment practices such as artificial nourishment, replenishment and scraping are increasingly used to combat beach erosion but the extent and scale of projects is poorly documented in large areas of the world. Through a survey of beach managers of Local Government Areas and a comprehensive search of peer reviewed and grey literature, we assessed the extent of nourishment practices in Australia. The study identified 130 beaches in Australia that were subject to nourishment practices between 2001 and 2011. Compared to projects elsewhere, most Australian projects were small in scale but frequent. Exceptions were nine bypass projects which utilised large volumes of sediment. Most artificial nourishment, replenishment and beach scraping occurred in highly urbanised areas and were most frequently initiated in spring during periods favourable to accretion and outside of the summer season of peak beach use. Projects were generally a response to extreme weather events, and utilised sand from the same coastal compartment as the site of erosion. Management was planned on a regional scale by Local Government Authorities, with little monitoring of efficacy or biological impact. As rising sea levels and growing coastal populations continue to put pressure on beaches a more integrated approach to management is required, that documents the extent of projects in a central repository, and mandates physical and biological monitoring to help ensure the engineering is sustainable and effective at meeting goals. PMID:23103149

  20. Differentiating experts' anticipatory skills in beach volleyball.

    PubMed

    Cañal-Bruland, Rouwen; Mooren, Merel; Savelsbergh, Geert J P

    2011-12-01

    In this study, we examined how perceptual-motor expertise and watching experience contribute to anticipating the outcome of opponents' attacking actions in beach volleyball. To this end, we invited 8 expert beach volleyball players, 8 expert coaches, 8 expert referees, and 8 control participants with no beach volleyball experience to watch videos of attack sequences that were occluded at three different times and to predict the outcome of these situations. Results showed that expert players and coaches (who were both perceptual-motor experts) outperformed the expert referees (who were watching experts but did not have the same motor expertise) and the control group in the latest occlusion condition (i.e., at spiker-ball contact). This finding suggests that perceptual-motor expertise may contribute to successful action anticipation in beach volleyball. PMID:22276408

  1. Control of high-Z PFC erosion by local gas injection in DIII-D

    NASA Astrophysics Data System (ADS)

    Rudakov, D. L.; Stangeby, P. C.; Wong, C. P. C.; McLean, A. G.; Wampler, W. R.; Watkins, J. G.; Boedo, J. A.; Briesemeister, A.; Buchenauer, D. A.; Chrobak, C. P.; Elder, J. D.; Fenstermacher, M. E.; Guo, H. Y.; Lasnier, C. J.; Leonard, A. W.; Maingi, R.; Moyer, R. A.

    2015-08-01

    Reduced erosion of a high-Z PFC divertor surface was observed in DIII-D with local injection of methane and deuterium gases. Molybdenum-coated silicon samples were exposed in the lower divertor of DIII-D using DiMES under plasma conditions previously shown to cause significant net erosion of Mo. Three exposures with 13CH4 and one exposure with D2 gas injection about 12 cm upstream of the samples located within 1-2 cm of the attached strike point were performed. Reduction of Mo erosion was evidenced in-situ by the suppression of MoI line radiation at 386.4 nm once the gas injection started. Post-mortem ion beam analysis demonstrated that the net erosion of molybdenum near the center of the samples exposed with 13CH4 injection was below the measurement resolution of 0.5 nm, corresponding to a rate of ⩽0.04 nm/s. Compared to the previously measured erosion rates, this constitutes a reduction by a factor of >10.

  2. Arctic Coastal Erosion Modeling

    NASA Astrophysics Data System (ADS)

    Ravens, T. M.; Jones, B.; Zhang, J.; Tweedie, C. E.; Erikson, L. H.; Gibbs, A.; Richmond, B. M.

    2011-12-01

    A process-based coastal erosion/shoreline change model has been developed for Arctic coastal bluffs subject to niche erosion/block collapse. The model explicitly accounts for many environmental/geographic variables including: water temperature, water level, wave height, and bluff height. The model was originally developed for a small coastal segment near Drew Point, Beaufort Sea, Alaska. This coastal setting has experienced a dramatic increase in erosion since the early 2000's. The bluffs at this site are 3-4 m tall and consist of ice-wedge bounded blocks of fine-grained sediments cemented by ice-rich permafrost and capped with a thin organic layer. The bluffs are typically fronted by a narrow (~ 5 m wide) beach or none at all. During a storm surge, the sea contacts the base of the bluff and a niche is formed through thermal and mechanical erosion. The niche grows both vertically and laterally and eventually undermines the bluff, leading to block failure or collapse. The fallen block is then eroded both thermally and mechanically by waves and currents, which must occur before a new niche forming episode may begin. The model has been calibrated based on shoreline change data at Drew Point for two time periods: 1979-2002 and 2002-2007. Measured and modeled shoreline change rates were about 8 m/yr and 16 m/yr, for the earlier and later periods, respectively. In this paper, this work is extended to include modeling and measurement of coastal erosion at Drew Point on an annual basis for the period 2007-2010. In addition, the model is applied at three other Arctic coastal locations - Elson Lagoon, Cape Halkett, and Barter Island - where niche erosion/block collapse prevails.

  3. Barrier erosion control test plan: Gravel mulch, vegetation, and soil water interactions

    SciTech Connect

    Waugh, W.J.; Link, S.O. )

    1988-07-01

    Soil erosion could reduce the water storage capacity of barriers that have been proposed for the disposal of near-surface waste at the US Department of Energy's Hanford Site. Gravel mixed into the top soil surface may create a self-healing veneer that greatly retards soil loss. However, gravel admixtures may also enhance infiltration of rainwater, suppress plant growth and water extraction, and lead to the leaching of underlying waste. This report describes plans for two experiments that were designed to test hypotheses concerning the interactive effects of surface gravel admixtures, revegetation, and enhanced precipitation on soil water balance and plant abundance. The first experiment is a factorial field plot set up on the site selected as a soil borrow area for the eventual construction of barriers. The treatments, arranged in a a split-split-plot design structure, include two densities of gravel admix, a mixture of native and introduced grasses, and irrigation to simulate a wetter climate. Changes in soil water storage and plant cover are monitored with neutron moisture probes and point intercept sampling, respectively. The second experiment consists of an array of 80 lysimeters containing several different barrier prototypes. Surface treatments are similar to the field-plot experiment. Drainage is collected from a valve at the base of each lysimeter tube, and evapotranspiration is estimated by subtraction. The lysimeters are also designed to be coupled to a whole-plant gas exchange system that will be used to conduct controlled experiments on evapotranspiration for modeling purposes. 56 refs., 6 figs., 8 tabs.

  4. Deglaciation and glacial erosion: A joint control on magma productivity by continental unloading

    NASA Astrophysics Data System (ADS)

    Sternai, Pietro; Caricchi, Luca; Castelltort, Sébastien; Champagnac, Jean-Daniel

    2016-02-01

    Glacial-interglacial cycles affect the processes through which water and rocks are redistributed across the Earth's surface, thereby linking the solid Earth and climate dynamics. Regional and global scale studies suggest that continental lithospheric unloading due to ice melting during the transition to interglacials leads to increased continental magmatic, volcanic, and degassing activity. Such a climatic forcing on the melting of the Earth's interior, however, has always been evaluated regardless of continental unloading by glacial erosion, albeit the density of rock exceeds that of ice by approximately 3 times. Here we present and discuss numerical results involving synthetic but realistic topographies, ice caps, and glacial erosion rates suggesting that erosion may be as important as deglaciation in affecting continental unloading. Our study represents an additional step toward a more general understanding of the links between a changing climate, glacial processes, and the melting of the solid Earth.

  5. Effects of aridity in controlling the magnitude of runoff and erosion after wildfire

    NASA Astrophysics Data System (ADS)

    Noske, Philip J.; Nyman, Petter; Lane, Patrick N. J.; Sheridan, Gary J.

    2016-06-01

    This study represents a uniquely high-resolution observation of postwildfire runoff and erosion from dry forested uplands of SE Australia. We monitored runoff and sediment load, and temporal changes in soil surface properties from two (0.2-0.3 ha) dry forested catchments burned during the 2009 Black Saturday wildfire. Event-based surface runoff to rainfall ratios approached 0.45 during the first year postwildfire, compared to reported values <0.01 for less arid hillslopes. Extremely high runoff ratios in these dry forests were attributed to wildfire-induced soil water repellency and inherently low hydraulic conductivity. Mean ponded hydraulic conductivity ranged from 3 to 29 mm h-1, much lower than values commonly reported for wetter forest. Annual sediment yields peaked at 10 t ha-1 during the first year before declining dramatically to background levels, suggesting high-magnitude erosion processes may become limited by sediment availability on hillslopes. Small differences in aridity between equatorial and polar-facing catchments produced substantial differences in surface runoff and erosion, most likely due to higher infiltration and surface roughness on polar-facing slopes. In summary, the results show that postwildfire erosion processes in Eucalypt forests in south-east Australia are highly variable and that distinctive response domains within the region exist between different forest types, therefore regional generalizations are problematic. The large differences in erosion processes with relatively small changes in aridity have large implications for predicting hydrologic-driven geomorphic changes, land degradation, and water contamination through erosion after wildfire across the landscape.

  6. Shoreface storm morphodynamics and mega-rip evolution at an embayed beach: Bondi Beach, NSW, Australia

    NASA Astrophysics Data System (ADS)

    McCarroll, R. Jak; Brander, Robert W.; Turner, Ian L.; Leeuwen, Ben Van

    2016-03-01

    Embayed beach dynamics differ from open beaches due to the nature of headland control. Their resultant morphologies and morphodynamic behaviour are poorly understood due in part to a critical lack of surfzone and nearshore bathymetry observations. This study describes the morphodynamic storm response of a high-energy intermediate, 850 m long embayed beach over a three week period spanning a cluster of storms. A headland and subaqueous ridge protects the northern end of the beach, resulting in an alongshore wave height gradient. Contrary to existing beach state conceptual models, under energetic forcing the beach did not 'reset' or enter a 'cellular mega-rip' beach state. The protected northern end persisted in a low energy state, while the wave exposed southern section transitioned from transverse-bar-and-rip to a complex double-bar system, a process previously undescribed in the literature. Bar-rip morphology at the exposed end of the beach migrated offshore to greater depths, leaving an inner-reflective beach and longshore trough, while a mega-rip channel with 3 m relief developed at the exposed headland. The number of rip channels remained near constant over multiple storm events. Offshore sediment flux was 350 m3/m at the exposed headland and 20 m3/m at the protected end. Alongshore bathymetric non-uniformity decreased over the sub-aerial beach and inner surfzone, but increased in the outer surfzone and beyond. Suggested mechanisms for the persistence of 3D morphology during the cluster of storms include: (i) wave refraction to shore normal within the embayment; (ii) alongshore energy gradients; and (iii) pre-existing bar-rip morphology. Formation of the complex multi-bar state may be related to antecedent morphology, headland geometry, substrate gradient and localised hydrodynamic interactions near the headland. A new conceptual embayed beach state model is proposed for asymmetric, transitional embayed beaches. The model describes a pre-storm embayment where

  7. Robotic weld overlay coatings for erosion control. Quarterly technical progress report, April 1993--June 1993

    SciTech Connect

    Levin, B.F.; Dupont, J.N.; Marder, A.R.

    1993-07-20

    Twelve weld overlay hardfacing alloys have been selected for preliminary erosion testing based upon a literature review. Four of the selected coatings were deposited on a 1018 steel substrate using plasma arc welding process. During the past quarter, the remaining eight coatings were deposited in the same manner. Ten samples from each coatings were prepared for erosion testing. Microstructural characterization of each coating is in progress. This progress report describes coating deposition and sample preparation procedures. Relation between coatings hardness and formation of cracks in coatings is discussed.

  8. Tectonic uplift and climate controlling erosion along the Southern Himalayan Front

    NASA Astrophysics Data System (ADS)

    Bookhagen, B.; Thiede, R.

    2001-12-01

    The spatial and temporal evolution of rock uplift in active orogens provide valuable insights into the relations between surface and tectonic processes, and topography. A prime example is the humid western and central part of the southern Himalayan mountain front, where rainfall is high and evenly distributed. In the orographic rain shadow north of the Shillong Plateau (25N, 91E) located 250 km south of the eastern mountain front, annual rainfall decreases to 70% from west to east (i.e. 6m/a vs. < 1.7m/a). Other areas with low precipitation occur along the entire southern Himalayan front at elevations over 3000m, where moisture has fallen as rain at lower elevations. Along the entire southern Himalayan front, lithology, tectonic style and neotectonic activity do not vary strongly along strike. Therefore, substantial along-strike variations of topography possibly reflect local differences in uplift and climate-controlled erosion. Digital elevation models were used in an analysis of topography and channel gradients. Precipitation data are based on calibrated passive microwave data (SSMI) with a spatial resolution of 12.5 km2; DEMs along the Southern Himalayan Front were generated using the GTOPO30 data set. High-resolution topographic data (1:25,000, 1:50,000 and 1:100,000 maps) were used to characterize geomorphology in several areas. The N-S trending Sutlej Valley (32N, 78E) is drained by the antecedent Sutlej River which cuts through the Tethyan Himalaya, High and Lower Himalayan Crystalline, and the Lesser Himalaya. The Arun (27N, 87E) and Manas valleys (27.5N, 91.5E) have a similar lithology and geologic structures, but the latter lies within the orographic rain shadow of the Shillong Plateau. Significantly diverse topographic swath profiles that show steep slopes in high precipitation areas while gentler slopes dominate in dry areas. All sectors with evenly distributed high orographic precipitation and runoff to elevations of approximately 3000m have smooth

  9. Erosion by Wind: Modeling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Models of wind erosion are used to investigate fundamental processes and guide resource management. Many models are similar in that - temporal variables control soil wind erodibility; erosion begins when friction velocity exceeds a threshold; and transport capacity for saltation/creep is proportion...

  10. Textural analysis of Point Calimere beach sand

    NASA Astrophysics Data System (ADS)

    Jeyapal, K. A.

    2013-05-01

    Grain size analysis helps to identify the nature of coastal and sedimentary environments.This parameters provide an insight in to the nature and the energy flux of the transporting agents and their nature of depositional environment. The Beach sediments from the Point Calimere coast are studied for analysis the impact of wave action over the coast. Cauvery and its tributaries are the Chief source for sediments are by the deposits. This dynamic coast of South India is reported to have accretion and erosion at invariably high degrees. Also the impact of land ocean interaction is at high intensity. Further there are chains of Dunes along this coast. The geomorphology of this coast is not a uniform stretch, it has curvature Point Calimere in the south and straight coast towards North. wave properties like reflection, refraction and diffraction are noticed along the study area. Beach Samples were collected along selected zones and their properties were studied in laboratory after sieving half phi interval. Mean mode, sorting, skewness and other statistics are calculated using moment and Folk and Ward graphical methods. This region has three different zones of waves and this wave impact shapes the coast. In few zones erosion were noticed and in few sited deposition Results expressed in metric units, provided of compositionally variable sediments. . The statistical results and field surveys of Point Calimere beach sand samples reveal sediment accretion and wave environments respectivelyGeographic coordinates of sampling stationt; t;