Science.gov

Sample records for beagle-based canine x-linked

  1. Comparative mapping of canine and human proximal Xq and genetic analysis of canine X-linked severe combined immunodeficiency

    SciTech Connect

    Deschenes, S.M.; Puck, J.M.; Dutra, A.S.

    1994-09-01

    Parallel genetic analysis of animal and human genetic diseases can facilitate the identification and characterization of the causative gene defects. For example, canine X-linked severe combined immunodeficiency (SCID) is characterized by clinical, pathological, and immunological manifestations similar to the most common form of human SCID. To derive a canine syntenic map including genes that in humans are located in proximal Xq, near human X-linked SCID, poly (TG) polymorphisms were identified at the canine phosphoglycerate kinase (PGK) and choroideremia (CHM) loci. These plus a polymorphic poly (CAG) sequence in exon 1 of the canine androgen receptor gene (AR) were used to genotype members of the colony informative for X-linked SCID. No recombinations among SCIDX1, AR, PGK, or CHM were observed. Fluorescence in situ hybridization localized PGK and CHM to proximal Xq in the dog, in the same chromosomal location occupied by the human genes. Somatic cell hybrid analysis and methylation differences at AR demonstrated that female dogs carrying X-linked SCID have the same lymphocyte-limited skewed X-chromosome inactivation patterns as human carriers. These genetic and phenotypic findings provide evidence that mutations in the same gene, now identified as the {gamma} chain of the IL-2 receptor, cause canine and human X-linked SCID. This approach is an efficient method for comparative gene mapping and disease identification. 35 refs., 4 figs., 1 tab.

  2. XLPRA: A canine retinal degeneration inherited as an X-linked trait

    SciTech Connect

    Acland, G.M.; Blanton, S.H.; Hershfield, B.; Aguirre, G.D.

    1994-08-01

    Breeding studies are reported of a previously undescribed hereditary retinal degeneration identified in the Siberian Husky breed of dog. This disorder clinically resembles the previously reported autosomal recessive canine hereditary retinal degenerations collectively termed progressive retinal atrophy (PRA). However, the pedigree of the propositus, a male Siberian Husky, exhibited an X-linked pattern of transmission. This dog was outcrossed to three phenotypically normal female laboratory Beagles and two of their F1 daughters were bred to a phenotypically normal male Beagle, producing affected males in the F2 generation. Subsequent inbreedings produced further affected males and affected females as well. X-linked transmission was established by exclusion of alternative modes of inheritance and, consequently, the disease has been termed X-linked progressive retinal atrophy (XLPRA). This is the first reported X-linked retinal degeneration in an animal. Because of the many similarities of PRA in dogs to retinitis pigmentosa (RP) in humans, this new disease may not only represent the first animal model of X-linked RP (XLRP) but may well be a true homolog of one of the XLRP loci (RP2, RP3, RP6). It is the first retinal degeneration in dogs that can be assigned to an identified canine chromosome, and the first for which linkage mapping offers a realistic approach to proceed by positional cloning towards identifying the responsible gene. 58 refs., 1 fig., 3 tabs.

  3. Validity of a Neurological Scoring System for Canine X-Linked Myotubular Myopathy

    PubMed Central

    Meisner, Allison; Mack, David; Goddard, Melissa; Coulter, Ian T.; Grange, Robert; Childers, Martin K.

    2015-01-01

    Abstract A simple clinical neurological test was developed to evaluate response to gene therapy in a preclinical canine model of X-linked myotubular myopathy (XLMTM). This devastating congenital myopathy is caused by mutation in the myotubularin (MTM1) gene. Clinical signs include muscle weakness, early respiratory failure, and ventilator dependence. A spontaneously occurring canine model has a similar clinical picture and histological abnormalities on muscle biopsy compared with patients. We developed a neuromuscular assessment score, graded on a scale from 10 (normal) to 1 (unable to maintain sternal recumbency). We hypothesize that this neurological assessment score correlates with genotype and established measures of disease severity and is reliable when performed by an independent observer. At 17 weeks of age, there was strong correlation between neurological assessment scores and established methods of severity testing. The neurological severity score correctly differentiated between XLMTM and wild-type dogs with good interobserver reliability, on the basis of strong agreement between neurological scores assigned by independent observers. Together, these data indicate that the neurological scoring system developed for this canine congenital neuromuscular disorder is reliable and valid. This scoring system may be helpful in evaluating response to therapy in preclinical testing in this disease model, such as response to gene therapy. PMID:26086764

  4. Validity of a Neurological Scoring System for Canine X-Linked Myotubular Myopathy.

    PubMed

    Snyder, Jessica M; Meisner, Allison; Mack, David; Goddard, Melissa; Coulter, Ian T; Grange, Robert; Childers, Martin K

    2015-06-01

    A simple clinical neurological test was developed to evaluate response to gene therapy in a preclinical canine model of X-linked myotubular myopathy (XLMTM). This devastating congenital myopathy is caused by mutation in the myotubularin (MTM1) gene. Clinical signs include muscle weakness, early respiratory failure, and ventilator dependence. A spontaneously occurring canine model has a similar clinical picture and histological abnormalities on muscle biopsy compared with patients. We developed a neuromuscular assessment score, graded on a scale from 10 (normal) to 1 (unable to maintain sternal recumbency). We hypothesize that this neurological assessment score correlates with genotype and established measures of disease severity and is reliable when performed by an independent observer. At 17 weeks of age, there was strong correlation between neurological assessment scores and established methods of severity testing. The neurological severity score correctly differentiated between XLMTM and wild-type dogs with good interobserver reliability, on the basis of strong agreement between neurological scores assigned by independent observers. Together, these data indicate that the neurological scoring system developed for this canine congenital neuromuscular disorder is reliable and valid. This scoring system may be helpful in evaluating response to therapy in preclinical testing in this disease model, such as response to gene therapy. PMID:26086764

  5. Gene Therapy Studies in a Canine Model of X-Linked Severe Combined Immunodeficiency

    PubMed Central

    De Ravin, Suk See; Malech, Harry L.; Sorrentino, Brian P.; Burtner, Christopher; Kiem, Hans-Peter

    2015-01-01

    Abstract Since the occurrence of T cell leukemias in the original human γ-retroviral gene therapy trials for X-linked severe combined immunodeficiency (XSCID), considerable effort has been devoted to developing safer vectors. This review summarizes gene therapy studies performed in a canine model of XSCID to evaluate the efficacy of γ-retroviral, lentiviral, and foamy viral vectors for treating XSCID and a novel method of vector delivery. These studies demonstrate that durable T cell reconstitution and thymopoiesis with no evidence of any serious adverse events and, in contrast to the human XSCID patients, sustained marking in myeloid cells and B cells with reconstitution of normal humoral immune function can be achieved for up to 5 years without any pretreatment conditioning. The presence of sustained levels of gene-marked T cells, B cells, and more importantly myeloid cells for almost 5 years is highly suggestive of transduction of either multipotent hematopoietic stem cells or very primitive committed progenitors. PMID:25603151

  6. Multi-exon Skipping Using Cocktail Antisense Oligonucleotides in the Canine X-linked Muscular Dystrophy.

    PubMed

    Miskew Nichols, Bailey; Aoki, Yoshitsugu; Kuraoka, Mutsuki; Lee, Joshua J A; Takeda, Shin'ichi; Yokota, Toshifumi

    2016-01-01

    Duchenne muscular dystrophy (DMD) is one of the most common lethal genetic diseases worldwide, caused by mutations in the dystrophin (DMD) gene. Exon skipping employs short DNA/RNA-like molecules called antisense oligonucleotides (AONs) that restore the reading frame and produce shorter but functional proteins. However, exon skipping therapy faces two major hurdles: limited applicability (up to only 13% of patients can be treated with a single AON drug), and uncertain function of truncated proteins. These issues were addressed with a cocktail AON approach. While approximately 70% of DMD patients can be treated by single exon skipping (all exons combined), one could potentially treat more than 90% of DMD patients if multiple exon skipping using cocktail antisense drugs can be realized. The canine X-linked muscular dystrophy (CXMD) dog model, whose phenotype is more similar to human DMD patients, was used to test the systemic efficacy and safety of multi-exon skipping of exons 6 and 8. The CXMD dog model harbors a splice site mutation in intron 6, leading to a lack of exon 7 in dystrophin mRNA. To restore the reading frame in CXMD requires multi-exon skipping of exons 6 and 8; therefore, CXMD is a good middle-sized animal model for testing the efficacy and safety of multi-exon skipping. In the current study, a cocktail of antisense morpholinos targeting exon 6 and exon 8 was designed and it restored dystrophin expression in body-wide skeletal muscles. Methods for transfection/injection of cocktail oligos and evaluation of the efficacy and safety of multi-exon skipping in the CXMD dog model are presented. PMID:27285612

  7. Multi-exon Skipping Using Cocktail Antisense Oligonucleotides in the Canine X-linked Muscular Dystrophy

    PubMed Central

    Kuraoka, Mutsuki; Lee, Joshua J.A.; Takeda, Shin'ichi; Yokota, Toshifumi

    2016-01-01

    Duchenne muscular dystrophy (DMD) is one of the most common lethal genetic diseases worldwide, caused by mutations in the dystrophin (DMD) gene. Exon skipping employs short DNA/RNA-like molecules called antisense oligonucleotides (AONs) that restore the reading frame and produce shorter but functional proteins. However, exon skipping therapy faces two major hurdles: limited applicability (up to only 13% of patients can be treated with a single AON drug), and uncertain function of truncated proteins. These issues were addressed with a cocktail AON approach. While approximately 70% of DMD patients can be treated by single exon skipping (all exons combined), one could potentially treat more than 90% of DMD patients if multiple exon skipping using cocktail antisense drugs can be realized. The canine X-linked muscular dystrophy (CXMD) dog model, whose phenotype is more similar to human DMD patients, was used to test the systemic efficacy and safety of multi-exon skipping of exons 6 and 8. The CXMD dog model harbors a splice site mutation in intron 6, leading to a lack of exon 7 in dystrophin mRNA. To restore the reading frame in CXMD requires multi-exon skipping of exons 6 and 8; therefore, CXMD is a good middle-sized animal model for testing the efficacy and safety of multi-exon skipping. In the current study, a cocktail of antisense morpholinos targeting exon 6 and exon 8 was designed and it restored dystrophin expression in body-wide skeletal muscles. Methods for transfection/injection of cocktail oligos and evaluation of the efficacy and safety of multi-exon skipping in the CXMD dog model are presented. PMID:27285612

  8. Profiles of Steroid Hormones in Canine X-Linked Muscular Dystrophy via Stable Isotope Dilution LC-MS/MS

    PubMed Central

    Martins-Júnior, Helio A.; Simas, Rosineide C.; Brolio, Marina P.; Ferreira, Christina R.; Perecin, Felipe; Nogueira, Guilherme de P.; Miglino, Maria A.; Martins, Daniele S.; Eberlin, Marcos N.; Ambrósio, Carlos E.

    2015-01-01

    Golden retriever muscular dystrophy (GRMD) provides the best animal model for characterizing the disease progress of the human disorder, Duchenne muscular dystrophy (DMD). The purpose of this study was to determine steroid hormone concentration profiles in healthy golden retriever dogs (control group - CtGR) versus GRMD-gene carrier (CaGR) and affected female dogs (AfCR). Therefore, a sensitive and specific analytical method was developed and validated to determine the estradiol, progesterone, cortisol, and testosterone levels in the canine serum by isotope dilution liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). To more accurately understand the dynamic nature of the serum steroid profile, the fluctuating levels of these four steroid hormones over the estrous cycle were compared across the three experimental groups using a multivariate statistical analysis. The concentration profiles of estradiol, cortisol, progesterone, and testosterone revealed a characteristic pattern for each studied group at each specific estrous phase. Additionally, several important changes in the serum concentrations of cortisol and estradiol in the CaGR and AfCR groups seem to be correlated with the status and progression of the muscular dystrophy. A comprehensive and quantitative monitoring of steroid profiles throughout the estrous cycle of normal and GRMD dogs were achieved. Significant differences in these profiles were observed between GRMD and healthy animals, most notably for estradiol. These findings contribute to a better understanding of both dog reproduction and the muscular dystrophy pathology. Our data open new venues for hormonal behavior studies in dystrophinopathies and that may affect the quality of life of DMD patients. PMID:26010907

  9. Profiles of Steroid Hormones in Canine X-Linked Muscular Dystrophy via Stable Isotope Dilution LC-MS/MS.

    PubMed

    Martins-Júnior, Helio A; Simas, Rosineide C; Brolio, Marina P; Ferreira, Christina R; Perecin, Felipe; Nogueira, Guilherme de P; Miglino, Maria A; Martins, Daniele S; Eberlin, Marcos N; Ambrósio, Carlos E

    2015-01-01

    Golden retriever muscular dystrophy (GRMD) provides the best animal model for characterizing the disease progress of the human disorder, Duchenne muscular dystrophy (DMD). The purpose of this study was to determine steroid hormone concentration profiles in healthy golden retriever dogs (control group - CtGR) versus GRMD-gene carrier (CaGR) and affected female dogs (AfCR). Therefore, a sensitive and specific analytical method was developed and validated to determine the estradiol, progesterone, cortisol, and testosterone levels in the canine serum by isotope dilution liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). To more accurately understand the dynamic nature of the serum steroid profile, the fluctuating levels of these four steroid hormones over the estrous cycle were compared across the three experimental groups using a multivariate statistical analysis. The concentration profiles of estradiol, cortisol, progesterone, and testosterone revealed a characteristic pattern for each studied group at each specific estrous phase. Additionally, several important changes in the serum concentrations of cortisol and estradiol in the CaGR and AfCR groups seem to be correlated with the status and progression of the muscular dystrophy. A comprehensive and quantitative monitoring of steroid profiles throughout the estrous cycle of normal and GRMD dogs were achieved. Significant differences in these profiles were observed between GRMD and healthy animals, most notably for estradiol. These findings contribute to a better understanding of both dog reproduction and the muscular dystrophy pathology. Our data open new venues for hormonal behavior studies in dystrophinopathies and that may affect the quality of life of DMD patients. PMID:26010907

  10. A single nucleotide insertion in the canine interleukin-2 receptor gamma chain results in X-linked severe combined immunodeficiency disease.

    PubMed

    Somberg, R L; Pullen, R P; Casal, M L; Patterson, D F; Felsburg, P J; Henthorn, P S

    1995-08-01

    The immunologic and genetic analysis of a 14-week-old-male cardigan Welsh corgi puppy that presented with failure to thrive, diarrhea, and intermittent vomiting are described. The lack of palpable lymph nodes, the premature death of a male sibling, and similar clinical signs in a male cousin suggested that a primary immunodeficiency disease might be responsible for his poor clinical condition. Quantitation of serum immunoglobulins revealed low concentrations of IgG and undetectable IgA, yet normal concentrations of IgM. A complete blood cell count showed a slight anemia and lymphopenia. Although the peripheral blood contained a normal percentage of T cells, with an increased CD4:CD8 ratio, they were unable to proliferate in response to phytohemagglutinin (PHA) and/or interleukin 2 (IL-2). Furthermore, following PHA activation, the peripheral blood lymphocytes (PBL) demonstrated a nearly complete lack of IL-2 binding. All of these laboratory findings were identical with our previous findings from dogs with X-linked severe combined immunodeficiency (XSCID) that is due to a mutation in their IL-2 receptor gamma (IL-2R gamma) chain. Examination of the corgi's IL-2R gamma cDNA revealed an insertion of a cytosine following nucleotide 582, resulting in a premature stop codon prior to the transmembrane domain. The insertion also created an EcoO109 restriction enzyme site that enabled us to detect the mutation in the patient's genomic DNA. This new mutation in the IL-2R gamma chain discovered in a cardigan Welsh corgi puppy results in XSCID with similar immunologic abnormalities as observed in dogs with the same disease resulting from a different IL-2R gamma chain mutation. PMID:8571541

  11. X-linked Agammaglobulinemia.

    PubMed

    Suri, Deepti; Rawat, Amit; Singh, Surjit

    2016-04-01

    X-linked agammaglobulinemia (XLA) is one of the commonest primary immune deficiencies encountered in pediatric clinical practice. In adults, common variable immunodeficiency (CVID) is the most common primary immunodeficiency disease (PID). It is an X-linked disorder characterized by increased susceptibility to encapsulated bacteria, severe hypergammaglobulinemia and absent circulating B cells in the peripheral blood. Replacement immunoglobulin therapy is the main cornerstone of treatment. Aggressive management of intercurrent infections and prophylactic antimicrobials are needed. This review attempts to highlight varied clinical manifestations and management of XLA, especially in the context of developing country. PMID:26909497

  12. Muscle pathology, limb strength, walking gait, respiratory function and neurological impairment establish disease progression in the p.N155K canine model of X-linked myotubular myopathy

    PubMed Central

    Goddard, Melissa A.; Mack, David L.; Czerniecki, Stefan M.; Kelly, Valerie E.; Snyder, Jessica M.; Grange, Robert W.; Lawlor, Michael W.; Smith, Barbara K.; Beggs, Alan H.

    2015-01-01

    Background Loss-of-function mutations in the myotubularin (MTM1) gene cause X-linked myotubular myopathy (XLMTM), a fatal, inherited pediatric disease that affects the entire skeletal musculature. Labrador retriever dogs carrying an MTM1 missense mutation exhibit strongly reduced synthesis of myotubularin, the founder member of a lipid phosphatase required for normal skeletal muscle function. The resulting canine phenotype resembles that of human patients with comparably severe mutations, and survival does not normally exceed 4 months. Methods We studied MTM1 mutant dogs (n=7) and their age-matched control littermates (n=6) between the ages of 10 and 25 weeks. Investigators blinded to the animal identities sequentially measured limb muscle pathology, fore- and hind limb strength, walking gait, respiratory function and neurological impairment. Results MTM1-mutant puppies display centrally-nucleated myofibers of reduced size and disrupted sarcotubular architecture progressing until the end of life, an average of 17 weeks. In-life measures of fore- and hind limb strength establish the rate at which XLMTM muscles weaken, and their corresponding decrease in gait velocity and stride length. Pulmonary function tests in affected dogs reveal a right-shifted relationship between peak inspiratory flow (PIF) and inspiratory time (TI); neurological assessments indicate that affected puppies as young as 10 weeks show early signs of neurological impairment (neurological severity score, NSS =8.6±0.9) with progressive decline (NSS =5.6±1.7 at 17 weeks-of-age). Conclusions Our findings document the rate of disease progression in a large animal model of XLMTM and lay a foundation for preclinical studies. PMID:26605308

  13. Genetics Home Reference: X-linked sideroblastic anemia

    MedlinePlus

    ... Conditions X-linked sideroblastic anemia X-linked sideroblastic anemia Enable Javascript to view the expand/collapse boxes. ... Open All Close All Description X-linked sideroblastic anemia is an inherited disorder that prevents developing red ...

  14. Genetics Home Reference: X-linked adrenoleukodystrophy

    MedlinePlus

    ... 1016/j.bbadis.2012.03.012. Epub 2012 Mar 28. Review. Citation on PubMed Kemp S, Pujol A, ... X-linked adrenoleukodystrophy. Nat Clin Pract Neurol. 2007 Mar;3(3):140-51. Review. Citation on PubMed ...

  15. A Simulation of X-Linked Inheritance.

    ERIC Educational Resources Information Center

    Harrell, Pamela Esprivalo

    1997-01-01

    Describes how to lead students through a classroom-based simulation to teach a variety of concepts such as X-linked traits, sex determination, and sex anomalies. The simulation utilizes inexpensive materials such as plastic eggs that twist apart to represent human eggs and sperm. (AIM)

  16. X-linked disorders with cerebellar dysgenesis

    PubMed Central

    2011-01-01

    X-linked disorders with cerebellar dysgenesis (XLCD) are a genetically heterogeneous and clinically variable group of disorders in which the hallmark is a cerebellar defect (hypoplasia, atrophy or dysplasia) visible on brain imaging, caused by gene mutations or genomic imbalances on the X-chromosome. The neurological features of XLCD include hypotonia, developmental delay, intellectual disability, ataxia and/or other cerebellar signs. Normal cognitive development has also been reported. Cerebellar dysgenesis may be isolated or associated with other brain malformations or multiorgan involvement. There are at least 15 genes on the X-chromosome that have been constantly or occasionally associated with a pathological cerebellar phenotype. 8 XLCD loci have been mapped and several families with X-linked inheritance have been reported. Recently, two recurrent duplication syndromes in Xq28 have been associated with cerebellar hypoplasia. Given the report of several forms of XLCD and the excess of males with ataxia, this group of conditions is probably underestimated and families of patients with neuroradiological and clinical evidence of a cerebellar disorder should be counseled for high risk of X-linked inheritance. PMID:21569638

  17. Endocrine Dysfunction in X-Linked Adrenoleukodystrophy.

    PubMed

    Burtman, Elizabeth; Regelmann, Molly O

    2016-06-01

    X-linked adrenoleukodystrophy (X-ALD) is caused by mutations in the ABCD1 gene and leads to an elevation of very-long-chain fatty acids (VLCFA). The accumulation of the VLCFA and the associated oxidative stress can present with a spectrum of significant neurologic disease, adrenal insufficiency, and testicular dysfunction in males with ABCD1 gene mutations. Much of the published literature for X-ALD has focused on the associated devastating progressive neurologic conditions. The purpose of this review is to summarize the concerns for endocrine dysfunction associated with X-ALD and provide guidance for monitoring and management of adrenal insufficiency. PMID:27241966

  18. Genetics Home Reference: X-linked sideroblastic anemia and ataxia

    MedlinePlus

    ... linked sideroblastic anemia and ataxia X-linked sideroblastic anemia and ataxia Enable Javascript to view the expand/ ... Open All Close All Description X-linked sideroblastic anemia and ataxia is a rare condition characterized by ...

  19. Genetics Home Reference: X-linked chondrodysplasia punctata 2

    MedlinePlus

    ... linked chondrodysplasia punctata 2 X-linked chondrodysplasia punctata 2 Enable Javascript to view the expand/collapse boxes. ... All Close All Description X-linked chondrodysplasia punctata 2 is a disorder characterized by bone, skin, and ...

  20. Genetics Home Reference: X-linked chondrodysplasia punctata 1

    MedlinePlus

    ... linked chondrodysplasia punctata 1 X-linked chondrodysplasia punctata 1 Enable Javascript to view the expand/collapse boxes. ... All Close All Description X-linked chondrodysplasia punctata 1 is a disorder of cartilage and bone development ...

  1. Genetics Home Reference: X-linked intellectual disability, Siderius type

    MedlinePlus

    ... linked intellectual disability, Siderius type X-linked intellectual disability, Siderius type Enable Javascript to view the expand/ ... Open All Close All Description X-linked intellectual disability, Siderius type is a condition characterized by mild ...

  2. X linked mental retardation: a clinical guide

    PubMed Central

    Raymond, F L

    2006-01-01

    Mental retardation is more common in males than females in the population, assumed to be due to mutations on the X chromosome. The prevalence of the 24 genes identified to date is low and less common than expansions in FMR1, which cause Fragile X syndrome. Systematic screening of all other X linked genes in X linked families with mental retardation is currently not feasible in a clinical setting. The phenotypes of genes causing syndromic and non‐syndromic mental retardation (NLGN3, NLGN4, RPS6KA3(RSK2), OPHN1, ATRX, SLC6A8, ARX, SYN1, AGTR2, MECP2, PQBP1, SMCX, and SLC16A2) are first discussed, as these may be the focus of more targeted mutation analysis. Secondly, the relative prevalence of genes causing only non‐syndromic mental retardation (IL1RAPL1, TM4SF2, ZNF41, FTSJ1, DLG3, FACL4, PAK3, ARHGEF6, FMR2, and GDI) is summarised. Thirdly, the problem of recurrence risk where a molecular genetics diagnosis has not been made and what proportion of the male excess of mental retardation is due to monogenic disorders of the X chromosome are discussed. PMID:16118346

  3. Mutation detection in X-linked hydrocephalus

    SciTech Connect

    Forrest, S.M.; Balnaves, M.E.; Rosenthal, A.

    1994-09-01

    X-linked hydrocephalus (XLH), which maps to Xq28, affects about 1 in 30,000 male births. A candidate gene, L1-CAM, which codes for a neural adhesion molecule, mapped to the same region of the X chromosome. Rosenthal et al. (1992) identified a patient with XLH that had aberrant splicing of L1-CAM. A mutation at a potential branch point signal in an intron was identified. The gene has a number of exons and encodes a 4.2 kb mRNA. We isolated RNA from lymphocytes or fibroblasts from five XLH patients. cDNA was synthesized and the gene was amplified in two overlapping fragments, 2.2 kb and 1.7 kb respectively. A nested PCR approach with two rounds of PCR amplification was employed. Patient 900124 did not have a full length 5{prime} fragment and 880022 did not have a full length 3{prime} product. Restriction digestions defined the region of the alteration in the messenger RNA and sequencing in this region showed the loss of exons 10 and 21, respectively. All 5{prime} and 3{prime} products were also digested with several restriction enzymes (e.g., Msp I, Taq I), which have CG in their recognition sites, in the hope that point mutations that alter these restriction enzyme sites might be identified. A point mutation creating an Msp I site was found in patient 930067.

  4. Pathophysiology of X-linked adrenoleukodystrophy☆

    PubMed Central

    Berger, J.; Forss-Petter, S.; Eichler, F.S.

    2014-01-01

    Currently the molecular basis for the clinical heterogeneity of X-linked adrenoleukodystrophy (X-ALD) is poorly understood. The genetic bases for all different phenotypic variants of X-ALD are mutations in the gene encoding the peroxisomal ATP-binding cassette (ABC) transporter, ABCD1 (formerly adrenoleukodystrophy protein, ALDP). ABCD1 transports CoA-activated very long-chain fatty acids from the cytosol into the peroxisome for degradation. The phenotypic variability is remarkable ranging from cerebral inflammatory demyelination of childhood onset, leading to death within a few years, to adults remaining pre-symptomatic through more than five decades. There is no general genotype–phenotype correlation in X-ALD. The default manifestation of mutations in ABCD1 is adrenomyeloneuropathy, a slowly progressive dying-back axonopathy affecting both ascending and descending spinal cord tracts as well as in some cases, a peripheral neuropathy. In about 60% of male X-ALD patients, either in childhood (35–40%) or in adulthood (20%), an initial, clinically silent, myelin destabilization results in conversion to a devastating, rapidly progressive form of cerebral inflammatory demyelination. Here, ABCD1 remains a susceptibility gene, necessary but not sufficient for inflammatory demyelination to occur. Although the accumulation of very long-chain fatty acids appears to be essential for the pathomechanism of all phenotypes, the molecular mechanisms underlying these phenotypes are fundamentally different. Cell autonomous processes such as oxidative stress and energy shortage in axons as well as non-cell autonomous processes involving axon–glial interactions seem pertinent to the dying-back axonopathy. Various dynamic mechanisms may underlie the initiation of inflammation, the altered immune reactivity, the propagation of inflammation, as well as the mechanisms leading to the arrest of inflammation after hematopoietic stem cell transplantation. An improved understanding of

  5. Genetics Home Reference: X-linked lymphoproliferative disease

    MedlinePlus

    ... the development of specialized T cells called natural killer T cells. The SAP protein also helps control ... PubMed GeneReview: Lymphoproliferative Disease, X-Linked Latour S. Natural killer T cells and X-linked lymphoproliferative syndrome. Curr ...

  6. X-linked Ichthyosis Presenting as Erythroderma: A Rare Case

    PubMed Central

    Das, Anirban; Mishra, Vivek; Shome, Kaushik; Sen, Arpita

    2015-01-01

    X-linked ichthyosis is a rare form of dermatological disease and when it presents as erythroderma it is even rarer. History of consanguineous marriage and prolonged labor during birth of patient, generalized scaling which gets better in summer months, flexural involvement, cryptorchidism made a diagnosis of X-linked ichthyosis. We report this case because of its rarity as erythroderma. PMID:26538699

  7. Genetics Home Reference: X-linked juvenile retinoschisis

    MedlinePlus

    ... to the retina impairs the sharpness of vision (visual acuity) in both eyes. Typically, X-linked juvenile ... in the same direction (strabismus) and farsightedness ( hyperopia ). Visual acuity often declines in childhood and adolescence but ...

  8. Severe manifestations in carrier females in X linked retinitis pigmentosa.

    PubMed Central

    Souied, E; Segues, B; Ghazi, I; Rozet, J M; Chatelin, S; Gerber, S; Perrault, I; Michel-Awad, A; Briard, M L; Plessis, G; Dufier, J L; Munnich, A; Kaplan, J

    1997-01-01

    Retinitis pigmentosa (RP) is a group of progressive hereditary disorders of the retina in which various modes of inheritance have been described. Here, we report on X linked RP in nine families with constant and severe expression in carrier females. In our series, however, the phenotype was milder and delayed in carrier females compared to hemizygous males. This form of X linked RP could be regarded therefore as partially dominant. The disease gene maps to chromosome Xp2.1 in the genetic interval encompassing the RP3 locus (Zmax=13.71 at the DXS1100 locus). Single strand conformation polymorphism and direct sequence analysis of the retinitis pigmentosa GTPase regulator (RPGR) gene, which accounts for RP3, failed to detect any mutation in our families. Future advances in the identification of X linked RP genes will hopefully help to elucidate the molecular basis of this X linked dominant RP. Images PMID:9350809

  9. The inner ear of dogs with X-linked nephritis provides clues to the pathogenesis of hearing loss in X-linked Alport syndrome.

    PubMed

    Harvey, S J; Mount, R; Sado, Y; Naito, I; Ninomiya, Y; Harrison, R; Jefferson, B; Jacobs, R; Thorner, P S

    2001-09-01

    Alport syndrome is an inherited disorder of type IV collagen with progressive nephropathy, ocular abnormalities, and high-tone sensorineural deafness. In X-linked Alport syndrome, mutations in the COL4A5 gene encoding the alpha5 chain of type IV collagen lead to loss of the alpha3/alpha4/alpha5 network and increased susceptibility of the glomerular basement membrane to long-term damage. The molecular defects that underlie the otopathology in this disease remain poorly understood. We used a canine model of X-linked Alport syndrome to determine the expression of type IV collagen alpha-chains in the inner ear. By 1 month in normal adult dogs, the alpha3, alpha4, and alpha5 chains were co-expressed in a thin continuous line extending along the basilar membrane and the internal and external sulci, with the strongest expression along the lateral aspect of the spiral ligament in the basal turn of the cochlea. Affected dogs showed complete absence of the alpha3/alpha4/alpha5 network. The lateral aspect of the spiral ligament is populated by tension fibroblasts that express alpha-smooth muscle actin and nonmuscle myosin and are postulated to generate radial tension on the basilar membrane via the extracellular matrix for reception of high frequency sound. We propose that in Alport syndrome, the loss of the alpha3/alpha4/alpha5 network eventually weakens the interaction of these cells with their extracellular matrix, resulting in reduced tension on the basilar membrane and the inability to respond to high frequency sounds. PMID:11549602

  10. X chromosome inactivation and X-linked mental retardation

    SciTech Connect

    Willard, H.F. |

    1996-07-12

    The expression of X-linked genes in females heterozygous for X-linked defects can be modulated by epigenetic control mechanisms that constitute the X chromosome inactivation pathway. At least four different effects have been found to influence, in females, the phenotypic expression of genes responsible for X-linked mental retardation (XLMR). First, non-random X inactivation, due either to stochastic or genetic factors, can result in tissues in which one cell type (for example, that in which the X chromosome carrying a mutant XLMR gene is active) dominates, instead of the normal mosaic cell population expected as a result of random X inactivation. Second, skewed inactivation of the normal X in individuals carrying a deletion of part of the X chromosome has been documented in a number of mentally retarded females. Third, functional disomy of X-linked genes that are expressed inappropriately due to the absence of X inactivation has been found in mentally retarded females with structurally abnormal X chromosomes that do not contain the X inactivation center. And fourth, dose-dependent overexpression of X-linked genes that normally {open_quotes}escape{close_quotes} X inactivation may account for the mental and developmental delay associated with increasing numbers of otherwise inactive X chromosomes in individuals with X chromosome aneuploidy. 53 refs., 1 fig.

  11. Dental abnormalities associated with X-linked hypohidrotic ectodermal dysplasia in dogs

    PubMed Central

    Lewis, JR; Reiter, AM; Mauldin, EA; Casal, ML

    2009-01-01

    Objectives X-linked hypohidrotic ectodermal dysplasia (XLHED) occurs in several species, including humans, mice, cattle and dogs. The orofacial manifestations of ectodermal dysplasia in humans and mice have been extensively studied, but documentation of dental abnormalities in dogs is lacking. The current study describes the results of clinical and radiographic examinations of XLHED-affected dogs and demonstrates profound similarities to findings of XLHED-affected humans. Setting and sample population Section of Medical Genetics at the University of Pennsylvania, School of Veterinary Medicine. Clinical and radiographic oral examinations were performed on 17 dogs with XLHED, 3 normal dogs, and 2 dogs heterozygous for XLHED. Materials and methods The prevalence and severity of orofacial and dental abnormalities were evaluated by means of a sedated examination, photographs, and full-mouth intraoral radiographs. Results Crown and root abnormalities were common in dogs affected by XLHED, including hypodontia, oligodontia, conical crown shape, decreased number of cusps, decreased number of roots, and dilacerated roots. Persistent deciduous teeth were frequently encountered. Malocclusion was common, with Angle Class I mesioversion of the maxillary and/or mandibular canine teeth noted in 15 of 17 dogs. Angle Class III malocclusion (maxillary brachygnathism) was seen in one affected dog. Conclusion Dental abnormalities are common and severe in dogs with XLHED. Dental manifestations of canine XLHED share characteristics of brachyodont tooth type and diphyodont dentition, confirming this species to be an orthologous animal model for study of human disease. PMID:20078794

  12. Canine Distemper

    MedlinePlus

    Although this brochure provides basic information about canine distemper, your veterinarian is always your best source of health information. Consult your veterinarian for more information about canine distemper and its prevention. ...

  13. X-Linked agammaglobulinemia in a child with Klinefelter's syndrome.

    PubMed

    Cochino, Alexis-Virgil; Janda, Ales; Ravcukova, Barbora; Plaiasu, Vasilica; Ochiana, Diana; Gherghina, Ioan; Freiberger, Tomas

    2014-02-01

    Bruton's agammaglobulinemia is a rare X-linked humoral immunodeficiency manifesting with recurrent bacterial infections early in life. Klinefelter's syndrome caused by an additional X chromosome is the most common sex chromosome disorder. A previously unreported association of these two conditions is described here. PMID:24477949

  14. Genetics Home Reference: X-linked infantile spasm syndrome

    MedlinePlus

    ... A new paradigm for West syndrome based on molecular and cell biology. Epilepsy Res. 2006 Aug;70 Suppl 1:S87-95. Epub 2006 Jun 23. Review. Citation on PubMed Kossoff ... JL. Interneuron, interrupted: molecular pathogenesis of ARX mutations and X-linked infantile ...

  15. X-linked dominant retinitis pigmentosa in an American family

    SciTech Connect

    McGuire, R.E.; Daiger, S.P.; Blanton, S.H.

    1994-09-01

    Retinitis pigmentosa is a genetically heterogeneous disease with autosomal dominant (adRP), autosomal recessive and X-linked forms. At least 3 forms of X-linked retinitis pigmentosa have been reported: RP2 which maps to Xp11.4-p 11.23, RP3 which maps to Xp21.1 and RP6, which maps to Xp21.3-p21.1. The X-linked forms of retinitis pigmentosa are generally considered to be recessive as female carriers are not affected or are much less affected than males. Here we report a five generation American family with X-linked retinitis pigmentosa in which both males and females are significantly affected. The disease locus in this family appears to be distinct from RP2 and RP3. The American family (UTAD054) presents with early-onset retinitis pigmentosa. The family appeared to fit an autosomal dominant pattern; however, linkage testing excluded all known adRP loci. Absence of male-to-male transmission in the pedigree suggested the possibility of X-linked dominant inheritance. Thus we tested six microsatellite markers that map to Xp (DXS987, DXS989, DXS993, DXS999, DXS1003 and DXS1110). Of these, DXS989 showed tight linkage with one allele (199) showing a 100% concordance with disease status. The odds favoring an X-linked dominant mode of inheritance in this family, versus autosomal dominant, are 10{sup 5}:1. In addition, recombinations for DXS999, and dXS1110, the two markers flanking DXS989, were observed in affected individuals. These data map the disease locus in this family to a 9 mb region on the X chromosome between Xp22.11 and Xp21.41. In addition, the recombinant individuals exclude close linkage to RP2 and RP3. The observance of high penetrance in females indicates that this family has X-linked dominant retinitis pigmentosa. We suggest that this mode of inheritance should be considered in other families with dominant retinitis pigmentosa but an absence of male-to-male transmission.

  16. X-Linked Retinoschisis: Phenotypic Variability in a Chinese Family

    PubMed Central

    Xiao, Yangyan; Liu, Xiao; Tang, Luosheng; Wang, Xia; Coursy, Terry; Guo, Xiaojian; Li, Zhuo

    2016-01-01

    X-linked juvenile retinoschisis (XLRS), a leading cause of juvenile macular degeneration, is characterized by a spoke-wheel pattern in the macular region of the retina and splitting of the neurosensory retina. Our study is to describe the clinical characteristics of a four generations of this family (a total of 18 members)with X-linked retinoschisis (XLRS) and detected a novel mutations of c.3G > A (p.M1?) in the initiation codon of the RS1 gene. by direct sequencing.Identification of this mutation in this family provides evidence about potential genetic or environmental factors on its phenotypic variance, as patients presented with different phenotypes regardless of having the same mutation. Importantly, OCT has proven vital for XLRS diagnosis in children. PMID:26823236

  17. [DIAGNOSTIC VARIATIONS OF X-LINKED MUSCULAR DYSTROPHY WITH CONTRACTURES].

    PubMed

    Kvirkvelia, N; Shakarishvili, R; Gugutsidze, D; Khizanishvili, N

    2015-01-01

    Case report with review describes X-linked muscular dystrophy with contractures in 28 years old man and his cousin. The disease revealed itself in an early stage (age 5-10), the process was progressing with apparent tendons retraction and contraction, limited movement in the areas of the neck and back of spine, atrophy of shoulder and pelvic yard and back muscles. Intellect was intact. Cardyomyopathy was exhibited. CK was normal. EMG showed classic myopathic features. Muscle biopsy showed different caliber groups of muscle fibers, growth of endo-perimesial connective tissue. Clinical manifestations together with electrophysiological and histological data suggest consistency with Rotthauwe-Mortier-Bayer X-linked muscular dystrophy. PMID:26177134

  18. X-linked adrenoleukodystrophy presenting as attention deficit hyperactivity disorder.

    PubMed

    Ilango, T Siva; Nambi, S

    2015-01-01

    X-linked adrenoleukodystrophy (X-ALD) is one the leukodystrophies causing a progressive decline in neurological function mainly affecting the children. The most common symptoms are changes in behavior, including social withdrawal or aggression, poor memory or poor scholastic performance. Here, we present a 7-year-old boy who presented with symptoms of inattention and hyperactivity and later turned out to be a case of X-ALD. PMID:26124531

  19. Evolving practice: X-linked agammaglobulinemia and lung transplantation.

    PubMed

    Barnes, S; Kotecha, S; Douglass, J A; Paul, E; Hore-Lacey, F; Stirling, R; Snell, G I; Westall, G P

    2015-04-01

    X-linked agammaglobulinemia (XLA) is a rare primary humoral immunodeficiency syndrome characterized by agammaglobulinemia, recurrent infections and bronchiectasis. Despite the association with end-stage bronchiectasis, the literature on XLA and lung transplantation is extremely limited. We report a series of 6 XLA patients with bronchiectasis who underwent lung transplantation. Short-term outcomes were excellent however long-term outcomes were disappointing with a high incidence of pulmonary sepsis and chronic lung allograft dysfunction (CLAD). PMID:25736826

  20. X-linked lymphoproliferative syndromes: brothers or distant cousins?

    PubMed Central

    Zhang, Kejian; Snow, Andrew L.; Marsh, Rebecca A.

    2010-01-01

    X-linked lymphoproliferative disease (XLP1), described in the mid-1970s and molecularly defined in 1998, and XLP2, reported in 2006, are prematurely lethal genetic immunodeficiencies that share susceptibility to overwhelming inflammatory responses to certain infectious triggers. Signaling lymphocytic activation molecule-associated protein (SAP; encoded by SH2D1A) is mutated in XLP1, and X-linked inhibitor of apoptosis (XIAP; encoded by BIRC4) is mutated in XLP2. XLP1 is a disease with multiple and variable clinical consequences, including fatal hemophagocytic lymphohistiocytosis (HLH) triggered predominantly by Epstein-Barr virus, lymphomas, antibody deficiency, and rarer consequences of immune dysregulation. To date, XLP2 has been found to cause HLH with and without exposure to Epstein-Barr virus, and HLH is commonly recurrent in these patients. For both forms of XLP, the only curative therapy at present is allogeneic hematopoietic cell transplantation. Beyond their common X-linked locus and their requirement for normal immune responses to certain viral infections, SAP and XIAP demonstrate no obvious structural or functional similarity, are not coordinately regulated with respect to their expression, and do not appear to directly interact. In this review, we describe the genetic, clinical, and immunopathologic features of these 2 disorders and discuss current diagnostic and therapeutic strategies. PMID:20660790

  1. IQSEC2 and X-linked syndromal intellectual disability.

    PubMed

    Alexander-Bloch, Aaron F; McDougle, Christopher J; Ullman, Zhanna; Sweetser, David A

    2016-06-01

    Despite the recent acceleration in the discovery of genetic risk factors for intellectual disability (ID), the genetic etiology of ID is unknown in approximately half of cases and remains a major frontier of genetics in medicine and psychiatry. The distinction between syndromal and nonsyndromal forms of ID is of great clinical importance, but the boundary between these clinical entities is difficult to ascertain for many genes of interest. ID is more common in men than in women, but the genetic explanation of this sex asymmetry is incompletely understood. This Review systematically examines the reported cases of X-linked ID caused by de novo loss-of-function mutations in the gene IQSEC2. This gene is largely known as a cause of X-linked nonsyndromal ID in male patients. However, depending on the severity of the mutation, the phenotypic spectrum of IQSEC2-related ID can range from the classic X-linked nonsyndromal form of the disease to a severe syndrome that has been reported in the context of de novo mutations only, in both male and female patients. Bioinformatics analysis suggests that truncation of the longer of the two protein isoforms of the gene can be sufficient to lead to the syndrome, which may be caused by the disruption of cell signaling and signal transduction pathways. The clinical features of the syndrome converge on a pattern of global developmental delay, deficits in social communication, stereotypical hand movements, and hypotonia. In addition, many if not all of these patients have seizures, microcephaly, and language regression in addition to delay. We argue that it is clinically appropriate to test for IQSEC2 mutations in male and female patients with this symptom profile but without a known genetic mutation. PMID:27010919

  2. Genetics Home Reference: alpha thalassemia X-linked intellectual disability syndrome

    MedlinePlus

    ... intellectual disability syndrome alpha thalassemia X-linked intellectual disability syndrome Enable Javascript to view the expand/collapse ... Close All Description Alpha thalassemia X-linked intellectual disability syndrome is an inherited disorder that affects many ...

  3. X-linked Inheritance in Females with Chronic Granulomatous Disease

    PubMed Central

    Mills, Elaine L.; Rholl, Kenneth S.; Quie, Paul G.

    1980-01-01

    Chronic granulomatous disease in males is familial and its transmission is is usually clearly x-linked. The mode of inheritance in females with the syndrome is unknown and the carrier state difficult to identify. Defective polymorphonuclear leukocyte bactericidal activity in this disease is associated with an absence of the respiratory burst generated in stimulated phagocytes and may be detected by the chemiluminescence assay. Polymorphonuclear leukocytes from three of four females with chronic granulomatous disease had extremely low chemiluminescence production, their asymptomatic mothers had intermediate values, and their fathers were normal. Polymorphonuclear neutrophils of two affected males in these kinships generated no chemiluminescence, whereas two of seven female relatives had intermediate values, and all nonaffected males had normal values. In the three families in which leukocytes were studied by nitroblue tetrazolium reduction, two populations of neutrophils were demonstrated for the female patients and/or their mothers. The wide phenotypic variability for clinical disease, evidence of two leukocyte populations in the patients or their mothers, and low but detectable leukocyte chemiluminescence in the affected females is consistent with the Lyon hypothesis of x-chromosome inactivation in these families. The findings suggest an x-linked inheritance in these females with chronic granulomatous disease. Images PMID:7400319

  4. BGN Mutations in X-Linked Spondyloepimetaphyseal Dysplasia.

    PubMed

    Cho, Sung Yoon; Bae, Jun-Seok; Kim, Nayoung K D; Forzano, Francesca; Girisha, Katta Mohan; Baldo, Chiara; Faravelli, Francesca; Cho, Tae-Joon; Kim, Dongsup; Lee, Kyoung Yeul; Ikegawa, Shiro; Shim, Jong Sup; Ko, Ah-Ra; Miyake, Noriko; Nishimura, Gen; Superti-Furga, Andrea; Spranger, Jürgen; Kim, Ok-Hwa; Park, Woong-Yang; Jin, Dong-Kyu

    2016-06-01

    Spondyloepimetaphyseal dysplasias (SEMDs) comprise a heterogeneous group of autosomal-dominant and autosomal-recessive disorders. An apparent X-linked recessive (XLR) form of SEMD in a single Italian family was previously reported. We have been able to restudy this family together with a second family from Korea by segregating a severe SEMD in an X-linked pattern. Exome sequencing showed missense mutations in BGN c.439A>G (p.Lys147Glu) in the Korean family and c.776G>T (p.Gly259Val) in the Italian family; the c.439A>G (p.Lys147Glu) mutation was also identified in a further simplex SEMD case from India. Biglycan is an extracellular matrix proteoglycan that can bind transforming growth factor beta (TGF-β) and thus regulate its free concentration. In 3-dimensional simulation, both altered residues localized to the concave arc of leucine-rich repeat domains of biglycan that interact with TGF-β. The observation of recurrent BGN mutations in XLR SEMD individuals from different ethnic backgrounds allows us to define "XLR SEMD, BGN type" as a nosologic entity. PMID:27236923

  5. Molecular and genetic basis of X-linked immunodeficiency disorders

    SciTech Connect

    Puck, J.M. )

    1994-03-01

    Within a short time interval the specific gene defects causing three X-linked human immunodeficiencies, agammaglobulinemia (XLA), hyper-IgM syndrome (HIGM), and severe combined immunodeficiency (XSCID), have been identified. These represent the first human disease phenotypes associated with each of three gene families already recognized to be important in lymphocyte development and signaling: XLA is caused by mutations of a B cell-specific intracellular tyrosine kinase; HIGM, by mutations in the TNF-related CD40 ligand, through which T cells deliver helper signals by direct contact with B cell CD40; and XSCID, by mutations in the [gamma] chain of the lymphocyte receptor for IL-2. Each patient mutation analyzed to date has been unique, representing both a challenge for genetic diagnosis and management and an important resource for dissecting molecular domains and understanding the physiologic function of the gene products.

  6. [Dermatomyositis-like syndrome in x-linked agammaglobulinemia].

    PubMed

    Carvalho, P D; Costa, C; Rodrigues, M; Salvador, M J; Pereira da Silva, J A; Malcata, A

    2016-01-01

    Primary immunodeficiencies (PIDs) encompass more than 250 different pathological conditions. X-linked agammaglobulinemia (XLA) has been occasionally associated with cutaneous and muscular manifestations resembling dermatomyositis, often termed dermatomyositis-like syndrome (DLS). This syndrome has been associated with cutaneous, muscular and central nervous system manifestations, accompanying a persistent infection by an Echovirus. According to sixteen previously reported cases, this syndrome has a poor prognosis. We report the case of a 27-years old male, with XLA and DLS, successfully treated with 6 cycles of human immunoglobulin and methotrexate. Clinical symptoms improved dramatically with a complete resolution of the musculoskeletal manifestations. Despite this clinical response, prognosis should remain reserved. The evolution of this syndrome remains unpredictable and therapeutic options are limited. To the best of our knowledge, there are only a few reports of similar cases which have survived so many months after the diagnosis. PMID:27115112

  7. X-Linked Dilated Cardiomyopathy: A Cardiospecific Phenotype of Dystrophinopathy

    PubMed Central

    Nakamura, Akinori

    2015-01-01

    X-linked dilated cardiomyopathy (XLDCM) is a distinct phenotype of dystrophinopathy characterized by preferential cardiac involvement without any overt skeletal myopathy. XLDCM is caused by mutations of the Duchenne muscular dystrophy (DMD) gene and results in lethal heart failure in individuals between 10 and 20 years. Patients with Becker muscular dystrophy, an allelic disorder, have a milder phenotype of skeletal muscle involvement compared to Duchenne muscular dystrophy (DMD) and sometimes present with dilated cardiomyopathy. The precise relationship between mutations in the DMD gene and cardiomyopathy remain unclear. However, some hypothetical mechanisms are being considered to be associated with the presence of some several dystrophin isoforms, certain reported mutations, and an unknown dystrophin-related pathophysiological mechanism. Recent therapy for Duchenne muscular dystrophy, the severe dystrophinopathy phenotype, appears promising, but the presence of XLDCM highlights the importance of focusing on cardiomyopathy while elucidating the pathomechanism and developing treatment. PMID:26066469

  8. Temporal Macular Thinning Associated With X-Linked Alport Syndrome

    PubMed Central

    Ahmed, Faisal; Kamae, Kandon K.; Jones, Denise J.; DeAngelis, Margaret M.; Hageman, Gregory S.; Gregory, Martin C.; Bernstein, Paul S.

    2013-01-01

    Importance Optical coherence tomography (OCT) findings of temporal macular thinning are important in the diagnosis and prognosis of X-linked Alport syndrome (XLAS). Objectives To report OCT findings and severity of temporal macular thinning in a cohort with XLAS and to correlate these and other ocular findings with mutation genotype. Design Patients with XLAS underwent genotyping for COL4A5 mutations and complete eye examinations with retinal imaging using spectral domain OCT and fundus photography. Temporal macular thinning was calculated from OCT measurements by comparing the ratio of the retinal thickness of the temporal to the nasal subfields with a published normative database. Setting University departments of ophthalmology and nephrology. Participants Thirty-two patients from 24 families. Main Outcome and Measures Temporal thinning index calculated from spectral domain OCT scans. Results All study patients had a mutation associated with the X-linked COL4A5 gene. Eleven different mutations were identified. Eleven of 32 patients (34%) expressed the L1649R mutation. Of a total of 63 eyes with available OCT scans, 44 (70%) had severe pathological temporal macular thinning. The L1649R mutation was associated with the least amount of severe temporal macular thinning and later onset of renal failure. Conclusions and Relevance Temporal macular thinning is a prominent sign associated with XLAS, suggesting that OCT measurements are essential in the diagnosis and prognosis of the disease. The L1649R mutation in the COL4A5 gene causes a relatively mild form of XLAS characterized by late-onset renal failure and less frequent, severe temporal macular thinning relative to other COL4A5 mutations. The pathological basis for the retinal abnormalities of XLAS remains to be established. PMID:23572034

  9. Phenotypic heterogeneity in females with X-linked Alport syndrome

    PubMed Central

    Allred, Samuel C.; Weck, Karen E.; Gasim, Adil; Mottl, Amy K.

    2015-01-01

    Aims: X-linked Alport syndrome (AS) is a monogenic inherited disorder of type IV collagen, a structural protein in the kidney and cochlea. Males typically exhibit a severe phenotype with end-stage renal disease (ESRD) and/or deafness by early adulthood. Because of the presence of two X chromosomes, females often have a less severe phenotype and hence the diagnosis of AS is often not considered. Herein, we present a case of an adolescent girl with proteinuria and hematuria in the setting of a strong family history of AL. Case report: The mother and maternal aunt of the proband had both presented with dipstick positive hematuria and proteinuria at age 8 years. These girls were not evaluated by nephrology until mid-adolescence when they had worsening creatinine levels. Kidney biopsy in the younger sister demonstrated segmental glomerulosclerosis with segmental thinning and lamination of the glomerular basement membrane, consistent with AS. Kidney biopsy in the older sister was performed just prior to the need for renal replacement therapy and showed only global glomerulosclerosis. Both sisters were transplanted by the age of 20 years. Their mother subsequently developed ESRD at age 53 years. With the advent of genetic testing, the proband and her family were brought in for evaluation. It had been assumed this family of AS had autosomal dominant transmission, however, genetic testing of the proband was positive for a splice site mutation of COL4A5 located on the X-chromosome. Sequencing of genes COL4A3, COL4A4, and COL4A6 were negative for mutation. Conclusions: The current case report demonstrates the importance of considering skewed X-inactivation in females who exhibit signs or symptoms of X-linked disorders. PMID:26249550

  10. [X-linked alpha-thalassemia/mental retardation syndrome].

    PubMed

    Wada, Takahito

    2009-04-01

    X-linked alpha-thalassemia/mental retardation syndrome (ATR-X syndrome, OMIM #301040) is one of the syndromes associated with abnormal epigenetic gene regulation, including ICF(DNMT3B), Rett (MECP2), Rubinstein-Taybi (CBP), Coffin-Lowry (RSK2), and Sotos (NSD1) syndromes. It is a syndromic form of X-linked mental retardation, which affects males and is characterized by profound mental retardation, mild HbH disease (alpha-thalassemia), facial dysmorphism, skeletal abnormalities, and autistic behavior. ATR-X syndrome is caused by a mutation in the ATRX gene on the X chromosome (Xq13), which encodes ATRX protein, belonging to the SNF2 family of chromatin-remodeling proteins. The protein has two functionally important domains: an ADD (ATRX-DNMT3-DNMT3L) domain at the N-terminus, and chromatin-remodeling domain in the C-terminal half, where the ATRX gene mutations of most ATR-X patients reside. Perturbation in DNA methylation in the rDNA genes was repored in ATR-X patients, and ATRX protein is presumed to be involved in the establishment and maintenance of DNA methylation. Based on its various clinical phenotypes, the expressions of many genes, including alpha globin genes, seem to be abnormally regulated in ATR-X patients. However, the precise mechanism involving ATRX protein remains to be elucidated. Epigenetics can link environmental and genetic causes of many pathological conditions. The genes, which are abnormally regulated by a perturbed epigenetic mechanism, are, in themselves, structurally normal, and the elucidation of their mechanism may lead to the development of appropriate therapy. PMID:19489441

  11. Heterogeneity analysis in 40 X-linked retinitis pigmentosa families

    SciTech Connect

    Teague, P.W.; Aldred, M.A.; Dempster, M.; Harrison, C.; Carothers, A.D.; Hardwick, L.J.; Evans, H.J.; Wright, A.F.; Strain, L.; Brock, D.J.H. )

    1994-07-01

    Analysis of genetic heterogeneity in 40 kindreds with X-linked retinitis pigmentosa (XLRP), with 20 polymorphic markers, showed that significant heterogeneity is present (P=.001) and that 56% of kindreds are of RP3 type and that 26% are of RP2 type. The location of the RP3 locus was found to be 0.4 cM distal to OTC in the Xp21.1 region, and that of the RP2 locus was 6.5 cM proximal to DXS7 in Xp11.2-p11.3. Bayesian probabilities of linkage to RP2, RP3, or to neither locus were calculated. This showed that 20 of 40 kindreds could be assigned to one or the other locus, with a probability >.70 (14 kindreds with RP3 and 6 kindreds with RP2 disease). A further three kindreds were found to be unlinked to either locus, with a probability >.8. The remaining 17 kindreds could not be classified unambiguously. This highlights the difficulty of classifying families in the presence of genetic heterogeneity, where two loci are separated by an estimated 16 cM. 34 refs., 1 fig., 4 tabs.

  12. Novel Phenotypic and Genotypic Findings in X-Linked Retinoschisis

    PubMed Central

    Tsang, Stephen H.; Vaclavik, Veronika; Bird, Alan C.; Robson, Anthony G.; Holder, Graham E.

    2009-01-01

    Objective To describe atypical phenotypes associated with the retinoschisis (X-linked, juvenile) 1 mutation (RS1). Methods Seven patients with multiple fine white dots at the macula and reduced visual acuity were evaluated. Six patients underwent pattern and full-field electroretinography (ERG). On-off ERG, optical coherence tomography, and fundus autofluorescence imaging were performed in some patients. Mutational screening of RS1 was prompted by the ERG findings. Results Fine white dots resembling drusenlike deposits and sometimes associated with retinal pigment epithelial abnormalities were present in the maculae. An electronegative bright-flash ERG configuration was present in all patients tested, and abnormal pattern ERG findings confirmed macular dysfunction. A parafoveal ring of high-density autofluorescence was present in 3 eyes; 1 patient showed high-density foci concordant with the white dots. Optical coherence tomography did not show foveal schisis in 3 of 4 eyes. All patients carried mutations in RS1, including 1 with a novel 206T→C mutation in exon 4. Conclusions Multiple fine white dots at the macula may be the initial fundus feature in RS1 mutation. Electrophysiologic findings suggest dysfunction after phototransduction and enable focused mutational screening. Autofluorescence imaging results suggest early retinal pigment epithelium involvement; a parafoveal ring of high-density autofluorescence has not previously been described in this disorder. PMID:17296904

  13. Discordant phenotype in siblings with X-linked agammaglobulinemia

    SciTech Connect

    Bykowsky, M.J.; Veksler, K.S.; Sullivan, K.E.

    1996-03-01

    X-linked agammaglobulinemia (XLA) is a congenital humoral immunodeficiency caused by a defect in a B-cell-specific signaling molecule, Btk. There has been little concordance of phenotype with genotype in this disorder, and defects in Btk cause immunodeficiencies that range from mild impairment to complete inability to produce antibodies. The factors modifying the phenotype of XLA are not understood. The current study is the first description of two male siblings with identical T{sup 134}{yields}C mutations in the translation initiation ATG of Btk who have different clinical phenotypes as well as different laboratory phenotypes. The proband lacks immunoglobulins and B cells and has recurrent infections, while the elder, affected brother has normal levels of IgG and IgM and very few infections. Both have undetectable levels of Btk kinase activity in circulating mononuclear cells. Complete sequencing of Btk gene transcripts in both brothers revealed no additional mutations to account for the discordant phenotypes. This description provides unequivocal evidence that the phenotype of XLA is influenced by factors additional to the Btk gene. 39 refs., 3 figs., 3 tabs.

  14. [X-linked agammaglobulinemia in adults. Clinical evolution].

    PubMed

    Giorgetti, Orlando B; Paolini, María V; Oleastro, Matías M; Fernández Romero, Diego S

    2016-01-01

    X-linked agammaglobulinemia (XLA) is characterized by absent or severely reduced B cells, low or undetectable immunoglobulin levels and clinically by extracellular bacterial infections which mainly compromise the respiratory tract as well as recurrent diarrheas. The mainstay of treatment is gammaglobulin replacement therapy, which allows most patients to reach adulthood with high quality of life. We analyzed the clinical features of 14 patients over 18 years of age with XLA diagnosis that received treatment in our unit from the year 2003, the date the first patient was derived, until 2015. The average age at which patients were referred was 20.4 years old; age at the last consult was 25.5. The average follow-up time was 59.8 months. Previously to being diagnosed all patients had suffered infections, most frequently respiratory. After diagnosis all were started on intravenous gammaglobulin replacement treatment and in spite of infections being reduced in severity and frequency, there were cases of severe disease with long term sequelae. At the beginning of our follow-up 35.7% presented impaired respiratory function with only one case being severe. In no cases during this period did the respiratory function worsen, nor were there severe clinical complications. Three patients were switched to subcutaneous immunoglobulin treatment with good tolerance. The number of XLA cases is increasing, as most reach the second decade of life without serious complications and remain free of severe infectious disease and further impairment of their respiratory functions with the treatment. PMID:27135842

  15. Oxidative Stress in Patients with X-Linked Adrenoleukodystrophy.

    PubMed

    Deon, Marion; Marchetti, Desirèe P; Donida, Bruna; Wajner, Moacir; Vargas, Carmen

    2016-05-01

    X-linked adrenoleukodystrophy (X-ALD) is the most frequent peroxisomal disorder that is characterized by progressive demyelination of the white matter, adrenal insufficiency, and accumulation of very long-chain fatty acids in body fluid and tissues. This disorder is clinically heterogeneous with seven different phenotypes in male patients and five phenotypes in female carriers. An ultimate treatment for X-ALD is not available. Depending on the rate of the disease progression and the degree of an individual handicap, special needs and challenges vary greatly. The exact mechanisms underlying the pathophysiology of this multifactorial neurodegenerative disorder remains obscure. Previous studies has been related oxidative stress with the pathogenesis of several disease that affecting the central nervous system, such as neurodegenerative disease, epilepsy, multiple sclerosis, Alzheimer, and Parkinson diseases. In addition, oxidative damage has been observed in various in vivo and in vitro studies with inborn errors of metabolism, including X-ALD. In this context, this review is focused on oxidative stress in X-ALD, with emphasis on studies using biological samples from patients affected by this disease. PMID:26169524

  16. [A case of X-linked myotubular myopathy with chylothorax].

    PubMed

    Oishi, Taku; Sato, Tetsuya; Matsushita, Kenshi; Takechi, Tomoki; Murakami, Nobuyuki; Fujieda, Mikiya

    2016-01-01

    We report a case of X-linked myotubular myopathy with chylothorax. A male infant weighing 2,114 g was born to a mother whose pregnancy was complicated with polyhydramnios from gestational week 32. At gestational week 37, emergent caesarian section was performed due to membrane rupture followed by fetal bradycardia. Ventilatory support was necessary because the neonate showed severe birth asphyxia accompanied by hypotonia and dyspnea. He also showed a respiratory complication of chylothorax at 10 days old; therefore, thoracic drainage was performed. Congenital chylothorax associated with congenital myotonic dystrophy (CMD) has been described in a number of past reports. Specific findings of congenital myotubular myopathy and partial CMD, such as peripheral halo of muscle fibers, were demonstrated in biopsied muscle, and mutation of the myotubularin (MTM1) gene was identified. Tracheostomy was performed at 5 months old because of prolonged ventilatory support and severe dysphagia. The infant was able to be discharged at 17 months old. Congenital chylothorax might be associated with congenital myotubular myopathies such as CMD. PMID:27012108

  17. X-linked dominant protoporphyria: The first reported Japanese case.

    PubMed

    Ninomiya, Yukiko; Kokunai, Yasuhito; Tanizaki, Hideaki; Akasaka, Eijiro; Nakano, Hajime; Moriwaki, Shinichi

    2016-04-01

    A 12-year-old boy with photosensitivity since 3 years of age presented with small concavities on both cheeks, the nasal root and the dorsal surface of both hands. According to the clinical features, erythropoietic protoporphyria (EPP) was suspected. Urine and blood samples were tested for porphyrin derivatives, which revealed a markedly elevated level of erythrocyte protoporphyrin (EP) and a diagnosis of EPP was made. The patient's mother had no photosensitivity, however, lesions appearing slightly as small scars were found on the dorsum of her right hand; his elder sister and father showed no rash. The EP levels were elevated in samples from his mother and mildly elevated in those from his elder sister and father. To obtain a definitive diagnosis, genetic analyses were performed using samples from all family members, which revealed no mutations in the ferrochelatase-encoding gene (FECH), which is responsible for EPP. Instead, a pathological mutation of the 5-aminolevulinic acid synthase-encoding gene (ALAS2) was identified in samples from the patient, his mother and his elder sister, confirming a definitive diagnosis of X-linked dominant protoporphyria (XLDPP). This is the first Japanese family reported to have XLDPP, demonstrating evidence of the condition in Japan. In addition, because XLDPP is very similar to EPP in its clinical aspects and laboratory findings, a genetic analysis is required for the differential diagnosis. PMID:26387792

  18. Shulman disease (eosinophilic fasciitis) in X-linked agammaglobulinemia.

    PubMed

    Pituch-Noworolska, A; Mach-Tomalska, H; Szaflarska, A; Adamek, D

    2016-06-01

    X-linked agammaglobulinemia (XLA) diagnosed in the first year of life is an immunodeficiency with a life-long indication for substitution of immunoglobulins, due to lack of B lymphocytes in the periphery. The decrease of bacterial infection frequency and severity is an effect of immunoglobulin replacement. However, in the majority of patients bronchiectasis and chronic sinusitis with an overgrown mucous membrane develop despite regular substitution. Autoimmune diseases as co-existing diseases in XLA are noted in a few patients presenting symptoms associated with arthritis, scleroderma and myositis. Our patient was diagnosed with XLA in the first year of life, followed by regular substitution of immunoglobulins. The symptoms of pain, edema of muscles of the right shank with skin edema and discoloration after mild injury were noted in a 13-year-old boy. Shulman disease was diagnosed after 6 months of symptoms, based on histopathology of muscle and skin biopsy. Before the diagnosis, non-steroid anti-inflammatory drugs (NSAID) were used with a transient effect. After the diagnosis, therapy included steroids, immunoglobulins in a high dose and immunosuppression, with improvement of clinical symptoms. During methotrexate (MTX) therapy the patient developed two episodes of pneumonia, so mycophenolate mofetil (MMF) was used, with a similar effect. Now, with this therapy, the symptoms are mild and stable without progression. PMID:27543875

  19. X-linked inheritance in neuronal migration disorders (NMD)

    SciTech Connect

    Andermann, E.; Dubeau, F.; Tampieri, D.

    1994-09-01

    With the advent of MRI imaging, an increasing number of NMD have been identified in patients with epilepsy. Although most cases have been sporadic, families with these disorders have now been reported in several types of NMD. Furthermore, subcortical bank heterotopia (SBH) or {open_quotes}double cortex syndrome{close_quotes} and periventricular nodular heterotopia (PNH) have a marked female predominance. Two females with SBH, mild mental retardation and seizures had sons with lissencephaly, severe retardation and seizures, and daughters with SBH. X-linked lissencephaly has been observed in several other families, and one girl with lissencephaly was found to have a de novo X-autosomal translocation with a breakpoint in chromosome Xq22. We have studied three families with two or more generations affected by PNH in females, a high frequency of spontaneous abortions and abnormal sex ratios in sibships. The clinical manifestations include seizures and normal intelligence. Three other families with PNH in females have been reported in the literature. Bilateral perisylvian polymicrogyria has been reported in monozygotic twins and in siblings, and we have studied a brother and sister with an affected maternal uncle. These findings suggest sex-linked dominant inheritance with male lethality or severe expression in males. The three disorders described above may represent different mutations of a single gene or mutations in two or more genes on the X-chromosome. At least one gene is probably located in chromosome band Xq22. Genetic linkage studies in families with NMD as well as a search for candidate genes such as adhesion molecules known to map on the X-chromosome should lead to the identification of the gene(s) responsible for these disorders.

  20. X-linked acrogigantism syndrome: clinical profile and therapeutic responses.

    PubMed

    Beckers, Albert; Lodish, Maya Beth; Trivellin, Giampaolo; Rostomyan, Liliya; Lee, Misu; Faucz, Fabio R; Yuan, Bo; Choong, Catherine S; Caberg, Jean-Hubert; Verrua, Elisa; Naves, Luciana Ansaneli; Cheetham, Tim D; Young, Jacques; Lysy, Philippe A; Petrossians, Patrick; Cotterill, Andrew; Shah, Nalini Samir; Metzger, Daniel; Castermans, Emilie; Ambrosio, Maria Rosaria; Villa, Chiara; Strebkova, Natalia; Mazerkina, Nadia; Gaillard, Stéphan; Barra, Gustavo Barcelos; Casulari, Luis Augusto; Neggers, Sebastian J; Salvatori, Roberto; Jaffrain-Rea, Marie-Lise; Zacharin, Margaret; Santamaria, Beatriz Lecumberri; Zacharieva, Sabina; Lim, Ee Mun; Mantovani, Giovanna; Zatelli, Maria Chaira; Collins, Michael T; Bonneville, Jean-François; Quezado, Martha; Chittiboina, Prashant; Oldfield, Edward H; Bours, Vincent; Liu, Pengfei; W de Herder, Wouter; Pellegata, Natalia; Lupski, James R; Daly, Adrian F; Stratakis, Constantine A

    2015-06-01

    X-linked acrogigantism (X-LAG) is a new syndrome of pituitary gigantism, caused by microduplications on chromosome Xq26.3, encompassing the gene GPR101, which is highly upregulated in pituitary tumors. We conducted this study to explore the clinical, radiological, and hormonal phenotype and responses to therapy in patients with X-LAG syndrome. The study included 18 patients (13 sporadic) with X-LAG and microduplication of chromosome Xq26.3. All sporadic cases had unique duplications and the inheritance pattern in two families was dominant, with all Xq26.3 duplication carriers being affected. Patients began to grow rapidly as early as 2-3 months of age (median 12 months). At diagnosis (median delay 27 months), patients had a median height and weight standard deviation scores (SDS) of >+3.9 SDS. Apart from the increased overall body size, the children had acromegalic symptoms including acral enlargement and facial coarsening. More than a third of cases had increased appetite. Patients had marked hypersecretion of GH/IGF1 and usually prolactin, due to a pituitary macroadenoma or hyperplasia. Primary neurosurgical control was achieved with extensive anterior pituitary resection, but postoperative hypopituitarism was frequent. Control with somatostatin analogs was not readily achieved despite moderate to high levels of expression of somatostatin receptor subtype-2 in tumor tissue. Postoperative use of adjuvant pegvisomant resulted in control of IGF1 in all five cases where it was employed. X-LAG is a new infant-onset gigantism syndrome that has a severe clinical phenotype leading to challenging disease management. PMID:25712922

  1. Canine Parvovirus

    MedlinePlus

    Finally, do not let your puppy or adult dog to come into contact with the fecal waste of other dogs while walking or playing outdoors. Prompt and proper ... advisable as a way to limit spread of canine parvovirus infection as well as other diseases that ...

  2. Structure/Psychophysical Relationships in X-Linked Retinoschisis

    PubMed Central

    Bennett, Lea D.; Wang, Yi-Zhong; Klein, Martin; Pennesi, Mark E.; Jayasundera, Thiran; Birch, David G.

    2016-01-01

    Purpose To compare structural properties from spectral-domain optical coherence tomography (SDOCT) and psychophysical measures from a subset of patients enrolled in a larger multicenter natural history study of X-linked retinoschisis (XLRS). Methods A subset of males (n = 24) participating in a larger natural history study of XLRS underwent high-resolution SDOCT. Total retina (TR) thickness and outer segment (OS) thickness were measured manually. Shape discrimination hyperacuity (SDH) and contour integration perimetry (CIP) were performed on an iPad with the myVisionTrack application. Sensitivity was measured with fundus-guided perimetry (4-2 threshold testing strategy; 10-2 grid, spot size 3, 68 points). Correlation was determined with Pearson's r correlation. Values are presented as the mean ± SD. Results Mean macular OS thickness was less in XLRS patients (17.2 ± 8.1 μm) than in controls (37.1 ± 5.7 μm; P < 0.0001) but mean TR thickness was comparable (P = 0.5884). For patients, total sensitivity was lower (13.2 ± 6.6 dB) than for controls (24.2 ± 2.4 dB; P = 0.0008) and had a strong correlation with photoreceptor OS (R2 = 0.55, P = 0.0001) and a weak correlation with TR thickness (R2 = 0.22, P = 0.0158). The XLRS subjects had a logMAR best corrected visual acuity (BCVA) of 0.5 ± 0.3 that was associated with OS (R2 = 0.79, P < 0.0001) but not TR thickness (R2 = 0.01, P = 0.6166). Shape DH and CIP inner ring correlated with OS (R2 = 0.33, P = 0.0085 and R2 = 0.47, P = 0.0001, respectively) but not TR thickness (R2 = 0.0004, P = 0.93; R2 = 0.0043, P = 0.75, respectively). Conclusions When considered from a single visit, OS thickness within the macula is more closely associated with macular function than TR thickness within the macula in patients with XLRS. PMID:26830370

  3. An unusual presentation of X-linked adrenoleukodystrophy

    PubMed Central

    Suryawanshi, Avinash; Middleton, Timothy

    2015-01-01

    Summary X-linked adrenoleukodystrophy (X-ALD) is a rare genetic condition caused by mutations in the ABCD1 gene that result in accumulation of very long chain fatty acids (VLCFAs) in various tissues. This leads to demyelination in the CNS and impaired steroidogenesis in the adrenal cortex and testes. A 57-year-old gentleman was referred for the assessment of bilateral gynaecomastia of 6 months duration. He had skin hyperpigmentation since 4 years of age and spastic paraparesis for the past 15 years. Physical examination findings included generalised hyperpigmentation (including skin, buccal mucosa and palmar creases), blood pressure of 90/60 mmHg, non-tender gynaecomastia and bilateral hypoplastic testes. Lower limb findings were those of a profoundly ataxic gait associated with significant paraparesis and sensory loss. Primary adrenal insufficiency was confirmed and investigations for gynaecomastia revealed normal testosterone with mildly elevated luteinising hormone level and normal prolactin. The combination of primary adrenal insufficiency (likely childhood onset), partial testicular failure (leading to gynaecomastia) and spastic paraparesis suggested X-ALD as a unifying diagnosis. A serum VLCFA panel was consistent with X-ALD. Subsequent genetic testing confirmed the diagnosis. Treatment with replacement doses of corticosteroid resulted in improvement in blood pressure and increased energy levels. We have reported the case of a 57-year-old man with a very late diagnosis of X-ALD manifested by childhood onset of primary adrenal insufficiency followed by paraparesis and primary hypogonadism in adulthood. Thus, X-ALD should be considered as a possibility in a patient with non-autoimmune primary adrenal insufficiency and neurological abnormalities. Learning points Adult patients with X-ALD may be misdiagnosed as having multiple sclerosis or idiopathic spastic paraparesis for many years before the correct diagnosis is identified. Screening for X-ALD with a VLCFA

  4. FARVATX: Family-Based Rare Variant Association Test for X-Linked Genes.

    PubMed

    Choi, Sungkyoung; Lee, Sungyoung; Qiao, Dandi; Hardin, Megan; Cho, Michael H; Silverman, Edwin K; Park, Taesung; Won, Sungho

    2016-09-01

    Although the X chromosome has many genes that are functionally related to human diseases, the complicated biological properties of the X chromosome have prevented efficient genetic association analyses, and only a few significantly associated X-linked variants have been reported for complex traits. For instance, dosage compensation of X-linked genes is often achieved via the inactivation of one allele in each X-linked variant in females; however, some X-linked variants can escape this X chromosome inactivation. Efficient genetic analyses cannot be conducted without prior knowledge about the gene expression process of X-linked variants, and misspecified information can lead to power loss. In this report, we propose new statistical methods for rare X-linked variant genetic association analysis of dichotomous phenotypes with family-based samples. The proposed methods are computationally efficient and can complete X-linked analyses within a few hours. Simulation studies demonstrate the statistical efficiency of the proposed methods, which were then applied to rare-variant association analysis of the X chromosome in chronic obstructive pulmonary disease. Some promising significant X-linked genes were identified, illustrating the practical importance of the proposed methods. PMID:27325607

  5. Canine leishmaniosis.

    PubMed

    Sapierzyński, R

    2008-01-01

    Canine visceral leishmaniosis (CVL) is an infectious disease of zoonotic potential, caused by protozoan parasite of the genus Leishmania. Common clinical manifestations of canine visceral leishmaniosis include decrease of appetite, progressive weight loss, exercise intolerance, peripheral lymph node and spleen enlargement, chronic renal and liver disease, muscle, atrophy, polyarthritis and others. Because the Polish literature in the field contains no information on leishmaniosis in animals the recognised case of this disease is presented. Homeless mongrel, intact female dog, 3 years of age was brought to a veterinary clinic because of apathy, and generalised dermatologic lesions to perform routine examination. Because therapeutic effect of primarily recognised scabies was unsatisfactory, the skin samples from ear margins, trunk and lesion of the area of the left gluteal region for histopatologic examination were taken. Due to suspicion of leishmaniosis, fine-needle aspiration biopsy of lymph nodes, skin lesions, ocular discharge and imprint samples from skin lesion were performed, and tissue collected were examined under optical microscopy for identification of Leishmania amastigotes. To confirm cytologic diagnosis, blood samples for serological tests (enzyme-linked immunoabsorbent assay-ELISA; indirect immunofluorescence assay test-IFAT) were taken. Based on physical examination, histopatology, cytopathology and serology, canine visceral leishmaniosis was finally diagnosed. PMID:18683546

  6. Telomerase RNA level limits telomere maintenance in X-linked dyskeratosis congenita

    PubMed Central

    Wong, Judy M.Y.; Collins, Kathleen

    2006-01-01

    Dyskeratosis congenita (DC) patients suffer a progressive and ultimately fatal loss of hematopoietic renewal correlating with critically short telomeres. The predominant X-linked form of DC results from substitutions in dyskerin, a protein required both for ribosomal RNA (rRNA) pseudouridine modification and for cellular accumulation of telomerase RNA (TER). Accordingly, alternative models have posited that the exhaustion of cellular renewal in X-linked DC arises as a primary consequence of ribosome deficiency or telomerase deficiency. Here we test, for the first time, whether X-linked DC patient cells are compromised for telomerase function at telomeres. We show that telomerase activation in family-matched control cells allows telomere elongation and telomere length maintenance, while telomerase activation in X-linked DC patient cells fails to prevent telomere erosion with proliferation. Furthermore, we demonstrate by phenotypic rescue that telomere defects in X-linked DC patient cells arise solely from reduced accumulation of TER. We also show that X-linked DC patient cells averted from premature senescence support normal levels of rRNA pseudouridine modification and normal kinetics of rRNA precursor processing, in contrast with phenotypes reported for a proposed mouse model of the human disease. These findings support the significance of telomerase deficiency in the pathology of X-linked DC. PMID:17015423

  7. The Gy mutation: another cause of X-linked hypophosphatemia in mouse.

    PubMed Central

    Lyon, M F; Scriver, C R; Baker, L R; Tenenhouse, H S; Kronick, J; Mandla, S

    1986-01-01

    An X-linked dominant mutation (gyro, gene symbol Gy) in the laboratory mouse causes hypophosphatemia, rickets/osteomalacia, circling behavior, inner ear abnormalities, and sterility in males and a milder phenotype in females. Gy maps closely (crossover value 0.4-0.8%) to another X-linked gene (Hyp) that also causes hypophosphatemia in the mouse. Gy and Hyp genes have similar quantitative expression in serum phosphorus values, renal excretion of phosphate, and impairment of Na+/phosphate cotransport by renal brush-border membrane vesicles. These findings indicate that independent translation products of two X-linked genes serve phosphate transport in mouse kidney and thereby control phosphate content of extracellular fluid. The Gy translation product, unlike the Hyp product, is also expressed in the inner ear. These findings have implications for our understanding of the human counterpart known as "X-linked hypophosphatemia." PMID:3460077

  8. Determining the frequency of sporadic cases of rare X-linked disorders

    PubMed Central

    2016-01-01

    This paper gives formulae for calculating the gene frequency, incidence and proportion of sporadic cases of rare X-linked recessive disorders, taking account of the possibility of early recognition of carriers and fitness of affected males. PMID:27004222

  9. Refinement of the localization of the X-linked ocular albinism gene

    SciTech Connect

    Bergen, A.A.B.; Zijp, P.; Schuurman, E.J.M.; Bleeker-Wagemakers, E.M.; Apkarian, P. ); Ommen, G.J.B. van )

    1993-04-01

    Although physical and genetic mapping studies assigned the X-linked ocular albinism gene to Xp22.3, the exact gene order in this region is still unclear. The authors present additional genetic mapping data concerning X-linked ocular albinism that suggests the consensus order Xpter-STS-DXS237-KAL-(OA1, DXS143)- DXS85-DXS16-Xcen. 14 refs., 1 fig.

  10. Drosophila X-Linked Genes Have Lower Translation Rates than Autosomal Genes.

    PubMed

    Zhang, Zhenguo; Presgraves, Daven C

    2016-02-01

    In Drosophila, X-linked and autosomal genes achieve comparable expression at the mRNA level. Whether comparable X-autosome gene expression is realized at the translational and, ultimately, the protein levels is, however, unknown. Previous studies suggest the possibility of higher translation rates for X-linked genes owing to stronger usage of preferred codons. In this study, we use public ribosome profiling data from Drosophila melanogaster to infer translation rates on the X chromosome versus the autosomes. We find that X-linked genes have consistently lower ribosome densities than autosomal genes in S2 cells, early embryos, eggs, and mature oocytes. Surprisingly, the lower ribosome densities of X-linked genes are not consistent with faster translation elongation but instead imply slower translation initiation. In particular, X-linked genes have sequence features known to slow translation initiation such as stronger mRNA structure near start codons and longer 5'-UTRs. Comparison to outgroup species suggests that stronger mRNA structure is an evolved feature of Drosophila X chromosomes. Finally, we find that the magnitude of the X-autosome difference in ribosome densities is smaller for genes encoding members of protein complexes, suggesting that stoichiometry constrains the evolution of translation rates. In sum, our analyses suggest that Drosophila X-linked genes have evolved lower translation rates than autosomal genes despite stronger usage of preferred codons. PMID:26486873

  11. Role of prostaglandins in the pathogenesis of X-linked hypophosphatemia.

    PubMed

    Baum, Michel; Syal, Ashu; Quigley, Raymond; Seikaly, Mouin

    2006-08-01

    X-linked hypophosphatemia is an X-linked dominant disorder resulting from a mutation in the PHEX gene. PHEX stands for phosphate-regulating gene with endopeptidase activity, which is located on the X chromosome. Patients with X-linked hypophosphatemia have hypophosphatemia due to renal phosphate wasting and low or inappropriately normal levels of 1,25-dihydroxyvitamin D. The renal phosphate wasting is not intrinsic to the kidney but likely due to an increase in serum levels of fibroblast growth factor-23 (FGF-23), and perhaps other phosphate-wasting peptides previously known as phosphatonins. Patients with X-linked hypophosphatemia have short stature, rickets, bone pain and dental abscesses. Current therapy is oral phosphate and vitamin D which effectively treats the rickets and bone pain but does not adequately improve short stature. In this review, we describe recent observations using Hyp mice; mice with the same mutation as patients with X-linked hypophosphatemia. We have recently found that Hyp mice have abnormal renal prostaglandin production, which may be an important factor in the pathogenesis of this disorder. Administration of FGF-23 in vivo results in phosphaturia and an increase in prostaglandin excretion, and FGF-23 increases proximal tubule prostaglandin production in vitro. In Hyp mice, indomethacin improves the phosphate transport defect in vitro and in vivo. Whether indomethacin has the same effect in patients with X-linked hypophosphatemia is unknown. PMID:16721588

  12. Canine lymphoma

    SciTech Connect

    Weller, R.E.

    1986-10-01

    Canine lymphoma has served as the ''workhorse'' for the development of veterinary oncology and as an important animal model for human non-Hodgkins lymphomas. Significant advances have been achieved in understanding the biological behavior of the disease and in its treatment. Although it is unlikely that a cure for lymphoma will be achieved, owners should be encouraged to treat their pets, provided they understand that only prolonged remissions and survivals are likely to result. Cooperative studies, employing large numbers of dogs, are needed to optimize and refine the classification scheme to provide a system with diagnostic and prognostic correlates and derive maximum benefit from therapeutic regimens. Such studies need to be prospective in nature, with a solid statistical base incorporated into their design. Rather than being content with what we have accomplished to date in treatment of canine lymphoma, the opportunity exists for the veterinary profession to make further significant contributions to the understanding and treatment of lymphoma in the dog. 10 refs., 4 tabs.

  13. Dosage Compensation of X-Linked Muller Element F Genes but Not X-Linked Transgenes in the Australian Sheep Blowfly

    PubMed Central

    Linger, Rebecca J.; Belikoff, Esther J.; Scott, Maxwell J.

    2015-01-01

    In most animals that have X and Y sex chromosomes, chromosome-wide mechanisms are used to balance X-linked gene expression in males and females. In the fly Drosophila melanogaster, the dosage compensation mechanism also generally extends to X-linked transgenes. Over 70 transgenic lines of the Australian sheep blowfly Lucilia cuprina have been made as part of an effort to develop male-only strains for a genetic control program of this major pest of sheep. All lines carry a constitutively expressed fluorescent protein marker gene. In all 12 X-linked lines, female larvae show brighter fluorescence than male larvae, suggesting the marker gene is not dosage compensated. This has been confirmed by quantitative RT-PCR for selected lines. To determine if endogenous X-linked genes are dosage compensated, we isolated 8 genes that are orthologs of genes that are on the fourth chromosome in D. melanogaster. Recent evidence suggests that the D. melanogaster fourth chromosome, or Muller element F, is the ancestral X chromosome in Diptera that has reverted to an autosome in Drosophila species. We show by quantitative PCR of male and female DNA that 6 of the 8 linkage group F genes reside on the X chromosome in L. cuprina. The other two Muller element F genes were found to be autosomal in L. cuprina, whereas two Muller element B genes were found on the same region of the X chromosome as the L. cuprina orthologs of the D. melanogaster Ephrin and gawky genes. We find that the L. cuprina X chromosome genes are equally expressed in males and females (i.e., fully dosage compensated). Thus, unlike in Drosophila, it appears that the Lucilia dosage compensation system is specific for genes endogenous to the X chromosome and cannot be co-opted by recently arrived transgenes. PMID:26506426

  14. Dosage Compensation of X-Linked Muller Element F Genes but Not X-Linked Transgenes in the Australian Sheep Blowfly.

    PubMed

    Linger, Rebecca J; Belikoff, Esther J; Scott, Maxwell J

    2015-01-01

    In most animals that have X and Y sex chromosomes, chromosome-wide mechanisms are used to balance X-linked gene expression in males and females. In the fly Drosophila melanogaster, the dosage compensation mechanism also generally extends to X-linked transgenes. Over 70 transgenic lines of the Australian sheep blowfly Lucilia cuprina have been made as part of an effort to develop male-only strains for a genetic control program of this major pest of sheep. All lines carry a constitutively expressed fluorescent protein marker gene. In all 12 X-linked lines, female larvae show brighter fluorescence than male larvae, suggesting the marker gene is not dosage compensated. This has been confirmed by quantitative RT-PCR for selected lines. To determine if endogenous X-linked genes are dosage compensated, we isolated 8 genes that are orthologs of genes that are on the fourth chromosome in D. melanogaster. Recent evidence suggests that the D. melanogaster fourth chromosome, or Muller element F, is the ancestral X chromosome in Diptera that has reverted to an autosome in Drosophila species. We show by quantitative PCR of male and female DNA that 6 of the 8 linkage group F genes reside on the X chromosome in L. cuprina. The other two Muller element F genes were found to be autosomal in L. cuprina, whereas two Muller element B genes were found on the same region of the X chromosome as the L. cuprina orthologs of the D. melanogaster Ephrin and gawky genes. We find that the L. cuprina X chromosome genes are equally expressed in males and females (i.e., fully dosage compensated). Thus, unlike in Drosophila, it appears that the Lucilia dosage compensation system is specific for genes endogenous to the X chromosome and cannot be co-opted by recently arrived transgenes. PMID:26506426

  15. Identification of two novel mutations in patients with X-linked primary immunodeficiencies.

    PubMed

    Yu, Li; Wang, Xike; Wang, Yuchuan; Wang, Jian

    2015-04-01

    Primary immunodeficiency diseases (PID) are a heterogeneous group of inherited disorders with defects in one or more component of the immune system. In this study, we analyzed gene mutations in four X-linked PID pedigrees, which include one X- linked agammaglobulinemia (XLA) pedigree, one X-linked chronic granulomatous disease (XCGD) pedigree, and two X-linked Hyper IgM syndrome (XHIGM) pedigrees. Sequence analysis of the BTK gene revealed a novel mutation (c.1802_1803delinsGCC, p.Phe601CysfsX3) which results in the developmental arrest of B cells in the bone marrow. Sequence analysis of the CYBB gene revealed a recurrent frameshift mutation (c.1313_1314delinsT) in exon 10, which generates a premature stop codon (p.Lys438IlefsX63). One novel frameshift mutation (c.114delG, p.Ser39GlnfsX14) and one recurrent missense mutation (c.499G>C, p.Gly167Arg) were found in the CD40LG gene and cause defective T cell functioning. In conclusion, our study identified two novel mutations on the BTK and CD40LG genes in Chinese patients and established accurate and simple genetic diagnostic methods for three X-linked PID. PMID:25353698

  16. Inactivation of X-linked tumor suppressor genes in human cancer

    PubMed Central

    Liu, Runhua; Kain, Mandy; Wang, Lizhong

    2015-01-01

    Cancer cells silence autosomal tumor suppressor genes by Knudson’s two-hit mechanism in which loss-of-function mutations and then loss of heterozygosity occur at the tumor suppressor gene loci. However, the identification of X-linked tumor suppressor genes has challenged the traditional theory of “two-hit inactivation” in tumor suppressor genes, introducing the novel concept that a single genetic hit can cause loss of tumor suppressor function. The mechanism through which these genes are silenced in human cancer is unclear, but elucidating the details will greatly enhance our understanding of the pathogenesis of human cancer. Here, we review the identification of X-linked tumor suppressor genes and discuss the potential mechanisms of their inactivation. In addition, we also discuss how the identification of X-linked tumor suppressor genes can potentially lead to new approaches to cancer therapy. PMID:22515449

  17. Oxidative stress modulates mitochondrial failure and cyclophilin D function in X-linked adrenoleukodystrophy

    PubMed Central

    López-Erauskin, Jone; Galino, Jorge; Bianchi, Patrizia; Fourcade, Stéphane; Andreu, Antoni L.; Ferrer, Isidre; Muñoz-Pinedo, Cristina

    2012-01-01

    A common process associated with oxidative stress and severe mitochondrial impairment is the opening of the mitochondrial permeability transition pore, as described in many neurodegenerative diseases. Thus, inhibition of mitochondrial permeability transition pore opening represents a potential target for inhibiting mitochondrial-driven cell death. Among the mitochondrial permeability transition pore components, cyclophilin D is the most studied and has been found increased under pathological conditions. Here, we have used in vitro and in vivo models of X-linked adrenoleukodystrophy to investigate the relationship between the mitochondrial permeability transition pore opening and redox homeostasis. X-linked adrenoleukodystrophy is a neurodegenerative condition caused by loss of function of the peroxisomal ABCD1 transporter, in which oxidative stress plays a pivotal role. In this study, we provide evidence of impaired mitochondrial metabolism in a peroxisomal disease, as fibroblasts in patients with X-linked adrenoleukodystrophy cannot survive when forced to rely on mitochondrial energy production, i.e. on incubation in galactose. Oxidative stress induced under galactose conditions leads to mitochondrial damage in the form of mitochondrial inner membrane potential dissipation, ATP drop and necrotic cell death, together with increased levels of oxidative modifications in cyclophilin D protein. Moreover, we show increased expression levels of cyclophilin D in the affected zones of brains in patients with adrenomyeloneuropathy, in spinal cord of a mouse model of X-linked adrenoleukodystrophy (Abcd1-null mice) and in fibroblasts from patients with X-linked adrenoleukodystrophy. Notably, treatment with antioxidants rescues mitochondrial damage markers in fibroblasts from patients with X-linked adrenoleukodystrophy, including cyclophilin D oxidative modifications, and reverses cyclophilin D induction in vitro and in vivo. These findings provide mechanistic insight into the

  18. X-linked Agammaglobulinemia With Normal Immunoglobulin and Near-Normal Vaccine Seroconversion.

    PubMed

    Preece, Kahn; Lear, Graeme

    2015-12-01

    We present a 22-month-old boy with X-linked agammaglobulinemia masked by normal immunoglobulin levels and vaccine seroconversion. Diagnosis was made after strong clinical suspicion of immune deficiency led to identification of markedly reduced B-cell numbers and confirmation with identification of a novel Bruton tyrosine kinase gene mutation. He was commenced on replacement immunoglobulin therapy with excellent clinical improvement. This case highlights the variability of phenotypic presentation and apparent disunity between routine immunologic investigations and severe disease in X-linked agammaglobulinemia, necessitating clinical acumen to make the diagnosis. PMID:26527549

  19. Canine hyperlipidaemia.

    PubMed

    Xenoulis, P G; Steiner, J M

    2015-10-01

    Hyperlipidaemia refers to an increased concentration of lipids in the blood. Hyperlipidaemia is common in dogs and has recently emerged as an important clinical condition that requires a systematic diagnostic approach and appropriate treatment. Hyperlipidaemia can be either primary or secondary to other diseases. Secondary hyperlipidaemia is the most common form in dogs, and it can be a result of endocrine disorders, pancreatitis, cholestasis, protein-losing nephropathy, obesity, as well as other conditions and the use of certain drugs. Primary hyperlipidaemia is less common in the general canine population but it can be very common within certain breeds. Hypertriglyceridaemia of Miniature Schnauzers is the most common form of primary hyperlipidaemia in dogs but other breeds are also affected. Possible complications of hyperlipidaemia in dogs include pancreatitis, liver disease, atherosclerosis, ocular disease and seizures. Management of primary hyperlipidaemia in dogs is achieved by administration of ultra low-fat diets with or without the administration of lipid lowering drugs such as omega-3 fatty acids, fibrates, niacin and statins. PMID:26456868

  20. Abnormal Cortex-Muscle Interactions in Subjects with X-linked Kallmann's Syndrome and Mirror Movements

    ERIC Educational Resources Information Center

    Farmer, S. F.; Harrison, L. M.; Mayston, M. J.; Parekh, A.; James, L. M.; Stephens, J. A.

    2004-01-01

    X-linked Kallmann's (XKS) subjects, who display mirror movements, have abnormal corticospinal tracts which innervate motoneurons of the left and right distal muscles of the upper limb. The size of the abnormal ipsilateral projection is variable. We have used coherence and cumulant analysis between EEG and first dorsal interosseous muscle (1DI) EMG…

  1. The use of infliximab in X-linked agammaglobulinaemia associated enteropathy.

    PubMed

    Davey, P T; Tan, C J; Gardiner, K

    2014-07-01

    Granulomatous small bowel enteropathy is an unusual presentation associated with X-linked agammaglobulinaemia. We present a rare case of this condition that was further complicated by an enterocutaneous fistula and report our experience managing this condition successfully with infliximab, which has not been documented in the literature previously. PMID:24992401

  2. Sex Differences in Speed of Mental Rotation and the X-Linked Genetic Hypothesis.

    ERIC Educational Resources Information Center

    Thomas, Hoben; Kail, Robert

    1991-01-01

    Mental-rotation task response times from 12 studies involving 505 adults--251 males and 254 females--were used to evaluate 5 hypotheses concerning sex differences derived from an X-linked genetic model. The model assumes that task facilitation in speed of mental rotation is mediated by a recessive gene. Four hypotheses derived from the model were…

  3. Sex Differences in Spatial Ability: The X-Linked Gene Theory.

    ERIC Educational Resources Information Center

    Blatter, Patricia

    1982-01-01

    Among the many theories attempting to explain sex differences in spatial ability, one of the most highly researched is the X-linked recessive gene theory. This is a review of the major research done on that theory and shows the conflicting nature of the results. (Author)

  4. Genetics Home Reference: X-linked hyper IgM syndrome

    MedlinePlus

    ... X-linked hyper-IgM syndrome: clinical and immunologic features of 79 patients. Medicine (Baltimore). 2003 Nov;82(6):373-84. Citation on ... 2016 The resources on this site should not be used as a substitute for professional medical care or advice. Users with questions about ...

  5. X-Linked Intellectual Disability: Unique Vulnerability of the Male Genome

    ERIC Educational Resources Information Center

    Stevenson, Roger E.; Schwartz, Charles E.

    2009-01-01

    X-linked intellectual disability (XLID) accounts for approximately 16% of males with intellectual disability (ID). This is, in part, related to the fact that males have a single X chromosome. Progress in the clinical and molecular characterization of XLID has outpaced progress in the delineation of ID due to genes on the other 22 chromosomes.…

  6. Mutations in X-linked PORCN, a putative regulator of Wnt signaling, cause focal dermal hypoplasia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Focal dermal hypoplasia is an X-linked dominant disorder characterized by patchy hypoplastic skin and digital, ocular, and dental malformations. We used array comparative genomic hybridization to identify a 219-kb deletion in Xp11.23 in two affected females. We sequenced genes in this region and fou...

  7. Expression of the disease on female carriers of X-linked lysosomal disorders: a brief review

    PubMed Central

    2010-01-01

    Most lysosomal diseases (LD) are inherited as autosomal recessive traits, but two important conditions have X-linked inheritance: Fabry disease and Mucopolysaccharidosis II (MPS II). These two diseases show a very different pattern regarding expression on heterozygotes, which does not seem to be explained by the X-inactivation mechanism only. While MPS II heterozygotes are asymptomatic in most instances, in Fabry disease most of female carriers show some disease manifestation, which is sometimes severe. It is known that there is a major difference among X-linked diseases depending on the cell autonomy of the gene product involved and, therefore, on the occurrence of cross-correction. Since lysosomal enzymes are usually secreted and uptaken by neighbor cells, the different findings between MPS II and Fabry disease heterozygotes can also be due to different efficiency of cross-correction (higher in MPS II and lower in Fabry disease). In this paper, we review these two X-linked LD in order to discuss the mechanisms that could explain the different rates of penetrance and expressivity observed in the heterozygotes; this could be helpful to better understand the expression of X-linked traits. PMID:20509947

  8. Self-induced vomiting in X-linked {alpha}-thalassemia/mental retardation syndrome

    SciTech Connect

    Kurosawa, Kenji; Akatsuka, Akira; Ochiai, Yukikatsu

    1996-06-14

    This report poses the question of whether the vomiting observed in X-linked {alpha}-thalassemia/mental retardation syndrome could be self-induced. The authors present a case history which seems to support this hypothesis. 5 refs., 1 fig.

  9. The mouse rumpshaker mutation of the proteolipid protein in human X-linked recessive spastic paraplegia

    SciTech Connect

    Kobayashi, H.; Hoffman, E.P.; Matise, T.C.

    1994-09-01

    X-linked recessive spastic paraplegia is a rare neurodegenerative disorder characterized by slowly progressive weakness and spasticity of the lower extremities. We have recently genetically analyzed the original X-linked recessive spastic paraplegia family reported by Johnston and McKusick in 1962. We employed a fluorescent multiplex CA repeat strategy using a 22 locus, 10 cM framework map of the human X chromosome and localized the gene within a 36 cM region of Xq2l.3-q24 which includes the PLP locus. Saugier-Veber et al. recently reported a point mutation (His139Tyr) in exon 3B of the PLP gene in an X-linked recessive spastic paraplegia family (SPG2). This family shows no optic atrophy, in contrast to the family we have studied. This data showed that SPG2 and Pelizaeus-Merzbacher disease were allelic disorders. We investigated the PLP gene as a candidate gene for the original X-linked recessive spastic paraplegia family using SSCP and direct sequencing methods. We found a point mutation (T to C) in exon 4 of affected males which alters the amino-acid (Ile to Thr) at residue 186. This change was absent in the unaffected males of the family and in 40 unrelated control females (80 X chromosomes). Surprisingly, this mutation is identical to the mutation previously identified in the rumpshaker mouse model. The complete homology between both the mouse and human PLP sequence, and the mouse rumpshaker mutation and human spastic paraplegia mutation in our family, permit direct parallels to be drawn with regards to pathophysiology. Our data indicates that the well-documented and striking clinical differences between Pelizaeus-Merzbacher disease and X-linked recessive spastic paraplegia is due to the specific effect of different mutations of the human PLP gene on oligodendrocyte differentiation and development and on later myelin production and maintenance.

  10. Fine Mapping of Dominant X-Linked Incompatibility Alleles in Drosophila Hybrids

    PubMed Central

    Matute, Daniel R.; Gavin-Smyth, Jackie

    2014-01-01

    Sex chromosomes have a large effect on reproductive isolation and play an important role in hybrid inviability. In Drosophila hybrids, X-linked genes have pronounced deleterious effects on fitness in male hybrids, which have only one X chromosome. Several studies have succeeded at locating and identifying recessive X-linked alleles involved in hybrid inviability. Nonetheless, the density of dominant X-linked alleles involved in interspecific hybrid viability remains largely unknown. In this report, we study the effects of a panel of small fragments of the D. melanogaster X-chromosome carried on the D. melanogaster Y-chromosome in three kinds of hybrid males: D. melanogaster/D. santomea, D. melanogaster/D. simulans and D. melanogaster/D. mauritiana. D. santomea and D. melanogaster diverged over 10 million years ago, while D. simulans (and D. mauritiana) diverged from D. melanogaster over 3 million years ago. We find that the X-chromosome from D. melanogaster carries dominant alleles that are lethal in mel/san, mel/sim, and mel/mau hybrids, and more of these alleles are revealed in the most divergent cross. We then compare these effects on hybrid viability with two D. melanogaster intraspecific crosses. Unlike the interspecific crosses, we found no X-linked alleles that cause lethality in intraspecific crosses. Our results reveal the existence of dominant alleles on the X-chromosome of D. melanogaster which cause lethality in three different interspecific hybrids. These alleles only cause inviability in hybrid males, yet have little effect in hybrid females. This suggests that X-linked elements that cause hybrid inviability in males might not do so in hybrid females due to differing sex chromosome interactions. PMID:24743238

  11. Localisation of the gene for X-linked reticulate pigmentary disorder with systemic manifestations (PDR), previously known as X-linked cutaneous amyloidosis

    SciTech Connect

    Gedeon, A.K.; Mulley, J.C.; Kozman, H.; Donnelly, A.; Partington, M.W.

    1994-08-01

    X-linked reticulate pigmentary disorder (PDR), previously reported as X-linked cutaneous amyloidosis (MIM No. 301220), is characterized by brown pigmentation of the skin which follows the lines of Blaschko in females but appears as reticulate sheets in males. Males may suffer severe gastrointestinal disorders in infancy with failure to thrive and early death. Nowadays symptomatic treatment allows survival and other manifestations may appear such as corneal dystrophy with severe photophobia or chronic respiratory disease. Amyloid deposition in the skin may be no more than an age-dependent secondary manifestation. The PDR gene was localized by linkage analysis to Xp21-p22. The background genetic map is Xpter-DXS996-22.5-DXS207-3.3-DXS999-3.3-DXS365-14.2-DXS989-4.1-3`DMD-3.5-DXS997-1.0-STR44-9.3-DYSI-2.3-DXS1068-11.0-DXS228 with distances between markers given in cM. Recombinants detected with DXS999 distally and DXS228 proximally, define the limits to the localization. Linkage was found with several markers within this interval. Peak lod scores of 3.21 at {theta} = 0.0 were obtained between PDR and DXS989 and between PDR and 5`DYSI within the dystrophin locus. 29 refs., 2 figs., 2 tabs.

  12. VACTERL with hydrocephalus: family with X-linked VACTERL-H.

    PubMed

    Lomas, F E; Dahlstrom, J E; Ford, J H

    1998-02-26

    We describe in a five generation family four affected males with hydrocephalus (4 offspring/4 examined) due to aqueductal stenosis (3/3), symmetrical radial ray abnormalities (4/4), renal anomalies (2/3), anal atresia (3/4), hypoplastic penis/abnormal testes (2/3), and cardiac abnormalities (1/3). X-linked inheritance seems certain in this family. These abnormalities are characteristic of the rare X-linked VACTERL-H syndrome. In addition, one maternal female cousin had a severe tracheo-esophageal fistula. This may represent partial manifestation in a female carrier. Chromosomes were apparently normal (46XY) with no spontaneous or excess induced breakages in one of the affected offspring and his mother. In the absence of a genetic marker, diagnostic ultrasonography is the investigation of choice for early in utero detection of this syndrome. A confident ultrasonographic diagnosis was possible by 20 weeks in the 2 cases examined. PMID:9508070

  13. X-linked ichthyosis without STS deficiency: Clinical, genetical, and molecular studies

    SciTech Connect

    Robledo, R.; Melis, P.; Schillinger, E.; Siniscalco, M.

    1995-11-06

    We report on a Sardinian pedigree with congenital ichthyosis associated with normal levels of steroid sulfatase and a normal molecular pattern, as detectable with a cDNA probe for the steroid sulfatase (STS) gene. Though the pattern of transmission of the disease is consistent with X-linked recessive inheritance, this form of ichthyosis was found to segregate independently of genetic polymorphisms detected by probes of the region Xp22.3, where the STS locus has been mapped. The search for close genetic linkages with other polymorphic markers scattered along the entire X chromosome has so far been fruitless. For the time being, the main conclusion derived from these data is that STS deficiency is not a sine qua non for X-linked ichthyosis which may also result from a mutational event at an X-chromosomal site genetically unlinked to the STS locus. 16 refs., 4 figs.

  14. A Common Founder Mutation in the EDA-A1 Gene in X-Linked Hypodontia

    PubMed Central

    Kurban, Mazen; Michailidis, Eleni; Wajid, Muhammad; Shimomura, Yutaka; Christiano, Angela M.

    2010-01-01

    Background X-linked recessive hypohidrotic ectodermal dysplasia (XLHED; OMIM 305100) is a rare genodermatosis characterized clinically by developmental abnormalities affecting the teeth, hair and sweat glands. Mutations in the EDA-A1 gene have been associated with XLHED. Recently, mutations in the EDA-A1 gene have also been implicated in isolated X-linked recessive hypodontia (XLRH; OMIM 313500). Methods We analyzed the DNA from members of 3 unrelated Pakistani families with XLRH for mutations in the EDA-A1 gene through direct sequencing and performed haplotype analysis. Results We identified a common missense mutation in both families designated c.1091T→C (p.M364T). Haplotype analysis revealed that this is a founder mutation in the 3 families. Conclusion XLHED is a syndrome with variable clinical presentations that contain a spectrum of findings, including hypodontia. We suggest that XLRH should be grouped under XLHED as both share several phenotypic and genotypic similarities. PMID:20628232

  15. [Clinical and molecular study in a child with X-linked hypohidrotic ectodermal dysplasia].

    PubMed

    Callea, Michele; Yavuz, Izzet; Clarich, Gabriella; Cammarata-Scalisi, Francisco

    2015-12-01

    Ectodermal dysplasia encompasses more than 200 clinically distinct entities, which affect at least two structures derived from the ectoderm, including the skin, hair, nails, teeth, sweat glands, and sebaceous glands. X-linked hypohidrotic ectodermal dysplasia is the most common type and is caused by mutation of the EDA gene that encodes Ectodysplasin-A. It occurs in less than 1 in 100 000 individuals and is clinically characterized by hypodontia, hypohidrosis, hypotrichosis, and eye dis orders. We present a child evaluated in a multidisciplinary manner with clinical and molecular diagnosis of X-linked hypohidrotic ectodermal dysplasia with type missense mutation c.1133C> T; p.T378M in EDA gene. PMID:26593813

  16. Position effect on FGF13 associated with X-linked congenital generalized hypertrichosis.

    PubMed

    DeStefano, Gina M; Fantauzzo, Katherine A; Petukhova, Lynn; Kurban, Mazen; Tadin-Strapps, Marija; Levy, Brynn; Warburton, Dorothy; Cirulli, Elizabeth T; Han, Yujun; Sun, Xiaoyun; Shen, Yufeng; Shirazi, Maryam; Jobanputra, Vaidehi; Cepeda-Valdes, Rodrigo; Cesar Salas-Alanis, Julio; Christiano, Angela M

    2013-05-01

    X-linked congenital generalized hypertrichosis (Online Mendelian Inheritance in Man 307150) is an extremely rare condition of hair overgrowth on different body sites. We previously reported linkage in a large Mexican family with X-linked congenital generalized hypertrichosis cosegregating with deafness and with dental and palate anomalies to Xq24-27. Using SNP oligonucleotide microarray analysis and whole-genome sequencing, we identified a 389-kb interchromosomal insertion at an extragenic palindrome site at Xq27.1 that completely cosegregates with the disease. Among the genes surrounding the insertion, we found that Fibroblast Growth Factor 13 (FGF13) mRNA levels were significantly reduced in affected individuals, and immunofluorescence staining revealed a striking decrease in FGF13 localization throughout the outer root sheath of affected hair follicles. Taken together, our findings suggest a role for FGF13 in hair follicle growth and in the hair cycle. PMID:23603273

  17. X-linked ocular albinism and sensorineural deafness: Linkage to Xp22. 3

    SciTech Connect

    Winship, I.M.; Babaya, M.; Ramesar, R.S. )

    1993-11-01

    X-linked ocular albinism with late-onset sensorineural deafness (OASD) is an autonomous disorder that poses significant clinical problems, causing affected individuals to be blind and deaf by early middle age. Classical X-linked ocular albinism (without deafness; OA1) has recently been linked to markers in the Xp22.2-Xp22.3 region of the human genome. In the present report, a large South African family with OASD was investigated at the molecular level and tight linkage was found to the DXS452 locus at Xp22.3 using 25 informative meioses, with a maximum lod score of 7.1 at a recombination fraction of 0.00. These findings suggest that OA1 and OASD are allelic variants or that they may be due to contiguous gene defects. 12 refs., 1 fig.

  18. Position effect on FGF13 associated with X-linked congenital generalized hypertrichosis

    PubMed Central

    DeStefano, Gina M.; Fantauzzo, Katherine A.; Petukhova, Lynn; Kurban, Mazen; Tadin-Strapps, Marija; Levy, Brynn; Warburton, Dorothy; Cirulli, Elizabeth T.; Han, Yujun; Sun, Xiaoyun; Shen, Yufeng; Shirazi, Maryam; Jobanputra, Vaidehi; Cepeda-Valdes, Rodrigo; Cesar Salas-Alanis, Julio; Christiano, Angela M.

    2013-01-01

    X-linked congenital generalized hypertrichosis (Online Mendelian Inheritance in Man 307150) is an extremely rare condition of hair overgrowth on different body sites. We previously reported linkage in a large Mexican family with X-linked congenital generalized hypertrichosis cosegregating with deafness and with dental and palate anomalies to Xq24-27. Using SNP oligonucleotide microarray analysis and whole-genome sequencing, we identified a 389-kb interchromosomal insertion at an extragenic palindrome site at Xq27.1 that completely cosegregates with the disease. Among the genes surrounding the insertion, we found that Fibroblast Growth Factor 13 (FGF13) mRNA levels were significantly reduced in affected individuals, and immunofluorescence staining revealed a striking decrease in FGF13 localization throughout the outer root sheath of affected hair follicles. Taken together, our findings suggest a role for FGF13 in hair follicle growth and in the hair cycle. PMID:23603273

  19. Localization of Impacted Canines

    PubMed Central

    Mehrotra, Praveen; Bhagchandani, Jitendra; Singh, Ashish; Garg, Aarti; Kumar, Snehi; Sharma, Ashish; Yadav, Harsh

    2015-01-01

    Impaction of maxillary canines is a frequently encountered clinical problem. The impaction of canine can be prevented in some situationsif the canine displacement is diagnosed in the early mixed dentition period and this would be extremely useful for the clinician. Hence,it is very important to focus on the means of early diagnosis and interception of this clinical situation. In the present article, the differentmodalities used to diagnose the impacted canine are reviewed with an insight into current 3-D modalities. PMID:25738100

  20. Carrier and prenatal diagnosis of X-linked severe combined immunodeficiency: mutation detection methods and utilization.

    PubMed

    Puck, J M; Middelton, L; Pepper, A E

    1997-05-01

    IL2RG, the gene encoding the common gamma chain, gamma c, of the receptor for interleukin-2 and other cytokines, has been identified as the disease gene for severe combined immunodeficiency (SCID) of the X-linked type. Specific mutational diagnosis for X-linked SCID has thus become possible. For many women at risk for carrying an IL2RG mutation, no samples were saved from an affected male relative prior to either death or bone marrow transplantation (BMT). To establish optimal methods for genetic evaluation of such women, we compared mutational screening by single-strand conformational polymorphism, heteroduplex analysis and dideoxy fingerprinting (ddF). Abnormally migrating band patterns were followed up with direct sequencing for identification of specific mutations. The most sensitive method, ddF, detected heterozygous alterations, subsequently confirmed to represent significant mutations, in all of 19 unrelated obligate or suspected carriers studied. Some of these women, as well as others at risk for carrying an X-linked SCID mutation, enrolled in a study of prenatal diagnosis after fetal testing for gender determination. Originally using linkage analysis and, more recently, specific detection of IL2RG mutations, we evaluated pregnancies at risk for X-linked SCID prospectively on a research basis. Of 27 male fetuses tested 14 were predicted to be unaffected and confirmed to have normal immune status at birth. Among pregnancies predicted to be affected, 2 were terminated, while 11 affected males were born at term. Nine of these received neonatal BMT, one had BMT at 3 months of age, and one underwent a successful experimental in utero BMT. In our study cohort accurate prenatal diagnosis assisted decision making and expanded treatment options for families at risk for having infants with a severe, but treatable genetic disorder that presents early in life. PMID:9150730

  1. Sporothrix schenckii lymphadentitis in a male with X-linked chronic granulomatous disease.

    PubMed

    Trotter, Jessica R; Sriaroon, Panida; Berman, David; Petrovic, Aleksandra; Leiding, Jennifer W

    2014-01-01

    Sporothrix schenckii lymphadenitis was identified in a 33 month old male with X-linked chronic granulomatous disease (CGD). S. schenckii is a dimorphic catalase producing fungus found in the soil of temperate and tropical climates. Host defense against S. schenckii relies primarily on innate and cellular responses and gp91(phox-/-) mice are susceptible to disseminated infection. This case represents the first report of susceptibility to sporotrichosis in a patient with CGD. PMID:24241583

  2. CRISPR/Cas9 Promotes Functional Study of Testis Specific X-Linked Gene In Vivo

    PubMed Central

    Jiang, Xue; Chen, Yuxi; Zhang, Zhen; Zhang, Xiya; Liang, Puping; Zhan, Shaoquan; Cao, Shanbo; Songyang, Zhou; Huang, Junjiu

    2015-01-01

    Mammalian spermatogenesis is a highly regulated multistage process of sperm generation. It is hard to uncover the real function of a testis specific gene in vitro since the in vitro model is not yet mature. With the development of the CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated 9) system, we can now rapidly generate knockout mouse models of testis specific genes to study the process of spermatogenesis in vivo. SYCP3-like X-linked 2 (SLX2) is a germ cell specific component, which contains a Cor1 domain and belongs to the XLR (X-linked, lymphocyte regulated) family. Previous studies suggested that SLX2 might play an important role in mouse spermatogenesis based on its subcellular localization and interacting proteins. However, the function of SLX2 in vivo is still elusive. Here, to investigate the functions of SLX2 in spermatogenesis, we disrupted the Slx2 gene by using the CRISPR/Cas9 system. Since Slx2 is a testis specific X-linked gene, we obtained knockout male mice in the first generation and accelerated the study process. Compared with wild-type mice, Slx2 knockout mice have normal testis and epididymis. Histological observation of testes sections showed that Slx2 knockout affected none of the three main stages of spermatogenesis: mitosis, meiosis and spermiogenesis. In addition, we further confirmed that disruption of Slx2 did not affect the number of spermatogonial stem cells, meiosis progression or XY body formation by immunofluorescence analysis. As spermatogenesis was normal in Slx2 knockout mice, these mice were fertile. Taken together, we showed that Slx2 itself is not an essential gene for mouse spermatogenesis and CRISPR/Cas9 technique could speed up the functional study of testis specific X-linked gene in vivo. PMID:26599493

  3. A novel treatment in X-linked agammaglobulinaemia - hyperbaric oxygen therapy in refractory chronic wounds.

    PubMed

    Steele, C L; Cridge, C; Edgar, J D M

    2014-10-01

    Chronic wounds are a rare complication of X-linked agammaglobulinaemia (XLA). Fastidious organisms such as helicobacter bills have been reported in XLA with chronic wounds but sterile chronic wounds also occur. Hyperbaric Oxygen Therapy has been used in chronic wounds but has not previously been reported in primary antibody deficiencies. We present a case of a chronic wound in a patient with XLA refractory to antimicrobial therapy that made a remarkable recovery following Hyperbaric Oxygen Therapy. PMID:25091287

  4. Successful hematopoietic cell transplantation in a patient with X-linked agammaglobulinemia and acute myeloid leukemia.

    PubMed

    Abu-Arja, Rolla F; Chernin, Leah R; Abusin, Ghada; Auletta, Jeffery; Cabral, Linda; Egler, Rachel; Ochs, Hans D; Torgerson, Troy R; Lopez-Guisa, Jesus; Hostoffer, Robert W; Tcheurekdjian, Haig; Cooke, Kenneth R

    2015-09-01

    X-linked agammaglobulinemia (XLA) is a primary immunodeficiency characterized by marked reduction in all classes of serum immunoglobulins and the near absence of mature CD19(+) B-cells. Although malignancy has been observed in patients with XLA, we present the first reported case of acute myeloid leukemia (AML) in a patient with XLA. We also demonstrate the complete correction of the XLA phenotype following allogeneic hematopoietic cell transplantation for treatment of the patient's leukemia. PMID:25900577

  5. Nonspecific X-linked mental retardation with macrocephaly and obesity: A further family

    SciTech Connect

    Baraitser, M.; Reardon, W.; Vijeratnam, S.

    1995-07-03

    The phenotypic nonspecificity of many forms of X-linked mental retardation has hampered attempts to classify them into clinically homogeneous groups. One such condition, described by Clark and Baraitser, has been the subject of a single pedigree report to date. We now describe a further pedigree whose affected members share many manifestations with those reported by Clark and Baraitser, and we consider the possible distinction between this condition and Atkin-Flaitz syndrome. 9 refs., 4 figs., 1 tab.

  6. Successful Hematopoietic Cell Transplantation in a Patient With X-linked Agammaglobulinemia and Acute Myeloid Leukemia

    PubMed Central

    Abu-Arja, Rolla F.; Chernin, Leah R.; Abusin, Ghada; Auletta, Jeffery; Cabral, Linda; Egler, Rachel; Ochs, Hans D.; Torgerson, Troy R.; Lopez-Guisa, Jesus; Hostoffer, Robert W.; Tcheurekdjian, Haig; Cooke, Kenneth R.

    2016-01-01

    X-linked agammaglobulinemia (XLA) is a primary immunodeficiency characterized by marked reduction in all classes of serum immunoglobulins and the near absence of mature CD19+ B-cells. Although malignancy has been observed in patients with XLA, we present the first reported case of acute myeloid leukemia (AML) in a patient with XLA. We also demonstrate the complete correction of the XLA phenotype following allogeneic hematopoietic cell transplantation for treatment of the patient’s leukemia. PMID:25900577

  7. Refined genetic mapping of X-linked Charcot-Marie-Tooth neuropathy

    SciTech Connect

    Fain, P.R.; Barker, D.F.; Chance, P.F. )

    1994-02-01

    Genetic linkage studies were conducted in four multigenerational families with X-linked Charcot-Marie-Tooth disease (CMTX), using 12 highly polymorphic short-tandem-repeat markers for the pericentromeric region of the X Chromosome. Pairwise linkage analysis with individual markers confirmed tight linkage of CMTX to the pericentromeric region in each family. Multipoint analyses strongly support the order DXS337-CMTX-DXS441-(DXS56, PGK1). 38 refs., 2 figs., 1 tab.

  8. X-linked adrenoleukodystrophy with non-diagnostic plasma very long chain fatty acids.

    PubMed Central

    Kennedy, C R; Allen, J T; Fensom, A H; Steinberg, S J; Wilson, R

    1994-01-01

    Measurement of plasma very long chain fatty acids is widely recognised as a sensitive screening test for X-linked adrenoleukodystrophy (X-ALD). This test has particular importance because of the highly variable clinical expression of X-ALD. In this affected family the progressive childhood form of X-ALD was accompanied by "non-diagnostic" concentrations of plasma very long chain fatty acids. The implications for diagnosis of X-ALD are discussed. PMID:8006665

  9. Molecular genetic analysis of patients with sporadic and X-linked infantile nystagmus

    PubMed Central

    Zhao, Hui; Huang, Xiu-Feng; Zheng, Zhi-Li; Deng, Wen-Li; Lei, Xin-Lan; Xing, Dong-Jun; Ye, Liang; Xu, Su-Zhong; Chen, Jie; Zhang, Fang; Yu, Xin-Ping; Jin, Zi-Bing

    2016-01-01

    Objectives Infantile nystagmus (IN) is a genetically heterogeneous condition characterised by involuntary rhythmic oscillations of the eyes accompanied by different degrees of vision impairment. Two genes have been identified as mainly causing IN: FRMD7 and GPR143. The aim of our study was to identify the genetic basis of both sporadic IN and X-linked IN. Design Prospective analysis. Patients Twenty Chinese patients, including 15 sporadic IN cases and 5 from X-linked IN families, were recruited and underwent molecular genetic analysis. We first performed PCR-based DNA sequencing of the entire coding region and the splice junctions of the FRMD7 and GPR143 genes in participants. Mutational analysis and co-segregation confirmation were then performed. Setting All clinical examinations and genetic experiments were performed in the Eye Hospital of Wenzhou Medical University. Results Two mutations in the FRMD7 gene, including one novel nonsense mutation (c.1090C>T, p.Q364X) and one reported missense mutation (c.781C>G, p.R261G), were identified in two of the five (40%) X-linked IN families. However, none of putative mutations were identified in FRMD7 or GPR143 in any of the sporadic cases. Conclusions The results suggest that mutations in FRMD7 appeared to be the major genetic cause of X-linked IN, but not of sporadic IN. Our findings provide further insights into FRMD7 mutations, which could be helpful for future genetic diagnosis and genetic counselling of Chinese patients with nystagmus. PMID:27036142

  10. Further evidence for a fourth gene causing X-linked pure spastic paraplegia.

    PubMed

    Starling, A; Rocco, P; Cambi, F; Hobson, G M; Passos Bueno, M R; Zatz, M

    2002-08-01

    X-linked hereditary spastic paraplegias (HSPs) present with two distinct phenotypes: pure and complicated. The pure form is characterized by slowly progressive weakness and spasticity of the lower limbs, whereas the complicated forms have additional features (optic neuropathy, retinopathy, extrapyramidal disturbance, dementia, epilepsy, ataxia, ichthyosis, mental retardation, and deafness). Three X-linked loci have been identified for the complicated HSP, while mutations in the proteolipid gene (PLP) (locus SPG2) were implicated in both pure and complicated forms. The absence of identified mutations in the PLP gene in families with both complicated and pure HSP, linked to the SPG2 locus, suggests the existence of another gene in close proximity. We had previously reported a large pedigree with an X-linked form of pure HSP affecting 24 males [Zatz et al., 1976: J Med Genet 13:217-222]. Here, we present the results of linkage analysis in 19 members of this Brazilian family with markers in or near the PLP locus. Positive LOD scores were obtained with markers at the PLP locus (Zmax = 2.41 at Theta = 0); however, no mutation was found in the coding region of PLP, the intron-exon boundaries, or part of the promoter region. The possibility of a duplication of the PLP gene was also excluded. These results suggest either that there is another X-linked gene in close proximity to the PLP gene or that a novel mutation in the noncoding regions of the PLP gene may cause the disease in this family. PMID:12210342

  11. Selection and mutation in X-linked recessive diseases epidemiological model.

    PubMed

    Verrilli, Francesca; Kebriaei, Hamed; Glielmo, Luigi; Corless, Martin; Del Vecchio, Carmen

    2015-08-01

    To describe the epidemiology of X-linked recessive diseases we developed a discrete time, structured, non linear mathematical model. The model allows for de novo mutations (i.e. affected sibling born to unaffected parents) and selection (i.e., distinct fitness rates depending on individual's health conditions). Applying Lyapunov direct method we found the domain of attraction of model's equilibrium point and studied the convergence properties of the degenerate equilibrium where only affected individuals survive. PMID:26737169

  12. Paternal inheritance of classic X-linked bilateral periventricular nodular heterotopia.

    PubMed

    Kasper, Burkhard S; Kurzbuch, Katrin; Chang, Bernard S; Pauli, Elisabeth; Hamer, Hajo M; Winkler, Jürgen; Hehr, Ute

    2013-06-01

    Periventricular nodular heterotopia (PNH) is a developmental disorder of the central nervous system, characterized by heterotopic nodules of gray matter resulting from disturbed neuronal migration. The most common form of bilateral PNH is X-linked dominant inherited, caused by mutations in the Filamin A gene (FLNA) and associated with a wide variety of other clinical findings including congenital heart disease. The typical patient with FLNA-associated PNH is female and presents with difficult to treat seizures. In contrast, hemizygous FLNA loss of function mutations in males are reported to be perinatally lethal. In X-linked dominant traits like FLNA-associated PNH the causal mutation is commonly inherited from the mother. Here, we present an exceptional family with paternal transmission of classic bilateral FLNA-associated PNH from a mildly affected father with somatic and germline mosaicism for a c.5686G>A FLNA splice mutation to both daughters with strikingly variable clinical manifestation and PNH extent in cerebral MR imaging. Our observations emphasize the importance to consider in genetic counseling and risk assessment the rare genetic constellation of paternal transmission for families with X-linked dominant inherited FLNA-associated PNH. PMID:23636902

  13. Radial fundus autofluorescence in the periphery in patients with X-linked retinitis pigmentosa

    PubMed Central

    Ogino, Ken; Oishi, Maho; Oishi, Akio; Morooka, Satoshi; Sugahara, Masako; Gotoh, Norimoto; Kurimoto, Masafumi; Yoshimura, Nagahisa

    2015-01-01

    Purpose To describe the peripheral autofluorescence images and clinical features of patients with retinal dystrophy who showed radial fundus autofluorescence (FAF) at the posterior pole. Methods The authors retrospectively reviewed pooled wide-field FAF images of 711 patients with retinal dystrophy and 56 family members. Results Eleven eyes of seven women exhibited radial FAF at the posterior pole. Wide-field FAF showed extension of the radial pattern to the periphery in all eyes except one. One woman showed radial hyper-FAF only in the periphery, not at the posterior pole. These eight individuals were X-linked retinitis pigmentosa patients or carriers. The tapetal-like reflex was not observed in their color fundus photographs. The peripheral visual field showed wedge-shaped restriction in some individuals. Conclusion Wide-field FAF imaging can depict radial FAF not only at the posterior pole but also in the periphery in X-linked retinitis pigmentosa carriers. The authors therefore agree with previous reports that radial FAF may be a hallmark of X-linked retinitis pigmentosa. PMID:26316687

  14. Peroxisomal. beta. -oxidation enzyme proteins in adrenoleukodystrophy: distinction between x-linked adrenoleukodystrophy and neonatal adrenoleukodystrophy

    SciTech Connect

    Chen, W.W.; Watkins, P.A.; Osumi, T.; Hashimoto, T.; Moser, H.W.

    1987-03-01

    Very long chain fatty acids, which accumulate in plasma and tissues in x-linked adrenoleukodystrophy (ALD), neonatal ALD, and the Zellweger cerebrohepatorenal syndrome, are degraded by the peroxisomal ..beta..-oxidation pathway, consisting of acyl-CoA oxidase, the bifunctional enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydrogenase, and ..beta..-ketothiolase. A marked deficiency of all three enzyme proteins was reported in livers from patients with the Zellweger syndrome, a disorder in which peroxisomes are decreased or absent. Peroxisomes are not as markedly decreased in neonatal ALD and appear normal in x-linked ALD. Immunoblot analysis of the peroxisomal ..beta..-oxidation enzymes revealed an almost complete lack of the bifunctional enzymes in neonatal ALD liver, similar to the finding in Zellweger tissues. In contrast, acyl-CoA oxidase and ..beta..-ketothiolase were present in neonatal ALD liver, although the thiolase appeared to be in precursor form (2-3 kDa larger than the mature enzyme) in neonatal ALD. Unlike either neonatal ALD or Zellweger syndrome, all three peroxisomal ..beta..-oxidation enzymes were present in x-linked ALD liver. Despite the absence in neonatal ALD liver of bifunctional enzyme protein, its mRNA was detected by RNA blot analysis in fibroblasts from these patients. These observations suggest that lack of bifunctional enzyme protein in neonatal ALD results from either abnormal translation of the mRNA or degradation of the enzyme prior to its entry into peroxisomes.

  15. X chromosome inactivation pattern in female carriers of X linked hypophosphataemic rickets.

    PubMed Central

    Orstavik, K H; Orstavik, R E; Halse, J; Knudtzon, J

    1996-01-01

    X linked hypophosphataemia (XLH) results from an abnormality of renal tubular phosphate reabsorption. The disorder is inherited as an X linked dominant trait and the gene has been mapped to Xp22.1-p22.2. A candidate gene (PEX) has recently been isolated. The most striking clinical features are growth retardation and skeletal abnormalities. As expected for X linked dominant disorders, females are less affected. However, such a gene dosage effect does not exist for renal phosphate reabsorption. Preferential X chromosome inactivation has been proposed as a possible explanation for this lack of gene dosage. We have examined the X inactivation pattern in peripheral blood cells from 12 females belonging to seven families with XLH using PCR analysis at the androgen receptor locus. The X inactivation pattern in these patients did not differ significantly from the pattern in 30 healthy females. The X inactivation pattern in peripheral blood cells does not necessarily reflect the X inactivation pattern in renal cells. However, the finding of a normal distribution of X inactivation in peripheral blood cells indicates that the similarity in the renal handling of phosphate in male and female patients is not related to a ubiquitous preferential X inactivation. Images PMID:8863165

  16. Mutational studies in X-linked Charcot-Marie-Tooth disease (CMTX)

    SciTech Connect

    Cherryson, A.K.; Yeung, L.; Kennerson, M.L.; Nicholson, G.A.

    1994-09-01

    Charcot-Marie-Tooth disease, also known as hereditary motor and sensory neuropathy (HMSN), is a heterogeneous group of slowly progressive disorders of the peripheral nerve. X-linked CMT (CMTX) is characterized by slow motor nerve conduction velocities in affected males and the presence of mildly affected or normal carrier females with intermediate or normal nerve conduction velocities. CMTX, which has an incidence of 3.1 per 100,000 and accounts for approximately 10% of CMT cases, has been mapped to Xq13. One of the genes lying in this region, connexin 32, has been found to contain alterations in individuals affected with X-linked CMT. We have identified our X-linked families from dominant type 1 CMT families using the clinical criteria given above. These families were screened for point mutations in connexin 32. We have identified three missense mutations, a G{r_arrow}A transition at amino acid 35 (valine to methionine), a C{r_arrow}G transition at amino acid 158 (proline to alanine) and a T{r_arrow}A transition at amino acid 182 (serine to threonine). Another family showed a 18 bp deletion, which removed the amino acid 111 to 116 inclusive (histidine, glycine, aspartic acid, proline, leucine, histidine).

  17. Ex Vivo γ-Retroviral Gene Therapy of Dogs with X-linked Severe Combined Immunodeficiency and the Development of a Thymic T Cell Lymphoma

    PubMed Central

    Kennedy, Douglas R.; Hartnett, Brian J.; Kennedy, Jeffrey S.; Vernau, William; Moore, Peter F.; O’Malley, Thomas; Burkly, Linda C.; Henthorn, Paula S.; Felsburg, Peter J.

    2011-01-01

    We have previously shown that in vivo γ-retroviral gene therapy of dogs with X-linked severe combined immunodeficiency (XSCID) results in sustained T cell reconstitution and sustained marking in myeloid and B cells for up to 4 years with no evidence of any serious adverse effects. The purpose of this study was to determine whether ex vivo γ-retroviral gene therapy of XSCID dogs results in a similar outcome. Eight of 12 XSCID dogs treated with an average of dose of 5.8 × 106 transduced CD34+ cells/kg successfully engrafted producing normal numbers of gene-corrected CD45RA+ (naïve) T cells. However, this was followed by a steady decrease in CD45RA+ T cells, T cell diversity, and thymic output as measured by T cell receptor excision circles (TRECs) resulting in a T cell lymphopenia. None of the dogs survived past 11 months post treatment. At necropsy, few gene-corrected thymocytes were observed correlating with the TREC levels and one of the dogs was diagnosed with a thymic T cell lymphoma that was attributed to the gene therapy. This study highlights the outcome differences between the ex vivo and in vivo approach to γ-retroviral gene therapy and is the first to document a serious adverse event following gene therapy in a canine model of a human genetic disease. PMID:21536334

  18. A new nonsyndromic X-linked sensorineural hearing impairment linked to Xp21.2

    SciTech Connect

    Lalwani, A.K.; Brister, J.R.; Fex, J.; Grundfast, K.M.; Pikus, A.T.; Ploplis, B.; San Agustin, T.; Skarka, H.; Wilcox, E.R.

    1994-10-01

    X-linked deafness is a rare cause of hereditary hearing impairment. We have identified a family with X-linked dominant sensorineural hearing impairment, characterized by incomplete penetrance and variable expressivity in carrier females, that is linked to the Xp21.2, which contains the Duchenne muscular dystrophy (DMD) locus. The auditory impairment in affected males was congenital, bilateral, profound, sensorineural, affecting all frequencies, and without evidence of radiographic abnormality of the temporal bone. Adult carrier females manifested bilateral, mild-to-moderate high-frequency sensorineural hearing impairment of delayed onset during adulthood. Eighteen commercially available polymorphic markers from the X chromosome, generating a 10-15-cM map, were initially used for identification of a candidate region. DXS997, located within the DMD gene, generated a two-point LOD score of 2.91 at {theta} = 0, with every carrier mother heterozygous at this locus. Recombination events at DXS992 (located within the DMD locus, 3{prime} to exon 50 of the dystrophin gene) and at DXS1068 (5{prime} to the brain promoter of the dystrophin gene) were observed. No recombination events were noted with the following markers within the DMD locus: 5{prime}DYS II, intron 44, DXS997, and intron 50. There was no clinical evidence of Duchenne or Becker muscular dystrophy in any family member. It is likely that this family represents a new locus on the X chromosome, which when mutated results in nonsyndromic sensorineural hearing loss and is distinct from the heterogeneous group of X-linked hearing losses that have been previously described. 57 refs., 6 figs., 1 tab.

  19. Rapid evolution of mammalian X-linked testis-expressed homeobox genes.

    PubMed Central

    Wang, Xiaoxia; Zhang, Jianzhi

    2004-01-01

    Homeobox genes encode transcription factors that function in various developmental processes and are usually evolutionarily conserved in their sequences. However, two X-chromosome-linked testis-expressed homeobox genes, one from rodents and the other from fruit flies, are known to evolve rapidly under positive Darwinian selection. Here we report yet another case, from primates. TGIFLX is an X-linked homeobox gene that originated by retroposition of the autosomal gene TGIF2, most likely in a common ancestor of rodents and primates. While TGIF2 is ubiquitously expressed, TGIFLX is exclusively expressed in adult testis. A comparison of the TGIFLX sequences among 16 anthropoid primates revealed a significantly higher rate of nonsynonymous nucleotide substitution (d(N)) than synonymous substitution (d(S)), strongly suggesting the action of positive selection. Although the high d(N)/d(S) ratio is most evident outside the homeobox, the homeobox has a d(N)/d(S) of approximately 0.89 and includes two codons that are likely under selection. Furthermore, the rate of radical amino acid substitutions that alter amino acid charge is significantly greater than that of conservative substitutions, suggesting that the selection promotes diversity of the protein charge profile. More interestingly, an analysis of 64 orthologous homeobox genes from humans and mice shows substantially higher rates of amino acid substitution in X-linked testis-expressed genes than in other genes. These results suggest a general pattern of rapid evolution of mammalian X-linked testis-expressed homeobox genes. Although the physiological function of and the exact selective agent on TGIFLX and other rapidly evolving homeobox genes are unclear, the common expression pattern of these transcription factor genes led us to conjecture that the selection is related to one or more aspects of male reproduction and may contribute to speciation. PMID:15238536

  20. Allelic variation in the squirrel monkey x-linked color vision gene: biogeographical and behavioral correlates.

    PubMed

    Cropp, Susan; Boinski, Sue; Li, Wen-Hsiung

    2002-06-01

    Most Neotropical primate species possess a polymorphic X-linked and a monomorphic autosomal color vision gene. Consequently, populations are composed of both dichromatics and trichromatics. Most theories on the maintenance of this genetic system revolve around possible advantages for foraging ecology. To examine the issue from a different angle, we compared the numbers and relative frequencies of alleles at the X-linked locus among three species of Saimiri representing a wide range of geographical and behavioral variation in the genus. Exons 3, 4, and 5 of the X-linked opsin gene were sequenced for a large number of X chromosomes for all three species. Several synonymous mutations were detected in exons 4 and 5 for the originally reported alleles but only a single nonsynonymous change was detected. Two alleles were found that appeared to be the result of recombination events. The low occurrence of recombinant alleles and absence of mutations in the amino acids critical for spectral tuning indicates that stabilizing selection acts to maintain the combinations of critical sites specific to each allele. Allele frequencies were approximately the same for all Saimiri species, with a slight but significant difference between S. boliviensis and S. oerstedii. No apparent correlation exists between allele frequencies and behavioral or biogeographical differences between species, casting doubt on the speculation that the spectral sensitivities of the alleles have been maintained because they are specifically well-tuned to Saimiri visual ecology. Rather, the spectral tuning peaks might have been maintained because they are as widely spaced as possible within the limited range of middlewave to longwave spectra useful to all primates. This arrangement creates a balance between maximizing the distance between spectral tuning peaks (allowing the color opponency of the visual system to distinguish between peaks) and maximizing the number of alleles within a limited range (yielding

  1. Meiotic Drive Impacts Expression and Evolution of X-Linked Genes in Stalk-Eyed Flies

    PubMed Central

    Reinhardt, Josephine A.; Brand, Cara L.; Paczolt, Kimberly A.; Johns, Philip M.; Baker, Richard H.; Wilkinson, Gerald S.

    2014-01-01

    Although sex chromosome meiotic drive has been observed in a variety of species for over 50 years, the genes causing drive are only known in a few cases, and none of these cases cause distorted sex-ratios in nature. In stalk-eyed flies (Teleopsis dalmanni), driving X chromosomes are commonly found at frequencies approaching 30% in the wild, but the genetic basis of drive has remained elusive due to reduced recombination between driving and non-driving X chromosomes. Here, we used RNAseq to identify transcripts that are differentially expressed between males carrying either a driving X (XSR) or a standard X chromosome (XST), and found hundreds of these, the majority of which are X-linked. Drive-associated transcripts show increased levels of sequence divergence (dN/dS) compared to a control set, and are predominantly expressed either in testes or in the gonads of both sexes. Finally, we confirmed that XSR and XST are highly divergent by estimating sequence differentiation between the RNAseq pools. We found that X-linked transcripts were often strongly differentiated (whereas most autosomal transcripts were not), supporting the presence of a relatively large region of recombination suppression on XSR presumably caused by one or more inversions. We have identified a group of genes that are good candidates for further study into the causes and consequences of sex-chromosome drive, and demonstrated that meiotic drive has had a profound effect on sequence evolution and gene expression of X-linked genes in this species. PMID:24832132

  2. X-linked severe combined immunodeficiency in a family of Cardigan Welsh corgis.

    PubMed

    Pullen, R P; Somberg, R L; Felsburg, P J; Henthorn, P S

    1997-01-01

    Two, male, Cardigan Welsh corgi puppies, one of which was diagnosed with X-linked severe combined immunodeficiency (XSCID), are described in this report. The first puppy was euthanized before definitive immunological testing could be performed. When the second puppy was presented and the relationship between the two was discovered, immunological testing was pursued immediately due to this puppy's rapid deterioration. The immunological test results and genetic studies were compared to the XSCID basset hounds and found to be similar. By unveiling the mutation, the pedigree could be analyzed and the carrier females removed from the breeding population. PMID:9358416

  3. Constitutional aplastic anaemia: a family with a new X linked variety of amegakaryocytic thrombocytopenia.

    PubMed Central

    Griffiths, A D

    1983-01-01

    A family is described in which three male members died in early infancy with severe thrombocytopenia and a fourth in adolescence with aplastic anaemia. One child was investigated in detail and shown to have amegakaryocytic thrombocytopenia, progressing to pancytopenia as a result of bone marrow hypoplasia. His associated congenital abnormalities differed from those described in Fanconi's aplastic anaemia, his chromosomes were normal, and the fetal haemoglobin level was 48%. Amegakaryocytic thrombocytopenia is itself rare and the index case appears unique. It is suggested that this family has a previously undescribed X linked variety of amegakaryocytic thrombocytopenia. PMID:6196483

  4. The Inbreeding Effective Population Number and the Expected Homozygosity for an X-Linked Locus

    PubMed Central

    Nagylaki, Thomas

    1981-01-01

    Assuming random mating and discrete nonoverlapping generations, the inbreeding effective population number, (see PDF), is calculated for an X-linked locus. For large populations, the result agrees with the variance effective population number. As an application, the maintenance of genetic variability by the joint action of mutation and random drift is investigated. It is shown that, if every allele mutates at rate u to new types, then the probabilities of identity in state (and hence the expected homozygosity of females) converge to the approximate value (see PDF) at the approximate asymptotic rate (see PDF). PMID:7197653

  5. Premature termination of variable gene rearrangement in B lymphocytes from X-linked agammaglobulinemia.

    PubMed Central

    Schwaber, J; Chen, R H

    1988-01-01

    X-linked agammaglobulinemia (XLA) results from failure of B lymphocyte development. Immature B cells from a patient with XLA were found to produce truncated mu and delta immunoglobulin H chains encoded by D-JH-C (mu delta). The 5' terminal sequence of cDNA encoding the H chains is composed of D-JH with the characteristic GGTTTGAAG/CACTGTG consensus sequence utilized for VH gene rearrangement upstream, and a leader sequence that serves for translation of this intermediate stage of rearrangement. Failure of variable region gene rearrangement may underlie the failure of B lymphoid development in XLA. Images PMID:2838527

  6. Immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome associated with neonatal epidermolysis bullosa acquisita.

    PubMed

    Bis, Sabina; Maguiness, Sheilagh M; Gellis, Stephen E; Schneider, Lynda C; Lee, Pui Y; Notarangelo, Luigi D; Keles, Sevgi; Chatila, Talal A; Schmidt, Birgitta A; Miller, Daniel D

    2015-01-01

    We report the case of a 2-week-old boy who presented with a vesiculopustular, bullous eruption in the setting of autoimmune enteropathy, hypothyroidism, membranous nephropathy, Coombs-positive hemolytic anemia, and persistent eosinophilia. Immunologic testing revealed a deficiency of FOXP3-expressing regulatory T cells, and a diagnosis of immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome was made. Histologic analysis, immunofluorescence, and enzyme-linked immunosorbent assay confirmed the bullous eruption as epidermolysis bullosa acquisita with associated collagen VII autoantibody production. The skin lesions responded to systemic immunosuppressant therapy and have regressed after allogeneic bone marrow transplantation. PMID:25790289

  7. X-linked albinism-deafness syndrome and Waardenburg syndrome type II: A hypothesis

    SciTech Connect

    Zlotogora, J.

    1995-11-20

    Margolis reported on a large pedigree with a {open_quotes}new{close_quotes} X-linked syndrome of profound deafness and albinism (MIM 300700, albinism-deafness syndrome). The affected males presented with profound deafness and severe pigmentary abnormalities of the skin. At birth the skin appeared as almost albinotic except for areas of light pigmentation over the gluteal and scrotal areas, and thereafter pigmentation gradually increased over the body. Skin changes ultimately included areas of hypopigmentation and spots of hyperpigmentation. Some of the affected males also had blue irides, heterochromia, or segmental color iris changes. In carrier females, variable hearing impairment was documented without any pigmentary changes. 9 refs., 1 fig.

  8. Extensive germinal mosaicism in a family with X linked myotubular myopathy simulates genetic heterogeneity.

    PubMed Central

    Vincent, M C; Guiraud-Chaumeil, C; Laporte, J; Manouvrier-Hanu, S; Mandel, J L

    1998-01-01

    A family with two male cousins affected with myotubular myopathy (MTM) was referred to us for genetic counselling. Linkage analysis appeared to exclude the Xq28 region. As a gene for X linked MTM was recently identified in Xq28, we screened the obligatory carrier mothers for mutation. We found a 4 bp deletion in exon 4 of the MTM1 gene, which originated from the grandfather of the affected children and which was transmitted to three daughters. This illustrates the importance of mutation detection to avoid pitfalls in linkage analysis that may be caused by such cases of germinal mosaicism. Images PMID:9541111

  9. X-linked mental retardation with heterozygous expression and macrocephaly: Pericentromeric gene localization

    SciTech Connect

    Turner, G.; Gedeon, A. |; Mulley, J.

    1994-07-15

    A family is described with X-linked mental retardation (XLMR) with affected males in 2 generations. The manifestations are macrocephaly and heterozygous expression. Linkage analysis gives a 2-point lod score of 3.31 ({theta} = 0.0) at the AR, DXS991, and MAOB marker loci. The gene is localized by recombination events between DXS1068 (Xp) and DXS1125 (Xq). This condition in this family may be similar to that described by Atkin et al., 1985. 9 refs., 3 figs., 1 tab.

  10. The X-linked F cell production locus: Genetic mapping and role in fetal hemoglobin production

    SciTech Connect

    Chang, Y.C.; Smith, K.D.; Moore, R.D.

    1994-09-01

    Postnatal fetal hemoglobin (Hb F) production is confined to a subset of erythocytes termed F-cells. There is a 10-20 fold variation in F-cell production in sickle cell disease (SCD) and normal individuals. Most of the variation in F-cell production has been attributed to a diallelic (High, Low) X-linked gene, the F-cell production (FCP) locus that we recently mapped to Xp22.2-22.3 (LOD=4.56, theta=0.04). Using multiple regression analysis in 262 Jamaican SCD patients we determined the relative contribution of the FCP locus and other variables previously associated with variation in Hb F level (gender, age, beta-globin haplotypes, number of alpha-globin genes and the FCP locus phenotypes). When the FCP locus is in the regression model, the FCP locus alone accounts for approximately 40% of the variation in Hb F level while the contribution of age, alpha-globin gene number, and beta-globin haplotypes was insignificant. When individuals with High FCP allele are removed from the analysis, the beta globin haplotype now contribute to >10% of the Hb F variation. We conclude that the X-linked FCP locus is the major determinant of all known variables in Hb F production. Using 4 highly polymorphic dinucleotide repeat markers that we identified from cosmids in Xp22.2-22.3, have localized the FCP locus to a 1 Mb minimal candidate region between DXS143 and DXS410.

  11. Genetic analysis of a kindred with X-linked mental handicap and retinitis pigmentosa

    SciTech Connect

    Aldred, M.A.; Dry, K.L.; Hardwick, L.J.; Teague, P.W.; Lester, D.H.; Brown, J.; Spowart, G.; Carothers, A.D.; Wright, A.F.; Knight-Jones, E.B.

    1994-11-01

    A kindred is described in which X-linked nonspecific mental handicap segregates together with retinitis pigmentosa. Carrier females are mentally normal but may show signs of the X-linked retinitis pigmentosa carrier state and become symptomatic in their later years. Analysis of polymorphic DNA markers at nine loci on the short arm of the X chromosome shows that no crossing-over occurs between the disease and Xp11 markers DXS255, TIMP, DXS426, MAOA, and DXS228. The 90% confidence limits show that the locus is in the Xp21-q21 region. Haplotype analysis is consistent with the causal gene being located proximal to the Xp21 loci DXS538 and 5{prime}-dystrophin on the short arm of the X chromosome. The posterior probability of linkage to the RP2 region of the X chromosome short arm (Xp11.4-p11.23) is .727, suggesting the possibility of a contiguous-gene-deletion syndrome. No cytogenetic abnormality has been identified. 33 refs., 2 figs., 2 tabs.

  12. Evidence of TAF1 dysfunction in peripheral models of X-linked dystonia-parkinsonism.

    PubMed

    Domingo, Aloysius; Amar, David; Grütz, Karen; Lee, Lillian V; Rosales, Raymond; Brüggemann, Norbert; Jamora, Roland Dominic; Cutiongco-Dela Paz, Eva; Rolfs, Arndt; Dressler, Dirk; Walter, Uwe; Krainc, Dimitri; Lohmann, Katja; Shamir, Ron; Klein, Christine; Westenberger, Ana

    2016-08-01

    The molecular dysfunction in X-linked dystonia-parkinsonism is not completely understood. Thus far, only noncoding alterations have been found in genetic analyses, located in or nearby the TATA-box binding protein-associated factor 1 (TAF1) gene. Given that this gene is ubiquitously expressed and is a critical component of the cellular transcription machinery, we sought to study differential gene expression in peripheral models by performing microarray-based expression profiling in blood and fibroblasts, and comparing gene expression in affected individuals vs. ethnically matched controls. Validation was performed via quantitative polymerase chain reaction in discovery and independent replication sets. We observed consistent downregulation of common TAF1 transcripts in samples from affected individuals in gene-level and high-throughput experiments. This signal was accompanied by a downstream effect in the microarray, reflected by the dysregulation of 307 genes in the disease group. Gene Ontology and network analyses revealed enrichment of genes involved in RNA polymerase II-dependent transcription, a pathway relevant to TAF1 function. Thus, the results converge on TAF1 dysfunction in peripheral models of X-linked dystonia-parkinsonism, and provide evidence of altered expression of a canonical gene in this disease. Furthermore, our study illustrates a link between the previously described genetic alterations and TAF1 dysfunction at the transcriptome level. PMID:26879577

  13. Curative haploidentical BMT in a murine model of X-linked chronic granulomatous disease.

    PubMed

    Takeuchi, Yasuo; Takeuchi, Emiko; Ishida, Takashi; Onodera, Masafumi; Nakauchi, Hiromitsu; Otsu, Makoto

    2015-07-01

    Chronic granulomatous disease (CGD) is a primary immunodeficiency disorder characterized by defective microbial killing in phagocytes. Long-term prognosis for CGD patients is generally poor, highlighting the need to develop minimally toxic, curative therapeutic approaches. We here describe the establishment of a mouse model in which X-linked CGD can be cured by allogeneic bone marrow transplantation. Using a combination of non-myeloablative-dose total body irradiation and a single injection of anti-CD40 ligand monoclonal antibody, transplantation of whole bone marrow cells achieved long-lasting mixed chimerism in X-linked CGD mice in a haploidentical transplantation setting. Stable mixed chimerism was maintained for up to 1 year even at a low range (<20 % donor cells), indicating induction of donor-specific tolerance. The regimen induced mild myelosuppression without severe acute complications. Stable chimerism was therapeutic, as it suppressed cutaneous granuloma formation in an in vivo test suited for evaluation of treatment efficacy in murine CGD models. These results warrant future development of a simplified allogeneic hematopoietic cell transplantation regimen that would benefit CGD patients by allowing the use of haploidentical donor grafts without serious concerns of severe treatment-related toxicity. PMID:25921405

  14. Molecular genetic analysis of X-linked hypogammaglobulinemia and isolated growth hormone deficiency

    SciTech Connect

    Stewart, D.M.; Kurman, C.C.; Staudt, L.M.

    1995-09-01

    In 1980 the clinical syndrome of X-linked hypogammaglobulinemia and isolated growth hormone deficiency (XLA/GHD) was described. XLA/GHD patients have reduced serum levels of Ig and normal cell-mediated immunity, and thus resemble patients with Bruton`s X-linked agammaglobulinemia (XLA). However, XLA/GHD patients also have isolated GHD. Mutations and deletions in the Bruton`s tyrosine kinase gene (BTK) are responsible for Bruton`s XLA. We investigated BTK gene expression in an XLA/GHD patient from the family originally described by Northern analysis, cDNA sequencing, and Western analysis of protein production using mAb to BTK. BTK mRNA was normal in size and abundance, and the mRNA sequence was normal over the coding region, except for a single silent mutation. BTK protein was present in normal amounts in PBMC of this patient. Thus, at the molecular level, XLA/GHD is a different disease entity from Bruton`s XLA. These results suggest that undescribed genes critical for B cell development and growth hormone production exist on the X chromosome. 17 refs., 4 figs.

  15. New X linked spondyloepimetaphyseal dysplasia: report on eight affected males in the same family.

    PubMed Central

    Camera, G; Stella, G; Camera, A

    1994-01-01

    We report on a probably new form of spondyloepimetaphyseal dysplasia (SEMD) with an X linked inheritance pattern. Eight males were affected in the same family. We were able to examine three adult patients and we studied the skeletal radiological aspect of one of these patients at 2 years 6 months and at 9 years of age. The main clinical features are severe short trunked dwarfism, brachydactyly, normal facies, and normal intelligence. Radiologically, the diaphyses of all the long bones are short and broad. The epiphyses of the distal portion of the femora and those of the proximal and distal portions of the tibia are embedded in their metaphyses and there is marked narrowing of the intercondylar groove. There is moderate platyspondyly. Several vertebrae show an anterior tongue in infancy and severe irregularities of the upper and lower surfaces are present in adulthood. The 11th or 12th thoracic vertebra is wedge shaped. The pelvis is narrow. The distal ulnae and fibulae are disproportionately long. The hands show radial deviation and brachydactyly is present in the hands and feet. This X linked SEMD was not detectable at birth. Images PMID:8064814

  16. Expression of X-linked Genes in Deceased Neonates and Surviving Cloned Female Piglets

    PubMed Central

    Jiang, Le; Jobst, Pete; Lai, Liangxue; Samuel, Melissa; Prather, Randall S.; Ayares, David; Yang, Xiangzhong; Tian, X. Cindy

    2008-01-01

    Animal cloning through somatic cell nuclear transfer is very inefficient, probably due to insufficient reprogramming of the donor nuclei, which in turn would cause the dysregulation of gene expression. X-Chromosome inactivation (XCI) is a multi-step epigenetic process utilized by mammals to achieve dosage compensation in females. Our aim was to determine if any dysregulation of X-linked genes, which would be indicative of unfaithful reprogramming of donor nuclei, was present in cloned pigs. Real time reverse transcription polymerase chain reaction (RT-PCR) was performed to quantify the transcript levels of five X-linked genes, XIST, TSIX, HPRT1, G6PD, ARAF1 and one autosomal gene, COL4A1 in major organs of neonatal deceased and surviving female cloned pigs and age-matched control pigs from conventional breeding. Aberrant expression level of these genes was prevalent in the neonatal deceased clones, while it was only moderate in cloned pigs that survived after birth. These results suggest a correlation between the viability of the clones and the normality of their gene expression and provide a possible explanation for the death of a large portion of cloned animals around birth. PMID:17474099

  17. X-linked intellectual disability related genes disrupted by balanced X-autosome translocations.

    PubMed

    Moysés-Oliveira, Mariana; Guilherme, Roberta Santos; Meloni, Vera Ayres; Di Battista, Adriana; de Mello, Claudia Berlim; Bragagnolo, Silvia; Moretti-Ferreira, Danilo; Kosyakova, Nadezda; Liehr, Thomas; Carvalheira, Gianna Maria; Melaragno, Maria Isabel

    2015-12-01

    Detailed molecular characterization of chromosomal rearrangements involving X-chromosome has been a key strategy in identifying X-linked intellectual disability-causing genes. We fine-mapped the breakpoints in four women with balanced X-autosome translocations and variable phenotypes, in order to investigate the corresponding genetic contribution to intellectual disability. We addressed the impact of the gene interruptions in transcription and discussed the consequences of their functional impairment in neurodevelopment. Three patients presented with cognitive impairment, reinforcing the association between the disrupted genes (TSPAN7-MRX58, KIAA2022-MRX98, and IL1RAPL1-MRX21/34) and intellectual disability. While gene expression analysis showed absence of TSPAN7 and KIAA2022 expression in the patients, the unexpected expression of IL1RAPL1 suggested a fusion transcript ZNF611-IL1RAPL1 under the control of the ZNF611 promoter, gene disrupted at the autosomal breakpoint. The X-chromosomal breakpoint definition in the fourth patient, a woman with normal intellectual abilities, revealed disruption of the ZDHHC15 gene (MRX91). The expression assays did not detect ZDHHC15 gene expression in the patient, thus questioning its involvement in intellectual disability. Revealing the disruption of an X-linked intellectual disability-related gene in patients with balanced X-autosome translocation is a useful tool for a better characterization of critical genes in neurodevelopment. © 2015 Wiley Periodicals, Inc. PMID:26290131

  18. Craniofacial morphometric analysis of individuals with X-linked hypohidrotic ectodermal dysplasia

    PubMed Central

    Goodwin, Alice F; Larson, Jacinda R; Jones, Kyle B; Liberton, Denise K; Landan, Maya; Wang, Zhifeng; Boekelheide, Anne; Langham, Margaret; Mushegyan, Vagan; Oberoi, Snehlata; Brao, Rosalie; Wen, Timothy; Johnson, Ramsey; Huttner, Kenneth; Grange, Dorothy K; Spritz, Richard A; Hallgrímsson, Benedikt; Jheon, Andrew H; Klein, Ophir D

    2014-01-01

    Hypohidrotic ectodermal dysplasia (HED) is the most prevalent type of ectodermal dysplasia (ED). ED is an umbrella term for a group of syndromes characterized by missing or malformed ectodermal structures, including skin, hair, sweat glands, and teeth. The X-linked recessive (XL), autosomal recessive (AR), and autosomal dominant (AD) types of HED are caused by mutations in the genes encoding ectodysplasin (EDA1), EDA receptor (EDAR), or EDAR-associated death domain (EDARADD). Patients with HED have a distinctive facial appearance, yet a quantitative analysis of the HED craniofacial phenotype using advanced three-dimensional (3D) technologies has not been reported. In this study, we characterized craniofacial morphology in subjects with X-linked hypohidrotic ectodermal dysplasia (XLHED) by use of 3D imaging and geometric morphometrics (GM), a technique that uses defined landmarks to quantify size and shape in complex craniofacial morphologies. We found that the XLHED craniofacial phenotype differed significantly from controls. Patients had a smaller and shorter face with a proportionally longer chin and midface, prominent midfacial hypoplasia, a more protrusive chin and mandible, a narrower and more pointed nose, shorter philtrum, a narrower mouth, and a fuller and more rounded lower lip. Our findings refine the phenotype of XLHED and may be useful both for clinical diagnosis of XLHED and to extend understanding of the role of EDA in craniofacial development. PMID:25333067

  19. Mutation analysis of IL2RG in human X-linked severe combined immunodeficiency.

    PubMed

    Puck, J M; Pepper, A E; Henthorn, P S; Candotti, F; Isakov, J; Whitwam, T; Conley, M E; Fischer, R E; Rosenblatt, H M; Small, T N; Buckley, R H

    1997-03-15

    Severe combined immunodeficiency (SCID) is a syndrome of profoundly impaired cellular and humoral immunity. In humans, SCID is most commonly caused by mutations in the X-linked gene IL2RG, which encodes the common gamma chain, gamma c, of the leukocyte receptors for interleukin-2 and multiple other cytokines. To investigate the frequency and variety of IL2RG mutations that cause SCID, we analyzed DNA, RNA, and B-cell lines from a total of 103 unrelated SCID-affected males and their relatives using a combination of molecular and immunologic techniques. Sixty-two different mutations spanning all eight IL2RG exons were found in 87 cases, making possible correlations between mutation type and functional consequences. Although skewed maternal X chromosome inactivation, single-strand conformation polymorphism, mRNA expression, and cell surface staining with anti-gamma c antibodies were all helpful in establishing IL2RG defects as the cause of SCID, only dideoxy fingerprinting and DNA sequence determination each detected 100% of the IL2RG mutations in our series. Abnormal gamma c chains may be expressed in the lymphocytes of as many as two thirds of patients with X-linked SCID. Specific mutation diagnosis thus remains technically challenging, but it is important for genetic counseling and perhaps for helping to select appropriate subjects for retroviral gene therapy trials, This is a US government work. There are no restrictions on its use. PMID:9058718

  20. Linkage localization of X-linked Charcot-Marie-Tooth disease

    SciTech Connect

    Bergoffen, J. Univ. of Pennsylvania, Philadelphia ); Trofatter, J.; Haines, J.L. ); Pericak-Vance, M.A. ); Chance, P.F. ); Fischbeck, K.H. )

    1993-02-01

    Charcot-Marie-Tooth disease (CMT), also known as hereditary motor and sensory neuropathy, is a heterogeneous group of slowly progressive, degenerative disorders of peripheral nerve. X-linked CMT (CMTX) (McKusick 302800), a subdivision of type I, or demyelinating, CMT is an X-linked dominant condition with variable penetrance. Previous linkage analysis using RFLPs demonstrated linkage to markers on the proximal long and short arms of the X chromosome, with the more likely localization on the proximal long arm of the X chromosome. Available variable simple-sequence repeats (VSSRs) broaden the possibilities for linkage analysis. This paper presents new linkage data and recombination analysis derived from work with four VSSR markers - AR, PGKP1, DXS453, and DXYS1X - in addition to analysis using RFLP markers described elsewhere. These studies localize the CMTX gene to the proximal Xq segment between PGKP1 (Xq11.2-12) and DXS72 (Xq21.1), with a combined maximum multipoint lod score of 15.3 at DXS453 ([theta] = 0). 32 refs., 3 figs., 2 tabs.

  1. Genetic Analysis of a Kindred With X-linked Mental Handicap and Retinitis Pigmentosa

    PubMed Central

    Aldred, M. A.; Dry, K. L.; Knight-Jones, E. B.; Hardwick, L. J.; Teague, P. W.; Lester, D. H.; Brown, J.; Spowart, G.; Carothers, A. D.; Raeburn, J. A.; Bird, A. C.; Fielder, A. R.; Wright, A. F.

    1994-01-01

    A kindred is described in which X-linked nonspecific mental handicap segregates together with retinitis pigmentosa. Carrier females are mentally normal but may show signs of the X-linked retinitis pigmentosa carrier state and become symptomatic in their later years. Analysis of polymorphic DNA markers at nine loci on the short arm of the X chromosome shows that no crossing-over occurs between the disease and Xp11 markers DXS255, TIMP, DXS426, MAOA, and DXS228. The 90% confidence limits show that the locus is in the Xp21-q21 region. Haplotype analysis is consistent with the causal gene being located proximal to the Xp21 loci DXS538 and 5'-dystrophin on the short arm of the X chromosome. The posterior probability of linkage to the RP2 region of the X chromosome short arm (Xp11.4-p11.23) is .727, suggesting the possibility of a contiguous-gene-deletion syndrome. No cytogenetic abnormality has been identified. PMID:7977353

  2. Linkage localization of X-linked Charcot-Marie-Tooth disease.

    PubMed Central

    Bergoffen, J; Trofatter, J; Pericak-Vance, M A; Haines, J L; Chance, P F; Fischbeck, K H

    1993-01-01

    Charcot-Marie-Tooth disease (CMT), also known as hereditary motor and sensory neuropathy, is a heterogeneous group of slowly progressive, degenerative disorders of peripheral nerve. X-linked CMT (CMTX) (McKusick 302800), a subdivision of type I, or demyelinating, CMT is an X-linked dominant condition with variable penetrance. Previous linkage analysis using RFLPs demonstrated linkage to markers on the proximal long and short arms of the X chromosome, with the more likely localization on the proximal long arm of the X chromosome. Available variable simple-sequence repeats (VSSRs) broaden the possibilities for linkage analysis. This paper presents new linkage data and recombination analysis derived from work with four VSSR markers--AR, PGKP1, DXS453, and DXYS1X--in addition to analysis using RFLP markers described elsewhere. These studies localize the CMTX gene to the proximal Xq segment between PGKP1 (Xq11.2-12) and DXS72 (Xq21.1), with a combined maximum multipoint lod score of 15.3 at DXS453 (theta = 0). PMID:8430694

  3. GPR143 Gene Mutations in Five Chinese Families with X-linked Congenital Nystagmus.

    PubMed

    Han, Ruifang; Wang, Xiaojuan; Wang, Dongjie; Wang, Liming; Yuan, Zhongfang; Ying, Ming; Li, Ningdong

    2015-01-01

    The ocular albinism type I (OA1) is clinically characterized by impaired visual acuity, nystagmus, iris hypopigmentation with translucency, albinotic fundus, and macular hypoplasia together with normally pigmented skin and hair. However, it is easily misdiagnosed as congenital idiopathic nystagmus in some Chinese patients with OA1 caused by the G-protein coupled receptor 143 (GPR143) gene mutations. Mutations in the FERM domain-containing 7 (FRMD7) gene are responsible for the X-linked congenital idiopathic nystagmus. In this study, five Chinese families initially diagnosed as X-linked congenital nystagmus were recruited and patients underwent ophthalmological examinations. After direct sequencing of the FRMD7 and GPR143 genes, five mutations in GPR143 gene were detected in each of the five families, including a novel nonsense mutation of c.333G>A (p.W111X), two novel splicing mutations of c.360+1G>C and c.659-1G>A, a novel small deletion mutation of c.43_50dupGACGCAGC (p.L20PfsX25), and a previously reported missense mutation of c.703G>A (p.E235K). Optical coherence tomography (OCT) examination showed foveal hypoplasia in all the affected patients with nystagmus. Our study further expands the GPR143 mutation spectrum and contributes to the study of GPR143 molecular pathogenesis. Molecular diagnosis and optical coherence tomography (OCT) are two useful tools for differential diagnosis. PMID:26160353

  4. X-chromosomal inactivation directly influences the phenotypic manifestation of X-linked protoporphyria.

    PubMed

    Brancaleoni, V; Balwani, M; Granata, F; Graziadei, G; Missineo, P; Fiorentino, V; Fustinoni, S; Cappellini, M D; Naik, H; Desnick, R J; Di Pierro, E

    2016-01-01

    X-linked protoporphyria (XLP), a rare erythropoietic porphyria, results from terminal exon gain-of-function mutations in the ALAS2 gene causing increased ALAS2 activity and markedly increased erythrocyte protoporphyrin levels. Patients present with severe cutaneous photosensitivity and may develop liver dysfunction. XLP was originally reported as X-linked dominant with 100% penetrance in males and females. We characterized 11 heterozygous females from six unrelated XLP families and show markedly varying phenotypic and biochemical heterogeneity, reflecting the degree of X-chromosomal inactivation of the mutant gene. ALAS2 sequencing identified the specific mutation and confirmed heterozygosity among the females. Clinical history, plasma and erythrocyte protoporphyrin levels were determined. Methylation assays of the androgen receptor and zinc-finger MYM type 3 short tandem repeat polymorphisms estimated each heterozygotes X-chromosomal inactivation pattern. Heterozygotes with equal or increased skewing, favoring expression of the wild-type allele had no clinical symptoms and only slightly increased erythrocyte protoporphyrin concentrations and/or frequency of protoporphyrin-containing peripheral blood fluorocytes. When the wild-type allele was preferentially inactivated, heterozygous females manifested the disease phenotype and had both higher erythrocyte protoporphyrin levels and circulating fluorocytes. These findings confirm that the previous dominant classification of XLP is inappropriate and genetically misleading, as the disorder is more appropriately designated XLP. PMID:25615817

  5. X-linked myotubular myopathy: clinical observations in ten additional cases.

    PubMed

    Joseph, M; Pai, G S; Holden, K R; Herman, G

    1995-11-01

    X-linked myotubular myopathy (XLMTM) is a recessively inherited disorder, lethal to males in the first months of life. Since the first report in 1969, at least 90 cases have been described in the literature. Diagnosis is confirmed by muscle biopsy. Linkage studies have localized the disorder to the Xq28 region, close to the loci for X-linked hydrocephalus and MASA syndrome. We report on 10 additional cases of XLMTM from six different families. In addition to classic clinical features of XLMTM, our patients showed interesting associated findings which included birth length > 90th centile and large head circumference with or without hydrocephalus in 70%, narrow, elongated face in 80%, and slender, long digits in 60% of cases. There was concordance in the occurrence and severity of hydrocephalus in most sib pairs. These features in a "floppy" male infant serve as clues for early clinical diagnosis of XLMTM, which can then be confirmed by muscle biopsy. Development of polyhydramnios was observed in the third trimester of an at-risk dizygotic twin gestation monitored by serial sonography with confirmation of XLMTM at birth. PMID:8588581

  6. GPR143 Gene Mutations in Five Chinese Families with X-linked Congenital Nystagmus

    PubMed Central

    Han, Ruifang; Wang, Xiaojuan; Wang, Dongjie; Wang, Liming; Yuan, Zhongfang; Ying, Ming; Li, Ningdong

    2015-01-01

    The ocular albinism type I (OA1) is clinically characterized by impaired visual acuity, nystagmus, iris hypopigmentation with translucency, albinotic fundus, and macular hypoplasia together with normally pigmented skin and hair. However, it is easily misdiagnosed as congenital idiopathic nystagmus in some Chinese patients with OA1 caused by the G-protein coupled receptor 143 (GPR143) gene mutations. Mutations in the FERM domain–containing 7 (FRMD7) gene are responsible for the X-linked congenital idiopathic nystagmus. In this study, five Chinese families initially diagnosed as X-linked congenital nystagmus were recruited and patients underwent ophthalmological examinations. After direct sequencing of the FRMD7 and GPR143 genes, five mutations in GPR143 gene were detected in each of the five families, including a novel nonsense mutation of c.333G>A (p.W111X), two novel splicing mutations of c.360+1G>C and c.659-1G>A, a novel small deletion mutation of c.43_50dupGACGCAGC (p.L20PfsX25), and a previously reported missense mutation of c.703G>A (p.E235K). Optical coherence tomography (OCT) examination showed foveal hypoplasia in all the affected patients with nystagmus. Our study further expands the GPR143 mutation spectrum and contributes to the study of GPR143 molecular pathogenesis. Molecular diagnosis and optical coherence tomography (OCT) are two useful tools for differential diagnosis. PMID:26160353

  7. Seventh international workshop on the fragile X and X-linked mental retardation

    SciTech Connect

    Tranebjaerg, L.; Lubs, H.A.; Borghgraef, M.; Fryns, J.P.

    1996-07-12

    The Seventh International Workshop on the Fragile X and X-linked Mental Retardation was held at the University of Tromso in Norway on August 2-5, 1995. Approximately 120 participants from 20 countries attended the Workshop. By special invitation Dr. Felix de la Cruz, who initiated the first international Workshop on fragile X, attended this Workshop. For the first time, the workshop took place in Scandinavia and was hosted by Lisbeth Tranebjaerg and Herbert Lubs. For most participants this Workshop, held at the northernmost university in the world, presented a unique opportunity to visit this exotic place. Between sessions, the participants had a chance to experience 24 hours of daylight, codfishing, and extreme weather situations with excessive amounts of rain as well as spectacular changes in the light and rainbows. The format of the Workshop was a combination of platform presentations and poster presentations. In contrast to previous meetings, the Workshop opened with syndromal and non-syndromal X-linked mental retardation in order to allow time for discussion. 34 refs., 1 fig.

  8. A novel X-linked multiple congenital anomaly syndrome associated with an EBP mutation.

    PubMed

    Furtado, Larissa V; Bayrak-Toydemir, Pinar; Hulinsky, Becki; Damjanovich, Kristy; Carey, John C; Rope, Alan F

    2010-11-01

    Mutations of the gene coding for emopamil binding protein (EBP) can lead to deficient activity of 3-β-hydroxysteroid Δ(8), Δ(7) isomerase and are most commonly identified in. association with the X-linked dominant (male lethal) chondrodysplasia punctata (CDPX2), also known as Conradi-Hunermann syndrome. Our group has identified a hemizygous EBP mutation in males with a phenotype remarkable for Dandy-Walker malformation, cataracts, collodion skin and cryptorchidism. Additional findings of hydrocephalus, dysplasia of the corpus callosum, cardiovascular, craniofacial and skeletal anomalies were regularly seen in affected males and the family histories were supportive of an X-linked -recessive condition. The regularly reproducible constellation of cardinal features aligns very nicely with other disorders of sterol biosynthesis and is further distinguished by an absence of arty clinical manifestations in obligate carrier females. Biochemical analysis of blood from cases demonstrated markedly increased levels of 8(9)-cholestenol, and 8-dehydroeholesterol and a mildly increased level of 7-dehydrocholesterol; a similar pattern to what is seen in CDPX2. Sequence analysis of EJJP revealed a novel hemizygous missense mutation at position 141, predictive of a tryptophan to cysteine substitution (c.141G>T, p.W47C). The unaffected mothers were heterozygous for the c.141G>T mutation arid showed random X-inactivation pattern upon. PMID:20949533

  9. Subcortical laminar heterotopia and lissencephaly in two families: a single X linked dominant gene.

    PubMed Central

    Pinard, J M; Motte, J; Chiron, C; Brian, R; Andermann, E; Dulac, O

    1994-01-01

    Neuronal migration disorders can now be recognised by MRI. This paper reports two families in which the mothers had subcortical laminar heterotopia and four of their children had either similar heterotopia (two girls) or severe pachygyria or lissencephaly (two boys). Laminar heterotopia was more evident on MRI T2 weighted images. The patients had mild to severe epilepsy and mental retardation depending on the extent of cortical abnormalities. In these families, subcortical laminar heterotopia, pachygyria, and lissencephaly seem to share the same X linked or autosomal dominant gene. No chromosomal abnormalities, especially of chromosome 17, could be identified. For appropriate genetic counselling of the family of a child with lissencephaly or subcortical laminar heterotopia, MRI should be performed in parents or siblings with mental retardation or epilepsy. Images PMID:8057113

  10. Bruton's tyrosine kinase: from X-linked agammaglobulinemia toward targeted therapy for B-cell malignancies.

    PubMed

    Ponader, Sabine; Burger, Jan A

    2014-06-10

    Discovery of Bruton's tyrosine kinase (BTK) mutations as the cause for X-linked agammaglobulinemia was a milestone in understanding the genetic basis of primary immunodeficiencies. Since then, studies have highlighted the critical role of this enzyme in B-cell development and function, and particularly in B-cell receptor signaling. Because its deletion affects mostly B cells, BTK has become an attractive therapeutic target in autoimmune disorders and B-cell malignancies. Ibrutinib (PCI-32765) is the most advanced BTK inhibitor in clinical testing, with ongoing phase III clinical trials in patients with chronic lymphocytic leukemia and mantle-cell lymphoma. In this article, we discuss key discoveries related to BTK and clinically relevant aspects of BTK inhibitors, and we provide an outlook into clinical development and open questions regarding BTK inhibitor therapy. PMID:24778403

  11. X-linked agammaglobulinemia associated with B-precursor acute lymphoblastic leukemia.

    PubMed

    Hoshino, Akihiro; Okuno, Yusuke; Migita, Masahiro; Ban, Hideki; Yang, Xi; Kiyokawa, Nobutaka; Adachi, Yuichi; Kojima, Seiji; Ohara, Osamu; Kanegane, Hirokazu

    2015-02-01

    X-linked agammaglobulinemia (XLA) is clinically characterized by reduced number of peripheral B cells and diminished levels of serum immunoglobulins, and caused by a mutation in the Bruton's tyrosine kinase (BTK) gene, which play a pivotal role in signal transduction of pre-B-cell receptor (BCR) and BCR. B-cell precursor acute lymphoblastic leukemia (BCP-ALL) is the most common malignancy in children, and it may be associated with gene alterations that regulate B-cell development. Here we described a first case of XLA associated BCP-ALL. The whole-exome sequencing revealed a somatic mutation in MLL2 in the sample from the onset of BCP-ALL. This study suggests that the alterations of BTK and MLL2 synergistically function as leukemogenesis. PMID:25591849

  12. X-linked agammaglobulinemia combined with juvenile idiopathic arthritis and invasive Klebsiella pneumoniae polyarticular septic arthritis.

    PubMed

    Zhu, Zaihua; Kang, Yuli; Lin, Zhenlang; Huang, Yanjing; Lv, Huoyang; Li, Yasong

    2015-02-01

    X-linked agammaglobulinemia (XLA) is a primary immunodeficiency disease caused by mutations in the Bruton's tyrosine kinase (BTK) gene. XLA can also present in combination with juvenile idiopathic arthritis (JIA), the major chronic rheumatologic disease in children. We report herein the first known case of a juvenile patient diagnosed with XLA combined with JIA that later developed into invasive Klebsiella pneumoniae polyarticular septic polyarthritis. An additional comprehensive review of XLA combined with JIA and invasive K. pneumoniae septic arthritis is also presented. XLA was identified by the detection of BTK mutations while the diagnosis of JIA was established by clinical and laboratory assessments. Septic arthritis caused by invasive K. pneumoniae was confirmed by culturing of the synovia and gene detection of the isolates. Invasive K. pneumoniae infections can not only result in liver abscesses but also septic arthritis, although this is rare. XLA combined with JIA may contribute to invasive K. pneumoniae infection. PMID:24567239

  13. Application of carrier testing to genetic counseling for X-linked agammaglobulinemia

    SciTech Connect

    Allen, R.C.; Nachtman, R.G.; Belmont, J.W.; Rosenblatt, H.M.

    1994-01-01

    Bruton X-linked agammaglobulinemia (XLA) is a phenotypically recessive genetic disorder of B lymphocyte development. Female carriers of XLA, although asymptomatic, have a characteristic B cell lineage-specific skewing of the pattern of X inactivation. Skewing apparently results from defective growth and maturation of B cell precursors bearing a mutant active X chromosome. In this study, carrier status was tested in 58 women from 22 families referred with a history of agammaglobulinemia. Primary carrier analysis to examine patterns of X inactivation in CD19[sup +] peripheral blood cells (B lymphocytes) was conducted using quantitative PCR at the androgen-receptor locus. Obligate carriers of XLA demonstrated >95% skewing of X inactivation in peripheral blood CD19[sup +] cells but not in CD19[sup [minus

  14. A novel EDA gene mutation in a Spanish family with X-linked hypohidrotic ectodermal dysplasia.

    PubMed

    Cañueto, J; Zafra-Cobo, M I; Ciria, S; Unamuno, P; González-Sarmiento, R

    2011-11-01

    X-linked hypohidrotic ectodermal dysplasia (XLHED) is characterized by abnormal development of the hair, teeth, and sweat glands. It is caused by mutations in the EDA gene, which maps to the X chromosome and encodes a protein called ectodysplasin-A, a member of the tumor necrosis factor-related ligand family. Affected males typically exhibit all the typical features of HED, but heterozygous carriers may show mild to moderate clinical manifestations. We describe the case of a Spanish family in which a novel heterozygous c.733_734insGA mutation at the EDA gene was identified. It was located in exon 5 and consisted of a frame-shift mutation at codon 245, which gave rise to an abnormal protein with a premature stop codon after 35 residues. Genetic analyses in families with XLHED are useful for checking carrier status, but they also provide information for genetic counseling and prenatal diagnosis. PMID:21696697

  15. Identification of a novel mutation of the EDA gene in X-linked hypohidrotic ectodermal dysplasia.

    PubMed

    Xue, J J; Tan, B; Gao, Q P; Zhu, G S; Liang, D S; Wu, L Q

    2015-01-01

    This study aimed to identify the disease-causing mutation in the ectodysplasin A (EDA) gene in a Chinese family affected by X-linked hypohidrotic ectodermal dysplasia (XLHED). A family clinically diagnosed with XLHED was investigated. For mutation analysis, the coding region of EDA of 2 patients and 7 unaffected members of the family was sequenced. The detected mutation in EDA was investigated in 120 normal controls. A missense mutation (c.878T>G) in EDA was detected in 2 patients and 3 female carriers, but not in 4 unaffected members of the family. The mutation was not found in the 120 healthy controls and has not been reported previously. Our findings indicate that a novel mutation (c.878T>G) of EDA is associated with XLHED and adds to the repertoire of EDA mutations. PMID:26634545

  16. MBTPS2 mutations cause defective regulated intramembrane proteolysis in X-linked osteogenesis imperfecta.

    PubMed

    Lindert, Uschi; Cabral, Wayne A; Ausavarat, Surasawadee; Tongkobpetch, Siraprapa; Ludin, Katja; Barnes, Aileen M; Yeetong, Patra; Weis, Maryann; Krabichler, Birgit; Srichomthong, Chalurmpon; Makareeva, Elena N; Janecke, Andreas R; Leikin, Sergey; Röthlisberger, Benno; Rohrbach, Marianne; Kennerknecht, Ingo; Eyre, David R; Suphapeetiporn, Kanya; Giunta, Cecilia; Marini, Joan C; Shotelersuk, Vorasuk

    2016-01-01

    Osteogenesis imperfecta (OI) is a collagen-related bone dysplasia. We identified an X-linked recessive form of OI caused by defects in MBTPS2, which encodes site-2 metalloprotease (S2P). MBTPS2 missense mutations in two independent kindreds with moderate/severe OI cause substitutions at highly conserved S2P residues. Mutant S2P has normal stability, but impaired functioning in regulated intramembrane proteolysis (RIP) of OASIS, ATF6 and SREBP transcription factors, consistent with decreased proband secretion of type I collagen. Further, hydroxylation of the collagen lysine residue (K87) critical for crosslinking is reduced in proband bone tissue, consistent with decreased lysyl hydroxylase 1 in proband osteoblasts. Reduced collagen crosslinks presumptively undermine bone strength. Also, proband osteoblasts have broadly defective differentiation. These mutations provide evidence that RIP plays a fundamental role in normal bone development. PMID:27380894

  17. Arch fingerprints, hypotonia, and areflexia associated with X linked mental retardation.

    PubMed Central

    Stevenson, R E; Häne, B; Arena, J F; May, M; Lawrence, L; Lubs, H A; Schwartz, C E

    1997-01-01

    A syndrome with distinctive facies, poor muscle tone, absent deep tendon reflexes, tapered fingers, excessive fingerprint arches, genu valgum and mild-moderate mental retardation has occurred in four males in two generations of a white family of European ancestry. The facies are characterised by square configuration, tented upper lip, and thickening of the helices, upper eyelids, and alae nasi. At birth and at maturity, growth (head circumference, height, weight) of affected males is comparable to or greater than unaffected male sibs. Moderate impairment of cognitive function was documented (IQ scores between 40-51). Carriers show no heterozygote manifestations. This X linked condition appears to be different from other syndromes with mental retardation, although there are certain similarities with the alpha thalassaemia-mental retardation syndrome (ATR-X). Linkage analysis found tight linkage to DXS1166 and DXS995 in Xq13 and Xq21 respectively. Images PMID:9192265

  18. Evidence against an X-linked visual loss susceptibility locus in Leber hereditary optic neuropathy

    SciTech Connect

    Chalmers, R.M.; Davis, M.B.; Sweeney, M.G.; Wood, N.W.; Harding, A.E.

    1996-07-01

    Pedigree analysis of British families with Leber hereditary optic neuropathy (LHON) closely fits a model in which a pathogenic mtDNA mutation interacts with an X-linked visual loss susceptibility locus (VLSL). This model predicts that 60% of affected females will show marked skewing of X inactivation. Linkage analysis in British and Italian families with genetically proven LHON has excluded the presence of such a VLSL over 169 cM of the X chromosome both when all families were analyzed together and when only families with the bp 11778 mutation were studied. Further, there was no excess skewing of X inactivation in affected females. There was no evidence for close linkage to three markers in the pseudoautosomal region of the sex chromosomes. The mechanism of incomplete penetrance and male predominance in LHON remains unclear. 27 refs., 1 fig., 3 tabs.

  19. Connexin mutations in X-linked Charcot-Marie-Tooth disease

    SciTech Connect

    Bergoffen, J. ); Scherer, S.S.; Wang, S.; Scott, M.; Bone, L.J.; Chen, K.; Lensch, M.W.; Fischbeck, K.H. ); Paul, D.L. ); Change, P.F. )

    1993-12-24

    X-linked Charcot-Marie-Tooth disease (CMTX) is a form of hereditary neuropathy with demyelination. Recently, this disorder was mapped to chromosome Xq13.1. The gene for the gap junction protein connexin32 is located in the same chromosomal segment, which led to its consideration as a candidate gene for CMTX. With the use of Northern (RNA) blot and immunohistochemistry techniques, it was found that connexin32 is normally expressed in myelinated peripheral nerve. Direct sequencing of the connexin32 gene showed seven different mutations in affected persons from eight CMTX families. These findings, a demonstration of inherited defects in a gap junction protein, suggest that connexin32 plays an important role in peripheral nerve.

  20. Microdeletions in patients with gusher-associated, X-linked mixed deafness (DFN3)

    PubMed Central

    Bach, I.; Brunner, H. G.; Beighton, P.; Ruvalcaba, R. H. A.; Reardon, W.; Pembrey, M. E.; van der Velde-Visser, S. D.; Bruns, G. A. P.; Cremers, C. W. R. J.; Cremers, F. P. M.; Ropers, H.-H.

    1992-01-01

    Employing various probes from the proximal part of the Xq21 region, which is known to harbor the DFN3 gene, we have investigated 13 unrelated male probands with X-linked deafness, to detect possible deletions. For two of these patients, microdeletions could be detected by using probe pHU16 (DXS26). One of these deletions also encompasses locus DXS169, indicating that it extends farther toward the centromere. The presence of normal hybridization patterns in the DNA of 25 unrelated control males suggests that these deletions are the primary cause of progressive mixed deafness in these patients. If so, their molecular characterization may pave the way for the identification and isolation of the corresponding gene. ImagesFigure 2 PMID:1609803

  1. X-linked recessive panhypopituitarism associated with a regional duplication in Xq25-q26.

    PubMed Central

    Lagerström-Fermér, M; Sundvall, M; Johnsen, E; Warne, G L; Forrest, S M; Zajac, J D; Rickards, A; Ravine, D; Landegren, U; Pettersson, U

    1997-01-01

    We present a linkage analysis and a clinical update on a previously reported family with X-linked recessive panhypopituitarism, now in its fourth generation. Affected members exhibit variable degrees of hypopituitarism and mental retardation. The markers DXS737 and DXS1187 in the q25-q26 region of the X chromosome showed evidence for linkage with a peak LOD score (Zmax) of 4.12 at zero recombination fraction (theta(max) = 0). An apparent extra copy of the marker DXS102, observed in the region of the disease gene in affected males and heterozygous carrier females, suggests that a segment including this marker is duplicated. The gene causing this disorder appears to code for a dosage-sensitive protein central to development of the pituitary. Images Figure 2 PMID:9106538

  2. Clinical and mutational features of X-linked agammaglobulinemia in Mexico.

    PubMed

    García-García, E; Staines-Boone, A T; Vargas-Hernández, A; González-Serrano, M E; Carrillo-Tapia, E; Mogica-Martínez, D; Berrón-Ruíz, L; Segura-Mendez, N H; Espinosa-Rosales, F J; Yamazaki-Nakashimada, M A; Santos-Argumedo, L; López-Herrera, G

    2016-04-01

    X-linked agammaglobulinemia (XLA) is caused by BTK mutations, patients typically show <2% of peripheral B cells and reduced levels of all immunoglobulins; they suffer from recurrent infections of bacterial origin; however, viral infections, autoimmune-like diseases, and an increased risk of developing gastric cancer are also reported. In this work, we report the BTK mutations and clinical features of 12 patients diagnosed with XLA. Furthermore, a clinical revision is also presented for an additional cohort of previously reported patients with XLA. Four novel mutations were identified, one of these located in the previously reported mutation refractory SH3 domain. Clinical data support previous reports accounting for frequent respiratory, gastrointestinal tract infections and other symptoms such as the occurrence of reactive arthritis in 19.2% of the patients. An equal proportion of patients developed septic arthritis; missense mutations and mutations in SH1, SH2 and PH domains predominated in patients who developed arthritis. PMID:26960951

  3. A novel PIGA mutation in a family with X-linked, early-onset epileptic encephalopathy.

    PubMed

    Kim, Young Ok; Yang, Jae Hyuk; Park, Chungoo; Kim, Seul Kee; Kim, Myeong-Kyu; Shin, Myung-Geun; Woo, Young Jong

    2016-09-01

    Early-onset epileptic encephalopathies (EOEEs) are severe and intractable infantile-onset epilepsies with progressive intellectual disability and other associated neurologic comorbidities. Whole-exome sequencing (WES) was recently used to determine the causative gene mutations in individuals with unclassified EOEEs. The present study used WES to determine the causative variant in a family with X-linked, EOEE. One potential variant (c. 427A>G, NM_002641.3; p.Lys143Glu, NP_002632.1) of the gene encoding phosphatidylinositol glycan biosynthesis class A protein (PIGA; PIGA) was found, which was verified by Sanger sequencing. The functional effect of this PIGA mutation was assessed by the surface expression levels of glycosylphosphatidylinositol-anchored proteins on blood cells: CD16 on red blood cells was significantly decreased in the proband (by 11.0%) and his mother (by 15.6%). This is the second report of a less-severe form of PIGA deficiency. PMID:26923721

  4. MBTPS2 mutations cause defective regulated intramembrane proteolysis in X-linked osteogenesis imperfecta

    PubMed Central

    Lindert, Uschi; Cabral, Wayne A.; Ausavarat, Surasawadee; Tongkobpetch, Siraprapa; Ludin, Katja; Barnes, Aileen M.; Yeetong, Patra; Weis, Maryann; Krabichler, Birgit; Srichomthong, Chalurmpon; Makareeva, Elena N.; Janecke, Andreas R.; Leikin, Sergey; Röthlisberger, Benno; Rohrbach, Marianne; Kennerknecht, Ingo; Eyre, David R.; Suphapeetiporn, Kanya; Giunta, Cecilia; Marini, Joan C.; Shotelersuk, Vorasuk

    2016-01-01

    Osteogenesis imperfecta (OI) is a collagen-related bone dysplasia. We identified an X-linked recessive form of OI caused by defects in MBTPS2, which encodes site-2 metalloprotease (S2P). MBTPS2 missense mutations in two independent kindreds with moderate/severe OI cause substitutions at highly conserved S2P residues. Mutant S2P has normal stability, but impaired functioning in regulated intramembrane proteolysis (RIP) of OASIS, ATF6 and SREBP transcription factors, consistent with decreased proband secretion of type I collagen. Further, hydroxylation of the collagen lysine residue (K87) critical for crosslinking is reduced in proband bone tissue, consistent with decreased lysyl hydroxylase 1 in proband osteoblasts. Reduced collagen crosslinks presumptively undermine bone strength. Also, proband osteoblasts have broadly defective differentiation. These mutations provide evidence that RIP plays a fundamental role in normal bone development. PMID:27380894

  5. Mutations in the BRWD3 Gene Cause X-Linked Mental Retardation Associated with Macrocephaly

    PubMed Central

    Field, Michael ; Tarpey, Patrick S. ; Smith, Raffaella ; Edkins, Sarah ; O’Meara, Sarah ; Stevens, Claire ; Tofts, Calli ; Teague, Jon ; Butler, Adam ; Dicks, Ed ; Barthorpe, Syd ; Buck, Gemma ; Cole, Jennifer ; Gray, Kristian ; Halliday, Kelly ; Hills, Katy ; Jenkinson, Andrew ; Jones, David ; Menzies, Andrew ; Mironenko, Tatiana ; Perry, Janet ; Raine, Keiran ; Richardson, David ; Shepherd, Rebecca ; Small, Alexandra ; Varian, Jennifer ; West, Sofie ; Widaa, Sara ; Mallya, Uma ; Wooster, Richard ; Moon, Jenny ; Luo, Ying ; Hughes, Helen ; Shaw, Marie ; Friend, Kathryn L. ; Corbett, Mark ; Turner, Gillian ; Partington, Michael ; Mulley, John ; Bobrow, Martin ; Schwartz, Charles ; Stevenson, Roger ; Gecz, Jozef ; Stratton, Michael R. ; Andrew Futreal, P. ; Lucy Raymond, F. 

    2007-01-01

    In the course of systematic screening of the X-chromosome coding sequences in 250 families with nonsyndromic X-linked mental retardation (XLMR), two families were identified with truncating mutations in BRWD3, a gene encoding a bromodomain and WD-repeat domain–containing protein. In both families, the mutation segregates with the phenotype in affected males. Affected males have macrocephaly with a prominent forehead, large cupped ears, and mild-to-moderate intellectual disability. No truncating variants were found in 520 control X chromosomes. BRWD3 is therefore a new gene implicated in the etiology of XLMR associated with macrocephaly and may cause disease by altering intracellular signaling pathways affecting cellular proliferation. PMID:17668385

  6. A Japanese family with X-linked sideroblastic anemia affecting females and manifesting as macrocytic anemia.

    PubMed

    Katsurada, Tatsuya; Kawabata, Hiroshi; Kawabata, Daiki; Kawahara, Masahiro; Nakabo, Yukiharu; Takaori-Kondo, Akifumi; Yoshida, Yataro

    2016-06-01

    X-linked sideroblastic anemia (XLSA) is a rare hereditary disorder that typically manifests in males as microcytic anemia. Here, we report a family with XLSA that affects females and manifests as macrocytic anemia. The proband was a Japanese woman harboring a heterozygous mutation c.679C>T in the ALAS2 gene. This mutation causes the amino acid substitution R227C, which disrupts the enzymatic activity of erythroid-specific δ-aminolevulinic acid synthase. The mutation was not detected in the ALAS2 complementary DNA from peripheral blood red blood cells of the proband, indicating that the cells were mostly derived from erythroblasts expressing wild-type ALAS2. The proband's mother, who had been diagnosed with myelodysplastic syndrome, also had XLSA with the same mutation. Clinicians should be aware that XLSA can occur not only in males but also in females, in whom it manifests as macrocytic anemia. PMID:26862056

  7. Familial X-linked mental retardation and isolated growth hormone deficiency: Clinical and molecular findings

    SciTech Connect

    Hamel, B.C.J.; Smits, A.P.T.; Helm, B. van den

    1996-07-12

    We report on several members of a family with varying degrees of X-linked mental retardation (XLMR), isolated growth hormone deficiency (IGHD), and infantile behavior but without other consistent phenotypic abnormalities. Male patients continued to grow until well into their twenties and reached a height ranging from 135 to 159 cm. Except one, all female carriers were mentally normal; their adult height ranged from 159 to 168 cm. By linkage studies we have assigned the underlying genetic defect to the Xq24-q27.3 region, with a maximum lod score of Z = 3.26 at {theta} = 0.0 for the DXS294 locus. The XLMR-IGHD phenotype in these patients may be due to pleiotropic effects of a single gene or it may represent a contiguous gene syndrome. 18 refs., 6 figs., 3 tabs.

  8. Analysis of mutations in Menkes and X-linked cutis laxa patients

    SciTech Connect

    Das, S.; Levinson, B.; Gitschier, J.

    1994-09-01

    Menkes disease is an X-linked disorder of copper metabolism. The complex clinical phenotype is attribute to a deficiency of copper-containing enzymes resulting from a defect in copper transport. X-linked cutis laxa (XLCL), a mild, connective tissues disease may also be an allele of Menkes disease. A gene for the Menkes disease locus (MNK) has been isolated and found to code for a copper-transportion ATPase. Deletions in this gene have been observed in only 15-20% of patients by Southern blot analysis. We have analysed the MNK gene for mutations by RT-PCR and chemical cleavage mismatch detection in a group of 12 patients with severe Menkes phenotype and who were normal by Southern analysis. Mutations were observed in ten patients, and in each case, a different, debilitating mutation was present. Mutations that resulted in splicing abnormalities, detected by RT-PCR alone, were observed in six patients and included two splice site changes, a nonsense mutation, a missense mutation, a small duplication and a small deletion. Chemical cleavage analysis of the remaining six patients revealed the presence of one nonsense mutation, two adjacent 5 bp deletions and one missense mutation. A valine/leucine polymorphism was also observed. These findings, combined with the prior observation of large deletions in {approx}15% of patients, suggest that Southern blot hybridization and RT-PCR will identify mutations in the majority of patients. To date, no mutations have been found in 4 XLCL patients in the MNK coding region by chemical cleavage. However in 2 patients Southern blot changes have been detected with a 5{prime} UTR probe, suggesting mutations affecting regulatory elements.

  9. A Novel X-linked 4-Repeat Tauopathy with Parkinsonism and Spasticity

    PubMed Central

    Poorkaj, P.; Raskind, W.H.; Leverenz, J.B.; Matsushita, M.; Zabetian, C.P.; Samii, A.; Kim, S.; Gazi, N.; Nutt, J.G.; Wolff, J.; Yearout, D.; Greenup, J.L.; Steinbart, E.J.; Bird, T.D.

    2011-01-01

    The parkinsonian syndromes comprise a highly heterogeneous group of disorders. Although 15 loci are linked to predominantly familial Parkinson’s disease (PD), additional PD loci are likely to exist. We recently identified a multi-generational family of Danish and German descent in which five males in three generations presented with a unique syndrome characterized by parkinsonian features and variably penetrant spasticity for which X-linked disease transmission was strongly suggested (XPDS). Autopsy in one individual failed to reveal synucleinopathy; however, there was a significant 4-repeat tauopathy in the striatum. Our objective was to identify the locus responsible for this unique parkinsonian disorder. Members of the XPDS family were genotyped for markers spanning the X chromosome. Two-point and multipoint linkage analyses were performed and the candidate region refined by analyzing additional markers. A multipoint LODmax score of 2.068 was obtained between markers DXS991 and DXS993. Haplotype examination revealed an approximately 20 cM region bounded by markers DXS8042 and DXS1216 that segregated with disease in all affected males and obligate carrier females and was not carried by unaffected at-risk males. To reduce the possibility of a false positive linkage result, multiple loci and genes associated with other parkinsonian or spasticity syndromes were excluded. In conclusion, we have identified a unique X-linked parkinsonian syndrome with variable spasticity and 4-repeat tau pathology, and defined a novel candidate gene locus spanning approximately 28 Mb from Xp11.2-Xq13.3. PMID:20629132

  10. Genetic analysis of CYBB gene in 26 korean families with X-linked chronic granulomatous disease.

    PubMed

    Ko, Sun Hi; Rhim, Jung Woo; Shin, Kyung Sue; Hahn, Youn Soo; Lee, So Young; Kim, Joong Gon

    2014-01-01

    Chronic granulomatous disease (CGD) is a rare hereditary disorder that is characterized by a greatly increased susceptibility to life-threatening bacterial and fungal infections. CGD is caused by mutations in any one of the genes encoding subunits of phagocyte NADPH oxidase. X-linked CGD, more than half of all CGD cases, is caused by mutations in CYBB gene encoding gp91-phox subunit. We identified the mutations in the CYBB gene of 29 Korean patients with X-linked CGD from 26 unrelated families. Twenty-three mutations were identified: five splice site mutations (c.45 + 1G > C, c.141 + 5G > A, c.897 + 2T > C c.1461 + 1G > T, c.1586 + 2T > A), four frameshift mutations (c.27dupG, [c.737A > C; c.742delA], c.742dupA, c.1636 del C), seven non-sense mutations (c217C > T, c.469C > T, c.676C > T, c.868C > T, c.1222G > T, c.1272G > A, c.1281T > A), five missense mutations (c.164 C > A, c.422T > C, c.665 A > G, c.1012C > T, c.1461G > T) and two gross deletions. Eight out of 23 mutations identified in this study are novel mutations: two splice mutations(c.897 + 2T > C, c.1586 + 2T > A), two frame shift mutations ([c.737A > C; c.742delA], c.1636 del C), two nonsense mutations (c.1222G > T, c.1281T > A), one missense mutation (c.1461G > T), one gross deletion (c.1667_1629 del.). Our results confirmed that mutations of CYBB gene in the X-CGD are very heterogeneous and not show the peculiarity of the ethnic group. PMID:24999735

  11. The occurrence of new mutants in the X-linked recessive Lesch-Nyhan disease.

    PubMed Central

    Francke, U; Felsenstein, J; Gartler, S M; Migeon, B R; Dancis, J; Seegmiller, J E; Bakay, F; Nyhan, W L

    1976-01-01

    In a population at equilibrium for a sex-linked lethal, one-third of the genes for that lethal must arise anew each generation. Therefore, one-third of all cases of Lesch-Nyhan disease, a severe X-linked recessive lethal disorder, should be new mutants. To test this hypothesis, we have collected 47 families, 20 with a single proband and 27 with multiple affected males in which the patients' mothers and other female relatives had been studied for heterozygosity. Available carrier detection tests identify heterozygous for HPRT deficiency in hair roots and skin fibroblasts. Only four mothers were found not to be carriers. This result deviates significantly from expected (P less than .001). Statistical tests for ascertainment effects indicated absence of bias for multiple proband families but strong bias in favor of families with many heterozygous females. When the analysis was limited to single proband families, the deviation from expected was still significant (P less than .01). The incidence of new mutants among the heterozygous mothers, as determined by the ratio of +/+ to +/- maternal grandmothers, should be one-half (see Appendix). Of all 20 maternal grandmothers studied, five were +/+ and 15 were +/- (P less than .05). Considering only the single proband families, the ratio of 5 +/+ to 8 +/- was not significantly different from expected. In four of the five cases in which the heterozygous mother of an affected individual was a new mutation, the age of her parents was considerably higher than the mean parental age in the population. This raises the possibility of a paternal age effect on X-linked mutations. There appears to be a true deficiency of new mutatnts among males but not among females. Data on additional Lesch-Nyhan families are needed before conclusions regarding a possible higher mutation rate in males can be drawn. PMID:1266847

  12. The Role of Neuronal Complexes in Human X-Linked Brain Diseases

    PubMed Central

    Laumonnier, Frédéric ; Cuthbert, Peter C. ; Grant, Seth G. N. 

    2007-01-01

    Beyond finding individual genes that are involved in medical disorders, an important challenge is the integration of sets of disease genes with the complexities of basic biological processes. We examine this issue by focusing on neuronal multiprotein complexes and their components encoded on the human X chromosome. Multiprotein signaling complexes in the postsynaptic terminal of central nervous system synapses are essential for the induction of neuronal plasticity and cognitive processes in animals. The prototype complex is the N-methyl-d-aspartate receptor complex/membrane-associated guanylate kinase–associated signaling complex (NRC/MASC) comprising 185 proteins and embedded within the postsynaptic density (PSD), which is a set of complexes totaling ∼1,100 proteins. It is striking that 86% (6 of 7) of X-linked NRC/MASC genes and 49% (19 of 39) of X-chromosomal PSD genes are already known to be involved in human psychiatric disorders. Moreover, of the 69 known proteins mutated in X-linked mental retardation, 19 (28%) encode postsynaptic proteins. The high incidence of involvement in cognitive disorders is also found in mouse mutants and indicates that the complexes are functioning as integrated entities or molecular machines and that disruption of different components impairs their overall role in cognitive processes. We also noticed that NRC/MASC genes appear to be more strongly associated with mental retardation and autism spectrum disorders. We propose that systematic studies of PSD and NRC/MASC genes in mice and humans will give a high yield of novel genes important for human disease and new mechanistic insights into higher cognitive functions. PMID:17236127

  13. Severe X-linked mitochondrial encephalomyopathy associated with a mutation in apoptosis-inducing factor.

    PubMed

    Ghezzi, Daniele; Sevrioukova, Irina; Invernizzi, Federica; Lamperti, Costanza; Mora, Marina; D'Adamo, Pio; Novara, Francesca; Zuffardi, Orsetta; Uziel, Graziella; Zeviani, Massimo

    2010-04-01

    We investigated two male infant patients who were given a diagnosis of progressive mitochondrial encephalomyopathy on the basis of clinical, biochemical, and morphological features. These patients were born from monozygotic twin sisters and unrelated fathers, suggesting an X-linked trait. Fibroblasts from both showed reduction of respiratory chain (RC) cIII and cIV, but not of cI activities. We found a disease-segregating mutation in the X-linked AIFM1 gene, encoding the Apoptosis-Inducing Factor (AIF) mitochondrion-associated 1 precursor that deletes arginine 201 (R201 del). Under normal conditions, mature AIF is a FAD-dependent NADH oxidase of unknown function and is targeted to the mitochondrial intermembrane space (this form is called AIF(mit)). Upon apoptogenic stimuli, a soluble form (AIF(sol)) is released by proteolytic cleavage and migrates to the nucleus, where it induces "parthanatos," i.e., caspase-independent fragmentation of chromosomal DNA. In vitro, the AIF(R201 del) mutation decreases stability of both AIF(mit) and AIF(sol) and increases the AIF(sol) DNA binding affinity, a prerequisite for nuclear apoptosis. In AIF(R201 del) fibroblasts, staurosporine-induced parthanatos was markedly increased, whereas re-expression of AIF(wt) induced recovery of RC activities. Numerous TUNEL-positive, caspase 3-negative nuclei were visualized in patient #1's muscle, again indicating markedly increased parthanatos in the AIF(R201 del) critical tissues. We conclude that AIF(R201 del) is an unstable mutant variant associated with increased parthanatos-linked cell death. Our data suggest a role for AIF in RC integrity and mtDNA maintenance, at least in some tissues. Interestingly, riboflavin supplementation was associated with prolonged improvement of patient #1's neurological conditions, as well as correction of RC defects in mutant fibroblasts, suggesting that stabilization of the FAD binding in AIF(mit) is beneficial. PMID:20362274

  14. Expression of myotubularins in blood platelets: Characterization and potential diagnostic of X-linked myotubular myopathy.

    PubMed

    Mansour, Rana; Severin, Sonia; Xuereb, Jean-Marie; Gratacap, Marie-Pierre; Laporte, Jocelyn; Buj-Bello, Ana; Tronchère, Hélène; Payrastre, Bernard

    2016-07-29

    Phosphoinositides play a key role in the spatiotemporal control of central intracellular processes and several specific kinases and phosphatases regulating the level of these lipids are implicated in human diseases. Myotubularins are a family of 3-phosphatases acting specifically on phosphatidylinositol 3-monophosphate and phosphatidylinositol 3,5 bisphosphate. Members of this family are mutated in genetic diseases including myotubularin 1 (MTM1) and myotubularin-related protein 2 (MTMR2) which mutations are responsible of X-linked centronuclear myopathy and Charcot-Marie-Tooth neuropathy, respectively. Here we show that MTM1 is expressed in blood platelets and that hundred microliters of blood is sufficient to detect the protein by western blotting. Since the most severe cases of pathogenic mutations of MTM1 lead to loss of expression of the protein, we propose that a minimal amount of blood can allow a rapid diagnostic test of X-linked myotubular myopathy, which is currently based on histopathology of muscle biopsy and molecular genetic testing. In platelets, MTM1 is a highly active 3-phosphatase mainly associated to membranes and found on the dense granules and to a lesser extent on alpha-granules. However, deletion of MTM1 in mouse had no significant effect on platelet count and on platelet secretion and aggregation induced by thrombin or collagen stimulation. Potential compensation by other members of the myotubularin family is conceivable since MTMR2 was easily detectable by western blotting and the mRNA of several members of the family increased during in vitro differentiation of human megakaryocytes and MEG-01 cells. In conclusion, we show the presence of several myotubularins in platelets and propose that minimal amounts of blood can be used to develop a rapid diagnostic test for genetic pathologies linked to loss of expression of these phosphatases. PMID:27155155

  15. Altered splicing of ATP6AP2 causes X-linked parkinsonism with spasticity (XPDS)

    PubMed Central

    Korvatska, Olena; Strand, Nicholas S.; Berndt, Jason D.; Strovas, Tim; Chen, Dong-Hui; Leverenz, James B.; Kiianitsa, Konstantin; Mata, Ignacio F.; Karakoc, Emre; Greenup, J. Lynne; Bonkowski, Emily; Chuang, Joseph; Moon, Randall T.; Eichler, Evan E.; Nickerson, Deborah A.; Zabetian, Cyrus P.; Kraemer, Brian C.; Bird, Thomas D.; Raskind, Wendy H.

    2013-01-01

    We report a novel gene for a parkinsonian disorder. X-linked parkinsonism with spasticity (XPDS) presents either as typical adult onset Parkinson's disease or earlier onset spasticity followed by parkinsonism. We previously mapped the XPDS gene to a 28 Mb region on Xp11.2–X13.3. Exome sequencing of one affected individual identified five rare variants in this region, of which none was missense, nonsense or frame shift. Using patient-derived cells, we tested the effect of these variants on expression/splicing of the relevant genes. A synonymous variant in ATP6AP2, c.345C>T (p.S115S), markedly increased exon 4 skipping, resulting in the overexpression of a minor splice isoform that produces a protein with internal deletion of 32 amino acids in up to 50% of the total pool, with concomitant reduction of isoforms containing exon 4. ATP6AP2 is an essential accessory component of the vacuolar ATPase required for lysosomal degradative functions and autophagy, a pathway frequently affected in Parkinson's disease. Reduction of the full-size ATP6AP2 transcript in XPDS cells and decreased level of ATP6AP2 protein in XPDS brain may compromise V-ATPase function, as seen with siRNA knockdown in HEK293 cells, and may ultimately be responsible for the pathology. Another synonymous mutation in the same exon, c.321C>T (p.D107D), has a similar molecular defect of exon inclusion and causes X-linked mental retardation Hedera type (MRXSH). Mutations in XPDS and MRXSH alter binding sites for different splicing factors, which may explain the marked differences in age of onset and manifestations. PMID:23595882

  16. A novel X-linked four-repeat tauopathy with Parkinsonism and spasticity.

    PubMed

    Poorkaj, Parvoneh; Raskind, Wendy H; Leverenz, James B; Matsushita, Mark; Zabetian, Cyrus P; Samii, Ali; Kim, Sophia; Gazi, Nayiry; Nutt, John G; Wolff, John; Yearout, Dora; Greenup, J Lynne; Steinbart, Ellen J; Bird, Thomas D

    2010-07-30

    The parkinsonian syndromes comprise a highly heterogeneous group of disorders. Although 15 loci are linked to predominantly familial Parkinson's disease (PD), additional PD loci are likely to exist. We recently identified a multigenerational family of Danish and German descent in which five males in three generations presented with a unique syndrome characterized by parkinsonian features and variably penetrant spasticity for which X-linked disease transmission was strongly suggested (XPDS). Autopsy in one individual failed to reveal synucleinopathy; however, there was a significant four-repeat tauopathy in the striatum. Our objective was to identify the locus responsible for this unique parkinsonian disorder. Members of the XPDS family were genotyped for markers spanning the X chromosome. Two-point and multipoint linkage analyses were performed and the candidate region refined by analyzing additional markers. A multipoint LOD(max) score of 2.068 was obtained between markers DXS991 and DXS993. Haplotype examination revealed an approximately 20 cM region bounded by markers DXS8042 and DXS1216 that segregated with disease in all affected males and obligate carrier females and was not carried by unaffected at-risk males. To reduce the possibility of a false-positive linkage result, multiple loci and genes associated with other parkinsonian or spasticity syndromes were excluded. In conclusion, we have identified a unique X-linked parkinsonian syndrome with variable spasticity and four-repeat tau pathology, and defined a novel candidate gene locus spanning approximately 28 Mb from Xp11.2-Xq13.3. PMID:20629132

  17. Altered splicing of ATP6AP2 causes X-linked parkinsonism with spasticity (XPDS).

    PubMed

    Korvatska, Olena; Strand, Nicholas S; Berndt, Jason D; Strovas, Tim; Chen, Dong-Hui; Leverenz, James B; Kiianitsa, Konstantin; Mata, Ignacio F; Karakoc, Emre; Greenup, J Lynne; Bonkowski, Emily; Chuang, Joseph; Moon, Randall T; Eichler, Evan E; Nickerson, Deborah A; Zabetian, Cyrus P; Kraemer, Brian C; Bird, Thomas D; Raskind, Wendy H

    2013-08-15

    We report a novel gene for a parkinsonian disorder. X-linked parkinsonism with spasticity (XPDS) presents either as typical adult onset Parkinson's disease or earlier onset spasticity followed by parkinsonism. We previously mapped the XPDS gene to a 28 Mb region on Xp11.2-X13.3. Exome sequencing of one affected individual identified five rare variants in this region, of which none was missense, nonsense or frame shift. Using patient-derived cells, we tested the effect of these variants on expression/splicing of the relevant genes. A synonymous variant in ATP6AP2, c.345C>T (p.S115S), markedly increased exon 4 skipping, resulting in the overexpression of a minor splice isoform that produces a protein with internal deletion of 32 amino acids in up to 50% of the total pool, with concomitant reduction of isoforms containing exon 4. ATP6AP2 is an essential accessory component of the vacuolar ATPase required for lysosomal degradative functions and autophagy, a pathway frequently affected in Parkinson's disease. Reduction of the full-size ATP6AP2 transcript in XPDS cells and decreased level of ATP6AP2 protein in XPDS brain may compromise V-ATPase function, as seen with siRNA knockdown in HEK293 cells, and may ultimately be responsible for the pathology. Another synonymous mutation in the same exon, c.321C>T (p.D107D), has a similar molecular defect of exon inclusion and causes X-linked mental retardation Hedera type (MRXSH). Mutations in XPDS and MRXSH alter binding sites for different splicing factors, which may explain the marked differences in age of onset and manifestations. PMID:23595882

  18. Silencing of X-Linked MicroRNAs by Meiotic Sex Chromosome Inactivation

    PubMed Central

    Royo, Hélène; Seitz, Hervé; ElInati, Elias; Peters, Antoine H. F. M.; Stadler, Michael B.; Turner, James M. A.

    2015-01-01

    During the pachytene stage of meiosis in male mammals, the X and Y chromosomes are transcriptionally silenced by Meiotic Sex Chromosome Inactivation (MSCI). MSCI is conserved in therian mammals and is essential for normal male fertility. Transcriptomics approaches have demonstrated that in mice, most or all protein-coding genes on the X chromosome are subject to MSCI. However, it is unclear whether X-linked non-coding RNAs behave in a similar manner. The X chromosome is enriched in microRNA (miRNA) genes, with many exhibiting testis-biased expression. Importantly, high expression levels of X-linked miRNAs (X-miRNAs) have been reported in pachytene spermatocytes, indicating that these genes may escape MSCI, and perhaps play a role in the XY-silencing process. Here we use RNA FISH to examine X-miRNA expression in the male germ line. We find that, like protein-coding X-genes, X-miRNAs are expressed prior to prophase I and are thereafter silenced during pachynema. X-miRNA silencing does not occur in mouse models with defective MSCI. Furthermore, X-miRNAs are expressed at pachynema when present as autosomally integrated transgenes. Thus, we conclude that silencing of X-miRNAs during pachynema in wild type males is MSCI-dependent. Importantly, misexpression of X-miRNAs during pachynema causes spermatogenic defects. We propose that MSCI represents a chromosomal mechanism by which X-miRNAs, and other potential X-encoded repressors, can be silenced, thereby regulating genes with critical late spermatogenic functions. PMID:26509798

  19. Linkage analysis in three families with nonspecific X-linked mental retardation

    SciTech Connect

    Claes, S.; Gu, X.X.; Legius, E.

    1996-07-12

    Nonspecific X-linked mental retardation (XLMR) is a common disorder. The number of genes involved in this condition is not known, but it is estimated to be more than 10. We present a clinical and linkage study on 3 families with XLMR. All families were analyzed using highly polymorphic markers covering the X chromosome; screening for the fragile X mutation was negative. The first family (MRX 36) consisted of 1 female and 4 male patients in 3 generations and 7 healthy individuals. Considering the female as an expressing heterozygous carrier, a maximum LOD score of 3.41 was reached in region Xp21.2-Xp22.1. Considering her phenotype to be unknown, a LOD{sub max} of 1.97 was reached in the same region. The second family consisted of 5 affected and 6 healthy males with mild to borderline mental retardation. Linkage analysis using an X-linked recessive model with full penetrance and no phenocopies excluded linkage over almost the entire X chromosome. Using alternative models, including an affecteds-only analysis, a LOD{sub max} of 1.49 was found in region Xq24-28. The third family, consisting of 4 male patients with moderate mental retardation in 1 generation yielded a LOD{sub max} of 0.9 in region Xp22.13-11.3. However, even in this small pedigree, exclusion mapping was able to exclude very large parts of the X chromosome and in this way identify a likely candidate region. 34 refs., 6 figs., 4 tabs.

  20. X-linked mental retardation: Linkage results in five unrelated families

    SciTech Connect

    Moraine, C.L.; Dessay, B.; Toutain, A.

    1994-09-01

    X-linked mental retardations are a very common cause of mental deficiency in males. Combined clinical and linkage studies in great families can help to distinguish between particular pathologies in this very heterogenous group. In five unrelated families, we have assigned the corresponding genes to Xp22.2-p21.2 for family 1, Xp21.2-p11.21 for family 2, Xp11.4-p11.23 for family 3, Xq12 for family 4, and Xq28.5-pter for family 5, respectively. Clinical features were characterized by severe hypotonia with seizures and distinctive facies (family 1), hypotonia and hypoactivity with severe mental deficiency but absence of neurological signs (family 2), neonatal hypotonia with poor sucking and moderate intrauterine growth retardation (family 3), severe neonatal hypotonia with visual impairment and profound mental deficiency and seizures (family 4), and non-specific moderate mental deficiency (family 5). These results confirm the frequent gene localizations in Xq28 and in the pericentromeric region. But more precise clinical description of so-called non-specific X-linked mental retardations is necessary (especially for the natural history of mental deficiency) with the intention to associate several families in a unique linkage study. However, the recent description of different clinical patterns in three families with mutation in the L1CAM gene suggests that allelism may be more frequent than expected, that the real number of X-L.M.R. genes could be less important than previously reported, and that testing of candidate genes by mRNA or genomic DNA studies appears as a necessary step.

  1. Is X-linked methyl-CpG binding protein 2 a new target for the treatment of Parkinson's disease

    PubMed Central

    Xie, Teng; Zhang, Jie; Yuan, Xianhou; Yang, Jing; Ding, Wei; Huang, Xin; Wu, Yong

    2013-01-01

    X-linked methyl-CpG binding protein 2 mutations can induce symptoms similar to those of Parkinson's disease and dopamine metabolism disorders, but the specific role of X-linked methyl-CpG binding protein 2 in the pathogenesis of Parkinson's disease remains unknown. In the present study, we used 6-hydroxydopamine-induced human neuroblastoma cell (SH-SY5Y cells) injury as a cell model of Parkinson's disease. The 6-hydroxydopamine (50 μmol/L) treatment decreased protein levels for both X-linked methyl-CpG binding protein 2 and tyrosine hydroxylase in these cells, and led to cell death. However, overexpression of X-linked methyl-CpG binding protein 2 was able to ameliorate the effects of 6-hydroxydopamine, it reduced 6-hydroxydopamine-induced apoptosis, and increased the levels of tyrosine hydroxylase in SH-SY5Y cells. These findings suggesting that X-linked methyl-CpG binding protein 2 may be a potential therapeutic target for the treatment of Parkinson's disease. PMID:25206503

  2. Arrested rearrangement of TCR V[beta] genes in thymocytes from children with x-linked severe combined immunodeficiency disease

    SciTech Connect

    Sleasman, J.W.; Harville, T.O.; White, G.B.; Barrett, D.J. ); George, J.F. ); Goodenow, M.M. Univ. of Alabama, Birmingham, AL )

    1994-07-01

    Human X-linked severe combined immunodeficiency disease (SCID) is an immunodeficiency disorder in which T cell development is arrested in the thymic cortex. B lymphocytes in children with X-linked SCID seem to differentiate normally. X-linked SCID is associated with a mutation in the gene that encodes the IL-2R [gamma]-chain. Because TCR-[beta] gene recombination is a pivotal initial event in T lymphocyte onteogeny within the thymus, the authors hypothesized that a failure to express normal IL-2R[gamma] could lead to impaired TCR-[beta] gene recombination in early thymic development. PCR was used to determine the status of TCR-[beta] gene-segment rearrangements in thymic DNA that had been obtained from children with X-linked SCID. The initial step in TCR-[beta] gene rearrangement, that of D[beta] to J[beta] recombination, was readily detected in all thymus samples from children with X-linked SCID; in contrast, V[beta] to DJ[beta] gene rearrangements were undetectable in the same samples. Both D[beta] to J[beta] and V[beta] to DJ[beta] TCR genes were rearranged in the thymic tissues obtained from immunologically normal children. The authors conclude that TCR[beta]-chain gene rearrangement is arrested in children with X-linked SCID. The results suggest a causative relationship between the failure of TCR [beta]-chain gene arrangements to proceed beyond DJ[beta] rearrangements and the production of a nonfunctional IL-2R [gamma]-chain. 45 refs., 3 figs.

  3. An X-linked homologue of the autosomal inprinted gene ZNF127 escapes X inactivation

    SciTech Connect

    Longstreet, M.; Nicholls, R.D.; Willard, H.F.

    1994-09-01

    The ZNF127 gene has been shown to be subject to parental imprinting in both humans and the mouse and maps to within the Prader-Willi/Angelman Syndrome critical region on chromosome 15. We have cloned two X-linked related loci, one of which, ZNFXp is a transcribed gene while the other, ZNFXq, is an untranscribed pseudogene. ZNFXp is 83.6% identical to ZNFXq and 65.4% identical to ZNF127 over 1.4 kb of open reading frame they share in common, Like ZNF127, the predicted protein sequence of ZNFXp contains a C{sub 3}HC{sub 4} zinc finger domain and C{sub 3}H zinc finger-like motifs. Whereas ZNF127 has three C{sub 3}H motifs, ZNFXp has four. A strong CpG island is located within 1 kb 5{prime} of the predicted amino terminus of ZNFXp. Expression of ZNFXp has been detected from mouse/human somatic cell hybrids containing either an active (n=2) or an inactive (n=4) chromosome, and thus escapes X inactivation. Probes made from the 3{prime} UTR of ZNFXp detect a number of related loci in both human and murine DNA, none of which is the ZNF127 locus on chromosome 15. None of the detectable murine bands shows dosage differences between males and females as would be expected for X-linked loci. This raises the possibility that ZNFXp inserted into the human X chromosome after its divergence from a common ancestor with the murine X. We have mapped ZNFXp to Xp11.4 by Southern blotting and PCR of hybrid DNAs and by fluorescence in situ hybridization (FISH). ZNFXq maps within the X Inactivation Center (XIC) region on Xq13.2, approximately 300 kb distal to the XIST gene. We find it intriguing, and perhaps significant, that two members of this gene family are subject to epigenetic regulation -- one autosomal imprinting, and the other escape from X inactivation. These results could imply an evolutionary and mechanistic relationship between these two processes.

  4. Vaccines for Canine Leishmaniasis

    PubMed Central

    Foroughi-Parvar, Faeze; Hatam, Gholamreza

    2014-01-01

    Leishmania infantum is the obligatory intracellular parasite of mammalian macrophages and causes zoonotic visceral leishmaniasis (ZVL). The presence of infected dogs as the main reservoir host of ZVL is regarded as the most important potential risk for human infection. Thus the prevention of canine visceral leishmaniasis (CVL) is essential to stop the current increase of the Mediterranean visceral leishmaniasis. Recently considerable advances in achieving protective immunization of dogs and several important attempts for achieving an effective vaccine against CVL lead to attracting the scientists trust in its important role for eradication of ZVL. This paper highlights the recent advances in vaccination against canine visceral leishmaniasis from 2007 until now. PMID:25628897

  5. 9 CFR 113.305 - Canine Hepatitis and Canine Adenovirus Type 2 Vaccine.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Canine Hepatitis and Canine Adenovirus... STANDARD REQUIREMENTS Live Virus Vaccines § 113.305 Canine Hepatitis and Canine Adenovirus Type 2 Vaccine. Canine Hepatitis Vaccine and Canine Adenovirus Type 2 Vaccine shall be prepared from virus-bearing...

  6. 9 CFR 113.202 - Canine Hepatitis and Canine Adenovirus Type 2 Vaccine, Killed Virus.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Canine Hepatitis and Canine Adenovirus...; ORGANISMS AND VECTORS STANDARD REQUIREMENTS Killed Virus Vaccines § 113.202 Canine Hepatitis and Canine Adenovirus Type 2 Vaccine, Killed Virus. Canine Hepatitis and Canine Adenovirus Type 2 Vaccine, Killed...

  7. 9 CFR 113.305 - Canine Hepatitis and Canine Adenovirus Type 2 Vaccine.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Canine Hepatitis and Canine Adenovirus... STANDARD REQUIREMENTS Live Virus Vaccines § 113.305 Canine Hepatitis and Canine Adenovirus Type 2 Vaccine. Canine Hepatitis Vaccine and Canine Adenovirus Type 2 Vaccine shall be prepared from virus-bearing...

  8. 9 CFR 113.202 - Canine Hepatitis and Canine Adenovirus Type 2 Vaccine, Killed Virus.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Canine Hepatitis and Canine Adenovirus...; ORGANISMS AND VECTORS STANDARD REQUIREMENTS Killed Virus Vaccines § 113.202 Canine Hepatitis and Canine Adenovirus Type 2 Vaccine, Killed Virus. Canine Hepatitis and Canine Adenovirus Type 2 Vaccine, Killed...

  9. Adult Presentation of X-Linked Conradi-Hünermann-Happle Syndrome

    PubMed Central

    Posey, Jennifer E.; Burrage, Lindsay C.; Campeau, Philippe M.; Lu, James T.; Eble, Tanya N.; Kratz, Lisa; Schlesinger, Alan E.; Gibbs, Richard A.; Lee, Brendan H.; Nagamani, Sandesh CS.

    2014-01-01

    Conradi-Hünermann-Happle syndrome, or X-linked Dominant Chondrodysplasia Punctata Type 2 (CDPX2), is a genodermatosis caused by mutations in EBP. While typically lethal in males, females with CDPX2 generally manifest by infancy or childhood with variable features including congenital ichthyosiform erythroderma, chondrodysplasia punctata, asymmetric shortening of the long bones, and cataracts. We present a 36-year-old female with short stature, rhizomelic and asymmetric limb shortening, severe scoliosis, a sectorial cataract, and no family history of CDPX2. Whole exome sequencing (WES) revealed a p.Arg63del mutation in EBP, and biochemical studies confirmed a diagnosis of CDPX2. Short stature in combination with ichthyosis or alopecia, cataracts, and limb shortening in an adult should prompt consideration of a diagnosis of CDPX2. As is the case with many genetic syndromes, the hallmark features of CDPX2 in pediatric patients are not readily identifiable in adults. This case demonstrates the utility of WES as a diagnostic tool in the evaluation of adults with genetic disorders. PMID:25846959

  10. [X-linked hyper-IGM syndrome associated to sclerosing cholangitis and gallbladder neoplasm: clinical case].

    PubMed

    Rodríguez, Cristián; Carrión, Flavio; Marinovic, María Angélica; Chávez, Eduardo; Preisler, Jessica; Pooley, Francisco; Futatani, Takeshi; Ochs, Hans D

    2003-03-01

    We report a 11 years old male diagnosed as a X-linked hyper-IgM syndrome that presented with recurrent infections and sclerosing cholangitis and later developed a gallbladder cancer. Immunological evaluation showed decreased levels of serum IgG and IgA with elevated levels of IgM. Study of CD40 ligand expression on mitogen activated peripheral blood mononuclear cells revealed total absence of this marker on T lymphocytes. Molecular analysis detected, in the patient and his mother, a nonsense mutation in exon 1 of the transmembrane segment of the CD40 ligand. He also presented elevation of alkaline phosphatases and mild elevation of liver enzymes. Liver biopsy demonstrated the presence of idiopathic sclerosing cholangitis. The patient was started on monthly IVIG therapy at 400 mg/kg, as well as ursodeoxycholic acid and vitamin E, with normalization of his IgG and IgM levels a decrease in the incidence of infections and normalization of liver function. Three years after diagnosis, we detected the presence of polyps inside the gallbladder that were reported at biopsy as adenocarcinoma. He underwent hepatic bisegmentectomy (VI B-V) and local lymphadenectomy. PMID:12790080

  11. Towards isolation of the gene for X-linked retinitis pigmentosa (RP3)

    SciTech Connect

    Dry, K.L.; Aldred, M.A.; Hardwick, L.J.

    1994-09-01

    Until recently the region of interest containing the gene for X-linked retinitis pigmentosa (RP3) was thought to lie between CYBB (Xp21.1) and the proximal end of the deletion in patient BB (JBBprox). This region was thought to span 100-150 kb. Here we present new mapping data to show that the distance between the 5{prime} (most proximal) end of CYBB and JBBprox is only 50 kb. Recently Roux et al. (1994) have described the isolation of a gene within this region but this showed no disease-associated changes. Further evidence from mapping the deletion in patient NF (who suffered from McLead`s syndrome and CGD but not RP) and from linkage analysis of our RP3 families with a new dinucleotide repeat suggests that the gene must extend proximally from JBBprox. In order to extend the region of search we have constructed a YAC contig spanning 800 kb to OTC. We are continuing our search for the RP3 gene using a variety of strategies including exon trapping and cDNA enrichment as well as direct screening of cDNA libraries with subclones from this region.

  12. A mouse model of X-linked intellectual disability associated with impaired removal of histone methylation

    PubMed Central

    Iwase, Shigeki; Brookes, Emily; Agarwal, Saurabh; Badeaux, Aimee I; Ito, Hikaru; Vallianatos, Christina N; Tomassy, Giulio Srubek; Kasza, Tomas; Lin, Grace; Thompson, Andrew; Gu, Lei; Kwan, Kenneth Y.; Chen, Chinfei; Sartor, Maureen A.; Egan, Brian; Xu, Jun; Shi, Yang

    2015-01-01

    Mutations in a number of chromatin modifiers are associated with human neurological disorders. KDM5C, a histone H3 lysine 4 di- and tri-methyl (H3K4me2/3)-specific demethylase, is frequently mutated in X-linked intellectual disability (XLID) patients. Here, we report that disruption of the mouse Kdm5c gene recapitulates adaptive and cognitive abnormalities observed in XLID, including impaired social behavior and memory, and aggression. Kdm5c-knockout brains exhibit impaired dendritic arborization, spine abnormalities, and altered transcriptomes. In neurons, Kdm5c is recruited to promoters that harbor CpG islands decorated with high levels of H3K4me3, where it fine-tunes H3K4me3 levels. Kdm5c predominantly represses these genes, which include members of key pathways that regulate the development and function of neuronal circuitries. In summary, our mouse behavioral data strongly suggests that KDM5C mutations are causal to XLID. Furthermore, our findings suggest that loss of KDM5C function may impact gene expression in multiple regulatory pathways relevant to the clinical phenotypes. PMID:26804915

  13. Campylobacter jejuni bacteremia and Helicobacter pylori in a patient with X-linked agammaglobulinemia

    PubMed Central

    van den Bruele, T.; Mourad-Baars, P. E. C.; Claas, E. C. J.; van der Plas, R. N.; Kuijper, E. J.

    2010-01-01

    We describe a 15-year-old patient with X-linked agammaglobulinemia who developed malabsorption and bacteremia due to infection of Helicobacter pylori and Campylobacter jejuni. The Campylobacter bacteremia was only recognized after subculturing of blood culture bottles that failed to signal in the automated system. After 2 weeks of treatment with meropenem and erythromycin for 4 weeks, the patient developed a relapse of bacteremia 10 months later with a high level erythromycin resistant C. jejuni. Sequencing revealed an A2058C mutation in the 23 S rRNA gene associated with this resistance. Treatment with doxycycline for 4 weeks finally resulted in complete eradication. This case report illustrates the importance for physicians to use adapted culture methods and adequate prolonged therapy in patients with an immunodeficiency. A summary of published case reports and series of patients with hypogammaglobulinemia or agammaglobulinemia with Campylobacter or Helicobacter bacteremia is given. Electronic supplementary material The online version of this article (doi:10.1007/s10096-010-0999-7) contains supplementary material, which is available to authorized users. PMID:20556465

  14. How many X-linked genes for non-specific mental retardation (MRX) are there?

    SciTech Connect

    Gedeon, A.K.; Donnelly, A.J.; Mulley, J.C.

    1996-07-12

    X-linked mental retardation (XLMR) is that proportion of mental retardation (MR) showing the distinctive pattern of inheritance associated with the X chromosome. XLMR is subdivided into syndromal and non-specific (MRX) forms. MRX is clinically homogeneous but genetically heterogeneous. Affected males in families segregating MRX have no consistent phenotypic expression apart from their MR to distinguish them from unaffected males or affected males in other MRX families. Syndromal MRs have additional neurological or phenotypic characteristics that define a syndrome, and most of these syndromes are rare. Within some families an affected male may show {open_quotes}soft{close_quotes} syndromal signs, but where this is not evident in other affected males from the same family, the MR is diagnosed as non-specific. Delineation from fragile X syndrome or FRAXE MR can now be confidently made with the aid of direct molecular tests which detect the (CCG){sub n} expansion at either FRAXA or FRAXE. MRX can be expressed in carrier females but with milder manifestations. The gene in such cases could be partially dominant or result from a skewed X-inactivation pattern in neural tissue. 39 refs., 1 fig., 1 tab.

  15. Dual-regulated lentiviral vector for gene therapy of X-linked chronic granulomatosis.

    PubMed

    Chiriaco, Maria; Farinelli, Giada; Capo, Valentina; Zonari, Erika; Scaramuzza, Samantha; Di Matteo, Gigliola; Sergi, Lucia Sergi; Migliavacca, Maddalena; Hernandez, Raisa Jofra; Bombelli, Ferdinando; Giorda, Ezio; Kajaste-Rudnitski, Anna; Trono, Didier; Grez, Manuel; Rossi, Paolo; Finocchi, Andrea; Naldini, Luigi; Gentner, Bernhard; Aiuti, Alessandro

    2014-08-01

    Regulated transgene expression may improve the safety and efficacy of hematopoietic stem cell (HSC) gene therapy. Clinical trials for X-linked chronic granulomatous disease (X-CGD) employing gammaretroviral vectors were limited by insertional oncogenesis or lack of persistent engraftment. Our novel strategy, based on regulated lentiviral vectors (LV), targets gp91(phox) expression to the differentiated myeloid compartment while sparing HSC, to reduce the risk of genotoxicity and potential perturbation of reactive oxygen species levels. Targeting was obtained by a myeloid-specific promoter (MSP) and posttranscriptional, microRNA-mediated regulation. We optimized both components in human bone marrow (BM) HSC and their differentiated progeny in vitro and in a xenotransplantation model, and generated therapeutic gp91(phox) expressing LVs for CGD gene therapy. All vectors restored gp91(phox) expression and function in human X-CGD myeloid cell lines, primary monocytes, and differentiated myeloid cells. While unregulated LVs ectopically expressed gp91(phox) in CD34(+) cells, transcriptionally and posttranscriptionally regulated LVs substantially reduced this off-target expression. X-CGD mice transplanted with transduced HSC restored gp91(phox) expression, and MSP-driven vectors maintained regulation during BM development. Combining transcriptional (SP146.gp91-driven) and posttranscriptional (miR-126-restricted) targeting, we achieved high levels of myeloid-specific transgene expression, entirely sparing the CD34(+) HSC compartment. This dual-targeted LV construct represents a promising candidate for further clinical development. PMID:24869932

  16. High-throughput sequencing reveals an altered T cell repertoire in X-linked agammaglobulinemia.

    PubMed

    Ramesh, Manish; Simchoni, Noa; Hamm, David; Cunningham-Rundles, Charlotte

    2015-12-01

    To examine the T cell receptor structure in the absence of B cells, the TCR β CDR3 was sequenced from DNA of 15 X-linked agammaglobulinemia (XLA) subjects and 18 male controls, using the Illumina HiSeq platform and the ImmunoSEQ analyzer. V gene usage and the V-J combinations, derived from both productive and non-productive sequences, were significantly different between XLA samples and controls. Although the CDR3 length was similar for XLA and control samples, the CDR3 region of the XLA T cell receptor contained significantly fewer deletions and insertions in V, D, and J gene segments, differences intrinsic to the V(D)J recombination process and not due to peripheral T cell selection. XLA CDR3s demonstrated fewer charged amino acid residues, more sharing of CDR3 sequences, and almost completely lacked a population of highly modified Vβ gene segments found in control DNA, suggesting both a skewed and contracted T cell repertoire in XLA. PMID:26360253

  17. Splice-correcting oligonucleotides restore BTK function in X-linked agammaglobulinemia model.

    PubMed

    Bestas, Burcu; Moreno, Pedro M D; Blomberg, K Emelie M; Mohammad, Dara K; Saleh, Amer F; Sutlu, Tolga; Nordin, Joel Z; Guterstam, Peter; Gustafsson, Manuela O; Kharazi, Shabnam; Piątosa, Barbara; Roberts, Thomas C; Behlke, Mark A; Wood, Matthew J A; Gait, Michael J; Lundin, Karin E; El Andaloussi, Samir; Månsson, Robert; Berglöf, Anna; Wengel, Jesper; Smith, C I Edvard

    2014-09-01

    X-linked agammaglobulinemia (XLA) is an inherited immunodeficiency that results from mutations within the gene encoding Bruton's tyrosine kinase (BTK). Many XLA-associated mutations affect splicing of BTK pre-mRNA and severely impair B cell development. Here, we assessed the potential of antisense, splice-correcting oligonucleotides (SCOs) targeting mutated BTK transcripts for treating XLA. Both the SCO structural design and chemical properties were optimized using 2'-O-methyl, locked nucleic acid, or phosphorodiamidate morpholino backbones. In order to have access to an animal model of XLA, we engineered a transgenic mouse that harbors a BAC with an authentic, mutated, splice-defective human BTK gene. BTK transgenic mice were bred onto a Btk knockout background to avoid interference of the orthologous mouse protein. Using this model, we determined that BTK-specific SCOs are able to correct aberrantly spliced BTK in B lymphocytes, including pro-B cells. Correction of BTK mRNA restored expression of functional protein, as shown both by enhanced lymphocyte survival and reestablished BTK activation upon B cell receptor stimulation. Furthermore, SCO treatment corrected splicing and restored BTK expression in primary cells from patients with XLA. Together, our data demonstrate that SCOs can restore BTK function and that BTK-targeting SCOs have potential as personalized medicine in patients with XLA. PMID:25105368

  18. Splice-correction strategies for treatment of X-linked agammaglobulinemia.

    PubMed

    Bestas, Burcu; Turunen, Janne J; Blomberg, K Emelie M; Wang, Qing; Månsson, Robert; El Andaloussi, Samir; Berglöf, Anna; Smith, C I Edvard

    2015-03-01

    X-linked agammaglobulinemia (XLA) is a primary immunodeficiency disease caused by mutations in the gene coding for Bruton's tyrosine kinase (BTK). Deficiency of BTK leads to a developmental block in B cell differentiation; hence, the patients essentially lack antibody-producing plasma cells and are susceptible to various infections. A substantial portion of the mutations in BTK results in splicing defects, consequently preventing the formation of protein-coding mRNA. Antisense oligonucleotides (ASOs) are therapeutic compounds that have the ability to modulate pre-mRNA splicing and alter gene expression. The potential of ASOs has been exploited for a few severe diseases, both in pre-clinical and clinical studies. Recently, advances have also been made in using ASOs as a personalized therapy for XLA. Splice-correction of BTK has been shown to be feasible for different mutations in vitro, and a recent proof-of-concept study demonstrated the feasibility of correcting splicing and restoring BTK both ex vivo and in vivo in a humanized bacterial artificial chromosome (BAC)-transgenic mouse model. This review summarizes the advances in splice correction, as a personalized medicine for XLA, and outlines the promises and challenges of using this technology as a curative long-term treatment option. PMID:25638286

  19. High-throughput sequencing reveals an altered T cell repertoire in X-linked agammaglobulinemia

    PubMed Central

    Ramesh, Manish; Simchoni, Noa; Hamm, David; Cunningham-Rundles, Charlotte

    2015-01-01

    To examine the T cell receptor structure in the absence of B cells, the TCR β CDR3 was sequenced from DNA of 15 X-linked agammaglobulinemia (XLA) subjects and 18 male controls, using the Illumina HiSeq platform and the ImmunoSEQ analyzer. V gene usage and the V–J combinations, derived from both productive and nonproductive sequences, were significantly different between XLA samples and controls. Although the CDR3 length was similar for XLA and control samples, the CDR3 region of the XLA T cell receptor contained significantly fewer deletions and insertions in V, D, and J gene segments, differences intrinsic to the V(D)J recombination process and not due to peripheral T cell selection. XLA CDR3s demonstrated fewer charged amino acid residues, more sharing of CDR3 sequences, and almost completely lacked a population of highly modified Vβ gene segments found in control DNA, suggesting both a skewed and contracted T cell repertoire in XLA. PMID:26360253

  20. The genomic structure of human BTK, the defective gene in X-linked agammaglobulinemia

    SciTech Connect

    Rohrer, J.; Parolini, O.; Conley, M.E. |; Belmont, J.W.

    1994-12-31

    It has recently been demonstrated that mutations in the gene for Bruton`s tyrosine kinase (BTK) are responsible for X-linked agammaglobulinemia. Southern blot analysis and sequencing of cDNA were used to document deletions, insertions, and single base pair substitutions. To facilitate analysis of BTK regulation and to permit the development of assays that could be used to screen genomic DNA for mutations in BTK, the authors determined the genomic organization of this gene. Subcloning of a cosmid and a yeast artificial chromosome showed that BTK is divided into 19 exons spanning 37 kilobases of genomic DNA. Analysis of the region 5{prime} to the first untranslated exon revealed no consensus TATAA or CAAT boxes; however, three retinoic acid binding sites were identified in this region. Comparison of the structure of BTK with that of other nonreceptor tyrosine kinases, including SRC, FES, and CSK, demonstrated a lack of conservation of exon borders. Information obtained in this study will contribute to understanding of the evolution of nonreceptor tyrosine kinases. It will also be useful in diagnostic studies, including carrier detection, and in studies directed towards gene therapy or gene replacement. 29 refs., 2 figs., 2 tabs.

  1. X-linked myopathy with excessive autophagy: a failure of self-eating.

    PubMed

    Dowling, James J; Moore, Steven A; Kalimo, Hannu; Minassian, Berge A

    2015-03-01

    Autophagic vacuolar myopathies (AVMs) are a group of disorders united by shared histopathological features on muscle biopsy that include the aberrant accumulation of autophagic vacuoles. The classic conditions that compose the AVMs include Pompe Disease, Danon Disease and X-linked myopathy with excessive autophagy (XMEA). Other disorders, including acquired myopathies like chloroquine toxicity, also have features of an autophagic myopathy. This review is focused on XMEA, a myopathy with onset of slowly progressive proximal weakness and elevated serum creatine kinase (2× to 20× normal) typically in the first decade of life. However, both late-adult onset and severe, sometimes lethal, neonatal cases also occur. Skeletal muscle pathology is characterized by numerous cytoplasmic autophagic vacuoles, complex muscle fiber splitting with internalization of capillaries, and complement C5b-9 deposition within vacuoles and along the sarcolemma. The autophagic vacuoles have sarcolemmal features. Mutations in the VMA21 gene at Xq28 cause XMEA by reducing the activity of lysosomal hydrolases. The VMA21 protein regulates the assembly of the V-ATPase required to acidify the lysosome. Increased lysosomal pH and poor degradation of cellular debris may secondarily induce autophagy, the net effect being accumulation of autophagolysosomes. The relationship of XMEA to other lysosomal disorders of muscle and potential therapeutic interventions for XMEA are discussed. PMID:25644398

  2. {open_quotes}Unspecific{close_quotes} X-linked mental retardation: Clinical, genetic and molecular studies

    SciTech Connect

    Ropers, H.H.; Maacel, S. van der; Knoers, N.

    1994-09-01

    Previous linkage studies have assigned a gene for non-syndromic X-linked mental retardation (XMR) to at least 8 different regions on the X-chromosome. The fragile X-syndrome (FRAXA) does not account for more than 40% of all cases; in most XMR families early diagnosis and prevention is not possible. As part of a systematic study into {open_quotes}unspecific{close_quotes} XMR involving more than 30 non-FRAXA families, linkage studies have enabled us to map the respective genes in 4 families to the Xp11.4-q12 interval with peak lod scores around the ALAS2 locus. In three other families, the gene defect could be assigned to the KAL-DMD, DXS424-FRAXAC2 and DSX52-Xqter intervals, respectively. In one of these families, small stature due to growth hormone deficiency was observed as a distinctive clinical feature. Molecular cloning of the breakpoint in a mentally retarded girl with a balanced t(Xq13;13q) translocation has enabled us to isolate an X-chromosomal gene which is disrupted in this patient and is highly expressed in brain. YAC cloning strategies are being employed to clone another XMR gene, which has been identified previously in the vicinity of the CHM locus and genes involved in mentally retarded patients with two different inversions, inv(X)(q21p11) and inv(X)(p21q24), respectively.

  3. The genetic landscape of X-linked adrenoleukodystrophy: inheritance, mutations, modifier genes, and diagnosis

    PubMed Central

    Wiesinger, Christoph; Eichler, Florian S; Berger, Johannes

    2015-01-01

    X-linked adrenoleukodystrophy (X-ALD) is caused by mutations in the ABCD1 gene encoding a peroxisomal ABC transporter. In this review, we compare estimates of incidence derived from different populations in order to provide an overview of the worldwide incidence of X-ALD. X-ALD presents with heterogeneous phenotypes ranging from adrenomyeloneuropathy (AMN) to inflammatory demyelinating cerebral ALD (CALD). A large number of different mutations has been described, providing a unique opportunity for analysis of functional domains within ABC transporters. Yet the molecular basis for the heterogeneity of clinical symptoms is still largely unresolved, as no correlation between genotype and phenotype exists in X-ALD. Beyond ABCD1, environmental triggers and other genetic factors have been suggested as modifiers of the disease course. Here, we summarize the findings of numerous reports that aimed at identifying modifier genes in X-ALD and discuss potential problems and future approaches to address this issue. Different options for prenatal diagnosis are summarized, and potential pitfalls when applying next-generation sequencing approaches are discussed. Recently, the measurement of very long-chain fatty acids in lysophosphatidylcholine for the identification of peroxisomal disorders was included in newborn screening programs. PMID:25999754

  4. Transcription factor SOX3 is involved in X-linked mental retardation with growth hormone deficiency.

    PubMed

    Laumonnier, Frédéric; Ronce, Nathalie; Hamel, Ben C J; Thomas, Paul; Lespinasse, James; Raynaud, Martine; Paringaux, Christine; Van Bokhoven, Hans; Kalscheuer, Vera; Fryns, Jean-Pierre; Chelly, Jamel; Moraine, Claude; Briault, Sylvain

    2002-12-01

    Physical mapping of the breakpoints of a pericentric inversion of the X chromosome (46,X,inv[X][p21q27]) in a female patient with mild mental retardation revealed localization of the Xp breakpoint in the IL1RAPL gene at Xp21.3 and the Xq breakpoint near the SOX3 gene (SRY [sex determining region Y]-box 3) (GenBank accession number NM_005634) at Xq26.3. Because carrier females with microdeletion in the IL1RAPL gene do not present any abnormal phenotype, we focused on the Xq breakpoint. However, we were unable to confirm the involvement of SOX3 in the mental retardation in this female patient. To validate SOX3 as an X-linked mental retardation (XLMR) gene, we performed mutation analyses in families with XLMR whose causative gene mapped to Xq26-q27. We show here that the SOX3 gene is involved in a large family in which affected individuals have mental retardation and growth hormone deficiency. The mutation results in an in-frame duplication of 33 bp encoding for 11 alanines in a polyalanine tract of the SOX3 gene. The expression pattern during neural and pituitary development suggests that dysfunction of the SOX3 protein caused by the polyalanine expansion might disturb transcription pathways and the regulation of genes involved in cellular processes and functions required for cognitive and pituitary development. PMID:12428212

  5. Transcription Factor SOX3 Is Involved in X-Linked Mental Retardation with Growth Hormone Deficiency

    PubMed Central

    Laumonnier, Frédéric; Ronce, Nathalie; Hamel, Ben C. J.; Thomas, Paul; Lespinasse, James; Raynaud, Martine; Paringaux, Christine; van Bokhoven, Hans; Kalscheuer, Vera; Fryns, Jean-Pierre; Chelly, Jamel; Moraine, Claude; Briault, Sylvain

    2002-01-01

    Physical mapping of the breakpoints of a pericentric inversion of the X chromosome (46,X,inv[X][p21q27]) in a female patient with mild mental retardation revealed localization of the Xp breakpoint in the IL1RAPL gene at Xp21.3 and the Xq breakpoint near the SOX3 gene (SRY [sex determining region Y]–box 3) (GenBank accession number NM_005634) at Xq26.3. Because carrier females with microdeletion in the IL1RAPL gene do not present any abnormal phenotype, we focused on the Xq breakpoint. However, we were unable to confirm the involvement of SOX3 in the mental retardation in this female patient. To validate SOX3 as an X-linked mental retardation (XLMR) gene, we performed mutation analyses in families with XLMR whose causative gene mapped to Xq26-q27. We show here that the SOX3 gene is involved in a large family in which affected individuals have mental retardation and growth hormone deficiency. The mutation results in an in-frame duplication of 33 bp encoding for 11 alanines in a polyalanine tract of the SOX3 gene. The expression pattern during neural and pituitary development suggests that dysfunction of the SOX3 protein caused by the polyalanine expansion might disturb transcription pathways and the regulation of genes involved in cellular processes and functions required for cognitive and pituitary development. PMID:12428212

  6. Epilepsy and mental retardation restricted to females: X-linked epileptic infantile encephalopathy of unusual inheritance.

    PubMed

    Duszyc, Kinga; Terczynska, Iwona; Hoffman-Zacharska, Dorota

    2015-02-01

    Epilepsy in females with mental retardation (EFMR) is a rare early infantile epileptic encephalopathy (EIEE), phenotypically resembling Dravet syndrome (DS). It is characterised by a variable degree of intellectual deficits and epilepsy. EFMR is caused by heterozygous mutations in the PCDH19 gene (locus Xq22.1) encoding protocadherin-19, a protein that is highly expressed during brain development. The protein is involved in cell adhesion and probably plays an important role in neuronal migration and formation of synaptic connections. EFMR is considered X-linked of variable mutations' penetrance. Mutations in the PCDH19 gene mainly arise de novo, but if inherited, they show a unique pattern of transmission. Females with heterozygous mutations are affected, while hemizygous males are not, regardless of mutation carriage. This singular mode might be explained by cell interference as a pathogenic molecular mechanism leading to neuronal dysfunction. Recently, PCDH19-related EIEE turned out to be more frequent than initially thought, contributing to around 16% of cases (25% in female groups) in the SCN1A-negative DS-like patients. Therefore, the PCDH19 gene is now estimated to be the second, after SCN1A, most clinically relevant gene in epilepsy. PMID:25204757

  7. X-Linked Recessive form of Nephrogenic Diabetes Insipidus in a 7-Year-Old Boy.

    PubMed

    Janchevska, A; Tasic, V; Gucev, Z; Krstevska-Konstantinova, M; Cheong, H I

    2014-12-01

    Nephrogenic diabetes insipidus (NDI) is caused by the inability of renal collecting duct cells to respond to arginine vasopressin (AVP)/antidiuretic hormone (ADH). We present the case of a 7-year-old boy with a history of excretion of large amounts of dilute urine and polydipsia since infancy. The boy had several vomiting episodes with mild dehydration during the first 3 years of life. There was no evidence of headaches, dizziness or visual problems. He drinks between 2 and 3 L/day and has 24-hour diuresis of 2 liters, now. He has prepubertal appearance with appropriate weight [+0.85 standard deviation score (SDS)] and height (+0.15 SDS) for his age. His intelligence was also normal. The water deprivation test showed low urine osmolality after 8 hours of dehydration. After desmopressin administration, urine osmolality remained low. Serum osmolality was in the normal range for sex and age before and after desmopressin administration. This indicated a nephrogenic form of diabetes insipidus. Molecular analyses revealed a P286L [p.Pro(CCC)286Leu(CTC)] mutation in the AVPR2 gene, that was inherited from his mother. This patient is the first case with genetically confirmed X-linked inherited form of NDI in the Republic of Macedonia. Molecular analysis confirmed the clinical diagnosis and enabled genetic advice for this family. PMID:25937802

  8. X-linked ocular albinism: prevalence and mutations--a national study.

    PubMed

    Rosenberg, T; Schwartz, M

    1998-01-01

    In a national retrospective register study 112 patients with ocular albinism (OA) were identified, including 60 male patients with proven or presumed X-linked ocular albinism (XLOA). Based on the birth year cohorts 1960-1989, an XLOA point prevalence at birth of 1 in 60,000 live-born was calculated. We identified 14 XLOA families in the Danish population, and obtained DNA from affected persons in nine families. Mutation analysis of the OA1 gene demonstrated seven presumed pathogenic mutations in the nine families with XLOA: five single nucleotide substitutions predicting a change of conserved amino acids (G35D, L39R, D78V, W133R and E233K) when compared with the mouse OA1 homologue, one deletion leading to the skipping of exon 2, and one single nucleotide substitution expected to affect the 5' splice site of intron 2 were found. Subsequent genealogical investigations in the three families harbouring the same mutation disclosed that two of the three pedigrees belonged to the same family. All mutations predict crucial changes in the protein structure. Clinical examination failed to identify any phenotype-genotype pattern except a milder phenotype devoid of iris translucency in the patient with the 5'splice site mutation of intron 2. PMID:9887374

  9. Adenoassociated Virus Serotype 9-Mediated Gene Therapy for X-Linked Adrenoleukodystrophy

    PubMed Central

    Gong, Yi; Mu, Dakai; Prabhakar, Shilpa; Moser, Ann; Musolino, Patricia; Ren, JiaQian; Breakefield, Xandra O; Maguire, Casey A; Eichler, Florian S

    2015-01-01

    X-linked adrenoleukodystrophy (X-ALD) is a devastating neurological disorder caused by mutations in the ABCD1 gene that encodes a peroxisomal ATP-binding cassette transporter (ABCD1) responsible for transport of CoA-activated very long-chain fatty acids (VLCFA) into the peroxisome for degradation. We used recombinant adenoassociated virus serotype 9 (rAAV9) vector for delivery of the human ABCD1 gene (ABCD1) to mouse central nervous system (CNS). In vitro, efficient delivery of ABCD1 gene was achieved in primary mixed brain glial cells from Abcd1−/− mice as well as X-ALD patient fibroblasts. Importantly, human ABCD1 localized to the peroxisome, and AAV-ABCD1 transduction showed a dose-dependent effect in reducing VLCFA. In vivo, AAV9-ABCD1 was delivered to Abcd1−/− mouse CNS by either stereotactic intracerebroventricular (ICV) or intravenous (IV) injections. Astrocytes, microglia and neurons were the major target cell types following ICV injection, while IV injection also delivered to microvascular endothelial cells and oligodendrocytes. IV injection also yielded high transduction of the adrenal gland. Importantly, IV injection of AAV9-ABCD1 reduced VLCFA in mouse brain and spinal cord. We conclude that AAV9-mediated ABCD1 gene transfer is able to reach target cells in the nervous system and adrenal gland as well as reduce VLCFA in culture and a mouse model of X-ALD. PMID:25592337

  10. Prenatal diagnosis of X-linked adrenoleukodystrophy combining biochemical, immunocytochemical and DNA analyses.

    PubMed

    Maier, E M; Roscher, A A; Kammerer, S; Mehnert, K; Conzelmann, E; Holzinger, A

    1999-04-01

    Amniocentesis was performed at 17 weeks' gestation on a 39-year-old woman at risk of being a carrier for X-linked adrenoleukodystrophy (X-ALD). Her first son had been affected with childhood cerebral X-ALD and had died at the age of nine years. DNA analysis had not been performed nor was any material available. The amniotic fluid cells (AFC) karyotype was found to be male and initial determination of very long chain fatty acids (VLCFA) in cultured amniocytes revealed borderline values. As an alternative strategy the complete coding region of the ALD gene was amplified and sequenced using DNA isolated from both AFC and maternal leukocytes as templates. Sequencing of the mother's DNA revealed the heterozygous pattern of a 2 bp deletion in exon 5, the most frequent individual mutation leading to X-ALD. It has previously been described to result in a complete loss of protein. This deletion was excluded in the fetus. Accordingly, ALDP was readily detected in AFC by immunofluorescence. We conclude that under circumstances of incomplete data about the index case the combination of methods, namely DNA analysis of the heterozygous mother, and biochemical, immunocytochemical and DNA analyses in fetal cells can secure a reliable prenatal diagnosis of X-ALD. PMID:10327143

  11. A Mouse Model of X-linked Intellectual Disability Associated with Impaired Removal of Histone Methylation.

    PubMed

    Iwase, Shigeki; Brookes, Emily; Agarwal, Saurabh; Badeaux, Aimee I; Ito, Hikaru; Vallianatos, Christina N; Tomassy, Giulio Srubek; Kasza, Tomas; Lin, Grace; Thompson, Andrew; Gu, Lei; Kwan, Kenneth Y; Chen, Chinfei; Sartor, Maureen A; Egan, Brian; Xu, Jun; Shi, Yang

    2016-02-01

    Mutations in a number of chromatin modifiers are associated with human neurological disorders. KDM5C, a histone H3 lysine 4 di- and tri-methyl (H3K4me2/3)-specific demethylase, is frequently mutated in X-linked intellectual disability (XLID) patients. Here, we report that disruption of the mouse Kdm5c gene recapitulates adaptive and cognitive abnormalities observed in XLID, including impaired social behavior, memory deficits, and aggression. Kdm5c-knockout brains exhibit abnormal dendritic arborization, spine anomalies, and altered transcriptomes. In neurons, Kdm5c is recruited to promoters that harbor CpG islands decorated with high levels of H3K4me3, where it fine-tunes H3K4me3 levels. Kdm5c predominantly represses these genes, which include members of key pathways that regulate the development and function of neuronal circuitries. In summary, our mouse behavioral data strongly suggest that KDM5C mutations are causal to XLID. Furthermore, our findings suggest that loss of KDM5C function may impact gene expression in multiple regulatory pathways relevant to the clinical phenotypes. PMID:26804915

  12. Adenoassociated virus serotype 9-mediated gene therapy for x-linked adrenoleukodystrophy.

    PubMed

    Gong, Yi; Mu, Dakai; Prabhakar, Shilpa; Moser, Ann; Musolino, Patricia; Ren, JiaQian; Breakefield, Xandra O; Maguire, Casey A; Eichler, Florian S

    2015-05-01

    X-linked adrenoleukodystrophy (X-ALD) is a devastating neurological disorder caused by mutations in the ABCD1 gene that encodes a peroxisomal ATP-binding cassette transporter (ABCD1) responsible for transport of CoA-activated very long-chain fatty acids (VLCFA) into the peroxisome for degradation. We used recombinant adenoassociated virus serotype 9 (rAAV9) vector for delivery of the human ABCD1 gene (ABCD1) to mouse central nervous system (CNS). In vitro, efficient delivery of ABCD1 gene was achieved in primary mixed brain glial cells from Abcd1-/- mice as well as X-ALD patient fibroblasts. Importantly, human ABCD1 localized to the peroxisome, and AAV-ABCD1 transduction showed a dose-dependent effect in reducing VLCFA. In vivo, AAV9-ABCD1 was delivered to Abcd1-/- mouse CNS by either stereotactic intracerebroventricular (ICV) or intravenous (IV) injections. Astrocytes, microglia and neurons were the major target cell types following ICV injection, while IV injection also delivered to microvascular endothelial cells and oligodendrocytes. IV injection also yielded high transduction of the adrenal gland. Importantly, IV injection of AAV9-ABCD1 reduced VLCFA in mouse brain and spinal cord. We conclude that AAV9-mediated ABCD1 gene transfer is able to reach target cells in the nervous system and adrenal gland as well as reduce VLCFA in culture and a mouse model of X-ALD. PMID:25592337

  13. Linkage mapping of a severe X-linked mental retardation syndrome

    SciTech Connect

    Malmgren, H.; Sundvall, M.; Steen-Bondeson, M.L.; Pettersson, U. ); Dahl, N. University Hospital, Uppsala ); Gustavson, K.H.; Anneren, G.; Wadelius, C. )

    1993-06-01

    A four-generation Swedish family with a new type of X-linked mental retardation syndrome was recently reported by Gustavson et al. The complex syndrome includes microcephaly, severe mental retardation, optical atrophy with decreased vision or blindness, severe hearing defect, characteristic facial features, spasticity, seizures, and restricted joint motility. The patients die during infancy or early in childhood. Twenty-one family members, including two affected males, were available for study. Linkage analysis was conducted in the family by using 11 RFLP markers and 10 VNTR markers spread along the X chromosome. A hypervariable short tandem repeat of DXS294 at Xq26 showed a peak two-point lod score of 3.35 at zero recombination fraction. Calculations using the same markers revealed a multipoint peak lod score of 3.65 at DXS294. Crossover events with the centromeric marker DXS424 and the telomeric marker DXS297 delimit a probable region for the gene localization. It is noteworthy that the disease loci of two other syndromes with overlapping clinical manifestations recently were shown by Turner et al. and Pettigrew et al. to be linked to markers at Xq26. 29 refs., 2 figs., 1 tab.

  14. X-linked microtubule-associated protein, Mid1, regulates axon development.

    PubMed

    Lu, Tingjia; Chen, Renchao; Cox, Timothy C; Moldrich, Randal X; Kurniawan, Nyoman; Tan, Guohe; Perry, Jo K; Ashworth, Alan; Bartlett, Perry F; Xu, Li; Zhang, Jing; Lu, Bin; Wu, Mingyue; Shen, Qi; Liu, Yuanyuan; Richards, Linda J; Xiong, Zhiqi

    2013-11-19

    Opitz syndrome (OS) is a genetic neurological disorder. The gene responsible for the X-linked form of OS, Midline-1 (MID1), encodes an E3 ubiquitin ligase that regulates the degradation of the catalytic subunit of protein phosphatase 2A (PP2Ac). However, how Mid1 functions during neural development is largely unknown. In this study, we provide data from in vitro and in vivo experiments suggesting that silencing Mid1 in developing neurons promotes axon growth and branch formation, resulting in a disruption of callosal axon projections in the contralateral cortex. In addition, a similar phenotype of axonal development was observed in the Mid1 knockout mouse. This defect was largely due to the accumulation of PP2Ac in Mid1-depleted cells as further down-regulation of PP2Ac rescued the axonal phenotype. Together, these data demonstrate that Mid1-dependent PP2Ac turnover is important for normal axonal development and that dysregulation of this process may contribute to the underlying cause of OS. PMID:24194544

  15. A new mutation in EDA gene in X-linked hypohidrotic ectodermal dysplasia associated with keratoconus.

    PubMed

    Piccione, M; Serra, G; Sanfilippo, C; Andreucci, E; Sani, I; Corsello, G

    2012-02-01

    Hypohidrotic ectodermal dysplasia (HED) was first described in 1848 by Thurnam. HED belongs to ectodermal dysplasias (EDs), which are developmental impairments of ectodermal-derived tissues. X-linked hypohidrotic ectodermal dysplasia (XLHED) is the most common form of the EDs and consists in abnormal development of teeth, hair, and eccrine sweat glands. XLHED is determined by mutations in the ED1 gene, which is responsible for the coding of ectodysplasin-A(EDA-A), a protein that regulates ectodermal appendage formation. In the present study we found both in our proband and in the mother the same missense mutation in exon 9 (c.957 C>A), which resulted in an aminoacid change at position 319 (Ser319Arg). This latter anomaly might alter the charges in the TNF domain of EDA-A, affecting the stability of the protein and therefore the interaction with its receptor. The male propositus presented classical manifestations of HED except for keratoconus (KC) and, to the best of our knowledge, this association has not been previously described. The identification of this new mutation may contribute to evaluating the genotype/phenotype correlations. Finally, this report can give useful information about the genetic basis of KC and HED. Future studies will allow us to understand if a genetic bond exists between them. PMID:22350046

  16. Methylation State of the EDA Gene Promoter in Chinese X-Linked Hypohidrotic Ectodermal Dysplasia Carriers

    PubMed Central

    Fan, Huali; Bian, Zhuan

    2013-01-01

    Introduction Hypodontia, hypohidrosis, sparse hair and characteristic faces are the main characters of X-linked hypohidrotic ectodermal dysplasia (XLHED) which is caused by genetic ectodysplasin A (EDA) deficiency. Heterozygous female carriers tend to have mild to moderate XLHED phenotype, even though 30% of them present no obvious symptom. Methods A large Chinese XLHED family was reported and the entire coding region and exon–intron boundaries of EDA gene were sequenced. To elucidate the mechanism for carriers’ tempered phenotype, we analyzed the methylation level on four sites of the promoter of EDA by the pyrosequencing system. Results A known frameshift mutation (c.573–574 insT) was found in this pedigree. Combined with the pedigrees we reported before, 120 samples comprised of 23 carrier females from 11 families and 97 healthy females were analyzed for the methylation state of EDA promoter. Within 95% confidence interval (CI), 18 (78.26%) carriers were hypermethylated at these 4 sites. Conclusion Chinese XLHED carriers often have a hypermethylated EDA promoter. PMID:23626789

  17. Familial partial lipodystrophy: two types of an X linked dominant syndrome, lethal in the hemizygous state.

    PubMed Central

    Köbberling, J; Dunnigan, M G

    1986-01-01

    Familial lipodystrophy (referred to in publications as the Köbberling-Dunnigan syndrome) comprises at least two clinical phenotypes which are consistent within each pedigree. In type 1 familial lipodystrophy, loss of subcutaneous fat is confined to the limbs, sparing the face and trunk. In type 2 familial lipodystrophy, the trunk is also affected with the exception of the vulva, giving an appearance of labial hypertrophy. Diabetes mellitus, hyperlipoproteinaemia, and acanthosis nigricans are present to a variable degree in some but not all patients with familial lipodystrophy, and the abnormal distribution of subcutaneous fat is the essential hallmark of the syndrome. In addition to a survey of published reports, new cases with the syndrome are described. Both types of partial lipodystrophy, occurring either as familial disease or as sporadic cases, have only been observed in female patients. Study of the pedigrees of five families with familial lipodystrophy (two Scottish and three German) suggests an X linked dominant mode of transmission, lethal in the hemizygous (XY) state. The two clinical phenotypes with their variably expressive metabolic abnormalities are consistent either with different mutants of the same allele or with two genes on adjacent loci. Other clinical phenotypes of familial lipodystrophy may exist due to further mutations of the same allele or of genes on adjacent loci. The nature of the disorder in patients with familial lipodystrophy usually escapes recognition for many years and the syndrome is almost certainly much commoner than the few families described to date suggest. Images PMID:3712389

  18. Females with a disorder phenotypically identical to X-linked agammaglobulinemia

    SciTech Connect

    Conley, M.E. ); Sweinberg, S.K. )

    1992-03-01

    Clinical and laboratory findings in two girls with a disorder phenotypically indistinguishable from typical X-linked agammaglobulinemia (XLA) are described. To examine the possibility that subtle defects in the X chromosome might explain the findings, detailed genetic studies were performed on one of these patients. Cytogenetic studies showed a normal 46XX karyotype. Southern blot analysis of her DNA showed that she had inherited a maternal and a paternal allele at sites flanking the locus for typical XLA at Xq22, making a microdeletion or uniparental disomy unlikely. To determine whether both of her X chromosomes could function as the active X, somatic-cell hybrids that selectively retained the active X were produced from her activated T cells. A normal random pattern of X inactivation was seen. Of 21 T-cell hybrids, 3 retained both X chromosomes, 7 had one X as the active X, and 11 had the other X as the active X. The authors have interpreted these studies as indicating that there is an autosomal recessive disorder that is phenotypically identical to XLA.

  19. A Novel PHEX Mutation in Japanese Patients with X-Linked Hypophosphatemic Rickets

    PubMed Central

    Kawahara, Tetsuya; Watanabe, Hiromi; Omae, Risa; Yamamoto, Toshiyuki; Inazu, Tetsuya

    2015-01-01

    X-linked hypophosphatemic rickets (XLH) is a dominant inherited disorder characterized by renal phosphate wasting, aberrant vitamin D metabolism, and abnormal bone mineralization. Inactivating mutations in the gene encoding phosphate-regulating gene with homologies to endopeptidases on the X chromosome (PHEX) have been found to be associated with XLH. Here, we report a 16-year-old female patient affected by hypophosphatemic rickets. We evaluated her serum fibroblast growth factor 23 (FGF23) levels and conducted sequence analysis of the disease-associated genes of FGF23-related hypophosphatemic rickets: PHEX, FGF23, dentin matrix protein 1, and ectonucleotide pyrophosphatase/phosphodiesterase 1. She was diagnosed with XLH based on her clinical features and family history. Additionally, we observed elevated FGF23 levels and a novel PHEX exon 9 mutation (c.947G>T; p.Gly316Val) inherited from her father. Although bioinformatics showed that the mutation was neutral, Gly316 is perfectly conserved among humans, mice, and rats, and there were no mutations in other FGF23-related rickets genes, suggesting that in silico analysis is limited in determining mutation pathogenicity. In summary, we present a female patient and her father with XLH harboring a novel PHEX mutation that appears to be causative of disease. Measurement of FGF23 for hypophosphatemic patients is therefore useful for the diagnosis of FGF23-dependent hypophosphatemia. PMID:25861491

  20. Lentiviral hematopoietic stem cell gene therapy for X-linked severe combined immunodeficiency.

    PubMed

    De Ravin, Suk See; Wu, Xiaolin; Moir, Susan; Anaya-O'Brien, Sandra; Kwatemaa, Nana; Littel, Patricia; Theobald, Narda; Choi, Uimook; Su, Ling; Marquesen, Martha; Hilligoss, Dianne; Lee, Janet; Buckner, Clarissa M; Zarember, Kol A; O'Connor, Geraldine; McVicar, Daniel; Kuhns, Douglas; Throm, Robert E; Zhou, Sheng; Notarangelo, Luigi D; Hanson, I Celine; Cowan, Mort J; Kang, Elizabeth; Hadigan, Coleen; Meagher, Michael; Gray, John T; Sorrentino, Brian P; Malech, Harry L

    2016-04-20

    X-linked severe combined immunodeficiency (SCID-X1) is a profound deficiency of T, B, and natural killer (NK) cell immunity caused by mutations inIL2RGencoding the common chain (γc) of several interleukin receptors. Gamma-retroviral (γRV) gene therapy of SCID-X1 infants without conditioning restores T cell immunity without B or NK cell correction, but similar treatment fails in older SCID-X1 children. We used a lentiviral gene therapy approach to treat five SCID-X1 patients with persistent immune dysfunction despite haploidentical hematopoietic stem cell (HSC) transplant in infancy. Follow-up data from two older patients demonstrate that lentiviral vector γc transduced autologous HSC gene therapy after nonmyeloablative busulfan conditioning achieves selective expansion of gene-marked T, NK, and B cells, which is associated with sustained restoration of humoral responses to immunization and clinical improvement at 2 to 3 years after treatment. Similar gene marking levels have been achieved in three younger patients, albeit with only 6 to 9 months of follow-up. Lentiviral gene therapy with reduced-intensity conditioning appears safe and can restore humoral immune function to posthaploidentical transplant older patients with SCID-X1. PMID:27099176

  1. Brain-Expressed X-linked (BEX) proteins in human cancers.

    PubMed

    Kazi, Julhash U; Kabir, Nuzhat N; Rönnstrand, Lars

    2015-12-01

    The Brain-Expressed X-linked (BEX) family proteins are comprised of five human proteins including BEX1, BEX2, BEX3, BEX4 and BEX5. BEX family proteins are expressed in a wide range of tissues and are known to play a role in neuronal development. Recent studies suggest a role of BEX family proteins in cancers. BEX1 expression is lost in a subgroup of patients with acute myeloid leukemia (AML) and chronic myeloid leukemia (CML). Expression of BEX1 controls cell surface receptor signaling and restores imatinib response in resistant cells. BEX2 is overexpressed in a group of breast cancer patients and also in gliomas. Increased BEX2 expression led to enhanced NF-κB signaling as well as cell proliferation. Although BEX2 acts as tumor promoter in a subset of breast cancer, BEX3 expression displayed an opposite role. Overexpression of BEX3 resulted in inhibition of tumor formation in breast cancer mouse xenograft models. The role of BEX4 and BEX5 in cancer has not yet been defined. Collectively this suggests that BEX family members have distinct roles in cancers. While BEX1 and BEX3 act as tumor suppressors, BEX2 seems to act as an oncogene. PMID:26408910

  2. How do Mutations in GJB1 Cause X-linked Charcot-Marie-Tooth Disease?

    PubMed Central

    Kleopa, Kleopas A.; Abrams, Charles K.; Scherer, Steven S.

    2012-01-01

    The X-linked form of Charcot-Marie-Tooth disease (CMT1X) is the second most common form of hereditary motor and sensory neuropathy. The clinical phenotype is characterized by progressive weakness, atrophy, and sensory abnormalities that are most pronounced in the distal extremities. Some patients have CNS manifestations. Affected males have moderate to severe symptoms, whereas heterozygous females are usually less affected. Neurophysiology shows intermediate slowing of conduction and length-dependent axonal loss. Nerve biopsies show more prominent axonal degeneration than de/remyelination. Mutations in GJB1, the gene that encodes the gap junction (GJ) protein connexin32 (Cx32) cause CMT1X; more than 400 different mutations have been described. Many Cx32 mutants fail to form functional GJs, or form GJs with abnormal biophysical properties. Schwann cells and oligodendrocytes express Cx32, and the GJs formed by Cx32 play an important role in the homeostasis of myelinated axons. Animal models of CMT1X demonstrate that loss of Cx32 in myelinating Schwann cells causes a demyelinating neuropathy. Effective therapies remain to be developed. PMID:22771394

  3. A new X linked recessive syndrome of mental retardation and mild dysmorphism maps to Xq28.

    PubMed Central

    Pai, G S; Hane, B; Joseph, M; Nelson, R; Hammond, L S; Arena, J F; Lubs, H A; Stevenson, R E; Schwartz, C E

    1997-01-01

    Efforts to understand the genetic basis of mental retardation are greatly assisted by the identification of families with multiple relatives with mental retardation that clinical geneticists encounter in the routine practice of their profession. Here we describe a linkage study of a four generation family in which X linked recessive mental retardation (XLMR) is associated with minor dysmorphism and premature death of the affected males. Microsatellite based polymorphic loci evenly spaced over the entire X chromosome were used initially to detect linkage to Xq28. Further analysis identified a haplotype of Xq28 markers bounded proximally by locus DXS1113 and distally by DXS1108 that cosegregated with XLMR in this family. Two point lod scores > 3.0 provided strong evidence that the gene locus responsible for XLMR in this family is within this 7 Mb region of Xq28. The minor anomalies noted in some affected males were not distinctive enough to suggest a unique syndrome. None of our patients had features of the Waisman-Laxova syndrome or the PPM-X syndrome. The possibility of allelism with any of the five other non-specific XLMR syndromes (MRX3, MRX16, MRX25, MRX28, and MRX41) mapped to Xq28 could not be excluded. While the recognition of a gene responsible for this disorder needs much additional work, multiple female relatives at risk in this family benefit immediately from knowing their genotype and heterozygotes will have the opportunity to undergo prenatal diagnosis. Images PMID:9222958

  4. Clinical diversity and chromosomal localization of X-linked cone dystrophy (COD1).

    PubMed Central

    Hong, H. K.; Ferrell, R. E.; Gorin, M. B.

    1994-01-01

    X-linked progressive cone dystrophy (COD1) causes progressive deterioration of visual acuity, deepening of central scotomas, macular changes, and bull's-eye lesions. The cone electroretinography (ERG) is variably abnormal in affected males, and the rod ERG may also be abnormal. The clinical picture of heterozygous females ranges from asymptomatic to a widespread spectrum of cone-mediated dysfunction. A prior linkage study demonstrated linkage between the COD1 locus and the marker locus DXS84, assigned to Xp21.1, with no recombination. In the present study, we have clinically characterized a large four-generation family with COD1 and have performed a linkage analysis using seven polymorphic markers on the short arm of the X chromosome. No recombination was observed between the disease and the marker loci DXS7 and MAOA, suggesting that the location of COD1 is in the region Xp11.3, distal to DXS84 and proximal to ARAF1. Images Figure 2 PMID:7977377

  5. Skeletal Muscle Pathology in X-Linked Myotubular Myopathy: Review With Cross-Species Comparisons

    PubMed Central

    Lawlor, Michael W.; Beggs, Alan H.; Buj-Bello, Ana; Childers, Martin K.; Dowling, James J.; James, Emma S.; Meng, Hui; Moore, Steven A.; Prasad, Suyash; Schoser, Benedikt; Sewry, Caroline A.

    2016-01-01

    X-linked myotubular myopathy (XLMTM) is a devastating, rare, congenital myopathy caused by mutations in the MTM1 gene, resulting in a lack of or dysfunction of the enzyme myotubularin. This leads to severe perinatal weakness and distinctive muscle pathology. It was originally thought that XLMTM was related to developmental arrest in myotube maturation; however, the generation and characterization of several animal models have significantly improved our understanding of clinical and pathological aspects of this disorder. Myotubularin is now known to participate in numerous cellular processes including endosomal trafficking, excitation-contraction coupling, cytoskeletal organization, neuromuscular junction structure, autophagy, and satellite cell proliferation and survival. The available vertebrate models of XLMTM, which vary in severity from complete absence to reduced functional levels of myotubularin, recapitulate features of the human disease to a variable extent. Understanding how pathological endpoints in animals with XLMTM translate to human patients will be essential to interpret preclinical treatment trials and translate therapies into human clinical studies. This review summarizes the published animal models of XLMTM, including those of zebrafish, mice, and dogs, with a focus on their pathological features as compared to those seen in human XLMTM patients. PMID:26823526

  6. Mutations in the DLG3 Gene Cause Nonsyndromic X-Linked Mental Retardation

    PubMed Central

    Tarpey, Patrick; Parnau, Josep; Blow, Matthew; Woffendin, Hayley; Bignell, Graham; Cox, Charles; Cox, James; Davies, Helen; Edkins, Sarah; Holden, Simon; Korny, Angelique; Mallya, Uma; Moon, Jenny; O’Meara, Sarah; Parker, Adrian; Stephens, Philip; Stevens, Claire; Teague, Jon; Donnelly, Andrew; Mangelsdorf, Marie; Mulley, John; Partington, Michael; Turner, Gillian; Stevenson, Roger; Schwartz, Charles; Young, Ian; Easton, Douglas; Bobrow, Martin; Futreal, P. Andrew; Stratton, Michael R.; Gecz, Jozef; Wooster, Richard; Raymond, F. Lucy

    2004-01-01

    We have identified truncating mutations in the human DLG3 (neuroendocrine dlg) gene in 4 of 329 families with moderate to severe X-linked mental retardation. DLG3 encodes synapse-associated protein 102 (SAP102), a member of the membrane-associated guanylate kinase protein family. Neuronal SAP102 is expressed during early brain development and is localized to the postsynaptic density of excitatory synapses. It is composed of three amino-terminal PDZ domains, an src homology domain, and a carboxyl-terminal guanylate kinase domain. The PDZ domains interact directly with the NR2 subunits of the NMDA glutamate receptor and with other proteins responsible for NMDA receptor localization, immobilization, and signaling. The mutations identified in this study all introduce premature stop codons within or before the third PDZ domain, and it is likely that this impairs the ability of SAP102 to interact with the NMDA receptor and/or other proteins involved in downstream NMDA receptor signaling pathways. NMDA receptors have been implicated in the induction of certain forms of synaptic plasticity, such as long-term potentiation and long-term depression, and these changes in synaptic efficacy have been proposed as neural mechanisms underlying memory and learning. The disruption of NMDA receptor targeting or signaling, as a result of the loss of SAP102, may lead to altered synaptic plasticity and may explain the intellectual impairment observed in individuals with DLG3 mutations. PMID:15185169

  7. Genetic mapping of X-linked ocular albinism: Linkage analysis in a large Newfoundland kindred

    SciTech Connect

    Charles, S.J.; Moore, A.T.; Barton, D.E.; Yates, J.R.W. ); Green, J.S. )

    1993-04-01

    Genetic linkage studies in a large Newfoundland family affected by X-linked ocular albinism (OA1) showed linkage to markers from Xp22.3. One recombinant mapped the disease proximal to DXS143 (dic56) and two recombinants mapped the disease distal to DXS85 (782). Combining the data with that from 16 British families previously published confirmed close linkage between OA1 and DXS143 (dic56; Z[sub max] = 21.96 at [theta] = 0.01, confidence interval (CI) 0.0005--0.05) and linkage to DXS85 (782; Z[sub max] = 17.60 at [theta] = 0.07, CI = 0.03--0.13) and DXS237 (GMGX9; Z[sub max] = 15.20 at [theta] = 0.08, CI = 0.03--0.15). Multipoint analysis (LINKMAP) gave the most likely order as Xpter-XG-DXS237-DXS143-OA1-DXS85, with odds of 48:1 over the order Xpter-XG-DXS237-OA1-DXS143-DXS85, and odds exceeding 10[sup 10]:1 over other locations for the disease locus. 11 refs., 1 fig., 1 tab.

  8. Phenotypic variability in X-linked ocular albinism: Relationship to linkage genotypes

    SciTech Connect

    Schnur, R.E. |; Wick, P.A.; Bailey, C.; Rebbeck, T.; Weleber, R.G.; Wagstaff, J.; Grix, A.W.; Pagon, R.A.; Hockey, A.; Edwards, M.J.

    1994-09-01

    One hundred nineteen individuals from 11 families with X-linked ocular albinism (OA1) were studied with respect to both their clinical phenotypes and their linkage genotypes. In a four-generation Australian family, two affected males and an obligatory carrier lacked cutaneous melanin macroglobules (MMGs); ocular features were identical to those of Nettleship-Falls OA1. Four other families had more unusual phenotypic features in addition to OA1. All OA1 families were genotyped at DXS16, DXS85, DXS143, STS, and DXS452 and for a CA-repeat polymorphism at the Kallmann syndrome locus (KAL). Separate two-point linkage analyses were performed for the following: group A, six families with biopsy-proved MMGs in at least one affected male; group B, four families whose biopsy status was not known; and group C, OA-9 only (16 samples), the family without MMGs. At the set of loci closest to OA1, there is no clear evidence in our data set for locus heterogeneity between groups A and C or among the four other families with complex phenotypes. Combined multipoint analysis (LINKMAP) in the 11 families and analysis of individual recombination events confirms that the major locus for OA1 resides within the DXS85-DXS143 interval. The authors suggest that more detailed clinical evaluations of OA1 individuals and families should be performed for future correlation with specific mutations in candidate OA1 genes. 29 refs., 5 figs., 4 tabs.

  9. X-linked hypophosphatemic rickets: enamel abnormalities and oral clinical findings.

    PubMed

    Cremonesi, Ilaria; Nucci, Cesare; D'Alessandro, Giovanni; Alkhamis, Nadia; Marchionni, Silvia; Piana, Gabriela

    2014-01-01

    X-linked hypophosphatemia (XLH) is a genetic disorder related to alterations in bones and teeth formation, due to low levels of phosphate in blood. Oral findings in XLH have been enamel and dentine abnormalities, high pulp horns, large pulp chambers, and some cases of periapical abscesses related to teeth without caries or traumatic injuries. The aim of our study was to assess the presence of enamel alterations, such as microclefts and/or structure defects in patients with XLH and give guidelines of prevention of XLH dental complications. History taking, oral clinical and radiological examination in 10 young patients affected by XLH (average age of 9) and in 6 patients without XLH (average age of 8). Impressions were performed on the vestibular surfaces of teeth in order to obtain replicas. The replicas were analyzed using scanning electron microscope (SEM) and compared to replicas of control group. The images of replicas of XLH patients showed deep microclefts and irregular enamel surface structure compared to replicas of control group. The replica of a patient with spontaneous periapical abscesses showed numerous enamel crater-shaped depressions and deep microcleavages penetrating into the enamel thickness. In absence of caries or fractures, the abscesses pathogenesis may be related to microcleavages of the enamel and dentin, which allow bacterial invasion of the pulp. There could be a relationship between XLH disease and enamel abnormalities. PMID:24677288

  10. X-linked macrocytic dyserythropoietic anemia in females with an ALAS2 mutation

    PubMed Central

    Sankaran, Vijay G.; Ulirsch, Jacob C.; Tchaikovskii, Vassili; Ludwig, Leif S.; Wakabayashi, Aoi; Kadirvel, Senkottuvelan; Lindsley, R. Coleman; Bejar, Rafael; Shi, Jiahai; Lovitch, Scott B.; Bishop, David F.; Steensma, David P.

    2015-01-01

    Macrocytic anemia with abnormal erythropoiesis is a common feature of megaloblastic anemias, congenital dyserythropoietic anemias, and myelodysplastic syndromes. Here, we characterized a family with multiple female individuals who have macrocytic anemia. The proband was noted to have dyserythropoiesis and iron overload. After an extensive diagnostic evaluation that did not provide insight into the cause of the disease, whole-exome sequencing of multiple family members revealed the presence of a mutation in the X chromosomal gene ALAS2, which encodes 5′-aminolevulinate synthase 2, in the affected females. We determined that this mutation (Y365C) impairs binding of the essential cofactor pyridoxal 5′-phosphate to ALAS2, resulting in destabilization of the enzyme and consequent loss of function. X inactivation was not highly skewed in wbc from the affected individuals. In contrast, and consistent with the severity of the ALAS2 mutation, there was a complete skewing toward expression of the WT allele in mRNA from reticulocytes that could be recapitulated in primary erythroid cultures. Together, the results of the X inactivation and mRNA studies illustrate how this X-linked dominant mutation in ALAS2 can perturb normal erythropoiesis through cell-nonautonomous effects. Moreover, our findings highlight the value of whole-exome sequencing in diagnostically challenging cases for the identification of disease etiology and extension of the known phenotypic spectrum of disease. PMID:25705881

  11. Abnormal osteopontin and matrix extracellular phosphoglycoprotein localization, and odontoblast differentiation, in X-linked hypophosphatemic teeth.

    PubMed

    Salmon, B; Bardet, C; Coyac, B R; Baroukh, B; Naji, J; Rowe, P S; Opsahl Vital, S; Linglart, A; Mckee, M D; Chaussain, C

    2014-08-01

    Mutations in phosphate-regulating gene (PHEX) lead to X-linked hypophosphatemic rickets (XLH), a genetic disease characterized by impaired mineralization in bones and teeth. In human XLH tooth dentin, calcospherites that would normally merge as part of the mineralization process are separated by unmineralized interglobular spaces where fragments of matrix proteins accumulate. Here, we immunolocalized osteopontin (OPN) in human XLH teeth, in a three-dimensional XLH human dental pulp stem cell-collagen scaffold culture model and in a rat tooth injury repair model treated with acidic serine- and aspartate-rich motif peptides (ASARM). In parallel, matrix extracellular phosphoglycoprotein (MEPE) immunolocalization and alkaline phosphatase (ALP) activity were assessed in XLH teeth. OPN was expressed by odontoblasts in the XLH models, and localized to the abnormal calcospherites of XLH tooth dentin. In addition, ALP activity and MEPE localization were abnormal in human XLH teeth, with MEPE showing an accumulation in the unmineralized interglobular spaces in dentin. Furthermore, XLH odontoblasts failed to form a well-polarized odontoblast layer. These data suggest that both MEPE and OPN are involved in impaired tooth mineralization associated with XLH, possibly through different effects on the mineralization process. PMID:25158186

  12. Gene Therapy Model of X-linked Severe Combined Immunodeficiency Using a Modified Foamy Virus Vector

    PubMed Central

    Horino, Satoshi; Uchiyama, Toru; So, Takanori; Nagashima, Hiroyuki; Sun, Shu-lan; Sato, Miki; Asao, Atsuko; Haji, Yoichi; Sasahara, Yoji; Candotti, Fabio; Tsuchiya, Shigeru; Kure, Shigeo; Sugamura, Kazuo; Ishii, Naoto

    2013-01-01

    X-linked severe combined immunodeficiency (SCID-X1) is an inherited genetic immunodeficiency associated with mutations in the common cytokine receptor γ chain (γc) gene, and characterized by a complete defect of T and natural killer (NK) cells. Gene therapy for SCID-X1 using conventional retroviral (RV) vectors carrying the γc gene results in the successful reconstitution of T cell immunity. However, the high incidence of vector-mediated T cell leukemia, caused by vector insertion near or within cancer-related genes has been a serious problem. In this study, we established a gene therapy model of mouse SCID-X1 using a modified foamy virus (FV) vector expressing human γc. Analysis of vector integration in a human T cell line demonstrated that the FV vector integration sites were significantly less likely to be located within or near transcriptional start sites than RV vector integration sites. To evaluate the therapeutic efficacy, bone marrow cells from γc-knockout (γc-KO) mice were infected with the FV vector and transplanted into γc-KO mice. Transplantation of the FV-treated cells resulted in the successful reconstitution of functionally active T and B cells. These data suggest that FV vectors can be effective and may be safer than conventional RV vectors for gene therapy for SCID-X1. PMID:23990961

  13. Clinical characteristics and genetic profiles of 174 patients with X-linked agammaglobulinemia

    PubMed Central

    Chen, Xia-Fang; Wang, Wei-Fan; Zhang, Yi-Dan; Zhao, Wei; Wu, Jing; Chen, Tong-Xin

    2016-01-01

    Abstract X-linked agammaglobulinemia (XLA) is a humoral primary immunodeficiency. XLA patients typically present with very low numbers of peripheral B cells and a profound deficiency of all immunoglobulin isotypes. Most XLA patients carry mutations in Bruton tyrosine kinase (BTK) gene. The genetic background and clinical features of 174 Chinese patients with XLA were investigated. The relationship between specific BTK gene mutations and severity of clinical manifestations was also examined. Mutations were graded from mild to severe based on structural and functional prediction through bioinformatics analysis. One hundred twenty-seven mutations were identified in 142 patients from 124 families, including 45 novel mutations and 82 recurrent mutations that were distributed over the entire BTK gene sequence. Variation in phenotypes was observed, and there was a tendency of association between genotype and age of disease onset. This report constitutes the largest group of patients with BTK mutations in China. A genotype–phenotype correlation was observed in this study. Early diagnosis of congenital agammaglobulinemia should be based on clinical symptoms, family history, and molecular analysis of the BTK gene. PMID:27512878

  14. Mouse very long-chain acyl-CoA synthetase in X-linked adrenoleukodystrophy.

    PubMed

    Heinzer, Ann K; Kemp, Stephan; Lu, Jyh-Feng; Watkins, Paul A; Smith, Kirby D

    2002-08-01

    X-linked adrenoleukodystrophy (X-ALD) is a neurodegenerative disorder characterized by accumulation of very long-chain fatty acids (VLCFA). This accumulation has been attributed to decreased VLCFA beta-oxidation and peroxisomal very long-chain acyl-CoA synthetase (VLCS) activity. The X-ALD gene, ABCD1, encodes a peroxisomal membrane ATP binding cassette transporter, ALDP, that is hypothesized to affect VLCS activity in peroxisomes by direct interaction with the VLCS enzyme. Recently, a VLCS gene that encodes a protein with significant sequence identity to known rat and human peroxisomal VLCS protein has been identified in mice. We find that the mouse VLCS gene (Vlcs) encodes an enzyme (Vlcs) with VLCS activity that localizes to peroxisomes and is expressed in X-ALD target tissues. We show that the expression of Vlcs in the peroxisomes of X-ALD mouse fibroblasts improves VLCFA beta-oxidation in these cells, implying a role for this enzyme in the biochemical abnormality of X-ALD. X-ALD mice, which accumulate VLCFA in tissues, show no change in the expression of Vlcs, the subcellular localization of Vlcs, or general peroxisomal VLCS activity. These observations imply that ALDP is not necessary for the proper expression or localization of Vlcs protein, and the control of VLCFA levels does not depend on the direct interaction of Vlcs and ALDP. PMID:12048192

  15. Searching for Copy Number Changes in Nonsyndromic X-Linked Intellectual Disability

    PubMed Central

    Utine, G.E.; Kiper, P.Ö.; Alanay, Y.; Haliloğlu, G.; Aktaş, D.; Boduroğlu, K.; Tunçbilek, E.; Alikaşifoğlu, M.

    2012-01-01

    Intellectual disability (ID) has a prevalence of 2–3% with 0.3% of the population being severely retarded. Etiology is heterogeneous, owing to numerous genetic and environmental factors. Underlying etiology remains undetermined in 75–80% of mildly disabled patients and 20–50% of those severely disabled. Twelve percent of all ID is thought to be X-linked (XLID). This study covers copy number analysis of some of the known XLID genes, using multiplex ligation-dependent probe amplification (MLPA) in 100 nonsyndromic patients. One of the patients was found to have duplication in all exons of MECP2 gene, and another had duplication in the fifth exon of TM4SF2/TSPAN7 gene. Affymetrix® 6.0 whole-genome SNP microarray confirmed the duplication in MECP2 and showed duplication of exons 2–7 in TM4SF2/TSPAN7, respectively. MECP2 duplication has recently been recognized as a syndromic cause of XLID in males, whereas duplications in TM4SF2/TSPAN7 are yet to be determined as a cause of XLID. Being an efficient, rapid, easy-to-perform, easy-to-interpret, and cost-effective method of copy number analysis of specific DNA sequences, MLPA presents wide clinical utility and may be included in diagnostic workup of ID, particularly when microarrays are unavailable as a first-line approach. PMID:22511893

  16. Identification of new mutations in Israeli patients with X-linked adrenoleukodystrophy.

    PubMed

    Neumann, S; Topper, A; Mandel, H; Shapira, I; Golan, O; Gazit, E; Loewenthal, R

    2001-01-01

    X-linked adrenoleukodystrophy (ALD) is a peroxisomal disorder characterized by impaired peroxisomal betaoxidation of very-long-chain fatty acids (VLCFAs). This is probably due to reduced activation of the VLCFAs and results in demyelination of the nervous system and adrenocortical insufficiency. The ALD gene is localized on Xq28, has 10 exons and encodes a protein of 745 amino acids with significant homology to the membrane peroxisomal protein PMP70. Characterizing the disease causing mutations is of importance in prenatal diagnosis because 12-20% of women who are obligatory carriers show false-negative results when tested for VLCFA in plasma. We have analyzed DNA from blood samples of 7 Jewish (5 Sephardi and 2 Ashkenazi) and 3 Arab Israeli families suffering from ALD. Five missense-type mutations were identified: R104H, Y174C, L229P, R401Q, and G512C. A single mutation, R464X, was nonsense, and two, Y171 frameshift and E471 frameshift, were frameshift. Interestingly, a single mutation was identified in three families of Moroccan Jewish descent, probably due to a founder effect. PMID:11336405

  17. PROTECTIVE LEVELS OF VARICELLA-ZOSTER ANTIBODY DID NOT EFFECTIVELY PREVENT CHICKENPOX IN AN X-LINKED AGAMMAGLOBULINEMIA PATIENT.

    PubMed

    Nobre, Fernanda Aimée; Gonzalez, Isabela Garrido da Silva; de Moraes-Pinto, Maria Isabel; Costa-Carvalho, Beatriz Tavares

    2015-01-01

    We describe the case of an eight-year-old boy with X-linked agammaglobulinemia who developed mild varicella despite regular intravenous immunoglobulin (IVIG) therapy. He maintained protective antibody levels against varicella and the previous batches of IVIG that he received had adequate varicella-specific IgG levels. The case illustrates that IVIG may not prevent VZV infection. PMID:26603238

  18. PROTECTIVE LEVELS OF VARICELLA-ZOSTER ANTIBODY DID NOT EFFECTIVELY PREVENT CHICKENPOX IN AN X-LINKED AGAMMAGLOBULINEMIA PATIENT

    PubMed Central

    NOBRE, Fernanda Aimée; GONZALEZ, Isabela Garrido da Silva; de MORAES-PINTO, Maria Isabel; COSTA-CARVALHO, Beatriz Tavares

    2015-01-01

    SUMMARY We describe the case of an eight-year-old boy with X-linked agammaglobulinemia who developed mild varicella despite regular intravenous immunoglobulin (IVIG) therapy. He maintained protective antibody levels against varicella and the previous batches of IVIG that he received had adequate varicella-specific IgG levels. The case illustrates that IVIG may not prevent VZV infection. PMID:26603238

  19. An X-linked sex ratio distorter in Drosophila simulans that kills or incapacitates both noncarrier sperm and sons.

    PubMed

    Rice, William R

    2014-10-01

    Genomic conflict occurs when a genomic component gains a reproductive advantage at the expense of the organism as a whole. X-linked segregation distorters kill or incapacitate Y-bearing sperm, thereby gaining a transmission advantage but also reducing male fertility and generating a female-biased sex ratio. When some damaged, Y-bearing sperm survive and fertilize eggs, then the segregation distortion phenotype could be expanded by harming or killing sons in the next generation. X-linked son-killers are predicted by theory to be favored by natural selection and evolve when brothers and sisters compete for shared limiting resources and/or when brothers reduce the inclusive fitness of their sisters via sib-mating-a phenomenon called SA-zygotic drive. Here I develop and use a process-of-elimination screen to show that an unclassified X-linked sex ratio distorter (skew) in Drosophila simulans kills or incapacitates noncarrier sperm and also kills a substantial proportion of sons, i.e., it has both a segregation distortion and a SA-zygotic drive phenotype. There are three unique X-linked segregation distorters known to occur in D. simulans named Winters, Durham, and Paris. Autosomal-dominant suppressors of Winters (Nmy) and Durham (Tmy) failed to suppress skew. A Y-linked suppressor of Paris, however, did suppress skew, and a recombination test failed to detect recombinants between these two sex ratio distorters, indicating that they are tightly linked and plausibly identical or allelic. Son-killing may be an important yet unrecognized component of other X-linked segregation distorters. PMID:25081980

  20. An X-Linked Sex Ratio Distorter in Drosophila simulans That Kills or Incapacitates Both Noncarrier Sperm and Sons

    PubMed Central

    Rice, William R.

    2014-01-01

    Genomic conflict occurs when a genomic component gains a reproductive advantage at the expense of the organism as a whole. X-linked segregation distorters kill or incapacitate Y-bearing sperm, thereby gaining a transmission advantage but also reducing male fertility and generating a female-biased sex ratio. When some damaged, Y-bearing sperm survive and fertilize eggs, then the segregation distortion phenotype could be expanded by harming or killing sons in the next generation. X-linked son-killers are predicted by theory to be favored by natural selection and evolve when brothers and sisters compete for shared limiting resources and/or when brothers reduce the inclusive fitness of their sisters via sib-mating—a phenomenon called SA-zygotic drive. Here I develop and use a process-of-elimination screen to show that an unclassified X-linked sex ratio distorter (skew) in Drosophila simulans kills or incapacitates noncarrier sperm and also kills a substantial proportion of sons, i.e., it has both a segregation distortion and a SA-zygotic drive phenotype. There are three unique X-linked segregation distorters known to occur in D. simulans named Winters, Durham, and Paris. Autosomal-dominant suppressors of Winters (Nmy) and Durham (Tmy) failed to suppress skew. A Y-linked suppressor of Paris, however, did suppress skew, and a recombination test failed to detect recombinants between these two sex ratio distorters, indicating that they are tightly linked and plausibly identical or allelic. Son-killing may be an important yet unrecognized component of other X-linked segregation distorters. PMID:25081980

  1. Vaccines for Canine Leishmaniasis

    PubMed Central

    Palatnik-de-Sousa, Clarisa B.

    2012-01-01

    Leishmaniasis is the third most important vector-borne disease worldwide. Visceral leishmaniasis (VL) is a severe and frequently lethal protozoan disease of increasing incidence and severity due to infected human and dog migration, new geographical distribution of the insect due to global warming, coinfection with immunosuppressive diseases, and poverty. The disease is an anthroponosis in India and Central Africa and a canid zoonosis (ZVL) in the Americas, the Middle East, Central Asia, China, and the Mediterranean. The ZVL epidemic has been controlled by one or more measures including the culling of infected dogs, treatment of human cases, and insecticidal treatment of homes and dogs. However, the use of vaccines is considered the most cost–effective control tool for human and canine disease. Since the severity of the disease is related to the generation of T-cell immunosuppression, effective vaccines should be capable of sustaining or enhancing the T-cell immunity. In this review we summarize the clinical and parasitological characteristics of ZVL with special focus on the cellular and humoral canine immune response and review state-of-the-art vaccine development against human and canine VL. Experimental vaccination against leishmaniasis has evolved from the practice of leishmanization with living parasites to vaccination with crude lysates, native parasite extracts to recombinant and DNA vaccination. Although more than 30 defined vaccines have been studied in laboratory models no human formulation has been licensed so far; however three second-generation canine vaccines have already been registered. As expected for a zoonotic disease, the recent preventive vaccination of dogs in Brazil has led to a reduction in the incidence of canine and human disease. The recent identification of several Leishmania proteins with T-cell epitopes anticipates development of a multiprotein vaccine that will be capable of protecting both humans and dogs against VL. PMID:22566950

  2. The Canine Oral Microbiome

    PubMed Central

    Dewhirst, Floyd E.; Klein, Erin A.; Thompson, Emily C.; Blanton, Jessica M.; Chen, Tsute; Milella, Lisa; Buckley, Catherine M. F.; Davis, Ian J.; Bennett, Marie-Lousie; Marshall-Jones, Zoe V.

    2012-01-01

    Determining the bacterial composition of the canine oral microbiome is of interest for two primary reasons. First, while the human oral microbiome has been well studied using molecular techniques, the oral microbiomes of other mammals have not been studied in equal depth using culture independent methods. This study allows a comparison of the number of bacterial taxa, based on 16S rRNA-gene sequence comparison, shared between humans and dogs, two divergent mammalian species. Second, canine oral bacteria are of interest to veterinary and human medical communities for understanding their roles in health and infectious diseases. The bacteria involved are mostly unnamed and not linked by 16S rRNA-gene sequence identity to a taxonomic scheme. This manuscript describes the analysis of 5,958 16S rRNA-gene sequences from 65 clone libraries. Full length 16S rRNA reference sequences have been obtained for 353 canine bacterial taxa, which were placed in 14 bacterial phyla, 23 classes, 37 orders, 66 families, and 148 genera. Eighty percent of the taxa are currently unnamed. The bacterial taxa identified in dogs are markedly different from those of humans with only 16.4% of oral taxa are shared between dogs and humans based on a 98.5% 16S rRNA sequence similarity cutoff. This indicates that there is a large divergence in the bacteria comprising the oral microbiomes of divergent mammalian species. The historic practice of identifying animal associated bacteria based on phenotypic similarities to human bacteria is generally invalid. This report describes the diversity of the canine oral microbiome and provides a provisional 16S rRNA based taxonomic scheme for naming and identifying unnamed canine bacterial taxa. PMID:22558330

  3. Somatic mosaicism underlies X-linked acrogigantism syndrome in sporadic male subjects.

    PubMed

    Daly, Adrian F; Yuan, Bo; Fina, Frederic; Caberg, Jean-Hubert; Trivellin, Giampaolo; Rostomyan, Liliya; de Herder, Wouter W; Naves, Luciana A; Metzger, Daniel; Cuny, Thomas; Rabl, Wolfgang; Shah, Nalini; Jaffrain-Rea, Marie-Lise; Zatelli, Maria Chiara; Faucz, Fabio R; Castermans, Emilie; Nanni-Metellus, Isabelle; Lodish, Maya; Muhammad, Ammar; Palmeira, Leonor; Potorac, Iulia; Mantovani, Giovanna; Neggers, Sebastian J; Klein, Marc; Barlier, Anne; Liu, Pengfei; Ouafik, L'Houcine; Bours, Vincent; Lupski, James R; Stratakis, Constantine A; Beckers, Albert

    2016-04-01

    Somatic mosaicism has been implicated as a causative mechanism in a number of genetic and genomic disorders. X-linked acrogigantism (XLAG) syndrome is a recently characterized genomic form of pediatric gigantism due to aggressive pituitary tumors that is caused by submicroscopic chromosome Xq26.3 duplications that includeGPR101 We studied XLAG syndrome patients (n= 18) to determine if somatic mosaicism contributed to the genomic pathophysiology. Eighteen subjects with XLAG syndrome caused by Xq26.3 duplications were identified using high-definition array comparative genomic hybridization (HD-aCGH). We noted that males with XLAG had a decreased log2ratio (LR) compared with expected values, suggesting potential mosaicism, whereas females showed no such decrease. Compared with familial male XLAG cases, sporadic males had more marked evidence for mosaicism, with levels of Xq26.3 duplication between 16.1 and 53.8%. These characteristics were replicated using a novel, personalized breakpoint junction-specific quantification droplet digital polymerase chain reaction (ddPCR) technique. Using a separate ddPCR technique, we studied the feasibility of identifying XLAG syndrome cases in a distinct patient population of 64 unrelated subjects with acromegaly/gigantism, and identified one female gigantism patient who had had increased copy number variation (CNV) threshold forGPR101that was subsequently diagnosed as having XLAG syndrome on HD-aCGH. Employing a combination of HD-aCGH and novel ddPCR approaches, we have demonstrated, for the first time, that XLAG syndrome can be caused by variable degrees of somatic mosaicism for duplications at chromosome Xq26.3. Somatic mosaicism was shown to occur in sporadic males but not in females with XLAG syndrome, although the clinical characteristics of the disease were similarly severe in both sexes. PMID:26935837

  4. Extraordinary sequence divergence at Tsga8, an X-linked gene involved in mouse spermiogenesis.

    PubMed

    Good, Jeffrey M; Vanderpool, Dan; Smith, Kimberly L; Nachman, Michael W

    2011-05-01

    The X chromosome plays an important role in both adaptive evolution and speciation. We used a molecular evolutionary screen of X-linked genes potentially involved in reproductive isolation in mice to identify putative targets of recurrent positive selection. We then sequenced five very rapidly evolving genes within and between several closely related species of mice in the genus Mus. All five genes were involved in male reproduction and four of the genes showed evidence of recurrent positive selection. The most remarkable evolutionary patterns were found at Testis-specific gene a8 (Tsga8), a spermatogenesis-specific gene expressed during postmeiotic chromatin condensation and nuclear transformation. Tsga8 was characterized by extremely high levels of insertion-deletion variation of an alanine-rich repetitive motif in natural populations of Mus domesticus and M. musculus, differing in length from the reference mouse genome by up to 89 amino acids (27% of the total protein length). This population-level variation was coupled with striking divergence in protein sequence and length between closely related mouse species. Although no clear orthologs had previously been described for Tsga8 in other mammalian species, we have identified a highly divergent hypothetical gene on the rat X chromosome that shares clear orthology with the 5' and 3' ends of Tsga8. Further inspection of this ortholog verified that it is expressed in rat testis and shares remarkable similarity with mouse Tsga8 across several general features of the protein sequence despite no conservation of nucleotide sequence across over 60% of the rat-coding domain. Overall, Tsga8 appears to be one of the most rapidly evolving genes to have been described in rodents. We discuss the potential evolutionary causes and functional implications of this extraordinary divergence and the possible contribution of Tsga8 and the other four genes we examined to reproductive isolation in mice. PMID:21186189

  5. Molecular genetics of X-linked retinitis pigmentosa: Progress towards cloning the RP3 gene

    SciTech Connect

    Fujita, R.; Yan, D.; McHenry, C.

    1994-09-01

    Our goal is to identify the X-linked retinitis pigmentosa (XLRP) gene RP3. The location of RP3 is genetically delimited to a region of 1 Mb, distal to DXS140, CYBB and tctex-1-like gene and proximal to the gene OTC. It is currently thought that RP3 is within 40 kb of the proximal deletion breakpoint of a patient BB. However, a more proximal location of the gene, closer to OTC, is not ruled out. We initiated the isolation of the genomic region between DXS140 to OTC in YACs. One of the clones from DXS140 region (55B) is 460 kb and spans about 200 kb at each side of BB patient`s proximal breakpoint. It contains CYBB, tctex-1-like genes and two additional CpG islands. The 55B clone has been covered by cosmid and phage subclones. Another YAC clone from the OTC region (OTCC) spans about 1 Mb and contains at least 5 CpG islands. In situ hybridization performed with OTCC showed its location in Xp21; however, several derivative cosmids map to chromosome 7, indicating that it is a chimeric YAC. No overlap is evident between 55B and OTCC. We have isolated the YAC end-sequences and isolation of clones to close the gap is in progress. Cosmids are being used for screening eye tissue cDNA libraries, mainly from retina. Screening is done by hybridization to replica filters or by cDNA enrichment methods. Several cDNA clones have been isolated and are being characterized. Exon-amplification is also being used with the cosmids and phages. Genetic analysis is being performed to determine RP3 patients from clinically indistinguishable RP2, located in Xp11.23-p11.4, and to reduce the genetic distance of current flanking markers. For this we are analyzing a number of XLRP families with established markers in the region and with new microsatellites.

  6. Three novel PHEX gene mutations in four Chinese families with X-linked dominant hypophosphatemic rickets

    SciTech Connect

    Kang, Qing-lin; Xu, Jia; Zhang, Zeng; He, Jin-wei; Lu, Lian-song; Fu, Wen-zhen; Zhang, Zhen-lin

    2012-07-13

    Highlights: Black-Right-Pointing-Pointer In our study, all of the patients were of Han Chinese ethnicity, which were rarely reported. Black-Right-Pointing-Pointer We identified three novel PHEX gene mutations in four unrelated families with XLH. Black-Right-Pointing-Pointer We found that the relationship between the phenotype and genotype of the PHEX gene was not invariant. Black-Right-Pointing-Pointer We found that two PHEX gene sites, p.534 and p.731, were conserved. -- Abstract: Background: X-linked hypophosphatemia (XLH), the most common form of inherited rickets, is a dominant disorder that is characterized by renal phosphate wasting with hypophosphatemia, abnormal bone mineralization, short stature, and rachitic manifestations. The related gene with inactivating mutations associated with XLH has been identified as PHEX, which is a phosphate-regulating gene with homologies to endopeptidases on the X chromosome. In this study, a variety of PHEX mutations were identified in four Chinese families with XLH. Methods: We investigated four unrelated Chinese families who exhibited typical features of XLH by using PCR to analyze mutations that were then sequenced. The laboratory and radiological investigations were conducted simultaneously. Results: Three novel mutations were found in these four families: one frameshift mutation, c.2033dupT in exon 20, resulting in p.T679H; one nonsense mutation, c.1294A > T in exon 11, resulting in p.K432X; and one missense mutation, c.2192T > C in exon 22, resulting in p.F731S. Conclusions: We found that the PHEX gene mutations were responsible for XLH in these Chinese families. Our findings are useful for understanding the genetic basis of Chinese patients with XLH.

  7. Mutations in apoptosis-inducing factor cause X-linked recessive auditory neuropathy spectrum disorder

    PubMed Central

    Zong, Liang; Guan, Jing; Ealy, Megan; Zhang, Qiujing; Wang, Dayong; Wang, Hongyang; Zhao, Yali; Shen, Zhirong; Campbell, Colleen A; Wang, Fengchao; Yang, Ju; Sun, Wei; Lan, Lan; Ding, Dalian; Xie, Linyi; Qi, Yue; Lou, Xin; Huang, Xusheng; Shi, Qiang; Chang, Suhua; Xiong, Wenping; Yin, Zifang; Yu, Ning; Zhao, Hui; Wang, Jun; Wang, Jing; Salvi, Richard J; Petit, Christine; Smith, Richard J H; Wang, Qiuju

    2015-01-01

    Background Auditory neuropathy spectrum disorder (ANSD) is a form of hearing loss in which auditory signal transmission from the inner ear to the auditory nerve and brain stem is distorted, giving rise to speech perception difficulties beyond that expected for the observed degree of hearing loss. For many cases of ANSD, the underlying molecular pathology and the site of lesion remain unclear. The X-linked form of the condition, AUNX1, has been mapped to Xq23-q27.3, although the causative gene has yet to be identified. Methods We performed whole-exome sequencing on DNA samples from the AUNX1 family and another small phenotypically similar but unrelated ANSD family. Results We identified two missense mutations in AIFM1 in these families: c.1352G>A (p.R451Q) in the AUNX1 family and c.1030C>T (p.L344F) in the second ANSD family. Mutation screening in a large cohort of 3 additional unrelated families and 93 sporadic cases with ANSD identified 9 more missense mutations in AIFM1. Bioinformatics analysis and expression studies support this gene as being causative of ANSD. Conclusions Variants in AIFM1 gene are a common cause of familial and sporadic ANSD and provide insight into the expanded spectrum of AIFM1-associated diseases. The finding of cochlear nerve hypoplasia in some patients was AIFM1-related ANSD implies that MRI may be of value in localising the site of lesion and suggests that cochlea implantation in these patients may have limited success. PMID:25986071

  8. Mutational analysis of Btk, the defective gene in X-linked agammaglobulinemia

    SciTech Connect

    Conley, M.E.; Fitch-Hilgenberg, M.E.; Rohrer, J.

    1994-09-01

    Recent studies have shown that X-linked agammaglobulinemia (XLA), a disorder of B cell development, is due to mutations in an scr-like cytoplasmic tyrosine kinase, Btk. Thus far, mutations in this gene have been identified by sequencing of cDNA. To permit the detection of mutations in genomic DNA, we determined the structure of Btk and identified 19 exons in 37 kb of DNA. PCR primers were designed to amplify each exon with its splice sites. Two overlapping PCR products were employed for exons longer than 230 base pairs. Single strand conformation polymorphism (SSCP) analysis was used to screen genomic DNA from 30 unrelated families presumed to carry a mutation in Btk. It was possible to amplify DNA in every reaction from every patient. None of the DNA samples demonstrated more than one aberrant SSCP pattern. Twenty three mutations were detected in 25 families. Seven point mutations resulting in amino acid substitutions were seen. An additional 7 base pair substitutions gave rise to premature stop codons. Two splice defects were noted. Small insertions or deletions, all resulting in frameshifts and premature stop codons were seen in eight patients. One patient had an A to G transition in the ATG start codon. Two mutations, both at CpG dinucleotides, were seen in more than one family. Haplotype analysis, using CA repeats closely linked to Btk, demonstrated that the mutations in these families arose independently. We conclude from these studies that the mutations in Btk in patients with XLA are highly variable. Large deletions are uncommon, although small 1 to 4 bp insertions or deletions constitute as many as one third of the mutations. Further analysis of patients with amino acid substitutions will permit structure/function correlations.

  9. Spontaneous shaker rat mutant – a new model for X-linked tremor/ataxia

    PubMed Central

    Figueroa, Karla P.; Paul, Sharan; Calì, Tito; Lopreiato, Raffaele; Karan, Sukanya; Frizzarin, Martina; Ames, Darren; Zanni, Ginevra; Brini, Marisa; Dansithong, Warunee; Milash, Brett; Scoles, Daniel R.; Carafoli, Ernesto; Pulst, Stefan M.

    2016-01-01

    ABSTRACT The shaker rat is an X-linked recessive spontaneous model of progressive Purkinje cell (PC) degeneration exhibiting a shaking ataxia and wide stance. Generation of Wistar Furth (WF)/Brown Norwegian (BN) F1 hybrids and genetic mapping of F2 sib-sib offspring using polymorphic markers narrowed the candidate gene region to 26 Mbp denoted by the last recombinant genetic marker DXRat21 at 133 Mbp to qter (the end of the long arm). In the WF background, the shaker mutation has complete penetrance, results in a stereotypic phenotype and there is a narrow window for age of disease onset; by contrast, the F2 hybrid phenotype was more varied, with a later age of onset and likely non-penetrance of the mutation. By deep RNA-sequencing, five variants were found in the candidate region; four were novel without known annotation. One of the variants caused an arginine (R) to cysteine (C) change at codon 35 of the ATPase, Ca2+ transporting, plasma membrane 3 (Atp2b3) gene encoding PMCA3 that has high expression in the cerebellum. The variant was well supported by hundreds of overlapping reads, and was found in 100% of all affected replicas and 0% of the wild-type (WT) replicas. The mutation segregated with disease in all affected animals and the amino acid change was found in an evolutionarily conserved region of PMCA3. Despite strong genetic evidence for pathogenicity, in vitro analyses of PMCA3R35C function did not show any differences to WT PMCA3. Because Atp2b3 mutation leads to congenital ataxia in humans, the identified Atp2b3 missense change in the shaker rat presents a good candidate for the shaker rat phenotype based on genetic criteria, but cannot yet be considered a definite pathogenic variant owing to lack of functional changes. PMID:27013529

  10. Inactivating mutations in an SH2 domain-encoding gene in X-linked lymphoproliferative syndrome

    PubMed Central

    Nichols, Kim E.; Harkin, D. Paul; Levitz, Seth; Krainer, Michael; Kolquist, Kathryn Ann; Genovese, Cameo; Bernard, Amy; Ferguson, Martin; Zuo, Lin; Snyder, Eric; Buckler, Alan J.; Wise, Carol; Ashley, Jennifer; Lovett, Michael; Valentine, Marcus B.; Look, A. Thomas; Gerald, William; Housman, David E.; Haber, Daniel A.

    1998-01-01

    X-linked lymphoproliferative syndrome (XLP) is an inherited immunodeficiency characterized by increased susceptibility to Epstein–Barr virus (EBV). In affected males, primary EBV infection leads to the uncontrolled proliferation of virus-containing B cells and reactive cytotoxic T cells, often culminating in the development of high-grade lymphoma. The XLP gene has been mapped to chromosome band Xq25 through linkage analysis and the discovery of patients harboring large constitutional genomic deletions. We describe here the presence of small deletions and intragenic mutations that specifically disrupt a gene named DSHP in 6 of 10 unrelated patients with XLP. This gene encodes a predicted protein of 128 amino acids composing a single SH2 domain with extensive homology to the SH2 domain of SHIP, an inositol polyphosphate 5-phosphatase that functions as a negative regulator of lymphocyte activation. DSHP is expressed in transformed T cell lines and is induced following in vitro activation of peripheral blood T lymphocytes. Expression of DSHP is restricted in vivo to lymphoid tissues, and RNA in situ hybridization demonstrates DSHP expression in activated T and B cell regions of reactive lymph nodes and in both T and B cell neoplasms. These observations confirm the identity of DSHP as the gene responsible for XLP, and suggest a role in the regulation of lymphocyte activation and proliferation. Induction of DSHP may sustain the immune response by interfering with SHIP-mediated inhibition of lymphocyte activation, while its inactivation in XLP patients results in a selective immunodeficiency to EBV. PMID:9811875

  11. Syndromic X-linked intellectual disability segregating with a missense variant in RLIM.

    PubMed

    Tønne, Elin; Holdhus, Rita; Stansberg, Christine; Stray-Pedersen, Asbjørg; Petersen, Kjell; Brunner, Han G; Gilissen, Christian; Hoischen, Alexander; Prescott, Trine; Steen, Vidar M; Fiskerstrand, Torunn

    2015-12-01

    We describe a three-generation Norwegian family with a novel X-linked intellectual disability (XLID) syndrome characterized by subtle facial dysmorphism, autism and severe feeding problems. By exome sequencing we detected a rare missense variant (c.1067A>G, p.(Tyr356Cys)) in the RLIM gene, in two affected male second cousins. Sanger sequencing confirmed the presence of the variant in the four affected males (none of whom were siblings) and in three mothers available for testing. The variant was not present in 100 normal Norwegian controls, has not been reported in variant databases and is deleterious according to in silico prediction tools. The clinical phenotype and the variant co-segregate, yielding a LOD score of 3.0 for linkage to the shared region (36.09 Mb), which contains 242 genes. No other shared rare variants on the X chromosome were detected in the two affected exome-sequenced individuals, and all female carriers had an extremely skewed X-chromosome inactivation pattern. RLIM encodes RING zinc finger protein 12 (RNF12), an ubiquitin ligase that is essential for X inactivation in mice and that acts as a co-regulator of a range of transcription factors, particularly those containing a LIM homeodomain. Tyrosine in position 356 in RNF12 is located within a highly conserved domain essential for binding such transcription factors. Expression of RNF12 is widespread during embryogenesis, and is particularly high in the outer layers of the cerebral cortex. Functional studies are needed to prove a definite causal relationship between the variant and the phenotype. Subsequent reports may confirm a role for RLIM variants in patients with XLID. PMID:25735484

  12. X-linked nephrogenic diabetes insipidus: From the ship hopewell to RFLP studies

    PubMed Central

    Bichet, Daniel G.; Hendy, Geoffrey N.; Lonergan, Michèle; Arthus, Marie-Françoise; Ligier, Sophie; Pausova, Zdenka; Kluge, Rüdiger; Zingg, Hans; Saenger, Paul; Oppenheimer, Ellen; Hirsch, David J.; Gilgenkrantz, Simone; Salles, Jean-Pierre; Oberlé, Isabelle; Mandel, Jean-Louis; Gregory, Martin C.; Fujiwara, T. Mary; Morgan, Kenneth; Scriver, Charles R.

    1992-01-01

    Nephrogenic diabetes insipidus (NDI; designated 304800 in Mendelian Inheritance in Man) is an X-linked disorder with abnormal renal and extrarenal V2 vasopressin receptor responses. The mutant gene has been mapped to Xq28 by analysis of RFLPs, and tight linkage between DXS52 and NDI has been reported. In 1969, Bode and Crawford proposed, under the term “the Hopewell hypothesis,” that most cases in North America could be traced to descendants of Ulster Scots who arrived in Nova Scotia in 1761 on the ship Hopewell. They also suggested a link between this family and a large Mormon pedigree. DNA samples obtained from 13 independent affected families, including 42 members of the Hopewell and Mormon pedigrees, were analyzed with probes in the Xq28 region. Genealogical reconstructions were performed. Linkage between NDI and DXS304 (probe U6:2.spl), DXS305 (St35-691), DXS52 (St14-1), DXS15 (DX13), and F8C (F814) showed no recombination in 12 families, with a maximum lod score of 13.5 for DXS52. A recombinant between NDI and DXS304, DXS305, was identified in one family. The haplotype segregating with the disease in the Hopewell pedigree was not shared by other North American families. PCR analysis of the St14 VNTR allowed the distinction of two alleles that were not distinguishable by Southern analysis. Carrier status was predicted in 24 of 26 at-risk females. The Hopewell hypothesis cannot explain the origin of NDI in many of the North American families, since they have no apparent relationship with the Hopewell early settlers, either by haplotype or by genealogical analysis. We confirm the locus homogeneity of the disease by linkage analysis in ethnically diverse families. PCR analysis of the DXS52 VNTR in NDI families is very useful for carrier testing and presymptomatic diagnosis, which can prevent the first manifestations of dehydration. ImagesFigure 7 PMID:1357965

  13. A Modified γ-Retrovirus Vector for X-Linked Severe Combined Immunodeficiency

    PubMed Central

    Hacein-Bey-Abina, S.; Pai, S.-Y.; Gaspar, H.B.; Armant, M.; Berry, C.C.; Blanche, S.; Bleesing, J.; Blondeau, J.; de Boer, H.; Buckland, K.F.; Caccavelli, L.; Cros, G.; De Oliveira, S.; Fernández, K.S.; Guo, D.; Harris, C.E.; Hopkins, G.; Lehmann, L.E.; Lim, A.; London, W.B.; van der Loo, J.C.M.; Malani, N.; Male, F.; Malik, P.; Marinovic, M.A.; McNicol, A.-M.; Moshous, D.; Neven, B.; Oleastro, M.; Picard, C.; Ritz, J.; Rivat, C.; Schambach, A.; Shaw, K.L.; Sherman, E.A.; Silberstein, L.E.; Six, E.; Touzot, F.; Tsytsykova, A.; Xu-Bayford, J.; Baum, C.; Bushman, F.D.; Fischer, A.; Kohn, D.B.; Filipovich, A.H.; Notarangelo, L.D.; Cavazzana, M.; Williams, D.A.; Thrasher, A.J.

    2014-01-01

    BACKGROUND In previous clinical trials involving children with X-linked severe combined immunodeficiency (SCID-X1), a Moloney murine leukemia virus–based γ-retrovirus vector expressing interleukin-2 receptor γ-chain (γc) complementary DNA successfully restored immunity in most patients but resulted in vector-induced leukemia through enhancer-mediated mutagenesis in 25% of patients. We assessed the efficacy and safety of a self-inactivating retrovirus for the treatment of SCID-X1. METHODS We enrolled nine boys with SCID-X1 in parallel trials in Europe and the United States to evaluate treatment with a self-inactivating (SIN) γ-retrovirus vector containing deletions in viral enhancer sequences expressing γc (SIN-γc). RESULTS All patients received bone marrow–derived CD34+ cells transduced with the SIN-γc vector, without preparative conditioning. After 12.1 to 38.7 months of follow-up, eight of the nine children were still alive. One patient died from an overwhelming adenoviral infection before reconstitution with genetically modified T cells. Of the remaining eight patients, seven had recovery of peripheral-blood T cells that were functional and led to resolution of infections. The patients remained healthy thereafter. The kinetics of CD3+ T-cell recovery was not significantly different from that observed in previous trials. Assessment of insertion sites in peripheral blood from patients in the current trial as compared with those in previous trials revealed significantly less clustering of insertion sites within LMO2 , MECOM, and other lymphoid proto-oncogenes in our patients. CONCLUSIONS This modified γ-retrovirus vector was found to retain efficacy in the treatment of SCID-X1. The long-term effect of this therapy on leukemogenesis remains unknown. (Funded by the National Institutes of Health and others; ClinicalTrials.gov numbers, NCT01410019, NCT01175239, and NCT01129544.) PMID:25295500

  14. Biochemical basis for enhanced binding of peptide dimers to X-linked inhibitor of apoptosis protein.

    PubMed

    Splan, Kathryn E; Allen, John E; McLendon, George L

    2007-10-23

    XIAP (X-linked inhibitor of apoptosis protein) is involved in the mediation of programmed cell death and, therefore, is a target for the development of cancer therapeutics. Peptide mimetics based upon Smac, the natural binding partner of XIAP, and specifically, dimeric peptides, have shown great promise in drug development. In the present work, the basis for enhanced dimer efficacy has been explored. Comparisons are made between the peptide binding site on the BIR3 domain of XIAP alone (residues 238-358) and a less truncated construct that includes both BIR2 and BIR3 domains (residues 151-350). This contingency differentially enhances the binding of dimeric tetrapeptides, potentially by providing additional hydrophobic binding surface. The effect of BIR2 on the BIR3 binding site is sustained, even if the BIR2 binding site is disrupted by mutagenesis, as shown by both a fluorescent competition assay and a polarity sensitive dye, badan. FRET measurements reveal an observed separation of >or=45 A between the BIR2 and BIR3 peptide binding pockets, thereby precluding a direct simultaneous interaction of the dimer molecules with both binding domains. Furthermore, variations in the linker length between dimeric tetrapeptides did not show a predictable trend in binding affinities, suggesting that local concentration effects were also an unlikely explanation for the enhanced dimeric affinities. Taken together, the results suggest that enhanced binding of dimeric peptides likely reflects the increased hydrophobic surface area on or near the BIR3 site and have significant ramifications for the design of therapeutics that target this class of proteins. PMID:17910418

  15. Clinical presentations of X-linked retinoschisis in Taiwanese patients confirmed with genetic sequencing

    PubMed Central

    Liu, Laura; Chen, Ho-Min; Tsai, Shawn; Chang, Tsong-Chi; Tsai, Tzu-Hsun; Yang, Chung-May; Chao, An-Ning; Chen, Kuan-Jen; Kao, Ling-Yuh; Yeung, Ling; Yeh, Lung-Kun; Hwang, Yih-Shiou; Wu, Wei-Chi; Lai, Chi-Chun

    2015-01-01

    Purpose To investigate the clinical characteristics of X-linked retinoschisis (XLRS) and identify genetic mutations in Taiwanese patients with XLRS. Methods This study included 23 affected males from 16 families with XLRS. Fundus photography, spectral domain optical coherent tomography (SD-OCT), fundus autofluorescence (FAF), and full-field electroretinograms (ERGs) were performed. The coding regions of the RS1 gene that encodes retinoschisin were sequenced. Results The median age at diagnosis was 18 years (range 4–58 years). The best-corrected visual acuity ranged from no light perception to 20/25. The typical spoke-wheel pattern in the macula was present in 61% of the patients (14/23) while peripheral retinoschisis was present in 43% of the patients (10/23). Four eyes presented with vitreous hemorrhage, and two eyes presented with leukocoria that mimics Coats’ disease. Macular schisis was identified with SD-OCT in 82% of the eyes (31/38) while foveal atrophy was present in 18% of the eyes (7/38). Concentric area of high intensity was the most common FAF abnormality observed. Seven out of 12 patients (58%) showed electronegative ERG findings. Sequencing of the RS1 gene identified nine mutations, six of which were novel. The mutations are all located in exons 4–6, including six missense mutations, two nonsense mutations, and one deletion-caused frameshift mutation. Conclusions XLRS is a clinically heterogeneous disease with profound phenotypic inter- and intrafamiliar variability. Genetic sequencing is valuable as it allows a definite diagnosis of XLRS to be made without the classical clinical features and ERG findings. This study showed the variety of clinical features of XLRS and reported novel mutations. PMID:25999676

  16. DIA1R Is an X-Linked Gene Related to Deleted In Autism-1

    PubMed Central

    Aziz, Azhari; Harrop, Sean P.; Bishop, Naomi E.

    2011-01-01

    Background Autism spectrum disorders (ASDs) are frequently occurring disorders diagnosed by deficits in three core functional areas: social skills, communication, and behaviours and/or interests. Mental retardation frequently accompanies the most severe forms of ASDs, while overall ASDs are more commonly diagnosed in males. Most ASDs have a genetic origin and one gene recently implicated in the etiology of autism is the Deleted-In-Autism-1 (DIA1) gene. Methodology/Principal Findings Using a bioinformatics-based approach, we have identified a human gene closely related to DIA1, we term DIA1R (DIA1-Related). While DIA1 is autosomal (chromosome 3, position 3q24), DIA1R localizes to the X chromosome at position Xp11.3 and is known to escape X-inactivation. The gene products are of similar size, with DIA1 encoding 430, and DIA1R 433, residues. At the amino acid level, DIA1 and DIA1R are 62% similar overall (28% identical), and both encode signal peptides for targeting to the secretory pathway. Both genes are ubiquitously expressed, including in fetal and adult brain tissue. Conclusions/Significance Examination of published literature revealed point mutations in DIA1R are associated with X-linked mental retardation (XLMR) and DIA1R deletion is associated with syndromes with ASD-like traits and/or XLMR. Together, these results support a model where the DIA1 and DIA1R gene products regulate molecular traffic through the cellular secretory pathway or affect the function of secreted factors, and functional deficits cause disorders with ASD-like symptoms and/or mental retardation. PMID:21264219

  17. High-resolution mapping of the X-linked hypohidrotic ectodermal dysplasia (EDA) locus

    PubMed Central

    Zonana, J.; Jones, M.; Browne, D.; Litt, M.; Kramer, P.; Becker, H. W.; Brockdorff, N.; Rastan, S.; Davies, K. P.; Clarke, A.; Thomas, N. S. T.

    1992-01-01

    The X-linked hypohidrotic ectodermal dysplasia (EDA) locus has been previously localized to the subchromosomal region Xq11-q21.1. We have extended our previous linkage studies and analyzed linkage between the EDA locus and 10 marker loci, including five new loci, in 41 families. Four of the marker loci showed no recombination with the EDA locus, and six other loci were also linked to the EDA locus with recombination fractions of .009–.075. Multipoint analyses gave support to the placement of the PGK1P1 locus proximal to the EDA locus and the DXS453 and PGK1 loci distal to EDA. Further ordering of the loci could be inferred from a human/rodent somatic cell hybrid derived from an affected female with EDA and an X;9 translocation and from studies of an affected male with EDA and a submicroscopic deletion. Three of the proximal marker loci, which showed no recombination with the EDA locus, when used in combination, were informative in 92% of females. The closely linked flanking polymorphic loci DXS339 and DXS453 had heterozygosities of 72% and 76%, respectively, and when used jointly, they were doubly informative in 52% of females. The human DXS732 locus was defined by a conserved mouse probe pcos169E/4 (DXCrc169 locus) that cosegregates with the mouse tabby (Ta) locus, a potential homologue to the EDA locus. The absence of recombination between EDA and the DXS732 locus lends support to the hypothesis that the DXCrc169 locus in the mouse and the DXS732 locus in humans may contain candidate sequences for the Ta and EDA genes, respectively. PMID:1357963

  18. Spontaneous shaker rat mutant - a new model for X-linked tremor/ataxia.

    PubMed

    Figueroa, Karla P; Paul, Sharan; Calì, Tito; Lopreiato, Raffaele; Karan, Sukanya; Frizzarin, Martina; Ames, Darren; Zanni, Ginevra; Brini, Marisa; Dansithong, Warunee; Milash, Brett; Scoles, Daniel R; Carafoli, Ernesto; Pulst, Stefan M

    2016-05-01

    The shaker rat is an X-linked recessive spontaneous model of progressive Purkinje cell (PC) degeneration exhibiting a shaking ataxia and wide stance. Generation of Wistar Furth (WF)/Brown Norwegian (BN) F1 hybrids and genetic mapping of F2 sib-sib offspring using polymorphic markers narrowed the candidate gene region to 26 Mbp denoted by the last recombinant genetic marker DXRat21 at 133 Mbp to qter (the end of the long arm). In the WF background, the shaker mutation has complete penetrance, results in a stereotypic phenotype and there is a narrow window for age of disease onset; by contrast, the F2 hybrid phenotype was more varied, with a later age of onset and likely non-penetrance of the mutation. By deep RNA-sequencing, five variants were found in the candidate region; four were novel without known annotation. One of the variants caused an arginine (R) to cysteine (C) change at codon 35 of the ATPase, Ca(2+) transporting, plasma membrane 3 (Atp2b3) gene encoding PMCA3 that has high expression in the cerebellum. The variant was well supported by hundreds of overlapping reads, and was found in 100% of all affected replicas and 0% of the wild-type (WT) replicas. The mutation segregated with disease in all affected animals and the amino acid change was found in an evolutionarily conserved region of PMCA3. Despite strong genetic evidence for pathogenicity, in vitro analyses of PMCA3(R35C) function did not show any differences to WT PMCA3. Because Atp2b3 mutation leads to congenital ataxia in humans, the identified Atp2b3 missense change in the shaker rat presents a good candidate for the shaker rat phenotype based on genetic criteria, but cannot yet be considered a definite pathogenic variant owing to lack of functional changes. PMID:27013529

  19. X-Linked Cone Dystrophy Caused by Mutation of the Red and Green Cone Opsins

    PubMed Central

    Gardner, Jessica C.; Webb, Tom R.; Kanuga, Naheed; Robson, Anthony G.; Holder, Graham E.; Stockman, Andrew; Ripamonti, Caterina; Ebenezer, Neil D.; Ogun, Olufunmilola; Devery, Sophie; Wright, Genevieve A.; Maher, Eamonn R.; Cheetham, Michael E.; Moore, Anthony T.; Michaelides, Michel; Hardcastle, Alison J.

    2010-01-01

    X-linked cone and cone-rod dystrophies (XLCOD and XLCORD) are a heterogeneous group of progressive disorders that solely or primarily affect cone photoreceptors. Mutations in exon ORF15 of the RPGR gene are the most common underlying cause. In a previous study, we excluded RPGR exon ORF15 in some families with XLCOD. Here, we report genetic mapping of XLCOD to Xq26.1-qter. A significant LOD score was detected with marker DXS8045 (Zmax = 2.41 [θ = 0.0]). The disease locus encompasses the cone opsin gene array on Xq28. Analysis of the array revealed a missense mutation (c. 529T>C [p. W177R]) in exon 3 of both the long-wavelength-sensitive (LW, red) and medium-wavelength-sensitive (MW, green) cone opsin genes that segregated with disease. Both exon 3 sequences were identical and were derived from the MW gene as a result of gene conversion. The amino acid W177 is highly conserved in visual and nonvisual opsins across species. We show that W177R in MW opsin and the equivalent W161R mutation in rod opsin result in protein misfolding and retention in the endoplasmic reticulum. We also demonstrate that W177R misfolding, unlike the P23H mutation in rod opsin that causes retinitis pigmentosa, is not rescued by treatment with the pharmacological chaperone 9-cis-retinal. Mutations in the LW/MW cone opsin gene array can, therefore, lead to a spectrum of disease, ranging from color blindness to progressive cone dystrophy (XLCOD5). PMID:20579627

  20. X-linked hypophosphatemia: the mutant gene is expressed in teeth as well as in kidney.

    PubMed Central

    Shields, E D; Scriver, C R; Reade, T; Fujiwara, T M; Morgan, K; Ciampi, A; Schwartz, S

    1990-01-01

    Mutation at a locus (HPDR) on the X chromosome (McKusick 30780 [HPDR1]; 30781 [HPDR2]) causes impaired renal phosphate transport, hypophosphatemia, and an associated impairment in the process of mineralization in bone and teeth (X-linked hypophosphatemia [XLH]). We measured the dental pulp profile area (PRATIO [= pulp area/tooth area]) and serum phosphorus (Pi) values in uniformly treated XLH patients (six males, 81 teeth, 1,457 Pi values; 11 females, 129 teeth, 1,439 Pi values). Serum Pi values, reflecting the metabolic environment of tooth development, were obtained by repeated measurement between 1 mo and 26 years of age during treatment. PRATIO values calculated from standardized Rinn radiographs were used as outcome measurements of tooth development in XLH patients and in age-matched controls (12 males, 100 teeth; 27 females, 275 teeth). Age-dependent serum Pi values were not different in the treated XLH males and females. In teeth forming primary dentin there was no gene dosage effect on PRATIO values apparent in subjects below 15 years of age. However, in teeth forming secondary dentin a gene dosage was found in the subjects aged 15 to 25 years: XLH male teeth (n = 65) mean +/- SD = 0.163 +/- 0.046; XLH female teeth (n = 75) mean +/- SD = 0.137 +/- 0.039; control teeth (n = 209) mean +/- SD = 0.116 +/- 0.023; (higher PRATIO values mean less development or mineralization of secondary dentin); differences in these PRATIO values (males vs. female and XLH vs. control) were significant by mixed-model analysis of variance.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2155529

  1. Deletion pattern of the STS gene in X-linked ichthyosis in a Mexican population.

    PubMed Central

    Jimenez Vaca, A. L.; Valdes-Flores, M. del R.; Rivera-Vega, M. R.; González-Huerta, L. M.; Kofman-Alfaro, S. H.; Cuevas-Covarrubias, S. A.

    2001-01-01

    BACKGROUND: X-linked ichthyosis (XLI) is an inherited disorder due to steroid sulfatase deficiency (STS). Most XLI patients (>90%) have complete deletion of the STS gene and flanking sequences. The presence of low copy number repeats (G1.3 and CRI-S232) on either side of the STS gene seems to play a role in the high frequency of these interstitial deletions. In the present study, we analyzed 80 Mexican patients with XLI and complete deletion of the STS gene. MATERIALS AND METHODS: STS activity was measured in the leukocytes using 7-[(3)H]-dehydroepiandrosterone sulfate as a substrate. Amplification of the regions telomeric-DXS89, DXS996, DXS1139, DXS1130, 5' STS, 3' STS, DXS1131, DXS1133, DXS237, DXS1132, DXF22S1, DXS278, DXS1134-centromeric was performed through PCR. RESULTS: No STS activity was detected in the XLI patients (0.00 pmoles/mg protein/h). We observed 3 different patterns of deletion. The first two groups included 25 and 32 patients, respectively, in which homologous sequences were involved. These subjects showed the 5' STS deletion at the sequence DXS1139, corresponding to the probe CRI-S232A2. The group of 32 patients presented the 3' STS rupture site at the sequence DXF22S1 (probe G1.3) and the remaining 25 patients had the 3' STS breakpoint at the sequence DXS278 (probe CRI-S232B2). The third group included 23 patients with the breakpoints at several regions on either side of the STS gene. No implication of the homologous sequences were observed in this group. CONCLUSION: These data indicate that more complex mechanisms, apart from homologous recombination, are occurring in the genesis of the breakpoints of the STS gene of XLI Mexican patients. PMID:11844872

  2. Response to Drs. Shastry and Trese: Phenotype-genotype correlations in X-linked retinitis pigmentosa

    SciTech Connect

    Kaplan, J.; Munnich, A.

    1996-11-11

    Shastry and Trese recently reported on a large kindred with X-linked retinitis pigmentosa (XLRP) characterized by a loss of central vision and preserved peripheral function. In their report, the disease had an early onset with severe myopia and a loss of central vision, while night blindness occurred later. Genetic analysis suggested that the disease was linked to the RP2 locus, and the authors raised the question of whether other cases linked to RP2 could display a similar loss of central vision. Three years ago, we reported on 4 large XLRP pedigrees with a very early onset with severe myopia and early loss of visual acuity, while in 5 other families the disease started later with night blindness. We showed that the first clinical form was linked to RP2, while the second was linked to RP3. Thus, the major difference between the two forms concerns the initial symptom, information which can be obtained from the parents and patients after careful questioning. By contrast, in adult life, no difference in either severity of disease or aspect of the fundus was observed in our series, regardless of the clinical subtype of XLRP. Some months later, Jacobson et al. reported on a pedigree with an RP2 genotype, and their data support the notion that in XLRP of RP2 type 1, cone dysfunction takes place first, and as the disease advances both rods and cones are affected. We were very happy, therefore, to read that the study of Shastry and Trese fully confirmed our previous findings. 3 refs.

  3. Nature and Recurrence of AVPR2 Mutations in X-linked Nephrogenic Diabetes Insipidus

    PubMed Central

    Bichet, Daniel G.; Birnbaumer, Mariel; Lonergan, Michèle; Arthus, Marie-Françoise; Rosenthal, Walter; Goodyer, Paul; Nivet, Hubert; Benoit, Stéphane; Giampietro, Philip; Simonetti, Simonetta; Fish, Alfred; Whitley, Chester B.; Jaeger, Philippe; Gertner, Joseph; New, Maria; DiBona, Francis J.; Kaplan, Bernard S.; Robertson, Gary L.; Hendy, Geoffrey N.; Fujiwara, T. Mary; Morgan, Kenneth

    1994-01-01

    X-linked nephrogenic diabetes insipidus (NDI) is a rare disease with defective renal and extrarenal arginine-vasopressin V2 receptor responses due to mutations in the AVPR2 gene in Xq28. We analyzed 31 independent NDI families to determine the nature and recurrence of AVPR2 mutations. Twenty-one new putative disease-causing mutations were identified: 113delCT, 253del35, 255del9, 274insG, V88M, R106C, 402delCT, C112R, Y124X, S126F, W164S, S167L, 684delTA, 804insG, W284X, A285P, W293X, R337X, and three large deletions or gene rearrangements. Five other mutations—R113W, Y128S, R137H, R181C, and R202C—that previously had been reported in other families were detected. There was evidence for recurrent mutation for four mutations (R113W, R137H, S167L, and R337X). Eight de novo mutation events were detected (274insG, R106C, Y128S, 167L [twice], R202C, 684delTA, and R337X). The origins were maternal (one), grandmaternal (one), and grandpaternal (six). In the 31 NDI families and 6 families previously reported by us, there is evidence both for mutation hot spots for nucleotide substitutions and for small deletions and insertions. More than half (58%) of the nucleotide substitutions in 26 families could be a consequence of 5-methylcytosine deamination at a CpG dinucleotide. Most of the small deletions and insertions could be attributed to slipped mispairing during DNA replication. PMID:8037205

  4. Further localization of X-linked hydrocephalus in the chromosomal region Xq28

    PubMed Central

    Willems, Patrick J.; Vits, Lieve; Raeymaekers, Peter; Beuten, Joke; Coucke, Paul; Holden, Jeanette J. A.; Van Broeckhoven, Christine; Warren, Stephen T.; Sagi, Michal; Robinson, David; Dennis, Nick; Friedman, Kenneth J.; Magnay, Dorothy; Lyonnet, Stanislas; White, Bradley N.; Wittwer, Bärbel H.; Aylsworth, Arthur S.; Reicke, Sigrid

    1992-01-01

    X-linked hydrocephalus (HSAS) is the most frequent genetic form of hydrocephalus. Clinical symptoms of HSAS include hydrocephalus, mental retardation, clasped thumbs, and spastic paraparesis. Recently we have assigned the HSAS gene to Xq28 by linkage analysis. In the present study we used a panel of 18 Xq27-q28 marker loci to further localize the HSAS gene in 13 HSAS families of different ethnic origins. Among the Xq27-q28 marker loci used, DXS52, DXS15, and F8C gave the highest combined lod scores, of 14.64, 6.53 and 6.33, respectively, at recombination fractions of .04, 0, and .05, respectively. Multipoint linkage analysis localizes the HSAS gene in the telomeric part of the Xq28 region, with a maximal lod score of 20.91 at 0.5 cM distal to DXS52. Several recombinations between the HSAS gene and the Xq28 markers DXS455, DXS304, DXS305, and DXS52 confirm that the HSAS locus is distal to DXS52. One crossover between HSAS and F8C suggests the HSAS gene to be proximal to F8C. Therefore, data from multipoint linkage analysis and the localization of key crossovers indicate that the HSAS gene is most likely located between DXS52 and F8C. This high-resolution genetic mapping places the HSAS locus within a region of <2 Mb in length, which is now amenable to positional cloning. ImagesFigure 2Figure 3 PMID:1642232

  5. A candidate gene for X-linked Ocular Albinism (OA1)

    SciTech Connect

    Bassi, M.T.; Schiaffino, V.; Rugarli, E.

    1994-09-01

    Ocular Albinism of the Nettleship-Fall type 1 (OA1) is the most common form of ocular albinism. It is transmitted as an X-linked recessive trait with affected males showing severe reduction of visual acuity, nystagmus, strabismus, photophobia. Ophthalmologic examination reveals foveal hypoplasia, hypopigmentation of the retina and iris translucency. Microscopic examination of melanocytes suggests that the underlying defect in OA1 is an abnormality in melanosome formation. Recently we assembled a 350 kb cosmid contig spanning the entire critical region on Xp22.3, which measures approximately 110 kb. A minimum set of cosmids was used to identify transcribed sequences using both cDNA selection and exon amplification. Two putative exons recovered by exon amplification strategy were found to be highly conserved throughout evolution and, therefore, they were used as probes for the screening of fetal and adult retina cDNA libraries. This led to the isolation of clones spanning a full-length cDNA which measures 7.6 kb. Sequence analysis revealed that the predicted protein product shows homology with syntrophines and a Xenopus laevis apical protein. The gene covers approximately 170 kb of DNA and spans the entire critical region for OA1, being deleted in two patients with contiguous gene deletion including OA1 and in one patient with isolated OA1. Therefore, this new gene represents a very strong candidate for involvement in OA1 (an alternative, but unlikely possibility to be considered is that the true OA1 gene lies within an intron of the former). Northern analysis revealed very high level of expression in retina and melanoma. Unlike most Xp22.3 genes, this gene is conserved in the mouse. We are currently performing SSCP analysis and direct sequencing of exons on DNAs from approximately 60 unrelated patients with OA1 for mutation detection.

  6. Somatic GPR101 Duplication Causing X-Linked Acrogigantism (XLAG)—Diagnosis and Management

    PubMed Central

    Rodd, Celia; Millette, Maude; Iacovazzo, Donato; Stiles, Craig E.; Barry, Sayka; Evanson, Jane; Albrecht, Steffen; Caswell, Richard; Bunce, Benjamin; Jose, Sian; Trouillas, Jacqueline; Roncaroli, Federico; Sampson, Julian; Ellard, Sian

    2016-01-01

    Context: Recent reports have proposed that sporadic or familial germline Xq26.3 microduplications involving the GPR101 gene are associated with early-onset X-linked acrogigantism (XLAG) with a female preponderance. Case Description: A 4-year-old boy presented with rapid growth over the previous 2 years. He complained of sporadic headaches and had coarse facial features. His height Z-score was +4.89, and weight Z-score was +5.57. Laboratory testing revealed elevated serum prolactin (185 μg/L; normal, <18 μg/L), IGF-1 (745 μg/L; normal, 64–369 μg/L), and fasting GH > 35.0 μg/L. Magnetic resonance imaging demonstrated a homogenous bulky pituitary gland (18 × 15 × 13 mm) without obvious adenoma. A pituitary biopsy showed hyperplastic pituitary tissue with enlarged cords of GH and prolactin cells. Germline PRKAR1A, MEN1, AIP, DICER1, CDKN1B, and somatic GNAS mutations were negative. Medical management was challenging until institution of continuous sc infusion of short-acting octreotide combined with sc pegvisomant and oral cabergoline. The patient remains well controlled with minimal side effects 7 years after presentation. His phenotype suggested XLAG, but his peripheral leukocyte-, saliva-, and buccal cell-derived DNA tested negative for microduplication in Xq26.3 or GPR101. However, DNA isolated from the pituitary tissue and forearm skin showed duplicated dosage of GPR101, suggesting that he is mosaic for this genetic abnormality. Conclusions: Our patient is the first to be described with somatic microduplication leading to typical XLAG phenotype. This patient demonstrates that a negative test for Xq26.3 microduplication or GPR101 duplication on peripheral blood DNA does not exclude the diagnosis of XLAG because it can result from a mosaic mutation affecting the pituitary. PMID:26982009

  7. Nature and recurrence of AVPR2 mutations in X-linked nephrogenic diabetes insipidus

    SciTech Connect

    Bichet, D.G.; Lonergan, M.; Arthus, M.F. ); Goodyer, P. ); Birnbaumer, M.; Rosenthal, W. ); Nivet, H.; Benoit, S.; Giampietro, P.; Simonetti, S.

    1994-08-01

    X-linked nephrogenic diabetes insipidus (NDI) is a rare disease with defective renal and extrarenal arginine-vasopressin V[sub 2] receptor responses due to mutations in the AVPR2 gene in Xq28. The authors analyzed 31 independent NDI families to determine the nature and recurrence of AVPR2 mutations. Twenty-one new putative disease-causing mutations were identified: 113delCT, 253del35, 255del9, 274insG, V88M, R106C, 402delCT, C112R, Y124X, S126F, W164S, S167L, 684delTA, 804insG, W284X, A285P, W293X, R337X, and three large deletions or gene rearrangements. Five other mutations - R113W, Y128S, R137H, R181C, and R202C - that previously had been reported in other families were detected. There was evidence for recurrent mutation for four mutations (R113W, R137H, S167L, and R337X). Eight de novo mutation events were detected (274insG, R106C, Y128S, 167L [twice], R202C, 684delTA, and R337X). The origins were maternal (one), grandmaternal (one), and grandpaternal (six). In the 31 NDI families and 6 families previously reported, there is evidence both for mutation hot spots for nucleotide substitutions and for small deletions and insertions. More than half (58%) of the nucleotide substitutions in 26 families could be a consequence of 5-methyl-cytosine deamination at a CpG dinucleotide. Most of the small deletions and insertions could be attributed to slipped mispairing during DNA replication. 25 refs., 2 figs., 2 tabs.

  8. X-linked Acrogigantism (X-LAG) Syndrome: Clinical Profile and Therapeutic Responses

    PubMed Central

    Beckers, Albert; Lodish, Maya Beth; Trivellin, Giampaolo; Rostomyan, Liliya; Lee, Misu; Faucz, Fabio R; Yuan, Bo; Choong, Catherine S; Caberg, Jean-Hubert; Verrua, Elisa; Naves, Luciana Ansaneli; Cheetham, Tim D; Young, Jacques; Lysy, Philippe A; Petrossians, Patrick; Cotterill, Andrew; Shah, Nalini Samir; Metzger, Daniel; Castermans, Emilie; Ambrosio, Maria Rosaria; Villa, Chiara; Strebkova, Natalia; Mazerkina, Nadia; Gaillard, Stéphan; Barra, Gustavo Barcelos; Casulari, Luis Augusto; Neggers, Sebastian J.; Salvatori, Roberto; Jaffrain-Rea, Marie-Lise; Zacharin, Margaret; Santamaria, Beatriz Lecumberri; Zacharieva, Sabina; Lim, Ee Mun; Mantovani, Giovanna; Zatelli, Maria Chaira; Collins, Michael T; Bonneville, Jean-François; Quezado, Martha; Chittiboina, Prashant; Oldfield, Edward H.; Bours, Vincent; Liu, Pengfei; De Herder, Wouter; Pellegata, Natalia; Lupski, James R.; Daly, Adrian F.; Stratakis, Constantine A.

    2015-01-01

    X-linked acro-gigantism (X-LAG) is a new syndrome of pituitary gigantism, caused by microduplications on chromosome Xq26.3, encompassing the gene GPR101, which is highly upregulated in pituitary tumors. We conducted this study to explore the clinical, radiological and hormonal phenotype and responses to therapy in patients with X-LAG syndrome. The study included 18 patients (13 sporadic) with X-LAG and a microduplication in chromosome Xq26.3. All sporadic cases had unique duplications and the inheritance pattern in 2 families was dominant with all Xq26.3 duplication carriers being affected. Patients began to grow rapidly as early as 2–3 months of age (median 12 months). At diagnosis (median delay 27 months), patients had a median height and weight SDS score of >+3.9 SDS. Apart from the increased overall body size, the children had acromegalic symptoms including acral enlargement and facial coarsening. More than a third of cases had increased appetite. Patients had marked hypersecretion of GH/IGF-1 and prolactin, usually due to a pituitary macroadenoma or hyperplasia. Primary neurosurgical control was achieved with extensive anterior pituitary resection but postoperative hypopituitarism was frequent. Control with somatostatin analogs was not readily achieved despite moderate to high somatostatin receptor subtype-2 expression in tumor tissue. Postoperative adjuvant pegvisomant achieved control of IGF-1 all 5 cases in which it was employed. X-LAG is a new infant-onset gigantism syndrome that has a severe clinical phenotype leading to challenging disease management. PMID:25712922

  9. Pericentromeric genes for non-specific X-linked mental retardation (MRX)

    SciTech Connect

    Gedeon, A.; Kerr, B.; Mulley, J.; Turner, G.

    1994-07-15

    Extensive linkage analysis in three families with non-specific X-linked mental retardation (MRX) have localized the gene in each family to the pericentromeric region of the chromosome. The MRX17 gene is localized with a peak lod of 2.41 ({theta} = 0.0) with the trinucleotide repeat polymorphism at the androgen receptor (AR) gene locus. The gene lies in the interval between the markers DSX255 and DXS990, as defined by recombinants. The MRX18 gene maps to the interval between the markers DXS538 and DXS1126, with a peak lod score of 2.01 ({theta} = 0.0) at the PFC gene locus. In the third family (Family E) with insufficient informative meioses for assignment of an MRX acronym, the maximum lod score is 1.8 at a recombination fraction of zero for several marker loci between DXS207 and DXS426. Exclusions from the regions of marker loci spanning Xq support the localization of the MRX gene in Family E to the pericentromeric region. Localizations of these and other MRX genes have determined that MRX2 and MRX19 map to distal Xp, MRX3, and MRX6 map to distal Xq, whilst the majority cluster in the pericentromeric region. In addition, we confirm that there are at least two distinct MRX genes near the centromere as delineated by the non-overlapping regional localizations of MRX17 and MRX18. Determination of these non-overlapping localizations is currently the only means of classifying non-syndromal forms of mental retardation and determining the minimum number of MRX loci. 27 refs., 14 figs., 5 tabs.

  10. X-linked lethal infantile spinal muscular atrophy: From clinical description to molecular mapping

    SciTech Connect

    Baumbach, L.; Schiavi, A.

    1994-09-01

    The proximal spinal muscular atrophies (PSMA), one of the most common forms of lower motor neuron disease in children, are characterized by progressive muscle weakness due to loss of anterior horn cells. All three autosomal recessive forms have been mapped to chromosome 5q11.2-11.3, implying an allelic association between these disorders. Recent evidence from our laboratories, as well as others, suggests that a distinct form of lethal neonatal spinal muscular atrophy, associated with early onset contractures, is determined by a gene on the X chromosome. We report our efforts in mapping this disease locus. Our original studies have focused on two unrelated multigenerational families with similar clinical presentations of severe hypotonia, muscle weakness, and a disease course similar to Werdnig Hoffman except for the additional finding of congenital or early onset contractures. Muscle biopsy and/or autopsy were indicative of anterior horn cell loss in affected males. Disease occurrence in each of the families was consistent with an X-linked recessive mode of inheritance. Subsequently, two additional families have been identified, as well as several sporadic male cases. Linkage analysis has been completed in one of these families using highly polymorphic repeats dispersed 10 cM on the X chromosome. Interpretation of results was achieved using an automated data acquisition program. Analysis of over 300 haplotypes generated using PCR-based DNA markers have identified two 16 cM regions on Xp with complete concordance to the disease phenotype. Our currents efforts are focused on the region surrounding the Kallman gene, in attempts to better define a candidate region, as well as analyze possible candidate genes within this region.

  11. Comparative Genomics of X-linked Muscular Dystrophies: The Golden Retriever Model

    PubMed Central

    Brinkmeyer-Langford, Candice; Kornegay, Joe N.

    2013-01-01

    Duchenne muscular dystrophy (DMD) is a devastating disease that dramatically decreases the lifespan and abilities of affected young people. The primary molecular cause of the disease is the absence of functional dystrophin protein, which is critical to proper muscle function. Those with DMD vary in disease presentation and dystrophin mutation; the same causal mutation may be associated with drastically different levels of disease severity. Also contributing to this variation are the influences of additional modifying genes and/or changes in functional elements governing such modifiers. This genetic heterogeneity complicates the efficacy of treatment methods and to date medical interventions are limited to treating symptoms. Animal models of DMD have been instrumental in teasing out the intricacies of DMD disease and hold great promise for advancing knowledge of its variable presentation and treatment. This review addresses the utility of comparative genomics in elucidating the complex background behind phenotypic variation in a canine model of DMD, Golden Retriever muscular dystrophy (GRMD). This knowledge can be exploited in the development of improved, more personalized treatments for DMD patients, such as therapies that can be tailor-matched to the disease course and genomic background of individual patients. PMID:24403852

  12. Intra-Amniotic rAAV-Mediated Microdystrophin Gene Transfer Improves Canine X-Linked Muscular Dystrophy and May Induce Immune Tolerance

    PubMed Central

    Hayashita-Kinoh, Hiromi; Yugeta, Naoko; Okada, Hironori; Nitahara-Kasahara, Yuko; Chiyo, Tomoko; Okada, Takashi; Takeda, Shin'ichi

    2015-01-01

    Duchenne muscular dystrophy (DMD) is a severe congenital disease due to mutations in the dystrophin gene. Supplementation of dystrophin using recombinant adenoassociated virus vector has promise as a treatment of DMD, although therapeutic benefit of the truncated dystrophin still remains to be elucidated. Besides, host immune responses against the vector as well as transgene products have been denoted in the clinical gene therapy studies. Here, we transduced dystrophic dogs fetuses to investigate the therapeutic effects of an AAV vector expressing microdystrophin under conditions of immune tolerance. rAAV-CMV-microdystrophin and a rAAV-CAG-luciferase were injected into the amniotic fluid surrounding fetuses. We also reinjected rAAV9-CMV-microdystrophin into the jugular vein of an infant dystrophic dog to induce systemic expression of microdystrophin. Gait and cardiac function significantly improved in the rAAV-microdystrophin-injected dystrophic dog, suggesting that an adequate treatment of rAAV-microdystrophin with immune modulation induces successful long-term transgene expression to analyze improved dystrophic phenotype. PMID:25586688

  13. X-Linked Gene Expression in the Virginia Opossum: Differences between the Paternally Derived Gpd and Pgk-A Loci

    PubMed Central

    Samollow, Paul B.; Ford, Allen L.; VandeBerg, John L.

    1987-01-01

    Expression of X-linked glucose-6-phosphate dehydrogenase (G6PD) and phosphoglycerate kinase-A (PGK-A) in the Virginia opossum ( Didelphis virginiana) was studied electrophoretically in animals from natural populations and those produced through controlled laboratory crosses. Blood from most of the wild animals exhibited a common single-banded phenotype for both enzymes. Rare variant animals, regardless of sex, exhibited single-banded phenotypes different in mobility from the common mobility class of the respective enzyme. The laboratory crosses confirmed the allelic basis for the common and rare phenotypes. Transmission of PGK-A phenotypes followed the pattern of determinate (nonrandom) inactivation of the paternally derived Pgk-A allele, and transmission of G6PD also was consistent with this pattern. A survey of tissue-specific expression of G6PD phenotypes of heterozygous females revealed, in almost all tissues, three-banded patterns skewed in favor of the allele that was expressed in blood cells. Three-banded patterns were never observed in males or in putatively homozygous females. These patterns suggest simultaneous, but unequal, expression of the maternally and paternally derived Gpd alleles within individual cells (i.e., partial paternal allele expression). The absence of such partial expression was noted in a parallel survey of females heterozygous at the Pgk-A locus. Thus, it appears that Gpd and Pgk-A are X-linked in D. virginiana and subject to preferential paternal allele inactivation, but that dosage compensation may not be complete for all paternally derived X-linked genes. The data establish the similarity between the American and Australian marsupial patterns of X-linked gene regulation and, thus, support the hypothesis that this form of dosage compensation was present in the early marsupial lineage that gave rise to these modern marsupial divisions. In addition, the data provide the first documentation of the differential expression of two X-linked

  14. Canine degenerative myelopathy.

    PubMed

    Coates, Joan R; Wininger, Fred A

    2010-09-01

    Canine degenerative myelopathy (DM) is an adult-onset fatal neurodegenerative disease that occurs in many breeds. The initial upper motor neuron spastic paraparesis and general proprioceptive ataxia in the pelvic limbs progress to a flaccid lower motor neuron tetraparesis. Recently, a missense mutation in the superoxide dismutase 1 (SOD1) gene was found to be a risk factor for DM, suggesting that DM is similar to some forms of human amyotrophic lateral sclerosis (ALS or Lou Gehrig's disease). This article reviews the current knowledge of canine DM with regard to its signalment, clinical spectrum, diagnostic approach, and treatment. The implications of the SOD1 mutation on both diseases are discussed, comparing pathogenic mechanisms while conveying perspectives to translational medicine. PMID:20732599

  15. Randomized trial of the anti-FGF23 antibody KRN23 in X-linked hypophosphatemia

    PubMed Central

    Carpenter, Thomas O.; Imel, Erik A.; Ruppe, Mary D.; Weber, Thomas J.; Klausner, Mark A.; Wooddell, Margaret M.; Kawakami, Tetsuyoshi; Ito, Takahiro; Zhang, Xiaoping; Humphrey, Jeffrey; Insogna, Karl L.; Peacock, Munro

    2014-01-01

    Background. X-linked hypophosphatemia (XLH) is the most common heritable form of rickets and osteomalacia. XLH-associated mutations in phosphate-regulating endopeptidase (PHEX) result in elevated serum FGF23, decreased renal phosphate reabsorption, and low serum concentrations of phosphate (inorganic phosphorus, Pi) and 1,25-dihydroxyvitamin D [1,25(OH)2D]. KRN23 is a human anti-FGF23 antibody developed as a potential treatment for XLH. Here, we have assessed the safety, tolerability, pharmacokinetics (PK), pharmacodynamics (PD), and immunogenicity of KRN23 following a single i.v. or s.c. dose of KRN23 in adults with XLH. Methods. Thirty-eight XLH patients were randomized to receive a single dose of KRN23 (0.003–0.3 mg/kg i.v. or 0.1–1 mg/kg s.c.) or placebo. PK, PD, immunogenicity, safety, and tolerability were assessed for up to 50 days. Results. KRN23 significantly increased the maximum renal tubular threshold for phosphate reabsorption (TmP/GFR), serum Pi, and 1,25(OH)2D compared with that of placebo (P < 0.01). The maximum serum Pi concentration occurred later following s.c. dosing (8–15 days) compared with that seen with i.v. dosing (0.5–4 days). The effect duration was dose related and persisted longer in patients who received s.c. administration. Changes from baseline in TmP/GFR, serum Pi, and serum 1,25(OH)2D correlated with serum KRN23 concentrations. The mean t1/2 of KRN23 was 8–12 days after i.v. administration and 13–19 days after s.c. administration. Patients did not exhibit increased nephrocalcinosis or develop hypercalciuria, hypercalcemia, anti-KRN23 antibodies, or elevated serum parathyroid hormone (PTH) or creatinine. Conclusion. KRN23 increased TmP/GFR, serum Pi, and serum 1,25(OH)2D. The positive effect of KR23 on serum Pi and its favorable safety profile suggest utility for KRN23 in XLH patients. Trial registration. Clinicaltrials.gov NCT00830674. Funding. Kyowa Hakko Kirin Pharma, Inc. PMID:24569459

  16. Linkage analysis and physical mapping near the gene for x-linked agammaglobulinemia at Xq22

    SciTech Connect

    Parolini, O.; Lassiter, G.L.; Henry, M.J.; Conley, M.E. St. Jude Children's Research Hospital, Memphis, TN ); Hejtmancik, J.F. ); Allen, R.C.; Belmont, J.W. ); Barker, D.F. )

    1993-02-01

    The gene for x-linked agammaglobulinemia (XLA) has been mapped to Xq22. No recombinations have been reported between the gene and the prob p212 at DXS178; however, this probe is informative in only 30-40% of women and the reported flanking markers, DXS3 and DXS94, and 10-15 cM apart. To identify additional probes that might be useful in genetic counseling, we examined 11 polymorphisms that have been mapped to the Xq21.3-q22 region in 13 families with XLA. In addition, pulsed-field gel electrophoresis and yeast artificial chromosomes (YACs) were used to further characterize the segman of DNA within which the gene for SLA must lie. The results demonstrated that DXS366 and DXS442, which share a 430-kb pulsed-field fragment, could replace DXS3 as proximal flanking markers. Probes at DXS178 and DXS265 identified the same 145-kb pulsed-field fragment, and both loci were contained within a 200-kb YAC identified with the probe p212. A highly polymorphic CA repeat (DCS178CA) was isolated from one end of this YAC and used in linkage analysis. Probes at DXS101 and DXS328 shared several pulsed-field fragments, the smallest of which was 250 kb. No recombinations were seen between XLA and the DXS178-DXS265-DXS178CA complex, DXS101, DXS328, DXS87, or the gene for proteolipid protein (PLP). Key crossovers, when combined with the linkage data from families with Alport syndrome, suggested the following order of loci: cen-DXS3-DXS366-DXS442-(PLP, DXS101, DXS328, DXS178-DXS265-DXS178CA complex, XL)-(DXS87, DXS94)-DXS327-(DXS350, DXS362)-tel. Our studies also limit the segment of DNA within which the XLA gene must lie to the 3- to 4-cM distance between DCS442 and DXS94 and they identify and orient polymorphisms that can be used in genetic counseling not only for XLA but also for Pelizaeus-Merzbacher disease (PLP deficiency), Alport syndrome (COL4A5 deficiency), and Fabry disease ([alpha]-galactosidase A difficiency). 31 refs., 5 figs., 2 tabs.

  17. Control of canine distemper.

    PubMed

    Chappuis, G

    1995-05-01

    Control of canine distemper can realistically only be achieved by the use of vaccination. The types of vaccine in current use are described, together with some of the problems encountered such as interference by maternal antibodies, and usage in species other than dogs. Modified live viral vaccines, as used for more than thirty years, have proved very effective. Nevertheless there is scope for some improvement in vaccine efficacy and recent developments in genetic recombinant methods are described. PMID:8588329

  18. Canine ehrlichiosis in Connecticut.

    PubMed Central

    Magnarelli, L A; Litwin, H J; Holland, C J; Anderson, J F; Ristic, M

    1990-01-01

    The first case of canine ehrlichiosis in Connecticut is reported. A female Brittany spaniel from Milford presented with lethargy, anorexia, fever, petechiae, splenomegaly, thrombocytopenia, anemia, elevated serum alkaline phosphatase, lymphopenia, and hypoalbuminemia. Serologic analysis revealed antibodies to Ehrlichia canis (titer, 1:2,560). This documents a more northern geographic distribution in the United States for this infectious agent than had previously been suspected. PMID:2312682

  19. Duchenne muscular dystrophy gene therapy in the canine model.

    PubMed

    Duan, Dongsheng

    2015-03-01

    Duchenne muscular dystrophy (DMD) is an X-linked lethal muscle disease caused by dystrophin deficiency. Gene therapy has significantly improved the outcome of dystrophin-deficient mice. Yet, clinical translation has not resulted in the expected benefits in human patients. This translational gap is largely because of the insufficient modeling of DMD in mice. Specifically, mice lacking dystrophin show minimum dystrophic symptoms, and they do not respond to the gene therapy vector in the same way as human patients do. Further, the size of a mouse is hundredfolds smaller than a boy, making it impossible to scale-up gene therapy in a mouse model. None of these limitations exist in the canine DMD (cDMD) model. For this reason, cDMD dogs have been considered a highly valuable platform to test experimental DMD gene therapy. Over the last three decades, a variety of gene therapy approaches have been evaluated in cDMD dogs using a number of nonviral and viral vectors. These studies have provided critical insight for the development of an effective gene therapy protocol in human patients. This review discusses the history, current status, and future directions of the DMD gene therapy in the canine model. PMID:25710459

  20. Duchenne Muscular Dystrophy Gene Therapy in the Canine Model

    PubMed Central

    2015-01-01

    Abstract Duchenne muscular dystrophy (DMD) is an X-linked lethal muscle disease caused by dystrophin deficiency. Gene therapy has significantly improved the outcome of dystrophin-deficient mice. Yet, clinical translation has not resulted in the expected benefits in human patients. This translational gap is largely because of the insufficient modeling of DMD in mice. Specifically, mice lacking dystrophin show minimum dystrophic symptoms, and they do not respond to the gene therapy vector in the same way as human patients do. Further, the size of a mouse is hundredfolds smaller than a boy, making it impossible to scale-up gene therapy in a mouse model. None of these limitations exist in the canine DMD (cDMD) model. For this reason, cDMD dogs have been considered a highly valuable platform to test experimental DMD gene therapy. Over the last three decades, a variety of gene therapy approaches have been evaluated in cDMD dogs using a number of nonviral and viral vectors. These studies have provided critical insight for the development of an effective gene therapy protocol in human patients. This review discusses the history, current status, and future directions of the DMD gene therapy in the canine model. PMID:25710459

  1. American canine hepatozoonosis.

    PubMed

    Panciera, R J; Ewing, S A

    2003-06-01

    American canine hepatozoonosis is an emerging, tick-transmitted infection of domestic dogs caused by a recently recognized species of apicomplexan parasite, Hepatozoon americanum. The known definitive host of the protozoan is the Gulf Coast tick, Amblyomma maculatum. Presently recognized intermediate hosts include the domestic dog and the coyote, Canis latrans. Laboratory-reared larval or nymphal A. maculatum can be infected readily by feeding to repletion on a parasitemic intermediate host; sporogony requires 35-40 days. Transmission of infection to the dog has been produced experimentally by oral administration of mature oocysts or oocyst-containing ticks. Canine disease follows experimental exposure in 4-6 weeks and is characterized by systemic illness, extreme neutrophilic leukocytosis, muscle and bone pain, and proliferation of periosteal bone. Histopathological findings include multifocal skeletal and cardiac myositis associated with escape of mature merozoites from within the host-cell environment. There is also rapid onset of periosteal activation and osteogenesis and, less frequently, glomerulopathy and amyloidosis. Sequential stages of development of H. americanum in both the dog and the tick have been elucidated. Gamonts potentially infectious to ticks have been observed in peripheral blood leukocytes of the dog in as few as 28 days after exposure to oocysts. Young coyotes experimentally exposed to a canine strain of H. americanum acquired disease indistinguishable from that of similarly exposed young dogs. PMID:12885206

  2. Identification and partial characterization of a candidate gene for X-linked retinopathies using a lateral approach

    SciTech Connect

    Wong, P.; MacDonald, I.M.; Sood, R.; Smith, C.; Pilon, R.; Tenniswood, M. )

    1993-03-01

    Using library to library cross-screening the authors have identified a number of genomic clones that harbor X-linked sequences expressed in the human choroid/retina. They describe the characterization of one of these, designated XEH.8 (DXS542), which is localized to Xp11.3-q12. Isolation, partial sequencing, and Northern analysis of the cognate cDNA (XEH.8[sub c]), has shown that the cDNA has some homology to the dystrophin gene and hybridizes to a 10-kb mRNA present in the choroid and retina but not in fibroblasts. This expressed sequence maps to the same region of the X chromosome as several known X-linked ophthalmic diseases, including Norrie disease, retinitis pigmentosa 2, congenital night blindness and Aland Island eye disease. 24 refs., 6 figs.

  3. Maxillary distraction osteogenesis for treatment of cleft lip and palate in a patient with X-linked agammaglobulinemia.

    PubMed

    Sato, Yutaka; Mishimagi, Takashi; Katsuki, Yuko; Harada, Kiyoshi

    2014-07-01

    X-linked agammaglobulinemia (XLA) is a congenital immune deficiency disorder caused by abnormal antibody production. It is a rare disease with an estimated frequency of 1 in 379,000 that has X-linked recessive heredity and develops only in males. The clinical problems include bacterial infection such as otitis media, sinusitis, and bronchitis. In recent years it has become possible to diagnose XLA in the early stage and intravenous immunoglobulin replacement therapy has permitted survival to adulthood. However, there have been no reports of oral surgery in patients with XLA. Here, we describe a case in which immunoglobulin replacement therapy given pre- and postoperatively was used to control infection in oral surgery and maxillary distraction osteogenesis performed for improving occlusion and appearance of a cleft lip and palate in a patient with XLA. PMID:24947966

  4. Variable X-linked recessive hypopituitarism with evidence of gonadotropin deficiency in two pre-pubertal males.

    PubMed

    Zipf, W B; Kelch, R P; Bacon, G E

    1977-04-01

    Two half-brothers with short stature secondary to growth hormone deficiency and a family history implicating X-linked transmission were studied extensively for other endocrine abnormalities. The proband had a normal physical examination, except for small stature and small external genitalia. ACTH and TSH release were normal. LH and FSH responses during an i.v. GnRH test were severely blunted. His half-brother also had a normal physical examination, except for severe short stature and very small external genitalia. Deficiencies of ACTH, and TSH as well as GH were documented. An i.v. GnRH test showed no LH or FSH response. These studies support the existence of an X-linked recessive form of hypopituitarism and portend the clinical usefulness of the i.v. GnRH test in evaluating gonadotropin reserve. PMID:192503

  5. New domains of neural cell-adhesion molecule L1 implicated in X-linked hydrocephalus and MASA syndrome

    SciTech Connect

    Jouet, M.; Kenwick, S.; Moncla, A.

    1995-06-01

    The neural cell-adhesion molecule L1 is involved in intercellular recognition and neuronal migration in the CNS. Recently, we have shown that mutations in the gene encoding L1 are responsible for three related disorders; X-linked hydrocephalus, MASA (mental retardation, aphasia, shuffling gait, and adducted thumbs) syndrome, and spastic paraplegia type I (SPG1). These three disorders represent a clinical spectrum that varies not only between families but sometimes also within families. To date, 14 independent L1 mutations have been reported and shown to be disease causing. Here we report nine novel L1 mutations in X-linked hydrocephalus and MASA-syndrome families, including the first examples of mutations affecting the fibronectin type III domains of the molecule. They are discussed in relation both to phenotypes and to the insights that they provide into L1 function. 39 refs., 5 figs., 3 tabs.

  6. A gene for nonspecific X-linked mental retardation (MRX41) is located in the distal segment of Xq28

    SciTech Connect

    Hamel, B.C.J.; Kremer, H.; Helm, B. van den

    1996-07-12

    We report on a family in which non-syndromal mild to moderate mental retardation segregates as an X-linked trait (MRX41). Two point linkage analysis demonstrated linkage between the disorder and marker DXS3 in Xq21.33 with a lod score of 2.56 at {theta} = 0.0 and marker DXS1108 in Xq28 with a lod score of 3.82 at {theta} = 0.0. Multipoint linkage analysis showed that the odds for a location of the gene in Xq28 vs. Xq21.33 are 100:1. This is the fourth family with non-specific X-linked mental retardation with Xq28-qter as the most likely gene localization. 16 refs., 2 figs., 1 tab.

  7. FG syndrome, an X-linked multiple congenital anomaly syndrome: The clinical phenotype and an algorithm for diagnostic testing

    PubMed Central

    Clark, Robin Dawn; Graham, John M.; Friez, Michael J.; Hoo, Joe J.; Jones, Kenneth Lyons; McKeown, Carole; Moeschler, John B.; Raymond, F. Lucy; Rogers, R. Curtis; Schwartz, Charles E.; Battaglia, Agatino; Lyons, Michael J.; Stevenson, Roger E.

    2014-01-01

    FG syndrome is a rare X-linked multiple congenital anomaly-cognitive impairment disorder caused by the p.R961W mutation in the MED12 gene. We identified all known patients with this mutation to delineate their clinical phenotype and devise a clinical algorithm to facilitate molecular diagnosis. We ascertained 23 males with the p.R961W mutation in MED12 from 9 previously reported FG syndrome families and 1 new family. Six patients are reviewed in detail. These 23 patients were compared with 48 MED12 mutation-negative patients, who had the clinical diagnosis of FG syndrome. Traits that best discriminated between these two groups were chosen to develop an algorithm with high sensitivity and specificity for the p.R961W MED12 mutation. FG syndrome has a recognizable dysmorphic phenotype with a high incidence of congenital anomalies. A family history of X-linked mental retardation, deceased male infants, and/or multiple fetal losses was documented in all families. The algorithm identifies the p.R961W MED12 mutation-positive group with 100% sensitivity and 90% spec-ificity. The clinical phenotype of FG syndrome defines a recognizable pattern of X-linked multiple congenital anomalies and cognitive impairment. This algorithm can assist the clinician in selecting the patients for testing who are most likely to have the recurrent p.R961W MED12 mutation. PMID:19938245

  8. A Complex Genetic Basis to X-Linked Hybrid Male Sterility Between Two Species of House Mice

    PubMed Central

    Good, Jeffrey M.; Dean, Matthew D.; Nachman, Michael W.

    2008-01-01

    The X chromosome plays a central role in the evolution of reproductive isolation, but few studies have examined the genetic basis of X-linked incompatibilities during the early stages of speciation. We report the results of a large experiment focused on the reciprocal introgression of the X chromosome between two species of house mice, Mus musculus and M. domesticus. Introgression of the M. musculus X chromosome into a wild-derived M. domesticus genetic background produced male-limited sterility, qualitatively consistent with previous experiments using classic inbred strains to represent M. domesticus. The genetic basis of sterility involved a minimum of four X-linked factors. The phenotypic effects of major sterility QTL were largely additive and resulted in complete sterility when combined. No sterility factors were uncovered on the M. domesticus X chromosome. Overall, these results revealed a complex and asymmetric genetic basis to X-linked hybrid male sterility during the early stages of speciation in mice. Combined with data from previous studies, we identify one relatively narrow interval on the M. musculus X chromosome involved in hybrid male sterility. Only a handful of spermatogenic genes are within this region, including one of the most rapidly evolving genes on the mouse X chromosome. PMID:18689897

  9. Variation in the X-Linked EFHC2 Gene Is Associated with Social Cognitive Abilities in Males

    PubMed Central

    Startin, Carla M.; Fiorentini, Chiara; de Haan, Michelle; Skuse, David H.

    2015-01-01

    Females outperform males on many social cognitive tasks. X-linked genes may contribute to this sex difference. Males possess one X chromosome, while females possess two X chromosomes. Functional variations in X-linked genes are therefore likely to impact more on males than females. Previous studies of X-monosomic women with Turner syndrome suggest a genetic association with facial fear recognition abilities at Xp11.3, specifically at a single nucleotide polymorphism (SNP rs7055196) within the EFHC2 gene. Based on a strong hypothesis, we investigated an association between variation at SNP rs7055196 and facial fear recognition and theory of mind abilities in males. As predicted, males possessing the G allele had significantly poorer facial fear detection accuracy and theory of mind abilities than males possessing the A allele (with SNP variant accounting for up to 4.6% of variance). Variation in the X-linked EFHC2 gene at SNP rs7055196 is therefore associated with social cognitive abilities in males. PMID:26107779

  10. The stability of hexacosanoyl lysophosphatidylcholine in dried-blood spot quality control materials for X-linked adrenoleukodystrophy newborn screening

    PubMed Central

    Haynes, Christopher A.; De Jesús, Víctor R.

    2016-01-01

    Objectives Newborn screening for X-linked adrenoleukodystrophy utilizes tandem mass spectrometry to analyze dried-blood spot specimens. Quality control materials (dried-blood spots enriched with hexacosanoyl lysophosphatidylcholine) were prepared and stored at different temperatures for up to 518 days to evaluate the stability of this biomarker for X-linked adrenoleukodystrophy. Design and methods Dried-blood spot storage included desiccant (45, 171, and 518 days) or omitted desiccant (53 days at >90% relative humidity). Specimens were stored for 171 and 518 days at −20 °C, 4 °C, ambient temperature, and 37 °C. Each weekday for 45 days, a bag of specimens stored at 4 °C was warmed to ambient temperature and one specimen was removed for storage at −80 °C. Specimens were analyzed by high-performance liquid-chromatography electrospray ionization tandem mass spectrometry and data was plotted as concentration (micromoles per liter) vs. time. Linear regression provided slope and y-intercept values for each storage condition. Results Small slope values (0.01 or less) and y-intercept values close to the enrichment indicated less than 11% loss of hexacosanoyl lysophosphatidylcholine under all storage conditions tested. Conclusions Quality control materials for X-linked adrenoleukodystrophy are stable for at least 1 year when stored with desiccant. PMID:25307302

  11. Variation in the X-linked EFHC2 gene is associated with social cognitive abilities in males.

    PubMed

    Startin, Carla M; Fiorentini, Chiara; de Haan, Michelle; Skuse, David H

    2015-01-01

    Females outperform males on many social cognitive tasks. X-linked genes may contribute to this sex difference. Males possess one X chromosome, while females possess two X chromosomes. Functional variations in X-linked genes are therefore likely to impact more on males than females. Previous studies of X-monosomic women with Turner syndrome suggest a genetic association with facial fear recognition abilities at Xp11.3, specifically at a single nucleotide polymorphism (SNP rs7055196) within the EFHC2 gene. Based on a strong hypothesis, we investigated an association between variation at SNP rs7055196 and facial fear recognition and theory of mind abilities in males. As predicted, males possessing the G allele had significantly poorer facial fear detection accuracy and theory of mind abilities than males possessing the A allele (with SNP variant accounting for up to 4.6% of variance). Variation in the X-linked EFHC2 gene at SNP rs7055196 is therefore associated with social cognitive abilities in males. PMID:26107779

  12. X-linked gene expression in the Virginia opossum: differences between the paternally derived Gpd and Pgk-A loci

    SciTech Connect

    Samollow, P.B.; Ford, A.L.; VandeBerg, J.L.

    1987-01-01

    Expression of X-linked glucose-6-phosphate dehydrogenase (G6PD) and phosphoglycerate kinase-A (PGK-A) in the Virginia opossum (Didelphis virginiana) was studied electrophoretically in animals from natural populations and those produced through controlled laboratory crosses. Blood from most of the wild animals exhibited a common single-banded phenotype for both enzymes. Rare variant animals, regardless of sex, exhibited single-banded phenotypes different in mobility from the common mobility class of the respective enzyme. The laboratory crosses confirmed the allelic basis for the common and rare phenotypes. Transmission of PGK-A phenotypes followed the pattern of determinate (nonrandom) inactivation of the paternally derived Pgk-A allele, and transmission of G6PD also was consistent with this pattern. A survey of tissue-specific expression of G6PD phenotypes of heterozygous females revealed, in almost all tissues, three-banded patterns skewed in favor of the allele that was expressed in blood cells. Three-banded patterns were never observed in males or in putatively homozygous females. These patterns suggest simultaneous, but unequal, expression of the maternally and paternally derived Gpd alleles within individual cells. The absence of such partial expression was noted in a parallel survey of females heterozygous at the Pgd-A locus. Thus, it appears that Gpd and Pgk-A are X-linked in D. virginiana and subject to preferential paternal allele inactivation, but that dosage compensation may not be complete for all paternally derived X-linked genes.

  13. An ex vivo gene therapy approach in X-linked retinoschisis

    PubMed Central

    Bashar, Abu E.; Metcalfe, Andrew L.; Viringipurampeer, Ishaq A.; Yanai, Anat; Gregory-Evans, Cheryl Y.

    2016-01-01

    Purpose X-linked retinoschisis (XLRS) is juvenile-onset macular degeneration caused by haploinsufficiency of the extracellular cell adhesion protein retinoschisin (RS1). RS1 mutations can lead to either a non-functional protein or the absence of protein secretion, and it has been established that extracellular deficiency of RS1 is the underlying cause of the phenotype. Therefore, we hypothesized that an ex vivo gene therapy strategy could be used to deliver sufficient extracellular RS1 to reverse the phenotype seen in XLRS. Here, we used adipose-derived, syngeneic mesenchymal stem cells (MSCs) that were genetically modified to secrete human RS1 and then delivered these cells by intravitreal injection to the retina of the Rs1h knockout mouse model of XLRS. Methods MSCs were electroporated with two transgene expression systems (cytomegalovirus (CMV)-controlled constitutive and doxycycline-induced Tet-On controlled inducible), both driving expression of human RS1 cDNA. The stably transfected cells, using either constitutive mesenchymal stem cell (MSC) or inducible MSC cassettes, were assayed for their RS1 secretion profile. For single injection studies, 100,000 genetically modified MSCs were injected into the vitreous cavity of the Rs1h knockout mouse eye at P21, and data were recorded at 2, 4, and 8 weeks post-injection. The control groups received either unmodified MSCs or vehicle injection. For the multiple injection studies, the mice received intravitreal MSC injections at P21, P60, and P90 with data collection at P120. For the single- and multiple-injection studies, the outcomes were measured with electroretinography, optokinetic tracking responses (OKT), histology, and immunohistochemistry. Results Two lines of genetically modified MSCs were established and found to secrete RS1 at a rate of 8 ng/million cells/day. Following intravitreal injection, RS1-expressing MSCs were found mainly in the inner retinal layers. Two weeks after a single injection of MSCs, the

  14. Orthophosphate transport in the erythrocyte of normal subjects and of patients with X-linked hypophosphatemia.

    PubMed Central

    Tenenhouse, H S; Scriver, C R

    1975-01-01

    We have examined the mechanism of TCA-soluble orthophosphate (Pi) transfer across the membrane of mature human erythrocytes in normal subjects and in patients with X-linked hypophosphatemia (X-LH). The studies were carried out largely at pH 7.4 and 37 degrees C, in partial stimulation of conditions in vivo. (a) At physiological concentrations (1-2 mM) Pi enters the intact normal erythrocyte down its chemical gradient and under no conditions could we identify a steady-state trans-membrane gradient for Pi greater than 0.6. Calculations of the phosphate anion distribution ratio using the Nernst equation yield theoretical values that closely approximate observed values. (b) Glycolytic inhibitors have little effect on total entry of 32Pi inti erythrocytes but they do affect the intracellular distribution of Pi. In the presence of iodoacetamide, label accumulates almost exclusively in the orthophosphate pool and less than 1% enters the organic phosphate pool. (c) Specific activity measurements in unblocked cells indicate that Pi anion equilibrates first with its intracellular Pi pool. These initial findings imply that neither group translocation, nor energy coupling, influence Pi permeation into the human erythrocytes. (d) The relationship between 32P entry and extracellular Pi concentration is parabolic in the presence of chloride, and linear in the presence of sulfate. The kinetics of concentration dependent entrance cannot be examined and saturability of Pi entry cannot be identified under these conditions. (e) The competitive inhibitor arsenate partially inhibits the initial rate and steady-state flux of orthophosphate in erythrocytes treated with iodoacetamide to inhibit glycolysis. However, a significant portion of Pi transport escapes arsenate inhibition. (f) Activation energies for Pi entry, in nonglycolizing erythrocytes are much higher than those required by simple diffusion in an aqueous system. (g) Neither the inward or outward movement of Pi is modulated by

  15. Canine mast cell tumors.

    PubMed

    Macy, D W

    1985-07-01

    Despite the fact that the mast cell tumor is a common neoplasm of the dog, we still have only a meager understanding of its etiology and biologic behavior. Many of the published recommendations for treatment are based on opinion rather than facts derived from careful studies and should be viewed with some skepticism. Because of the infrequent occurrence of this tumor in man, only a limited amount of help can be expected from human oncologists; therefore, burden of responsibility for progress in predicting behavior and developing treatment effective for canine mast cell tumors must fall on the shoulders of the veterinary profession. PMID:3929444

  16. Brazilian canine hepatozoonosis.

    PubMed

    O'Dwyer, Lucia Helena

    2011-01-01

    The genus Hepatozoon includes hundreds of species that infect birds, reptiles, amphibians and mammals, in all continents with tropical and subtropical climates. Two species have been described in domestic dogs: H. canis, reported in Europe, Asia, Africa, South America and the United States; and H. americanum, which so far has only been diagnosed in the United States. In Brazil, the only species found infecting dogs is H. canis. The objective of this review was to detail some aspects of canine hepatozoonosis, caused by H. canis, and the main points of its biology, transmission, pathogenicity, symptoms, epidemiology and diagnostic methods, with emphasis on research developed in Brazil. PMID:21961746

  17. Absence of canine papillomavirus sequences in canine mammary tumours.

    PubMed

    Sardon, D; Blundell, R; Burrai, G P; Alberti, A; Tore, G; Passino, E Sanna; Antuofermo, E

    2015-01-01

    Human papillomaviruses (PVs) are found in human breast cancer tissue; however, it remains controversial as to whether these viruses play a role in the aetiology of this tumour. There has been minimal study of whether PVs are found in normal or abnormal mammary glands of animals. The present study investigated whether a PV sequence could be found in the mammary glands of 33 female dogs by rolling circle amplification and polymerase chain reaction. No PV DNA was found in normal or neoplastic canine mammary tissues, suggesting that canine PVs are probably not involved in the pathogenesis of canine mammary neoplasia. PMID:25435511

  18. A missense mutation in the neutrophil cytochrome b heavy chain in cytochrome-positive X-linked chronic granulomatous disease.

    PubMed Central

    Dinauer, M C; Curnutte, J T; Rosen, H; Orkin, S H

    1989-01-01

    A membrane-bound cytochrome b, a heterodimer formed by a 91-kD glycoprotein and a 22-kD polypeptide, is a critical component of the phagocyte NADPH-oxidase responsible for the generation of superoxide anion. Mutations in the gene for the 91-kD chain of this cytochrome result in the X-linked form of chronic granulomatous disease (CGD), in which phagocytes are unable to produce superoxide. Typically, there is a marked deficiency of the 91-kD subunit and the cytochrome spectrum is absent (X- CGD). In a variant form of CGD with X-linked inheritance, affected males have a normal visible absorbance spectrum of cytochrome b, yet fail to generate superoxide (X+ CGD). The size and abundance of the mRNA for the 91-kD subunit and its encoded protein were examined and appeared normal. To search for a putative mutation in the coding sequence of the 91-kD subunit gene, the corresponding RNA from an affected X+ male was amplified by the polymerase chain reaction and sequenced. A single nucleotide change, a C----A transversion, was identified that predicts a nonconservative Pro----His substitution at residue 415 of the encoded protein. Hybridization of amplified genomic DNA with allele-specific oligonucleotide probes demonstrated the mutation to be specific to affected X+ males and the carrier state. These results strengthen the concept that all X-linked CGD relates to mutations affecting the expression or structure of the 91-kD cytochrome b subunit. The mechanism by which the Pro 415----His mutation renders the oxidase nonfunctional is unknown, but may involve an impaired interaction with other components of the oxidase. Images PMID:2556453

  19. X-linked creatine transporter defect: A report on two unrelated boys with a severe clinical phenotype

    PubMed Central

    Anselm, I. M.; Alkuraya, F. S.; Salomons, G. S.; Jakobs, C.; Fulton, A. B.; Mazumdar, M.; Rivkin, M.; Frye, R.; Poussaint, T. Young; Marsden, D.

    2008-01-01

    Summary We report two unrelated boys with the X-linked creatine transporter defect (CRTR) and clinical features more severe than those previously described with this disorder. These two boys presented at ages 12 and 30 months with severe mental retardation, absent speech development, hypotonia, myopathy and extra-pyramidal movement disorder. One boy has seizures and some dysmorphic features; he also has evidence of an oxidative phosphorylation defect. They both had classical absence of creatine peak on brain magnetic resonance spectroscopy (MRS). In one, however, this critical finding was overlooked in the initial interpretation and was discovered upon subsequent review of the MRS. PMID:16601897

  20. Successful treatment of post-transplant thrombocytopenia with romiplostim in a pediatric patient with X-linked chronic granulomatous disease.

    PubMed

    Buchbinder, David; Hsieh, Loan; Krance, Robert; Nugent, Diane J

    2014-11-01

    Thrombocytopenia is a frequent complication following HSCT in pediatric patients. Romiplostim is a TPO receptor agonist that has been utilized successfully in the treatment of pediatric patients with immune thrombocytopenia. We describe a three-yr-old male with X-linked CGD treated with an unrelated donor bone marrow transplant. His course was complicated by the development of symptomatic thrombocytopenia. He was started on romiplostim with prompt improvement in his thrombocytopenia. We found the use of romiplostim to be an effective and safe alternative to the potential complications as well as morbidity and mortality associated with the use of immunosuppressive agents such as corticosteroids. PMID:25118016

  1. Localization of a novel X-linked progressive cone dystrophy gene to Xq27: evidence for genetic heterogeneity.

    PubMed Central

    Bergen, A A; Pinckers, A J

    1997-01-01

    Clinical reexamination and DNA linkage analysis were carried out in an X-linked progressive cone dystrophy (XLPCD) family, previously described by Pinckers and Timmerman in 1981. In a large pedigree segregating XLPCD, by use of > or = 27 markers spanning the entire X chromosome, a novel locus for XLPCD was identified in Xq27. All other regions on the chromosome could be excluded. Since this novel locus is distinct from previously identified genes or regions involved in XLPCD, we further establish genetic heterogeneity underlying this disease entity. PMID:9199568

  2. Loss-of-Function CNKSR2 Mutation Is a Likely Cause of Non-Syndromic X-Linked Intellectual Disability

    PubMed Central

    Houge, G.; Rasmussen, I.H.; Hovland, R.

    2012-01-01

    In a non-dysmorphic 5-year-old boy with developmental delay, well-controlled epilepsy, and microcephaly, a 234-kb deletion of Xp22.12 was detected by copy number analysis. The maternally inherited deletion removed the initial 15 of the 21 exons of the connector enhancer of KSR-2 gene called CNKSR2 or CNK2. Our finding suggests that loss of CNKSR2 is a novel cause of non-syndromic X-linked mental retardation, an assumption supported by high gene expression in the brain, localization to the post-synaptic density, and a role in RAS/MAPK-dependent signal transduction. PMID:22511892

  3. Loss-of-Function CNKSR2 Mutation Is a Likely Cause of Non-Syndromic X-Linked Intellectual Disability.

    PubMed

    Houge, G; Rasmussen, I H; Hovland, R

    2012-01-01

    In a non-dysmorphic 5-year-old boy with developmental delay, well-controlled epilepsy, and microcephaly, a 234-kb deletion of Xp22.12 was detected by copy number analysis. The maternally inherited deletion removed the initial 15 of the 21 exons of the connector enhancer of KSR-2 gene called CNKSR2 or CNK2. Our finding suggests that loss of CNKSR2 is a novel cause of non-syndromic X-linked mental retardation, an assumption supported by high gene expression in the brain, localization to the post-synaptic density, and a role in RAS/MAPK-dependent signal transduction. PMID:22511892

  4. Cog-Wheel Octameric Structure of RS1, the Discoidin Domain Containing Retinal Protein Associated with X-Linked Retinoschisis

    PubMed Central

    Bush, Martin; Setiaputra, Dheva; Yip, Calvin K.; Molday, Robert S.

    2016-01-01

    RS1, also known as retinoschisin, is a disulphide-linked, discoidin domain containing homo-oligomeric protein that plays a crucial role in maintaining the cellular and synaptic organization of the retina. This is highlighted by the finding that over 130 mutations in RS1 cause X-linked retinoschisis, a retinal degenerative disease characterized by the splitting of the retinal cell layers, disruption of the photoreceptor–bipolar synapses, degeneration of photoreceptors, and severe loss in central vision. In this study, we investigated the arrangement of the RS1 subunits within the oligomer complex using single particle electron microscopy. RS1 was seen as two stacked rings with each ring displaying a symmetrical cog wheel-like structure with eight teeth or projections corresponding to the RS1 subunits. Three dimensional reconstruction and molecular modelling indicated that the discoidin domain, the principal functional unit of RS1, projects outward, and the Rs1 domain and C-terminal segment containing intermolecular disulphide bonds are present in the inner ring to form the core octameric structure. These studies provide a basis for further understanding the role of the novel core RS1 octameric complex in retinal cell biology and X-linked retinoschisis. PMID:26812435

  5. JM2, encoding a fork head–related protein, is mutated in X-linked autoimmunity–allergic disregulation syndrome

    PubMed Central

    Chatila, Talal A.; Blaeser, Frank; Ho, Nga; Lederman, Howard M.; Voulgaropoulos, Constantine; Helms, Cindy; Bowcock, Anne M.

    2000-01-01

    X-linked autoimmunity–allergic disregulation syndrome (XLAAD) is an X-linked recessive immunological disorder characterized by multisystem autoimmunity, particularly early-onset type 1 diabetes mellitus, associated with manifestations of severe atopy including eczema, food allergy, and eosinophilic inflammation. Consistent with the allergic phenotype, analysis of two kindreds with XLAAD revealed marked skewing of patient T lymphocytes toward the Th2 phenotype. Using a positional-candidate approach, we have identified in both kindreds mutations in JM2, a gene on Xp11.23 that encodes a fork head domain–containing protein. One point mutation at a splice junction site results in transcripts that encode a truncated protein lacking the fork head homology domain. The other mutation involves an in-frame, 3-bp deletion that is predicted to impair the function of a leucine zipper dimerization domain. Our results point to a critical role for JM2 in self tolerance and Th cell differentiation. This article may have been published online in advance of the print edition. The date of publication is available from the JCI website, http://www.jci.org. J. Clin. Invest. 106:R75–R81 (2000). PMID:11120765

  6. Progressive engineering of a homing endonuclease genome editing reagent for the murine X-linked immunodeficiency locus.

    PubMed

    Wang, Yupeng; Khan, Iram F; Boissel, Sandrine; Jarjour, Jordan; Pangallo, Joseph; Thyme, Summer; Baker, David; Scharenberg, Andrew M; Rawlings, David J

    2014-06-01

    LAGLIDADG homing endonucleases (LHEs) are compact endonucleases with 20-22 bp recognition sites, and thus are ideal scaffolds for engineering site-specific DNA cleavage enzymes for genome editing applications. Here, we describe a general approach to LHE engineering that combines rational design with directed evolution, using a yeast surface display high-throughput cleavage selection. This approach was employed to alter the binding and cleavage specificity of the I-Anil LHE to recognize a mutation in the mouse Bruton tyrosine kinase (Btk) gene causative for mouse X-linked immunodeficiency (XID)-a model of human X-linked agammaglobulinemia (XLA). The required re-targeting of I-AniI involved progressive resculpting of the DNA contact interface to accommodate nine base differences from the native cleavage sequence. The enzyme emerging from the progressive engineering process was specific for the XID mutant allele versus the wild-type (WT) allele, and exhibited activity equivalent to WT I-AniI in vitro and in cellulo reporter assays. Fusion of the enzyme to a site-specific DNA binding domain of transcription activator-like effector (TALE) resulted in a further enhancement of gene editing efficiency. These results illustrate the potential of LHE enzymes as specific and efficient tools for therapeutic genome engineering. PMID:24682825

  7. Photoreceptor Rescue by an Abbreviated Human RPGR Gene in a Murine Model of X-linked Retinitis Pigmentosa

    PubMed Central

    Pawlyk, Basil S.; Adamian, Michael; Sun, Xun; Bulgakov, Oleg V.; Shu, Xinhua; Smith, Alexander J.; Berson, Eliot L.; Ali, Robin R.; Khani, Shahrokh; F.Wright, Alan; Sandberg, Michael A.; Li, Tiansen

    2015-01-01

    The X-linked RP3 gene codes for the ciliary protein RPGR and accounts for over 10% of inherited retinal degenerations. The critical RPGR-ORF15 splice variant contains a highly repetitive purine-rich linker region that renders it unstable and difficult to adapt for gene therapy. To test the hypothesis that the precise length of the linker region is not critical for function, we evaluated whether AAV-mediated replacement gene therapy with a human ORF15 variant containing in-frame shortening of the linker region could reconstitute RPGR function in vivo. We delivered human RPGR-ORF15 replacement genes with deletion of most (314-codons, “short form”) or 1/3 (126-codons, “long form”) of the linker region to Rpgr null mice. Human RPGR-ORF15 expression was detected post-treatment with both forms of ORF15 transgenes. However, only the long form correctly localized to the connecting cilia and led to significant functional and morphological rescue of rods and cones. Thus the highly repetitive region of RPGR is functionally important but that moderate shortening of its length, which confers the advantage of added stability, preserves its function. These findings provide a theoretical basis for optimizing replacement gene design in clinical trials for X-linked RP3. PMID:26348595

  8. Localization of a non-syndromic X-linked mental retardation gene (MRX80) to Xq22-q24.

    PubMed

    Verot, Lucie; Alloisio, Nicole; Morlé, Laurette; Bozon, Muriel; Touraine, Renaud; Plauchu, Henri; Edery, Patrick

    2003-09-15

    Isolated mental retardation is clinically and genetically heterogenous and may be inherited in an autosomal dominant, autosomal recessive, or X-linked manner. We report here a linkage analysis in a large family including 15 members, 6 of whom presenting X-linked non-syndromic mental retardation (MRX). Two-point linkage analysis using 23 polymorphic markers covering the entire X chromosome demonstrated significant linkage between the causative gene and DXS8055 with a maximum LOD score of 2.98 at theta = 0.00. Haplotype analysis indicated location for the disease gene in a 23.1 cM interval between DXS1106 and DXS8067. This MRX localization overlaps with 7 XLMR loci (MRX23, MRX27, MRX30, MRX35, MRX47, MRX53, and MRX63). This interval contains two genes associated with non-syndromic mental retardation (NSMR), namely the PAK3 gene, encoding a p21-activated kinase (MRX30 and MRX47) and the FACL4 gene encoding a fatty acyl-CoA ligase (MRX63). As skewed X-inactivation, an apparently constant feature in FACL4 carrier females was not observed in an obligate carrier belonging to the MRX family presented here, the PAK3 gene should be considered as the strongest candidate for this MRX locus. PMID:12949969

  9. Vascular and connective tissue anomalies associated with X-linked periventricular heterotopia due to mutations in Filamin A.

    PubMed

    Reinstein, Eyal; Frentz, Sophia; Morgan, Tim; García-Miñaúr, Sixto; Leventer, Richard J; McGillivray, George; Pariani, Mitchel; van der Steen, Anthony; Pope, Michael; Holder-Espinasse, Muriel; Scott, Richard; Thompson, Elizabeth M; Robertson, Terry; Coppin, Brian; Siegel, Robert; Bret Zurita, Montserrat; Rodríguez, Jose I; Morales, Carmen; Rodrigues, Yuri; Arcas, Joaquín; Saggar, Anand; Horton, Margaret; Zackai, Elaine; Graham, John M; Rimoin, David L; Robertson, Stephen P

    2013-05-01

    Mutations conferring loss of function at the FLNA (encoding filamin A) locus lead to X-linked periventricular nodular heterotopia (XL-PH), with seizures constituting the most common clinical manifestation of this disorder in female heterozygotes. Vascular dilatation (mainly the aorta), joint hypermobility and variable skin findings are also associated anomalies, with some reports suggesting that this might represents a separate syndrome allelic to XL-PH, termed as Ehlers-Danlos syndrome-periventricular heterotopia variant (EDS-PH). Here, we report a cohort of 11 males and females with both hypomorphic and null mutations in FLNA that manifest a wide spectrum of connective tissue and vascular anomalies. The spectrum of cutaneous defects was broader than previously described and is inconsistent with a specific type of EDS. We also extend the range of vascular anomalies associated with XL-PH to included peripheral arterial dilatation and atresia. Based on these observations, we suggest that there is little molecular or clinical justification for considering EDS-PH as a separate entity from XL-PH, but instead propose that there is a spectrum of vascular and connective tissues anomalies associated with this condition for which all individuals with loss-of-function mutations in FLNA should be evaluated. In addition, since some patients with XL-PH can present primarily with a joint hypermobility syndrome, we propose that screening for cardiovascular manifestations should be offered to those patients when there are associated seizures or an X-linked pattern of inheritance. PMID:23032111

  10. Canine rickettsial infections.

    PubMed

    Stiles, J

    2000-09-01

    Dogs that live in tick-infested areas are at risk for contracting rickettsial infections. Clinical signs associated with ehrlichiosis or Rocky Mountain spotted fever may be dramatic or mild. Clinicians must consider the possibility of rickettsial diseases to request laboratory tests that will permit a proper diagnosis. Specific antimicrobial therapy usually brings about clinical improvement, although some dogs may not be cleared of rickettsial organisms, even with prolonged treatment. A small percentage of dogs die of rickettsial infections, either in the acute stage or owing to chronic bone marrow suppression and generalized debilitation. Ocular lesions are an important clinical sign in canine rickettsial infections and may aid the clinician in making a diagnosis and monitoring response to therapy. PMID:11033879

  11. Canine cutaneous leishmaniasis.

    PubMed

    Sasani, F; Javanbakht, J; Samani, R; Shirani, D

    2016-03-01

    Canine cutaneous leishmaniasis (CCL) is a significant veterinary problem. Infected dogs also serve as parasite reservoirs and contribute to human transmission of cutaneous leishmaniasis. Histologically, the lesions were nodular to diffuse interstitial granulomatous dermatitis with histiocytic pseudorosettes together with numerous amastigotes within macrophages and occasionally within the interstitium. Organisms were often contained within clear and intracellular vacuoles. The other inflammatory cells, which were present in the biopsies of the Leishmania-infected dog, were lymphocytes and plasma cells. The histopathology results emphasized the role of dog, particularly asymptomatic dog, as reservoirs for CCL because of the high cutaneous parasite loads. These results may help to explain the maintenance of high transmission rates and numbers of CCL cases in endemic urban regions. PMID:27065598

  12. X-linked FHL1 as a novel therapeutic target for head and neck squamous cell carcinoma

    PubMed Central

    Xia, Ronghui; Lin, Lu; Wang, Xu; Xiao, Meng; Zhang, Chenping; Li, Jiang; Ji, Tong; Chen, Wantao

    2016-01-01

    To identify X-linked novel tumor suppressors could provide novel insights to improve prognostic prediction and therapeutic strategy for some cancers. Using bioinformatics and Venn analysis of gene transcriptional profiling, we identified downregulation of X-linked four-and-a-half LIM domains protein 1 (FHL1) gene in head and neck squamous cell carcinoma (HNSCC). FHL1 functions were investigated and confirmed in vitro and in vivo. FHL1 downregulated mechanisms were analyzed in HNSCCs by using methylation specific PCR, bisulfate-based sequencing, 5-Aza-dC treatment and chromatin immunoprecipitation assays. Two independent HNSCC cohorts (the training cohort n = 105 and the validation cohort n = 101) were enrolled to evaluate clinical implications of FHL1 expression by using real-time PCR or immunohistochemistry. FHL1 mRNA and protein expressions were frequently decreased in HNSCCs. FHL1 overexpression or depletion gave rise to suppress or promote cell growth through Cyclin D1, Cyclin E and p27 dysregulations. Abundant occupy of EZH2 or H3K27Me3 was observed in FHL1 promoter except for DNA hypermethylation. Reduced FHL1 mRNA expression was notably associated with poor differentiation (p = 0.020). Multivariate analysis demonstrated FHL1 mRNA expression was identified as independent prognostic predictors of overall survival (OS) (p = 0.036; HR 0.520; Cl, 0.283–0.958) and disease-free survival (DFS) (p = 0.041; HR 0.527; Cl, 0.284–0.975), which was validated by another independent cohort (p = 0.021; HR 0.404; Cl, 0.187–0.871 for OS; p = 0.011; HR 0.407; Cl, 0.203–0.815 for DFS). These results suggest epigenetic silencing of X-linked FHL1 may have an important role in adjuvant therapeutic intervention of HNSCCs and is an independent prognostic factor in patients with HNSCCs. PMID:26908444

  13. The first de novo mutation of the connexin 32 gene associated with X linked Charcot-Marie-Tooth disease.

    PubMed Central

    Meggouh, F; Benomar, A; Rouger, H; Tardieu, S; Birouk, N; Tassin, J; Barhoumi, C; Yahyaoui, M; Chkili, T; Brice, A; LeGuern, E

    1998-01-01

    X linked Charcot-Marie-Tooth disease (CMTX) is a hereditary motor and sensory neuropathy caused by mutations in the connexin 32 gene (Cx32). Using the SSCP technique and direct sequencing of PCR amplified genomic DNA fragments of the Cx32 gene from a Moroccan patient and her relatives, we identified the first de novo mutation of the Cx32 gene, consisting of a deletion of a G residue at position 499 in the Cx32 open reading frame. This previously unreported mutation produces a frameshift at position 147 in the protein and introduces a premature stop codon (TAG) at nucleotide 643, which results in the production of a truncated Cx32 molecule. This mutation illustrates the risk of an erroneous diagnosis of autosomal recessive CMT, especially in populations where consanguineous unions are frequent, and its consequences for genetic counselling, which can be avoided by molecular analysis. Images PMID:9541114

  14. Mutations in the gene for the common gamma chain (gammac) in X-linked severe combined immunodeficiency.

    PubMed

    Fugmann, S D; Müller, S; Friedrich, W; Bartram, C R; Schwarz, K

    1998-12-01

    X-linked severe combined immunodeficiency (XSCID) constitutes a disorder of the immune system caused by mutations in the gene encoding the common gamma chain (gammac), a subunit of the IL-2, IL-4, IL-7, IL-9 and IL-15 receptors, which are necessary for lymphocyte development and function. In this study the IL2RG gene of 31 patients with severe combined immunodeficiency (SCID) was examined by nonradioactive single-strand conformation polymorphism and sequence analysis. Among the 11 patients with XSCID, ten different mutations were identified in the IL2RG gene, including eight novel mutations. Ninety percent of the mothers of the XSCID patients are carriers of the mutated allele. One patient showed low numbers of B-cells, a striking deviation from the classical B-cell-positive and T-cell-negative phenotype. PMID:9921912

  15. X-linked glucose-6-phosphate dehydrogenase (G6PD) and autosomal 6-phosphogluconate dehydrogenase (6PGD) polymorphisms in baboons

    SciTech Connect

    VandeBerg, J.L.; Aivaliotis, M.J.; Samollow, P.B. )

    1992-12-01

    Electrophoretic polymorphisms of glucose-6-phosphate dehydrogenase (G6PD) and 6-phosphogluconate dehydrogenase (6PGD) were examined in captive colonies of five subspecies of baboons (Papio hamadryas). Phenotype frequencies and family data verified the X-linked inheritance of the G6PD polymorphism. Insufficient family data were available to confirm autosomal inheritance of the 6PGD polymorphism, but the electrophoretic patterns of variant types (putative heterozygotes) suggested the codominant expression of alleles at an autosomal locus. Implications of the G6PD polymorphism are discussed with regard to its utility as a marker system for research on X-chromosome inactivation during baboon development and for studies of clonal cell proliferation and/or cell selection during the development of atherosclerotic lesions in the baboon model. 61 refs., 1 fig., 4 tabs.

  16. Long-term follow-up and treatment in nine boys with X-linked creatine transporter defect.

    PubMed

    van de Kamp, Jiddeke M; Pouwels, Petra J W; Aarsen, Femke K; ten Hoopen, Leontine W; Knol, Dirk L; de Klerk, Johannes B; de Coo, Ireneus F; Huijmans, Jan G M; Jakobs, Cornelis; van der Knaap, Marjo S; Salomons, Gajja S; Mancini, Grazia M S

    2012-01-01

    The creatine transporter (CRTR) defect is a recently discovered cause of X-linked intellectual disability for which treatment options have been explored. Creatine monotherapy has not proved effective, and the effect of treatment with L-arginine is still controversial. Nine boys between 8 months and 10 years old with molecularly confirmed CRTR defect were followed with repeated (1)H-MRS and neuropsychological assessments during 4-6 years of combination treatment with creatine monohydrate, L-arginine, and glycine. Treatment did not lead to a significant increase in cerebral creatine content as observed with H(1)-MRS. After an initial improvement in locomotor and personal-social IQ subscales, no lasting clinical improvement was recorded. Additionally, we noticed an age-related decline in IQ subscales in boys affected with the CRTR defect. PMID:21556832

  17. A novel BTK gene mutation creates a de-novo splice site in an X-linked agammaglobulinemia patient.

    PubMed

    Chear, Chai Teng; Ripen, Adiratna Mat; Mohamed, Sharifah Adlena Syed; Dhaliwal, Jasbir Singh

    2015-04-15

    Bruton's tyrosine kinase (BTK), encoded by the BTK gene, is a cytoplasmic protein critical in B cell development. Mutations in the BTK gene cause X-linked agammaglobulinemia (XLA), a primary immunodeficiency with characteristically low or absent B cells and antibodies. This report describes a five year-old boy who presented with otitis externa, arthritis, reduced immunoglobulins and no B cells. Flow cytometry showed undetectable monocyte BTK expression. Sequencing revealed a novel mutation at exon 13 of the BTK gene which created a de novo splice site with a proximal 5 nucleotide loss resulting in a truncated BTK protein. The patient still suffered from ear infection despite intravenous immunoglobulin replacement therapy. In this study, mosaicism was seen only in the mother's genomic DNA. These results suggest that a combination of flow cytometry and BTK gene analysis is important for XLA diagnosis and carrier screening. PMID:25680287

  18. Beneficial effects of growth hormone therapy for ossification defects after bone distraction in X linked hypophosphataemic rickets

    PubMed Central

    Cañete, Ramón; Caballero-Villarraso, Javier; Aguilar-Quintero, María; Vázquez-Rueda, Fernando

    2014-01-01

    A report on two homozygous twin girls affected by X linked hypophosphataemic rickets. They were examined due to short stature and genu varum of both tibias. They were treated with calcitriol and Joulie's solution, whereon it was observed that serum parathyroid hormone and phosphaturia decreased while phosphataemia increased. They underwent a tibial osteotomy (by means of the insertion of Kirchner needles) at 7.7 years of age for correction of genu varum and a normal consolidation was reached 1 month later. Nonetheless, height was percentile <1 after menarche, so both sisters asked for bone lengthening. Because of this, at 15 years of age femoral distraction was performed, but no bone callus was observed 14 months later. Consequently, they were treated with subcutaneous growth hormone, showing bone callus at 6 months. Finally, the external fixators were removed due to ossification in the lengthened segments. PMID:25115781

  19. X-linked adrenoleukodystrophy (X-ALD): clinical presentation and guidelines for diagnosis, follow-up and management

    PubMed Central

    2012-01-01

    X-linked adrenoleukodystrophy (X-ALD) is the most common peroxisomal disorder. The disease is caused by mutations in the ABCD1 gene that encodes the peroxisomal membrane protein ALDP which is involved in the transmembrane transport of very long-chain fatty acids (VLCFA; ≥C22). A defect in ALDP results in elevated levels of VLCFA in plasma and tissues. The clinical spectrum in males with X-ALD ranges from isolated adrenocortical insufficiency and slowly progressive myelopathy to devastating cerebral demyelination. The majority of heterozygous females will develop symptoms by the age of 60 years. In individual patients the disease course remains unpredictable. This review focuses on the diagnosis and management of patients with X-ALD and provides a guideline for clinicians that encounter patients with this highly complex disorder. PMID:22889154

  20. X-linked retinitis pigmentosa: Report of a large kindred with loss of central vision and preserved peripheral function

    SciTech Connect

    Shastry, B.S.; Trese, M.T.

    1995-11-20

    X-linked retinitis pigmentosa (XLRP) is the most severe form of the inherited forms of retinitis pigmentosa and is clinically variable and genetically heterogeneous. It affects one in 20,000 live births. The affected individuals manifest degeneration of the peripheral retina during the first two decades of life on the basis of night blindness. Central vision usually is preserved until age 50, when the disease advances, affecting central vision and ultimately leading to complete loss of sight. Linkage analysis has shown two loci with a possibility of a third locus on the human X chromosome. The genetic abnormality that causes XLRP is not known at present. Here we describe a large kindred which manifests central loss of field with the preservation of peripheral vision. 5 refs., 1 fig.

  1. Correlation between connexin 32 gene mutations and clinical phenotype in X-linked dominant Charcot-Marie-Tooth neuropathy

    SciTech Connect

    Ionasescu, V.; Ionasescu, R.; Searby, C.

    1996-06-14

    We studied the relationship between the genotype and clinical phenotype in 27 families with dominant X-linked Charcot-Marie-Tooth (CMTX1) neuropathy. Twenty-two families showed mutations in the coding region of the connexin32 (cx32) gene. The mutations include four nonsense mutations, eight missense mutations, two medium size deletions, and one insertion. Most missense mutations showed a mild clinical phenotype (five out of eight), whereas all nonsense mutations, the larger of the two deletions, and the insertion that produced frameshifts showed severe phenotypes. Five CMTX1 families with mild clinical phenotype showed no point mutations of the cx32 gene coding region. Three of these families showed positive genetic linkage with the markers of the Xq13.1 region. The genetic linkage of the remaining two families could not be evaluated because of their small size. 25 refs., 1 fig., 1 tab.

  2. Mapping of the locus for X-linked cardioskeletal myopathy with neutropenia and abnormal mitochondria (Barth syndrome) to Xq28.

    PubMed Central

    Bolhuis, P A; Hensels, G W; Hulsebos, T J; Baas, F; Barth, P G

    1991-01-01

    X-linked cardioskeletal myopathy with neutropenia and abnormal mitochondria is clinically characterized by congenital dilated cardiomyopathy, skeletal myopathy, recurrent bacterial infections, and growth retardation. We analyzed linkage between the disease locus and X-chromosomal markers in a family with seven carriers, four patients, and eight unaffected sons of carriers. Highest lod scores obtained by two-point linkage analysis were 2.70 for St14.1 (DXS52, TaqI) at a recombination fraction of zero and 2.53 for cpX67 (DXS134) at a recombination fraction of zero. Multipoint linkage analysis resulted in a maximum lod score of 5.24 at the position of St35.691 (DXS305). The most distal recombination detected in this family was located between the markers II-10 (DXS466) and DX13 (DXS15). These data indicate the location of the mutated gene at Xq28. PMID:1998334

  3. Generation of Functional Neutrophils from a Mouse Model of X-Linked Chronic Granulomatous Disorder Using Induced Pluripotent Stem Cells

    PubMed Central

    Mukherjee, Sayandip; Santilli, Giorgia; Blundell, Michael P.; Navarro, Susana; Bueren, Juan A.; Thrasher, Adrian J.

    2011-01-01

    Murine models of human genetic disorders provide a valuable tool for investigating the scope for application of induced pluripotent stem cells (iPSC). Here we present a proof-of-concept study to demonstrate generation of iPSC from a mouse model of X-linked chronic granulomatous disease (X-CGD), and their successful differentiation into haematopoietic progenitors of the myeloid lineage. We further demonstrate that additive gene transfer using lentiviral vectors encoding gp91phox is capable of restoring NADPH-oxidase activity in mature neutrophils derived from X-CGD iPSC. In the longer term, correction of iPSC from human patients with CGD has therapeutic potential not only through generation of transplantable haematopoietic stem cells, but also through production of large numbers of autologous functional neutrophils. PMID:21408614

  4. Temporary resolution of foveal schisis following vitrectomy with silicon oil tamponade in X-linked retinoschisis with retinal detachment

    PubMed Central

    Goel, Neha; Ghosh, Basudeb

    2015-01-01

    X-linked retinoschisis (XLR) is an uncommon bilateral vitreoretinal dystrophy characterized by typical foveoschisis in all patients that may be associated with peripheral retinoschisis. A young male with XLR with retinal detachment in his right eye underwent 23 gauge pars plana vitrectomy with silicone oil tamponade. Postoperatively, best-corrected visual acuity (BCVA) improved to 20/120 with an attached retina. Spectral-domain optical coherence tomography showed macular thinning with the collapse of the schitic cavities with silicone oil in situ. Following silicone oil removal at 6 months follow-up, the retina remained attached with a BCVA of 20/80 however the foveal schitic cavities reappeared. This unusual course has not been described previously. PMID:26669343

  5. Amelogenin signal peptide mutation: Correlation between mutations in the amelogenin gene (AMGX) and manifestations of X-linked amelogenesis imperfecta

    SciTech Connect

    Lagerstroem-Fermer, M.; Nilsson, M.; Pettersson, U.

    1995-03-01

    Formation of tooth enamel is a poorly understood biological process. In this study the authors describe a 9-bp deletion in exon 2 of the amelogenin gene (AMGX) causing X-linked hypoplastic amelogenesis imperfecta, a disease characterized by defective enamel. The mutation results in the loss of 3 amino acids and exchange of 1 in the signal peptide of the amelogenin protein. This deletion in the signal peptide probably interferes with translocation of the amelogenin protein during synthesis, resulting in the thin enamel observed in affected members of the family. The authors compare this mutation to a previously reported mutation in the amelogenin gene that causes a different disease phenotype. The study illustrates that molecular analysis can help explain the various manifestations of a tooth disorder and thereby provide insights into the mechanisms of tooth enamel formation. 16 refs., 2 figs., 1 tab.

  6. X-linked borderline mental retardation with prominent behavioral disturbance: Phenotype, genetic localization, and evidence for disturbed monoamine metabolism

    SciTech Connect

    Brunner, H.G.; Nelen, M.R.; Zandvoort, P. van; Abeling, N.G.G.M.; Gennip, A.H. van; Ropers, H.H.; Oost, B.A. van ); Wolters, E.C.; Kuiper, M.A. )

    1993-06-01

    The authors have identified a large Dutch kindred with a new form of X-linked nondysmorphic mild mental retardation. All affected males in this family show very characteristic abnormal behavior, in particular aggressive and sometimes violent behavior. Other types of impulsive behavior include arson, attempted rape, and exhibitionism. Attempted suicide has been reported in a single case. The locus for this disorder could be assigned to the Xp11-21 interval between DXS7 and DXS77 by linkage analysis using markers spanning the X chromosome. A maximal multipoint lod score of 3.69 was obtained at the monoamine oxidase type A (MAOA) monoamine metabolism. These data are compatible with a primary defect in the structural gene for MAOA and/or monoamine oxidase type B (MAOB). Normal platelet MAOB activity suggests that the unusual behavior pattern in this family may be caused by isolated MAOA deficiency. 34 refs., 4 figs., 4 tabs.

  7. Novel Missense Mutation A789V in IQSEC2 Underlies X-Linked Intellectual Disability in the MRX78 Family

    PubMed Central

    Kalscheuer, Vera M.; James, Victoria M.; Himelright, Miranda L.; Long, Philip; Oegema, Renske; Jensen, Corinna; Bienek, Melanie; Hu, Hao; Haas, Stefan A.; Topf, Maya; Hoogeboom, A. Jeannette M.; Harvey, Kirsten; Walikonis, Randall; Harvey, Robert J.

    2016-01-01

    Disease gene discovery in neurodevelopmental disorders, including X-linked intellectual disability (XLID) has recently been accelerated by next-generation DNA sequencing approaches. To date, more than 100 human X chromosome genes involved in neuronal signaling pathways and networks implicated in cognitive function have been identified. Despite these advances, the mutations underlying disease in a large number of XLID families remained unresolved. We report the resolution of MRX78, a large family with six affected males and seven affected females, showing X-linked inheritance. Although a previous linkage study had mapped the locus to the short arm of chromosome X (Xp11.4-p11.23), this region contained too many candidate genes to be analyzed using conventional approaches. However, our X-chromosome exome resequencing, bioinformatics analysis and inheritance testing revealed a missense mutation (c.C2366T, p.A789V) in IQSEC2, encoding a neuronal GDP-GTP exchange factor for Arf family GTPases (ArfGEF) previously implicated in XLID. Molecular modeling of IQSEC2 revealed that the A789V substitution results in the insertion of a larger side-chain into a hydrophobic pocket in the catalytic Sec7 domain of IQSEC2. The A789V change is predicted to result in numerous clashes with adjacent amino acids and disruption of local folding of the Sec7 domain. Consistent with this finding, functional assays revealed that recombinant IQSEC2A789V was not able to catalyze GDP-GTP exchange on Arf6 as efficiently as wild-type IQSEC2. Taken together, these results strongly suggest that the A789V mutation in IQSEC2 is the underlying cause of XLID in the MRX78 family. PMID:26793055

  8. Affected Kindred Analysis of Human X Chromosome Exomes to Identify Novel X-Linked Intellectual Disability Genes

    PubMed Central

    Niranjan, Tejasvi S.; Skinner, Cindy; May, Melanie; Turner, Tychele; Rose, Rebecca; Stevenson, Roger; Schwartz, Charles E.; Wang, Tao

    2015-01-01

    X-linked Intellectual Disability (XLID) is a group of genetically heterogeneous disorders caused by mutations in genes on the X chromosome. Deleterious mutations in ~10% of X chromosome genes are implicated in causing XLID disorders in ~50% of known and suspected XLID families. The remaining XLID genes are expected to be rare and even private to individual families. To systematically identify these XLID genes, we sequenced the X chromosome exome (X-exome) in 56 well-established XLID families (a single affected male from 30 families and two affected males from 26 families) using an Agilent SureSelect X-exome kit and the Illumina HiSeq 2000 platform. To enrich for disease-causing mutations, we first utilized variant filters based on dbSNP, the male-restricted portions of the 1000 Genomes Project, or the Exome Variant Server datasets. However, these databases present limitations as automatic filters for enrichment of XLID genes. We therefore developed and optimized a strategy that uses a cohort of affected male kindred pairs and an additional small cohort of affected unrelated males to enrich for potentially pathological variants and to remove neutral variants. This strategy, which we refer to as Affected Kindred/Cross-Cohort Analysis, achieves a substantial enrichment for potentially pathological variants in known XLID genes compared to variant filters from public reference databases, and it has identified novel XLID candidate genes. We conclude that Affected Kindred/Cross-Cohort Analysis can effectively enrich for disease-causing genes in rare, Mendelian disorders, and that public reference databases can be used effectively, but cautiously, as automatic filters for X-linked disorders. PMID:25679214

  9. Report of a kindred with x-linked (or autosomal dominant sex-limited) 46, XY partial gonadal dysgenesis

    SciTech Connect

    Fechner, P.Y.; Marcantonio, S.M.; Ogata, T.; Rosales, T.O.; Smith, K.D.; Goodfellow, P.N.; Migeon, C.J.; Berkovitz, G.D. )

    1993-05-01

    The condition termed 46, XY complete gonadal dysgenesis is characterized by the lack of testicular determination with resulting streak gonads, normal Mullerian structures, and female external genitalia. In the partial form, there is incomplete testicular determination with a wide range in the degree of ambiguous genitalia and sexual duct development. The authors evaluated a kindred in which a partial form of 46, XY gonadal dysgenesis occurred in four subjects from two generations. Pedigree analysis indicated an X-linked or possibly an autosomal sex-limited mode of inheritance. All affected subjects were ascertained because of ambiguous genitalia with minimal virilization. At 10 days of age, the proband had a subnormal plasma level of testosterone, and at 4 months, there was no rise in plasma T after stimulation with hCG. At laparotomy, a dysgenetic gonad was found on the right side, but no gonad was found on the left side. A vas deferens was present on the right, indicating the presence of functional leydig cells early in fetal life. In the other affected subjects, gonadal tissue was also limited to one side of the abdomen and showed poorly developed seminiferous tubules. The sex-determining region Y gene, which encodes the testis-determining factor, was present and unaltered in the genomic DNA of all affected subjects. Duplication of the distal short arm of the X-chromosome has been associated with 46, XY complete gonadal dysgenesis in some patients. In the authors studies, Southern blot analysis revealed that sequences of the distal short arm of the X-chromosome were present in single copy, excluding a large duplication in this area of the X. Several kindreds with familial 46, XY complete gonadal dysgenesis have been reported; five of them had evidence of an X-linked mode of inheritance. The authors study of a kindred with 46, XY partial gonadal dysgenesis further supports the role of an X chromosome gene in testicular determination. 44 refs., 1 fig., 3 tabs.

  10. Atypical femur fracture in an adolescent boy treated with bisphosphonates for X-linked osteoporosis based on PLS3 mutation.

    PubMed

    van de Laarschot, Denise M; Zillikens, M Carola

    2016-10-01

    Long-term use of bisphosphonates has raised concerns about the association with Atypical Femur Fractures (AFFs) that have been reported mainly in postmenopausal women. We report a case of an 18-year-old patient with juvenile osteoporosis based on X-linked osteoporosis due to a PLS3 mutation who developed a low trauma femoral fracture after seven years of intravenous and two years of oral bisphosphonate use, fulfilling the revised ASBMR diagnostic criteria of an AFF. The occurrence of AFFs has not been described previously in children or adolescents. The underlying monogenetic bone disease in our case strengthens the possibility of a genetic predisposition at least in some cases of AFF. We cannot exclude that a transverse fracture of the tibia that also occurred after a minor trauma at age 16 might be part of the same spectrum of atypical fractures related to the use of bisphosphonates. In retrospect our patient experienced prodromal pain prior to both the tibia and the femur fracture. Case reports of atypical fractures in children with a monogenetic bone disease such as Osteogenesis Imperfecta (OI) or juvenile osteoporosis are important to consider in the discussion about optimal duration of bisphosphonate therapy in growing children. In conclusion, this case report 1) highlights that AFFs also occur in adolescents treated with bisphosphonates during childhood and pain in weight-bearing bones can point towards this diagnosis 2) supports other reports suggesting that low trauma fractures of other long bones besides the femur may be related to long-term use of bisphosphonates 3) strengthens the concept of an underlying genetic predisposition in some cases of AFF, now for the first time reported in X-linked osteoporosis due to a mutation in PLS3 and 4) should be considered in decisions about the duration of bisphosphonate therapy in children with congenital bone disorders. PMID:27477003

  11. Novel X-Linked Genes Revealed by Quantitative Polymerase Chain Reaction in the Green Anole, Anolis carolinensis

    PubMed Central

    Rovatsos, Michail; Altmanová, Marie; Pokorná, Martina Johnson; Kratochvíl, Lukáš

    2014-01-01

    The green anole, Anolis carolinensis (ACA), is the model reptile for a vast array of biological disciplines. It was the first nonavian reptile to have its genome fully sequenced. During the genome project, the XX/XY system of sex chromosomes homologous to chicken chromosome 15 (GGA15) was revealed, and 106 X-linked genes were identified. We selected 38 genes located on eight scaffolds in ACA and having orthologs located on GGA15, then tested their linkage to ACA X chromosome by using comparative quantitative fluorescent real-time polymerase chain reaction applied to male and female genomic DNA. All tested genes appeared to be X-specific and not present on the Y chromosome. Assuming that all genes located on these scaffolds should be localized to the ACA X chromosome, we more than doubled the number of known X-linked genes in ACA, from 106 to 250. While demonstrating that the gene content of chromosome X in ACA and GGA15 is largely conserved, we nevertheless showed that numerous interchromosomal rearrangements had occurred since the splitting of the chicken and anole evolutionary lineages. The presence of many ACA X-specific genes localized to distinct contigs indicates that the ACA Y chromosome should be highly degenerated, having lost a large amount of its original gene content during evolution. The identification of novel genes linked to the X chromosome and absent on the Y chromosome in the model lizard species contributes to ongoing research as to the evolution of sex determination in reptiles and provides important information for future comparative and functional genomics. PMID:25172916

  12. Canine leishmaniosis in South America

    PubMed Central

    Dantas-Torres, Filipe

    2009-01-01

    Canine leishmaniosis is widespread in South America, where a number of Leishmania species have been isolated or molecularly characterised from dogs. Most cases of canine leishmaniosis are caused by Leishmania infantum (syn. Leishmania chagasi) and Leishmania braziliensis. The only well-established vector of Leishmania parasites to dogs in South America is Lutzomyia longipalpis, the main vector of L. infantum, but many other phlebotomine sandfly species might be involved. For quite some time, canine leishmaniosis has been regarded as a rural disease, but nowadays it is well-established in large urbanised areas. Serological investigations reveal that the prevalence of anti-Leishmania antibodies in dogs might reach more than 50%, being as high as 75% in highly endemic foci. Many aspects related to the epidemiology of canine leishmaniosis (e.g., factors increasing the risk disease development) in some South American countries other than Brazil are poorly understood and should be further studied. A better understanding of the epidemiology of canine leishmaniosis in South America would be helpful to design sustainable control and prevention strategies against Leishmania infection in both dogs and humans. PMID:19426440

  13. BRAF Mutations in Canine Cancers

    PubMed Central

    Mochizuki, Hiroyuki; Kennedy, Katherine; Shapiro, Susan G.; Breen, Matthew

    2015-01-01

    Activating mutations of the BRAF gene lead to constitutive activation of the MAPK pathway. Although many human cancers carry the mutated BRAF gene, this mutation has not yet been characterized in canine cancers. As human and canine cancers share molecular abnormalities, we hypothesized that BRAF gene mutations also exist in canine cancers. To test this hypothesis, we sequenced the exon 15 of BRAF, mutation hot spot of the gene, in 667 canine primary tumors and 38 control tissues. Sequencing analysis revealed that a single nucleotide T to A transversion at nucleotide 1349 occurred in 64 primary tumors (9.6%), with particularly high frequency in prostatic carcinoma (20/25, 80%) and urothelial carcinoma (30/45, 67%). This mutation results in the amino acid substitution of glutamic acid for valine at codon 450 (V450E) of canine BRAF, corresponding to the most common BRAF mutation in human cancer, V600E. The evolutional conservation of the BRAF V600E mutation highlights the importance of MAPK pathway activation in neoplasia and may offer opportunity for molecular diagnostics and targeted therapeutics for dogs bearing BRAF-mutated cancers. PMID:26053201

  14. Molecular cloning and characterization of canine ICOS.

    PubMed

    Lee, Je-Hwan; Joo, Young-Don; Yim, Daesong; Lee, Richard; Ostrander, Elaine A; Loretz, Carol; Little, Marie-Térèse; Storb, Rainer; Kuhr, Christian S

    2004-10-01

    Inducible costimulatory receptor (ICOS) is one recently identified member of the CD28 family of costimulatory molecules. Evidence suggests ICOS functions as a critical immune regulator and, to evaluate these effects, we employed the canine model system that has been used to develop strategies currently in clinical use for hematopoietic stem cell transplantation. To investigate the effects of blocking the ICOS pathway in the canine hematopoietic cell transplantation model, we tested existing murine and human reagents and cloned the full length of the open reading frame of canine ICOS cDNA to allow the development of reagents specific for the canine ICOS. Canine ICOS contains a major open reading frame of 624 nucleotides, encoding a protein of 208 amino acids, and localizes to chromosome 37. Canine ICOS shares 79% sequence identity with human ICOS, 70% with mouse, and 69% with rat. Canine ICOS expression is limited to stimulated PBMC. PMID:15475250

  15. The myotubular myopathies: differential diagnosis of the X linked recessive, autosomal dominant, and autosomal recessive forms and present state of DNA studies.

    PubMed Central

    Wallgren-Pettersson, C; Clarke, A; Samson, F; Fardeau, M; Dubowitz, V; Moser, H; Grimm, T; Barohn, R J; Barth, P G

    1995-01-01

    Clinical differences exist between the three forms of myotubular myopathy. They differ regarding age at onset, severity of the disease, and prognosis, and also regarding some of the clinical characteristics. The autosomal dominant form mostly has a later onset and milder course than the X linked form, and the autosomal recessive form is intermediate in both respects. These differences are, however, quantitative rather than qualitative. Muscle biopsy studies of family members are useful in some cases, and immunohistochemical staining of desmin and vimentin may help distinguish between the X linked and autosomal forms. Determining the mode of inheritance and prognosis in individual families, especially those with a single male patient, still poses a problem. Current molecular genetic results indicate that the gene for the X linked form is located in the proximal Xq28 region. Further molecular genetic studies are needed to examine the existence of genetic heterogeneity in myotubular myopathy and to facilitate diagnosis. Images PMID:8544184

  16. A predictive model for canine dilated cardiomyopathy—a meta-analysis of Doberman Pinscher data

    PubMed Central

    Simpson, Siobhan; Edwards, Jennifer; Emes, Richard D.; Cobb, Malcolm A.; Rutland, Catrin S.

    2015-01-01

    Dilated cardiomyopathy is a prevalent and often fatal disease in humans and dogs. Indeed dilated cardiomyopathy is the third most common form of cardiac disease in humans, reported to affect approximately 36 individuals per 100,000 individuals. In dogs, dilated cardiomyopathy is the second most common cardiac disease and is most prevalent in the Irish Wolfhound, Doberman Pinscher and Newfoundland breeds. Dilated cardiomyopathy is characterised by ventricular chamber enlargement and systolic dysfunction which often leads to congestive heart failure. Although multiple human loci have been implicated in the pathogenesis of dilated cardiomyopathy, the identified variants are typically associated with rare monogenic forms of dilated cardiomyopathy. The potential for multigenic interactions contributing to human dilated cardiomyopathy remains poorly understood. Consistent with this, several known human dilated cardiomyopathy loci have been excluded as common causes of canine dilated cardiomyopathy, although canine dilated cardiomyopathy resembles the human disease functionally. This suggests additional genetic factors contribute to the dilated cardiomyopathy phenotype.This study represents a meta-analysis of available canine dilated cardiomyopathy genetic datasets with the goal of determining potential multigenic interactions relating the sex chromosome genotype (XX vs. XY) with known dilated cardiomyopathy associated loci on chromosome 5 and the PDK4 gene in the incidence and progression of dilated cardiomyopathy. The results show an interaction between known canine dilated cardiomyopathy loci and an unknown X-linked locus. Our study is the first to test a multigenic contribution to dilated cardiomyopathy and suggest a genetic basis for the known sex-disparity in dilated cardiomyopathy outcomes. PMID:25834770

  17. A predictive model for canine dilated cardiomyopathy-a meta-analysis of Doberman Pinscher data.

    PubMed

    Simpson, Siobhan; Edwards, Jennifer; Emes, Richard D; Cobb, Malcolm A; Mongan, Nigel P; Rutland, Catrin S

    2015-01-01

    Dilated cardiomyopathy is a prevalent and often fatal disease in humans and dogs. Indeed dilated cardiomyopathy is the third most common form of cardiac disease in humans, reported to affect approximately 36 individuals per 100,000 individuals. In dogs, dilated cardiomyopathy is the second most common cardiac disease and is most prevalent in the Irish Wolfhound, Doberman Pinscher and Newfoundland breeds. Dilated cardiomyopathy is characterised by ventricular chamber enlargement and systolic dysfunction which often leads to congestive heart failure. Although multiple human loci have been implicated in the pathogenesis of dilated cardiomyopathy, the identified variants are typically associated with rare monogenic forms of dilated cardiomyopathy. The potential for multigenic interactions contributing to human dilated cardiomyopathy remains poorly understood. Consistent with this, several known human dilated cardiomyopathy loci have been excluded as common causes of canine dilated cardiomyopathy, although canine dilated cardiomyopathy resembles the human disease functionally. This suggests additional genetic factors contribute to the dilated cardiomyopathy phenotype.This study represents a meta-analysis of available canine dilated cardiomyopathy genetic datasets with the goal of determining potential multigenic interactions relating the sex chromosome genotype (XX vs. XY) with known dilated cardiomyopathy associated loci on chromosome 5 and the PDK4 gene in the incidence and progression of dilated cardiomyopathy. The results show an interaction between known canine dilated cardiomyopathy loci and an unknown X-linked locus. Our study is the first to test a multigenic contribution to dilated cardiomyopathy and suggest a genetic basis for the known sex-disparity in dilated cardiomyopathy outcomes. PMID:25834770

  18. Canine lymphoma: a review.

    PubMed

    Zandvliet, M

    2016-06-01

    Canine lymphoma (cL) is a common type of neoplasia in dogs with an estimated incidence rate of 20-100 cases per 100,000 dogs and is in many respects comparable to non-Hodgkin lymphoma in humans. Although the exact cause is unknown, environmental factors and genetic susceptibility are thought to play an important role. cL is not a single disease, and a wide variation in clinical presentations and histological subtypes is recognized. Despite this potential variation, most dogs present with generalized lymphadenopathy (multicentric form) and intermediate to high-grade lymphoma, more commonly of B-cell origin. The most common paraneoplastic sign is hypercalcemia that is associated with the T-cell immunophenotype. Chemotherapy is the treatment of choice and a doxorubicin-based multidrug protocol is currently the standard of care. A complete remission is obtained for most dogs and lasts for a median period of 7-10 months, resulting in a median survival of 10-14 months. Many prognostic factors have been reported, but stage, immunophenotype, tumor grade, and response to chemotherapy appear of particular importance. Failure to respond to chemotherapy suggests drug resistance, which can be partly attributed to the expression of drug transporters of the ABC-transporter superfamily, including P-gp and BCRP. Ultimately, most lymphomas will become drug resistant and the development of treatments aimed at reversing drug resistance or alternative treatment modalities (e.g. immunotherapy and targeted therapy) are of major importance. This review aims to summarize the relevant data on cL, as well as to provide an update of the recent literature. PMID:26953614

  19. Stratum corneum lipids in disorders of cornification. Steroid sulfatase and cholesterol sulfate in normal desquamation and the pathogenesis of recessive X-linked ichthyosis.

    PubMed Central

    Elias, P M; Williams, M L; Maloney, M E; Bonifas, J A; Brown, B E; Grayson, S; Epstein, E H

    1984-01-01

    The pathological scaling in recessive x-linked ichthyosis is associated with accumulation of abnormal quantities of cholesterol sulfate in stratum corneum (J. Clin. Invest. 68:1404-1410, 1981). To determine whether or not cholesterol sulfate accumulates in recessive x-linked ichthyosis as a direct result of the missing enzyme, steroid sulfatase, we quantitated both steroid sulfatase and its substrate, we quantitated both steroid sulfatase and its substrate, cholesterol sulfate, in different epidermal strata, as well as within stratum corneum subcellular fractions obtained from normal human and neonatal mouse epidermis and from patients with recessive x-linked ichthyosis. In normal human and mouse epidermis, steroid sulfatase activity peaked in the stratum granulosum and stratum corneum, and negligible activity was detectable in lower epidermal layers. In contrast, in recessive x-linked ichthyosis epidermis, enzyme levels were virtually undetectable at all levels. In normal human stratum corneum, up to 10 times more steroid sulfatase activity was present in purified peripheral membrane preparations than in the whole tissue. Whereas in normal human epidermis cholesterol sulfate levels were lowest in the basal/spinous layer, and highest in the stratum granulosum, in recessive x-linked ichthyosis the levels were only slightly higher in the lower epidermis, but continued to climb in the stratum corneum. In both normal and in recessive x-linked ichthyosis stratum corneum, cholesterol sulfate appeared primarily within membrane domains, paralleling the pattern of steroid sulfatase localization. Finally, the role of excess cholesterol sulfate in the pathogenesis of recessive x-linked ichthyosis was directly tested by topical applications of this substance, which produced visible scaling in hairless mice in parallel to an increased cholesterol sulfate content of the stratum corneum. These results demonstrate an intimate relationship between steroid sulfatase and cholesterol

  20. What's eating you? Canine scabies.

    PubMed

    Burroughs, Richard F; Elston, Dirk M

    2003-08-01

    Infestation with Sarcoptes scabiei var canis, the causative strain of canine scabies, can produce a pruritic rash in humans. The rash generally manifests within 24 to 96 hours of contact with the affected pet. Scrapings are generally negative, and the correct diagnosis requires a high index of suspicion. PMID:12953932

  1. A Splice Defect in the EDA Gene in Dogs with an X-Linked Hypohidrotic Ectodermal Dysplasia (XLHED) Phenotype.

    PubMed

    Waluk, Dominik P; Zur, Gila; Kaufmann, Ronnie; Welle, Monika M; Jagannathan, Vidhya; Drögemüller, Cord; Müller, Eliane J; Leeb, Tosso; Galichet, Arnaud

    2016-01-01

    X-linked hypohidrotic ectodermal dysplasia (XLHED) caused by variants in the EDA gene represents the most common ectodermal dysplasia in humans. We investigated three male mixed-breed dogs with an ectodermal dysplasia phenotype characterized by marked hypotrichosis and multifocal complete alopecia, almost complete absence of sweat and sebaceous glands, and altered dentition with missing and abnormally shaped teeth. Analysis of SNP chip genotypes and whole genome sequence data from the three affected dogs revealed that the affected dogs shared the same haplotype on a large segment of the X-chromosome, including the EDA gene. Unexpectedly, the whole genome sequence data did not reveal any nonsynonymous EDA variant in the affected dogs. We therefore performed an RNA-seq experiment on skin biopsies to search for changes in the transcriptome. This analysis revealed that the EDA transcript in the affected dogs lacked 103 nucleotides encoded by exon 2. We speculate that this exon skipping is caused by a genetic variant located in one of the large introns flanking this exon, which was missed by whole genome sequencing with the illumina short read technology. The altered EDA transcript splicing most likely causes the observed ectodermal dysplasia in the affected dogs. These dogs thus offer an excellent opportunity to gain insights into the complex splicing processes required for expression of the EDA gene, and other genes with large introns. PMID:27449516

  2. Somatic mosaicism and variant frequency detected by next-generation sequencing in X-linked Alport syndrome.

    PubMed

    Fu, Xue Jun; Nozu, Kandai; Kaito, Hiroshi; Ninchoji, Takeshi; Morisada, Naoya; Nakanishi, Koichi; Yoshikawa, Norishige; Ohtsubo, Hiromi; Matsunoshita, Natsuki; Kamiyoshi, Naohiro; Matsumura, Chieko; Takagi, Nobuaki; Maekawa, Kohei; Taniguchi-Ikeda, Mariko; Iijima, Kazumoto

    2016-03-01

    X-linked Alport syndrome (XLAS) is a progressive, hereditary nephropathy. Although men with XLAS usually develop end-stage renal disease before 30 years of age, some men show a milder phenotype and develop end-stage renal disease later in life. However, the molecular mechanisms associated with this milder phenotype have not been fully identified. We genetically diagnosed 186 patients with suspected XLAS between January 2006 and August 2014. Genetic examination involved: (1) extraction and analysis of genomic DNA using PCR and direct sequencing using Sanger's method and (2) next-generation sequencing to detect variant allele frequencies. We identified somatic mosaic variants in the type VI collagen, α5 gene (COL4A5) in four patients. Interestingly, two of these four patients with variant frequencies in kidney biopsies or urinary sediment cells of ≥50% showed hematuria and moderate proteinuria, whereas the other two with variant frequencies of <50% were asymptomatic or only had hematuria. De novo variants can occur even in asymptomatic male cases of XLAS resulting in mosaicism, with important implications for genetic counseling. This is the first study to show a tendency between the variant allele frequency and disease severity in male XLAS patients with somatic mosaic variants in COL4A5. Although this is a very rare status of somatic mosaicism, further analysis is needed to show this correlation in a larger population. PMID:26014433

  3. Screening for mutations in RPGR and RP2 genes in Jordanian families with X-linked retinitis pigmentosa.

    PubMed

    Haddad, M F; Khabour, O F; Abuzaideh, K A Y; Shihadeh, W

    2016-01-01

    Retinitis pigmentosa (RP) is a clinically and genetically heterogeneous disease causing progressive degeneration of retinal photoreceptor cells. X-linked RP (XLRP), in which photoreceptor degeneration begins in early childhood and complete blindness often occurs by the fourth decade of life, constitutes the most severe form of this disease. Two genes commonly associated with XLRP have previously been cloned: retinitis pigmentosa GTPase regulator (RPGR) and retinitis pigmentosa 2 (RP2). We sought to identify mutations in these genes in Jordanian families suffering from this disease. Five unrelated Jordanian families with confirmed XLRP were screened for such mutations using direct sequencing. Three mutations were identified in the ORF15 exon of RPGR. The silent g.ORF15+470G>A substitution and the g.ORF15+1822insA insertion in the 3ꞌ-untranslated region were found in both normal and affected male family members at comparable frequencies, and thus were considered normal variants. The third mutation, g.ORF15+588G>A, in which alanine is substituted by threonine, was found in all affected men and one unaffected man in the two families harboring this variant. Thus, this mutation may be pathogenic, but with incomplete penetrance. No RP2 mutations were found among the examined families. Mutation screening of RP patients is essential to understand the mechanism behind this disease and develop treatments. A complete family history is required to identify its inheritance pattern and provide genetic counseling for patients and their families. PMID:27323122

  4. Overexpression of X-Linked Inhibitor of Apoptotic Protein (XIAP) reduces age-related neuronal degeneration in the mouse cochlea.

    PubMed

    Ruan, Q; Zeng, S; Liu, A; Chen, Z; Yu, Z; Zhang, R; He, J; Bance, M; Robertson, G; Yin, S; Wang, J

    2014-11-01

    Previously, we showed that age-related hearing loss (AHL) was delayed in C57BL6 mice overexpressing X-Linked Inhibitor of Apoptotic Protein (XIAP), and the delayed AHL was associated with attenuated hair cell (HC) loss in XIAP-overexpressing mice. Similar to other reports, the HC loss in aged mice was restricted to the basal turn in this previous study, and occurred slightly at the apical end of the cochlea, showing considerably less spread than the frequency region of hearing loss. In the present study, we examined whether and how AHL is related to the degeneration of neuronal innervation of the cochlea and whether the overexpression of XIAP exerts a protective effect against age-related degeneration in both afferent and efferent cochlear neurites. In contrast to HC loss, degeneration of both afferent and efferent neurites spread to the middle turns of the cochlea. Moreover, XIAP-overexpressing mice lost fewer HC afferent dendrites and efferent axons, as well as fewer spiral ganglion neurons between 3 and 14 months of age in comparison with wild-type littermates. The results suggest that age-related degeneration of cochlear neurites may be independent of HC loss. Further, the inhibition of apoptosis by XIAP appears to reduce degeneration of both afferent and efferent cochlear neurites. PMID:25142138

  5. Importance of B cell co-stimulation in CD4(+) T cell differentiation: X-linked agammaglobulinaemia, a human model.

    PubMed

    Martini, H; Enright, V; Perro, M; Workman, S; Birmelin, J; Giorda, E; Quinti, I; Lougaris, V; Baronio, M; Warnatz, K; Grimbacher, B

    2011-06-01

    We were interested in the question of whether the congenital lack of B cells actually had any influence on the development of the T cell compartment in patients with agammaglobulinaemia. Sixteen patients with X-linked agammaglobulinaemia (XLA) due to mutations in Btk, nine patients affected by common variable immune deficiency (CVID) with <2% of peripheral B cells and 20 healthy volunteers were enrolled. The T cell phenotype was determined with FACSCalibur and CellQuest Pro software. Mann-Whitney two-tailed analysis was used for statistical analysis. The CD4 T cell memory compartment was reduced in patients with XLA of all ages. This T cell subset encompasses both CD4(+)CD45RO(+) and CD4(+)CD45RO(+)CXCR5(+) cells and both subsets were decreased significantly when compared to healthy controls: P = 0·001 and P < 0·0001, respectively. This observation was confirmed in patients with CVID who had <2% B cells, suggesting that not the lack of Bruton's tyrosine kinase but the lack of B cells is most probably the cause of the impaired CD4 T cell maturation. We postulate that this defect is a correlate of the observed paucity of germinal centres in XLA. Our results support the importance of the interplay between B and T cells in the germinal centre for the activation of CD4 T cells in humans. PMID:21488866

  6. Importance of B cell co-stimulation in CD4+ T cell differentiation: X-linked agammaglobulinaemia, a human model

    PubMed Central

    Martini, H; Enright, V; Perro, M; Workman, S; Birmelin, J; Giorda, E; Quinti, I; Lougaris, V; Baronio, M; Warnatz, K; Grimbacher, B

    2011-01-01

    We were interested in the question of whether the congenital lack of B cells actually had any influence on the development of the T cell compartment in patients with agammaglobulinaemia. Sixteen patients with X-linked agammaglobulinaemia (XLA) due to mutations in Btk, nine patients affected by common variable immune deficiency (CVID) with <2% of peripheral B cells and 20 healthy volunteers were enrolled. The T cell phenotype was determined with FACSCalibur and CellQuest Pro software. Mann–Whitney two-tailed analysis was used for statistical analysis. The CD4 T cell memory compartment was reduced in patients with XLA of all ages. This T cell subset encompasses both CD4+CD45RO+ and CD4+CD45RO+CXCR5+ cells and both subsets were decreased significantly when compared to healthy controls: P = 0·001 and P < 0·0001, respectively. This observation was confirmed in patients with CVID who had <2% B cells, suggesting that not the lack of Bruton's tyrosine kinase but the lack of B cells is most probably the cause of the impaired CD4 T cell maturation. We postulate that this defect is a correlate of the observed paucity of germinal centres in XLA. Our results support the importance of the interplay between B and T cells in the germinal centre for the activation of CD4 T cells in humans. PMID:21488866

  7. Cure of X-linked lymphoproliferative disease (XLP) with allogeneic hematopoietic stem cell transplantation (HSCT): report from the XLP registry.

    PubMed

    Gross, T G; Filipovich, A H; Conley, M E; Pracher, E; Schmiegelow, K; Verdirame, J D; Vowels, M; Williams, L L; Seemayer, T A

    1996-05-01

    Seven male patients in the David T Purtilo International X-linked Lymphoproliferative Disease (XLP) Registry have undergone allogeneic hematopoietic stem cell transplantation (HSCT). All patients received HSCT from HLA-identical donors: sibling BM, five; unrelated BM, one; and sibling umbilical cord blood, one. Ages at time of HSCT ranged from 5 to 30 years. Pre-HSCT clinical course varied, but four boys had a significant history of chronic and/or serious infections. Conditioning regimens varied: TBI containing regimens, four, chemotherapy only, three. All patients engrafted. Six developed grade I-II acute GVHD but no chronic GVHD. Four are alive and well with normal immune function greater than 3 years following HSCT. Three died within 100 days: disseminated adenovirus, one; polymicrobial sepsis, one; and multiple organ system failure and bleeding diathesis, one. No EBV-associated post-transplant complications were observed, even though all donors except the umbilical cord blood were EBV-seropositive. Unsuccessful HSCT was associated with age at HSCT (> 15 years), TBI-containing regimen and significant history for pre-HSCT infections. These results provide evidence that HSCT performed during childhood with HLA-identical sibling donors, regardless of EBV serostatus, offers the only curative therapy for XLP. PMID:8733691

  8. Nonsense mutations of the CYBB gene in two Thai families with X-linked chronic granulomatous disease.

    PubMed

    Vilaiphan, Prapaporn; Chatchatee, Pantipa; Ngamphaiboon, Jarungchit; Tongkobpetch, Siraprapa; Suphapeetiporn, Kanya; Shotelersuk, Vorasuk

    2007-12-01

    X-linked chronic granulomatous disease (X-CGD) is an immunodeficiency disorder characterized by defective intracellular killing of microorganisms due to the neutrophils' inability to generate superoxide ions. Although it is always caused by mutations in the CYBB gene, clinical and molecular characteristics vary in different ethnic backgrounds. Two unrelated Thai boys presented with severe persistent pulmonary infections at the age of two months. Their abnormal dihydrorhodamine (DHR) flow cytometry assays supported the diagnosis of X-CGD. Mutation analysis was performed by polymerase chain reaction (PCR) amplification and sequencing of the entire coding regions of CYBB. Mutations identified were confirmed by restriction enzyme analyses. PCR-sequencing of the entire coding regions of CYBB identified nonsense mutations, 271C>T (R91X) in exon 4 and 456T>A (Y152X) in exon 5, in probands of each family. Both of the patients' mothers were found to be carriers. This observation supports that CYBB is the gene responsible for X-CGD across different populations and nonsense mutations are associated with severe phenotypes. PMID:18402298

  9. Novel X-linked glomerulopathy associated with a COL4A5 missense mutation in a noncollagenous interruption

    PubMed Central

    Becknell, Brian; Zender, Gloria; Houston, Ronald; Baker, Peter; McBride, Kim L.; Luo, Wentian; Hains, David; Borza, Dorin-Bogdan; Schwaderer, Andrew L.

    2011-01-01

    We report a novel COL4A5 mutation causing rapid progression to end stage renal disease in males despite the absence of clinical and biopsy findings associated with Alport syndrome. Affected males had proteinuria, variable hematuria, early progression to end stage renal disease; and renal biopsy findings which included global and segmental glomerulosclerosis, mesangial hypercellularity and basement membrane immune complex deposition. Exon sequencing of the COL4A5 locus identified a thymine to guanine transversion at nucleotide 665, resulting in a phenylalanine to cysteine missense mutation at codon 222. This mutation was confirmed in 4 affected males and 4 female obligate carriers, but was absent in 6 asymptomatic male family members and 198 unrelated individuals. α5(IV) collagen staining in renal biopsies from affected males was normal. The phenylalanine at position 222 is 100% conserved among vertebrates. This is the first description of a mutation in a non-collagenous interruption associated with severe renal disease, providing evidence for the importance of this structural motif. The range of phenotypes associated with COL4A5 mutations is more diverse than previously realized. COL4A5 mutation analysis should be considered when glomerulonephritis presents in an X-linked inheritance pattern, even with a distinct presentation from Alport syndrome. PMID:20881942

  10. Gene correction of induced pluripotent stem cells derived from a murine model of X-linked chronic granulomatous disorder.

    PubMed

    Mukherjee, Sayandip; Thrasher, Adrian J

    2014-01-01

    Gene therapy presents an attractive alternative to allogeneic haematopoietic stem cell transplantation (HSCT) for treating patients suffering from primary immunodeficiency disorder (PID). The conceptual advantage of gene correcting a patient's autologous HSCs lies in minimizing or completely avoiding immunological complications arising from allogeneic transplantation while conferring the same benefits of immune reconstitution upon long-term engraftment. Clinical trials targeting X-linked chronic granulomatous disorder (X-CGD) have shown promising results in this context. However, long-term clinical benefits in these patients have been limited by issues of poor engraftment of gene-transduced cells coupled with transgene silencing and vector induced clonal proliferation. Novel vectors incorporating safety features such as self-inactivating (SIN) mutations in the long terminal repeats (LTRs) along with synthetic promoters driving lineage-restricted sustainable expression of the gp91phox transgene are expected to resolve the current pitfalls and require rigorous preclinical testing. In this chapter, we have outlined a protocol in which X-CGD mouse model derived induced pluripotent stem cells (iPSCs) have been utilized to develop a platform for investigating the efficacy and safety profiles of novel vectors prior to clinical evaluation. PMID:24557920

  11. Towards fully automated genotyping: use of an X linked recessive spastic paraplegia family to test alternative analysis methods.

    PubMed

    Kobayashi, H; Matise, T C; Perlin, M W; Marks, H G; Hoffman, E P

    1995-05-01

    Advances in dinucleotide-based genetic maps open possibilities for large scale genotyping at high resolution. The current rate-limiting steps in use of these dense maps is data interpretation (allele definition), data entry, and statistical calculations. We have recently reported automated allele identification methods. Here we show that a 10-cM framework map of the human X chromosome can be analyzed on two lanes of an automated sequencer per individual (10-12 loci per lane). We use this map and analysis strategy to generate allele data for an X-linked recessive spastic paraplegia family with a known PLP mutation. We analyzed 198 genotypes in a single gel and used the data to test three methods of data analysis: manual meiotic breakpoint mapping, automated concordance analysis, and whole chromosome multipoint linkage analysis. All methods pinpointed the correct location of the gene. We propose that multipoint exclusion mapping may permit valid inflation of LOD scores using the equation max LOD-(next best LOD). PMID:7759066

  12. X-chromosome tiling path array detection of copy number variants in patients with chromosome X-linked mental retardation

    PubMed Central

    Madrigal, I; Rodríguez-Revenga, L; Armengol, L; González, E; Rodriguez, B; Badenas, C; Sánchez, A; Martínez, F; Guitart, M; Fernández, I; Arranz, JA; Tejada, MI; Pérez-Jurado, LA; Estivill, X; Milà, M

    2007-01-01

    Background Aproximately 5–10% of cases of mental retardation in males are due to copy number variations (CNV) on the X chromosome. Novel technologies, such as array comparative genomic hybridization (aCGH), may help to uncover cryptic rearrangements in X-linked mental retardation (XLMR) patients. We have constructed an X-chromosome tiling path array using bacterial artificial chromosomes (BACs) and validated it using samples with cytogenetically defined copy number changes. We have studied 54 patients with idiopathic mental retardation and 20 controls subjects. Results Known genomic aberrations were reliably detected on the array and eight novel submicroscopic imbalances, likely causative for the mental retardation (MR) phenotype, were detected. Putatively pathogenic rearrangements included three deletions and five duplications (ranging between 82 kb to one Mb), all but two affecting genes previously known to be responsible for XLMR. Additionally, we describe different CNV regions with significant different frequencies in XLMR and control subjects (44% vs. 20%). Conclusion This tiling path array of the human X chromosome has proven successful for the detection and characterization of known rearrangements and novel CNVs in XLMR patients. PMID:18047645

  13. Overexpression of X-Linked Inhibitor of Apoptotic Protein (XIAP) Reduces Age-related Neuronal Degeneration in the Mouse Cochlea

    PubMed Central

    Ruan, Qingwei; Zeng, Shan; Liu, Aiguo; Chen, Zhengnong; Yu, Zhuowei; Zhang, Ruxin; He, jingchun; Bance, Manohar; Robertson, George; Yin, Shankai; Wang, Jian

    2016-01-01

    Previously, we showed that age-related hearing loss (AHL) was delayed in C57BL6 mice overexpressing X-Linked Inhibitor of Apoptotic Protein (XIAP), and the delayed AHL was associated with attenuated hair cell (HC) loss in XIAP-overexpressing mice. Similar to other reports, the HC loss in aged mice was restricted to the basal turn in this previous study, and occurred slightly at the apical end of the cochlea, showing considerably less spread than the frequency region of hearing loss. In the present study, we examined whether and how AHL is related to the degeneration of neuronal innervation of the cochlea and if the overexpression of XIAP exerts a protective effect against age-related degeneration in both afferent and efferent cochlear neurites. In contrast to HC loss, degeneration of both afferent and efferent neurites spread to the middle turns of the cochlea. Moreover, XIAP-overexpressing mice lost fewer HC afferent dendrites and efferent axons, as well as fewer spiral ganglion neurons (SGNs) between 3– 14 months of age in comparison to wild-type littermates. The results suggest that age-related degeneration of cochlear neurites may be independent of HC loss. Further, the inhibition of apoptosis by XIAP appears to reduce degeneration of both afferent and efferent cochlear neurites. PMID:25142138

  14. Chromosomal copy number changes in patients with non‐syndromic X linked mental retardation detected by array CGH

    PubMed Central

    Lugtenberg, D; de Brouwer, A P M; Kleefstra, T; Oudakker, A R; Frints, S G M; Schrander‐Stumpel, C T R M; Fryns, J P; Jensen, L R; Chelly, J; Moraine, C; Turner, G; Veltman, J A; Hamel, B C J; de Vries, B B A; van Bokhoven, H; Yntema, H G

    2006-01-01

    Several studies have shown that array based comparative genomic hybridisation (CGH) is a powerful tool for the detection of copy number changes in the genome of individuals with a congenital disorder. In this study, 40 patients with non‐specific X linked mental retardation were analysed with full coverage, X chromosomal, bacterial artificial chromosome arrays. Copy number changes were validated by multiplex ligation dependent probe amplification as a fast method to detect duplications and deletions in patient and control DNA. This approach has the capacity to detect copy number changes as small as 100 kb. We identified three causative duplications: one family with a 7 Mb duplication in Xp22.2 and two families with a 500 kb duplication in Xq28 encompassing the MECP2 gene. In addition, we detected four regions with copy number changes that were frequently identified in our group of patients and therefore most likely represent genomic polymorphisms. These results confirm the power of array CGH as a diagnostic tool, but also emphasise the necessity to perform proper validation experiments by an independent technique. PMID:16169931

  15. The nuclear receptor NOR-1 regulates the small muscle protein, X-linked (SMPX) and myotube differentiation.

    PubMed

    Ferrán, Beatriz; Martí-Pàmies, Ingrid; Alonso, Judith; Rodríguez-Calvo, Ricardo; Aguiló, Silvia; Vidal, Francisco; Rodríguez, Cristina; Martínez-González, José

    2016-01-01

    Recent works have highlighted the role of NOR-1 in both smooth and skeletal muscle, and have proposed this nuclear receptor as a nexus that coordinates muscle performance and metabolic capacity. However, no muscle specific genes regulated by NOR-1 have been identified so far. To identify NOR-1 target genes, we over-expressed NOR-1 in human vascular smooth muscle cells (VSMC). These cells subjected to sustained over-expression of supraphysiological levels of NOR-1 experienced marked phenotypic changes and up-regulated the skeletal muscle protein X-linked (SMPX), a protein typically expressed in striated muscle and associated to cell shape. By transcriptional studies and DNA-protein binding assays, we identified a non-consensus NBRE site in human SMPX promoter, critical for NOR-1 responsiveness. The expression of SMPX was higher in human skeletal muscle myoblasts (HSMM) than in human VSMC, and further increased in HSMM differentiated to myotubes. NOR-1 silencing prevented SMPX expression in HSMM, as well as their differentiation to myotubes, but the up-regulation of SMPX was dispensable for HSMM differentiation. Our results indicate that NOR-1 regulate SMPX in human muscle cells and acts as a muscle regulatory factor, but further studies are required to unravel its role in muscle differentiation and hypertrophy. PMID:27181368

  16. Mechanistic Insight into the Pathology of Polyalanine Expansion Disorders Revealed by a Mouse Model for X Linked Hypopituitarism

    PubMed Central

    Hughes, James; Piltz, Sandra; Rogers, Nicholas; McAninch, Dale; Rowley, Lynn; Thomas, Paul

    2013-01-01

    Polyalanine expansions in transcription factors have been associated with eight distinct congenital human diseases. It is thought that in each case the polyalanine expansion causes misfolding of the protein that abrogates protein function. Misfolded proteins form aggregates when expressed in vitro; however, it is less clear whether aggregation is of relevance to these diseases in vivo. To investigate this issue, we used targeted mutagenesis of embryonic stem (ES) cells to generate mice with a polyalanine expansion mutation in Sox3 (Sox3-26ala) that is associated with X-linked Hypopituitarism (XH) in humans. By investigating both ES cells and chimeric mice, we show that endogenous polyalanine expanded SOX3 does not form protein aggregates in vivo but rather is present at dramatically reduced levels within the nucleus of mutant cells. Importantly, the residual mutant protein of chimeric embryos is able to rescue a block in gastrulation but is not sufficient for normal development of the hypothalamus, a region that is functionally compromised in Sox3 null embryos and individuals with XH. Together, these data provide the first definitive example of a disease-relevant PA mutant protein that is both nuclear and functional, thereby manifesting as a partial loss-of-function allele. PMID:23505376

  17. The nuclear receptor NOR-1 regulates the small muscle protein, X-linked (SMPX) and myotube differentiation

    PubMed Central

    Ferrán, Beatriz; Martí-Pàmies, Ingrid; Alonso, Judith; Rodríguez-Calvo, Ricardo; Aguiló, Silvia; Vidal, Francisco; Rodríguez, Cristina; Martínez-González, José

    2016-01-01

    Recent works have highlighted the role of NOR-1 in both smooth and skeletal muscle, and have proposed this nuclear receptor as a nexus that coordinates muscle performance and metabolic capacity. However, no muscle specific genes regulated by NOR-1 have been identified so far. To identify NOR-1 target genes, we over-expressed NOR-1 in human vascular smooth muscle cells (VSMC). These cells subjected to sustained over-expression of supraphysiological levels of NOR-1 experienced marked phenotypic changes and up-regulated the skeletal muscle protein X-linked (SMPX), a protein typically expressed in striated muscle and associated to cell shape. By transcriptional studies and DNA-protein binding assays, we identified a non-consensus NBRE site in human SMPX promoter, critical for NOR-1 responsiveness. The expression of SMPX was higher in human skeletal muscle myoblasts (HSMM) than in human VSMC, and further increased in HSMM differentiated to myotubes. NOR-1 silencing prevented SMPX expression in HSMM, as well as their differentiation to myotubes, but the up-regulation of SMPX was dispensable for HSMM differentiation. Our results indicate that NOR-1 regulate SMPX in human muscle cells and acts as a muscle regulatory factor, but further studies are required to unravel its role in muscle differentiation and hypertrophy. PMID:27181368

  18. Incidence and clinical features of X-linked Cornelia de Lange syndrome due to SMC1L1 mutations.

    PubMed

    Borck, Guntram; Zarhrate, Mohamed; Bonnefont, Jean-Paul; Munnich, Arnold; Cormier-Daire, Valérie; Colleaux, Laurence

    2007-02-01

    Cornelia de Lange syndrome (CdLS) is a multisystem developmental disorder characterized by facial dysmorphism, growth and mental retardation, microcephaly, and various malformations. Heterozygous mutations in the NIPBL gene have been detected in approximately 45% of affected individuals. Recently, a second CdLS gene, mapping to the X chromosome, has been identified: SMC1L1 (structural maintenance of chromosomes 1-like 1; or SMC1A). In order to estimate the incidence and refine the clinical presentation of X-linked CdLS, we have screened a series of 11 CdLS boys carrying no NIPBL anomaly. We have identified two novel de novo SMC1L1 missense mutations (c.587G>A [p.Arg196His] and c.3254A>G [p.Tyr1085Cys]). Our results confirm that SMC1L1 mutations cause CdLS and support the view that SMC1L1 accounts for a significant fraction of boys with unexplained CdLS. Furthermore, we suggest that SMC1L1 mutations have milder effects than NIPBL mutations with respect to pre- and postnatal growth retardation and associated malformations. If confirmed, these data may have important implications for directing mutation screening in CdLS. PMID:17221863

  19. New X-linked mental retardation syndrome with the gene mapped tentatively in Xp22.3

    SciTech Connect

    Wittwer, B.; Kircheisen, R.; Leutelt, J.; Gal, A.; Orth, U.; Gal, A.

    1996-07-12

    X-linked mental retardation (XLMR) is genetically heterogeneous and clinically variable. We describe a new XLMR syndrome of severe mental retardation and multiple congenital anomalies. Two sisters have (with 3 different partners) 3 severely handicapped sons. In 2 cases, oligohydramnios and intrauterine growth retardation were noted. Common anomalies included a square-shaped face, high and broad forehead, frontal bossing, downward slant of palpebral fissures, hypertelorism, epicanthic folds, long philtrum, thin upper lip, and apparently low-set ears. One boy has bilateral microphthalmos and sclerocornea, and his cousin has atrophy of the optic nerve. All 3 patients are blind and have profound statomotor and mental retardation, seizures, and a grossly abnormal electroencephalographic pattern. Additional findings are short stature, delayed bone matuation, hydronephrosis, vesicorenal reflux, cryptorchidism, clinodactyly of the 5th fingers, and transverse palmar creases. The karyotype is normal (46,XY). Segregation analysis showed perfect coinheritance between the clinical phenotype and alleles at several loci in Xp22.3, whereas recombinants were identified with marker loci from Xp22.2-qter. Analysis of multiple informative meioses suggests that the disease locus maps in Xp22.3 distal to DXS16. 9 refs., 5 figs., 2 tabs.

  20. A quantitative real-time PCR method using an X-linked gene for sex typing in pigs.

    PubMed

    Ballester, Maria; Castelló, Anna; Ramayo-Caldas, Yuliaxis; Folch, Josep M

    2013-06-01

    At present, a wide range of molecular sex-typing protocols in wild and domestic animals are available. In pigs, most of these methods are based on PCR amplification of X-Y homologous genes followed by gel electrophoresis which is time-consuming and in some cases expensive. In this paper, we describe, for the first time, a SYBR green-based quantitative real-time PCR (qPCR) assay using an X-linked gene, the glycoprotein M6B, for genetic sexing of pigs. Taking into account the differences in the glycoprotein M6B gene copy number between genders, we determine the correct sex of 54 pig samples from either diaphragm or hair follicle from different breeds using the 2(-ΔΔCT) method for relative quantification. Our qPCR assay represents a quick, inexpensive, and reliable tool for sex determination in pigs. This new protocol could be easily adapted to other species in which the sex determination was required. PMID:22843326

  1. Genetic Testing Confirmed the Early Diagnosis of X-Linked Hypophosphatemic Rickets in a 7-Month-Old Infant

    PubMed Central

    Poon, Kok Siong; Sng, Andrew Anjian; Ho, Cindy Weili; Koay, Evelyn Siew-Chuan

    2015-01-01

    Loss-of-function mutations in the phosphate regulating gene with homologies to endopeptidases on the X-chromosome (PHEX) have been causally associated with X-linked hypophosphatemic rickets (XLHR). The early diagnosis of XLHR in infants is challenging when it is based solely on clinical features and biochemical findings. We report a 7-month-old boy with a family history of hypophosphatemic rickets., who demonstrated early clinical evidence of rickets, although serial biochemical findings could not definitively confirm rickets. A sequencing assay targeting the PHEX gene was first performed on the mother’s DNA to screen for mutations in the 5′UTR, 22 coding exons, and the exon-intron junctions. Targeted mutation analysis and mRNA studies were subsequently performed on the boys’ DNA to investigate the pathogenicity of the identified mutation. Genetic screening of the PHEX gene revealed a novel mutation, c.1080-2A>C, at the splice acceptor site in intron 9. The detection of an aberrant mRNA transcript with skipped (loss of) exon 10 establishes its pathogenicity and confirms the diagnosis of XLHR in this infant. Genetic testing of the PHEX gene resulted in early diagnosis of XLHR, thus enabling initiation of therapy and prevention of progressive rachitic changes in the infant. PMID:26904698

  2. X-linked megalocornea caused by mutations in CHRDL1 identifies an essential role for ventroptin in anterior segment development.

    PubMed

    Webb, Tom R; Matarin, Mar; Gardner, Jessica C; Kelberman, Dan; Hassan, Hala; Ang, Wei; Michaelides, Michel; Ruddle, Jonathan B; Pennell, Craig E; Yazar, Seyhan; Khor, Chiea C; Aung, Tin; Yogarajah, Mahinda; Robson, Anthony G; Holder, Graham E; Cheetham, Michael E; Traboulsi, Elias I; Moore, Anthony T; Sowden, Jane C; Sisodiya, Sanjay M; Mackey, David A; Tuft, Stephen J; Hardcastle, Alison J

    2012-02-10

    X-linked megalocornea (MGC1) is an ocular anterior segment disorder characterized by an increased cornea diameter and deep anterior chamber evident at birth and later onset of mosaic corneal degeneration (shagreen), arcus juvenilis, and presenile cataracts. We identified copy-number variation, frameshift, missense, splice-site and nonsense mutations in the Chordin-like 1 gene (CHRDL1) on Xq23 as the cause of the condition in seven MGC1 families. CHRDL1 encodes ventroptin, a bone morphogenic protein antagonist with a proposed role in specification of topographic retinotectal projections. Electrophysiological evaluation revealed mild generalized cone system dysfunction and, in one patient, an interhemispheric asymmetry in visual evoked potentials. We show that CHRDL1 is expressed in the developing human cornea and anterior segment in addition to the retina. We explored the impact of loss of ventroptin function on brain function and morphology in vivo. CHRDL1 is differentially expressed in the human fetal brain, and there is high expression in cerebellum and neocortex. We show that MGC1 patients have a superior cognitive ability despite a striking focal loss of myelination of white matter. Our findings reveal an unexpected requirement for ventroptin during anterior segment development and the consequences of a lack of function in the retina and brain. PMID:22284829

  3. New mutations of DAX-1 genes in two Japanese patients with X-linked congenital adrenal hypoplasia and hypogonadotropic hypogonadism

    SciTech Connect

    Yanase, Toshihiko; Takayanagi, Ryoichi; Oba, Koichi

    1996-02-01

    Congenital adrenal hypoplasia, an X-linked disorder, is characterized by primary adrenal insufficiency and frequent association with hypogonadotropic hypogonadism. The X-chromosome gene DAX-1 has been most recently identified and shown to be responsible for this disorder. We analyzed the DAX-1 genes of two unrelated Japanese patients with congenital adrenal hypoplasia and hypogonadotropic hypogonadism by using PCR amplification of genomic DNA and its complete exonic sequencing. In a family containing several affected individuals, the proband male patient had a stop codon (TGA) in place of tryptophan (TGG) at amino acid position 171. As expected, his mother was a heterozygous carrier for the mutation, whereas his father and unaffected brother did not carry this mutation. In another male patient with noncontributory family history, sequencing revealed a 1-bp (T) deletion at amino acid position 280, leading to a frame shift and, subsequently a premature stop codon at amino acid position 371. The presence of this mutation in the patients` genome was further confirmed by digestion of genomic PCR product with MspI created by this mutation. Family studies using MspI digestion of genomic PCR products revealed that neither parent of this individual carried the mutation. These results clearly indicate that congenital adrenal hypoplasia and hypogonadotropic hypogonadism result from not only inherited but also de novo mutation in the DAX-1 gene. 31 refs., 4 figs., 2 tabs.

  4. C26:0-Carnitine Is a New Biomarker for X-Linked Adrenoleukodystrophy in Mice and Man

    PubMed Central

    van de Beek, Malu-Clair; Dijkstra, Inge M. E.; van Lenthe, Henk; Ofman, Rob; Goldhaber-Pasillas, Dalia; Schauer, Nicolas; Schackmann, Martin; Engelen-Lee, Joo-Yeon; Vaz, Frédéric M.; Kulik, Wim; Wanders, Ronald J. A.; Engelen, Marc; Kemp, Stephan

    2016-01-01

    X-linked adrenoleukodystrophy (ALD), a progressive neurodegenerative disease, is caused by mutations in ABCD1 and characterized by very-long-chain fatty acids (VLCFA) accumulation. Virtually all males develop progressive myelopathy (AMN). A subset of patients, however, develops a fatal cerebral demyelinating disease (cerebral ALD). Hematopoietic stem cell transplantation is curative for cerebral ALD provided the procedure is performed in an early stage of the disease. Unfortunately, this narrow therapeutic window is often missed. Therefore, an increasing number of newborn screening programs are including ALD. To identify new biomarkers for ALD, we developed an Abcd1 knockout mouse with enhanced VLCFA synthesis either ubiquitous or restricted to oligodendrocytes. Biochemical analysis revealed VLCFA accumulation in different lipid classes and acylcarnitines. Both C26:0-lysoPC and C26:0-carnitine were highly elevated in brain, spinal cord, but also in bloodspots. We extended the analysis to patients and confirmed that C26:0-carnitine is also elevated in bloodspots from ALD patients. We anticipate that validation of C26:0-carnitine for the diagnosis of ALD in newborn bloodspots may lead to a faster inclusion of ALD in newborn screening programs in countries that already screen for other inborn errors of metabolism. PMID:27124591

  5. Biochemical characterization of arylsulfatase E and functional analysis of mutations found in patients with X-linked chondrodysplasia punctata.

    PubMed Central

    Daniele, A; Parenti, G; d'Addio, M; Andria, G; Ballabio, A; Meroni, G

    1998-01-01

    X-linked chondrodysplasia punctata (CDPX) is a congenital disorder characterized by abnormalities in cartilage and bone development. Mutations leading to amino acid substitutions were identified recently in CDPX patients, in the coding region of the arylsulfatase E (ARSE) gene, a novel member of the sulfatase gene family. Transfection of the ARSE full-length cDNA, in Cos7 cells, allowed us to establish that its protein product is a 60-kD precursor, which is subject to N-glycosylation, to give a mature 68-kD form that, unique among sulfatases, is localized to the Golgi apparatus. Five missense mutations found in CDPX patients were introduced into wild-type ARSE cDNA by site-directed mutagenesis. These mutants were transfected into Cos7 cells, and the arylsulfatase activity and biochemical properties were determined, to study the effect of these substitutions on the ARSE protein. One of the mutants behaves as the wild-type protein. All four of the other mutations resulted in a complete lack of arylsulfatase activity, although the substitutions do not appear to affect the stability and subcellular localization of the protein. The loss of activity due to these mutations confirms their involvement in the clinical phenotype and points to the importance of these residues in the correct folding of a catalytically active ARSE enzyme. PMID:9497243

  6. Manifestations of X-linked congenital stationary night blindness in three daughters of an affected male: Demonstration of homozygosity

    SciTech Connect

    Bech-Hansen, N.T. Univ. of Calgary, Alberta ); Pearce, W.G. )

    1993-01-01

    X-linked congenital stationary night blindness (CSNB1) is a hereditary retinal disorder in which clinical features in affected males usually include myopia, nystagmus, and impaired visual acuity. Electroretinography demonstrates a marked reduction in b-wave amplitude. In the study of a large Mennonite family with CSNB1, three of five sisters in one sibship were found to have manifestations of CSNB1. All the sons of these three sisters were affected. Each of the two nonmanifesting sisters had at least one unaffected son. Analysis of Xp markers in the region Xp21.1-Xp11.22 showed that the two sisters who were unaffected had inherited the same maternal X chromosome (i.e., M2). Two of the daughters who manifested with CSNB had inherited the other maternal X chromosome (M1). The third manifesting sister inherited a recombinant X chromosome with a crossover between TIMP and DXS255, which suggests that the CSNB1 locus lies proximal to TIMP. One of the affected daughters' sons had inherited the maternal M1 X chromosome, a finding consistent with that chromosome carrying a mutant CSNB gene; the other affected sons inherited the grandfather's X chromosome (i.e., P). Molecular analysis of DNA from three sisters with manifestations of CSNB is consistent with their being homozygous at the CSNB1 locus and with their mother being a carrier of CSNB1. 23 refs., 4 figs., 3 tabs.

  7. Unique X-linked mental retardation syndrome with fingertip arches and contractures linked to Xq21.31.

    PubMed

    Miles, J H; Carpenter, N J

    1991-01-01

    We studied 10 members of a 4 generation Missouri kindred with a dominant mental retardation syndrome with increasing severity in males. The 21 year-old propositus presented with severe mental retardation, microcephaly, asymmetric face, exotropia, hypogonadism, joint hypermobility, rocker bottom feet, and 10 low digital arches. Two brothers and a male cousin had similar features. The mother, sister, niece, maternal aunt, female cousin, and grandmother were examined and each had 8 to 10 low digital arches. Five of the women had exotropia and one had pes cavus feet. Chromosome analysis for fragile X in multiple relatives was normal. To determine the likelihood that this was an X-linked syndrome. DNA from relatives was hybridized to probes which detect 13 different loci spanning the X-chromosome. A peak LOD score of 2.78 at theta equal to 0.0 was calculated for the syndrome locus and DXYS1 (pDP34). The more distal Xq loci showed increasing recombination with the syndrome locus. These results are consistent with location for this syndrome near Xq21.31, the chromosomal locus for DXYSI. PMID:2018061

  8. Spectrum of mutations in the COL4A5 collagen gene in X-linked Alport syndrome.

    PubMed Central

    Knebelmann, B.; Breillat, C.; Forestier, L.; Arrondel, C.; Jacassier, D.; Giatras, I.; Drouot, L.; Deschênes, G.; Grünfeld, J. P.; Broyer, M.; Gubler, M. C.; Antignac, C.

    1996-01-01

    Alport syndrome is a mainly X-linked hereditary disease of basement membranes that is characterized by progressive renal failure, deafness, and ocular lesions. It is associated with mutations of the COL4A5 gene located at Xq22 and encoding the alpha5 chain of type IV collagen. We have screened 48 of the 51 exons of the COL4A5 gene by SSCP analysis and have identified 64 mutations and 10 sequence variants among 131 unrelated Alport syndrome patients. This represents a mutation-detection rate of 50%. There were no hot-spot mutations and no recurrent mutations in our population. The identified mutations were 6 nonsense mutations, 12 frameshift mutations, 17 splice-site mutations, and 29 missense mutations, 27 of the latter being glycine substitutions in the collagenous domain. Two of these occurred on the same allele in one patient and segregated with the disease in the family. We showed that some of the glycine substitutions could be associated with the lack of immunological expression of the alpha3(IV)-alpha5(IV) collagen chains in the glomerular basement membrane. Images Figure 1 Figure 2 PMID:8940267

  9. X-linked thrombocytopenia with thalassemia displays bone marrow reticulin fibrosis and enhanced angiogenesis: comparisons with primary myelofibrosis.

    PubMed

    Åström, Maria; Hahn-Strömberg, Victoria; Zetterberg, Eva; Vedin, Inger; Merup, Mats; Palmblad, Jan

    2015-03-01

    X-linked thrombocytopenia with thalassemia (XLTT) is caused by the mutation 216R > Q in exon 4 of the GATA1 gene. Male hemizygous patients display macrothrombocytopenia, splenomegaly, and a β-thalassemia trait. We describe two XLTT families where three males were initially misdiagnosed as having primary myelofibrosis (PMF) and all five investigated males showed mild-moderate bone marrow (BM) reticulin fibrosis. Comparative investigations were performed on blood samples and BM biopsies from males with XLTT, PMF patients and healthy controls. Like PMF, XLTT presented with high BM microvessel density, low GATA1 protein levels in megakaryocytes, and elevated blood CD34+ cell counts. But unlike PMF, the BM microvessel pericyte coverage was low in XLTT, and no collagen fibrosis was found. Further, as evaluated by immunohistochemistry, expressions of the growth factors VEGF, AGGF1, and CTGF were low in XLTT megakaryocytes and microvessels but high in PMF. Thus, although the reticulin fibrosis in XLTT might simulate PMF, opposing stromal and megakaryocyte features may facilitate differential diagnosis. Additional comparisons between these disorders may increase the understanding of mechanisms behind BM fibrosis in relation to pathological megakaryopoiesis. PMID:25421114

  10. Enzyme replacement therapy rescues weakness and improves muscle pathology in mice with X-linked myotubular myopathy

    PubMed Central

    Lawlor, Michael W.; Armstrong, Dustin; Viola, Marissa G.; Widrick, Jeffrey J.; Meng, Hui; Grange, Robert W.; Childers, Martin K.; Hsu, Cynthia P.; O'Callaghan, Michael; Pierson, Christopher R.; Buj-Bello, Anna; Beggs, Alan H.

    2013-01-01

    No effective treatment exists for patients with X-linked myotubular myopathy (XLMTM), a fatal congenital muscle disease caused by deficiency of the lipid phosphatase, myotubularin. The Mtm1δ4 and Mtm1 p.R69C mice model severely and moderately symptomatic XLMTM, respectively, due to differences in the degree of myotubularin deficiency. Contractile function of intact extensor digitorum longus (EDL) and soleus muscles from Mtm1δ4 mice, which produce no myotubularin, is markedly impaired. Contractile forces generated by chemically skinned single fiber preparations from Mtm1δ4 muscle were largely preserved, indicating that weakness was largely due to impaired excitation contraction coupling. Mtm1 p.R69C mice, which produce small amounts of myotubularin, showed impaired contractile function only in EDL muscles. Short-term replacement of myotubularin with a prototypical targeted protein replacement agent (3E10Fv-MTM1) in Mtm1δ4 mice improved contractile function and muscle pathology. These promising findings suggest that even low levels of myotubularin protein replacement can improve the muscle weakness and reverse the pathology that characterizes XLMTM. PMID:23307925

  11. Expression of X-linked Inhibitor-of-apoptosis Protein in Hepatocellular Carcinoma Promotes Metastasis and Tumor Recurrence

    PubMed Central

    Shi, Ying-Hong; Ding, Wen-Xing; Zhou, Jian; He, Jun-Yi; Xu, Yang; Gambotto, Andrew; Rabinowich, Hannah; Fan, Jia; Yin, Xiao-Ming

    2009-01-01

    Hepatocellular carcinoma (HCC) is one of the most common malignant tumors worldwide. Despite significantly improved diagnosis and treatment in recent years, the long-term therapeutic effect is compromised by the frequent recurrence and metastasis, of which the molecular mechanisms are not fully understood. Our initial studies in established HCC cell lines with different metastatic capabilities indicated a correlation of metastasis with the resistance to apoptosis and therefore the ability to survive in stressed conditions. Subsequent investigation revealed that increased expression of X-linked inhibitor-of-apoptosis protein (XIAP) was correlated with the resistance to apoptosis and enhanced invasiveness in vitro, which could contribute to increased metastatic foci in vivo. Furthermore, we found that nearly 90% of clinical samples from advanced HCC patients expressed high levels of XIAP. Patients with XIAP-positive tumors had a significantly increased risk to relapse, which was resulted from metastasis, following total liver resection and orthotopic liver transplantation. Indeed, XIAP expression could be an independent prognostic factor for predicting disease-free survival rate and overall survival rate of these patients. XIAP expression was also highly correlated with advanced cases that exceeded the Milan criteria and could be a prognostic factor for disease-free survival in these patients as well. Conclusion: our studies have revealed an important molecule in controlling HCC metastasis, defined a biomarker that can be utilized to predict HCC recurrence and patient survival following treatment, and suggest that XIAP can be a molecular target subject to intervention to reduce metastasis and recurrence. PMID:18666224

  12. Targeted gene addition in human CD34(+) hematopoietic cells for correction of X-linked chronic granulomatous disease.

    PubMed

    De Ravin, Suk See; Reik, Andreas; Liu, Pei-Qi; Li, Linhong; Wu, Xiaolin; Su, Ling; Raley, Castle; Theobald, Narda; Choi, Uimook; Song, Alexander H; Chan, Andy; Pearl, Jocelynn R; Paschon, David E; Lee, Janet; Newcombe, Hannah; Koontz, Sherry; Sweeney, Colin; Shivak, David A; Zarember, Kol A; Peshwa, Madhusudan V; Gregory, Philip D; Urnov, Fyodor D; Malech, Harry L

    2016-04-01

    Gene therapy with genetically modified human CD34(+) hematopoietic stem and progenitor cells (HSPCs) may be safer using targeted integration (TI) of transgenes into a genomic 'safe harbor' site rather than random viral integration. We demonstrate that temporally optimized delivery of zinc finger nuclease mRNA via electroporation and adeno-associated virus (AAV) 6 delivery of donor constructs in human HSPCs approaches clinically relevant levels of TI into the AAVS1 safe harbor locus. Up to 58% Venus(+) HSPCs with 6-16% human cell marking were observed following engraftment into mice. In HSPCs from patients with X-linked chronic granulomatous disease (X-CGD), caused by mutations in the gp91phox subunit of the NADPH oxidase, TI of a gp91phox transgene into AAVS1 resulted in ∼15% gp91phox expression and increased NADPH oxidase activity in ex vivo-derived neutrophils. In mice transplanted with corrected HSPCs, 4-11% of human cells in the bone marrow expressed gp91phox. This method for TI into AAVS1 may be broadly applicable to correction of other monogenic diseases. PMID:26950749

  13. X-Linked adrenoleukodystrophy is a frequent cause of idiopathic Addison`s disease in young adult male patients

    SciTech Connect

    Laureti, S.; Casucci, G.; Santeusanio, F.

    1996-02-01

    X-Linked adrenoleukodystrophy (ALD) is a genetic disease associated with demyelination of the central nervous system, adrenal insufficiency, and accumulation of very long chain fatty acids in tissue and body fluids. ALD is due to mutation of a gene located in Xq28 that encodes a peroxisomal transporter protein of unknown function. The most common phenotype of ALD is the cerebral form (45%) that develops in boys between 5-12 yr. Adrenomyeloneuropathy (AMN) involves the spinal cord and peripheral nerves in young adults (35%). Adrenal insufficiency (Addison`s disease) is frequently associated with AMN or cerebral ALD and may remain the only clinical expression of ALD (8% of cases). The prevalence of ALD among adults with Addison`s disease remains unknown. To evaluate this prevalence, we performed biochemical analysis of very long chain fatty acids in 14 male patients (age ranging from 12-45 yr at diagnosis) previously diagnosed as having primary idiopathic adrenocortical insufficiency. In 5 of 14 patients (35%), elevated plasma concentrations of very long chain fatty acids were detected. None of these patients had adrenocortical antibodies. By electrophysiological tests and magnetic resonance imaging it was determined that two patients had cerebral ALD, one had adrenomyeloneuropathy with cerebral involvement, and two had preclinical AMN. Our data support the hypothesis that ALD is a frequent cause of idiopathic Addison`s disease in children and adults. 30 refs., 5 tabs.

  14. MicroRNAs and intellectual disability (ID) in Down syndrome, X-linked ID, and Fragile X syndrome

    PubMed Central

    Siew, Wei-Hong; Tan, Kai-Leng; Babaei, Maryam Abbaspour; Cheah, Pike-See; Ling, King-Hwa

    2013-01-01

    Intellectual disability (ID) is one of the many features manifested in various genetic syndromes leading to deficits in cognitive function among affected individuals. ID is a feature affected by polygenes and multiple environmental factors. It leads to a broad spectrum of affected clinical and behavioral characteristics among patients. Until now, the causative mechanism of ID is unknown and the progression of the condition is poorly understood. Advancement in technology and research had identified various genetic abnormalities and defects as the potential cause of ID. However, the link between these abnormalities with ID is remained inconclusive and the roles of many newly discovered genetic components such as non-coding RNAs have not been thoroughly investigated. In this review, we aim to consolidate and assimilate the latest development and findings on a class of small non-coding RNAs known as microRNAs (miRNAs) involvement in ID development and progression with special focus on Down syndrome (DS) and X-linked ID (XLID) [including Fragile X syndrome (FXS)]. PMID:23596395

  15. Height discordance in monozygotic females is not attributable to discordant inactivation of X-linked stature determining genes.

    PubMed

    Healey, S C; Kirk, K M; Hyland, V J; Munns, C F; Henders, A K; Batch, J A; Heath, A C; Martin, N G; Glass, I A

    2001-02-01

    We tested the hypothesis that X-linked genes determining stature which are subject to skewed or non-random X-inactivation can account for discordance in height in monozygotic female twins. Height discordant female monozygotic adult twins (20 pairs) were identified from the Australian Twin Registry, employing the selection criteria of proven monozygosity and a measured height discordance of at least 5 cm. Differential X-inactivation was examined in genomic DNA extracted from peripheral lymphocytes by estimating differential methylation of alleles at the polymorphic CAG triplet repeat of the Androgen receptor gene (XAR). There were 17/20 MZ pairs heterozygous at this locus and informative for analysis. Of these, 10/17 both had random X-inactivation, 5/17 showed identical X-inactivation patterns of non random inactivation and 2/17 (12%) showed discordant X-inactivation. There was no relationship between inactivation patterns and self-report chorionicity. We conclude that non-random X-inactivation does not appear to be a major contributor to intra-pair height discordance in female MZ twins. PMID:11665320

  16. GJB1/Connexin 32 whole gene deletions in patients with X-linked Charcot–Marie–Tooth disease

    PubMed Central

    Gonzaga-Jauregui, Claudia; Zhang, Feng; Towne, Charles F.; Batish, Sat Dev

    2014-01-01

    The X-linked form of Charcot–Marie–Tooth disease (CMTX) is the second most common form of this genetically heterogeneous inherited peripheral neuropathy. CMT1X is caused by mutations in the GJB1 gene. Most of the mutations causative for CMT1X are missense mutations. In addition, a few disease causative nonsense mutations and frameshift deletions that lead to truncated forms of the protein have also been reported to be associated with CMT1X. Previously, there have been reports of patients with deletions of the coding sequence of GJB1; however, the size and breakpoints of these deletions were not assessed. Here, we report five patients with deletions that range in size from 12.2 to 48.3 kb and that completely eliminate the entire coding sequence of the GJB1 gene, resulting in a null allele for this locus. Analyses of the breakpoints of these deletions showed that they are nonrecurrent and that they can be generated by different mechanisms. In addition to PMP22, GJB1 is the second CMT gene for which both point mutations and genomic rearrangements can cause a neuropathy phenotype, stressing the importance of CMT as a genomic disorder. PMID:20532933

  17. Redefining the Pediatric Phenotype of X-Linked Monocarboxylate Transporter 8 (MCT8) Deficiency: Implications for Diagnosis and Therapies.

    PubMed

    Matheus, Maria Gisele; Lehman, Rebecca K; Bonilha, Leonardo; Holden, Kenton R

    2015-10-01

    X-linked monocarboxylate transporter 8 (MCT8) deficiency results from a loss-of-function mutation in the monocarboxylate transporter 8 gene, located on chromosome Xq13.2 (Allan-Herndon-Dudley syndrome). Affected boys present early in life with neurodevelopment delays but have pleasant dispositions and commonly have elevated serum triiodothyronine. They also have marked axial hypotonia and quadriparesis but surprisingly little spasticity early in their disease course. They do, however, have subtle involuntary movements, most often dystonia. The combination of hypotonia and dystonia presents a neurorehabilitation challenge and explains why spasticity-directed therapies have commonly produced suboptimal responses. Our aim was to better define the spectrum of motor disability and to elucidate the neuroanatomic basis of the motor impairments seen in MCT8 deficiency using clinical observation and brain magnetic resonance imaging (MRI) in a cohort of 6 affected pediatric patients. Our findings identified potential imaging biomarkers and suggest that rehabilitation efforts targeting dystonia may be more beneficial than those targeting spasticity in the prepubertal pediatric MCT8 deficiency population. PMID:25900139

  18. Inheritance of skewed X chromosome inactivation in a large family with an X-linked recessive deafness syndrome

    SciTech Connect

    Orstavik, K.H.; Orstavik, R.E.; Eiklid, K.; Tranebjaerg, L.

    1996-07-12

    A new X-linked recessive deafness syndrome was recently reported and mapped to Xq22 (Mohr-Tranebjaeerg syndrome). In addition to deafness, the patients had visual impairment, dystonia, fractures, and mental deterioration. The female carriers did not have any significant manifestations of the syndrome. We examined X chromosome inactivation in 8 obligate and 12 possible carriers by using a polymerase chain reaction analysis of the methylation-dependent amplification of the polymorphic triplet repeat at the androgen receptor locus. Seven of 8 obligate carriers and 1 of 5 carriers by linkage analysis had an extremely skewed pattern in blood DNA not found in 30 normal females. The X inactivation pattern in fibroblast DNA from 2 of the carriers with the extremely skewed pattern was also skewed but to a lesser degree than in blood DNA. One obligate carrier had a random X inactivation pattern in both blood and fibroblast DNA. A selection mechanism for the skewed pattern is therefore not likely. The extremely skewed X inactivation in 8 females of 3 generations in this family may be caused by a single gene that influences skewing of X chromosome inactivation. 22 refs., 2 figs., 1 tab.

  19. A Splice Defect in the EDA Gene in Dogs with an X-Linked Hypohidrotic Ectodermal Dysplasia (XLHED) Phenotype

    PubMed Central

    Waluk, Dominik P.; Zur, Gila; Kaufmann, Ronnie; Welle, Monika M.; Jagannathan, Vidhya; Drögemüller, Cord; Müller, Eliane J.; Leeb, Tosso; Galichet, Arnaud

    2016-01-01

    X-linked hypohidrotic ectodermal dysplasia (XLHED) caused by variants in the EDA gene represents the most common ectodermal dysplasia in humans. We investigated three male mixed-breed dogs with an ectodermal dysplasia phenotype characterized by marked hypotrichosis and multifocal complete alopecia, almost complete absence of sweat and sebaceous glands, and altered dentition with missing and abnormally shaped teeth. Analysis of SNP chip genotypes and whole genome sequence data from the three affected dogs revealed that the affected dogs shared the same haplotype on a large segment of the X-chromosome, including the EDA gene. Unexpectedly, the whole genome sequence data did not reveal any nonsynonymous EDA variant in the affected dogs. We therefore performed an RNA-seq experiment on skin biopsies to search for changes in the transcriptome. This analysis revealed that the EDA transcript in the affected dogs lacked 103 nucleotides encoded by exon 2. We speculate that this exon skipping is caused by a genetic variant located in one of the large introns flanking this exon, which was missed by whole genome sequencing with the illumina short read technology. The altered EDA transcript splicing most likely causes the observed ectodermal dysplasia in the affected dogs. These dogs thus offer an excellent opportunity to gain insights into the complex splicing processes required for expression of the EDA gene, and other genes with large introns. PMID:27449516

  20. Regional localisation of two non-specific X-linked mental retardation genes (MRX30 and MRX31)

    SciTech Connect

    Donnelly, A.J.; Mulley, J.C.; Ryan, A.K.; Partington, M.W.

    1996-07-12

    Two genes responsible for X-linked mental retardation have been localized by linkage analysis. MRX30 maps to a 28 cM region flanked by the loci DXS990 (Xq21.3) and DXS424 (Xq24). A significant multipoint lod score of 2.78 was detected between the loci DXS1120 and DXS456. MRX31 maps to a 12 cM region that spans the centromere from DXS1126 (Xp11.23) to DXS1124 (Xq13.3). Significant two-point lod scores, at a recombination fraction of zero, were obtained with the loci DXS991 (Zmax = 2.06), AR (Zmax = 3.44), PGK1P1 (Zmax = 2.06) and DXS453 (Zmax = 3.31). The MRX30 localization overlaps that of MRX8, 13, 20 and 26 and defines the position of a new MRX gene on the basis of a set of non-overlapping regional localizations. The MRX31 localization overlaps the localizations of many of the pericentromeric MRX loci (MRX 1, 4, 5, 7, 8, 9, 12, 13, 14, 15, 17, 20, 22 and 26). There are now at least 8 distinct loci associated with non-specific mental retardation on the X chromosome defined, in order from pter to qter, by localization for MRX24, MRX2, MRX10, MRX1, MRX30, MRX27, FRAXE and MRX3. 32 refs., 3 figs., 4 tabs.

  1. Regional localisation of a non-specific X-linked mental retardation gene (MRX19) to Xp22

    SciTech Connect

    Donnelly, A.J.; Gedeon, A.K.; Mulley, J.C.; Kozman, H.M. |; Choo, K.H.A.; Danks, D.M.

    1994-07-15

    A gene responsible for a non-specific form of X-linked mental retardation (MRX19) was localized by linkage analysis. Exclusions and regional localization were made using 21 highly informative PCR-based markers along the X chromosome. Significant lod scores at a recombination fraction of zero were detected with the marker loci DXS207, DXS987 (Zmax = 3.58) and DXS999 (Zmax = 3.28) indicating that this gene is localized to the proximal portion of Xp22. Recombination between MRX19 and the flanking loci KAL and DXS989 was observed. The multipoint CEPH background map, with map distances in cM, is DXS996-1.8-KAL-19.0-DXS207-0.9-[DXS987,DXS443]-4.3-DXS999-3.5-DXS365-14.0-DXS989. Two other MRX disorders and two syndromal mental retardations, Coffin-Lowry syndrome and Partington syndrome, have been mapped to this region. There is a possibility that the 3 MRX disorders are the same entity. Most MRX disorders remain clustered around the pericentromeric region. 33 refs., 2 figs., 2 tabs.

  2. 9 CFR 113.305 - Canine Hepatitis and Canine Adenovirus Type 2 Vaccine.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... dilution in a varying serum-constant virus neutralization test using 50 to 300 TCID50 of canine adenovirus... virus neutralization test using 50 to 300 TCID50 of canine adenovirus. (i) A geometric mean titer of...

  3. 9 CFR 113.305 - Canine Hepatitis and Canine Adenovirus Type 2 Vaccine.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... dilution in a varying serum-constant virus neutralization test using 50 to 300 TCID50 of canine adenovirus... virus neutralization test using 50 to 300 TCID50 of canine adenovirus. (i) A geometric mean titer of...

  4. 9 CFR 113.305 - Canine Hepatitis and Canine Adenovirus Type 2 Vaccine.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... dilution in a varying serum-constant virus neutralization test using 50 to 300 TCID50 of canine adenovirus... virus neutralization test using 50 to 300 TCID50 of canine adenovirus. (i) A geometric mean titer of...

  5. X-linked dominant cone-rod degeneration: Linkage mapping of a new locus for retinitis pigmentosa (RP15) to Xp22.13-p22.11

    SciTech Connect

    McGuire, R.E.; Sullivan, L.S.; Daiger, S.P.

    1995-07-01

    Retinitis pigmentosa is the name given to a heterogeneous group of hereditary retinal degenerations characterized by progressive visual field loss, pigmentary changes of the retina, abnormal electroretinograms, and, frequently, night blindness. In this study, we investigated a family with dominant cone-rod degeneration, a variant form of retinitis pigmentosa. We used microsatellite markers to test for linkage to the disease locus and exluded all mapped autosomal loci. However, a marker from the short arm of the X chromosome, DXS989, showed 0% recombination to the disease locus, with a maximum lod (log-odds) score of 3.3. On the basis of this marker, the odds favoring X-linked dominant versus autosomal dominant inheritance are > 10{sup 5}:1. Haplotype analysis using an additional nine microsatellite markers places the disease locus in the Xp22.13-p22.11 region and excludes other X-linked disease loci causing retinal degeneration. The clinical expression of the retinal degeneration is consistent with X-linked dominant inheritance with milder, variable effects of Lyonization affecting expression in females. On the basis of these data we propose that this family has a novel form of dominant, X-linked cone-rod degeneration with the gene symbol {open_quotes}RP15{close_quotes}. 17 refs., 2 figs., 4 tabs.

  6. CO-OCCURRENCE OF PRIMARY MICROCEPHALY CAUSED BY A NOVEL HOMOZYGOUS ASPM MUTATION ALONG WITH X-LINKED ICHTHYOSIS IN THE SAME PATIENT.

    PubMed

    Abdel-Hamid, M S; Ismail, M F; Darwish, H A; Effat, L K; Zaki, M S; Abdel-Salam, G M H

    2016-01-01

    Autosomal recessive primary microcephaly is a heterogeneous genetic disorder caused by genes that affect neurogenesis. This form of microcephaly has not been associated with other congenital anomalies. ASPM mutations have been identified as the major cause implicated in autosomal recessive primary microcephaly. X-linked recessive ichthyosis, is an inborn error of steroid sulfatase metabolism characterized by dark and adhesive scaly skin. Here, we examined an Egyptian boy presenting with microcephaly and simplified gyral pattern. Additionally, he had ichthyosis that goes with the X-linked type. Mutation analyses of the ASPM gene for autosomal recessive primary microcephaly and STS gene of X-linked recessive ichthyosis were conducted revealing a co-occurrence of a novel homozygous splice site mutation of ASPM gene (c.2936+1G>A) and a partial deletion of STS spanning from exon 7-10. We propose that the phenotype of our patient results from the combined effects of mutations in both ASPM and STS that account for the neurological signs and skin manifestations, respectively. The association of isolated X-linked recessive ichthyosis and autosomal recessive primary microcephaly has never been reported in the literature. Careful clinical and genetic assessment of patients with atypical clinical phenotypes is crucial for detecting such rare double mutations and thus proper genetic counseling. PMID:27192889

  7. CD40 agonist antibody mediated improvement of chronic Cryptosporidium infection in patients with X-linked hyper IgM syndrome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    X-linked hyper-IgM syndrome (XHM) is a combined immune deficiency disorder caused by mutations in CD40 ligand. We tested CP-870,893, a human CD40 agonist monoclonal antibody, in the treatment of two XHM patients with biliary Cryptosporidiosis. CP-870,893 activated B cells and APCs in vitro, restori...

  8. Identification of three novel FGF16 mutations in X-linked recessive fusion of the fourth and fifth metacarpals and possible correlation with heart disease

    PubMed Central

    Laurell, Tobias; Nilsson, Daniel; Hofmeister, Wolfgang; Lindstrand, Anna; Ahituv, Nadav; Vandermeer, Julia; Amilon, Anders; Annerén, Göran; Arner, Marianne; Pettersson, Maria; Jäntti, Nina; Rosberg, Hans-Eric; Cattini, Peter A; Nordenskjöld, Agneta; Mäkitie, Outi; Grigelioniene, Giedre; Nordgren, Ann

    2014-01-01

    Nonsense mutations in FGF16 have recently been linked to X-linked recessive hand malformations with fusion between the fourth and the fifth metacarpals and hypoplasia of the fifth digit (MF4; MIM#309630). The purpose of this study was to perform careful clinical phenotyping and to define molecular mechanisms behind X-linked recessive MF4 in three unrelated families. We performed whole-exome sequencing, and identified three novel mutations in FGF16. The functional impact of FGF16 loss was further studied using morpholino-based suppression of fgf16 in zebrafish. In addition, clinical investigations revealed reduced penetrance and variable expressivity of the MF4 phenotype. Cardiac disorders, including myocardial infarction and atrial fibrillation followed the X-linked FGF16 mutated trait in one large family. Our findings establish that a mutation in exon 1, 2 or 3 of FGF16 results in X-linked recessive MF4 and expand the phenotypic spectrum of FGF16 mutations to include a possible correlation with heart disease. PMID:25333065

  9. Identification of three novel FGF16 mutations in X-linked recessive fusion of the fourth and fifth metacarpals and possible correlation with heart disease.

    PubMed

    Laurell, Tobias; Nilsson, Daniel; Hofmeister, Wolfgang; Lindstrand, Anna; Ahituv, Nadav; Vandermeer, Julia; Amilon, Anders; Annerén, Göran; Arner, Marianne; Pettersson, Maria; Jäntti, Nina; Rosberg, Hans-Eric; Cattini, Peter A; Nordenskjöld, Agneta; Mäkitie, Outi; Grigelioniene, Giedre; Nordgren, Ann

    2014-09-01

    Nonsense mutations in FGF16 have recently been linked to X-linked recessive hand malformations with fusion between the fourth and the fifth metacarpals and hypoplasia of the fifth digit (MF4; MIM#309630). The purpose of this study was to perform careful clinical phenotyping and to define molecular mechanisms behind X-linked recessive MF4 in three unrelated families. We performed whole-exome sequencing, and identified three novel mutations in FGF16. The functional impact of FGF16 loss was further studied using morpholino-based suppression of fgf16 in zebrafish. In addition, clinical investigations revealed reduced penetrance and variable expressivity of the MF4 phenotype. Cardiac disorders, including myocardial infarction and atrial fibrillation followed the X-linked FGF16 mutated trait in one large family. Our findings establish that a mutation in exon 1, 2 or 3 of FGF16 results in X-linked recessive MF4 and expand the phenotypic spectrum of FGF16 mutations to include a possible correlation with heart disease. PMID:25333065

  10. X-inactivation patterns in female Leber`s hereditary optic neuropathy patients do not support a strong X-linked determinant

    SciTech Connect

    Pegoraro, E.; Hoffman, E.P.; Carelli, V.; Cortelli, P.

    1996-02-02

    Leber`s hereditary optic neuropathy (LHON) accounts for about 3% of the cases of blindness in young adult males. The underlying mitochondrial pathogenesis of LHON has been well studied, with specific mitochondrial DNA (mtDNA) mutations of structural genes described and well characterized. However, enigmatic aspects of the disease are not explained by mutation data, such as the higher proportion of affected males, the later onset of the disease in females, and the presence of unaffected individuals with a high proportion of mutant mtDNA. A hypothesis which has been put forward to explain the unusual disease expression is a dual model of mtDNA and X-linked nuclear gene inheritance. If a nuclear X-linked modifier gene influences the expression of the mitochondrial-linked mutant gene then the affected females should be either homozygous for the nuclear determinant, or if heterozygous, lyonization should favor the mutant X. In order to determine if an X-linked gene predisposes to LHON phenotype we studied X-inactivation patterns in 35 females with known mtDNA mutations from 10 LHON pedigrees. Our results do not support a strong X-linked determinant in LHON cause: 2 of the 10 (20%) manifesting carriers showed skewing of X-inactivation, as did 3 of the 25 (12%) nonmanifesting carriers. 39 refs., 2 figs., 1 tab.

  11. Genetics of Human and Canine Dilated Cardiomyopathy

    PubMed Central

    Simpson, Siobhan; Edwards, Jennifer; Ferguson-Mignan, Thomas F. N.; Cobb, Malcolm; Mongan, Nigel P.; Rutland, Catrin S.

    2015-01-01

    Cardiovascular disease is a leading cause of death in both humans and dogs. Dilated cardiomyopathy (DCM) accounts for a large number of these cases, reported to be the third most common form of cardiac disease in humans and the second most common in dogs. In human studies of DCM there are more than 50 genetic loci associated with the disease. Despite canine DCM having similar disease progression to human DCM studies into the genetic basis of canine DCM lag far behind those of human DCM. In this review the aetiology, epidemiology, and clinical characteristics of canine DCM are examined, along with highlighting possible different subtypes of canine DCM and their potential relevance to human DCM. Finally the current position of genetic research into canine and human DCM, including the genetic loci, is identified and the reasons many studies may have failed to find a genetic association with canine DCM are reviewed. PMID:26266250

  12. Decreased N-TAF1 expression in X-linked dystonia-parkinsonism patient-specific neural stem cells

    PubMed Central

    Ito, Naoto; Hendriks, William T.; Dhakal, Jyotsna; Vaine, Christine A.; Liu, Christina; Shin, David; Shin, Kyle; Wakabayashi-Ito, Noriko; Dy, Marisela; Multhaupt-Buell, Trisha; Sharma, Nutan; Breakefield, Xandra O.; Bragg, D. Cristopher

    2016-01-01

    ABSTRACT X-linked dystonia-parkinsonism (XDP) is a hereditary neurodegenerative disorder involving a progressive loss of striatal medium spiny neurons. The mechanisms underlying neurodegeneration are not known, in part because there have been few cellular models available for studying the disease. The XDP haplotype consists of multiple sequence variations in a region of the X chromosome containing TAF1, a large gene with at least 38 exons, and a multiple transcript system (MTS) composed of five unconventional exons. A previous study identified an XDP-specific insertion of a SINE-VNTR-Alu (SVA)-type retrotransposon in intron 32 of TAF1, as well as a neural-specific TAF1 isoform, N-TAF1, which showed decreased expression in post-mortem XDP brain compared with control tissue. Here, we generated XDP patient and control fibroblasts and induced pluripotent stem cells (iPSCs) in order to further probe cellular defects associated with this disease. As initial validation of the model, we compared expression of TAF1 and MTS transcripts in XDP versus control fibroblasts and iPSC-derived neural stem cells (NSCs). Compared with control cells, XDP fibroblasts exhibited decreased expression of TAF1 transcript fragments derived from exons 32-36, a region spanning the SVA insertion site. N-TAF1, which incorporates an alternative exon (exon 34′), was not expressed in fibroblasts, but was detectable in iPSC-differentiated NSCs at levels that were ∼threefold lower in XDP cells than in controls. These results support the previous findings that N-TAF1 expression is impaired in XDP, but additionally indicate that this aberrant transcription might occur in neural cells at relatively early stages of development that precede neurodegeneration. PMID:26769797

  13. Serum MEPE-ASARM-peptides are elevated in X-linked rickets (HYP): implications for phosphaturia and rickets

    PubMed Central

    Bresler, Doron; Bruder, Jan; Mohnike, Klaus; Fraser, William D; Rowe, Peter S N

    2012-01-01

    MEPE (Matrix Extracellular PhosphoglycoprotEin) expression is markedly elevated in X-linked-hypophosphatemic-rickets (HYP) and tumor-induced osteomalacia (TIO). In normal individuals, circulating serum-levels of MEPE are tightly correlated with serum-phosphorus, parathyroid hormone (PTH) and bone mineral density (BMD). Also, MEPE derived, C-terminal ASARM-peptides are candidate minhibins and/or phosphatonins. Our aims were to determine: 1. whether MEPE-ASARM-peptide(s) are abnormally elevated in HYP/hyp serum, and, 2. whether the ASARM-peptide(s) accumulate in hyp mice kidney renal-tubules. Using a specific competitive ELISA we measured a five fold increase (P=0·007) of serum ASARM-peptide(s) in human HYP patients (normal subjects 3·25 μM n=9; S.E.M.=0·51 and HYP-patients 15·74 μM, n=9; S.E.M.=3·32). A 6·23 fold increase (P=0·008) was measured in hyp male mice compared with their normal male siblings (normal-siblings, 3·73 μM, S.E.M.=0·57, n=3; and hyp-mice 23·4 μM, n=3, S.E.M.=4·01). Renal immuno-histological screening also revealed a dramatic increase of ASARM-peptides in regions anatomically consistent with the proximal convoluted tubules. This study demonstrates for the first time that markedly elevated serum levels of protease-resistant ASARM-peptide(s) occur in HYP/hyp and they accumulate in murine hyp kidneys. These peptides are thus likely responsible for the phosphaturia and defective mineralization in HYP/hyp and TIO. PMID:15590969

  14. Mapping of a possible X-linked form of familial developmental dysphasia (FDD) in a single large pedigree

    SciTech Connect

    Dunne, P.W.; Doody, R.S.; Epstein, H.F.

    1994-09-01

    Children diagnosed with developmental dysphasia develop speech very late without exhibiting sensory or motor dysfunction, and when they do begin to speak their grammar is abnormal. A large three-generation British pedigree was recently identified in which 16 out of 30 members were diagnosed as dysphasic. Assuming a dominant mode of inheritance with homogeneous phenotypic expression and complete penetrance among affected members, we showed by simulation analysis that this pedigree has the power to detect linkage to marker loci with an average maximum LOD score of 3.67 at {theta}=0.1. Given the absence of male-to-male transmission and a ratio of female to male affecteds (10/6) in this pedigree within the expected range for an X-linked dominant mode of inheritance, we decided to begin a genome-wide linkage analysis with microsatellite markers on the human X chromosome. Fifteen individuals (10 affected) from three generations were genotyped with 35 polymorphic STS`s (Research Genetics) which were approximately uniformly distributed along the X chromosome. Two-point linkage was assessed using the MLINK and ILINK programs from the LINKAGE package. Markers DXS1223, DXS987, DXS996 and DXS1060 on Xp22 showed consistent linkage to the disease locus with a maximum LOD score of 0.86 at a distance of 22 cM for DXS1060. If further analysis with additional markers and additional family members confirms X-linkage, such a localization would provide support for Lehrke`s hypothesis for X-linkage of major intellectual traits including verbal functioning.

  15. X-linked inhibitor of apoptosis protein mediates tumor cell resistance to antibody-dependent cellular cytotoxicity

    PubMed Central

    Evans, M K; Sauer, S J; Nath, S; Robinson, T J; Morse, M A; Devi, G R

    2016-01-01

    Inflammatory breast cancer (IBC) is the deadliest, distinct subtype of breast cancer. High expression of epidermal growth factor receptors [EGFR or human epidermal growth factor receptor 2 (HER2)] in IBC tumors has prompted trials of anti-EGFR/HER2 monoclonal antibodies to inhibit oncogenic signaling; however, de novo and acquired therapeutic resistance is common. Another critical function of these antibodies is to mediate antibody-dependent cellular cytotoxicity (ADCC), which enables immune effector cells to engage tumors and deliver granzymes, activating executioner caspases. We hypothesized that high expression of anti-apoptotic molecules in tumors would render them resistant to ADCC. Herein, we demonstrate that the most potent caspase inhibitor, X-linked inhibitor of apoptosis protein (XIAP), overexpressed in IBC, drives resistance to ADCC mediated by cetuximab (anti-EGFR) and trastuzumab (anti-HER2). Overexpression of XIAP in parental IBC cell lines enhances resistance to ADCC; conversely, targeted downregulation of XIAP in ADCC-resistant IBC cells renders them sensitive. As hypothesized, this ADCC resistance is in part a result of the ability of XIAP to inhibit caspase activity; however, we also unexpectedly found that resistance was dependent on XIAP-mediated, caspase-independent suppression of reactive oxygen species (ROS) accumulation, which otherwise occurs during ADCC. Transcriptome analysis supported these observations by revealing modulation of genes involved in immunosuppression and oxidative stress response in XIAP-overexpressing, ADCC-resistant cells. We conclude that XIAP is a critical modulator of ADCC responsiveness, operating through both caspase-dependent and -independent mechanisms. These results suggest that strategies targeting the effects of XIAP on caspase activation and ROS suppression have the potential to enhance the activity of monoclonal antibody-based immunotherapy. PMID:26821068

  16. Clinical features of X linked juvenile retinoschisis in Chinese families associated with novel mutations in the RS1 gene

    PubMed Central

    Ma, Xiang; Tao, Yong

    2007-01-01

    Purpose To describe the clinical phenotype of X linked juvenile retinoschisis (XLRS) in 12 Chinese families with 11 different mutations in the XLRS1 (RS1) gene. Methods Complete ophthalmic examinations were carried out in 29 affected males (12 probands), 38 heterozygous females carriers, and 100 controls. The coding regions of the RS1 gene that encodes retinoschisin were amplified by polymerase chain reaction and directly sequenced. Results Of the 29 male participants, 28 (96.6%) displayed typical foveal schisis. Eleven different RS1 mutations were identified in 12 families; four of these mutations, two frameshift mutations (26 del T of exon 1 and 488 del G of exon 5), and two missense mutations (Asp145His and Arg156Gly) of exon 5, had not been previously described. One non-disease-related polymorphism (NSP): 576C to T (Pro192Pro) change was also newly reported herein. We compared genotypes and observed more severe clinical features in families with the following mutations: frameshift mutation (26 del T) of exon 1, the splice donor site mutation (IVS1+2T to C),or Arg102Gln, Arg209His, and Arg213Gln mutations. Conclusions Severe XLRS phenotypes are associated with the frameshift mutation 26 del T, splice donor site mutation (IVS1+2T to C), and Arg102Gln, Asp145His, Arg209His, and Arg213Gln mutations. The wide variability in the phenotype in Chinese patients with XLRS and different mutations in the RS1 gene is described. Identification of mutations in the RS1 gene and expanded information on clinical manifestations will facilitate early diagnosis, appropriate early therapy, and genetic counseling regarding the prognosis of XLRS. PMID:17615541

  17. X-Linked Hereditary Nephropathy in Navasota Dogs: Clinical Pathology, Morphology, and Gene Expression During Disease Progression.

    PubMed

    Benali, S L; Lees, G E; Nabity, M B; Aricò, A; Drigo, M; Gallo, E; Giantin, M; Aresu, L

    2016-07-01

    X-linked hereditary nephropathy (XLHN) in Navasota dogs is a spontaneously occurring disease caused by a mutation resulting in defective production of type IV collagen and juvenile-onset renal failure. The study was aimed at examining the evolution of renal damage and the expression of selected molecules potentially involved in the pathogenesis of XLHN. Clinical data and renal samples were obtained in 10 XLHN male dogs and 5 controls at 4 (T0), 6 (T1), and 9 (T2) months of age. Glomerular and tubulointerstitial lesions were scored by light microscopy, and the expression of 21 molecules was investigated by quantitative real-time polymerase chain reaction with selected proteins evaluated by immunohistochemistry. No significant histologic lesions or clinicopathologic abnormalities were identified in controls at any time-point. XLHN dogs had progressive proteinuria starting at T0. At T1, XLHN dogs had a mesangioproliferative glomerulopathy with glomerular loss, tubular necrosis, and interstitial fibrosis. At T2, glomerular and tubulointerstitial lesions were more severe, particularly glomerular loss, interstitial fibrosis, and inflammation. At T0, transforming growth factor β, connective tissue growth factor, and platelet-derived growth factor α mRNA were overexpressed in XLHN dogs compared with controls. Clusterin and TIMP1 transcripts were upregulated in later stages of the disease. Transforming growth factor β, connective tissue growth factor, and platelet-derived growth factor α should be considered as key players in the initial events of XHLN. Clusterin and TIMP1 appear to be more associated with the progression rather than initiation of tubulointerstitial damage in chronic renal disease. PMID:26917550

  18. Impaired B cell receptor signaling is responsible for reduced TACI expression and function in X-linked immunodeficient mice.

    PubMed

    Uslu, Kadriye; Coleman, Adam S; Allman, Windy R; Katsenelson, Nora; Bram, Richard J; Alugupalli, Kishore R; Akkoyunlu, Mustafa

    2014-04-15

    Immune response to T cell independent type 2 (TI-2) Ags, such as bacterial polysaccharides, is severely impaired in X-linked immunodeficient (XID) mice. In this study, we investigated the involvement of a proliferation-inducing ligand (APRIL) or BAFF and their receptors in the unresponsiveness of XID mouse to TI-2 Ags. We discovered that whereas serum BAFF levels were increased, the expression of the APRIL and BAFF receptor transmembrane activator and calcium-modulator and cyclophilin ligand interactor (TACI) was severely reduced in XID B cells. Moreover, B cells from XID mouse were unable to secrete Igs in response to APRIL or BAFF. In correlation with reduced TACI expression and impaired TACI function, APRIL or BAFF did not activate the classical NF-κB pathway in XID cells. Also correlating with the unaltered expression of BAFF receptor, BAFF stimulation induced the activation of the alternative NF-κB pathway in XID cells. Moreover, activation of MAPK pathway was ablated in APRIL-stimulated XID cells. Prestimulation of XID B cells with the TLR9 agonist, CpG led to a significant increase in TACI expression and restored TACI-mediated functions. CpG prestimulation also restored TACI-mediated signaling in APRIL- or BAFF-stimulated XID B cells. Finally, immunization of XID mouse with the prototype TI-2 Ag NP-Ficoll induced IgG and IgM Abs when CpG was given with NP-Ficoll. Collectively, these results suggest that reduced TACI expression is responsible for the unresponsiveness of XID mouse to TI-2 Ags and BCR activation controls TACI expression. PMID:24646744

  19. Mutations in USP9X Are Associated with X-Linked Intellectual Disability and Disrupt Neuronal Cell Migration and Growth

    PubMed Central

    Homan, Claire C.; Kumar, Raman; Nguyen, Lam Son; Haan, Eric; Raymond, F. Lucy; Abidi, Fatima; Raynaud, Martine; Schwartz, Charles E.; Wood, Stephen A.; Gecz, Jozef; Jolly, Lachlan A.

    2014-01-01

    With a wealth of disease-associated DNA variants being recently reported, the challenges of providing their functional characterization are mounting. Previously, as part of a large systematic resequencing of the X chromosome in 208 unrelated families with nonsyndromic X-linked intellectual disability, we identified three unique variants (two missense and one protein truncating) in USP9X. To assess the functional significance of these variants, we took advantage of the Usp9x knockout mouse we generated. Loss of Usp9x causes reduction in both axonal growth and neuronal cell migration. Although overexpression of wild-type human USP9X rescued these defects, all three USP9X variants failed to rescue axonal growth, caused reduced USP9X protein localization in axonal growth cones, and (in 2/3 variants) failed to rescue neuronal cell migration. Interestingly, in one of these families, the proband was subsequently identified to have a microdeletion encompassing ARID1B, a known ID gene. Given our findings it is plausible that loss of function of both genes contributes to the individual's phenotype. This case highlights the complexity of the interpretations of genetic findings from genome-wide investigations. We also performed proteomics analysis of neurons from both the wild-type and Usp9x knockout embryos and identified disruption of the cytoskeleton as the main underlying consequence of the loss of Usp9x. Detailed clinical assessment of all three families with USP9X variants identified hypotonia and behavioral and morphological defects as common features in addition to ID. Together our data support involvement of all three USP9X variants in ID in these families and provide likely cellular and molecular mechanisms involved. PMID:24607389

  20. X-linked inhibitor of apoptosis protein mediates tumor cell resistance to antibody-dependent cellular cytotoxicity.

    PubMed

    Evans, M K; Sauer, S J; Nath, S; Robinson, T J; Morse, M A; Devi, G R

    2016-01-01

    Inflammatory breast cancer (IBC) is the deadliest, distinct subtype of breast cancer. High expression of epidermal growth factor receptors [EGFR or human epidermal growth factor receptor 2 (HER2)] in IBC tumors has prompted trials of anti-EGFR/HER2 monoclonal antibodies to inhibit oncogenic signaling; however, de novo and acquired therapeutic resistance is common. Another critical function of these antibodies is to mediate antibody-dependent cellular cytotoxicity (ADCC), which enables immune effector cells to engage tumors and deliver granzymes, activating executioner caspases. We hypothesized that high expression of anti-apoptotic molecules in tumors would render them resistant to ADCC. Herein, we demonstrate that the most potent caspase inhibitor, X-linked inhibitor of apoptosis protein (XIAP), overexpressed in IBC, drives resistance to ADCC mediated by cetuximab (anti-EGFR) and trastuzumab (anti-HER2). Overexpression of XIAP in parental IBC cell lines enhances resistance to ADCC; conversely, targeted downregulation of XIAP in ADCC-resistant IBC cells renders them sensitive. As hypothesized, this ADCC resistance is in part a result of the ability of XIAP to inhibit caspase activity; however, we also unexpectedly found that resistance was dependent on XIAP-mediated, caspase-independent suppression of reactive oxygen species (ROS) accumulation, which otherwise occurs during ADCC. Transcriptome analysis supported these observations by revealing modulation of genes involved in immunosuppression and oxidative stress response in XIAP-overexpressing, ADCC-resistant cells. We conclude that XIAP is a critical modulator of ADCC responsiveness, operating through both caspase-dependent and -independent mechanisms. These results suggest that strategies targeting the effects of XIAP on caspase activation and ROS suppression have the potential to enhance the activity of monoclonal antibody-based immunotherapy. PMID:26821068

  1. Mutations in UBQLN2 cause dominant X-linked juvenile and adult-onset ALS and ALS/dementia.

    PubMed

    Deng, Han-Xiang; Chen, Wenjie; Hong, Seong-Tshool; Boycott, Kym M; Gorrie, George H; Siddique, Nailah; Yang, Yi; Fecto, Faisal; Shi, Yong; Zhai, Hong; Jiang, Hujun; Hirano, Makito; Rampersaud, Evadnie; Jansen, Gerard H; Donkervoort, Sandra; Bigio, Eileen H; Brooks, Benjamin R; Ajroud, Kaouther; Sufit, Robert L; Haines, Jonathan L; Mugnaini, Enrico; Pericak-Vance, Margaret A; Siddique, Teepu

    2011-09-01

    Amyotrophic lateral sclerosis (ALS) is a paralytic and usually fatal disorder caused by motor-neuron degeneration in the brain and spinal cord. Most cases of ALS are sporadic but about 5-10% are familial. Mutations in superoxide dismutase 1 (SOD1), TAR DNA-binding protein (TARDBP, also known as TDP43) and fused in sarcoma (FUS, also known as translocated in liposarcoma (TLS)) account for approximately 30% of classic familial ALS. Mutations in several other genes have also been reported as rare causes of ALS or ALS-like syndromes. The causes of the remaining cases of familial ALS and of the vast majority of sporadic ALS are unknown. Despite extensive studies of previously identified ALS-causing genes, the pathogenic mechanism underlying motor-neuron degeneration in ALS remains largely obscure. Dementia, usually of the frontotemporal lobar type, may occur in some ALS cases. It is unclear whether ALS and dementia share common aetiology and pathogenesis in ALS/dementia. Here we show that mutations in UBQLN2, which encodes the ubiquitin-like protein ubiquilin 2, cause dominantly inherited, chromosome-X-linked ALS and ALS/dementia. We describe novel ubiquilin 2 pathology in the spinal cords of ALS cases and in the brains of ALS/dementia cases with or without UBQLN2 mutations. Ubiquilin 2 is a member of the ubiquilin family, which regulates the degradation of ubiquitinated proteins. Functional analysis showed that mutations in UBQLN2 lead to an impairment of protein degradation. Therefore, our findings link abnormalities in ubiquilin 2 to defects in the protein degradation pathway, abnormal protein aggregation and neurodegeneration, indicating a common pathogenic mechanism that can be exploited for therapeutic intervention. PMID:21857683

  2. DNA methylation in transcriptional repression of two differentially expressed X-linked genes, GPC3 and SYBL1

    PubMed Central

    Huber, Reid; Hansen, R. Scott; Strazzullo, Maria; Pengue, Gina; Mazzarella, Richard; D’Urso, Michele; Schlessinger, David; Pilia, Giuseppe; Gartler, Stanley M.; D’Esposito, Maurizio

    1999-01-01

    Methylation of CpG islands is an established transcriptional repressive mechanism and is a feature of silencing in X chromosome inactivation. Housekeeping genes that are subject to X inactivation exhibit differential methylation of their CpG islands such that the inactive alleles are hypermethylated. In this report, we examine two contrasting X-linked genes with CpG islands for regulation by DNA methylation: SYBL1, a housekeeping gene in the Xq pseudoautosomal region, and GPC3, a tissue-specific gene in Xq26 that is implicated in the etiology of the Simpson–Golabi–Behmel overgrowth syndrome. We observed that in vitro methylation of either the SYBL1 or the GPC3 promoter resulted in repression of reporter constructs. In normal contexts, we found that both the Y and inactive X alleles of SYBL1 are repressed and hypermethylated, whereas the active X allele is expressed and unmethylated. Furthermore, the Y and inactive X alleles of SYBL1 were derepressed by treatment with the demethylating agent azadeoxycytidine. GPC3 is also subject to X inactivation, and the active X allele is unmethylated in nonexpressing leukocytes as well as in an expressing cell line, suggesting that methylation is not involved in the tissue-specific repression of this allele. The inactive X allele, however, is hypermethylated in leukocytes, presumably reflecting early X inactivation events that become important for gene dosage in expressing lineages. These and other data suggest that all CpG islands on Xq, including the pseudoautosomal region, are subject to X inactivation-induced methylation. Additionally, methylation of SYBL1 on Yq may derive from a process related to X inactivation that targets large chromatin domains for transcriptional repression. PMID:9892682

  3. New intragenic deletions in the Phex gene clarify X-linked hypophosphatemia-related abnormalities in mice

    PubMed Central

    Lorenz-Depiereux, Bettina; Guido, Victoria E.; Johnson, Kenneth R.; Zheng, Qing Yin; Gagnon, Leona H.; Bauschatz, Joiel D.; Davisson, Muriel T.; Washburn, Linda L.; Donahue, Leah Rae; Strom, Tim M.; Eicher, Eva M.

    2010-01-01

    X-linked hypophosphatemic rickets (XLH) in humans is caused by mutations in the PHEX gene. Previously, three mutations in the mouse Phex gene have been reported: PhexHyp, Gy, and PhexSka1. Here we report analysis of two new spontaneous mutations in the mouse Phex gene, PhexHyp-2J and PhexHyp-Duk. PhexHyp-2J and PhexHyp-Duk involve intragenic deletions of at least 7.3 kb containing exon 15, and 30 kb containing exons 13 and 14, respectively. Both mutations cause similar phenotypes in males, including shortened hind legs and tail, a shortened square trunk, hypophosphatemia, hypocalcemia, and rachitic bone disease. In addition, mice carrying the PhexHyp-Duk mutation exhibit background-dependent variable expression of deafness, circling behavior, and cranial dysmorphology, demonstrating the influence of modifying genes on Phex-related phenotypes. Cochlear cross-sections from PhexHyp-2J/Y and PhexHyp-Duk/Y males reveal a thickening of the temporal bone surrounding the cochlea with the presence of a precipitate in the scala tympani. Evidence of the degeneration of the organ of Corti and spiral ganglion also are present in the hearing-impaired PhexHyp-Duk/Y mice, but not in the normal-hearing PhexHyp-2J/Y mice. Analysis of the phenotypes noted in PhexHyp-Duk/Y an PhexHyp-2J/Y males, together with those noted in PhexSka1/Y and PhexHyp/Y males, now allow XLH-related phenotypes to be separated from non-XLH-related phenotypes, such as those noted in Gy/Y males. Also, identification of the genetic modifiers of hearing and craniofacial dysmorphology in PhexHyp-Duk/Y mice could provide insight into the phenotypic variation of XLH in humans. PMID:15029877

  4. X-linked intellectual disability gene CASK regulates postnatal brain growth in a non-cell autonomous manner.

    PubMed

    Srivastava, Sarika; McMillan, Ryan; Willis, Jeffery; Clark, Helen; Chavan, Vrushali; Liang, Chen; Zhang, Haiyan; Hulver, Matthew; Mukherjee, Konark

    2016-01-01

    The phenotypic spectrum among girls with heterozygous mutations in the X-linked intellectual disability (XLID) gene CASK (calcium/calmodulin-dependent serine protein kinase) includes postnatal microcephaly, ponto-cerebellar hypoplasia, seizures, optic nerve hypoplasia, growth retardation and hypotonia. Although CASK knockout mice were previously reported to exhibit perinatal lethality and a 3-fold increased apoptotic rate in the brain, CASK deletion was not found to affect neuronal physiology and their electrical properties. The pathogenesis of CASK associated disorders and the potential function of CASK therefore remains unknown. Here, using Cre-LoxP mediated gene excision experiments; we demonstrate that deleting CASK specifically from mouse cerebellar neurons does not alter the cerebellar architecture or function. We demonstrate that the neuron-specific deletion of CASK in mice does not cause perinatal lethality but induces severe recurrent epileptic seizures and growth retardation before the onset of adulthood. Furthermore, we demonstrate that although neuron-specific haploinsufficiency of CASK is inconsequential, the CASK mutation associated human phenotypes are replicated with high fidelity in CASK heterozygous knockout female mice (CASK ((+/-))). These data suggest that CASK-related phenotypes are not purely neuronal in origin. Surprisingly, the observed microcephaly in CASK ((+/-)) animals is not associated with a specific loss of CASK null brain cells indicating that CASK regulates postnatal brain growth in a non-cell autonomous manner. Using biochemical assay, we also demonstrate that CASK can interact with metabolic proteins. CASK knockdown in human cell lines cause reduced cellular respiration and CASK ((+/-)) mice display abnormalities in muscle and brain oxidative metabolism, suggesting a novel function of CASK in metabolism. Our data implies that some phenotypic components of CASK heterozygous deletion mutation associated disorders represent systemic

  5. Beta-propeller protein-associated neurodegeneration: a new X-linked dominant disorder with brain iron accumulation

    PubMed Central

    Hayflick, Susan J.; Kruer, Michael C.; Gregory, Allison; Haack, Tobias B.; Kurian, Manju A.; Houlden, Henry H.; Anderson, James; Boddaert, Nathalie; Sanford, Lynn; Harik, Sami I.; Dandu, Vasuki H.; Nardocci, Nardo; Zorzi, Giovanna; Dunaway, Todd; Tarnopolsky, Mark; Skinner, Steven; Holden, Kenton R.; Frucht, Steven; Hanspal, Era; Schrander-Stumpel, Connie; Mignot, Cyril; Héron, Delphine; Saunders, Dawn E.; Kaminska, Margaret; Lin, Jean-Pierre; Lascelles, Karine; Cuno, Stephan M.; Meyer, Esther; Garavaglia, Barbara; Bhatia, Kailash; de Silva, Rajith; Crisp, Sarah; Lunt, Peter; Carey, Martyn; Hardy, John; Meitinger, Thomas; Prokisch, Holger; Hogarth, Penelope

    2013-01-01

    Neurodegenerative disorders with high iron in the basal ganglia encompass an expanding collection of single gene disorders collectively known as neurodegeneration with brain iron accumulation. These disorders can largely be distinguished from one another by their associated clinical and neuroimaging features. The aim of this study was to define the phenotype that is associated with mutations in WDR45, a new causative gene for neurodegeneration with brain iron accumulation located on the X chromosome. The study subjects consisted of WDR45 mutation-positive individuals identified after screening a large international cohort of patients with idiopathic neurodegeneration with brain iron accumulation. Their records were reviewed, including longitudinal clinical, laboratory and imaging data. Twenty-three mutation-positive subjects were identified (20 females). The natural history of their disease was remarkably uniform: global developmental delay in childhood and further regression in early adulthood with progressive dystonia, parkinsonism and dementia. Common early comorbidities included seizures, spasticity and disordered sleep. The symptoms of parkinsonism improved with l-DOPA; however, nearly all patients experienced early motor fluctuations that quickly progressed to disabling dyskinesias, warranting discontinuation of l-DOPA. Brain magnetic resonance imaging showed iron in the substantia nigra and globus pallidus, with a ‘halo’ of T1 hyperintense signal in the substantia nigra. All patients harboured de novo mutations in WDR45, encoding a beta-propeller protein postulated to play a role in autophagy. Beta-propeller protein-associated neurodegeneration, the only X-linked disorder of neurodegeneration with brain iron accumulation, is associated with de novo mutations in WDR45 and is recognizable by a unique combination of clinical, natural history and neuroimaging features. PMID:23687123

  6. Non-specific X-linked mental retardation: Linkage analysis in MRX2 and MRX4 families revisited

    SciTech Connect

    Hu, L.J.; Blumenfeld-Heyberger, S.; Hanauer, A.; Mandel, J.L.; Weissenbach, J.

    1994-07-15

    We have previously reported linkage analysis in 3 families with non-specific X-linked mental retardation (XLMR). This used RFLPs and was limited by the relatively low informativeness and density of markers available. We have performed a new linkage analysis using microsatellites (including new Genethon markers) in the two most informative families. In the MRX2 family, a lod score of 2.61 at {theta} = 0.05 had previously been obtained with DXS85 in Xp22.2. We now report a tighter linkage with AFM 135xe7 (DXS989, z = 4.62 at {theta} = 0.00) and established the order DXS85-DXS207-DXS999 (AFM234 yf12)-MRX2, DXS365, DXS1052 (AFM 163yh2), DXS989-DXS1065 (AFM224zf2), DMD 3{prime}. The localization of MRX2 in Xp22.2-p22.1 is thus clearly different from the more distal MRX gene defined by patients with contiguous gene syndromes. In the MRX4 family, a maximum lod score of 2.53 at {theta} = 0.00 had been obtained with DXS159 in Xq13. Our present study did not show recombination from ALAS2 in Xp11.21 to DXS441 in Xq13.3 (z = 3.38 at {theta} = 0.00 for the latter marker) and the closest flanking markers are DXS255 in Xp11.22 and DXYS1 in Xq21.3. Reduced recombination around the centromere prevents precise mapping. The localization of MRX4 overlaps with that of several other MRX families. 26 refs., 3 figs., 2 tabs.

  7. A recombination outside the BB deletion refines the location of the X linked retinitis pigmentosa locus RP3.

    PubMed Central

    Fujita, R.; Bingham, E.; Forsythe, P.; McHenry, C.; Aita, V.; Navia, B. A.; Dry, K.; Segal, M.; Devoto, M.; Bruns, G.; Wright, A. F.; Ott, J.; Sieving, P. A.; Swaroop, A.

    1996-01-01

    Genetic loci for X-linked retinitis pigmentosa (XLRP) have been mapped between Xp11.22 and Xp22.13 (RP2, RP3, RP6, and RP15). The RP3 gene, which is responsible for the predominant form of XLRP in most Caucasian populations, has been localized to Xp21.1 by linkage analysis and the map positions of chromosomal deletions associated with the disease. Previous linkage studies have suggested that RP3 is flanked by the markers DXS1110 (distal) and OTC (proximal). Patient BB was thought to have RP because of a lesion at the RP3 locus, in addition to chronic granulomatous disease, Duchenne muscular dystrophy (DMD), mild mental retardation, and the McLeod phenotype. This patient carried a deletion extending approximately 3 Mb from DMD in Xp21.3 to Xp21.1, with the proximal breakpoint located approximately 40 kb centromeric to DXS1110. The RP3 gene, therefore, is believed to reside between DXS1110 and the proximal breakpoint of the BB deletion. In order to refine the location of RP3 and to ascertain patients with RP3, we have been analyzing several XLRP families for linkage to Xp markers. Linkage analysis in an American family of 27 individuals demonstrates segregation of XLRP with markers in Xp21.1, consistent with the RP3 subtype. One affected mate shows a recombination event proximal to DXS1110. Additional markers within the DXS1110-OTC interval show that the crossover is between two novel polymorphic markers, DXS8349 and M6, both of which are present in BB DNA and lie centromeric to the proximal breakpoint. This recombination places the XLRP mutation in this family outside the BB deletion and redefines the location of RP3. PMID:8659520

  8. Increased Sushi repeat-containing protein X-linked 2 is associated with progression of colorectal cancer.

    PubMed

    Liu, K L; Wu, J; Zhou, Y; Fan, J H

    2015-04-01

    Sushi repeat-containing protein X-linked 2 (SRPX2) is a novel chondroitin sulfate proteoglycan overexpressed in gastrointestinal cancer. Its role in tumor biology remains unknown. The aim of this study was to investigate the expression of SRPX2 in colorectal cancer and its potential association with cancer progression. The expression of SRPX2 and its clinicopathological significance was evaluated using immunohistochemistry in a tissue microarray including 88 colon cancer and pairing normal tissues. The impact of SRPX2 on behavior of colorectal cancer cells and possible mechanism was explored using gene transfection and silencing. Strong staining of SRPX2 was noted in 71 (80.7 %) of 88 colon cancer specimen and 30 (34.1 %) of 88 adjacent normal tissues (P < 0.001). The expression of SRPX2 was significantly correlated with histological differentiation grade (P = 0.003), infiltration depth (P = 0.003), and clinical stage (P = 0.006). The expression of SRPX2 was significantly higher in HCT116 than in HT29 and SW480 cells. Suppression of endogenous SRPX2 expression by small interfering ribonucleic acid (siRNA) in HCT116 cells resulted in significant reduction in the ability of cell proliferation, adhesion, migration, and invasion. Up-regulation of endogenous SRPX2 in SW480 cells significantly promoted the migration and invasion of SW480 cells. In addition, inhibition of SRPX2 by siRNA led to notable down-regulation of β-catenin, matrix metalloproteinase (MMP)-2, and MMP-9. These findings indicate that overexpressed SRPX2 exerts an oncogenic role in colorectal cancer. SRPX2 may promote the invasion of colorectal cancer through MMP-2 and MMP-9 modulated by Wnt/β-catenin pathway. PMID:25737434

  9. Growth hormone deficiency due to traumatic brain injury in a patient with X-linked congenital adrenal hypoplasia.

    PubMed

    Engiz, Ozlem; Ozön, Alev; Riepe, Felix; Alikaşifoğlu, Ayfer; Gönç, Nazli; Kandemir, Nurgün

    2010-01-01

    X-linked adrenal hypoplasia congenita (AHC) is characterized by primary adrenal insufficiency and is frequently associated with hypogonadotropic hypogonadism (HH). The production of other pituitary hormones (adrenocorticotropic hormone [ACTH], growth hormone [GH], thyroid-stimulating hormone [TSH], and prolactin [PRL]) is usually normal. Mutations of the DAX-1 gene have been reported in patients with AHC and HH. We present a 13-year-old male patient with AHC caused by a nonsense mutation in the DAX-1 gene who developed GH deficiency following head trauma. He showed signs of adrenal insufficiency at the age of 23 months, and glucocorticoid and mineralocorticoid treatment was started. His parents reported head trauma due to a traffic accident at the age of 21 months. Adrenal computed tomography revealed hypoplasia of the left and agenesis of the right adrenal gland. Decreased growth rate was noted at the age of 12.5 years while receiving hydrocortisone 15 mg/m2/day. His height was 139.9 cm (-1.46 SD), body weight was 54.9 kg, pubic hair was Tanner stage 1, and testis size was 3 ml. His bone age was 7 years. His gonadotropin (follicle-stimulating hormone [FSH], luteinizing hormone [LH]) and testosterone levels were prepubertal. The evaluation of GH/insulin-like growth factor-1 (IGF-1) secretion at the age of 13 years revealed GH deficiency. Pituitary magnetic resonance imaging demonstrated a hypoplastic hypophysis (< 2.5 mm) and a normal infundibulum. GH treatment (0.73 IU/kg/week) was started. This paper reports a patient with genetically confirmed AHC demonstrating GH deficiency possibly due to a previous head trauma. Complete pituitary evaluation should be performed in any child who has survived severe traumatic brain injury. PMID:20718192

  10. TALEN-mediated functional correction of X-linked chronic granulomatous disease in patient-derived induced pluripotent stem cells.

    PubMed

    Dreyer, Anne-Kathrin; Hoffmann, Dirk; Lachmann, Nico; Ackermann, Mania; Steinemann, Doris; Timm, Barbara; Siler, Ulrich; Reichenbach, Janine; Grez, Manuel; Moritz, Thomas; Schambach, Axel; Cathomen, Toni

    2015-11-01

    X-linked chronic granulomatous disease (X-CGD) is an inherited disorder of the immune system. It is characterized by a defect in the production of reactive oxygen species (ROS) in phagocytic cells due to mutations in the NOX2 locus, which encodes gp91phox. Because the success of retroviral gene therapy for X-CGD has been hampered by insertional activation of proto-oncogenes, targeting the insertion of a gp91phox transgene into potential safe harbor sites, such as AAVS1, may represent a valid alternative. To conceptually evaluate this strategy, we generated X-CGD patient-derived induced pluripotent stem cells (iPSCs), which recapitulate the cellular disease phenotype upon granulocytic differentiation. We examined AAVS1-specific zinc-finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs) for their efficacy to target the insertion of a myelo-specific gp91phox cassette to AAVS1. Probably due to their lower cytotoxicity, TALENs were more efficient than ZFNs in generating correctly targeted iPSC colonies, but all corrected iPSC clones showed no signs of mutations at the top-ten predicted off-target sites of both nucleases. Upon differentiation of the corrected X-CGD iPSCs, gp91phox mRNA levels were highly up-regulated and the derived granulocytes exhibited restored ROS production that induced neutrophil extracellular trap (NET) formation. In conclusion, we demonstrate that TALEN-mediated integration of a myelo-specific gp91phox transgene into AAVS1 of patient-derived iPSCs represents a safe and efficient way to generate autologous, functionally corrected granulocytes. PMID:26295532

  11. Human Erythroid 5-Aminolevulinate Synthase Mutations Associated with X-Linked Protoporphyria Disrupt the Conformational Equilibrium and Enhance Product Release.

    PubMed

    Fratz, Erica J; Clayton, Jerome; Hunter, Gregory A; Ducamp, Sarah; Breydo, Leonid; Uversky, Vladimir N; Deybach, Jean-Charles; Gouya, Laurent; Puy, Hervé; Ferreira, Gloria C

    2015-09-15

    Regulation of 5-aminolevulinate synthase (ALAS) is at the origin of balanced heme production in mammals. Mutations in the C-terminal region of human erythroid-specific ALAS (hALAS2) are associated with X-linked protoporphyria (XLPP), a disease characterized by extreme photosensitivity, with elevated blood concentrations of free protoporphyrin IX and zinc protoporphyrin. To investigate the molecular basis for this disease, recombinant hALAS2 and variants of the enzyme harboring the gain-of-function XLPP mutations were constructed, purified, and analyzed kinetically, spectroscopically, and thermodynamically. Enhanced activities of the XLPP variants resulted from increases in the rate at which the product 5-aminolevulinate (ALA) was released from the enzyme. Circular dichroism spectroscopy revealed that the XLPP mutations altered the microenvironment of the pyridoxal 5'-phosphate cofactor, which underwent further and specific alterations upon succinyl-CoA binding. Transient kinetic analyses of the variant-catalyzed reactions and protein fluorescence quenching upon binding of ALA to the XLPP variants demonstrated that the protein conformational transition step associated with product release was predominantly affected. Of relevance is the fact that XLPP could also be modeled in cell culture. We propose that (1) the XLPP mutations destabilize the succinyl-CoA-induced hALAS2 closed conformation and thus accelerate ALA release, (2) the extended C-terminus of wild-type mammalian ALAS2 provides a regulatory role that allows for allosteric modulation of activity, thereby controlling the rate of erythroid heme biosynthesis, and (3) this control is disrupted in XLPP, resulting in porphyrin accumulation. PMID:26300302

  12. A recombination outside the BB deletion refines the location of the X-linked retinitis pigmentosa locus RP3

    SciTech Connect

    Fujita, R.; Bingham, E.; Forsythe, P.; McHenry, C.

    1996-07-01

    Genetic loci for X-linked retinitis pigmentosa (XLRP) have been mapped between Xp11.22 and Xp22.13 (RP2, RP3, RP6, and RP15). The RP3 gene, which is responsible for the predominant form of XLRP in most Caucasian populations, has been localized to Xp21.1 by linkage analysis and the map positions of chromosomal deletions associated with the disease. Previous linkage studies have suggested that RP3 is flanked by the markers DXS1110 (distal) and OTC (proximal). Patient BB was though to have RP because of a lesion at the RP3 locus, in addition to chronic granulomatous disease, Duchenne muscular dystrophy (DMD), mild mental retardation, and the McLeod phenotype. This patient carried a deletion extending {approximately}3 Mb from DMD in Xp21.3 to Xp21.1, with the proximal breakpoint located {approximately}40 kb centromeric to DXS1110. The RP3 gene, therefore, is believed to reside between DXS1110 and the proximal breakpoint of the BB deletion. In order to refine the location of RP3 and to ascertain patients with RP3, we have been analyzing several XLRP families for linkage to Xp markers. Linkage analysis in an American family of 27 individuals demonstrates segregation of XLRP with markers in Xp21.1, consistent with the RP3 subtype. One affected male shows a recombination event proximal to DXS1110. Additional markers within the DXS1110-OTC interval show that the crossover is between two novel polymorphic markers, DXS8349 and M6, both of which are present in BB DNA and lie centromeric to the proximal breakpoint. This recombination places the XLRP mutation in this family outside the BB deletion and redefines the location of RP3. 22 refs., 3 figs., 2 tabs.

  13. Targeted gene editing restores regulated CD40L function in X-linked hyper-IgM syndrome.

    PubMed

    Hubbard, Nicholas; Hagin, David; Sommer, Karen; Song, Yumei; Khan, Iram; Clough, Courtnee; Ochs, Hans D; Rawlings, David J; Scharenberg, Andrew M; Torgerson, Troy R

    2016-05-26

    Loss of CD40 ligand (CD40L) expression or function results in X-linked hyper-immunoglobulin (Ig)M syndrome (X-HIGM), characterized by recurrent infections due to impaired immunoglobulin class-switching and somatic hypermutation. Previous attempts using retroviral gene transfer to correct murine CD40L expression restored immune function; however, treated mice developed lymphoproliferative disease, likely due to viral-promoter-dependent constitutive CD40L expression. These observations highlight the importance of preserving endogenous gene regulation in order to safely correct this disorder. Here, we report efficient, on-target, homology-directed repair (HDR) editing of the CD40LG locus in primary human T cells using a combination of a transcription activator-like effector nuclease-induced double-strand break and a donor template delivered by recombinant adeno-associated virus. HDR-mediated insertion of a coding sequence (green fluorescent protein or CD40L) upstream of the translation start site within exon 1 allowed transgene expression to be regulated by endogenous CD40LG promoter/enhancer elements. Additionally, inclusion of the CD40LG 3'-untranslated region in the transgene preserved posttranscriptional regulation. Expression kinetics of the transgene paralleled that of endogenous CD40L in unedited T cells, both at rest and in response to T-cell stimulation. The use of this method to edit X-HIGM patient T cells restored normal expression of CD40L and CD40-murine IgG Fc fusion protein (CD40-muIg) binding, and rescued IgG class switching of naive B cells in vitro. These results demonstrate the feasibility of engineered nuclease-directed gene repair to restore endogenously regulated CD40L, and the potential for its use in T-cell therapy for X-HIGM syndrome. PMID:26903548

  14. Novel mutations in the connexin 32 gene associated with X-linked Charcot-Marie-Tooth disease

    SciTech Connect

    Tan, C.; Ainsworth, P. |

    1994-09-01

    Charcot-Marie-Tooth disease is a pathologically and genetically hetergenous group of disorders that cause a progressive neuropathy, defined pathologically by degeneration of the myelin (CMT 1) of the axon (CMT 2) of the peripheral nerves. An X-linked type of the demyelinating form of this disorder (CMT X) has recently been linked to mutations in the connexin 32 (Cx32) gene, which codes for a 284 amino acid gap junction protein found in myelinated peripheral nerve. To date some 7 different mutations in this gene have been identified as being responsible for CMT X. The majority of these predict nonconservative amino acid substitutions, while one is a frameshift mutation which predicts a premature stop at codon 21. We report the results of molecular studies on three further local CMT X kindreds. The Cx32 gene was amplified by PCR in three overlapping fragments 300-450 bp in length using leukocyte-derived DNA as template. These were either sequenced directly using a deaza dGTP sequencing protocol, or were cloned and sequenced using a TA vector. In two of the kindreds the affected members carried a point mutation which was predicted to effect a non-conservative amino acid change within the first transmembrane domain. Both of these mutations caused a restriction site alteration (the loss of an Nla III and the creation of a Pvu II, respectively), and the former mutation was observed to segregate with the clinicial phenotype in affected family members. Affected members of the third kindred, which was a very large multigenerational family that had been extensively studied previously, were shown to carry a point mutation predicted to cause a premature truncation of the Cx32 gene product in the intracellular carboxy terminus. This mutation obliterated an Rsa I site which allowed a rapid screen of several other family members.

  15. Expression of Fc gamma and complement receptors in monocytes of X-linked agammaglobulinaemia and common variable immunodeficiency patients.

    PubMed

    Amoras, A L B; da Silva, M T N; Zollner, R L; Kanegane, H; Miyawaki, T; Vilela, M M S

    2007-12-01

    Recently we reported that monocyte phagocytosis and chemotaxis are impaired in X-linked agammaglobulinaemia (XLA) and common variable immunodeficiency (CVI) patients. Few data exist on the in vivo expression of receptors for the constant region of immunoglobulin (IgG) (Fc gammaR) and complement receptors (CR) in these patients. The objective of this study was to investigate the expression of Fc gammaR and CR on monocytes from XLA and CVI patients and compare it to that of healthy controls. Whole blood samples were obtained from 10 patients with XLA, 12 with CVI and 18 healthy controls. Monocyte phenotype was determined by flow cytometry with gating on CD14+ cells. Surface expression of Fc gammaRI (CD64), Fc gammaRII (CD32) and Fc gammaRIII (CD16), CR1 (CD35) and CR3 (CD11b and CD18) was measured by determination of the proportion of CD14+ cells positive for each receptor and by receptor density. Compared to controls, a significantly higher percentage of CD16 and CD35+ monocytes from XLA (P = 0.002 and P = 0.007, respectively) were observed. The relative fluorescence intensity (RFI) expression of Fc gammaRII (CD32) and Fc gammaRIII (CD16) were significantly lower on CVI monocytes compared to controls (P = 0.001 and P = 0.035, respectively). XLA patients, who have a reduction of Bruton's tyrosine kinase (Btk), showed normal or increased percentages of monocytes expressing Fc gamma and complement receptors. CVI patients, who have normal expression of Btk, showed reduced expression of CD16 and CD32 on monocytes. Inefficient chemotaxis and phagocytosis, reported previously in XLA patients, could be due to defects of cytoplasmatic transduction mechanisms. PMID:17900300

  16. Canine mammary tumours, an overview.

    PubMed

    Sleeckx, N; de Rooster, H; Veldhuis Kroeze, E J B; Van Ginneken, C; Van Brantegem, L

    2011-12-01

    Canine mammary tumours (CMTs) are the most common neoplasms in intact female dogs. Although the prevalence of these tumours decreases in regions where preventive ovari(ohyster)ectomy is performed, it remains an important disease entity in veterinary medicine. Moreover, treatment options are limited in comparison with human breast cancer. Nevertheless, recent human treatment protocols might have potential in bitches suffering from CMTs. PMID:21645126

  17. Canine adenovirus based rabies vaccines.

    PubMed

    Tordo, N; Foumier, A; Jallet, C; Szelechowski, M; Klonjkowski, B; Eloit, M

    2008-01-01

    Adenovirus based vectors are very attractive candidates for vaccination purposes as they induce in mammalian hosts potent humoral, mucosal and cellular immune responses to antigens encoded by the inserted genes. We have generated E1-deleted and replication-competent recombinant canine type-2 adenoviruses expressing the rabies virus glycoprotein (G). The effectiveness of both vectors to express a native G protein has been characterized in vitro in permissive cell lines. We compared the humoral and cellular immune responses induced in mice by intramuscular injection of the recombinant canine adenovirus vectors with those induced by a human (Ad5) E1-deleted virus expressing the same rabies G protein. Humoral responses specific to the adenoviruses or the rabies glycoprotein antigens were studied. The influence of the mouse strain was observed using replication-competent canine adenovirus. A high level of rabies neutralizing antibody was observed upon i.m. inoculation, and 100% of mice survived lethal challenge. These results are very promising in the perspective of oral vaccine for dog rabies control. PMID:18634509

  18. Genome Sequence of Canine Herpesvirus

    PubMed Central

    Papageorgiou, Konstantinos V.; Suárez, Nicolás M.; Wilkie, Gavin S.; McDonald, Michael; Graham, Elizabeth M.; Davison, Andrew J.

    2016-01-01

    Canine herpesvirus is a widespread alphaherpesvirus that causes a fatal haemorrhagic disease of neonatal puppies. We have used high-throughput methods to determine the genome sequences of three viral strains (0194, V777 and V1154) isolated in the United Kingdom between 1985 and 2000. The sequences are very closely related to each other. The canine herpesvirus genome is estimated to be 125 kbp in size and consists of a unique long sequence (97.5 kbp) and a unique short sequence (7.7 kbp) that are each flanked by terminal and internal inverted repeats (38 bp and 10.0 kbp, respectively). The overall nucleotide composition is 31.6% G+C, which is the lowest among the completely sequenced alphaherpesviruses. The genome contains 76 open reading frames predicted to encode functional proteins, all of which have counterparts in other alphaherpesviruses. The availability of the sequences will facilitate future research on the diagnosis and treatment of canine herpesvirus-associated disease. PMID:27213534

  19. Canine leishmaniosis - an emerging disease.

    PubMed

    Kaszak, Ilona; Planellas, Marta; Dworecka-Kaszak, Bożena

    2015-01-01

    Canine leishmaniosis (CanL) is an invasive disease of dogs, caused by Leishmania spp. parasites transmitted by the bite of an infected phlebotomine sand fly. CanL is declared an important disease by World Organisation for Animal Health (OIE). Due to its zoonotic potential is of a great importance the prevention of this disease in non endemic areas. Canine leishmaniosis is endemic disease in more than 70 countries and is a common disease in Mediterranean region. Recently, many cases have been reported in non endemic areas, like United Kingdom, Germany and Poland as well, where this disease is considered exotic. The aim of this article is to summarize shortly canine leishmaniosis, it's transmission, clinical manifestations, diagnostics procedure, treatment, prognosis and prevention. Increasing knowledge about this disease can be of a great use for veterinary surgeons from countries where CanL is an emerging disease. Multiple clinical presentations of CanL should aware clinicians to include leishmaniosis in the differential diagnosis of most clinical cases. Unfortunately, even if dogs recover clinically after treatment, complete elimination of Leishmania spp. is rarely achieved, and they remain infected and may relapse. PMID:26342500

  20. Germline or somatic GPR101 duplication leads to X-linked acrogigantism: a clinico-pathological and genetic study.

    PubMed

    Iacovazzo, Donato; Caswell, Richard; Bunce, Benjamin; Jose, Sian; Yuan, Bo; Hernández-Ramírez, Laura C; Kapur, Sonal; Caimari, Francisca; Evanson, Jane; Ferraù, Francesco; Dang, Mary N; Gabrovska, Plamena; Larkin, Sarah J; Ansorge, Olaf; Rodd, Celia; Vance, Mary L; Ramírez-Renteria, Claudia; Mercado, Moisés; Goldstone, Anthony P; Buchfelder, Michael; Burren, Christine P; Gurlek, Alper; Dutta, Pinaki; Choong, Catherine S; Cheetham, Timothy; Trivellin, Giampaolo; Stratakis, Constantine A; Lopes, Maria-Beatriz; Grossman, Ashley B; Trouillas, Jacqueline; Lupski, James R; Ellard, Sian; Sampson, Julian R; Roncaroli, Federico; Korbonits, Márta

    2016-01-01

    Non-syndromic pituitary gigantism can result from AIP mutations or the recently identified Xq26.3 microduplication causing X-linked acrogigantism (XLAG). Within Xq26.3, GPR101 is believed to be the causative gene, and the c.924G > C (p.E308D) variant in this orphan G protein-coupled receptor has been suggested to play a role in the pathogenesis of acromegaly.We studied 153 patients (58 females and 95 males) with pituitary gigantism. AIP mutation-negative cases were screened for GPR101 duplication through copy number variation droplet digital PCR and high-density aCGH. The genetic, clinical and histopathological features of XLAG patients were studied in detail. 395 peripheral blood and 193 pituitary tumor DNA samples from acromegaly patients were tested for GPR101 variants.We identified 12 patients (10 females and 2 males; 7.8 %) with XLAG. In one subject, the duplicated region only contained GPR101, but not the other three genes in found to be duplicated in the previously reported patients, defining a new smallest region of overlap of duplications. While females presented with germline mutations, the two male patients harbored the mutation in a mosaic state. Nine patients had pituitary adenomas, while three had hyperplasia. The comparison of the features of XLAG, AIP-positive and GPR101&AIP-negative patients revealed significant differences in sex distribution, age at onset, height, prolactin co-secretion and histological features. The pathological features of XLAG-related adenomas were remarkably similar. These tumors had a sinusoidal and lobular architecture. Sparsely and densely granulated somatotrophs were admixed with lactotrophs; follicle-like structures and calcifications were commonly observed. Patients with sporadic of familial acromegaly did not have an increased prevalence of the c.924G > C (p.E308D) GPR101 variant compared to public databases.In conclusion, XLAG can result from germline or somatic duplication of GPR101. Duplication of GPR101

  1. Cord Blood Stem Cell-Mediated Induction of Apoptosis in Glioma Downregulates X-Linked Inhibitor of Apoptosis Protein (XIAP)

    PubMed Central

    Dasari, Venkata Ramesh; Velpula, Kiran Kumar; Kaur, Kiranpreet; Fassett, Daniel; Klopfenstein, Jeffrey D.; Dinh, Dzung H.; Gujrati, Meena; Rao, Jasti S.

    2010-01-01

    Background XIAP (X-linked inhibitor of apoptosis protein) is one of the most important members of the apoptosis inhibitor family. XIAP is upregulated in various malignancies, including human glioblastoma. It promotes invasion, metastasis, growth and survival of malignant cells. We hypothesized that downregulation of XIAP by human umbilical cord blood mesenchymal stem cells (hUCBSC) in glioma cells would cause them to undergo apoptotic death. Methodology/Principal Findings We observed the effect of hUCBSC on two malignant glioma cell lines (SNB19 and U251) and two glioma xenograft cell lines (4910 and 5310). In co-cultures of glioma cells with hUCBSC, proliferation of glioma cells was significantly inhibited. This is associated with increased cytotoxicity of glioma cells, which led to glioma cell death. Stem cells induced apoptosis in glioma cells, which was evaluated by TUNEL assay, FACS analyses and immunoblotting. The induction of apoptosis is associated with inhibition of XIAP in co-cultures of hUCBSC. Similar results were obtained by the treatment of glioma cells with shRNA to downregulate XIAP (siXIAP). Downregulation of XIAP resulted in activation of caspase-3 and caspase-9 to trigger apoptosis in glioma cells. Apoptosis is characterized by the loss of mitochondrial membrane potential and upregulation of mitochondrial apoptotic proteins Bax and Bad. Cell death of glioma cells was marked by downregulation of Akt and phospho-Akt molecules. We observed similar results under in vivo conditions in U251- and 5310-injected nude mice brains, which were treated with hUCBSC. Under in vivo conditions, Smac/DIABLO was found to be colocalized in the nucleus, showing that hUCBSC induced apoptosis is mediated by inhibition of XIAP and activation of Smac/DIABLO. Conclusions/Significance Our results indicate that downregulation of XIAP by hUCBSC treatment induces apoptosis, which led to the death of the glioma cells and xenograft cells. This study demonstrates the therapeutic

  2. Increased renal catabolism of 1,25-dihydroxyvitamin D3 in murine X-linked hypophosphatemic rickets.

    PubMed Central

    Tenenhouse, H S; Yip, A; Jones, G

    1988-01-01

    The hypophosphatemic (Hyp) mouse, a murine homologue of human X-linked hypophosphatemic rickets, is characterized by renal defects in brush border membrane phosphate transport and vitamin D3 metabolism. The present study was undertaken to examine whether elevated renal 25-hydroxyvitamin D3-24-hydroxylase activity in Hyp mice is associated with increased degradation of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] by side chain oxidation. Metabolites of 1,25(OH)2D3 were separated by HPLC on Zorbax SIL and identified by comparison with standards authenticated by mass spectrometry. Production of 1,24,25-trihydroxyvitamin D3, 24-oxo-1,25-dihydroxyvitamin D3, and 24-oxo-1,23,25-trihydroxyvitamin D3 was twofold greater in mitochondria from mutant Hyp/Y mice than from normal +/Y littermates. Enzyme activities, estimated by the sum of the three products synthesized per milligram mitochondrial protein under initial rate conditions, were used to estimate kinetic parameters. The apparent Vmax was significantly greater for mitochondria from Hyp/Y mice than from +/Y mice (0.607 +/- 0.064 vs. 0.290 +/- 0.011 pmol/mg per protein per min, mean +/- SEM, P less than 0.001), whereas the apparent Michaelis-Menten constant (Km) was similar in both genotypes (23 +/- 2 vs. 17 +/- 5 nM). The Km for 1,25(OH)2D3 was approximately 10-fold lower than that for 25-hydroxyvitamin D3 [25(OH)D3], indicating that 1,25(OH)2D3 is perhaps the preferred substrate under physiological conditions. In both genotypes, apparent Vmax for 25(OH)D3 was fourfold greater than that for 1,25(OH)2D3, suggesting that side chain oxidation of 25(OH)D3 may operate at pharmacological concentrations of substrate. The present results demonstrate that Hyp mice exhibit increased renal catabolism of 1,25(OH)2D3 and suggest that elevated degradation of vitamin D3 hormone may contribute significantly to the clinical phenotype in this disorder. PMID:3339128

  3. Bilateral Mandibular Supernumerary Canines: A Case Report

    PubMed Central

    Abouei Mehrizi, Ehsan; Semyari, Hassan; Eslami Amirabadi, Gholamreza

    2010-01-01

    Supernumerary teeth are defined as the teeth developed in excess of the number found in a normal dentition. Supernumerary canine is an extremely rare finding particularly in the mandible. This case report presents a 25-year-old female patient with the unique feature of bilateral mandibular supplemental supernumerary canines. The patient was non-syndromic without any other supernumerary teeth. PMID:23346342

  4. X-linked mental retardation with neonatal hypotonia in a French family (MRX15): Gene assignment to Xp11.22-Xp21.1

    SciTech Connect

    Raynaud, M.; Dessay, B.; Ayrault, A.D.

    1996-07-12

    Linkage analysis was performed in a family with non-specific X-linked mental retardation (MRX 15). Hypotonia in infancy was the most remarkable physical manifestation. The severity of mental deficiency was variable among the patients, but all of them had poor or absent speech. Significant lod scores at a recombination fraction of zero were detected with the marker loci DXS1126, DXS255, and DXS573 (Zmax = 2.01) and recombination was observed with the two flanking loci DXS164 (Xp21.1) and DXS988 (Xp11.22), identifying a 17 cM interval. This result suggests a new gene localization in the proximal Xp region. In numerous families with non-specific X-linked mental retardation (MRX), the corresponding gene has been localized to the paracentromeric region in which a low recombination rate impairs the precision of mapping. 58 refs., 3 figs., 5 tabs.

  5. Corpus callosum agenesis, spastic quadriparesis and irregular lining of the lateral ventricles on CT-scan. A distinct X-linked mental retardation syndrome?

    PubMed

    Vles, J S; Fryns, J P; Folmer, K; Boon, P; Buttiens, M; Grubben, C; Janevski, B

    1990-01-01

    This report gives a description of 4 male patients, two of whom are sibs, two of whom are uncle and cousin. They appear to have psychomotor retardation, spastic quadriparesis and on CT (partial) agencies of the corpus callosum, and irregular lining of the lateral ventricles, without craniofacial abnormalities or seizures. Although the mode of inheritance of agenesis of the corpus callosum is still difficult to establish, in these 4 male patients an X-linked recessive inheritance is the most likely mode. A review of the literature with concern to the heredity of agenesis of the corpus callosum is presented. The clinical and neurological findings in the present four male patients allow for the delineation of a new X-linked mental retardation syndrome. PMID:2081003

  6. Genetic control of chromosome breakage and rejoining in Drosophila melanogaster: spontaneous chromosome aberrations in X-linked mutants defective in DNA metabolism.

    PubMed Central

    Gatti, M

    1979-01-01

    Eight X-linked recombination-defective meiotic mutants (representing five loci) and 12 X-linked mutagen-sensitive mutants (representing seven loci) of Drosophila melanogaster have been examined cytologically in neuroblast metaphases for their effects on the frequencies and types of spontaneous chromosome aberrations. Twelve mutants, representing five loci, significantly increase the frequency of chromosomal aberrations. The mutants at these five loci, however, differ markedly both in the types of aberrations produced and the localization of their effects along the chromosome. According to these criteria, the mutants can be assigned to four groups: (i) mutants producing almost exclusively chromatid breaks in both euchromatin and heterochromatin; (ii) mutants producing chromatid and isochromatid breaks in both euchromatin and heterochromatin; (iii) mutants producing chromatid mutants producing chromatid and isochromatid breaks clustered in the heterochromatin. Images PMID:108678

  7. Isolation of a homozygous X-linked translocation stock with two additional sex-chromosomes in the onion fly Hylemya antiqua Meigen.

    PubMed

    van Heemert, K

    1977-05-01

    The onion fly, Hylemya antiqua Meigen, was subjected to irradiation and selection based on observations of fertility and cytogenetics, in order to isolate structural chromosome mutations which might be used for genetic control of this species. To the present time, only a "simple" X-linked translocation could be obtained as a homozygous stock. Sibcrossing was carried out using translocation trisomics (TN + X) obtained from test-crossed translocation heterozygous females (TN) showing numerical nondisjunction. A homozygous stock was obtained with two additional sex-chromosomes. This is a unique case because normally an X-linked translocation can not be made homozygous in the male sex, which normally only carries one X-chromosome. PMID:24407169

  8. Canine and feline parasitic zoonoses in China

    PubMed Central

    2012-01-01

    Canine and feline parasitic zoonoses have not been given high priority in China, although the role of companion animals as reservoirs for zoonotic parasitic diseases has been recognized worldwide. With an increasing number of dogs and cats under unregulated conditions in China, the canine and feline parasitic zoonoses are showing a trend towards being gradually uncontrolled. Currently, canine and feline parasitic zoonoses threaten human health, and cause death and serious diseases in China. This article comprehensively reviews the current status of major canine and feline parasitic zoonoses in mainland China, discusses the risks dogs and cats pose with regard to zoonotic transmission of canine and feline parasites, and proposes control strategies and measures. PMID:22839365

  9. Vertebral Osteomyelitis and Acinetobacter Spp. Paravertebral Soft Tissue Infection in a 4-Year-Old Boy With X-Linked Chronic Granulomatous Disease.

    PubMed

    Vignesh, Pandiarajan; Bhattad, Sagar; Shandilya, Jitendra-Kumar; Vyas, Sameer; Garg, Rashi; Rawat, Amit

    2016-09-01

    Vertebral osteomyelitis is known to occur in chronic granulomatous disease, a phagocytic disorder and the etiology is usually a fungus. Indolent spread of fungal infection from lungs to adjacent ribs and vertebra often results in persistent pneumonia and vertebral deformities. We report a 4-year-old boy with chronic cough and kyphosis, who had a fungal vertebral osteomyelitis and Acinetobacter spp. paravertebral soft tissue infection related to X-linked chronic granulomatous disease. PMID:27182896

  10. Inappropriate tall stature and renal ectopy in a male patient with X-linked congenital adrenal hypoplasia due to a novel missense mutation in the DAX-1 gene.

    PubMed

    Franzese, Adriana; Brunetti-Pierri, Nicola; Spagnuolo, Maria Immacolata; Spadaro, Raffaella; Giugliano, Michela; Mukai, Tokuo; Valerio, Giuliana

    2005-05-15

    Mutations in DAX-1 gene cause congenital adrenal hypoplasia (AHC). We present a male patient affected by X-linked adrenal hypoplasia congenita due to a novel DAX-1 missense mutation. The mutation V287G affects the C-terminal end of the DAX-1 protein which plays an important role in functioning of the receptor. In addition, our patient presented an inappropriate tall stature and renal ectopy, which have not been described in AHC so far. PMID:15800903

  11. Differences in the pattern of X-linked gene expression between fetal bovine muscle and fibroblast cultures derived from the same muscle biopsies.

    PubMed

    Nino-Soto, M I; Nuber, U A; Basrur, P K; Ropers, H-H; King, W A

    2005-01-01

    The sex determination system in mammals creates an imbalance between males and females in the number of X chromosomes. This imbalance is compensated through transcriptional silencing of one of the two X chromosomes in female diploid cells by epigenetic modifications. Although common for mammals, X inactivation shows marked species-specific differences in mechanisms and end results, and provides a unique opportunity to study epigenetic regulation of gene expression. The aim of the present study was to establish the expression pattern of selected X-linked genes in bovine fetal muscle tissue and muscle fibroblast cultures in order to follow possible modifications at the transcriptional level attributable to in vitro culture. We used heterologous cDNA microarray hybridization and quantitative real-time PCR to study the pattern of expression of X-linked genes including SLC25A6, GAB3, MECP2, RPS4X, JARID1C, UBE1, BIRC4 and SLC16A2. Quantitative real-time PCR analysis in fetal bovine muscle showed higher transcript levels in females for all X-linked genes tested with the exception of SLC25A6, with differences being significant for RPS4X, JARID1C and UBE1. The expression in fibroblast cultures derived from the same samples differed, with significantly higher levels for UBE1, GAB3 and BIRC4, while the rest of the panel of X-linked genes remained unchanged. The changed expression pattern in vitro, probably reflecting modifications in the epigenetic mechanisms that regulate transcriptional activity and gene silencing in X inactivation, has important implications for the advancement of new biotechnologies such as somatic cell nuclear transfer and stem cell therapy. PMID:16093722

  12. Novel form of X-linked nonsyndromic hearing loss with cochlear malformation caused by a mutation in the type IV collagen gene COL4A6

    PubMed Central

    Rost, Simone; Bach, Elisa; Neuner, Cordula; Nanda, Indrajit; Dysek, Sandra; Bittner, Reginald E; Keller, Alexander; Bartsch, Oliver; Mlynski, Robert; Haaf, Thomas; Müller, Clemens R; Kunstmann, Erdmute

    2014-01-01

    Hereditary hearing loss is the most common human sensorineural disorder. Genetic causes are highly heterogeneous, with mutations detected in >40 genes associated with nonsyndromic hearing loss, to date. Whereas autosomal recessive and autosomal dominant inheritance is prevalent, X-linked forms of nonsyndromic hearing impairment are extremely rare. Here, we present a Hungarian three-generation family with X-linked nonsyndromic congenital hearing loss and the underlying genetic defect. Next-generation sequencing and subsequent segregation analysis detected a missense mutation (c.1771G>A, p.Gly591Ser) in the type IV collagen gene COL4A6 in all affected family members. Bioinformatic analysis and expression studies support this substitution as being causative. COL4A6 encodes the alpha-6 chain of type IV collagen of basal membranes, which forms a heterotrimer with two alpha-5 chains encoded by COL4A5. Whereas mutations in COL4A5 and contiguous X-chromosomal deletions involving COL4A5 and COL4A6 are associated with X-linked Alport syndrome, a nephropathy associated with deafness and cataract, mutations in COL4A6 alone have not been related to any hereditary disease so far. Moreover, our index patient and other affected family members show normal renal and ocular function, which is not consistent with Alport syndrome, but with a nonsyndromic type of hearing loss. In situ hybridization and immunostaining demonstrated expression of the COL4A6 homologs in the otic vesicle of the zebrafish and in the murine inner ear, supporting its role in normal ear development and function. In conclusion, our results suggest COL4A6 as being the fourth gene associated with X-linked nonsyndromic hearing loss. PMID:23714752

  13. Novel form of X-linked nonsyndromic hearing loss with cochlear malformation caused by a mutation in the type IV collagen gene COL4A6.

    PubMed

    Rost, Simone; Bach, Elisa; Neuner, Cordula; Nanda, Indrajit; Dysek, Sandra; Bittner, Reginald E; Keller, Alexander; Bartsch, Oliver; Mlynski, Robert; Haaf, Thomas; Müller, Clemens R; Kunstmann, Erdmute

    2014-02-01

    Hereditary hearing loss is the most common human sensorineural disorder. Genetic causes are highly heterogeneous, with mutations detected in >40 genes associated with nonsyndromic hearing loss, to date. Whereas autosomal recessive and autosomal dominant inheritance is prevalent, X-linked forms of nonsyndromic hearing impairment are extremely rare. Here, we present a Hungarian three-generation family with X-linked nonsyndromic congenital hearing loss and the underlying genetic defect. Next-generation sequencing and subsequent segregation analysis detected a missense mutation (c.1771G>A, p.Gly591Ser) in the type IV collagen gene COL4A6 in all affected family members. Bioinformatic analysis and expression studies support this substitution as being causative. COL4A6 encodes the alpha-6 chain of type IV collagen of basal membranes, which forms a heterotrimer with two alpha-5 chains encoded by COL4A5. Whereas mutations in COL4A5 and contiguous X-chromosomal deletions involving COL4A5 and COL4A6 are associated with X-linked Alport syndrome, a nephropathy associated with deafness and cataract, mutations in COL4A6 alone have not been related to any hereditary disease so far. Moreover, our index patient and other affected family members show normal renal and ocular function, which is not consistent with Alport syndrome, but with a nonsyndromic type of hearing loss. In situ hybridization and immunostaining demonstrated expression of the COL4A6 homologs in the otic vesicle of the zebrafish and in the murine inner ear, supporting its role in normal ear development and function. In conclusion, our results suggest COL4A6 as being the fourth gene associated with X-linked nonsyndromic hearing loss. PMID:23714752

  14. A novel mutation in FHL1 in a family with X-linked scapuloperoneal myopathy: phenotypic spectrum and structural study of FHL1 mutations

    PubMed Central

    Chen, Dong-Hui; Raskind, Wendy H.; Parson, William W.; Sonnen, Joshua A.; Vu, Tiffany; Zheng, YunLin; Matsushita, Mark; Wolff, John; Lipe, Hillary; Bird, Thomas D.

    2010-01-01

    An X-linked myopathy was recently associated with mutations in the four-and-a-half-LIM domains 1 (FHL1) gene. We identified a family with late onset, slowly progressive weakness of scapuloperoneal muscles in three brothers and their mother. A novel missense mutation in the LIM2 domain of FHL1 (W122C) co-segregated with disease in the family. The phenotype was less severe than that in other reported families. Muscle biopsy revealed myopathic changes with FHL1 inclusions that were ubiquitin- and desmin-positive. This mutation provides additional evidence for X-linked myopathy caused by a narrow spectrum of mutations in FHL1, mostly in the LIM2 domain. Molecular dynamics (MD) simulations of the newly identified mutation and five previously published missense mutations in the LIM2 domain revealed no major distortions of the protein structure or disruption of zinc binding. There were, however, increases in the nonpolar, solvent-accessible surface area in one or both of two clusters of residues, suggesting that the mutant proteins have a variably increased propensity to aggregate. Review of the literature shows a wide range of phenotypes associated with mutations in FHL1. However, recognizing the typical scapuloperoneal phenotype and X-linked inheritance pattern will help clinicians arrive at the correct diagnosis. PMID:20633900

  15. An unusual phenotype of X-linked developmental delay and extreme behavioral difficulties associated with a mutation in the EBP gene.

    PubMed

    Hartill, Verity L; Tysoe, Carolyn; Manning, Nigel; Dobbie, Angus; Santra, Saikat; Walter, John; Caswell, Richard; Koster, Janet; Waterham, Hans; Hobson, Emma

    2014-04-01

    We report on a family in which four males over three generations are affected with X-linked recessive developmental delay, learning difficulties, severe behavioral difficulties and mild dysmorphic features. Plasma sterol analysis in three of the four affected males demonstrated increased concentrations of 8-dehydrocholesterol (8-DHC) and cholest-8(9)-enol. All four affected males had a novel hemizygous missense mutation, p.W47R (c.139T>C), in EBP. Functional studies showed raised levels of cholest-8(9)-enol in patient's cultured fibroblast cells, which were suppressed when the cells were incubated with simvastatin. EBP encodes 3β-hydroxysteroid-delta8, delta7-isomerase, a key enzyme involved in the cholesterol biosynthesis pathway. Mutations in EBP have previously been associated with Conradi-Hunermann-Happle syndrome (CHH), an X-linked dominant disorder characterized by skeletal dysplasia, skin, and ocular abnormalities, which is usually lethal in males. Four previous reports describe X-linked recessive multiple anomaly syndromes associated with non-mosaic EBP mutations in males, two at the same amino acid position, p.W47C. This phenotype has previously been described as "MEND" syndrome (male EBP disorder with neurological defects). The family reported herein represent either a novel phenotype, or an expansion of the MEND phenotype, characterized by extreme behavioral difficulties and a scarcity of structural anomalies. Simvastatin therapy is being evaluated in two males from this family. PMID:24459067

  16. Regional localization of an X-linked mental retardation gene to Xp21.1-Xp22.13 (MRX38)

    SciTech Connect

    Schutz, C.K.; Robinson, P.D.; White, B.N.

    1996-07-12

    A gene responsible for X-linked mental retardation with macrocephaly and seizures (MRX38) in a family with five affected males in three generations was localized to Xp21.1-p22.13 by linkage analysis. Recombination events placed the gene between DXS1226 distally and DXS1238 proximally, defining an interval of approximately 14 cM. A peak lod score of 2.71 was found with several loci in Xp21.1 (DXS992, DXS1236, DXS997, and DXS1036) at a recombination fraction of zero. The map intervals of 5 X-linked mental retardation loci, MRX2 (Xp22.1-p22.2), MRX19 (Xp22), MRX21 (Xp21.1-p22.3), MRX29 (Xp21.2-p22.1), and MRX32 (Xp21.2-p22.1), and two syndromal mental retardation loci, Partington syndrome (PRTS; Xp22) and Coffin-Lowry syndrome (CLS; Xp22.13-p22.2), overlap this region. As none of these display the same phenotype seen in the family reported here, this X-linked mental retardation locus may represent a new entity. 35 refs., 3 figs., 3 tabs.

  17. Concomitant canine distemper, infectious canine hepatitis, canine parvoviral enteritis, canine infectious tracheobronchitis, and toxoplasmosis in a puppy.

    PubMed

    Headley, Selwyn Arlington; Alfieri, Amauri Alcindo; Fritzen, Juliana Torres Tomazi; Garcia, João Luis; Weissenböck, Herbert; da Silva, Ana Paula; Bodnar, Livia; Okano, Werner; Alfieri, Alice Fernandes

    2013-01-01

    The concomitant infections of Canine distemper virus (CDV), Canine adenovirus A types 1 (CAdV-1) and 2 (CAdV-2), Canine parvovirus type 2 (CPV-2), and Toxoplasma gondii are described in a 43-day-old mixed-breed puppy. Clinically, there were convulsions and blindness with spontaneous death; 14 siblings of this puppy, born to a 10-month-old dam, which was seropositive (titer: 1,024) for T. gondii, also died. Necropsy revealed unilateral corneal edema (blue eye), depletion of intestinal lymphoid tissue, non-collapsible lungs, congestion of meningeal vessels, and a pale area in the myocardium. Histopathology demonstrated necrotizing myocarditis associated with intralesional apicomplexan protozoa; necrotizing and chronic hepatitis associated with rare intranuclear inclusion bodies within hepatocytes; necrotizing bronchitis and bronchiolitis; interstitial pneumonia associated with eosinophilic intracytoplasmic inclusion bodies within epithelial cells; atrophy and fusion of intestinal villi with cryptal necrosis; and white matter demyelination of the cerebrum and cerebellum associated with intranuclear inclusion bodies within astrocytes. Polymerase chain reaction (PCR) amplified the partial fragments (bp) of the CDV N gene (290 bp), CPV-2c VP2 capsid protein gene (583 bp), and CAdV-1 (508 bp) and CAdV-2 (1,030 bp) E gene from urine and tissue samples. The PCR assays demonstrated that the apicomplexan protozoa observed within several organs contained DNA specific for T. gondii; genotyping revealed T. gondii type III. The findings support the characterization of concomitant infections of CDV, CAdV-1, CAdV-2, CPV-2, and T. gondii in this puppy. Further, seroreactivity to T. gondii of the dam in association with the systemic disease observed in the puppy described herein is suggestive of congenital toxoplasmosis. PMID:23293164

  18. X-Linked and Autosomal Recessive Alport Syndrome: Pathogenic Variant Features and Further Genotype-Phenotype Correlations.

    PubMed

    Savige, Judith; Storey, Helen; Il Cheong, Hae; Gyung Kang, Hee; Park, Eujin; Hilbert, Pascale; Persikov, Anton; Torres-Fernandez, Carmen; Ars, Elisabet; Torra, Roser; Hertz, Jens Michael; Thomassen, Mads; Shagam, Lev; Wang, Dongmao; Wang, Yanyan; Flinter, Frances; Nagel, Mato

    2016-01-01

    Alport syndrome results from mutations in the COL4A5 (X-linked) or COL4A3/COL4A4 (recessive) genes. This study examined 754 previously- unpublished variants in these genes from individuals referred for genetic testing in 12 accredited diagnostic laboratories worldwide, in addition to all published COL4A5, COL4A3 and COL4A4 variants in the LOVD databases. It also determined genotype-phenotype correlations for variants where clinical data were available. Individuals were referred for genetic testing where Alport syndrome was suspected clinically or on biopsy (renal failure, hearing loss, retinopathy, lamellated glomerular basement membrane), variant pathogenicity was assessed using currently-accepted criteria, and variants were examined for gene location, and age at renal failure onset. Results were compared using Fisher's exact test (DNA Stata). Altogether 754 new DNA variants were identified, an increase of 25%, predominantly in people of European background. Of the 1168 COL4A5 variants, 504 (43%) were missense mutations, 273 (23%) splicing variants, 73 (6%) nonsense mutations, 169 (14%) short deletions and 76 (7%) complex or large deletions. Only 135 of the 432 Gly residues in the collagenous sequence were substituted (31%), which means that fewer than 10% of all possible variants have been identified. Both missense and nonsense mutations in COL4A5 were not randomly distributed but more common at the 70 CpG sequences (p<10-41 and p<0.001 respectively). Gly>Ala substitutions were underrepresented in all three genes (p< 0.0001) probably because of an association with a milder phenotype. The average age at end-stage renal failure was the same for all mutations in COL4A5 (24.4 ±7.8 years), COL4A3 (23.3 ± 9.3) and COL4A4 (25.4 ± 10.3) (COL4A5 and COL4A3, p = 0.45; COL4A5 and COL4A4, p = 0.55; COL4A3 and COL4A4, p = 0.41). For COL4A5, renal failure occurred sooner with non-missense than missense variants (p<0.01). For the COL4A3 and COL4A4 genes, age at renal failure

  19. Neuroinflammation in advanced canine glaucoma

    PubMed Central

    Jiang, Bing; Harper, Matthew M.; Kecova, Helga; Adamus, Grazyna; Kardon, Randy H.; Grozdanic, Sinisa D.

    2010-01-01

    Purpose The pathophysiological events that occur in advanced glaucoma are not well characterized. The principal purpose of this study is to characterize the gene expression changes that occur in advanced glaucoma. Methods Retinal RNA was obtained from canine eyes with advanced glaucoma as well as from healthy eyes. Global gene expression patterns were determined using oligonucleotide microarrays and confirmed by real-time PCR. The presence of tumor necrosis factor (TNF) and its receptors was evaluated by immunolabeling. Finally, we evaluated the presence of serum autoantibodies directed against retinal epitopes using western blot analyses. Results We identified over 500 genes with statistically significant changes in expression level in the glaucomatous retina. Decreased expression levels were detected for large number of functional groups, including synapse and synaptic transmission, cell adhesion, and calcium metabolism. Many of the molecules with decreased expression levels have been previously shown to be components of retinal ganglion cells. Genes with elevated expression in glaucoma are largely associated with inflammation, such as antigen presentation, protein degradation, and innate immunity. In contrast, expression of many other pro-inflammatory genes, such as interferons or interleukins, was not detected at abnormal levels. Conclusions This study characterizes the molecular events that occur in the canine retina with advanced glaucoma. Our data suggest that in the dog this stage of the disease is accompanied by pronounced retinal neuroinflammation. PMID:21042562

  20. Canine procalcitonin messenger RNA expression.

    PubMed

    Kuzi, Sharon; Aroch, Itamar; Peleg, Keren; Karnieli, Ohad; Klement, Eyal; Dank, Gillian

    2008-09-01

    Procalcitonin is considered an acute phase protein used as both a marker of infection and prognosis in human medicine. Canine procalcitonin has been previously sequenced; however, its use as a diagnostic or prognostic tool in dogs has never been assessed. A quantitative reverse transcription polymerase chain reaction (qRT-PCR) assay for canine procalcitonin messenger RNA (mRNA) was developed. Whole blood samples were collected from ill and healthy dogs. RNA was extracted and the real-time PCR was assessed. The patients' diagnoses, complete blood cell count, and differential leukocyte count results were recorded. Based on the diagnosis, dogs were divided into 5 groups: inflammatory, infectious, neoplastic, other diseases, and healthy controls. Procalcitonin mRNA expression and the hematological measures were compared between groups, and their correlations were assessed. Procalcitonin mRNA expression was assessed in 70 dogs, including infectious (17), noninfectious inflammatory (17), neoplastic (18), other diseases (7), and healthy controls (11), and was significantly (P < 0.001) higher in all ill dogs versus controls. Procalcitonin may therefore be considered an acutephase protein in dogs. However, there were no significant differences in procalcitonin mRNA expression between ill dog groups and no correlations between its expression levels and hematological measures. In 5 dogs of all disease categories, procalcitonin mRNA expression was measured twice during the course of disease. The changes in its levels were in agreement with the clinical evaluation of improvement or deterioration, suggesting a possible prognostic value. PMID:18776098

  1. Evidence for canine rehabilitation and physical therapy.

    PubMed

    Millis, Darryl L; Ciuperca, Ionut Alexandru

    2015-01-01

    This article reviews some important studies regarding canine physical rehabilitation. Bones, cartilage, muscles, ligaments, and tendons undergo atrophy if loading is decreased. Knowledge of the changes that occur with immobilization and the time course of events helps in the development of a rehabilitation program to improve tissue integrity. Outcome assessment instruments are clinically useful indicators of patient progress and the success of rehabilitation programs. A number of physical modalities are used in canine rehabilitation, although there are relatively few canine-specific studies. Rehabilitation has specific benefits in the treatment of various orthopedic and neurologic conditions. PMID:25432679

  2. Comparative functional characterization of canine IgG subclasses.

    PubMed

    Bergeron, Lisa M; McCandless, Erin E; Dunham, Steve; Dunkle, Bill; Zhu, Yaqi; Shelly, John; Lightle, Sandra; Gonzales, Andrea; Bainbridge, Graeme

    2014-01-15

    To date, very little is known about the functional characteristics of the four published canine IgG subclasses. It is not clear how each subclass engages the immune system via complement-dependent cytotoxicity (CDC) or antibody-dependent cell-mediated cytotoxicity (ADCC), or how long each antibody may last in serum. Such information is critical for understanding canine immunology and for the discovery of canine therapeutic monoclonal antibodies. Through both in vitro and ex vivo experiments to evaluate canine Fc's for effector function, complement binding, FcRn binding, and ADCC, we are now able to categorize canine subclasses by function. The subclasses share functional properties with the four human IgG subclasses and are reported herein with their function-based human analog. Canine Fc fusions, canine chimeras, and caninized antibodies were characterized. Canine subclasses A and D appear effector-function negative while subclasses B and C bind canine Fc gamma receptors and are positive for ADCC. All canine subclasses bind the neonatal Fc receptor except subclass C. By understanding canine IgGs in this way, we can apply what is known of human immunology toward translational and veterinary medicine. Thus, this body of work lays the foundation for evaluating canine IgG subclasses for therapeutic antibody development and builds upon the fundamental scholarship of canine immunology. PMID:24268690

  3. Estimating canine tooth crown height in early Australopithecus.

    PubMed

    Plavcan, J Michael; Ward, Carol V; Paulus, Faydre L

    2009-07-01

    Canine tooth size reduction and the associated reduction in canine dimorphism is a basal hominin character that also provides important evidence for models of behavioral evolution. Two specimens of Australopithecus anamensis (KNM-KP 29287 and KNM-KP 29283) that do not preserve the canine crown, but do preserve the root or alveolus, appear to suggest that canine size variation and canine dimorphism in this species may have been greater than in other hominins. We evaluate canine root and crown dimensions in a series of extant hominoids, and estimate canine crown height in Australopithecus afarensis and A. anamensis. Our results demonstrate that it is possible to generate estimates of canine crown height from basal canine crown and root dimensions with a moderate degree of accuracy. Estimates of maxillary canine crown size for A. anamensis are slightly larger than those of A. afarensis, and are approximately the same size as canines of modern female chimpanzees. Estimated mandibular canine crown height is very similar in the two species. Variation within the A. anamensis sample of estimated canine crown heights is similar to that of modern humans, suggesting a low degree of sexual dimorphism. Inclusion of estimates for KNM-KP 29287 and KNM-KP 29283 does not substantially increase either the estimate of overall canine size or variation for A. anamensis. PMID:19482334

  4. Etiology of maxillary canine impaction: a review.

    PubMed

    Becker, Adrian; Chaushu, Stella

    2015-10-01

    This article is a review that enumerates the causes of impaction of the maxillary permanent canines, including hard tissue obstructions, soft tissue lesions, and anomalies of neighboring teeth, and discusses the much-argued relationship between environmental and genetic factors. These phenomena have been shown in many investigations to accompany the diagnosis of canine impaction and have been presented as unrelated anomalous features, each of which is etiologically construed as genetic, including the aberrant canine itself. While in general the influence of genetics pervades the wider picture, a guidance theory proposes an alternative etiologic line of reasoning and interpretation of these studies, in which the same genetically determined anomalous features provide an abnormal milieu in which the canine is reared and from which it is guided in its misdirected and often abortive path of eruption. PMID:26432311

  5. Whole-genome sequencing identifies a novel ABCB7 gene mutation for X-linked congenital cerebellar ataxia in a large family of Mongolian ancestry.

    PubMed

    Protasova, Maria S; Grigorenko, Anastasia P; Tyazhelova, Tatiana V; Andreeva, Tatiana V; Reshetov, Denis A; Gusev, Fedor E; Laptenko, Alexander E; Kuznetsova, Irina L; Goltsov, Andrey Y; Klyushnikov, Sergey A; Illarioshkin, Sergey N; Rogaev, Evgeny I

    2016-04-01

    X-linked congenital cerebellar ataxia is a heterogeneous nonprogressive neurodevelopmental disorder with onset in early childhood. We searched for a genetic cause of this condition, previously reported in a Buryat pedigree of Mongolian ancestry from southeastern Russia. Using whole-genome sequencing on Illumina HiSeq 2000 platform, we found a missense mutation in the ABCB7 (ABC-binding cassette transporter B7) gene, encoding a mitochondrial transporter, involved in heme synthesis and previously associated with sideroblastic anemia and ataxia. The mutation resulting in a substitution of a highly conserved glycine to serine in position 682 is apparently a major causative factor of the cerebellar hypoplasia/atrophy found in affected individuals of a Buryat family who had no evidence of sideroblastic anemia. Moreover, in these affected men we also found the genetic defects in two other genes closely linked to ABCB7 on chromosome X: a deletion of a genomic region harboring the second exon of copper-transporter gene (ATP7A) and a complete deletion of PGAM4 (phosphoglycerate mutase family member 4) retrogene located in the intronic region of the ATP7A gene. Despite the deletion, eliminating the first of six metal-binding domains in ATP7A, no signs for Menkes disease or occipital horn syndrome associated with ATP7A mutations were found in male carriers. The role of the PGAM4 gene has been previously implicated in human reproduction, but our data indicate that its complete loss does not disrupt male fertility. Our finding links cerebellar pathology to the genetic defect in ABCB7 and ATP7A structural variant inherited as X-linked trait, and further reveals the genetic heterogeneity of X-linked cerebellar disorders. PMID:26242992

  6. Abnormalities of cell packing density and dendritic complexity in the MeCP2 A140V mouse model of Rett syndrome/X-linked mental retardation

    PubMed Central

    2010-01-01

    Background Rett syndrome (RTT), a common cause of mental retardation in girls, is associated with mutations in the MECP2 gene. Most human cases of MECP2 mutation in girls result in classical or variant forms of RTT. When these same mutations occur in males, they often present as severe neonatal encephalopathy. However, some MECP2 mutations can also lead to diseases characterized as mental retardation syndromes, particularly in boys. One of these mutations, A140V, is a common, recurring missense mutation accounting for about 0.6% of all MeCP2 mutations and ranking 21st by frequency. It has been described in familial X-linked mental retardation (XLMR), PPM- X syndrome (Parkinsonism, Pyramidal signs, Macroorchidism, X-linked mental retardation) and in other neuropsychiatric syndromes. Interestingly, this mutation has been reported to preserve the methyl-CpG binding function of the MeCP2 protein while compromising its ability to bind to the mental retardation associated protein ATRX. Results We report the construction and initial characterization of a mouse model expressing the A140V MeCP2 mutation. These initial descriptive studies in male hemizygous mice have revealed brain abnormalities seen in both RTT and mental retardation. The abnormalities found include increases in cell packing density in the brain and a significant reduction in the complexity of neuronal dendritic branching. In contrast to some MeCP2 mutation mouse models, the A140V mouse has an apparently normal lifespan and normal weight gain patterns with no obvious seizures, tremors, breathing difficulties or kyphosis. Conclusion We have identified various neurological abnormalities in this mouse model of Rett syndrome/X-linked mental retardation which may help to elucidate the manner in which MECP2 mutations cause neuronal changes resulting in mental retardation without the confounding effects of seizures, chronic hypoventilation, or other Rett syndrome associated symptoms. PMID:20163734

  7. X-Linked Congenital Hypertrichosis Syndrome Is Associated with Interchromosomal Insertions Mediated by a Human-Specific Palindrome near SOX3

    PubMed Central

    Zhu, Hongwen; Shang, Dandan; Sun, Miao; Choi, Sunju; Liu, Qing; Hao, Jiajie; Figuera, Luis E.; Zhang, Feng; Choy, Kwong Wai; Ao, Yang; Liu, Yang; Zhang, Xiao-Lin; Yue, Fengzhen; Wang, Ming-Rong; Jin, Li; Patel, Pragna I.; Jing, Tao; Zhang, Xue

    2011-01-01

    X-linked congenital generalized hypertrichosis (CGH), an extremely rare condition characterized by universal overgrowth of terminal hair, was first mapped to chromosome Xq24-q27.1 in a Mexican family. However, the underlying genetic defect remains unknown. We ascertained a large Chinese family with an X-linked congenital hypertrichosis syndrome combining CGH, scoliosis, and spina bifida and mapped the disease locus to a 5.6 Mb critical region within the interval defined by the previously reported Mexican family. Through the combination of a high-resolution copy-number variation (CNV) scan and targeted genomic sequencing, we identified an interchromosomal insertion at Xq27.1 of a 125,577 bp intragenic fragment of COL23A1 on 5q35.3, with one X breakpoint within and the other very close to a human-specific short palindromic sequence located 82 kb downstream of SOX3. In the Mexican family, we found an interchromosomal insertion at the same Xq27.1 site of a 300,036 bp genomic fragment on 4q31.2, encompassing PRMT10 and TMEM184C and involving parts of ARHGAP10 and EDNRA. Notably, both of the two X breakpoints were within the short palindrome. The two palindrome-mediated insertions fully segregate with the CGH phenotype in each of the families, and the CNV gains of the respective autosomal genomic segments are not present in the public database and were not found in 1274 control individuals. Analysis of control individuals revealed deletions ranging from 173 bp to 9104 bp at the site of the insertions with no phenotypic consequence. Taken together, our results strongly support the pathogenicity of the identified insertions and establish X-linked congenital hypertrichosis syndrome as a genomic disorder. PMID:21636067

  8. Congenital cataracts and other abnormalities in a female with 46.X, del(X)(q26q28)mat: A new locus for X-linked congenital cataract?

    SciTech Connect

    Babul, R.; Chitayat, D.; Teshima, I.

    1994-09-01

    Three forms of X-linked congenital cataracts have been delineated: congenital cataract with posterior Y-sutural opacities in heterozygotes, congenital cataract and microcornea or microphthalmia and congenital cataract-dental syndrome (Nance-Horan syndrome). Of these, only the Nance-Horan syndrome has been mapped to Xp22.3-p21.1. However, Warburg has suggested that these different forms of X-linked congenital cataracts are due to deletions of varying sizes, placing them in the vicinity of the Nance-Horan syndrome region. We report on a female patient born to a 29-year-old primigravida woman who at birth was found to have hypotonia, dysmorphic facial features, hydrocephalus and dense white congenital bilateral cataracts. Other ophthalmological findings included bilateral nystagmus and shallow orbits. Chromosome analysis revealed 46,X,del(X)(q26q28)mat. The mother, however, is phenotypically normal. Brain CT scan on the female infant revealed communicating hydrocephalus and a muscle biopsy showed congenital muscle fiber disproportion. An EMG and NCV were normal. At 4 years of age, her height and weight were below -3SD and her OFC was +2SD. Molecular studies using DNA markers located in Xq26-qter have revealed that the proximal breakpoint in the patient and her mother is defined by the HPRT locus while the distal breakpoint is defined by the locus DXS1108. This indicates that the deletion is not terminal but rather interstitial, retaining sequences proximal to the telomeric region. Other molecular studies are in progress to determine the X-inactivation status of the deleted chromosome in our patient and her mother as a possible explanation for the variation in the phenotype. These clinical and molecular findings suggest that another locus for X-linked congenital cataract exists at Xq26-28.

  9. The gene responsible for X-linked cleft palate (CPX) in a British Columbia native kindred is localized between PGK1 and DXYS1.

    PubMed

    Gorski, S M; Adams, K J; Birch, P H; Friedman, J M; Goodfellow, P J

    1992-05-01

    Human craniofacial malformations are a class of common congenital anomalies in which the etiology is heterogeneous and often poorly understood. To better delineate the molecular basis of craniofacial development, we have undertaken a series of experiments directed toward the isolation of a gene involved in human secondary palate formation. DNA marker linkage studies have been performed in a large British Columbia (B.C.) Native family in which cleft palate segregates as an X-linked trait. We have examined 62 family members, including 15 affected males and 8 obligate carrier females. A previous clinical description of the clefting defect in this kindred included submucous cleft palate and bifid or absent uvula. Our recent reevaluation of the family has indicated that ankyloglossia (tongue-tie) is also a feature of X-linked cleft palate in some of the affected males and carrier females. Ankyloglossia has previously been associated with X-linked cleft palate in an Icelandic kindred in which a gene responsible for cleft palate (CPX) was assigned to the Xq21.3-q22 region between DXYS12 and DXS17. For the B.C. kindred reported here, we have mapped the gene responsible for cleft palate and/or ankyloglossia to a more proximal position on the X chromosome. No recombination was observed between B.C. CPX and the DNA marker DXS72 (peak lod score [Zmax] = 7.44 at recombination fraction [theta] = .0) localized to Xq21.1. Recombination was observed between CPX and PGK1 (Zmax = 7.35 at theta = .03) and between CPX and DXYS1 (Zmax = 5.59 at theta = .04). These recombination events localize B.C. CPX between PGK1 and DXYS1 in the Xq13-q21.31 region. PMID:1570839

  10. An X-Linked Myopathy with Postural Muscle Atrophy and Generalized Hypertrophy, Termed XMPMA, Is Caused by Mutations in FHL1

    PubMed Central

    Windpassinger, Christian; Schoser, Benedikt; Straub, Volker; Hochmeister, Sonja; Noor, Abdul; Lohberger, Birgit; Farra, Natalie; Petek, Erwin; Schwarzbraun, Thomas; Ofner, Lisa; Löscher, Wolfgang N.; Wagner, Klaus; Lochmüller, Hanns; Vincent, John B.; Quasthoff, Stefan

    2008-01-01

    Summary We have identified a large multigenerational Austrian family displaying a novel form of X-linked recessive myopathy. Affected individuals develop an adult-onset scapulo-axio-peroneal myopathy with bent-spine syndrome characterized by specific atrophy of postural muscles along with pseudoathleticism or hypertrophy and cardiac involvement. Known X-linked myopathies were excluded by simple-tandem-repeat polymorphism (STRP) and single-nucleotide polymorphism (SNP) analysis, direct gene sequencing, and immunohistochemical analysis. STRP analysis revealed significant linkage at Xq25–q27.1. Haplotype analysis based on SNP microarray data from selected family members confirmed this linkage region on the distal arm of the X chromosome, thereby narrowing down the critical interval to 12 Mb. Sequencing of functional candidate genes led to the identification of a missense mutation within the four and a half LIM domain 1 gene (FHL1), which putatively disrupts the fourth LIM domain of the protein. Mutation screening of FHL1 in a myopathy family from the UK exhibiting an almost identical phenotype revealed a 3 bp insertion mutation within the second LIM domain. FHL1 on Xq26.3 is highly expressed in skeletal and cardiac muscles. Western-blot analysis of muscle biopsies showed a marked decrease in protein expression of FHL1 in patients, in concordance with the genetic data. In summary, we have to our knowledge characterized a new disorder, X-linked myopathy with postural muscle atrophy (XMPMA), and identified FHL1 as the causative gene. This is the first FHL protein to be identified in conjunction with a human genetic disorder and further supports the role of FHL proteins in the development and maintenance of muscle tissue. Mutation screening of FHL1 should be considered for patients with uncharacterized myopathies and cardiomyopathies. PMID:18179888

  11. Canine adenovirus type 1 in a fennec fox (Vulpes zerda).

    PubMed

    Choi, Jeong-Won; Lee, Hyun-Kyoung; Kim, Seong-Hee; Kim, Yeon-Hee; Lee, Kyoung-Ki; Lee, Myoung-Heon; Oem, Jae-Ku

    2014-12-01

    A 10-mo-old female fennec fox (Vulpes zerda) with drooling suddenly died and was examined postmortem. Histologic examination of different tissue samples was performed. Vacuolar degeneration and diffuse fatty change were observed in the liver. Several diagnostic methods were used to screen for canine parvovirus, canine distemper virus, canine influenza virus, canine coronavirus, canine parainfluenza virus, and canine adenovirus (CAdV). Only CAdV type 1 (CAdV-1) was detected in several organs (liver, lung, brain, kidney, spleen, and heart), and other viruses were not found. CAdV-1 was confirmed by virus isolation and nucleotide sequencing. PMID:25632689

  12. Palmo-Plantar hyperkeratosis, intellectual disability, and spastic paraplegia in two maternal half brothers: further evidence for an X-linked inheritance.

    PubMed

    Isidor, Bertrand; Lefebvre, Tiphaine; Barbarot, Sébastien; Perrier, Julie; Mercier, Sandra; Péréon, Yann; Le Caignec, Cédric; David, Albert

    2013-06-01

    In 1983, Fitzsimmons et al. reported four brothers with an unrecognized disorder characterized by intellectual disability, spastic paraplegia, and palmo-plantar hyperkeratosis (OMIM 309500). In this report, we describe a family in which two males, maternal half-brothers, had learning disabilities. Both patients also showed spasticity in the lower limbs and palmo-plantar hyperkeratosis. The mother of the affected boys had learning difficulties but did not show any dermatological symptoms. This report confirms that the association of features reported by Fitzsimmons et al. is a distinct entity and further suggests an X-linked mode of inheritance. PMID:23613454

  13. Linkage disequilibrium for two X-linked genes in Sardinia and its bearing on the statistical mapping of the human X chromosome.

    PubMed

    Filippi, G; Rinaldi, A; Palmarino, R; Seravalli, E; Siniscalco, M

    1977-05-01

    The distribution of four X-linked mutants (G6PD, Deutan, Protan and Xg) among lowland and once highly malarial populations of Sardinia discloses a clear-cut example of linkage disequiligrium between two of them (G6PD and Protan). In the same populations the distribution of G6PD-deficiency versus colorblindness of the Deutan type and the Xg blood-group is not significantly different from that expected at equilibrium. These data suggest indirectly that the loci for G6PD and Protan may be nearer to one another than those for G6PD and Deutan. PMID:301840

  14. Linkage Disequilibrium for Two X-Linked Genes in Sardinia and Its Bearing on the Statistical Mapping of the Human X Chromosome

    PubMed Central

    Filippi, G.; Rinaldi, A.; Palmarino, R.; Seravalli, E.; Siniscalco, M.

    1977-01-01

    The distribution of four X-linked mutants (G6PD, Deutan, Protan and Xg) among lowland and once highly malarial populations of Sardinia discloses a clear-cut example of linkage disequilibrium between two of them (G6PD and Protan). In the same populations the distribution of G6PD-deficiency versus colorblindness of the Deutan type and the Xg blood-group is not significantly different from that expected at equilibrium. These data suggest indirectly that the loci for G6PD and Protan may be nearer to one another than those for G6PD and Deutan. PMID:301840

  15. Identification of a Novel Mutation in the CYBB Gene, p.Asp378Gly, in a Patient With X-linked Chronic Granulomatous Disease.

    PubMed

    Song, Sang-Mi; Park, Mi-Ran; Kim, Do-Soo; Kim, Jihyun; Kim, Yae-Jean; Ki, Chang-Seok; Ahn, Kangmo

    2014-07-01

    Chronic granulomatous disease (CGD) is a rare immunodeficiency disease, which is characterized by the lack of a functional nicotinamide adenine dinucleotide phosphate (NADPH) oxidase in phagocytes. The disease presents leukocytosis, anemia, hypergammaglobulinemia, and granuloma formation of the skin, lung, or lymph nodes. The mutation of the CYBB gene encoding gp91phox, located on chromosome Xp21.1 is one of the causes of CGD. We report a patient with X-linked CGD who carried a novel mutation, a c.1133A>G (paAsp378Gly) missense mutation, in the CYBB gene. PMID:24991462

  16. A computer programme for estimation of genetic risk in X linked disorders, combining pedigree and DNA probe data with other conditional information.

    PubMed Central

    Sarfarazi, M; Williams, H

    1986-01-01

    A computer programme is presented for calculating the recurrence risk in X linked disorders, combining pedigree and DNA probe data with other conditional information such as carrier detection tests. The methods of computation are shown in the given examples. The programme can be used with either a single DNA probe or two 'flanking' DNA probes for both familial and isolated case pedigrees. For isolated case families the mutation rate at the disease locus can be taken into account in conjunction with the DNA probe data. PMID:3754009

  17. [Nonsurgical endodontic treatment of an invaginated canine].

    PubMed

    Fernández Guerrero, F; Miñana Laliga, R; Bullon Fernandez, P

    1989-01-01

    We present a case of a maxillary canine with a dens invaginatus treated successfully. The patient had pain, swelling and a sinus tract coming from the inmature apex of the canine. The canals were enlarged and cleaned and the main canal was filled with Calcium Hydroxide to allow the root development. Seven months later, the patient was asymptomatic and the tooth was obturated with guttapercha. One year later it was confirm the success in the treatment. PMID:2638021

  18. Rootless eruption of a mandibular permanent canine.

    PubMed

    Shapira, Yehoshua; Kuftinec, Mladen M

    2011-04-01

    The purpose of this article was to describe the rootless eruption of a mandibular permanent canine in a 10-year-old boy; his mandible had been fractured in a car accident. The fracture was at the region of the developing canine, resulting in arrested root formation and causing abnormal, rootless eruption. Current theories on tooth eruption and the important role of the dental follicle in the process of eruption are discussed. PMID:21457868

  19. Canine Cytogenetics - From band to basepair

    PubMed Central

    Breen, Matthew

    2008-01-01

    Humans and dogs have coexisted for thousands of years, during which time we have developed a unique bond, centered on companionship. Along the way, we have developed purebred dog breeds in a manner that has resulted unfortunately in many of them being affected by serious genetic disorders, including cancers. With serendipity and irony the unique genetic architecture of the 21st Century genome of Man's best friend may ultimately provide many of the keys to unlock some of nature's most intriguing biological puzzles. Canine cytogenetics has advanced significantly over the past 10 years, spurred on largely by the surge of interest in the dog as a biomedical model for genetic disease and the availability of advanced genomics resources. As such the role of canine cytogenetics has moved rapidly from one that served initially to define the gross genomic organization of the canine genome and provide a reliable means to determine the chromosomal location of individual genes, to one that enabled the assembled sequence of the canine genome to be anchored to the karyotype. Canine cytogenetics now presents the biomedical research community with a means to assist in our search for a greater understanding of how genome architectures altered during speciation and in our search for genes associated with cancers that affect both dogs and humans. The cytogenetics ‘toolbox’ for the dog is now loaded. This review aims to provide a summary of some of the recent advancements in canine cytogenetics. PMID:18467825

  20. Environmental contamination by canine geohelminths

    PubMed Central

    2014-01-01

    Intestinal nematodes affecting dogs, i.e. roundworms, hookworms and whipworms, have a relevant health-risk impact for animals and, for most of them, for human beings. Both dogs and humans are typically infected by ingesting infective stages, (i.e. larvated eggs or larvae) present in the environment. The existence of a high rate of soil and grass contamination with infective parasitic elements has been demonstrated worldwide in leisure, recreational, public and urban areas, i.e. parks, green areas, bicycle paths, city squares, playgrounds, sandpits, beaches. This review discusses the epidemiological and sanitary importance of faecal pollution with canine intestinal parasites in urban environments and the integrated approaches useful to minimize the risk of infection in different settings. PMID:24524656

  1. Environmental contamination by canine geohelminths.

    PubMed

    Traversa, Donato; Frangipane di Regalbono, Antonio; Di Cesare, Angela; La Torre, Francesco; Drake, Jason; Pietrobelli, Mario

    2014-01-01

    Intestinal nematodes affecting dogs, i.e. roundworms, hookworms and whipworms, have a relevant health-risk impact for animals and, for most of them, for human beings. Both dogs and humans are typically infected by ingesting infective stages, (i.e. larvated eggs or larvae) present in the environment. The existence of a high rate of soil and grass contamination with infective parasitic elements has been demonstrated worldwide in leisure, recreational, public and urban areas, i.e. parks, green areas, bicycle paths, city squares, playgrounds, sandpits, beaches. This review discusses the epidemiological and sanitary importance of faecal pollution with canine intestinal parasites in urban environments and the integrated approaches useful to minimize the risk of infection in different settings. PMID:24524656

  2. Age estimation from canine volumes.

    PubMed

    De Angelis, Danilo; Gaudio, Daniel; Guercini, Nicola; Cipriani, Filippo; Gibelli, Daniele; Caputi, Sergio; Cattaneo, Cristina

    2015-08-01

    Techniques for estimation of biological age are constantly evolving and are finding daily application in the forensic radiology field in cases concerning the estimation of the chronological age of a corpse in order to reconstruct the biological profile, or of a living subject, for example in cases of immigration of people without identity papers from a civil registry. The deposition of teeth secondary dentine and consequent decrease of pulp chamber in size are well known as aging phenomena, and they have been applied to the forensic context by the development of age estimation procedures, such as Kvaal-Solheim and Cameriere methods. The present study takes into consideration canines pulp chamber volume related to the entire teeth volume, with the aim of proposing new regression formulae for age estimation using 91 cone beam computerized scans and a freeware open-source software, in order to permit affordable reproducibility of volumes calculation. PMID:25698302

  3. CANINE: a robotic mine dog

    NASA Astrophysics Data System (ADS)

    Stancil, Brian A.; Hyams, Jeffrey; Shelley, Jordan; Babu, Kartik; Badino, Hernán.; Bansal, Aayush; Huber, Daniel; Batavia, Parag

    2013-01-01

    Neya Systems, LLC competed in the CANINE program sponsored by the U.S. Army Tank Automotive Research Development and Engineering Center (TARDEC) which culminated in a competition held at Fort Benning as part of the 2012 Robotics Rodeo. As part of this program, we developed a robot with the capability to learn and recognize the appearance of target objects, conduct an area search amid distractor objects and obstacles, and relocate the target object in the same way that Mine dogs and Sentry dogs are used within military contexts for exploration and threat detection. Neya teamed with the Robotics Institute at Carnegie Mellon University to develop vision-based solutions for probabilistic target learning and recognition. In addition, we used a Mission Planning and Management System (MPMS) to orchestrate complex search and retrieval tasks using a general set of modular autonomous services relating to robot mobility, perception and grasping.

  4. 9 CFR 113.202 - Canine Hepatitis and Canine Adenovirus Type 2 Vaccine, Killed Virus.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... serum-constant virus neutralization test using 50 to 300 TCID50 of canine adenovirus. (i) The 20 dogs to... negative at a 1:2 final serum dilution in a varying serum-constant virus neutralization test using 50 to.... (2) Potency test for canine hepatitis—serum neutralization test. Bulk or final container samples...

  5. X-linked neurodegenerative syndrome with congenital ataxia, late-onset progressive myoclonic encephalopathy and selective macular degeneration, linked to Xp22.33-pter

    SciTech Connect

    Portes, V. des; Beldjord, C.; Bruels, T.

    1996-07-12

    Linkage analysis was performed in a previously described family segregating for an X-linked progressive neurological disorder. In three generations, the disease was inherited from the mothers in seven affected males. Five had severe congenital hypotonia and died during the first year of life. Two other boys (maternal cousins) were found to have severe congenital ataxia, late-onset progressive myoclonic encephalopathy, and selective macular degeneration; brain CT-scan showed moderate cerebellar vermis hypoplasia. Linkage analysis was carried out in 12 informative relatives using 35 microsatellite markers (Genethon) evenly distributed on the X chromosome. A multipoint analysis showed a significant linkage (Z > 2) between the disease and three markers in the Xp22.33 region: DYS403 (Z = 2.37, {theta} = 0) which maps in the pseudoautosomal region, DXS7099 (Z = 2.45, {theta} = 0), and DXS7100 (Z = 2.48, {theta} = 0). Further linkage analysis with more telomeric markers will refine the location of this severe X-linked encephalopathy. 12 refs., 2 figs., 1 tab.

  6. The Mid2 X-linked Intellectual Disability Ubiquitin Ligase Associates with Astrin and Regulates Astrin Levels to Promote Cell Division

    PubMed Central

    Gholkar, Ankur A.; Senese, Silvia; Lo, Yu-Chen; Vides, Edmundo; Contreras, Ely; Hodara, Emmanuelle; Capri, Joseph; Whitelegge, Julian P.; Torres, Jorge Z.

    2015-01-01

    SUMMARY Mid1 and Mid2 are ubiquitin ligases that regulate microtubule dynamics and whose mutation is associated with X-linked developmental disorders. We show that Astrin, a microtubule-organizing protein, co-purifies with Mid1 and Mid2, has an overlapping localization with Mid1 and Mid2 at intercellular bridge microtubules, is ubiquitinated by Mid2 on lysine 409 and is degraded during cytokinesis. Mid2 depletion led to Astrin stabilization during cytokinesis, cytokinetic defects, multinucleated cells, and cell death. Similarly, expression of a K409A mutant Astrin in Astrin-depleted cells led to the accumulation of K409A on intercellular bridge microtubules and an increase in cytokinetic defects, multinucleated cells, and cell death. These results indicate that Mid2 regulates cell division through the ubiquitination of Astrin on K409, which is critical for its degradation and proper cytokinesis. These results may help explain how mutation of MID2 leads to misregulation of microtubule organization and the downstream disease pathology associated with X-linked intellectual disabilities. PMID:26748699

  7. Successful allogeneic hematopoietic stem cell transplantation in a boy with X-linked inhibitor of apoptosis deficiency presenting with hemophagocytic lymphohistiocytosis: A case report

    PubMed Central

    Jiang, Ming-Yan; Guo, Xia; Sun, Shu-Wen; Li, Qiang; Zhu, Yi-Ping

    2016-01-01

    X-linked inhibitor of apoptosis (XIAP) deficiency, also known as X-linked lymphoproliferative syndrome type 2 (XLP2), is a rare inherited primary immunodeficiency resulting from the XIAP (also known as BIRC4) mutation. XIAP deficiency is mainly associated with familial hemophagocytic lymphohistiocytosis (HLH) phenotypes, and genetic testing is crucial in diagnosing this syndrome. Allogeneic hematopoietic stem cell transplantation (HSCT) is currently the only successful strategy for the treatment of this disease; however, a limited number of studies has been published concerning the outcomes of allogeneic HSCT in patients with XIAP deficiency. The present study reported a successful allogeneic HSCT performed to treat XIAP deficiency in a Chinese boy presenting with HLH. Polymerase chain reaction and DNA sequencing were performed to confirm the diagnosis of XIAP deficiency, and allogeneic HSCT was performed. Genetic tests revealed a two-nucleotide deletion (c.1021_1022delAA) in the patient, which was inherited from his mother, and resulted in frameshift mutation and premature stop codon (p.N341fsX348); this is considered to be a disease-causing mutation. The XIAP deficiency patient underwent allogeneic HSCT, receiving busulfan-containing reduced intensity myeloablative conditioning regimen, with a good intermediate follow-up result obtained. Therefore, genetic testing is essential to confirm the diagnosis of XIAP deficiency and detect the carrier of mutation. The present case study may promote the investigation of allogeneic HSCT in patients with XIAP deficiency. PMID:27602064

  8. Human X-linked Intellectual Disability Factor CUL4B Is Required for Post-meiotic Sperm Development and Male Fertility

    PubMed Central

    Lin, Chien-Yu; Chen, Chun-Yu; Yu, Chih-Hsiang; Yu, I-Shing; Lin, Shu-Rung; Wu, June-Tai; Lin, Ying-Hung; Kuo, Pao-Lin; Wu, Jui-Ching; Lin, Shu-Wha

    2016-01-01

    In this study, we demonstrate that an E3-ubiquitin ligase associated with human X-linked intellectual disability, CUL4B, plays a crucial role in post-meiotic sperm development. Initially, Cul4bΔ/Y male mice were found to be sterile and exhibited a progressive loss in germ cells, thereby leading to oligoasthenospermia. Adult Cul4b mutant epididymides also contained very low numbers of mature spermatozoa, and these spermatazoa exhibited pronounced morphological abnormalities. In post-meiotic spermatids, CUL4B was dynamically expressed and mitosis of spermatogonia and meiosis of spermatocytes both appeared unaffected. However, the spermatids exhibited significantly higher levels of apoptosis during spermiogenesis, particularly during the acrosome phase through the cap phase. Comparative proteomic analyses identified a large-scale shift between wild-type and Cul4b mutant testes during early post-meiotic sperm development. Ultrastructural pathology studies further detected aberrant acrosomes in spermatids and nuclear morphology. The protein levels of both canonical and non-canonical histones were also affected in an early spermatid stage in the absence of Cul4b. Thus, X-linked CUL4B appears to play a critical role in acrosomal formation, nuclear condensation, and in regulating histone dynamics during haploid male germ cell differentiation in relation to male fertility in mice. Thus, it is possible that CUL4B-selective substrates are required for post-meiotic sperm morphogenesis. PMID:26832838

  9. R368X mutation in MID1 among recurrent mutations in patients with X-linked Opitz G/BBB syndrome.

    PubMed

    Preiksaitiene, Egle; Krasovskaja, Natalija; Utkus, Algirdas; Kasnauskiene, Jurate; Meškienė, Raimonda; Paulauskiene, Iveta; Valevičienė, Nomeda R; Kučinskas, Vaidutis

    2015-01-01

    Opitz G/BBB syndrome is a genetically heterogeneous condition, with both autosomal dominant and X-linked forms. The MID1 gene is associated with X-linked Opitz G/BBB syndrome. Most mutations identified are unique, which makes it difficult to assess possible genotype/phenotype correlations. We report on a familial c.1102C>T (p.R368X) mutation in the MID1 gene, previously reported by Cox et al. (Hum Mol Genet 9:2553-2562, 2000), and document it as a recurrent mutation causing Opitz G/BBB syndrome. This mutation may result in various midline defects, including cleft lip/palate, laryngeal cleft, hypertelorism, Dandy-Walker malformation, ventricular septal defect and hypospadias in male patients, with intrafamilial variability. Seven other mutations (c.712G>T, c.829C>T, c.1108A>G, c.1444_1447dupAACA, c.1483C>T, c.1798dupC and entire gene deletions) have been previously reported as recurrent mutations. The presented family with the c.1102C>T mutation provides additional information about the clinical consequences of the nonsense mutation causing premature truncation of the protein at the level of the COS domain. PMID:25304119

  10. Unusual late presentation of X-linked chronic granulomatous disease in an adult female with a somatic mosaic for a novel mutation in CYBB.

    PubMed

    Wolach, Baruch; Scharf, Yitshak; Gavrieli, Ronit; de Boer, Martin; Roos, Dirk

    2005-01-01

    Most patients with chronic granulomatous disease (CGD) have mutations in the X-linked CYBB gene that encodes gp91phox, a component of the phagocyte NADPH oxidase. The resulting X-linked form of CGD is usually manifested in boys. Rarely, X-CGD is encountered in female carriers with extreme expression of the mutated gene. Here, we report on a woman with a novel mutation in CYBB (CCG[90-92]-->GGT), predicting Tyr30Arg31-->stop, Val in gp91phox, who presented with clinical symptoms at the age of 66. The mutation was present in heterozygous form in genomic DNA from her leukocytes but was fully expressed in mRNA from these cells, indicating that in her leukocytes the X chromosome carrying the nonmutated CYBB allele had been inactivated. Indeed, only 0.4% to 2% of her neutrophils showed NADPH oxidase activity. This extreme skewing of her X-chromosome inactivation was not found in her cheek mucosal cells and is thus not due to a general defect in gene methylation on one X chromosome. Moreover, the CYBB mutation was not present in the DNA from her cheek cells and was barely detectable in the DNA from her memory T lymphocytes. Thus, this patient shows a somatic mosaic for the CYBB mutation, which probably originated during her lifetime in her bone marrow. PMID:15308575

  11. Definitive localization of X-linked Kallman syndrome (hypogonadotropic hypogonadism and anosmia) to Xp22.3: close linkage to the hypervariable repeat sequence CRI-S232.

    PubMed Central

    Meitinger, T; Heye, B; Petit, C; Levilliers, J; Golla, A; Moraine, C; Dalla Piccola, B; Sippell, W G; Murken, J; Ballabio, A

    1990-01-01

    Kallmann syndrome is a genetically heterogeneous disease characterized by hypogonadotropic hypogonadism and anosmia. Six families in which the disorder followed an X-linked inheritance were investigated by linkage analysis. Diagnostic criteria were uniformly applied and included tests for hypogonadotropic hypogonadism and anosmia. Close linkage was found by using the hypervariable repeated sequence CRI-S232 (DXS278) previously mapped to Xp22.3. At a maximum lod score of 6.5, the recombination fraction was calculated as .03. Of 30 fully informative meioses, one recombination between the disease locus and the loci recognized by probe CRI-S232 was observed. When an independent approach is used, these results confirm the X-linked Kallmann syndrome assignment previously made by deletion mapping, and allow definitive localization of the syndrome assignment previously made by deletion mapping, and allow definitive localization of the syndrome to the Xp22.3 region. This opens the way to carrier detection and to the identification of a gene responsible for this disorder. Images Figure 2 PMID:1977309

  12. +2.71 LOD score at zero recombination is not sufficient for establishing linkage between X-linked mental retardation and X-chromosome markers

    SciTech Connect

    Robledo, R.; Melis, P.; Siniscalco, M.

    1996-07-12

    Nonspecific X-linked mental retardation (MRX) is the denomination attributed to the familial type of mental retardation compatible with X-linked inheritance but lacking specific phenotypic manifestations. It is thus to be expected that families falling under such broad definition are genetically heterogeneous in the sense that they may be due to different types of mutations occurring, most probably, at distinct X-chromosome loci. To facilitate a genetic classification of these conditions, the Nomenclature Committee of the Eleventh Human Gene Mapping Workshop proposed to assign a unique MRX-serial number to each family where evidence of linkage with one or more X-chromosome markers had been established with a LOD score of at least +2 at zero recombination. This letter is meant to emphasize the inadequacy of this criterion for a large pedigree where the segregation of the disease has been evaluated against the haplotype constitution of the entire X-chromosome carrying the mutation in question. 12 refs., 2 figs., 1 tab.

  13. Effects of vaccines on the canine immune system.

    PubMed Central

    Phillips, T R; Jensen, J L; Rubino, M J; Yang, W C; Schultz, R D

    1989-01-01

    The effects of several commercially available polyvalent canine vaccines on the immune system of the dog were examined. The results demonstrated that the polyvalent vaccines used in this study significantly suppressed the absolute lymphocyte count and that most of the polyvalent vaccines significantly suppressed lymphocyte response to mitogen, but had no effect on natural effector cell activity, neutrophil chemiluminescence, nor antibody response to canine distemper virus. The individual vaccine components from the polyvalent vaccines when inoculated alone did not significantly suppress the lymphocyte response to mitogen. However, when canine distemper virus was combined with canine adenovirus type 1 or canine adenovirus type 2, significant suppression in lymphocyte responsiveness to mitogen occurred. The results indicate that interactions between canine distemper virus and canine adenovirus type 1 or canine adenovirus type 2 are responsible for the polyvalent vaccine induced suppression of lymphocyte responsiveness. PMID:2540897

  14. Transmigration of mandibular canine – case report

    PubMed Central

    Gruszka, Katarzyna; Różyło, T. Katarzyna; Różyło-Kalinowska, Ingrid; Denkiewicz, Katarzyna; Masłowska, Klaudia

    2014-01-01

    Summary Background Transmigration is a phenomenon of movement of an unerupted tooth in the bone across the midline. This anomaly is not often found. Transmigration is more prevalent in females than in males, and more often encountered in the mandible than maxilla, it affects mostly canines. Case Report The aim of this study was to present a case report of a mandibular canine transmigration in a patient aged 12. Intraoral examination determined hypodontia of right second premolar and delayed eruption of left second premolar in maxilla, as well as persistent deciduous teeth: right second molar, left canine and second molar. The patient was referred for a Cone-Beam CT examination, which allowed precise visualization of the transmigrating canine as well as ruled out resorption of roots of mandibular incisors. Results The treatment with a maxillary fixed orthodontic appliance was finished after obtaining a satisfactory result. Proper alignment of the incisors in the anterior-posterior plane and correct midline position were accepted by the patient. Transmigrating canine after consultation with the surgeon was designed to further radiological observation. PMID:24520309

  15. Canine kobuvirus infections in Korean dogs.

    PubMed

    Oem, Jae-Ku; Choi, Jeong-Won; Lee, Myoung-Heon; Lee, Kyoung-Ki; Choi, Kyoung-Seong

    2014-10-01

    To investigate canine kobuvirus (CaKoV) infection, fecal samples (n = 59) were collected from dogs with or without diarrhea (n = 21 and 38, respectively) in the Republic of Korea (ROK) in 2012. CaKoV infection was detected in four diarrheic samples (19.0 %) and five non-diarrheic samples (13.2 %). All CaKoV-positive dogs with diarrhea were found to be infected in mixed infections with canine distemper virus and canine parvovirus or canine adenovirus. There was no significant difference in the prevalence of CaKoV in dogs with and without diarrhea. By phylogenetic analysis based on partial 3D genes and complete genome sequences, the Korean isolates were found to be closely related to each other regardless of whether they were associated with diarrhea, and to the canine kobuviruses identified in the USA and UK. This study supports the conclusion that CaKoVs from different countries are not restricted geographically and belong to a single lineage. PMID:24906525

  16. Immunologic Observations in Canine Interstitial Nephritis

    PubMed Central

    Krohn, Kai; Mero, Matti; Oksanen, Aili; Sandholm, Markus

    1971-01-01

    Immunofluorescence studies in cases of chronic interstitial nephritis (CIN) in the dog demonstrated deposition of canine IgC and C'3 in the thickened capillary walls of the glomeruli and in the mesangium. Eluates obtained from the nephritic kidneys contained antibodies of IgG type and reacted with autologous or homologous nephritic kidneys but not with normal kidneys or with any normal canine tissue. The staining pattern of fluorescein-conjugated eluates was similar to that obtained with anti-canine IgG or anti-canine C'3. The eluates did not contain leptospiral antibodies. The findings indicate that complement-fixing immune complexes are deposited in the damaged glomeruli in CIN. The nature of the antigen involved in these complexes is unknown, but it does not seem to be a component of normal canine tissue and could thus be viral or bacterial. ImagesFig 5Fig 6Fig 7Fig 8Fig 13Fig 14Fig 15Fig 16Fig 9Fig 10Fig 11Fig 12Fig 1Fig 2Fig 3Fig 4 PMID:4106382

  17. Impaired Telomere Maintenance and Decreased Canonical WNT Signaling but Normal Ribosome Biogenesis in Induced Pluripotent Stem Cells from X-Linked Dyskeratosis Congenita Patients

    PubMed Central

    Gu, Bai-Wei; Apicella, Marisa; Mills, Jason; Fan, Jian-Meng; Reeves, Dara A.; French, Deborah; Podsakoff, Gregory M.; Bessler, Monica; Mason, Philip J.

    2015-01-01

    Dyskeratosis congenita (DC) is an inherited bone marrow failure syndrome characterized by the presence of short telomeres at presentation. Mutations in ten different genes, whose products are involved in the telomere maintenance pathway, have been shown to cause DC. The X-linked form is the most common form of the disease and is caused by mutations in the gene DKC1, encoding the protein dyskerin. Dyskerin is required for the assembly and stability of telomerase and is also involved in ribosomal RNA (rRNA) processing where it converts specific uridines to pseudouridine. DC is thought to result from failure to maintain tissues, like blood, that are renewed by stem cell activity, but research into pathogenic mechanisms has been hampered by the difficulty of obtaining stem cells from patients. We reasoned that induced pluripotent stem (iPS) cells from X-linked DC patients may provide information about the mechanisms involved. Here we describe the production of iPS cells from DC patients with DKC1 mutations Q31E, A353V and ΔL37. In addition we constructed “corrected” lines with a copy of the wild type dyskerin cDNA expressed from the AAVS1 safe harbor locus. We show that in iPS cells with DKC1 mutations telomere maintenance is compromised with short telomere lengths and decreased telomerase activity. The degree to which telomere lengths are affected by expression of telomerase during reprograming, or with ectopic expression of wild type dyskerin, is variable. The recurrent mutation A353V shows the most severe effect on telomere maintenance. A353V cells but not Q31E or ΔL37 cells, are refractory to correction by expression of wild type DKC1 cDNA. Because dyskerin is involved in both telomere maintenance and ribosome biogenesis it has been postulated that defective ribosome biogenesis and translation may contribute to the disease phenotype. Evidence from mouse and zebra fish models has supported the involvement of ribosome biogenesis but primary cells from human

  18. Impaired Telomere Maintenance and Decreased Canonical WNT Signaling but Normal Ribosome Biogenesis in Induced Pluripotent Stem Cells from X-Linked Dyskeratosis Congenita Patients.

    PubMed

    Gu, Bai-Wei; Apicella, Marisa; Mills, Jason; Fan, Jian-Meng; Reeves, Dara A; French, Deborah; Podsakoff, Gregory M; Bessler, Monica; Mason, Philip J

    2015-01-01

    Dyskeratosis congenita (DC) is an inherited bone marrow failure syndrome characterized by the presence of short telomeres at presentation. Mutations in ten different genes, whose products are involved in the telomere maintenance pathway, have been shown to cause DC. The X-linked form is the most common form of the disease and is caused by mutations in the gene DKC1, encoding the protein dyskerin. Dyskerin is required for the assembly and stability of telomerase and is also involved in ribosomal RNA (rRNA) processing where it converts specific uridines to pseudouridine. DC is thought to result from failure to maintain tissues, like blood, that are renewed by stem cell activity, but research into pathogenic mechanisms has been hampered by the difficulty of obtaining stem cells from patients. We reasoned that induced pluripotent stem (iPS) cells from X-linked DC patients may provide information about the mechanisms involved. Here we describe the production of iPS cells from DC patients with DKC1 mutations Q31E, A353V and ΔL37. In addition we constructed "corrected" lines with a copy of the wild type dyskerin cDNA expressed from the AAVS1 safe harbor locus. We show that in iPS cells with DKC1 mutations telomere maintenance is compromised with short telomere lengths and decreased telomerase activity. The degree to which telomere lengths are affected by expression of telomerase during reprograming, or with ectopic expression of wild type dyskerin, is variable. The recurrent mutation A353V shows the most severe effect on telomere maintenance. A353V cells but not Q31E or ΔL37 cells, are refractory to correction by expression of wild type DKC1 cDNA. Because dyskerin is involved in both telomere maintenance and ribosome biogenesis it has been postulated that defective ribosome biogenesis and translation may contribute to the disease phenotype. Evidence from mouse and zebra fish models has supported the involvement of ribosome biogenesis but primary cells from human

  19. PPM-X: A new X-linked mental retardation syndrome with psychosis, pyramidal signs, and macroorchidism maps to Xq28

    SciTech Connect

    Lindsay, S.; Splitt, M.; Edney, S.

    1996-06-01

    We report a three-generation family manifesting a previously undescribed X-linked mental retardation syndrome. Four of the six moderately retarded males have had episodes of manic-depressive psychosis. The phenotype also includes pyramidal signs, Parkinsonian features, and macroorchidism, but there are no characteristic dysmorphic facial features. Affected males do not show fragile sites at distal Xq on cytogenetic analysis, nor do they have expansions of the CGG repeats at the FRAXA, FRAXE, or FRAXF loci. Linkage analyses were undertaken, and a maximal LOD score of 3.311 at {theta} = .0 was observed with the microsatellite marker DXS1123 in Xq28. A recombination was detected in one of the affected males with DXS1691 (Xq28), which gives the proximal boundary of the localization. No distal recombination has been detected at any of the loci tested. 31 refs., 2 figs., 2 tabs.

  20. Mental retardation, acromegalic face, and megalotestes in two half-brothers: a specific form of X-linked mental retardation without fra(X) (q)?

    PubMed

    Tariverdian, G; Froster-Iskenius, U; Deuschl, G; Wolff, G

    1991-01-01

    We describe a family with two half-brothers affected with severe mental retardation. The phenotype in the affected individuals is characterized by apparent acromegaly, profound mental retardation, and hyperactivity. The mother has analogous but less severe facial anomalies and mild mental impairment. Screening for fra(X) (q) was negative in peripheral lymphocytes using methotrexate for fra(X) enhancement. The clinical findings in our patients are similar to those described by Fryns et al. [1986] in two patients with acquired lesions of the central nervous system. CT investigations in one of our patients showed areas of hyperdensity in the pontine region and a small subarachnoid cyst. The pedigree suggests X-linked inheritance. The association of apparent acromegaly, CNS anomalies, megalotestes, and mental retardation in this family supports the hypothesis that a distinct syndrome may exist with phenotype anomalies more severe than those characteristic for the Martin-Bell syndrome but without fragile X. PMID:2018059

  1. Prenatal molecular diagnosis of X-linked hydrocephalus via a silent C924T mutation in the L1CAM gene.

    PubMed

    Serikawa, Takehiro; Nishiyama, Kenichi; Tohyama, Jun; Tazawa, Ryushi; Goto, Kiyoe; Kuriyama, Yoko; Haino, Kazufumi; Kanemura, Yonehiro; Yamasaki, Mami; Nakata, Koh; Takakuwa, Koichi; Enomoto, Takayuki

    2014-11-01

    We present a case of a patient whose L1CAM gene in X-chromosome has a C924T transition. Her first son's ventriculomegaly was prenatally detected. A mature infant was born, his head circumference was large, and thumbs were bilaterally adducted. X-linked hydrocephalus (XLH) was suspected. The DNA examination revealed that both her and boy's LICAM gene had a C924T transition. She became pregnant 5 years later and amniocentesis was performed. The results of cytogenetic analysis revealed that the fetus was female. She continued her pregnancy and delivered a healthy girl. She again became pregnant 3 years later. The chromosomal analysis revealed that the fetus was male. Fetal DNA analysis determined that the fetus had the inherited mutation. She chose to terminate the pregnancy. A C924T mutation can be disease causing for XLH, and the detection of this mutation would aid in genetic counseling for the prenatal diagnosis of XLH. PMID:25039760

  2. The Challenge of Prenatal Diagnostic Work-Up of Maternally Inherited X-Linked Opitz G/BBB: Case Report and Literature Review

    PubMed Central

    Spinelli, Marialuigia; Sica, Carmine; Novelli, Antonio; Di Meglio, Letizia; Martinelli, Pasquale

    2015-01-01

    Background. Prenatal diagnosis of Optiz G/BBB syndrome (OS) is challenging because the characteristic clinical features, such as facial and genitourinary anomalies, may be subtle at sonography and rather unspecific. Furthermore, molecular testing of the disease gene is not routinely performed, unless a specific diagnosis is suggested. Method. Both familial and ultrasound data were used to achieve the diagnosis of X-linked OS (XLOS), which was confirmed by molecular testing of MID1 gene (Xp22.3) at birth. Results. Sequencing of MID1 gene disclosed the nucleotide change c.1285 +1 G>T, previously associated with XLOS. Conclusions. This case illustrates current challenges of the prenatal diagnostic work-up of XLOS and exemplifies how clinical investigation, including family history, and accurate US foetal investigations can lead to the correct diagnosis. PMID:26064728

  3. Evidence against an X-linked locus close to DXS7 determining visual loss susceptibility in British and Italian families with Leber hereditary optic neuropathy

    SciTech Connect

    Sweeney, M.G.; Davis, M.B.; Lashwood, A.; Brockington, M.; Harding, A.E. ); Toscano, A. )

    1992-10-01

    Leber hereditary optic neuropathy (LHON) is associated with mutations of mtDNA, but two features of LHON pedigrees are not explicable solely on the basis of mitochondrial inheritance. There is a large excess of affected males, and not all males at risk develop the disease. These observations could be explained by the existence of an X-linked visual loss susceptibility gene. This hypothesis was supported by linkage studies in Finland, placing the susceptibility locus at DXS7, with a maximum lod score of 2.48 at a recombination fraction of 0. Linkage studies in 1 Italian and 12 British families with LHON, analyzed either together or separately depending on the associated mtDNA mutation, have excluded the presence of such a locus from an interval of about 30 cM around DXS7 in these kindreds, with a total lod score of -26.51 at a recombination fraction of 0. 17 refs., 2 figs., 1 tab.

  4. Studies of EBV-lymphoid cell interactions in two patients with the X-linked lymphoproliferative syndrome: normal EBV-specific HLA-restricted cytotoxicity.

    PubMed

    Rousset, F; Souillet, G; Roncarolo, M G; Lamelin, J P

    1986-02-01

    Two X-linked lymphoproliferative syndrome (XLP) patients with the hypogammaglobulinemia phenotype were investigated at a time remote from their primary infection with the Epstein-Barr virus (EBV). The lymphoblastoid cell lines derived from these patients expressed the phenotypic markers characteristic of normal mature B lymphocytes and produced normal levels of immunoglobulins (Ig). These observations imply that at least some of their B cells are phenotypically normal. The natural killer (NK) activity of the two patients was low. In one patient, activated lymphocyte killer (ALK) activity was inefficient. These two XLP patients expressed a normal EBV-specific, HLA-restricted cytotoxic activity. It thus appears, from the present findings and those in cases published previously (6/11 patients expressing normal EBV-specific cytotoxic activity), that the notion of poor specific T cell memory for EBV may not be as pivotal ass suggested or, alternatively, that this defect may not be common in hypogammaglobulinemic survivors. PMID:3009061

  5. Nuclear localized protein-1 (Nulp1) increases cell death of human osteosarcoma cells and binds the X-linked inhibitor of apoptosis protein

    SciTech Connect

    Steen, Hakan; Lindholm, Dan

    2008-02-08

    Nuclear localized protein-1 (Nulp1) is a recently identified gene expressed in mouse and human tissues particularly during embryonic development. Nulp1 belongs to the family of basic helix-loop-helix (bHLH) proteins that are important in development. The precise function of Nulp1 in cells is however not known. We observed that overexpression of Nulp1 induces a large increase in cell death of human osteosarcoma Saos2 cells with DNA fragmentation. In mouse N2A neuroblastoma cells Nulp1 affected cell proliferation and sensitized cells towards death induced by staurosporine. Staining using a novel antibody localized Nulp1 mainly to the cell nucleus and to some extent to the cytoplasm. Nulp1 binds the X-linked inhibitor of apoptosis protein (XIAP) and this interaction was increased during cell death. These results indicate that Nulp1 plays a role in cell death control and may influence tumor growth.

  6. PPM-X: a new X-linked mental retardation syndrome with psychosis, pyramidal signs, and macroorchidism maps to Xq28.

    PubMed Central

    Lindsay, S.; Splitt, M.; Edney, S.; Berney, T. P.; Knight, S. J.; Davies, K. E.; O'Brien, O.; Gale, M.; Burn, J.

    1996-01-01

    We report a three-generation family manifesting a previously undescribed X-linked mental retardation syndrome. Four of the six moderately retarded males have had episodes of manic-depressive psychosis. The phenotype also includes pyramidal signs, Parkinsonian features, and macroorchidism, but there are no characteristic dysmorphic facial features. Affected males do not show fragile sites at distal Xq on cytogenetic analysis, nor do they have expansions of the CGG repeats at the FRAXA, FRAXE, or FRAXF loci. Linkage analyses were undertaken, and a maximal LOD score of 3.311 at theta = .0 was observed with the microsatellite marker DXS1123 in Xq28. A recombination was detected in one of the affected males with DXS1691 (Xq28), which gives the proximal boundary of the localization. No distal recombination has been detected at any of the loci tested. Images Figure 2 PMID:8651288

  7. [A case of X-linked alpha-thalassemia/mental retardation (ATR-X) syndrome with repeated apnea attacks due to laryngomalacia].

    PubMed

    Ebishima, Yuko; Misaki, Takako; Owa, Kenji; Okuno, Takehiko; Wada, Takahito; Suehiro, Yutaka

    2013-01-01

    We report a case of X-linked alpha-thalassemia/mental retardation syndrome (ATR-X) with repeated apnea attacks dating from the patient's 12th year. We initially diagnosed them as obstructive apnea due to upper pharyngeal stenosis and laryngomalacia by polysomnography and laryngo-fiberscopy. However, reevaluation after one and a half years revealed that the boy had central and mixed apnea, as well as obstructive apnea. To date, few reports have been published on the causes of apnea attacks in ATR-X patients. We clinicians should therefore consider laryngomalacia as one cause of apnea attacks in ATR-X patients, and choose the appropriate therapy for a pattern of apnea that can change during its clinical course. PMID:23593745

  8. Genetic localisation of MRX27 to Xq24-26 defines another discrete gene for non-specific X-linked mental retardation

    SciTech Connect

    Gedeon, A.K.; Connor, J.M.; Mulley, J.C.; Connor, J.M.; Glass, I.A.

    1996-07-12

    A large family with non-specific X-linked mental retardation (MRX) was first described in 1991, with a suggestion of linkage to Xq26-27. The maximum lod score was 1.60 ({theta} = 0.10) with the F9 locus. The localization of this MRX gene has now been established by linkage to microsatellite markers. Peak pairwise lod scores of 4.02 and 4.01 ({theta} = 0.00) were attained at the DXS1114 and DXS994 loci respectively. This MRX gene is now designated MRX27 and is localized to Xq24-26 by recombination events detected by DXS424 and DXS102. This regional localization spans 26.2 cM on the genetic background map and defines another distinct MRX interval by linkage to a specific region of the X chromosome. 25 refs., 1 fig., 1 tab.

  9. Furcation lesion in a mandibular canine.

    PubMed

    Fonseca, Dimitri Ribas; Sena, Larryson Goncalves; Santos, Maria Helena; Goncalves, Patricia Furtado

    2011-01-01

    Morphological changes can complicate dental treatment. This report presents a rare case of a furcation lesion in a mandibular canine with two roots. A 39-year-old man in general good health sought dental care for severe pain in his maxillary anterior teeth. The clinical examination showed localized swelling in the vestibular mucosa close to the mandibular left canine. Radiographic examination revealed two distinct roots and vertical bone resorption in the canine's mesial surface. Periodontal evaluation led to a diagnosis of periodontal abscess associated with furcation lesion. Despite the occurrence in an atypical location, the site of periodontal furcation received conventional therapy for initial decontamination, including tissue debridement and a combination of polyvinylpyrrolidone irrigation and antibiotics. To improve access, the decontamination was completed with surgical techniques and scaling and root planing. Early diagnosis of this rare morphological change helped to determine appropriate, timely treatment planning and optimal patient recovery. PMID:21903558

  10. Canine neuroendocrine carcinoma. A tumor resembling histiocytoma.

    PubMed

    Nickoloff, B J; Hill, J; Weiss, L M

    1985-12-01

    The clinical and light- and electron microscopic features of 20 cases of canine neuroendocrine carcinoma, initially classified as atypical histiocytomas, are reported. The locally expansile well-circumscribed dermal tumor nodules were composed of solid masses of cells with high mitotic index and multinucleation, arranged in a trabecular pattern with prominent fibrovascular connective tissue stroma rich in reticulin fibers that outlined compact cell nests. Ultrastructural studies revealed evenly dispersed chromatin, focally indented nuclei and abundant cytoplasm with perinuclear filaments, membrane-bound dense core granules, and prominent interdigitating plasma membrane projections with primitive intercellular junctions. Clinical and pathological comparisons between canine neuroendocrine carcinoma, canine histiocytomas, and human Merkel cell neoplasms are discussed. PMID:4091229

  11. Canine rabies ecology in southern Africa.

    PubMed

    Bingham, John

    2005-09-01

    Rabies is a widespread disease in African domestic dogs and certain wild canine populations. Canine rabies became established in Africa during the 20th century, coinciding with ecologic changes that favored its emergence in canids. I present a conceptual and terminologic framework for understanding rabies ecology in African canids. The framework is underpinned by 2 distinct concepts: maintenance and persistence. Maintenance encompasses the notion of indefinite transmission of infection within a local population and depends on an average transmission ratio > or =1. Maintenance in all local populations is inherently unstable, and the disease frequently becomes extinct. Persistence, the notion of long-term continuity, depends on the presence of rabies in > or =1 local population within the canine metapopulation at any time. The implications for understanding rabies ecology and control are reviewed, as are previous studies on rabies ecology in African canids. PMID:16229759

  12. The orthodontic management of ectopic canine

    PubMed Central

    Thirunavukkarasu, R.; Sriram, G.; Satish, R.

    2015-01-01

    The canines being the cornerstone of the arch and smile is one of the teeth, which has the longest eruption passage that gets influenced by local and general etiological factors easily. The initial calcification of the crowns starts at 4–5 months of age and proceeds toward eruption about 11–13 years of age with mesiobuccal crown angulation that gets corrected toward occlusion. It gets displaced buccally or palatally or may sometimes get impacted. Early intervention is the best suited to manage canine eruption patterns. Once erupted ectopically, they possess a great challenge in repositioning them back into their correct position. This case report discusses an orthodontic treatment planning and execution to correct a buccally placed canine with an anterior crossbite in an adult. PMID:26538959

  13. Accounting for eXentricities: Analysis of the X Chromosome in GWAS Reveals X-Linked Genes Implicated in Autoimmune Diseases

    PubMed Central

    Chang, Diana; Gao, Feng; Slavney, Andrea; Ma, Li; Waldman, Yedael Y.; Sams, Aaron J.; Billing-Ross, Paul; Madar, Aviv; Spritz, Richard; Keinan, Alon

    2014-01-01

    Many complex human diseases are highly sexually dimorphic, suggesting a potential contribution of the X chromosome to disease risk. However, the X chromosome has been neglected or incorrectly analyzed in most genome-wide association studies (GWAS). We present tailored analytical methods and software that facilitate X-wide association studies (XWAS), which we further applied to reanalyze data from 16 GWAS of different autoimmune and related diseases (AID). We associated several X-linked genes with disease risk, among which (1) ARHGEF6 is associated with Crohn's disease and replicated in a study of ulcerative colitis, another inflammatory bowel disease (IBD). Indeed, ARHGEF6 interacts with a gastric bacterium that has been implicated in IBD. (2) CENPI is associated with three different AID, which is compelling in light of known associations with AID of autosomal genes encoding centromere proteins, as well as established autosomal evidence of pleiotropy between autoimmune diseases. (3) We replicated a previous association of FOXP3, a transcription factor that regulates T-cell development and function, with vitiligo; and (4) we discovered that C1GALT1C1 exhibits sex-specific effect on disease risk in both IBDs. These and other X-linked genes that we associated with AID tend to be highly expressed in tissues related to immune response, participate in major immune pathways, and display differential gene expression between males and females. Combined, the results demonstrate the importance of the X chromosome in autoimmunity, reveal the potential of extensive XWAS, even based on existing data, and provide the tools and incentive to properly include the X chromosome in future studies. PMID:25479423

  14. Missense variant in CCDC22 causes X-linked recessive intellectual disability with features of Ritscher-Schinzel/3C syndrome

    PubMed Central

    Kolanczyk, Mateusz; Krawitz, Peter; Hecht, Jochen; Hupalowska, Anna; Miaczynska, Marta; Marschner, Katrin; Schlack, Claire; Emmerich, Denise; Kobus, Karolina; Kornak, Uwe; Robinson, Peter N; Plecko, Barbara; Grangl, Gernot; Uhrig, Sabine; Mundlos, Stefan; Horn, Denise

    2015-01-01

    Ritscher-Schinzel syndrome (RSS)/3C (cranio-cerebro-cardiac) syndrome (OMIM#220210) is a rare and clinically heterogeneous developmental disorder characterized by intellectual disability, cerebellar brain malformations, congenital heart defects, and craniofacial abnormalities. A recent study of a Canadian cohort identified homozygous sequence variants in the KIAA0196 gene, which encodes the WASH complex subunit strumpellin, as a cause for a form of RSS/3C syndrome. We have searched for genetic causes of a phenotype similar to RSS/3C syndrome in an Austrian family with two affected sons. To search for disease-causing variants, whole-exome sequencing (WES) was performed on samples from two affected male children and their parents. Before WES, CGH array comparative genomic hybridization was applied. Validation of WES and segregation studies was done using routine Sanger sequencing. Exome sequencing detected a missense variant (c.1670A>G; p.(Tyr557Cys)) in exon 15 of the CCDC22 gene, which maps to chromosome Xp11.23. Western blots of immortalized lymphoblastoid cell lines (LCLs) from the affected individual showed decreased expression of CCDC22 and an increased expression of WASH1 but a normal expression of strumpellin and FAM21 in the patients cells. We identified a variant in CCDC22 gene as the cause of an X-linked phenotype similar to RSS/3C syndrome in the family described here. A hypomorphic variant in CCDC22 was previously reported in association with a familial case of syndromic X-linked intellectual disability, which shows phenotypic overlap with RSS/3C syndrome. Thus, different inactivating variants affecting CCDC22 are associated with a phenotype similar to RSS/3C syndrome. PMID:24916641

  15. Whole genome sequencing reveals novel non-synonymous mutation in ectodysplasin A (EDA) associated with non-syndromic X-linked dominant congenital tooth agenesis.

    PubMed

    Sarkar, Tanmoy; Bansal, Rajesh; Das, Parimal

    2014-01-01

    Congenital tooth agenesis in human is characterized by failure of tooth development during tooth organogenesis. 300 genes in mouse and 30 genes in human so far have been known to regulate tooth development. However, candidature of only 5 genes viz. PAX9, MSX1, AXIN2, WNT10A and EDA have been experimentally established for congenitally missing teeth like hypodontia and oligodontia. In this study an Indian family with multiple congenital tooth agenesis was identified. Pattern of inheritance was apparently autosomal dominant type with a rare possibility to be X-linked. Whole genome sequencing of two affected individuals was carried out which revealed 119 novel non-synonymous single nucleotide variations (SNVs) distributed among 117 genes. Out of these only one variation (c.956G>T) located at exon 9 of X-linked EDA gene was considered as pathogenic and validated among all the affected and unaffected family members and unrelated controls. This variation leads to p.Ser319Ile change in the TNF homology domain of EDA (transcript variant 1) protein. In silico analysis predicts that this Ser319 is well conserved across different vertebrate species and a part of putative receptor binding site. Structure based homology modeling predicts that this amino acid residue along with four other amino acid residues nearby, those when mutated known to cause selective tooth agenesis, form a cluster that may have functional significance. Taken together these results suggest that c.956G>T (p.Ser319Ile) mutation plausibly reduces the receptor binding activity of EDA leading to distinct tooth agenesis in this family. PMID:25203534

  16. Whole Genome Sequencing Reveals Novel Non-Synonymous Mutation in Ectodysplasin A (EDA) Associated with Non-Syndromic X-Linked Dominant Congenital Tooth Agenesis

    PubMed Central

    Sarkar, Tanmoy; Bansal, Rajesh; Das, Parimal

    2014-01-01

    Congenital tooth agenesis in human is characterized by failure of tooth development during tooth organogenesis. 300 genes in mouse and 30 genes in human so far have been known to regulate tooth development. However, candidature of only 5 genes viz. PAX9, MSX1, AXIN2, WNT10A and EDA have been experimentally established for congenitally missing teeth like hypodontia and oligodontia. In this study an Indian family with multiple congenital tooth agenesis was identified. Pattern of inheritance was apparently autosomal dominant type with a rare possibility to be X-linked. Whole genome sequencing of two affected individuals was carried out which revealed 119 novel non-synonymous single nucleotide variations (SNVs) distributed among 117 genes. Out of these only one variation (c.956G>T) located at exon 9 of X-linked EDA gene was considered as pathogenic and validated among all the affected and unaffected family members and unrelated controls. This variation leads to p.Ser319Ile change in the TNF homology domain of EDA (transcript variant 1) protein. In silico analysis predicts that this Ser319 is well conserved across different vertebrate species and a part of putative receptor binding site. Structure based homology modeling predicts that this amino acid residue along with four other amino acid residues nearby, those when mutated known to cause selective tooth agenesis, form a cluster that may have functional significance. Taken together these results suggest that c.956G>T (p.Ser319Ile) mutation plausibly reduces the receptor binding activity of EDA leading to distinct tooth agenesis in this family. PMID:25203534

  17. Truncating Mutations in the Adhesion G Protein-Coupled Receptor G2 Gene ADGRG2 Cause an X-Linked Congenital Bilateral Absence of Vas Deferens.

    PubMed

    Patat, Olivier; Pagin, Adrien; Siegfried, Aurore; Mitchell, Valérie; Chassaing, Nicolas; Faguer, Stanislas; Monteil, Laetitia; Gaston, Véronique; Bujan, Louis; Courtade-Saïdi, Monique; Marcelli, François; Lalau, Guy; Rigot, Jean-Marc; Mieusset, Roger; Bieth, Eric

    2016-08-01

    In 80% of infertile men with obstructive azoospermia caused by a congenital bilateral absence of the vas deferens (CBAVD), mutations are identified in the cystic fibrosis transmembrane conductance regulator gene (CFTR). For the remaining 20%, the origin of the CBAVD is unknown. A large cohort of azoospermic men with CBAVD was retrospectively reassessed with more stringent selection criteria based on consistent clinical data, complete description of semen and reproductive excurrent ducts, extensive CFTR testing, and kidney ultrasound examination. To maximize the phenotypic prioritization, men with CBAVD and with unilateral renal agenesis were considered ineligible for the present study. We performed whole-exome sequencing on 12 CFTR-negative men with CBAVD and targeted sequencing on 14 additional individuals. We identified three protein-truncating hemizygous mutations, c.1545dupT (p.Glu516Ter), c.2845delT (p.Cys949AlafsTer81), and c.2002_2006delinsAGA (p.Leu668ArgfsTer21), in ADGRG2, encoding the epididymal- and efferent-ducts-specific adhesion G protein-coupled receptor G2, in four subjects, including two related individuals with X-linked transmission of their infertility. Previous studies have demonstrated that Adgrg2-knockout male mice develop obstructive infertility. Our study confirms the crucial role of ADGRG2 in human male fertility and brings new insight into congenital obstructive azoospermia pathogenesis. In men with CBAVD who are CFTR-negative, ADGRG2 testing could allow for appropriate genetic counseling with regard to the X-linked transmission of the molecular defect. PMID:27476656

  18. Antisense modulation of both exonic and intronic splicing motifs induces skipping of a DMD pseudo-exon responsible for x-linked dilated cardiomyopathy.

    PubMed

    Rimessi, Paola; Fabris, Marina; Bovolenta, Matteo; Bassi, Elena; Falzarano, Sofia; Gualandi, Francesca; Rapezzi, Claudio; Coccolo, Fabio; Perrone, Daniela; Medici, Alessandro; Ferlini, Alessandra

    2010-09-01

    Antisense-mediated exon skipping has proven to be efficacious for subsets of Duchenne muscular dystrophy mutations. This approach is based on targeting specific splicing motifs that interfere with the spliceosome assembly by steric hindrance. Proper exon recognition by the splicing machinery is thought to depend on exonic splicing enhancer sequences, often characterized by purine-rich stretches, representing potential targets for antisense-mediated exon skipping. We identified and functionally characterized two purine-rich regions located within dystrophin intron 11 and involved in splicing regulation of a pseudo-exon. A functional role for these sequences was suggested by a pure intronic DMD deletion causing X-linked dilated cardiomyopathy through the prevalent cardiac incorporation of the aberrant pseudo-exon, marked as Alu-exon, into the dystrophin transcript. The first splicing sequence is contained within the pseudo-exon, whereas the second is localized within its 3' intron. We demonstrated that the two sequences actually behave as splicing enhancers in cell-free splicing assays because their deletion strongly interferes with the pseudo-exon inclusion. Cell-free results were then confirmed in myogenic cells derived from the patient with X-linked dilated cardiomyopathy, by targeting the identified motifs with antisense molecules and obtaining a reduction in dystrophin pseudo-exon recognition. The splicing motifs identified could represent target sequences for a personalized molecular therapy in this particular DMD mutation. Our results demonstrated for the first time the role of intronic splicing sequences in antisense modulation with implications in exon skipping-mediated therapeutic approaches. PMID:20486769

  19. First successful bone marrow transplantation for X-linked chronic granulomatous disease by using preimplantation female gender typing and HLA matching.

    PubMed

    Reichenbach, Janine; Van de Velde, Hilde; De Rycke, Martine; Staessen, Cathérine; Platteau, Peter; Baetens, Patricia; Güngör, Tayfun; Ozsahin, Hulya; Scherer, Franziska; Siler, Ulrich; Seger, Reinhard A; Liebaers, Inge

    2008-09-01

    Allogeneic hematopoietic stem cell transplantation from an human leukocyte antigen (HLA)-identical donor is currently the only proven curative treatment for chronic granulomatous disease. Hematopoietic stem cell transplantation with alternative donors is associated with higher morbidity and mortality. Therefore, we performed in vitro fertilization and preimplantation HLA matching combined with female sexing for hematopoietic stem cell transplantation in chronic granulomatous disease. Ethical and psychological issues were considered carefully. We used in vitro fertilization with X-enriched spermatozoa followed by preimplantation genetic diagnosis to identify female HLA-genoidentical embryos in a family in need of a suitable donor for their boy affected with severe X-linked chronic granulomatous disease. Two preimplantation genetic diagnosis cycles were performed in the family. In the second cycle, 2 HLA-genoidentical female embryos were transferred and a singleton pregnancy was obtained, resulting in the birth of an unaffected girl at term. Because of insufficient cell numbers in the cord-blood source, conventional hematopoietic stem cell transplantation had to be performed at 12 months of age of the donor and 5 years of age of the recipient and resulted in complete stable donor chimerism and immunologic reconstitution up to 25 months post-hematopoietic stem cell transplantation. Hematopoietic stem cell transplantation after in vitro fertilization and combined female sexing and HLA matching offers a new and relatively rapid therapeutic option for patients with X-linked primary immunodeficiency such as chronic granulomatous disease who need hematopoietic stem cell transplantation but lack an HLA-genoidentical donor. PMID:18762514

  20. The expanding spectrum of PRPS1-associated phenotypes: three novel mutations segregating with X-linked hearing loss and mild peripheral neuropathy.

    PubMed

    Robusto, Michela; Fang, Mingyan; Asselta, Rosanna; Castorina, Pierangela; Previtali, Stefano C; Caccia, Sonia; Benzoni, Elena; De Cristofaro, Raimondo; Yu, Cong; Cesarani, Antonio; Liu, Xuanzhu; Li, Wangsheng; Primignani, Paola; Ambrosetti, Umberto; Xu, Xun; Duga, Stefano; Soldà, Giulia

    2015-06-01

    Next-generation sequencing is currently the technology of choice for gene/mutation discovery in genetically-heterogeneous disorders, such as inherited sensorineural hearing loss (HL). Whole-exome sequencing of a single Italian proband affected by non-syndromic HL identified a novel missense variant within the PRPS1 gene (NM_002764.3:c.337G>T (p.A113S)) segregating with post-lingual, bilateral, progressive deafness in the proband's family. Defects in this gene, encoding the phosphoribosyl pyrophosphate synthetase 1 (PRS-I) enzyme, determine either X-linked syndromic conditions associated with hearing impairment (eg, Arts syndrome and Charcot-Marie-Tooth neuropathy type X-5) or non-syndromic HL (DFNX1). A subsequent screening of the entire PRPS1 gene in 16 unrelated probands from X-linked deaf families led to the discovery of two additional missense variants (c.343A>G (p.M115V) and c.925G>T (p.V309F)) segregating with hearing impairment, and associated with mildly-symptomatic peripheral neuropathy. All three variants result in a marked reduction (>60%) of the PRS-I activity in the patients' erythrocytes, with c.343A>G (p.M115V) and c.925G>T (p.V309F) affecting more severely the enzyme function. Our data significantly expand the current spectrum of pathogenic variants in PRPS1, confirming that they are associated with a continuum disease spectrum, thus stressing the importance of functional studies and detailed clinical investigations for genotype-phenotype correlation. PMID:25182139