Kim, Hyung Jin; /Fermilab
2011-12-01
In high energy storage-ring colliders, the nonlinear effect arising from beam-beam interactions is a major source that leads to the emittance growth, the reduction of beam life time, and limits the collider luminosity. In this paper, two models of beam-beam interactions are introduced, which are weak-strong and strong-strong beam-beam interactions. In addition, space-charge model is introduced.
Beam-beam interactions for bunched and unbunched beams
Courant, E D
1980-01-01
The beam-beam interaction is analyzed in terms of Chirikov's stochasticity model. Stochastic blow-up occurs when the density of resonance regions in phase space becomes large, and Arnold diffusion is assumed to depend on the density parameter below the stochastic threshold. The relation between the density parameter and the tune shift epsilon is affected by bunching of the beam and also by variations in the strengths of several interaction regions and by beam misalignment. It is seen that bunching can reduce the tolerable epsilon by as much as an order of magnitude in proton storage rings.
Halo formation from mismatched beam-beam interactions
Qiang, Ji
2003-05-23
In this paper, we report on the halo formation and emittance growth driven by a parametric resonance during mismatched beam-beam collisions. In the regime of the weak-strong beam-beam interaction, if two beams have the same machine tunes, on-axis head-on collisions between a mismatched strong beam and a weak beam will not cause the formation of halo. However, if the two beams collide with an initial offset, the beam-beam force from the mismatched strong beam can cause halo formation and emittance growth in the weak beam. Meanwhile, if two beams have different machine tunes, for opposite charged colliding beams, when the machine tune of the weak beam is smaller than that of strong beam, there is emittance growth in the weak beam. When the machine tune of the weak beam is larger than that of the strong beam, there is little emittance growth. In the regime of strong-strong beam-beam interaction, halo is formed in both beams even when the two beams collide head-on on the axis with equal machine tunes. This puts a strong requirement for a good beam match during the injection to colliders in order to avoid the emittance growth.
Cairns, R. A.; Vorgul, I.; Bingham, R.; Ronald, K.; Speirs, D. C.; Phelps, A. D. R.; McConville, S. L.; Gillespie, K. M.; Cross, A. W.; Robertson, C. W.; Whyte, C. G.; Kellett, B. J.
2009-11-10
We describe the theory of a cyclotron maser instability which appears to be a likely source of auroral kilometric radiation and its generation in a laboratory experiment. We then outline plans for future development of the experiment to investigate a wider range of instabilities resulting from the existence of electron beams in a plasma. The basic theory theory underlying a few of these is then discussed.
Beam-beam interaction in P-P colliding accelerators
Parzen, G.
1982-08-01
One model for beam growth due to the beam-beam interaction in P-P colliding accelerators is that it is due to the presence of non-linear forces generated by the fields produced by the beam plus some radomizing effect like noise, or a tune modulation. According to this model, to limit beam-beam effects, one should try to limit the size of the non-linear forces and the sources of noise or tune modulation. This model can also be used to compare the severity of beam-beam effects in two situations by comparing the size of the non-linear forces. In this paper, this approach will be used to study three problems: to compare the effects of beam-beam non-linear resonances in the ISR with those in ISABELLE; to estimate the strength of a spectrometer magnet that may be placed at one of the beam crossing points, without appreciably increasing the beam-beam effects; and to compare the beam-beam interaction for colliding beam accelerators with different crossing-angles and different ..beta../sub x/ and ..beta../sub y/ at the crossing points.
Simulations of beam-beam and beam-wire interactions in RHIC
Kim, Hyung J.; Sen, Tanaji; Abreu, Natalia P.; Fischer, Wolfram; /Brookhaven
2009-02-01
The beam-beam interaction is one of the dominant sources of emittance growth and luminosity lifetime deterioration. A current carrying wire has been proposed to compensate long-range beam-beam effects in the LHC and strong localized long-range beam-beam effects are experimentally investigated in the RHIC collider. Tune shift, beam transfer function, and beam loss rate are measured in dedicated experiments. In this paper, they report on simulations to study the effect of beam-wire interactions based on diffusive apertures, beam loss rates, and beam transfer function using a parallelized weak-strong beam simulation code (BBSIMC). The simulation results are compared with measurements performed in RHIC during 2007 and 2008.
Interactive Beam-Dynamics Program
Energy Science and Technology Software Center (ESTSC)
2001-01-08
TRACE3D is an interactive program that calculates the envelopes of a bunched beam, including linear space-charge forces, through a user-defined system. The transport system may consist of the following elements: drift, thin lens, quadrupole, permanent magnet quadrupole, solenoid, doublet, triplet, bending magnet, edge angle (for bend), RF gap, radio-frequency-quadrupole cell, RF cavity, coupled-cavity tank, user-desired element, coordinate rotation, and identical element. The beam is represented by a 6X6 matrix defining a hyper-ellipsoid in six-dimensional phasemore » space. The projection of this hyperellipsoid on any two-dimensional plane is an ellipse that defines the boundary of the beam in that plane.« less
Beam-Beam Interaction Simulations with Guinea Pig (LCC-0125)
Sramek, C
2003-11-20
At the interaction point of a particle accelerator, various phenomena occur which are known as beam-beam effects. Incident bunches of electrons (or positrons) experience strong electromagnetic fields from the opposing bunches, which leads to electron deflection, beamstrahlung and the creation of electron/positron pairs and hadrons due to two-photon exchange. In addition, the beams experience a ''pinch effect'' which focuses each beam and results in either a reduction or expansion of their vertical size. Finally, if a beam's disruption parameter is too large, the beam can develop a sinusoidal distortion, or two-stream (kink) instability. This project simulated and studied these effects as they relate to luminosity, deflection angles and energy loss in order to optimize beam parameters for the Next Linear Collider (NLC). Using the simulation program Guinea Pig, luminosity, deflection angle and beam energy data was acquired for different levels of beam offset and distortion. Standard deflection curves and luminosity plots agreed with theoretical models but also made clear the difficulties of e-e- feedback. Simulations emphasizing kink instability in modulated and straight beam collisions followed qualitative behavioral predictions and roughly fit recent analytic calculations. A study of e-e- collisions under design constraints for the NLC provided new estimates of how luminosity, beamstrahlung energy loss, upsilon parameter and deflection curve width scale with beam cross-sections ({sigma}{sub x}, {sigma}{sub y}, {sigma}{sub z}) and number of particles per bunch (N). Finally, this same study revealed luminosity maxima at large N and small {sigma}{sub y} which may merit further investigation.
Transfer map approach to the beam-beam interaction
NASA Astrophysics Data System (ADS)
Dragt, Alex J.
1980-01-01
A study is made of a model for the beam-beam interaction in ISABELLE using numerical methods and the recently developed method of Transfer Maps. It is found that analytical transfer map calculations account qualitatively for all the features of the model obtions account qualitatively for all the features of the model observed numerically, and show promise of giving quantitive agreement as well. They may also provide a kind of ''magnifying glass'' for examining numerical results in fine detail to ascertain the presence of small scale stochastic motion that might lead to eventual particle loss. Preliminary evidence is presented to the effect that within the model employed, the beam-beam interaction at its contemplated strengths should not lead to particle loss in ISABELLE.
Observations and open questions in beam-beam interactions
Sen, Tanaji; /Fermilab
2010-08-01
The first of the hadron colliders, ISR, started operation in 1970. In the following years, the hadron colliders to follow were the SPS (started 1980), the Tevatron (started 1987 first as a fixed target machine), RHIC (started 2000) and most recently the LHC, which started in 2008. HERA was a hybrid that collided electrons and protons. All of these accelerators had or have their performance limited by the effects of the beam-beam interactions. That has also been true for the electron-positron colliders such as LEP, CESR, KEKB and PEPII. In this article I will discuss how the beam-beam limitations arose in some of these machines. The discussion will be focused on common themes that span the different colliders. I will mostly discuss the hadron colliders but sometimes discuss the lepton colliders where relevant. Only a handful of common accelerator physics topics are chosen here, the list is not meant to be exhaustive. A comparative review of beam-beam performance in the ISR, SPS and Tevatron (ca 1989) can be found in reference. Table 1 shows the relevant parameters of colliders (excluding the LHC), which have accelerated protons.
Chao, A.W.
1983-08-01
The subject of beam-beam instability has been studied since the invention of the colliding beam storage rings. Today, with several colliding beam storage rings in operation, it is not yet fully understood and remains an outstanding problem for the storage ring designers. No doubt that good progress has been made over the years, but what we have at present is still rather primitive. It is perhaps possible to divide the beam-beam subject into two areas: one on luminosity optimization and another on the dynamics of the beam-beam interaction. The former area concerns mostly the design and operational features of a colliding beam storage ring, while the later concentrates on the experimental and theoretical aspects of the beam-beam interaction. Although both areas are of interest, our emphasis is on the second area only. In particular, we are most interested in the various possible mechanisms that cause the beam-beam instability.
Interaction of vortices with flexible piezoelectric beams
NASA Astrophysics Data System (ADS)
Goushcha, Oleg; Akaydin, Huseyin Dogus; Elvin, Niell; Andreopoulos, Yiannis
2012-11-01
A cantilever piezoelectric beam immersed in a flow is used to harvest fluidic energy. Pressure distribution induced by naturally present vortices in a turbulent fluid flow can force the beam to oscillate producing electrical output. Maximizing the power output of such an electromechanical fluidic system is a challenge. In order to understand the behavior of the beam in a fluid flow where vortices of different scales are present, an experimental facility was set up to study the interaction of individual vortices with the beam. In our set up, vortex rings produced by an audio speaker travel at specific distances from the beam or impinge on it, with a frequency varied up to the natural frequency of the beam. Depending on this frequency both constructive and destructive interactions between the vortices and the beam are observed. Vortices traveling over the beam with a frequency multiple of the natural frequency of the beam cause the beam to resonate and larger deflection amplitudes are observed compared to excitation from a single vortex. PIV is used to compute the flow field and circulation of each vortex and estimate the effect of pressure distribution on the beam deflection. Sponsored by NSF Grant: CBET #1033117.
Modeling laser beam-rock interaction.
Leong, K. H.
2003-07-23
The optimal use of lasers requires the understanding of the primary parameters pertinent to laser beam-material interactions. Basically, the laser beam is a heat source that can be controlled to deliver a wide range in intensities and power. When interacting with a material, reflection at the surface, and transmission and absorption through the material occur. The material interaction process is governed by the irradiance (power/unit area) of the incident beam and the interaction time resulting in an amount of heat/energy applied to the material per unit area. The laser beam is a flexible heat source where its intensity and interaction with materials can be controlled by varying the power and size of the beam or the interaction time. For any material, a minimum amount of energy has to be absorbed for the material to be ablated by the laser beam, i.e., a solid has to be heated to liquefy and then vaporize. Under certain conditions, the photon energy may be able to break the molecular bonds of the material directly. In general, the energy absorbed is needed to vaporize the material and account for any heat that may be conducted away. Consequently, the interaction is a heat transfer problem. The relevant parameters are the heat flux and total heat input to the material. The corresponding parameters for the laser beam- material interaction are the irradiance of the beam and the interaction time. The product of these two parameters is the energy applied per unit area. A high irradiance beam may be able to ablate a material rapidly without significant heat transfer to surrounding areas. For drilling or cutting materials, a high intensity beam is required for laser ablation with minimal heat lost to the surrounding areas. However, at high beam irradiance (>1 GW cm{sup -2} for Nd:YAG beams), plasma formed from ionization of gases and vapor will partially absorb or diffract the beam. Reduced penetration of the material results. Similarly, in welding using CO2 lasers where
Beam-beam interaction models with a small stochastic perturbation
NASA Astrophysics Data System (ADS)
Mahmoud, Gamal M.
1995-02-01
In this work, we study a class of differential equations, which may be used to model the beam-beam interaction in particle accelerators, in the presence of a small stochastic perturbation z(t): ẍ + ω 02x + ɛ 2λg( dotx) + ɛ 2 f(x)p(ω 0t) = ɛ 2z(t) . The method of stochastic averaging is used to derive a Fokker-Planck-Kolmogorov equation describing the probability density for the amplitude of the solutions. In the case g( dotx) = dotx, an odd polynomial f( x) = k3x3 + k5x5 + ⋯ and p( ω0t) = cos ω0t, we obtain the exact stationary probability density function and the first and second moments for the amplitude of the solutions. Numerical simulation shows very good agreement with the analytical results of this study.
Photon-Electron Interaction and Condense Beams
Chattopadhyay, S.
1998-11-01
We discuss beams of charged particles and radiation from multiple perspectives. These include fundamental acceleration and radiation mechanisms, underlying electron-photon interaction, various classical and quantum phase-space concepts and fluctuational interpretations.
Raimondi, P.; Field, R.Clive; Phinney, N.; Ross, M.C.; Slaton, T.; Traller, R.; /SLAC
2011-08-26
At the Interaction Point (IP) of the SLC Final Focus, beam-beam deflection scans routinely provide a measurement of the sum in quadrature of the electron and positron transverse beam sizes, but no information on the individual beam sizes. During the 1996 SLC run, an upgrade to the Final Focus beam position monitor system allowed a first measurement of the absolute beam energy loss of both beams on each step of the deflection scan. A fit to the energy loss distributions of the two beams provides a measurement not only of the individual transverse beam sizes at the IP but also of the individual bunch lengths.
NASA Astrophysics Data System (ADS)
Rimbault, C.; Le Meur, G.; Blampuy, F.; Bambade, P.; Schulte, D.
2009-12-01
Depolarization is a new feature in the beam-beam simulation tool GUINEA-PIG++ (GP++). The results of this simulation are studied and compared with another beam-beam simulation tool, CAIN, considering different beam parameters for the International Linear Collider (ILC) with a centre-of-mass energy of 500 GeV.
Effect of Beam-Beam Interactions on Stability of Coherent Oscillations in a Muon Collider
Alexahin, Y.; Ohmi, K.; /KEK, Tsukuba
2012-05-01
In order to achieve peak luminosity of a muon collider in the 10{sup 34}/cm{sup 2}/s range the number of muons per bunch should be of the order of a few units of 10{sup 12} rendering the beam-beam parameter as high as 0.1 per IP. Such strong beam-beam interaction can be a source of instability if the working point is chosen close to a coherent beam-beam resonance. On the other hand, the beam-beam tunespread can provide a mechanism of suppression of the beam-wall driven instabilities. In this report the coherent instabilities driven by beam-beam and beam-wall interactions are studied with the help of BBSS code for the case of 1.5 TeV c.o.m muon collider.
The Particle Beam Optics Interactive Computer Laboratory
Gillespie, G.H.; Hill, B.W.; Brown, N.A.; Babcock, R.C.; Martono, H.; Carey, D.C. |
1997-02-01
The Particle Beam Optics Interactive Computer Laboratory (PBO Lab) is an educational software concept to aid students and professionals in learning about charged particle beams and particle beam optical systems. The PBO Lab is being developed as a cross-platform application and includes four key elements. The first is a graphic user interface shell that provides for a highly interactive learning session. The second is a knowledge database containing information on electric and magnetic optics transport elements. The knowledge database provides interactive tutorials on the fundamental physics of charged particle optics and on the technology used in particle optics hardware. The third element is a graphical construction kit that provides tools for students to interactively and visually construct optical beamlines. The final element is a set of charged particle optics computational engines that compute trajectories, transport beam envelopes, fit parameters to optical constraints and carry out similar calculations for the student designed beamlines. The primary computational engine is provided by the third-order TRANSPORT code. Augmenting TRANSPORT is the multiple ray tracing program TURTLE and a first-order matrix program that includes a space charge model and support for calculating single particle trajectories in the presence of the beam space charge. This paper describes progress on the development of the PBO Lab. {copyright} {ital 1997 American Institute of Physics.}
The Particle Beam Optics Interactive Computer Laboratory
NASA Astrophysics Data System (ADS)
Gillespie, George H.; Hill, Barrey W.; Brown, Nathan A.; Babcock, R. Chris; Martono, Hendy; Carey, David C.
1997-02-01
The Particle Beam Optics Interactive Computer Laboratory (PBO Lab) is an educational software concept to aid students and professionals in learning about charged particle beams and particle beam optical systems. The PBO Lab is being developed as a cross-platform application and includes four key elements. The first is a graphic user interface shell that provides for a highly interactive learning session. The second is a knowledge database containing information on electric and magnetic optics transport elements. The knowledge database provides interactive tutorials on the fundamental physics of charged particle optics and on the technology used in particle optics hardware. The third element is a graphical construction kit that provides tools for students to interactively and visually construct optical beamlines. The final element is a set of charged particle optics computational engines that compute trajectories, transport beam envelopes, fit parameters to optical constraints and carry out similar calculations for the student designed beamlines. The primary computational engine is provided by the third-order TRANSPORT code. Augmenting TRANSPORT is the multiple ray tracing program TURTLE and a first-order matrix program that includes a space charge model and support for calculating single particle trajectories in the presence of the beam space charge. This paper describes progress on the development of the PBO Lab.
Controlling Second Harmonic Efficiency of Laser Beam Interactions
NASA Technical Reports Server (NTRS)
Barnes, Norman P. (Inventor); Walsh, Brian M. (Inventor); Reichle, Donald J. (Inventor)
2011-01-01
A method is provided for controlling second harmonic efficiency of laser beam interactions. A laser system generates two laser beams (e.g., a laser beam with two polarizations) for incidence on a nonlinear crystal having a preferred direction of propagation. Prior to incidence on the crystal, the beams are optically processed based on the crystal's beam separation characteristics to thereby control a position in the crystal along the preferred direction of propagation at which the beams interact.
Review of linear collider beam-beam interaction
Chen, P.
1989-01-01
Three major effects from the interaction of e/sup +/e/sup /minus// beams---disruption, beamstrahlung, and electron-positron pair creation---are reviewed. For the disruption effects we discuss the luminosity enhancement factor, the maximum and rms disruption angles, and the ''kink instability''. All the results are obtained from computer simulations. Scaling laws for the numerical results and theoretical explanations of the computer acquired phenomena are offered wherever possible. For the beamstrahlung effects we concentrate only on the final electron energy spectrum resulting from multiple photon radiation process, and the deflection angle associated with low energy particles. For the effects from electron-positron pair creation, both coherent and incoherent processes of beamstrahlung pair creation are discussed. In addition to the estimation on total number of such pairs, we also look into the energy spectrum and the deflection angle. 17 refs., 23 figs., 1 tab.
Ion-beam Plasma Neutralization Interaction Images
Igor D. Kaganovich; Edward Startsev; S. Klasky; Ronald C. Davidson
2002-04-09
Neutralization of the ion beam charge and current is an important scientific issue for many practical applications. The process of ion beam charge and current neutralization is complex because the excitation of nonlinear plasma waves may occur. Computer simulation images of plasma neutralization of the ion beam pulse are presented.
Beam-Plasma Interaction and Nonlinear Effects
Yoon, Peter H.
2009-11-10
This paper presents a survey of perturbative nonlinear plasma theory known as the weak turbulence theory. After the basic concepts and methodology of the weak turbulence theory are outlined in sufficient detail, numerical solutions of the weak turbulence theory obtained in the context of the beam-plasma interaction are compared against particle-in-cell (PIC) numerical simulations. It is demonstrated that theory and PIC simulation are in excellent agreement.
Interactive dynamics of two copropagating laser beams in underdense plasmas.
Wu, Hui-Chun; Sheng, Zheng-Ming; Zhang, Jie
2004-08-01
The interaction of two copropagating laser beams with crossed polarization in the underdense plasmas has been investigated analytically with the variational approach and numerically. The coupled envelope equations of the two beams include both the relativistic mass correction and the ponderomotive force effect. It is found that the relativistic effect always plays the role of beam attraction, while the ponderomotive force can play both the beam attraction and beam repulsion, depending upon the beam diameters and their transverse separation. In certain conditions, the two beam centers oscillate transversely around a propagation axis. In this case, the ponderomotive effect can lead to a higher oscillation frequency than that accounting for the relativistic effect only. The interaction of two beams decreases the threshold power for self-focusing of the single beam. A strong self-trapping beam can channel a weak one. PMID:15447601
Renormalization theory of beam-beam interaction in electron-positron colliders
Chin, Y.H.
1989-07-01
This note is devoted to explaining the essence of the renormalization theory of beam-beam interaction for carrying out analytical calculations of equilibrium particle distributions in electron-positron colliding beam storage rings. Some new numerical examples are presented such as for betatron tune dependence of the rms beam size. The theory shows reasonably good agreements with the results of computer simulations. 5 refs., 6 figs.
Automatic beam centering at the SSC interaction regions
Joestlein, H.
1984-03-20
In the SSC interaction regions, the two colliding beams, each only a few microns in size, will have to be centered and maintained in good alignment over many hours, in order to provide the maximum possible luminosity and to minimize off-center beam-beam focussing effects. It is unlikely that sufficiently good alignment can be achieved without some kind of active feedback system, based on the beam-beam interaction rate. This memo describes such a system. In the proposed scheme, one of the beams is moved continuously and in a circular fashion about its mean transverse position. The radius of this motion is approximately 0.01 of the rms beam size at the interaction point. The motion is achieved with two sets of crossed high frequency dipole magnets, one on each side of the interaction region, suitably phased. As a consequence of this motion, the beam-beam interaction rate is modulated in synchronism with the beam motion when the beams are not centered on one another. The amplitude and phase of this modulation yields information on the magnitude and direction of the misalignment between the beams, allowing continuous display and automatic correction of any misalignment.
Ionosphere/microwave beam interaction study
NASA Technical Reports Server (NTRS)
Gordon, W. E.; Duncan, L. M.
1978-01-01
The microwave beam of the Solar Power Satellite (SPS) is predicted to interact with the ionosphere producing thermal runaway up to an altitude of about 100 kilometers at a power density threshold of 12 mW/cm sq (within a factor of two). The operation of the SPS at two frequencies, 2450 and 5800 MHz, is compared. The ionosphere interaction is less at the higher frequency, but the tropospheric problem scattering from heavy rain and hail is worse at the higher frequency. Microwave signals from communication satellites were observed to scintillate, but there is some concern that the uplink pilot signal may be distorted by the SPS heated ionosphere. The microwave scintillations are only observed in the tropics in the early evenings near the equinoxes. Results indicate that large phase errors in the uplink pilot signal can be reduced.
Interaction of Airy-Gaussian beams in Kerr media
NASA Astrophysics Data System (ADS)
Peng, Yulian; Peng, Xi; Chen, Bo; Zhou, Meiling; Chen, Chidao; Deng, Dongmei
2016-01-01
We study the interaction of the Airy-Gaussian (AiG) beams by using the numerical simulations with the split-step Fourier method. The results show that the single breathers and breather pairs can be formed in the condition with interaction. The breathers can be formed with the enough intensity of interactive beams. By adjusting the parameters of amplitude, interval, phase and χ0, we find that the interaction of the two beams is the strongest with in-phase and out-of-phase cases, especially in the shorter distance. Moreover, both the interaction intensity and the location, the interaction happens, can be changed by adjusting the distribution factor χ0 of the beams. It is notable that the various propagation directions of the beams can be obtained by changing the phase, at the same situation, when the interval of the two beams becomes narrower, the phase plays an important role of controlling the direction of the accelerated spot.
Gras, S.; Blair, D. G.; Ju, L.
2010-02-15
To reduce the thermal noise in the future generation of gravitational wave detectors, flat-top beams have been proposed to replace conventional Gaussian beams, so as to obtain better averaging over the Brownian motion of the test masses. Here, we present a detailed investigation of the unwanted opto-acoustic interactions in such interferometers, which can lead to the phenomenon of parametric instability. Our results show that the increased overlap of the Mesa beams with the test masses leads to approximately 3 times as many unstable modes in comparison to a similar interferometer with Gaussian beams.
An interactive beam position monitor system simulator
Ryan, W.A.; Shea, T.J.
1993-03-01
A system simulator has been implemented to aid the development of the RHIC position monitor system. Based on the LabVIEW software package by National Instruments, this simulator allows engineers and technicians to interactively explore the parameter space of a system during the design phase. Adjustable parameters are divided into three categories: beam, pickup, and electronics. The simulator uses these parameters in simple formulas to produce results in both time-domain and frequencydomain. During the prototyping phase, these simulated results can be compared to test data acquired with the same software package. The RHIC position monitor system is presented as an example, but the software is applicable to several other systems as well.
Blowup of a weak beam due to interaction with a strong beam in an electron storage ring
Kheifets, S.
1983-07-01
The theoretical description of the beam-beam interaction presented here takes into account all the important features of the beam-beam phenomenon: the nonlinear beam-beam force and its dependnce on both transverse coordinates, damping of the oscillations, presence of noise in the particle motion, in particular the quantum noise in its synchrotron radiation, actual machine functions, layout and the number B of interaction points, and to some extent imperfections present in the machine. The model deals not with a separate particle, but with the beam as a whole using phase space distribution functions and the average (unperturbed and perturbed) characteristics of the bunch.
Survey of Collective Instabilities and Beam-Plasma Interactions in Intense Heavy Ion Beams
Davidson, Ronald C.; Dorf, Mikhail A.; Kaganovich, Igor D.; Qin, Hong; Startsev, Edward A.; Rose, David V.; Lund, Steven M.; Welch, Dale R.; Sefkow, Adam
2008-06-19
This paper presents a survey of the present theoretical understanding based on advanced analytical and numerical studies of collective processes and beam-plasma interactions in intense heavy ion beams for applications to ion-beam-driven high energy density physics and heavy ion fusion. The topics include: discussion of the conditions for quiescent beam propagation over long distances; and the electrostatic Harris instability and the transverse electromagnetic Weibel instability in highly anisotropic, intense one-component ion beams. In the longitudinal drift compression and transverse compression regions, collective processes associated with the interaction of the intense ion beam with a charge-neutralizing background plasma are described, including the electrostatic electron-ion two-stream instability, the multispecies electromagnetic Weibel instability, and collective excitations in the presence of a solenoidal magnetic field. The effects of a velocity tilt on reducing two-stream instability growth rates are also discussed. Operating regimes are identified where the possible deleterious effects of collective processes on beam quality are minimized.
Parametric study of transport beam lines for electron beams accelerated by laser-plasma interaction
NASA Astrophysics Data System (ADS)
Scisciò, M.; Lancia, L.; Migliorati, M.; Mostacci, A.; Palumbo, L.; Papaphilippou, Y.; Antici, P.
2016-03-01
In the last decade, laser-plasma acceleration of high-energy electrons has attracted strong attention in different fields. Electrons with maximum energies in the GeV range can be laser-accelerated within a few cm using multi-hundreds terawatt (TW) lasers, yielding to very high beam currents at the source (electron bunches with up to tens-hundreds of pC in a few fs). While initially the challenge was to increase the maximum achievable electron energy, today strong effort is put in the control and usability of these laser-generated beams that still lack of some features in order to be used for applications where currently conventional, radio-frequency (RF) based, electron beam lines represent the most common and efficient solution. Several improvements have been suggested for this purpose, some of them acting directly on the plasma source, some using beam shaping tools located downstream. Concerning the latter, several studies have suggested the use of conventional accelerator magnetic devices (such as quadrupoles and solenoids) as an easy implementable solution when the laser-plasma accelerated beam requires optimization. In this paper, we report on a parametric study related to the transport of electron beams accelerated by laser-plasma interaction, using conventional accelerator elements and tools. We focus on both, high energy electron beams in the GeV range, as produced on petawatt (PW) class laser systems, and on lower energy electron beams in the hundreds of MeV range, as nowadays routinely obtained on commercially available multi-hundred TW laser systems. For both scenarios, our study allows understanding what are the crucial parameters that enable laser-plasma accelerators to compete with conventional ones and allow for a beam transport. We show that suitable working points require a tradeoff-combination between low beam divergence and narrow energy spread.
Fundamental beam-beam limit from head-on interaction in the Large Hadron Collider
NASA Astrophysics Data System (ADS)
Ohmi, Kazuhito; Zimmermann, Frank
2015-12-01
The beam-beam limit at hadron colliders manifests itself in the form of degraded luminosity lifetime and/or reduced beam lifetime. In particular, for increasing beam intensity, the nonlinear beam-beam force causes incoherent emittance growth, while the (linear) coupling force between the two colliding beams can result in coherent beam-beam instabilities. These phenomena may be enhanced (or suppressed) by lattice errors, external noise, and other perturbations. We investigate the luminosity degradation caused both by incoherent emittance growth and by coherent beam-beam instability. The resulting beam-beam limit for an ideal machine and the of question how it is affected by some of the aforementioned errors are discussed in theory and simulation.
Instability of Interaction of a Coherent Electron Beam and Plasma
NASA Astrophysics Data System (ADS)
Matveev, A. I.
2015-12-01
Nonlinear interaction of a beam with finite density of electrons, whose velocity is greater than the phase velocity of a plasma wave, with homogeneous collisionless plasma is described. It is shown that a positive feedback arises between plasma oscillations and the wave of longitudinal electron density of the beam if the phase of this wave is 90° ahead of the phase of plasma oscillations. An increase in the energies of plasma and beam oscillations is accompanied by a decrease in the kinetic beam energy until the moment when the beam velocity becomes equal to the plasma wave phase velocity. Since the beam velocity can be greater than the plasma wave phase velocity, such energy conversion is very efficient.
Limits to Electron Beam Emittance from Stochastic Coulomb Interactions
Coleman-Smith, Christopher; Padmore, Howard A.; Wan, Weishi
2008-08-22
Dense electron beams can now be generated on an ultrafast timescale using laser driven photo-cathodes and these are used for a range of applications from ultrafast electron defraction to free electron lasers. Here we determine a lower bound to the emittance of an electron beam limited by fundamental stochastic Coulomb interactions.
INTERACTION OF MUON BEAM WITH PLASMA DEVELOPED DURING IONIZATION COOLING
S. Ahmed, D. Kaplan, T. Roberts, L. Spentzouris, K. Beard
2012-07-01
Particle-in-cell simulations involving the interaction of muon beam (peak density 10{sup 18} m{sup 3}) with Li plasma (ionized medium) of density 10{sup 16}-10{sup 22} m{sup -3} have been performed. This study aimed to understand the effects of plasma on an incoming beam in order to explore scenario developed during the process of ionization cooling. The computer code takes into account the self-consistent electromagnetic effects of beam interacting with plasma. This study shows that the beam can pass through the plasma of densities four order of magnitude higher than its peak density. The low density plasmas are wiped out by the beam, however, the resonance is observed for densities of similar order. Study reveals the signature of plasma wakefield acceleration.
Mutual interaction between parallel Gaussian electromagnetic beams in plasmas
Sodha, Mahendra Singh; Agarwal, Sujeet Kumar; Sharma, Ashutosh
2006-10-15
In this paper, the interaction between two Gaussian electromagnetic beams in a plasma has been investigated, when the axes of the two beams are initially (z=0) parallel along the z axis in the x-z plane; the beams are initially propagating in the z direction. For the three types of nonlinearities (viz., collisional, ponderomotive, and relativistic) the dielectric function has been expressed as a function of the irradiances of the two beams; this expression for the dielectric function has been substituted in the wave equation and a solution of the resulting nonlinear equation obtained in the paraxial approximation. The paraxial approximation is justified since the phenomena of interest occur when the beams are initially close ({radical}(2)x{sub 0}{<=}r{sub 0}). Further, the absorption of the beam in the plasma has been neglected, which is justified when the electron collision frequency is much less than the frequencies of the beams. Second-order coupled ordinary differential equations have been obtained for the distance between the centers of the beams and the beam widths in the x and y directions as a function of the distance of propagation along the z axis. The equations have been solved numerically for a range of parameters and a discussion of the results is presented.
Advanced Accelerating Structures and Their Interaction with Electron Beams
Gai Wei
2009-01-22
In this paper, we give a brief description of several advanced accelerating structures, such as dielectric loaded waveguides, photonic band gap, metamaterials and improved iris-loaded cavities. We describe wakefields generated by passing high current electron beams through these structures, and applications of wakefields to advanced accelerator schemes. One of the keys to success for high gradient wakefield acceleration is to develop high current drive beam sources. As an example, the high current RF photo injector at the Argonne Wakefield Accelerator, passed a {approx}80 nC electron beam through a high gradient dielectric loaded structure to achieve a 100 MV/m gradient. We will summarize recent related experiments on beam-structure interactions and also discuss high current electron beam generation and propagation and their applications to wakefield acceleration.
Advanced accelerating structures and their interaction with electron beams.
Gai, W.; High Energy Physics
2008-01-01
In this paper, we give a brief description of several advanced accelerating structures, such as dielectric loaded waveguides, photonic band gap, metamaterials and improved iris-loaded cavities. We describe wakefields generated by passing high current electron beams through these structures, and applications of wakefields to advanced accelerator schemes. One of the keys to success for high gradient wakefield acceleration is to develop high current drive beam sources. As an example, the high current RF photo injector at the Argonne Wakefield Accelerator, passed a {approx}80 nC electron beam through a high gradient dielectric loaded structure to achieve a 100 MV/m gradient. We will summarize recent related experiments on beam-structure interactions and also discuss high current electron beam generation and propagation and their applications to wakefield acceleration.
White-light symmetrization by the interaction of multifilamenting beams
Stelmaszczyk, K.; Rohwetter, P.; Fechner, M.; Woeste, L.; Petit, Y.; Kasparian, J.; Wolf, J.-P.
2009-05-15
We show experimentally that the interaction of two multifilamenting beams in fused silica with incidence angles up to a few degrees results in an increase in the symmetry of the continuum emission from D{sub 2} to C{sub {infinity}} around the axis of symmetry between the two beams. We observe an intense white disk between the locations of the individual conical emission patterns, reducing the conical emission in each of them. We attribute this behavior to an enhanced self-phase modulation in the interference region between the two beams. This frequency conversion depletes by more than 40% the energy initially available in the photon bath to feed filaments.
Heavy ion beam transport and interaction with ICF targets
NASA Astrophysics Data System (ADS)
Velarde, G.; Aragonés, J. M.; Gago, J. A.; Gámez, L.; González, M. C.; Honrubia, J. J.; Martínez-Val, J. M.; Mínguez, E.; Ocaña, J. L.; Otero, R.; Perlado, J. M.; Santolaya, J. M.; Serrano, J. F.; Velarde, P. M.
1986-01-01
Numerical simulation codes provide an essential tool for analyzing the very broad range of concepts and variables considered in ICF targets. In this paper, the relevant processes embodied in the NORCLA code, needed to simulate ICF targets driven by heavy ion beams will be presented. Atomic physic models developed at DENIM to improve the atomic data needed for ion beam plasma interaction will be explained. Concerning the stopping power, the average ionization potential following a Thomas-Fermi model has been calculated, and results are compared with full quantum calculations. Finally, a parametric study of multilayered single shell targets driven by heavy ion beams will be shown.
Interceptive Beam Diagnostics - Signal Creation and Materials Interactions
Plum, Michael
2004-11-10
The focus of this tutorial will be on interceptive beam diagnostics such as wire scanners, screens, and harps. We will start with an overview of the various ways beams interact with materials to create signals useful for beam diagnostics systems. We will then discuss the errors in a harp or wire scanner profile measurement caused by errors in wire position, number of samples, and signal errors. Finally we will apply our results to two design examples-the SNS wire scanner system and the SNS target harp.
Quadrupole Beam-Based Alignment in the RHIC Interaction Regions
T. Satogata, J. Ziegler
2011-03-01
Continued beam-based alignment (BBA) efforts have provided significant benefit to both heavy ion and polarized proton operations at RHIC. Recent studies demonstrated previously unknown systematic beam position monitor (BPM) offset errors and produced accurate measurements of individual BPM offsets in the experiment interaction regions. Here we describe the algorithm used to collect and analyze data during the 2010 and early 2011 RHIC runs and the results of these measurements.
Acceleration of electrons in strong beam-plasma interactions
NASA Technical Reports Server (NTRS)
Wilhelm, K.; Bernstein, W.; Kellogg, P. J.; Whalen, B. A.
1984-01-01
The effects of strong beam-plasma interactions on the electron population of the upper atmosphere have been investigated in an electron acceleration experiment performed with a sounding rocket. The rocket carried the Several Complex Experiments (SCEX) payload which included an electron accelerator, three disposable 'throwaway' detectors (TADs), and a stepped electron energy analyzer. The payload was launched in an auroral arc over the rocket at altitudes of 157 and 178 km, respectively. The performance characteristics of the instruments are discussed in detail. The data are combined with the results of laboratory measurements and show that electrons with energies of at least two and probably four times the injection energy of 2 keV were observed during strong beam-plasma interaction events. The interaction events occurred at pitch angles of 54 and 126 degrees. On the basis of the data it is proposed that the superenergization of the electrons is correlated with the length of the beam-plasma interaction region.
An experimental study of the interactions of self-trapped white light beams in a photopolymer
Kasala, Kailash; Saravanamuttu, Kalaichelvi
2008-08-04
Interactions of two parallel-propagating and mutually incoherent white light beams were examined in a photopolymerizable organosiloxane. The beams fused when separated by a distance corresponding to the width of each beam but at separation distances>>beam width, formed two self-trapped beams that repelled each other. At separation distances<beam width, they suffered filamentation but ultimately fused into a single self-trapped beam.
Summary of working group g: beam material interaction
Kiselev, D.; Mokhov, N.V.; Schmidt, R.; /CERN
2010-11-01
For the first time, the workshop on High-Intensity and High-Brightness Hadron Beams (HB2010), held at Morschach, Switzerland and organized by the Paul Scherrer Institute, included a Working group dealing with the interaction between beam and material. Due to the high power beams of existing and future facilities, this topic is already of great relevance for such machines and is expected to become even more important in the future. While more specialized workshops related to topics of radiation damage, activation or thermo-mechanical calculations, already exist, HB2010 provided the occasion to discuss the interplay of these topics, focusing on components like targets, beam dumps and collimators, whose reliability are crucial for a user facility. In addition, a broader community of people working on a variety of issues related to the operation of accelerators could be informed and their interest sparked.
On stochastic complex beam beam interaction models with Gaussian colored noise
NASA Astrophysics Data System (ADS)
Xu, Yong; Zhang, Huiqing; Xu, Wei
2007-10-01
This paper is to continue our study on complex beam-beam interaction models in particle accelerators with random excitations Y. Xu, W. Xu, G.M. Mahmoud, On a complex beam-beam interaction model with random forcing [Physica A 336 (2004) 347-360]. The random noise is taken as the form of exponentially correlated Gaussian colored noise, and the transition probability density function is obtained in terms of a perturbation expansion of the parameter. Then the method of stochastic averaging based on perturbation technique is used to derive a Fokker-Planck equation for the transition probability density function. The solvability condition and the general transforms using the method of characteristics are proposed to obtain the approximate expressions of probability density function to order ε. Also the exact stationary probability density and the first and second moments of the amplitude are obtained, and one can find when the correlation time equals to zero, the result is identical to that derived from the Stratonovich-Khasminskii theorem for the same model under a broad-band excitation in our previous work.
Particle Simulations for Electron Beam-Plasma Interactions
NASA Astrophysics Data System (ADS)
Zhou, Guo-cheng; G, Zhou C.; Li, Yang; Cao, Jin-bin; J, Cao B.; Wang, Xue-yi; X, Wang Y.
1998-12-01
The computer simulations of high-frequency instabilities excited by the high density electron beam and their nonlinear effect are presented. One-dimensional electromagnetic particle simulations are performed with different values of the electron beam-to-plasma density ratio. The results show that for the high electron beam-to-background plasma density ratio, all the Langmuir waves and two electromagnetic waves with left-hand and right-hand circular polarizations (i.e., the "L-O mode" and the "R-X mode") propagating parallel to the magnetic field can be generated and the maximum values of wave electric fields are nearly the same. The electron beam and background plasma are diffused and a part of energetic background electrons are obviously accelerated by the wave-particle interactions. The heating of the beam and background plasma is mainly due to the electrostatic (Langmuir) wave-particle interactions, but the accelerations of a part of energetic background electrons may be mainly due to the electromagnetic wave-particle interactions.
Interactive visualization of particle beams for accelerator design
Wilson, Brett; Ma, Kwan-Liu; Qiang, Ji; Ryne, Robert
2002-01-15
We describe a hybrid data-representation and rendering technique for visualizing large-scale particle data generated from numerical modeling of beam dynamics. The basis of the technique is mixing volume rendering and point rendering according to particle density distribution, visibility, and the user's instruction. A hierarchical representation of the data is created on a parallel computer, allowing real-time partitioning into high-density areas for volume rendering, and low-density areas for point rendering. This allows the beam to be interactively visualized while preserving the fine structure usually visible only with slow point based rendering techniques.
Radio Frequency Station - Beam Dynamics Interaction in Circular Accelerators
Mastoridis, Themistoklis
2010-08-01
The longitudinal beam dynamics in circular accelerators is mainly defined by the interaction of the beam current with the accelerating Radio Frequency (RF) stations. For stable operation, Low Level RF (LLRF) feedback systems are employed to reduce coherent instabilities and regulate the accelerating voltage. The LLRF system design has implications for the dynamics and stability of the closed-loop RF systems as well as for the particle beam, and is very sensitive to the operating range of accelerator currents and energies. Stability of the RF loop and the beam are necessary conditions for reliable machine operation. This dissertation describes theoretical formalisms and models that determine the longitudinal beam dynamics based on the LLRF implementation, time domain simulations that capture the dynamic behavior of the RF station-beam interaction, and measurements from the Positron-Electron Project (PEP-II) and the Large Hadron Collider (LHC) that validate the models and simulations. These models and simulations are structured to capture the technical characteristics of the system (noise contributions, non-linear elements, and more). As such, they provide useful results and insight for the development and design of future LLRF feedback systems. They also provide the opportunity to study diverse longitudinal beam dynamics effects such as coupled-bunch impedance driven instabilities and single bunch longitudinal emittance growth. Coupled-bunch instabilities and RF station power were the performance limiting effects for PEP-II. The sensitivity of the instabilities to individual LLRF parameters, the effectiveness of alternative operational algorithms, and the possible tradeoffs between RF loop and beam stability were studied. New algorithms were implemented, with significant performance improvement leading to a world record current during the last PEP-II run of 3212 mA for the Low Energy Ring. Longitudinal beam emittance growth due to RF noise is a major concern for LHC
Heavy ion beam-ionosphere interactions - Electron acceleration
NASA Astrophysics Data System (ADS)
Kaufmann, R. L.; Arnoldy, R. L.; Moore, T. E.; Kintner, P. M.; Cahill, L. J., Jr.
1985-10-01
Moore et al. (1982) described a number of unexpected effects which were observed during the first Argon Release Controlled Study (ARCS 1, or rocket flight 29:014). The present paper provides a description of detailed analyses of the interaction of the argon beam with the ionosphere. An important feature of the considered test was that all detectors and the Ar(+) gun remained attached to the rocket throughout the flight. It is pointed out that the most dramatic effect of ion gun operation on ARCS 1 involved large changes in the fluxes of electrons with energies below about 600 eV. The observations are discussed, taking into account the distribution functions, azimuth dependence, and electron and ion trajectories. Attention is given to the perpendicular ion beam, the parallel ion beam, the acceleration of downgoing and upgoing electrons, and aspects of wave generation.
Strongly turbulent stabilization of electron beam-plasma interactions
NASA Technical Reports Server (NTRS)
Freund, H. P.; Haber, I.; Palmadesso, P.; Papadopoulos, K.
1980-01-01
The stabilization of electron beam interactions due to strongly turbulent nonlinearities is studied analytically and numerically for a wide range of plasma parameters. A fluid mode coupling code is described in which the effects of electron and ion Landau damping and linear growth due to the energetic electron beam are included in a phenomenological manner. Stabilization of the instability is found to occur when the amplitudes of the unstable modes exceed the threshold of the oscillating two-stream instability. The coordinate space structure of the turbulent spectrum which results clearly shows that soliton-like structures are formed by this process. Phenomenological models of both the initial stabilization and the asymptotic states are developed. Scaling laws between the beam-plasma growth rate and the fluctuations in the fields and plasma density are found in both cases, and shown to be in good agreement with the results of the simulation.
Heavy ion beam-ionosphere interactions - Electron acceleration
NASA Technical Reports Server (NTRS)
Kaufmann, R. L.; Arnoldy, R. L.; Moore, T. E.; Kintner, P. M.; Cahill, L. J., Jr.
1985-01-01
Moore et al. (1982) described a number of unexpected effects which were observed during the first Argon Release Controlled Study (ARCS 1, or rocket flight 29:014). The present paper provides a description of detailed analyses of the interaction of the argon beam with the ionosphere. An important feature of the considered test was that all detectors and the Ar(+) gun remained attached to the rocket throughout the flight. It is pointed out that the most dramatic effect of ion gun operation on ARCS 1 involved large changes in the fluxes of electrons with energies below about 600 eV. The observations are discussed, taking into account the distribution functions, azimuth dependence, and electron and ion trajectories. Attention is given to the perpendicular ion beam, the parallel ion beam, the acceleration of downgoing and upgoing electrons, and aspects of wave generation.
Documentation for TRACE: an interactive beam-transport code
Crandall, K.R.; Rusthoi, D.P.
1985-01-01
TRACE is an interactive, first-order, beam-dynamics computer program. TRACE includes space-charge forces and mathematical models for a number of beamline elements not commonly found in beam-transport codes, such as permanent-magnet quadrupoles, rf quadrupoles, rf gaps, accelerator columns, and accelerator tanks. TRACE provides an immediate graphic display of calculative results, has a powerful and easy-to-use command procedure, includes eight different types of beam-matching or -fitting capabilities, and contains its own internal HELP package. This report describes the models and equations used for each of the transport elements, the fitting procedures, and the space-charge/emittance calculations, and provides detailed instruction for using the code.
Ion beam control in laser plasma interaction
NASA Astrophysics Data System (ADS)
Kawata, S.; Izumiyama, T.; Sato, D.; Nagashima, T.; Takano, M.; Barada, D.; Gu, Y. J.; Ma, Y. Y.; Kong, Q.; Wang, P. X.; Wang, W. M.
2016-03-01
By a two-stage successive acceleration in laser ion acceleration, our 2.5-dimensional particle-in-cell simulations demonstrate a remarkable increase in ion energy by a few hundreds of MeV; the maximum proton energy reaches about 250MeV. The ions are accelerated by the inductive continuous post-acceleration in a laser plasma interaction together with the target normal sheath acceleration and the breakout afterburner mechanism. An intense short-pulse laser generates a strong current by high-energy electrons accelerated, when an intense short- pulse laser illuminates a plasma target. The strong electric current creates a strong magnetic field along the high-energy electron current in the plasma. During the increase phase in the magnetic field strength, the moving longitudinal inductive electric field is induced by the Faraday law, and accelerates the forward-moving ions continously. The multi-stage acceleration provides a unique controllability in the ion energy and its quality.
Hydrodynamic calculations of 20-TeV beam interactions with the SSC beam dump
Wilson, D.C.; Wingate, C.A.; Goldstein, J.C.; Godwin, R.P. ); Mokhov, N.V. )
1993-01-01
The 300[mu]s, 400 MJ SSC proton beam must be contained when extracted to the external beam dump. The current design for the SSC beam dump can tolerate the beat load produced if the beam is deflected into a raster scan over the face of the dump. If the high frequency deflecting magnet were to fail, the beam would scan a single strip across the dump face resulting in higher local energy deposition. This could vaporize some material and lead to high pressures. Since the beam duration is comparable to the characteristic time of expected hydrodynamic motions, we have combined the static energy deposition capability of the MARS computer code with the two- and three-dimensional hydrodynamics of the MBA and SPHINX codes. EOS data suggest an energy deposition threshold of 15 kJ/g, below which hydrodynamic effects are minimal. Above this our 2D calculations show a hole boring rate of 7 cm/[mu]s for the nominal beam, and pressures of a few kbar. Scanning the nominal beam faster than 0.08 cm/[mu]s should minimize hydrodynamic effects. 3D calculations support this.
Hydrodynamic calculations of 20-TeV beam interactions with the SSC beam dump
Wilson, D.C.; Wingate, C.A.; Goldstein, J.C.; Godwin, R.P.; Mokhov, N.V.
1993-06-01
The 300{mu}s, 400 MJ SSC proton beam must be contained when extracted to the external beam dump. The current design for the SSC beam dump can tolerate the beat load produced if the beam is deflected into a raster scan over the face of the dump. If the high frequency deflecting magnet were to fail, the beam would scan a single strip across the dump face resulting in higher local energy deposition. This could vaporize some material and lead to high pressures. Since the beam duration is comparable to the characteristic time of expected hydrodynamic motions, we have combined the static energy deposition capability of the MARS computer code with the two- and three-dimensional hydrodynamics of the MBA and SPHINX codes. EOS data suggest an energy deposition threshold of 15 kJ/g, below which hydrodynamic effects are minimal. Above this our 2D calculations show a hole boring rate of 7 cm/{mu}s for the nominal beam, and pressures of a few kbar. Scanning the nominal beam faster than 0.08 cm/{mu}s should minimize hydrodynamic effects. 3D calculations support this.
Images of Complex Interactions of an Intense Ion Beam with Plasma Electrons
Igor D. Kaganovich; Edward Startsev; Ronald C. Davidson
2004-08-03
Ion beam propagation in a background plasma is an important scientific issue for many practical applications. The process of ion beam charge and current neutralization is complex because plasma electrons move in strong electric and magnetic fields of the beam. Computer simulation images of plasma interaction with an intense ion beam pulse are presented.
Mono-Energetic Beams from Laser Plasma Interactions
Geddes, C.G.R.; Esarey, E.; Leemans, W.P.; Schroeder, C.B.; Toth,Cs.; van Tilborg, J.; Cary, John R.; Bruhwiler, David L.; Nieter, Chet
2005-05-09
A laser driven wakefield accelerator has been tuned to produce high energy electron bunches with low emittance and energy spread by extending the interaction length using a plasma channel. Wakefield accelerators support gradients thousands of times those achievable in RF accelerators, but short acceleration distance, limited by diffraction, has resulted in low energy beams with 100 percent electron energy spread. In the present experiments on the L'OASIS laser, the relativistically intense drive pulse was guided over 10 diffraction ranges by a plasma channel. At a drive pulse power of 9 TW, electrons were trapped from the plasma and beams of percent energy spread containing > 200 pC charge above 80 MeV and with normalized emittance estimated at< 2pi-mm-mrad were produced. Data and simulations (VORPAL code) show the high quality bunch was formed when beam loading turned off injection after initial trapping, and when the particles were extracted as they dephased from the wake. Up to 4TW was guided without trapping, potentially providing a platform for controlled injection. The plasma channel technique forms the basis of a new class of accelerators, with high gradients and high beam quality.
Probabilistic model of beam-plasma interaction and electromagnetic radioemission
NASA Astrophysics Data System (ADS)
Krasnoselskikh, Vladimir; Volokitin, Alexander; Krafft, Catherine; Voshchepynets, Andrii
2016-07-01
In this presentation we describe the effects of plasma density fluctuations in the solar wind on the relaxation of the electron beams accelerated in the bow shock front. The density fluctuations are supposed to be responsible for the changes in the local phase velocity of the Langmuir waves generated by the beam instability. Changes in the wave phase velocity during the wave propagation can be described in terms of probability distribution function determined by distribution of the density fluctuations. Using these probability distributions we describe resonant wave particle interactions by a system of equations, similar to well known quasi-linear approximation, where the conventional velocity diffusion coefficient and the wave growth rate are replaced by the averaged in the velocity space. It was shown that the process of relaxation of electron beam is accompanied by transformation of significant part of the beam kinetic energy to energy of the accelerated particles via generation and absorption of the Langmuir waves. Generated Langmuir waves are transformed into electromagnetic waves in the vicinity of the reflection points when the level of density fluctuations is large enough. We evaluate the level of the radiowaves intensity, and the emissivity diagram of radiowaves emission around plasma frequency and its harmonics.
NASA Astrophysics Data System (ADS)
VanGinneken, A.; Edwards, D.; Harrison, M.
1989-04-01
This paper presents results from simulations of beam losses during the operation of a superconducting accelerator. The calculations use a combination of hadron/electromagnetic cascade plus elastic scattering codes with accelerator tracking routines. These calculations have been used in conjunction with the design of the Fermilab Tevatron. First accelerator geometry is described. The rest of the paper discusses a detailed attempt to simulate a fast extraction cycle, essentially in chronological order. Beginning with an unperturbed beam, the simulation generates proton phase-space distributions incident on the electrostatic septum. These interact either elastically or inelastically with the septum wires, and the products of these interactions are traced through the machine. Where these leave the accelerator, energy deposition levels in the magnets are calculated together with the projected response of the beam-loss monitors in this region. Finally, results of the calculation are compared with experimental data. (AIP)
A parallel particle-in-cell model for beam-beam interaction in high energy ring colliders
NASA Astrophysics Data System (ADS)
Qiang, Ji; Furman, Miguel A.; Ryne, Robert D.
2004-07-01
In this paper we present a self-consistent simulation model of colliding beams in high energy ring colliders. The model, which is based on a particle-in-cell method, uses a new developed shifted effective Green function algorithm for the efficient calculation of the beam-beam interaction with arbitrary separation and large aspect ratio. The model uses transfer maps to treat the external focusing elements and a stochastic map to treat radiation damping and quantum excitation of the beams. In the parallel implementation we studied various strategies to deal with the particular nature of the colliding beam system - a system in which there can be significant particle movement between beam-beam collisions. We chose a particle-field decomposition approach instead of the conventional domain decomposition or particle decomposition approach. The particle-field approach leads to good load balance, reduced communication cost, and shows the best scalability on an IBM SP3 among the three parallel implementations we studied. A performance test of the beam-beam model on a Cray T3E, IBM SP3, and a PC cluster is presented. As an application, we studied the flip-flop instability in an electron-positron collider.
Montag C.; Oeftiger, A.; Fischer, W.
2012-05-20
One of the luminosity limits in a ring-ring electron-ion collider is the beam-beam effect on the electrons. In the limit of short ion bunches, simulation studies have shown that this limit can be significantly increased by head-on beam-beam compensation with an electron lens. However, with an ion bunch length comparable to the beta-function at the IP in conjunction with a large beam-beam parameter, the electrons perform a sizeable fraction of a betatron oscillation period inside the long ion bunches. We present recent simulation results on the compensation of this beam-beam interaction with multiple electron lenses.
Interaction of turbulence with flexible beams in fluidic energy harvesting
NASA Astrophysics Data System (ADS)
Danesh Yazdi, Amir Hossein
experimental results. The power output response spectrum of a generic piezoelectric beam in grid turbulence is also studied and recommendations are made on the type of beam that will produce the largest output in turbulence. Finally, the interaction of two piezoelectric harvesters in quiescent flow and grid turbulence is theoretically modeled and experimentally validated.
Beam-beam effects in the Tevatron
Shiltsev, V.; Alexahin, Y.; Lebedev, V.; Lebrun, P.; Moore, R.S.; Sen, T.; Tollestrup, A.; Valishev, A.; Zhang, X.L.; /Fermilab
2005-01-01
The Tevatron in Collider Run II (2001-present) is operating with 6 times more bunches, many times higher beam intensities and luminosities than in Run I (1992-1995). Electromagnetic long-range and head-on interactions of high intensity proton and antiproton beams have been significant sources of beam loss and lifetime limitations. We present observations of the beam-beam phenomena in the Tevatron and results of relevant beam studies. We analyze the data and various methods employed in operations, predict the performance for planned luminosity upgrades, and discuss ways to improve it.
Regimes of enhanced electromagnetic emission in beam-plasma interactions
NASA Astrophysics Data System (ADS)
Timofeev, I. V.; Annenkov, V. V.; Arzhannikov, A. V.
2015-11-01
The ways to improve the efficiency of electromagnetic waves generation in laboratory experiments with high-current relativistic electron beams injected into a magnetized plasma are discussed. It is known that such a beam can lose, in a plasma, a significant part of its energy by exciting a high level of turbulence and heating plasma electrons. Beam-excited plasma oscillations may simultaneously participate in nonlinear processes resulting in a fundamental and second harmonic emissions. It is obvious, however, that in the developed plasma turbulence the role of these emissions in the total energy balance is always negligible. In this paper, we investigate whether electromagnetic radiation generated in the beam-plasma system can be sufficiently enhanced by the direct linear conversion of resonant beam-driven modes into electromagnetic ones on preformed regular inhomogeneities of plasma density. Due to the high power of relativistic electron beams, the mechanism discussed may become the basis for the generator of powerful sub-terahertz radiation.
Regimes of enhanced electromagnetic emission in beam-plasma interactions
Timofeev, I. V.; Annenkov, V. V.; Arzhannikov, A. V.
2015-11-15
The ways to improve the efficiency of electromagnetic waves generation in laboratory experiments with high-current relativistic electron beams injected into a magnetized plasma are discussed. It is known that such a beam can lose, in a plasma, a significant part of its energy by exciting a high level of turbulence and heating plasma electrons. Beam-excited plasma oscillations may simultaneously participate in nonlinear processes resulting in a fundamental and second harmonic emissions. It is obvious, however, that in the developed plasma turbulence the role of these emissions in the total energy balance is always negligible. In this paper, we investigate whether electromagnetic radiation generated in the beam-plasma system can be sufficiently enhanced by the direct linear conversion of resonant beam-driven modes into electromagnetic ones on preformed regular inhomogeneities of plasma density. Due to the high power of relativistic electron beams, the mechanism discussed may become the basis for the generator of powerful sub-terahertz radiation.
Electron beam electromagnetic field interaction in one-dimensional coaxial vircator
NASA Astrophysics Data System (ADS)
Shao, H.; Liu, G. Z.; Yang, Z. F.
2005-10-01
A one-dimensional model of the interaction between an injected electron beam and an electromagnetic (EM) field inside a coaxial vircator is presented. The effects of the injected electron beam energy spread, anode absorption rate, feedback and injected current premodulation are analyzed. The EM-gains of interaction between the electron beam and TM01, TE11 modes are derived and discussed.
Dense Monoenergetic Proton Beams from Chirped Laser-Plasma Interaction
NASA Astrophysics Data System (ADS)
Galow, Benjamin J.; Salamin, Yousef I.; Liseykina, Tatyana V.; Harman, Zoltán; Keitel, Christoph H.
2011-10-01
Interaction of a frequency-chirped laser pulse with single protons and a hydrogen gas target is studied analytically and by means of particle-in-cell simulations, respectively. The feasibility of generating ultraintense (107 particles per bunch) and phase-space collimated beams of protons (energy spread of about 1%) is demonstrated. Phase synchronization of the protons and the laser field, guaranteed by the appropriate chirping of the laser pulse, allows the particles to gain sufficient kinetic energy (around 250 MeV) required for such applications as hadron cancer therapy, from state-of-the-art laser systems of intensities of the order of 1021W/cm2.
He-diamond interaction probed by atom beam scattering
NASA Astrophysics Data System (ADS)
Vidali, G.; Frankl, D. R.
1983-02-01
A 4He atomic beam was used to probe the He-C (diamond) interaction. Selective adsorption features have been measured and three energy levels identified: 6.4, 3.0, and 1.1 meV with a standard deviation of 0.1 meV. Diffraction patterns showed weak diffraction up to the second order; a corrugation parameter of 0.021 Å was obtained with the use of a hard-wall model in the eikonal approximation. An extensive study of surface preparation was carried out and the results of 4He diffraction for different methods of surface cleaning are reported.
Ionosphere/microwave beam interaction study. [satellite solar energy conversion
NASA Technical Reports Server (NTRS)
Duncan, L. M.; Gordon, W. E.
1977-01-01
A solar power satellite microwave power density of 20mw sq cm was confirmed as the level where nonlinear interactions may occur in the ionosphere, particularly at 100 km altitude. Radio wave heating at this altitude, produced at the Arecibo Observatory, yielded negative results for radio wave heating of an underdense ionosphere. Overdense heating produced striations in the ionosphere which may cause severe radio frequency interference problems under certain conditions. The effects of thermal self-focusing are shown to be limited severely geographically. The aspect sensitivity of field-aligned striations makes interference-free regions above magnetic latitude about 60 deg. A test program is proposed to simulate the interaction of the SPS beam with the ionosphere, to measure the effects of the interaction on the ionosphere and on communication and navigation systems, and to interpret the results.
Far-field measurements of vortex beams interacting with nanoholes.
Zambrana-Puyalto, Xavier; Vidal, Xavier; Fernandez-Corbaton, Ivan; Molina-Terriza, Gabriel
2016-01-01
We measure the far-field intensity of vortex beams going through nanoholes. The process is analyzed in terms of helicity and total angular momentum. It is seen that the total angular momentum is preserved in the process, and helicity is not. We compute the ratio between the two transmitted helicity components, γm,p. We observe that this ratio is highly dependent on the helicity (p) and the angular momentum (m) of the incident vortex beam in consideration. Due to the mirror symmetry of the nanoholes, we are able to relate the transmission properties of vortex beams with a certain helicity and angular momentum, with the ones with opposite helicity and angular momentum. Interestingly, vortex beams enhance the γm,p ratio as compared to those obtained by Gaussian beams. PMID:26911547
Far-field measurements of vortex beams interacting with nanoholes
Zambrana-Puyalto, Xavier; Vidal, Xavier; Fernandez-Corbaton, Ivan; Molina-Terriza, Gabriel
2016-01-01
We measure the far-field intensity of vortex beams going through nanoholes. The process is analyzed in terms of helicity and total angular momentum. It is seen that the total angular momentum is preserved in the process, and helicity is not. We compute the ratio between the two transmitted helicity components, γm,p. We observe that this ratio is highly dependent on the helicity (p) and the angular momentum (m) of the incident vortex beam in consideration. Due to the mirror symmetry of the nanoholes, we are able to relate the transmission properties of vortex beams with a certain helicity and angular momentum, with the ones with opposite helicity and angular momentum. Interestingly, vortex beams enhance the γm,p ratio as compared to those obtained by Gaussian beams. PMID:26911547
Nonlinear Interaction of Elliptical Laser Beam with Collisional Plasma: Effect of Linear Absorption
NASA Astrophysics Data System (ADS)
Keshav, Walia; Sarabjit, Kaur
2016-01-01
In the present work, nonlinear interaction of elliptical laser beam with collisional plasma is studied by using paraxial ray approximation. Nonlinear differential equations for the beam width parameters of semi-major axis and semi-minor axis of elliptical laser beam have been set up and solved numerically to study the variation of beam width parameters with normalized distance of propagation. Effects of variation in absorption coefficient and plasma density on the beam width parameters are also analyzed. It is observed from the analysis that extent of self-focusing of beam increases with increase/decrease in plasma density/absorption coefficient.
Bogaty, J.; Clifft, B.E.; Zinkann, G.P.; Pardo, R.C.
1995-08-01
The ECR-PII injector beam line is operated at a fixed ion velocity. The platform high voltage is chosen so that all ions have a velocity of 0.0085c at the PII entrance. If a previous tune configuration for the linac is to be used, the beam arrival time must be matched to the previous tune as well. A nondestructive beam-phase pickup detector was developed and installed at the entrance to the PII linac. This device provides continuous phase and beam current information and allows quick optimization of the beam injected into PII. Bunches traverse a short tubular electrode thereby inducing displacement currents. These currents are brought outside the vacuum interface where a lumped inductance resonates electrode capacitance at one of the bunching harmonic frequencies. This configuration yields a basic sensitivity of a few hundred millivolts signal per microampere of beam current. Beam-induced radiofrequency signals are summed against an offset frequency generated by our master oscillator. The resulting kilohertz difference frequency conveys beam intensity and bunch phase information which is sent to separate processing channels. One channel utilizes a phase locked loop which stabilizes phase readings if beam is unstable. The other channel uses a linear full wave active rectifier circuit which converts kilohertz sine wave signal amplitude to a D.C. voltage representing beam current. A prototype set of electronics is now in use with the detector and we began to use the system in operation to set the arrival beam phase. A permanent version of the electronics system for the phase detector is now under construction. Additional nondestructive beam intensity and phase monitors at the {open_quotes}Booster{close_quotes} and {open_quotes}ATLAS{close_quotes} linac sections are planned as well as on some of the high-energy beam lines. Such a monitor will be particularly useful for FMA experiments where the primary beam hits one of the electric deflector plates.
Simulation study of interactions of Space Shuttle-generated electron beams with ambient plasmas
NASA Technical Reports Server (NTRS)
Lin, Chin S.
1992-01-01
This report summarizes results obtained through the support of NASA Grant NAGW-1936. The objective of this report is to conduct large scale simulations of electron beams injected into space. The topics covered include the following: (1) simulation of radial expansion of an injected electron beam; (2) simulations of the active injections of electron beams; (3) parameter study of electron beam injection into an ionospheric plasma; and (4) magnetosheath-ionospheric plasma interactions in the cusp.
On a complex beam-beam interaction model with random forcing
NASA Astrophysics Data System (ADS)
Xu, Yong; Xu, Wei; Mahmoud, Gamal M.
2004-05-01
In recent years, many studies have been devoted to complex differential equations (CDE), which appear in very important applications in physics and engineering. This paper aims to investigate one such CDE, containing a random forcing term: z̈+ω o2z+ε 2λg( ż)+ε 2f(z, z¯)p(ω ot)=αn(t) , where z( t)= x( t)+i y( t) a complex function, i= -1, n( t) is a broad-band process with zero mean and ε2 and λ small real parameters. In particular, we use Eq. (∗) to model the interaction between two colliding beams in particle accelerators, setting g( ż)= ż, f(z, z¯)=z|z| 2 and p(ω ot)= cos ω ot and extend the work we had started in an earlier publication (Mahmoud, Physica A 216 (1995) 445). We apply the stochastic averaging method to derive a Fokker-Planck-Kolmogorov equation for this equation and obtain analytically the exact stationary probability density function and the first and second moments in the amplitude of the solutions. Numerical simulations are carried out to compare with the theoretical ones and excellent agreement is found.
NASA Astrophysics Data System (ADS)
Mitri, F. G.
2011-11-01
Mathematical expressions for the acoustic scattering, instantaneous (linear), and time-averaged (nonlinear) forces resulting from the interaction of a new type of Bessel beam, termed here a first-order non-diffracting Bessel trigonometric beam (FOBTB) with a sphere, are derived. The beam is termed "trigonometric" because of the dependence of its phase on the cosine function. The FOBTB is regarded as a superposition of two equi-amplitude first-order Bessel vortex (helicoidal) beams having a unit positive and negative order (known also as topological charge), respectively. The FOBTB is non-diffracting, possesses an axial null, a geometric phase, and has an azimuthal phase that depends on cos( ϕ± ϕ0), where ϕ0 is an initial arbitrary phase angle. Beam rotation around its wave propagation axis can be achieved by varying ϕ0. The 3D directivity patterns are computed, and the resulting modifications of the scattering are illustrated for a rigid sphere centered on the beam's axis and immersed in water. Moreover, the backward and forward acoustic scattering by a sphere vanish for all frequencies. The present paper will shed light on the novel scattering properties of an acoustical FOBTB by a sphere that may be useful in particle manipulation and entrapment, non-destructive/medical imaging, and may be extended to other potentially useful applications in optics and electromagnetism.
Quadrupole beam-based alignment in the RHIC interaction regions
Ziegler, J.; Satogata, T.
2011-03-28
Continued beam-based alignment (BBA) efforts have provided significant benefit to both heavy ion and polarized proton operations at RHIC. Recent studies demonstrated previously unknown systematic beam position monitor (BPM) offset errors and produced accurate measurements of individual BPM offsets in the experiment interaction regions. Here we describe the algorithm used to collect and analyze data during the 2010 and early 2011 RHIC runs and the results of these measurements. BBA data has been collected over the past two runs for all three of the active experimental IRs at RHIC, updating results from the 2005 run which were taken with incorrectly installed offsets. The technique was successfully applied to expose a systematic misuse of the BPM survey offsets in the control system. This is likely to benefit polarized proton operations as polarization transmission through acceleration ramps depends on RMS orbit control in the arcs, but a quantitative understanding of its impact is still under active investigation. Data taking is ongoing as are refinements to the BBA technique aimed at reducing systematic errors and properly accounting for dispersive effects. Further development may focus on non-triplet BPMs such as those located near snakes, or arc quadrupoles that do not have individually shunted power supplies (a prerequisite for the current method) and as such, will require a modified procedure.
Energy characteristics of beam-plasma interaction in a closed volume
NASA Astrophysics Data System (ADS)
Klykov, I. L.; Tarakanov, V. P.; Shustin, E. G.
2012-03-01
Energy exchange between an electron beam and plasma during a beam-plasma discharge in a closed cavity excited by the electron beam is analyzed using computer simulations by the KARAT code. A method allowing one to analyze the beam-plasma interaction in the quasi-steady stage of the discharge is proposed. Qualitative characteristics of energy exchange (such as beam energy losses and the energy distributions of beam electrons and plasma particles leaving the discharge) both during spontaneous discharge excitation and in the presence of initial beam modulation by regular or noiselike signals are determined. The results obtained enable one to estimate the energy characteristics of a plasma processing reactor based on a beam-plasma discharge.
Ion Beam Plasma Interactions in the ASTRAL Helicon Plasma Source.
NASA Astrophysics Data System (ADS)
Boivin, R. F.; Kesterson, A.; Kamar, O.; Lin, Y.; Munoz, J.; Wang, X.
2008-11-01
A 100 KeV NEC duoplasmatron is used to produce an energetic ion beam (10 KeV < E < 100 KeV). The beam is sent through plasmas produced by the ASTRAL helicon plasma source. The beam current and beam size are measured by a device combining Retarding Field Analyzer (RFA) and Faraday Cup (FC) features. ASTRAL produces bright intense He/Ne/Ar plasmas with the following parameters: ne = 1E11 -- 1E13 cm-3 and Te = 2 - 10 eV, B-field < 1.3 kGauss, rf power <= 2 kWatt. RF compensated Langmuir probes are used to measure Te and ne. Depending on the ion beam energy and the ratio of beam density over plasma density different wave instabilities will be generated within the plasmas. A real-time spectrum analyzer will be used to identify the wave instabilities and their evolution in the plasma. We will present early experimental results together with some preliminary theoretical simulation using 2D and 3D hybrid simulation codes. In these codes, ions are treated as fully kinetic particles while electrons are treated as a fluid. Both species are moving in a self-consistent electromagnetic field.
Parallel Simulation Algorithms for the Three Dimensional Strong-Strong Beam-Beam Interaction
Kabel, A.C.; /SLAC
2008-03-17
The strong-strong beam-beam effect is one of the most important effects limiting the luminosity of ring colliders. Little is known about it analytically, so most studies utilize numeric simulations. The two-dimensional realm is readily accessible to workstation-class computers (cf.,e.g.,[1, 2]), while three dimensions, which add effects such as phase averaging and the hourglass effect, require vastly higher amounts of CPU time. Thus, parallelization of three-dimensional simulation techniques is imperative; in the following we discuss parallelization strategies and describe the algorithms used in our simulation code, which will reach almost linear scaling of performance vs. number of CPUs for typical setups.
Rippled beam free-electron laser amplifier using the axial free-electron laser interaction
Carlsten, B.E.
1997-05-01
A new microwave generation mechanism involving a scalloping annular electron beam is discussed. The beam interacts with the axial electric field of a TM{sub 0n} mode in a smooth circular waveguide through the axial free-electron laser interaction, in which the beam ripple period is synchronous with the phase slippage of the rf mode relative to the electron beam. In this paper, we analyze the ripple motion of the electron beam and derive the dispersion relation describing the exponential growth of the rf mode. We calculate the gain for a nominal design and as a function of beam current and ripple amplitude, and show that power gain on the order of 30 dB/m of interaction is achievable. We additionally demonstrate that, under the right conditions, the interaction is autoresonant. {copyright} {ital 1997 American Institute of Physics.}
Molecular contamination study by interaction of a molecular beam with a platinum surface
NASA Technical Reports Server (NTRS)
Nuss, H. E.
1976-01-01
The capability of molecular beam scattering from a solid surface is analyzed for identification of molecular contamination of the surface. The design and setup of the molecular beam source and the measuring setup for the application of a phase sensitive measuring technique for the determination of the scattered beam intensity are described. The scattering distributions of helium and nitrogen molecular beams interacting with a platinum surface were measured for different amounts of contamination from diffusion pump oil for surface temperatures ranging from 30 to 400 C. The results indicate the scattering of molecular beams from a platinum surface is a very sensitive method for detecting surface contamination.
Emittance of positron beams produced in intense laser plasma interaction
Chen Hui; Hazi, A.; Link, A.; Anderson, S.; Gronberg, J.; Izumi, N.; Tommasini, R.; Wilks, S.; Sheppard, J. C.; Meyerhofer, D. D.; Baldis, H. A.; Marley, E.; Park, J.; Williams, G. J.; Fedosejev, R.; Kerr, S.
2013-01-15
The first measurement of the emittance of intense laser-produced positron beams has been made. The emittance values were derived through measurements of positron beam divergence and source size for different peak positron energies under various laser conditions. For one of these laser conditions, we used a one dimensional pepper-pot technique to refine the emittance value. The laser-produced positrons have a geometric emittance between 100 and 500 mm{center_dot}mrad, comparable to the positron sources used at existing accelerators. With 10{sup 10}-10{sup 12} positrons per bunch, this low emittance beam, which is quasi-monoenergetic in the energy range of 5-20 MeV, may be useful as an alternative positron source for future accelerators.
Dikansky, N.; Nagaitsev, S.; Parkhomchuk, V.
1997-09-01
The high energy electron cooling requires a very cold electron beam. Thus, the electron beam focusing system is very important for the performance of electron cooling. A system with and without longitudinal magnetic field is presented for discussion. Interaction of electron beam with the vacuum chamber as well as with the background ions and stored antiprotons can cause the coherent electron beam instabilities. Focusing system requirements needed to suppress these instabilities are presented.
Nonlinear theory of beam-wave interaction in the pasotron with a phase-mixed electron beam
Bliokh, Yu.P.; Nusinovich, G.S.
2006-02-15
The nonlinear theory describing the interaction processes in traveling-wave-amplifier (TWT) and backward-wave-oscillator (BWO) configurations of pasotrons is developed. It is shown that space charge forces in electron bunches formed in the process of beam-wave interaction in the pasotron play a role completely different from that in linear-beam devices with a strong magnetic focusing of electron beams. While in the latter devices the space charge forces limit the device efficiency due to saturation of the axial bunching, in the pasotron they do not destroy electron bunches but cause the radial expansion of them, which may increase device efficiency. The role of these forces is compared with the ion focusing and the radial electric field of the wave, and it is shown that, under certain conditions, it may dominate. The efficiency of the pasotron-TWT with a phase-mixed beam well focused at the entrance may exceed 50%. In the pasotron-BWO, the efficiency is lower (up to 26% in the case studied), but it can grow as the equivalent of the Pierce gain parameter increases.
Relativistic electron beam interaction and Ka - generation in solid targets
Eder, D C; Eidman, K; Fill, E; Pretzler, G; Saemann, A
1999-06-01
When fs laser pulses interact with solid surfaces at intensities I{lambda}{sup 2} > 10{sup 18} W/cm{sup 2} {micro}m{sup 2}, collimated relativistic electron beams are generated. These electrons can be used for producing intense X-radiation (bremsstrahlung or K{sub {alpha}}) for pumping an innershell X-ray laser. The basic concept of such a laser involves the propagation of the electron beam in a material which converts electron energy into appropriate pump photons. Using the ATLAS titanium-sapphire laser at Max-Planck-Institut fuer Quantenoptik, the authors investigate the generation of hot electrons and of characteristic radiation in copper. The laser (200 mJ/130 fs) is focused by means of an off-axis parabola to a diameter of about 10 {micro}m. By varying the position of the focus, they measure the copper K{sub {alpha}} - yield as a function of intensity in a range of 10{sup 15} to 2 x 10{sup 18} W/cm{sup 2} while keeping the laser pulse energy constant. Surprisingly, the highest emission is obtained at an intensity of about 10{sup 17} W/cm{sup 2}. However, this result is readily explained by the weak scaling of the hot-electron temperature with intensity. An efficiency of 2 x 10{sup -4} for the conversion of laser energy into copper K{sub {alpha}} is measured. Simulations of the interaction of the hot electrons with the cold target material and the conversion into X-rays are carried out by means of the TIGER/ITS code, a time-independent, coupled electron/photon Monte Carlo transport code. The code calculates the propagation of individual electrons and the generation of photons in cold material. Comparison of the code predictions with the data shows an efficiency of 15% for the generation of electrons with energies in the 100 keV range. A second experiment involves the demonstration of photopumping of an innershell transition in cobalt by the copper radiation. Comparing the emission with the one of nickel, which is not photopumped by copper K{sub {alpha}} photons
Control on the anomalous interactions of Airy beams in nematic liquid crystals.
Shen, Ming; Li, Wei; Lee, Ray-Kuang
2016-04-18
We reveal a controllable manipulation of anomalous interactions between Airy beams in nonlocal nematic liquid crystals numerically. With the help of an in-phase fundamental Gaussian beam, attraction between in-phase Airy beams can be suppressed or become a repulsive one to each other; whereas the attraction can be strengthened when the Gaussian beam is out-of-phase. In contrast to the repulsive interaction in local media, stationary bound states of breathing Airy soliton pairs are found in nematic liquid crystals. PMID:27137288
Pardo, R.C.; Zinkann, G.P.
1995-08-01
A program for configuring the linac, based on previously run configurations for any desired beam was used during the past year. This program uses only a small number of empirical tunes to scale resonator fields to properly accelerate a beam with a different charge-to-mass (q/A) ratio from the original tune configuration. The program worked very well for the PII linac section where we can easily match a new beam`s arrival phase and velocity to the tuned value. It was also fairly successful for the Booster and ATLAS sections of the linac, but not as successful as for the PII linac. Most of the problems are associated with setting the beam arrival time correctly for each major linac section. This problem is being addressed with the development of the capacitive pickup beam phase monitor discussed above. During the next year we expect to improve our ability to quickly configure the linac for new beams and reduce the time required for linac tuning. Already the time required for linac tuning as a percentage of research hours has decreased from 22% in FY 1993 to 15% in the first quarter of FY 1995.
Interactive Lessons for Engineering; An Example From Elementary Beam Theory.
ERIC Educational Resources Information Center
Bennett, James A.
A series of graphically-oriented computer-assisted instructional (CAI) lessons in elementary beam theory has been developed for an undergraduate course in solid mechanics. The lessons were implemented on the PLATO CAI system at the University of Illinois; the system included a graphical display unit (CRT) and a CDC 1604 computer. The first phase…
Random aspects of beam physics and laser-plasma interactions
NASA Astrophysics Data System (ADS)
Charman, Andrew Emile
Aspects of the dynamics of charged particle and radiation beams, and of the interaction of plasmas with radiation are investigated, informed by concerns of classical and quantum mechanical uncertainty and noise, and related by notions of particle and radiation phase space manipulation, overlap, and control. We begin by studying questions of optimal longitudinal pulse-shaping in laser wakefield accelerators, based on a one-dimensional model with prescribed laser drive and either a linearized or fully nonlinear quasi-static plasma response. After discussing various figures of-merit, we advocate maximizing the peak wake amplitude instead of the transformer ratio. A number of new results are demonstrated, certain conjectures are rigorously proved for the first time, and some erroneous claims corrected. Instead of using short laser pulses to excite plasma waves, one can employ the beat wave between two co-propagating lasers to excite a Langmuir wave with high phase velocity suitable for acceleration of relativistic electrons. A modified version of this plasma beat-wave accelerator scheme is introduced and analyzed, which is based on autoresonant phase-locking of the nonlinear Langmuir wave to the slowly chirped beat frequency of the driving lasers via adiabatic passage through resonance. This new scheme is designed to overcome some of the well-known limitations of previous approaches, such as relativistic detuning and nonlinear modulation of the driven Langmuir wave amplitude, as well as sen sitivity to frequency mismatch due to measurement uncertainties and density fluctuations or inhomogeneities. From radiation exciting plasmas, we turn to issues of plasmas or beams emitting radiation. We develop a Hilbert-space and operator-based approach to electromagnetic radiation, and use this formalism to derive a maximum-power variational principle (MPVP) for spontaneous radiation from prescribed classical harmonic sources. Results are first derived in the paraxial limit, based
Long-Range Beam-Beam Compensation in RHIC
Kim, Hyung Jin; Sen, Tanaji; Fischer, Wolfram; /Brookhaven
2010-05-01
In order to avoid the effects of long-range beam-beam interactions which produce beam blow-up and deteriorate beam life time, a compensation scheme with current carrying wires has been proposed. Two long-range beam-beam compensators were installed in RHIC rings in 2006. The effects of the compensators have been experimentally investigated. An indication was observed that the compensators are beneficial to beam life time in measurements performed in RHIC during 2009. In this paper, we report the effects of wire compensator on beam loss and emittance for proton-proton beams at collision energy.
Beam-beam deflection and signature curves for elliptic beams
Ziemann, V.
1990-10-22
In this note we will present closed expressions for the beam-beam deflection angle for arbitrary elliptic beams including tilt. From these expressions signature curves, i.e., systematic deviations from the round beam deflection curve due to ellipticity or tilt are derived. In the course of the presentation we will prove that it is generally impossible to infer individual beam sizes from beam-beam deflection scans. 3 refs., 2 figs.
Investigation of plasma-surface interaction at plasma beam facilities
NASA Astrophysics Data System (ADS)
Kurnaev, V.; Vizgalov, I.; Gutorov, K.; Tulenbergenov, T.; Sokolov, I.; Kolodeshnikov, A.; Ignashev, V.; Zuev, V.; Bogomolova, I.; Klimov, N.
2015-08-01
The new Plasma Beam Facility (PBF) has been put into operation for assistance in testing of plasma faced components at Material Science Kazakhstan Tokamak (KTM). PBF includes a powerful electron gun (up to 30 kV, 1 A) and a high vacuum chamber with longitudinal magnetic field coils (up to 0.2 T). The regime of high vacuum electron beam transportation is used for thermal tests with power density at the target surface up to 10 GW/m2. The beam plasma discharge (BPD) regime with a gas-puff is used for generation of intensive ion fluxes up to 3 ṡ 1022 m-2 s-1. Initial tests of the KTM PBF's capabilities were carried out: various discharge regimes, carbon deposits cleaning, simultaneous thermal and ion impacts on radiation cooled refractory targets. With a water-cooled target the KTM PBF could be used for high heat flux tests of materials (validated by the experiment with W mock-up at the PR-2 PBF).
Development of Electronics for the ATF2 Interaction Point Region Beam Position Monitor
Kim, Youngim; Heo, Ae-young; Kim, Eun-San; Boogert, Stewart; Honda, Yosuke; Tauchi, Toshiaki; Terunuma, Nobuhiro; May, Justin; McCormick, Douglas; Smith, Tonee; /SLAC
2012-08-14
Nanometer resolution beam position monitors have been developed to measure and control beam position stability at the interaction point region of ATF2. The position of the beam has to be measured to within a few nanometers at the interaction point. In order to achieve this performance, electronics for the low-Q IP-BPM was developed. Every component of the electronics have been simulated and checked on the bench and using the ATF2 beam. We will explain each component and define their working range. Then, we will show the performance of the electronics measured with beam signal. ATF2 is a final focus test beam line for ILC in the framework of the ATF international collaboration. The new beam line was constructed to extend the extraction line at ATF, KEK, Japan. The first goal of ATF2 is the acheiving of a 37 nm vertical beam size at focal point (IP). The second goal is to stabilize the beam at the focal point at a few nanometer level for a long period in order to ensure the high luminosity. To achieve these goals a high resolution IP-BPM is essential. In addition for feedback applications a low-Q system is desirable.
Beam-Plasma Interaction and Instabilities in a 2D Yukawa Plasma
NASA Astrophysics Data System (ADS)
Kyrkos, S.; Kalman, G.; Rosenberg, M.
2008-11-01
In a complex plasma, penetrating charged particle beams may lead to beam-plasma instabilities. When either the plasma, the beam, or both, are strongly interacting [1], the features of the instability are different from those in a weakly coupled plasma. We consider the case when a 2D dusty plasma forms a lattice, and the beam is moving in the lattice plane. Both the grains and the beam particles interact through a Yukawa potential; the beam particles are weakly coupled to each other and to the lattice. The system develops both a longitudinal and a transverse instability. Based on the phonon spectrum of a 2D hexagonal Yukawa lattice [2], we determine and compare the transverse and longitudinal growth rates. As a function of the wavenumber, the growth rates exhibit remarkable gaps, where no instability is excited. The gap locations are governed by the ratio of the lattice and the beam plasma frequencies. The behavior of the growth rates also depends on the direction of the beam and on the relationship between the beam speed and the longitudinal and transverse sound speeds. [1] GJ Kalman, M Rosenberg, JPA 36, 5963 (2003). [2] T Sullivan, GJ Kalman, S Kyrkos, P Bakshi, M Rosenberg, Z Donko, JPA 39, 4607 (2006).
NASA Astrophysics Data System (ADS)
Kiani, Keivan; Nikkhoo, Ali
2012-02-01
This paper deals with the capabilities of linear and nonlinear beam theories in predicting the dynamic response of an elastically supported thin beam traversed by a moving mass. To this end, the discrete equations of motion are developed based on Lagrange's equations via reproducing kernel particle method (RKPM). For a particular case of a simply supported beam, Galerkin method is also employed to verify the results obtained by RKPM, and a reasonably good agreement is achieved. Variations of the maximum dynamic deflection and bending moment associated with the linear and nonlinear beam theories are investigated in terms of moving mass weight and velocity for various beam boundary conditions. It is demonstrated that for majority of the moving mass velocities, the differences between the results of linear and nonlinear analyses become remarkable as the moving mass weight increases, particularly for high levels of moving mass velocity. Except for the cantilever beam, the nonlinear beam theory predicts higher possibility of moving mass separation from the base beam compared to the linear one. Furthermore, the accuracy levels of the linear beam theory are determined for thin beams under large deflections and small rotations as a function of moving mass weight and velocity in various boundary conditions.
Wu, Y.; Xu, Z.; Li, Z. H.; Tang, C. X.
2012-07-15
In intermediate cavities of a relativistic klystron amplifier (RKA) driven by intense relativistic electron beam, the equivalent circuit model, which is widely adopted to investigate the interaction between bunched beam and the intermediate cavity in a conventional klystron design, is invalid due to the high gap voltage and the nonlinear beam loading in a RKA. According to Maxwell equations and Lorentz equation, the self-consistent equations for beam-wave interaction in the intermediate cavity are introduced to study the nonlinear interaction between bunched beam and the intermediate cavity in a RKA. Based on the equations, the effects of modulation depth and modulation frequency of the beam on the gap voltage amplitude and its phase are obtained. It is shown that the gap voltage is significantly lower than that estimated by the equivalent circuit model when the beam modulation is high. And the bandwidth becomes wider as the beam modulation depth increases. An S-band high gain relativistic klystron amplifier is designed based on the result. And the corresponding experiment is carried out on the linear transformer driver accelerator. The peak output power has achieved 1.2 GW with an efficiency of 28.6% and a gain of 46 dB in the corresponding experiment.
Mestha, L.K.; Kwan, C.M.; Yeung, K.S.
1994-04-01
An open-loop state space model of all the major low-level rf feedback control loops is derived. The model has control and state variables for fast-cycling machines to apply modern multivariable feedback techniques. A condition is derived to know when exactly we can cross the boundaries between time-varying and time-invariant approaches for a fast-cycling machine like the Low Energy Booster (LEB). The conditions are dependent on the Q of the cavity and the rate at which the frequency changes with time. Apart from capturing the time-variant characteristics, the errors in the magnetic field are accounted in the model to study the effects on synchronization with the Medium Energy Booster (MEB). The control model is useful to study the effects on beam control due to heavy beam loading at high intensities, voltage transients just after injection especially due to time-varying voltages, instability thresholds created by the cavity tuning feedback system, cross coupling between feedback loops with and without direct rf feedback etc. As a special case we have shown that the model agrees with the well known Pedersen model derived for the CERN PS booster. As an application of the model we undertook a detailed study of the cross coupling between the loops by considering all of them at once for varying time, Q and beam intensities. A discussion of the method to identify the coupling is shown. At the end a summary of the identified loop interactions is presented.
NASA Astrophysics Data System (ADS)
Belyi, V. N.; Khilo, P. A.; Kazak, N. S.; Khilo, N. A.
2016-07-01
The generation of wavefront phase dislocations of vortex Bessel light beams under acousto-optic (AO) diffraction in uniaxial crystals has been investigated. For the first time the process of AO interaction is studied with participation of Bessel acoustic beams instead of plane waves. A mathematical description of AO interaction is provided, which supposes the satisfaction of two types of phase-matching condition. The acousto-optic processes of transferring optical singularities onto the wavefront of BLBs are investigated and the generation of high-order optical vortices is considered at the interaction of optical and acoustical Bessel beams. The change of Bessel function order or phase dislocation order is explained as a result of the spin–orbital interaction under acousto-optic diffraction of vortex Bessel beams.
Laser-driven relativistic electron beam interaction with solid dielectric
Sarkisov, G. S.; Ivanov, V. V.; Leblanc, P.; Sentoku, Y.; Yates, K.; Wiewior, P.; Chalyy, O.; Astanovitskiy, A.; Bychenkov, V. Yu.; Jobe, D.; Spielman, R. B.
2012-07-30
The multi-frames shadowgraphy, interferometry and polarimetry diagnostics with sub-ps time resolution were used for an investigation of ionization wave dynamics inside a glass target induced by laser-driven relativistic electron beam. Experiments were done using the 50 TW Leopard laser at the UNR. For a laser flux of {approx}2 Multiplication-Sign 10{sup 18}W/cm{sup 2} a hemispherical ionization wave propagates at c/3. The maximum of the electron density inside the glass target is {approx}2 Multiplication-Sign 10{sup 19}cm{sup -3}. Magnetic and electric fields are less than {approx}15 kG and {approx}1 MV/cm, respectively. The electron temperature has a maximum of {approx}0.5 eV. 2D interference phase shift shows the 'fountain effect' of electron beam. The very low ionization inside glass target {approx}0.1% suggests a fast recombination at the sub-ps time scale. 2D PIC-simulations demonstrate radial spreading of fast electrons by self-consistent electrostatic fields.
Energetic neutron beams generated from femtosecond laser plasma interactions
Zulick, C.; Dollar, F.; Chvykov, V.; Kalinchenko, G.; Maksimchuk, A.; Raymond, A.; Thomas, A. G. R.; Willingale, L.; Yanovsky, V.; Krushelnick, K.; Davis, J.; Petrov, G. M.
2013-03-25
Experiments at the HERCULES laser facility have produced directional neutron beams with energies up to 16.8({+-}0.3) MeV using {sub 1}{sup 2}d(d,n){sub 2}{sup 3}He,{sub 7}{sup 3}Li(p,n){sub 4}{sup 7}Be,and{sub 3}{sup 7}Li(d,n){sub 4}{sup 8}Be reactions. Efficient {sub 1}{sup 2}Li(d,n){sub 4}{sup 8}Be reactions required the selective acceleration of deuterons through the introduction of a deuterated plastic or cryogenically frozen D{sub 2}O layer on the surface of a thin film target. The measured neutron yield was {<=}1.0 ({+-}0.5) Multiplication-Sign 10{sup 7} neutrons/sr with a flux 6.2({+-}3.7) times higher in the forward direction than at 90{sup Degree-Sign }. This demonstrates that femtosecond lasers are capable of providing a time averaged neutron flux equivalent to commercial {sub 1}{sup 2}d(d,n){sub 2}{sup 3}He generators with the advantage of a directional beam with picosecond bunch duration.
Laser-driven relativistic electron beam interaction with solid dielectric
NASA Astrophysics Data System (ADS)
Sarkisov, G. S.; Ivanov, V. V.; Leblanc, P.; Sentoku, Y.; Yates, K.; Wiewior, P.; Chalyy, O.; Astanovitskiy, A.; Bychenkov, V. Yu.; Jobe, D.; Spielman, R. B.
2012-07-01
The multi-frames shadowgraphy, interferometry and polarimetry diagnostics with sub-ps time resolution were used for an investigation of ionization wave dynamics inside a glass target induced by laser-driven relativistic electron beam. Experiments were done using the 50 TW Leopard laser at the UNR. For a laser flux of ˜2×1018W/cm2 a hemispherical ionization wave propagates at c/3. The maximum of the electron density inside the glass target is ˜2×1019cm-3. Magnetic and electric fields are less than ˜15 kG and ˜1 MV/cm, respectively. The electron temperature has a maximum of ˜0.5 eV. 2D interference phase shift shows the "fountain effect" of electron beam. The very low ionization inside glass target ˜0.1% suggests a fast recombination at the sub-ps time scale. 2D PIC-simulations demonstrate radial spreading of fast electrons by self-consistent electrostatic fields.
Ion transport in beam-plasma interactions. Final report, 30 September 1983-29 March 1985
Stern, R.A.
1985-05-30
The project is concerned with the interaction of ion beams and plasmas, and their mutual destabilization. The goal is to characterize this interaction using novel diagnostic techniques. In the experiment, a gas-discharge plasma was to be constructed through which ions could be accelerated. A two-laser system would be assembled and variations of laser-induced fluorescence (LIF) diagnostics used to measures the changes in ion properties of the beam and the plasma consequent on the instability.
Interactions of vortices with a flexible beam with applications in fluidic energy harvesting
Goushcha, O.; Elvin, N.; Andreopoulos, Y.
2014-01-13
A cantilever piezoelectric beam immersed in a flow and subjected to naturally occurring vortices such as those formed in the wake of bluff bodies can be used to generate electrical energy harvested in fluid flows. In this paper, we present the pressure distribution and deflection of a piezoelectric beam subjected to controlled vortices. A custom designed experimental facility is set up to study the interaction of individual and multiple vortices with the beam. Vortex tori are generated by an audio speaker and travel at controlled rates over the beam. Particle image velocimetry is used to measure the 2-D flow field induced by each vortex and estimate the effect of pressure force on the beam deflection.
Interactions of vortices with a flexible beam with applications in fluidic energy harvesting
NASA Astrophysics Data System (ADS)
Goushcha, O.; Elvin, N.; Andreopoulos, Y.
2014-01-01
A cantilever piezoelectric beam immersed in a flow and subjected to naturally occurring vortices such as those formed in the wake of bluff bodies can be used to generate electrical energy harvested in fluid flows. In this paper, we present the pressure distribution and deflection of a piezoelectric beam subjected to controlled vortices. A custom designed experimental facility is set up to study the interaction of individual and multiple vortices with the beam. Vortex tori are generated by an audio speaker and travel at controlled rates over the beam. Particle image velocimetry is used to measure the 2-D flow field induced by each vortex and estimate the effect of pressure force on the beam deflection.
Chaitanya, N. Apurv; Jabir, M. V.; Banerji, J.; Samanta, G. K.
2016-01-01
Hollow Gaussian beams (HGB) are a special class of doughnut shaped beams that do not carry orbital angular momentum (OAM). Such beams have a wide range of applications in many fields including atomic optics, bio-photonics, atmospheric science, and plasma physics. Till date, these beams have been generated using linear optical elements. Here, we show a new way of generating HGBs by three-wave mixing in a nonlinear crystal. Based on nonlinear interaction of photons having OAM and conservation of OAM in nonlinear processes, we experimentally generated ultrafast HGBs of order as high as 6 and power >180 mW at 355 nm. This generic concept can be extended to any wavelength, timescales (continuous-wave and ultrafast) and any orders. We show that the removal of azimuthal phase of vortices does not produce Gaussian beam. We also propose a new and only method to characterize the order of the HGBs. PMID:27581625
Chaitanya, N Apurv; Jabir, M V; Banerji, J; Samanta, G K
2016-01-01
Hollow Gaussian beams (HGB) are a special class of doughnut shaped beams that do not carry orbital angular momentum (OAM). Such beams have a wide range of applications in many fields including atomic optics, bio-photonics, atmospheric science, and plasma physics. Till date, these beams have been generated using linear optical elements. Here, we show a new way of generating HGBs by three-wave mixing in a nonlinear crystal. Based on nonlinear interaction of photons having OAM and conservation of OAM in nonlinear processes, we experimentally generated ultrafast HGBs of order as high as 6 and power >180 mW at 355 nm. This generic concept can be extended to any wavelength, timescales (continuous-wave and ultrafast) and any orders. We show that the removal of azimuthal phase of vortices does not produce Gaussian beam. We also propose a new and only method to characterize the order of the HGBs. PMID:27581625
Heavy ion beam polarization produced by the multi-tilted-foil interaction
NASA Astrophysics Data System (ADS)
Bendahán, J.; Broude, C.; Hass, M.; Dafni, E.; Goldring, G.; Gerl, J.; Habs, D.; Körten, W.; Schwalm, D.
1988-09-01
Nuclear polarization of the 7/2- ground-state of51V was produced via the Multi-Tilted-Foil (MTF) interaction with a V beam. The induced polarization was determined by measuring the left-right asymmetry of Coulomb excited51V nuclei and, for a51V beam at E=100 MeV, was measured to be P I =0.012(2). The nuclear polarization was also induced at E=50 MeV and, after further acceleration, determined at E=195 MeV to be PI=0.010(1). These experiments demonstrate the feasibility of polarizing a great variety of heavy-ion beams at arbitrary velocities with subsequent acceleration and passage through magnetic beam-optics elements. Such polarization, albeit small, can be utilized for the determination of electromagnetic moments of exotic beams and separated reaction products.
Theory of type 3b solar radio bursts. [plasma interaction and electron beams
NASA Technical Reports Server (NTRS)
Smith, R. A.; Delanoee, J.
1975-01-01
During the initial space-time evolution of an electron beam injected into the corona, the strong beam-plasma interaction occurs at the head of the beam, leading to the amplification of a quasi-monochromatic large-amplitude plasma wave that stabilizes by trapping the beam particles. Oscillation of the trapped particles in the wave troughs amplifies sideband electrostatic waves. The sidebands and the main wave subsequently decay to observable transverse electromagnetic waves through the parametric decay instability. This process gives rise to the elementary striation bursts. Owing to velocity dispersion in the beam and the density gradient of the corona, the entire process may repeat at a finite number of discrete plasma levels, producing chains of elementary bursts. All the properties of the type IIIb bursts are accounted for in the context of the theory.
The Particle Beam Optics Interactive Computer Laboratory for Personal Computers and Workstations
NASA Astrophysics Data System (ADS)
Gillespie, G. H.; Hill, B.; Brown, N.; Martono, H.; Moore, J.; Babcock, C.
1997-05-01
The Particle Beam Optics Interactive Computer Laboratory (PBO Lab) is a new software concept to aid both students and professionals in modeling charged particle beams and particle beam optical systems. The PBO Lab has been designed to run on several computer platforms and includes four key elements: a graphic user interface shell; (2) a knowledge database on electric and magnetic optics elements, including interactive tutorials on the physics of charged particle optics and on the technology used in particle optics hardware; (3) a graphic construction kit for users to interactively and visually construct optical beam lines; and (4) a set of charged particle optics computational engines that compute transport matrices, beam envelopes and trajectories, fit parameters to optical constraints, and carry out similar calculations for the graphically-defined beam lines. The primary computational engines in the first generation PBO Lab are the third-order TRANSPORT code, the multiple ray tracing program TURTLE, and a new first-order matrix code that includes an envelope space charge model with support for calculating single trajectories in the presence of the beam space charge. Progress on the PBO Lab development is described and a demonstration will be given.
Wei, Jie; Sessler, A.M.
1998-06-01
The understanding of crystalline beams has advanced to the point where one can now, with reasonable confidence, undertake an analysis of the luminosity of colliding crystalline beams. Such a study is reported here. It is necessary to observe the criteria, previously stated, for the creation and stability of crystalline beams. This requires, firstly, the proper design of a lattice. Secondly, a crystal must be formed, and this can usually be done at various densities. Thirdly, the crystals in a colliding-beam machine are brought into collision. We study all of these processes using the molecular dynamics (MD) method. The work parallels what was done previously, but the new part is to study the crystal-crystal interaction in collision. We initially study the zero-temperature situation. If the beam-beam force (or equivalent tune shift) is too large then over-lapping crystals can not be created (rather two spatially separated crystals are formed). However, if the beam-beam force is less than but comparable to that of the space-charge forces between the particles, we find that overlapping crystals can be formed and the beam-beam tune shift can be of the order of unity. Operating at low but non-zero temperature can increase the luminosity by several orders of magnitude over that of a usual collider. The construction of an appropriate lattice, and the development of adequately strong coding, although theoretically achievable, is a challenge in practice.
WEI, J.
1998-06-26
The understanding of crystalline beams has advanced to the point where one can now, with reasonable confidence, undertake an analysis of the luminosity of colliding crystalline beams. Such a study is reported here. It is necessary to observe the criteria, previously stated, for the creation and stability of crystalline beams. This requires, firstly, the proper design of a lattice. Secondly, a crystal must be formed, and this can usually be done at various densities. Thirdly, the crystals in a colliding-beam machine are brought into collision. We study all of these processes using the molecular dynamics (MD) method. The work parallels what was done previously, but the new part is to study the crystal-crystal interaction in collision. We initially study the zero-temperature situation. If the beam-beam force (or equivalent tune shift) is too large then overlapping crystals can not be created (rather two spatially separated crystals are formed). However, if the beam-beam force is less than but comparable to that of the space-charge forces between the particles, we find that overlapping crystals can be formed and the beam-beam tune shift can be of the order of unity. Operating at low but non-zero temperature can increase the luminosity by several orders of magnitude over that of a usual collider. The construction of an appropriate lattice, and the development of adequately strong cooling, although theoretically achievable, is a challenge in practice.
DICKEY,FRED M.; WEICHMAN,LOUIS S.; SHAGAM,RICHARD N.
2000-03-16
Industrial, military, medical, and research and development applications of lasers frequently require a beam with a specified irradiance distribution in some plane. A common requirement is a laser profile that is uniform over some cross-section. Such applications include laser/material processing, laser material interaction studies, fiber injection systems, optical data image processing, lithography, medical applications, and military applications. Laser beam shaping techniques can be divided into three areas: apertured beams, field mappers, and multi-aperture beam integrators. An uncertainty relation exists for laser beam shaping that puts constraints on system design. In this paper the authors review the basics of laser beam shaping and present applications and limitations of various techniques.
Beam-beam effects in the Tevatron Run II
Shiltsev, V.; Alexahin, Yu.; Lebedev, V.; Lebrun, P.; Moore, R.; Sen, T.; Valishev, A.; Zhang, X.L.; /FERMILAB
2005-05-01
Electromagnetic long-range and head-on interactions of high intensity proton and antiproton beams are significant sources of beam loss and lifetime limitations in the Tevatron Collider Run II (2001-present). We present observations of the beam-beam phenomena in the Tevatron and results of relevant beam studies. We analyze the data and various methods employed in high energy physics (HEP) operation, predict the performance for planned luminosity upgrades and discuss ways to improve it.
Beam-beam observations in the Relativistic Heavy Ion Collider
Luo, Y.; Fischer, W.; White, S.
2015-06-24
The Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory has been operating since 2000. Over the past decade, thanks to the continuously increased bunch intensity and reduced β*s at the interaction points, the maximum peak luminosity in the polarized proton operation has been increased by more than two orders of magnitude. In this article, we first present the beam-beam observations in the previous RHIC polarized proton runs. Then we analyze the mechanisms for the beam loss and emittance growth in the presence of beam-beam interaction. The operational challenges and limitations imposed by beam-beam interaction and their remedies are also presented. In the end, we briefly introduce head-on beam-beam compensation with electron lenses in RHIC.
Linear theory of beam-wave interaction in double-slot coupled cavity travelling wave tube
NASA Astrophysics Data System (ADS)
Fang-ming, He; Wen-qiu, Xie; Ji-run, Luo; Min, Zhu; Wei, Guo
2016-03-01
A three-dimensional model of the double-slot coupled cavity slow-wave structure (CCSWS) with a solid round electron beam for the beam-wave interaction is presented. Based on the “cold” dispersion, the “hot” dispersion equation is derived with the Maxwell equations by using the variable separation method and the field-matching method. Through numerical calculations, the effects of the electron beam parameters and the staggered angle between adjacent walls on the linear gain are analyzed. Project supported by the National Natural Science Foundation of China (Grant No. 11205162).
Serov, A.V.
1995-12-31
The time variation of the spartial distribution of an electron beam reflected by an inhomogeneous wave or traverse the wave was investigated. The injected beam is perpendicular to the direction of propagation of the wave. The interaction between an electron beam and an electromagnetic wave not only produces electron oscillation but also substantially changes the electron phase and energy distribution. It is shown that under specific conditions one part of particles are reflected by an electromagnetic wave and other part of particles traverse the wave.
Beam instabilities stabilization as a result of strong nonlinear interaction between waves
Soloshenko, I.A.; Taranov, V.B.; Tsyolko, V.V.; Shamrai, K.P.; Shulzhenko, P.M. )
1990-01-01
It is shown that the nonlinear interaction between unstable low-frequency ion waves and high-frequency electron waves growing in an ion beam plasma can result in stabilization of one of the modes if the level of the other is sufficiently high. A theoretical model of the phenomenon has been developed, and its predictions are in reasonable agreement with experimental results. The suppression mechanism is considered, and appears to be essentially nonlinear. The effect of this mutual suppression of ion beam instabilities may be important for improved ion beam transport.
Ion boundary conditions in semi-infinite fluid models of electron beam-plasma interaction
Levko, Dmitry
2014-10-15
The modified Bohm criterion is derived for the plasma consisting of the monoenergetic electron beam and thermal electrons. This criterion allows us to define the accurate ion boundary conditions for semi-infinite collisionless fluid models of electron beam–plasma interaction. In the absence of electron beam, these boundary conditions give the classical sheath parameters. When the monoenergetic electron beam propagates through the plasma, the fluid model with proposed boundary conditions gives the results, which are in qualitative agreement with the results obtained earlier in M. Sharifian and B. Shokri, Phys. Plasmas 14, 093503 (2007). However, dynamics and parameters of the plasma sheath are different.
High fidelity 3-dimensional models of beam-electron cloud interactions in circular accelerators
NASA Astrophysics Data System (ADS)
Feiz Zarrin Ghalam, Ali
Electron cloud is a low-density electron profile created inside the vacuum chamber of circular machines with positively charged beams. Electron cloud limits the peak current of the beam and degrades the beams' quality through luminosity degradation, emittance growth and head to tail or bunch to bunch instability. The adverse effects of electron cloud on long-term beam dynamics becomes more and more important as the beams go to higher and higher energies. This problem has become a major concern in many future circular machines design like the Large Hadron Collider (LHC) under construction at European Center for Nuclear Research (CERN). Due to the importance of the problem several simulation models have been developed to model long-term beam-electron cloud interaction. These models are based on "single kick approximation" where the electron cloud is assumed to be concentrated at one thin slab around the ring. While this model is efficient in terms of computational costs, it does not reflect the real physical situation as the forces from electron cloud to the beam are non-linear contrary to this model's assumption. To address the existing codes limitation, in this thesis a new model is developed to continuously model the beam-electron cloud interaction. The code is derived from a 3-D parallel Particle-In-Cell (PIC) model (QuickPIC) originally used for plasma wakefield acceleration research. To make the original model fit into circular machines environment, betatron and synchrotron equations of motions have been added to the code, also the effect of chromaticity, lattice structure have been included. QuickPIC is then benchmarked against one of the codes developed based on single kick approximation (HEAD-TAIL) for the transverse spot size of the beam in CERN-LHC. The growth predicted by QuickPIC is less than the one predicted by HEAD-TAIL. The code is then used to investigate the effect of electron cloud image charges on the long-term beam dynamics, particularly on the
... Physician Resources Professions Site Index A-Z External Beam Therapy (EBT) External beam therapy (EBT) is a ... follow-up should I expect? What is external beam therapy and how is it used? External beam ...
Longitudinal phase space manipulation of an ultrashort electron beam via THz IFEL interaction
Moody, J. T.; Li, R. K.; Musumeci, P.; Scoby, C. M.; To, H.
2012-12-21
A scheme where a laser locked THz source is used to manipulate the longitudinal phase space of an ultrashort electron beam using an IFEL interaction is investigated. The efficiency of THz source based on the pulse front tilt optical rectification scheme is increased by cryogenic cooling to achieve sufficient THz power for compression and synchronization. Start-to-end simulations describing the evolution of the beam from the cathode to the compression point after the undulator are presented.
Polarization buildup in stored p and p-bar beams interacting with a polarized target
Strakhovenko, V.
2008-04-30
The kinetics of the polarization buildup in the interaction of stored protons or antiprotons with a polarized target is considered. It is demonstrated that for events where a projectile remains in the beam the polarization buildup is completely due to the spin-flip transitions. However, the corresponding effect turns out to be negligibly small for a hydrogen gas target as well as for a pure electron target. For the latter, the filtering mechanism also does not provide a noticeable beam polarization.
NASA Astrophysics Data System (ADS)
Fartoukh, Stéphane; Valishev, Alexander; Papaphilippou, Yannis; Shatilov, Dmitry
2015-12-01
Colliding bunch trains in a circular collider demands a certain crossing angle in order to separate the two beams transversely after the collision. The magnitude of this crossing angle is a complicated function of the bunch charge, the number of long-range beam-beam interactions, of β* and type of optics (flat or round), and possible compensation or additive effects between several low-β insertions in the ring depending on the orientation of the crossing plane at each interaction point. About 15 years ago, the use of current bearing wires was proposed at CERN in order to mitigate the long-range beam-beam effects [J. P. Koutchouk, CERN Report No. LHC-Project-Note 223, 2000], therefore offering the possibility to minimize the crossing angle with all the beneficial effects this might have: on the luminosity performance by reducing the need for crab-cavities or lowering their voltage, on the required aperture of the final focus magnets, on the strength of the orbit corrector involved in the crossing bumps, and finally on the heat load and radiation dose deposited in the final focus quadrupoles. In this paper, a semianalytical approach is developed for the compensation of the long-range beam-beam interactions with current wires. This reveals the possibility of achieving optimal correction through a careful adjustment of the aspect ratio of the β functions at the wire position. We consider the baseline luminosity upgrade plan of the Large Hadron Collider (HL-LHC project), and compare it to alternative scenarios, or so-called "configurations," where modifications are applied to optics, crossing angle, or orientation of the crossing plane in the two low-β insertions of the ring. For all these configurations, the beneficial impact of beam-beam compensation devices is then demonstrated on the tune footprint, the dynamical aperture, and/or the frequency map analysis of the nonlinear beam dynamics as the main figures of merit.
NASA Astrophysics Data System (ADS)
Ou, Jing; Zhao, Xiaoyun; Gan, Chunyun
2016-04-01
The plasma-wall interaction in the presence of a monoenergetic electron beam has been studied by taking into account the self-consistency among plasma transport in a collisionless electrostatic sheath, deposited energy flux at the wall and material thermal response for carbon and tungsten as wall materials. The variations of the potential drop across the sheath, ion velocity at the sheath edge, and surface temperature of material as a function of electron beam flux are explored in the presence of the electron emission. It is found that when electron beam does not dominate the sheath, potential drop across the sheath depends strongly on the material properties due to the impact of electron emission while the surface temperature of material shows monotonic variation. In the case of carbon wall, the electron beam may dominate the sheath at a certain electron beam concentration or energy. Under this circumstance, both the potential drop across the sheath and surface temperature of material demonstrate the sharp increasing transition. The development of local hot spot on the plasma facing material is caused by the enhanced ion energy flux instead of the electron beam energy flux. If the electron emission is not taken into account, as a smaller electron beam flux, both the potential drop across the sheath and surface temperature of material display the significant change and then it may be easier to develop for the local hot spot on the plasma facing material.
Beam-target interactions in single-and multi-pulse radiography
Chen, Y.J.; Hughes, T.P.; Oliver, B.V.; Welch, D.R.
1999-04-01
This report describes calculations concerning the interaction of intense electron beam pulses with a solid target. In Section 2, we treat the propagation of a beam pulse through a dense plasma plume in front of the target, resulting from material blown off from the target by prior pulses. Because of the short magnetic decay-time, the primary effect of the plasma is to shift the focal spot of the beam longitudinally by an amount which is constant over most of the beam pulse. It may be possible to compensate for this effect by changing the upstream focusing elements from one beam pulse to the next. Section 3 describes a mechanism by which lighter ion species can diffuse to the surface of a plasma plume, thereby potentially increasing the concentration of bulk contaminant species such as hydrogen at the leading edge of the plume. These ions could then become a light-ion source for subsequent beam pulses. Based on the calculations, we tentatively recommend bulk contaminant fractions be limited to 10{sup -5}10{sup 4}. In Section 4, we estimate the number of adsorbed monolayers needed to provide a space-charge-limited (SCL) ion source at the target for the initial beam pulse. We find that {approx} 10 monolayers are required for SCL emission of H{sub 2}{sup +} ions. This may explain why there was little evidence of focus disruption in ETA-II target experiments.
Ursic, R.; Mahoney, K.; Hovater, C.; Hutton, A.; Sinclair, C.
1995-12-31
This paper describes the design and implementation of a beam loss accounting system for the CEBAF electron accelerator. This system samples the beam curent throughout the beam path and measures the beam current accurately. Personnel Safety and Machine Protection systems use this system to turn off the beam when hazardous beam losses occur.
Interaction of the ATA beam with the TM/sub 030/ mode of the accelerating cells
Neil, V.K.
1985-02-14
The interaction of the electron beam in the Advanced Test Accelerator with an azimuthally symmetric mode of the accelerating cells is investigated theoretically. The interaction possibly could cause modulation of the beam current at the resonant frequency of the mode. Values of the shunt impedance and Q value of the mode were obtained from previous measurement and analysis. Lagranian hydrodynamics is employed and a WKB solution to the equation of motion is obtained. Results indicate that the interaction will not be a problem in the accelerator.
Beam Rounders for Circular Colliders
A. Burov; S. Nagaitsev; Ya. Derbenev
2001-07-01
By means of linear optics, an arbitrary uncoupled beam can be locally transformed into a round (rotation-invariant) state and then back. This provides an efficient way to round beams in the interaction region of circular colliders.
Beam quality measure for vector beams.
Ndagano, Bienvenu; Sroor, Hend; McLaren, Melanie; Rosales-Guzmán, Carmelo; Forbes, Andrew
2016-08-01
Vector beams have found a myriad of applications, from laser materials processing to microscopy, and are now easily produced in the laboratory. They are usually differentiated from scalar beams by qualitative measures, for example, visual inspection of beam profiles after a rotating polarizer. Here we introduce a quantitative beam quality measure for vector beams and demonstrate it on cylindrical vector vortex beams. We show how a single measure can be defined for the vector quality, from 0 (purely scalar) to 1 (purely vector). Our measure is derived from a quantum toolkit, which we show applies to classical vector beams. PMID:27472580
Dragt, A.J.; Gluckstern, R.L.
1992-11-01
The University of Maryland Dynamical Systems and Accelerator Theory Group carries out research in two broad areas: the computation of charged particle beam transport using Lie algebraic methods and advanced methods for the computation of electromagnetic fields and beam-cavity interactions. Important improvements in the state of the art are believed to be possible in both of these areas. In addition, applications of these methods are made to problems of current interest in accelerator physics including the theoretical performance of present and proposed high energy machines. The Lie algebraic method of computing and analyzing beam transport handles both linear and nonlinear beam elements. Tests show this method to be superior to the earlier matrix or numerical integration methods. It has wide application to many areas including accelerator physics, intense particle beams, ion microprobes, high resolution electron microscopy, and light optics. With regard to the area of electromagnetic fields and beam cavity interactions, work is carried out on the theory of beam breakup in single pulses. Work is also done on the analysis of the high frequency behavior of longitudinal and transverse coupling impedances, including the examination of methods which may be used to measure these impedances. Finally, work is performed on the electromagnetic analysis of coupled cavities and on the coupling of cavities to waveguides.
Magic Lenses for RHIC: Compensating Beam-beam Interaction (488th Brookhaven Lecture)
Luo, Yun
2013-07-17
Scientists at Brookhaven Lab’s Relativistic Heavy Ion Collider (RHIC) smash atomic particles together to understand more about why the physical world works the way it does. Increasing rates of particle collisions, or luminosity, at RHIC is no small challenge, but the results—more data for better clues—are crucial for scientists trying answer big questions about the origins of matter and mass. When scientists at RHIC collide protons, they don’t hope for a head-on crash by focusing only two particles roaring toward each other from opposite directions. For all intents and purposes, that would be impossible. The scientists can smash protons because they significantly increase the likelihood of collisions by steering hundreds of billions clumped into bunches, which at RHIC are about 3.5 meters long and less than 1 millimeter tall. The particles of these bunches are all positively charged, so when they interact, they repel outwardly—think how magnets repel when their same poles are pushed together. Although this decreases the density of each bunch, reducing luminosity, scientists in Brookhaven Lab’s Collider-Accelerator Department (C-AD) have a solution. After more than seven years of development, the scientists have designed an electron-lens system that uses electrons’ negative charges to attract positively charged proton bunches and minimize their repelling tendencies. Combined with other upgrades to the RHIC accelerator complex, these lenses are important components in efforts towards the major task of doubling the luminosity for proton-proton collisions.
Li, S.Z.; Hogan, M.J.; /SLAC
2011-08-19
FACET, the Facility for Advanced Accelerator and Experimental Tests, is a new facility being constructed in sector 20 of the SLAC linac primarily to study beam driven plasma wakefield acceleration beginning in summer 2011. The nominal FACET parameters are 23GeV, 3nC electron bunches compressed to about 20 {micro}m long and focussed to about 10 {micro}m wide. Characterization of the beam-plasma interaction requires complete knowledge of the incoming beam parameters on a pulse-to-pulse basis. FACET diagnostics include Beam Position Monitors, Toroidal current monitors, X-ray and Cerenkov based energy spectrometers, optical transition radiation (OTR) profile monitors and coherent transition radiation (CTR) bunch length measurement systems. The compliment of beam diagnostics and their expected performance are reviewed. Beam diagnostic measurements not only provide valuable insights to the running and tuning of the accelerator but also are crucial for the PWFA experiments in particular. Beam diagnostic devices are being set up at FACET and will be ready for beam commissioning in summer 2011.
Mahdy, A. I.
2010-06-15
The mutual interactions of two copropagating laser beams at a relative phase are studied using a two-dimensional fluid code. The interactions are investigated in underdense plasma at selected beam configurations and beam parameters for two separate nonlinearities, i.e., the ponderomotive and the relativistic nonlinearity. The selected beam configurations are introduced by different initial transverse spot size perturbations (finite and infinite) and different initial transversal intensity distributions (nonuniform and uniform) over those spot sizes and the selected beam parameters are given by different initial beam intensities relevant to each nonlinearity. In the ponderomotive nonlinearity, simulation results show that no mutual interactions are demonstrated between the copropagating beams regardless of the initial beam configurations and parameters. In nonlinear relativistic simulations, the mutual interactions between the beams are clearly observed, a mutual repulsion is formed in the presence of initial intensities that are nonuniformly distributed over finite spot sizes, and an effective strongly modulated mutual attraction takes places in the presence of initial intensities that are uniformly distributed over infinite spot sizes. Moreover, it is found in these simulations that increasing the initial beam intensities improves the attraction properties between the copropagationg beams.
LHC beam-beam compensation studies at RHIC
Fischer,W.; Abreu, N.; Calaga, R.; Robert-Demolaize, G.; Luo, Y.; Montag, C.
2009-05-04
Long-range and head-on beam-beam effects are expected to limit the LHC performance with design parameters. To mitigate long-range effects current carrying wires parallel to the beam were proposed. Two such wires are installed in RHIC where they allow studying the effect of strong long-range beam-beam effects, as well as the compensation of a single long-range interaction. The tests provide benchmark data for simulations and analytical treatments. To reduce the head-on beam-beam effect electron lenses were proposed for both the LHC and RHIC. We present the experimental long-range beam-beam program and report on head-on compensations studies at RHIC, which are based on simulations.
Vortex lattices in strongly interacting Fermi gas with crossed-beam dipole trap
NASA Astrophysics Data System (ADS)
Wu, Yuping; Yao, Xingcan; Chen, Haoze; Liu, Xiangpei; Wang, Xiaoqiong
2016-05-01
We have built an experiment system to explore the dynamic and vortex in quantum degenerate Li6 gas. By using UV MOT and crossed-beam dipole trap, we obtained BEC of 2* 105 molecules. With a tightly focused 532nm laser beam as rotating bucket wall, We observed vortex formation in strongly interacting fermi superfluid. At suitable stirring frequency we produced the condensate of fermi pairs for which up to 10 vortices were simultaneously present. We produced vortex lattices in different magnetic fields (from BEC side to BCS side). Also we measured the lifetime of vortex lattices in different interaction region. This work was funded by CAS and USTC.
Low-emittance monoenergetic electron and ion beams from ultra-intense laser-solid interactions
Cowan, T E; Roth, M; Allen, M M; Johnson, J; Hatchett, S P; Le Sage, G P; Wilks, S C
2000-03-03
Recent experiments at the LLNL Petawatt Laser have demonstrated the generation of intense, high energy beams of electrons and ions from the interaction of ultra-intense laser light with solid targets. Focused laser intensities as high as 6 x 10{sup 20} W/cm{sup 2} are achieved, at which point the quiver energies of the target electrons extend to {approx}10 MeV. In this new, fully relativistic regime of laser-plasma interactions, nuclear processes become important and nuclear techniques are required to diagnose the high-energy particle production. In recent experiments we have observed electrons accelerated to 100 MeV, up to 60 MeV brehmsstrahlung generation, photo-nuclear fission and positron-electron pair creation. We also have observed monoenergetic jets of electrons having sufficiently small emittance to be interesting as a laser-accelerated beam, if the production mechanism could be understood and controlled. The huge flux of multi-MeV ponderomotively accelerated electrons produced in the laser-solid interaction is also observed to accelerate contaminant ions from the rear surface of the solid target up to 50 MeV. We describe spectroscopic measurements which reveal intense monoenergetic beam features in the proton energy spectrum. The total spectrum contains >10{sup 13} protons, while the monoenergetic beam pulses contain {approx}1 nC of protons, and exhibits a longitudinal and transverse emittance smaller than conventional RF proton accelerator beams.
Electron beam-plasma interaction experiments with the Versatile Toroidal Facility (VTF)
Murphy, S.M.; Lee, M.C.; Moriarty, D.T.; Riddolls, R.J.
1995-12-31
The laboratory investigation of electron beam-plasma interactions is motivated by the recent space shuttle experiments. Interesting but puzzling phenomena were observed in the shuttle experiments such as the bulk heating of background ionospheric plasmas by the injected electron beams and the excitation of plasma waves in the frequency range of ELF waves. The plasma machine, the Versatile Toroidal Facility (VTF) can generate a large magnetized plasma with the electron plasma frequency greater than the electron gyrofrequency by a factor of 3--5 similar to the plasma condition in the ionosphere. Short pulses of electron beams are injected into the VTF plasmas in order to simulate the beam injection from spacecrafts in the ionosphere. A Langmuir probe installed at a bottom port of VTF monitors the spatial variation of electron beams emitted from LaB6 filaments. An energy analyzer has been used to determine the particle energy distribution in the VTF plasmas. Several mechanisms will be tested as potential causes of the bulk heating of background plasmas by the injected electron beams as seen in the space shuttle experiments. It is speculated that the observed ELF emissions result from the excitation of purely growing modes detected by the space shuttle-borne detectors. Results of the laboratory experiments will be reported to corroborate this speculation.
NASA Technical Reports Server (NTRS)
Power, J. L. (Inventor)
1976-01-01
An ion thruster beam shield is provided that comprises a cylindrical housing that extends downstream from the ion thruster and a plurality of annular vanes which are spaced along the length of the housing, and extend inwardly from the interior wall of the housing. The shield intercepts and stops all charge exchange and beam ions, neutral propellant, and sputter products formed due to the interaction of beam and shield emanating from the ion thruster outside of a fixed conical angle from the thruster axis. Further, the shield prevents the sputter products formed during the operation of the engine from escaping the interior volume of the shield.
Giant amplification in degenerate band edge slow-wave structures interacting with an electron beam
NASA Astrophysics Data System (ADS)
Othman, Mohamed A. K.; Veysi, Mehdi; Figotin, Alexander; Capolino, Filippo
2016-03-01
We propose a new amplification regime based on a synchronous operation of four degenerate electromagnetic (EM) modes in a slow-wave structure and the electron beam, referred to as super synchronization. These four EM modes arise in a Fabry-Pérot cavity when degenerate band edge (DBE) condition is satisfied. The modes interact constructively with the electron beam resulting in superior amplification. In particular, much larger gains are achieved for smaller beam currents compared to conventional structures based on synchronization with only a single EM mode. We demonstrate giant gain scaling with respect to the length of the slow-wave structure compared to conventional Pierce type single mode traveling wave tube amplifiers. We construct a coupled transmission line model for a loaded waveguide slow-wave structure exhibiting a DBE, and investigate the phenomenon of giant gain via super synchronization using the Pierce model generalized to multimode interaction.
C. L. Bohn , P. Piot and B. Erdelyi
2008-05-31
According to its original Statement of Work (SOW), the overarching objective of this project is: 'To enhance substantially the understanding of the fundamental dynamics of nonequilibrium high-brightness beams with space charge.' Our work and results over the past three and half years have been both intense and fruitful. Inasmuch as this project is inextricably linked to a larger, growing research program - that of the Beam Physics and Astrophysics Group (BPAG) - the progress that it has made possible cannot easily be separated from the global picture. Thus, this summary report includes major sections on 'global' developments and on those that can be regarded as specific to this project.
Monoenergetic beams of relativistic electrons from intense laser-plasma interactions.
Mangles, S P D; Murphy, C D; Najmudin, Z; Thomas, A G R; Collier, J L; Dangor, A E; Divall, E J; Foster, P S; Gallacher, J G; Hooker, C J; Jaroszynski, D A; Langley, A J; Mori, W B; Norreys, P A; Tsung, F S; Viskup, R; Walton, B R; Krushelnick, K
2004-09-30
High-power lasers that fit into a university-scale laboratory can now reach focused intensities of more than 10(19) W cm(-2) at high repetition rates. Such lasers are capable of producing beams of energetic electrons, protons and gamma-rays. Relativistic electrons are generated through the breaking of large-amplitude relativistic plasma waves created in the wake of the laser pulse as it propagates through a plasma, or through a direct interaction between the laser field and the electrons in the plasma. However, the electron beams produced from previous laser-plasma experiments have a large energy spread, limiting their use for potential applications. Here we report high-resolution energy measurements of the electron beams produced from intense laser-plasma interactions, showing that--under particular plasma conditions--it is possible to generate beams of relativistic electrons with low divergence and a small energy spread (less than three per cent). The monoenergetic features were observed in the electron energy spectrum for plasma densities just above a threshold required for breaking of the plasma wave. These features were observed consistently in the electron spectrum, although the energy of the beam was observed to vary from shot to shot. If the issue of energy reproducibility can be addressed, it should be possible to generate ultrashort monoenergetic electron bunches of tunable energy, holding great promise for the future development of 'table-top' particle accelerators. PMID:15457251
Gelbart, W.; Johnson, R. R.; Abeysekera, B.
2012-12-19
An inexpensive beam profile monitor is based on the well proven rotating wire method. The monitor can display beam position and shape in real time for particle beams of most energies and beam currents up to 200{mu}A. Beam shape, position cross-section and other parameters are displayed on a computer screen.
A Theory of Interaction Mechanism between Laser Beam and Paper Material
NASA Astrophysics Data System (ADS)
Piili, Heidi
Paper making and converting industry in Europe is suffering from transfer of basic manufacturing to fast-growing economies, such as China and Brazil. Pulp and paper production volume in Finland, Sweden and France was the same in 2011 as it was in 2000. Meanwhile China has tripled its volume and Brazil doubled. This is a situation where innovative solutions for papermaking and converting industry are needed. Laser can be solution for this, as it is fast, flexible, accurate and reliable. Before industrial application, characteristics of laser beam and paper material interaction has to be understood. When this fundamental knowledge is known, new innovations can be created. Fulfilling the lack of information on interaction phenomena can assist in the way of lasers for wider use of technology in paper making and converting industry. This study was executed by treating dried kraft pulp (grammage 67 g m-2) with different laser power levels, focal point settings and interaction time. Laser equipment was TRUMPF TLF HQ2700 CO2 laser (wavelength 10.6 μm). Interaction between laser beam and dried kraft pulp was detected with multi-monitoring system (MMS), which consisted of spectrometer, pyrometer and active illumination imaging system. There is two different dominating mechanisms in interaction between laser beam and paper material. Furthermore, it was noticed that there is different interaction phases within these two interaction mechanisms. These interaction phases appear as function of time and as function of peak intensity of laser beam. Limit peak intensity divides interaction mechanism from one-phase interaction into dual-phase interaction.
Vlasov, Sergei N; Koposova, E V; Freidman, Gennadii I
2009-05-31
Conditions of the applicability of equations in the quasi-static approximation for studying the parametric interaction of frequency-modulated light beams in multistage amplifiers are considered. This approximation is used to simulate numerically processes in a multistage DKDP crystal amplifier with the output power exceeding 10 PW and suppressed luminescence. (lasers and amplifiers)
Terahertz electron cyclotron maser interactions with an axis-encircling electron beam
Li, G. D.; Kao, S. H.; Chang, P. C.; Chu, K. R.
2015-04-15
To generate terahertz radiation via the electron cyclotron maser instability, harmonic interactions are essential in order to reduce the required magnetic field to a practical value. Also, high-order mode operation is required to avoid excessive Ohmic losses. The weaker harmonic interaction and mode competition associated with an over-moded structure present challenging problems to overcome. The axis-encircling electron beam is a well-known recipe for both problems. It strengthens the harmonic interaction, as well as minimizing the competing modes. Here, we examine these advantages through a broad data base obtained for a low-power, step-tunable, gyrotron oscillator. Linear results indicate far more higher-harmonic modes can be excited with an axis-encircling electron beam than with an off-axis electron beam. However, multi-mode, time-dependent simulations reveal an intrinsic tendency for a higher-harmonic mode to switch over to a lower-harmonic mode at a high beam current or upon a rapid current rise. Methods are presented to identify the narrow windows in the parameter space for stable harmonic interactions.
Terahertz electron cyclotron maser interactions with an axis-encircling electron beam
NASA Astrophysics Data System (ADS)
Li, G. D.; Kao, S. H.; Chang, P. C.; Chu, K. R.
2015-04-01
To generate terahertz radiation via the electron cyclotron maser instability, harmonic interactions are essential in order to reduce the required magnetic field to a practical value. Also, high-order mode operation is required to avoid excessive Ohmic losses. The weaker harmonic interaction and mode competition associated with an over-moded structure present challenging problems to overcome. The axis-encircling electron beam is a well-known recipe for both problems. It strengthens the harmonic interaction, as well as minimizing the competing modes. Here, we examine these advantages through a broad data base obtained for a low-power, step-tunable, gyrotron oscillator. Linear results indicate far more higher-harmonic modes can be excited with an axis-encircling electron beam than with an off-axis electron beam. However, multi-mode, time-dependent simulations reveal an intrinsic tendency for a higher-harmonic mode to switch over to a lower-harmonic mode at a high beam current or upon a rapid current rise. Methods are presented to identify the narrow windows in the parameter space for stable harmonic interactions.
Study of plasma formation in CW CO2 laser beam-metal surface interaction
NASA Astrophysics Data System (ADS)
Azharonok, V. V.; Vasilchenko, Zh V.; Golubev, Vladimir S.; Gresev, A. N.; Zabelin, Alexandre M.; Chubrik, N. I.; Shimanovich, V. D.
1994-04-01
An interaction of the cw CO2 laser beam and a moving metal surface has been studied. The pulsed and thermodynamical parameters of the surface plasma were investigated by optical and spectroscopical methods. The subsonic radiation wave propagation in the erosion plasma torch has been studied.
The Interaction of Functional and Dysfunctional Emotions during Balance Beam Performance
ERIC Educational Resources Information Center
Cottyn, Jorge; De Clercq, Dirk; Crombez, Geert; Lenoir, Matthieu
2012-01-01
The interaction between functional and dysfunctional emotions, as one of the major tenets of the Individual Zones of Optimal Functioning (IZOF) model (Hanin, 2000), was studied in a sport specific setting. Fourteen female gymnasts performed three attempts of a compulsory balance beam routine at three different heights. Heart rate and self-report…
Probabilistic Model of Beam - Plasma Interaction in Randomly Inhomogeneous Solar Wind
NASA Astrophysics Data System (ADS)
Krasnoselskikh, V.; Voshchepynets, A.
2015-12-01
In this presentation we describe the effects of plasma density fluctuations in the solar wind on the relaxation of the electron beams ejected from the Sun. The density fluctuations are supposed to be responsible for the changes in the local phase velocity of the Langmuir waves generated by the beam instability. Changes in the wave phase velocity during the wave propagation can be described in terms of probability distribution function determined by distribution of the density fluctuations. Using these probability distributions we describe resonant wave particle interactions by a system of equations, similar to well known quasi-linear approximation, where the conventional velocity diffusion coefficient and the wave growth rate are replaced by the averaged in the velocity space. It was shown that the process of relaxation of electron beam is accompanied by transformation of significant part of the beam kinetic energy to energy of the accelerated particles via generation and absorption of the Langmuir waves. We discovered that for the very rapid beams with beam velocity Vb > 15vT, where vT is a thermal velocity of background plasma, the relaxation process consists of two well separated steps. On first step the major relaxation process occurs and the wave growth rate almost everywhere in the velocity space becomes close to zero or negative. At the seconde stage the system remains in the state close to state of marginal stability enough long to explain how the beam may be preserved traveling distances over 1 AU while still being able to generate the Langmuir waves.
Probabilistic model of beam-plasma interaction in randomly inhomogeneous solar wind
NASA Astrophysics Data System (ADS)
Voshchepynets, A.; Krasnoselskikh, V.
2015-12-01
This paper is dedicated to the effects of plasma density fluctuations in the solar wind on the relaxation of the electron beams ejected from the Sun. The density fluctuations are supposed to be responsible for the changes in the local phase velocity of the Langmuir waves generated by the beam instability. Changes in the wave phase velocity during the wave propagation can be described in terms of probability distribution function determined by distribution of the density fluctuations. Using these probability distributions, we describe resonant wave particle interactions by a system of equations, similar to a well-known quasi-linear approximation, where the conventional velocity diffusion coefficient and the wave growth rate are replaced by the averaged in the velocity space. It was shown that the process of relaxation of electron beam is accompanied by transformation of significant part of the beam kinetic energy to energy of the accelerated particles via generation and absorption of the Langmuir waves. We discovered that for the very rapid beams with beam velocity vb>15vt, where vt is a thermal velocity of background plasma, the relaxation process consists of two well-separated steps. On first step the major relaxation process occurs and the wave growth rate almost everywhere in the velocity space becomes close to zero or negative. At the second stage the system remains in the state close to state of marginal stability long enough to explain how the beam may be preserved traveling distances over 1 AU while still being able to generate the Langmuir waves.
Studies of high-current relativistic electron beam interaction with gas and plasma in Novosibirsk
NASA Astrophysics Data System (ADS)
Sinitsky, S. L.; Arzhannikov, A. V.; Burdakov, A. V.
2016-03-01
This paper presents an overview of the studies on the interaction of a high-power relativistic electron beam (REB) with dense plasma confined in a long open magnetic trap. The main goal of this research is to achieve plasma parameters close to those required for thermonuclear fusion burning. The experimental studies were carried over the course of four decades on various devices: INAR, GOL, INAR-2, GOL-M, and GOL-3 (Budker Institute of Nuclear Physics) for a wide range of beam and plasma parameters.
Kozák, Martin; McNeur, Joshua; Leedle, Kenneth J; Deng, Huiyang; Schönenberger, Norbert; Ruehl, Axel; Hartl, Ingmar; Hoogland, Heinar; Holzwarth, Ronald; Harris, James S; Byer, Robert L; Hommelhoff, Peter
2016-08-01
We demonstrate an experimental technique for both transverse and longitudinal characterization of bunched femtosecond free electron beams. The operation principle is based on monitoring of the current of electrons that obtained an energy gain during the interaction with the synchronized optical near-field wave excited by femtosecond laser pulses. The synchronous accelerating/decelerating fields confined to the surface of a silicon nanostructure are characterized using a highly focused sub-relativistic electron beam. Here the transverse spatial resolution of 450 nm and femtosecond temporal resolution of 480 fs (sub-optical-cycle temporal regime is briefly discussed) achievable by this technique are demonstrated. PMID:27472587
The calculation of the dynamics of interaction between intense electron beams and dielectrics
Milyavskii, V.V.; Skvortsov, V.A.
1995-09-01
A mathematical model is constructed and a numerical investigation performed of the interaction between an intense relativistic electron beam and a solid high-molecular dielectric. The model is based on the equations of mechanics of continuum, electrodynamics, and kinetics, describing the accumulation and relaxation of space charge and shock-wave processes, as well as the evolution of electric field in the sample. A semiempirical procedure is proposed for the calculation of energy deposition by an electron beam in a target in the presence of a nonuniform electric field.
Polarizing mechanisms for stored and beams interacting with a polarized target.
Milstein, A I; Strakhovenko, V M
2005-12-01
The kinetics of the polarization buildup during the interaction of stored protons (antiprotons) with a polarized target is considered. It is demonstrated that for small scattering angles, when a projectile remains in the beam, the polarization buildup is completely due to the spin-flip transitions. The corresponding cross sections turn out to be negligibly small for a hydrogen gas target as well as for a pure electron target. For the latter, the filtering mechanism also does not provide a noticeable beam polarization. PMID:16486071
Beam halo in high-intensity beams
Wangler, T.P. )
1993-12-25
In space-charge dominated beams the nonlinear space-charge forces produce a filamentation pattern, which in projection to the 2-D phase spaces results in a 2-component beam consisting of an inner core and a diffuse outer halo. The beam-halo is of concern for a next generation of cw, high-power proton linacs that could be applied to intense neutron generators for nuclear materials processing. We describe what has been learned about beam halo and the evolution of space-charge dominated beams using numerical simulations of initial laminar beams in uniform linear focusing channels. We present initial results from a study of beam entropy for an intense space-charge dominated beam.
Beam halo in high-intensity beams
Wangler, T.P.
1993-06-01
In space-charge dominated beams the nonlinear space-charge forces produce a filamentation pattern, which in projection to the 2-D phase spaces results in a 2-component beam consisting of an inner core and a diffuse outer halo. The beam-halo is of concern for a next generation of cw, high-power proton linacs that could be applied to intense neutron generators for nuclear materials processing. The author describes what has been learned about beam halo and the evolution of space-charge dominated beams using numerical simulations of initial laminar beams in uniform linear focusing channels. Initial results are presented from a study of beam entropy for an intense space-charge dominated beam.
Beam halo in high-intensity beams
Wangler, T.P.
1993-01-01
In space-charge dominated beams the nonlinear space-charge forces produce a filamentation pattern, which in projection to the 2-D phase spaces results in a 2-component beam consisting of an inner core and a diffuse outer halo. The beam-halo is of concern for a next generation of cw, high-power proton linacs that could be applied to intense neutron generators for nuclear materials processing. The author describes what has been learned about beam halo and the evolution of space-charge dominated beams using numerical simulations of initial laminar beams in uniform linear focusing channels. Initial results are presented from a study of beam entropy for an intense space-charge dominated beam.
Relativistic electron beam generator
Mooney, L.J.; Hyatt, H.M.
1975-11-11
A relativistic electron beam generator for laser media excitation is described. The device employs a diode type relativistic electron beam source having a cathode shape which provides a rectangular output beam with uniform current density.
Igor D. Kaganovich; Edward A. Startsev; Ronald C. Davidson
2003-11-25
Plasma neutralization of an intense ion beam pulse is of interest for many applications, including plasma lenses, heavy ion fusion, high energy physics, etc. Comprehensive analytical, numerical, and experimental studies are underway to investigate the complex interaction of a fast ion beam with a background plasma. The positively charged ion beam attracts plasma electrons, and as a result the plasma electrons have a tendency to neutralize the beam charge and current. A suite of particle-in-cell codes has been developed to study the propagation of an ion beam pulse through the background plasma. For quasi-steady-state propagation of the ion beam pulse, an analytical theory has been developed using the assumption of long charge bunches and conservation of generalized vorticity. The analytical results agree well with the results of the numerical simulations. The visualization of the data obtained in the numerical simulations shows complex collective phenomena during beam entry into and ex it from the plasma.
Greenly, John B.
1997-01-01
An improved pulsed ion beam source having a new biasing circuit for the fast magnetic field. This circuit provides for an initial negative bias for the field created by the fast coils in the ion beam source which pre-ionize the gas in the source, ionize the gas and deliver the gas to the proper position in the accelerating gap between the anode and cathode assemblies in the ion beam source. The initial negative bias improves the interaction between the location of the nulls in the composite magnetic field in the ion beam source and the position of the gas for pre-ionization and ionization into the plasma as well as final positioning of the plasma in the accelerating gap. Improvements to the construction of the flux excluders in the anode assembly are also accomplished by fabricating them as layered structures with a high melting point, low conductivity material on the outsides with a high conductivity material in the center.
Sydorenko, D.; Kaganovich, I. D.; Chen, L.; Ventzek, P. L. G.
2015-12-15
Generation of anomalously energetic suprathermal electrons was observed in simulation of a high-voltage dc discharge with electron emission from the cathode. An electron beam produced by the emission interacts with the nonuniform plasma in the discharge via a two-stream instability. The energy transfer from the beam to the plasma electrons is ensured by the plasma nonuniformity. The electron beam excites plasma waves whose wavelength and phase speed gradually decrease towards anode. The waves with short wavelength near the anode accelerate plasma bulk electrons to suprathermal energies. The sheath near the anode reflects some of the accelerated electrons back into the plasma. These electrons travel through the plasma, reflect near the cathode, and enter the accelerating area again but with a higher energy than before. Such particles are accelerated to energies much higher than after the first acceleration. This mechanism plays a role in explaining earlier experimental observations of energetic suprathermal electrons in similar discharges.
Ion Beams in Short-Pulse, High Intensity Laser Matter Interactions.
NASA Astrophysics Data System (ADS)
Lasinski, B. F.; Langdon, A. B.; Still, C. H.; Tabak, M.; Town, R. P. J.; Kruer, W. L.; Wilks, S. C.; Welch, D. R.
2002-11-01
Experiments on the interaction of short pulse high intensity lasers with thin foils have produced intense ion beams with surprisingly good emittance. We report on explicit PIC and hybrid particle-fluid simulations motivated by these experiments. In addition, we study the focusing of these beams and their possible collective effects. The LSP code footnote D. R. Welch, et al, Nucl. Inst. Meth. Phys. Res. A 242, 134 (2001). uses a direct implicit particle-in-cell algorithm in 2 or 3 dimensions to solve for the beam particles and the background particles are treated as a fluid. Implications for the fast ignitor concept footnote M. Tabak, et al, Phys. Plasmas 1, 1626 (1994). in which energetic fast particles transport energy to the high-density compressed fuel will be discussed.
Tracing the plasma interactions for pulsed reactive crossed-beam laser ablation
NASA Astrophysics Data System (ADS)
Chen, Jikun; Stender, Dieter; Pichler, Markus; Döbeli, Max; Pergolesi, Daniele; Schneider, Christof W.; Wokaun, Alexander; Lippert, Thomas
2015-10-01
Pulsed reactive crossed-beam laser ablation is an effective technique to govern the chemical activity of plasma species and background molecules during pulsed laser deposition. Instead of using a constant background pressure, a gas pulse with a reactive gas, synchronized with the laser beam, is injected into vacuum or a low background pressure near the ablated area of the target. It intercepts the initially generated plasma plume, thereby enhancing the physicochemical interactions between the gaseous environment and the plasma species. For this study, kinetic energy resolved mass-spectrometry and time-resolved plasma imaging were used to study the physicochemical processes occurring during the reactive crossed beam laser ablation of a partially 18O substituted La0.6Sr0.4MnO3 target using oxygen as gas pulse. The characteristics of the ablated plasma are compared with those observed during pulsed laser deposition in different oxygen background pressures.
Laser-electron beam interaction applied to optical amplifiers and oscillators
NASA Technical Reports Server (NTRS)
Pantell, R. H.; Piestrup, M. A.
1976-01-01
Momentum modulation of a relativistic electron beam by a Nd:YAG laser is demonstrated. The electrons, at 100 MeV energy, interact with the laser light in helium gas at standard temperature and pressure. At an angle of 6.55 mrad between the two wavevectors, corresponding to the Cerenkov angle, a given electron remains in a field of constant phase as it passes through the light beam. The experimental arrangement is illustrated showing the trajectories of the electron and light. The particle momentum is measured by a mass spectrometer, and the angle between the wavevectors is controlled by a rotatable mirror. Experimental results indicate that momentum modulation of an electron beam may be used for amplification. A possible configuration for an optical klystron is illustrated.
Tracing the plasma interactions for pulsed reactive crossed-beam laser ablation
Chen, Jikun; Stender, Dieter; Pichler, Markus; Pergolesi, Daniele; Schneider, Christof W.; Wokaun, Alexander; Lippert, Thomas; Döbeli, Max
2015-10-28
Pulsed reactive crossed-beam laser ablation is an effective technique to govern the chemical activity of plasma species and background molecules during pulsed laser deposition. Instead of using a constant background pressure, a gas pulse with a reactive gas, synchronized with the laser beam, is injected into vacuum or a low background pressure near the ablated area of the target. It intercepts the initially generated plasma plume, thereby enhancing the physicochemical interactions between the gaseous environment and the plasma species. For this study, kinetic energy resolved mass-spectrometry and time-resolved plasma imaging were used to study the physicochemical processes occurring during the reactive crossed beam laser ablation of a partially {sup 18}O substituted La{sub 0.6}Sr{sub 0.4}MnO{sub 3} target using oxygen as gas pulse. The characteristics of the ablated plasma are compared with those observed during pulsed laser deposition in different oxygen background pressures.
Optimizing the electron beam parameters for head-on beam-beam compensation in RHIC
Luo, Y.; Fischer, W.; Pikin, A.; Gu, X.
2011-03-28
Head-on beam-beam compensation is adopted to compensate the large beam-beam tune spread from the protonproton interactions at IP6 and IP8 in the Relativistic Heavy Ion Collider (RHIC). Two e-lenses are being built and to be in stalled near IP10 in the end of 2011. In this article we perform numeric simulation to investigate the effect of the electron beam parameters on the proton dynamics. The electron beam parameters include its transverse profile, size, current, offset and random errors in them. In this article we studied the effect of the electron beam parameters on the proton dynamics. The electron beam parameters include its transverse shape, size, current, offset and their random errors. From the study, we require that the electron beam size can not be smaller than the proton beam's. And the random noise in the electron current should be better than 0.1%. The offset of electron beam w.r.t. the proton beam center is crucial to head-on beam-beam compensation. Its random errors should be below {+-}8{micro}m.
Salazar-Serrano, Luis José; Valencia, Alejandra; Torres, Juan P.
2015-03-15
We report the implementation of a tunable beam displacer, composed of a polarizing beam splitter (PBS) and two mirrors, that divides an initially polarized beam into two parallel beams whose separation can be continuously tuned. The two output beams are linearly polarized with either vertical or horizontal polarization and no optical path difference is introduced between them. The wavelength dependence of the device as well as the maximum separation between the beams achievable is limited mainly by the PBS characteristics.
McAninch, Michael D.; Root, Jeffrey J.
2016-07-05
The present invention relates generally to the field of sensors for beam imaging and, in particular, to a new and useful beam imaging sensor for use in determining, for example, the power density distribution of a beam including, but not limited to, an electron beam or an ion beam. In one embodiment, the beam imaging sensor of the present invention comprises, among other items, a circumferential slit that is either circular, elliptical or polygonal in nature.
McAninch, Michael D; Root, Jeffrey J
2015-03-31
The present invention relates generally to the field of sensors for beam imaging and, in particular, to a new and useful beam imaging sensor for use in determining, for example, the power density distribution of a beam including, but not limited to, an electron beam or an ion beam. In one embodiment, the beam imaging sensor of the present invention comprises, among other items, a circumferential slit that is either circular, elliptical or polygonal in nature.
Coherent instabilities of a relativistic bunched beam
Chao, A.W.
1982-06-01
A charge-particle beam contained in an accelerator vacuum chamber interacts electromagnetically with its environment to create a wake field. This field than acts back on the beam, perturbing the particle motion. If the beam intensity is high enough, this beam-environment interaction may lead to an instability and to subsequent beam loss. The beam and its environment form a dynamical system, and it is this system that will be studied. 84 references.
Deibele, C.E.
1996-12-31
The beam impedance and wakefield are quantities which describe the stability of charged particles in their trajectory within an accelerator. The stretched wire measurement technique is a method which estimates the beam impedance and wakefield. Definitions for the beam impedance, the wakefield, and the stretched wire measurement are presented. A pillbox resonator with circular beampipes is studied for its relatively simple profile and mode structure. Theoretical predictions and measurement data are presented for the interaction of various charged particle beams and center conductor geometries between the cavity and beampipe. Time domain predictions for the stretched wire measurement and wakefield are presented and are shown to be a linear interaction.
Lipton, Robert Polizzi, Anthony
2014-10-14
We employ metamaterial beam-wave interaction structures for tuning the gain and bandwidth of short traveling wave tubes. The interaction structures are made from metal rings of uniform cross section, which are periodically deployed along the length of the traveling wave tube. The aspect ratio of the ring cross sections is adjusted to control both gain and bandwidth. The frequency of operation is controlled by the filling fraction of the ring cross section with respect to the size of the period cell.
NASA Technical Reports Server (NTRS)
Winglee, Robert M.
1991-01-01
The objective was to conduct large scale simulations of electron beams injected into space. The study of the active injection of electron beams from spacecraft is important, as it provides valuable insight into the plasma beam interactions and the development of current systems in the ionosphere. However, the beam injection itself is not simple, being constrained by the ability of the spacecraft to draw current from the ambient plasma. The generation of these return currents is dependent on several factors, including the density of the ambient plasma relative to the beam density, the presence of neutrals around the spacecraft, the configuration of the spacecraft, and the motion of the spacecraft through the plasma. Two dimensional (three velocity) particle simulations with collisional processes included are used to show how these different and often coupled processes can be used to enhance beam propagation from the spacecraft. To understand the radial expansion mechanism of an electron beam injected from a highly charged spacecraft, two dimensional particle-in-cell simulations were conducted for a high density electron beam injected parallel to magnetic fields from an isolated equipotential conductor into a cold background plasma. The simulations indicate that charge build-up at the beam stagnation point causes the beam to expand radially to the beam electron gyroradius.
NASA Technical Reports Server (NTRS)
1991-01-01
The object was to conduct large scale simulations of electron beams injected into space. The study of active injection of electron beams from spacecraft is important since it provides valuable insight into beam-plasma interactions and the development of current systems in the ionosphere. However, the beam injection itself is not simple, being constrained by the ability of the spacecraft to draw return current from the ambient plasma. The generation of these return currents is dependent on several factors, including the density of the ambient plasma relative to the beam density, the presence of neutrals around the spacecraft, the configuration of the spacecraft, and the motion of the spacecraft through the plasma. Two dimensional particle simulations with collisional processes included are used to show how these different and often coupled processes can be utilized to enhance beam propagation from the spacecraft. To understand the radical expansion of mechanism of an electron beam from a highly charged spacecraft, two dimensional particle in cell simulations were conducted for a high density electron beam injected parallel to magnetic fields from an isolated equipotential conductor into a cold background plasma. The simulations indicate that charge buildup at the beam stagnation point causes the beam to expand radially to the beam electron gyroradius.
Interaction of Airy–Gaussian beams in saturable media
NASA Astrophysics Data System (ADS)
Zhou, Meiling; Peng, Yulian; Chen, Chidao; Chen, Bo; Peng, Xi; Deng, Dongmei
2016-08-01
Based on the nonlinear Schrödinger equation, the interactions of the two Airy–Gaussian components in the incidence are analyzed in saturable media, under the circumstances of the same amplitude and different amplitudes, respectively. It is found that the interaction can be both attractive and repulsive depending on the relative phase. The smaller the interval between two Airy–Gaussian components in the incidence is, the stronger the intensity of the interaction. However, with the equal amplitude, the symmetry is shown and the change of quasi-breathers is opposite in the in-phase case and out-of-phase case. As the distribution factor is increased, the phenomena of the quasi-breather and the self-accelerating of the two Airy–Gaussian components are weakened. When the amplitude is not equal, the image does not have symmetry. The obvious phenomenon of the interaction always arises on the side of larger input power in the incidence. The maximum intensity image is also simulated. Many of the characteristics which are contained within other images can also be concluded in this figure. Project supported by the National Natural Science Foundation of China (Grant Nos. 11374108 and 10904041), the Foundation for the Author of Guangdong Province Excellent Doctoral Dissertation (Grant No. SYBZZXM201227), and the Foundation of Cultivating Outstanding Young Scholars (“Thousand, Hundred, Ten” Program) of Guangdong Province, China. CAS Key Laboratory of Geospace Environment, University of Science and Technology of China.
A Beam Transport and Loss simulation with electrostatic beam separator
NASA Astrophysics Data System (ADS)
Yang, Ming-Jen
1997-05-01
Eletrostatic beam separator (septa) string is used in the Fermilab fixed target program for slow extraction from Tevatron and for dividing the beam to different experimental area. The loss from beam interaction with the dividing wire plane of the septa is used to determine the alignment of individual septum within a string of many. The interpretation of the real life signal registered at the loss monitors is not always straight forward. A simulation is being done to model the beam split through septa string and the loss pattern at exisiting beam loss monitor locations. This should lead to a better understanding of the signal and help in the alignment operation.
Diamonds for beam instrumentation
Griesmayer, Erich
2013-04-19
Diamond is perhaps the most versatile, efficient and radiation tolerant material available for use in beam detectors with a correspondingly wide range of applications in beam instrumentation. Numerous practical applications have demonstrated and exploited the sensitivity of diamond to charged particles, photons and neutrons. In this paper, a brief description of a generic diamond detector is given and the interaction of the CVD diamond detector material with protons, electrons, photons and neutrons is presented. Latest results of the interaction of sCVD diamond with 14 MeV mono-energetic neutrons are shown.
Antenna Beam Coverage Concepts
NASA Technical Reports Server (NTRS)
Estabrook, Polly; Motamedi, Masoud
1990-01-01
The strawman Personal Access Satellite System (PASS) design calls for the use of a CONUS beam for transmission between the supplier and the satellite and for fixed beams for transmission between the basic personal terminal and the satellite. The satellite uses a 3 m main reflector for transmission at 20 GHz and a 2 m main reflector for reception at 30 GHz. There are several types of spot beams under consideration for the PASS system besides fixed beams. The beam pattern of a CONUS coverage switched beam is shown along with that of a scanning beam. A switched beam refers to one in which the signal from the satellite is connected alternatively to various feed horns. Scanning beams are taken to mean beams whose footprints are moved between contiguous regions in the beam's coverage area. The advantages and disadvantages of switched and/or scanning beams relative to fixed beams. The consequences of using switched/scanning in lieu of fixed beams in the PASS design and attempts are made to evaluate the listed advantages and disadvantages. Two uses of switched/scanning beams are examined. To illustrate the implications of switched beams use on PASS system design, operation at two beam scan rates is explored.
Investigation of Fully Three-Dimensional Helical RF Field Effects on TWT Beam/Circuit Interaction
NASA Technical Reports Server (NTRS)
Kory, Carol L.
2000-01-01
A fully three-dimensional (3D), time-dependent, helical traveling wave-tube (TWT) interaction model has been developed using the electromagnetic particle-in-cell (PIC) code MAFIA. The model includes a short section of helical slow-wave circuit with excitation fed by RF input/output couplers, and electron beam contained by periodic permanent magnet (PPM) focusing. All components of the model are simulated in three dimensions allowing the effects of the fully 3D helical fields on RF circuit/beam interaction to be investigated for the first time. The development of the interaction model is presented, and predicted TWT performance using 2.5D and 3D models is compared to investigate the effect of conventional approximations used in TWT analyses.
Interaction of spherical nanoparticles with a highly focused beam of light.
Sendur, Kürşat; Challener, William; Mryasov, Oleg
2008-03-01
The interaction of a highly focused beam of light with spherical nanoparticles is investigated for linear and radial polarizations. An analytical solution is obtained to calculate this interaction. The Richards-Wolf theory is used to express the incident electric field near the focus of an aplanatic lens. The incident beam is expressed as an integral where the integrand is separated into transverse-electric (TE) and transverse-magnetic (TM) waves. The interaction of each TE and TM wave with a spherical nanoparticle is calculated using the Mie theory. The resulting analytical solution is then obtained by integrating the scattered waves over the entire angular spectrum. A finite element method solution is also obtained for comparison. PMID:18542372
Negative ion beam generation in laser plasma interactions
NASA Astrophysics Data System (ADS)
Jequier, Sophie; Tikhonchuk, Vladimir; Ter-Avetisyan, Sargis
2013-10-01
Detection of a large number of energetic negative ions and neutral atoms have been reported in recent intense laser plasma interaction experiments. These particles were produced from fast positive ions (proton, carbon, oxygen) accelerated from a laser produced plasma when they were passing through a cold spray of water or ethanol. The negative ions formation is strongly related to the fast positive ions, and it is explained by a process of a single electron capture - loss. Double charge exchange, elastic scattering and energy loss phenomena have been neglected since their cross sections are much smaller. Assuming independent atoms approximation, we study populations evolution through the interaction zone analytically and numerically by solving the rate equations using cross sections drawn from literature. Taking into account the energy distribution of the incident ions, the calculations give the final energy distribution for the different species that can be compared to experimental spectra. First results obtained for hydrogen in the water case indicate that this model can explain the main observed features. The results concerning the carbon and oxygen ions will be also presented as well as refinement of the cross sections since some cross sections are missing for these energies.
Tahir, N. A.; Arnold, R. C.
1989-07-01
In this paper detailed simulations are presented of radiation-hydrodynamicresponse of gaseous cylindrical targets irradiated with heavy-ion beams thatwill be produced at the Gesellschaft f/umlt u/r Schwerionenforschung, Darmstadt,using a heavy-ion synchrotron (SIS) (/ital Heavy/ /ital Ion//usion/, AIP Conference Proceedings No. 152 (AIP, NewYork, 1986), p. 23). The purpose of this work is to explore material conditionsfor which the thermal radiation effects can be maximized. This is desirable inorder to study a number of interesting and important effects includingmaximization of conversion efficiency of the ion beam energy to thermalradiation and measurement of the target opacity in the SIS experiments. It isexpected that the SIS beams will produce a specific deposition power of 10 TW/g.The simulations in this paper show that a temperature of the order of 10 eVcould be achieved by the SIS beams using homogeneous, cylindrical Xe targets. Ithas been shown that with the help of these computer simulations one should beable to measure the target opacity in these experiments within a factor of 3.Also these calculations show that in the SIS experiments one should be able tohave a 50% conversion efficiency using a Xe target under optimum conditions. Ithas been found that the radiation effects will be optimized in the SISexperiments if the initial target density is of the order of 10/sup /minus/3/ g/cm/sup 3/.If the initial density is too high (of the order of 10/sup /minus/1/ g/cm/sup 3/ or more),hydrodynamic effects will dominate, while, on the other hand, if the initialdensity is too low (of the order of 10/sup /minus/4/ g/cm/sup 3/ or less), the electronthermal conductivity will take over.
Beam halo in mismatched proton beams.
Wangler, Thomas P.,; Allen, C. K.; Chan, D.; Colestock, P. L. ,; Crandall, K. R.; Qiang, J.; Garnett, R. W.; Lysenko, W. P.; Gilpatrick, J. D.; Schneider, J. D.; Schulze, M. E.; Sheffield, R. L.; Smith, H. V.
2002-01-01
Progress was made during the past decade towards a better understanding of halo formation caused by beam mismatch in high-intensity beams. To test these ideas an experiment was carried out at Los Alamos with proton beams in a 52-quadrupole focusing channel. Rms emittances and beam widths were obtained from measured beam profiles for comparison with the maximum emittance growth predictions of a free-energy model and the maximum haloamplitude predictions of a particle-core model. The experimental results are also compared with multiparticle simulations. In this paper we will present the experimental results and discuss the implications with respect to the validity of both the models and the simulations. Keywords: beam halo, emittance growth, beam profiles, simulations, space charge, mismatch
Hatchett, S.P.; Brown, C.G.; Cowan, T.E.; Henry, E.A.; Johnson, J.; Key, M.H.; Koch, J.A.; Langdon, A.B.; Lasinski, B.F.; Lee, R.W.; Mackinnon, A.J.; Pennington, D.M.; Perry, M.D.; Phillips, T.W.; Roth, M.; Sangster, T.C.; Singh, M.S.; Snavely, R.A.; Stoyer, M.A.; Wilks, S.C.; Yasuike, K.
1999-11-12
In our Petawatt laser experiments several hundred joules of 1 {micro}m laser light in 0.5-5.0 ps pulses with intensities up to 3 x 10{sup 20}Wcm{sup -2} were incident on solid targets producing a strongly relativistic interaction. The energy content, spectra, and angular patterns of the photon, electron, and ion radiations were diagnosed in a number of ways, including several novel (to laser physics) nuclear activation techniques. From the beamed bremsstrahlung we infer that about 40-50% of the laser energy is converted to broadly beamed hot electrons. Their direction centroid varies from shot to shot, but the beam has a consistent width. Extraordinarily luminous ion beams almost precisely normal to the rear of various targets are seen--up to 3 x 10{sup 13} protons with kT{sub ion} {approx} several MeV representing {approx}6% of the laser energy. We observe ion energies up to at least 55 MeV. The ions appear to originate from the rear target surfaces. The edge of the ion beam is very sharp, and collimation increases with ion energy. At the highest energies, a narrow feature appears in the ion spectra, and the apparent size of the emitting spot is smaller than the full back surface area. Any ion emission from the front of the targets is much less than from the rear and is not sharply beamed. The hot electrons generate a Debye sheath with electrostatic fields of order MV per micron which apparently accelerate the ions.
Hatchett, Stephen P.; Brown, Curtis G.; Cowan, Thomas E.; Henry, Eugene A.; Johnson, Joy S.; Key, Michael H.; Koch, Jeffrey A.; Langdon, A. Bruce; Lasinski, Barbara F.; Lee, Richard W.
2000-05-01
In recent Petawatt laser experiments at Lawrence Livermore National Laboratory, several hundred joules of 1 {mu}m laser light in 0.5-5.0-ps pulses with intensities up to 3x10{sup 20} W cm{sup -2} were incident on solid targets and produced a strongly relativistic interaction. The energy content, spectra, and angular patterns of the photon, electron, and ion radiations have all been diagnosed in a number of ways, including several novel (to laser physics) nuclear activation techniques. About 40%-50% of the laser energy is converted to broadly beamed hot electrons. Their beam centroid direction varies from shot to shot, but the resulting bremsstrahlung beam has a consistent width. Extraordinarily luminous ion beams (primarily protons) almost precisely normal to the rear of various targets are seen--up to 3x10{sup 13} protons with kT{sub ion}{approx}several MeV representing {approx}6% of the laser energy. Ion energies up to at least 55 MeV are observed. The ions appear to originate from the rear target surfaces. The edge of the ion beam is very sharp, and collimation increases with ion energy. At the highest energies, a narrow feature appears in the ion spectra, and the apparent size of the emitting spot is smaller than the full back surface area. Any ion emission from the front of the targets is much less than from the rear and is not sharply beamed. The hot electrons generate a Debye sheath with electrostatic fields of order MV per micron, which apparently accelerate the ions. (c) 2000 American Institute of Physics.
Characterization of laser beam interaction with carbon materials
NASA Astrophysics Data System (ADS)
Janićijević, Milovan; Srećković, Milesa; Kaluđerović, Branka; Bojanić, Slobodan; Družijanić, Dragan; Dinulović, Mirko; Kovačević, Aleksander
2013-05-01
This paper presents simulation and experimental results for the exposure of some carbon-based materials to alexandrite and Nd3+:YAG (yttrium aluminum garnet) laser radiation. Simulation of the heating effects was carried out using the COMSOL Multiphysics 3.5 package for samples of carbon-based P7295-2 fiber irradiated using an alexandrite laser and carbon-based P4396-2 fiber irradiated using an Nd3+:YAG laser, as well as by applying finite element modeling for P7295-2 samples irradiated using an Nd3+:YAG laser. In the experimental part, P7295-2 samples were exposed to alexandrite laser radiation while samples of carbon-based composite 3D C/C were exposed to Nd3+:YAG laser radiation. Micrographs of the laser induced craters were obtained by light and scanning electron microscopy, and the images analyzed using the ImageJ software. The results obtained enable identification of the laser-material interaction spots, and characterization of the laser induced changes in the materials investigated.
LEDA BEAM DIAGNOSTICS INSTRUMENTATION: BEAM POSITION MONITORS
D. BARR; ET AL
2000-05-01
The Low Energy Demonstration Accelerator (LEDA) facility located at Los Alamos National Laboratory (LANL) accelerates protons to an energy of 6.7-MeV and current of 100-mA operating in either a pulsed or cw mode. Of key importance to the commissioning and operations effort is the Beam Position Monitor system (BPM). The LEDA BPM system uses five micro-stripline beam position monitors processed by log ratio processing electronics with data acquisition via a series of custom TMS32OC40 Digital Signal Processing (DSP) boards. Of special interest to this paper is the operation of the system, the log ratio processing, and the system calibration technique. This paper will also cover the DSP system operations and their interaction with the main accelerator control system.
Telecommunication using muon beams
Arnold, Richard C.
1976-01-01
Telecommunication is effected by generating a beam of mu mesons or muons, varying a property of the beam at a modulating rate to generate a modulated beam of muons, and detecting the information in the modulated beam at a remote location.
Recent advances of strong-strong beam-beam simulation
Qiang, Ji; Furman, Miguel A.; Ryne, Robert D.; Fischer, Wolfram; Ohmi,Kazuhito
2004-09-15
In this paper, we report on recent advances in strong-strong beam-beam simulation. Numerical methods used in the calculation of the beam-beam forces are reviewed. A new computational method to solve the Poisson equation on nonuniform grid is presented. This method reduces the computational cost by a half compared with the standard FFT based method on uniform grid. It is also more accurate than the standard method for a colliding beam with low transverse aspect ratio. In applications, we present the study of coherent modes with multi-bunch, multi-collision beam-beam interactions at RHIC. We also present the strong-strong simulation of the luminosity evolution at KEKB with and without finite crossing angle.
Probabilistic Model of Beam-Plasma Interaction in Randomly Inhomogeneous Plasma
NASA Astrophysics Data System (ADS)
Voshchepynets, A.; Krasnoselskikh, V.; Artemyev, A.; Volokitin, A.
2015-07-01
We propose a new model that describes beam-plasma interaction in the presence of random density fluctuations with a known probability distribution. We use the property that, for the given frequency, the probability distribution of the density fluctuations uniquely determines the probability distribution of the phase velocity of waves. We present the system as discrete and consisting of small, equal spatial intervals with a linear density profile. This approach allows one to estimate variations in wave energy density and particle velocity, depending on the density gradient on any small spatial interval. Because the characteristic time for the evolution of the electron distribution function and the wave energy is much longer than the time required for a single wave-particle resonant interaction over a small interval, we determine the description for the relaxation process in terms of averaged quantities. We derive a system of equations, similar to the quasi-linear approximation, with the conventional velocity diffusion coefficient D and the wave growth rate γ replaced by the average in phase space, by making use of the probability distribution for phase velocities and by assuming that the interaction in each interval is independent of previous interactions. Functions D and γ are completely determined by the distribution function for the amplitudes of the fluctuations. For the Gaussian distribution of the density fluctuations, we show that the relaxation process is determined by the ratio of beam velocity to plasma thermal velocity, the dispersion of the fluctuations, and the width of the beam in the velocity space.
Gallegos, F.R.
1996-06-01
The Radiation Security System (RSS) at the Los Alamos Neutron Science Center (LANSCE) provides personnel protection from prompt radiation due to accelerated beam. Active instrumentation, such as the Beam Current Limiter, is a component of the RSS. The current limiter is designed to limit the average current in a beam line below a specific level, thus minimizing the maximum current available for a beam spill accident. The beam current limiter is a self-contained, electrically isolated toroidal beam transformer which continuously monitors beam current. It is designed as fail-safe instrumentation. The design philosophy, hardware design, operation, and limitations of the device are described.
NASA Astrophysics Data System (ADS)
Kalinin, Yu. A.; Starodubov, A. V.; Fokin, A. S.
2015-01-01
We experimentally investigate the interaction between an electron beam with a periodically varying diameter and a large-amplitude electromagnetic wave. The effect of different factors on the pulsed beam formation and current density in bunches is established. Compared with the electron beam deceleration circuits (low-voltage vircator systems), the generators based on pulsed turbulent beams have a broader band due to the formation of a large number of space charge bunches and an integral power efficiency that is higher by a factor of 2-2.5.
Flow structure interaction between a flexible cantilever beam and isotropic turbulence
NASA Astrophysics Data System (ADS)
Vogel, Andrew; Morvan, Thomas; Goushcha, Oleg; Andreopoulos, Yiannis; Elvin, Niell
2015-11-01
In the present experimental work we consider the degree of distortion of isotropy and homogeneity of grid turbulence caused by the presence of a thin flexible cantilever beam immersed in the flow aligned in the longitudinal direction. Beams of various rigidities and lengths were used in the experiments. Piezoelectric patches were attached to the beams which provided an output voltage proportional to the strain and therefore proportional to the beam's deflection. The experiments were carried out in a large scale wind tunnel and hot-wires were used to measure turbulence intensity in the vicinity of the beams for various values of the ratio of aerodynamic loading to beam's rigidity. It was found that the flow field distortion depends on the rigidity of the beam. For very rigid beams this distortion is of the order of the boundary layer thickness developing over the beam while for very flexible beams the distorted region is of the order of the beam's tip deflection. Analysis of the time-dependent signals indicated some correlation between the frequency of beam's vibration and flow structures detected. Supported by NSF Grant: CBET #1033117.
NASA Astrophysics Data System (ADS)
Lu, Xueying; Shapiro, Michael A.; Temkin, Richard J.
2015-08-01
We present the design of a volumetric metamaterial (MTM) structure and its interaction with a relativistic electron beam. This novel structure has promising applications in particle beam diagnostics, acceleration, and microwave generation. The volumetric MTM has a cubic unit cell allowing structures of arbitrary size to be configured as an array of identical cells. This structure allows the exploration of the properties of a metamaterial structure without having to consider substrates or other supporting elements. The dispersion characteristics of the unit cell are obtained using eigenmode simulations in the hfss code and also using an effective medium theory with spatial dispersion. Good agreement is obtained between these two approaches. The lowest-order mode of the MTM structure is found to have a negative group velocity in all directions of propagation. The frequency spectrum of the radiation from a relativistic electron beam passing through the MTM structure is calculated analytically and also calculated with the cst code, with very good agreement. The radiation pattern from the relativistic electron beam is found to be backward Cherenkov radiation, which is a promising tool for particle diagnostics. Calculations are also presented for the application of a MTM-based wakefield accelerator as a possible all-metal replacement for the conventional dielectric wakefield structure. The proposed structure may also be useful for MTM-based vacuum electron devices for microwave generation and amplification.
Beam-wave interaction analysis of a magnetically insulated line oscillator
Dwivedi, Smrity; Jain, P. K.
2012-08-15
Magnetically insulated line oscillator (MILO) using a metal disc-loaded coaxial cylindrical waveguide as its RF interaction structure is field analyzed for the beam-wave interaction using the linearized Vlasov equation. The beam present dispersion relation of the device is obtained applying the modal matching technique which is further used to estimate the oscillation frequency, temporal growth rate, output energy, and other device parameters. Further, MILO is simulated using commercial pic code 'magic,' and the electron momentum and energy plots are found to be in agreement with those obtained through the present analysis within 5%. Furthermore, the device temporal growth rate reported in the literature for the experimental MILO device is also compared with the present analytical theory and found in agreement {approx}5%.
NASA Astrophysics Data System (ADS)
Stefan, V. Alexander
2015-11-01
The interaction of ultrashort wavelength multi laser beams with the flowing blood thin films leads to the transmutation of the blood types A, B, and AB into O type. This is a novel mechanism of importance for the transfusion medicine. Laser radiation is in resonance with the eigen-frequency modes of the antigen proteins and forces the proteins to parametrically oscillate until they get kicked out from the surface. The stripping away of antigens is done by the scanning-multiple-lasers of a high repetition rate in the blue-purple frequency domain. The guiding-lasers are in the red-green frequency domain. The laser force, (parametric interaction with the antigen eigen-oscillation), upon the antigen protein molecule must exceed its weight. The scanning laser beam is partially reflected as long as the antigen(s) is not eliminated. The process of the protein detachment can last a few minutes. Supported by Nikola Tesla Labs., Stefan University.
NASA Astrophysics Data System (ADS)
Kondo, Kotaro; Oguri, Yoshiyuki
2016-03-01
We present the velocity measurements in electro-magnetic shock tube for beam interaction experiment by three methods; laser refraction, photodiode for self-emission, and high speed framing camera. The laser refraction showed that the average shock velocity was 6.7 km/s when the initial pressure was 1000 Pa and the initial charging voltage was 16 kV. The self-emissions from piston discharge plasma were measured by photodiodes and by high speed framing camera. The measurements showed that the duration between shock and piston was up to 8 microseconds with a 400-mm propagation in the shock tube, which is enough time as dissociation target for beam interaction experiment.The complementary velocity measurement is significant for understanding the electro-magnetically driven shock physics.
NASA Technical Reports Server (NTRS)
Muench, W. K.
1980-01-01
Requirements for the space fabrication of large space structures are considered with emphasis on the design, development, manufacture, and testing of a machine which automatically produces a basic building block aluminum beam. Particular problems discussed include those associated with beam cap forming; brace storage, dispensing, and transporting; beam component fastening; and beam cut-off. Various critical process tests conducted to develop technology for a machine to produce composite beams are also discussed.
Beam-wave interaction analysis of a 42 GHz, 200 kW CW gyrotron
Ashutosh; Singh, Rupendra; Jain, P.K. E-mail: rupendrasingh04@gmail.com
2011-07-01
In this paper, the self-consistent large-signal formulation is used to study the beam-wave interaction mechanism in a gyrotron oscillator. The nonlinear interaction has been computed by solving the set of self-consistent nonlinear equations along the interaction length using numerical method. Consequently, the computation of energy, phase, output power, and efficiency of a gyrotron is made. The computed results were found to be matching with the published results. A 42 GHz, 200 kW output power gyrotron operating in TE{sub 03} mode is analysed using this analysis and results found meeting desired specifications. (author)
Interaction of vector solitons and beam break up at thin film gallium-silica waveguide structure
NASA Astrophysics Data System (ADS)
Sharma, Arvind; Nagar, A. K.
2016-05-01
We investigate the interaction of optical vector soliton with a symmetric thin-film gallium-silica waveguide structure using the equivalent particle theory. The relevant nonlinear Schrodinger equation has been solved by the method of phase plane analysis. The analysis shows beam break up into transmitted, reflected and nonlinear surface waves at the interface. The stability properties of the solitons so formed have been discussed.
BEAM HALO IN PROTON LINAC BEAMS
T. WANGLER; K. CRANDALL
2000-08-01
In this paper we review the present picture of km halo in proton linacs. Space-charge forces acting in mismatched beams have been identified as a major cause of beam-halo. We present a definition of halo based on a ratio of moments of the distribution of the beam coordinates. We find from our initial studies that for halo detined in this way, a beam can have rms emittance growth without halo growth, but halo growth is always accompanied by rms emittance growth. We describe the beam-halo experiment that is in preparation at Los Alamos, which will address questions about the beam profiles, maximum particle amplitudes, and rms emittance growth associated with the halo.
Multiple-beam laser–plasma interactions in inertial confinement fusion
Myatt, J. F. Zhang, J.; Maximov, A. V.; Short, R. W.; Seka, W.; Edgell, D. H.; Michel, D. T.; Igumenshchev, I. V.; Froula, D. H.; Hinkel, D. E.; Michel, P.; Moody, J. D.
2014-05-15
The experimental evidence for multiple-beam laser-plasma instabilities of relevance to laser driven inertial confinement fusion at the ignition scale is reviewed, in both the indirect and direct-drive approaches. The instabilities described are cross-beam energy transfer (in both indirectly driven targets on the NIF and in direct-drive targets), multiple-beam stimulated Raman scattering (for indirect-drive), and multiple-beam two-plasmon decay instability (in direct drive). Advances in theoretical understanding and in the numerical modeling of these multiple beam instabilities are presented.
Interaction position resolution simulations and in-beam measurements of the AGATA HPGe detectors
NASA Astrophysics Data System (ADS)
Söderström, P.-A.; Recchia, F.; Nyberg, J.; Al-Adili, A.; Ataç, A.; Aydin, S.; Bazzacco, D.; Bednarczyk, P.; Birkenbach, B.; Bortolato, D.; Boston, A. J.; Boston, H. C.; Bruyneel, B.; Bucurescu, D.; Calore, E.; Colosimo, S.; Crespi, F. C. L.; Dosme, N.; Eberth, J.; Farnea, E.; Filmer, F.; Gadea, A.; Gottardo, A.; Grave, X.; Grebosz, J.; Griffiths, R.; Gulmini, M.; Habermann, T.; Hess, H.; Jaworski, G.; Jones, P.; Joshi, P.; Judson, D. S.; Kempley, R.; Khaplanov, A.; Legay, E.; Lersch, D.; Ljungvall, J.; Lopez-Martens, A.; Meczynski, W.; Mengoni, D.; Michelagnoli, C.; Molini, P.; Napoli, D. R.; Orlandi, R.; Pascovici, G.; Pullia, A.; Reiter, P.; Sahin, E.; Smith, J. F.; Strachan, J.; Tonev, D.; Unsworth, C.; Ur, C. A.; Valiente-Dobón, J. J.; Veyssiere, C.; Wiens, A.; Agata Collaboration
2011-05-01
The interaction position resolution of the segmented HPGe detectors of an AGATA triple cluster detector has been studied through Monte Carlo simulations and in an in-beam experiment. A new method based on measuring the energy resolution of Doppler-corrected γ-ray spectra at two different target to detector distances is described. This gives the two-dimensional position resolution in the plane perpendicular to the direction of the emitted γ-ray. The γ-ray tracking was used to determine the full energy of the γ-rays and the first interaction point, which is needed for the Doppler correction. Five different heavy-ion induced fusion-evaporation reactions and a reference reaction were selected for the simulations. The results of the simulations show that the method works very well and gives a systematic deviation of <1 mm in the FWHM of the interaction position resolution for the γ-ray energy range from 60 keV to 5 MeV. The method was tested with real data from an in-beam measurement using a 30Si beam at 64 MeV on a thin 12C target. Pulse-shape analysis of the digitized detector waveforms and γ-ray tracking was performed to determine the position of the first interaction point, which was used for the Doppler corrections. Results of the dependency of the interaction position resolution on the γ-ray energy and on the energy, axial location and type of the first interaction point, are presented. The FWHM of the interaction position resolution varies roughly linearly as a function of γ-ray energy from 8.5 mm at 250 keV to 4 mm at 1.5 MeV, and has an approximately constant value of about 4 mm in the γ-ray energy range from 1.5 to 4 MeV.
Tevatron beam-beam compensation project progress
Shiltsev, V.; Zhang, X.L.; Kuznetsov, G.; Pfeffer, H.; Saewert, G.; Zimmermann, F.; Tiunov, M.; Bishofberger, K.; Bogdanov, I.; Kashtanov, E.; Kozub, S.; Sytnik, V.; Tkachenko, L.; /Serpukhov, IHEP
2005-05-01
In this paper, we report the progress of the Tevatron Beam-Beam Compensation (BBC) project [1]. Electron beam induced proton and antiproton tuneshifts have been reported in [2], suppression of an antiproton emittance growth has been observed, too [1]. Currently, the first electron lens (TEL1) is in operational use as the Tevatron DC beam cleaner. We have made a lot of the upgrades to improve its stability [3]. The 2nd Tevatron electron lens (TEL2) is under the final phase of development and preparation for installation in the Tevatron.
Langsdorf, A.S. Jr.
1957-11-26
A device is described for defining a beam of high energy particles wherein the means for defining the beam in the horizontal and vertical dimension are separately adjustable and the defining members are internally cooled. In general, the device comprises a mounting block having a central opening through which the beam is projected, means for rotatably supporting two pairs of beam- forming members, passages in each member for the flow of coolant; the beam- forming members being insulated from each other and the block, and each having an end projecting into the opening. The beam-forming members are adjustable and may be cooperatively positioned to define the beam passing between the end of the members. To assist in projecting and defining the beam, the member ends have individual means connected thereto for indicating the amount of charge collected thereon due to beam interception.
The nonlinear interaction of two-crossed focussed ultrasonic beams in the presence of turbulence
NASA Astrophysics Data System (ADS)
Rife, Stephen C.
1988-06-01
This paper examines the scattering of a nonlinearly generated sum frequency acoustic wave component from a region of turbulence defined by the overlap volume of two mutually perpendicular crossed focussed ultrasonic beams. The scattered sum frequency pressure amplitude is measured at different radial scan positions across the jet flow stream providing conclusions that explain some qualitative results governing the sum frequency scattering mechanism. Information about the instantaneous velocity components of the turbulent field in the sound-sound interaction volume is measured with an electronic spectrum analyzer. Average spectral shapes of the spectrum near the sum frequency represent information about the probability distribution function of the turbulent velocities. Acoustic measurements are correlated with velocity measurements of circular jets. These correlations demonstrate that the focussed crossed beam apparatus is an effective diagnostic tool for the experimental study of turbulent fluid fields in water. The results of the nonlinear crossed beam experiments indicate the apparatus can be utilized as a diagnostic tool to measure some parameters of turbulent velocity. The measured pressure of the radiated sum frequency correlates with turbulent velocities in the interaction region. Measurements of the Doppler shift and sum-frequency broadening are used to determine mean velocity and turbulent rms velocities respectively.
The development and interaction of instabilities in intense relativistic electron beams
NASA Astrophysics Data System (ADS)
Kurkin, S. A.; Badarin, A. A.; Koronovskii, A. A.; Hramov, A. E.
2015-12-01
We report on the physical mechanisms of development, coexistence and interaction of Pierce-Bursian and diocotron instabilities in the non-neutral relativistic electron beam (REB) in the classic vircator. The analytical and numerical analysis is provided by means of 3D electromagnetic simulation. We conducted an extensive study of characteristic regimes of REB dynamics determined by the instabilities development. As a result, a regime map has been obtained. It demonstrates sequential switching of the REB dynamics from the regime with N = 1 to the regime with N = 7 electron bunches in the azimuth direction with the beam current growth for the different external magnetic fields. The numerical analysis of bunch equilibrium states has identified the physical causes responsible for the REB regime switchings.
Modeling and Simulation of the Longitudinal Beam Dynamics - RF Station Interaction in the LHC Rings
Mastorides, T; Rivetta, C.; Fox, J.D.; Winkle, D.Van; Baudrenghien, P.; Tuckmantel, J.; /CERN
2008-07-07
A non-linear time-domain simulation has been developed to study the interaction between longitudinal beam dynamics and RF stations in the LHC rings. The motivation for this tool is to determine optimal LLRF configurations, to study system sensitivity on various parameters, and to define the operational and technology limits. It will be also used to study the effect of RF station noise, impedance, and perturbations on the beam life time and longitudinal emittance. It allows the study of alternative LLRF implementations and control algorithms. The insight and experience gained from our PEP-II simulation is important for this work. In this paper we discuss properties of the simulation tool that will be helpful in analyzing the LHC RF system and its initial results. Partial verification of the model with data taken during the LHC RF station commissioning is presented.
Role of charge transfer in heavy-ion-beam-plasma interactions at intermediate energies
NASA Astrophysics Data System (ADS)
Ortner, A.; Frank, A.; Blažević, A.; Roth, M.
2015-02-01
In this paper we investigate the influence of the plasma properties on the charge state distribution of a swift heavy ion beam interacting with a plasma. The main finding is that the charge state in plasma can be lower than in cold matter. The charge state distribution is determined by the ionization and recombination rates which are balancing each other out. Both, ionization and recombination rates, as well as atomic excitation and decay rates, depend on the plasma parameters in different ways. These effects have been theoretically studied by Monte Carlo simulations on the example of an argon ion beam at an energy of 4 MeV /u in a carbon plasma. This study covers a plasma parameter space ranging from ion densities from 1018 to 1023 cm-3 and electron temperatures from 10 to 200 eV.
Parametric amplification of orbital angular momentum beams based on light-acoustic interaction
Gao, Wei E-mail: zhuzhihandd@sina.com; Mu, Chunyuan; Yang, Yuqiang; Li, Hongwei; Zhu, Zhihan E-mail: zhuzhihandd@sina.com
2015-07-27
A high fidelity amplification of beams carrying orbital angular momentum (OAM) is very crucial for OAM multiplexing and other OAM-based applications. Here, we report a demonstration of stimulated Brillouin amplification for OAM beams, and the energy conversion efficiency of photon-phonon coupling and the phase structure of amplified signals are investigated in collinear and noncollinear frame systems, respectively. Our results demonstrate that the OAM signals can be efficiently amplified without obvious noise introduced, and the modes of output signal are independent of the pump modes or the geometrical frames. Meanwhile, an OAM state depending on the optical modes and the geometrical frames is loaded into phonons by coherent light-acoustic interaction, which reveals more fundamental significance and a great application potential in OAM-multiplexing.
Summary of session 3 on synchrotron radiation and beam dynamics
Shiltsev, V.; Metral, E.; /CERN
2010-12-01
We summarize presentations, discussions and general conclusions of the Workshop session on 'Beam Dynamics Issues'. Major subjects include effects due to synchrotron radiation (SR), cryogenic loads, electron cloud, impedances, intra-beam scattering (IBS) and beam-beam interactions.
Gallegos, F.R.
1997-01-01
The Radiation Security System (RSS) at the Los Alamos Neutron Science Center (LANSCE) provides personnel protection from prompt radiation due to accelerated beam. Active instrumentation, such as the beam current limiter, is a component of the RSS. The current limiter is designed to limit the average current in a beamline below a specific level, thus minimizing the maximum current available for a beam spill accident. The beam current limiter is a self-contained, electrically isolated toroidal beam transformer which continuously monitors beam current. It is designed as fail-safe instrumentation. The design philosophy, hardware design, operation, and limitations of the device are described. {copyright} {ital 1997 American Institute of Physics.}
Alkire, Randy W.; Rosenbaum, Gerold; Evans, Gwyndaf
2003-07-22
An apparatus for determining the position of an x-ray beam relative to a desired beam axis. Where the apparatus is positioned along the beam path so that a thin metal foil target intersects the x-ray beam generating fluorescent radiation. A PIN diode array is positioned so that a portion of the fluorescent radiation is intercepted by the array resulting in an a series of electrical signals from the PIN diodes making up the array. The signals are then analyzed and the position of the x-ray beam is determined relative to the desired beam path.
McKeown, Mark H.; Beason, Steven C.; Fairer, George
1992-01-01
The apparatus of the present invention provides means for obtaining accurate, dependable, measurement of bearings and directions for geologic mapping in subterranean shafts, such as, for example, nuclear waste storage investigations. In operation, a laser beam is projected along a reference bearing. A pyramid is mounted such that the laser beam is parallel to the pyramid axis and can impinge on the apex of the pyramid thus splitting the beam several ways into several beams at right angles to each other and at right angles to the reference beam. The pyramid is also translatable and rotatable in a plane perpendicular to the reference beam.
NASA Technical Reports Server (NTRS)
Raitt, W. J.; Banks, P. M.; Denig, W. F.; Anderson, H. R.
1982-01-01
Interest in the interaction of electron beams with plasma generated by ionization caused by the primary electron beam was stimulated by the need to develop special vacuum tubes to operate in the kMHz frequency region. The experiments of Getty and Smullin (1963) indicated that the interaction of an energetic electron beam with its self-produced plasma resulted in the emission of wave energy over a wide range of frequencies associated with cyclotron and longitudinal plasma instabilities. This enhanced the thermal plasma density in the vicinity of the beam, and the term Beam-Plasma Discharge (BPD) was employed to described this phenomenon. The present investigation is concerned with some of the transient phenomena associated with wave emission during the beam switch-on and switch-off periods. Results are presented on the changes in electron energy spectra on a time scale of tens of milliseconds following beam switch-on. The results are discussed in terms of the beam plasma discharge phenomenon.
Yin, Y. E-mail: yinyong@uestc.edu.cn; He, W.; Zhang, L.; Yin, H.; Cross, A. W.
2015-07-15
The design and simulation of a G-band extended interaction oscillator (EIO) driven by a pseudospark-sourced electron beam is presented. The characteristic of the EIO and the pseudospark-based electron beam were studied to enhance the performance of the newly proposed device. The beam-wave interaction of the EIO can be optimized by choosing a suitable pseudospark discharging voltage and by widening the operating voltage region of the EIO circuit. Simulation results show that a peak power of over 240 W can be achieved at G-band using a pseudospark discharge voltage of 41 kV.
Beam-beam issues in asymmetric colliders
Furman, M.A.
1992-07-01
We discuss generic beam-beam issues for proposed asymmetric e{sup +}- e{sup -} colliders. We illustrate the issues by choosing, as examples, the proposals by Cornell University (CESR-B), KEK, and SLAC/LBL/LLNL (PEP-II).
Simulation of beam-induced plasma for the mitigation of beam-beam effects
Ma, J.; Wang, G.; Samulyak, R.; Yu, K.; Litvinenko, V.
2015-05-03
One of the main challenges in the increase of luminosity of circular colliders is the control of the beam-beam effect. In the process of exploring beam-beam mitigation methods using plasma, we evaluated the possibility of plasma generation via ionization of neutral gas by proton beams, and performed highly resolved simulations of the beam-plasma interaction using SPACE, a 3D electromagnetic particle-in-cell code. The process of plasma generation is modelled using experimentally measured cross-section coefficients and a plasma recombination model that takes into account the presence of neutral gas and beam-induced electromagnetic fields. Numerically simulated plasma oscillations are consistent with theoretical analysis. In the beam-plasma interaction process, high-density neutral gas reduces the mean free path of plasma electrons and their acceleration. A numerical model for the drift speed as a limit of plasma electron velocity was developed. Simulations demonstrate a significant reduction of the beam electric field in the presence of plasma. Preliminary simulations using fully-ionized plasma have also been performed and compared with the case of beam-induced plasma.
Beam lifetime and beam brightness in ALS
Kim, C.; Jackson, A.; Warwick, A.
1995-04-01
Beam lifetime in ALS is dominated by the Touschek scattering. Measurements of lifetime in single-bunch mode with estimates of bunch dimensions obtained from undulator radiation data are consistent with expectations (t=1.8 hours at 1.25 mA per bunch). However, the lifetime is significantly longer in multi-bunch mode (t=ll hours at 400 mA per 320 bunches). This discrepancy has been traced to an increase in the momentum spread and bunch length in the beam caused by longitudinal coupled-bunch motions driven by higher-order modes in the rf cavities. The increased momentum spread leads to a significant degradation in the undulator spectral performance. Feedback stabilization of the coupled-bunch motion improves the spectral characteristics of the undulator beam at the expense of beam lifetime. We observe an increase of {approximately}200% in beam lifetime by operating at the betatron coupling resonance.
BEAMS3D Neutral Beam Injection Model
Lazerson, Samuel
2014-04-14
With the advent of applied 3D fi elds in Tokamaks and modern high performance stellarators, a need has arisen to address non-axisymmetric effects on neutral beam heating and fueling. We report on the development of a fully 3D neutral beam injection (NBI) model, BEAMS3D, which addresses this need by coupling 3D equilibria to a guiding center code capable of modeling neutral and charged particle trajectories across the separatrix and into the plasma core. Ionization, neutralization, charge-exchange, viscous velocity reduction, and pitch angle scattering are modeled with the ADAS atomic physics database [1]. Benchmark calculations are presented to validate the collisionless particle orbits, neutral beam injection model, frictional drag, and pitch angle scattering effects. A calculation of neutral beam heating in the NCSX device is performed, highlighting the capability of the code to handle 3D magnetic fields.
Comparison of beam-position-transfer functions using circular beam-position monitors
Gilpatrick, J.D.
1997-10-01
A cylindrical beam-position monitor (BPM) used in many accelerator facilities has four electrodes on which beam-image currents induce bunched-beam signals. These probe-electrode signals are geometrically configured to provide beam-position information about two orthogonal axes. An electronic processor performs a mathematical transfer function (TF) on these BPM-electrode signals to produce output signals whose time-varying amplitude is proportional to the beam`s vertical and horizontal position. This paper will compare various beam-position TFs using both pencil beams and will further discuss how diffuse beams interact with some of these TFs.
eRHIC ring-ring design with head-on beam-beam compensation
Montag,C.; Blaskiewicz, M.; Pozdeyev, E.; Fischer, W.; MacKay, W. W.
2009-05-04
The luminosity of the eRHIC ring-ring design is limited by the beam-beam effect exerted on the electron beam. Recent simulation studies have shown that the beam-beam limit can be increased by means of an electron lens that compensates the beam-beam effect experienced by the electron beam. This scheme requires proper design of the electron ring, providing the correct betatron phase advance between interaction point and electron lens. We review the performance of the eRHIC ring-ring version and discuss various parameter sets, based on different cooling schemes for the proton/ion beam.
NASA Astrophysics Data System (ADS)
Vishwakarma, S. D.; Pandey, A. K.; Parpia, J. M.; Verbridge, S. S.; Craighead, H. G.; Pratap, R.
2016-05-01
An understanding of the dominant dissipative mechanisms is crucial for the design of a high-Q doubly clamped nanobeam resonator to be operated in air. We focus on quantifying analytically the viscous losses—the squeeze film damping and drag force damping—that limit the net quality factor of a beam resonator, vibrating in its flexural fundamental mode with the surrounding fluid as air at atmospheric pressure. Specifically, drag force damping dominates at smaller beam widths and squeeze film losses dominate at larger beam widths, with no significant contribution from structural losses and acoustic radiation losses. The combined viscous losses agree well with the experimentally measured Q of the resonator over a large range of beam widths, within the limits of thin beam theory. We propose an empirical relation between the maximum quality factor and the ratio of maximum beam width to the squeeze film air gap thickness.
NASA Astrophysics Data System (ADS)
Petkov, E. E.; Weller, M. E.; Kantsyrev, V. L.; Safronova, A. S.; Moschella, J. J.; Shrestha, I.; Shlyapsteva, V. V.; Stafford, A.; Keim, S. F.; University of Nevada Reno Team
2013-10-01
Results of Ar gas-puff experiments performed on the high power Leopard laser at UNR are presented. Flux density of laser radiation in focal spot was up to 2 × 1016 W/cm2 (pulse duration was 0.8 ns and laser wavelength was 1.057 μm). Specifically, spectroscopic analysis of K-shell Ar spectra are investigated and compared as functions of the orientation of the laser beam to linear gas jet. The laser beam axis was positioned either along the jet plane or orthogonal to it at a distance of 1 mm from the nozzle output. The diagnostics used included a time-integrated x-ray spectrometer along with a set of filtered Si diodes with various cutoff energies. In order to identify lines, a non-local thermodynamic equilibrium (non-LTE) kinetic model was utilized and was also used to determine plasma parameters such as electron temperature and density. The importance of the spectroscopic study of high intensity laser beam-jets interaction experiments is discussed. This work was supported by the Defense Threat Reduction Agency, Basic Research Award # HDTRA1-13-1-0033, to University of Nevada, Reno, and in part by the DOE/NNSA Cooperative agreements DE-NA0001984 and DE-FC52-06NA27616.
Diagnostics of an artificial relativistic electron beam interacting with the atmosphere
NASA Astrophysics Data System (ADS)
Marshall, R. A.; Nicolls, M.; Sanchez, E.; Lehtinen, N. G.; Neilson, J.
2014-10-01
We use a Monte Carlo model to simulate the interaction of a beam of relativistic (0.5-10 MeV) electrons with the upper atmosphere as they are injected downward from a notional high-altitude (thermospheric/ionospheric) injection platform. The beam parameters, defined by realistic parameters of a compact linear accelerator, are used to create a distribution of thousands of electrons. Each electron is injected downward from 300 km altitude toward the dense atmosphere, where it undergoes elastic and inelastic collisions, leading to secondary ionization, optical emissions, and X-rays via bremsstrahlung. In this report we describe the model initialization (i.e., development of the electron distribution), essential features of the Monte Carlo model, and secondary outputs, including optical emissions, X-ray fluxes, secondary ionization, and backscattered energetic electron fluxes. Optical emissions are propagated to the ground through the lower atmosphere, including the effects of atmospheric absorption and scattering, to estimate the brightness of the emission column for a given beam current and energy. Similarly, X-ray fluxes are propagated to hypothetical detectors on balloons and satellites. Secondary ionization is used to estimate the radar signal returns from various ground-based radar facilities. Finally, simulated backscattered electron fluxes are measured at the injection location. The simulation results show that each of these diagnostics should be readily detectable by appropriate instruments.
Study on Nonlinear Theory and Code of Beam-Wave Interaction for Gyroklystron
NASA Astrophysics Data System (ADS)
Jianhua, Guo; Sheng, Yu; Xiang, Li; Hongfu, Li
2011-12-01
A nonlinear self-consistent theory of beam-wave interaction for gyroklystron with multiple cavities is analyzed in this paper. The electron motion equations and transient electromagnetic field equations in a complex form are deduced in detail. A calculation code including a time-dependent description of the electromagnetic fields and a self-consistent analysis of the electrons is designed and the corresponding software implementation is achieved using Fortran language. An example is presented for the operation of the code, namely a four-cavity, Ka-band gyroklystron operating in the TE011 mode at the fundamental of the cyclotron frequency. The numerical results show that a maximal saturated peak output power of 330 kW, corresponding to 39% efficiency and a saturated 3-dB bandwidth of 325 MHz is achieved with a 72.8 kv, 11.8 A electron beam at a focused magnetic field of 13 kG and a beam velocity ratio of 1.63 when the speed spread is 5%. By comparison, the numerical results agree with the experimental results.
NASA Astrophysics Data System (ADS)
Marchetto, M.; Laxdal, R. E.
2014-01-01
The ISAC post accelerator comprises an RFQ, DTL and SC-linac. The high energy beam lines connect the linear accelerators as well as deliver the accelerated beams to two different experimental areas. The medium energy beam transport (MEBT) line connects the RFQ to the DTL. The high energy beam transport (HEBT) line connects the DTL to the ISAC-I experimental stations (DRAGON, TUDA-I, GPS). The DTL to superconducting beam (DSB) transport line connects the ISAC-I and ISAC-II linacs. The superconducting energy beam transport (SEBT) line connects the SC linac to the ISAC-II experimental station (TUDA-II, HERACLES, TIGRESS, EMMA and GPS). All these lines have the function of transporting and matching the beams to the downstream sections by manipulating the transverse and longitudinal phase space. They also contain diagnostic devices to measure the beam properties.
NASA Astrophysics Data System (ADS)
Piwinski, A.
Intra-beam scattering is analysed and the rise times or damping times of the beam dimensions are derived. The theoretical results are compared with experimental values obtained on the CERN AA and SPS machines.
NASA Technical Reports Server (NTRS)
Mcdermid, I. S.
1984-01-01
Train of prisms and optical stop separate fundamental beam of laser from second and higher order harmonics of beam produced in certain crystals and by stimulated Raman scattering in gases and liquids.
Electron Beam Freeform Fabrication
Electron Beam Freeform Fabrication (EBF3) is a process by which NASA hopes to build metal parts in zero gravity environments. It's a layer-additive process that uses an electron beam and a solid wi...
EXPERIMENTS ON LASER AND E-BEAM TRANSPORT AND INTERACTION IN A PLASMA CHANNEL.
POGORELSKY,I.V.; PAVLISHIN,I.V.; BEN-ZVI,I.; ET AL.
2004-09-15
An ablative capillary discharge is installed into a linac beamline and serves as a plasma source for generating and characterizing wakefields. Simultaneously, the electron beam is used as a tool for plasma diagnostics. A high-energy picosecond CO{sub 2} laser channeled within the same capillary strongly affects a counterpropagating electron beam. These observations, supported with simulations, suggest the possibility of manipulating relativistic electron beams by steep plasma channels ponderomotively produced by a laser.
Experiments on Laser and e-Beam Transport and Interaction in a Plasma Channel
Pogorelsky, I.V.; Pavlishin, I.V.; Ben-Zvi, I.; Yakimenko, V.; Kumita, T.; Kamiya, Y.; Zigler, A.; Diublov, A.; Andreev, N.; Bobrova, N.; Sasorov, P.
2004-12-07
An ablative capillary discharge is installed into a linac beamline and serves as a plasma source for generating and characterizing wakefields. Simultaneously, the electron beam is used as a tool for plasma diagnostics. A high-energy picosecond CO2 laser channeled within the same capillary strongly affects a counterpropagating electron beam. These observations, supported with simulations, suggest the possibility of manipulating relativistic electron beams by steep plasma channels ponderomotively produced by a laser.
Beam-wave interaction behavior of a 35 GHz metal PBG cavity gyrotron
Singh, Ashutosh; Jain, P. K.
2014-09-15
The RF behavior of a 35 GHz photonic band gap (PBG) cavity gyrotron operating in TE{sub 041}-like mode has been presented to demonstrate its single mode operation capability. In this PBG cavity gyrotron, the conventional tapered cylindrical cavity is replaced by a metal PBG cavity as its RF interaction structure. The beam-wave interaction behavior has been explored using time dependent multimode nonlinear analysis as well as through 3D PIC simulation. Metal PBG cavity is treated here similar to that of a conventional cylindrical cavity for the desired mode confinement. The applied DC magnetic field profile has been considered uniform along the PBG cavity length both in analysis as well as in simulation. Electrons energy and phase along the interaction length of the PBG cavity facilitates bunching mechanism as well as energy transfer phenomena from the electron beam to the RF field. The RF output power for the TE{sub 041}-like design mode as well as nearby competing modes have been estimated and found above to 100 kW in TE{sub 041}-like mode with ∼15% efficiency. Results obtained from the analysis and the PIC simulation are found in agreement within 8% variation, and also it supports the single mode operation, as the PBG cavity does not switch into other parasitic modes in considerably large range of varying DC magnetic field, contrary to the conventional cylindrical cavity interaction structure.
Collimation with hollow electron beams.
Stancari, G; Valishev, A; Annala, G; Kuznetsov, G; Shiltsev, V; Still, D A; Vorobiev, L G
2011-08-19
A novel concept of controlled halo removal for intense high-energy beams in storage rings and colliders is presented. It is based on the interaction of the circulating beam with a 5-keV, magnetically confined, pulsed hollow electron beam in a 2-m-long section of the ring. The electrons enclose the circulating beam, kicking halo particles transversely and leaving the beam core unperturbed. By acting as a tunable diffusion enhancer and not as a hard aperture limitation, the hollow electron beam collimator extends conventional collimation systems beyond the intensity limits imposed by tolerable losses. The concept was tested experimentally at the Fermilab Tevatron proton-antiproton collider. The first results on the collimation of 980-GeV antiprotons are presented. PMID:21929171
PARTICLE BEAM TRACKING CIRCUIT
Anderson, O.A.
1959-05-01
>A particle-beam tracking and correcting circuit is described. Beam induction electrodes are placed on either side of the beam, and potentials induced by the beam are compared in a voltage comparator or discriminator. This comparison produces an error signal which modifies the fm curve at the voltage applied to the drift tube, thereby returning the orbit to the preferred position. The arrangement serves also to synchronize accelerating frequency and magnetic field growth. (T.R.H.)
Ekdahl, Carl August Jr.
2014-10-14
Beam dynamics issues are assessed for a new linear induction electron accelerator being designed for flash radiography of large explosively driven hydrodynamic experiments. Special attention is paid to equilibrium beam transport, possible emittance growth, and beam stability. It is concluded that a radiographic quality beam will be produced possible if engineering standards and construction details are equivalent to those on the present radiography accelerators at Los Alamos.
Nonlinear interaction of intense hypergeometric Gaussian subfamily laser beams in plasma
NASA Astrophysics Data System (ADS)
Sobhani, H.; Vaziri (Khamedi), M.; Rooholamininejad, H.; Bahrampour, A. R.
2016-07-01
Propagation of Hypergeometric-Gaussian laser beam in a nonlinear plasma medium is investigated by considering the Source Dependent Expansion method. A subfamily of Hypergeometric-Gaussian beams with a non-negative, even and integer radial index, can be expressed as the linear superposition of finite number of Laguerre-Gaussian functions. Propagation of Hypergeometric-Gaussian beams in a nonlinear plasma medium depends on the value of radial index. The bright rings' number of these beams is changed during the propagation in plasma medium. The effect of beam vortex charge number l and initial (input) beam intensity on the self-focusing of Hypergeometric-Gaussian beams is explored. Also, by choosing the suitable initial conditions, Hypergeometric-Gaussian subfamily beams can be converted to one or more mode components that a typical of mode conversion may be occurred. The self-focusing of these winding beams can be used to control the focusing force and improve the electron bunch quality in laser plasma accelerators.
Measurement of inclusive charged current interactions on carbon in a few-GeV neutrino beam
Nakajima, Y.; jima, Y.Naka; Alcaraz-Aunion, J.L.; Brice, S.J.; Bugel, L.; Catala-Perez, J.; Cheng, G.; Conrad, J.M.; Djurcic, Z.; Dore, U.; Finley, D.A.; /Kyoto U. /Barcelona, IFAE /Fermilab /MIT /Valencia U. /Columbia U. /MIT /Columbia U. /INFN, Rome /Rome U. /Fermilab /Columbia U. /INFN, Rome /Rome U.
2010-11-01
The SciBooNE Collaboration reports a measurement of inclusive charged current interactions of muon neutrinos on carbon with an average energy of 0.8 GeV using the Fermilab Booster Neutrino Beam. We compare our measurement with two neutrino interaction simulations: NEUT and NUANCE. The charged current interaction rates (product of flux and cross section) are extracted by fitting the muon kinematics, with a precision of 6-15% for the energy dependent and 3% for the energy integrated analyses. We also extract CC inclusive interaction cross sections from the observed rates, with a precision of 10-30% for the energy dependent and 8% for the energy integrated analyses. This is the first measurement of the CC inclusive cross section on carbon around 1 GeV. These results can be used to convert previous SciBooNE cross section ratio measurements to absolute cross section values.
Lee, E.P.; Younger, F.C.; Cruz, G.E.; Nolting, E.
1986-06-23
This report describes beam director elements for an experiment at the Advanced Test Accelerator. The elements described include a vernier magnet for beam aiming, an achromat magnet, and an isolation system for the beam interface. These components are built at small scale for concept testing. (JDH)
Fischer, W.; Hahn, H.; MacKay, W.W.; Satogata, T.; Tsoupas, N.; Zhang, W.
1997-07-01
During the RHIC sextant test in January 1997 beam was injected into a sixth of one of the rings for the first time. The authors describe the injection zone and its bottlenecks. They report on the commissioning of the injection system, on beam based measurements of the kickers and the application program to steer the beam.
NASA Technical Reports Server (NTRS)
Franke, J. M.
1978-01-01
Multiwavelength laser beam is separated into series of parallel color beams using prism and retroreflector. Setup is inexpensive and needs no critical adjustments. It can incorporate several prisms to increase dispersion and reduce overall size. Transmission grating can be used instead of prism with sacrifice in efficiency. Spatial filter can remove unwanted beams.
Beckner, E.H.; Clauser, M.J.
1975-08-12
This patent pertains to an electron beam device in which a hollow target is symmetrically irradiated by a high energy, pulsed electron beam about its periphery and wherein the outer portion of the target has a thickness slightly greater than required to absorb the electron beam pulse energy. (auth)
Greenly, J.B.
1997-08-12
An improved pulsed ion beam source is disclosed having a new biasing circuit for the fast magnetic field. This circuit provides for an initial negative bias for the field created by the fast coils in the ion beam source which pre-ionize the gas in the source, ionize the gas and deliver the gas to the proper position in the accelerating gap between the anode and cathode assemblies in the ion beam source. The initial negative bias improves the interaction between the location of the nulls in the composite magnetic field in the ion beam source and the position of the gas for pre-ionization and ionization into the plasma as well as final positioning of the plasma in the accelerating gap. Improvements to the construction of the flux excluders in the anode assembly are also accomplished by fabricating them as layered structures with a high melting point, low conductivity material on the outsides with a high conductivity material in the center. 12 figs.
Castagna, R; Di Donato, A; Nucara, L; Xu, J H; Lucchetta, D E; Simoni, F
2016-04-01
We report on the observation of a modulated pattern induced by a single laser beam in a polymeric film. In spite of the simple geometrical configuration, the analysis of the far field diffraction pattern allows a sensitive retrieving of the wavelength of the recording beam and of its incidence angle, pointing out the high information content of the recorded spot. A theoretical model is presented which satisfactorily explains the observed behavior. It takes into account the interaction of structured light with structured matter with the same symmetries and spatial modulation frequencies close to each other. This result shows a feature of the interaction between structured light and structured matter which has not been explored yet. PMID:27192262
Beam experiments related to the head-on beam-beam compensation project at RHIC
Montag, C.; Bai, M.; Drees, A.; Fischer, W.; Marusic, A.; Wang, G.
2011-03-28
Beam experiments have been performed in RHIC to determine some key parameters of the RHIC electron lenses, and to test the capability of verifying lattice modifications by beam measurements. We report the status and recent results of these experiments. The Relativistic Heavy Ion Collider (RHIC) consists of two superconducting storage rings that intersect at six locations around its circumference. Beams collide in interaction points (IPs) 6 and 8, which are equipped with the detectors STAR and PHENIX, respectively (Fig. 1). With the polarized proton working point constrained between 2/3 and 7/10 to achieve good luminosity lifetime and maintain polarization, the proton bunch intensity is limited to 2 {center_dot} 10{sup 11} protons per bunch by the resulting beam-beam tuneshift. To overcome this limitation, installation of an electron lens in IP 10 is foreseen to partially compensate the beam-beam effect and reduce the beam-beam tuneshift parameter. As part of this project, beam experiments are being performed at RHIC to determine key parameters of the electron lens as well as to verify lattice modifications.