Science.gov

Sample records for beam facility conceptual

  1. THE AGS-BASED SUPER NEUTRINO BEAM FACILITY CONCEPTUAL DESIGN REPORT

    SciTech Connect

    WENG,W.T.; DIWAN,M.; RAPARIA,D.

    2004-10-08

    After more than 40 years of operation, the AGS is still at the heart of the Brookhaven hadron accelerator complex. This system of accelerators presently comprises a 200 MeV linac for the pre-acceleration of high intensity and polarized protons, two Tandem Van der Graaffs for the pre-acceleration of heavy ion beams, a versatile Booster that allows for efficient injection of all three types of beams into the AGS and, most recently, the two RHIC collider rings that produce high luminosity heavy ion and polarized proton collisions. For several years now, the AGS has held the world intensity record with more than 7 x 10{sup 13} protons accelerated in a single pulse. The requirements for the proton beam for the super neutrino beam are summarized and a schematic of the upgraded AGS is shown. Since the present number of protons per fill is already close to the required number, the upgrade is based on increasing the repetition rate and reducing beam losses (to avoid excessive shielding requirements and to maintain activation of the machine components at workable level). It is also important to preserve all the present capabilities of the AGS, in particular its role as injector to RHIC. The AGS Booster was built not only to allow the injection of any species of heavy ion into the AGS but to allow a fourfold increase of the AGS intensity. It is one-quarter the circumference of the AGS with the same aperture. However, the accumulation of four Booster loads in the AGS takes about 0.6 s, and is therefore not well suited for high average beam power operation. To minimize the injection time to about 1 ms, a 1.2 GeV linac will be used instead. This linac consists of the existing warm linac of 200 MeV and a new superconducting linac of 1.0 GeV. The multi-turn H{sup -} injection from a source of 30 mA and 720 {micro}s pulse width is sufficient to accumulate 9 x 10{sup 13} particle per pulse in the AGS[10]. The minimum ramp time of the AGS to full energy is presently 0.5 s; this must

  2. Proton beam therapy facility

    SciTech Connect

    Not Available

    1984-10-09

    It is proposed to build a regional outpatient medical clinic at the Fermi National Accelerator Laboratory (Fermilab), Batavia, Illinois, to exploit the unique therapeutic characteristics of high energy proton beams. The Fermilab location for a proton therapy facility (PTF) is being chosen for reasons ranging from lower total construction and operating costs and the availability of sophisticated technical support to a location with good access to patients from the Chicago area and from the entire nation. 9 refs., 4 figs., 26 tabs.

  3. A conceptual design of the 2+ MW LBNE beam absorber

    SciTech Connect

    Velev, G.; Childress, S.; Hurh, P.; Hylen, J.; Makarov, A.; Mohkhov, N.; Moore, C.D.; Novitski, I.; /Fermilab

    2011-03-01

    The Long Baseline Neutrino Experiment (LBNE) will utilize a neutrino beamline facility located at Fermilab. The facility will aim a beam of neutrinos, produced by 60-120 GeV protons from the Fermilab Main Injector, toward a detector placed at the Deep Underground Science and Engineering Laboratory (DUSEL) in South Dakota. Secondary particles that do not decay into muons and neutrinos as well as any residual proton beam must be stopped at the end of the decay region to reduce noise/damage in the downstream muon monitors and reduce activation in the surrounding rock. This goal is achieved by placing an absorber structure at the end of the decay region. The requirements and conceptual design of such an absorber, capable of operating at 2+ MW primary proton beam power, is described.

  4. ATA diagnostic beam dump conceptual design

    SciTech Connect

    Not Available

    1981-09-01

    A diagnostic beam dump, able to withstand 72,000 pulses (10 kA, 50 MeV/pulse) per shift was designed and analyzed. The analysis shows that the conceptual beam dump design consisting of 80 vitreous carbon plate-foam elements is able to withstand the thermal and mechanical stresses generated. X-rays produced by bremsstrahlung are absorbed by a three element copper plate-foam x-ray absorber. Cooling between bursts of electron pulses is provided by pressurized helium.

  5. Conceptual design of the National Ignition Facility

    SciTech Connect

    Paisner, J.A.; Kumpan, S.A.; Lowdermilk, W.H.; Boyes, J.D.; Sorem, M.

    1995-08-02

    DOE commissioned a Conceptual Design Report (CDR) for the National Ignition Facility (NIF) in January 1993 as part of a Key Decision Zero (KDO), justification of Mission Need. Motivated by the progress to date by the Inertial Confinement Fusion (ICF) program in meeting the Nova Technical Contract goals established by the National Academy of Sciences in 1989, the Secretary requested a design using a solid-state laser driver operating at the third harmonic (0.35 {mu}m) of neodymium (Nd) glass. The participating ICF laboratories signed a Memorandum of Agreement in August 1993, and established a Project organization, including a technical team from the Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Sandia National Laboratories (SNL), and the Laboratory for Laser Energetics at the University of Rochester. Since then, we completed the NIF conceptual design, based on standard construction at a generic DOE Defense Program`s site, and issued a 7,000-page, 27-volume CDR in May 1994.2 Over the course of the conceptual design study, several other key documents were generated, including a Facilities Requirements Document, a Conceptual Design Scope and Plan, a Target Physics Design Document, a Laser Design Cost Basis Document, a Functional Requirements Document, an Experimental Plan for Indirect Drive Ignition, and a Preliminary Hazards Analysis (PHA) Document. DOE used the PHA to categorize the NIF as a low-hazard, non-nuclear facility. On October 21, 1994 the Secretary of Energy issued a Key Decision One (KD1) for the NIF, which approved the Project and authorized DOE to request Office of Management and Budget-approval for congressional line-item FY 1996 NIF funding for preliminary engineering design and for National Environmental Policy Act activities. In addition, the Secretary declared Livermore as the preferred site for constructing the NIF. The Project will cost approximately $1.1 billion and will be completed at the end of FY 2002.

  6. Conceptual design of the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Paisner, Jeffrey A.; Boyes, John D.; Kumpan, Steven A.; Lowdermilk, W. Howard; Sorem, Michael S.

    1995-12-01

    The Secretary of the U.S. Department of Energy (DOE) commissioned a conceptual design report (CDR) for the National Ignition Facility (NIF) in January 1993 as part of a key decision zero (KD0), justification of mission need. Motivated by the progress to date by the inertial confinement fusion (ICF) program in meeting the Nova technical contract goals established by the National Academy of Sciences in 1989, the Secretary requested a design using a solid-state laser driver operating at the third harmonic (0.35 micrometer) of neodymium (Nd) glass. The participating ICF laboratories signed a memorandum of agreement in August 1993, and established a project organization, including a technical team from the Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Sandia National Laboratories (SNL), and the Laboratory for Laser Energetics at the University of Rochester. Since then, we completed the NIF conceptual design, based on standard construction at a generic DOE defense program's site, and issued a 7,000-page, 27-volume CDR in May 1994. Over the course of the conceptual design study, several other key documents were generated, including a facilities requirements document, a conceptual design scope and plan, a target physics design document, a laser design cost basis document, a functional requirements document, an experimental plan for indirect drive ignition, and a preliminary hazards analysis (PHA) document. DOE used the PHA to categorize the NIF as a low-hazard, non-nuclear facility. On October 21, 1994 the Secretary of Energy issued a key decision one (KD1) for the NIF, which approved the project and authorized DOE to request Office of Management and Budget-approval for congressional line-item FY 1996 NIF funding for preliminary engineering design and for National Environmental Policy Act activities. In addition, the Secretary declared Livermore as the preferred site for constructing the NIF. In February 1995, the NIF Project was

  7. The radioactive beam facility ALTO

    NASA Astrophysics Data System (ADS)

    Essabaa, Saïd; Barré-Boscher, Nicole; Cheikh Mhamed, Maher; Cottereau, Evelyne; Franchoo, Serge; Ibrahim, Fadi; Lau, Christophe; Roussière, Brigitte; Saïd, Abdelhakim; Tusseau-Nenez, Sandrine; Verney, David

    2013-12-01

    The Transnational Access facility ALTO (TNA07-ENSAR/FP7) has been commissioned and received from the French safety authorities, the operation license. It is allowed to run at nominal intensity to produce 1011 fissions/s in a thick uranium carbide target by photo-fission using a 10 μA, 50 MeV electron beam. In addition the recent success in operating the selective laser ion source broadens the physics program with neutron-rich nuclear beams possible at this facility installed at IPN Orsay. The facility also aims at being a test bench for the SPIRAL2 project. In that framework an ambitious R&D program on the target ion source system is being developed.

  8. Conceptual design report, Sodium Storage Facility, Fast Flux Test Facility, Project F-031

    SciTech Connect

    Shank, D.R.

    1995-02-14

    The Sodium Storage Facility Conceptual Design Report provides conceptual design for construction of a new facility for storage of the 260,000 gallons of sodium presently in the FFTF plant. The facility will accept the molten sodium transferred from the FFTF sodium systems, and store the sodium in a solid state under an inert cover gas until such time as a Sodium Reaction Facility is available for final disposal of the sodium.

  9. A conceptual design for an electron beam

    SciTech Connect

    Garcia, M

    1999-02-15

    This report is a brief description of a model electron beam, which is meant to serve as a pulsed heat source that vaporizes a metal fleck into an ''under-dense'' cloud. See Reference 1. The envelope of the electron beam is calculated from the paraxial ray equation, as stated in Reference 2. The examples shown here are for 5 A, 200 keV beams that focus to waists of under 0.4 mm diameter, within a cylindrical volume of 10 cm radius and length. The magnetic fields assumed in the examples are moderate, 0.11 T and 0.35 T, and can probably be created by permanent magnets.

  10. Conceptual design for the ZEPHYR neutral-beam injection system

    SciTech Connect

    Cooper, W.S.; Elischer, V.P.; Goldberg, D.A.; Hopkins, D.B.; Jacobson, V.L.; Lou, K.H.; Tanabe, J.T.

    1981-03-01

    In June 1980, the Lawrence Berkeley Laboratory began a conceptual design study for a neutral beam injection system for the ZEPHYR ignition tokamak proposed by the Max-Planck-Institut fur Plasmaphysik in Garching, Germany. The ZEPHYR project was cancelled, and the LBL design effort concluded prematurely in January 1981. This report describes the conceptual design as it existed at that time, and gives brief consideration to a schedule, but does not deal with costs.

  11. Lunar base launch and landing facilities conceptual design

    NASA Technical Reports Server (NTRS)

    Phillips, Paul G.; Simonds, Charles H.; Stump, William R.

    1992-01-01

    The purpose of this study was to perform a first look at the requirements for launch and landing facilities for early lunar bases and to prepared conceptual designs for some of these facilities. The emphasis of the study is on the facilities needed from the first manned landing until permanent occupancy, the Phase 2 lunar base. Factors including surface characteristics, navigation system, engine blast effects, and expected surface operations are used to develop landing pad designs, and definitions fo various other elements of the launch and landing facilities. Finally, the dependence of the use of these elements and the evolution of the facilities are established.

  12. Conceptual design of the MHD Engineering Test Facility

    NASA Technical Reports Server (NTRS)

    Bents, D. J.; Bercaw, R. W.; Burkhart, J. A.; Mroz, T. S.; Rigo, H. S.; Pearson, C. V.; Warinner, D. K.; Hatch, A. M.; Borden, M.; Giza, D. A.

    1981-01-01

    The reference conceptual design of the MHD engineering test facility, a prototype 200 MWe coal-fired electric generating plant designed to demonstrate the commerical feasibility of open cycle MHD is summarized. Main elements of the design are identified and explained, and the rationale behind them is reviewed. Major systems and plant facilities are listed and discussed. Construction cost and schedule estimates are included and the engineering issues that should be reexamined are identified.

  13. Conceptual capital-cost estimate and facility design of the Mirror-Fusion Technology Demonstration Facility

    SciTech Connect

    Not Available

    1982-09-01

    This report contains contributions by Bechtel Group, Inc. to Lawrence Livermore National Laboratory (LLNL) for the final report on the conceptual design of the Mirror Fusion Technology Demonstration Facility (TDF). Included in this report are the following contributions: (1) conceptual capital cost estimate, (2) structural design, and (3) plot plan and plant arrangement drawings. The conceptual capital cost estimate is prepared in a format suitable for inclusion as a section in the TDF final report. The structural design and drawings are prepared as partial inputs to the TDF final report section on facilities design, which is being prepared by the FEDC.

  14. Metallic beam development for the Facility for Rare Isotope Beam

    SciTech Connect

    Machicoane, Guillaume Cole, Dallas; Leitner, Daniela; Neben, Derek; Tobos, Larry

    2014-02-15

    The Facility for Rare Isotope Beams (FRIB) at Michigan State University (MSU) will accelerate a primary ion beam to energies beyond 200 MeV/u using a superconducting RF linac and will reach a maximum beam power of 400 kW on the fragmentation target. The beam intensity needed from the ECR ion source is expected to be between 0.4 and 0.5 emA for most medium mass to heavy mass elements. Adding to the challenge of reaching the required intensity, an expanded list of primary beams of interest has been established based on the production rate and the number of isotope beams that could be produced with FRIB. We report here on the development done for some of the beam in the list including mercury (natural), molybdenum ({sup 98}Mo), and selenium ({sup 82}Ser)

  15. Ion beam sputtering in electric propulsion facilities

    NASA Technical Reports Server (NTRS)

    Sovey, James S.; Patterson, Michael J.

    1991-01-01

    Experiments were undertaken to determine sputter yields of potential ion beam target materials, to assess the impact of charge exchange on beam diagnostics in large facilities, and to examine material erosion and deposition after a 957-hour test of a 5 kW-class ion thruster. The xenon ion sputter yield of flexible graphite was lower than other graphite forms especialy at high angles of incidence. Ion beam charge exchange effects were found to hamper beam probe current collection diagnostics even at pressures from 0.7 to 1.7 mPa. Estimates of the xenon ion beam envelope were made and predictions of the thickness of sputter deposited coatings in the facility were compared with measurements.

  16. Ion beam sputtering in electric propulsion facilities

    NASA Technical Reports Server (NTRS)

    Sovey, James S.; Patterson, Michael J.

    1991-01-01

    Experiments were undertaken to determine sputter yields of potential ion beam target materials, to assess the impact of charge exchange on beam diagnostics in large facilities, and to examine material erosion and deposition after a 957 hr test of a 5 kW-class ion thruster. The xenon ion sputter yield of flexible graphite was lower than other graphite forms especially at high angles of incidence. Ion beam charge exchange effects were found to hamper beam probe current collection diagnostics even at pressures from 0.7 to 1.7 mPa. Estimates of the xenon ion beam envelope were made and predictions of the thickness of sputter deposited coatings in the facility were compared with measurements.

  17. Federal Facilities Compliance Act, Conceptual Site Treatment Plan. Part 1

    SciTech Connect

    1993-10-29

    This Conceptual Site Treatment Plan was prepared by Ames Laboratory to meet the requirements of the Federal Facilities Compliance Act. Topics discussed in this document include: general discussion of the plan, including the purpose and scope; technical aspects of preparing plans, including the rationale behind the treatability groupings and a discussion of characterization issues; treatment technology needs and treatment options for specific waste streams; low-level mixed waste options; TRU waste options; and future waste generation from restoration activities.

  18. Conceptual design for the space station Freedom modular combustion facility

    NASA Technical Reports Server (NTRS)

    1989-01-01

    A definition study and conceptual design for a combustion science facility that will be located in the Space Station Freedom's baseline U.S. Laboratory module is being performed. This modular, user-friendly facility, called the Modular Combustion Facility, will be available for use by industry, academic, and government research communities in the mid-1990's. The Facility will support research experiments dealing with the study of combustion and its byproducts. Because of the lack of gravity-induced convection, research into the mechanisms of combustion in the absence of gravity will help to provide a better understanding of the fundamentals of the combustion process. The background, current status, and future activities of the effort are covered.

  19. Relativistic-beam Pickup Test Facility

    SciTech Connect

    Kramer, S.L.; Simpson, J.; Konecny, R.; Suddeth, D.

    1983-01-01

    The electrical response of pickups and cavities to charged particle beams has been an area of considerable activity and concern for accelerator systems. With the advent of stochastic beam cooling, the position and frequency response of beam pickups has become a crucial parameter in determining the performance of these systems. The most frequently used method for measuring and calibrating beam pickups has been the use of current carrying wires to simulate relativistic beams. This method has sometimes led to incorrect predictions of the pickup response to particle beams. The reasons for the differences are not always obvious but could arise from: (1) wires are incapable of exciting or permitting many of the modes that beams excite or (2) the interaction of the wire with large arrays of pickups produce results which are not easily predicted. At Argonne these deficiencies are resolved by calibrating pickups with a relativistic electron beam. This facility is being used extensively by several groups to measure beam pickup devices and is the primary calibration facility for pickups to be used in the FNAL TEV-I Antiproton Source.

  20. The New Uppsala Neutron Beam Facility

    SciTech Connect

    Pomp, S.; Blomgren, J.; Hildebrand, A.; Johansson, C.; Mermod, P.; Oesterlund, M.; Prokofiev, A.V.; Bystroem, O.; Ekstroem, C.; Haag, N.; Jonsson, O.; Reistad, D.; Renberg, P.-U.; Wessman, D.; Ziemann, V.; Nilsson, L.; Olsson, N.; Tippawan, U.

    2005-05-24

    A new quasi-monoenergetic neutron beam facility has been constructed at the The Svedberg Laboratory (TSL) in Uppsala, Sweden. Key features include an energy range of 20 to 175 MeV, high fluxes, and the possibility of large-area fields. Besides cross-section measurements, the new facility has been designed specifically to provide optimal conditions for testing of single-event effects in electronics and for dosimetry development. First results of the beam characterization measurements performed in early 2004 are reported.

  1. Proton-proton colliding beam facility ISABELLE

    SciTech Connect

    Hahn, H

    1980-01-01

    This paper attempts to present the status of the ISABELLE construction project, which has the objective of building a 400 + 400 GeV proton colliding beam facility. The major technical features of the superconducting accelerators with their projected performance are described. Progress made so far, difficulties encountered, and the program until completion in 1986 is briefly reviewed.

  2. Integral Monitored Retrievable Storage (MRS) Facility conceptual design report

    SciTech Connect

    1985-09-01

    In April 1985, the Department of Energy (DOE) selected the Clinch River site as its preferred site for the construction and operation of the monitored retrievable storage (MRS) facility (USDOE, 1985). In support of the DOE MRS conceptual design activity, available data describing the site have been gathered and analyzed. A composite geotechnical description of the Clinch River site has been developed and is presented herein. This report presents Clinch River site description data in the following sections: general site description, surface hydrologic characteristics, groundwater characteristics, geologic characteristics, vibratory ground motion, surface faulting, stability of subsurface materials, slope stability, and references. 48 refs., 35 figs., 6 tabs.

  3. ELECTRON BEAM ION SOURCE PREINJECTOR PROJECT (EBIS) CONCEPTUAL DESIGN REPORT.

    SciTech Connect

    ALESSI, J.; BARTON, D.; BEEBE, E.; GASSNER, D.; ET AL.

    2005-02-28

    This report describes a new heavy ion pre-injector for the Relativistic Heavy Ion Collider (RHIC) based on a high charge state Electron Beam Ion Source (EBIS), a Radio Frequency Quadrupole (RFQ) accelerator, and a short Linac. The highly successful development of an EBIS at BNL now makes it possible to replace the present pre-injector that is based on an electrostatic Tandem with a reliable, low maintenance Linac-based pre-injector. Linac-based pre-injectors are presently used at most accelerator and collider facilities with the exception of RHIC, where the required gold beam intensities could only be met with a Tandem until the recent EBIS development. EBIS produces high charge state ions directly, eliminating the need for the two stripping foils presently used with the Tandem. Unstable stripping efficiencies of these foils are a significant source of luminosity degradation in RHIC. The high reliability and flexibility of the new Linac-based pre-injector will lead to increased integrated luminosity at RHIC and is an essential component for the long-term success of the RHIC facility. This new pre-injector, based on an EBIS, also has the potential for significant future intensity increases and can produce heavy ion beams of all species including uranium beams and, as part of a future upgrade, might also be used to produce polarized {sup 3}He beams. These capabilities will be critical to the future luminosity upgrades and electron-ion collisions in RHIC. The new RFQ and Linac that are used to accelerate beams from the EBIS to an energy sufficient for injection into the Booster are both very similar to existing devices already in operation at other facilities. Injection into the Booster will occur at the same location as the existing injection from the Tandem.

  4. Lunar base launch and landing facility conceptual design, 2nd edition

    NASA Technical Reports Server (NTRS)

    1988-01-01

    This report documents the Lunar Base Launch and Landing Facility Conceptual Design study. The purpose of this study was to examine the requirements for launch and landing facilities for early lunar bases and to prepare conceptual designs for some of these facilities. The emphasis of this study is on the facilities needed from the first manned landing until permanent occupancy. Surface characteristics and flight vehicle interactions are described, and various facility operations are related. Specific recommendations for equipment, facilities, and evolutionary planning are made, and effects of different aspects of lunar development scenarios on facilities and operations are detailed. Finally, for a given scenario, a specific conceptual design is developed and presented.

  5. Conceptual design of an in-space cryogenic fluid management facility, executive summary

    NASA Technical Reports Server (NTRS)

    Willen, G. S.; Riemer, D. H.; Hustvedt, D. C.

    1981-01-01

    The conceptual design of a Spacelab experiment to develop the technology associated with low gravity propellant management is summarized. The preliminary facility definition, conceptual design and design analysis, and facility development plan, including schedule and cost estimates for the facility, are presented.

  6. ELECTRON BEAM ION SOURCE PREINJECTOR PROJECT (EBIS) CONCEPTUAL DESIGN REPORT.

    SciTech Connect

    ALESSI, J.; BARTON, D.; BEEBE, E.; GASSNER, D.; GRANDINETTI, R.; HSEUH, H.; JAVIDFAR, A.; KPONOU, A.; LAMBIASE, R.; LESSARD, E.; LOCKEY, R.; LODESTRO, V.; MAPES, M.; MIRABELLA, D.; NEHRING, T.; OERTER, B.; PENDZICK, A.; PIKIN, A.; RAPARIA, D.; RITTER, J.; ROSER, T.; RUSSO, T.; SNYDSTRUP, L.; WILINSKI, M.; ZALTSMAN, A.; ZHANG, S.

    2005-09-01

    This report describes a new heavy ion pre-injector for the Relativistic Heavy Ion Collider (RHIC) based on a high charge state Electron Beam Ion Source (EBIS), a Radio Frequency Quadrupole (RFQ) accelerator, and a short Linear accelerator (Linac). The highly successful development of an EBIS at Brookhaven National Laboratory (BNL) now makes it possible to replace the present pre-injector that is based on an electrostatic Tandem with a reliable, low maintenance Linac-based pre-injector. Linac-based preinjectors are presently used at most accelerator and collider facilities with the exception of RHIC, where the required gold beam intensities could only be met with a Tandem until the recent EBIS development. EBIS produces high charge state ions directly, eliminating the need for the two stripping foils presently used with the Tandem. Unstable stripping efficiencies of these foils are a significant source of luminosity degradation in RHIC. The high reliability and flexibility of the new Linac-based pre-injector will lead to increased integrated luminosity at RHIC and is an essential component for the long-term success of the RHIC facility. This new pre-injector, based on an EBIS, also has the potential for significant future intensity increases and can produce heavy ion beams of all species including uranium beams and, as part of a future upgrade, might also be used to produce polarized {sup 3}He beams. These capabilities will be critical to the future luminosity upgrades and electron-ion collisions in RHIC. The proposed pre-injector system would also provide for a major enhancement in capability for the NASA Space Radiation Laboratory (NSRL), which utilizes heavy-ion beams from the RHIC complex. EBIS would allow for the acceleration of all important ion species for the NASA radiobiology program, such as, helium, argon, and neon which are unavailable with the present Tandem injector. In addition, the new system would allow for very rapid switching of ion species for

  7. Concerning the Facility for Rare Isotope Beams

    ScienceCinema

    Symons, James

    2013-05-29

    James Symons, Nuclear Science Division Director at Lawrence Berkeley Lab, and Daniela Leitner, head of operations at Berkeley Lab's 88-Inch Cyclotron, discuss major contributions to the new Facility for Rare Isotope Beams (FRIB) at Michigan State University, including ion source, which will based on the VENUS source built for the 88-Inch Cyclotron, and the GRETA gamma-ray detector now under construction there.

  8. Conceptual design of an RTG Facility Transportation System

    NASA Astrophysics Data System (ADS)

    Black, Stephen J.; Gentzlinger, Robert C.; Lujan, Richard E.

    1994-06-01

    The conceptual design of an Radioisotope Thermoelectric Generator (RTG) Facility Transportation System which is part of the overall RTG Transportation System has been completed and is described in detail. The Facility Transportation System serves to provide locomotion, cooling, shock protection and data acquisition for the RTG package during loading and unloading sequences. The RTG Facility Transportation System consists of a Transporter Subsystem, a Package Cooling Subsystem, and a Shock Limiting Transit Device Subsystem. The Transporter Subsystem is a uniquely designed welded steel cart combined with a pneumatically-driven hand tug for locomotion. The Package Cooling Subsystem provides five kilowatts of active liquid cooling via an on-board refrigeration system. The Shock limiting Transit Device Subsystem consists of a consumable honeycomb transit frame which provides shock protection for the 3855 kg (8500 LB) RTG package. These subsystems have been combined into an integrated system which will facilitate the unloading and loading of the RTG, of the Transport Trailer as well as meet ALARA radiation Package into and out exposure guidelines.

  9. Conceptual design of an RTG Facility Transportation System

    SciTech Connect

    Black, S.J.; Gentzlinger, R.C.; Lujan, R.E.

    1994-06-03

    The conceptual design of an Radioisotope Thermoelectric Generator (RTG) Facility Transportation System which is part of the overall RTG Transportation System has been completed and is described in detail. The Facility Transportation System serves to provide locomotion, cooling, shock protection and data acquisition for the RTG package during loading and unloading sequences. The RTG Facility Transportation System consists of a Transporter Subsystem, a Package Cooling Subsystem, and a Shock Limiting Transit Device Subsystem. The Transporter Subsystem is a uniquely designed welded steel cart combined with a pneumatically-driven hand tug for locomotion. The Package Cooling Subsystem provides five kilowatts of active liquid cooling via an on-board refrigeration system. The Shock limiting Transit Device Subsystem consists of a consumable honeycomb transit frame which provides shock protection for the 3855 kg (8500 LB) RTG package. These subsystems have been combined into an integrated system which will facilitate the unloading and loading of the RTG , of the Transport Trailer as well as meet ALARA radiation Package into and out exposure guidelines.

  10. Conceptual Design of an Antiproton Generation and Storage Facility

    SciTech Connect

    Peggs, Stephen

    2006-10-24

    The Antiproton Generation and Storage Facility (AGSF) creates copious quantities of antiprotons, for bottling and transportation to remote cancer therapy centers. The first step in the generation and storage process is to accelerate an intense proton beam down the Main Linac for injection into the Main Ring, which is a Rapid Cycling Synchrotron that accelerates the protons to high energy. The beam is then extracted from the ring into a transfer line and into a Proton Target. Immediately downstream of the target is an Antiproton Collector that captures some of the antiprotons and focuses them into a beam that is transported sequentially into two antiproton rings. The Precooler ring rapidly manipulates antiproton bunches from short and broad (in momentum) to long and thin. It then performs some preliminary beam cooling, in the fraction of a second before the next proton bunch is extracted from the Main Ring. Pre-cooled antiprotons are passed on to the Accumulator ring before the next antiprotons arrive from the target. The Accumulator ring cools the antiprotons, compressing them into a dense state that is convenient for mass storage over many hours. Occasionally the Accumulator ring decelerates a large number of antiprotons, injecting them into a Deceleration Linac that passes them into a waiting Penning trap.

  11. Conceptual definition of a high voltage power supply test facility

    NASA Technical Reports Server (NTRS)

    Biess, John J.; Chu, Teh-Ming; Stevens, N. John

    1989-01-01

    NASA Lewis Research Center is presently developing a 60 GHz traveling wave tube for satellite cross-link communications. The operating voltage for this new tube is - 20 kV. There is concern about the high voltage insulation system and NASA is planning a space station high voltage experiment that will demonstrate both the 60 GHz communications and high voltage electronics technology. The experiment interfaces, requirements, conceptual design, technology issues and safety issues are determined. A block diagram of the high voltage power supply test facility was generated. It includes the high voltage power supply, the 60 GHz traveling wave tube, the communications package, the antenna package, a high voltage diagnostics package and a command and data processor system. The interfaces with the space station and the attached payload accommodations equipment were determined. A brief description of the different subsystems and a discussion of the technology development needs are presented.

  12. Conceptual Design of the Drive Beam for a PWFA-LC

    SciTech Connect

    Pei, S.; Hogan, M.J.; Raubenheimer, T.O.; Seryi, A.; Braun, H.H.; Corsini, R.; Delahaye, J.P.; /DESY

    2009-08-03

    Plasma Wake-Field Acceleration (PWFA) has demonstrated acceleration gradients above 50 GeV/m. Simulations have shown drive/witness bunch configurations that yield small energy spreads in the accelerated witness bunch and high energy transfer efficiency from the drive bunch to the witness bunch, ranging from 30% for a Gaussian drive bunch to 95% for bunch with triangular shaped longitudinal profile. These results open the opportunity for a linear collider that could be compact, efficient and more cost effective than the present microwave technologies. A concept of a PWFA-based Linear Collider (PWFA-LC) has been developed by the PWFA collaboration. Here we will describe the conceptual design and optimization of the drive beam, which includes the drive beam linac and distribution system. We apply experience of the CLIC drive beam design and demonstration in the CLIC Test Facility (CTF3) to this study. We discuss parameter optimization of the drive beam linac structure and evaluate the drive linac efficiency in terms of the drive beam distribution scheme and the klystron/modulator requirements.

  13. Electron beam facility for divertor target experiments

    SciTech Connect

    Anisimov, A.; Gagen-Torn, V.; Giniyatulin, R.N.

    1994-12-31

    To test different concepts of divertor targets and bumpers an electron beam facility was assembled in Efremov Institute. It consists of a vacuum chamber (3m{sup 3}), vacuum pump, electron beam gun, manipulator to place and remove the samples, water loop and liquid metal loop. The following diagnostics of mock-ups is stipulated: (1) temperature distribution on the mock-up working surface (scanning pyrometer and infra-red imager); (2) temperature distribution over mocked-up thickness in 3 typical cross-sections (thermo-couples); (3) cracking dynamics during thermal cycling (acoustic-emission method), (4) defects in the mock-up before and after tests (ultra-sonic diagnostics, electron and optical microscopes). Carbon-based and beryllium mock-ups are made for experimental feasibility study of water and liquid-metal-cooled divertor/bumper concepts.

  14. Production of high intensity Beta beams at the ISOLDE facility

    NASA Astrophysics Data System (ADS)

    Hodák, Rastislav; Stora, Thierry; Mendonça, Tania M.

    2011-12-01

    We discuss a design study devoted to a construction of the Beta beams facility at CERN, a next generation European facility aiming for a production of pure and collimated ultra-relativistic beam of electron (anti)neutrinos with help of accelerated β-decaying radioactive ions circulating in a storage decay ring. This high intense source of (anti)neutrinos directed towards a remote underground neutrino detector will allow to measure neutrino oscillations with high accuracy offering a unique chance for establishing a value of the β13 mixing angle and CP violating phase. Recently, a significant progress have been achieved on the conceptual design of high power targets required for a production and an extraction of two baseline isotopes, 6He and 18Ne, at the unexampled rate of several 1013 ions/s. There is a possibility to produce these isotopes using the so-called Isotope Separation On Line (ISOL) method at the ISOLDE facility (CERN). The 6He production is realized by taking advantage of the 9Be(n,α)6He reaction and with help of spallation neutrons and porous BeO target material. The production of 18Ne through the 19F(p,2n)18Ne reaction at required intensities is even more challenging. Currently, a molten salt (NaF) loop target is proposed for a production of high rate of 18Ne required for the Beta beams project. The progress on the design study associated with new data and plans for future is briefly presented.

  15. Facility for Advanced Accelerator Experimental Tests at SLAC (FACET) Conceptual Design Report

    SciTech Connect

    Amann, J.; Bane, K.; /SLAC

    2009-10-30

    This Conceptual Design Report (CDR) describes the design of FACET. It will be updated to stay current with the developing design of the facility. This CDR begins as the baseline conceptual design and will evolve into an 'as-built' manual for the completed facility. The Executive Summary, Chapter 1, gives an introduction to the FACET project and describes the salient features of its design. Chapter 2 gives an overview of FACET. It describes the general parameters of the machine and the basic approaches to implementation. The FACET project does not include the implementation of specific scientific experiments either for plasma wake-field acceleration for other applications. Nonetheless, enough work has been done to define potential experiments to assure that the facility can meet the requirements of the experimental community. Chapter 3, Scientific Case, describes the planned plasma wakefield and other experiments. Chapter 4, Technical Description of FACET, describes the parameters and design of all technical systems of FACET. FACET uses the first two thirds of the existing SLAC linac to accelerate the beam to about 20GeV, and compress it with the aid of two chicanes, located in Sector 10 and Sector 20. The Sector 20 area will include a focusing system, the generic experimental area and the beam dump. Chapter 5, Management of Scientific Program, describes the management of the scientific program at FACET. Chapter 6, Environment, Safety and Health and Quality Assurance, describes the existing programs at SLAC and their application to the FACET project. It includes a preliminary analysis of safety hazards and the planned mitigation. Chapter 7, Work Breakdown Structure, describes the structure used for developing the cost estimates, which will also be used to manage the project. The chapter defines the scope of work of each element down to level 3.

  16. Conceptual design of a solar power beaming space system

    NASA Astrophysics Data System (ADS)

    Le, Tuyet N.

    The concept of Space-Based Solar Power (SBSP) is a global solution for the world energy crisis. SBSP has been discussed for decades; however, there still has not been a single watt transmitted down from orbit. A conceptual SBSP demonstration design has been developed for a system that will beam 300W of power to the Earth's surface. This demonstration is estimated to be at 25% efficiency due to atmospheric losses and laser conversion losses. A 2200W laser is a modular subsystem of the 100 kg payload flight demonstration. All of the technologies needed for this demonstration already exist. The demonstration includes the following modular subsystems: the laser system, the acquisition, tracking, and pointing system, the safety and control system, and the ground segment/receiver system. The ISS demonstration is estimated to cost approximately 12 million dollars. Tradeoff design studies and systems engineering evaluations were completed in order to demonstrate the feasibility of this system. An Excel database was developed to help calculate some basic dynamics, creating an SBSP preliminary systems design tool for the demonstration.

  17. Development of the Holifield Radioactive Ion Beam Facility

    SciTech Connect

    Tatum, B.A.

    1997-08-01

    The Holifield Radioactive Ion Beam Facility (HRIBF) construction project has been completed and the first radioactive ion beam has been successfully accelerated. The project, which began in 1992, has involved numerous facility modifications. The Oak Ridge Isochronous Cyclotron has been converted from an energy booster for heavy ion beams to a light ion accelerator with internal ion source. A target-ion source and mass analysis system have been commissioned as key components of the facility`s radioactive ion beam injector to the 25MV tandem electrostatic accelerator. Beam transport lines have been completed, and new diagnostics for very low intensity beams have been developed. Work continues on a unified control system. Development of research quality radioactive beams for the nuclear structure and nuclear astrophysics communities continues. This paper details facility development to date.

  18. 14. FACILITY IDENTIFICATION STENCILED ON ROOF BEAM, 'RIGGING LOFT' PORTION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. FACILITY IDENTIFICATION STENCILED ON ROOF BEAM, 'RIGGING LOFT' PORTION OF BUILDING 4. - Chollas Heights Naval Radio Transmitting Facility, Public Works Shop, 6410 Zero Road, San Diego, San Diego County, CA

  19. TFTR neutral-beam test facility

    SciTech Connect

    Turitzin, N.M.; Newman, R.A.

    1981-11-01

    TFTR Neutral Beam System will have thirteen discharge ion sources, each with its own power supply. Twelve of these will be utilized for supplemental heating of the TFTR tokamak plasma, while the thirteenth will be dedicated to an off-machine test chamber for source development and/or conditioning. A test installation for one source was set up using prototype equipment to discover and correct possible deficiencies, and to properly coordinate the equipment. This test facility represents the first opportunity for assembling an integrated system of hardware supplied by diverse vendors, each of whom designed and built his equipment to performance specifications. For the installation and coordination of the different portions of the total system, particular attention was given to personnel safety and safe equipment operation. This paper discusses various system components, their characteristics, interconnection and control. Results of the recently initiated test phase will be reported at a later date.

  20. Radioactive nuclear beams of COMBAS facility

    NASA Astrophysics Data System (ADS)

    Artukh, A. G.; Klygin, S. A.; Kononenko, G. A.; Kyslukha, D. A.; Lukyanov, S. M.; Mikhailova, T. I.; Penionzhkevich, Yu. E.; Oganessian, Yu. Ts.; Sereda, Yu. M.; Vorontsov, A. N.; Erdemchimeg, B.

    2016-01-01

    The basic ion-optical characteristics of the luminosity and the high-resolution of kinematic separator COMBAS realized for the first time on the strong focusing principle are presented. The developed facility allows to separate the high-intensity secondary radioactive beams in a wide range of mass numbers A and atomic numbers Z which are produced in heavy ion reactions in the energy range of 20 ≤ E ≤ 100 MeV/A (Fermi energy domain). Two distinct detector systems such as realized Si strip detector telescope and the promising development of the three dimension time-projection chamber are discussed. Program of the investigations of nuclear reaction mechanisms at intermediate energies of 20-100 MeV/A, measurement of the radii of unstable nuclei, study of the cluster structure of light nuclei near the nuclear drip-line and search of 26,28O resonances in exchange reactions is proposed. The upgrading of experimental facility by the integration of COMBAS separator with the Ion Catcher is discussed.

  1. Fort Hood solar cogeneration facility conceptual design study. Volume II. System specification. Final technical report

    SciTech Connect

    Not Available

    1981-08-01

    The characteristics and design and the environmental requirements for a solar cogeneration facility at a Texas military facility are specified. In addition, the conceptual design and performance characteristics, cost and economic data and other information for the cogeneration facility designed to meet the requirements are summarized. (LEW)

  2. Fort Hood solar cogeneration facility conceptual design study. Volume 2: System specification

    NASA Astrophysics Data System (ADS)

    1981-08-01

    The characteristics and design and the environmental requirements for a solar cogeneration facility at a Texas military facility are specified. In addition, the conceptual design and performance characteristics, cost and economic data and other information for the cogeneration facility designed to meet the requirements are summarized.

  3. Conceptual development of the Laser Beam Manifold (LBM)

    NASA Technical Reports Server (NTRS)

    Campbell, W.; Owen, R. B.

    1979-01-01

    The laser beam manifold, a device for transforming a single, narrow, collimated beam of light into several beams of desired intensity ratios is described. The device consists of a single optical substrate with a metallic coating on both optical surfaces. By changing the entry point, the number of outgoing beams can be varied.

  4. Wire Scanner Beam Profile Measurements: LANSCE Facility Beam Development

    SciTech Connect

    Gilpatrick, John D.; Batygin, Yuri K.; Gonzales, Fermin; Gruchalla, Michael E.; Kutac, Vincent G.; Martinez, Derwin; Sedillo, James Daniel; Pillai, Chandra; Rodriguez Esparza, Sergio; Smith, Brian G.

    2012-05-15

    The Los Alamos Neutron Science Center (LANSCE) is replacing Wire Scanner (WS) beam profile measurement systems. Three beam development tests have taken place to test the new wire scanners under beam conditions. These beam development tests have integrated the WS actuator, cable plant, electronics processors and associated software and have used H{sup -} beams of different beam energy and current conditions. In addition, the WS measurement-system beam tests verified actuator control systems for minimum profile bin repeatability and speed, checked for actuator backlash and positional stability, tested the replacement of simple broadband potentiometers with narrow band resolvers, and tested resolver use with National Instruments Compact Reconfigurable Input and Output (cRIO) Virtual Instrumentation. These beam tests also have verified how trans-impedance amplifiers react with various types of beam line background noise and how noise currents were not generated. This paper will describe these beam development tests and show some resulting data.

  5. The ILC Beam Delivery System - Conceptual Design and RD Plans

    SciTech Connect

    Seryi, Andrei; /SLAC

    2005-05-27

    The Beam Delivery System of the ILC has many stringent and sometimes conflicting requirements. To produce luminosity, the beams must be focused to nanometer size. To provide acceptable detector backgrounds, particles far from the beam core must be collimated. Unique beam diagnostics and instrumentation are required to monitor parameters of the colliding beams such as the energy spectrum and polarization. The detector and beamline components must be protected against errant beams. After collision, the beams must also be transported to the beam dumps safely and with acceptable losses. An international team is actively working on the design of the ILC Beam Delivery System in close collaboration. Details of the design, recent progress and remaining challenges will be summarized in this paper.

  6. Conceptual Design of Neutral Beam Injection System for EAST

    NASA Astrophysics Data System (ADS)

    Hu, Chundong; NBI Team

    2012-06-01

    Neutral beam injection (NBI) system with two neutral beam injections will be constructed on the Experimental Advanced Superconducting Tokamak (EAST) in two stages for high power auxiliary plasmas heating and non-inductive current drive. Each NBI can deliver 2~4 MW beam power with 50~80 keV beam energy in 10~100 s pulse length. Each elements of the NBI system are presented in this contribution.

  7. Accelerated radioactive nuclear beams: Existing and planned facilities

    SciTech Connect

    Nitschke, J.M.

    1992-07-01

    An over-view of existing and planned radioactive nuclear beam facilities world-wide. Two types of production methods are distinguished: projectile fragmentation and the on-line isotope separator (ISOL) method. While most of the projectile fragmentation facilities are already in operation, almost all the ISOL-based facilities are in still the planning stage.

  8. Characterizing and Controlling Beam Losses at the LANSCE Facility

    SciTech Connect

    Rybarcyk, Lawrence J.

    2012-09-12

    The Los Alamos Neutron Science Center (LANSCE) currently provides 100-MeV H{sup +} and 800-MeV H{sup -} beams to several user facilities that have distinct beam requirements, e.g. intensity, micropulse pattern, duty factor, etc. Minimizing beam loss is critical to achieving good performance and reliable operation, but can be challenging in the context of simultaneous multi-beam delivery. This presentation will discuss various aspects related to the observation, characterization and minimization of beam loss associated with normal production beam operations in the linac.

  9. A universal slow RI-beam facility at RIKEN RIBF

    SciTech Connect

    Wada, M.; Ishida, Y.; Nakamura, T.; Lioubimov, V.; Kambara, T.; Kanai, Y.; Kojima, T. M.; Nakai, Y.; Okada, K.; Takamine, A.; Yamazaki, Y.; Shiba, S.; Yoshida, A.; Kubo, T.; Ohtani, S.; Noda, K.; Katayama, I.; Varentsov, V.; Wollnik, H.; Schuessler, H. A.

    2006-11-02

    A next-generation slow radioactive nuclear ion beam facility (SLOWRI) which provides slow, high-purity and small emittance ion beams of all elements has been proposed as one of the pricipal experimental facilities at the RIKEN RI-beam factory (RIBF). High energy radioactive ion beams from the projectile fragment separator BigRIPS are thermalized in a large gas catcher cell. The thermal ions in the gas cell are guided and extracted to vacuum by a combination of DC electric fields and inhomogeneous rf fields in the cell (rf ion guide). In the R and D works at the present RIKEN facility, an overall efficiency of {approx_equal} 5% for {approx_equal} 100A MeV 8Li ion beam from the present projectile fragment separator RIPS was achieved and the dependence of the efficiency on the beam intensity was investigated. A first spectroscopy experiment at the prototype SLOWI was performed on Be isotopes.

  10. Accelerator development for a radioactive beam facility based on ATLAS.

    SciTech Connect

    Shepard, K. W.

    1998-01-08

    The existing superconducting linac ATLAS is in many respects an ideal secondary beam accelerator for an ISOL (Isotope separator on-line) type radioactive beam facility. Such a facility would require the addition of two major accelerator elements: a low charge state injector for the existing heavy ion linac, and a primary beam accelerator providing 220 MV of acceleration for protons and light ions. Development work for both of these elements, including the option of superconducting cavities for the primary beam accelerator is discussed.

  11. Beamed energy for space craft propulsion - Conceptual status and development potential

    NASA Technical Reports Server (NTRS)

    Sercel, Joel C.; Frisbee, Robert H.

    1987-01-01

    This paper outlines the results of a brief study that sought to identify and characterize beamed energy spacecraft propulsion concepts that may have positive impact on the economics of space industrialization. It is argued that the technology of beamed energy propulsion systems may significantly improve the prospects for near-term colonization of outer space. It is tentatively concluded that, for space industrialization purposes, the most attractive near-term beamed energy propulsion systems are based on microwave technology. This conclusion is reached based on consideration of the common features that exist between beamed microwave propulsion and the Solar Power Satellite (SPS) concept. Laser power beaming also continues to be an attractive option for spacecraft propulsion due to the reduced diffraction-induced beam spread afforded by laser radiation wavelengths. The conceptual status and development potential of a variety of beamed energy propulsion concepts are presented. Several alternative space transportation system concepts based on beamed energy propulsion are described.

  12. A button - type beam position monitor design for TARLA facility

    NASA Astrophysics Data System (ADS)

    Gündoǧan, M. Tural; Kaya, ć.; Yavaş, Ö.

    2016-03-01

    Turkish Accelerator and Radiation Laboratory in Ankara (TARLA) facility is proposed as an IR FEL and Bremsstrahlung facility as the first facility of Turkish Accelerator Center (TAC). TARLA is essentially proposed to generate oscillator mode FEL in 3-250 microns wavelengths range, will consist of normal conducting injector system with 250 keV beam energy, two superconducting RF accelerating modules in order to accelerate the beam 15-40 MeV. The TARLA facility is expected to provide two modes, Continuous wave (CW) and pulsed mode. Longitudinal electron bunch length will be changed between 1 and 10 ps. The bunch charge will be limited by 77pC. The design of the Button-type Beam Position Monitor for TARLA IR FEL is studied to operate in 1.3 GHz. Mechanical antenna design and simulations are completed considering electron beam parameters of TARLA. Ansoft HFSS and CST Particle Studio is used to compare with results of simulations.

  13. A conceptual design study for the secondary mirror drive of the shuttle infrared telescope facility (SIRTF)

    NASA Technical Reports Server (NTRS)

    Sager, R. E.; Cox, D. W.

    1983-01-01

    Various conceptual designs for the secondary mirror actuator system to be used in the Shuttle Infrared Telescope Facility (SIRTF) were evaluated. In addition, a set of design concepts was developed to assist in the solution of problems crucial for optimum performance of the secondary mirror actuator system. A specific conceptual approach was presented along with a plan for developing that approach and identifying issues of critical importance in the developmental effort.

  14. Conceptual design of elliptical cavities for intensity and position sensitive beam measurements in storage rings

    NASA Astrophysics Data System (ADS)

    Sanjari, M. S.; Chen, X.; Hülsmann, P.; Litvinov, Yu A.; Nolden, F.; Piotrowski, J.; Steck, M.; Stöhlker, Th

    2015-11-01

    Position sensitive beam monitors are indispensable for the beam diagnostics in storage rings. Apart from their applications in the measurements of beam parameters, they can be used in non-destructive in-ring decay studies of radioactive ion beams as well as enhancing precision in the isochronous mass measurement technique. In this work, we introduce a novel approach based on cavities with elliptical cross-section, in order to compensate the limitations of known designs for the application in ion storage rings. The design is aimed primarily for future heavy ion storage rings of the FAIR project. The conceptual design is discussed together with simulation results.

  15. Conceptual Design Report for Remote-Handled Low-Level Waste Disposal Facility

    SciTech Connect

    Lisa Harvego; David Duncan; Joan Connolly; Margaret Hinman; Charles Marcinkiewicz; Gary Mecham

    2010-10-01

    This conceptual design report addresses development of replacement remote-handled low-level waste disposal capability for the Idaho National Laboratory. Current disposal capability at the Radioactive Waste Management Complex is planned until the facility is full or until it must be closed in preparation for final remediation (approximately at the end of Fiscal Year 2017). This conceptual design report includes key project assumptions; design options considered in development of the proposed onsite disposal facility (the highest ranked alternative for providing continued uninterrupted remote-handled low level waste disposal capability); process and facility descriptions; safety and environmental requirements that would apply to the proposed facility; and the proposed cost and schedule for funding, design, construction, and operation of the proposed onsite disposal facility.

  16. Conceptualization and design of a variable-gravity research facility

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The goal is to provide facilities for the study of the effects of variable-gravity levels in reducing the physiological stresses upon the humans of long-term stay time in zero-g. The designs studied include: twin-tethered two module system with a central despun module with docking port and winch gear; and rigid arm tube facility using shuttle external tanks. Topics examined included: despun central capsule configuration, docking clearances, EVA requirements, crew selection, crew scheduling, food supply and preparation, waste handling, leisure use, biomedical issues, and psycho-social issues.

  17. Muon-decay medium-baseline neutrino beam facility

    NASA Astrophysics Data System (ADS)

    Cao, Jun; He, Miao; Hou, Zhi-Long; Jing, Han-Tao; Li, Yu-Feng; Li, Zhi-Hui; Song, Ying-Peng; Tang, Jing-Yu; Wang, Yi-Fang; Wu, Qian-Fan; Yuan, Ye; Zheng, Yang-Heng

    2014-09-01

    Neutrino beam with about 300 MeV in energy, high-flux and medium baseline is considered a rational choice for measuring CP violation before the more powerful Neutrino Factory is to be built. Following this concept, a unique neutrino beam facility based on muon-decayed neutrinos is proposed. The facility adopts a continuous-wave proton linac of 1.5 GeV and 10 mA as the proton driver, which can deliver an extremely high beam power of 15 MW. Instead of pion-decayed neutrinos, unprecedentedly intense muon-decayed neutrinos are used for better background discrimination. The schematic design for the facility is presented here, including the proton driver, the assembly of a mercury-jet target and capture superconducting solenoids, a pion /muon beam transport line, a long muon decay channel of about 600 m and the detector concept. The physics prospects and the technical challenges are also discussed.

  18. Concept for an advanced exotic beam facility based on ATLAS

    SciTech Connect

    Rehm, K.E.; Ahmad, I.; Back, B.B.

    1995-08-01

    The acceleration of beams of unstable nuclei has opened up new research frontiers. Experiments at existing accelerators, and particularly at the first generation of radioactive ion beam facilities, have demonstrated convincingly that unique information becomes accessible. Critical cross sections for astrophysical processes that were impossible to obtain previously, qualitatively new and unexpected nuclear structure effects in nuclei far from stability, completely new approaches to studies of nuclear decays, reactions and structure, all have triggered much excitement for this new dimension in nuclear research. To explore this new dimension, an extension of present technical capabilities and facilities is needed. This need and its scientific basis were discussed in various workshops and symposia and in the Isospin Laboratory (ISL) White Paper. A report by the European community was published recently on prospects of radioactive beam facilities in Europe, and some next-generation projects for such facilities are starting in both Europe and Japan.

  19. Beam Characterization at the Neutron Radiography Facility

    SciTech Connect

    Sarah Morgan; Jeffrey King

    2013-01-01

    The quality of a neutron imaging beam directly impacts the quality of radiographic images produced using that beam. Fully characterizing a neutron beam, including determination of the beam’s effective length-to-diameter ratio, neutron flux profile, energy spectrum, image quality, and beam divergence, is vital for producing quality radiographic images. This project characterized the east neutron imaging beamline at the Idaho National Laboratory Neutron Radiography Reactor (NRAD). The experiments which measured the beam’s effective length-to-diameter ratio and image quality are based on American Society for Testing and Materials (ASTM) standards. An analysis of the image produced by a calibrated phantom measured the beam divergence. The energy spectrum measurements consist of a series of foil irradiations using a selection of activation foils, compared to the results produced by a Monte Carlo n-Particle (MCNP) model of the beamline. Improvement of the existing NRAD MCNP beamline model includes validation of the model’s energy spectrum and the development of enhanced image simulation methods. The image simulation methods predict the radiographic image of an object based on the foil reaction rate data obtained by placing a model of the object in front of the image plane in an MCNP beamline model.

  20. Conceptual design of an in-space cryogenic fluid management facility

    NASA Technical Reports Server (NTRS)

    Willen, G. S.; Riemer, D. H.; Hustvedt, D. C.

    1981-01-01

    The conceptual design of a Spacelab experiment to develop the technology associated with low gravity propellant management is presented. The proposed facility consisting of a supply tank, receiver tank, pressurization system, instrumentation, and supporting hardware, is described. The experimental objectives, the receiver tank to be modeled, and constraints imposed on the design by the space shuttle, Spacelab, and scaling requirements, are described. The conceptual design, including the general configurations, flow schematics, insulation systems, instrumentation requirements, and internal tank configurations for the supply tank and the receiver tank, is described. Thermal, structural, fluid, and safety and reliability aspects of the facility are analyzed. The facility development plan, including schedule and cost estimates for the facility, is presented. A program work breakdown structure and master program schedule for a seven year program are included.

  1. Engineering test facility conceptual design. Final technical report

    SciTech Connect

    Not Available

    1980-02-01

    Because of the close relationship between the ETF design work conducted under this contract, and the design work of Potential Early Commercial MHD Power Plants (PSPEC) conducted under a separate and parallel DOE/NASA study contract, (DEN 3-51), the ETF design work reported on here was coordinated as far as possible with the design information developed in the above-mentioned separate PSPEC study. The reference power system configuration originally specified for the ETF considered the use of a high-temperature-air preheater, separately fired initially with oil and subsequently with a LBtu gas produced in a coal gasifier integrated with the power plant. The potential attractiveness of using oxygen enrichment in combustion of the coal for early commercial MHD power plant applications was indicated in our original ETF Conceptual Design Document. This eliminates the need for a high-temperature-air preheater and its associated gasifier. The results from our initial parametric design analysis in the separate study of Early Commercial MHD Power Plants reinforced the potential attractiveness of the use of oxygen enrichment of the combustion air. Therefore, preliminary analysis of the use of oxygen enrichment for the ETF was included as part of the ETF contract amendment work reported on here.

  2. Magnetohydrodynamics (MHD) Engineering Test Facility (ETF) 200 MWe power plant Conceptual Design Engineering Report (CDER)

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The reference conceptual design of the magnetohydrodynamic (MHD) Engineering Test Facility (ETF), a prototype 200 MWe coal-fired electric generating plant designed to demonstrate the commercial feasibility of open cycle MHD, is summarized. Main elements of the design, systems, and plant facilities are illustrated. System design descriptions are included for closed cycle cooling water, industrial gas systems, fuel oil, boiler flue gas, coal management, seed management, slag management, plant industrial waste, fire service water, oxidant supply, MHD power ventilating

  3. Conceptual design of a technology development facility (TDF)

    SciTech Connect

    Doggett, J.N.; Damm, C.C.

    1981-01-01

    We have developed a concept for employing a single-cell mirror machine in a facility for testing and developing fusion reactor materials, components, and subsystems in a fusion reactor environment. Our approach is similar to that of the 1974 FERF study, except that we have added an auxiliary thermal-barrier cell at each end of the yin-yang magnet. In this way, we provide for plasma microstability by confining a warm plasma component between potential peaks at each end of the device (just as in the tandem mirror with auxiliary barrier cells) while we further improve confinement by the inherent reduction in ambipolar potential drop in the central cell.

  4. Defocusing beam line design for an irradiation facility at the TAEA SANAEM Proton Accelerator Facility

    NASA Astrophysics Data System (ADS)

    Gencer, A.; Demirköz, B.; Efthymiopoulos, I.; Yiğitoğlu, M.

    2016-07-01

    Electronic components must be tested to ensure reliable performance in high radiation environments such as Hi-Limu LHC and space. We propose a defocusing beam line to perform proton irradiation tests in Turkey. The Turkish Atomic Energy Authority SANAEM Proton Accelerator Facility was inaugurated in May 2012 for radioisotope production. The facility has also an R&D room for research purposes. The accelerator produces protons with 30 MeV kinetic energy and the beam current is variable between 10 μA and 1.2 mA. The beam kinetic energy is suitable for irradiation tests, however the beam current is high and therefore the flux must be lowered. We plan to build a defocusing beam line (DBL) in order to enlarge the beam size, reduce the flux to match the required specifications for the irradiation tests. Current design includes the beam transport and the final focusing magnets to blow up the beam. Scattering foils and a collimator is placed for the reduction of the beam flux. The DBL is designed to provide fluxes between 107 p /cm2 / s and 109 p /cm2 / s for performing irradiation tests in an area of 15.4 cm × 21.5 cm. The facility will be the first irradiation facility of its kind in Turkey.

  5. Fort Hood solar cogeneration facility conceptual design study

    SciTech Connect

    Not Available

    1981-05-01

    A study is done on the application of a tower-focus solar cogeneration facility at the US Fort Hood Army Base in Killeen, Texas. Solar-heated molten salt is to provide the steam for electricity and for room heating, room cooling, and domestic hot water. The proposed solar cogeneration system is expected to save the equivalent of approximately 10,500 barrels of fuel oil per year and to involve low development risks. The site and existing plant are described, including the climate and plant performance. The selection of the site-specific configuration is discussed, including: candidate system configurations; technology assessments, including risk assessments of system development, receiver fluids, and receiver configurations; system sizing; and the results of trade studies leading to the selection of the preferred system configuration. (LEW)

  6. Conceptual design of a beam steering lens through transformation electromagnetics.

    PubMed

    Yi, Jianjia; Burokur, Shah Nawaz; de Lustrac, André

    2015-05-18

    In this paper, based on transformation electromagnetics, the design procedure of a lens antenna, which steers the radiated beam of a patch array, is presented. Laplace's equation is adopted to construct the mapping between the virtual space and the physical space. The two dimensional (2D) design method can be extended to a potential three-dimensional (3D) realization, and with a proper parameter simplification, the lens can be further realized by common metamaterials or isotropic graded refractive index (GRIN) materials. Full wave simulations are performed to validate the proposed concept. It is observed that by placing the lens on a feeding source, we are able to steer the radiation emitted by the latter source. PMID:26074547

  7. Segmented beryllium target for a 2 MW super beam facility

    NASA Astrophysics Data System (ADS)

    Davenne, T.; Caretta, O.; Densham, C.; Fitton, M.; Loveridge, P.; Hurh, P.; Zwaska, R.; Hylen, J.; Papadimitriou, V.

    2015-09-01

    The Long Baseline Neutrino Facility (LBNF, formerly the Long Baseline Neutrino Experiment) is under design as a next generation neutrino oscillation experiment, with primary objectives to search for C P violation in the leptonic sector, to determine the neutrino mass hierarchy and to provide a precise measurement of θ23 . The facility will generate a neutrino beam at Fermilab by the interaction of a proton beam with a target material. At the ultimate anticipated proton beam power of 2.3 MW the target material must dissipate a heat load of between 10 and 25 kW depending on the target size. This paper presents a target concept based on an array of spheres and compares it to a cylindrical monolithic target such as that which currently operates at the T2K facility. Simulation results show that the proposed technology offers efficient cooling and lower stresses whilst delivering a neutrino production comparable with that of a conventional solid cylindrical target.

  8. The beam diagnostic instruments in Beijing radioactive ion-beam facilities isotope separator on-line

    SciTech Connect

    Ma, Y. Cui, B.; Ma, R.; Tang, B.; Chen, L.; Huang, Q.; Jiang, W.

    2014-02-15

    The beam diagnostic instruments for Beijing Radioactive Ion-beam Facilities Isotope Separator On-Line are introduced [B. Q. Cui, Z. H. Peng, Y. J. Ma, R. G. Ma, B. Tang, T. Zhang, and W. S. Jiang, Nucl. Instrum. Methods 266, 4113 (2008); T. J. Zhang, X. L. Guan, and B. Q. Cui, in Proceedings of APAC 2004, Gyeongju, Korea, 2004, http://www.jacow.org , p. 267]. For low intensity ion beam [30–300 keV/1 pA–10 μA], the beam profile monitor, the emittance measurement unit, and the analyzing slit will be installed. For the primary proton beam [100 MeV/200 μA], the beam profile scanner will be installed. For identification of the nuclide, a beam identification unit will be installed. The details of prototype of the beam diagnostic units and some experiment results will be described in this article.

  9. Conceptual design report -- Gasification Product Improvement Facility (GPIF)

    SciTech Connect

    Sadowski, R.S.; Skinner, W.H.; House, L.S.; Duck, R.R.; Lisauskas, R.A.; Dixit, V.J.; Morgan, M.E.; Johnson, S.A.; Boni, A.A.

    1994-09-01

    The problems heretofore with coal gasification and IGCC concepts have been their high cost and historical poor performance of fixed-bed gasifiers, particularly on caking coals. The Gasification Product Improvement Facility (GPIF) project is being developed to solve these problems through the development of a novel coal gasification invention which incorporates pyrolysis (carbonization) with gasification (fixed-bed). It employs a pyrolyzer (carbonizer) to avoid sticky coal agglomeration caused in the conventional process of gradually heating coal through the 400 F to 900 F range. In so doing, the coal is rapidly heated sufficiently such that the coal tar exists in gaseous form rather than as a liquid. Gaseous tars are then thermally cracked prior to the completion of the gasification process. During the subsequent endothermic gasification reactions, volatilized alkali can become chemically bound to aluminosilicates in (or added to) the ash. To reduce NH{sub 3} and HCN from fuel born nitrogen, steam injection is minimized, and residual nitrogen compounds are partially chemically reduced in the cracking stage in the upper gasifier region. Assuming testing confirms successful deployment of all these integrated processes, future IGCC applications will be much simplified, require significantly less mechanical components, and will likely achieve the $1,000/kWe commercialized system cost goal of the GPIF project. This report describes the process and its operation, design of the plant and equipment, site requirements, and the cost and schedule. 23 refs., 45 figs., 23 tabs.

  10. A beam optics study of the biomedical beam line at a proton therapy facility

    NASA Astrophysics Data System (ADS)

    Yun, Chong Cheoul; Kim, Jong-Won

    2007-10-01

    A biomedical beam line has been designed for the experimental area of a proton therapy facility to deliver mm to sub-mm size beams in the energy range of 20-50 MeV using the TRANSPORT/TURTLE beam optics codes and a newly-written program. The proton therapy facility is equipped with a 230 MeV fixed-energy cyclotron and an energy selection system based on a degrader and slits, so that beam currents available for therapy decrease at lower energies in the therapeutic beam energy range of 70-230 MeV. The new beam line system is composed of an energy-degrader, two slits, and three quadrupole magnets. The minimum beam sizes achievable at the focal point are estimated for the two energies of 50 and 20 MeV. The focused FWHM beam size is approximately 0.3 mm with an expected beam current of 20 pA when the beam energy is reduced to 50 MeV from 100 MeV, and roughly 0.8 mm with a current of 10 pA for a 20 MeV beam.

  11. Transmitted Laser Beam Diagnostic at the Omega Laser Facility

    SciTech Connect

    Niemann, C; Antonini, G; Compton, S; Glenzer, S; Hargrove, D; Moody, J; Kirkwood, R; Rekow, V; Sorce, C; Armstrong, W; Bahr, R; Keck, R; Pien, G; Seka, W; Thorp, K

    2004-04-01

    We have developed and commissioned a transmitted beam diagnostic (TBD) for the 2{omega} high intensity interaction beam at the Omega laser facility. The TBD consists of a bare-surface reflector mounted near the target, which collects and reflects 4% of the transmitted light to a detector assembly outside the vacuum chamber. The detector includes a time integrating near-field camera that measures beam spray, deflection and the absolute transmitted power. We present a detailed description of the instrument and the calibration method and include first measurements on laser heated gasbag targets to demonstrate the performance of the diagnostic.

  12. Advanced conceptual design report solid waste retrieval facility, phase I, project W-113

    SciTech Connect

    Smith, K.E.

    1994-03-21

    Project W-113 will provide the equipment and facilities necessary to retrieve suspect transuranic (TRU) waste from Trench 04 of the 218W-4C burial ground. As part of the retrieval process, waste drums will be assayed, overpacked, vented, head-gas sampled, and x-rayed prior to shipment to the Phase V storage facility in preparation for receipt at the Waste Receiving and Processing Facility (WRAP). Advanced Conceptual Design (ACD) studies focused on project items warranting further definition prior to Title I design and areas where the potential for cost savings existed. This ACD Report documents the studies performed during FY93 to optimize the equipment and facilities provided in relation to other SWOC facilities and to provide additional design information for Definitive Design.

  13. Shielding and Radiation Protection in Ion Beam Therapy Facilities

    NASA Astrophysics Data System (ADS)

    Wroe, Andrew J.; Rightnar, Steven

    Radiation protection is a key aspect of any radiotherapy (RT) department and is made even more complex in ion beam therapy (IBT) by the large facility size, secondary particle spectra and intricate installation of these centers. In IBT, large and complex radiation producing devices are used and made available to the public for treatment. It is thus the responsibility of the facility to put in place measures to protect not only the patient but also the general public, occupationally and nonoccupationally exposed personnel working within the facility, and electronics installed within the department to ensure maximum safety while delivering maximum up-time.

  14. Fermilab Test Beam Facility Annual Report. FY 2014

    SciTech Connect

    Brandt, A.

    2015-01-01

    Fermilab Test Beam Facility (FTBF) operations are summarized for FY 2014. It is one of a series of publications intended to gather information in one place. In this case, the information concerns the individual experiments that ran at FTBF. Each experiment section was prepared by the relevant authors, and was edited for inclusion in this summary.

  15. Conceptual design for the Space Station Freedom fluid physics/dynamics facility

    NASA Technical Reports Server (NTRS)

    Thompson, Robert L.; Chucksa, Ronald J.; Omalley, Terence F.; Oeftering, Richard C.

    1993-01-01

    A study team at NASA's Lewis Research Center has been working on a definition study and conceptual design for a fluid physics and dynamics science facility that will be located in the Space Station Freedom's baseline U.S. Laboratory module. This modular, user-friendly facility, called the Fluid Physics/Dynamics Facility, will be available for use by industry, academic, and government research communities in the late 1990's. The Facility will support research experiments dealing with the study of fluid physics and dynamics phenomena. Because of the lack of gravity-induced convection, research into the mechanisms of fluids in the absence of gravity will help to provide a better understanding of the fundamentals of fluid processes. This document has been prepared as a final version of the handout for reviewers at the Fluid Physics/Dynamics Facility Assessment Workshop held at Lewis on January 24 and 25, 1990. It covers the background, current status, and future activities of the Lewis Project Study Team effort. It is a revised and updated version of a document entitled 'Status Report on the Conceptual Design for the Space Station Fluid Physics/Dynamics Facility', dated January 1990.

  16. Data handling facility for the Sandia Particle Beam Fusion Accelerator

    SciTech Connect

    Boyer, W. B.; Neau, E. L.

    1980-01-01

    This paper describes an on-line data handling facility for Sandia's Particle Beam Fusion Accelerator, PBFA-I, and the upgrade prototype machine Supermite. These accelerators are used for research on inertial confinement fusion (ICF) using particle beams. The main objectives in designing the data acquisition system were: (1) process both experiment and machine performance diagnostic signals, (2) record high signal-to-noise ratio, wideband waveforms in a severe EMP environment, (3) support multiple users recording and analyzing data simultaneously, and (4) provide fast turnaround for experimental results. Commercially available equipment is used wherever possible. However, several special purpose devices were developed. This data handling facility is a significant upgrade of an existing system that supports other Sandia particle beam fusion research accelerators.

  17. Status report for the Holifield Radioactive Ion Beam Facility

    SciTech Connect

    Olsen, D.K.; Auble, R.L.; Alton, G.D.

    1995-12-31

    In 1992, the HHIRF became a project to develop a first-generation radioactive ion beam facility, the HRIBF, a national user facility for RIB research. Intense beams from ORIC will produce radioactive atoms as reaction products in thick targets using an ISOL-type target-ion source mounted on a 300-kV RIB injector. These radioactive atoms will be ionized, mass analyzed, charge exchanged, accelerated to ground potential, and analyzed again to separate isobars with a second-stage mass analyzer. The resulting RIBs will be injected into the tandem and accelerated to energies of interest for nuclear physics and astrophysics studied. The construction phase of the project has been completed. A report on the status and progress developing the facility is given, along with the long term development plans.

  18. Space Station Furnace Facility. Volume 2: Requirements definition and conceptual design study

    NASA Astrophysics Data System (ADS)

    1992-05-01

    The Space Station Freedom Furnace (SSFF) Project is divided into two phases: phase 1, a definition study phase, and phase 2, a design and development phase. TBE was awarded a research study entitled, 'Space Station Furnace Facility Requirements Definition and Conceptual Design Study' on June 2, 1989. This report addresses the definition study phase only. Phase 2 is to be complete after completion of phase 1. The contract encompassed a requirements definition study and culminated in hardware/facility conceptual designs and hardware demonstration development models to test these conceptual designs. The study was divided into two parts. Part 1 (the basic part of the effort) encompassed preliminary requirements definition and assessment; conceptional design of the SSFF Core; fabrication of mockups; and preparation for the support of a conceptional design review (CoDR). Part 2 (the optional part of the effort) included detailed definition of the engineering and design requirements, as derived from the science requirements; refinement of the conceptual design of the SSFF Core; fabrication and testing of the 'breadboards' or development models; and preparation for and support of a requirements definition review.

  19. Space Station Furnace Facility. Volume 2: Requirements definition and conceptual design study

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The Space Station Freedom Furnace (SSFF) Project is divided into two phases: phase 1, a definition study phase, and phase 2, a design and development phase. TBE was awarded a research study entitled, 'Space Station Furnace Facility Requirements Definition and Conceptual Design Study' on June 2, 1989. This report addresses the definition study phase only. Phase 2 is to be complete after completion of phase 1. The contract encompassed a requirements definition study and culminated in hardware/facility conceptual designs and hardware demonstration development models to test these conceptual designs. The study was divided into two parts. Part 1 (the basic part of the effort) encompassed preliminary requirements definition and assessment; conceptional design of the SSFF Core; fabrication of mockups; and preparation for the support of a conceptional design review (CoDR). Part 2 (the optional part of the effort) included detailed definition of the engineering and design requirements, as derived from the science requirements; refinement of the conceptual design of the SSFF Core; fabrication and testing of the 'breadboards' or development models; and preparation for and support of a requirements definition review.

  20. Centrifuge Facility Conceptual System Study. Volume 1: Facility overview and habitats

    NASA Technical Reports Server (NTRS)

    Synnestvedt, Robert (Editor)

    1990-01-01

    The results are presented for a NASA Phase 1 study conducted from mid 1987 through mid 1989 at Ames Research Center. The Centrifuge Facility is the major element of the biological research facility for the implementation of NASA's Life Science Research Program on Space Station Freedom using non-human specimens (such as small primates, rodents, plants, insects, cell tissues). Five systems are described which comprise the Facility: habitats, holding units, centrifuge, glovebox, and service unit. Volume 1 presents a facility overview and describes the habitats - modular units which house living specimens.

  1. Fort Hood solar cogeneration facility conceptual design study. Volume 1: Technical report

    NASA Astrophysics Data System (ADS)

    1981-08-01

    A solar heated heat transfer salt provides heat to a steam generation and provides space heating and air conditioning and hot water for the complex. The site and its climate are described briefly. Candidate site specific system configurations, technology assessments, system sizing, and the results of numerous trade studies leading toward the selection of the preferred system configuration are presented. A system level conceptual design of the cogeneration facility is presented, and the conceptual design of the subsystems (heliostats, receiver, tower, energy transport and storage, fossil energy subsystem, electric power generation subsystem, control, space conditioning and domestic hot water subsystem) are described. Results of the economic analysis of the cogeneration facility are presented, including a description of analysis methods used, assumptions and rationale, simulation models used, a brief summary of capital and operations and maintenance costs, fuel savings, results of the economic evaluations and an economic scenario for future applications.

  2. Advanced ion beam calorimetry for the test facility ELISE

    SciTech Connect

    Nocentini, R. Fantz, U.; Franzen, P.; Fröschle, M.; Heinemann, B.; Riedl, R.; Ruf, B.; Wünderlich, D.; Bonomo, F.; Pimazzoni, A.; Pasqualotto, R.

    2015-04-08

    The negative ion source test facility ELISE (Extraction from a Large Ion Source Experiment) is in operation since beginning of 2013 at the Max-Planck-Institut für Plasmaphysik (IPP) in Garching bei München. The large radio frequency driven ion source of ELISE is about 1×1 m{sup 2} in size (1/2 the ITER source) and can produce a plasma for up to 1 h. Negative ions can be extracted and accelerated by an ITER-like extraction system made of 3 grids with an area of 0.1 m{sup 2}, for 10 s every 3 minutes. A total accelerating voltage of up to 60 kV is available, i.e. a maximum ion beam power of about 1.2 MW can be produced. ELISE is equipped with several beam diagnostic tools for the evaluation of the beam characteristics. In order to evaluate the beam properties with a high level of detail, a sophisticated diagnostic calorimeter has been installed in the test facility at the end of 2013, starting operation in January 2014. The diagnostic calorimeter is split into 4 copper plates with separate water calorimetry for each of the plates. Each calorimeter plate is made of 15×15 copper blocks, which act as many separate inertial calorimeters and are attached to a copper plate with an embedded cooling circuit. The block geometry and the connection with the cooling plate are optimized to accurately measure the time-averaged power of the 10 s ion beam. The surface of the blocks is covered with a black coating that allows infrared (IR) thermography which provides a 2D profile of the beam power density. In order to calibrate the IR thermography, 48 thermocouples are installed in as many blocks, arranged in two vertical and two horizontal rows. The paper describes the beam calorimetry in ELISE, including the methods used for the IR thermography, the water calorimetry and the analytical methods for beam profile evaluation. It is shown how the maximum beam inhomogeneity amounts to 13% in average. The beam divergence derived by IR thermography ranges between 1° and 4° and

  3. Advanced ion beam calorimetry for the test facility ELISE

    NASA Astrophysics Data System (ADS)

    Nocentini, R.; Bonomo, F.; Pimazzoni, A.; Fantz, U.; Franzen, P.; Fröschle, M.; Heinemann, B.; Pasqualotto, R.; Riedl, R.; Ruf, B.; Wünderlich, D.

    2015-04-01

    The negative ion source test facility ELISE (Extraction from a Large Ion Source Experiment) is in operation since beginning of 2013 at the Max-Planck-Institut für Plasmaphysik (IPP) in Garching bei München. The large radio frequency driven ion source of ELISE is about 1×1 m2 in size (1/2 the ITER source) and can produce a plasma for up to 1 h. Negative ions can be extracted and accelerated by an ITER-like extraction system made of 3 grids with an area of 0.1 m2, for 10 s every 3 minutes. A total accelerating voltage of up to 60 kV is available, i.e. a maximum ion beam power of about 1.2 MW can be produced. ELISE is equipped with several beam diagnostic tools for the evaluation of the beam characteristics. In order to evaluate the beam properties with a high level of detail, a sophisticated diagnostic calorimeter has been installed in the test facility at the end of 2013, starting operation in January 2014. The diagnostic calorimeter is split into 4 copper plates with separate water calorimetry for each of the plates. Each calorimeter plate is made of 15×15 copper blocks, which act as many separate inertial calorimeters and are attached to a copper plate with an embedded cooling circuit. The block geometry and the connection with the cooling plate are optimized to accurately measure the time-averaged power of the 10 s ion beam. The surface of the blocks is covered with a black coating that allows infrared (IR) thermography which provides a 2D profile of the beam power density. In order to calibrate the IR thermography, 48 thermocouples are installed in as many blocks, arranged in two vertical and two horizontal rows. The paper describes the beam calorimetry in ELISE, including the methods used for the IR thermography, the water calorimetry and the analytical methods for beam profile evaluation. It is shown how the maximum beam inhomogeneity amounts to 13% in average. The beam divergence derived by IR thermography ranges between 1° and 4° and correlates

  4. Nuclear astrophysics at the Holifield Radioactive Ion Beam Facility

    SciTech Connect

    Smith, M.S.

    1994-12-31

    The potential for understanding spectacular stellar explosions such as novae, supernovae, and X-ray bursts will be greatly enhanced by the availability of the low-energy, high-intensity, accelerated beams of proton-rich radioactive nuclei currently being developed at the Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge National Laboratory. These beams will be utilized in absolute cross section measurements of crucial (p, {gamma}) capture reactions in efforts to resolve the substantial qualitative uncertainties in current models of explosive stellar hydrogen burning outbursts. Details of the nuclear astrophysics research program with the unique HRIBF radioactive beams and a dedicated experimental endstation--centered on the Daresbury Recoil Separator--will be presented.

  5. The pixel tracking telescope at the Fermilab Test Beam Facility

    NASA Astrophysics Data System (ADS)

    Kwan, Simon; Lei, CM; Menasce, Dario; Moroni, Luigi; Ngadiuba, Jennifer; Prosser, Alan; Rivera, Ryan; Terzo, Stefano; Turqueti, Marcos; Uplegger, Lorenzo; Vigani, Luigi; Dinardo, Mauro E.

    2016-03-01

    An all silicon pixel telescope has been assembled and used at the Fermilab Test Beam Facility (FTBF) since 2009 to provide precise tracking information for different test beam experiments with a wide range of Detectors Under Test (DUTs) requiring high resolution measurement of the track impact point. The telescope is based on CMS pixel modules left over from the CMS forward pixel production. Eight planes are arranged to achieve a resolution of less than 8 μm on the 120 GeV proton beam transverse coordinate at the DUT position. In order to achieve such resolution with 100×150 μm2 pixel cells, the planes were tilted to 25 degrees to maximize charge sharing between pixels. Crucial for obtaining this performance is the alignment software, called Monicelli, specifically designed and optimized for this system. This paper will describe the telescope hardware, the data acquisition system and the alignment software constituting this particle tracking system for test beam users.

  6. Neutron measurements from beam-target reactions at the ELISE neutral beam test facility

    SciTech Connect

    Xufei, X. Fan, T.; Nocente, M.; Gorini, G.; Bonomo, F.; Franzen, P.; Fröschle, M.; Grosso, G.; Tardocchi, M.; Grünauer, F.; Pasqualotto, R.

    2014-11-15

    Measurements of 2.5 MeV neutron emission from beam-target reactions performed at the ELISE neutral beam test facility are presented in this paper. The measurements are used to study the penetration of a deuterium beam in a copper dump, based on the observation of the time evolution of the neutron counting rate from beam-target reactions with a liquid scintillation detector. A calculation based on a local mixing model of deuterium deposition in the target up to a concentration of 20% at saturation is used to evaluate the expected neutron yield for comparison with data. The results are of relevance to understand neutron emission associated to beam penetration in a solid target, with applications to diagnostic systems for the SPIDER and MITICA Neutral Beam Injection prototypes.

  7. Waste Receiving and Processing Facility Module 2A: Advanced Conceptual Design Report. Volume 1

    SciTech Connect

    Not Available

    1994-03-01

    This ACDR was performed following completed of the Conceptual Design Report in July 1992; the work encompassed August 1992 to January 1994. Mission of the WRAP Module 2A facility is to receive, process, package, certify, and ship for permanent burial at the Hanford site disposal facilities the Category 1 and 3 contact handled low-level radioactive mixed wastes that are currently in retrievable storage at Hanford and are forecast to be generated over the next 30 years by Hanford, and waste to be shipped to Hanford from about DOE sites. This volume provides an introduction to the ACDR process and the scope of the task along with a project summary of the facility, treatment technologies, cost, and schedule. Major areas of departure from the CDR are highlighted. Descriptions of the facility layout and operations are included.

  8. Conceptual design and programmatics studies of space station accommodations for Life Sciences Research Facilities (LSRF)

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Conceptual designs and programmatics of the space station accommodations for the Life Sciences Research Facilities (LSRF) are presented. The animal ECLSS system for the LSRF provides temperature-humidity control, air circulation, and life support functions for experimental subjects. Three ECLSS were studied. All configurations presented satisfy the science requirements for: animal holding facilities with bioisolation; facilities interchangeable to hold rodents, small primates, and plants; metabolic cages interchangeable with standard holding cages; holding facilities adaptable to restrained large primates and rodent breeding/nesting cages; volume for the specified instruments; enclosed ferm-free workbench for manipulation of animals and chemical procedures; freezers for specimen storage until return; and centrifuge to maintain animals and plants at fractional g to 1 g or more, with potential for accommodating humans for short time intervals.

  9. Fort Hood solar cogeneration facility conceptual design study. Volume 1. Technical report. Final technical report

    SciTech Connect

    Not Available

    1981-08-01

    A central receiver cogeneration facility is studied for a Texas military facility. A solar-heated heat-transfer salt provides heat to a steam generator and providing space heating and air conditioning and hot water for the complex. The site and its climate are described briefly. Candidate site-specific system configurations, technology assessments, system sizing, and the results of numerous trade studies leading toward the selection of the preferred system configuration are presented. A system level conceptual design of the cogeneration facility is presented, and the conceptual design of the major subsystems (heliostats, receiver, tower, energy transport and storage, fossil energy subsystem, electric power generation subsystem, control, space conditioning and domestic hot water subsystem) are described. Results of the economic analysis of the cogeneration facility are presented, including a description of analysis methods used, assumptions and rationale, simulation models used, a brief summary of capital and operations and maintenance costs, fuel savings, results of the economic evaluations and an economic scenario for future applications. The results of the development planning are presented, including all major activities required during the detailed design, construction, and initial operational phases. An assessment of the proposed facility by the Department of the Army at Fort Hood is presented. (LEW)

  10. Conceptual design of hollow electron lenses for beam halo control in the Large Hadron Collider

    SciTech Connect

    Stancari, Giulio; Previtali, Valentina; Valishev, Alexander; Bruce, Roderik; Redaelli, Stefano; Rossi, Adriana; Salvachua Ferrando, Belen

    2014-06-26

    Collimation with hollow electron beams is a technique for halo control in high-power hadron beams. It is based on an electron beam (possibly pulsed or modulated in intensity) guided by strong axial magnetic fields which overlaps with the circulating beam in a short section of the ring. The concept was tested experimentally at the Fermilab Tevatron collider using a hollow electron gun installed in one of the Tevatron electron lenses. We are proposing a conceptual design for applying this technique to the Large Hadron Collider at CERN. A prototype hollow electron gun for the LHC was built and tested. The expected performance of the hollow electron beam collimator was based on Tevatron experiments and on numerical tracking simulations. Halo removal rates and enhancements of halo diffusivity were estimated as a function of beam and lattice parameters. Proton beam core lifetimes and emittance growth rates were checked to ensure that undesired effects were suppressed. Hardware specifications were based on the Tevatron devices and on preliminary engineering integration studies in the LHC machine. Required resources and a possible timeline were also outlined, together with a brief discussion of alternative halo-removal schemes and of other possible uses of electron lenses to improve the performance of the LHC.

  11. Wire Scanner Beam Profile Measurements for the LANSCE Facility

    SciTech Connect

    Gilpatrick, John D.; Gruchalla, Michael E.; Martinez, Derwin; Pillai, Chandra; Rodriguez Esparza, Sergio; Sedillo, James Daniel; Smith, Brian G.

    2012-05-15

    The Los Alamos Neutron Science Center (LANSCE) is replacing beam profile measurement systems, commonly known as Wire Scanners (WS). Using the principal of secondary electron emission, the WS measurement system moves a wire or fiber across an impinging particle beam, sampling a projected transverse-beam distribution. Because existing WS actuators and electronic components are either no longer manufactured or home-built with antiquated parts, a new WS beam profile measurement is being designed, fabricated, and tested. The goals for these new WS's include using off-the-shelf components while eliminating antiquated components, providing quick operation while allowing for easy maintainability, and tolerating external radioactivation. The WS measurement system consists of beam line actuators, a cable plant, an electronics processor chassis, and software located both in the electronics chassis (National Instruments LabVIEW) and in the Central Control Room (EPICS-based client software). This WS measurement system will measure Hand H{sup +} LANSCE-facility beams and will also measure less common beams. This paper describes these WS measurement systems.

  12. Three-axis electron-beam test facility

    NASA Technical Reports Server (NTRS)

    Dayton, J. A., Jr.; Ebihara, B. T.

    1981-01-01

    An electron beam test facility, which consists of a precision multidimensional manipulator built into an ultra-high-vacuum bell jar, was designed, fabricated, and operated at Lewis Research Center. The position within the bell jar of a Faraday cup which samples current in the electron beam under test, is controlled by the manipulator. Three orthogonal axes of motion are controlled by stepping motors driven by digital indexers, and the positions are displayed on electronic totalizers. In the transverse directions, the limits of travel are approximately + or - 2.5 cm from the center with a precision of 2.54 micron (0.0001 in.); in the axial direction, approximately 15.0 cm of travel are permitted with an accuracy of 12.7 micron (0.0005 in.). In addition, two manually operated motions are provided, the pitch and yaw of the Faraday cup with respect to the electron beam can be adjusted to within a few degrees. The current is sensed by pulse transformers and the data are processed by a dual channel box car averager with a digital output. The beam tester can be operated manually or it can be programmed for automated operation. In the automated mode, the beam tester is controlled by a microcomputer (installed at the test site) which communicates with a minicomputer at the central computing facility. The data are recorded and later processed by computer to obtain the desired graphical presentations.

  13. Future developments of INFN-LNL nuclear beam facilities

    NASA Astrophysics Data System (ADS)

    Bisoffi, G.

    2007-11-01

    The accelerator group at INFN-LNL has been mostly engaged, recently, in completing and commissioning the higher current injector of the linac booster ALPI (named PIAVE) and in constructing and assembling the front-end part of a high current driver linac for the RNB facility SPES. PIAVE, designed to accelerate ions with A/Q = < 8.5 up to 1.2 MeV/u, is now completed. The injector has been commissioned with O, Ar, Ne and Xe beams. Neon and argon beams have been delivered to experiments for a total of about 400 hours. A consolidation program of PIAVE and ALPI is planned, so as to deliver a larger variety of beams with a current range 10 div 100 pnA and with an energy exceeding the Coulomb barrier in relevant nuclear reaction cases. The RNB facility SPES, allowing a frontier program in RNB physics, is being designed and prototyped: beams of neutron rich medium-to-heavy mass nuclei will be produced inducing 238U fission with a 40 MeV 200μA proton beam impinging onto a multi-slice direct target. A further development of ALPI will make it best suitable for the re-acceleration of radioactive nuclear species, after charge breeding and isotope selection.

  14. Radioactive Ion Beam Production Capabilities At The Holifield Radioactive Ion Beam Facility

    NASA Astrophysics Data System (ADS)

    Beene, J. R.; Dowling, D. T.; Gross, C. J.; Juras, R. C.; Liu, Y.; Meigs, M. J.; Mendez, A. J.; Nazarewicz, W.; Sinclair, J. W.; Stracener, D. W.; Tatum, B. A.

    2011-06-01

    The Holifield Radioactive Ion Beam Facility (HRIBF) is a national user facility for research with radioactive ion beams (RIBs) that has been in routine operation since 1996. It is located at Oak Ridge National Laboratory (ORNL) and operated by the ORNL Physics Division. The principal mission of the HRIBF is the production of high quality beams of shortlived radioactive isotopes to support research in nuclear structure physics and nuclear astrophysics. HRIBF is currently unique worldwide in its ability to provide neutron-rich fission fragment beams post-accelerated to energies above the Coulomb barrier for nuclear reactions. HRIBF produces RIBs by the isotope separator on-line (ISOL) technique using a particle accelerator system that consists of the Oak Ridge Isochronous Cyclotron (ORIC) driver accelerator, one of the two Injectors for Radioactive Ion Species (IRIS1 or IRIS2) production systems, and the 25-MV tandem electrostatic accelerator that is used for RIB post-acceleration. ORIC provides a light ion beam (proton, deuteron, or alpha) which is directed onto a thick target mounted in a target-ion source (TIS) assembly located on IRIS1 or IRIS2. Radioactive atoms that diffuse from the target material are ionized, accelerated, mass selected, and transported to the tandem accelerator where they are further accelerated to energies suitable for nuclear physics research. RIBs are transported through a beam line system to various experimental end stations including the Recoil Mass Spectrometer (RMS) for nuclear structure research, and the Daresbury Recoil Separator (DRS) for nuclear astrophysics research. HRIBF also includes two off-line ion source test facilities, one low-power on-line ISOL test facility (OLTF), and one high-power on-line ISOL test facility (HPTL). This paper provides an overview and status update of HRIBF, describes the recently completed 4.7M IRIS2 addition and incorporation of laser systems for beam production and purification, and discusses a

  15. Centrifuge facility conceptual system study. Volume 2: Facility systems and study summary

    NASA Technical Reports Server (NTRS)

    Synnestvedt, Robert (Editor); Blair, Patricia; Cartledge, Alan; Garces-Porcile, Jorge; Garin, Vladimir; Guerrero, Mike; Haddeland, Peter; Horkachuck, Mike; Kuebler, Ulrich; Nguyen, Frank

    1991-01-01

    The Centrifuge Facility is a major element of the biological research facility for the implementation of NASA's Life Science Research Program on Space Station Freedom using nonhuman species (small primates, rodents, plants, insects, cell tissues, etc.). The Centrifuge Facility consists of a variable gravity Centrifuge to provide artificial gravity up to 2 earth G's' a Holding System to maintain specimens at microgravity levels, a Glovebox, and a Service Unit for servicing specimen chambers. The following subject areas are covered: (1) Holding System; (2) Centrifuge System; (3) Glovebox System; (4) Service System; and (5) system study summary.

  16. Development and Commissioning of an External Beam Facility in the Union College Ion Beam Analysis Laboratory

    NASA Astrophysics Data System (ADS)

    Yoskowitz, Joshua; Clark, Morgan; Labrake, Scott; Vineyard, Michael

    2015-10-01

    We have developed an external beam facility for the 1.1-MV tandem Pelletron accelerator in the Union College Ion Beam Analysis Laboratory. The beam is extracted from an aluminum pipe through a 1 / 4 ' ' diameter window with a 7.5- μm thick Kapton foil. This external beam facility allows us to perform ion beam analysis on samples that cannot be put under vacuum, including wet samples and samples too large to fit into the scattering chamber. We have commissioned the new facility by performing proton induced X-ray emission (PIXE) analysis of several samples of environmental interest. These include samples of artificial turf, running tracks, and a human tooth with an amalgam filling. A 1.7-MeV external proton beam was incident on the samples positioned 2 cm from the window. The resulting X-rays were measured using a silicon drift detector and were analyzed using GUPIX software to determine the concentrations of elements in the samples. The results on the human tooth indicate that while significant concentrations of Hg, Ag, and Sn are present in the amalgam filling, only trace amounts of Hg appear to have leached into the tooth. The artificial turf and running tracks show rather large concentrations of a broad range of elements and trace amounts of Pb in the turf infill.

  17. Cryosorption Pumps for a Neutral Beam Injector Test Facility

    SciTech Connect

    Dremel, M.; Mack, A.; Day, C.; Jensen, H.

    2006-04-27

    We present the experiences of the manufacturing and the operating of a system of two identical cryosorption pumps used in a neutral beam injector test facility for fusion reactors. Calculated and measured heat loads of the cryogenic liquid helium and liquid nitrogen circuits of the cryosorption pumps are discussed. The design calculations concerning the thermo-hydraulics of the helium circuit are compared with experiences from the operation of the cryosorption pumps. Both cryopumps are integrated in a test facility of a neutral beam injector that will be used to heat the plasma of a nuclear fusion reactor with a beam of deuterium or hydrogen molecules. The huge gas throughput into the vessel of the test facility results in challenging needs on the cryopumping system.The developed cryosorption pumps are foreseen to pump a hydrogen throughput of 20 - 30 mbar{center_dot}l/s. To establish a mean pressure of several 10-5 mbar in the test vessel a pumping speed of about 350 m3/s per pump is needed. The pressure conditions must be maintained over several hours pumping without regeneration of the cryopanels, which necessitates a very high pumping capacity. A possibility to fulfill these requirements is the use of charcoal coated cryopanels to pump the gasloads by adsorption. For the cooling of the cryopanels, liquid helium at saturation pressure is used and therefore a two-phase forced flow in the cryopump system must be controlled.

  18. A conceptual subsurface facility design for a high-level nuclear waste repository at Yucca Mountain

    SciTech Connect

    McKenzie, D.G., III; Bhattacharyya, K.K.; Segrest, A.M.

    1996-09-01

    The US Department of Energy is responsible for the design, construction, operation and closure of a repository in which to permanently dispose of the nation`s high level nuclear waste. In addition to the objective of safely isolating the waste inventory, the repository must provide a safe working environment for its workforce, and protect the public. The conceptual design for this facility is currently being developed. Tunnel Boring Machine will be used to excavate 228 kilometers of tunneling to construct the facility over a 30 year period. The excavation operations will be physically separated from the waste emplacement operations, and each operation will have its own dedicated ventilation system. The facility is being designed to remain open for 150 years.

  19. Conceptual design of a solar cogeneration facility at Pioneer Mill Co. , Ltd

    SciTech Connect

    Not Available

    1981-04-01

    Results are reported of a conceptual design study of the retrofit of a solar central receiver system to an existing cogeneration facility at a Hawaii raw sugar factory. Background information on the site, the existing facility, and the project organization is given. Then the results are presented o the work to select the site specific configuration, including the working fluid, receiver concept, heliostat field site, and the determination of the solar facility size and of the role of thermal storage. The system selected would use water-steam as its working fluid in a twin-cavity receiver collecting sunlight from 41,420 m/sup 2/ of heliostat mirrors. The lates version of the system specification is appended, as are descriptions of work to measure site insolation and a site insolation mathematical model and interface data for the local utility. (LEW)

  20. AGS SUPER NEUTRINO BEAM FACILITY ACCELERATOR AND TARGET SYSTEM DESIGN (NEUTRINO WORKING GROUP REPORT-II).

    SciTech Connect

    DIWAN,M.; MARCIANO,W.; WENG,W.; RAPARIA,D.

    2003-04-21

    This document describes the design of the accelerator and target systems for the AGS Super Neutrino Beam Facility. Under the direction of the Associate Laboratory Director Tom Kirk, BNL has established a Neutrino Working Group to explore the scientific case and facility requirements for a very long baseline neutrino experiment. Results of a study of the physics merit and detector performance was published in BNL-69395 in October 2002, where it was shown that a wide-band neutrino beam generated by a 1 MW proton beam from the AGS, coupled with a half megaton water Cerenkov detector located deep underground in the former Homestake mine in South Dakota would be able to measure the complete set of neutrino oscillation parameters: (1) precise determination of the oscillation parameters {Delta}m{sub 32}{sup 2} and sin{sup 2} 2{theta}{sub 32}; (2) detection of the oscillation of {nu}{sub {mu}}-{nu}{sub e} and measurement of sin{sup 2} 2{theta}{sub 13}; (3) measurement of {Delta}m{sub 21}{sup 2} sin 2{theta}{sub 12} in a {nu}{sub {mu}} {yields} {nu}{sub e} appearance mode, independent of the value of {theta}{sub 13}; (4) verification of matter enhancement and the sign of {Delta}m{sub 32}{sup 2}; and (5) determination of the CP-violation parameter {delta}{sub CP} in the neutrino sector. This report details the performance requirements and conceptual design of the accelerator and the target systems for the production of a neutrino beam by a 1.0 MW proton beam from the AGS. The major components of this facility include a new 1.2 GeV superconducting linac, ramping the AGS at 2.5 Hz, and the new target station for 1.0 MW beam. It also calls for moderate increase, about 30%, of the AGS intensity per pulse. Special care is taken to account for all sources of proton beam loss plus shielding and collimation of stray beam halo particles to ensure equipment reliability and personal safety. A preliminary cost estimate and schedule for the accelerator upgrade and target system are also

  1. Conceptual design for an electron-beam heated hypersonic wind tunnel

    SciTech Connect

    Lipinski, R.J.; Kensek, R.P.

    1997-07-01

    There is a need for hypersonic wind-tunnel testing at about mach 10 and above using natural air and simulating temperatures and pressures which are prototypic of flight at 50 km altitude or below. With traditional wind-tunnel techniques, gas cooling during expansion results in exit temperatures which are too low. Miles, et al., have proposed overcoming this difficulty by heating the air with a laser beam as it expands in the wind-tunnel nozzle. This report discusses an alternative option of using a high-power electron beam to heat the air as it expands. In the e-beam heating concept, the electron beam is injected into the wind-tunnel nozzle near the exit and then is guided upstream toward the nozzle throat by a strong axial magnetic field. The beam deposits most of its power in the dense air near the throat where the expansion rate is greatest. A conceptual design is presented for a large-scale system which achieves Mach 14 for 0.1 seconds with an exit diameter of 2.8 meters. It requires 450 MW of electron beam power (5 MeV at 90 A). The guiding field is 500 G for most of the transport length and increases to 100 kG near the throat to converge the beam to a 1.0-cm diameter. The beam generator is a DC accelerator using a Marx bank (of capacitors) and a diode stack with a hot cathode. 14 refs. 38 figs., 9 tabs.

  2. SECONDARY WASTE/ETF (EFFLUENT TREATMENT FACILITY) PRELIMINARY PRE-CONCEPTUAL ENGINEERING STUDY

    SciTech Connect

    MAY TH; GEHNER PD; STEGEN GARY; HYMAS JAY; PAJUNEN AL; SEXTON RICH; RAMSEY AMY

    2009-12-28

    This pre-conceptual engineering study is intended to assist in supporting the critical decision (CD) 0 milestone by providing a basis for the justification of mission need (JMN) for the handling and disposal of liquid effluents. The ETF baseline strategy, to accommodate (WTP) requirements, calls for a solidification treatment unit (STU) to be added to the ETF to provide the needed additional processing capability. This STU is to process the ETF evaporator concentrate into a cement-based waste form. The cementitious waste will be cast into blocks for curing, storage, and disposal. Tis pre-conceptual engineering study explores this baseline strategy, in addition to other potential alternatives, for meeting the ETF future mission needs. Within each reviewed case study, a technical and facility description is outlined, along with a preliminary cost analysis and the associated risks and benefits.

  3. Conceptual Design Report: Nevada Test Site Mixed Waste Disposal Facility Project

    SciTech Connect

    NSTec Environmental Management

    2009-01-31

    Environmental cleanup of contaminated nuclear weapons manufacturing and test sites generates radioactive waste that must be disposed. Site cleanup activities throughout the U.S. Department of Energy (DOE) complex are projected to continue through 2050. Some of this waste is mixed waste (MW), containing both hazardous and radioactive components. In addition, there is a need for MW disposal from other mission activities. The Waste Management Programmatic Environmental Impact Statement Record of Decision designates the Nevada Test Site (NTS) as a regional MW disposal site. The NTS has a facility that is permitted to dispose of onsite- and offsite-generated MW until November 30, 2010. There is not a DOE waste management facility that is currently permitted to dispose of offsite-generated MW after 2010, jeopardizing the DOE environmental cleanup mission and other MW-generating mission-related activities. A mission needs document (CD-0) has been prepared for a newly permitted MW disposal facility at the NTS that would provide the needed capability to support DOE's environmental cleanup mission and other MW-generating mission-related activities. This report presents a conceptual engineering design for a MW facility that is fully compliant with Resource Conservation and Recovery Act (RCRA) and DOE O 435.1, 'Radioactive Waste Management'. The facility, which will be located within the Area 5 Radioactive Waste Management Site (RWMS) at the NTS, will provide an approximately 20,000-cubic yard waste disposal capacity. The facility will be licensed by the Nevada Division of Environmental Protection (NDEP).

  4. Conceptual Safety Design Report for the Remote Handled Low-Level Waste Disposal Facility

    SciTech Connect

    Boyd D. Christensen

    2010-05-01

    A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal for remote-handled LLW from the Idaho National Laboratory and for spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This conceptual safety design report supports the design of a proposed onsite remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization, by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW, by evaluating consequences of postulated accidents, and by discussing the need for safety features that will become part of the facility design.

  5. Conceptual Safety Design Report for the Remote Handled Low-Level Waste Disposal Facility

    SciTech Connect

    Boyd D. Christensen

    2010-02-01

    A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal for remote-handled LLW from the Idaho National Laboratory and for spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This conceptual safety design report supports the design of a proposed onsite remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization, by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW, by evaluating consequences of postulated accidents, and by discussing the need for safety features that will become part of the facility design.

  6. University of Wisconsin Ion Beam Laboratory: A facility for irradiated materials and ion beam analysis

    SciTech Connect

    Field, K. G.; Wetteland, C. J.; Cao, G.; Maier, B. R.; Gerczak, T. J.; Kriewaldt, K.; Sridharan, K.; Allen, T. R.; Dickerson, C.; Field, C. R.

    2013-04-19

    The University of Wisconsin Ion Beam Laboratory (UW-IBL) has recently undergone significant infrastructure upgrades to facilitate graduate level research in irradiated materials phenomena and ion beam analysis. A National Electrostatics Corp. (NEC) Torodial Volume Ion Source (TORVIS), the keystone upgrade for the facility, can produce currents of hydrogen ions and helium ions up to {approx}200 {mu}A and {approx}5 {mu}A, respectively. Recent upgrades also include RBS analysis packages, end station developments for irradiation of relevant material systems, and the development of an in-house touch screen based graphical user interface for ion beam monitoring. Key research facilitated by these upgrades includes irradiation of nuclear fuels, studies of interfacial phenomena under irradiation, and clustering dynamics of irradiated oxide dispersion strengthened steels. The UW-IBL has also partnered with the Advanced Test Reactor National Scientific User Facility (ATR-NSUF) to provide access to the irradiation facilities housed at the UW-IBL as well as access to post irradiation facilities housed at the UW Characterization Laboratory for Irradiated Materials (CLIM) and other ATR-NSUF partner facilities. Partnering allows for rapid turnaround from proposed research to finalized results through the ATR-NSUF rapid turnaround proposal system. An overview of the UW-IBL including CLIM and relevant research is summarized.

  7. Gas-Grain Simulation Facility (GGSF). Volume 2: Conceptual design definition

    NASA Technical Reports Server (NTRS)

    Zamel, James M.

    1993-01-01

    This document is Volume 2 of the Final Report for the Phase A Study of the Gas-Grain Simulation Facility (GGSF), and presents the GGSF Conceptual Design. It is a follow-on to the Volume 1 Facility Definition Study, NASA report CR 177606. The development of a conceptual design for a Space Station Freedom (SSF) facility that will be used for investigating particle interactions in varying environments, including various gas mixtures, pressures, and temperatures is delineated. It's not possible to study these experiments on earth due to the long reaction times associated with this type of phenomena, hence the need for extended periods of microgravity. The particle types will vary in composition (solids and liquids), sizes (from submicrons to centimeters), and concentrations (from single particles to 10(exp 10) per cubic centimeter). The results of the experiments pursued in the GGSF will benefit a variety of scientific inquiries. These investigations span such diverse topics as the formation of planets and planetary rings, cloud and haze processes in planetary atmospheres, the composition and structure of astrophysical objects, and the viability of airborne microbes (e.g., in a manned spacecraft).

  8. Conceptual design of two-phase fluid mechanics and heat transfer facility for spacelab

    NASA Technical Reports Server (NTRS)

    North, B. F.; Hill, M. E.

    1980-01-01

    Five specific experiments were analyzed to provide definition of experiments designed to evaluate two phase fluid behavior in low gravity. The conceptual design represents a fluid mechanics and heat transfer facility for a double rack in Spacelab. The five experiments are two phase flow patterns and pressure drop, flow boiling, liquid reorientation, and interface bubble dynamics. Hardware was sized, instrumentation and data recording requirements defined, and the five experiments were installed as an integrated experimental package. Applicable available hardware was selected in the experiment design and total experiment program costs were defined.

  9. Multistage depressed collector conceptual design for thin magnetically confined electron beams

    NASA Astrophysics Data System (ADS)

    Pagonakis, Ioannis Gr.; Wu, Chuanren; Illy, Stefan; Jelonnek, John

    2016-04-01

    The requirement of higher efficiency in high power microwave devices, such as traveling wave tubes and gyrotrons, guides scientific research to more advanced types of collector systems. First, a conceptual design approach of a multistage depressed collector for a sheet electron beam confined by a magnetic field is presented. The sorting of the electron trajectories, according to their initial kinetic energy, is based on the E × B drift concept. The optimization of the geometrical parameters is based on the analytical equations under several general assumptions. The analysis predicts very high levels of efficiency. Then, a design approach for the application of this type of collector to a gyrotron cylindrical hollow electron beam is also presented with very high levels of efficiency more than 80%.

  10. DESIGN OF THE BNL SUPER NEUTRINO BEAM FACILITY

    SciTech Connect

    WENG, W.T.; ALESSI, J.; BEAVIS, D. ET AL.

    2004-03-22

    A very long base line super neutrino beam facility is need to determine the neutrino mixing amplitudes and phase accurately, as well as the CP violation parameters. This is possible due to the long distance and wideband nature of the neutrino beam for the observation of several oscillations from one species of the neutrino to the other. BNL plans to upgrade the AGS proton beam from the current 0.14 MW to higher than 1.0 MW and beyond for such a neutrino facility which consists of three major subsystems. First is a 1.2 GeV superconducting linac to replace the booster as injector for the AGS, second is the performance upgrade for the AGS itself for the higher intensity and repetition rate, and finally is target and horn system for the neutrino production. The major contribution for the higher power is from the increase of the repetition rate of the AGS form 0.3 Hz to 2.5 Hz, with moderate increase from the intensity. The design consideration to achieve high intensity and low losses for the linac and the AGS will be reviewed. The target horn design for high power operation and easy maintenance will also be presented.

  11. 5MeV Electron Beam Facilities in Japan

    NASA Astrophysics Data System (ADS)

    Mizusawa, K.; Kashiwagi, M.; Hoshi, Y.

    1998-06-01

    There are 3 facilities with 5MeV electron beam processing machines in Japan and another one is planned to start operation in 1998. 2 of them are installed by Nissin-High Voltage and the other are by Sumitomo Heavy/Radiation Dynamics. In this report are introduced 2 facilities which we have installed and are operating satisfactorily. The first one was: installed at Radia Industry for irradiation services and the second one for in-house use in a factory of a pharmaceutical plastic container manufacturer, Shinko Chemical. And the second one is available for contract irradiation. The machine in Radia Industry has a comprehensive conveyor system with a turn-over equipment to shoot from the top and the bottom of materials with e-beam and X-ray, and has been successfully operated for many years. The machine in Shinko Chemical is equipped with a unique conveyor system with two conveyor lines under the beam window and the motion of the lines are opposite each other. This conveyor system also has a turn-over equipment like other machines but the direction of turning-over is designed to give the irradiated materials more uniform dose.

  12. The Neutral Beam Test Facility and Radiation Effects Facility at Brookhaven National Laboratory

    SciTech Connect

    McKenzie-Wilson, R.B.

    1990-01-01

    As part of the Strategic Defense Initiative (SDI) Brookhaven National Laboratory (BNL) has constructed a Neutral Beam Test Facility (NBTF) and a Radiation Effects Facility (REF). These two facilities use the surplus capacity of the 200-MeV Linac injector for the Alternating Gradient Synchrotron (AGS). The REF can be used to simulate radiation damage effects in space from both natural and man made radiation sources. The H{sup {minus}} beam energy, current and dimensions can be varied over a wide range leading to a broad field of application. The NBTF has been designed to carry out high precision experiments and contains an absolute reference target system for the on-line calibration of measurements carried out in the experimental hall. The H{sup {minus}} beam energy, current and dimensions can also be varied over a wide range but with tradeoffs depending on the required accuracy. Both facilities are fully operational and will be described together with details of the associated experimental programs.

  13. Conceptual design of a solar cogeneration facility industrial process heat, category A. Executive summary

    NASA Astrophysics Data System (ADS)

    Joy, P.; Brzeczek, M.; Seilestad, H.; Silverman, C.; Yenetchi, G.

    1981-07-01

    The conceptual design of a central receiver solar cogeneration facility at a California oil field is described. The process of selecting the final cogeneration system configuration is described and the various system level and subsystem level tradeoff studies are presented, including the system configuration study, technology options, and system sizing. The facility is described, and the functional aspects, requirements operational characteristics, and performance are discussed. Capital and operating costs, safety, environmental, regulatory issues and potential limiting considerations for the design are included. Each subsystem is described in detail including a discussion of the functional requirements, design, operating characteristics performance estimates and a top level cost estimate. An economic assessment is performed to determine the near-term economic viability of the project and to examine the impact of variations in major economic parameters such as capital and operating and maintenance costs on economic viability. Two measures of economic viability used are levelized energy cost and net present value.

  14. Space Station Furnace Facility. Volume 1: Requirements definition and conceptual design study, executive summary

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The Space Station Freedom Furnace (SSFF) Study was awarded on June 2, 1989, to Teledyne Brown Engineering (TBE) to define an advanced facility for materials research in the microgravity environment of Space Station Freedom (SSF). The SSFF will be designed for research in the solidification of metals and alloys, the crystal growth of electronic and electro-optical materials, and research in glasses and ceramics. The SSFF is one of the first 'facility' class payloads planned by the Microgravity Science and Applications Division (MSAD) of the Office of Space Science and Applications of NASA Headquarters. This facility is planned for early deployment during man-tended operations of the SSF with continuing operations through the Permanently Manned Configuration (PMC). The SSFF will be built around a general 'Core' facility which provides common support functions not provided by SSF, common subsystems which are best centralized, and common subsystems which are best distributed with each experiment module. The intent of the facility approach is to reduce the overall cost associated with implementing and operating a variety of experiments. This is achieved by reducing the launch mass and simplifying the hardware development and qualification processes associated with each experiment. The Core will remain on orbit and will require only periodic maintenance and upgrading while new Furnace Modules, samples, and consumables are developed, qualified, and transported to the SSF. The SSFF Study was divided into two phases: phase 1, a definition study phase, and phase 2, a design and development phase. The definition phase 1 is addressed. Phase 1 was divided into two parts. In the first part, the basic part of the effort, covered the preliminary definition and assessment of requirements; conceptual design of the SSFF; fabrication of mockups; and the preparation for and support of the Conceptual Design Review (CoDR). The second part, the option part, covered requirements update and

  15. Aifira: An ion beam facility for multidisciplinary research

    NASA Astrophysics Data System (ADS)

    Sorieul, S.; Alfaurt, Ph.; Daudin, L.; Serani, L.; Moretto, Ph.

    2014-08-01

    During the last decade, the CENBG (Centre d'Études Nucléaires de Bordeaux Gradignan) commissioned a new facility called AIFIRA (Applications Interdisciplinaires des Faisceaux d'ions en Région Aquitaine). It allowed the development of a multidisciplinary activity based on the "in-house" expertise of CENBG in ion beam analysis. The great flexibility offered by the five beam lines confers a lot of possibilities for chemical analysis and nuclear physics. Indeed, not only the macrobeam and the external beam lines provide the full set of IBA techniques for routine sample analysis but an additional beam line is devoted to the production of monoenergetic neutrons through the interaction of the incoming ion with selected targets. In addition, the two high-resolution microbeam lines are used for chemical analyses, 2D/3D imaging, and targeted cell irradiation. Besides, the combination of the nanobeam line flexibility, the uniqueness of the micro-irradiation design completed by the internal CENBG expertise confers a great specificity to AIFIRA in biomedical field. After a detailed technical overview of the platform, the article focuses on the two high-resolution lines as they tap most of the activity. Thus a quick overview of the most significant results concerning biomedical samples is proposed in order to highlight the analytical possibilities of AIFIRA microbeam lines. A summary of the development status of the micro-irradiation line is also done.

  16. The pixel tracking telescope at the Fermilab Test Beam Facility

    DOE PAGESBeta

    Kwan, Simon; Lei, CM; Menasce, Dario; Moroni, Luigi; Ngadiuba, Jennifer; Prosser, Alan; Rivera, Ryan; Terzo, Stefano; Turqueti, Marcos; Uplegger, Lorenzo; et al

    2016-03-01

    An all silicon pixel telescope has been assembled and used at the Fermilab Test Beam Facility (FTBF) since 2009 to provide precise tracking information for different test beam experiments with a wide range of Detectors Under Test (DUTs) requiring high resolution measurement of the track impact point. The telescope is based on CMS pixel modules left over from the CMS forward pixel production. Eight planes are arranged to achieve a resolution of less than 8 μm on the 120 GeV proton beam transverse coordinate at the DUT position. In order to achieve such resolution with 100 × 150 μm2 pixelmore » cells, the planes were tilted to 25 degrees to maximize charge sharing between pixels. Crucial for obtaining this performance is the alignment software, called Monicelli, specifically designed and optimized for this system. This paper will describe the telescope hardware, the data acquisition system and the alignment software constituting this particle tracking system for test beam users.« less

  17. High Brightness Electron Beam diode for the DARHT (*) Facility

    NASA Astrophysics Data System (ADS)

    Eylon, Shmuel; Abbott, Steve

    1999-11-01

    An injector for the second axis of the Dual-Axis Radiographic Hydrotest Facility (DARHT) is been built at LBNL. The proposed injector consists of a single gap diode extracting 2 kA, 3.5 MV electrons from a thermionic dispenser cathode and powered through a high voltage ceramic insulator column by a Marx generator. The key issues in the design are the control of beam quality to meet the DARHT 2nd axis final focus requirements and to minimize high-voltage breakdown risks. We will present the physics design, preliminary engineering and diagnostics layouts of the injector diode as well as preliminary results on a scaled experiment using the Berkeley RTA facility. This work was performed under the auspices of the U.S. Department of Energy under contract AC03-76SF00098.

  18. Beam dynamics simulations and measurements at the Project X Test Facility

    SciTech Connect

    Gianfelice-Wendt, E.; Scarpine, V.E.; Webber, R.C.; /Fermilab

    2011-03-01

    Project X, under study at Fermilab, is a multitask high-power superconducting RF proton beam facility, aiming to provide high intensity protons for rare processes experiments and nuclear physics at low energy, and simultaneously for the production of neutrinos, as well as muon beams in the long term. A beam test facility - former known as High Intensity Neutrino Source (HINS) - is under commissioning for testing critical components of the project, e.g. dynamics and diagnostics at low beam energies, broadband beam chopping, RF power generation and distribution. In this paper we describe the layout of the test facility and present beam dynamics simulations and measurements.

  19. Investigation of plasma-surface interaction at plasma beam facilities

    NASA Astrophysics Data System (ADS)

    Kurnaev, V.; Vizgalov, I.; Gutorov, K.; Tulenbergenov, T.; Sokolov, I.; Kolodeshnikov, A.; Ignashev, V.; Zuev, V.; Bogomolova, I.; Klimov, N.

    2015-08-01

    The new Plasma Beam Facility (PBF) has been put into operation for assistance in testing of plasma faced components at Material Science Kazakhstan Tokamak (KTM). PBF includes a powerful electron gun (up to 30 kV, 1 A) and a high vacuum chamber with longitudinal magnetic field coils (up to 0.2 T). The regime of high vacuum electron beam transportation is used for thermal tests with power density at the target surface up to 10 GW/m2. The beam plasma discharge (BPD) regime with a gas-puff is used for generation of intensive ion fluxes up to 3 ṡ 1022 m-2 s-1. Initial tests of the KTM PBF's capabilities were carried out: various discharge regimes, carbon deposits cleaning, simultaneous thermal and ion impacts on radiation cooled refractory targets. With a water-cooled target the KTM PBF could be used for high heat flux tests of materials (validated by the experiment with W mock-up at the PR-2 PBF).

  20. Conceptual magnet design for an iron-free colliding beam accelerator

    SciTech Connect

    Taylor, C.; Meuser, R.B.

    1983-03-01

    Superconducting accelerator magnets usually have magnetic iron yokes to obtain maximum magnetic field and to limit stray field. However, the iron is expensive and heavy. The smaller size and weight of an iron-free magnet can result in lower magnet and refrigeration costs. However in a colliding beam accelerator the stray field from one ring produces aberrations in the field in the other. A way to eliminate this mutual interference is to surround each magnet with a coil that exactly cancels the field from the other ring magnet. That is expensive in terms of superconductor requirements. However, the cancellation of the external dipole field component is unnecessary. Only a small amount of superconductor is required for cancellation of the higher-order field-aberration components. Parameters for the iron-free magnet concept are investigated, and a preliminary conceptual design for an accelerator is presented.

  1. Federal Facility Compliance Act: Conceptual Site Treatment Plan for Lawrence Livermore National Laboratory, Livermore, California

    SciTech Connect

    Not Available

    1993-10-01

    The Department of Energy (DOE) is required by section 3021(b) of the Resource Conservation and Recovery Act (RCRA), as amended by the Federal Facility Compliance Act (the Act), to prepare plans describing the development of treatment capacities and technologies for treating mixed waste. The Act requires site treatment plans (STPs or plans) to be developed for each site at which DOE generates or stores mixed waste and submitted to the State or EPA for approval, approval with modification, or disapproval. The Lawrence Livermore National Laboratory (LLNL) Conceptual Site Treatment Plan (CSTP) is the preliminary version of the plan required by the Act and is being provided to California, the US Environmental Protection Agency (EPA), and others for review. A list of the other DOE sites preparing CSTPs is included in Appendix 1.1 of this document. Please note that Appendix 1.1 appears as Appendix A, pages A-1 and A-2 in this document.

  2. Summary of informal workshop on state of ion beam facilities for atomic physics research

    SciTech Connect

    Jones, K.W.; Cocke, C.L.; Datz, S.; Kostroun, V.

    1984-11-13

    The present state of ion beam facilities for atomic physics research in the United States is assessed by means of a questionnaire and informal workshop. Recommendations for future facilities are given. 3 refs.

  3. The radioactive ion beams facility project for the legnaro laboratories

    NASA Astrophysics Data System (ADS)

    Tecchio, Luigi B.

    1999-04-01

    In the frame work of the Italian participation to the project of a high intensity proton facility for the energy amplifier and nuclear waste transmutations, LNL is involving in the design and construction of prototypes of the injection system of the 1 GeV linac that consists of a RFQ (5 MeV, 30 mA) followed by a 100 MeV linac. This program has been already financially supported and the work is actually in progress. In this context, the LNL has been proposed a project for the construction of a second generation facility for the production of radioactive ion beams (RIBs) by using the ISOL method. The final goal consists in the production of neutron rich RIBs with masses ranging from 80 to 160 by using primary beams of protons, deuterons and light ions with energy of 100 MeV and 100 kW power. This project is proposed to be developed in about 10 years from now and intermediate milestones and experiments are foreseen and under consideration for the next INFN five year plan (1999-2003). In such period of time is proposed the construction of a proton/deuteron accelerator of 10 MeV energy and 10 mA current, consisting of a RFQ (5 MeV, 30 mA) and a linac (10 MeV, 10 mA), and of a neutron area dedicated to the RIBs production, to the BNCT applications and to the neutron physics. Some remarks on the production methods will be presented. The possibility of producing radioisotopes by means of the fission induced by neutrons will be investigated and the methods of production of neutrons will be discussed.

  4. Programmable Beam Spatial Shaping System for the National Ignition Facility

    SciTech Connect

    Heebner, J; Borden, M; Miller, P; Hunter, S; Christensen, K; Scanlan, M; Haynam, C; Wegner, P; Hermann, M; Brunton, G; Tse, E; Awwal, A; Wong, N; Seppala, L; Franks, M; Marley, E; Wong, N; Seppala, L; Franks, M; Marley, E; Williams, K; Budge, T; Henesian, M; Stolz, C; Suratwala, T; Monticelli, M; Walmer, D; Dixit, S; Widmayer, C; Wolfe, J; Bude, J; McCarty, K; DiNicola, J M

    2011-01-21

    A system of customized spatial light modulators has been installed onto the front end of the laser system at the National Ignition Facility (NIF). The devices are capable of shaping the beam profile at a low-fluence relay plane upstream of the amplifier chain. Their primary function is to introduce 'blocker' obscurations at programmed locations within the beam profile. These obscurations are positioned to shadow small, isolated flaws on downstream optical components that might otherwise limit the system operating energy. The modulators were designed to enable a drop-in retrofit of each of the 48 existing Pre Amplifier Modules (PAMs) without compromising their original performance specifications. This was accomplished by use of transmissive Optically Addressable Light Valves (OALV) based on a Bismuth Silicon Oxide photoconductive layer in series with a twisted nematic liquid crystal (LC) layer. These Programmable Spatial Shaper packages in combination with a flaw inspection system and optic registration strategy have provided a robust approach for extending the operational lifetime of high fluence laser optics on NIF.

  5. The Westinghouse high flux electron beam surface heating facility (Esurf)

    NASA Astrophysics Data System (ADS)

    Nahemow, M. D.

    The ESURF facility located, at the Westinghouse Electric Corp., Research and Development Center, Pittsburgh, Pennsylvania is described. It was first used to test cathodes for a BNL designed negative ion source. The water cooled copper cathodes were operated at a loading of 2 KW/sq cm steady state loading. Divertor collector targets for the MIT divertor program were subject to transient conditions. These molybdenum tubes were subject to up to 500 2 kW/sq cm transients. The facility is currently being used in a first wall/blanket/shield engineering test program for the Argonne National Labs. The ESURF uses a 50 KW 150 KeV electron beam as a heat source. The scan logic permits a wide variety of transient and steady state thermal effects to be modeled. The system cooling loop has a maximum operating pressure of 1000 psi. The pumps have an operating range from 7 gpm at a 700 ft head to 30 gpm at a 500 ft head. 40 KW of preheat and 100 KW of subcooling are provided. Temperature, pressure, flow, strain, etc. are measured and controlled. The system has a TI microprocessor control system linked to a LSI/11 computer system for control, data acquisition, and data processing.

  6. Conceptual design of a biological specimen holding facility. [Life Science Laboratory for Space Shuttle

    NASA Technical Reports Server (NTRS)

    Jackson, J. K.; Yakut, M. M.

    1976-01-01

    An all-important first step in the development of the Spacelab Life Science Laboratory is the design of the Biological Specimen Holding Facility (BSHF) which will provide accommodation for living specimens for life science research in orbit. As a useful tool in the understanding of physiological and biomedical changes produced in the weightless environment, the BSHF will enable biomedical researchers to conduct in-orbit investigations utilizing techniques that may be impossible to perform on human subjects. The results of a comprehensive study for defining the BSHF, description of its experiment support capabilities, and the planning required for its development are presented. Conceptual designs of the facility, its subsystems and interfaces with the Orbiter and Spacelab are included. Environmental control, life support and data management systems are provided. Interface and support equipment required for specimen transfer, surgical research, and food, water and waste storage is defined. New and optimized concepts are presented for waste collection, feces and urine separation and sampling, environmental control, feeding and watering, lighting, data management and other support subsystems.

  7. IFMIF, International Fusion Materials Irradiation Facility conceptual design activity cost report

    SciTech Connect

    Rennich, M.J.

    1996-12-01

    This report documents the cost estimate for the International Fusion Materials Irradiation Facility (IFMIF) at the completion of the Conceptual Design Activity (CDA). The estimate corresponds to the design documented in the Final IFMIF CDA Report. In order to effectively involve all the collaborating parties in the development of the estimate, a preparatory meeting was held at Oak Ridge National Laboratory in March 1996 to jointly establish guidelines to insure that the estimate was uniformly prepared while still permitting each country to use customary costing techniques. These guidelines are described in Section 4. A preliminary cost estimate was issued in July 1996 based on the results of the Second Design Integration Meeting, May 20--27, 1996 at JAERI, Tokai, Japan. This document served as the basis for the final costing and review efforts culminating in a final review during the Third IFMIF Design Integration Meeting, October 14--25, 1996, ENEA, Frascati, Italy. The present estimate is a baseline cost estimate which does not apply to a specific site. A revised cost estimate will be prepared following the assignment of both the site and all the facility responsibilities.

  8. Design-only conceptual design report for pit disassembly and conversion facility. Rev 0

    SciTech Connect

    Zygmunt, S.; Christensen, L.; Richardson, C.

    1997-12-12

    This design-only conceptual design report (DOCDR) was prepared to support a funding request by the Department of Energy (DOE)-Office of Fissile Material Disposition (OFMD) for engineering design of the Pit Disassembly and Conversion Facility (PDCF) Project No. 99-D-141. The PDCF will be used to disassemble the nation`s inventory of surplus nuclear weapons pits and convert the plutonium recovered from those pits into a form suitable for storage, international inspection, and final disposition. The PDCF is a complex consisting of a hardened building that will contain the plutonium processes in a safe and secure manner, and conventional buildings and structures that will house support personnel, systems, and equipment. The PDCF uses the Advanced Recovery and Integrated Extraction System (ARIES), a low waste, modular pyroprocessing system to convert pits to plutonium oxide. The PDCF project consists of engineering and design, and construction of the buildings and structures, and engineering and design, procurement, installation, testing and start-up of equipment to disassemble pits and convert plutonium in pits to oxide form. The facility is planned to operate for 10 years, averaging 3.5 metric tons (3.86 tons) of plutonium metal per year. On conclusion of operations, the PDCF will be decontaminated and decommissioned.

  9. Noninterceptive beam energy measurements in line D of the Los Alamos Meson Physics Facility

    SciTech Connect

    Gilpatrick, J.D.; Carter, H.; Plum, M.; Power, J.F.; Rose, C.R.; Shurter, R.B.

    1995-12-31

    Several members of the Accelerator and Operations Technology (AOT) division beam-diagnostics team performed time-of-flight (TOF) beam-energy measurements in line D of the Los Alamos Meson Physics Facility (LAMPF) using developmental beam time. These measurements provided information for a final design of an on-line beam energy measurement. The following paper discusses these measurements and how they apply to the final beam energy measurement design.

  10. Noninterceptive beam energy measurements in line D of the Los Alamos Meson Physics Facility

    SciTech Connect

    Gilpatrick, J.D.; Carter, H.; Plum, M.; Power, J.F.; Rose, C.R.; Shurter, R.B.

    1995-05-05

    Several members of the Accelerator and Operations Technology (AOT) division beam-diagnostics team performed time-of-flight (TOF) beam-energy measurements in line D of the Los Alamos Meson Physics Facility (LAMPF) using developmental beam time. These measurements provided information for a final design of an on-line beam energy measurement. The following paper discusses these measurements and how they apply to the final beam energy measurement design. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  11. Conceptual design of the gamma-to-electron magnetic spectrometer for the National Ignition Facility.

    PubMed

    Kim, Y; Herrmann, H W; Jorgenson, H J; Barlow, D B; Young, C S; Stoeffl, W; Casey, D; Clancy, T; Lopez, F E; Oertel, J A; Hilsabeck, T; Moy, K; Batha, S H

    2014-11-01

    The Gamma-to-Electron Magnetic Spectrometer (GEMS) diagnostic is designed to measure the prompt γ-ray energy spectrum during high yield deuterium-tritium (DT) implosions at the National Ignition Facility (NIF). The prompt γ-ray spectrum will provide "burn-averaged" observables, including total DT fusion yield, total areal density (ρR), ablator ρR, and fuel ρR. These burn-averaged observables are unique because they are essentially averaged over 4π, providing a global reference for the line-of-sight-specific measurements typical of x-ray and neutron diagnostics. The GEMS conceptual design meets the physics-based requirements: ΔE/E = 3%-5% can be achieved in the range of 2-25 MeV γ-ray energy. Minimum DT neutron yields required for 15% measurement uncertainty at low-resolution mode are: 5 × 10(14) DT-n for ablator ρR (at 0.2 g/cm(2)); 2 × 10(15) DT-n for total DT yield (at 4.2 × 10(-5) γ/n); and 1 × 10(16) DT-n for fuel ρR (at 1 g/cm(2)). PMID:25430301

  12. Conceptual design of the gamma-to-electron magnetic spectrometer for the National Ignition Facility

    SciTech Connect

    Kim, Y. Herrmann, H. W.; Jorgenson, H. J.; Barlow, D. B.; Young, C. S.; Lopez, F. E.; Oertel, J. A.; Batha, S. H.; Stoeffl, W.; Casey, D.; Clancy, T.; Hilsabeck, T.; Moy, K.

    2014-11-15

    The Gamma-to-Electron Magnetic Spectrometer (GEMS) diagnostic is designed to measure the prompt γ-ray energy spectrum during high yield deuterium-tritium (DT) implosions at the National Ignition Facility (NIF). The prompt γ-ray spectrum will provide “burn-averaged” observables, including total DT fusion yield, total areal density (ρR), ablator ρR, and fuel ρR. These burn-averaged observables are unique because they are essentially averaged over 4π, providing a global reference for the line-of-sight-specific measurements typical of x-ray and neutron diagnostics. The GEMS conceptual design meets the physics-based requirements: ΔE/E = 3%–5% can be achieved in the range of 2–25 MeV γ-ray energy. Minimum DT neutron yields required for 15% measurement uncertainty at low-resolution mode are: 5 × 10{sup 14} DT-n for ablator ρR (at 0.2 g/cm{sup 2}); 2 × 10{sup 15} DT-n for total DT yield (at 4.2 × 10{sup −5} γ/n); and 1 × 10{sup 16} DT-n for fuel ρR (at 1 g/cm{sup 2})

  13. The 50 MeV Beam Test Facility at LBL

    SciTech Connect

    Leemans, W.; Behrsing, G.; Kim, K.J.; Krupnick, J.; Matuk, C.; Selph, F.; Chattopadhyay, S.

    1993-05-01

    A new beam line, expected to be built by September 1993, will transport the 50 MeV electron beam from the ALS LINAC into an experimental area to support various R&D activities in the Center for Beam Physics at LBL. A variety of experiments are planned involving the interaction of such a relativistic electron beam with plasmas (plasma focusing), laser beams (generation of femtosecond X-ray pulses) and electromagnetic cavities (Crab cavities etc....). The beam line is designed using the measured emittance and Twiss parameters of the ALS linac. It accommodates the different requirements of the various experiments on the electron beam properties (charge, energy, pulse length) and on the handling of the beam before and after the interaction point. Special attention has also been given to incorporate diagnostics for measuring the beam properties (such as the electron energy, bunch length and charge) needed in the interpretation of the experiments.

  14. Secondary beam monitors for the NuMI facility at FNAL

    SciTech Connect

    Kopp, S.; Bishai, M.; Dierckxsens, M.; Diwan, M.; Erwin, A.R.; Harris, D.A.; Indurthy, D.; Keisler, R.; Kostin, M.; Lang, M.; MacDonald, J.; /Brookhaven /Fermilab /Pittsburgh U. /Texas U. /Wisconsin U., Madison

    2006-07-01

    The Neutrinos at the Main Injector (NuMI) facility is a conventional neutrino beam which produces muon neutrinos by focusing a beam of mesons into a long evacuated decay volume. We have built four arrays of ionization chambers to monitor the position and intensity of the hadron and muon beams associated with neutrino production at locations downstream of the decay volume. This article describes the chambers construction, calibration, and commissioning in the beam.

  15. Characterization of a 5-eV neutral atomic oxygen beam facility

    NASA Technical Reports Server (NTRS)

    Vaughn, J. A.; Linton, R. C.; Carruth, M. R., Jr.; Whitaker, A. F.; Cuthbertson, J. W.; Langer, W. D.; Motley, R. W.

    1991-01-01

    An experimental effort to characterize an existing 5-eV neutral atomic oxygen beam facility being developed at Princeton Plasma Physics Laboratory is described. This characterization effort includes atomic oxygen flux and flux distribution measurements using a catalytic probe, energy determination using a commercially designed quadrupole mass spectrometer (QMS), and the exposure of oxygen-sensitive materials in this beam facility. Also, comparisons were drawn between the reaction efficiencies of materials exposed in plasma ashers, and the reaction efficiencies previously estimated from space flight experiments. The results of this study show that the beam facility is capable of producing a directional beam of neutral atomic oxygen atoms with the needed flux and energy to simulate low Earth orbit (LEO) conditions for real time accelerated testing. The flux distribution in this facility is uniform to +/- 6 percent of the peak flux over a beam diameter of 6 cm.

  16. Progress on the XG-III high-intensity laser facility with three synchronized beams

    NASA Astrophysics Data System (ADS)

    Su, Jingqin; Zhu, Qihua; Xie, Na; Zhou, Kainan; Huang, Xiaojun; Zeng, Xiaoming; Wang, Xiao; Wang, Xiaodong; Xie, Xudong; Zhao, Lei; Zuo, Yanlei; Jiang, Dongbin; Sun, Li; Guo, Yi; Zhou, Song; Wen, Jing; Li, Qing; Huang, Zheng; Jiang, Xuejun; Jing, Feng

    2015-02-01

    The paper presents the technical design and progress on a special high-power laser facility, i.e. XG-III, which is being used for high-field physics research and fast ignition research. The laser facility outputs synchronized nanosecond, picosecond and femtosecond beams with three wavelengths, i.e. 527 nm, 1053 nm and 800 nm respectively, and multiple combinations of the beams can be used for physics experiments. The commissioning of the laser facility was completed by the end of 2013. The measurement results show that the main parameters of the three beams are equal to or greater than the designed ones.

  17. Gas-grain simulation experiment module conceptual design and gas-grain simulation facility breadboard development

    NASA Technical Reports Server (NTRS)

    Zamel, James M.; Petach, Michael; Gat, Nahum; Kropp, Jack; Luong, Christina; Wolff, Michael

    1993-01-01

    This report delineates the Option portion of the Phase A Gas-Grain Simulation Facility study. The conceptual design of a Gas-Grain Simulation Experiment Module (GGSEM) for Space Shuttle Middeck is discussed. In addition, a laboratory breadboard was developed during this study to develop a key function for the GGSEM and the GGSF, specifically, a solid particle cloud generating device. The breadboard design and test results are discussed and recommendations for further studies are included. The GGSEM is intended to fly on board a low earth orbit (LEO), manned platform. It will be used to perform a subset of the experiments planned for the GGSF for Space Station Freedom, as it can partially accommodate a number of the science experiments. The outcome of the experiments performed will provide an increased understanding of the operational requirements for the GGSF. The GGSEM will also act as a platform to accomplish technology development and proof-of-principle experiments for GGSF hardware, and to verify concepts and designs of hardware for GGSF. The GGSEM will allow assembled subsystems to be tested to verify facility level operation. The technology development that can be accommodated by the GGSEM includes: GGSF sample generation techniques, GGSF on-line diagnostics techniques, sample collection techniques, performance of various types of sensors for environmental monitoring, and some off-line diagnostics. Advantages and disadvantages of several LEO platforms available for GGSEM applications are identified and discussed. Several of the anticipated GGSF experiments require the deagglomeration and dispensing of dry solid particles into an experiment chamber. During the GGSF Phase A study, various techniques and devices available for the solid particle aerosol generator were reviewed. As a result of this review, solid particle deagglomeration and dispensing were identified as key undeveloped technologies in the GGSF design. A laboratory breadboard version of a solid

  18. Demonstration of two-beam acceleration and 30 GHz power production in the CLIC Test Facility

    SciTech Connect

    Bossart, R.; Braun, H. H.; Carron, G.; Chanudet, M.; Chautard, F.; Delahaye, J. P.; Godot, J. C.; Hutchins, S.; Martinez, C.; Suberlucq, G.; Tenenbaum, P.; Thorndahl, L.; Trautner, H.; Valentini, M.; Wilson, I.; Wuensch, W.

    1999-05-07

    The Compact Linear Collider (CLIC) Test Facility (CTF II) at CERN has recently demonstrated Two-Beam power production and acceleration at 30 GHz. With 41 MW of 30 GHz power produced in 14 ns pulses at a repetition rate of 5 Hz, the main beam has been accelerated by 28 MeV. The 30 GHz RF power is extracted in low impedance decelerating structures from a low-energy, high-current 'drive beam' which runs parallel to the main beam. The average current in the drive-beam train is 25 A, while the peak current exceeds 2 kA. Crosschecks between measured drive-beam charge, 30 GHz power and main-beam energy gain are in good agreement. In this paper, some relevant experimental and technical issues on drive-beam generation, two-beam power production and acceleration are presented.

  19. Novel Muon Beam Facilities for Project X at Fermilab

    SciTech Connect

    Neuffer, D.V.; Ankenbrandt, C.M.; Abrams, R.; Roberts, T.J.; Yoshikawa, C.Y.; /MUONS Inc., Batavia

    2012-05-01

    Innovative muon beam concepts for intensity-frontier experiments such as muon-to-electron conversion are described. Elaborating upon a previous single-beam idea, we have developed a design concept for a system to generate four high quality, low-energy muon beams (two of each sign) from a single beam of protons. As a first step, the production of pions by 1 and 3 GeV protons from the proposed Project X linac at Fermilab is being simulated and compared with the 8-GeV results from the previous study.

  20. Target design optimization for an electron accelerator driven subcritical facility with circular and square beam profiles.

    SciTech Connect

    Gohar, M. Y. A; Sofu, T.; Zhong, Z.; Belch, H.; Naberezhnev, D.; Nuclear Engineering Division

    2008-10-30

    A subcritical facility driven by an electron accelerator is planned at the Kharkov Institute of Physics and Technology (KIPT) in Ukraine for medical isotope production, materials research, training, and education. The conceptual design of the facility is being pursued through collaborations between ANL and KIPT. As part of the design effort, the high-fidelity analyses of various target options are performed with formulations to reflect the realistic configuration and the three dimensional geometry of each design. This report summarizes the results of target design optimization studies for electron beams with two different beam profiles. The target design optimization is performed via the sequential neutronic, thermal-hydraulic, and structural analyses for a comprehensive assessment of each configuration. First, a target CAD model is developed with proper emphasis on manufacturability to provide a basis for separate but consistent models for subsequent neutronic, thermal-hydraulic, and structural analyses. The optimizations are pursued for maximizing the neutron yield, streamlining the flow field to avoid hotspots, and minimizing the thermal stresses to increase the durability. In addition to general geometric modifications, the inlet/outlet channel configurations, target plate partitioning schemes, flow manipulations and rates, electron beam diameter/width options, and cladding material choices are included in the design optimizations. The electron beam interactions with the target assembly and the neutronic response of the subcritical facility are evaluated using the MCNPX code. the results for the electron beam energy deposition, neutron generation, and utilization in the subcritical pile are then used to characterize the axisymmetric heat generation profiles in the target assembly with explicit simulations of the beam tube, the coolant, the clad, and the target materials. Both tungsten and uranium are considered as target materials. Neutron spectra from tungsten

  1. Demonstration of the importance of a dedicated neutron beam monitoring system for BNCT facility.

    PubMed

    Chao, Der-Sheng; Liu, Yuan-Hao; Jiang, Shiang-Huei

    2016-01-01

    The neutron beam monitoring system is indispensable to BNCT facility in order to achieve an accurate patient dose delivery. The neutron beam monitoring of a reactor-based BNCT (RB-BNCT) facility can be implemented through the instrumentation and control system of a reactor provided that the reactor power level remains constant during reactor operation. However, since the neutron flux in reactor core is highly correlative to complicated reactor kinetics resulting from such as fuel depletion, poison production, and control blade movement, some extent of variation may occur in the spatial distribution of neutron flux in reactor core. Therefore, a dedicated neutron beam monitoring system is needed to be installed in the vicinity of the beam path close to the beam exit of the RB-BNCT facility, where it can measure the BNCT beam intensity as closely as possible and be free from the influence of the objects present around the beam exit. In this study, in order to demonstrate the importance of a dedicated BNCT neutron beam monitoring system, the signals originating from the two in-core neutron detectors installed at THOR were extracted and compared with the three dedicated neutron beam monitors of the THOR BNCT facility. The correlation of the readings between the in-core neutron detectors and the BNCT neutron beam monitors was established to evaluate the improvable quality of the beam intensity measurement inferred by the in-core neutron detectors. In 29 sampled intervals within 16 days of measurement, the fluctuations in the mean value of the normalized ratios between readings of the three BNCT neutron beam monitors lay within 0.2%. However, the normalized ratios of readings of the two in-core neutron detectors to one of the BNCT neutron beam monitors show great fluctuations of 5.9% and 17.5%, respectively. PMID:26595774

  2. Unbunched beam electron-proton instability in the PSR and advanced hadron facilities

    SciTech Connect

    Wang, Tai-Sen; Pisent, A.; Neuffer, D.V.

    1989-01-01

    We studied the possibility of the occurrence of transverse instability induced by trapped electrons in unbunched beams in the Proton Storage Ring and the proposed Advance Hadron Facility (AHF) at Los Alamos, as well as in the proposed Kaon Factory at TRIUMF. We found that the e-p instability may be possible for unbunched beams in the PSR but is unlikely to occur in the advanced hadron facilities. 8 refs., 4 figs.

  3. 3w Transmitted Beam Diagnostic at the Omega Laser Facility

    SciTech Connect

    Froula, D H; Rekow, V; Sorce, C; Piston, K; Knight, R; Alvarez, S; Griffith, R; Hargrove, D; Ross, J S; Dixit, S; Pollock, B; Divol, L; Glenzer, S H; Armstrong, W; Bahr, R; Thorp, K; Pien, G

    2006-04-24

    A 3{omega} transmitted beam diagnostic has been commissioned on the Omega Laser at the Laboratory for Laser Energetics, University of Rochester [Soures et.al., Laser Part. Beams 11 (1993)]. Transmitted light from one beam is collected by a large focusing mirror and directed onto a diagnostic platform. The near field of the transmitted light is imaged; the system collects information from twice the original f-cone of the beam. Two gated optical cameras capture the near field image of the transmitted light. Thirteen spatial positions around the measurement region are temporally resolved using fast photodiodes to allow a measure of the beam spray evolution. The Forward stimulated Raman scattering and forward simulated Brillion scattering are spectrally and temporally resolved at 5 independent locations within twice the original f-cone. The total transmitted energy is measured in two spectral bands ({delta}{lambda} < 400 nm and {delta}{lambda} > 400 nm).

  4. New electron beam facility for irradiated plasma facing materials testing in hot cell

    SciTech Connect

    Sakamoto, N.; Kawamura, H.; Akiba, M.

    1995-09-01

    Since plasma facing components such as the first wall and the divertor for the next step fusion reactors are exposed to high heat loads and high energy neutron flux generated by the plasma, it is urgent to develop of plasma facing components which can resist these. Then, we have established electron beam heat facility ({open_quotes}OHBIS{close_quotes}, Oarai Hot-cell electron Beam Irradiating System) at a hot cell in JMTR (Japan Materials Testing Reactor) hot laboratory in order to estimate thermal shock resistivity of plasma facing materials and heat removal capabilities of divertor elements under steady state heating. In this facility, irradiated plasma facing materials (beryllium, carbon based materials and so on) and divertor elements can be treated. This facility consists of an electron beam unit with the maximum beam power of 50kW and the vacuum vessel. The acceleration voltage and the maximum beam current are 30kV (constant) and 1.7A, respectively. The loading time of electron beam is more than 0.1ms. The shape of vacuum vessel is cylindrical, and the mainly dimensions are 500mm in inner diameter, 1000mm in height. The ultimate vacuum of this vessel is 1 x 10{sup -4}Pa. At present, the facility for thermal shock test has been established in a hot cell. And performance estimation on the electron beam is being conducted. Presently, the devices for heat loading tests under steady state will be added to this facility.

  5. Space Station Furnace Facility Core. Requirements definition and conceptual design study. Volume 2: Technical report. Appendix 6: Technical summary reports

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The Space Station Furnace Facility (SSFF) is a modular facility for materials research in the microgravity environment of the Space Station Freedom (SSF). The SSFF is designed for crystal growth and solidification research in the fields of electronic and photonic materials, metals and alloys, and glasses and ceramics and will allow for experimental determination of the role of gravitational forces in the solidification process. The facility will provide a capability for basic scientific research and will evaluate the commercial viability of low-gravity processing of selected technologically important materials. The facility is designed to support a complement of furnace modules as outlined in the Science Capabilities Requirements Document (SCRD). The SSFF is a three rack facility that provides the functions, interfaces, and equipment necessary for the processing of the furnaces and consists of two main parts: the SSFF Core Rack and the two Experiment Racks. The facility is designed to accommodate two experimenter-provided furnace modules housed within the two experiment racks, and is designed to operate these two furnace modules simultaneously. The SCRD specifies a wide range of furnace requirements and serves as the basis for the SSFF conceptual design. SSFF will support automated processing during the man-tended operations and is also designed for crew interface during the permanently manned configuration. The facility is modular in design and facilitates changes as required, so the SSFF is adept to modifications, maintenance, reconfiguration, and technology evolution.

  6. Laser Ion Source Operation at the TRIUMF Radioactive Ion Beam Facility

    NASA Astrophysics Data System (ADS)

    Lassen, J.; Bricault, P.; Dombsky, M.; Lavoie, J. P.; Gillner, M.; Gottwald, T.; Hellbusch, F.; Teigelhöfer, A.; Voss, A.; Wendt, K. D. A.

    2009-03-01

    The TRIUMF Resonant Ionization Laser Ion Source (RILIS) for radioactive ion beam production is presented, with target ion source, laser beam transport, laser system and operation. In this context aspects of titanium sapphire (TiSa) laser based RILIS and facility requirements are discussed and results from the first years of TRILIS RIB delivery are given.

  7. ESTB: A New Beam Test Facility at SLAC

    SciTech Connect

    Pivi, M.; Fieguth, T.; Hast, C.; Iverson, R.; Jaros, J.; Jobe, K.; Keller, L.; Walz, D.; Weathersby, S.; Woods, M.; /SLAC

    2011-04-05

    End Station A Test Beam (ESTB) is a beam line at SLAC using a small fraction of the bunches of the 13.6 GeV electron beam from the Linac Coherent Light Source (LCLS), restoring test beam capabilities in the large End Station A (ESA) experimental hall. ESTB will provide one of a kind test beam essential for developing accelerator instrumentation and accelerator R&D, performing particle and particle astrophysics detector research, linear collider machine and detector interface (MDI) R&D studies, development of radiation-hard detectors, and material damage studies with several distinctive features. In the past, 18 institutions participated in the ESA program at SLAC. In stage I, 4 new kicker magnets will be added to divert 5 Hz of the LCLS beam to the A-line. A new beam dump will be installed and a new Personnel Protection System (PPS) is being built in ESA. In stage II, a secondary hadron target will be installed, able to produce pions up to about 12 GeV/c at 1 particle/pulse.

  8. Diagnostics of the ITER neutral beam test facility

    SciTech Connect

    Pasqualotto, R.; Serianni, G.; Agostini, M.; Brombin, M.; Dalla Palma, M.; Gazza, E.; Pomaro, N.; Rizzolo, A.; Spolaore, M.; Zaniol, B.; Sonato, P.; De Muri, M.; Croci, G.; Gorini, G.

    2012-02-15

    The ITER heating neutral beam (HNB) injector, based on negative ions accelerated at 1 MV, will be tested and optimized in the SPIDER source and MITICA full injector prototypes, using a set of diagnostics not available on the ITER HNB. The RF source, where the H{sup -}/D{sup -} production is enhanced by cesium evaporation, will be monitored with thermocouples, electrostatic probes, optical emission spectroscopy, cavity ring down, and laser absorption spectroscopy. The beam is analyzed by cooling water calorimetry, a short pulse instrumented calorimeter, beam emission spectroscopy, visible tomography, and neutron imaging. Design of the diagnostic systems is presented.

  9. BEAM LOSS ESTIMATES AND CONTROL FOR THE BNL NEUTRINO FACILITY.

    SciTech Connect

    WENG, W.-T.; LEE, Y.Y.; RAPARIA, D.; TSOUPAS, N.; BEEBE-WANG, J.; WEI, J.; ZHANG, S.Y.

    2005-05-16

    The requirement for low beam loss is very important both to protect the beam component, and to make the hands-on maintenance possible. In this report, the design considerations to achieving high intensity and low loss will be presented. We start by specifying the beam loss limit at every physical process followed by the proper design and parameters for realizing the required goals. The process considered in this paper include the emittance growth in the linac, the H{sup -} injection, the transition crossing, the coherent instabilities and the extraction losses.

  10. The Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory

    SciTech Connect

    Garrett, J.D.

    1996-12-31

    The status of the new Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory (ORNL), which is slated to start its scientific program late this year is discussed, as is the new experimental equipment which is being constructed at this facility. Information on the early scientific program also is given.

  11. The CEBAF (Continuous Electron Beam Accelerator Facility) fast shutdown system

    SciTech Connect

    Perry, J.; Woodworth, E.

    1990-09-01

    Because of the high power in the CEBAF beam, equipment must be protected in the event of beam loss. The policy that has been adopted is to require a positive permissive signal from each of several inputs in order to operate the gun that starts the beam. If the permissive is removed, the gun shuts off within 20 {mu}s. The inputs that are now monitored include radiation monitors that detect beam loss directly, vacuum monitors (which also observe the status of various in-line valves), and general input from the rf system, which combines detection of klystron failure, arcs, and rf window high temperature. The system is expandable, so other fault detectors can be added if experience shows their necessity.

  12. Conceptual Design of Vacuum Chamber for testing of high heat flux components using electron beam as a source

    NASA Astrophysics Data System (ADS)

    Khan, M. S.; Swamy, Rajamannar; Khirwadkar, S. S.; Divertors Division, Prototype

    2012-11-01

    A conceptual design of vacuum chamber is proposed to study the thermal response of high heat flux components under energy depositions of the magnitude and durations expected in plasma fusion devices. It is equipped with high power electron beam with maximum beam power of 200 KW mounted in a stationary horizontal position from back side of the chamber. The electron beam is used as a heat source to evaluate the heat removal capacity, material performance under thermal loads & stresses, thermal fatigue etc on actively cooled mock - ups which are mounted on a flange system which is the front side door of the chamber. The tests mock - ups are connected to a high pressure high temperature water circulation system (HPHT-WCS) operated over a wide range of conditions. The vacuum chamber consists of different ports at different angles to view the mock -up surface available for mock -up diagnostics. The vacuum chamber is pumped with different pumps mounted on side ports of the chamber. The chamber is shielded from X - rays which are generated inside the chamber when high-energy electrons are incident on the mock-up. The design includes development of a conceptual design with theoretical calculations and CAD modelling of the system using CATIA V5. These CAD models give an outline on the complete geometry of HHF test chamber, fabrication challenges and safety issues. FEA analysis of the system has been performed to check the structural integrity when the system is subjected to structural & thermal loads.

  13. Experimental demonstration of static shape control. [using flexible beam facility for large space structure development

    NASA Technical Reports Server (NTRS)

    Eldred, D.; Schaechter, D.

    1981-01-01

    Results of a microprocessor-controlled implementation of static shape control using a specially constructed flexible beam facility are presented. The discussion covers the development of shape control algorithms, adaptation of the algorithms for use with finite element models, construction of a flexible beam, characterization and calibration of the facility, development of a finite element model for the beam, and the development of computer hardware and software. It is shown that feedback control yields better results than open-loop control, and that the use of more than two sensors in the control loop has little effect on the system performance.

  14. Advanced Electron Beam Ion Sources (EBIS) for 2-nd generation carbon radiotherapy facilities

    NASA Astrophysics Data System (ADS)

    Shornikov, A.; Wenander, F.

    2016-04-01

    In this work we analyze how advanced Electron Beam Ion Sources (EBIS) can facilitate the progress of carbon therapy facilities. We will demonstrate that advanced ion sources enable operation of 2-nd generation ion beam therapy (IBT) accelerators. These new accelerator concepts with designs dedicated to IBT provide beams better suited for therapy and, are more cost efficient than contemporary IBT facilities. We will give a sort overview of the existing new IBT concepts and focus on those where ion source technology is the limiting factor. We will analyse whether this limitation can be overcome in the near future thanks to ongoing EBIS development.

  15. Beam dynamics of a new low emittance third generation synchrotron light source facility

    NASA Astrophysics Data System (ADS)

    Ghasem, H.; Ahmadi, E.; Saeidi, F.; Sarhadi, K.

    2015-03-01

    The Iranian Light Source Facility (ILSF) is a new 3 GeV third generation synchrotron light source facility which is in the design stage. As the main radiation source, design of the ILSF storage ring emphasizes an ultralow electron beam emittance, great brightness, stability and reliability. The storage ring is based on a five-bend achromat lattice providing an ultralow horizontal beam emittance of 0.48 nm rad. In this paper, we present the design feature of the ILSF storage ring, give the linear and nonlinear dynamic properties of the lattice and discuss the related beam dynamic specifications.

  16. An experimental 20/30 GHz communications satellite conceptual design employing multiple-beam paraboloid reflector antennas

    NASA Technical Reports Server (NTRS)

    Goldman, A. M., Jr.

    1980-01-01

    An experimental 20/30 GHz communications satellite conceptual design is described which employs multiple-beam paraboloid reflector antennas coupled to a TDMA transponder. It is shown that the satellite employs solid state GaAs FET power amplifiers and low noise amplifiers while signal processing and switching takes place on-board the spacecraft. The proposed areas to be served by this satellite would be the continental U.S. plus Alaska, Hawaii, Puerto Rico, and the Virgin Islands, as well as southern Canada and Mexico City. Finally, attention is given to the earth stations which are designed to be low cost.

  17. Conceptual Design for a High-Temperature Gas Loop Test Facility

    SciTech Connect

    James B. Kesseli

    2006-08-01

    This report documents an early-stage conceptual design for a high-temperature gas test loop. The objectives accomplished by the study include, (1) investigation of existing gas test loops to determine ther capabilities and how the proposed system might best complement them, (2) development of a preliminary test plan to help identify the performance characteristics required of the test unit, (3) development of test loop requirements, (4) development of a conceptual design including process flow sheet, mechanical layout, and equipment specifications and costs, and (5) development of a preliminary test loop safety plan.

  18. A low Earth orbit molecular beam space simulation facility

    NASA Technical Reports Server (NTRS)

    Cross, J. B.

    1984-01-01

    A brief synopsis of the low Earth orbit (LEO) satellite environment is presented including neutral and ionic species. Two ground based atomic and molecular beam instruments are described which are capable of simulating the interaction of spacecraft surfaces with the LEO environment and detecting the results of these interactions. The first detects mass spectrometrically low level fluxes of reactively and nonreactively surface scattered species as a function of scattering angle and velocity while the second ultrahigh velocity (UHV) molecular beam, laser induced fluorescence apparatus is capable of measuring chemiluminescence produced by either gas phase or gas-surface interactions. A number of proposed experiments are described.

  19. Performance of the (n,{gamma})-Based Positron Beam Facility NEPOMUC

    SciTech Connect

    Schreckenbach, K.; Hugenschmidt, C.; Piochacz, C.; Stadlbauer, M.; Loewe, B.; Maier, J.; Pikart, P.

    2009-01-28

    The in-pile positron source of NEPOMUC at the neutron source Heinz Maier-Leibnitz (FRM II) provides at the experimental site an intense beam of monoenergetic positrons with selectable energy between 15 eV and 3 keV. The principle of the source is based on neutron capture gamma rays produced by cadmium in a beam tube tip close to the reactor core. The gamma ray absorption in platinum produces positrons which are moderated and formed to the beam. An unprecedented beam intensity of 9.10{sup 8} e{sup +}/s is achieved (1 keV). The performance and applications of the facility are presented.

  20. Performance of the (n,γ)-Based Positron Beam Facility NEPOMUC

    NASA Astrophysics Data System (ADS)

    Schreckenbach, K.; Hugenschmidt, C.; Löwe, B.; Maier, J.; Pikart, P.; Piochacz, C.; Stadlbauer, M.

    2009-01-01

    The in-pile positron source of NEPOMUC at the neutron source Heinz Maier-Leibnitz (FRM II) provides at the experimental site an intense beam of monoenergetic positrons with selectable energy between 15 eV and 3 keV. The principle of the source is based on neutron capture gamma rays produced by cadmium in a beam tube tip close to the reactor core. The gamma ray absorption in platinum produces positrons which are moderated and formed to the beam. An unprecedented beam intensity of 9.108 e+/s is achieved (1 keV). The performance and applications of the facility are presented.

  1. Facility for intense diagnostic neutral beam (IDNB) development

    SciTech Connect

    Kasik, R.J.; Hinckley, W.B.; Bartsch, R.R.; Rej, D.J.; Henins, I.; Greenly, J.B.

    1993-08-01

    An intense, pulsed neutral beam source is under development for use as a probe beam on hot, burning plasmas such as in the international thermonuclear experimental reactor (ITER) which is presently in the planning stage. A pulsed, neutral hydrogen beam of 10s of kilo amperes of current can have an alpha particle, charge-exchange-recombination-spectroscopy (alpha-CHERS) signal-to-noise ratio of {approximately} 10. This beam would allow the measurement, on a single pulse of a few hundred nanoseconds duration, of the local alpha particle distribution function as well as other features of the tokamak plasma such as current density profile, impurity density, and microturbulence spectrum. The cross-sections for the CHERS diagnostic dictate operation with proton energies greater than {approximately}50keV. A pulsed neutral hydrogen source of this voltage and intensity can be achieved by neutralizing the ion flux from a magnetized ion-diode. The cross-sections for attachment and stripping, when coupled with scaling from Child-Langmiur, space-charge-limited, ion-current flow imply operation below - 100keV for maximum neutral fluence. The development of a flashover-anode, ion source for forthcoming evaluation of a neutralizing section is described below. This source operates in the accelerator voltage range 70 to 100keV. Eventually, the flashover-anode, magnetized ion-diode will be replaced with a plasma-anode, magnetized ion-diode.

  2. Conceptual design report for immobilized high-level waste interim storage facility (Phase 1)

    SciTech Connect

    Burgard, K.C.

    1998-06-02

    The Hanford Site Canister Storage Building (CSB Bldg. 212H) will be utilized to interim store Phase 1 HLW products. Project W-464, Immobilized High-Level Waste Interim Storage, will procure an onsite transportation system and retrofit the CSB to accommodate the Phase 1 HLW products. The Conceptual Design Report establishes the Project W-464 technical and cost basis.

  3. Conceptual design report for immobilized high-level waste interim storage facility (Phase 1)

    SciTech Connect

    Burgard, K.C.

    1998-04-09

    The Hanford Site Canister Storage Building (CSB Bldg. 212H) will be utilized to interim store Phase 1 HLW products. Project W-464, Immobilized High-Level Waste Interim Storage, will procure an onsite transportation system and retrofit the CSB to accommodate the Phase 1 HLW products. The Conceptual Design Report establishes the Project W-464 technical and cost basis.

  4. Remote Handling and Maintenance in the Facility for Rare Isotope Beams

    SciTech Connect

    Burgess, Thomas W; Aaron, Adam M; Carroll, Adam J; DeVore, Joe R; Giuliano, Dominic R; Graves, Van B; Bennett, Richard P; Bollen, Georg; Cole, Daniel F.; Ronningen, Reginald M.; Schein, Mike E; Zeller, Albert F

    2011-01-01

    Michigan State University (MSU) in East Lansing, MI was selected by the U.S. Department of Energy (DOE) to design and establish a Facility for Rare Isotope Beams (FRIB), a cutting-edge research facility to advance the understanding of rare nuclear isotopes and the evolution of the cosmos. The research conducted at the FRIB will involve experimentation with intense beams of rare isotopes within a well-shielded target cell that will result in activation and contamination of components. The target cell is initially hands-on accessible after shutdown and a brief cool-down period. Personnel are expected to have hands-on access to the tops of shielded component modules with the activated in-beam sections suspended underneath. The modules are carefully designed to include steel shielding for protecting personnel during these hand-on operations. However, as the facility has greater levels of activation and contamination, a bridge mounted servomaniputor may be added to the cell, to perform the disconnecting of services to the component assemblies. Dexterous remote handling and exchange of the modularized activated components is completed at a shielded window workstation with a pair of master-slave manipulators. The primary components requiring exchange or maintenance are the production target, the beam wedge filter, the beam dump, and the beam focusing and bending magnets. This paper provides an overview of the FRIB Target Facility remote handling and maintenance design requirements, concepts, and techniques.

  5. Accelerators for the advanced exotic beam facility in the U.S.

    SciTech Connect

    Ostroumov, P. N.; Fuerst, J. D.; Kelly, M. P.; Mustapha, B.; Nolen, J. A.; Shepard, K. W.; Physics

    2007-01-01

    The Office of Science of the Department of Energy is currently considering options for an advanced radioactive beam facility in the U.S which is a reduced scale version of the Rare Isotope Accelerator (RIA) project [1,2]. This facility will have unique capabilities compared with others both existing and planned elsewhere. As envisioned at ANL, the facility, called the Advanced Exotic Beam Laboratory (AEBL), would consist of a heavy-ion driver linac, a post-accelerator and experimental areas. Secondary beams of rare isotopes will be available as high quality reaccelerated or stopped beams from a gas catcher and high power ISOL targets, as well as, high energy beams following in-flight fragmentation or fission of heavy ions. The proposed design of the AEBL driver linac is a cw, fully superconducting, 833 MV linac capable of accelerating uranium ions up to 200 MeV/u and protons to 580 MeV with 400 kW beam power. An extensive research and development effort has resolved many technical issues related to the construction of the driver linac and other systems required for AEBL. This paper presents the status of planning, some options for such a facility, as well as, progress in related R&D.

  6. Project Title: Nuclear Astrophysics Data from Radioactive Beam Facilities

    SciTech Connect

    Alan A. Chen

    2008-03-27

    The scientific aims of this project have been the evaluation and dissemination of key nuclear reactions in nuclear astrophysics, with a focus on ones to be studied at new radioactive beam facilities worldwide. These aims were maintained during the entire funding period from 2003 - 2006. In the following, a summary of the reactions evaluated during this period is provided. Year 1 (2003-04): {sup 21}Na(p,{gamma}){sup 22}Mg and {sup 18}Ne({alpha},p){sup 21}Na - The importance of the {sup 21}Na(p,{gamma}){sup 22}Mg and the {sup 18}Ne({alpha},p){sup 21}Na reactions in models of exploding stars has been well documented: the first is connected to the production of the radioisotope {sup 22}Na in nova nucleosynthesis, while the second is a key bridge between the Hot-CNO cycles and the rp-process in X-ray bursts. By the end of Summer 2004, our group had updated these reaction rates to include all published data up to September 2004, and cast the reaction rates into standard analytical and tabular formats with the assistance of Oak Ridge National Laboratory's computational infrastructure for reaction rates. Since September 2004, ongoing experiments on these two reactions have been completed, with our group's participation in both: {sup 21}Na(p,{gamma}){sup 22}Mg at the TRIUMF-ISAC laboratory (DRAGON collaboration), and 18Ne({alpha},p){sup 21}Na at Argonne National Laboratory (collaboration with Ernst Rehm, Argonne). The data from the former was subsequently published and included in our evaluation. Publication from the latter still awaits independent confirmation of the experimental results. Year 2 (2004-05): The 25Al(p,{gamma}){sup 26}Si and {sup 13}N(p,{gamma})14O reactions - For Year 2, we worked on evaluations of the {sup 25}Al(p,{gamma}){sup 26}Si and {sup 13}N(p,{gamma}){sup 14}O reactions, in accordance with our proposed deliverables and following similar standard procedures to those used in Year 1. The {sup 25}Al(p,{gamma}){sup 26}Si reaction is a key uncertainty in

  7. Preliminary results of proton beam characterization for a facility of broad beam in vitro cell irradiation

    NASA Astrophysics Data System (ADS)

    Wéra, A.-C.; Donato, K.; Michiels, C.; Jongen, Y.; Lucas, S.

    2008-05-01

    The interaction of charged particles with living matter needs to be well understood for medical applications. Particularly, it is useful to study how ion beams interact with tissues in terms of damage, dose released and dose rate. One way to evaluate the biological effects induced by an ion beam is by the irradiation of cultured cells at a particle accelerator, where cells can be exposed to different ions at different energies and flux. In this paper, we report the first results concerning the characterization of a broad proton beam obtained with our 2 MV tandem accelerator. For broad beam in vitro cell irradiation, the beam has to be stable over time, uniform over a ∼0.5 cm2 surface, and a dose rate ranging from 0.1 to 10 Gy/min must be achievable. Results concerning the level of achievement of these requirements are presented in this paper for a 1 MeV proton beam.

  8. Magnetohydrodynamics (MHD) Engineering Test Facility (ETF) 200 MWe power plant. Conceptual Design Engineering Report (CDER). Volume 4: Supplementary engineering data

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The reference conceptual design of the Magnetohydrodynamic Engineering Test Facility (ETF), a prototype 200 MWe coal-fired electric generating plant designed to demonstrate the commercial feasibility of open cycle MHD is summarized. Main elements of the design are identified and explained, and the rationale behind them is reviewed. Major systems and plant facilities are listed and discussed. Construction cost and schedule estimates, and identification of engineering issues that should be reexamined are also given. The latest (1980-1981) information from the MHD technology program are integrated with the elements of a conventional steam power electric generating plant. Supplementary Engineering Data (Issues, Background, Performance Assurance Plan, Design Details, System Design Descriptions and Related Drawings) is presented.

  9. Beam Based HOM Analysis of Accelerating Structures at the TESLA Test Facility Linac

    SciTech Connect

    Wendt, M.; Schreiber, S.; Castro, P.; Gossel, A.; Huning, M.; Devanz, G.; Jablonka, M.; Magne, C.; Napoly, O.; Baboi, N.; /SLAC

    2005-08-09

    The beam emittance in future linear accelerators for high energy physics and SASE-FEL applications depends highly on the field performance in the accelerating structures, i.e. the damping of higher order modes (HOM). Besides theoretical and laboratory analysis, a beam based analysis technique was established [1] at the TESLA Test Facility (TTF) linac. It uses a charge modulated beam of variable modulation frequency to excite dipole modes. This causes a modulation of the transverse beam displacement, which is observed at a downstream BPM and associated with a direct analysis of the modes at the HOM-couplers. A brief introduction of eigenmodes of a resonator and the concept of the wake potential is given. Emphasis is put on beam instrumentation and signal analysis aspects, required for this beam based HOM measurement technique.

  10. The E-beam resist test facility: performance testing and benchmarking of E-beam resists for advanced mask writers

    NASA Astrophysics Data System (ADS)

    Malloy, Matt; Jang, Il Yong; Mellish, Mac; Litt, Lloyd C.; Raghunathan, Ananthan; Hartley, John

    2012-11-01

    With each new generation of e-beam mask writers comes the ability to write leading edge photomasks with improved patterning performance and increased throughput. However, these cutting-edge e-beam tools are often used with older generation resists, preventing the end-user from taking full advantage of the tool's potential. The generation gap between tool and resist will become even more apparent with the commercialization of multi-beam mask writers, which are expected to be available for pilot line use around 2015. The mask industry needs resists capable of meeting the resolution, roughness, and sensitivity requirements of these advanced tools and applications. The E-beam Resist Test Facility (ERTF) has been established to fill the need for consortium-based testing of e-beam resists for mask writing applications on advanced mask writers out to the 11nm half-pitch node and beyond. SEMATECH and the College of Nanoscale Science and Engineering (CNSE) began establishing the ERTF in early 2012 to test e-beam resist samples from commercial suppliers and university labs against the required performance metrics for each application at the target node. Operations officially began on June 12, 2012, at which time the first e-beam resist samples were tested. The ERTF uses the process and metrology infrastructure available at CNSE, including a Vistec VB300 Vectorscan e-beam tool adjusted to operate at 50kv. Initial testing results show that multiple resists already meet, or are close to meeting, the resolution requirements for mask writing at the 11nm node, but other metrics such as line width roughness still need improvement. An overview of the ERTF and its capabilities is provided here. Tools, baseline processes, and operation strategy details are discussed, and resist testing and benchmarking results are shown. The long-term outlook for the ERTF and plans to expand capability and testing capacity, including resist testing for e-beam direct write lithography, are also

  11. Construction of the SCRIT electron scattering facility at the RIKEN RI Beam Factory

    NASA Astrophysics Data System (ADS)

    Wakasugi, M.; Ohnishi, T.; Wang, S.; Miyashita, Y.; Adachi, T.; Amagai, T.; Enokizono, A.; Enomoto, A.; Haraguchi, Y.; Hara, M.; Hori, T.; Ichikawa, S.; Kikuchi, T.; Kitazawa, R.; Koizumi, K.; Kurita, K.; Miyamoto, T.; Ogawara, R.; Shimakura, Y.; Takehara, H.; Tamae, T.; Tamaki, S.; Togasaki, M.; Yamaguchi, T.; Yanagi, K.; Suda, T.

    2013-12-01

    The SCRIT electron scattering facility, aiming at electron scattering off short-lived unstable nuclei, has been constructed at the RIKEN RI Beam Factory. This facility consists of a racetrack microtron (RTM), an electron storage ring (SR2) equipped with the SCRIT system, and a low-energy RI separator (ERIS). SCRIT (self-confining radioactive isotope ion targeting) is a novel technique to form internal targets in an electron storage ring. Experiments for evaluating performance of the SCRIT system have been carried out using the stable 133Cs1+ beam and the 132Xe1+ beam supplied from ERIS. Target ions were successfully trapped in the SCRIT system with 90% efficiency at a 250 mA electron beam current, and luminosity exceeding 1026/(cm2 s) was maintained for more than 1 s. Electrons elastically scattered from the target ions were successfully measured. Applicability of the SCRIT system to electron scattering for unstable nuclei has been established in experiments.

  12. A state of the art electron beam sterilization facility. An integrated system

    NASA Astrophysics Data System (ADS)

    Hackett, James L.

    1998-06-01

    The design of an electron beam sterilization facility requires the integration of the accelerator, product handling system and shielding. The size and power of the accelerator as well as the characteristics of the product handling system are determined by the type and volume of products to be sterilized. The system controls must track the product as it moves from the non sterile area through the electron beam to the sterile area. The system must not only monitor identification, position, orientation etc., but also isolate those products which for any reason may not have been properly sterilized. The shielding design is a function of the requirements for the accelerator and product handling system with an overriding concern for worker safety. This paper discusses a state of the art electron beam sterilization facility designed to follow guidelines for electron beam sterilization published by the Association for the Advancement of Medical Instrumentation (AAMI).

  13. The new external beam facility of the Oxford scanning proton microprobe

    NASA Astrophysics Data System (ADS)

    Grime, G. W.; Abraham, M. H.; Marsh, M. A.

    2001-07-01

    This paper describes the development of a high spatial resolution external beam facility on one of the beamlines of the Oxford scanning proton microprobe tandem accelerator. Using a magnetic quadrupole doublet to focus the beam through the Kapton exit window a beam diameter of <50 μm full width at half maximum (fwhm) can be achieved on a sample located at 4 mm from the exit window. The facility is equipped with two Si-Li X-ray detectors for proton-induced X-ray emission (PIXE) analysis of light and trace elements respectively, a surface barrier detector for Rutherford backscattering spectrometry (RBS) analysis and a HP-Ge detector for γ-ray detection. The mechanical and beam-optical design of the system is described.

  14. Design of multi-megawatt actively cooled beam dumps for the Neutral-Beam Engineering Test Facility

    SciTech Connect

    Paterson, J.A.; Koehler, G.; Wells, R.P.

    1981-10-01

    The Neutral Beam Engineering Test Facility will test Neutral Beam Sources up to 170 keV, 65 Amps, with 30 second beam-on times. For this application actively cooled beam dumps for both the neutral and ionized particles will be required. The dumps will be able to dissipate a wide range of power density profiles by utilizing a standard modular panel design which is incorporated into a moveable support structure. The thermal hydraulic design of the panels permit the dissipation of 2 kW/cm/sup 2/ anywhere on the panel surface. The water requirements of the dumps are optimized by restricting the flow to panel sections where the heat flux falls short of the design value. The mechanical design of the beam-dump structures is described along with tests performed on a prototype panel. The prototype tests were performed on two different panel designs, one manufactured by Mc Donnell Douglas (MDAC) the other by United Technologies (UT). The dissipation capabilities of the panels were tested at the critical regions to verify their use in the beam dump assemblies.

  15. Beam dynamics studies in the driver LINAC pre-Stripper section of the RIA facility.

    SciTech Connect

    Lessner, E. S.; Ostroumov, P. N.

    2003-07-10

    The RIA facility driver linac consists of about 400 superconducting (SC) independently phased rf cavities. The linac is designed to accelerate simultaneously several-charge-state beams to generate as much as 400 kW of uranium beam power. The linac beam dynamics is most sensitive to the focusing and accelerating-structure parameters of the prestripper section, where the uranium beam is accelerated from 0.17 keV/u to 9.4 MeV/u. This section is designed to accept and accelerate 2 charge states (28 and 29) of uranium beam from an ECR ion source. The prestripper section must be designed to minimize the beam emittance distortion of this two-charge-state beam. In particular, the inter-cryostat spaces must be minimized and beam parameters near transitions of the accelerating and focusing lattices must be matched carefully. Several sources of possible effective emittance growth are considered in the design of the prestripper section and a tolerance budget is established. Numerical beam dynamics studies include realistic electric and magnetic 3-dimensional field distributions in the SC rf cavities and SC solenoids. Error effects in the longitudinal beam parameters are studied.

  16. Automatic beam position control at Los Alamos Spallation Radiation Effects Facility (LASREF)

    SciTech Connect

    Oothoudt, M.; Pillai, C.; Zumbro, M.

    1997-08-01

    Historically the Los Alamos Spallation Radiation Effects Facility (LASREF) has used manual methods to control the position of the 800 kW, 800 MeV proton beam on targets. New experiments, however, require more stringent position control more frequently than can be done manually for long periods of time. Data from an existing harp is used to automatically adjust steering magnets to maintain beam position to required tolerances.

  17. The Holifield Radioactive Ion Beams Facility (HRIBF) -- getting ready to do experiments

    SciTech Connect

    Shapira, D.; Lewis, T.A.

    1998-02-26

    The conversion of the HHIRF facility to a Radioactive Ion Beam facility started in 1994. In this ISOL type facility the Cyclotron has been re-fitted as a driver providing high intensity proton beams which react with the target from which the radioactive products are extracted and then accelerated in the Tandem Electrostatic Accelerator to the desired energy for nuclear science studies. Facilities for nuclear physics experiments are at different stages of development: A Recoil Mass Spectrometer (RMS) with a complement of detectors at the focal plane and around the target is used primarily for nuclear structure studies. A large recoil separator combining velocity and momentum selection, with its complement of focal plane detectors, will be dedicated to measurements relevant to nuclear astrophysics. The Enge Split Pole spectrograph is being re-fitted for operation in a gas filled mode, making it a more versatile tool for nuclear reaction studies. With the new experimental equipment being commissioned and the prospects of running experiments with low intensity radioactive beams a significant effort to develop equipment for beam diagnostics is underway. Some of the efforts and results in developing beam diagnostic tools will be described.

  18. Initial electron-beam characterizations for the Los Alamos APEX Facility

    SciTech Connect

    Lumpkin, A.H.; Feldman, R.B.; Apgar, S.A.; Feldman, D.W.; O'Shea, P.G. ); Fiorito, R.B.; Rule, D.W. )

    1991-01-01

    The ongoing upgrade of the Los Alamos Free-Electron Laser (FEL) Facility involves the addition of a photoelectric injector (PEI) and acceleration capability to about 40 MeV. The electron-beam and high-speed diagnostics provide key measurements of charge, beam position and profile, divergence emittance, energy (centroid, spread, slew, and extraction efficiency), micropulse duration, and phase stability. Preliminary results on the facility include optical transition radiation interferometer measurements of divergence (1 to 2 mrad), FEL extraction efficiency (0.6 {plus minus} 0.2%), and drive laser phase stability (< 2 ps (rms)). 10 refs.

  19. Flux and instrumentation upgrade for the epithermal neutron beam facility at Washington State University.

    PubMed

    Nigg, D W; Venhuizen, J R; Wemple, C A; Tripard, G E; Sharp, S; Fox, K

    2004-11-01

    An epithermal neutron beam facility for preclinical neutron capture therapy research has been constructed at the Washington State University TRIGA research reactor installation. Subsequent to a recent upgrade, this new facility offers a high-purity epithermal beam with intensity on the order of 1.2x10(9)n/cm(2)s. Key features include a fluoride-based design for the neutron filtering and moderating components as well as a novel collimator design that allows ease of assembly and disassembly of the beamline components. PMID:15308181

  20. Flux and Instrumentation Upgrade for the Epithermal Neutron Beam Facility at Washington State University

    SciTech Connect

    David W. Nigg; J.R. Venhuizen; C.E. Wemple; G. E. Tripard; S. Sharp; K. Fox

    2004-11-01

    An epithermal neutron beam facility for preclinical neutron capture therapy research has been constructed at the Washington State University TRIGA research reactor installation. Subsequent to a recent upgrade, this new facility offers a high-purity epithermal beam with intensity on the order of 1.2×109 n/cm2 s. Key features include a fluoride-based design for the neutron filtering and moderating components as well as a novel collimator design that allows ease of assembly and disassembly of the beamline components.

  1. Measuring Dirac CP-violating phase with intermediate energy beta beam facility

    NASA Astrophysics Data System (ADS)

    Bakhti, P.; Farzan, Y.

    2014-02-01

    Taking the established nonzero value of , we study the possibility of extracting the Dirac CP-violating phase by a beta beam facility with a boost factor . We compare the performance of different setups with different baselines, boost factors, and detector technologies. We find that an antineutrino beam from He decay with a baseline of km has a very promising CP-discovery potential using a 500 kton water Cherenkov detector. Fortunately this baseline corresponds to the distance between FermiLAB to Sanford underground research facility in South Dakota.

  2. Characterization of Dosimetry of the BMRR Horizontal Thimble Tubes and Broad Beam Facility.

    SciTech Connect

    Hu,J.P.; Reciniello, R.N.; Holden, N.E.

    2008-05-05

    The Brookhaven Medical Research Reactor was a 5 mega-watt, light-water cooled and heavy-graphite moderated research facility. It has two shutter-equipped treatment rooms, three horizontally extended thimble tubes, and an ex-core broad beam facility. The three experimental thimbles, or activation ports, external to the reactor tank were designed for several uses, including the investigations on diagnostic and therapeutic methods using radioactive isotopes of very short half-life, the analysis of radiation exposure on tissue-equivalent materials using a collimated neutron beam, and the evaluation of dose effects on biological cells to improve medical treatment. At the broad beam facility where the distribution of thermal neutrons was essential uniform, a wide variety of mammalian whole-body exposures were studied using animals such as burros or mice. Also studied at the broad beam were whole-body phantom experiments, involving the use of a neutron or photon beam streaming through a screen to obtain the flux spectrum suitable for dose analysis on the sugar-urea-water mixture, a tissue-equivalent material. Calculations of the flux and the dose at beam ports based on Monte Carlo particle-transport code were performed, and measurements conducted at the same tally locations were made using bare or cadmium-covered gold foils. Analytical results, which show good agreement with measurement data, are presented in the paper.

  3. Production rate calculations for a secondary beam facility

    SciTech Connect

    Jiang, C.L.; Back, B.B.; Rehm, K.E.

    1995-08-01

    In order to select the most cost-effective method for the production of secondary ion beams, yield calculations for a variety of primary beams were performed ranging in mass from protons to {sup 18}O with energies of 100-200 MeV/u. For comparison, production yields for 600-1000 MeV protons were also calculated. For light ion-(A < {sup 4}He) induced reactions at energies above 50 MeV/u the LAHET code was used while the low energy calculations were performed with LPACE. Heavy-ion-induced production rates were calculated with the ISAPACE program. The results of these codes were checked against each other and wherever possible a comparison with experimental data was performed. These comparisons extended to very exotic reaction channels, such as the production of {sup 100}Sn from {sup 112}Sn and {sup 124}Xe induced fragmentation reactions. These comparisons indicate that the codes are able to predict production rates to within one order of magnitude.

  4. Isotope Production Facility Conceptual Thermal-Hydraulic Design Review and Scoping Calculations

    SciTech Connect

    Pasamehmetoglu, K.O.; Shelton, J.D.

    1998-08-01

    The thermal-hydraulic design of the target for the Isotope Production Facility (IPF) is reviewed. In support of the technical review, scoping calculations are performed. The results of the review and scoping calculations are presented in this report.

  5. The TRIUMF-ISAC facility: two decades of discovery with rare isotope beams

    NASA Astrophysics Data System (ADS)

    Ball, G. C.; Hackman, G.; Krücken, R.

    2016-09-01

    Since 1999, the TRIUMF-ISAC facility has been providing rare isotope beams for nuclear physics experiments. The three pillars of the program are nuclear structure, nuclear astrophysics, and fundamental symmetries. This article reviews highlights of each of these aspects of the ISAC science program, including tests of the collective behaviors, first explained by Bohr, Mottelson and Rainwater, at the limits of nuclear stability, and future prospects with the ARIEL facility at TRIUMF.

  6. Multipass beam breakup in the CEBAF (Continuous Electron Beam Accelerator Facility) superconducting linac

    SciTech Connect

    Bisognano, J.J.; Krafft, G.A.

    1986-06-02

    Multipass beam breakup can severely limit current in superconducting linear accelerators due to the inherently high Q's of transverse deflecting modes of the rf cavities. The success of higher-order-mode damping in increasing threshold currents for the 4-pass CEBAF SRF linac design is investigated with computer modeling. This simulation is shown to be in agreement with theoretical analyses which have successfully described beam breakup in the Stanford superconducting, recirculating linac. Numerical evaluation of an analytic treatment by Gluckstern of multipass beam breakup with distributed cavities is also found to be consistent with the computer model. Application of the simulation to the design array of 400 five-cell CEBAF/Cornell cavities with measured higher-order-mode damping indicates that the beam breakup threshold current is at least an order of magnitude above the CEBAF design current of 200 ..mu..A.

  7. Facile electron-beam lithography technique for irregular and fragile substrates

    NASA Astrophysics Data System (ADS)

    Chang, Jiyoung; Zhou, Qin; Zettl, Alex

    2014-10-01

    A facile technique is presented which enables high-resolution electron beam lithography on irregularly-shaped, non-planar or fragile substrates such as the edges of a silicon chip, thin and narrow suspended beams and bridges, or small cylindrical wires. The method involves a spin-free dry-transfer of pre-formed uniform-thickness polymethyl methacrylate, followed by conventional electron beam writing, metal deposition, and lift-off. High-resolution patterning is demonstrated for challenging target substrates. The technique should find broad application in micro- and nano-technology research arenas.

  8. Facile electron-beam lithography technique for irregular and fragile substrates

    SciTech Connect

    Chang, Jiyoung; Zhou, Qin; Zettl, Alex

    2014-10-27

    A facile technique is presented which enables high-resolution electron beam lithography on irregularly-shaped, non-planar or fragile substrates such as the edges of a silicon chip, thin and narrow suspended beams and bridges, or small cylindrical wires. The method involves a spin-free dry-transfer of pre-formed uniform-thickness polymethyl methacrylate, followed by conventional electron beam writing, metal deposition, and lift-off. High-resolution patterning is demonstrated for challenging target substrates. The technique should find broad application in micro- and nano-technology research arenas.

  9. Concepts for the magnetic design of the MITICA neutral beam test facility ion accelerator

    SciTech Connect

    Chitarin, G.; Agostinetti, P.; Marconato, N.; Marcuzzi, D.; Sartori, E.; Serianni, G.; Sonato, P.

    2012-02-15

    The megavolt ITER injector concept advancement neutral injector test facility will be constituted by a RF-driven negative ion source and by an electrostatic Accelerator, designed to produce a negative Ion with a specific energy up to 1 MeV. The beam is then neutralized in order to obtain a focused 17 MW neutral beam. The magnetic configuration inside the accelerator is of crucial importance for the achievement of a good beam efficiency, with the early deflection of the co-extracted and stripped electrons, and also of the required beam optic quality, with the correction of undesired ion beamlet deflections. Several alternative magnetic design concepts have been considered, comparing in detail the magnetic and beam optics simulation results, evidencing the advantages and drawbacks of each solution both from the physics and engineering point of view.

  10. Development of picoseconds Time of Flight systems in Meson Test Beam Facility at Fermilab

    SciTech Connect

    Ronzhin, A.; Albrow, M.; Demarteau, M.; Los, S.; Malik, S.; Pronko, S.; Ramberg, E.; Zatserklyaniy, A.; /Puerto Rico U., Mayaguez

    2010-11-01

    The goal of the work is to develop time of flight (TOF) system with about 10 picosecond time resolution in real beam line when start and stop counters separated by some distance. We name the distance as 'base' for the TOF. This 'real' TOF setup is different from another one when start and stop counters located next to each other. The real TOF is sensitive to beam momentum spread, beam divergence, etc. Anyway some preliminary measurements are useful with close placement of start and stop counter. We name it 'close geometry'. The work started about 2 years ago at Fermilab Meson Test Beam Facility (MTBF). The devices tested in 'close geometry' were Microchannel Plate Photomultipliers (MCP PMT) with Cherenkov radiators. TOF counters based on Silicon Photomultipliers (SiPms) with Cherenkov radiators also in 'close geometry' were tested. We report here new results obtained with the counters in the MTBF at Fermilab, including beam line data.

  11. Development of a machine protection system for the Superconducting Beam Test Facility at Fermilab

    SciTech Connect

    Warner, A.; Carmichael, L.; Church, M.; Neswold, R.; /Fermilab

    2011-09-01

    Fermilab's Superconducting RF Beam Test Facility currently under construction will produce electron beams capable of damaging the acceleration structures and the beam line vacuum chambers in the event of an aberrant accelerator pulse. The accelerator is being designed with the capability to operate with up to 3000 bunches per macro-pulse, 5Hz repetition rate and 1.5 GeV beam energy. It will be able to sustain an average beam power of 72 KW at the bunch charge of 3.2 nC. Operation at full intensity will deposit enough energy in niobium material to approach the melting point of 2500 C. In the early phase with only 3 cryomodules installed the facility will be capable of generating electron beam energies of 810 MeV and an average beam power that approaches 40 KW. In either case a robust Machine Protection System (MPS) is required to mitigate effects due to such large damage potentials. This paper will describe the MPS system being developed, the system requirements and the controls issues under consideration.

  12. A new ion beam facility based on a 3 MV Tandetron™ at IFIN-HH, Romania

    NASA Astrophysics Data System (ADS)

    Burducea, I.; Straticiuc, M.; Ghiță, D. G.; Moșu, D. V.; Călinescu, C. I.; Podaru, N. C.; Mous, D. J. W.; Ursu, I.; Zamfir, N. V.

    2015-09-01

    A 3 MV Tandetron™ accelerator system has been installed and commissioned at the "Horia Hulubei" National Institute for Physics and Nuclear Engineering - IFIN-HH, Măgurele, Romania. The main purpose of this machine is to strengthen applied nuclear physics research ongoing in our institute for more than four decades. The accelerator system was developed by High Voltage Engineering Europa B.V. (HVE) and comprises three high energy beam lines. The first beam line is dedicated to ion beam analysis (IBA) techniques: Rutherford Backscattering Spectrometry - RBS, Nuclear Reaction Analysis - NRA, Particle Induced X-ray and γ-ray Emission - PIXE and PIGE and micro-beam experiments - μ-PIXE. The second beam line is dedicated to high energy ion implantation experiments and the third beam line was designed mainly for nuclear cross-sections measurements used in nuclear astrophysics. A unique feature, the first time in operation at an accelerator facility is the Na charge exchange canal (CEC), which is used to obtain high intensity beams of He- of at least 3 μA. The results of the acceptance tests demonstrate the huge potential of this new facility in various fields, from IBA to radiation hardness studies and from medical or environmental applications to astrophysics. The main features of the accelerator are presented in this paper.

  13. Lead Coolant Test Facility Technical and Functional Requirements, Conceptual Design, Cost and Construction Schedule

    SciTech Connect

    Soli T. Khericha

    2006-09-01

    This report presents preliminary technical and functional requirements (T&FR), thermal hydraulic design and cost estimate for a lead coolant test facility. The purpose of this small scale facility is to simulate lead coolant fast reactor (LFR) coolant flow in an open lattice geometry core using seven electrical rods and liquid lead or lead-bismuth eutectic. Based on review of current world lead or lead-bismuth test facilities and research need listed in the Generation IV Roadmap, five broad areas of requirements of basis are identified: Develop and Demonstrate Prototype Lead/Lead-Bismuth Liquid Metal Flow Loop Develop and Demonstrate Feasibility of Submerged Heat Exchanger Develop and Demonstrate Open-lattice Flow in Electrically Heated Core Develop and Demonstrate Chemistry Control Demonstrate Safe Operation and Provision for Future Testing. These five broad areas are divided into twenty-one (21) specific requirements ranging from coolant temperature to design lifetime. An overview of project engineering requirements, design requirements, QA and environmental requirements are also presented. The purpose of this T&FRs is to focus the lead fast reactor community domestically on the requirements for the next unique state of the art test facility. The facility thermal hydraulic design is based on the maximum simulated core power using seven electrical heater rods of 420 kW; average linear heat generation rate of 300 W/cm. The core inlet temperature for liquid lead or Pb/Bi eutectic is 420oC. The design includes approximately seventy-five data measurements such as pressure, temperature, and flow rates. The preliminary estimated cost of construction of the facility is $3.7M. It is also estimated that the facility will require two years to be constructed and ready for operation.

  14. System analysis study of space platform and station accommodations for life sciences research facilities. Volume 2: Study results, attachment 2. Phase A: Conceptual design and programmatics

    NASA Technical Reports Server (NTRS)

    Wiley, Lowell F.

    1985-01-01

    The study results from the conceptual design and programmatics segment of the Space Platform and Station Accommodation for Life Sciences Research Facilities. The results and significant findings of the conceptual design and programmatics were generated by these tasks: (1) the review and update engineering and science requirements; (2) analysis of life sciences mission transition scenario; (3) the review and update of key trade issues; (4) the development of conceptual definition and designs; and (5) the development of the work breakdown schedule and its dictionary, program schedule, and estimated costs.

  15. Characterization of a tagged γ-ray beam line at the DAΦNE Beam Test Facility

    NASA Astrophysics Data System (ADS)

    Cattaneo, P. W.; Argan, A.; Boffelli, F.; Bulgarelli, A.; Buonomo, B.; Chen, A. W.; D'Ammando, F.; Foggetta, L.; Froysland, T.; Fuschino, F.; Galli, M.; Gianotti, F.; Giuliani, A.; Longo, F.; Marisaldi, M.; Mazzitelli, G.; Pellizzoni, A.; Prest, M.; Pucella, G.; Quintieri, L.; Rappoldi, A.; Tavani, M.; Trifoglio, M.; Trois, A.; Valente, P.; Vallazza, E.; Vercellone, S.; Zambra, A.; Barbiellini, G.; Caraveo, P.; Cocco, V.; Costa, E.; De Paris, G.; Del Monte, E.; Di Cocco, G.; Donnarumma, I.; Evangelista, Y.; Feroci, M.; Ferrari, A.; Fiorini, M.; Labanti, C.; Lapshov, I.; Lazzarotto, F.; Lipari, P.; Mastropietro, M.; Mereghetti, S.; Morelli, E.; Moretti, E.; Morselli, A.; Pacciani, L.; Perotti, F.; Piano, G.; Picozza, P.; Pilia, M.; Porrovecchio, G.; Rapisarda, M.; Rubini, A.; Sabatini, S.; Soffitta, P.; Striani, E.; Vittorini, V.; Zanello, D.; Colafrancesco, S.; Giommi, P.; Pittori, C.; Santolamazza, P.; Verrecchia, F.; Salotti, L.

    2012-05-01

    At the core of the AGILE scientific instrument, designed to operate on a satellite, there is the Gamma Ray Imaging Detector (GRID) consisting of a Silicon Tracker (ST), a Cesium Iodide Mini-Calorimeter and an Anti-Coincidence system of plastic scintillator bars. The ST needs an on-ground calibration with a γ-ray beam to validate the simulation used to calculate the energy response function and the effective area versus the energy and the direction of the γ rays. A tagged γ-ray beam line was designed at the Beam Test Facility (BTF) of the INFN Laboratori Nazionali of Frascati (LNF), based on an electron beam generating γ-rays through bremsstrahlung in a position-sensitive target. The γ-ray energy is deduced by difference with the post-bremsstrahlung electron energy [1,2]. The electron energy is measured by a spectrometer consisting of a dipole magnet and an array of position sensitive silicon strip detectors, the Photon Tagging System (PTS). The use of the combined BTF-PTS system as tagged photon beam requires understanding the efficiency of γ-ray tagging, the probability of fake tagging, the energy resolution and the relation of the PTS hit position versus the γ-ray energy. This paper describes this study comparing data taken during the AGILE calibration occurred in 2005 with simulation.

  16. Experiments, conceptual design, preliminary cost estimates and schedules for an underground research facility

    SciTech Connect

    Korbin, G.; Wollenberg, H.; Wilson, C.; Strisower, B.; Chan, T.; Wedge, D.

    1981-09-01

    Plans for an underground research facility are presented, incorporating techniques to assess the hydrological and thermomechanical response of a rock mass to the introduction and long-term isolation of radioactive waste, and to assess the effects of excavation on the hydrologic integrity of a repository and its subsequent backfill, plugging, and sealing. The project is designed to utilize existing mine or civil works for access to experimental areas and is estimated to last 8 years at a total cost for contruction and operation of $39.0 million (1981 dollars). Performing the same experiments in an existing underground research facility would reduce the duration to 7-1/2 years and cost $27.7 million as a lower-bound estimate. These preliminary plans and estimates should be revised after specific sites are identified which would accommodate the facility.

  17. Immobilized low-activity waste interim storage facility, Project W-465 conceptual design report

    SciTech Connect

    Pickett, W.W.

    1997-12-30

    This report outlines the design and Total Estimated Cost to modify the four unused grout vaults for the remote handling and interim storage of immobilized low-activity waste (ILAW). The grout vault facilities in the 200 East Area of the Hanford Site were constructed in the 1980s to support Tank Waste disposal activities. The facilities were to serve project B-714 which was intended to store grouted low-activity waste. The existing 4 unused grout vaults, with modifications for remote handling capability, will provide sufficient capacity for approximately three years of immobilized low activity waste (ILAW) production from the Tank Waste Remediation System-Privatization Vendors (TWRS-PV). These retrofit modifications to the grout vaults will result in an ILAW interim storage facility (Project W465) that will comply with applicable DOE directives, and state and federal regulations.

  18. Waste Receiving and Processing Facility Module 2A: Advanced Conceptual Design Report. Volume 2

    SciTech Connect

    Not Available

    1994-03-01

    This volume presents the Total Estimated Cost (TEC) for the WRAP (Waste Receiving and Processing) 2A facility. The TEC is $81.9 million, including an overall project contingency of 25% and escalation of 13%, based on a 1997 construction midpoint. (The mission of WRAP 2A is to receive, process, package, certify, and ship for permanent burial at the Hanford site disposal facilities the Category 1 and 3 contact handled low-level radioactive mixed wastes that are currently in retrievable storage, and are forecast to be generated over the next 30 years by Hanford, and waste to be shipped to Hanford site from about 20 DOE sites.)

  19. Producing National Ignition Facility (NIF)-quality beams on the Nova and Beamlet lasers

    SciTech Connect

    Widmayer, C.C.; Auerbach, J.M.; Ehrlich, R.B.

    1996-08-01

    The Nova and Beamlet lasers were used to simulate the beam propagation conditions that will be encountered during the National Ignition Facility operation. Perturbation theory predicts that there is a 5mm scale length propagation mode that experiences large nonlinear power growth. This mode was observed in the tests. Further tests have confirmed that this mode can be suppressed with improved spatial filtering.

  20. A Rare-Ion Beam Facility at iThemba LABS

    NASA Astrophysics Data System (ADS)

    Bark, R. A.

    2015-11-01

    iThemba LABS, chiefly based around a k=200 Separated Sector Cyclotron (SSC), is a multidisciplinary facility engaged in basic nuclear physics research, materials research, radionuclide production and hadron therapy. A proposal to acquire a new cyclotron to produce rare-ion beams for nuclear and materials research is outlined.

  1. Lessons from shielding retrofits at the LAMPF/LANSCE/PSR accelerator, beam lines and target facilities

    SciTech Connect

    Macek, R.J.

    1994-07-01

    The experience in the past 7 years to improve the shielding and radiation control systems at the Los Alamos Meson Physics Facility (LAMPF) and the Manuel Lujan Jr. Neutron Scattering Center (LANSCE) provides important lessons for the design of radiation control systems at future, high beam power proton accelerator facilities. Major issues confronted and insight gained in developing shielding criteria and in the use of radiation interlocks are discussed. For accelerators and beam lines requiring hands-on-maintenance, our experience suggests that shielding criteria based on accident scenarios will be more demanding than criteria based on routinely encountered beam losses. Specification and analysis of the appropriate design basis accident become all important. Mitigation by active protection systems of the consequences of potential, but severe, prompt radiation accidents has been advocated as an alternate choice to shielding retrofits for risk management at both facilities. Acceptance of active protection systems has proven elusive primarily because of the difficulty in providing convincing proof that failure of active systems (to mitigate the accident) is incredible. Results from extensive shielding assessment studies are presented including data from experimental beam spill tests, comparisons with model estimates, and evidence bearing on the limitations of line-of-sight attenuation models in complex geometries. The scope and significant characteristics of major shielding retrofit projects at the LAMPF site are illustrated by the project to improve the shielding beneath a road over a multiuse, high-intensity beam line (Line D).

  2. Design, fabrication and operation of the mechanical systems for the Neutral Beam Engineering Test Facility

    SciTech Connect

    Paterson, J.A.; Biagi, L.A.; Fong, M.; Koehler, G.W.; Low, W.; Purgalis, P.; Wells, R.P.

    1983-12-01

    The Neutral Beam Engineering Test Facility (NBETF) at Lawrence Berkeley Laboratory (LBL) is a National Test Facility used to develop long pulse Neutral Beam Sources. The Facility will test sources up to 120 keV, 50 A, with 30 s beam-on times with a 10% duty factor. For this application, an actively cooled beam dump is required and one has been constructed capable of dissipating a wide range of power density profiles. The flexibility of the design is achieved by utilizing a standard modular panel design which is incorporated into a moveable support structure comprised of eight separately controllable manipulator assemblies. A unique neutralizer design has been installed into the NBETF beamline. This is a gun-drilled moveable brazed assembly which provides continuous armoring of the beamline near the source. The unit penetrates the source mounting valve during operation and retracts to permit the valve to close as needed. The beamline is also equpped with many beam scraper plates of differing detail design and dissipation capabilities.

  3. Design of a Thermal Neutron Beam for a New Neutron Imaging Facility at Tehran Research Reactor

    NASA Astrophysics Data System (ADS)

    Dastjerdi, Mohammad Hossein Choopan; Khalafi, Hossein

    A new neutron imaging facility will be built around the Tehran Research Reactor (TRR). The TRR is an open pool light water moderated5 MW research reactor with six beam tubes. The neutron energy spectrum near the reactor core at the entrance of the beam tube was measured by the foil activation method using the SAND-II code and calculated by the MCNP Monte Carlo code. There was a good similarity between calculated and simulated spectra. The principal component of this facility is its neutron collimator. The collimator is a beam-forming assembly which determines the geometric properties of the beam. In addition, it may contain filters to modify the energy spectrum or to reduce the gamma ray content of the beam. The optimum thickness of filters, the position of the aperture and other details of the neutron collimator were calculated using MCNP Monte Carlo simulations. In this design, the L/D ratio of this facility had the value of 120. The thermal neutron flux at the image plane was about 7.8×106 n/cm2.s and n/γ ratio about 106 n/cm2.μSv.

  4. Cost estimates and economic evaluations for conceptual LLRW disposal facility designs

    SciTech Connect

    Baird, R.D.; Chau, N.; Breeds, C.D.

    1995-12-31

    Total life-cycle costs were estimated in support of the New York LLRW Siting Commission`s project to select a disposal method from four near-surface LLRW disposal methods (namely, uncovered above-grade vaults, covered above-grade vaults, below-grade vaults, and augered holes) and two mined methods (namely, vertical shaft mines and drift mines). Conceptual designs for the disposal methods were prepared and used as the basis for the cost estimates. Typical economic performance of each disposal method was assessed. Life-cycle costs expressed in 1994 dollars ranged from $ 1,100 million (for below-grade vaults and both mined disposal methods) to $2,000 million (for augered holes). Present values ranged from $620 million (for below-grade vaults) to $ 1,100 million (for augered holes).

  5. Recent Activities at the Low-Energy Beam and Ion Trap Facility at NSCL

    NASA Astrophysics Data System (ADS)

    Bustabad, Scott; Bollen, Georg; Brodeur, Maxime; Lincoln, David; Novario, Samuel; Redshaw, Matthew; Ringle, Ryan; Schwarz, Stefan; Valverde, Adrian

    2013-10-01

    The Low-Energy Beam and Ion Trap (LEBIT) facility, for high precision Penning trap mass measurements, has been relocated and upgraded for the expansion of the thermalized beam program at NSCL. I will summarize the changes to the facility and will focus on recent atomic mass measurements of candidates for neutrinoless double- β decay experiments including 82Se and 48Ca. I will also present the first results from the recent successful LEBIT commissioning experiment and will conclude by discussing the exciting future opportunities with the upgraded facility. This work was supported by Michigan State University, the National Science Foundation under Contract No. PHY-1102511, and the Office of Science US Dept of Energy under Grant 03ER-41268.

  6. Conceptual design report: Nuclear materials storage facility renovation. Part 1, Design concept. Part 2, Project management

    SciTech Connect

    1995-07-14

    The Nuclear Materials Storage Facility (NMSF) at the Los Alamos National Laboratory (LANL) was a Fiscal Year (FY) 1984 line-item project completed in 1987 that has never been operated because of major design and construction deficiencies. This renovation project, which will correct those deficiencies and allow operation of the facility, is proposed as an FY 97 line item. The mission of the project is to provide centralized intermediate and long-term storage of special nuclear materials (SNM) associated with defined LANL programmatic missions and to establish a centralized SNM shipping and receiving location for Technical Area (TA)-55 at LANL. Based on current projections, existing storage space for SNM at other locations at LANL will be loaded to capacity by approximately 2002. This will adversely affect LANUs ability to meet its mission requirements in the future. The affected missions include LANL`s weapons research, development, and testing (WRD&T) program; special materials recovery; stockpile survelliance/evaluation; advanced fuels and heat sources development and production; and safe, secure storage of existing nuclear materials inventories. The problem is further exacerbated by LANL`s inability to ship any materials offsite because of the lack of receiver sites for mate rial and regulatory issues. Correction of the current deficiencies and enhancement of the facility will provide centralized storage close to a nuclear materials processing facility. The project will enable long-term, cost-effective storage in a secure environment with reduced radiation exposure to workers, and eliminate potential exposures to the public. This document provides Part I - Design Concept which describes the selected solution, and Part II - Project Management which describes the management system organization, the elements that make up the system, and the control and reporting system.

  7. Conceptual design report: Nuclear materials storage facility renovation. Part 6, Alternatives study

    SciTech Connect

    1995-07-14

    The Nuclear Materials Storage Facility (NMSF) at the Los Alamos National Laboratory (LANL) was a Fiscal Year (FY) 1984 line-item project completed in 1987 that has never been operated because of major design and construction deficiencies. This renovation project, which will correct those deficiencies and allow operation of the facility, is proposed as an FY 97 line item. The mission of the project is to provide centralized intermediate and long-term storage of special nuclear materials (SNM) associated with defined LANL programmatic missions and to establish a centralized SNM shipping and receiving location for Technical Area (TA)-55 at LANL. Based on current projections, existing storage space for SNM at other locations at LANL will be loaded to capacity by approximately 2002. This will adversely affect LANUs ability to meet its mission requirements in the future. The affected missions include LANL`s weapons research, development, and testing (WRD&T) program; special materials recovery; stockpile survelliance/evaluation; advanced fuels and heat sources development and production; and safe, secure storage of existing nuclear materials inventories. The problem is further exacerbated by LANL`s inability to ship any materials offsite because of the lack of receiver sites for material and regulatory issues. Correction of the current deficiencies and enhancement of the facility will provide centralized storage close to a nuclear materials processing facility. The project will enable long-term, cost-effective storage in a secure environment with reduced radiation exposure to workers, and eliminate potential exposures to the public. This report is organized according to the sections and subsections outlined by Attachment 111-2 of DOE Document AL 4700.1, Project Management System. It is organized into seven parts. This document, Part VI - Alternatives Study, presents a study of the different storage/containment options considered for NMSF.

  8. Conceptual design report: Nuclear materials storage facility renovation. Part 3, Supplemental information

    SciTech Connect

    1995-07-14

    The Nuclear Materials Storage Facility (NMSF) at the Los Alamos National Laboratory (LANL) was a Fiscal Year (FY) 1984 line-item project completed in 1987 that has never been operated because of major design and construction deficiencies. This renovation project, which will correct those deficiencies and allow operation of the facility, is proposed as an FY 97 line item. The mission of the project is to provide centralized intermediate and long-term storage of special nuclear materials (SNM) associated with defined LANL programmatic missions and to establish a centralized SNM shipping and receiving location for Technical Area (TA)-55 at LANL. Based on current projections, existing storage space for SNM at other locations at LANL will be loaded to capacity by approximately 2002. This will adversely affect LANUs ability to meet its mission requirements in the future. The affected missions include LANL`s weapons research, development, and testing (WRD&T) program; special materials recovery; stockpile survelliance/evaluation; advanced fuels and heat sources development and production; and safe, secure storage of existing nuclear materials inventories. The problem is further exacerbated by LANL`s inability to ship any materials offsite because of the lack of receiver sites for mate rial and regulatory issues. Correction of the current deficiencies and enhancement of the facility will provide centralized storage close to a nuclear materials processing facility. The project will enable long-term, cost-effective storage in a secure environment with reduced radiation exposure to workers, and eliminate potential exposures to the public. It is organized into seven parts. Part I - Design Concept describes the selected solution. Part III - Supplemental Information contains calculations for the various disciplines as well as other supporting information and analyses.

  9. Conceptual design report: Nuclear materials storage facility renovation. Part 7, Estimate data

    SciTech Connect

    1995-07-14

    The Nuclear Materials Storage Facility (NMSF) at the Los Alamos National Laboratory (LANL) was a Fiscal Year (FY) 1984 line-item project completed in 1987 that has never been operated because of major design and construction deficiencies. This renovation project, which will correct those deficiencies and allow operation of the facility, is proposed as an FY 97 line item. The mission of the project is to provide centralized intermediate and long-term storage of special nuclear materials (SNM) associated with defined LANL programmatic missions and to establish a centralized SNM shipping and receiving location for Technical Area (TA)-55 at LANL. Based on current projections, existing storage space for SNM at other locations at LANL will be loaded to capacity by approximately 2002. This will adversely affect LANUs ability to meet its mission requirements in the future. The affected missions include LANL`s weapons research, development, and testing (WRD&T) program; special materials recovery; stockpile survelliance/evaluation; advanced fuels and heat sources development and production; and safe, secure storage of existing nuclear materials inventories. The problem is further exacerbated by LANL`s inability to ship any materials offsite because of the lack of receiver sites for mate rial and regulatory issues. Correction of the current deficiencies and enhancement of the facility will provide centralized storage close to a nuclear materials processing facility. The project will enable long-term, cost-effective storage in a secure environment with reduced radiation exposure to workers, and eliminate potential exposures to the public. This report is organized according to the sections and subsections outlined by Attachment III-2 of DOE Document AL 4700.1, Project Management System. It is organized into seven parts. This document, Part VII - Estimate Data, contains the project cost estimate information.

  10. Target diagnostics for commissioning the AWE HELEN Laser Facility 100 TW chirped pulse amplification beam

    NASA Astrophysics Data System (ADS)

    Eagleton, R. T.; Clark, E. L.; Davies, H. M.; Edwards, R. D.; Gales, S.; Girling, M. T.; Hoarty, D. J.; Hopps, N. W.; James, S. F.; Kopec, M. F.; Nolan, J. R.; Ryder, K.

    2006-10-01

    The capability of the HELEN laser at the Atomic Weapons Establishment Aldermaston has been enhanced by the addition of a short-pulse laser beam to augment the twin opposing nanosecond time scale beams. The short-pulse beam utilizes the chirped pulse amplification (CPA) technique and is capable of delivering up to 60J on target in a 500fs pulse, around 100TW, at the fundamental laser wavelength of 1.054μm. During the commissioning phase a number of diagnostic systems have been fielded, these include: x-ray pinhole imaging of the laser heated spot, charged particle time of flight, thermoluminescent dosimeter array, calibrated radiochromic film, and CR39 nuclear track detector. These diagnostic systems have been used to verify the performance of the CPA beam to achieve a focused intensity of around 1019Wcm-2 and to underwrite the facility radiological safety system.

  11. Proposal for continuously-variable neutrino beam energy for the NuMI facility

    SciTech Connect

    Kostin, Mikhail; Kopp, Sacha; Messier, Mark; Harris, Deborah A.; Hylen, Jim; Para, Adam; /Fermilab

    2006-07-01

    The NuMI Facility was intended to be flexibly changed between 3 energies of beams, LE, ME, and HE. However, the changeover requires extensive downtime to move and realign horns and the target. We propose to implement a flexible arrangement where the target can be remotely moved in the beamline direction to change the beam energy and the horns remain fixed. In addition to having the attractive feature of keeping the horn optics fixed, the motion of the target can be performed more quickly and hence on a more frequent basis. We discuss potential increases in statistics in the high energy region, systematic cross-checks available, and the improved beam monitoring capabilities with such variable energy beams.

  12. Status and Planned Experiments of the Hiradmat Pulsed Beam Material Test Facility at CERN SPS

    SciTech Connect

    Charitonidis, Nikolaos; Efthymiopoulos, Ilias; Fabich, Adrian; Meddahi, Malika; Gianfelice-Wendt, Eliana

    2015-06-01

    HiRadMat (High Irradiation to Materials) is a facility at CERN designed to provide high-intensity pulsed beams to an irradiation area where material samples as well as accelerator component assemblies (e.g. vacuum windows, shock tests on high power targets, collimators) can be tested. The beam parameters (SPS 440 GeV protons with a pulse energy of up to 3.4 MJ, or alternatively lead/argon ions at the proton equivalent energy) can be tuned to match the needs of each experiment. It is a test area designed to perform single pulse experiments to evaluate the effect of high-intensity pulsed beams on materials in a dedicated environment, excluding long-time irradiation studies. The facility is designed for a maximum number of 1016 protons per year, in order to limit the activation of the irradiated samples to acceptable levels for human intervention. This paper will demonstrate the possibilities for research using this facility and go through examples of upcoming experiments scheduled in the beam period 2015/2016.

  13. Community accountability at peripheral health facilities: a review of the empirical literature and development of a conceptual framework.

    PubMed

    Molyneux, Sassy; Atela, Martin; Angwenyi, Vibian; Goodman, Catherine

    2012-10-01

    Public accountability has re-emerged as a top priority for health systems all over the world, and particularly in developing countries where governments have often failed to provide adequate public sector services for their citizens. One approach to strengthening public accountability is through direct involvement of clients, users or the general public in health delivery, here termed 'community accountability'. The potential benefits of community accountability, both as an end in itself and as a means of improving health services, have led to significant resources being invested by governments and non-governmental organizations. Data are now needed on the implementation and impact of these initiatives on the ground. A search of PubMed using a systematic approach, supplemented by a hand search of key websites, identified 21 papers from low- or middle-income countries describing at least one measure to enhance community accountability that was linked with peripheral facilities. Mechanisms covered included committees and groups (n = 19), public report cards (n = 1) and patients' rights charters (n = 1). In this paper we summarize the data presented in these papers, including impact, and factors influencing impact, and conclude by commenting on the methods used, and the issues they raise. We highlight that the international interest in community accountability mechanisms linked to peripheral facilities has not been matched by empirical data, and present a conceptual framework and a set of ideas that might contribute to future studies. PMID:22279082

  14. Community accountability at peripheral health facilities: a review of the empirical literature and development of a conceptual framework

    PubMed Central

    Molyneux, Sassy; Atela, Martin; Angwenyi, Vibian; Goodman, Catherine

    2012-01-01

    Public accountability has re-emerged as a top priority for health systems all over the world, and particularly in developing countries where governments have often failed to provide adequate public sector services for their citizens. One approach to strengthening public accountability is through direct involvement of clients, users or the general public in health delivery, here termed ‘community accountability’. The potential benefits of community accountability, both as an end in itself and as a means of improving health services, have led to significant resources being invested by governments and non-governmental organizations. Data are now needed on the implementation and impact of these initiatives on the ground. A search of PubMed using a systematic approach, supplemented by a hand search of key websites, identified 21 papers from low- or middle-income countries describing at least one measure to enhance community accountability that was linked with peripheral facilities. Mechanisms covered included committees and groups (n = 19), public report cards (n = 1) and patients’ rights charters (n = 1). In this paper we summarize the data presented in these papers, including impact, and factors influencing impact, and conclude by commenting on the methods used, and the issues they raise. We highlight that the international interest in community accountability mechanisms linked to peripheral facilities has not been matched by empirical data, and present a conceptual framework and a set of ideas that might contribute to future studies. PMID:22279082

  15. Wavefront control of high power laser beams for the National Ignition Facility (NIF)

    SciTech Connect

    Bliss, E; Feldman, M; Grey, A; Koch, J; Lund, L; Sacks, R; Smith, D; Stolz, C; Van Atta, L; Winters, S; Woods, B; Zacharias, R

    1999-09-22

    The use of lasers as the driver for inertial confinement fusion and weapons physics experiments is based on their ability to produce high-energy short pulses in a beam with low divergence. Indeed, the focus ability of high quality laser beams far exceeds alternate technologies and is a major factor in the rationale for building high power lasers for such applications. The National Ignition Facility (NIF) is a large, 192-beam, high-power laser facility under construction at the Lawrence Livermore National Laboratory for fusion and weapons physics experiments. Its uncorrected minimum focal spot size is limited by laser system aberrations. The NIF includes a Wavefront Control System to correct these aberrations to yield a focal spot small enough for its applications. Sources of aberrations to be corrected include prompt pump-induced distortions in the laser amplifiers, previous-shot thermal distortions, beam off-axis effects, and gravity, mounting, and coating-induced optic distortions. Aberrations from gas density variations and optic manufacturing figure errors are also partially corrected. This paper provides an overview of the NIF Wavefront Control System and describes the target spot size performance improvement it affords. It describes provisions made to accommodate the NIF's high fluence (laser beam and flashlamp), large wavefront correction range, wavefront temporal bandwidth, temperature and humidity variations, cleanliness requirements, and exception handling requirements (e.g. wavefront out-of-limits conditions).

  16. NA61/SHINE facility at the CERN SPS: beams and detector system

    NASA Astrophysics Data System (ADS)

    Abgrall, N.; Andreeva, O.; Aduszkiewicz, A.; Ali, Y.; Anticic, T.; Antoniou, N.; Baatar, B.; Bay, F.; Blondel, A.; Blumer, J.; Bogomilov, M.; Bogusz, M.; Bravar, A.; Brzychczyk, J.; Bunyatov, S. A.; Christakoglou, P.; Cirkovic, M.; Czopowicz, T.; Davis, N.; Debieux, S.; Dembinski, H.; Diakonos, F.; Di Luise, S.; Dominik, W.; Drozhzhova, T.; Dumarchez, J.; Dynowski, K.; Engel, R.; Efthymiopoulos, I.; Ereditato, A.; Fabich, A.; Feofilov, G. A.; Fodor, Z.; Fulop, A.; Gaździcki, M.; Golubeva, M.; Grebieszkow, K.; Grzeszczuk, A.; Guber, F.; Haesler, A.; Hasegawa, T.; Hierholzer, M.; Idczak, R.; Igolkin, S.; Ivashkin, A.; Jokovic, D.; Kadija, K.; Kapoyannis, A.; Kaptur, E.; Kielczewska, D.; Kirejczyk, M.; Kisiel, J.; Kiss, T.; Kleinfelder, S.; Kobayashi, T.; Kolesnikov, V. I.; Kolev, D.; Kondratiev, V. P.; Korzenev, A.; Koversarski, P.; Kowalski, S.; Krasnoperov, A.; Kurepin, A.; Larsen, D.; Laszlo, A.; Lyubushkin, V. V.; Maćkowiak-Pawłowska, M.; Majka, Z.; Maksiak, B.; Malakhov, A. I.; Maletic, D.; Manglunki, D.; Manic, D.; Marchionni, A.; Marcinek, A.; Marin, V.; Marton, K.; Mathes, H.-J.; Matulewicz, T.; Matveev, V.; Melkumov, G. L.; Messina, M.; Mrówczyński, St.; Murphy, S.; Nakadaira, T.; Nirkko, M.; Nishikawa, K.; Palczewski, T.; Palla, G.; Panagiotou, A. D.; Paul, T.; Peryt, W.; Petukhov, O.; Pistillo, C.; Płaneta, R.; Pluta, J.; Popov, B. A.; Posiadala, M.; Puławski, S.; Puzovic, J.; Rauch, W.; Ravonel, M.; Redij, A.; Renfordt, R.; Richter-Was, E.; Robert, A.; Röhrich, D.; Rondio, E.; Rossi, B.; Roth, M.; Rubbia, A.; Rustamov, A.; Rybczyński, M.; Sadovsky, A.; Sakashita, K.; Savic, M.; Schmidt, K.; Sekiguchi, T.; Seyboth, P.; Sgalaberna, D.; Shibata, M.; Sipos, R.; Skrzypczak, E.; Słodkowski, M.; Sosin, Z.; Staszel, P.; Stefanek, G.; Stepaniak, J.; Stroebele, H.; Susa, T.; Szuba, M.; Tada, M.; Tereshchenko, V.; Tolyhi, T.; Tsenov, R.; Turko, L.; Ulrich, R.; Unger, M.; Vassiliou, M.; Veberic, D.; Vechernin, V. V.; Vesztergombi, G.; Vinogradov, L.; Wilczek, A.; Włodarczyk, Z.; Wojtaszek-Szwarz, A.; Wyszyński, O.; Zambelli, L.; Zipper, W.

    2014-06-01

    NA61/SHINE (SPS Heavy Ion and Neutrino Experiment) is a multi-purpose experimental facility to study hadron production in hadron-proton, hadron-nucleus and nucleus-nucleus collisions at the CERN Super Proton Synchrotron. It recorded the first physics data with hadron beams in 2009 and with ion beams (secondary 7Be beams) in 2011. NA61/SHINE has greatly profited from the long development of the CERN proton and ion sources and the accelerator chain as well as the H2 beamline of the CERN North Area. The latter has recently been modified to also serve as a fragment separator as needed to produce the Be beams for NA61/SHINE. Numerous components of the NA61/SHINE set-up were inherited from its predecessors, in particular, the last one, the NA49 experiment. Important new detectors and upgrades of the legacy equipment were introduced by the NA61/SHINE Collaboration. This paper describes the state of the NA61/SHINE facility — the beams and the detector system — before the CERN Long Shutdown I, which started in March 2013.

  17. Wavefront control of high-power laser beams in the National Ignition Facility (NIF)

    NASA Astrophysics Data System (ADS)

    Zacharias, Richard A.; Bliss, Erlan S.; Winters, Scott; Sacks, Richard A.; Feldman, Mark; Grey, Andrew; Koch, Jeffrey A.; Stolz, Christopher J.; Toeppen, John S.; Van Atta, Lewis; Woods, Bruce W.

    2000-04-01

    The use of lasers as the driver for inertial confinement fusion and weapons physics experiments is based on their ability to produce high-energy short pulses in a beam with low divergence. Indeed, the focusability of high quality laser beams far exceeds alternate technologies and is a major factor in the rationale for building high power lasers for such applications. The National Ignition Facility (NIF) is a large, 192-beam, high-power laser facility under construction at the Lawrence Livermore National Laboratory for fusion and weapons physics experiments. Its uncorrected minimum focal spot size is limited by laser system aberrations. The NIF includes a Wavefront Control System to correct these aberrations to yield a focal spot small enough for its applications. Sources of aberrations to be corrected include prompt pump-induced distortions in the laser amplifiers, previous-shot thermal distortions, beam off-axis effects, and gravity, mounting, and coating-induced optic distortions. Aberrations from gas density variations and optic-manufacturing figure errors are also partially corrected. This paper provides an overview of the NIF Wavefront Control System and describes the target spot size performance improvement it affords. It describes provisions made to accommodate the NIF's high fluence (laser beam and flashlamp), large wavefront correction range, wavefront temporal bandwidth, temperature and humidity variations, cleanliness requirements, and exception handling requirements (e.g. wavefront out-of-limits conditions).

  18. Development of Advanced Beam Halo Diagnostics at the Jefferson Lab Free-Electron-Laser Facility

    SciTech Connect

    Shukui Zhang, Stephen Benson, Dave Douglas, Frederick Wilson, Hao Zhang, Anatoly Shkvarunets, Ralph Fiorito

    2011-03-01

    High average current and high brightness electron beams are needed for many applications. At the Jefferson Lab FEL facility, the search for dark matter with the FEL laser beam has produced some interesting results, and a second very promising experiment called DarkLight, using the JLab Energy-recovery-linac (ERL) machine has been put forward. Although the required beam current has been achieved on this machine, one key challenge is the management of beam halo. At the University of Md. (UMD) we have demonstrated a high dynamic range halo measurement method using a digital micro-mirror array device (DMD). A similar system has been established at the JLab FEL facility as a joint effort by UMD and JLab to measure the beam halo on the high current ERL machine. Preliminary experiments to characterize the halo were performed on the new UV FEL. In this paper, the limitations of the present system will be analyzed and a discussion of other approaches (such as an optimized coronagraph) for further extending the dynamic range will be presented. We will also discuss the possibility of performing both longitudinal and transverse (3D) halo measurements together on a single system.

  19. Research of beam conditioning technologies on SG-III laser facility

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Su, Jingqin; Yuan, Haoyu; Li, Ping; Tian, Xiaocheng; Wang, Jianjun; Dong, Jun; Zhang, Ying; Yuan, Qiang; Wang, Yuancheng; Zhou, Wei; Peng, Zhitao; Wang, Fang; Hu, Dongxia; Zhu, Qihua; Zheng, Wanguo; Zhang, Xiaomin

    2014-12-01

    Multi-FM SSD and CPP was experimentally studied in high fluence and will be equipped on all the beams of SG-III laser facility. The output spectrum of the cascade phase modulators are stable and the residual amplitude modulation is small. FM-to-AM effect caused by free-space propagation after using smoothing by spectral dispersion is theoretically analyzed. Results indicate inserting a dispersion grating in places with larger beam aperture could alleviate the FM-to- AM effect, suggesting minimizing free-space propagation and adopting image relay. Experiments taken on SG-III laser facility indicate when the number of color cycles (Nc) adopts 1, imposing of SSD with 3.3 times diffraction limit (TDL) did not lead to pinhole closure in the spatial filters of the preamplifier and main amplifier with 30-TDL pinhole size. The nonuniformity of the focal spot using Multi-FM SSD and CPP drops to 0.26, comparing to 0.84 only using CPP. The experiments solve some key technical problems using SSD and CPP on SG-III laser facility, and provide a flexible platform for laser-plasma interaction experiments. Combined beam smoothing and polarization smoothing are also analyzed. Simulation results indicate through adjusting dispersion directions of one-dimensional SSD beams in a quad, two-dimensional SSD could be obtained. The near field and far field properties of beams using polarization smoothing were also studied, including birefringent wedge and polarization control plate (PCP). By using PCP, cylindrical vector beams could be obtained. New solutions will be provided to solve the LPI problem encountered in indirect drive laser fusion.

  20. Characterization of Dosimetry of the Bmrr Horizontal Thimble Tubes and Broad Beam Facility

    NASA Astrophysics Data System (ADS)

    Hu, F. J.-P.; Reciniello, R. N.; Holden, N. E.

    2009-08-01

    The Brookhaven Medical Research Reactor was a 5 mega-watts, light-water cooled and heavy-graphite moderated research facility. It has two shutter-equipped treatment rooms, three horizontally extended thimble tubes, and an ex-core broad beam facility. The three experimental thimbles, or activation ports, external to the reactor tank were designed for several uses, including the investigations on diagnostic and therapeutic methods using radioactive isotopes of very short half-life, the analysis of radiation exposure on tissue-equivalent materials using a collimated neutron beam, and the evaluation of dose effects on biological cells to improve medical treatment. At the broad beam facility where the distribution of thermal neutrons was essentially uniform, a wide variety of mammalian whole-body exposures were studied using animals such as burros or mice. Also studied at the broad beam were whole-body phantom experiments, involving the use of a neutron or photon beam streaming through a screen to obtain the flux spectrum suitable for dose analysis on the sugar-urea-water mixture, a tissue-equivalent material. Calculations of the flux and the dose at beam ports based on Monte Carlo particle-transport code were performed, using ENDF/B-V and B-VI continuous neutron cross section data libraries which include thermal neutron treatment data sets. Measurements conducted at the same tally locations were also performed using bare or cadmium-covered gold foils. Computational results of the flux and dose obtained from neutron-photon coupled code runs show good agreement with measured data when statistical uncertainty is ≤5% from code outputs. Detailed dosimetry performed is presented in the paper.

  1. Application of an atomic oxygen beam facility to the investigation of shuttle glow chemistry

    NASA Technical Reports Server (NTRS)

    Arnold, G. S.; Peplinski, D. R.

    1985-01-01

    A facility for the investigation of the interactions of energetic atomic oxygen with solids is described. The facility is comprised of a four chambered, differentially pumped molecular beam apparatus which can be equipped with one of a variety of sources of atomic oxygen. The primary source is a dc arc heated supersonic nozzle source which produces a flux of atomic oxygen in excess of 10 to the 15th power sq cm/sec at the target, at a velocity of 3.5 km/sec. Results of applications of this facility to the study of the reactions of atomic oxygen with carbon and polyimide films are briefly reviewed and compared to data obtained on various flights of the space shuttle. A brief discussion of possible application of this facility to investigation of chemical reactions which might contribute to atmosphere induced vehicle glow is presented.

  2. Empirical validation of the conceptual design of the LLNL 60-kg contained-firing facility

    SciTech Connect

    Pastrnak, J.W.; Baker, C.F.; Simmons, L.F.

    1995-02-24

    In anticipation of increasingly stringent environmental regulations, Lawrence Livermore National Laboratory (LLNL) is proposing to modify an existing facility to add a 60-kg firing chamber and related support areas. This modification will provide blast-effects containment for most of its open-air, high-explosive, firing operations. Even though these operations are within current environmental limits, containment of the blast effects and hazardous debris will further drastically reduce emissions to the environment and minimize the hazardous waste generated. The major design consideration of such a chamber is its overall structural dynamic response in terms of its long-term ability to contain all blast effects from repeated internal detonations of high explosives. Another concern is how much other portions of the facility outside the firing chamber must be hardened to ensure personnel protection in the event of an accidental detonation while the chamber door is open. To assess these concerns, a 1/4-scale replica model of the planned contained firing chamber was engineered, constructed, and tested with scaled explosive charges ranging from 25 to 125% of the operational explosives limit of 60 kg. From 16 detonations of high explosives, 880 resulting strains, blast pressures, and temperatures within the model were measured to provide information for the final design.

  3. Letter Report. Defense Waste Processing Facility Pour Spout Heaters - Conceptual Designs and Modeling

    SciTech Connect

    SK Sundaram; JM Perez, Jr.

    2000-09-06

    The Tanks Focus Area (TFA) identified a major task to address performance limitations and deficiencies of the Defense Waste Processing Facility (DWPF) now in its sixth year of operation. Design, installation, testing, monitoring, operability, and a number of other characteristics were studied by research personnel collaboratively at a number of facilities: Savannah River Technology Center (SRTC), Clemson Environmental Technologies Laboratory (CETL), Pacific Northwest National Laboratory (PNNL), and the Idaho National Engineering and Environmental Laboratory (INEEL). Because the potential limiting feature to the DWPF was identified as the pour spout/riser heater, researches on alternative design concepts originally proposed in the past were revisited. In the original works, finite element modeling was performed to evaluate temperature distribution and stress of the design currently used at the DWPF. Studies were also made to define the requirements of the design and to consider the approaches for remote removal/replacement. Their heater type/location, their remotely replaceable thermocouples, and their capabilities for remote handling characterized the five alternative designs proposed. Review comments on the alternative designs indicated a relatively wide range of advantages and disadvantages of the designs. The present report provides an overview of the design criteria, modeling results, and alternative designs. Based on a review of the past design optimization activities and an assessment of recent experience, recommendations are proposed for future consideration and improvement.

  4. Onboard Experiment Data Support Facility (OEDSF): Conceptual design study. [for space shuttle

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The Onboard Experimental Data Support Facility (OEDSF) is an inflight data processor based on a totally new architecture specifically developed to cost-effectively process the data of Shuttle payloads sensors. Processing data onboard fills the following needs: (1) reduction of data bulk by conversion to information (2)quick-look for evaluation, interactive operation, etc. (3) real-time computation of engineering representation of sensed phenomena. For example: Value of backscatter coefficient (sigma) of a scatterometer as a function of latitude and longitude (4) exploitation of the real-time availability of ancillary data, thereby obviating the need for time-tagging, recording, and recorrelation and (5) providing data or information immediately usable by the experimenter or user. The OEDSF is made up of modular and cascadable matrix processors. Each matrix has been sized to process the data of a full typical shuttle payload. Cost analyses indicate that significant savings are realized by processing data with the OEDSF compared with conventional ground facilities.

  5. Overview of the Conceptual Design of the Future VENUS Neutron Imaging Beam Line at the Spallation Neutron Source

    NASA Astrophysics Data System (ADS)

    Bilheux, Hassina; Herwig, Ken; Keener, Scott; Davis, Larry

    VENUS (Versatile Neutron Imaging Beam line at the Spallation Neutron Source) will be a world-class neutron-imaging instrument that will uniquely utilize the Spallation Neutron Source (SNS) time-of-flight (TOF) capabilities to measure and characterize objects across several length scales (mm to μm). When completed, VENUS will provide academia, industry and government laboratories with the opportunity to advance scientific research in areas such as energy, materials, additive manufacturing, geosciences, transportation, engineering, plant physiology, biology, etc. It is anticipated that a good portion of the VENUS user community will have a strong engineering/industrial research focus. Installed at Beam line 10 (BL10), VENUS will be a 25-m neutron imaging facility with the capability to fully illuminate (i.e., umbra illumination) a 20 cm x 20 cm detector area. The design allows for a 28 cm x 28 cm field of view when using the penumbra to 80% of the full illumination flux. A sample position at 20 m will be implemented for magnification measurements. The optical components are comprised of a series of selected apertures, T0 and bandwidth choppers, beam scrapers, a fast shutter to limit sample activation, and flight tubes filled with Helium. Techniques such as energy selective, Bragg edge and epithermal imaging will be available at VENUS.

  6. Future carbon beams at SPIRAL1 facility: Which method is the most efficient?

    SciTech Connect

    Maunoury, L. Delahaye, P.; Dubois, M.; Dupuis, M.; Frigot, R.; Grinyer, J.; Jardin, P.; Leboucher, C.

    2014-02-15

    Compared to in-flight facilities, Isotope Separator On-Line ones can in principle produce significantly higher radioactive ion beam intensities. On the other hand, they have to cope with delays for the release and ionization which make the production of short-lived isotopes ion beams of reactive and refractory elements particularly difficult. Many efforts are focused on extending the capabilities of ISOL facilities to those challenging beams. In this context, the development of carbon beams is triggering interest [H. Frånberg, M. Ammann, H. W. Gäggeler, and U. Köster, Rev. Sci. Instrum. 77, 03A708 (2006); M. Kronberger, A. Gottberg, T. M. Mendonca, J. P. Ramos, C. Seiffert, P. Suominen, and T. Stora, in Proceedings of the EMIS 2012 [Nucl. Instrum. Methods Phys. Res. B Production of molecular sideband radioisotope beams at CERN-ISOLDE using a Helicon-type plasma ion source (to be published)]: despite its refractory nature, radioactive carbon beams can be produced from molecules (CO or CO{sub 2}), which can subsequently be broken up and multi-ionized to the required charge state in charge breeders or ECR sources. This contribution will present results of experiments conducted at LPSC with the Phoenix charge breeder and at GANIL with the Nanogan ECR ion source for the ionization of carbon beams in the frame of the ENSAR and EMILIE projects. Carbon is to date the lightest condensable element charge bred with an ECR ion source. Charge breeding efficiencies will be compared with those obtained using Nanogan ECRIS and charge breeding times will be presented as well.

  7. IFMIF - International Fusion Materials Irradiation Facility Conceptual Design Activity/Interim Report

    SciTech Connect

    Rennich, M.J.

    1995-12-01

    Environmental acceptability, safety, and economic viability win ultimately be the keys to the widespread introduction of fusion power. This will entail the development of radiation- resistant and low- activation materials. These low-activation materials must also survive exposure to damage from neutrons having an energy spectrum peaked near 14 MeV with annual radiation doses in the range of 20 displacements per atom (dpa). Testing of candidate materials, therefore, requires a high-flux source of high energy neutrons. The problem is that there is currently no high-flux source of neutrons in the energy range above a few MeV. The goal, is therefore, to provide an irradiation facility for use by fusion material scientists in the search for low-activation and damage-resistant materials. An accellerator-based neutron source has been established through a number of international studies and workshops` as an essential step for materials development and testing. The mission of the International Fusion Materials Irradiation Facility (IFMIF) is to provide an accelerator-based, deuterium-lithium (D-Li) neutron source to produce high energy neutrons at sufficient intensity and irradiation volume to test samples of candidate materials up to about a full lifetime of anticipated use in fusion energy reactors. would also provide calibration and validation of data from fission reactor and other accelerator-based irradiation tests. It would generate material- specific activation and radiological properties data, and support the analysis of materials for use in safety, maintenance, recycling, decommissioning, and waste disposal systems.

  8. Beam-single and beam-two-foil experimental facility to study physics of highly charged ions

    SciTech Connect

    Ahmad, Nissar; Wani, A.A.; Ram, R.; Abhilash, S.R.; Kumar, Rakesh; Patnaik, J.K.; De, Sankar; Karn, R.K.; Nandi, T.

    2006-03-15

    A facility for lifetime measurement of metastable states in highly charged ions using the beam-foil technique with a single-foil and a two-foil target has been developed. In the two-foil technique, one foil moves with respect to the other and the option of varying the thickness of the fixed foil online has been implemented. A holder with multiple foils is used as a fixed target, and moved along x, y, and {theta}, the angle of rotation with respect to beam direction along the z axis. Using this facility, the He-like 1s2p {sup 3}P{sub 2}{sup o} and Li-like 1s2s2p {sup 4}P{sub 5l/2}{sup o} titanium lifetimes have been measured and compared with earlier values. In addition to this, the processes which occur when excited states collide with carbon foils of different thicknesses have also been investigated. Preliminary results suggest the scope of studying intrashell transitions during ion-solid collision using this setup. In this article, the setup is described in detail and representative results are briefly discussed.

  9. Status of ECR ion sources for the Facility for Rare Isotope Beams (FRIB) (invited).

    PubMed

    Machicoane, Guillaume; Felice, Helene; Fogleman, Jesse; Hafalia, Ray; Morgan, Glenn; Pan, Heng; Prestemon, Soren; Pozdeyev, Eduard; Rao, Xing; Ren, Haitao; Tobos, Larry

    2016-02-01

    Ahead of the commissioning schedule, installation of the first Electron Cyclotron Resonance (ECR) ion source in the front end area of the Facility for Rare Isotope Beam (FRIB) is planned for the end of 2015. Operating at 14 GHz, this first ECR will be used for the commissioning and initial operation of the facility. In parallel, a superconducting magnet structure compatible with operation at 28 GHz for a new ECR ion source is in development at Lawrence Berkeley National Laboratory. The paper reviews the overall work in progress and development done with ECR ion sources for FRIB. PMID:26931961

  10. Thermal shock tests with beryllium coupons in the electron beam facility JUDITH

    SciTech Connect

    Roedig, M.; Duwe, R.; Schuster, J.L.A.

    1995-09-01

    Several grades of American and Russian beryllium have been tested in high heat flux tests by means of an electron beam facility. For safety reasons, major modifications of the facility had to be fulfilled in advance to the tests. The influence of energy densities has been investigated in the range between 1 and 7 MJ/m{sup 2}. In addition the influence of an increasing number of shots at constant energy density has been studied. For all samples, surface profiles have been measured before and after the experiments. Additional information has been gained from scanning electron microscopy, and from metallography.

  11. Status of ECR ion sources for the Facility for Rare Isotope Beams (FRIB) (invited)

    NASA Astrophysics Data System (ADS)

    Machicoane, Guillaume; Felice, Helene; Fogleman, Jesse; Hafalia, Ray; Morgan, Glenn; Pan, Heng; Prestemon, Soren; Pozdeyev, Eduard; Rao, Xing; Ren, Haitao; Tobos, Larry

    2016-02-01

    Ahead of the commissioning schedule, installation of the first Electron Cyclotron Resonance (ECR) ion source in the front end area of the Facility for Rare Isotope Beam (FRIB) is planned for the end of 2015. Operating at 14 GHz, this first ECR will be used for the commissioning and initial operation of the facility. In parallel, a superconducting magnet structure compatible with operation at 28 GHz for a new ECR ion source is in development at Lawrence Berkeley National Laboratory. The paper reviews the overall work in progress and development done with ECR ion sources for FRIB.

  12. Conceptual Design of a Clinical BNCT Beam in an Adjacent Dry Cell of the Jozef Stefan Institute TRIGA Reactor

    SciTech Connect

    Maucec, Marko

    2000-11-15

    The MCNP4B Monte Carlo transport code is used in a feasibility study of the epithermal neutron boron neutron capture therapy facility in the thermalizing column of the 250-kW TRIGA Mark II reactor at the Jozef Stefan Institute (JSI). To boost the epithermal neutron flux at the reference irradiation point, the efficiency of a fission plate with almost 1.5 kg of 20% enriched uranium and 2.3 kW of thermal power is investigated. With the same purpose in mind, the TRIGA reactor core setup is optimized, and standard fresh fuel elements are concentrated partly in the outermost ring of the core. Further, a detailed parametric study of the materials and dimensions for all the relevant parts of the irradiation facility is carried out. Some of the standard epithermal neutron filter/moderator materials, as well as 'pressed-only' low-density Al{sub 2}O{sub 3} and AlF{sub 3}, are considered. The proposed version of the BNCT facility, with PbF{sub 2} as the epithermal neutron filter/moderator, provides an epithermal neutron flux of {approx}1.1 x 10{sup 9} n/cm{sup 2}.s, thus enabling patient irradiation times of <60 min. With reasonably low fast neutron and photon contamination ([overdot]D{sub nfast}/{phi}{sub epi} < 5 x 10{sup -13} Gy.cm{sup 2}/n and [overdot]D{sub {gamma}} /{phi}{sub epi} < 3 x 10{sup -13} Gy.cm{sup 2}/n), the in-air performances of the proposed beam are comparable to all existing epithermal BNCT facilities. The design presents an equally efficient alternative to the BNCT beams in TRIGA reactor thermal columns that are more commonly applied. The cavity of the dry cell, a former JSI TRIGA reactor spent-fuel storage facility, adjacent to the thermalizing column, could rather easily be rearranged into a suitable patient treatment room, which would substantially decrease the overall developmental costs.

  13. Experimental facility for two- and three-dimensional ultrafast electron beam x-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Stürzel, T.; Bieberle, M.; Laurien, E.; Hampel, U.; Barthel, F.; Menz, H.-J.; Mayer, H.-G.

    2011-02-01

    An experimental facility is described, which has been designed to perform ultrafast two-dimensional (2D) and three-dimensional (3D) electron beam computed tomographies. As a novelty, a specially designed transparent target enables tomography with no axial offset for 2D imaging and high axial resolution 3D imaging employing the cone-beam tomography principles. The imaging speed is 10 000 frames per second for planar scanning and more than 1000 frames per second for 3D imaging. The facility serves a broad spectrum of potential applications; primarily, the study of multiphase flows, but also in principle nondestructive testing or small animal imaging. In order to demonstrate the aptitude for these applications, static phantom experiments at a frame rate of 2000 frames per second were performed. Resulting spatial resolution was found to be 1.2 mm and better for a reduced temporal resolution.

  14. Characteristics of a contract electron beam and bremsstrahlung (X-ray) irradiation facility of Radia industry

    NASA Astrophysics Data System (ADS)

    Takehisa, Masaaki; Saito, Toshio; Takahashi, Thoru; Sato, Yoshishige; Sato, Toshio

    1993-07-01

    A contract electron beam(EB) and bremsstrahlung(X-ray) facility with use of NHV 5 MeV, 30 mA Cock-Croft Walton machine is operational for EB since April 1991, and X-ray commercial irradiation was started in 1992 summer. The facility is consisted of the EB machine, bremsstrahlung target, chain and roller conveyor, and automatic turnover machine for dual sided irradiation. The operation of the system is fully controlled by LAN of personal computers for client's order, EB characteristics, beam current control proportional to the conveyor speed, turnover of product in processing mid point, and output of processing record to clients. The control and recording systems avoid human errors. This paper mainly discusses X-ray processing.

  15. Electron beam-plasma interaction experiments with the Versatile Toroidal Facility (VTF)

    SciTech Connect

    Murphy, S.M.; Lee, M.C.; Moriarty, D.T.; Riddolls, R.J.

    1995-12-31

    The laboratory investigation of electron beam-plasma interactions is motivated by the recent space shuttle experiments. Interesting but puzzling phenomena were observed in the shuttle experiments such as the bulk heating of background ionospheric plasmas by the injected electron beams and the excitation of plasma waves in the frequency range of ELF waves. The plasma machine, the Versatile Toroidal Facility (VTF) can generate a large magnetized plasma with the electron plasma frequency greater than the electron gyrofrequency by a factor of 3--5 similar to the plasma condition in the ionosphere. Short pulses of electron beams are injected into the VTF plasmas in order to simulate the beam injection from spacecrafts in the ionosphere. A Langmuir probe installed at a bottom port of VTF monitors the spatial variation of electron beams emitted from LaB6 filaments. An energy analyzer has been used to determine the particle energy distribution in the VTF plasmas. Several mechanisms will be tested as potential causes of the bulk heating of background plasmas by the injected electron beams as seen in the space shuttle experiments. It is speculated that the observed ELF emissions result from the excitation of purely growing modes detected by the space shuttle-borne detectors. Results of the laboratory experiments will be reported to corroborate this speculation.

  16. The mechanical design for the second axis beam transport line for the DARHT facility

    SciTech Connect

    Bertolini, L R; Alford, O J; Paul, A C; Shang, C C; Westenkow, G A

    1999-03-23

    This paper describes the mechanical design of the downstream beam transport line for the second axis of the Dual Axis Radiographic Hydrodynamic Test (DARHT II) facility. The DARHT II project is a collaboration between LANL, LBNL, and LLNL. DARHT II is a 20-MeV, 2000-Amperes, 2-µsec pulse length linear induction accelerator designed to generate short bursts of x-rays for the purpose of radiographing dense objects. The downstream beam transport line is an 18-meter long region extending from the end of the accelerator to the bremsstrahlung target. Within this proposed transport line there are 17 conventional solenoid, quadrupole and dipole magnets; as well as several specialty magnets, which transport and focus the beam to the target and beam dumps. There is a high power beam dump, which is designed to absorb the 80-kJ of beam energy during accelerator start-up and operation. The beamline vacuum chamber has an 8-cm diameter aperture and operates at an average pressure of 10-7 Torr.

  17. Design progress for the National Ignition Facility laser alignment and beam diagnostics

    SciTech Connect

    Thomas, S W; Bliss, E S; Boege, S J; Boyd, R D; Bronisz, L; Bruker, J; C W Lauman, McCarville, T J; Chocol, C; Davis, D T; Demaret, R D; Feldman, M; Gates, A J; Holdener, F R; Hollis, J; Knopp, C F; Kyker, R; Miller, J L; Miller-Kamm, V J; Rivera, W E; Salmon, J T; Severyn, J R; Sheem, S K; Sheridan, T; Thompson, D Y; Wang, M F; Witaker, D; Yoeman, M F; Zacharias, R A

    1998-09-09

    Earlier papers have described approaches to NIF alignment and laser diagnostics tasks. 1,2,3 Now, detailed design of alignment and diagnostic systems for the National Ignition Facility (NIF) laser is in its last year. Specifications are more detailed, additional analyses have been completed, Pro-E models have been developed, and prototypes of specific items have been built. In this paper we update top level concepts, illustrate specific areas of progress, and show design implementations as represented by prototype hardware. The alignment light source network has been fully defined. It utilizes an optimized number of lasers combined with fiber optic distribution to provide the chain alignment beams, system centering references, final spatial filter pinhole references, target alignment beams, and wavefront reference beams. The input and output sensors are being prototyped. They are located respectively in the front end just before beam injection into the full aperture chain and at the transport spatial filter, where the full energy infrared beam leaves the laser. The modularity of the input sensor is improved, and each output sensor mechanical package now incorporates instrumentation for four beams. Additional prototype hardware has been tested for function, and lifetime tests are underway. We report some initial results.

  18. Spoke cavity power coupler conceptual design work for the HEL-JTO beam exp.

    SciTech Connect

    Rusnak, B

    2007-10-09

    The objective of this report was to create a low-cost, modest-power RF coupler for a SRF spoke cavity beam test of electrons test to be done at LANL. Developing the design for this magnetically-coupled SRF spoke cavity testing coupler was basically straightforward since the cavity coupling port needed to be one of the 1.22-inch ID ports, and the power level was limited by the available RF to less than 400 W TW power. In addition, the coupler would be immersed in bath cryostat filled with liquid helium, and ultimately used in a pulsed mode to accelerate beam, thereby significantly relaxing the thermal loads on the coupler. Combining the above considerations with the level of resources available for this task, emphasis was placed on rapidly developing a robust, reliable design that would use commercially-available components as available to save design, engineering, and fabrication costs. Analysis was also kept to a minimum. As such, the design incorporates the following features: (1) Use of a commercially-available Type-N ceramic feedthrough. For the power and frequency range of the test, with the feedthrough immersed in LHe, it was felt the Type-N feedthrough would provide a robust, low-cost vacuum window solution. (2) The coupler outer conductors would be solid OFE copper that is brazed into two 2.75-inch CFF, with the cavity-sde flange being rotatable to allow minor Qx adjustments by rotating the coupler. The braze joint shown has the copper brazed into a groove in the SST to ensure maximum strength for successive thermal cyclings. The outer wall of the copper between the two flanges serves as the heat sink for depositing coupler heat to the liquid helium. (3) The inner conductor would be solid OFE copper brazed to the outer conductor at the top to ensure maximum thermal conductivity from the outer thermal sink area to the base of the feedthrough. A mass-reducing hole is placed down the center of the inner conductor to decrease thermal mass and weight. (4) This

  19. On-line neutron beam monitoring of the Finnish BNCT facility

    NASA Astrophysics Data System (ADS)

    Tanner, Vesa; Auterinen, Iiro; Helin, Jori; Kosunen, Antti; Savolainen, Sauli

    1999-02-01

    A Boron Neutron Capture Therapy (BNCT) facility has been built at the FiR 1 research reactor of VTT Chemical Technology in Espoo, Finland. The facility is currently undergoing dosimetry characterisation and neutron beam operation research for clinical trials. The healthy tissue tolerance study, which was carried out in the new facility during spring 1998, demonstrated the reliability and user-friendliness of the new on-line beam monitoring system designed and constructed for BNCT by VTT Chemical Technology. The epithermal neutron beam is monitored at a bismuth gamma shield after an aluminiumfluoride-aluminium moderator. The detectors are three pulse mode U 235-fission chambers for epithermal neutron fluence rate and one current mode ionisation chamber for gamma dose rate. By using different detector sensitivities the beam intensity can be measured over a wide range of reactor power levels (0.001-250 kW). The detector signals are monitored on-line with a virtual instrumentation (LabView) based PC-program, which records and displays the actual count rates and total counts of the detectors in the beam. Also reactor in-core power instrumentation and control rod positions can be monitored via another LabView application. The main purpose of the monitoring system is to provide a dosimetric link to the dose in a patient during the treatment, as the fission chamber count rates have been calibrated to the induced thermal neutron fluence rate and to the absorbed dose rate at reference conditions in a tissue substitute phantom.

  20. Conceptual design and optimization for JET water detritiation system cryo-distillation facility

    SciTech Connect

    Lefebvre, X.; Hollingsworth, A.; Parracho, A.; Dalgliesh, P.; Butler, B.; Smith, R.

    2015-03-15

    The aim of the Exhaust Detritiation System (EDS) of the JET Active Gas Handling System (AGHS) is to convert all Q-based species (Q{sub 2}, Q-hydrocarbons) into Q{sub 2}O (Q being indifferently H, D or T) which is then trapped on molecular sieve beds (MSB). Regenerating the saturated MSBs leads to the production of tritiated water which is stored in Briggs drums. An alternative disposal solution to offsite shipping, is to process the tritiated water onsite via the implementation of a Water Detritiation System (WDS) based, in part, on the combination of an electrolyser and a cryo-distillation (CD) facility. The CD system will separate a Q{sub 2} mixture into a de-tritiated hydrogen stream for safe release and a tritiated stream for further processing on existing AGHS subsystems. A sensitivity study of the Souers' model using the simulation program ProSimPlus (edited by ProSim S.A.) has then been undertaken in order to perform an optimised dimensioning of the cryo-distillation system in terms of available cooling technologies, cost of investment, cost of operations, process performance and safety. (authors)

  1. Space Station Furnace Facility. Volume 2: Requirements definition and conceptual design study. Appendix 3: Environment analysis

    NASA Astrophysics Data System (ADS)

    1992-05-01

    A Preliminary Safety Analysis (PSA) is being accomplished as part of the Space Station Furnace Facility (SSFF) contract. This analysis is intended to support SSFF activities by analyzing concepts and designs as they mature to develop essential safety requirements for inclusion in the appropriate specifications, and designs, as early as possible. In addition, the analysis identifies significant safety concerns that may warrant specific trade studies or design definition, etc. The analysis activity to date concentrated on hazard and hazard cause identification and requirements development with the goal of developing a baseline set of detailed requirements to support trade study, specifications development, and preliminary design activities. The analysis activity will continue as the design and concepts mature. Section 2 defines what was analyzed, but it is likely that the SSFF definitions will undergo further changes. The safety analysis activity will reflect these changes as they occur. The analysis provides the foundation for later safety activities. The hazards identified will in most cases have Preliminary Design Review (PDR) applicability. The requirements and recommendations developed for each hazard will be tracked to ensure proper and early resolution of safety concerns.

  2. Space Station Furnace Facility. Volume 2: Requirements definition and conceptual design study. Appendix 3: Environment analysis

    NASA Technical Reports Server (NTRS)

    1992-01-01

    A Preliminary Safety Analysis (PSA) is being accomplished as part of the Space Station Furnace Facility (SSFF) contract. This analysis is intended to support SSFF activities by analyzing concepts and designs as they mature to develop essential safety requirements for inclusion in the appropriate specifications, and designs, as early as possible. In addition, the analysis identifies significant safety concerns that may warrant specific trade studies or design definition, etc. The analysis activity to date concentrated on hazard and hazard cause identification and requirements development with the goal of developing a baseline set of detailed requirements to support trade study, specifications development, and preliminary design activities. The analysis activity will continue as the design and concepts mature. Section 2 defines what was analyzed, but it is likely that the SSFF definitions will undergo further changes. The safety analysis activity will reflect these changes as they occur. The analysis provides the foundation for later safety activities. The hazards identified will in most cases have Preliminary Design Review (PDR) applicability. The requirements and recommendations developed for each hazard will be tracked to ensure proper and early resolution of safety concerns.

  3. Evaluation test of the energy monitoring device in industrial electron beam facilities

    NASA Astrophysics Data System (ADS)

    Fuochi, P. G.; Lavalle, M.; Martelli, A.; Corda, U.; Cornia, G.; Kovács, A.

    2009-07-01

    The electron beam energy monitoring device, previously developed and tested under standard laboratory conditions using electron beams in the energy range 4-12 MeV, has now been tested under industrial irradiation conditions in high-energy, high-power electron beam facilities. The measuring instrument was improved in order to measure high peak current delivered at low pulse repetition rate as well. Tests, with good results, were carried out at two different EB plants: one equipped with a LUE-8 linear electron accelerator of 7 MeV maximum energy used for cross-linking of cables and for medical device sterilization, and the other with a 10 MeV Rhodotron type TT 100 used for in-house sterilization.

  4. Letter report: Pre-conceptual design study for a pilot-scale Non-Radioactive Low-Level Waste Vitrification Facility

    SciTech Connect

    Thompson, R.A.; Morrissey, M.F.

    1996-03-01

    This report presents a pre-conceptual design study for a Non-Radioactive Low-Level Waste, Pilot-Scale Vitrification System. This pilot plant would support the development of a full-scale LLW Vitrification Facility and would ensure that the full-scale facility can meet its programmatic objectives. Use of the pilot facility will allow verification of process flowsheets, provide data for ensuring product quality, assist in scaling to full scale, and support full-scale start-up. The facility will vitrify simulated non-radioactive LLW in a manner functionally prototypic to the full-scale facility. This pre-conceptual design study does not fully define the LLW Pilot-Scale Vitrification System; rather, it estimates the funding required to build such a facility. This study includes identifying all equipment necessary. to prepare feed, deliver it into the melter, convert the feed to glass, prepare emissions for atmospheric release, and discharge and handle the glass. The conceived pilot facility includes support services and a structure to contain process equipment.

  5. Transverse beam motion on the second axis of the dual axis radiographic hydrodynamic test facility

    SciTech Connect

    Caporaso, G J; Chen, Y J; Fawley, W M; Paul, A C

    1999-03-23

    The accelerator on the second-axis of the Dual-Axis Radiographic Hydrodynamic Test (DARHT-II) facility will generate a 20 MeV, 2-4 kA, 2 µs long electron beam with an energy variation {<=} ± 0.5%. Four short current pulses with various lengths will be selected out of this 2 µs long current pulse and delivered to an x-ray converter target. The DARHT-II radiographic resolution requires these electron pulses to be focused to sub-millimeter spots on Bremsstrahlung targets with peak-to-peak transverse beam motion less than a few hundred microns. We have modeled the transverse beam motion, including the beam breakup instability, corkscrew motion, transverse resistive wall instability and beam induced transverse deflection in the kicker system, from the DARHT-II injector exit to the x-ray converter target. Simulations show that the transverse motion at the x-ray converters satisfies the DARHT-II radiographic requirements.

  6. ATTO SECOND ELECTRON BEAMS GENERATION AND CHARACTERIZATION EXPERIMENT AT THE ACCELERATOR TEST FACILITY.

    SciTech Connect

    ZOLOTOREV, M.; ZHOLENTS, A.; WANG, X.J.; BABZIEN, M.; SKARITKA, J.; RAKOWSKY, G.; YAKIMENKO, V.

    2002-02-01

    We are proposing an Atto-second electron beam generation and diagnostics experiment at the Brookhaven Accelerator Test facility (ATF) using 1 {micro}m Inverse Free Electron Laser (IFEL). The proposed experiment will be carried out by an BNL/LBNL collaboration, and it will be installed at the ATF beam line II. The proposed experiment will employ a one-meter long undulator with 1.8 cm period (VISA undulator). The electron beam energy will be 63 MeV with emittance less than 2 mm-mrad and energy spread less than 0.05%. The ATF photocathode injector driving laser will be used for energy modulation by Inverse Free Electron Laser (IFEL). With 10 MW laser peak power, about 2% total energy modulation is expected. The energy modulated electron beam will be further bunched through either a drift space or a three magnet chicane into atto-second electron bunches. The attosecond electron beam bunches will be analyzed using the coherent transition radiation (CTR).

  7. Beam Homogeneity Dependence on the Magnetic Filter Field at the IPP Test Facility MANITU

    NASA Astrophysics Data System (ADS)

    Franzen, P.; Fantz, U.

    2011-09-01

    The homogeneity of the extracted current density from the large RF driven negative hydrogen ion sources of the ITER neutral beam system is a critical issue for the transmission of the negative ion beam through the accelerator and the beamline components. As a first test, the beam homogeneity at the IPP long pulse test facility MANITU is measured by means of the divergence and the stripping profiles obtained with a spatially resolved Doppler-shift spectroscopy system. Since MANITU is typically operating below the optimum perveance, an increase in the divergence corresponds to a lower local extracted negative ion current density if the extraction voltage is constant. The beam Hα Doppler-shift spectroscopy is a rather simple tool, as no absolute calibration—both for the wavelength and the emission—is necessary. Even no relative calibration of the different used lines of sight is necessary for divergence and stripping profiles as these quantities can be obtained by the line broadening of the Doppler-shifted peak and the ratio of the integral of the stripping peak to the integral of the Doppler-shifted peak, respectively. The paper describes the Hα MANITU Doppler-shift spectroscopy system which is now operating routinely and the evaluation methods of the divergence and the stripping profiles. Beam homogeneity measurements are presented for different extraction areas and magnetic filter field configurations both for Hydrogen and Deuterium operation; the results are compared with homogeneity measurements of the source plasma. The stripping loss measurements are compared with model calculations.

  8. The Continuous Electron Beam Accelerator Facility: CEBAF at the Jefferson Laboratory

    SciTech Connect

    Leemann, Chrisoph; Douglas, David R; Krafft, Geoffrey A

    2001-08-01

    The Jefferson Laboratory's superconducting radiofrequency (srf) Continuous Electron Beam Accelerator Facility (CEBAF) provides multi-GeV continuous-wave (cw) beams for experiments at the nuclear and particle physics interface. CEBAF comprises two antiparallel linacs linked by nine recirculation beam lines for up to five passes. By the early 1990s, accelerator installation was proceeding in parallel with commissioning. By the mid-1990s, CEBAF was providing simultaneous beams at different but correlated energies up to 4 GeV to three experimental halls. By 2000, with srf development having raised the average cavity gradient up to 7.5 MV/m, energies up to nearly 6 GeV were routine, at 1-150 muA for two halls and 1-100 nA for the other. Also routine are beams of >75% polarization. Physics results have led to new questions about the quark structure of nuclei, and therefore to user demand for a planned 12 GeV upgrade. CEBAF's enabling srf technology is also being applied in other projects.

  9. Development of an external beam nuclear microprobe on the Aglae facility of the Louvre museum

    NASA Astrophysics Data System (ADS)

    Calligaro, T.; Dran, J.-C.; Ioannidou, E.; Moignard, B.; Pichon, L.; Salomon, J.

    2000-03-01

    The external beam line of our facility has been recently equipped with the focusing system previously mounted on a classical nuclear microprobe. When using a 0.1 μm thick Si 3N 4 foil for the exit window and flowing helium on the sample under analysis, a beam spot as small as 10 μm is attainable at a distance of 3 mm from the window. Elemental micromapping is performed by mechanical scanning. An electronic device has been designed which allows XY scanning by moving the sample under the beam by steps down to 0.1 μm. Beam monitoring is carried out by means of the weak X-ray signal emitted by the exit foil and detected by a specially designed Si(Li) detector cooled by Peltier effect. The characteristics of external beams of protons and alpha particles are evaluated by means of resonance scanning and elemental mapping of a grid. An example of application is presented, dealing with elemental micro-mapping of inclusions in gemstones.

  10. Instrumentation and beam dynamics study of advanced electron-photon facility in Indiana University

    NASA Astrophysics Data System (ADS)

    Luo, Tianhuan

    The Advanced eLectron-PHoton fAcility (ALPHA) is a compact electron accelerator under construction and being commissioned at the Indiana University Center for Exploration of Energy and Matter (CEEM). In this thesis, we have studied the refurbished Cooler Injector Synchrotron (CIS) RF cavity using both the transmission line model and SUPERFISH simulation. Both low power and high power RF measurements have been carried out to characterize the cavity. Considering the performance limit of ferrite, we have designed a new ferrite loaded, co-axial quarter wave like cavity with similar structure but a more suitable ferrite material. We have also designed a traveling wave stripline kicker for fast extraction by POISSON and Microwave Studio. The strips' geometry is trimmed to maximize the uniformity of the kicking field and match the impedance of the power cables. The time response simulation shows the kicker is fast enough for machine operation. The pulsed power supply requirement has also been speci ed. For the beam diagnosis in the longitudinal direction, we use a wideband Wall Gap Monitor (WGM) served in CIS. With proper shielding and amplification to get good WGM signal, we have characterized the injected and extracted beam signal in single pass commissioning, and also verified the debunching effect of the ALPHA storage ring. A modulation-demodulation signal processing method is developed to measure the current and longitudinal profile of injected beam. By scanning the dipole strength in the injection line, we have reconstructed the tomography of the longitudinal phase space of the LINAC beam. In the accumulation mode, ALPHA will be operated under a low energy and high current condition, where intra beam scattering (IBS) becomes a dominant effect on the beam emittance. A self consistent simulation, including IBS effect, gas scattering and linear coupling, has been carried out to calculate the emittance of the stored beam.

  11. Instrumentation and Beam Dynamics Study of Advanced Electron-Photon Facility in Indiana University

    SciTech Connect

    Luo, Tianhuan

    2011-08-01

    The Advanced eLectron-PHoton fAcility (ALPHA) is a compact electron accelerator under construction and being commissioned at the Indiana University Center for Exploration of Energy and Matter (CEEM). In this thesis, we have studied the refurbished Cooler Injector Synchrotron (CIS) RF cavity using both the transmission line model and SUPERFISH simulation. Both low power and high power RF measurements have been carried out to characterize the cavity. Considering the performance limit of ferrite, we have designed a new ferrite loaded, co-axial quarter wave like cavity with similar structure but a more suitable ferrite material. We have also designed a traveling wave stripline kicker for fast extraction by POISSON and Microwave Studio. The strips geometry is trimmed to maximize the uniformity of the kicking field and match the impedance of the power cables. The time response simulation shows the kicker is fast enough for machine operation. The pulsed power supply requirement has also been specified. For the beam diagnosis in the longitudinal direction, we use a wideband Wall Gap Monitor (WGM) served in CIS. With proper shielding and amplification to get good WGM signal, we have characterized the injected and extracted beam signal in single pass commissioning, and also verified the debunching effect of the ALPHA storage ring. A modulation-demodulation signal processing method is developed to measure the current and longitudinal profile of injected beam. By scanning the dipole strength in the injection line, we have reconstructed the tomography of the longitudinal phase space of the LINAC beam. In the accumulation mode, ALPHA will be operated under a low energy and high current condition, where intra beam scattering (IBS) becomes a dominant effect on the beam emittance. A self consistent simulation, including IBS effect, gas scattering and linear coupling, has been carried out to calculate the emittance of the stored beam.

  12. Potential applications of fusion neutral beam facilities for advanced material processing

    SciTech Connect

    Williams, J.M.; Tsai, C.C.; Stirling, W.L.; Whealton, J.H.

    1994-01-01

    Surface processing techniques involving high energy ion implantation have achieved commercial success for semiconductors and biomaterials. However, wider use has been limited in good part by economic factors, some of which are related to the line-of-sight nature of the beam implantation process. Plasma source ion implantation is intended to remove some of the limitations imposed by directionality of beam systems and also to help provide economies of scale. The present paper will outline relevant technologies and areas of expertise that exist at Oak Ridge National Laboratory in relation to possible future needs in materials processing. Experience in generation of plasmas, control of ionization states, pulsed extraction, and sheath physics exists. Contributions to future technology can be made either for the immersion mode or for the extracted beam mode. Existing facilities include the High Power Test Facility, which could conservatively operate at 1 A of continuous current at 100 kV delivered to areas of about 1 m{sup 2}. Higher instantaneous voltages and currents are available with a reduced duty cycle. Another facility, the High Heat Flux Facility can supply a maximum of 60 kV and currents of up to 60 A for 2 s on a 10% duty cycle. Plasmas may be generated by use of microwaves, radio-frequency induction or other methods and plasma properties may be tailored to suit specific needs. In addition to ion implantation of large steel components, foreseeable applications include ion implantation of polymers, ion implantation of Ti alloys, Al alloys, or other reactive surfaces.

  13. A nuclear physics program at the Rare Isotope Beams Accelerator Facility in Korea

    SciTech Connect

    Moon, Chang-Bum

    2014-04-15

    This paper outlines the new physics possibilities that fall within the field of nuclear structure and astrophysics based on experiments with radioactive ion beams at the future Rare Isotope Beams Accelerator facility in Korea. This ambitious multi-beam facility has both an Isotope Separation On Line (ISOL) and fragmentation capability to produce rare isotopes beams (RIBs) and will be capable of producing and accelerating beams of wide range mass of nuclides with energies of a few to hundreds MeV per nucleon. The large dynamic range of reaccelerated RIBs will allow the optimization in each nuclear reaction case with respect to cross section and channel opening. The low energy RIBs around Coulomb barrier offer nuclear reactions such as elastic resonance scatterings, one or two particle transfers, Coulomb multiple-excitations, fusion-evaporations, and direct capture reactions for the study of the very neutron-rich and proton-rich nuclides. In contrast, the high energy RIBs produced by in-flight fragmentation with reaccelerated ions from the ISOL enable to explore the study of neutron drip lines in intermediate mass regions. The proposed studies aim at investigating the exotic nuclei near and beyond the nucleon drip lines, and to explore how nuclear many-body systems change in such extreme regions by addressing the following topics: the evolution of shell structure in areas of extreme proton to neutron imbalance; the study of the weak interaction in exotic decay schemes such as beta-delayed two-neutron or two-proton emission; the change of isospin symmetry in isobaric mirror nuclei at the drip lines; two protons or two neutrons radioactivity beyond the drip lines; the role of the continuum states including resonant states above the particle-decay threshold in exotic nuclei; and the effects of nuclear reaction rates triggered by the unbound proton-rich nuclei on nuclear astrophysical processes.

  14. The new vertical neutron beam line at the CERN n_TOF facility design and outlook on the performance

    NASA Astrophysics Data System (ADS)

    Weiß, C.; Chiaveri, E.; Girod, S.; Vlachoudis, V.; Aberle, O.; Barros, S.; Bergström, I.; Berthoumieux, E.; Calviani, M.; Guerrero, C.; Sabaté-Gilarte, M.; Tsinganis, A.; Andrzejewski, J.; Audouin, L.; Bacak, M.; Balibrea-Correa, J.; Barbagallo, M.; Bécares, V.; Beinrucker, C.; Belloni, F.; Bečvář, F.; Billowes, J.; Bosnar, D.; Brugger, M.; Caamaño, M.; Calviño, F.; Cano-Ott, D.; Cerutti, F.; Colonna, N.; Cortés, G.; Cortés-Giraldo, M. A.; Cosentino, L.; Damone, L.; Deo, K.; Diakaki, M.; Domingo-Pardo, C.; Dupont, E.; Durán, I.; Dressler, R.; Fernández-Domínguez, B.; Ferrari, A.; Ferreira, P.; Finocchiaro, P.; Frost, R.; Furman, V.; Ganesan, S.; Gheorghe, A.; Glodariu, T.; Göbel, K.; Gonçalves, I. F.; González-Romero, E.; Goverdovski, A.; Griesmayer, E.; Gunsing, F.; Harada, H.; Heftrich, T.; Heinitz, S.; Hernández-Prieto, A.; Heyse, J.; Jenkins, D. G.; Jericha, E.; Kadi, Y.; Käppeler, F.; Katabuchi, T.; Kavrigin, P.; Ketlerov, V.; Khryachkov, V.; Kimura, A.; Kivel, N.; Kokkoris, M.; Krtička, M.; Leal-Cidoncha, E.; Lederer, C.; Leeb, H.; Lerendegui, J.; Licata, M.; Lo Meo, S.; López, D.; Losito, R.; Macina, D.; Marganiec, J.; Martínez, T.; Massimi, C.; Mastinu, P. F.; Mastromarco, M.; Matteucci, F.; Mendoza, E.; Mengoni, A.; Milazzo, P. M.; Mingrone, F.; Mirea, M.; Montesano, S.; Musumarra, A.; Nolte, R.; Palomo Pinto, R.; Paradela, C.; Patronis, N.; Pavlik, A.; Perkowski, J.; Porras, I.; Praena, J.; Quesada, J. M.; Rauscher, T.; Reifarth, R.; Riego-Perez, A.; Robles, M. S.; Rubbia, C.; Ryan, J.; Saxena, A.; Schillebeeckx, P.; Schmidt, S.; Schumann, D.; Sedyshev, P.; Smith, G.; Stamatopoulos, A.; Steinegger, P.; Suryanarayana, S. V.; Tagliente, G.; Tain, J. L.; Tarifeño-Saldivia, A.; Tassan-Got, L.; Valenta, S.; Vannini, G.; Variale, V.; Vaz, P.; Ventura, A.; Vlastou, R.; Wallner, A.; Warren, S.; Weigand, M.; Wright, T.; Žugec, P.

    2015-11-01

    At the neutron time-of-flight facility n_TOF at CERN a new vertical beam line was constructed in 2014, in order to extend the experimental possibilities at this facility to an even wider range of challenging cross-section measurements of interest in astrophysics, nuclear technology and medical physics. The design of the beam line and the experimental hall was based on FLUKA Monte Carlo simulations, aiming at maximizing the neutron flux, reducing the beam halo and minimizing the background from neutrons interacting with the collimator or back-scattered in the beam dump. The present paper gives an overview on the design of the beam line and the relevant elements and provides an outlook on the expected performance regarding the neutron beam intensity, shape and energy resolution, as well as the neutron and photon backgrounds.

  15. The solenoidal transport option: IFE drivers, near term research facilities, and beam dynamics

    SciTech Connect

    Lee, E.P.; Briggs, R.J.

    1997-09-01

    Solenoidal magnets have been used as the beam transport system in all the high current electron induction accelerators that have been built in the past several decades. They have also been considered for the front end transport system for heavy ion accelerators for Inertial Fusion Energy (IFE) drivers, but this option has received very little attention in recent years. The analysis reported here was stimulated mainly by the recent effort to define an affordable {open_quotes}Integrated Research Experiment{close_quotes} (IRE) that can meet the near term needs of the IFE program. The 1996 FESAC IFE review panel agreed that an integrated experiment is needed to fully resolve IFE heavy ion driver science and technology issues; specifically, {open_quotes}the basic beam dynamics issues in the accelerator, the final focusing and transport issues in a reactor-relevant beam parameter regime, and the target heating phenomenology{close_quotes}. The development of concepts that can meet these technical objectives and still stay within the severe cost constraints all new fusion proposals will encounter is a formidable challenge. Solenoidal transport has a very favorable scaling as the particle mass is decreased (the main reason why it is preferred for electrons in the region below 50 MeV). This was recognized in a recent conceptual study of high intensity induction linac-based proton accelerators for Accelerator Driven Transmutation Technologies, where solenoidal transport was chosen for the front end. Reducing the ion mass is an obvious scaling to exploit in an IRE design, since the output beam voltage will necessarily be much lower than that of a full scale driver, so solenoids should certainly be considered as one option for this experiment as well.

  16. Progress in the realization of the PRIMA neutral beam test facility

    NASA Astrophysics Data System (ADS)

    Toigo, V.; Boilson, D.; Bonicelli, T.; Piovan, R.; Hanada, M.; Chakraborty, A.; Agarici, G.; Antoni, V.; Baruah, U.; Bigi, M.; Chitarin, G.; Dal Bello, S.; Decamps, H.; Graceffa, J.; Kashiwagi, M.; Hemsworth, R.; Luchetta, A.; Marcuzzi, D.; Masiello, A.; Paolucci, F.; Pasqualotto, R.; Patel, H.; Pomaro, N.; Rotti, C.; Serianni, G.; Simon, M.; Singh, M.; Singh, N. P.; Svensson, L.; Tobari, H.; Watanabe, K.; Zaccaria, P.; Agostinetti, P.; Agostini, M.; Andreani, R.; Aprile, D.; Bandyopadhyay, M.; Barbisan, M.; Battistella, M.; Bettini, P.; Blatchford, P.; Boldrin, M.; Bonomo, F.; Bragulat, E.; Brombin, M.; Cavenago, M.; Chuilon, B.; Coniglio, A.; Croci, G.; Dalla Palma, M.; D'Arienzo, M.; Dave, R.; De Esch, H. P. L.; De Lorenzi, A.; De Muri, M.; Delogu, R.; Dhola, H.; Fantz, U.; Fellin, F.; Fellin, L.; Ferro, A.; Fiorentin, A.; Fonnesu, N.; Franzen, P.; Fröschle, M.; Gaio, E.; Gambetta, G.; Gomez, G.; Gnesotto, F.; Gorini, G.; Grando, L.; Gupta, V.; Gutierrez, D.; Hanke, S.; Hardie, C.; Heinemann, B.; Kojima, A.; Kraus, W.; Maeshima, T.; Maistrello, A.; Manduchi, G.; Marconato, N.; Mico, G.; Moreno, J. F.; Moresco, M.; Muraro, A.; Muvvala, V.; Nocentini, R.; Ocello, E.; Ochoa, S.; Parmar, D.; Patel, A.; Pavei, M.; Peruzzo, S.; Pilan, N.; Pilard, V.; Recchia, M.; Riedl, R.; Rizzolo, A.; Roopesh, G.; Rostagni, G.; Sandri, S.; Sartori, E.; Sonato, P.; Sottocornola, A.; Spagnolo, S.; Spolaore, M.; Taliercio, C.; Tardocchi, M.; Thakkar, A.; Umeda, N.; Valente, M.; Veltri, P.; Yadav, A.; Yamanaka, H.; Zamengo, A.; Zaniol, B.; Zanotto, L.; Zaupa, M.

    2015-08-01

    The ITER project requires additional heating by two neutral beam injectors, each accelerating to 1 MV a 40 A beam of negative deuterium ions, to deliver to the plasma a power of about 17 MW for one hour. As these requirements have never been experimentally met, it was recognized as necessary to setup a test facility, PRIMA (Padova Research on ITER Megavolt Accelerator), in Italy, including a full-size negative ion source, SPIDER, and a prototype of the whole ITER injector, MITICA, aiming to develop the heating injectors to be installed in ITER. This realization is made with the main contribution of the European Union, through the Joint Undertaking for ITER (F4E), the ITER Organization and Consorzio RFX which hosts the Test Facility. The Japanese and the Indian ITER Domestic Agencies (JADA and INDA) participate in the PRIMA enterprise; European laboratories, such as IPP-Garching, KIT-Karlsruhe, CCFE-Culham, CEA-Cadarache and others are also cooperating. Presently, the assembly of SPIDER is on-going and the MITICA design is being completed. The paper gives a general overview of the test facility and of the status of development of the MITICA and SPIDER main components at this important stage of the overall development; then it focuses on the latest and most critical issues, regarding both physics and technology, describing the identified solutions.

  17. Conceptual design for a receiving station for the nondestructive assay of PuO/sub 2/ at the fuels and materials examination facility

    SciTech Connect

    Sampson, T.E.; Speir, L.G.; Ensslin, N.; Hsue, S.T.; Johnson, S.S.; Bourret, S.; Parker, J.L.

    1981-11-01

    We propose a conceptual design for a receiving station for input accountability measurements on PuO/sub 2/ received at the Fuels and Materials Examination Facility at the Hanford Engineering Development Laboratory. Nondestructive assay techniques are proposed, including neutron coincidence counting, calorimetry, and isotopic determination by gamma-ray spectroscopy, in a versatile data acquisition system to perform input accountability measurements with precisions better than 1% at throughputs of up to 2 M.T./yr of PuO/sub 2/.

  18. Upgrade of the Drive LINAC for the AWA Facility Dielectric Two-Beam Accelerator

    SciTech Connect

    Power, John; Conde, Manoel; Gai, Wei; Li, Zenghai; Mihalcea, Daniel; /Northern Illinois U.

    2012-07-02

    We report on the design of a seven-cell, standing-wave, 1.3-GHz rf cavity and the associated beam dynamics studies for the upgrade of the drive beamline LINAC at the Argonne Wakefield Accelerator (AWA) facility. The LINAC design is a compromise between single-bunch operation (100 nC {at} 75 MeV) and minimization of the energy droop along the bunch train during bunch-train operation. The 1.3-GHz drive bunch-train target parameters are 75 MeV, 10-20-ns macropulse duration, and 16 x 60 nC microbunches; this is equivalent to a macropulse current and beam power of 80 A and 6 GW, respectively. Each LINAC structure accelerates approximately 1000 nC in 10 ns by a voltage of 11 MV at an rf power of 10 MW. Due to the short bunch-train duration desired ({approx}10 ns) and the existing frequency (1.3 GHz), compensation of the energy droop along the bunch train is difficult to accomplish by means of the two standard techniques: time-domain or frequency-domain beam loading compensation. Therefore, to minimize the energy droop, our design is based on a large stored energy rf cavity. In this paper, we present our rf cavity optimization method, detailed rf cavity design, and beam dynamics studies of the drive beamline.

  19. Monte Carlo simulation of neutron noise effects on beam position determination at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Awwal, Abdul A. S.; Leach, Richard R.; Datte, Philip; Manuel, Anastacia

    2013-09-01

    Images obtained through charged coupled device (CCD) cameras in the National Ignition Facility (NIF) are crucial to precise alignment of the 192 laser beams to the NIF target-chamber center (TCC). Cameras in and around the target chamber are increasingly exposed to the effects of neutron radiation as the laser power is increased for high energy fusion experiments. NIF was carefully designed to operate under these conditions. The present work examines the degradation of the measured TCC camera position accuracy resulting from the effects of neutron radiation on the sensor and verifies operation within design specifications. Both synthetic and real beam images are used for measuring position degradation. Monte Carlo simulations based on camera performance models are used to create images with added neutron noise. These models predict neutron induced camera noise based on exposure estimates of the cumulative single-shot fluence in the NIF environment. The neutron induced noise images are used to measure beam positions on a target calculated from the alignment images with the added noise. The effects of this noise are also determined using noise artifacts from real camera images viewing TCC to estimate beam position uncertainty.

  20. The ion beam sputtering facility at KURRI: Coatings for advanced neutron optical devices

    NASA Astrophysics Data System (ADS)

    Hino, Masahiro; Oda, Tatsuro; Kitaguchi, Masaaki; Yamada, Norifumi L.; Tasaki, Seiji; Kawabata, Yuji

    2015-10-01

    We describe a film coating facility for the development of multilayer mirrors for use in neutron optical devices that handle slow neutron beams. Recently, we succeeded in fabricating a large neutron supermirror with high reflectivity using an ion beam sputtering system (KUR-IBS), as well as all neutron supermirrors in two neutron guide tubes at BL06 at J-PARC/MLF. We also realized a large flexible self-standing m=5 NiC/Ti supermirror and very small d-spacing (d=1.65 nm) multilayer sheets. In this paper, we present an overview of the performance and utility of non-magnetic neutron multilayer mirrors fabricated with the KUR-IBS

  1. Status of PRIMA, the test facility for ITER neutral beam injectors

    NASA Astrophysics Data System (ADS)

    Sonato, P.; Antoni, V.; Bigi, M.; Chitarin, G.; Luchetta, A.; Marcuzzi, D.; Pasqualotto, R.; Pomaro, N.; Serianni, G.; Toigo, V.; Zaccaria, P.; ITER International Team

    2013-02-01

    The ITER project requires additional heating by two neutral beam injectors, each accelerating to 1MV a 40A beam of negative deuterons, delivering to the plasma about 17MW up to one hour. As these requirements have never been experimentally met, it was decided to build a test facility, PRIMA (Padova Research on ITER Megavolt Accelerator), in Italy, including a full-size negative ion source, SPIDER, and a prototype of the whole ITER injector, MITICA, aiming to develop the heating injectors to be installed in ITER. The Japan and the India Domestic Agencies participate in the PRIMA enterprise; European laboratories, such as KIT-Karlsruhe, IPP-Garching, CCFE-Culham, CEA-Cadarache and others are also cooperating. In the paper the main requirements are discussed and the design of the main components and systems are described.

  2. Capture cavity cryomodule for quantum beam experiment at KEK superconducting RF test facility

    SciTech Connect

    Tsuchiya, K.; Hara, K.; Hayano, H.; Kako, E.; Kojima, Y.; Kondo, Y.; Nakai, H.; Noguchi, S.; Ohuchi, N.; Terashima, A.; Horikoshi, A.; Semba, T.

    2014-01-29

    A capture cavity cryomodule was fabricated and used in a beam line for quantum beam experiments at the Superconducting RF Test Facility (STF) of the High Energy Accelerator Research Organization in Japan. The cryomodule is about 4 m long and contains two nine-cell cavities. The cross section is almost the same as that of the STF cryomodules that were fabricated to develop superconducting RF cavities for the International Linear Collider. An attempt was made to reduce the large deflection of the helium gas return pipe (GRP) that was observed in the STF cryomodules during cool-down and warm-up. This paper briefly describes the structure and cryogenic performance of the captures cavity cryomodule, and also reports the measured displacement of the GRP and the cavity-containing helium vessels during regular operation.

  3. Effects On Beam Alignment Due To Neutron-Irradiated CCD Images At The National Ignition Facility

    SciTech Connect

    Awwal, A; Manuel, A; Datte, P; Burkhart, S

    2011-02-28

    The 192 laser beams in the National Ignition Facility (NIF) are automatically aligned to the target-chamber center using images obtained through charged coupled device (CCD) cameras. Several of these cameras are in and around the target chamber during an experiment. Current experiments for the National Ignition Campaign are attempting to achieve nuclear fusion. Neutron yields from these high energy fusion shots expose the alignment cameras to neutron radiation. The present work explores modeling and predicting laser alignment performance degradation due to neutron radiation effects, and demonstrates techniques to mitigate performance degradation. Camera performance models have been created based on the measured camera noise from the cumulative single-shot fluence at the camera location. We have found that the effect of the neutron-generated noise for all shots to date have been well within the alignment tolerance of half a pixel, and image processing techniques can be utilized to reduce the effect even further on the beam alignment.

  4. CONCEPTUAL DESIGN REPORT

    SciTech Connect

    ROBINSON,K.

    2006-12-31

    Brookhaven National Laboratory has prepared a conceptual design for a world class user facility for scientific research using synchrotron radiation. This facility, called the ''National Synchrotron Light Source II'' (NSLS-II), will provide ultra high brightness and flux and exceptional beam stability. It will also provide advanced insertion devices, optics, detectors, and robotics, and a suite of scientific instruments designed to maximize the scientific output of the facility. Together these will enable the study of material properties and functions with a spatial resolution of {approx}1 nm, an energy resolution of {approx}0.1 meV, and the ultra high sensitivity required to perform spectroscopy on a single atom. The overall objective of the NSLS-II project is to deliver a research facility to advance fundamental science and have the capability to characterize and understand physical properties at the nanoscale, the processes by which nanomaterials can be manipulated and assembled into more complex hierarchical structures, and the new phenomena resulting from such assemblages. It will also be a user facility made available to researchers engaged in a broad spectrum of disciplines from universities, industries, and other laboratories.

  5. Early Commissioning Experience and Future Plans for the 12 GeV Continuous Electron Beam Accelerator Facility

    SciTech Connect

    Spata, Michael F.

    2014-12-01

    Jefferson Lab has recently completed the accelerator portion of the 12 GeV Upgrade for the Continuous Electron Beam Accelerator Facility. All 52 SRF cryomodules have been commissioned and operated with beam. The initial beam transport goals of demonstrating 2.2 GeV per pass, greater than 6 GeV in 3 passes to an existing experimental facility and greater than 10 GeV in 5-1/2 passes have all been accomplished. These results along with future plans to commission the remaining beamlines and to increase the performance of the accelerator to achieve reliable, robust and efficient operations at 12 GeV are presented.

  6. TOPICAL REVIEW: Progress in laser spectroscopy at radioactive ion beam facilities

    NASA Astrophysics Data System (ADS)

    Cheal, B.; Flanagan, K. T.

    2010-11-01

    In the last decade there has been a renaissance in laser spectroscopy at on-line facilities. This has included the introduction of ion traps and the use of laser ion sources to study the hyperfine structure of exotic nuclei far from stability and produce selective enhancement of isomeric beams. In-source spectroscopy has allowed the study of rare isotopes with yields as low as 0.1 atoms per second. In the case of high-resolution spectroscopy, cooling and trapping the ions has dramatically improved the sensitivity. Some elements that were previously inaccessible to laser spectroscopy are now available for study through the technique of in-trap optical pumping. This paper reviews the field of laser spectroscopy at on-line facilities, with an emphasis on new techniques. A summary of experimental data is presented.

  7. Summary of Conceptual Models and Data Needs to Support the INL Remote-Handled Low-Level Waste Disposal Facility Performance Assessment and Composite Analysis

    SciTech Connect

    A. Jeff Sondrup; Annette L. Schafter; Arthur S. Rood

    2010-09-01

    An overview of the technical approach and data required to support development of the performance assessment, and composite analysis are presented for the remote handled low-level waste disposal facility on-site alternative being considered at Idaho National Laboratory. Previous analyses and available data that meet requirements are identified and discussed. Outstanding data and analysis needs are also identified and summarized. The on-site disposal facility is being evaluated in anticipation of the closure of the Radioactive Waste Management Complex at the INL. An assessment of facility performance and of the composite performance are required to meet the Department of Energy’s Low-Level Waste requirements (DOE Order 435.1, 2001) which stipulate that operation and closure of the disposal facility will be managed in a manner that is protective of worker and public health and safety, and the environment. The corresponding established procedures to ensure these protections are contained in DOE Manual 435.1-1, Radioactive Waste Management Manual (DOE M 435.1-1 2001). Requirements include assessment of (1) all-exposure pathways, (2) air pathway, (3) radon, and (4) groundwater pathway doses. Doses are computed from radionuclide concentrations in the environment. The performance assessment and composite analysis are being prepared to assess compliance with performance objectives and to establish limits on concentrations and inventories of radionuclides at the facility and to support specification of design, construction, operation and closure requirements. Technical objectives of the PA and CA are primarily accomplished through the development of an establish inventory, and through the use of predictive environmental transport models implementing an overarching conceptual framework. This document reviews the conceptual model, inherent assumptions, and data required to implement the conceptual model in a numerical framework. Available site-specific data and data sources

  8. Beam Homogeneity Dependence on the Magnetic Filter Field at the IPP Test Facility MANITU

    SciTech Connect

    Franzen, P.; Fantz, U.

    2011-09-26

    The homogeneity of the extracted current density from the large RF driven negative hydrogen ion sources of the ITER neutral beam system is a critical issue for the transmission of the negative ion beam through the accelerator and the beamline components. As a first test, the beam homogeneity at the IPP long pulse test facility MANITU is measured by means of the divergence and the stripping profiles obtained with a spatially resolved Doppler-shift spectroscopy system. Since MANITU is typically operating below the optimum perveance, an increase in the divergence corresponds to a lower local extracted negative ion current density if the extraction voltage is constant. The beam H{sub {alpha}} Doppler-shift spectroscopy is a rather simple tool, as no absolute calibration - both for the wavelength and the emission - is necessary. Even no relative calibration of the different used lines of sight is necessary for divergence and stripping profiles as these quantities can be obtained by the line broadening of the Doppler-shifted peak and the ratio of the integral of the stripping peak to the integral of the Doppler-shifted peak, respectively. The paper describes the H{sub {alpha}} MANITU Doppler-shift spectroscopy system which is now operating routinely and the evaluation methods of the divergence and the stripping profiles. Beam homogeneity measurements are presented for different extraction areas and magnetic filter field configurations both for Hydrogen and Deuterium operation; the results are compared with homogeneity measurements of the source plasma. The stripping loss measurements are compared with model calculations.

  9. Rare Isotope Accelerator - Conceptual Design of Target Areas

    SciTech Connect

    Bollen, Georg; Baek, Inseok; Blideanu, Valentin; Lawton, Don; Mantica, Paul F.; Morrissey, David J.; Ronningen, Reginald M.; Sherrill, Bradley S.; Zeller, Albert; Beene, James R; Burgess, Tom; Carter, Kenneth; Carrol, Adam; Conner, David; Gabriel, Tony A; Mansur, Louis K; Remec, Igor; Rennich, Mark J; Stracener, Daniel W; Wendel, Mark W; Ahle, Larry; Boles, Jason; Reyes, Susana; Stein, Werner; Heilbronn, Lawrence

    2006-01-01

    The planned rare isotope accelerator facility RIA in the US would become the most powerful radioactive beam facility in the world. RIA s driver accelerator will be a device capable of providing beams from protons to uranium at energies of at least 400MeV per nucleon, with beam power up to 400 kW. Radioactive beam production relies on both the in-flight separation of fast beam fragments and on the ISOL technique. In both cases the high beam power poses major challenges for target technology and handling and on the design of the beam production areas. This paper will give a brief overview of RIA and discuss aspects of ongoing conceptual design work for the RIA target areas.

  10. A facility for studying radiative capture reactions induced with radioactive beams at ISAC

    NASA Astrophysics Data System (ADS)

    D'Auria, J. M.; Buchmann, L.; Hutcheon, D.; Lipnik, P.; Hunter, D.; Rogers, J.; Helmer, R.; Giesen, U.; Olin, A.; Bricault, P.; Bateman, N.

    The measurement of low energy fusion reactions of importance to nuclear astrophysics scenarios are a prime objective of the physics program of the new ISAC facility, located at TRIUMF in Vancouver, Canada. Intense radioactive beams of 19Ne, 14,15O, 20,21Na, 17,18F and other low Z species with energies in the range of 0.15 to 1.5 MeV/mass unit will be available to measure cross sections and resonance strengths of alpha and proton induced reactions. An important component of the experimental configuration will be a new Recoil Product Detection Facility (RPDF) consisting of a windowless gas target, surrounded by a gamma array, while the recoils are separated from the intense radioactive beam using a Electro-Magnetic Separator (EMS) employing Wien filters. The recoiling reaction products will then be detected using either a Si μ-strip array or a gas filled detector. Using these devices along with coincidence requirements and time-of-flight conditions a background reduction factor of the order of 10 +15 is the present goal.

  11. A facility for studying radiative capture reactions induced with radioactive beams at ISAC

    NASA Astrophysics Data System (ADS)

    Giesen, U.; Buchmann, L.; Hutcheon, D.; Helmer, R.; Olin, A.; Bricault, P.; Bateman, N.; D'Auria, J. M.; Lipnik, P.; Hunter, D.; Rodgers, J.

    1996-04-01

    The measurement of low energy fusion reactions of importance to nuclear astrophysics scenarios are a prime objective of the physics program of the new ISAC facility, located at TRIUMF in Vancouver, Canada. Intense radioactive beams of e,19Ne, ,14,15O, a,20,21Na, 17,18F and other low Z species with energies in the range of 0.15 to 1.5 MeV/mass unit will be available to measure cross sections and resonance strengths of alpha and proton induced reactions, An important component of the experimental configuration will be a new Recoil Product Detection Facility (RPDF) consisting of a windowless gas target, surrounded by a gamma array, while the recoils are separated from the intense radioactive beam using a Electro-Magnetic Separator (EMS) employing Wien filters. The recoiling reaction products will then be detected using either a Si μ-strip array or a gas filled detector. Using these devices along with coincidence requirements and time-of-flight conditions a background reduction factor of the order of 10+15 is the present goal.

  12. On-shot laser beam diagnostics for high-power laser facility with phase modulation imaging

    NASA Astrophysics Data System (ADS)

    Pan, X.; Veetil, S. P.; Liu, C.; Tao, H.; Jiang, Y.; Lin, Q.; Li, X.; Zhu, J.

    2016-05-01

    A coherent-modulation-imaging-based (CMI) algorithm has been employed for on-shot laser beam diagnostics in high-power laser facilities, where high-intensity short-pulsed lasers from terawatt to petawatt are designed to realize inertial confinement fusion (ICF). A single-shot intensity measurement is sufficient for wave-front reconstruction, both for the near-field and far-field at the same time. The iterative reconstruction process is computationally very efficient and was completed in dozens of seconds by the additional use of a GPU device to speed it up. The compact measurement unit—including a CCD and a piece of pre-characterized phase plate—makes it convenient for focal-spot intensity prediction in the target chamber. It can be placed almost anywhere in high-power laser facilities to achieve near-field wave-front diagnostics. The feasibility of the method has been demonstrated by conducting a series of experiments with diagnostic beams and seed pulses with deactivated amplifiers in our high-power laser system.

  13. Facilities to Support Beamed Energy Launch Testing at the Laser Hardened Materials Evaluation Laboratory (LHMEL)

    NASA Astrophysics Data System (ADS)

    Lander, Michael L.

    2003-05-01

    The Laser Hardened Materials Evaluation Laboratory (LHMEL) has been characterizing material responses to laser energy in support of national defense programs and the aerospace industry for the past 26 years. This paper reviews the overall resources available at LHMEL to support fundamental materials testing relating to impulse coupling measurement and to explore beamed energy launch concepts. Located at Wright-Patterson Air Force Base, Ohio, LHMEL is managed by the Air Force Research Laboratory Materials Directorate AFRL/MLPJ and operated by Anteon Corporation. The facility's advanced hardware is centered around carbon dioxide lasers producing output power up to 135kW and neodymium glass lasers producing up to 10 kilojoules of repetitively pulsed output. The specific capabilities of each laser device and related optical systems are discussed. Materials testing capabilities coupled with the laser systems are also described including laser output and test specimen response diagnostics. Environmental simulation capabilities including wind tunnels and large-volume vacuum chambers relevant to beamed energy propulsion are also discussed. This paper concludes with a summary of the procedures and methods by which the facility can be accessed.

  14. Neutron transport study of a beam port based dynamic neutron radiography facility

    NASA Astrophysics Data System (ADS)

    Khaial, Anas M.

    Neutron radiography has the ability to differentiate between gas and liquid in two-phase flow due both to the density difference and the high neutron scattering probability of hydrogen. Previous studies have used dynamic neutron radiography -- in both real-time and high-speed -- for air-water, steam-water and gas-liquid metal two-phase flow measurements. Radiography with thermal neutrons is straightforward and efficient as thermal neutrons are easier to detect with relatively higher efficiency and can be easily extracted from nuclear reactor beam ports. The quality of images obtained using neutron radiography and the imaging speed depend on the neutron beam intensity at the imaging plane. A high quality neutron beam, with thermal neutron intensity greater than 3.0x 10 6 n/cm2-s and a collimation ratio greater than 100 at the imaging plane, is required for effective dynamic neutron radiography up to 2000 frames per second. The primary objectives of this work are: (1) to optimize a neutron radiography facility for dynamic neutron radiography applications and (2) to investigate a new technique for three-dimensional neutron radiography using information obtained from neutron scattering. In this work, neutron transport analysis and experimental validation of a dynamic neutron radiography facility is studied with consideration of real-time and high-speed neutron radiography requirements. A beam port based dynamic neutron radiography facility, for a target thermal neutron flux of 1.0x107 n/cm2-s, has been analyzed, constructed and experimentally verified at the McMaster Nuclear Reactor. The neutron source strength at the beam tube entrance is evaluated experimentally by measuring the thermal and fast neutron fluxes using copper activation flux-mapping technique. The development of different facility components, such as beam tube liner, gamma ray filter, beam shutter and biological shield, is achieved analytically using neutron attenuation and divergence theories. Monte

  15. Space station accommodations for life sciences research facilities: Phase A conceptual design and programmatics studies for Missions SAAX0307, SAAX0302 and the transition from SAAX0307 to SAAX0302. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The conceptual designs and programmatics for a Space Station Nonhuman Life Sciences Research Facility (LSRF) are highlighted. Conceptual designs and programmatics encompass an Initial Orbital Capability (IOC) LSRF, a growth or Follow-on Orbital Capability (FOC), and the transitional process required to modify the IOC LSRF to the FOC LSRF.

  16. Early hot electrons generation and beaming in ICF gas filled hohlraums at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Dewald, Eduard; Michel, Pierre; Hartemann, Fred; Milovich, Jose; Hohenberger, Matthias; Divol, Laurent; Landen, Otto; Pak, Arthur; Thomas, Cliff; Doeppner, Tilo; Bachmann, Benjamin; Meezan, Nathan; MacKinnon, Andrew; Hurricane, Omar; Callahan, Debbie; Hinkel, Denise; Edwards, John

    2015-11-01

    In laser driven hohlraum capsule implosions on the National Ignition Facility, supra-thermal hot electrons generated by laser plasma instabilities can preheat the capsule. Time resolved hot electron Bremsstrahlung spectra combined with 30 keV x-ray imaging uncover for the first time the directionality of hot electrons onto a high-Z surrogate capsule located at the hohlraum center. In the most extreme case, we observed a collimated beaming of hot electrons onto the capsule poles, reaching 50x higher localized energy deposition than for isotropic electrons. A collective SRS model where all laser beams in a cone drive a common plasma wave provides a physical interpretation for the observed beaming. Imaging data are used to distinguish between this mechanism and 2ωp instability. The amount of hot electrons generated can be controlled by the laser pulse shape and hohlraum plasma conditions. This work performed under the auspices of the U.S. DOE by LLNL under Contract DE-AC52-07NA27344.

  17. Heavy-Ion Driver Linac for the RIA Facility and the Feasibility of Producing Multi-Megawatt Beams

    SciTech Connect

    Ostroumov, P.N.; Nolen, J.A.; Shepard, K.W.

    2005-06-08

    The Rare-Isotope Accelerator (RIA) facility is a top priority project in the U.S. RIA is a next generation facility for basic research with radioactive beams that utilizes both standard isotope-separator on-line and in-flight fragmentation methods with novel approaches to handle high primary-beam power and remove existing limitations in the extraction of short-lived isotopes. A versatile primary accelerator, a 1.4-GV, CW superconducting linac, will provide beams from protons at 1 GeV to uranium at 400 MeV/u at power levels of 400 kW. Novel features include the acceptance of two charge states of heavy ions from the ion source and the acceleration of five charge states following the stripper foils. To achieve these goals, comprehensive beam dynamics studies have been performed to optimize the design of the driver linac. Recently we have investigated the feasibility of increasing the currents of light ions to deliver megawatts of beam power. This option is entirely possible from the beam dynamics point of view. It would require higher power from the rf system, as well as, increased shielding at the beam loss points with respect to the existing baseline design. Preliminary indications of the limitations of beam power for this class of CW superconducting linac for light ion beams will be presented.

  18. Heavy-ion driver linac for the RIA facility and the feasibility of producing multi-megawatt beams.

    SciTech Connect

    Ostroumov, P. N.; Nolen, J. A.; Shepard, K. W.; Physics

    2005-01-01

    The Rare-Isotope Accelerator (RIA) facility is a top priority project in the U.S. RIA is a next generation facility for basic research with radioactive beams that utilizes both standard isotope-separator on-line and in-flight fragmentation methods with novel approaches to handle high primary-beam power and remove existing limitations in the extraction of short-lived isotopes. A versatile primary accelerator, a 1.4-GV, CW superconducting linac, will provide beams from protons at 1 GeV to uranium at 400 MeV/u at power levels of 400 kW. Novel features include the acceptance of two charge states of heavy ions from the ion source and the acceleration of five charge states following the stripper foils. To achieve these goals, comprehensive beam dynamics studies have been performed to optimize the design of the driver linac. Recently we have investigated the feasibility of increasing the currents of light ions to deliver megawatts of beam power. This option is entirely possible from the beam dynamics point of view. It would require higher power from the rf system, as well as, increased shielding at the beam loss points with respect to the existing baseline design. Preliminary indications of the limitations of beam power for this class of CW superconducting linac for light ion beams will be presented.

  19. Magnetohydrodynamics (MHD) Engineering Test Facility (ETF) 200 MWe power plant. Conceptual Design Engineering Report (CDER) supplement. Magnet system special investigations

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The results of magnet system special investigations listed below are summarized: 4 Tesla Magnet Alternate Design Study; 6 Tesla Magnet Manufacturability Study. The conceptual design for a 4 Tesla superconducting magnet system for use with an alternate (supersonic) ETF power train is described, and estimated schedule and cost are identified. The magnet design is scaled from the ETF 6 T Tesla design. Results of a manufacturability study and a revised schedule and cost estimate for the ETF 6 T magnet are reported. Both investigations are extensions of the conceptual design of a 6 T magnet system performed earlier as a part of the overall MED-ETF conceptual design described in Conceptual Design Engineering Report (CDER) Vol. V, System Design Description (SDD) 503 dated September, 1981, DOE/NASA/0224-1; NASA CR-165/52.

  20. Optical design of the National Ignition Facility main laser and switchyard/target area beam transport system

    SciTech Connect

    English, R E; Korniski, R J; Miller, J L; Rodgers, J M

    1998-06-26

    The optical design of the main laser and transport mirror sections of the National Ignition Facility are described. For the main laser the configuration, layout constraints, multiple beam arrangement, pinhole layout and beam paths, clear aperture budget, ray trace models, alignment constraints, lens designs, wavefront performance, and pupil aberrations are discussed. For the transport mirror system the layout, alignment controls and clear aperture budget are describe

  1. Beta-Decay Study of ^{150}Er, ^{152}Yb, and ^{156}Yb: Candidates for a Monoenergetic Neutrino Beam Facility

    SciTech Connect

    Estevez Aguado, M. E.; Algora, A.; Rubio, B.; Bernabeu, J.; Nacher, E.; Tain, J. L.; Gadea, A.; Agramunt, J.; Burkard, K.; Hueller, W.; Doring, J.; Kirchner, R.; Mukha, I.; Plettner, C.; Roeckl, E.; Grawe, H.; Collatz, R.; Hellstrom, M.; Cano-Ott, D.; Karny, M.; Janas, Z.; Gierlik, M.; Plochocki, A.; Rykaczewski, Krzysztof Piotr; Batist, L.; Moroz, F.; Wittman, V.; Blazhev, A.; Valiente, J. J.; Espinoza, C.

    2011-01-01

    The beta decays of ^{150}Er, ^{152}Yb, and ^{156}Yb nuclei are investigated using the total absorption spectroscopy technique. These nuclei can be considered possible candidates for forming the beam of a monoenergetic neutrino beam facility based on the electron capture (EC) decay of radioactive nuclei. Our measurements confirm that for the cases studied, the EC decay proceeds mainly to a single state in the daughter nucleus.

  2. RF Test Results from Cryomodule 1 at the Fermilab SRF Beam Test Facility

    SciTech Connect

    Harms, E.; Carlson, K.; Chase, B.; Cullerton, E.; Hocker, A.; Jensen, C.; Joireman, P.; Klebaner, A.; Kubicki, T.; Kucera, M.; Legan, A.; /Fermilab /DESY

    2011-07-26

    Powered operation of Cryomodule 1 (CM-1) at the Fermilab SRF Beam Test Facility began in late 2010. Since then a series of tests first on the eight individual cavities and then the full cryomodule have been performed. We report on the results of these tests and lessons learned which will have an impact on future module testing at Fermilab. Since November 2010 Cryomodule 1 has been operating at 2 Kelvin. After evaluating each of the eight cavities while individually powered, the entire module has recently been powered and peak operation determined as shown in Figure 4. Several more weeks of measurements are planned before the module is warmed up, removed and replaced with Cryomodule 2 now under assembly at Fermilab.

  3. RAP: thermoacoustic detection at the DAPHgrNE beam test facility

    NASA Astrophysics Data System (ADS)

    Bertolucci, S.; Coccia, E.; D'Antonio, S.; DeWaard, A.; Delle Monache, G.; Di Gioacchino, D.; Fafone, V.; Fauth, A. C.; Frossati, G.; Ligi, C.; Marini, A.; Mazzitelli, G.; Modestino, G.; Pizzella, G.; Quintieri, L.; Ronga, F.; Tripodi, P.; Valente, P.

    2004-03-01

    In order to investigate the anomalous response at ultra-low temperatures of the resonant-mass gravitational wave detector NAUTILUS, the RAP experiment has been planned to measure the vibrations in a small cylindrical aluminium bar when hit by 105 510 MeV electrons from the DAPHgrNE beam test facility, corresponding to the energies released by typical extensive air showers. The results of the measurement at low temperature and in the superconducting regime are crucial to understand the interaction of ionizing particles with bulk superconductors and to confirm the results on the thermoacoustic model of the past experiments. The first run of RAP experiment is scheduled for the end of June. The scheme of operation and the preliminary results at room temperature will be presented.

  4. Test of large area glass RPCs at the DAΦNE Test Beam Facility (BTF)

    NASA Astrophysics Data System (ADS)

    Calcaterra, A.; de Sangro, R.; Gamba, D.; Mannocchi, G.; Patteri, P.; Picchi, P.; Piccolo, M.; Ragazzi, S.; Redaelli, N.; Satta, L.; Tabarelli de Fatis, T.; Tonazzo, A.; Trapani, P.; Trinchero, G. C.

    2004-11-01

    The CaPiRe program has been started to develop a new detector design, in order to produce large areas of glass Resistive Plate Chambers (RPC) detectors, overcoming the previous limitations. As a first step we produced our glass RPC detectors (1m2) at General Tecnica exploiting their standard procedures, materials and production techniques simply using 2 mm glass electrodes instead of the bakelite ones. A set of RPC was produced by using pre-coated (silk screen printed) electrodes, while others were produced with the standard graphite coating. All the detectors, together with four old Glass RPC acting as reference, were tested at the DAΦNE Test Beam Facility with 500 MeV electrons in order to study the efficiency in different positions inside the detectors (i.e. near spacers and edges) and to study the detector behavior as a function of the local particle rate.

  5. Ion Beam Facility at the University of Chile; Applications and Basic Research

    SciTech Connect

    Miranda, P. A.; Morales, J. R.; Cancino, S.; Dinator, M. I.; Donoso, N.; Sepulveda, A.; Ortiz, P.; Rojas, S.

    2010-08-04

    The main characteristics of the ion beam facility based on a 3.75 MeV Van de Graaff accelerator at the University of Chile are described at this work. Current activities are mainly focused on the application of the Ion Beam Analysis techniques for environmental, archaeological, and material science analysis. For instance, Rutherford Backscattering Spectrometry (RBS) is applied to measure thin gold film thickness which are used to determine their resistivity and other electrical properties. At this laboratory the Proton Induced X-Ray Emission (PIXE) and Proton Elastic Scattering Analysis (PESA) methodologies are extensively used for trace element analysis of urban aerosols (Santiago, Ciudad de Mexico). A similar study is being carried out at the Antarctica Peninsula. Characterization studies on obsidian and vitreous dacite samples using PIXE has been also perform allowing to match some of these artifacts with geological source sites in Chile.Basic physics research is being carried out by measuring low-energy cross section values for the reactions {sup 63}Cu(d,p){sup 64}Cu and {sup Nat}Zn(p,x){sup 67}Ga. Both radionuclide {sup 64}Cu and {sup 67}Ga are required for applications in medicine. Ongoing stopping power cross section measurements of proton and alphas on Pd, Cu, Bi and Mylar are briefly discussed.

  6. Nuclear theory and science of the facility for rare isotope beams

    NASA Astrophysics Data System (ADS)

    Balantekin, A. B.; Carlson, J.; Dean, D. J.; Fuller, G. M.; Furnstahl, R. J.; Hjorth-Jensen, M.; Janssens, R. V. F.; Li, Bao-An; Nazarewicz, W.; Nunes, F. M.; Ormand, W. E.; Reddy, S.; Sherrill, B. M.

    2014-03-01

    The Facility for Rare Isotope Beams (FRIB) will be a world-leading laboratory for the study of nuclear structure, reactions and astrophysics. Experiments with intense beams of rare isotopes produced at FRIB will guide us toward a comprehensive description of nuclei, elucidate the origin of the elements in the cosmos, help provide an understanding of matter in neutron stars and establish the scientific foundation for innovative applications of nuclear science to society. FRIB will be essential for gaining access to key regions of the nuclear chart, where the measured nuclear properties will challenge established concepts, and highlight shortcomings and needed modifications to current theory. Conversely, nuclear theory will play a critical role in providing the intellectual framework for the science at FRIB, and will provide invaluable guidance to FRIB's experimental programs. This review overviews the broad scope of the FRIB theory effort, which reaches beyond the traditional fields of nuclear structure and reactions, and nuclear astrophysics, to explore exciting interdisciplinary boundaries with other areas.

  7. SRF test facility for the superconducting LINAC ``RAON'' — RRR property and e-beam welding

    NASA Astrophysics Data System (ADS)

    Jung, Yoochul; Hyun, Myungook; Joo, Jongdae; Joung, Mijoung

    2015-02-01

    Equipment, such as a vacuum furnace, high pressure rinse (HPR), eddy current test (ECT) and buffered chemical polishing (BCP), are installed in the superconducting radio frequency (SRF) test facility. Three different sizes of cryostats (diameters of 600 mm for a quarter wave resonator (QWR), 900 mm for a half wave resonator (HWR), and 1200 mm for single spoke resonator 1&2 (SSR 1&2)) for vertical RF tests are installed for testing cavities. We confirmed that as-received niobium sheets (ASTM B393, RRR300) good electrical properties because they showed average residual resistance ratio (RRR) values higher than 300. However, serious RRR degradation occurred after joining two pieces of Nb by e-beam welding because the average RRR values of the samples were ˜179, which was only ˜60% of as-received RRR value. From various e-beam welding experiments in which the welding current and a speed at a fixed welding voltage were changed, we confirmed that good welding results were obtained at a 53 mA welding current and a 20-mm/s welding speed at a fixed welding voltage of 150 kV.

  8. Ion Beam Facility at the University of Chile; Applications and Basic Research

    NASA Astrophysics Data System (ADS)

    Miranda, P. A.; Morales, J. R.; Cancino, S.; Dinator, M. I.; Donoso, N.; Sepúlveda, A.; Ortiz, P.; Rojas, S.

    2010-08-01

    The main characteristics of the ion beam facility based on a 3.75 MeV Van de Graaff accelerator at the University of Chile are described at this work. Current activities are mainly focused on the application of the Ion Beam Analysis techniques for environmental, archaeological, and material science analysis. For instance, Rutherford Backscattering Spectrometry (RBS) is applied to measure thin gold film thickness which are used to determine their resistivity and other electrical properties. At this laboratory the Proton Induced X-Ray Emission (PIXE) and Proton Elastic Scattering Analysis (PESA) methodologies are extensively used for trace element analysis of urban aerosols (Santiago, Ciudad de Mexico). A similar study is being carried out at the Antarctica Peninsula. Characterization studies on obsidian and vitreous dacite samples using PIXE has been also perform allowing to match some of these artifacts with geological source sites in Chile. Basic physics research is being carried out by measuring low-energy cross section values for the reactions 63Cu(d,p)64Cu and NatZn(p,x)67Ga. Both radionuclide 64Cu and 67Ga are required for applications in medicine. Ongoing stopping power cross section measurements of proton and alphas on Pd, Cu, Bi and Mylar are briefly discussed.

  9. Conceptual Design of a 50--100 MW Electron Beam Accelerator System for the National Hypersonic Wind Tunnel Program

    SciTech Connect

    SCHNEIDER,LARRY X.

    2000-06-01

    The National Hypersonic Wind Tunnel program requires an unprecedented electron beam source capable of 1--2 MeV at a beam power level of 50--100 MW. Direct-current electron accelerator technology can readily generate high average power beams to approximately 5 MeV at output efficiencies greater than 90%. However, due to the nature of research and industrial applications, there has never been a requirement for a single module with an output power exceeding approximately 500 kW. Although a 50--100 MW module is a two-order extrapolation from demonstrated power levels, the scaling of accelerator components appears reasonable. This paper presents an evaluation of component and system issues involved in the design of a 50--100 MW electron beam accelerator system with precision beam transport into a high pressure flowing air environment.

  10. TATRA: a versatile high-vacuum tape transportation system for decay studies at radioactive-ion beam facilities

    NASA Astrophysics Data System (ADS)

    Matoušek, V.; Sedlák, M.; Venhart, M.; Janičkovič, D.; Kliman, J.; Petrík, K.; Švec, P.; Švec, , P.; Veselský, M.

    2016-03-01

    A compact and versatile tape transport system for the collection and counting of radioactive samples from radioactive ion beam facilities has been developed. It uses an amorphous metallic tape for transportation of the activity. Because of this material, the system can hold very good vacuum, typically below 10-7 mbar.

  11. The design of multi-megawatt actively cooled beam dumps for the Neutral-Beam Engineering Test Facility

    NASA Astrophysics Data System (ADS)

    Paterson, J. A.; Koehler, G.; Wells, R. P.

    1981-10-01

    To test neutral beam sources up to 170 keV, 65 Amps, with 30 second beam on times, actively cooled beam dumps for both the neutral and ionized particles are required. The dumps should be able to dissipate a wide range of power density profiles by utilizing a standard modular panel design which is incorporated into a moveable support structure. The thermal hydraulic design of the panels permit the dissipation of 2 kW/sq cm anywhere on the panel surface. The water requirements of the dumps are optimized by restricting the flow to panel sections where the heat flux falls short of the design value. The mechanical design of the beam-dump structures is described along with tests performed on two different panel designs. The dissipation capabilities of the panels were tested at the critical regions to verify their use in the beam dump assemblies.

  12. Conceptual design of a high precision dual directional beam position monitoring system for beam crosstalk cancellation and improved output pulse shapes

    SciTech Connect

    Thieberger P.; Dawson, C.; Fischer, W.; Gassner, D.; Hulsart, R.; Mernick, K.; Michnoff, R.; Minty, M.

    2012-04-15

    The Relativistic Heavy Ions Collider (RHIC) would benefit from improved beam position measurements near the interaction points that see both beams, especially as the tolerances become tighter when reducing the beam sizes to obtain increased luminosity. Two limitations of the present beam position monitors (BPMs) would be mitigated if the proposed approach is successful. The small but unavoidable cross-talk between signals from bunches traveling in opposite directions when using conventional BPMs will be reduced by adopting directional BPMs. Further improvements will be achieved by cancelling residual cross-talk using pairs of such BPMs. Appropriately delayed addition and integration of the signals will also provide pulses with relatively flat maxima that will be easier to digitize by relaxing the presently very stringent timing requirements.

  13. Extraction and low energy beam transport from a surface ion source at the TRIUMF-ISAC facility

    NASA Astrophysics Data System (ADS)

    Sen, A.; Ames, F.; Bricault, P.; Lassen, J.; Laxdal, A.; Mjos, A.

    2016-06-01

    A large fraction of radioactive beams produced and delivered at TRIUMF's isotope separator and accelerator facility, ISAC, are using either a surface ion source or a resonant ionization laser ion source, which share a common design. To characterize the operation of the ion sources, simulations were performed to determine the ion beam optics and beam envelope properties of the extracted beam. Furthermore ion-optics calculations were performed to determine the transmission parameters through the mass separator magnet. Emittances are measured in the ISAC low energy beam line right after the mass separator. The recent addition of a channeltron to the Allison emittance meter scanner now allows us to measure emittances for ion beams with intensities as low as 105 ions/s. This is particularly useful for establishing high resolution, high throughput mass separator tunes for radioactive isotope beams. This paper discusses emittance measurements of low intensity beams, typical emittance scans for the surface ion source and the resonant laser ionized source for different source parameters. The observed results are compared to the simulations and discussed.

  14. More than 10 years experience of beam monitoring with the Gantry 1 spot scanning proton therapy facility at PSI

    SciTech Connect

    Lin Shixiong; Boehringer, Terence; Coray, Adolf; Grossmann, Martin; Pedroni, Eros

    2009-11-15

    Purpose: The beam monitoring equipments developed for the first PSI spot scanning proton therapy facility, Gantry 1, have been successfully used for more than 10 years. The purpose of this article is to summarize the author's experience in the beam monitoring technique for dynamic proton scanning. Methods: The spot dose delivery and verification use two independent beam monitoring and computer systems. In this article, the detector construction, electronic system, dosimetry, and quality assurance results are described in detail. The beam flux monitor is calibrated with a Faraday cup. The beam position monitoring is realized by measuring the magnetic fields of deflection magnets with Hall probes before applying the spot and by checking the beam position and width with an ionization strip chamber after the spot delivery. Results: The results of thimble ionization chamber dosimetry measurements are reproducible (with a mean deviation of less than 1% and a standard deviation of 1%). The resolution in the beam position measurement is of the order of a tenth of a millimeter. The tolerance of the beam position delivery and monitoring during scanning is less than 1.5 mm. Conclusions: The experiences gained with the successful operation of Gantry 1 represent a unique and solid background for the development of a new system, Gantry 2, in order to perform new advanced scanning techniques.

  15. An external milli-beam for archaeometric applications on the AGLAE IBA facility of the Louvre museum

    NASA Astrophysics Data System (ADS)

    Calligaro, T.; Dran, J.-C.; Hamon, H.; Moignard, B.; Salomon, J.

    1998-03-01

    External beam lines have been built on numerous IBA facilities for the analysis of works of art to avoid sampling and vacuum potentially detrimental to the integrity of such precious objects. On the other hand, growing interest lies on microprobe systems which provide a high lateral resolution but which usually work under vacuum. Until recently, the AGLAE facility was equipped with separate external beam and microprobe lines. The need of a better spatial resolution in the external beam mode has led us to combine them into a single system which exhibits numerous advantages and allows the analysis of small heterogeneities like inclusions in gemstones or tiny components of composite samples. The triplet of quadrupole lenses bought from Oxford is used to focus the beam. By using a 0.75 μm thick Al foil as the exit window, blowing a helium flow around the beam spot and reducing the window-sample distance below 3 mm, a beam size of about 30 μm can be reached. The experimental setup includes two Si(Li), a HPGe and a Si surface barrier detectors for the simultaneous implementation of PIXE, NRA and RBS. The full description of this device is given as well as a few applications to highlight its capability.

  16. Conceptual design of a linac-stretcher ring to obtain a 2-GeV continuous electron beam

    SciTech Connect

    Cho, Y.; Holt, R.J.; Jackson, H.E.; Khoe, T.K.; Mavrogenes, G.S.

    1981-01-01

    In order to obtain a high duty factor, > 100 ..mu..A 2-GeV electron beam, we have designed a linac-stretcher ring system. The system is an attractive option because it draws heavily on the existing accelerator technology. The linac-stretcher ring consists of a 2-GeV SLAC-type pulsed linac which injects into a storage ring. In between linac pulses, the stored electron beam is to extract resonantly. This design differs from those discussed recently in several important respects. The storage ring includes an RF system whose purpose is to control the beam orbit and rate of extraction from the ring. With an RF system in the ring, the injection scheme consists of a few turns of synchronous transfers of beam between the linac and storage ring.

  17. Conceptual aspects of fiscal interactions between local governments and federally-owned, high-level radioactive waste-isolation facilities

    SciTech Connect

    Bjornstad, D.J.; Johnson, K.E.

    1981-01-01

    This paper examines a number of ways to transfer revenues between a federally-owned high level radioactive waste isolation facility (hereafter simply, facility) and local governments. Such payments could be used to lessen fiscal disincentives or to provide fiscal incentives for communities to host waste isolation facilities. Two facility characteristics which necessitate these actions are singled out for attention. First, because the facility is federally owned, it is not liable for state and local taxes and may be viewed by communities as a fiscal liability. Several types of payment plans to correct this deficiency are examined. The major conclusion is that while removal of disincentives or creation of incentives is possible, plans based on cost compensation that fail to consider opportunity costs cannot create incentives and are likely to create disincentives. Second, communities other than that in which the facility is sited may experience costs due to the siting and may, therefore, oppose it. These costs (which also accrue to the host community) arise due to the element of risk which the public generally associates with proximity to the transport and storage of radioactive materials. It is concluded that under certain circumstances compensatory payments are possible, but that measuring these costs will pose difficulty.

  18. Space station accommodations for life sciences research facilities. Phase 1: Conceptual design and programmatics studies for Missions SAAX0307, SAAX0302 and the transition from SAAX0307 to SAAX0302. Volume 2: Study results

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Lockheed Missiles and Space Company's conceptual designs and programmatics for a Space Station Nonhuman Life Sciences Research Facility (LSRF) are presented. Conceptual designs and programmatics encompass an Initial Orbital Capability (IOC) LSRF, a growth or follow-on Orbital Capability (FOC), and the transitional process required to modify the IOC LSFR to the FOC LSFR. The IOC and FOC LSFRs correspond to missions SAAX0307 and SAAX0302 of the Space Station Mission Requirements Database, respectively.

  19. Environmental Management Assessment of the Continuous Electron Beam Accelerator Facility (CEBAF)

    SciTech Connect

    Not Available

    1993-03-01

    This report documents the results of the Environmental Management Assessment performed at the Continuous Electron Beam Accelerator Facility (CEBAF) in Newport News, Virginia. During this assessment, activities and records were reviewed and interviews were conducted with personnel from the CEBAF Site Office; the CEBAF management and operating contractor (M&O), Southeastern Universities Research Association, Inc. (SURA); the Oak Ridge Field Office (OR); and the responsible DOE Headquarters Program Office, the Office of Energy Research (ER). The onsite portion of the assessment was conducted from March 8 through March 19, 1993, by the US Department of Energy`s (DOE`s) Office of Environmental Audit (EH-24) located within the office of Environment, Safety and Health (EH). DOE 5482.1 B, ``Environment, Safety and Health Appraisal Program,`` and Secretary of Energy Notice (SEN)-6E-92, ``Departmental Organizational and Management Arrangements,`` establish the mission of EH-24 to provide comprehensive, independent oversight of Department-wide environmental programs on behalf of the Secretary of Energy. The ultimate goal of EH-24 is enhancement of environmental protection and minimization of risk to public health and the environment. EH-24 accomplishes its mission utilizing systematic and periodic evaluations of the Department`s environmental programs within line organizations, and through use of supplemental activities which serve to strengthen self-assessment and oversight functions within program, field, and contractor organizations.

  20. Facile time-of-flight methods for characterizing pulsed superfluid helium droplet beams

    NASA Astrophysics Data System (ADS)

    He, Yunteng; Zhang, Jie; Li, Yang; Freund, William M.; Kong, Wei

    2015-08-01

    We present two facile time-of-flight (TOF) methods of detecting superfluid helium droplets and droplets with neutral dopants. Without an electron gun and with only a heated filament and pulsed electrodes, the electron impact ionization TOF mass spectrometer can resolve ionized helium clusters such as He2+ and He4+, which are signatures of superfluid helium droplets. Without ionizing any helium atoms, multiphoton non-resonant laser ionization of CCl4 doped in superfluid helium droplets at 266 nm generates complex cluster ions of dopant fragments with helium atoms, including (He)nC+, (He)nCl+, and (He)nCCl+. Using both methods, we have characterized our cryogenic pulsed valve—the Even-Lavie valve. We have observed a primary pulse with larger helium droplets traveling at a slower speed and a rebound pulse with smaller droplets at a faster speed. In addition, the pickup efficiency of dopant is higher for the primary pulse when the nozzle temperature is higher than 13 K, and the total time duration of the doped droplet pulse is only on the order of 20 μs. These results stress the importance of fast and easy characterization of the droplet beam for sensitive measurements such as electron diffraction of doped droplets.

  1. An ImageJ plugin for ion beam imaging and data processing at AIFIRA facility

    NASA Astrophysics Data System (ADS)

    Devès, G.; Daudin, L.; Bessy, A.; Buga, F.; Ghanty, J.; Naar, A.; Sommar, V.; Michelet, C.; Seznec, H.; Barberet, P.

    2015-04-01

    Quantification and imaging of chemical elements at the cellular level requires the use of a combination of techniques such as micro-PIXE, micro-RBS, STIM, secondary electron imaging associated with optical and fluorescence microscopy techniques employed prior to irradiation. Such a numerous set of methods generates an important amount of data per experiment. Typically for each acquisition the following data has to be processed: chemical map for each element present with a concentration above the detection limit, density and backscattered maps, mean and local spectra corresponding to relevant region of interest such as whole cell, intracellular compartment, or nanoparticles. These operations are time consuming, repetitive and as such could be source of errors in data manipulation. In order to optimize data processing, we have developed a new tool for batch data processing and imaging. This tool has been developed as a plugin for ImageJ, a versatile software for image processing that is suitable for the treatment of basic IBA data operations. Because ImageJ is written in Java, the plugin can be used under Linux, Mas OS X and Windows in both 32-bits and 64-bits modes, which may interest developers working on open-access ion beam facilities like AIFIRA. The main features of this plugin are presented here: listfile processing, spectroscopic imaging, local information extraction, quantitative density maps and database management using OMERO.

  2. Preventing vacuum leaks in the Continuous Electron Beam Accelerator Facility cavity pair bellows

    SciTech Connect

    Henkel, D.P. ); Doolittle, L.R. )

    1994-09-01

    Occasional vacuum leaks have occurred in bellows assemblies of helium pressure vessels at the Continuous Electron Beam Accelerator Facility. The flanged stainless steel bellows assemblies are used to connect the niobium rf cavity pairs to the surrounding liquid helium pressure vessels. An investigation of the source of these leaks has revealed a through-thickness network of microcracks in the cuff weld zones. The cuff material contained a mixture of soft and very hard elongated intermetallic inclusions that were oriented parallel with the weld fusion line; these inclusions served as crack initiation sites. Surface-exposed inclusions, in contact with a chlorine residue from a postweld machining process, induced crevice corrosion during a year of storage. Residual stresses in the weld led to a combination of lamellar tearing and stress corrosion cracking. Propagation of the cracks from one inclusion to another resulted in continuous vacuum leakage paths from the primary (2 K) helium circuit to the vacuum insulation space. Additional vacuum leaks were prevented by reconfiguring the weld geometry and avoiding any processing with chlorinated substances.

  3. Preventing vacuum leaks in the Continuous Electron Beam Accelerator Facility cavity pair bellows

    SciTech Connect

    Daniel P. Henkel; Lawrence R. Doolittle

    1994-05-01

    Occasional vacuum leaks have occurred in bellows assemblies of helium pressure vessels at the Continuous Electron Beam Accelerator Facility. The flanged stainless steel bellows assemblies are used to connect the niobium rf cavity pairs to the surrounding liquid helium pressure vessels. An investigation of the source of these leaks has revealed a through-thickness network of microcracks in the cuff weld zones. The cuff material contained a mixture of soft and very hard elongated intermetallic inclusions that were oriented parallel with the weld fusion line; these inclusions served as crack initiation sites. Surface-exposed inclusions, in contact with a chlorine residue from a postweld machining process, induced crevice corrosion during a year of storage. Residual stresses in the weld led to a combination of lamellar tearing and stress corrosion cracking. Propagation of the cracks from one inclusion to another resulted in continuous vacuum leakage paths from the primary (2 K) helium circuit to the vacuum insulation space. Additional vacuum leaks were prevented by reconfiguring the weld geometry and avoiding any processing with chlorinated substances.

  4. Facile time-of-flight methods for characterizing pulsed superfluid helium droplet beams

    SciTech Connect

    He, Yunteng; Zhang, Jie; Li, Yang; Freund, William M.; Kong, Wei

    2015-08-15

    We present two facile time-of-flight (TOF) methods of detecting superfluid helium droplets and droplets with neutral dopants. Without an electron gun and with only a heated filament and pulsed electrodes, the electron impact ionization TOF mass spectrometer can resolve ionized helium clusters such as He{sub 2}{sup +} and He{sub 4}{sup +}, which are signatures of superfluid helium droplets. Without ionizing any helium atoms, multiphoton non-resonant laser ionization of CCl{sub 4} doped in superfluid helium droplets at 266 nm generates complex cluster ions of dopant fragments with helium atoms, including (He){sub n}C{sup +}, (He){sub n}Cl{sup +}, and (He){sub n}CCl{sup +}. Using both methods, we have characterized our cryogenic pulsed valve—the Even-Lavie valve. We have observed a primary pulse with larger helium droplets traveling at a slower speed and a rebound pulse with smaller droplets at a faster speed. In addition, the pickup efficiency of dopant is higher for the primary pulse when the nozzle temperature is higher than 13 K, and the total time duration of the doped droplet pulse is only on the order of 20 μs. These results stress the importance of fast and easy characterization of the droplet beam for sensitive measurements such as electron diffraction of doped droplets.

  5. Facile time-of-flight methods for characterizing pulsed superfluid helium droplet beams.

    PubMed

    He, Yunteng; Zhang, Jie; Li, Yang; Freund, William M; Kong, Wei

    2015-08-01

    We present two facile time-of-flight (TOF) methods of detecting superfluid helium droplets and droplets with neutral dopants. Without an electron gun and with only a heated filament and pulsed electrodes, the electron impact ionization TOF mass spectrometer can resolve ionized helium clusters such as He2(+) and He4(+), which are signatures of superfluid helium droplets. Without ionizing any helium atoms, multiphoton non-resonant laser ionization of CCl4 doped in superfluid helium droplets at 266 nm generates complex cluster ions of dopant fragments with helium atoms, including (He)(n)C(+), (He)(n)Cl(+), and (He)(n)CCl(+). Using both methods, we have characterized our cryogenic pulsed valve—the Even-Lavie valve. We have observed a primary pulse with larger helium droplets traveling at a slower speed and a rebound pulse with smaller droplets at a faster speed. In addition, the pickup efficiency of dopant is higher for the primary pulse when the nozzle temperature is higher than 13 K, and the total time duration of the doped droplet pulse is only on the order of 20 μs. These results stress the importance of fast and easy characterization of the droplet beam for sensitive measurements such as electron diffraction of doped droplets. PMID:26329210

  6. Recent optimization of the beam-optical characteristics of the 6 MV van de Graaff accelerator for high brightness beams at the iThemba LABS NMP facility

    NASA Astrophysics Data System (ADS)

    Conradie, J. L.; Eisa, M. E. M.; Celliers, P. J.; Delsink, J. L. G.; Fourie, D. T.; de Villiers, J. G.; Maine, P. M.; Springhorn, K. A.; Pineda-Vargas, C. A.

    2005-04-01

    With the aim of improving the reliability and stability of the beams delivered to the nuclear microprobe at iThemba LABS, as well as optimization of the beam characteristics along the van de Graaff accelerator beamlines in general, relevant modifications were implemented since the beginning of 2003. The design and layout of the beamlines were revised. The beam-optical characteristics through the accelerator, from the ion source up to the analysing magnet directly after the accelerator, were calculated and the design optimised, using the computer codes TRANSPORT, IGUN and TOSCA. The ion source characteristics and optimal operating conditions were determined on an ion source test bench. The measured optimal emittance for 90% of the beam intensity was about 50π mm mrad for an extraction voltage of 6 kV. These changes allow operation of the Nuclear Microprobe at proton energies in the range 1 MeV-4 MeV with beam intensities of tenths of a pA at the target surface. The capabilities of the nuclear microprobe facility were evaluated in the improved beamline, with particular emphasis to bio-medical samples.

  7. Ongoing characterization of the forced electron beam induced arc discharge ion source for the selective production of exotic species facility

    SciTech Connect

    Manzolaro, M. Andrighetto, A.; Monetti, A.; Scarpa, D.; Rossignoli, M.; Vasquez, J.; Corradetti, S.; Calderolla, M.; Prete, G.; Meneghetti, G.

    2014-02-15

    An intense research and development activity to finalize the design of the target ion source system for the selective production of exotic species (SPES) facility (operating according to the isotope separation on line technique) is at present ongoing at Legnaro National Laboratories. In particular, the characterization of ion sources in terms of ionization efficiency and transversal emittance is currently in progress, and a preliminary set of data is already available. In this work, the off-line ionization efficiency and emittance measurements for the SPES forced electron beam induced arc discharge ion source in the case of a stable Ar beam are presented in detail.

  8. Admittance Test and Conceptual Study of a CW Positron Source for CEBAF

    SciTech Connect

    Golge, Serkan; Hyde, Charles E.; Freyberger, Arne

    2009-09-02

    A conceptual study of a Continuous Wave (CW) positron production is presented in this paper. The Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Lab (JLAB) operates with a CW electron beam with a well-defined emittance, time structure and energy spread. Positrons created via bremsstrahlung photons in a high-Z target emerge with a large emittance compared to incoming electron beam. An admittance study has been performed at CEBAF to estimate the maximum beam phase space area that can be transported in the LINAC and in the Arcs. A positron source is described utilizing the CEBAF injector electron beam, and directly injecting the positrons into the CEBAF LINAC.

  9. Performance of a liquid argon time projection chamber exposed to the CERN West Area Neutrino Facility neutrino beam

    SciTech Connect

    Arneodo, F.; Cavanna, F.; Mitri, I. De; Mortari, G. Piano; Benetti, P.; Borio di Tigliole, A.; Calligarich, E.; Cesana, E.; Dolfini, R.; Mauri, F.; Montanari, C.; Rappoldi, A.; Raselli, G. L.; Rubbia, C.; Terrani, M.; Vignoli, C.; Bonesini, M.; Boschetti, B.; Cavalli, D.; Curioni, A.

    2006-12-01

    We present the results of the first exposure of a Liquid Argon TPC to a multi-GeV neutrino beam. The data have been collected with a 50 liters ICARUS-like chamber located between the CHORUS and NOMAD experiments at the CERN West Area Neutrino Facility (WANF). We discuss both the instrumental performance of the detector and its capability to identify and reconstruct low-multiplicity neutrino interactions.

  10. SIPHORE: Conceptual Study of a High Efficiency Neutral Beam Injector Based on Photo-detachment for Future Fusion Reactors

    SciTech Connect

    Simonin, A.; Christin, L.; Esch, H. de; Garibaldi, P.; Grand, C.; Villecroze, F.; Blondel, C.; Delsart, C.; Drag, C.; Vandevraye, M.; Brillet, A.; Chaibi, W.

    2011-09-26

    An innovative high efficiency neutral beam injector concept for future fusion reactors is under investigation (simulation and R and D) between several laboratories in France, the goal being to perform a feasibility study for the neutralization of intense high energy (1 MeV) negative ion (NI) beams by photo-detachment.The objective of the proposed project is to put together the expertise of three leading groups in negative ion quantum physics, high power stabilized lasers and neutral beam injectors to perform studies of a new injector concept called SIPHORE (SIngle gap PHOto-neutralizer energy REcovery injector), based on the photo-detachment of negative ions and energy recovery of unneutralised ions; the main feature of SIPHORE being the relevance for the future Fusion reactors (DEMO), where high injector efficiency (up to 70-80%), technological simplicity and cost reduction are key issues to be addressed.The paper presents the on-going developments and simulations around this project, such as, a new concept of ion source which would fit with this injector topology and which could solve the remaining uniformity issue of the large size ion source, and, finally, the presentation of the R and D program in the laboratories (LAC, ARTEMIS) around the photo-neutralization for Siphore.

  11. RBE variation between fast neutron beams as a function of energy. Intercomparison involving 7 neutrontherapy facilities.

    PubMed

    Gueulette, J; Beauduin, M; Grégoire, V; Vynckier, S; De Coster, B M; Octave-Prignot, M; Wambersie, A; Strijkmans, K; De Schrijver, A; El-Akkad, S; Böhm, L; Slabbert, J P; Jones, D T; Maughan, R; Onoda, J; Yudelev, M; Porter, A T; Powers, W E; Sabattier, R; Breteau, N; Courdi, A; Brassart, N; Chauvel, P

    1996-01-01

    In fast neutron therapy, the relative biological effectiveness (RBE) of a given beam varies to a large extent with the neutron energy spectrum. This spectrum depends primarily on the energy of the incident particles and on the nuclear reaction used for neutron production. However, it also depends on other factors which are specific to the local facility, eg, target, collimation system, etc. Therefore direct radiobiological intercomparisons are justified. The present paper reports the results of an intercomparison performed at seven neutrontherapy centres: Orléans, France (p(34)+Be), Riyadh, Saudi Arabia (p(26)+Be), Ghent, Belgium (d(14.5)+Be), Faure, South Africa (p(66)+Be), Detroit, USA (d(48)+Be), Nice, France (p(65)+Be) and Louvain-la-Neuve, Belgium (p(65)+Be). The selected radiobiological system was intestinal crypt regeneration in mice after single fraction irradiation. The observed RBE values (ref cobalt-60 gamma-rays) were 1.79 +/- 0.10, 1.84 +/- 0.07, 2.24 +/- 0.11, 1.55 +/- 0.04, 1.51 +/- 0.03, 1.50 +/- 0.04 and 1.52 +/- 0.04, respectively. When machine availability permitted, additional factors were studied: two vs one fraction (Ghent, Louvain-la-Neuve), dose rate (Detroit), influence of depth in phantom (Faure, Detroit, Nice, Louvain-la-Neuve). In addition, at Orléans and Ghent, RBEs were also determined for LD50 at 6 days after selective abdominal irradiation and were found to be equal to the RBEs for crypt regeneration. The radiobiological intercomparisons were always combined with direct dosimetric intercomparisons and, when possible in some centres, with microdosimetric investigations. PMID:8949753

  12. Magnetohydrodynamics (MHD) Engineering Test Facility (ETF) 200 MWe power plant. Conceptual Design Engineering Report (CDER). Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Main elements of the design are identified and explained, and the rationale behind them was reviewed. Major systems and plant facilities are listed and discussed. Construction cost and schedule estimates are presented, and the engineering issues that should be reexamined are identified. The latest (1980-1981) information from the MHD technology program is integrated with the elements of a conventional steam power electric generating plant.

  13. Beam-Pointing Designs for Exploding-Pusher Proton and X-Ray Backlighting Targets at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Craxton, R. S.; Kong, Y. Z.; Garcia, E. M.; Huang, P. Y.; Kinney, J. P.; McKenty, P. W.; Zhang, R.; Le Pape, S.; Coppari, F.; Heeter, R. F.; Liedahl, D. A.; MacGowan, B. J.; Rygg, J. R.; Schneider, M. B.; Li, C. K.; Perry, T. S.

    2015-11-01

    The 2-D hydrodynamics code SAGE, which includes 3-D laser ray tracing, has been used to design laser pointing configurations for thin-shell, exploding-pusher targets at the National Ignition Facility (NIF) being considered as point sources of protons and continuum x rays. Since it is desired to irradiate these targets using limited numbers of beams, uniformity is maximized by individually pointing the different beams in each quad. An important design constraint is to minimize the laser blow-by into opposing beam ports. Designs have been developed for a variety of planned experiments. A six-quad design was used for the first proton backlighter development shot on the NIF. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  14. LICORNE: A new and unique facility for producing intense, kinematically focused neutron beams at the IPN Orsay

    NASA Astrophysics Data System (ADS)

    Wilson, J. N.; Lebois, M.; Halipre, P.; Leniau, B.; Matea, I.; Verney, D.; Oberstedt, S.; Billnert, R.; Oberstedt, A.; Georgiev, G.; Ljungvall, J.

    2013-12-01

    LICORNE is a new neutron source recently installed at the tandem accelerator of the Institut de Physique Nucléaire d'Orsay, where a Li7-beam is used to bombard a hydrogen-containing target to produce an intense forward-directed neutron beam. The directionality of the beam, which is the unique characteristic of LICORNE, will permit the installation of γ-ray detectors dedicated to the investigation of fission fragment de-excitation which are unimpeded by neutrons from the source. A first experimental program will focus on the measurement of prompt γ-ray emission in the neutron-induced fission of fertile and fissile isotopes at incident neutron energies relevant for the core design of Generation-IV nuclear reactors. Other potential uses of the LICORNE facility for both fundamental and applied physics research are also presented.

  15. APT Blanket System Loss-of-Coolant Accident (LOCA) Based on Initial Conceptual Design - Case 2: with Beam Shutdown Only

    SciTech Connect

    Hamm, L.L.

    1998-10-07

    This report is one of a series of reports that document normal operation and accident simulations for the Accelerator Production of Tritium (APT) blanket heat removal system. These simulations were performed for the Preliminary Safety Analysis Report. This report documents the results of simulations of a Loss-of-Flow Accident (LOFA) where power is lost to all of the pumps that circulate water in the blanket region, the accelerator beam is shut off and neither the residual heat removal nor cavity flood systems operate.

  16. Structural biology facilities at Brookhaven National Laboratory`s high flux beam reactor

    SciTech Connect

    Korszun, Z.R.; Saxena, A.M.; Schneider, D.K.

    1994-12-31

    The techniques for determining the structure of biological molecules and larger biological assemblies depend on the extent of order in the particular system. At the High Flux Beam Reactor at the Brookhaven National Laboratory, the Biology Department operates three beam lines dedicated to biological structure studies. These beam lines span the resolution range from approximately 700{Angstrom} to approximately 1.5{Angstrom} and are designed to perform structural studies on a wide range of biological systems. Beam line H3A is dedicated to single crystal diffraction studies of macromolecules, while beam line H3B is designed to study diffraction from partially ordered systems such as biological membranes. Beam line H9B is located on the cold source and is designed for small angle scattering experiments on oligomeric biological systems.

  17. Photoneutron production in electron beam stop for dual-axis radiographic hydrotest facility (DARHT)

    SciTech Connect

    Chadwick, M.B.; Brown, T.H.; Little, R.C.

    1998-03-01

    A beam stop design for an electron linear accelerator was analyzed from the perspective of photoneutron production and subsequent dose. Sophisticated nuclear data modeling codes were used to generate the photoneutron production cross sections and spectra that were then used in MCNP transport calculations. The resulting neutron dose exceeded limits for workers present in the experimental area while the accelerators are producing electron beam pulses. Therefore, the beam stop was redesigned to limit doses to acceptable values, consistent with the ALARA philosophy.

  18. Filtered epithermal quasi-monoenergetic neutron beams at research reactor facilities.

    PubMed

    Mansy, M S; Bashter, I I; El-Mesiry, M S; Habib, N; Adib, M

    2015-03-01

    Filtered neutron techniques were applied to produce quasi-monoenergetic neutron beams in the energy range of 1.5-133keV at research reactors. A simulation study was performed to characterize the filter components and transmitted beam lines. The filtered beams were characterized in terms of the optimal thickness of the main and additive components. The filtered neutron beams had high purity and intensity, with low contamination from the accompanying thermal emission, fast neutrons and γ-rays. A computer code named "QMNB" was developed in the "MATLAB" programming language to perform the required calculations. PMID:25544666

  19. Conceptual design report for facilities capability assurance program (FCAP) roads and parking lot replacements FY 1994 line item

    SciTech Connect

    1992-01-06

    Mound, located in Montgomery County, Miamisburg, Ohio, on the east bank of the Great Miami River, was established in 1948 by the Atomic Energy Commission to develop and manufacture explosive devices for the United States Government. Mound occupies 305 acres and at present the facility is operated by EG&G Mound Applied Technologies. It is devoted to research, development, testing and manufacturing of components for nuclear weapons systems under the auspices of the United States Department of Energy (DOE). The complex employs approximately 2,200 people generating an annual payroll in excess of $75 million. Whereas Government sponsors have traditionally placed great emphasis on new technological concepts and manufacturing processes for weapons, unfortunately, such has not been the case in the maintenance of the roadway infrastructure. The roadway system which, for the most part is 40 years old, must be restored to a condition which will ensure smooth transportation of weapon component production, safe access for emergency and fire vehicles and safe ingress and egress for pedestrian personnel. This Facilities Capability Assurance Program (FCAP) project will provide this much needed restoration.

  20. Isobar separation by time-of-flight mass spectrometry for low-energy radioactive ion beam facilities

    NASA Astrophysics Data System (ADS)

    Plaß, Wolfgang R.; Dickel, Timo; Czok, Ulrich; Geissel, Hans; Petrick, Martin; Reinheimer, Katrin; Scheidenberger, Christoph; Yavor, Mikhail I.

    2008-10-01

    A multiple-reflection time-of-flight mass spectrometer (MR-TOF-MS) system for low-energy radioactive ion beam facilities has been developed, which can be used for (i) isobar separation and (ii) direct mass measurements of very short-lived nuclei with half-lives of about 1 ms or longer, and (iii) for identification and diagnosis of the ion beam by mass spectrometry. The system has been designed and simulated, and individual subsystems have been built and characterized experimentally. An injection trap for cooling and bunching of the ion beam has been developed, and cooling times of less than one millisecond have been achieved. The performance of the MR-TOF-MS was characterized using the isobaric doublet of carbon monoxide and nitrogen molecular ions. A mass resolving power of 105 (FWHM) has been obtained even with an uncooled ion population. The separator capabilities of the MR-TOF-MS have been demonstrated by removing either carbon monoxide or nitrogen ions from the beam in a Bradbury-Nielsen Gate after a flight time of 320 μs. The separation power achieved is thus at least 7000 (FWHM) and increases for longer time-of-flight. An energy buncher stage has been designed that compresses the energy spread of the beam after the separation and facilitates efficient injection of the selected ions into an accumulation trap prior to transfer of the ions to experiments downstream of the MR-TOF-MS.

  1. Beam instrumentation for future high intense hadron accelerators at Fermilab

    SciTech Connect

    Wendt, M.; Hu, M.; Tassotto, G.; Thurman-Keup, R.; Scarpine, V.; Shin, S.; Zagel, J.; /Fermilab

    2008-08-01

    High intensity hadron beams of up to 2 MW beam power are a key element of new proposed experimental facilities at Fermilab. Project X, which includes a SCRF 8 GeV H{sup -} linac, will be the centerpiece of future HEP activities in the neutrino sector. After a short overview of this, and other proposed projects, we present the current status of the beam instrumentation activities at Fermilab with a few examples. With upgrades and improvements they can meet the requirements of the new beam facilities, however design and development of new instruments is needed, as shown by the prototype and conceptual examples in the last section.

  2. A Compact Wakefield Measurement Facility

    NASA Astrophysics Data System (ADS)

    Power, J. G.; Gai, W.

    2015-10-01

    The conceptual design of a compact, photoinjector-based, facility for high precision measurements of wakefields is presented. This work is motivated by the need for a thorough understanding of beam induced wakefield effects for any future linear collider. We propose to use a high brightness photoinjector to generate (approximately) a 2 nC, 2 mm-mrad drive beam at 20 MeV to excite wakefields and a second photoinjector to generate a 5 MeV, variably delayed, trailing witness beam to probe both the longitudinal and transverse wakefields in the structure under test. Initial estimates show that we can detect a minimum measurable dipole transverse wake function of 0.1 V/pC/m/mm and a minimum measurable monopole longitudinal wake function of 2.5 V/pC/m. Simulations results for the high brightness photoinjector, calculations of the facility's wakefield measurement resolution, and the facility layout are presented.

  3. Beam dynamics in an ultra-low energy storage rings (review of existing facilities and feasibility studies for future experiments)

    NASA Astrophysics Data System (ADS)

    Papash, A. I.; Smirnov, A. V.; Welsch, C. P.

    2014-03-01

    Storage rings operating at ultra-low energies and in particular electrostatic storage rings have proven to be invaluable tools for atomic and molecular physics. Due to the mass independence of the electrostatic rigidity, these machines are able to store a wide range of different particles, from light ions to heavy singly charged bio-molecules. However, earlier measurements showed strong limitations on beam intensity, fast decay of ion current, reduced life time etc. The nature of these effects was not fully understood. Also a large variety of experiments in future generation ultra-low energy storage and decelerator facilities including in-ring collision studies with a reaction microscope require a comprehensive investigation of the physical processes involved into the operation of such rings. In this paper, we present review of non-linear and long term beam dynamics studies on example of the ELISA, AD Recycler, TSR and USR rings using the computer codes BETACOOL, OPERA-3D and MAD-X. The results from simulations were benchmarked against experimental data of beam losses in the ELISA storage ring. We showed that decay of beam intensity in ultra-low energy rings is mainly caused by ion losses on ring aperture due to multiple scattering on residual gas. Beam is lost on ring aperture due to small ring acceptance. Rate of beam losses increases at high intensities because of the intra-beam scattering effect adds to vacuum losses. Detailed investigations into the ion kinetics under consideration of the effects from electron cooling and multiple scattering of the beam on a supersonic gas jet target have been carried out as well. The life time, equilibrium momentum spread and equilibrium lateral spread during collisions with this internal gas jet target were estimated. In addition, the results from experiments at the TSR ring, where low intensity beam of CF+ ions at 93 keV/u has been shrunk to extremely small dimensions have been reproduced. Based on these simulations

  4. Universal Slow RI-Beam Facility at RIKEN RIBF for Laser Spectroscopy of Short-Lived Nuclei

    SciTech Connect

    Wada, M.; Takamine, A.; Okada, K.; Sonoda, T.; Schury, P.; Kanai, Y.; Kojima, T. M.; Lioubimov, V.; Yamazaki, Y.; Yoshida, A.; Kubo, T.; Iimura, H.; Katayama, I.; Ohtani, S.; Wollnik, H.; Schuessler, H. A.

    2009-03-17

    A universal slow RI-beam facility (SLOWRI) for precision atomic spectroscopy is being built at the RIKEN RI-beam factory. The facility will provide a wide variety of low-energy nuclear ions of all elements produced by projectile fragmentation of high-energy heavy-ion beams and thermalized by an RF-carpet ion guide. At prototype SLOWRI, radioactive Be isotope ions produced at 1 GeV were decelerated and cooled in an ion trap down to 1 {mu}eV by employing laser cooling. The ground state hyperfine structures of {sup 7}Be{sup +} and {sup 11}Be{sup +} were measured accurately by laser microwave double resonance spectroscopy. Measurements of the S{sub 1/2}{yields}P{sub 1/2}, P{sub 3/2} transition frequencies of {sup 7,9,10,11}Be{sup +} ions are also in progress aiming at the study of the nuclear charge radii. Other possible experiment at SLOWRI, such as mass spectroscopy, are also discussed.

  5. The Cryoplant for the Iter Neutral Beam Test Facility to BE Built at Rfx in Padova, Italy

    NASA Astrophysics Data System (ADS)

    Pengo, R.; Fellin, F.; Sonato, P.

    2010-04-01

    The Neutral Beam Test Facility (NBTF), planned to be constructed in Padua (Italy), will constitute the prototype of the two Neutral Beam Injectors (NBI), which will be installed in the ITER plant (Cadarache-France). The NBTF is composed of a 1 MV accelerator that can produce a 40 A deuteron pulsed neutral beam particles. The necessary vacuum needed in the accelerator is achieved by two large cryopumps, designed by FZK-Karlsruhe, with radiation shields cooled between 65 K and 90 K and with cryopanels cooled by 4 bar supercritical helium (ScHe) between 4.5 K and 6.5 K. A new cryoplant facility will be installed with two large helium refrigerators: a Shield Refrigerator (SR), whose cooling capacity is up to 30 kW between 65 K and 90 K, and a helium Main Refrigerator (MR), whose equivalent cooling capacity is up to 800 W at 4.5 K. The cooling of the cryopanels is obtained with two (ScHe) 30 g/s pumps (one redundant), working in a closed cycle around 4 bar producing a pressure head of 100 mbar. Two heat exchangers are immersed in a buffer dewar connected to the MR. The MR and SR different operation modes are described in the paper, as well as the new cryoplant installation.

  6. Conceptual design of the FRIB cryogenic system

    SciTech Connect

    Weisend II, J G; Bull, Brad; Burns, Chris; Fila, Adam; Kelley, Patrick; Laumer, Helmut; Mann, Thomas; McCartney, Allyn; Jones, S; Zeller, A

    2012-06-01

    The Facility for Rare Isotope Beams (FRIB) is a new nuclear science facility funded by the DOE Office of Science and Michigan State University (MSU). FRIB is currently under design and will be located on the MSU campus. The centerpiece of FRIB is a heavy ion linac utilizing superconducting RF cavities and magnets which in turn requires a large cryogenic system. The cryogenic system consists of a commercially produced helium refrigeration plant and an extensive distribution system. Superconducting components will operate at both 4.5 K and 2 K. This paper describes the conceptual design of the system including the expected heat loads and operating modes. The strategy for procuring a custom turnkey helium refrigeration plant from industry, an overview of the distribution system, the interface of the cryogenic system to the conventional facilities and the project schedule are also described.

  7. Analysis Of The Structure Of Ion Micro-Beams Emitted From RPI- And PF-Type Facilities

    SciTech Connect

    Malinowski, K.; Skladnik-Sadowska, E.; Czaus, K.; Sadowski, M. J.; Scholz, M.; Schmidt, H.

    2006-01-15

    The paper concerns measurements and quantitative analysis of micro-beams of fast ions produced by high-current pulse plasma discharges, which are investigated within different experimental facilities of the Rod Plasma Injector (RPI) and Plasma-Focus (PF) type. The reported ion measurements were performed mainly within the RPI-IBIS device at the IPJ in Swierk and within the large PF-1000 facility at the IPPLM in Warsaw. The pulsed ion streams were recorded by means of ion-pinhole cameras equipped with solid-state nuclear track detectors (SSNTD). Before their irradiation those detectors were calibrated, i.e. their responses to different ion species of various energies were determined. For this purpose there were used mono-energetic ion beams (obtained from particle accelerators) or ion tracks measured along the ion parabolas recorded by means of a Thomson-type spectrometer. During the described ion measurements the ion-pinhole cameras were placed at different angles to the symmetry axes of the investigated experimental facilities.

  8. OTR Measurements and Modeling of the Electron Beam Optics at the E-Cooling Facility

    SciTech Connect

    Warner, A.; Burov, A.; Carlson, K.; Nagaitsev, S.; Prost, L.; Sutherland, M.; Kazakevich, G.; Tiunov, M.

    2006-03-20

    Optics of the electron beam accelerated in the Pelletron, intended for the electron cooling of 8.9 GeV antiprotons in the Fermilab recycler storage ring, has been studied. The beam profile parameters were measured under the accelerating section using Optical Transition Radiation (OTR) monitor. The monitor employs a highly-reflective 2 inch-diameter aluminum OTR-screen with a thickness of 5 {mu}m and a digital CCD camera. The measurements were done in a pulse-signal mode in the beam current range of 0.03-0.8 A and at pulse durations ranging from 1 {mu}s to 4 {mu}s. Differential profiles measured in pulsed mode are compared with results obtained by modeling of the DC beam dynamics from the Pelletron cathode to the OTR monitor. The modeling was done with SAM, ULTRASAM and BEAM programs. An adjustment of the magnetic fields in the lenses of the accelerating section was done in the simulations. The simulated electron beam optics downstream of the accelerating section was in good agreement with the measurements made with pulsed beam.

  9. OTR measurements and modeling of the electron beam optics at the E-cooling facility

    SciTech Connect

    Warner, A.; Burov, Alexey V.; Carlson, K.; Kazakevich, G.; Nagaitsev, S.; Prost, L.; Sutherland, M.; Tiunov, M.; /Fermilab /Novosibirsk, IYF

    2005-11-01

    Optics of the electron beam accelerated in the Pelletron, intended for the electron cooling of 8.9 GeV antiprotons in the Fermilab recycler storage ring, has been studied. The beam profile parameters were measured under the accelerating section using Optical Transition Radiation (OTR) monitor. The monitor employs a highly-reflective 2 inch-diameter aluminum OTR-screen with a thickness of 5 {micro}m and a digital CCD camera. The measurements were done in a pulse-signal mode in the beam current range of 0.03-0.8 A and at pulse durations ranging from 1 {micro}s to 4 {micro}s. Differential profiles measured in pulsed mode are compared with results obtained by modeling of the DC beam dynamics from the Pelletron cathode to the OTR monitor. The modeling was done with SAM, ULTRASAM and BEAM programs. An adjustment of the magnetic fields in the lenses of the accelerating section was done in the simulations. The simulated electron beam optics downstream of the accelerating section was in good agreement with the measurements made with pulsed beam.

  10. Conceptual Model for Reducing Infections and Antimicrobial Resistance in Skilled Nursing Facilities: Focusing on Residents with Indwelling Devices

    PubMed Central

    Bradley, Suzanne F.; Galecki, Andrzej; Olmsted, Russell N.; Fitzgerald, James T.; Kauffman, Carol A.; Saint, Sanjay; Krein, Sarah L.

    2011-01-01

    Infections in skilled nursing facilities (SNFs) are common and result in frequent hospital transfers, functional decline, and death. Colonization with multidrug-resistant organisms (MDROs) – including methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant enterococci (VRE), and multidrug-resistant gram-negative bacilli (R-GNB) – is also increasingly prevalent in SNFs. Antimicrobial resistance among common bacteria can adversely affect clinical outcomes and increase health care costs. Recognizing a need for action, legislators, policy-makers, and consumer groups are advocating for surveillance cultures to identify asymptomatic patients with MDROs, particularly MRSA in hospitals and SNFs. Implementing this policy for all SNF residents may be costly, impractical, and ineffective. Such a policy may result in a large increase in the number of SNF residents placed in isolation precautions with the potential for reduced attention by health care workers, isolation, and functional decline. Detection of colonization and subsequent attempts to eradicate selected MDROs can also lead to more strains with drug resistance. We propose an alternative strategy that uses a focused multicomponent bundle approach that targets residents at a higher risk of colonization and infection with MDROs, specifically those who have an indwelling device. If this strategy is effective, similar strategies can be studied and implemented for other high-risk groups. PMID:21292670

  11. Shielding design of electron beam stop for Dual-Axis Radiographic Hydrotest Facility (DARHT)

    SciTech Connect

    Brown, T.H.

    1996-03-01

    An electron beam stop was designed to allow workers to be present in the experimental area while the accelerators are producing electron beam pulses. The beam stop is composed of a graphite region to stop the electron pulses and a surrounding tungsten region to attenuate photons produced by electron transport in the graphite. Radiation-transport dose calculations were performed to set the dimensions of the graphite and tungsten regions. To reduce calculational effort, electron transport in the graphite was calculated separately from photon dose transport to worker locations. The source for photon dose transport was generated by tallying photons emerging from the graphite during electron transport.

  12. IMPACT: a facility to study the interaction of low-energy intense particle beams with dynamic heterogeneous surfaces.

    PubMed

    Allain, J P; Nieto, M; Hendricks, M R; Plotkin, P; Harilal, S S; Hassanein, A

    2007-11-01

    The Interaction of Materials with Particles and Components Testing (IMPACT) experimental facility is furnished with multiple ion sources and in situ diagnostics to study the modification of surfaces undergoing physical, chemical, and electronic changes during exposure to energetic particle beams. Ion beams with energies in the range between 20 and 5000 eV can bombard samples at flux levels in the range of 10(10)-10(15) cm(-2) s(-1); parameters such as ion angle of incidence and exposed area are also controllable during the experiment. IMPACT has diagnostics that allow full characterization of the beam, including a Faraday cup, a beam imaging system, and a retarding field energy analyzer. IMPACT is equipped with multiple diagnostics, such as electron (Auger, photoelectron) and ion scattering spectroscopies that allow different probing depths of the sample to monitor compositional changes in multicomponent and/or layered targets. A unique real-time erosion diagnostic based on a dual quartz crystal microbalance measures deposition from an eroding surface with rates smaller than 0.01 nm/s, which can be converted to a sputter yield measurement. The monitoring crystal can be rotated and placed in the target position so that the deposited material on the quartz crystal oscillator surface can be characterized without transfer outside of the vacuum chamber. PMID:18052463

  13. Photon detection system for laser spectroscopy experiments with cooled/bunched beams at BECOLA facility at NSCL

    NASA Astrophysics Data System (ADS)

    Hughes, Maximilian; Minamisono, Kei; Mantica, Paul; Rossi, Dominic; Ryder, Caleb; Klose, Andrew; Tarazona, David; Strum, Ryan; Bollen, Georg; Ringle, Ryan; Barquest, Brad; Geppert, Christopher

    2013-10-01

    The BEam COoler and LAser spectroscopy (BECOLA) facility at NSCL is designed to determine fundamental properties of the atomic nucleus such as the charge radii, the spin and electromagnetic moments. Commissioning tests of BECOLA has been completed using a stable 39K beam produced from an offline ion source. The 39K beam was cooled and bunched and propagated collinearly with laser light. The resulting fluorescence was detected in a photomultiplier tube (PMT)sensitive to the wavelength of D1 transition of 39K The PMT was cooled to minimize background due to dark counts. The resulting fluorescence light was measured as a function of laser frequency and time relative to the 39K beam bunch. An EPICS-based Control Systems Studio (CSS) was used for data acquisition and the software package Root was used for data analysis. The performance characteristics of the photon detection system as well as the laser spectroscopy of bunched 39K will be discussed. Work was supported in part by the National Science Foundation, Grant PHY-11-02511.

  14. Status of the "ARC", a Quad of High-Intensity Beam Lines at the National Ignition Facility

    SciTech Connect

    Crane, J K; Arnold, P; Beach, R J; Betts, S; Boley, C; Chang, M; Chrisp, M; Clark, W; Dawson, J W; Erlandson, A; Henesian, M; Hernandez, J E; Jovanovic, I; Kanz, V; Key, M; Lucianetti, A; Messerly, M J; Page, R; Rushford, M; Semenov, V; Seppala, L; Siders, C; Stolz, C; Trummer, D J; Williams, W; Wong, J N; Tiebohl, G; Barty, C J

    2006-06-21

    We present the status of plans to commission a short-pulse, quad of beams on the National Ignition Facility (NIF), capable of generating > 10 kJ of energy in 10 ps. These beams will initially provide an advanced radiographic capability (ARC) to generate brilliant, x-ray back-lighters for diagnosing fuel density and symmetry during ignition experiments. A fiber, mode-locked oscillator generates the seed pulse for the ARC beam line in the NIF master oscillator room (MOR). The 200 fs, 1053 nm oscillator pulse is amplified and stretched in time using a chirped-fiber-Bragg grating. The stretched pulse is split to follow two separate beam paths through the chain. Each pulse goes to separate pulse tweakers where the dispersion can be adjusted to generate a range of pulse widths and delays at the compressor output. After further fiber amplification the two pulses are transported to the NIF preamplifier area and spatially combined using shaping masks to form a split-spatial-beam profile that fits in a single NIF aperture. This split beam propagates through a typical NIF chain where the energy is amplified to several kilojoules. A series of mirrors directs the amplified, split beam to a folded grating compressor that is located near the equator of the NIF target chamber. Figure 1 shows a layout of the beam transport and folded compressor, showing the split beam spatial profile. The folder compressor contains four pairs of large, multi-layer-dielectric gratings; each grating in a pair accepts half of the split beam. The compressed output pulse can be 0.7-50 ps in duration, depending on the setting of the pulse tweaker in the MOR. The compressor output is directed to target chamber center using four additional mirrors that include a 9 meter, off-axis parabola. The final optic, immediately following the parabola, is a pair of independently adjustable mirrors that can direct the pair of ARC beams to individual x-ray backlighter targets. The first mirror after the compressor

  15. JINR test facility for studies FEL bunching technique for CLIC driving beam

    SciTech Connect

    Dolbilov, G.V.; Fateev, A.A.; Ivanov, I.N.

    1995-12-31

    SILUND-21 linear induction accelerator (energy up to 10 MeV, peak current about of 1 kA, pulse duration 50 - 70 ns) is constructed at JINR in the framework of experimental program to study free electron laser physics, a problem of two-beam acceleration and microwave electronics. In this paper we present project of an experiment to adopt the FEL bunching technique for generation of the CLIC driving beam.

  16. The Intense Slow Positron Beam Facility at the NC State University PULSTAR Reactor

    SciTech Connect

    Hawari, Ayman I.; Moxom, Jeremy; Hathaway, Alfred G.; Brown, Benjamin; Xu, Jun

    2009-03-10

    An intense slow positron beam is in its early stages of operation at the 1-MW open-pool PULSTAR research reactor at North Carolina State University. The positron beam line is installed in a beam port that has a 30-cmx30-cm cross sectional view of the core. The positrons are created in a tungsten converter/moderator by pair-production using gamma rays produced in the reactor core and by neutron capture reactions in cadmium cladding surrounding the tungsten. Upon moderation, slow ({approx}3 eV) positrons that are emitted from the moderator are electrostatically extracted, focused and magnetically guided until they exit the reactor biological shield with 1-keV energy, approximately 3-cm beam diameter and an intensity exceeding 6x10{sup 8} positrons per second. A magnetic beam switch and transport system has been installed and tested that directs the beam into one of two spectrometers. The spectrometers are designed to implement state-of-the-art PALS and DBS techniques to perform positron and positronium annihilation studies of nanophases in matter.

  17. A Test Facility for the International Linear Collider at SLAC End Station A, for Prototypes of Beam Delivery and IR Components

    SciTech Connect

    Woods, M.; Erickson, R.; Frisch, J.; Hast, C.; Jobe, R.K.; Keller, L.; Markiewicz, T.; Maruyama, T.; McCormick, D.; Nelson, J.; Nelson, T.; Phinney, N.; Raubenheimer, T.; Ross, M.; Seryi, A.; Smith, S.; Szalata, Z.; Tenenbaum, P.; Woodley, M.; Angal-Kalinin, D.; Beard, C.; /Daresbury /CERN /DESY /KEK, Tsukuba /LLNL, Livermore /Lancaster U. /Manchester U. /Notre Dame U. /Queen Mary, U. of London /Darmstadt, Tech. Hochsch. /Birmingham U. /Bristol U. /UC, Berkeley /Cambridge U. /University Coll. London /Massachusetts U., Amherst /Oregon U.

    2005-05-23

    The SLAC Linac can deliver damped bunches with ILC parameters for bunch charge and bunch length to End Station A. A 10Hz beam at 28.5 GeV energy can be delivered there, parasitic with PEP-II operation. We plan to use this facility to test prototype components of the Beam Delivery System and Interaction Region. We discuss our plans for this ILC Test Facility and preparations for carrying out experiments related to collimator wakefields and energy spectrometers. We also plan an interaction region mockup to investigate effects from backgrounds and beam-induced electromagnetic interference.

  18. GEANT4 used for neutron beam design of a neutron imaging facility at TRIGA reactor in Morocco

    NASA Astrophysics Data System (ADS)

    Ouardi, A.; Machmach, A.; Alami, R.; Bensitel, A.; Hommada, A.

    2011-09-01

    Neutron imaging has a broad scope of applications and has played a pivotal role in visualizing and quantifying hydrogenous masses in metallic matrices. The field continues to expand into new applications with the installation of new neutron imaging facilities. In this scope, a neutron imaging facility for computed tomography and real-time neutron radiography is currently being developed around 2.0MW TRIGA MARK-II reactor at Maamora Nuclear Research Center in Morocco (Reuscher et al., 1990 [1]; de Menezes et al., 2003 [2]; Deinert et al., 2005 [3]). The neutron imaging facility consists of neutron collimator, real-time neutron imaging system and imaging process systems. In order to reduce the gamma-ray content in the neutron beam, the tangential channel was selected. For power of 250 kW, the corresponding thermal neutron flux measured at the inlet of the tangential channel is around 3×10 11 ncm 2/s. This facility will be based on a conical neutron collimator with two circular diaphragms with diameters of 4 and 2 cm corresponding to L/D-ratio of 165 and 325, respectively. These diaphragms' sizes allow reaching a compromise between good flux and efficient L/D-ratio. Convergent-divergent collimator geometry has been adopted. The beam line consists of a gamma filter, fast neutrons filter, neutron moderator, neutron and gamma shutters, biological shielding around the collimator and several stages of neutron collimator. Monte Carlo calculations by a fully 3D numerical code GEANT4 were used to design the neutron beam line ( http://www.info.cern.ch/asd/geant4/geant4.html[4]). To enhance the neutron thermal beam in terms of quality, several materials, mainly bismuth (Bi) and sapphire (Al 2O 3) were examined as gamma and neutron filters respectively. The GEANT4 simulations showed that the gamma and epithermal and fast neutron could be filtered using the bismuth (Bi) and sapphire (Al 2O 3) filters, respectively. To get a good cadmium ratio, GEANT 4 simulations were used to

  19. Conceptual Engineering Method for Attenuating He Ion Interactions on First Wall Components in the Fusion Test Facility (FTF) Employing a Low-Pressure Noble Gas

    SciTech Connect

    C.A.Gentile, W.R.Blanchard, T.Kozub, C.Priniski, I.Zatz, S.Obenschain

    2009-09-21

    It has been shown that post detonation energetic helium ions can drastically reduce the useful life of the (dry) first wall of an IFE reactor due to the accumulation of implanted helium. For the purpose of attenuating energetic helium ions from interacting with first wall components in the Fusion Test Facility (FTF) target chamber, several concepts have been advanced. These include magnetic intervention (MI), deployment of a dynamically moving first wall, use of a sacrificial shroud, designing the target chamber large enough to mitigate the damage caused by He ions on the target chamber wall, and the use of a low pressure noble gas resident in the target chamber during pulse power operations. It is proposed that employing a low-pressure (~ 1 torr equivalent) noble gas in the target chamber will thermalize energetic helium ions prior to interaction with the wall. The principle benefit of this concept is the simplicity of the design and the utilization of (modified) existing technologies for pumping and processing the noble ambient gas. Although the gas load in the system would be increased over other proposed methods, the use of a "gas shield" may provide a cost effective method of greatly extending the first wall of the target chamber. An engineering study has been initiated to investigate conceptual engineering metmethods for implementing a viable gas shield strategy in the FTF.

  20. Electron-Ion Collider at CEBAF: New Insights and Conceptual Progress

    SciTech Connect

    Yaroslav Derbenev; Andrei Afanasev; Kevin Beard; Lawrence Cardman; Swapan Chattopadhyay; Pavel Degtiarenko; Jean Delayen; Rolf Ent; Andrew Hutton; Geoffrey Krafft; Rui Li; Nikolitsa Merminga; Benard Poelker; Byung Yunn; Petr Ostroumov

    2004-07-01

    We report on progress in the conceptual development of the proposed high luminosity (up to 1035 cm-2s-1) and efficient spin manipulation (using ''figure 8'' boosters and collider rings) Electron-Ion Collider at the CEBAF. This facility would use a polarized 5-7 GeV electron beam from a superconducting energy recovering linac with a kicker-operated circulator ring, and a 30-150 GeV ion beam in a storage ring (for polarized p, d, 3He, Li and unpolarized totally stripped nuclei up to Ar). Ultra-high luminosity is envisioned to be achieved with very short crab-crossing bunches at 1.5 GHz repetition rate. Our recent studies were concentrated on understanding beam-beam interaction, ion beam instabilities, luminosity lifetime due to intrabeam scatterings, ERL-ring synchronization, and ion spin control. We also proposed a preliminary conceptual design of the interaction region.

  1. The electron-beam furnace: A new facility for materials science research

    NASA Astrophysics Data System (ADS)

    Stenzel, Ch.; Braun, M.; Krass, C.; Mayer, H.-G.

    1993-12-01

    The development and the test results of an electron-beam furnace for the later utilization in a microgravitational environment are reported. By just varying the deflection pattern by means of the electron-optical components two reference profiles, a gradient profile with a maximum slope of 220 K/cm, and a hot zone profile with a zone temperature of 1520 K could be established and maintained. A beam power of 550 W had to be applied to a sample made of massive Ta for the gradient profile, for creating a hot zone profile an input power of only 250 W onto a sample with a ceramic core was sufficient. A continuous pyrometric measurement system with a high local and time resolution has been realized. By temperature sensing of the sample with this system an intrinsic feature of electron-beam heating could be directly observed, the sharply localized energy deposition at the sample surface.

  2. Nuclear structure at extremes of stability: Prospects for radioactive beam experiments and facilities

    SciTech Connect

    Casten, R.F.

    1995-08-11

    In the last few years, our understanding of nuclei at extremes of stability has undergone substantial development and change. It is now thought that there is every likelihood for truly new manifestations of structure at extreme N/Z ratios, unlike anything observed to date. Changes in shell structure, residual interactions, symmetries, collective modes, and the evolution of structure are envisioned. These developing ideas expand the opportunities for nuclear structure studies with radioactive beams and focus attention on the need to develop efficient experimental techniques and improved signatures of structure. These developments are discussed along with an overview of current and future radioactive beam projects in North America.

  3. Conceptual Change.

    ERIC Educational Resources Information Center

    Ram, Ashwin, Ed.; Nersessian, Nancy J., Ed.; Keil, Frank C., Ed.

    1997-01-01

    This special issue includes four articles that address issues concerning conceptual change. Topics include analogical reasoning and a case study of Johannes Kepler; conceptual change and wine expertise; the role of extreme case reasoning in instruction for conceptual change; and dynamic science assessment: a new approach for investigating…

  4. Application of an electron beam facility for heat transfer measurements in capillary tubes

    NASA Technical Reports Server (NTRS)

    Lunde, A. R.; Kramer, T.

    1977-01-01

    A unique method was developed for the determination of heat transfer coefficients for water flowing through capillary tubes using a rastered electron beam heater. Heat flux levels of 150 and 500 watts/sq cm were provided on the top surface of four square tubes. Temperature gradient along the tube length and mass flow rates versus pressure drop were measured.

  5. An expanded x-ray beam facility (BEaTriX) to test the modular elements of the ATHENA optics

    NASA Astrophysics Data System (ADS)

    Spiga, D.; Pelliciari, C.; Bonnini, E.; Buffagni, E.; Ferrari, C.; Pareschi, G.; Tagliaferri, G.

    2014-07-01

    Future large X-ray observatories like ATHENA will be equipped with very large optics, obtained by assembling modular optical elements, named X-ray Optical Units (XOU) based on the technology of either Silicon Pore Optics or Slumped Glass Optics. In both cases, the final quality of the modular optic (a 5 arcsec HEW requirement for ATHENA) is determined by the accuracy alignment of the XOUs within the assembly, but also by the angular resolution of the individual XOU. This is affected by the mirror shape accuracy, its surface roughness, and the mutual alignment of the mirrors within the XOU itself. Because of the large number of XOUs to be produced, quality tests need to be routinely done to select the most performing stacked blocks, to be integrated into the final optic. In addition to the usual metrology based on profile and roughness measurements, a direct measurement with a broad, parallel, collimated and uniform Xray beam would be the most reliable test, without the need of a focal spot reconstruction as usually done in synchrotron light. To this end, we designed the BEaTriX (Beam Expander Testing X-ray facility) to be realized at INAF-OAB, devoted to the functional tests of the XOUs. A grazing incidence parabolic mirror and an asymmetrically cut crystal will produce a parallel X-ray beam broad enough to illuminate the entire aperture of the focusing elements. An X-ray camera at the focal distance from the mirrors will directly record the image. The selection of different crystals will enable to test the XOUs in the 1 - 5 keV range, included in the X-ray energy band of ATHENA (0.2-12 keV). In this paper we discuss a possible BEaTriX facility implementation. We also show a preliminary performance simulation of the optical system.

  6. Use of a wire scanner for monitoring residual gas ionization in Soreq Applied Research Accelerator Facility 20 keV∕u proton∕deuteron low energy beam transport beam line.

    PubMed

    Vainas, B; Eliyahu, I; Weissman, L; Berkovits, D

    2012-02-01

    The ion source end of the Soreq Applied Research Accelerator Facility accelerator consists of a proton∕deuteron ECR ion source and a low energy beam transport (LEBT) beam line. An observed reduction of the radio frequency quadrupole transmission with increase of the LEBT current prompted additional study of the LEBT beam properties. Numerous measurements have been made with the LEBT bream profiler wire biased by a variable voltage. Current-voltage characteristics in presence of the proton beam were measured even when the wire was far out of the beam. The current-voltage characteristic in this case strongly resembles an asymmetric diodelike characteristic, which is typical of Langmuir probes monitoring plasma. The measurement of biased wire currents, outside the beam, enables us to estimate the effective charge density in vacuum. PMID:22380317

  7. Electron Cooling for Cold Beam Synchrotron for Cancer Therapy

    SciTech Connect

    Grishanov, B.; Parkhomchuk, V.; Rastigeev, S.; Reva, V.; Vostrikov, V.; Kumada, M.

    2006-03-20

    A wide usage of carbon ions for cancer therapy is limited mostly due to technical difficulties, resulting in higher cost. This cost problem can be solved by our CBS (Cold Beam Synchrotron) proposal. In this paper a conceptual design of the facility for the carbon beam cancer therapy using a high precise active beam scanning system of synchronizing with respiration. The main feature of the CBS facility is an application of electron cooling device. The use of cold ion beam allows to decrease the aperture of synchrotron and components of high energy beam transport lines, significantly. The precise ion beam energy variation and two unique schemes of beam extraction ('pellet' extraction and extraction on recombination) enclose the list of possibilities appearing with EC applying.

  8. Isolating and quantifying cross-beam energy transfer in direct-drive implosions on OMEGA and the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Davis, A. K.; Cao, D.; Michel, D. T.; Hohenberger, M.; Edgell, D. H.; Epstein, R.; Goncharov, V. N.; Hu, S. X.; Igumenshchev, I. V.; Marozas, J. A.; Maximov, A. V.; Myatt, J. F.; Radha, P. B.; Regan, S. P.; Sangster, T. C.; Froula, D. H.

    2016-05-01

    The angularly resolved mass ablation rates and ablation-front trajectories for Si-coated CH targets were measured in direct-drive inertial confinement fusion experiments to quantify cross-beam energy transfer (CBET) while constraining the hydrodynamic coupling. A polar-direct-drive laser configuration, where the equatorial laser beams were dropped and the polar beams were repointed from a symmetric direct-drive configuration, was used to limit CBET at the pole while allowing it to persist at the equator. The combination of low- and high-CBET conditions observed in the same implosion allowed for the effects of CBET on the ablation rate and ablation pressure to be determined. Hydrodynamic simulations performed without CBET agreed with the measured ablation rate and ablation-front trajectory at the pole of the target, confirming that the CBET effects on the pole are small. The simulated mass ablation rates and ablation-front trajectories were in excellent agreement with the measurements at all angles when a CBET model based on Randall's equations [C. J. Randall et al., Phys. Fluids 24, 1474 (1981)] was included into the simulations with a multiplier on the CBET gain factor. These measurements were performed on OMEGA and at the National Ignition Facility to access a wide range of plasma conditions, laser intensities, and laser beam geometries. The presence of the CBET gain multiplier required to match the data in all of the configurations tested suggests that additional physics effects, such as intensity variations caused by diffraction, polarization effects, or shortcomings of extending the 1-D Randall model to 3-D, should be explored to explain the differences in observed and predicted drive.

  9. Spatial and spectral characteristics of a compact system neutron beam designed for BNCT facility.

    PubMed

    Ghassoun, J; Chkillou, B; Jehouani, A

    2009-04-01

    The development of suitable neutron sources and neutron beam is critical to the success of Boron Neutron Capture Therapy (BNCT). In this work a compact system designed for BNCT is presented. The system consists of (252)Cf fission neutron source and a moderator/reflector/filter/shield assembly. The moderator/reflector/filter arrangement has been optimized to maximize the epithermal neutron component which is useful for BNCT treatment of deep seated tumors with the suitably low level of beam contamination. The MCMP5 code has been used to calculate the different components of neutrons, secondary gamma rays originating from (252)Cf source and the primary gamma rays emitted directly by this source at the exit face of the compact system. The fluence rate distributions of such particles were also computed along the central axis of a human head phantom. PMID:19168369

  10. Electron beam fluorescence system to measure gas density in impulse facilities

    NASA Technical Reports Server (NTRS)

    Hoppe, J. C.

    1974-01-01

    Very rapid measurements, ranging from a few microsecond to milliseconds in duration, characterize studies made in shock regions or behind them. A system to measure gas density under such conditions in a 15.24-cm (6-in.) expansion tube is described. The basic elements are an electron beam of moderate energy and high current capability, an optical detector, and the associated electronics and data readout equipment. A heated-cathode electron gun, capable of pulsed operation and delivering up to 200 milliamperes current, provides the source of electrons. Optics include a simple collector lens, aperture, collimator lens, filters, and a photomultiplier tube. The photomultiplier output signal was recorded by means of photographed oscilloscope traces for pulsed beam operation.

  11. 1000 MeV Proton beam therapy facility at Petersburg Nuclear Physics Institute Synchrocyclotron

    NASA Astrophysics Data System (ADS)

    Abrosimov, N. K.; Gavrikov, Yu A.; Ivanov, E. M.; Karlin, D. L.; Khanzadeev, A. V.; Yalynych, N. N.; Riabov, G. A.; Seliverstov, D. M.; Vinogradov, V. M.

    2006-05-01

    Since 1975 proton beam of PNPI synchrocyclotron with fixed energy of 1000 MeV is used for the stereotaxic proton therapy of different head brain diseases. 1300 patients have been treated during this time. The advantage of high energy beam (1000 MeV) is low scattering of protons in the irradiated tissue. This factor allows to form the dose field with high edge gradients (20%/mm) that is especially important for the irradiation of the intra-cranium targets placed in immediate proximity to the life critical parts of the brain. Fixation of the 6 0mm diameter proton beam at the isodose centre with accuracy of ±1.0 mm, two-dimensional rotation technique of the irradiation provide a very high ratio of the dose in the irradiation zone to the dose at the object's surface equal to 200:1. The absorbed doses are: 120-150 Gy for normal hypophysis, 100-120 Gy for pituitary adenomas and 40-70 Gy for arterio-venous malformation at the rate of absorbed dose up to 50 Gy/min. In the paper the dynamics and the efficiency of 1000 MeV proton therapy treatment of the brain deceases are given. At present time the feasibility study is in progress with the goal to create a proton therapy on Bragg peak by means of the moderation of 1000 MeV proton beam in the absorber down to 200 MeV, energy required for radiotherapy of deep seated tumors.

  12. ACCELERATOR PHYSICS MODEL OF EXPECTED BEAM LOSS ALONG THE SNS ACCELERATOR FACILITY DURING NORMAL OPERATION.

    SciTech Connect

    CATALAN - LASHERAS,N.; COUSINEAU,S.; GALAMBOS,J.; HOLTKAMP,N.; RAPARIA,D.; SHAFER,R.; STAPLES,J.; STOVALL,J.; TANKE,E.; WANGLER,T.; WEI,J.

    2002-06-03

    The most demanding requirement in the design of the SNS accelerator chain is to keep the accelerator complex under hands-on maintenance. This requirement implies a hard limit for residual radiation below 100 mrem/hr at one feet from the vacuum pipe and four hours after shutdown for hundred days of normal operation. It has been shown by measurements as well as simulation [l] that this limit corresponds to 1-2 Watts/meter average beam losses. This loss level is achievable all around the machine except in specific areas where remote handling will be necessary. These areas have been identified and correspond to collimation sections and dumps where a larger amount of controlled beam loss is foreseen. Even if the average level of loss is kept under 1 W/m, there are circumstances under which transient losses occur in the machine. The prompt radiation or potential damage in the accelerator components can not be deduced from an average beam loss of 1 W/m. At the same time, controlled loss areas require a dedicated study to clarify the magnitude and distribution of the beam loss. From the front end to the target, we have estimated the most probable locations for transient losses and given an estimate of their magnitude and frequency. This information is essential to calculate the necessary shielding or determine the safety procedures during machine operation. Losses in controlled areas, and the cleaning systems are the subject of Section 2. The inefficiency of each system will be taken into account for the discussion on Section 3 where n controlled loss is estimated. Section 4 summarizes our findings and presents a global view of the losses along the accelerator chain.

  13. Facile fabrication of nanogap electrodes for suspended graphene characterization using direct ion beam patterning

    NASA Astrophysics Data System (ADS)

    Qi, Zhengqing John; Johnson, A. T. Charlie

    2014-03-01

    Graphene is a two-dimensional sheet of carbon atoms with exceptional electronic and mechanical properties, giving it tremendous potential in nanoelectromechanical system devices. Here, we present a method to easily and reproducibly fabricate suspended graphene nanoribbons across nanogap electrodes of various separation lengths, demonstrating a technique with aggressive gap scalability and device geometry control. Fabrication is based on using a focused gallium ion beam to create a slit between joined electrodes prepatterened on a 100 nm thick silicon nitride membrane. The transparency of the nitride membrane provides reduced ion backscattering and adds milling resolution. Large-area monolayer graphene grown by atmospheric pressure chemical vapor deposition was transferred onto the silicon nitride chip and patterned into a free-standing ribbon geometry via electron beam lithography on organic ebeam resist followed by an O2 plasma etch. We find that commonly used inorganic negative tone resist that requires a buffered oxide etch for resist removal will attack the adhesion layer (Cr2O3) between the electrode and nitride membrane, which is exposed immediately after milling, so an organic resist was selected to avoid this. Using this technique, we fabricate freestanding graphene devices contacted by electrodes of sub-100 nm separation length and preform a comparative study on the effects of current annealing on device resistance. The gap resolution of this technique is limited by the gallium ion beam, which allows for sub-100 nm gaps. Sub-10 nm gaps are feasible with He ion beams, proving direct applications in probing the high field transport properties of graphene nanoribbons at post-CMOS length scales.

  14. Suppression of parasitics and pencil beams in the high-gain National Ignition Facility multipass preamplifier

    NASA Astrophysics Data System (ADS)

    Moran, Bryan D.; Dane, C. Brent; Crane, John K.; Martinez, Mikael D.; Penko, Frank A.; Hackel, Lloyd A.

    1998-06-01

    The multi-pass amplifier (MPA) is the last subsystem of the NIF preamplifier, which feeds the main amplification stages of the NIF beamline. The MPA is based on a flashlamp pumped 5-cm diameter by 48 cm long Nd:glass rod amplifier operated at a single pass small signal gain of 15 to 17. The MPA is an off-axis multi-pass image relayed system, which uses two gain isolating image relaying telescopes and passive polarization switching using a Faraday rotator to output the pulse. We describe the MPA system, techniques used to avoid parasitic oscillation at high gain, and suppression of pencil beams. The system is used to generate a well- conditioned 22-joule output from one millijoule input. The output pulse requirements include 22 joules in a square, flat topped beam, and with near field spatial contrast of <5% RMS, square pulse temporal distortion <2.3, and an RMS energy stability of <3%. All of these requirements have been exceeded. The largest impediment to successful operation was overcoming parasitic oscillation. Sources of oscillation could be generally divided into two categories: those due to birefringence, which compromised the polarization contrast of the system; and those due to unwanted reflections from optical surfaces. Baffling in the vacuum spatial filters helps to control the system sensitivity to unwanted stray reflections from flat AR coated surfaces. Stress birefringence in the rather large glass volume of the rod (942 cm3) and the four vacuum loaded lenses are significant, as each of these elements is double passed between each polarizing beam splitter pass. This lowers the polarization contrast of the system, which can prevent the system from operating at sufficient gain. Careful analysis and layout of the MPA architecture has allowed us to address the challenges posed by a system small signal gain of approximately equals 33000 and with an output pulse of as high as 27 joules.

  15. Absolute Beam Energy Measurement using Elastic ep Scattering at Thomas Jefferson National Accelerator Facility

    NASA Astrophysics Data System (ADS)

    Deur, Alexandre

    1999-10-01

    The Jefferson Lab beam energy measurement in Hall A using the elastic ep scattering will be described. This new, non-magnetic, energy measurement method allows a ( triangle E/E=10-4 ) precision. First-order corrections are canceled by the measurements of the electron and proton scattering angles for two symmetric kinematics. The measurement principle will be presented as well as the device and measurement results. Comparison with independent magnetic energy measurements of the same accuracy will be shown. This project is the result of a collaboration between the LPC: université Blaise Pascal/in2p3), Saclay and Jefferson Lab.

  16. New facility for ion beam materials characterization and modification at Los Alamos

    SciTech Connect

    Tesmer, J.R.; Maggiore, C.J.; Parkin, D.M.

    1988-01-01

    The Ion Beam Materials Laboratory (IBML) is a new Los Alamos laboratory devoted to the characterization and modification of the near surfaces of materials. The primary instruments of the IBML are a tandem electrostatic accelerator, a National Electrostatics Corp. Model 9SDH, coupled with a Varian CF-3000 ion implanter. The unique organizational structure of the IBML as well as the operational characteristics of the 9SDH (after approximately 3000 h of operation) and the laboratories' research capabilities will be discussed. Examples of current research results will also be presented. 5 refs., 2 figs.

  17. The application of Sunna dosimeter film for process control at industrial gamma- and electron beam irradiation facilities

    NASA Astrophysics Data System (ADS)

    Kovács, A.; Baranyai, M.; Fuochi, P. G.; Lavalle, M.; Corda, U.; Miller, S.; Murphy, M.; O'Doherty, J.

    2004-09-01

    The Sunna dosimeter was introduced for dose determination in the dose range of 50-300 kGy by measuring optically stimulated luminescence. The usefulness of the dosimeter film has already been shown in food irradiation for routine process control. The aim of the present study was to check the performance of the Sunna dosimeter film for process control in radiation sterilization under industrial processing conditions, i.e. at high activity gamma irradiators and at high energy electron beam facilities. To ensure similar irradiation conditions during calibration and routine irradiation "in-plant calibration" was performed by irradiating the Sunna dosimeters together with ethanol-monochlorobenzene transfer standard and alanine reference standard dosimeters. The Sunna dosimeters were then irradiated together with the routine dosimeter of the actual plant during regular production runs and the absorbed doses measured by the different dosimeters agreed within ±2%(1 σ).

  18. Recent developments of ion beam induced luminescence at the external scanning microbeam facility of the LABEC laboratory in Florence

    NASA Astrophysics Data System (ADS)

    Colombo, E.; Calusi, S.; Cossio, R.; Giuntini, L.; Giudice, A. Lo; Mandò, P. A.; Manfredotti, C.; Massi, M.; Mirto, F. A.; Vittone, E.

    2008-04-01

    A new ionoluminescence (IL) apparatus has been successfully installed at the external scanning microbeam facility of the 3 MV Tandetron accelerator of the INFN LABEC in Firenze; the apparatus for photon detection has been fully integrated in the existing ion beam analysis (IBA) set-up, for the simultaneous acquisition of IL and PIXE/PIGE/BS spectra and maps. The potential of the new set-up is illustrated in this paper by some results extracted by the analysis of art objects and advanced semiconductor materials. In particular, the adequacy of the new IBA set-up in the field of cultural heritage is pointed out by the coupled PIXE/IL micro-analysis of a lapis lazuli stone; concerning applications in material science, IL spectra from a N doped diamond sample were acquired and compared with CL analyses to evaluate the relevant sensitivities and the effect of ion damage.

  19. Dosimetric impact of the low-dose envelope of scanned proton beams at a ProBeam facility: comparison of measurements with TPS and MC calculations.

    PubMed

    Würl, M; Englbrecht, F; Parodi, K; Hillbrand, M

    2016-01-21

    Due to the low-dose envelope of scanned proton beams, the dose output depends on the size of the irradiated field or volume. While this field size dependence has already been extensively investigated by measurements and Monte Carlo (MC) simulations for single pencil beams or monoenergetic fields, reports on the relevance of this effect for analytical dose calculation models are limited. Previous studies on this topic only exist for specific beamline designs. However, the amount of large-angle scattered primary and long-range secondary particles and thus the relevance of the low-dose envelope can considerably be influenced by the particular design of the treatment nozzle. In this work, we therefore addressed the field size dependence of the dose output at the commercially available ProBeam(®) beamline, which is being built in several facilities worldwide. We compared treatment planning dose calculations with ionization chamber (IC) measurements and MC simulations, using an experimentally validated FLUKA MC model of the scanning beamline. To this aim, monoenergetic square fields of three energies, as well as spherical target volumes were studied, including the investigation on the influence of the lateral spot spacing on the field size dependence. For the spherical target volumes, MC as well as analytical dose calculation were found in excellent agreement with the measurements in the center of the spread-out Bragg peak. In the plateau region, the treatment planning system (TPS) tended to overestimate the dose compared to MC calculations and IC measurements by up to almost 5% for the smallest investigated sphere and for small monoenergetic square fields. Narrower spot spacing slightly enhanced the field size dependence of the dose output. The deviations in the plateau dose were found to go in the clinically safe direction, i.e. the actual deposited dose outside the target was found to be lower than predicted by the TPS. Thus, the moderate overestimation of dose to

  20. Dosimetric impact of the low-dose envelope of scanned proton beams at a ProBeam facility: comparison of measurements with TPS and MC calculations

    NASA Astrophysics Data System (ADS)

    Würl, M.; Englbrecht, F.; Parodi, K.; Hillbrand, M.

    2016-01-01

    Due to the low-dose envelope of scanned proton beams, the dose output depends on the size of the irradiated field or volume. While this field size dependence has already been extensively investigated by measurements and Monte Carlo (MC) simulations for single pencil beams or monoenergetic fields, reports on the relevance of this effect for analytical dose calculation models are limited. Previous studies on this topic only exist for specific beamline designs. However, the amount of large-angle scattered primary and long-range secondary particles and thus the relevance of the low-dose envelope can considerably be influenced by the particular design of the treatment nozzle. In this work, we therefore addressed the field size dependence of the dose output at the commercially available ProBeam® beamline, which is being built in several facilities worldwide. We compared treatment planning dose calculations with ionization chamber (IC) measurements and MC simulations, using an experimentally validated FLUKA MC model of the scanning beamline. To this aim, monoenergetic square fields of three energies, as well as spherical target volumes were studied, including the investigation on the influence of the lateral spot spacing on the field size dependence. For the spherical target volumes, MC as well as analytical dose calculation were found in excellent agreement with the measurements in the center of the spread-out Bragg peak. In the plateau region, the treatment planning system (TPS) tended to overestimate the dose compared to MC calculations and IC measurements by up to almost 5% for the smallest investigated sphere and for small monoenergetic square fields. Narrower spot spacing slightly enhanced the field size dependence of the dose output. The deviations in the plateau dose were found to go in the clinically safe direction, i.e. the actual deposited dose outside the target was found to be lower than predicted by the TPS. Thus, the moderate overestimation of dose to

  1. Neutronics analysis of three beam-filter assemblies for an accelerator-based BNCT facility

    SciTech Connect

    Bleuel, D.L.; Costes, S.V.; Donahue, R.J.; Ludewigt, B.A.

    1997-08-01

    Three moderator materials, AlF{sub 3}/Al, D{sub 2}O and LiF, have been analyzed for clinical usefulness using the reaction {sup 7}Li(p,n) as an accelerator driven neutron source. Proton energies between 2.1 MeV and 2.6 MeV have been investigated. Radiation transport in the reflector/moderator assembly is simulated using the MCNP program. Depth-dose distributions in a head phanton are calculated with the BNCT-RTPE patient treatment planning program from INEEL using the MCNP generated neutron and photon spectra as the subsequent source. Clinical efficacy is compared using the current BMRR protocol for all designs. Depth-dose distributions are compared for a fixed normal tissue tolerance dose of 12.5 Gy-Eq. Radiation analyses also include a complete anthropomorphic phantom. Results of organ and whole body dose components are presented for several designs. Results indicate that high quality accelerator beams may produce clinically favorable treatments to deep-seated tumors when compared to the BMRR beam. Also discussed are problems identified in comparing accelerator and reactor based designs using in-air figures of merit as well as some results of spectrum-averaged RBE`s.

  2. Electron Beam Collimation for the Next Generation Light Source

    SciTech Connect

    Steier, C.; Emma, P.; Nishimura, H.; Papadopoulos, C.; Sannibale, F.

    2013-05-20

    The Next Generation Light Source will deliver high (MHz) repetition rate electron beams to an array of free electron lasers. Because of the significant average current in such a facility, effective beam collimation is extremely important to minimize radiation damage to undulators, prevent quenches of superconducting cavities, limit dose rates outside of the accelerator tunnel and prevent equipment damage. This paper describes the early conceptual design of a collimation system, as well as initial results of simulations to test its effectiveness.

  3. Low energy highly charged ion beam facility at Inter University Accelerator Centre: Measurement of the plasma potential and ion energy distributions

    SciTech Connect

    Sairam, T. Bhatt, Pragya; Safvan, C. P.; Kumar, Ajit; Kumar, Herendra

    2015-11-15

    A deceleration lens coupled to one of the beam lines of the electron cyclotron resonance based low energy beam facility at Inter University Accelerator Centre is reported. This system is capable of delivering low energy (2.5 eV/q–1 keV/q) highly charged ion beams. The presence of plasma potential hinders the measurements of low energies (<50 eV), therefore, plasma potential measurements have been undertaken using a retarding plate analyzer in unison with the deceleration assembly. The distributions of the ion energies have been obtained and the effect of different source parameters on these distributions is studied.

  4. Status and Perspectives for a Slow Positron Beam Facility at the HH--NIPNE Bucharest

    SciTech Connect

    Straticiuc, Mihai; Craciun, Liviu Stefan; Constantinescu, Olimpiu; Ghita, Ionica Alina; Ionescu, Cristina; Racolta, Petru Mihai; Vasilescu, Angela; Braic, Viorel; Zoita, Catalin; Kiss, Adrian; Bojin, Dionezie

    2009-03-10

    The development of a positron annihilation spectroscopy laboratory at the HH-NIPNE Bucharest-to be used for material studies and applications was started in the last 10 years. In the framework of a national research project extended over the last 3 years, was designed a low energy positron accelerator, as a high-vacuum dedicated beam line with two options: a 25 mCi {sup 22}NaCl source and in line with the NIPNE-cyclotron or a new intense compact cyclotron. The construction of the beam line was planned as a sequence of modules: source- moderator system; magnetical filter for fast positrons in order to select the positrons energies in the range 0.8-1 keV; a modular system for focusing, transport and acceleration of monoenergetic positrons in the energy range 0.8-50 keV and a CDBS analysis chamber. The moderator proposed--is tungsten as a foil of about 3 {mu}m prepared at the Optoelectronics Institute were put into a thermal treatment vacuum chamber and bombarded with electrons from a 100 W electron gun After the treatment, they were tested for changes of elemental composition of the surface and structure at the Polytechnic University. The structure tests were performed on a DRON 3 M diffractometer, with a Co tube ({lambda}{sub K{alpha}} = 1.7903 A) - the angular regions studied were around 34 deg. (1 0 0) and 69 deg. (2 0 0). In the present time, the trajectories of the positron are going to be simulated with dedicated software (an ion and electron optics simulator). For the coincidence measurements (CDBS) set-up we used a home-made {sup 22}NaCl source, by separation without carrier from a metallic Mg target irradiated with 12 MeV protons and separated by columnar cation exchange. A home-made biparametric system for CDBS measurements will be reported, also.

  5. Status and Perspectives for a Slow Positron Beam Facility at the HH-NIPNE Bucharest

    NASA Astrophysics Data System (ADS)

    Straticiuc, Mihai; Craciun, Liviu Stefan; Constantinescu, Olimpiu; Ghita, Ionica Alina; Ionescu, Cristina; Racolta, Petru Mihai; Vasilescu, Angela; Braic, Viorel; Zoita, Catalin; Kiss, Adrian; Bojin, Dionezie

    2009-03-01

    The development of a positron annihilation spectroscopy laboratory at the HH-NIPNE Bucharest-to be used for material studies and applications was started in the last 10 years. In the framework of a national research project extended over the last 3 years, was designed a low energy positron accelerator, as a high-vacuum dedicated beam line with two options: a 25 mCi 22NaCl source and in line with the NIPNE-cyclotron or a new intense compact cyclotron. The construction of the beam line was planned as a sequence of modules: source- moderator system; magnetical filter for fast positrons in order to select the positrons energies in the range 0.8-1 keV; a modular system for focusing, transport and acceleration of monoenergetic positrons in the energy range 0.8-50 keV and a CDBS analysis chamber. The moderator proposed-is tungsten as a foil of about 3 μm prepared at the Optoelectronics Institute were put into a thermal treatment vacuum chamber and bombarded with electrons from a 100 W electron gun After the treatment, they were tested for changes of elemental composition of the surface and structure at the Polytechnic University. The structure tests were performed on a DRON 3 M diffractometer, with a Co tube (λKα = 1.7903 A)-the angular regions studied were around 34° (1 0 0) and 69° (2 0 0). In the present time, the trajectories of the positron are going to be simulated with dedicated software (an ion and electron optics simulator). For the coincidence measurements (CDBS) set-up we used a home-made 22NaCl source, by separation without carrier from a metallic Mg target irradiated with 12 MeV protons and separated by columnar cation exchange. A home- made biparametric system for CDBS measurements will be reported, also.

  6. Status and Perspectives for a Slow Positron Beam Facility at the HH—NIPNE Bucharest

    NASA Astrophysics Data System (ADS)

    Constantin, Florin; Craciun, Liviu Stefan; Constantinescu, Olimpiu; Ghita, Ionica Alina; Ionescu, Cristina; Racolta, Petru Mihai; Straticiuc, Mihai; Vasilescu, Angela; Braic, Viorel; Zoita, Catalin; Kiss, Adrian; Bojin, Dionezie

    2009-03-01

    The development of a positron annihilation spectroscopy laboratory at the HH-NIPNE Bucharest-to be used for material studies and applications was started in the last 10 years. In the framework of a national research project extended over the last 3 years, was designed a low energy positron accelerator, as a high-vacuum dedicated beam line with two options: a 25 mCi 22NaCl source and in line with the NIPNE-cyclotron or a new intense compact cyclotron. The construction of the beam line was planned as a sequence of modules: source- moderator system; magnetical filter for fast positrons in order to select the positrons energies in the range 0.8-1 keV; a modular system for focusing, transport and acceleration of monoenergetic positrons in the energy range 0.8-50 keV and a CDBS analysis chamber. The moderator proposed—is tungsten as a foil of about 3 μm prepared at the Optoelectronics Institute were put into a thermal treatment vacuum chamber and bombarded with electrons from a 100 W electron gun After the treatment, they were tested for changes of elemental composition of the surface and structure at the Polytechnic University. The structure tests were performed on a DRON 3 M diffractometer, with a Co tube (λKα = 1.7903 A)—the angular regions studied were around 34° (1 0 0) and 69° (2 0 0). In the present time, the trajectories of the positron are going to be simulated with dedicated software (an ion and electron optics simulator). For the coincidence measurements (CDBS) set-up we used a home-made 22NaCl source, by separation without carrier from a metallic Mg target irradiated with 12 MeV protons and separated by columnar cation exchange. A home- made biparametric system for CDBS measurements will be reported, also.

  7. The rare isotope accelerator (RIA) facility project

    SciTech Connect

    Christoph Leemann

    2000-08-01

    The envisioned Rare-Isotope Accelerator (RIA) facility would add substantially to research opportunities for nuclear physics and astrophysics by combining increased intensities with a greatly expanded variety of high-quality rare-isotope beams. A flexible superconducting driver linac would provide 100 kW, 400 MeV/nucleon beams of any stable isotope from hydrogen to uranium onto production targets. Combinations of projectile fragmentation, target fragmentation, fission, and spallation would produce the needed broad assortment of short-lived secondary beams. This paper describes the project's background, purpose, and status, the envisioned facility, and the key subsystem, the driver linac. RIA's scientific purposes are to advance current theoretical models, reveal new manifestations of nuclear behavior, and probe the limits of nuclear existence [3]. Figures 1 and 2 show, respectively, examples of RIA research opportunities and the yields projected for pursuing them. Figure 3 outlines a conceptual approach for delivering the needed beams.

  8. High intensity neutrino oscillation facilities in Europe

    NASA Astrophysics Data System (ADS)

    Edgecock, T. R.; Caretta, O.; Davenne, T.; Densam, C.; Fitton, M.; Kelliher, D.; Loveridge, P.; Machida, S.; Prior, C.; Rogers, C.; Rooney, M.; Thomason, J.; Wilcox, D.; Wildner, E.; Efthymiopoulos, I.; Garoby, R.; Gilardoni, S.; Hansen, C.; Benedetto, E.; Jensen, E.; Kosmicki, A.; Martini, M.; Osborne, J.; Prior, G.; Stora, T.; Melo Mendonca, T.; Vlachoudis, V.; Waaijer, C.; Cupial, P.; Chancé, A.; Longhin, A.; Payet, J.; Zito, M.; Baussan, E.; Bobeth, C.; Bouquerel, E.; Dracos, M.; Gaudiot, G.; Lepers, B.; Osswald, F.; Poussot, P.; Vassilopoulos, N.; Wurtz, J.; Zeter, V.; Bielski, J.; Kozien, M.; Lacny, L.; Skoczen, B.; Szybinski, B.; Ustrycka, A.; Wroblewski, A.; Marie-Jeanne, M.; Balint, P.; Fourel, C.; Giraud, J.; Jacob, J.; Lamy, T.; Latrasse, L.; Sortais, P.; Thuillier, T.; Mitrofanov, S.; Loiselet, M.; Keutgen, Th.; Delbar, Th.; Debray, F.; Trophine, C.; Veys, S.; Daversin, C.; Zorin, V.; Izotov, I.; Skalyga, V.; Burt, G.; Dexter, A. C.; Kravchuk, V. L.; Marchi, T.; Cinausero, M.; Gramegna, F.; De Angelis, G.; Prete, G.; Collazuol, G.; Laveder, M.; Mazzocco, M.; Mezzetto, M.; Signorini, C.; Vardaci, E.; Di Nitto, A.; Brondi, A.; La Rana, G.; Migliozzi, P.; Moro, R.; Palladino, V.; Gelli, N.; Berkovits, D.; Hass, M.; Hirsh, T. Y.; Schaumann, M.; Stahl, A.; Wehner, J.; Bross, A.; Kopp, J.; Neuffer, D.; Wands, R.; Bayes, R.; Laing, A.; Soler, P.; Agarwalla, S. K.; Cervera Villanueva, A.; Donini, A.; Ghosh, T.; Gómez Cadenas, J. J.; Hernández, P.; Martín-Albo, J.; Mena, O.; Burguet-Castell, J.; Agostino, L.; Buizza-Avanzini, M.; Marafini, M.; Patzak, T.; Tonazzo, A.; Duchesneau, D.; Mosca, L.; Bogomilov, M.; Karadzhov, Y.; Matev, R.; Tsenov, R.; Akhmedov, E.; Blennow, M.; Lindner, M.; Schwetz, T.; Fernández Martinez, E.; Maltoni, M.; Menéndez, J.; Giunti, C.; González García, M. C.; Salvado, J.; Coloma, P.; Huber, P.; Li, T.; López Pavón, J.; Orme, C.; Pascoli, S.; Meloni, D.; Tang, J.; Winter, W.; Ohlsson, T.; Zhang, H.; Scotto-Lavina, L.; Terranova, F.; Bonesini, M.; Tortora, L.; Alekou, A.; Aslaninejad, M.; Bontoiu, C.; Kurup, A.; Jenner, L. J.; Long, K.; Pasternak, J.; Pozimski, J.; Back, J. J.; Harrison, P.; Beard, K.; Bogacz, A.; Berg, J. S.; Stratakis, D.; Witte, H.; Snopok, P.; Bliss, N.; Cordwell, M.; Moss, A.; Pattalwar, S.; Apollonio, M.

    2013-02-01

    The EUROnu project has studied three possible options for future, high intensity neutrino oscillation facilities in Europe. The first is a Super Beam, in which the neutrinos come from the decay of pions created by bombarding targets with a 4 MW proton beam from the CERN High Power Superconducting Proton Linac. The far detector for this facility is the 500 kt MEMPHYS water Cherenkov, located in the Fréjus tunnel. The second facility is the Neutrino Factory, in which the neutrinos come from the decay of μ+ and μ- beams in a storage ring. The far detector in this case is a 100 kt magnetized iron neutrino detector at a baseline of 2000 km. The third option is a Beta Beam, in which the neutrinos come from the decay of beta emitting isotopes, in particular He6 and Ne18, also stored in a ring. The far detector is also the MEMPHYS detector in the Fréjus tunnel. EUROnu has undertaken conceptual designs of these facilities and studied the performance of the detectors. Based on this, it has determined the physics reach of each facility, in particular for the measurement of CP violation in the lepton sector, and estimated the cost of construction. These have demonstrated that the best facility to build is the Neutrino Factory. However, if a powerful proton driver is constructed for another purpose or if the MEMPHYS detector is built for astroparticle physics, the Super Beam also becomes very attractive.

  9. Safety training and safe operating procedures written for PBFA (Particle Beam Fusion Accelerator) II and applicable to other pulsed power facilities

    SciTech Connect

    Donovan, G.L.; Goldstein, S.A.

    1986-12-01

    To ensure that work in advancing pulsed power technology is performed with an acceptably low risk, pulsed power research facilities at Sandia National Laboratories must satisfy general safety guidelines established by the Department of Energy, policies and formats of the Environment, Safety, and Health (ES and H) Department, and detailed procedures formulated by the Pulsed Power Sciences Directorate. The approach to safety training and to writing safe operating procedures, and the procedures presented here are specific to the Particle Beam Fusion Accelerator II (PBFA II) Facility but are applicable as guidelines to other research and development facilities which have similar hazards.

  10. Characterization of the microbunch time structure of proton pencil beams at a clinical treatment facility.

    PubMed

    Petzoldt, J; Roemer, K E; Enghardt, W; Fiedler, F; Golnik, C; Hueso-González, F; Helmbrecht, S; Kormoll, T; Rohling, H; Smeets, J; Werner, T; Pausch, G

    2016-03-21

    Proton therapy is an advantageous treatment modality compared to conventional radiotherapy. In contrast to photons, charged particles have a finite range and can thus spare organs at risk. Additionally, the increased ionization density in the so-called Bragg peak close to the particle range can be utilized for maximum dose deposition in the tumour volume. Unfortunately, the accuracy of the therapy can be affected by range uncertainties, which have to be covered by additional safety margins around the treatment volume. A real-time range and dose verification is therefore highly desired and would be key to exploit the major advantages of proton therapy. Prompt gamma rays, produced in nuclear reactions between projectile and target nuclei, can be used to measure the proton's range. The prompt gamma-ray timing (PGT) method aims at obtaining this information by determining the gamma-ray emission time along the proton path using a conventional time-of-flight detector setup. First tests at a clinical accelerator have shown the feasibility to observe range shifts of about 5 mm at clinically relevant doses. However, PGT spectra are smeared out by the bunch time spread. Additionally, accelerator related proton bunch drifts against the radio frequency have been detected, preventing a potential range verification. At OncoRay, first experiments using a proton bunch monitor (PBM) at a clinical pencil beam have been conducted. Elastic proton scattering at a hydrogen-containing foil could be utilized to create a coincident proton-proton signal in two identical PBMs. The selection of coincident events helped to suppress uncorrelated background. The PBM setup was used as time reference for a PGT detector to correct for potential bunch drifts. Furthermore, the corrected PGT data were used to image an inhomogeneous phantom. In a further systematic measurement campaign, the bunch time spread and the proton transmission rate were measured for several beam energies between 69 and 225 Me

  11. Characterization of the microbunch time structure of proton pencil beams at a clinical treatment facility

    NASA Astrophysics Data System (ADS)

    Petzoldt, J.; Roemer, K. E.; Enghardt, W.; Fiedler, F.; Golnik, C.; Hueso-González, F.; Helmbrecht, S.; Kormoll, T.; Rohling, H.; Smeets, J.; Werner, T.; Pausch, G.

    2016-03-01

    Proton therapy is an advantageous treatment modality compared to conventional radiotherapy. In contrast to photons, charged particles have a finite range and can thus spare organs at risk. Additionally, the increased ionization density in the so-called Bragg peak close to the particle range can be utilized for maximum dose deposition in the tumour volume. Unfortunately, the accuracy of the therapy can be affected by range uncertainties, which have to be covered by additional safety margins around the treatment volume. A real-time range and dose verification is therefore highly desired and would be key to exploit the major advantages of proton therapy. Prompt gamma rays, produced in nuclear reactions between projectile and target nuclei, can be used to measure the proton’s range. The prompt gamma-ray timing (PGT) method aims at obtaining this information by determining the gamma-ray emission time along the proton path using a conventional time-of-flight detector setup. First tests at a clinical accelerator have shown the feasibility to observe range shifts of about 5 mm at clinically relevant doses. However, PGT spectra are smeared out by the bunch time spread. Additionally, accelerator related proton bunch drifts against the radio frequency have been detected, preventing a potential range verification. At OncoRay, first experiments using a proton bunch monitor (PBM) at a clinical pencil beam have been conducted. Elastic proton scattering at a hydrogen-containing foil could be utilized to create a coincident proton-proton signal in two identical PBMs. The selection of coincident events helped to suppress uncorrelated background. The PBM setup was used as time reference for a PGT detector to correct for potential bunch drifts. Furthermore, the corrected PGT data were used to image an inhomogeneous phantom. In a further systematic measurement campaign, the bunch time spread and the proton transmission rate were measured for several beam energies between 69 and 225

  12. BEaTriX, expanded x-ray beam facility for testing modular elements of telescope optics: an update

    NASA Astrophysics Data System (ADS)

    Pelliciari, C.; Spiga, D.; Bonnini, E.; Buffagni, E.; Ferrari, C.; Pareschi, G.; Tagliaferri, G.

    2015-09-01

    We present in this paper an update on the design of BEaTriX (Beam Expander Testing X-ray facility), an X-ray apparatus to be realized at INAF/OAB and that will generate an expanded, uniform and parallel beam of soft X-rays. BEaTriX will be used to perform the functional tests of X-ray focusing modules of large X-ray optics such as those for the ATHENA X-ray observatory, using the Silicon Pore Optics (SPO) as a baseline technology, and Slumped Glass Optics (SGO) as a possible alternative. Performing the tests in X-rays provides the advantage of an in-situ, at-wavelength quality control of the optical modules produced in series by the industry, performing a selection of the modules with the best angular resolution, and, in the case of SPOs, there is also the interesting possibility to align the parabolic and the hyperbolic stacks directly under X-rays, to minimize the aberrations. However, a parallel beam with divergence below 2 arcsec is necessary in order to measure mirror elements that are expected to reach an angular resolution of about 4 arcsec, since the ATHENA requirement for the entire telescope is 5 arcsec. Such a low divergence over the typical aperture of modular optics would require an X-ray source to be located in a several kilometers long vacuum tube. In contrast, BEaTriX will be compact enough (5 m x 14 m) to be housed in a small laboratory, will produce an expanded X-ray beam 60 mm x 200 mm broad, characterized by a very low divergence (1.5 arcsec HEW), strong polarization, high uniformity, and X-ray energy selectable between 1.5 keV and 4.5 keV. In this work we describe the BEaTriX layout and show a performance simulation for the X-ray energy of 4.5 keV.

  13. The L3A facility at the Vinča Institute: Surface modification of materials, by heavy ion beams from an electron cyclotron resonance ion source

    NASA Astrophysics Data System (ADS)

    Dobrosavljević, A.; Milosavljević, M.; Bibić, N.; Efremov, A.

    2000-02-01

    This article describes the L3A experimental facility for surface modification of materials at the Vinča Institute of Nuclear Sciences, in Belgrade. This facility was completed and put into operation in May 1998. It is connected to the mVINIS ion source, an electron cyclotron resonance ion source capable of producing a wide range of multiply charged ions from gaseous and solid substances. The heavy ion beams obtained from mVINIS are separated by charge to mass ratio (q/m) and transported to the target chamber for sample irradiation and modification. The target chamber is equipped with a multipurpose target holder, an electron-beam evaporation source for thin layer deposition, a residual gas analyzer, and other auxiliary equipment. There is also an additional low energy argon ion source for target preparation/sputtering and for ion beam assisted deposition. In this article we describe the layout and performances of the L3A facility, the experience gained during 1 yr of operation, and the requirements imposed by the current and future experimental programs. Currently, there are 24 experimental programs competing for the ion beam time at the L3A facility.

  14. Initial Experimental Verification of the Neutron Beam Modeling for the LBNL BNCT Facility

    SciTech Connect

    Bleuel, D.L.; Chu, W.T.; Donahue, R.J.; Ludewigt, B.A.; McDonald, R.J.; Smith, A.R.; Stone, N.A.; Vuji, J.

    1999-01-19

    In preparation for future clinical BNCT trials, neutron production via the 7Li(p,n) reaction as well as subsequent moderation to produce epithermal neutrons have been studied. Proper design of a moderator and filter assembly is crucial in producing an optimal epithermal neutron spectrum for brain tumor treatments. Based on in-phantom figures-of-merit,desirable assemblies have been identified. Experiments were performed at the Lawrence Berkeley National Laboratory's 88-inch cyclotron to characterize epithermal neutron beams created using several microampere of 2.5 MeV protons on a lithium target. The neutron moderating assembly consisted of Al/AlF3 and Teflon, with a lead reflector to produce an epithermal spectrum strongly peaked at 10-20 keV. The thermal neutron fluence was measured as a function of depth in a cubic lucite head phantom by neutron activation in gold foils. Portions of the neutron spectrum were measured by in-air activation of six cadmium-covered materials (Au, Mn, In, Cu, Co, W) with high epithermal neutron absorption resonances. The results are reasonably reproduced in Monte Carlo computational models, confirming their validity.

  15. Production Facility System Reliability Analysis Report

    SciTech Connect

    Dale, Crystal Buchanan; Klein, Steven Karl

    2015-10-06

    This document describes the reliability, maintainability, and availability (RMA) modeling of the Los Alamos National Laboratory (LANL) design for the Closed Loop Helium Cooling System (CLHCS) planned for the NorthStar accelerator-based 99Mo production facility. The current analysis incorporates a conceptual helium recovery system, beam diagnostics, and prototype control system into the reliability analysis. The results from the 1000 hr blower test are addressed.

  16. Preliminary Designs for Modifications to the X-Ray Source and Beam Monitor of the Marshall Space Flight Center's X-Ray Calibration Facility

    NASA Technical Reports Server (NTRS)

    Croft, W. L.

    1983-01-01

    Preliminary designs for modifications to the X-ray source and beam monitor of the MSFC X-Ray Calibration Facility to meet requirements for the calibration of the Advanced X-Ray Astrophysics Facility are considered. A rhodium plated copper target and rhodium foil filter are proposed as a source of X-rays of approximately 2.6 keV energy. Bragg scattering of the unpolarized X-ray beam from the present source through an angle of 90 deg by a single crystal placed on the axis of the guide tube is proposed as a source of approximately monoenergetic plane polarized X-rays. A sealed xenon proportional counter with a Beryllium window is proposed as a beam monitor for use between 2.5 and 8 keV to obtain improved detection efficiency.

  17. Slow positron beam facility for investigations of plastically deformed metals and surface crystallization of silica

    NASA Astrophysics Data System (ADS)

    Heußer, H.; Hugenschmidt, C.; Wider, T.; Maier, K.

    1999-08-01

    The simple slow positron facility at Bonn university and two recent experiments are presented. The following data briefly summarises the technical specifications of the instrument: overall size: 150×150×80 cm 3positron source: 22Na (10 mCi) moderator: Kr (solid)energy filter: magnetic solenoid at 150 eV transport energyvacuum: high vacuum (10 -6 hPa) spot size: 3 mmcount rate: 3000 s -1 in 511 keV photopeak with BGO detector in coincidence for background suppression energy range: 0.15 to 12 keV with the sample at ground potential A sapphire plate which has, at 40 K (close to the moderator temperature of 37 K), a thermal conductivity comparable to that of copper (!) ensures both the electrical isolation and the thermal contact between the positron source and the He cryostat. With the moderator directly frozen onto the 22Na source the instrument reaches an efficiency better than 10 -4. Slow positrons are extremely sensitive probes for investigations on microstructure and on the onset of surface crystallization of anorganic glasses. The formation of crystallization nuclei on the surface and the growth of the nuclei into the bulk material was investigated on amorphous SiO 2. To this end specimens of amorphous silica were isothermally tempered at a temperature of 1773 K. In another experiment the back diffusion of positrons as a function of penetration depth was studied on weakly tensile deformed aluminium polycrystals. The role of dislocations and their effect on the mobility of positrons is in the center of this investigation.

  18. Isolating and quantifying cross-beam energy transfer in direct-drive implosions on OMEGA and the National Ignition Facility

    DOE PAGESBeta

    Davis, A. K.; Cao, D.; Michel, D. T.; Hohenberger, M.; Edgell, D. H.; Epstein, R.; Goncharov, V. N.; Hu, S. X.; Igumenshchev, I. V.; Marozas, J. A.; et al

    2016-04-20

    The angularly-resolved mass ablation rates and ablation front trajectories for Si-coated CH targets were measured in direct-drive inertial confinement fusion experiments to quantify crossbeam energy transfer (CBET) while constraining the hydrodynamic coupling. A polar-direct-drive laser configuration was used, where the equatorial laser beams were dropped from a symmetric direct-drive configuration to suppress CBET at the pole, while allowing it to persist at the equator. The combination of low- and high-CBET conditions in the same implosion allowed the effects of CBET on the ablation rate and ablation pressure to be decoupled from the other physics effects that influence laser-coupling. Hydrodynamic simulationsmore » performed without CBET reproduced the measured ablation rate and ablation front trajectory at the pole of the target, verifying that the other laser-coupling physics effects are well-modeled when CBET effects are negligible. The simulated mass ablation rates and ablation front trajectories were in excellent agreement with the measurements at all angles when a CBET model based on Randall’s equations [C. J. Randall et al., Phys. Fluids 24, 1474 (1981)] was included into the simulations with an optimized multiplier on the CBET gain factor. These measurements were performed on both OMEGA and the National Ignition Facility to access a wide range of plasma conditions, laser intensities, and laser beam geometries. Furthermore, the presence of the CBET gain multiplier required to match the data in all of the configurations tested suggests that additional physics effects, such as intensity variations due to diffraction, shortcomings of extending the 1-D Randall model to 3-D, or polarization effects, should be explored to explain the differences in observed and predicted drive.« less

  19. Government conceptual estimating for contracting and management

    NASA Technical Reports Server (NTRS)

    Brown, J. A.

    1986-01-01

    The use of the Aerospace Price Book, a cost index, and conceptual cost estimating for cost-effective design and construction of space facilities is discussed. The price book consists of over 200 commonly used conceptual elements and 100 systems summaries of projects such as launch pads, processing facilities, and air locks. The cost index is composed of three divisions: (1) bid summaries of major Shuttle projects, (2) budget cost data sheets, and (3) cost management summaries; each of these divisions is described. Conceptual estimates of facilities and ground support equipment are required to provide the most probable project cost for budget, funding, and project approval purposes. Similar buildings, systems, and elements already designed are located in the cost index in order to make the best rough order of magnitude conceptual estimates for development of Space Shuttle facilities. An example displaying the applicability of the conceptual cost estimating procedure for the development of the KSC facilities is presented.

  20. System analysis study of space platform and station accommodations for life sciences research facilities. Volume 1: Executive summary. Phase A: Conceptual design and programmatics

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The study was conducted in 3 parts over a 3 year period. The study schedule and the documentation associated with each study part is given. This document summarized selected study results from the conceptual design and programmatics segment of the effort. The objectives were: (1) to update requirements and tradeoffs and develop a detailed design and mission requirements document; (2) to develop conceptual designs and mission descriptions; and (3) to develop programmatic, i.e., work breakdown structure and work breakdown structure dictionary, estimated cost, and implementing plans and schedules.

  1. Present Status And First Results of the Final Focus Beam Line at the KEK Accelerator Test Facility

    SciTech Connect

    Bambade, P.; Alabau Pons, M.; Amann, J.; Angal-Kalinin, D.; Apsimon, R.; Araki, S.; Aryshev, A.; Bai, S.; Bellomo, P.; Bett, D.; Blair, G.; Bolzon, B.; Boogert, S.; Boorman, G.; Burrows, P.N.; Christian, G.; Coe, P.; Constance, B.; Delahaye, Jean-Pierre; Deacon, L.; Elsen, E.; /DESY /Valencia U., IFIC /KEK, Tsukuba /Beijing, Inst. High Energy Phys. /Savoie U. /Fermilab /Ecole Polytechnique /KEK, Tsukuba /Kyungpook Natl. U. /KEK, Tsukuba /Pohang Accelerator Lab. /Kyoto U., Inst. Chem. Res. /Savoie U. /Daresbury /Tokyo U. /Royal Holloway, U. of London /Kyungpook Natl. U. /Pohang Accelerator Lab. /Tokyo U. /KEK, Tsukuba /SLAC /University Coll. London /KEK, Tsukuba /SLAC /Royal Holloway, U. of London /KEK, Tsukuba /Tokyo U. /SLAC /Tohoku U. /KEK, Tsukuba /Tokyo U. /Pohang Accelerator Lab. /Brookhaven /SLAC /Oxford U., JAI /SLAC /Orsay /KEK, Tsukuba /Oxford U., JAI /Orsay /Fermilab /Tohoku U. /Manchester U. /CERN /SLAC /Tokyo U. /KEK, Tsukuba /Oxford U., JAI /Hiroshima U. /KEK, Tsukuba /CERN /KEK, Tsukuba /Oxford U., JAI /Ecole Polytechnique /SLAC /Oxford U., JAI /Fermilab /SLAC /Liverpool U. /SLAC /Tokyo U. /SLAC /Tokyo U. /KEK, Tsukuba /SLAC /CERN

    2011-11-11

    ATF2 is a final-focus test beam line which aims to focus the low emittance beam from the ATF damping ring to a vertical size of about 37 nm and to demonstrate nanometer level beam stability. Several advanced beam diagnostics and feedback tools are used. In December 2008, construction and installation were completed and beam commissioning started, supported by an international team of Asian, European, and U.S. scientists. The present status and first results are described.

  2. Present status and first results of the final focus beam line at the KEK Accelerator Test Facility

    NASA Astrophysics Data System (ADS)

    Bambade, P.; Alabau Pons, M.; Amann, J.; Angal-Kalinin, D.; Apsimon, R.; Araki, S.; Aryshev, A.; Bai, S.; Bellomo, P.; Bett, D.; Blair, G.; Bolzon, B.; Boogert, S.; Boorman, G.; Burrows, P. N.; Christian, G.; Coe, P.; Constance, B.; Delahaye, J.-P.; Deacon, L.; Elsen, E.; Faus-Golfe, A.; Fukuda, M.; Gao, J.; Geffroy, N.; Gianfelice-Wendt, E.; Guler, H.; Hayano, H.; Heo, A.-Y.; Honda, Y.; Huang, J. Y.; Hwang, W. H.; Iwashita, Y.; Jeremie, A.; Jones, J.; Kamiya, Y.; Karataev, P.; Kim, E.-S.; Kim, H.-S.; Kim, S. H.; Komamiya, S.; Kubo, K.; Kume, T.; Kuroda, S.; Lam, B.; Lyapin, A.; Masuzawa, M.; McCormick, D.; Molloy, S.; Naito, T.; Nakamura, T.; Nelson, J.; Okamoto, D.; Okugi, T.; Oroku, M.; Park, Y. J.; Parker, B.; Paterson, E.; Perry, C.; Pivi, M.; Raubenheimer, T.; Renier, Y.; Resta-Lopez, J.; Rimbault, C.; Ross, M.; Sanuki, T.; Scarfe, A.; Schulte, D.; Seryi, A.; Spencer, C.; Suehara, T.; Sugahara, R.; Swinson, C.; Takahashi, T.; Tauchi, T.; Terunuma, N.; Tomas, R.; Urakawa, J.; Urner, D.; Verderi, M.; Wang, M.-H.; Warden, M.; Wendt, M.; White, G.; Wittmer, W.; Wolski, A.; Woodley, M.; Yamaguchi, Y.; Yamanaka, T.; Yan, Y.; Yoda, H.; Yokoya, K.; Zhou, F.; Zimmermann, F.

    2010-04-01

    ATF2 is a final-focus test beam line which aims to focus the low emittance beam from the ATF damping ring to a vertical size of about 37 nm and to demonstrate nanometer level beam stability. Several advanced beam diagnostics and feedback tools are used. In December 2008, construction and installation were completed and beam commissioning started, supported by an international team of Asian, European, and U.S. scientists. The present status and first results are described.

  3. Updated Conceptual Cost Estimating

    NASA Technical Reports Server (NTRS)

    Brown, J. A.

    1987-01-01

    16-page report discusses development and use of NASA TR-1508, the Kennedy Space Center Aerospace Construction Price Book for preparing conceptual, budget, funding, cost-estimating, and preliminary cost-engineering reports. Updated annually from 1974 through 1985 with actual bid prices and government estimates. Includes labor and material quantities and prices with contractor and subcontractor markups for buildings, facilities, and systems at Kennedy Space Center. While data pertains to aerospace facilities, format and cost-estimating techniques guide estimation of costs in other construction applications.

  4. Improved Wavelength Detuning Cross-Beam Energy Transfer Mitigation Strategy for Polar Direct Drive at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Marozas, J. A.; Collins, T. J. B.; McKenty, P. W.; Zuegel, J. D.

    2015-11-01

    Cross-beam energy transfer (CBET) reduces absorbed light and implosion velocity, alters time-resolved scattered-light spectra, and redistributes absorbed and scattered light. These effects reduce target performance in both symmetric direct-drive and polar-direct-drive (PDD) experiments on the OMEGA Laser System and the National Ignition Facility (NIF). The CBET package (Adaawam) incorporated into the 2-D hydrodynamics code DRACO is an integral part of the 3-D ray-trace package (Mazinisin). The CBET exchange occurs primarily over the equatorial region in PDD, where successful mitigation strategies concentrate. Detuning the initial laser wavelength (dλ0) reduces the CBET interaction volume, which can be combined with other mitigation domains (e.g., spatial and temporal). By judiciously selecting the ring and/or port +/-dλ0 in each hemisphere, using new DRACO diagnostic abilities, improved wavelength detuning strategies trade-off overall energy absorption for improved hemispherical energy balance control. These balanced-wavelength detuning strategies improve performance for high-convergence implosions. Simulations (2-D DRACO) predict improved implosion performance and control in both the shell trajectory and morphology for planned intermediate PDD experiments on the NIF. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  5. Thermal issues associated with the HVAC and lighting systems influences on the performance of the national ignition facility beam transport tubes

    SciTech Connect

    Bernardin, J.D.; Parietti, L.; Martin, R.A.

    1998-01-01

    This report summarizes an investigation of the thermal issues related to the National Ignition Facility. In particular, the influences of the HVAC system and lighting fixtures on the operational performance of the laser guide beam tubes are reviewed and discussed. An analytical model of the oscillating HVAC air temperatures in the NIF switchyard and target bay will cause significant amounts of beam distortion. However, these negative effects can be drastically reduced by adding thermal insulation to the outside of the beam tubes. A computational fluid dynamics model and an analytical investigation found that the light-fixture to beam-tube separation distance must be on the order of 5.7 m (18.7 ft) to maintain acceptable beam operating performance in the current NIF design. By reducing the fluorescent light fixture power by 33% this separation distance can be reduced to 3.5 m (11.5 ft). If in addition, thermal insulation with a reflective aluminum foil covering is added to the outside of the beam tubes, the separation distance can be reduced further to 1.6m (5.2 ft). A 1.27 cm (0.5 in.) rigid foam insulation sheet with aluminum foil covering will provide adequate insulation for the beam tubes in the NIF switchyards and target bay. The material cost for this amount of insulation would be roughly $30,000.

  6. Betatron radiation based diagnostics for plasma wakefield accelerated electron beams at the SPARC_LAB test facility

    NASA Astrophysics Data System (ADS)

    Shpakov, V.; Anania, M. P.; Biagioni, A.; Chiadroni, E.; Cianchi, A.; Curcio, A.; Dabagov, S.; Ferrario, M.; Filippi, F.; Marocchino, A.; Paroli, B.; Pompili, R.; Rossi, A. R.; Zigler, A.

    2016-09-01

    Recent progress with wake-field acceleration has shown a great potential in providing high gradient acceleration fields, while the quality of the beams remains relatively poor. Precise knowledge of the beam size at the exit from the plasma and matching conditions for the externally injected beams are the key for improvement of beam quality. Betatron radiation emitted by the beam during acceleration in the plasma is a powerful tool for the transverse beam size measurement, being also non-intercepting. In this work we report on the technical solutions chosen at SPARC_LAB for such diagnostics tool, along with expected parameters of betatron radiation.

  7. Beam dynamics studies of the photo-injector in low-charge operation mode for the ERL test facility at IHEP

    NASA Astrophysics Data System (ADS)

    Jiao, Yi; Xiao, Ou-Zheng

    2014-06-01

    The energy recovery linac test facility (ERL-TF), which is a compact ERL-FEL (free electron laser) two-purpose machine, was proposed at the Institute of High Energy Physics, Beijing. As one important component of the ERL-TF, the photo-injector that started with a photocathode direct-current gun has been designed. In this paper, optimization of the injector beam dynamics in low-charge operation mode is performed with iterative scans using Impact-T. In addition, the dependencies between the optimized beam quality and the initial offset at cathode and element parameters are investigated. The tolerance of alignment and rotation errors is also analyzed.

  8. Neutron beam studies for a medical therapy reactor.

    PubMed

    Neuman, W A

    1990-01-01

    A conceptual design of a Medical Therapy Reactor (MTR) for neutron capture therapy (NCT) has been performed at the Idaho National Engineering Laboratory (INEL). The initial emphasis of the conceptual design was toward the treatment of glioblastoma multiforme and other presently incurable cancers. The design goal of the facility is to provide routine patient treatments both in brief time intervals (approximately 10 minutes) and inexpensively. The conceptual study has shown this goal to be achievable by locating an MTR at a major medical facility. This paper addresses the next step in the conceptual design process: a guide to the optimization of the epithermal-neutron filter and collimator assembly for the treatment of brain tumors. The current scope includes the sensitivity of the treatment beam to variations in filter length, gamma shield length, and collimator lengths as well as exit beam aperture size. The study shows the areas which can provide the greatest latitude in improving beam intensity and quality. Suggestions are given for future areas of optimization of beam filtering and collimation. PMID:2268234

  9. International Fusion Materials Irradiation Facility injector acceptance tests at CEA/Saclay: 140 mA/100 keV deuteron beam characterization.

    PubMed

    Gobin, R; Bogard, D; Cara, P; Chauvin, N; Chel, S; Delferrière, O; Harrault, F; Mattei, P; Mosnier, A; Senée, F; Shidara, H; Okumura, Y

    2014-02-01

    In the framework of the ITER broader approach, the International Fusion Materials Irradiation Facility (IFMIF) deuteron accelerator (2 × 125 mA at 40 MeV) is an irradiation tool dedicated to high neutron flux production for future nuclear plant material studies. During the validation phase, the Linear IFMIF Prototype Accelerator (LIPAc) machine will be tested on the Rokkasho site in Japan. This demonstrator aims to produce 125 mA/9 MeV deuteron beam. Involved in the LIPAc project for several years, specialists from CEA/Saclay designed the injector based on a SILHI type ECR source operating at 2.45 GHz and a 2 solenoid low energy beam line to produce such high intensity beam. The whole injector, equipped with its dedicated diagnostics, has been then installed and tested on the Saclay site. Before shipment from Europe to Japan, acceptance tests have been performed in November 2012 with 100 keV deuteron beam and intensity as high as 140 mA in continuous and pulsed mode. In this paper, the emittance measurements done for different duty cycles and different beam intensities will be presented as well as beam species fraction analysis. Then the reinstallation in Japan and commissioning plan on site will be reported. PMID:24593497

  10. Alternative Conceptualizations.

    ERIC Educational Resources Information Center

    Borman, Kathryn M., Ed.; O'Reilly, Patricia, Ed.

    1992-01-01

    This theme issue of the serial "Educational Foundations" contains five articles devoted to the topic of "Alternative Conceptualizations" of the foundations of education. In "The Concept of Place in the New Sociology of Education," Paul Theobald examines the notion of place in educational theory and practice. Janice Jipson and Nicholas Paley, in…

  11. A facility to produce an energetic, ground state atomic oxygen beam for the simulation of the Low-Earth Orbit environment

    NASA Technical Reports Server (NTRS)

    Ketsdever, Andrew D.; Weaver, David P.; Muntz, E. P.

    1994-01-01

    Because of the continuing commitment to activity in low-Earth orbit (LEO), a facility is under development to produce energetic atmospheric species, particularly atomic oxygen, with energies ranging from 5 to 80 eV. This relatively high flux facility incorporates an ion engine to produce the corresponding specie ion which is charge exchanged to produce a neutral atomic beam. Ion fluxes of around 10(exp 15) sec(exp -1) with energies of 20-70 eV have been achieved. A geometrically augmented inertially tethered charge exchanger (GAITCE) was designed to provide a large column depth of charge exchange gas while reducing the gas load to the low pressure portion of the atomic beam facility. This is accomplished using opposed containment jets which act as collisional barriers to the escape of the dense gas region formed between the jets. Leak rate gains to the pumping system on the order of 10 were achieved for moderate jet mass flows. This system provides an attractive means for the charge exchange of atomic ions with a variety of gases to produce energetic atomic beams.

  12. Prospects of warm dense matter research at HiRadMat facility at CERN using 440 MeV SPS proton beam

    NASA Astrophysics Data System (ADS)

    Tahir, N. A.; Blanco Sancho, J.; Schmidt, R.; Shutov, A.; Piriz, A. R.

    2013-06-01

    In this paper we present numerical simulations of heating of a solid copper cylinder by the 440 GeV proton beam delivered by the Super Proton Synchrotron (SPS) at CERN. The beam is made of 288 proton bunches while each bunch comprises of 1.15·1011 so that the total number of protons in the beam is about 1.3·1013. The bunch length is 0.5 ns while two neighboring bunches are separated by 25 ns so that the beam duration is 7.2 μs. Particle intensity distribution in the transverse direction is a Gaussian and the beam can be focused to a spot size with σ = 0.1 mm-1.0 mm. In this paper we present results using two values of σ, namely 0.2 mm and 0.5 mm, respectively. The target length is 1.5 m with a radius = 5 cm and is facially irradiated by the beam. The energy deposition code FLUKA and the two-dimensional hydrodynamic code BIG2 are employed using a suitable iteration time to simulate the hydrodynamic and the thermodynamic response of the target. The primary purpose of this work was to design fixed target experiments for the machine protection studies at the HiRadMat (High Radiation Materials) facility at CERN. However this work has shown that large samples of High Energy Density (HED) matter will be generated in such experiments which suggests an additional application of this facility. In the present paper we emphasize the possibility of doing HED physics experiments at the HiRadMat in the future.

  13. Conceptual Metaphor Meets Conceptual Change

    ERIC Educational Resources Information Center

    Amin, Tamer G.

    2009-01-01

    This paper argues that the metaphorical representation of concepts and the appropriation of language-based construals can be hypothesized as additional sources of conceptual change alongside those previously proposed. Analyses of construals implicit in the lay and scientific use of the noun "energy" from the perspective of the theory of conceptual…

  14. ERHIC Conceptual Design

    SciTech Connect

    Ptitsyn,V.; Beebe-Wang,J.; Ben-Zvi,I.; Fedotov, A.; Fischer, W.; Hao, Y.; Kayran, D.; Litvinenko, V.N.; MacKay, W.W.; Montag, C.; Pozdeyev, E.; Roser, T.; Trbojevic, D.; Tsoupas, N.; Tsentalovich, E.

    2008-08-25

    The conceptual design of the high luminosity electron-ion collider, eRHIC, is presented. The goal of eRHIC is to provide collisions of electrons (and possibly positrons) with ions and protons at the center-of-mass energy range from 25 to 140 GeV, and with luminosities exceeding 10{sup 33} cm{sup -2} s{sup -1}. A considerable part of the physics program is based on polarized electrons, protons and He3 ions with high degree of polarization. In eRHIC electron beam will be accelerated in an energy recovery linac. Major R&D items for eRHIC include the development of a high intensity polarized electron source, studies of various aspects of energy recovery technology for high power beams and the development of compact magnets for recirculating passes. In eRHIC scheme the beam-beam interaction has several specific features, which have to be thoroughly studied. In order to maximize the collider luminosity, several upgrades of the existing RHIC accelerator are required. Those upgrades may include the increase of intensity as well as transverse and longitudinal cooling of ion and proton beams.

  15. The non-orthogonal fixed beam arrangement for the second proton therapy facility at the National Accelerator Center

    NASA Astrophysics Data System (ADS)

    Schreuder, A. N.; Jones, D. T. L.; Conradie, J. L.; Fourie, D. T.; Botha, A. H.; Müller, A.; Smit, H. A.; O'Ryan, A.; Vernimmen, F. J. A.; Wilson, J.; Stannard, C. E.

    1999-06-01

    The medical user group at the National Accelerator Center (NAC) is currently unable to treat all eligible patients with high energy protons. Developing a second proton treatment room is desirable since the 200 MeV proton beam from the NAC separated sector cyclotron is currently under-utilized during proton therapy sessions. During the patient positioning phase in one treatment room, the beam could be used for therapy in a second room. The second proton therapy treatment room at the NAC will be equipped with two non-orthogonal beam lines, one horizontal and one at 30 degrees to the vertical. The two beams will have a common isocentre. This beam arrangement together with a versatile patient positioning system (commercial robot arm) will provide the radiation oncologist with a diversity of possible beam arrangements and offers a reasonable cost-effective alternative to an isocentric gantry.

  16. The non-orthogonal fixed beam arrangement for the second proton therapy facility at the National Accelerator Center

    SciTech Connect

    Schreuder, A. N.; Jones, D. T. L.; Conradie, J. L.; Fourie, D. T.; Botha, A. H.; Mueller, A.; Smit, H. A.; O'Ryan, A.; Vernimmen, F. J. A.; Wilson, J.; Stannard, C. E.

    1999-06-10

    The medical user group at the National Accelerator Center (NAC) is currently unable to treat all eligible patients with high energy protons. Developing a second proton treatment room is desirable since the 200 MeV proton beam from the NAC separated sector cyclotron is currently under-utilized during proton therapy sessions. During the patient positioning phase in one treatment room, the beam could be used for therapy in a second room. The second proton therapy treatment room at the NAC will be equipped with two non-orthogonal beam lines, one horizontal and one at 30 degrees to the vertical. The two beams will have a common isocentre. This beam arrangement together with a versatile patient positioning system (commercial robot arm) will provide the radiation oncologist with a diversity of possible beam arrangements and offers a reasonable cost-effective alternative to an isocentric gantry.

  17. Magnetohydrodynamics (MHD) Engineering Test Facility (ETF) 200 MWe power plant. Conceptual Design Engineering Report (CDER). Volume 2: Engineering. Volume 3: Costs and schedules

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Engineering design details for the principal systems, system operating modes, site facilities, and structures of an engineering test facility (ETF) of a 200 MWE power plant are presented. The ETF resembles a coal-fired steam power plant in many ways. It is analogous to a conventional plant which has had the coal combustor replaced with the MHD power train. Most of the ETF components are conventional. They can, however, be sized or configured differently or perform additional functions from those in a conventional coal power plant. The boiler not only generates steam, but also performs the functions of heating the MHD oxidant, recovering seed, and controlling emissions.

  18. Heavy oil recovery process: Conceptual engineering of a downhole methanator and preliminary estimate of facilities cost for application to North Slope Alaska

    SciTech Connect

    Not Available

    1990-01-01

    Results from Tasks 8 and 9 are presented. Task 8 addressed the cost of materials and manufacturing of the Downhole Methanator and the cost of drilling and completing the vertical cased well and two horizontal drain holes in the West Sak reservoir. Task 9 addressed the preliminary design of surface facilities to support the enhanced recovery of heavy oil. Auxiliary facilities include steam reformers for carbon dioxide-rich natural gas reforming, emergency electric generators, nitrogen gas generators, and an ammonia synthesis unit. The ammonia is needed to stabilize the swelling of clays in the reservoir. Cost estimations and a description of how they were obtained are given.

  19. Magnetohydrodynamics (MHD) Engineering Test Facility (ETF) 200 MWe power plant. Conceptual Design Engineering Report (CDER). Volume 2: Engineering. Volume 3: Costs and schedules

    NASA Astrophysics Data System (ADS)

    1981-09-01

    Engineering design details for the principal systems, system operating modes, site facilities, and structures of an engineering test facility (ETF) of a 200 MWE power plant are presented. The ETF resembles a coal-fired steam power plant in many ways. It is analogous to a conventional plant which has had the coal combustor replaced with the MHD power train. Most of the ETF components are conventional. They can, however, be sized or configured differently or perform additional functions from those in a conventional coal power plant. The boiler not only generates steam, but also performs the functions of heating the MHD oxidant, recovering seed, and controlling emissions.

  20. The new external microbeam facility at the 5 MV Tandetron accelerator laboratory in Madrid: beam characterisation and first results

    NASA Astrophysics Data System (ADS)

    Enguita, Olga; Fernández-Jiménez, M. T.; García, G.; Climent-Font, A.; Calderón, T.; Grime, G. W.

    2004-06-01

    This paper describes the new external microbeam on the 15° beamline of the 5 MV Tandetron accelerator recently installed at the CMAM in Madrid. The focusing and beam extraction system was supplied by Oxford Microbeams Ltd. and consists of a high precision quadrupole doublet with an interchangeable Kapton window exit nozzle and front-viewing video microscope. The sample is positioned in the beam using a stepper motor stage. The beam current and beam profile have been determined under different experimental conditions. A simple method based on the signal processing of ion-induced luminescence from quartz targets has been used to determine the beam profile in two dimensions simultaneously, without scanning. This is the first step in the development of a real time beam profile monitoring system, which could be used as part of an automated beam focusing procedure. The beam line will be primarily devoted to archaeometry and cultural heritage studies. As an example we report the characterisation of two Tang appearance antique porcelains.

  1. An overview of the facilities, activities, and developments at the University of North Texas Ion Beam Modification and Analysis Laboratory (IBMAL)

    NASA Astrophysics Data System (ADS)

    Rout, Bibhudutta; Dhoubhadel, Mangal S.; Poudel, Prakash R.; Kummari, Venkata C.; Pandey, Bimal; Deoli, Naresh T.; Lakshantha, Wickramaarachchige J.; Mulware, Stephen J.; Baxley, Jacob; Manuel, Jack E.; Pacheco, Jose L.; Szilasi, Szabolcs; Weathers, Duncan L.; Reinert, Tilo; Glass, Gary A.; Duggan, Jerry L.; McDaniel, Floyd D.

    2013-07-01

    The Ion Beam Modification and Analysis Laboratory (IBMAL) at the University of North Texas includes several accelerator facilities with capabilities of producing a variety of ion beams from tens of keV to several MeV in energy. The four accelerators are used for research, graduate and undergraduate education, and industrial applications. The NEC 3MV Pelletron tandem accelerator has three ion sources for negative ions: He Alphatross and two different SNICS-type sputter ion sources. Presently, the tandem accelerator has four high-energy beam transport lines and one low-energy beam transport line directly taken from the negative ion sources for different research experiments. For the low-energy beam line, the ion energy can be varied from ˜20 to 80 keV for ion implantation/modification of materials. The four post-acceleration beam lines include a heavy-ion nuclear microprobe; multi-purpose PIXE, RBS, ERD, NRA, and broad-beam single-event upset; high-energy ion implantation line; and trace-element accelerator mass spectrometry. The NEC 3MV single-ended Pelletron accelerator has an RF ion source mainly for hydrogen, helium and heavier inert gases. We recently installed a capacitive liner to the terminal potential stabilization system for high terminal voltage stability and high-resolution microprobe analysis. The accelerator serves a beam line for standard RBS and RBS/C. Another beamline for high energy focused ion beam application using a magnetic quadrupole lens system is currently under construction. This beam line will also serve for developmental work on an electrostatic lens system. The third accelerator is a 200 kV Cockcroft-Walton accelerator with an RF ion source. The fourth accelerator is a 2.5 MV Van de Graaff accelerator, which was in operation for last several decades is currently planned to be used mainly for educational purpose. Research projects that will be briefly discussed include materials synthesis/modification for photonic, electronic, and

  2. An overview of the facilities, activities, and developments at the University of North Texas Ion Beam Modification and Analysis Laboratory (IBMAL)

    SciTech Connect

    Rout, Bibhudutta; Dhoubhadel, Mangal S.; Poudel, Prakash R.; Kummari, Venkata C.; Pandey, Bimal; Deoli, Naresh T.; Lakshantha, Wickramaarachchige J.; Mulware, Stephen J.; Baxley, Jacob; Manuel, Jack E.; Pacheco, Jose L.; Szilasi, Szabolcs; Weathers, Duncan L.; Reinert, Tilo; Glass, Gary A.; Duggan, Jerry L.; McDaniel, Floyd D.

    2013-07-03

    The Ion Beam Modification and Analysis Laboratory (IBMAL) at the University of North Texas includes several accelerator facilities with capabilities of producing a variety of ion beams from tens of keV to several MeV in energy. The four accelerators are used for research, graduate and undergraduate education, and industrial applications. The NEC 3MV Pelletron tandem accelerator has three ion sources for negative ions: He Alphatross and two different SNICS-type sputter ion sources. Presently, the tandem accelerator has four high-energy beam transport lines and one low-energy beam transport line directly taken from the negative ion sources for different research experiments. For the low-energy beam line, the ion energy can be varied from {approx}20 to 80 keV for ion implantation/modification of materials. The four post-acceleration beam lines include a heavy-ion nuclear microprobe; multi-purpose PIXE, RBS, ERD, NRA, and broad-beam single-event upset; high-energy ion implantation line; and trace-element accelerator mass spectrometry. The NEC 3MV single-ended Pelletron accelerator has an RF ion source mainly for hydrogen, helium and heavier inert gases. We recently installed a capacitive liner to the terminal potential stabilization system for high terminal voltage stability and high-resolution microprobe analysis. The accelerator serves a beam line for standard RBS and RBS/C. Another beamline for high energy focused ion beam application using a magnetic quadrupole lens system is currently under construction. This beam line will also serve for developmental work on an electrostatic lens system. The third accelerator is a 200 kV Cockcroft-Walton accelerator with an RF ion source. The fourth accelerator is a 2.5 MV Van de Graaff accelerator, which was in operation for last several decades is currently planned to be used mainly for educational purpose. Research projects that will be briefly discussed include materials synthesis/modification for photonic, electronic, and

  3. An intrinsically safe facility for forefront research and training on nuclear technologies — The beam transport system

    NASA Astrophysics Data System (ADS)

    Calabretta, L.; Maggiore, M.; Schillaci, M.

    2014-04-01

    A transport beam line from the 70 MeV cyclotron to the beryllium target inside the reactor core has been designed using the PSI Graphic TRANSPORT code. The obtained beam spot at the end of the transport line is 1.5cm in radius with an angular divergence of 0.9mrad, in agreement with the target design. The chromatic behavior of the proposed layout, which has been evaluated and resulted in a Δp/ p = ±0.15%, does not introduce significant changes of the beam spot size on the target.

  4. Conceptual design report: Nuclear materials storage facility renovation. Part 5, Structural/seismic investigation. Section A report, existing conditions calculations/supporting information

    SciTech Connect

    1995-07-14

    The Nuclear Materials Storage Facility (NMSF) at the Los Alamos National Laboratory (LANL) was a Fiscal Year (FY) 1984 line-item project completed in 1987 that has never been operated because of major design and construction deficiencies. This renovation project, which will correct those deficiencies and allow operation of the facility, is proposed as an FY 97 line item. The mission of the project is to provide centralized intermediate and long-term storage of special nuclear materials (SNM) associated with defined LANL programmatic missions and to establish a centralized SNM shipping and receiving location for Technical Area (TA)-55 at LANL. Based on current projections, existing storage space for SNM at other locations at LANL will be loaded to capacity by approximately 2002. This will adversely affect LANUs ability to meet its mission requirements in the future. The affected missions include LANL`s weapons research, development, and testing (WRD&T) program; special materials recovery; stockpile survelliance/evaluation; advanced fuels and heat sources development and production; and safe, secure storage of existing nuclear materials inventories. The problem is further exacerbated by LANL`s inability to ship any materials offsite because of the lack of receiver sites for mate rial and regulatory issues. Correction of the current deficiencies and enhancement of the facility will provide centralized storage close to a nuclear materials processing facility. The project will enable long-term, cost-effective storage in a secure environment with reduced radiation exposure to workers, and eliminate potential exposures to the public. Based upon US Department of Energy (DOE) Albuquerque Operations (DOE/Al) Office and LANL projections, storage space limitations/restrictions will begin to affect LANL`s ability to meet its missions between 1998 and 2002.

  5. Analysis of 440 GeV proton beam-matter interaction experiments at the High Radiation Materials test facility at CERN

    NASA Astrophysics Data System (ADS)

    Burkart, F.; Schmidt, R.; Raginel, V.; Wollmann, D.; Tahir, N. A.; Shutov, A.; Piriz, A. R.

    2015-08-01

    In a previous paper [Schmidt et al., Phys. Plasmas 21, 080701 (2014)], we presented the first results on beam-matter interaction experiments that were carried out at the High Radiation Materials test facility at CERN. In these experiments, extended cylindrical targets of solid copper were irradiated with beam of 440 GeV protons delivered by the Super Proton Synchrotron (SPS). The beam comprised of a large number of high intensity proton bunches, each bunch having a length of 0.5 ns with a 50 ns gap between two neighboring bunches, while the length of this entire bunch train was about 7 μs. These experiments established the existence of the hydrodynamic tunneling phenomenon the first time. Detailed numerical simulations of these experiments were also carried out which were reported in detail in another paper [Tahir et al., Phys. Rev. E 90, 063112 (2014)]. Excellent agreement was found between the experimental measurements and the simulation results that validate our previous simulations done using the Large Hadron Collider (LHC) beam of 7 TeV protons [Tahir et al., Phys. Rev. Spec. Top.--Accel. Beams 15, 051003 (2012)]. According to these simulations, the range of the full LHC proton beam and the hadronic shower can be increased by more than an order of magnitude due to the hydrodynamic tunneling, compared to that of a single proton. This effect is of considerable importance for the design of machine protection system for hadron accelerators such as SPS, LHC, and Future Circular Collider. Recently, using metal cutting technology, the targets used in these experiments have been dissected into finer pieces for visual and microscopic inspection in order to establish the precise penetration depth of the protons and the corresponding hadronic shower. This, we believe will be helpful in studying the very important phenomenon of hydrodynamic tunneling in a more quantitative manner. The details of this experimental work together with a comparison with the numerical

  6. Explanation of Turbulent Suppression of Electron Heat Transfer in GOL-3 Facility at the Stage of Relativistic Electron Beam Injection

    SciTech Connect

    Burdakov, A.V.; Kotelnikov, I.A.; Erofeev, V.I

    2005-01-15

    The effect of the electron heat transfer suppression during the stage of relativistic electron beam injection into a plasma was discovered experimentally more than a decade ago. It is now widely adopted that the suppression is a side sequel of Langmuir turbulence excited by the beam, however neither quantitative theory nor even rough estimates of the phenomena were available so far. We argue that the coefficient of turbulent thermal conductivity can be evaluated from a robust judgement based on the energy balance consideration.

  7. Preliminary conceptual design for geothermal space heating conversion of school district 50 joint facilities at Pagosa Springs, Colorado. GTA report no. 6

    NASA Astrophysics Data System (ADS)

    Engen, I. A.

    1981-11-01

    This feasibility study and preliminary conceptual design effect assesses the conversion of a high school and gym, and a middle school building to geothermal space heating is assessed. A preliminary cost benefit assessment made on the basis of estimated costs for conversion, system maintenance, debt service, resource development, electricity to power pumps, and savings from from reduced natural gas consumption concluded that an economic conversion depended on development of an adequate geothermal resource (approximately 1500F, 400 gpm). Material selection assumed that the geothermal water to the main supply system was isolated to minimize effects of corrosion and deposition, and that system compatible components are used for the building modifications. Asbestos cement distribution pipe, a stainless steel heat exchanger, and stainless steel lined valves were recommended for the supply, heat transfer, and disposal mechanisms, respectively. A comparison of the calculated average gas consumption cost, escalated at 10% per year, with conversion project cost, both in 1977 dollars, showed that the project could be amortized over less than 20 years at current interest rates.

  8. Heavy oil recovery process: Conceptual engineering of a downhole methanator and preliminary estimate of facilities cost for application to North Slope Alaska

    SciTech Connect

    Gondouin, M.

    1991-10-31

    The West Sak (Upper Cretaceous) sands, overlaying the Kuparuk field, would rank among the largest known oil fields in the US, but technical difficulties have so far prevented its commercial exploitation. Steam injection is the most successful and the most commonly-used method of heavy oil recovery, but its application to the West Sak presents major problems. Such difficulties may be overcome by using a novel approach, in which steam is generated downhole in a catalytic Methanator, from Syngas made at the surface from endothermic reactions (Table 1). The Methanator effluent, containing steam and soluble gases resulting from exothermic reactions (Table 1), is cyclically injected into the reservoir by means of a horizontal drainhole while hot produced fluids flow form a second drainhole into a central production tubing. The downhole reactor feed and BFW flow downward to two concentric tubings. The large-diameter casing required to house the downhole reactor assembly is filled above it with Arctic Pack mud, or crude oil, to further reduce heat leaks. A quantitative analysis of this production scheme for the West Sak required a preliminary engineering of the downhole and surface facilities and a tentative forecast of well production rates. The results, based on published information on the West Sak, have been used to estimate the cost of these facilities, per daily barrel of oil produced. A preliminary economic analysis and conclusions are presented together with an outline of future work. Economic and regulatory conditions which would make this approach viable are discussed. 28 figs.

  9. Experimental Demonstration of Longitudinal Beam Phase-Space Linearizer in a Free-Electron Laser Facility by Corrugated Structures

    NASA Astrophysics Data System (ADS)

    Deng, Haixiao; Zhang, Meng; Feng, Chao; Zhang, Tong; Wang, Xingtao; Lan, Taihe; Feng, Lie; Zhang, Wenyan; Liu, Xiaoqing; Yao, Haifeng; Shen, Lei; Li, Bin; Zhang, Junqiang; Li, Xuan; Fang, Wencheng; Wang, Dan; Couprie, Marie-emmanuelle; Lin, Guoqiang; Liu, Bo; Gu, Qiang; Wang, Dong; Zhao, Zhentang

    2014-12-01

    Removal of the undesired time-energy correlations in the electron beam is of paramount importance for efficient lasing of a high-gain free-electron laser. Recently, it has been theoretically and experimentally demonstrated that the longitudinal wakefield excited by the electrons themselves in a corrugated structure allows for precise control of the electron beam phase space. In this Letter, we report the first utilization of a corrugated structure as a beam linearizer in the operation of a seeded free-electron laser driven by a 140 MeV linear accelerator, where a gain of ˜10 000 over spontaneous emission was achieved at the second harmonic of the 1047 nm seed laser, and a free-electron laser bandwidth narrowing by 50% was observed, in good agreement with the theoretical expectations.

  10. Interim measure conceptual design for remediation at the former CCC/USDA grain storage facility at Centralia, Kansas : pilot test and remedy implementation.

    SciTech Connect

    LaFreniere, L. M.; Environmental Science Division

    2007-11-09

    This document presents an Interim Measure Work Plan/Design for the short-term, field-scale pilot testing and subsequent implementation of a non-emergency Interim Measure (IM) at the site of the former grain storage facility operated by the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) in Centralia, Kansas. The IM is recommended to mitigate both (1) localized carbon tetrachloride contamination in the vadose zone soils beneath the former facility and (2) present (and potentially future) carbon tetrachloride contamination identified in the shallow groundwater beneath and in the immediate vicinity of the former CCC/USDA facility. Investigations conducted on behalf of the CCC/USDA by Argonne National Laboratory have demonstrated that groundwater at the Centralia site is contaminated with carbon tetrachloride at levels that exceed the Kansas Tier 2 Risk-Based Screening Level (RBSL) and the U.S. Environmental Protection Agency's maximum contaminant level of 5.0 {micro}g/L for this compound. Groundwater sampling and analyses conducted by Argonne under a monitoring program approved by the Kansas Department of Health and Environment (KDHE) indicated that the carbon tetrachloride levels at several locations in the groundwater plume have increased since twice yearly monitoring of the site began in September 2005. The identified groundwater contamination currently poses no unacceptable health risks, in view of the absence of potential human receptors in the vicinity of the former CCC/USDA facility. Carbon tetrachloride contamination has also been identified at Centralia in subsurface soils at concentrations on the order of the Kansas Tier 2 RBSL of 200 {micro}g/kg in soil for the soil-to-groundwater protection pathway. Soils contaminated at this level might pose some risk as a potential source of carbon tetrachloride contamination to groundwater. To mitigate the existing contaminant levels and decrease the potential future concentrations of

  11. Conceptual design summary

    SciTech Connect

    Peretz, F.J.

    1992-09-01

    The Advanced Neutron Source (ANS) is a new basic and applied research facility based on a powerful steady-state research reactor that provides beams of neutrons for measurements and experiments in the fields of materials science and engineering, biology, chemistry, materials analysis, and nuclear science. The useful neutron flux for these experiments will be at least five times, and in some cases twenty times, more than is available at the world's best existing facilities. In addition, ANS will provide irradiation capabilities for the production of radioisotopes for medical applications, research, and industry and facilities for materials irradiation testing. The need for a new steady-state neutron research facility in the United States was emphasized by the 1984 National Academy Report and confirmed by the Department of Energy's (DOE's) Energy Research Advisory Board in 1985. These studies defined a minimum thermal neutron flux requirement of 5 {times} 10{sup 19} m{sup {minus}2} {center dot} s{sup {minus}1}. The National Steering Committee for an Advanced Neutron Source, with representation from the major fields of science that will use the facility, was established in 1986 and has continued to define the performance requirements and instrument layouts needed by the user community. To minimize technical risks and safety issues, the project adopted a policy of not relying upon new inventions to meet the minimum performance criteria, and the design presented in this report is built on technologies already used in other facilities and development programs: for example, the involute aluminum-clad fuel plates common to HFIR and ILL and the uranium silicide fuel developed in DOE's Reduced Enrichment for Research and Test Reactors program and tested in reactors worldwide. At the same time, every state-of-the-art technique has been implemented to optimize neutron beam delivery at the experiments.

  12. Conceptual design summary

    SciTech Connect

    Peretz, F.J.

    1992-09-01

    The Advanced Neutron Source (ANS) is a new basic and applied research facility based on a powerful steady-state research reactor that provides beams of neutrons for measurements and experiments in the fields of materials science and engineering, biology, chemistry, materials analysis, and nuclear science. The useful neutron flux for these experiments will be at least five times, and in some cases twenty times, more than is available at the world`s best existing facilities. In addition, ANS will provide irradiation capabilities for the production of radioisotopes for medical applications, research, and industry and facilities for materials irradiation testing. The need for a new steady-state neutron research facility in the United States was emphasized by the 1984 National Academy Report and confirmed by the Department of Energy`s (DOE`s) Energy Research Advisory Board in 1985. These studies defined a minimum thermal neutron flux requirement of 5 {times} 10{sup 19} m{sup {minus}2} {center_dot} s{sup {minus}1}. The National Steering Committee for an Advanced Neutron Source, with representation from the major fields of science that will use the facility, was established in 1986 and has continued to define the performance requirements and instrument layouts needed by the user community. To minimize technical risks and safety issues, the project adopted a policy of not relying upon new inventions to meet the minimum performance criteria, and the design presented in this report is built on technologies already used in other facilities and development programs: for example, the involute aluminum-clad fuel plates common to HFIR and ILL and the uranium silicide fuel developed in DOE`s Reduced Enrichment for Research and Test Reactors program and tested in reactors worldwide. At the same time, every state-of-the-art technique has been implemented to optimize neutron beam delivery at the experiments.

  13. Linear Collider Test Facility: Twiss Parameter Analysis at the IP/Post-IP Location of the ATF2 Beam Line

    SciTech Connect

    Bolzon, Benoit; Jeremie, Andrea; Bai, Sha; Bambade, Philip; White, Glen; /SLAC

    2012-07-02

    At the first stage of the ATF2 beam tuning, vertical beam size is usually bigger than 3 {micro}m at the IP. Beam waist measurements using wire scanners and a laser wire are usually performed to check the initial matching of the beam through to the IP. These measurements are described in this paper for the optics currently used ({beta}{sub x} = 4cm and {beta}{sub y} = 1mm). Software implemented in the control room to automate these measurements with integrated analysis is also described. Measurements showed that {beta} functions and emittances were within errors of measurements when no rematching and coupling corrections were done. However, it was observed that the waist in the horizontal (X) and vertical (Y) plane was abnormally shifted and simulations were performed to try to understand these shifts. They also showed that multiknobs are needed in the current optics to correct simultaneously {alpha}{sub x}, {alpha}{sub y} and the horizontal dispersion (D{sub x}). Such multiknobs were found and their linearity and orthogonality were successfully checked using MAD optics code. The software for these multiknobs was implemented in the control room and waist scan measurements using the {alpha}{sub y} knob were successfully performed.

  14. Facility for low-temperature spin-polarized-scanning tunneling microscopy studies of magnetic/spintronic materials prepared in situ by nitride molecular beam epitaxy

    SciTech Connect

    Lin, Wenzhi; Foley, Andrew; Alam, Khan; Wang, Kangkang; Liu, Yinghao; Chen, Tianjiao; Pak, Jeongihm; Smith, Arthur R.

    2014-04-15

    Based on the interest in, as well as exciting outlook for, nitride semiconductor based structures with regard to electronic, optoelectronic, and spintronic applications, it is compelling to investigate these systems using the powerful technique of spin-polarized scanning tunneling microscopy (STM), a technique capable of achieving magnetic resolution down to the atomic scale. However, the delicate surfaces of these materials are easily corrupted by in-air transfers, making it unfeasible to study them in stand-alone ultra-high vacuum STM facilities. Therefore, we have carried out the development of a hybrid system including a nitrogen plasma assisted molecular beam epitaxy/pulsed laser epitaxy facility for sample growth combined with a low-temperature, spin-polarized scanning tunneling microscope system. The custom-designed molecular beam epitaxy growth system supports up to eight sources, including up to seven effusion cells plus a radio frequency nitrogen plasma source, for epitaxially growing a variety of materials, such as nitride semiconductors, magnetic materials, and their hetero-structures, and also incorporating in situ reflection high energy electron diffraction. The growth system also enables integration of pulsed laser epitaxy. The STM unit has a modular design, consisting of an upper body and a lower body. The upper body contains the coarse approach mechanism and the scanner unit, while the lower body accepts molecular beam epitaxy grown samples using compression springs and sample skis. The design of the system employs two stages of vibration isolation as well as a layer of acoustic noise isolation in order to reduce noise during STM measurements. This isolation allows the system to effectively acquire STM data in a typical lab space, which during its construction had no special and highly costly elements included, (such as isolated slabs) which would lower the environmental noise. The design further enables tip exchange and tip coating without

  15. Facility for low-temperature spin-polarized-scanning tunneling microscopy studies of magnetic/spintronic materials prepared in situ by nitride molecular beam epitaxy.

    PubMed

    Lin, Wenzhi; Foley, Andrew; Alam, Khan; Wang, Kangkang; Liu, Yinghao; Chen, Tianjiao; Pak, Jeongihm; Smith, Arthur R

    2014-04-01

    Based on the interest in, as well as exciting outlook for, nitride semiconductor based structures with regard to electronic, optoelectronic, and spintronic applications, it is compelling to investigate these systems using the powerful technique of spin-polarized scanning tunneling microscopy (STM), a technique capable of achieving magnetic resolution down to the atomic scale. However, the delicate surfaces of these materials are easily corrupted by in-air transfers, making it unfeasible to study them in stand-alone ultra-high vacuum STM facilities. Therefore, we have carried out the development of a hybrid system including a nitrogen plasma assisted molecular beam epitaxy/pulsed laser epitaxy facility for sample growth combined with a low-temperature, spin-polarized scanning tunneling microscope system. The custom-designed molecular beam epitaxy growth system supports up to eight sources, including up to seven effusion cells plus a radio frequency nitrogen plasma source, for epitaxially growing a variety of materials, such as nitride semiconductors, magnetic materials, and their hetero-structures, and also incorporating in situ reflection high energy electron diffraction. The growth system also enables integration of pulsed laser epitaxy. The STM unit has a modular design, consisting of an upper body and a lower body. The upper body contains the coarse approach mechanism and the scanner unit, while the lower body accepts molecular beam epitaxy grown samples using compression springs and sample skis. The design of the system employs two stages of vibration isolation as well as a layer of acoustic noise isolation in order to reduce noise during STM measurements. This isolation allows the system to effectively acquire STM data in a typical lab space, which during its construction had no special and highly costly elements included, (such as isolated slabs) which would lower the environmental noise. The design further enables tip exchange and tip coating without

  16. New instrumentation in Argonne`s HVEM-Tamdem Facility: Expanded capability for in situ ion beam studies

    SciTech Connect

    Allen, C.W.; Funk, L.L.; Ryan, E.A.

    1995-11-01

    During 1995, a state-of-the-art intermediate voltage electron microscope (IVEM) has been installed in the HVEM-Tandem Facility with in situ ion irradiation capabilities similar to those of the HVEM. A 300 kV Hitachi H-9000NAR has been interfaced to the two ion accelerators of the Facility, with a spatial resolution for imaging which is nearly an order of magnitude better than that for the 1.2 MV HVEM which dates from the early 1970s. The HVEM remains heavily utilized for electron- and ion irradiation-related materials studies, nevertheless, especially those for which less demanding microscopy is adequate. The capabilities and limitations of this IVEM and HVEM are compared. Both the HVEM and IVEM are part of the DOE funded User Facility and therefore are available to the scientific community for materials studies, free of charge for non-proprietary research.

  17. Fast E-field switching of a pulsed surface muon beam: The commissioning of the European muon facility at ISIS

    NASA Astrophysics Data System (ADS)

    Eaton, G. H.; Clarke-Gayther, M. A.; Scott, C. A.; Uden, C. N.; Williams, W. G.

    1994-03-01

    The ISIS pulsed muon facility at RAL has been upgraded by the inclusion of a fast E-field kicker which simultaneously divides and distributes the muon pulses at surface momentum to the three experimental areas at a repetition rate of 50 Hz. This upgraded facility has been successfully commissioned in conjunction with a new μSR spectrometer. It has been shown that this new spectrometer can operate as expected with a figure of merit for μSR experiments similar to that of the original spectrometer, in spite of receiving only half of the relative muon intensity. This twofold increase in experimental capability will be further increased in the near future by the incorporation of experimental equipment in the third beamline. Such a facility will be capable of satisfying a European wide demand for μSR research with pulsed surface muons.

  18. Atomic Oxygen (ATOX) simulation of Teflon FEP and Kapton H surfaces using a high intensity, low energy, mass selected, ion beam facility

    NASA Technical Reports Server (NTRS)

    Vered, R.; Grossman, E.; Lempert, G. D.; Lifshitz, Y.

    1994-01-01

    A high intensity (greater than 10(exp 15) ions/sq cm) low energy (down to 5 eV) mass selected ion beam (MSIB) facility was used to study the effects of ATOX on two polymers commonly used for space applications (Kapton H and Teflon FEP). The polymers were exposed to O(+) and Ne(+) fluences on 10(exp 15) - 10(exp 19) ions/sq cm, using 30eV ions. A variety of analytical methods were used to analyze the eroded surfaces including: (1) atomic force microscopy (AFM) for morphology measurements; (2) total mass loss measurements using a microbalance; (3) surface chemical composition using x-ray photoelectron spectroscopy (XPS), and (4) residual gas analysis (RGA) of the released gases during bombardment. The relative significance of the collisional and chemical degradation processes was evaluated by comparing the effects of Ne(+) and O(+) bombardment. For 30 eV ions it was found that the Kapton is eroded via chemical mechanisms while Teflon FEP is eroded via collisional mechanisms. AFM analysis was found very powerful in revealing the evolution of the damage from its initial atomic scale (roughness of approx. 1 nm) to its final microscopic scale (roughness greater than 1 micron). Both the surface morphology and the average roughness of the bombarded surfaces (averaged over 1 micron x 1 micron images by the system's computer) were determined for each sample. For 30 eV a non linear increase of the Kapton roughness with the O(+) fluence was discovered (a slow increase rate for fluences phi less than 5 x 10(exp 17) O(+)/sq cm, and a rapid increase rate for phi greater than 5 x 10(exp 17) O(+)/sq cm). Comparative studies on the same materials exposed to RF and DC oxygen plasmas indicate that the specific details of the erosion depend on the simulation facility emphasizing the advantages of the ion beam facility.

  19. New challenges for HEP computing: RHIC (Relativistic Heavy Ion Collider) and CEBAF (Continuous Electron Beam Accelerator Facility)

    SciTech Connect

    LeVine, M.J. Frankfurt Univ. )

    1990-01-01

    We will look at two facilities; RHIC and CEBF. CEBF is in the construction phase, RHIC is about to begin construction. For each of them, we examine the kinds of physics measurements that motivated their construction, and the implications of these experiments for computing. Emphasis will be on on-line requirements, driven by the data rates produced by these experiments.

  20. The Alto Facility

    NASA Astrophysics Data System (ADS)

    Ibrahim, F.; Azaiez, F.; Essabaa, S.; Verney, D.; Cheikh Mhamed, M.; Franchoo, S.; Lau, C.; Li, R.; Roussière, B.; Said, A.; Tusseau-Nenez, S.; Testov, D.; Penionzhkevich, Yu.; Smirnov, V.; Sokol, E.

    2015-06-01

    The ALTO facility consists of two accelerators in the same area. A Tandem accelerator dedicated to stable (ions and cluster) beam physics and a linear electron accelerator dedicated to the production of radioactive beams. This gives a unique opportunity to have in the same place cluster beams for interdisciplinary physics and stable and radioactive beams for astrophysics and nuclear physics.

  1. Conceptual Design - Polar Drive Ignition Campaign

    SciTech Connect

    Hansen, R

    2012-04-05

    The Laboratory for Laser Energetics (LLE) at the University of Rochester is proposing a collaborative effort with Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratories (LANL), the Naval Research Laboratory (NRL), and General Atomics (GA) with the goal of developing a cryogenic polar drive (PD) ignition platform on the National Ignition Facility (NIF). The scope of this proposed project requires close discourse among theorists, experimentalists, and laser and system engineers. This document describes how this proposed project can be broken into a series of parallel independent activities that, if implemented, could deliver this goal in the 2017 timeframe. This Conceptual Design document is arranged into two sections: mission need and design requirements. Design requirements are divided into four subsystems: (1) A point design that details the necessary target specifications and laser pulse requirements; (2) The beam smoothing subsystem that describes the MultiFM 1D smoothing by spectral dispersion (SSD); (3) New optical elements that include continuous phase plates (CPP's) and distributed polarization rotators (DPR's); and (4) The cryogenic target handling and insertion subsystem, which includes the design, fabrication, testing, and deployment of a dedicated PD ignition target insertion cryostat (PD-ITIC). This document includes appendices covering: the primary criteria and functional requirements, the system design requirements, the work breakdown structure, the target point design, the experimental implementation plan, the theoretical unknowns and technical implementation risks, the estimated cost and schedule, the development plan for the DPR's, the development plan for MultiFM 1D SSD, and a list of acronym definitions. While work on the facility modifications required for PD ignition has been in progress for some time, some of the technical details required to define the specific modifications for a Conceptual Design Review (CDR) remain

  2. Waste Handeling Building Conceptual Study

    SciTech Connect

    G.W. Rowe

    2000-11-06

    The objective of the ''Waste Handling Building Conceptual Study'' is to develop proposed design requirements for the repository Waste Handling System in sufficient detail to allow the surface facility design to proceed to the License Application effort if the proposed requirements are approved by DOE. Proposed requirements were developed to further refine waste handling facility performance characteristics and design constraints with an emphasis on supporting modular construction, minimizing fuel inventory, and optimizing facility maintainability and dry handling operations. To meet this objective, this study attempts to provide an alternative design to the Site Recommendation design that is flexible, simple, reliable, and can be constructed in phases. The design concept will be input to the ''Modular Design/Construction and Operation Options Report'', which will address the overall program objectives and direction, including options and issues associated with transportation, the subsurface facility, and Total System Life Cycle Cost. This study (herein) is limited to the Waste Handling System and associated fuel staging system.

  3. Early-Time Symmetry Tuning in the Presence of Cross-Beam Energy Transfer in ICF Experiments on the National Ignition Facility

    DOE PAGESBeta

    Dewald, E. L.; Milovich, J. L.; Michel, P.; Landen, O. L.; Kline, J. L.; Glenn, S.; Jones, O.; Kalantar, D. H.; Pak, A.; Robey, H. F.; et al

    2013-12-01

    At the National Ignition Facility (NIF) we have successfully tuned the early time (~2 ns) lowest order Legendre mode (P2) of the incoming radiation drive asymmetry of indirectly driven ignition capsule implosions by varying the inner power cone fraction. The measured P2/P0 sensitivity vs come fraction is similar to calculations, but a significant -15 to -20% P2/P0 offset was observed. This can be explained by a considerable early time laser energy transfer from the outer to the inner beams during the laser burn-through of the Laser Entrance Hole (LEH) windows and hohlraum fill gas when the LEH plasma is stillmore » dense and relatively cold.« less

  4. Early-Time Symmetry Tuning in the Presence of Cross-Beam Energy Transfer in ICF Experiments on the National Ignition Facility

    SciTech Connect

    Dewald, E. L.; Milovich, J. L.; Michel, P.; Landen, O. L.; Kline, J. L.; Glenn, S.; Jones, O.; Kalantar, D. H.; Pak, A.; Robey, H. F.; Kyrala, G. A.; Divol, L.; Benedetti, L. R.; Holder, J.; Widmann, K.; Moore, A.; Schneider, M. B.; Döppner, T.; Tommasini, R.; Bradley, D. K.; Bell, P.; Ehrlich, B.; Thomas, C. A.; Shaw, M.; Widmayer, C.; Callahan, D. A.; Meezan, N. B.; Town, R. P. J.; Hamza, A.; Dzenitis, B.; Nikroo, A.; Moreno, K.; Van Wonterghem, B.; Mackinnon, A. J.; Glenzer, S. H.; MacGowan, B. J.; Kilkenny, J. D.; Edwards, M. J.; Atherton, L. J.; Moses, E. I.

    2013-12-01

    At the National Ignition Facility (NIF) we have successfully tuned the early time (~2 ns) lowest order Legendre mode (P2) of the incoming radiation drive asymmetry of indirectly driven ignition capsule implosions by varying the inner power cone fraction. The measured P2/P0 sensitivity vs come fraction is similar to calculations, but a significant -15 to -20% P2/P0 offset was observed. This can be explained by a considerable early time laser energy transfer from the outer to the inner beams during the laser burn-through of the Laser Entrance Hole (LEH) windows and hohlraum fill gas when the LEH plasma is still dense and relatively cold.

  5. Operation of beam line facilities for real-time x-ray studies at Sector 7 of the advanced photon source. Final Report

    SciTech Connect

    Clarke, Roy

    2003-09-10

    This Final Report documents the research accomplishments achieved in the first phase of operations of a new Advanced Photon Source beam line (7-ID MHATT-CAT) dedicated to real-time x-ray studies. The period covered by this report covers the establishment of a world-class facility for time-dependent x-ray studies of materials. During this period many new and innovative research programs were initiated at Sector 7 with support of this grant, most notably using a combination of ultrafast lasers and pulsed synchrotron radiation. This work initiated a new frontier of materials research: namely, the study of the dynamics of materials under extreme conditions of high intensity impulsive laser irradiation.

  6. OPTIMIZATION OF THE EPITHERMAL NEUTRON BEAM FOR BORON NEUTRON CAPTURE THERAPY AT THE BROOKHAVEN MEDICAL RESEARCH REACTOR.

    SciTech Connect

    HU,J.P.; RORER,D.C.; RECINIELLO,R.N.; HOLDEN,N.E.

    2002-08-18

    Clinical trials of Boron Neutron Capture Therapy for patients with malignant brain tumor had been carried out for half a decade, using an epithermal neutron beam at the Brookhaven's Medical Reactor. The decision to permanently close this reactor in 2000 cut short the efforts to implement a new conceptual design to optimize this beam in preparation for use with possible new protocols. Details of the conceptual design to produce a higher intensity, more forward-directed neutron beam with less contamination from gamma rays, fast and thermal neutrons are presented here for their potential applicability to other reactor facilities. Monte Carlo calculations were used to predict the flux and absorbed dose produced by the proposed design. The results were benchmarked by the dose rate and flux measurements taken at the facility then in use.

  7. Optimization of the Epithermal Neutron Beam for Boron Neutron Capture Therapy at the Brookhaven Medical Research Reactor

    SciTech Connect

    Hu, J.P.; Reciniello, R.N.; Holden, N.E.

    2004-05-01

    Clinical trials of Boron Neutron Capture Therapy for patients with malignant brain tumor had been carried out for half a decade, using an epithermal neutron beam at the Brookhaven Medical Reactor. The decision to permanently close this reactor in 2000 cut short the efforts to implement a new conceptual design to optimize this beam in preparation for use with possible new protocols. Details of the conceptual design to produce a higher intensity, more forward-directed neutron beam with less contamination from gamma rays, fast and thermal neutrons are presented here for their potential applicability to other reactor facilities. Monte Carlo calculations were used to predict the flux and absorbed dose produced by the proposed design. The results were benchmarked by the dose rate and flux measurements taken at the facility then in use.

  8. The intense slow positron beam facility at the PULSTAR reactor and applications in nano-materials study

    SciTech Connect

    Liu, Ming; Moxom, Jeremy; Hawari, Ayman I.; Gidley, David W.

    2013-04-19

    An intense slow positron beam has been established at the PULSTAR nuclear research reactor of North Carolina State University. The slow positrons are generated by pair production in a tungsten moderator from gammarays produced in the reactor core and by neutron capture reactions in cadmium. The moderated positrons are electrostatically extracted and magnetically guided out of the region near the core. Subsequently, the positrons are used in two spectrometers that are capable of performing positron annihilation lifetime spectroscopy (PALS) and positron Doppler broadening spectroscopy (DBS) to probe the defect and free volume properties of materials. One of the spectrometers (e{sup +}-PALS) utilizes an rf buncher to produce a pulsed beam and has a timing resolution of 277 ps. The second spectrometer (Ps-PALS) uses a secondary electron timing technique and is dedicated to positronium lifetime measurements with an approximately 1 ns timing resolution. PALS measurements have been conducted in the e{sup +}-PALS spectrometer on a series of nano-materials including organic photovoltaic thin films, membranes for filtration, and polymeric fibers. These studies have resulted in understanding some critical issues related to the development of the examined nano-materials.

  9. The intense slow positron beam facility at the PULSTAR reactor and applications in nano-materials study

    NASA Astrophysics Data System (ADS)

    Liu, Ming; Moxom, Jeremy; Hawari, Ayman I.; Gidley, David W.

    2013-04-01

    An intense slow positron beam has been established at the PULSTAR nuclear research reactor of North Carolina State University. The slow positrons are generated by pair production in a tungsten moderator from gammarays produced in the reactor core and by neutron capture reactions in cadmium. The moderated positrons are electrostatically extracted and magnetically guided out of the region near the core. Subsequently, the positrons are used in two spectrometers that are capable of performing positron annihilation lifetime spectroscopy (PALS) and positron Doppler broadening spectroscopy (DBS) to probe the defect and free volume properties of materials. One of the spectrometers (e+-PALS) utilizes an rf buncher to produce a pulsed beam and has a timing resolution of 277 ps. The second spectrometer (Ps-PALS) uses a secondary electron timing technique and is dedicated to positronium lifetime measurements with an approximately 1 ns timing resolution. PALS measurements have been conducted in the e+-PALS spectrometer on a series of nano-materials including organic photovoltaic thin films, membranes for filtration, and polymeric fibers. These studies have resulted in understanding some critical issues related to the development of the examined nano-materials.

  10. Future Fixed Target Facilities

    SciTech Connect

    Melnitchouk, Wolodymyr

    2009-01-01

    We review plans for future fixed target lepton- and hadron-scattering facilities, including the 12 GeV upgraded CEBAF accelerator at Jefferson Lab, neutrino beam facilities at Fermilab, and the antiproton PANDA facility at FAIR. We also briefly review recent theoretical developments which will aid in the interpretation of the data expected from these facilities.

  11. Extraction of pure thermal neutron beam for the proposed PGNAA facility at the TRIGA research reactor of AERE, Savar, Bangladesh

    NASA Astrophysics Data System (ADS)

    Alam, Sabina; Zaman, M. A.; Islam, S. M. A.; Ahsan, M. H.

    1993-10-01

    A study on collimators and filters for the design of a spectrometer for prompt gamma neutron activation analysis (PGNAA) at one of the radial beamports of the TRIGA Mark II reactor at AERE, Savar has been carried out. On the basis of this study a collimator and a filter have been designed for the proposed PGNAA facility. Calculations have been done for measuring neutron flux at various positions of the core of the reactor using the computer code TRIGAP. Gamma dose in the core of the reactor has also been measured experimentally using TLD technique in the present work.

  12. Studies of thermophysical properties of high-energy-density states in matter using intense heavy ion beams at the future FAIR accelerator facilities: The HEDgeHOB collaboration

    NASA Astrophysics Data System (ADS)

    Tahir, N. A.; Shutov, A.; Lomonosov, I. V.; Gryaznov, V.; Deutsch, C.; Fortov, V. E.; Hoffmann, D. H. H.; Ni, P.; Piriz, A. R.; Udrea, S.; Varentsov, D.; Wouchuk, G.

    2006-06-01

    Intense beams of energetic heavy ions are believed to be a very efficient and novel tool to create states of High-Energy-Density (HED) in matter. This paper shows with the help of numerical simulations that the heavy ion beams that will be generated at the future Facility for Antiprotons and Ion Research (FAIR)[W.F. Henning, Nucl. Instr. Meth. B 214, 211 (2004)] will allow one to use two different experimental schemes to study HED states in matter. First scheme named HIHEX (Heavy Ion Heating and EXpansion), will generate high-pressure, high-entropy states in matter by volumetric isochoric heating. The heated material will then be allowed to expand isentropically. Using this scheme, it will be possible to study important regions of the phase diagram that are either difficult to access or are even unaccessible using traditional methods of shock compression. The second scheme would allow one to achieve low-entropy compression of a sample material like hydrogen or water to produce conditions that are believed to exist in the interiors of the giant planets. This scheme is named LAPLAS (LAboratory PLAnetary Sciences).

  13. Development of Parallel Computing Framework to Enhance Radiation Transport Code Capabilities for Rare Isotope Beam Facility Design

    SciTech Connect

    Kostin, Mikhail; Mokhov, Nikolai; Niita, Koji

    2013-09-25

    A parallel computing framework has been developed to use with general-purpose radiation transport codes. The framework was implemented as a C++ module that uses MPI for message passing. It is intended to be used with older radiation transport codes implemented in Fortran77, Fortran 90 or C. The module is significantly independent of radiation transport codes it can be used with, and is connected to the codes by means of a number of interface functions. The framework was developed and tested in conjunction with the MARS15 code. It is possible to use it with other codes such as PHITS, FLUKA and MCNP after certain adjustments. Besides the parallel computing functionality, the framework offers a checkpoint facility that allows restarting calculations with a saved checkpoint file. The checkpoint facility can be used in single process calculations as well as in the parallel regime. The framework corrects some of the known problems with the scheduling and load balancing found in the original implementations of the parallel computing functionality in MARS15 and PHITS. The framework can be used efficiently on homogeneous systems and networks of workstations, where the interference from the other users is possible.

  14. Design of a rotating facility for extracorporal treatment of an explanted liver with disseminated metastases by boron neutron capture therapy with an epithermal neutron beam.

    PubMed

    Nievaart, V A; Moss, R L; Kloosterman, J L; van der Hagen, T H J J; van Dam, H; Wittig, A; Malago, M; Sauerwein, W

    2006-07-01

    In 2001, at the TRIGA reactor of the University of Pavia (Italy), a patient suffering from diffuse liver metastases from an adenocarcinoma of the sigmoid was successfully treated by boron neutron capture therapy (BNCT). The procedure involved boron infusion prior to hepatectomy, irradiation of the explanted liver at the thermal column of the reactor, and subsequent reimplantation. A complete response was observed. This encouraging outcome stimulated the Essen/Petten BNCT group to investigate whether such an extracorporal irradiation could be performed at the BNCT irradiation facility at the HFR Petten (The Netherlands), which has very different irradiation characteristics than the Pavia facility. A computational study has been carried out. A rotating PMMA container with a liver, surrounded by PMMA and graphite, is simulated using the Monte Carlo code MCNP. Due to the rotation and neutron moderation of the PMMA container, the initial epithermal neutron beam provides a nearly homogeneous thermal neutron field in the liver. The main conditions for treatment as reported from the Pavia experiment, i.e. a thermal neutron fluence of 4 x 10(12) +/- 20% cm(-2), can be closely met at the HFR in an acceptable time, which, depending on the defined conditions, is between 140 and 180 min. PMID:16808623

  15. Characterization of a CsI(Tl) array coupled to avalanche photodiodes for the Barrel of the CALIFA calorimeter at the NEPTUN tagged gamma beam facility

    NASA Astrophysics Data System (ADS)

    Gascón, M.; Schnorrenberger, L.; Pietras, B.; Álvarez-Pol, H.; Cortina-Gil, D.; Díaz Fernández, P.; Duran, I.; Glorius, J.; González, D.; Perez-Loureiro, D.; Pietralla, N.; Savran, D.; Sonnabend, K.

    2013-10-01

    Among the variety of crystal calorimeters recently designed for several physics facilities, CALIFA (CALorimeter for In-Flight emitted gAmmas and light-charged particles) has especially demanding requirements since it must perform within a very complicated energy domain (gamma-ray energies from 0.1 to 20 MeV and up to 300 MeV protons). As part of the R&D program for the Barrel section of CALIFA, a reduced geometry prototype was constructed. This prototype consisted of a 3 × 5 array of CsI(Tl) crystals of varying dimensions, coupled to large area avalanche photodiodes. Here reported are the details regarding the construction of the prototype and the experimental results obtained at the NEPTUN tagged gamma beam facility, reconstructing gamma energies up to 10 MeV. Dedicated Monte Carlo simulations of the setup were also performed, enabling a deeper understanding of the experimental data. The experimental results demonstrate the effectiveness of the reconstruction method and helped to establish the most suitable crystal geometry to be employed within the forthcoming calorimeter.

  16. A ground calibration of the engineering model of the SXT onboard ASTRO-H using the ISAS 30m pencil beam facility

    NASA Astrophysics Data System (ADS)

    Ichihara, K.; Hayashi, T.; Ishida, M.; Maeda, Y.; Mori, H.; Sato, T.; Tomikawa, K.; Ishibashi, K.; Iizuka, R.; Okajima, T.; Serlemitsos, P. J.; Soong, Y.

    2012-09-01

    The Japanese ASTRO-H mission, planned to be launched in 2014, will carry several instruments for covering a wide energy range from a few keV to 600 keV. Among them there are four thin-foil-nested Wolter-I X-ray telescopes. Two of them are Soft X-ray Telescopes (SXTs) covering up to ~12 keV. Each of them focuses an image on the focal plane detectors of the CCD camera (SXI) and the calorimeter (SXS-XCS), respectively. In 2011, we performed a ground calibration of a quadrant engineering model (EM) of SXT that was fabricated at MASA's Goddard Space Flight Center (GSFC). The ground calibration was made with a combination of the measurements at the GSFC and Institute of Space and Astronautical Science (ISAS) facilities. In this paper we report the results of the calibration at the ISAS 30m beamline facility. We used a raster san method with a pencil beam at the baseline length of 30m. An effective area and angular resolution of the EM quadrant were measured. The effective area is 147 cm2 at 1.49 keV and 116 cm2 at 4.51 keV, respectively, while the angular longer by ~20mm from nominal length. We also measured imaging performance in separate parts of nested mirrors. The angular resolution of parts at outer radius is larger than those at inner radius, and the quadrant have different focal lengths in radius.

  17. Validation of an optical model applied to the beam down CSP facility at the Masdar Institute Solar Platform

    NASA Astrophysics Data System (ADS)

    Grange, Benjamin; Kumar, Vikas; Torres, Juliana Beltran; Perez, Victor G.; Armstrong, Peter R.; Slocum, Alexander; Calvet, Nicolas

    2016-05-01

    In the framework of the CSPonD Demo project, the optical characterization of the Beam Down Optical Experiment (BDOE) heliostats field is an important step to certify the required power is provided. To achieve this goal, an experiment involving a single heliostat is carried out. The results of the experiment and the comparison with simulated results are presented in this paper. Only the reflection on the heliostat is observed in order to have a better assessment of its optical performance. The heliostat reflectance is modified and the experimental and simulated concentration distribution are confronted. Results indicate that the shapes of the concentration distributions are quite similar, hence validating the optical model respects the geometry of the BDOE. Moreover these results lead to an increase of the optimized heliostat reflectance when the incident angle on the heliostat decreases. Further investigation is required to validate this method with all the individual heliostats of the BDOE solar field.

  18. Ion Beam Induced Charge Collection (IBICC) Studies and Focused Heavy Ion Microprobe Facility at the University of North Texas

    NASA Astrophysics Data System (ADS)

    Guo, B. N.; Renfrow, S. N.; Jin, J.; Hughes, B. F.; Duggan, J. L.; McDaniel, F. D.

    1998-03-01

    As the feature sizes reduce, semiconductor devices increase their sensitivity to ionizing radiation that creates electron-hole pairs. The induced charge collection by the device p-n junctions can alter the state of the device, most commonly causing memory errors. To design robust devices immune to these effects, it is essential to create and test accurate models of this process. Such model-based testing requires energetic heavy ions whose number, arrival time, spatial location, energy, and angle can be controlled when they strike the integrated circuit. IBMAL is building a strong focusing lens system with spatial resolution 1μ m, raster-scanning capabilities for alpha particles and heavier ions. A detailed description of the focused heavy ion microprobe facility and IBICC experimental results conducted at Sandia National Laboratory will be presented.

  19. Annex to 7-GeV Advanced Photon Source Conceptual Design Report

    SciTech Connect

    Not Available

    1988-05-01

    The Annex to the 7-GeV Advanced Photon Source Conceptual Design Report updates the Conceptual Design Report of 1987 (CDR-87) to include the results of further optimization and changes of the design during the past year. The design changes can be summarized as affecting three areas: the accelerator system, conventional facilities, and experimental systems. Most of the changes in the accelerator system result from inclusion of a positron accumulator ring (PAR), which was added at the suggestion of the 1987 DOE Review Committee, to speed up the filling rate of the storage ring. The addition of the PAR necessitates many minor changes in the linac system, the injector synchrotron, and the low-energy beam transport lines. 63 figs., 18 tabs.

  20. SU-E-T-388: Estimating the Radioactivity Inventory of a Cyclotron Based Pencil Beam Proton Therapy Facility

    SciTech Connect

    Langen, K; Chen, S

    2014-06-01

    Purpose: Parts of the cyclotron and energy degrader are incidentally activated by protons lost during the acceleration and transport of protons for radiation therapy. An understanding of the radioactive material inventory is needed when regulatory requirements are assessed. Methods: First, the tumor dose and volume is used to determine the required energy deposition. For spot scanning, the tumor length along the beam path determines the number of required energy layers. For each energy layer the energy deposition per proton can be calculated from the residual proton range within the tumor. Assuming a typical layer weighting, an effective energy deposition per proton can then be calculated. The total number of required protons and the number of protons per energy layer can then be calculated. For each energy layer, proton losses in the energy degrader are calculated separately since its transmission efficiency, and hence the amount of protons lost, is energy dependent. The degrader efficiency also determines the number of protons requested from the cyclotron. The cyclotron extraction efficiency allows a calculation of the proton losses within the cyclotron. The saturation activity induced in the cyclotron and the degrader is equal to the production rate R for isotopes whose half-life is shorter that the projected cyclotron life time. R can be calculated from the proton loss rate and published production cross sections. Results: About 1/3 of the saturation activity is produced in the cyclotron and 2/3 in the energy degrader. For a projected case mix and a patient load of 1100 fractions per week at 1.8 Gy per fraction a combined activity of 180 mCi was estimated at saturation. Conclusion: Calculations were used to support to application of a radioactive materials license for the possession of 200 mCi of activity for isotopes with atomic numbers ranging from 1-83.

  1. A tailored 200 parameter VME based data acquisition system for IBA at the Lund Ion Beam Analysis Facility - Hardware and software

    NASA Astrophysics Data System (ADS)

    Elfman, Mikael; Ros, Linus; Kristiansson, Per; Nilsson, E. J. Charlotta; Pallon, Jan

    2016-03-01

    With the recent advances towards modern Ion Beam Analysis (IBA), going from one- or few-parameter detector systems to multi-parameter systems, it has been necessary to expand and replace the more than twenty years old CAMAC based system. A new VME multi-parameter (presently up to 200 channels) data acquisition and control system has been developed and implemented at the Lund Ion Beam Analysis Facility (LIBAF). The system is based on the VX-511 Single Board Computer (SBC), acting as master with arbiter functionality and consists of standard VME modules like Analog to Digital Converters (ADC's), Charge to Digital Converters (QDC's), Time to Digital Converters (TDC's), scaler's, IO-cards, high voltage and waveform units. The modules have been specially selected to support all of the present detector systems in the laboratory, with the option of future expansion. Typically, the detector systems consist of silicon strip detectors, silicon drift detectors and scintillator detectors, for detection of charged particles, X-rays and γ-rays. The data flow of the raw data buffers out from the VME bus to the final storage place on a 16 terabyte network attached storage disc (NAS-disc) is described. The acquisition process, remotely controlled over one of the SBCs ethernet channels, is also discussed. The user interface is written in the Kmax software package, and is used to control the acquisition process as well as for advanced online and offline data analysis through a user-friendly graphical user interface (GUI). In this work the system implementation, layout and performance are presented. The user interface and possibilities for advanced offline analysis are also discussed and illustrated.

  2. Conceptualizing Programme Evaluation

    ERIC Educational Resources Information Center

    Hassan, Salochana

    2013-01-01

    The main thrust of this paper deals with the conceptualization of theory-driven evaluation pertaining to a tutor training programme. Conceptualization of evaluation, in this case, is an integration between a conceptualization model as well as a theoretical framework in the form of activity theory. Existing examples of frameworks of programme…

  3. P-23 Highlights 6/10/12: Cygnus Dual Beam Radiographic Facility Refurbishment completed at U1A tunnel in Nevada NNSS meeting Level 2 milestone

    SciTech Connect

    Deyoung, Anemarie; Smith, John R.

    2012-05-03

    A moratorium was placed on U.S. underground nuclear testing in 1992. In response, the Stockpile Stewardship Program was created to maintain readiness of the existing nuclear inventory through several efforts such as computer modeling, material analysis, and subcritical nuclear experiments (SCEs). As in the underground test era, the Nevada National Security Site (NNSS), formerly the Nevada Test Site, provides a safe and secure environment for SCEs by the nature of its isolated and secure facilities. A major tool for SCE diagnosis installed in the 05 drift laboratory is a high energy x-ray source used for time resolved imaging. This tool consists of two identical sources (Cygnus 1 and Cygnus 2) and is called the Cygnus Dual Beam Radiographic Facility (Figs. 2-6). Each Cygnus machine has 5 major elements: Marx Generator, Pulse Forming Line (PFL), Coaxial Transmission Line (CTL), 3-cell Inductive Voltage Adder (IVA), and Rod Pinch Diode. Each machine is independently triggered and may be fired in separate tests (staggered mode), or in a single test where there is submicrosecond separation between the pulses (dual mode). Cygnus must operate as a single shot machine since on each pulse the diode electrodes are destroyed. The diode is vented to atmosphere, cleaned, and new electrodes are inserted for each shot. There is normally two shots per day on each machine. Since its installation in 2003, Cygnus has participated in: 4 Subcritical Experiments (Armando, Bacchus, Barolo A, and Barolo B), a 12 shot plutonium physics series (Thermos), and 2 plutonium step wedge calibration series (2005, 2011), resulting in well over 1000 shots. Currently the Facility is in preparation for 2 SCEs scheduled for this calendar year - Castor and Pollux. Cygnus has performed well during 8 years of operations at NNSS. Many improvements in operations and performance have been implemented during this time. Throughout its service at U1a, major maintenance and replacement of many hardware items

  4. TPX Neutral Beam Injection System design

    SciTech Connect

    von Halle, A.; Bowen, O.N.; Edwards, J.W.

    1993-11-01

    The existing Tokamak Fusion Test Reactor Neutral Beam system is proposed to be modified for long pulse operation on the Tokamak Physics Experiment (TPX). Day one of TPX will call for one TFTR beamline modified for 1000 second pulse lengths oriented co-directional to the plasma current. The system design will be capable of accommodating an additional co-directional and a single counter directional beamline. For the TPX conceptual design, every attempt was made to use existing Neutral Beam hardware, plant facilities, auxiliary systems, service infrastructure, and control systems. This paper describes the moderate modifications required to the power systems, the ion sources, and the beam impinged surfaces of the ion dumps, the calorimeters, the various beam scrapers, and the neutralizers. Also described are the minimal modifications required to the vacuum, cryogenic, and gas systems and the major modification of replacing the beamline-torus duct in its entirety. Operational considerations for Neutral Beam subsystems over 1000 second pulse lengths will be explored including proposed operating scenarios for full steady state operation.

  5. A CONCEPTUAL 3-GEV LANSCE LINAC UPGRADE FOR ENHANCED PROTON RADIOGRAPHY

    SciTech Connect

    Garnett, Robert W; Rybarcyk, Lawrence J.; Merrill, Frank E.; O'Hara, James F.; Rees, Daniel E.; Walstrom, Peter L.

    2012-05-14

    A conceptual design of a 3-GeV linac upgrade that would enable enhanced proton radiography at the Los Alamos Neutron Science Center (LANSCE) is presented. The upgrade is based on the use of superconducting accelerating cavities to increase the present LANSCE linac output energy from 800 MeV to 3 GeV. The LANSCE linac currently provides negative hydrogen ion (H{sup -}) and proton (H{sup +}) beams to several user facilities that support Isotope Production, NNSA Stockpile Stewardship, and Basic Energy Science programs. Required changes to the front-end, the accelerating structures, and to the RF systems to meet the new performance goals, and changes to the existing beam switchyard to maintain operations for a robust user program are also described.

  6. Advanced conceptual design report for the Z-Beamlet laser backlighter

    SciTech Connect

    Caird, J

    1999-05-31

    The Z-accelerator facility at Sandia National Laboratories (SNL) in Albuquerque, New Mexico, performs critical experiments on the physics of matter at extremely high energy density as part of the Department of Energy's nuclear weapons Stockpile Stewardship Program. In order to augment and enhance the value of experiments performed at this facility, the construction of a new x-ray backlighting diagnostic system is required. New information would be obtained by recording images and/or spectra of x-ray radiation transmitted through target materials as they evolve during Z-accelerator-driven experiments (or ''shots''). In this application, we generally think of the diagnostic x-rays as illumination produced behind the target materials and detected after passing through the Z-target. Hence the x-ray source is commonly called a ''backlighter.'' The methodology is a specific implementation of the general science known as x-ray radiography and/or x-ray spectroscopy. X-ray backlighter experiments have been performed in inertial confinement fusion (ICF) facilities in many countries. On Nova, experience with backlighters has been obtained since about 1986. An intense source of x-rays is produced by focusing one of its beams on a backlighter target nearby, while the other beams are used to create the high-energy-density conditions to be studied in the experiment. This conceptual design report describes how a laser-backlighter similar to one beam of Nova could be constructed for use at Sandia's Z-accelerator facility. The development of such a facility at Sandia is timely for two major reasons. First, at LLNL the Beamlet laser was decommissioned in FY98, and the Nova laser will be decommissioned in FY99, in preparation for activation of the National Ignition Facility (NIF). This will provide several million dollars worth of subsystems and components from which to construct other lasers, such as the Z-backlighter. Second, the new diagnostic capability at Sandia will provide a

  7. Automaticity of Conceptual Magnitude.

    PubMed

    Gliksman, Yarden; Itamar, Shai; Leibovich, Tali; Melman, Yonatan; Henik, Avishai

    2016-01-01

    What is bigger, an elephant or a mouse? This question can be answered without seeing the two animals, since these objects elicit conceptual magnitude. How is an object's conceptual magnitude processed? It was suggested that conceptual magnitude is automatically processed; namely, irrelevant conceptual magnitude can affect performance when comparing physical magnitudes. The current study further examined this question and aimed to expand the understanding of automaticity of conceptual magnitude. Two different objects were presented and participants were asked to decide which object was larger on the screen (physical magnitude) or in the real world (conceptual magnitude), in separate blocks. By creating congruent (the conceptually larger object was physically larger) and incongruent (the conceptually larger object was physically smaller) pairs of stimuli it was possible to examine the automatic processing of each magnitude. A significant congruity effect was found for both magnitudes. Furthermore, quartile analysis revealed that the congruity was affected similarly by processing time for both magnitudes. These results suggest that the processing of conceptual and physical magnitudes is automatic to the same extent. The results support recent theories suggested that different types of magnitude processing and representation share the same core system. PMID:26879153

  8. Automaticity of Conceptual Magnitude

    PubMed Central

    Gliksman, Yarden; Itamar, Shai; Leibovich, Tali; Melman, Yonatan; Henik, Avishai

    2016-01-01

    What is bigger, an elephant or a mouse? This question can be answered without seeing the two animals, since these objects elicit conceptual magnitude. How is an object’s conceptual magnitude processed? It was suggested that conceptual magnitude is automatically processed; namely, irrelevant conceptual magnitude can affect performance when comparing physical magnitudes. The current study further examined this question and aimed to expand the understanding of automaticity of conceptual magnitude. Two different objects were presented and participants were asked to decide which object was larger on the screen (physical magnitude) or in the real world (conceptual magnitude), in separate blocks. By creating congruent (the conceptually larger object was physically larger) and incongruent (the conceptually larger object was physically smaller) pairs of stimuli it was possible to examine the automatic processing of each magnitude. A significant congruity effect was found for both magnitudes. Furthermore, quartile analysis revealed that the congruity was affected similarly by processing time for both magnitudes. These results suggest that the processing of conceptual and physical magnitudes is automatic to the same extent. The results support recent theories suggested that different types of magnitude processing and representation share the same core system. PMID:26879153

  9. Controlled air incinerator conceptual design study

    SciTech Connect

    Not Available

    1982-01-01

    This report presents a conceptual design study for a controlled air incinerator facility for incineration of low level combustible waste at Three Mile Island Unit 2 (TMI-2). The facility design is based on the use of a Helix Process Systems controlled air incinerator. Cost estimates and associated engineering, procurement, and construction schedules are also provided. The cost estimates and schedules are presented for two incinerator facility designs, one with provisions for waste ash solidification, the other with provisions for packaging the waste ash for transport to an undefined location.

  10. Beam-beam instability

    SciTech Connect

    Chao, A.W.

    1983-08-01

    The subject of beam-beam instability has been studied since the invention of the colliding beam storage rings. Today, with several colliding beam storage rings in operation, it is not yet fully understood and remains an outstanding problem for the storage ring designers. No doubt that good progress has been made over the years, but what we have at present is still rather primitive. It is perhaps possible to divide the beam-beam subject into two areas: one on luminosity optimization and another on the dynamics of the beam-beam interaction. The former area concerns mostly the design and operational features of a colliding beam storage ring, while the later concentrates on the experimental and theoretical aspects of the beam-beam interaction. Although both areas are of interest, our emphasis is on the second area only. In particular, we are most interested in the various possible mechanisms that cause the beam-beam instability.

  11. Report of test beam subgroup

    SciTech Connect

    Nodulman, L.; Groom, D.; Harrison, M.; Toohig, T.; Gustafson, R.; Kirk, T.

    1986-01-01

    Tasks reported on include: exploration of issues of demand for test beams, and particularly for high energy; fleshing out the possibilities of the High Energy Booster beams; and seeking inexpensive ways of providing high energy facilities. (LEW)

  12. Batten augmented triangular beam

    NASA Technical Reports Server (NTRS)

    Adams, Louis R.; Hedgepeth, John M.

    1986-01-01

    The BAT (Batten-Augmented Triangular) BEAM is characterized by battens which are buckled in the deployed state, thus preloading the truss. The preload distribution is determined, and the effects of various external loading conditions are investigated. The conceptual design of a deployer is described and loads are predicted. The influence of joint imperfections on effective member stiffness is investigated. The beam is assessed structurally.

  13. Conceptual design report, TWRS Privatization Phase I, Liquideffluent transfer systems, subproject W-506

    SciTech Connect

    Singh, G.

    1997-06-05

    This document includes Conceptual Design Report (CDR) for providing liquid effluent lines for routing waste from two Private Contractor (PC) facilities to existing storage, treatment, and disposal facilities in the 200-East Area.

  14. Overlooking the Conceptual Framework

    ERIC Educational Resources Information Center

    Leshem, Shosh; Trafford, Vernon

    2007-01-01

    The conceptual framework is alluded to in most serious texts on research, described in some and fully explained in few. However, examiners of doctoral theses devote considerable attention to exploring its function within social science doctoral vivas. A literature survey explores how the conceptual framework is itself conceptualised and explained.…

  15. Communication, Conceptualization and Articulation

    ERIC Educational Resources Information Center

    Elsayed, Adel; Hartley, Roger

    2005-01-01

    Learning can be viewed as a communication process that puts the learner in contact with concepts created by others. A result of communication is that an act of interpretation starts, which invokes a process of conceptualization. According to Mayes, successful conceptualization will need the support of learning activities. Hence, machine mediated…

  16. SLAC linear collider conceptual design report

    SciTech Connect

    Not Available

    1980-06-01

    The linear collider system is described in detail, including the transport system, the collider lattice, final focusing system, positron production, beam damping and compression, high current electron source, instrumentation and control, and the beam luminosity. The experimental facilities and the experimental uses are discussed along with the construction schedule and estimated costs. Appendices include a discussion of space charge effects in the linear accelerator, emittance growth in the collider, the final focus system, beam-beam instabilities and pinch effects, and detector backgrounds. (GHT)

  17. First Beam to FACET

    SciTech Connect

    Erickson, R.; Clarke, C.; Colocho, W.; Decker, F.-J.; Hogan, M.; Kalsi, S.; Lipkowitz, N.; Nelson, J.; Phinney, N.; Schuh, P.; Sheppard, J.; Smith, H.; Smith, T.; Stanek, M.; Turner, J.; Warren, J.; Weathersby, S.; Wienands, U.; Wittmer, W.; Woodley, M.; Yocky, G.; /SLAC

    2011-12-13

    The SLAC 3km linear electron accelerator has been reconfigured to provide a beam of electrons to the new Facility for Advanced Accelerator Experimental Tests (FACET) while simultaneously providing an electron beam to the Linac Coherent Light Source (LCLS). On June 23, 2011, the first electron beam was transported through this new facility. Commissioning of FACET is in progress. On June 23, 2011, an electron beam was successfully transported through the new FACET system to a dump in Sector 20 in the linac tunnel. This was achieved while the last third of the linac, operating from the same control room, but with a separate injector system, was providing an electron beam to the Linac Coherent Light Source (LCLS), demonstrating that concurrent operation of the two facilities is practical. With the initial checkout of the new transport line essentially complete, attention is now turning toward compressing the electron bunches longitudinally and focusing them transversely to support a variety of accelerator science experiments.

  18. Embodied Conceptual Combination

    PubMed Central

    Lynott, Dermot; Connell, Louise

    2010-01-01

    Conceptual combination research investigates the processes involved in creating new meaning from old referents. It is therefore essential that embodied theories of cognition are able to explain this constructive ability and predict the resultant behavior. However, by failing to take an embodied or grounded view of the conceptual system, existing theories of conceptual combination cannot account for the role of perceptual, motor, and affective information in conceptual combination. In the present paper, we propose the embodied conceptual combination (ECCo) model to address this oversight. In ECCo, conceptual combination is the result of the interaction of the linguistic and simulation systems, such that linguistic distributional information guides or facilitates the combination process, but the new concept is fundamentally a situated, simulated entity. So, for example, a cactus beetle is represented as a multimodal simulation that includes visual (e.g., the shiny appearance of a beetle) and haptic (e.g., the prickliness of the cactus) information, all situated in the broader location of a desert environment under a hot sun, and with (at least for some people) an element of creepy-crawly revulsion. The ECCo theory differentiates interpretations according to whether the constituent concepts are destructively, or non-destructively, combined in the situated simulation. We compare ECCo to other theories of conceptual combination, and discuss how it accounts for classic effects in the literature. PMID:21833267

  19. Preliminary conceptual design of DEMO EC system

    SciTech Connect

    Garavaglia, S. Bin, W.; Bruschi, A.; Granucci, G.; Moro, A.; Rispoli, N.; Grossetti, G.; Strauss, D.; Jelonnek, J.; Tran, Q. M.; Franke, T.

    2015-12-10

    In the framework of EUROfusion Consortium the Work Package Heating and Current Drive addresses the engineering design and R&D for the electron cyclotron, ion cyclotron and neutral beam systems. This paper reports the activities performed in 2014, focusing on the work done regarding the input for the conceptual design of the EC system, particularly for the gyrotron, the transmission line and the launchers.

  20. Preliminary conceptual design of DEMO EC system

    NASA Astrophysics Data System (ADS)

    Garavaglia, S.; Bin, W.; Bruschi, A.; Granucci, G.; Grossetti, G.; Jelonnek, J.; Moro, A.; Rispoli, N.; Strauss, D.; Tran, Q. M.; Franke, T.

    2015-12-01

    In the framework of EUROfusion Consortium the Work Package Heating and Current Drive addresses the engineering design and R&D for the electron cyclotron, ion cyclotron and neutral beam systems. This paper reports the activities performed in 2014, focusing on the work done regarding the input for the conceptual design of the EC system, particularly for the gyrotron, the transmission line and the launchers.

  1. Possibility for ultra-bright electron beam acceleration in dielectric wakefield accelerators

    SciTech Connect

    Simakov, Evgenya I.; Carlsten, Bruce E.; Shchegolkov, Dmitry Yu.

    2012-12-21

    We describe a conceptual proposal to combine the Dielectric Wakefield Accelerator (DWA) with the Emittance Exchanger (EEX) to demonstrate a high-brightness DWA with a gradient of above 100 MV/m and less than 0.1% induced energy spread in the accelerated beam. We currently evaluate the DWA concept as a performance upgrade for the future LANL signature facility MaRIE with the goal of significantly reducing the electron beam energy spread. The preconceptual design for MaRIE is underway at LANL, with the design of the electron linear accelerator being one of the main research goals. Although generally the baseline design needs to be conservative and rely on existing technology, any future upgrade would immediately call for looking into the advanced accelerator concepts capable of boosting the electron beam energy up by a few GeV in a very short distance without degrading the beam's quality. Scoping studies have identified large induced energy spreads as the major cause of beam quality degradation in high-gradient advanced accelerators for free-electron lasers. We describe simulations demonstrating that trapezoidal bunch shapes can be used in a DWA to greatly reduce the induced beam energy spread, and, in doing so, also preserve the beam brightness at levels never previously achieved. This concept has the potential to advance DWA technology to a level that would make it suitable for the upgrades of the proposed Los Alamos MaRIE signature facility.

  2. Northeast Oregon Hatchery Project, Conceptual Design Report, Final Report.

    SciTech Connect

    Watson, Montgomery

    1995-03-01

    This report presents the results of site analysis for the Bonneville Power Administration Northeast Oregon Hatchery Project. The purpose of this project is to provide engineering services for the siting and conceptual design of hatchery facilities for the Bonneville Power Administration. The hatchery project consists of artificial production facilities for salmon and steelhead to enhance production in three adjacent tributaries to the Columbia River in northeast Oregon: the Grande Ronde, Walla Walla, and Imnaha River drainage basins. Facilities identified in the master plan include adult capture and holding facilities; spawning incubation, and early rearing facilities; full-term rearing facilities; and direct release or acclimation facilities. The evaluation includes consideration of a main production facility for one or more of the basins or several smaller satellite production facilities to be located within major subbasins. The historic and current distribution of spring and fall chinook salmon and steelhead was summarized for the Columbia River tributaries. Current and future production and release objectives were reviewed. Among the three tributaries, forty seven sites were evaluated and compared to facility requirements for water and space. Site screening was conducted to identify the sites with the most potential for facility development. Alternative sites were selected for conceptual design of each facility type. A proposed program for adult holding facilities, final rearing/acclimation, and direct release facilities was developed.

  3. A Proposal to the Department of Energy for The Fabrication of a Very High Energy Polarized Gama Ray Beam Facility and A Program of Medium Energy Physics Research at The National Synchrotron Light Source

    SciTech Connect

    Sandorfi, A.M.; LeVine, M.J.; Thorn, C.E.; Giordano, G.; Matone, G.

    1982-09-01

    This proposal requests support for the fabrication and operation of a modest facility that would provide relatively intense beams of monochromatic and polarized photons with energies in the range of several hundreds of MeV. These {gamma} rays would be produced by Compton backscattering laser light from the electrons circulating in the 2.5-3.0 GeV 'X-RAY' storage ring of the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory. The excellent emittance, phase space, and high current of this state-of-the-art storage ring will allow the production of 2 x 10{sup 7} {gamma} rays per second. These photons would be tagged by detecting the scattered electrons, thereby determining the energy to 2.7 MeV for all {gamma}-ray energies. The efficiency of this tagging procedure is 100% and the {gamma}-ray beam would be essentially background free. Tagging will also allow the flexibility of operating with a dynamic range as large as 200 MeV in photon energy while still preserving high resolution and polarization. These beams will permit a fruitful study of important questions in medium-energy nuclear physics. The initial goals of this program are to reach reliable operation with photon energies up to 300 MeV and to develop {gamma}-ray beams with energies up to about 500 MeV. To demonstrate reliable operation, a modest physics program is planned that, for the most part, utilizes existing magnets and detector systems but nonetheless addresses several important outstanding problems. Gamma ray beams of the versatility, intensity, energy, and resolution that can be achieved at this facility are not currently available at any other world facility either existing or under construction. Furthermore, the proposed program would produce the first intense source of medium-energy {gamma} rays that are polarized. Because of the difficulties in producing such polarized beams, it is very unlikely that viable alternate sources can be developed in the near future; at present

  4. Performance specifications for proton medical facility

    SciTech Connect

    Chu, W.T.; Staples, J.W.; Ludewigt, B.A.; Renner, T.R.; Singh, R.P.; Nyman, M.A.; Collier, J.M.; Daftari, I.K.; Petti, P.L.; Alonso, J.R.; Kubo, H.; Verhey, L.J. |; Castro, J.R. ||

    1993-03-01

    Performance specifications of technical components of a modern proton radiotherapy facility are presented. The technical items specified include: the accelerator; the beam transport system including rotating gantry; the treatment beamline systems including beam scattering, beam scanning, and dosimetric instrumentation; and an integrated treatment and accelerator control system. Also included are treatment ancillary facilities such as diagnostic tools, patient positioning and alignment devices, and treatment planning systems. The facility specified will accommodate beam scanning enabling the three-dimensional conformal therapy deliver .

  5. Conceptualizing Transitions to Adulthood

    ERIC Educational Resources Information Center

    Wyn, Johanna

    2014-01-01

    This chapter provides an overview of theories of the transition to young adulthood. It sets out the argument for conceptual renewal and discusses some implications of new patterns of transition for adult education.

  6. Conceptual atomism rethought.

    PubMed

    Schneider, Susan

    2010-06-01

    Focusing on Machery's claim that concepts play entirely different roles in philosophy and psychology, I explain how one well-known philosophical theory of concepts, Conceptual Atomism (CA), when properly understood, takes into account both kinds of roles. PMID:20584416

  7. Pre-conceptual design and preliminary neutronic analysis of the proposed National Spallation Neutron Source (NSNS)

    SciTech Connect

    Johnson, J.O.; Barnes, J.M.; Charlton, L.A.

    1997-03-01

    The Department of Energy (DOE) has initiated a pre-conceptual design study for the National Spallation Neutron Source (NSNS) and given preliminary approval for the proposed facility to be built at Oak Ridge National Laboratory (ORNL). The pre-conceptual design of the NSNS initially consists of an accelerator system capable of delivering a 1 to 2 GeV proton beam with 1 MW of beam power in an approximate 0.5 {micro}s pulse at a 60 Hz frequency onto a single target station. The NSNS will be upgradable to a significantly higher power level with two target stations (a 60 Hz station and a 10 Hz station). There are many possible layouts and designs for the NSNS target stations. This paper gives a brief overview of the proposed NSNS with respect to the target station, as well as the general philosophy adopted for the neutronic design of the NSNS target stations. A reference design is presented, and some preliminary neutronic results for the NSNS are briefly discussed.

  8. Conceptual design optimization study

    NASA Technical Reports Server (NTRS)

    Hollowell, S. J.; Beeman, E. R., II; Hiyama, R. M.

    1990-01-01

    The feasibility of applying multilevel functional decomposition and optimization techniques to conceptual design of advanced fighter aircraft was investigated. Applying the functional decomposition techniques to the conceptual design phase appears to be feasible. The initial implementation of the modified design process will optimize wing design variables. A hybrid approach, combining functional decomposition techniques for generation of aerodynamic and mass properties linear sensitivity derivatives with existing techniques for sizing mission performance and optimization, is proposed.

  9. Conceptual frameworks in astronomy

    NASA Astrophysics Data System (ADS)

    Pundak, David

    2016-06-01

    How to evaluate students' astronomy understanding is still an open question. Even though some methods and tools to help students have already been developed, the sources of students' difficulties and misunderstanding in astronomy is still unclear. This paper presents an investigation of the development of conceptual systems in astronomy by 50 engineering students, as a result of learning a general course on astronomy. A special tool called Conceptual Frameworks in Astronomy (CFA) that was initially used in 1989, was adapted to gather data for the present research. In its new version, the tool included 23 questions, and five to six optional answers were given for each question. Each of the answers was characterized by one of the four conceptual astronomical frameworks: pre-scientific, geocentric, heliocentric and sidereal or scientific. The paper describes the development of the tool and discusses its validity and reliability. Using the CFA we were able to identify the conceptual frameworks of the students at the beginning of the course and at its end. CFA enabled us to evaluate the paradigmatic change of students following the course and also the extent of the general improvement in astronomical knowledge. It was found that the measure of the students’ improvement (gain index) was g = 0.37. Approximately 45% of the students in the course improved their understanding of conceptual frameworks in astronomy and 26% deepened their understanding of the heliocentric or sidereal conceptual frameworks.

  10. Microstructural characterization of Eurofer-97 and Eurofer-ODS steels before and after multi-beam ion irradiations at JANNUS Saclay facility

    NASA Astrophysics Data System (ADS)

    Brimbal, Daniel; Beck, Lucile; Troeber, Oliver; Gaganidze, Ermile; Trocellier, Patrick; Aktaa, Jarir; Lindau, Rainer

    2015-10-01

    RAFM steels such as Eurofer-97 and Eurofer-ODS are potential structural materials for future fusion reactors. In order to study their resistance to the high energy neutrons they will be subjected to in this context, we have irradiated these materials in single-, dual- and triple-beam mode to 26 dpa at 400 °C. In single-beam mode (Fe ions only), both materials resist swelling but dislocation loops form. For dual- (Fe and He ions) and triple-beam (Fe, He and H) modes, the same dislocation loop microstructure is observed as for the single-beam mode, but small cavities form, aided by the presence of gases. Despite the formation of cavities, swelling is very low for the present conditions. The influence of ODS particles on swelling is briefly discussed.

  11. Beam director design report

    SciTech Connect

    Younger, F.C.

    1986-08-01

    A design and fabrication effort for a beam director is documented. The conceptual design provides for the beam to pass first through a bending and focusing system (or ''achromat''), through a second achromat, through an air-to-vacuum interface (the ''beam window''), and finally through the vernier steering system. Following an initial concept study for a beam director, a prototype permanent magnet 30/sup 0/ beam-bending achromat and prototype vernier steering magnet were designed and built. In volume II, copies are included of the funding instruments, requests for quotations, purchase orders, a complete set of as-built drawings, magnetic measurement reports, the concept design report, and the final report on the design and fabrication project. (LEW)

  12. Plutonium Immobilization Can Loading Conceptual Design

    SciTech Connect

    Kriikku, E.

    1999-05-13

    'The Plutonium Immobilization Facility will encapsulate plutonium in ceramic pucks and seal the pucks inside welded cans. Remote equipment will place these cans in magazines and the magazines in a Defense Waste Processing Facility (DWPF) canister. The DWPF will fill the canister with glass for permanent storage. This report discusses the Plutonium Immobilization can loading conceptual design and includes a process block diagram, process description, preliminary equipment specifications, and several can loading issues. This report identifies loading pucks into cans and backfilling cans with helium as the top priority can loading development areas.'

  13. Neutral Beam Power System for TPX

    SciTech Connect

    Ramakrishnan, S.; Bowen, O.N.; O`Conner, T.; Edwards, J.; Fromm, N.; Hatcher, R.; Newman, R.; Rossi, G.; Stevenson, T.; von Halle, A.

    1993-11-01

    The Tokamak Physics Experiment (TPX) will utilize to the maximum extent the existing Tokamak Fusion Test Reactor (TFTR) equipment and facilities. This is particularly true for the TFTR Neutral Beam (NB) system. Most of the NB hardware, plant facilities, auxiliary sub-systems, power systems, service infrastructure, and control systems can be used as is. The major changes in the NB hardware are driven by the new operating duty cycle. The TFTR Neutral Beam was designed for operation of the Sources for 2 seconds every 150 seconds. The TPX requires operation for 1000 seconds every 4500 seconds. During the Conceptual Design Phase of TPX every component of the TFTR NB Electrical Power System was analyzed to verify whether the equipment can meet the new operational requirements with our without modifications. The Power System converts 13.8 kV prime power to controlled pulsed power required at the NB sources. The major equipment involved are circuit breakers, auto and rectifier transformers surge suppression components, power tetrodes, HV Decks, and HVDC power transmission to sources. Thermal models were developed for the power transformers to simulate the new operational requirements. Heat runs were conducted for the power tetrodes to verify capability. Other components were analyzed to verify their thermal limitations. This paper describes the details of the evaluation and redesign of the electrical power system components to meet the TPX operational requirements.

  14. Conceptualization for Evaluation and Planning.

    ERIC Educational Resources Information Center

    Trochim, William M. K.; Linton, Rhoda

    Both evaluation and planning typically begin with an attempt to define the conceptual territory of interest; this paper presents an approach to such conceptualization. The term, structured conceptualization, is used to refer to any definable set of procedures which can help a user develop a useful conceptual representation. Structured…

  15. Beam-dynamics driven design of the LHeC energy-recovery linac

    NASA Astrophysics Data System (ADS)

    Pellegrini, Dario; Latina, Andrea; Schulte, Daniel; Bogacz, S. Alex

    2015-12-01

    The LHeC is envisioned as a natural upgrade of the LHC that aims at delivering an electron beam for collisions with the existing hadronic beams. The current baseline design for the electron facility consists of a multipass superconducting energy-recovery linac (ERL) operating in a continuous wave mode. The unprecedently high energy of the multipass ERL combined with a stringent emittance dilution budget poses new challenges for the beam optics. Here, we investigate the performances of a novel arc architecture based on a flexible momentum compaction lattice that mitigates the effects of synchrotron radiation while containing the bunch lengthening. Extensive beam-dynamics investigations have been performed with placet2, a recently developed tracking code for recirculating machines. They include the first end-to-end tracking and a simulation of the machine operation with a continuous beam. This paper briefly describes the Conceptual Design Report lattice, with an emphasis on possible and proposed improvements that emerged from the beam-dynamics studies. The detector bypass section has been integrated in the lattice, and its design choices are presented here. The stable operation of the ERL with a current up to ˜150 mA in the linacs has been validated in the presence of single- and multibunch wakefields, synchrotron radiation, and beam-beam effects.

  16. Oak Ridge Isotope Production Cyclotron Facility and Target Handling

    SciTech Connect

    Bradley, Eric Craig; Varma, Venugopal Koikal; Egle, Brian; Binder, Jeffrey L; Mirzadeh, Saed; Tatum, B Alan; Burgess, Thomas W; Devore, Joe; Rennich, Mark; Saltmarsh, Michael John; Caldwell, Benjamin Cale

    2011-01-01

    Abstract The Nuclear Science Advisory Committee issued in August 2009 an Isotopes Subcommittee report that recommended the construction and operation of a variable-energy, high-current, multiparticle accelerator for producing medical radioisotopes. To meet the needs identified in the report, Oak Ridge National Laboratory is developing a technical concept for a commercial 70 MeV dual-port-extraction, multiparticle cyclotron to be located at the Holifield Radioactive Ion Beam Facility. The conceptual design of the isotope production facility as envisioned would provide two types of targets for use with this new cyclotron. One is a high-power target cooled by water circulating on both sides, and the other is a commercial target cooled only on one side. The isotope facility concept includes an isotope target vault for target irradiation and a shielded transfer station for radioactive target handling. The targets are irradiated in the isotope target vault. The irradiated targets are removed from the target vault and packaged in an adjoining shielded transfer station before being sent out for postprocessing. This paper describes the conceptual design of the target-handling capabilities required for dealing with these radioactive targets and for minimizing the contamination potential during operations.

  17. Upgrade of the resonance ionization laser ion source at ISOLDE on-line isotope separation facility: new lasers and new ion beams.

    PubMed

    Fedosseev, V N; Berg, L-E; Fedorov, D V; Fink, D; Launila, O J; Losito, R; Marsh, B A; Rossel, R E; Rothe, S; Seliverstov, M D; Sjödin, A M; Wendt, K D A

    2012-02-01

    The resonance ionization laser ion source (RILIS) produces beams for the majority of experiments at the ISOLDE on-line isotope separator. A substantial improvement in RILIS performance has been achieved through a series of upgrade steps: replacement of the copper vapor lasers by a Nd:YAG laser; replacement of the old homemade dye lasers by new commercial dye lasers; installation of a complementary Ti:Sapphire laser system. The combined dye and Ti:Sapphire laser system with harmonics is capable of generating beams at any wavelength in the range of 210-950 nm. In total, isotopes of 31 different elements have been selectively laser-ionized and separated at ISOLDE, including recently developed beams of samarium, praseodymium, polonium, and astatine. PMID:22380244

  18. Proceedings of the international workshop on hadron facility technology

    SciTech Connect

    Thiessen, H.A.

    1987-12-01

    The conference included papers on facility plans, beam dynamics, accelerator hardware, and experimental facilities. Individual abstracts were prepared for 43 papers in the conference proceedings. (LEW)

  19. Conceptual design of an RFQ accelerator-based neutron source for boron neutron-capture therapy

    SciTech Connect

    Wangler, T.P.; Stovall, J.E.; Bhatia, T.S.; Wang, C.K.; Blue, T.E.; Gahbauer, R.A.

    1989-01-01

    We present a conceptual design of a low-energy neutron generator for treatment of brain tumors by boron neutron capture theory (BNCT). The concept is based on a 2.5-MeV proton beam from a radio-frequency quadrupole (RFQ) linac, and the neutrons are produced by the /sup 7/Li(p,n)/sup 7/Be reaction. A liquid lithium target and modulator assembly are designed to provide a high flux of epithermal neutrons. The patient is administered a tumor-specific /sup 10/Be-enriched compound and is irradiated by the neutrons to create a highly localized dose from the reaction /sup 10/B(n,..cap alpha..)/sup 7/Li. An RFQ accelerator-based neutron source for BNCT is compact, which makes it practical to site the facility within a hospital. 11 refs., 5 figs., 1 tab.

  20. Irradiation Effects on RIA Fragmentation CU Beam Dump

    SciTech Connect

    Reyes, S; Boles, J L; Ahle, L E; Stein, W; Wirth, B D

    2005-05-09

    Within the scope of conceptual research and development (R&D) activities in support of the Rare Isotope Accelerator (RIA) facility, high priority is given to the development of high-power fragmentation beam dumps. A pre-study was made of a static water-cooled Cu beam dump that can meet requirements for a 400 MeV/u uranium beam. The issue of beam sputtering was addressed and found to be insignificant. Preliminary radiation transport simulations show significant damage (in displacements per atom, DPA) in the vicinity of the Bragg peak of the uranium ions. Experimental data show that defects in Cu following neutron or high-energy particle irradiation tend to saturate at doses between 1 and 5 DPA, and this saturation in defect density also results in saturation of mechanical property degradation. However, effects of swift heavy ion irradiation and the production of gaseous and solid transmutant elements still need to be addressed. Initial calculations indicate that He concentrations on the order of 400 appm are produced in the beam dump after several weeks of continuous operation and He embrittlement may be a concern. Recommendations are made for further investigation of Cu irradiation effects for RIA-relevant conditions.

  1. Irradiation Effects on RIA Fragmentation CU Beam Dump

    SciTech Connect

    Reyes, S; Boles, J L; Ahle, L E; Stein, W; Wirth, B D

    2005-05-20

    Within the scope of conceptual research and development (R&D) activities in support of the Rare Isotope Accelerator (RIA) facility, high priority is given to the development of high-power fragmentation beam dumps. A pre-study was made of a static water-cooled Cu beam dump that can meet requirements for a 400 MeV/u uranium beam. The issue of beam sputtering was addressed and found to be insignificant. Preliminary radiation transport simulations show significant damage (in displacements per atom, DPA) in the vicinity of the Bragg peak of the uranium ions. Experimental data show that defects in Cu following neutron or high-energy particle irradiation tend to saturate at doses between 1 and 5 DPA, and this saturation in defect density also results in saturation of mechanical property degradation. However, effects of swift heavy ion irradiation and the production of gaseous and solid transmutant elements still need to be addressed. Initial calculations indicate that He concentrations on the order of 400 appm are produced in the beam dump after several weeks of continuous operation and He embrittlement may be a concern. Recommendations are made for further investigation of Cu irradiation effects for RIA-relevant conditions.

  2. Umatilla Satellite and Release Sites Project : Final Conceptual Design Report.

    SciTech Connect

    Montgomery, James M.

    1992-03-01

    This report presents the results of site analysis for the Umatilla Satellite and Release Sites Project. The purpose of this project is to provide engineering services for the siting and conceptual design of satellite and release facilities for the Umatilla Basin hatchery program. The Umatilla Basin hatchery program consists of artificial production facilities for salmon and steelhead to enhance production in the Umatilla River as defined in the Umatilla master plan approved in 1989 by the Northwest Power Planning Council. Facilities identified in the master plan include adult salmon broodstock holding and spawning facilities, facilities for recovery, acclimation, and/or extended rearing of salmon juveniles, and development of river sites for release of hatchery salmon and steelhead. The historic and current distribution of fall chinook, summer chinook, and coho salmon and steelhead trout was summarized for the Umatilla River basin. Current and future production and release objectives were reviewed. Twenty seven sites were evaluated for the potential development of facilities. Engineering and environmental attributes of the sites were evaluated and compared to facility requirements for water and space. Site screening was conducted to identify the sites with the most potential for facility development. Alternative sites were selected for conceptual design of each facility type. A proposed program for adult holding facilities, final rearing/acclimation, and direct release facilities was developed.

  3. Detection of radioactive isotopes by using laser Compton scattered γ-ray beams

    NASA Astrophysics Data System (ADS)

    Hajima, R.; Kikuzawa, N.; Nishimori, N.; Hayakawa, T.; Shizuma, T.; Kawase, K.; Kando, M.; Minehara, E.; Toyokawa, H.; Ohgaki, H.

    2009-09-01

    Non-destructive detection and assay of nuclear materials is one of the most critical issues for both the management of nuclear waste and the non-proliferation of nuclear materials. We use laser Compton scattered (LCS) γ-ray beams and the nuclear resonance fluorescence (NRF) for the non-destructive detection of radioactive materials. Quasi-monochromatic and energy-tunable LCS γ-ray beams help improve the signal-to-noise ratio during NRF measurements. We developed the conceptual design of a high-flux γ-ray source with an energy-recovery linac, which produces a γ-ray beam at the flux of 1013 photons/s. In this paper, we discuss the execution of simulation studies using a Monte Carlo code, results of a proof-of-principle experiment for isotope detection, and the status of the development of LCS X-ray and γ-ray facilities.

  4. Space power distribution system technology. Volume 3: Test facility design

    NASA Technical Reports Server (NTRS)

    Decker, D. K.; Cannady, M. D.; Cassinelli, J. E.; Farber, B. F.; Lurie, C.; Fleck, G. W.; Lepisto, J. W.; Messner, A.; Ritterman, P. F.

    1983-01-01

    The AMPS test facility is a major tool in the attainment of more economical space power. The ultimate goals of the test facility, its primary functional requirements and conceptual design, and the major equipment it contains are discussed.

  5. Varying the Divergence of Multiple Parallel Laser Beams

    NASA Technical Reports Server (NTRS)

    Kovalik, Joseph M.; Wright, Malcolm W.

    2008-01-01

    A provision for controlled variation of the divergence of a laser beam or of multiple parallel laser beams has been incorporated into the design of a conceptual free-space optical-communication station from which the transmitted laser beam(s) would be launched via a telescope. The original purpose to be served by this provision was to enable optimization, under various atmospheric optical conditions, of the divergence of a laser beam or beams transmitted from a ground station to a spacecraft.

  6. Conceptualization of Light Refraction

    ERIC Educational Resources Information Center

    Sokolowski, Andrzej

    2013-01-01

    There have been a number of papers dealing quantitatively with light refraction. Yet the conceptualization of the phenomenon that sets the foundation for a more rigorous math analysis is minimized. The purpose of this paper is to fill that gap. (Contains 3 figures.)

  7. Conceptual Distinctions amongst Generics

    ERIC Educational Resources Information Center

    Prasada, Sandeep; Khemlani, Sangeet; Leslie, Sarah-Jane; Glucksberg, Sam

    2013-01-01

    Generic sentences (e.g., bare plural sentences such as "dogs have four legs" and "mosquitoes carry malaria") are used to talk about "kinds" of things. Three experiments investigated the conceptual foundations of generics as well as claims within the formal semantic approaches to generics concerning the roles of prevalence, cue validity and…

  8. Conceptual Cost Estimating

    NASA Technical Reports Server (NTRS)

    Brown, J. A.

    1983-01-01

    Kennedy Space Center data aid in efficient construction-cost managment. Report discusses development and use of NASA TR-1508, Kennedy Space Center Aerospace Construction price book for preparing conceptual budget, funding cost estimating, and preliminary cost engineering reports. Report based on actual bid prices and Government estimates.

  9. Changing Conceptual Change

    ERIC Educational Resources Information Center

    diSessa, Andrea A.

    2007-01-01

    This article reviews Giyoo Hatano's ground-breaking theoretical, empirical, and methodological contributions to conceptual change research. In particular, his discovery of "vitalism" as part of children's legitimate and distinctive biology at early ages stands as a landmark. In addition, his work reinterpreted childhood "personification," changing…

  10. Evaluating Conceptual Metaphor Theory

    ERIC Educational Resources Information Center

    Gibbs, Raymond W., Jr.

    2011-01-01

    A major revolution in the study of metaphor occurred 30 years ago with the introduction of "conceptual metaphor theory" (CMT). Unlike previous theories of metaphor and metaphorical meaning, CMT proposed that metaphor is not just an aspect of language, but a fundamental part of human thought. Indeed, most metaphorical language arises from…

  11. SLC ir conceptual design

    SciTech Connect

    Keller, L.P.

    1982-06-21

    Work on a one interaction-region, push-pull conceptual design for the SLC is described. The concept which has received the most attention is described. It is a below-ground hall - a 15 m deep rectangular pit covered by a surface building which houses counting rooms, power supplies, cryogenics and other auxiliary equipment. (LEW)

  12. Is Neurolaw Conceptually Confused?

    PubMed

    Levy, Neil

    2014-06-01

    In Minds, Brains, and Law, Michael Pardo and Dennis Patterson argue that current attempts to use neuroscience to inform the theory and practice of law founder because they are built on confused conceptual foundations. Proponents of neurolaw attribute to the brain or to its parts psychological properties that belong only to people; this mistake vitiates many of the claims they make. Once neurolaw is placed on a sounder conceptual footing, Pardo and Patterson claim, we will see that its more dramatic claims are false or meaningless, though it might be able to provide inductive evidence for particular less dramatic claims (that a defendant may be lying, or lacks control over their behavior, for instance). In response, I argue that the central conceptual confusions identified by Pardo and Patterson are not confusions at all. Though some of the claims made by its proponents are hasty and sometimes they are confused, there are no conceptual barriers to attributing psychological properties to brain states. Neuroscience can play a role in producing evidence that is more reliable than subjective report or behavior; it therefore holds out the possibility of dramatically altering our self-conception as agents and thereby the law. PMID:25009442

  13. MIST facility densitometer comparisons

    SciTech Connect

    Childerson, M.T.

    1987-01-01

    Photon attenuation techniques were used in the Multi-Loop Integral Systems Test (MIST) facility to make void fraction and fluid density measurements. The MIST facility was a scaled physical model of a Babcock and Wilcox lowered loop, nuclear steam supply system. The facility was tested at typical pressurized water reactor fluid conditions. The MIST facility was designed for observing integral system response during a small-break loss-of-coolant accident. The data from the MIST tests are used for improving confidence in safety codes. Dual-beam gamma densitometers provided an indication of the void fraction or mixture density of the fluid at the hot- and cold-leg nozzles.

  14. Accelerator Facilities for Radiation Research

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.

    1999-01-01

    HSRP Goals in Accelerator Use and Development are: 1.Need for ground-based heavy ion and proton facility to understand space radiation effects discussed most recently by NAS/NRC Report (1996). 2. Strategic Program Goals in facility usage and development: -(1) operation of AGS for approximately 600 beam hours/year; (2) operation of Loma Linda University (LLU) proton facility for approximately 400 beam hours/year; (3) construction of BAF facility; and (4) collaborative research at HIMAC in Japan and with other existing or potential international facilities. 3. MOA with LLU has been established to provide proton beams with energies of 40-250 important for trapped protons and solar proton events. 4. Limited number of beam hours available at Brookhaven National Laboratory's (BNL) Alternating Gradient Synchrotron (AGS).

  15. Plans for an ERL Test Facility at CERN

    SciTech Connect

    Jensen, Erik; Bruning, O S; Calaga, Buchi Rama Rao; Schirm, Karl-Martin; Torres-Sanchez, R; Valloni, Alessandra; Aulenbacher, Kurt; Bogacz, Slawomir; Hutton, Andrew; Klein, M

    2014-12-01

    The baseline electron accelerator for LHeC and one option for FCC-he is an Energy Recovery Linac. To prepare and study the necessary key technologies, CERNhas started – in collaboration with JLAB and Mainz University – the conceptual design of an ERL Test Facility (ERL-TF). Staged construction will allow the study under different conditions with up to 3 passes, beam energies of up to about 1 GeV and currents of up to 50 mA. The design and development of superconducting cavity modules, including coupler and HOM damper designs, are also of central importance for other existing and future accelerators and their tests are at the heart of the current ERL-TF goals. However, the ERL-TF could also provide a unique infrastructure for several applications that go beyond developing and testing the ERL technology at CERN. In addition to experimental studies of beam dynamics, operational and reliability issues in an ERL, it could equally serve for quench tests of superconducting magnets, as physics experimental facility on its own right or as test stand for detector developments. This contribution will describe the goals and the concept of the facility and the status of the R&D.

  16. Defense Waste Processing Facility

    SciTech Connect

    Haselow, J.S.; Wilhite, E.L.; Stieve, A.L.

    1990-05-01

    The information contained in this report is intended to supplement the original Environmental Impact Statement (EIS) for the Defense Waste Processing Facility (DWPF). Since the original EIS in 1982, alterations have been made to he conceptual process that reduce the impact to the groundwater. This reduced impact is documented in this report along with an update of the understanding of seismology and geology of the Savannah River Site. 6 refs., 2 figs., 2 tabs.

  17. Orion facility status update

    NASA Astrophysics Data System (ADS)

    Winter, D. N.; Bett, T. H.; Danson, C. N.; Duffield, S. J.; Elsmere, S. P.; Egan, D. A.; Girling, M. T.; Harvey, E. J.; Hillier, D. I.; Hopps, N. W.; Hussey, D.; Parker, S. J. F.; Treadwell, P. A.

    2013-02-01

    The Orion laser facility at AWE in the UK began operations at the start of 2012 to study high energy density physics. It consists of ten nanosecond beam lines and two sub-picosecond beam lines. The nanosecond beam lines each deliver 500 J per beam in 1ns at 351nm with a user-definable pulse shape between 0.1ns and 5ns. The short pulse beams each deliver 500J on target in 500fs with an intensity of greater than 1021 Wcm-2 per beam. All beam lines have been demonstrated, delivering a pulse to target as described. A summary of the design of the facility will be presented, along with its operating performance over the first year of experimental campaigns. The facility has the capability to frequency-double one of the short pulse beams, at sub aperture, to deliver a high contrast short pulse to target with up to 100J. This occurs post-compression and uses a 3mm thick, 300mm aperture KDP crystal. The design and operational performance of this work will be presented. During 2012, the laser performance requirements have been demonstrated and key diagnostics commissioned; progress of this will be presented. Target diagnostics have also been commissioned during this period. Also, there is a development program under way to improve the contrast of the short pulse (at the fundamental) and the operational efficiency of the long pulse. It is intended that, from March 2013, 15% of facility operating time will be made available to external academic users in addition to collaborative experiments with AWE scientists.

  18. coNCePTual

    Energy Science and Technology Software Center (ESTSC)

    2004-05-13

    A frequently reinvented wheel among network researchers is a suite of programs that test a network’s performance. A problem with having umpteen versions of performance tests is that it leads to a variety in the way results are reported; colloquially, apples are often compared to oranges. Consider a bandwidth test. Does a bandwidth test run for a fixed number of iterations or a fixed length of time? Is bandwidth measured as ping-pong bandwidth (i.e., 2more » * message length / round-trip time) or unidirectional throughput (N messages in one direction followed by a single acknowledgement message)? Is the acknowledgement message of minimal length or as long as the entire message? Does its length contribute to the total bandwidth? Is data sent unidirectionally or in both directions at once? How many warmup messages (if any) are sent before the timing loop? Is there a delay after the warmup messages (to give the network a chance to reclaim any scarce resources)? Are receives nonblocking (possibly allowing overlap in the NIC) or blocking? The motivation behind creating coNCePTuaL, a simple specification language designed for describing network benchmarks, is that it enables a benchmark to be described sufficiently tersely as to fit easily in a report or research paper, facilitating peer review of the experimental setup and timing measurements. Because coNCePTuaL code is simple to write, network tests can be developed and deployed with low turnaround times -- useful when the results of one test suggest a following test that should be written. Because coNCePTuaL is special-purpose its run-time system can perform the following functions, which benchmark writers often neglect to implement: * logging information about the environment under which the benchmark ran: operating system, CPU architecture and clock speed, timer type and resolution, etc. * aborting a program if it takes longer than a predetermined length of time to complete * writing measurement data and

  19. Conceptual design report, TWRS Privatization Phase I, site development and roads, subproject W-505

    SciTech Connect

    Singh, G.

    1997-06-05

    This document includes Conceptual Design Report (CDR) for the site development, construction of new roads and improvements at existing road intersections, habitat mitigation, roadway lighting, and construction power needed for the construction of two Private Contractor (PC) Facilities. Approximately 50 hectare (124 acres) land parcel, east of the Grout Facility, is planned for the PC facilities.

  20. Beam Diagnostics for FACET

    SciTech Connect

    Li, S.Z.; Hogan, M.J.; /SLAC

    2011-08-19

    FACET, the Facility for Advanced Accelerator and Experimental Tests, is a new facility being constructed in sector 20 of the SLAC linac primarily to study beam driven plasma wakefield acceleration beginning in summer 2011. The nominal FACET parameters are 23GeV, 3nC electron bunches compressed to about 20 {micro}m long and focussed to about 10 {micro}m wide. Characterization of the beam-plasma interaction requires complete knowledge of the incoming beam parameters on a pulse-to-pulse basis. FACET diagnostics include Beam Position Monitors, Toroidal current monitors, X-ray and Cerenkov based energy spectrometers, optical transition radiation (OTR) profile monitors and coherent transition radiation (CTR) bunch length measurement systems. The compliment of beam diagnostics and their expected performance are reviewed. Beam diagnostic measurements not only provide valuable insights to the running and tuning of the accelerator but also are crucial for the PWFA experiments in particular. Beam diagnostic devices are being set up at FACET and will be ready for beam commissioning in summer 2011.