Science.gov

Sample records for beam phase error

  1. Beam-pointing errors of planar-phased arrays.

    NASA Technical Reports Server (NTRS)

    Carver, K. R.; Cooper, W. K.; Stutzman, W. L.

    1973-01-01

    Using both analytical and Monte Carlo techniques, beam-pointing errors of planar-phased arrays are analyzed. The obtained simple formulas for rms pointing errors are applicable to uniform planar arrays with both uniform and Gaussian uncorrelated phase-error distributions and for any arbitrary scan angle.

  2. Influence of nonhomogeneous earth on the rms phase error and beam-pointing errors of large, sparse high-frequency receiving arrays

    NASA Astrophysics Data System (ADS)

    Weiner, M. M.

    1994-01-01

    The performance of ground-based high-frequency (HF) receiving arrays is reduced when the array elements have electrically small ground planes. The array rms phase error and beam-pointing errors, caused by multipath rays reflected from a nonhomogeneous Earth, are determined for a sparse array of elements that are modeled as Hertzian dipoles in close proximity to Earth with no ground planes. Numerical results are presented for cases of randomly distributed and systematically distributed Earth nonhomogeneities where one-half of vertically polarized array elements are located in proximity to one type of Earth and the remaining half are located in proximity to a second type of Earth. The maximum rms phase errors, for the cases examined, are 18 deg and 9 deg for randomly distributed and systematically distributed nonhomogeneities, respectively. The maximum beampointing errors are 0 and 0.3 beam widths for randomly distributed and systematically distributed nonhomogeneities, respectively.

  3. Diffraction study of duty-cycle error in ferroelectric quasi-phase-matching gratings with Gaussian beam illumination

    NASA Astrophysics Data System (ADS)

    Dwivedi, Prashant Povel; Kumar, Challa Sesha Sai Pavan; Choi, Hee Joo; Cha, Myoungsik

    2016-02-01

    Random duty-cycle error (RDE) is inherent in the fabrication of ferroelectric quasi-phase-matching (QPM) gratings. Although a small RDE may not affect the nonlinearity of QPM devices, it enhances non-phase-matched parasitic harmonic generations, limiting the device performance in some applications. Recently, we demonstrated a simple method for measuring the RDE in QPM gratings by analyzing the far-field diffraction pattern obtained by uniform illumination (Dwivedi et al. in Opt Express 21:30221-30226, 2013). In the present study, we used a Gaussian beam illumination for the diffraction experiment to measure noise spectra that are less affected by the pedestals of the strong diffraction orders. Our results were compared with our calculations based on a random grating model, demonstrating improved resolution in the RDE estimation.

  4. Beam-forming Errors in Murchison Widefield Array Phased Array Antennas and their Effects on Epoch of Reionization Science

    NASA Astrophysics Data System (ADS)

    Neben, Abraham R.; Hewitt, Jacqueline N.; Bradley, Richard F.; Dillon, Joshua S.; Bernardi, G.; Bowman, J. D.; Briggs, F.; Cappallo, R. J.; Corey, B. E.; Deshpande, A. A.; Goeke, R.; Greenhill, L. J.; Hazelton, B. J.; Johnston-Hollitt, M.; Kaplan, D. L.; Lonsdale, C. J.; McWhirter, S. R.; Mitchell, D. A.; Morales, M. F.; Morgan, E.; Oberoi, D.; Ord, S. M.; Prabu, T.; Udaya Shankar, N.; Srivani, K. S.; Subrahmanyan, R.; Tingay, S. J.; Wayth, R. B.; Webster, R. L.; Williams, A.; Williams, C. L.

    2016-03-01

    Accurate antenna beam models are critical for radio observations aiming to isolate the redshifted 21 cm spectral line emission from the Dark Ages and the Epoch of Reionization (EOR) and unlock the scientific potential of 21 cm cosmology. Past work has focused on characterizing mean antenna beam models using either satellite signals or astronomical sources as calibrators, but antenna-to-antenna variation due to imperfect instrumentation has remained unexplored. We characterize this variation for the Murchison Widefield Array (MWA) through laboratory measurements and simulations, finding typical deviations of the order of ±10%-20% near the edges of the main lobe and in the sidelobes. We consider the ramifications of these results for image- and power spectrum-based science. In particular, we simulate visibilities measured by a 100 m baseline and find that using an otherwise perfect foreground model, unmodeled beam-forming errors severely limit foreground subtraction accuracy within the region of Fourier space contaminated by foreground emission (the “wedge”). This region likely contains much of the cosmological signal, and accessing it will require measurement of per-antenna beam patterns. However, unmodeled beam-forming errors do not contaminate the Fourier space region expected to be free of foreground contamination (the “EOR window”), showing that foreground avoidance remains a viable strategy.

  5. Phase Errors and the Capture Effect

    SciTech Connect

    Blair, J., and Machorro, E.

    2011-11-01

    This slide-show presents analysis of spectrograms and the phase error of filtered noise in a signal. When the filtered noise is smaller than the signal amplitude, the phase error can never exceed 90{deg}, so the average phase error over many cycles is zero: this is called the capture effect because the largest signal captures the phase and frequency determination.

  6. Correction of Errors in Polarization Based Dynamic Phase Shifting Interferometers

    NASA Astrophysics Data System (ADS)

    Kimbrough, Brad

    2014-10-01

    Polarization based interferometers for single snap-shot measurements allow single frame, quantitative phase acquisition for vibration insensitive measurements of optical surfaces. Application of these polarization based phase sensors requires the test and reference beams of the interferometer to be orthogonally polarized. As with all polarization based interferometers, these systems can suffer from phase dependent errors resulting from systematic polarization aberrations. This type of measurement error presents a particular challenge because it varies in magnitude both spatially and temporally between each measurement. In this article, a general discussion of phase calculation error is presented. We then present an algorithm that is capable of mitigating phase-dependent measurement errors on-the-fly. The algorithm implementation is non-iterative providing sensor frame rate limited phase calculations. Finally, results are presented for both a high numerical aperture system, where the residual error is reduced to the shot noise limit, and a system with significant birefringence in the test arm.

  7. Phase errors and predicted spectral performance of a prototype undulator

    SciTech Connect

    Dejus, R.J.; Vassrman, I.; Moog, E.R.; Gluskin, E.

    1994-08-01

    A prototype undulator has been used to study different magnetic end-configurations and shimming techniques for straightening the beam trajectory. Field distributions obtained by Hall probe measurements were analyzed in terms of trajectory, phase errors, and on-axis brightness for the purpose of correlating predicted spectral intensity with the calculated phase errors. Two device configurations were analyzed. One configuration had a full-strength first magnet at each end and the next-to-last pole was recessed to make the trajectory through the middle of the undulator parallel to the undulator axis. For the second configuration, the first permanent magnet at each end was replaced by a half-strength magnet to reduce the trajectory displacement and the next-to-last pole was adjusted appropriately, and shims were added to straighten the trajectory. Random magnetic field errors can cause trajectory deviations that will affect the optimum angle for viewing the emitted radiation, and care must be taken to select the appropriate angle when calculating the phase errors. This angle may be calculated from the average trajectory angle evaluated at the location of the poles. For the second configuration, we find an rms phase error of less than 3{degrees} and predict 87% of the ideal value of the on-axis brightness for the third harmonic. We have also analyzed the gap dependence of the phase errors and spectral brightness and have found that the rms phase error remain small at all gap settings.

  8. Dose error analysis for a scanned proton beam delivery system

    NASA Astrophysics Data System (ADS)

    Coutrakon, G.; Wang, N.; Miller, D. W.; Yang, Y.

    2010-12-01

    All particle beam scanning systems are subject to dose delivery errors due to errors in position, energy and intensity of the delivered beam. In addition, finite scan speeds, beam spill non-uniformities, and delays in detector, detector electronics and magnet responses will all contribute errors in delivery. In this paper, we present dose errors for an 8 × 10 × 8 cm3 target of uniform water equivalent density with 8 cm spread out Bragg peak and a prescribed dose of 2 Gy. Lower doses are also analyzed and presented later in the paper. Beam energy errors and errors due to limitations of scanning system hardware have been included in the analysis. By using Gaussian shaped pencil beams derived from measurements in the research room of the James M Slater Proton Treatment and Research Center at Loma Linda, CA and executing treatment simulations multiple times, statistical dose errors have been calculated in each 2.5 mm cubic voxel in the target. These errors were calculated by delivering multiple treatments to the same volume and calculating the rms variation in delivered dose at each voxel in the target. The variations in dose were the result of random beam delivery errors such as proton energy, spot position and intensity fluctuations. The results show that with reasonable assumptions of random beam delivery errors, the spot scanning technique yielded an rms dose error in each voxel less than 2% or 3% of the 2 Gy prescribed dose. These calculated errors are within acceptable clinical limits for radiation therapy.

  9. Correlated errors in phase-shifting laser Fizeau interferometry.

    PubMed

    de Groot, Peter J

    2014-07-01

    High-performance data processing algorithms for phase-shifting interferometry accommodate adjustment errors in the phase shift increment as well as harmonic distortions in the interference signal. However, a widely overlooked error source is the combination of these two imperfections. Phase shift tuning errors increase the sensitivity of phase estimation algorithms to second-order and higher harmonics present in Fizeau interference signals. I derive an analytical formula for evaluating these errors more realistically, in part to identify the characteristics of the optimal PSI algorithm. Even for advanced algorithms, it is found that multiple reflections increase the error contribution of detuning by orders of magnitude compared with the two-beam calculation and impose a practical limit of 30% in tuning error for sub-nm metrology in a 4%-4% Fizeau cavity. Consequently, a preferred approach for high precision spherical cavities is to use either wavelength tuning in place of mechanical phase shifting or an iterative solver that accommodates unknown phase shifts as a function of field position. PMID:25089998

  10. Laser Phase Errors in Seeded FELs

    SciTech Connect

    Ratner, D.; Fry, A.; Stupakov, G.; White, W.; /SLAC

    2012-03-28

    Harmonic seeding of free electron lasers has attracted significant attention from the promise of transform-limited pulses in the soft X-ray region. Harmonic multiplication schemes extend seeding to shorter wavelengths, but also amplify the spectral phase errors of the initial seed laser, and may degrade the pulse quality. In this paper we consider the effect of seed laser phase errors in high gain harmonic generation and echo-enabled harmonic generation. We use simulations to confirm analytical results for the case of linearly chirped seed lasers, and extend the results for arbitrary seed laser envelope and phase.

  11. Homodyne laser interferometer involving minimal quadrature phase error to obtain subnanometer nonlinearity.

    PubMed

    Cui, Junning; He, Zhangqiang; Jiu, Yuanwei; Tan, Jiubin; Sun, Tao

    2016-09-01

    The demand for minimal cyclic nonlinearity error in laser interferometry is increasing as a result of advanced scientific research projects. Research shows that the quadrature phase error is the main effect that introduces cyclic nonlinearity error, and polarization-mixing cross talk during beam splitting is the main error source that causes the quadrature phase error. In this paper, a new homodyne quadrature laser interferometer configuration based on nonpolarization beam splitting and balanced interference between two circularly polarized laser beams is proposed. Theoretical modeling indicates that the polarization-mixing cross talk is elaborately avoided through nonpolarizing and Wollaston beam splitting, with a minimum number of quadrature phase error sources involved. Experimental results show that the cyclic nonlinearity error of the interferometer is up to 0.6 nm (peak-to-valley value) without any correction and can be further suppressed to 0.2 nm with a simple gain and offset correction method. PMID:27607285

  12. Quantum Computation with Phase Drift Errors

    NASA Astrophysics Data System (ADS)

    Miquel, César; Paz, Juan Pablo; Zurek, Wojciech Hubert

    1997-05-01

    We numerically simulate the evolution of an ion trap quantum computer made out of 18 ions subject to a sequence of nearly 15 000 laser pulses in order to find the prime factors of N = 15. We analyze the effect of random and systematic phase drift errors arising from inaccuracies in the laser pulses which induce over (under) rotation of the quantum state. Simple analytic estimates of the tolerance for the quality of driving pulses are presented. We examine the use of watchdog stabilization to partially correct phase drift errors concluding that, in the regime investigated, it is rather inefficient.

  13. Dose error analysis for a scanned proton beam delivery system.

    PubMed

    Coutrakon, G; Wang, N; Miller, D W; Yang, Y

    2010-12-01

    All particle beam scanning systems are subject to dose delivery errors due to errors in position, energy and intensity of the delivered beam. In addition, finite scan speeds, beam spill non-uniformities, and delays in detector, detector electronics and magnet responses will all contribute errors in delivery. In this paper, we present dose errors for an 8 × 10 × 8 cm(3) target of uniform water equivalent density with 8 cm spread out Bragg peak and a prescribed dose of 2 Gy. Lower doses are also analyzed and presented later in the paper. Beam energy errors and errors due to limitations of scanning system hardware have been included in the analysis. By using Gaussian shaped pencil beams derived from measurements in the research room of the James M Slater Proton Treatment and Research Center at Loma Linda, CA and executing treatment simulations multiple times, statistical dose errors have been calculated in each 2.5 mm cubic voxel in the target. These errors were calculated by delivering multiple treatments to the same volume and calculating the rms variation in delivered dose at each voxel in the target. The variations in dose were the result of random beam delivery errors such as proton energy, spot position and intensity fluctuations. The results show that with reasonable assumptions of random beam delivery errors, the spot scanning technique yielded an rms dose error in each voxel less than 2% or 3% of the 2 Gy prescribed dose. These calculated errors are within acceptable clinical limits for radiation therapy. PMID:21076200

  14. Aliasing errors in measurements of beam position and ellipticity

    NASA Astrophysics Data System (ADS)

    Ekdahl, Carl

    2005-09-01

    Beam position monitors (BPMs) are used in accelerators and ion experiments to measure currents, position, and azimuthal asymmetry. These usually consist of discrete arrays of electromagnetic field detectors, with detectors located at several equally spaced azimuthal positions at the beam tube wall. The discrete nature of these arrays introduces systematic errors into the data, independent of uncertainties resulting from signal noise, lack of recording dynamic range, etc. Computer simulations were used to understand and quantify these aliasing errors. If required, aliasing errors can be significantly reduced by employing more than the usual four detectors in the BPMs. These simulations show that the error in measurements of the centroid position of a large beam is indistinguishable from the error in the position of a filament. The simulations also show that aliasing errors in the measurement of beam ellipticity are very large unless the beam is accurately centered. The simulations were used to quantify the aliasing errors in beam parameter measurements during early experiments on the DARHT-II accelerator, demonstrating that they affected the measurements only slightly, if at all.

  15. Suppressing phase errors from vibration in phase-shifting interferometry

    SciTech Connect

    Deck, Leslie L.

    2009-07-10

    A general method for reducing the influence of vibrations in phase-shifting interferometry corrects the surface phase map through a spectral analysis of a ''phase-error pattern,'' a plot of the interference intensity versus the measured phase, for each phase-shifted image. The method is computationally fast, applicable to any phase-shifting algorithm and interferometer geometry, has few restrictions on surface shape, and unlike spatial Fourier methods, high density spatial carrier fringes are not required, although at least a fringe of phase departure is recommended. Over a 100x reduction in vibrationally induced surface distortion is achieved for small amplitude vibrations on real data.

  16. Momentum errors in an RF separated beam

    SciTech Connect

    T. Kobilarcik

    2002-09-19

    The purity of an RF separated beam is affected by the difference in mass of the particle types and the momentum bite of the beam. The resulting time-of-flight difference between different types allows separation to occur; the finite momentum bite results in chromatic aberration. Both these features also give rise to a particle type dependent velocity bite, which must also be taken into account. This memo demonstrates a generalizable method for calculating the effect.

  17. Beam line error analysis, position correction, and graphic processing

    NASA Astrophysics Data System (ADS)

    Wang, Fuhua; Mao, Naifeng

    1993-12-01

    A beam transport line error analysis and beam position correction code called ``EAC'' has been enveloped associated with a graphics and data post processing package for TRANSPORT. Based on the linear optics design using TRANSPORT or other general optics codes, EAC independently analyzes effects of magnet misalignments, systematic and statistical errors of magnetic fields as well as the effects of the initial beam positions, on the central trajectory and upon the transverse beam emittance dilution. EAC also provides an efficient way to develop beam line trajectory correcting schemes. The post processing package generates various types of graphics such as the beam line geometrical layout, plots of the Twiss parameters, beam envelopes, etc. It also generates an EAC input file, thus connecting EAC with general optics codes. EAC and the post processing package are small size codes, that are easy to access and use. They have become useful tools for the design of transport lines at SSCL.

  18. Beam Tomography in Longitudinal Phase Space

    NASA Astrophysics Data System (ADS)

    Mane, V.; Wei, J.; Peggs, S.

    1997-05-01

    Longitudinal particle motion in circular accelerators is typically monitored by one dimensional (1-D) profiles. Adiabatic particle motion in 2-D phase space can be reconstructed with tomographic techniques, using 1-D profiles. In this paper, we discuss a filtered backprojection algorithm, with a high pass ramp or Hann filter, for phase space reconstruction. The algorithm uses several projections of the beam at equally spaced angles over half a synchrotron period. A computer program RADON has been developed to process digitized mountain range data and do the phase space reconstruction for the AGS, and later for Relativistic Heavy Ion Collider (RHIC). Analysis has been performed to determine the sensitivity to machine parameters and data acquisition errors. During the Sextant test of RHIC in early 1997, this program has been successfully employed to reconstruct the motion of Au^77+ beam in the AGS.

  19. Error-Induced Beam Degradation in Fermilab's Accelerators

    SciTech Connect

    Yoon, Phil S.; /Rochester U.

    2007-08-01

    In Part I, three independent models of Fermilab's Booster synchrotron are presented. All three models are constructed to investigate and explore the effects of unavoidable machine errors on a proton beam under the influence of space-charge effects. The first is a stochastic noise model. Electric current fluctuations arising from power supplies are ubiquitous and unavoidable and are a source of instabilities in accelerators of all types. A new noise module for generating the Ornstein-Uhlenbeck (O-U) stochastic noise is first created and incorporated into the existing Object-oriented Ring Beam Injection and Tracking (ORBIT-FNAL) package. After being convinced with a preliminary model that the noise, particularly non-white noise, does matter to beam quality, we proceeded to measure directly current ripples and common-mode voltages from all four Gradient Magnet Power Supplies (GMPS). Then, the current signals are Fourier-analyzed. Based upon the power spectra of current signals, we tune up the Ornstein-Uhlnbeck noise model. As a result, we are able to closely match the frequency spectra between current measurements and the modeled O-U stochastic noise. The stochastic noise modeled upon measurements is applied to the Booster beam in the presence of the full space-charge effects. This noise model, accompanied by a suite of beam diagnostic calculations, manifests that the stochastic noise, impinging upon the beam and coupled to the space-charge effects, can substantially enhance the beam degradation process throughout the injection period. The second model is a magnet misalignment model. It is the first time to utilize the latest beamline survey data for building a magnet-by-magnet misalignment model. Given as-found survey fiducial coordinates, we calculate all types of magnet alignment errors (station error, pitch, yaw, roll, twists, etc.) are implemented in the model. We then follow up with statistical analysis to understand how each type of alignment errors are

  20. Chemical Shift Induced Phase Errors in Phase Contrast MRI

    PubMed Central

    Middione, Matthew J.; Ennis, Daniel B.

    2012-01-01

    Phase contrast magnetic resonance imaging (PC-MRI) is subject to numerous sources of error, which decrease clinical confidence in the reported measures. This work outlines how stationary perivascular fat can impart a significant chemical shift induced PC-MRI measurement error using computational simulations, in vitro, and in vivo experiments. This chemical shift error does not subtract in phase difference processing, but can be minimized with proper parameter selection. The chemical shift induced phase errors largely depend on both the receiver bandwidth (BW) and the TE. Both theory and an in vivo comparison of the maximum difference in net forward flow between vessels with and without perivascular fat indicated that the effects of chemically shifted perivascular fat are minimized by the use of high BW (814 Hz/px) and an in-phase TE (HBW-TEIN). In healthy volunteers (N=10) HBW-TEIN significantly improves intrapatient net forward flow agreement compared to low BW (401 Hz/px) and a mid-phase TE as indicated by significantly decreased measurement biases and limits of agreement for the ascending aorta (1.8±0.5 mL vs. 6.4±2.8 mL, P=0.01), main pulmonary artery (2.0±0.9 mL vs. 11.9±5.8 mL, P=0.04), the left pulmonary artery (1.3±0.9 mL vs. 5.4±2.5 mL, P=0.003), and all vessels (1.7±0.8 mL vs. 7.2±4.4 mL, P=0.001). PMID:22488490

  1. Beam masking to reduce cyclic error in beam launcher of interferometer

    NASA Technical Reports Server (NTRS)

    Ames, Lawrence L. (Inventor); Bell, Raymond Mark (Inventor); Dutta, Kalyan (Inventor)

    2005-01-01

    Embodiments of the present invention are directed to reducing cyclic error in the beam launcher of an interferometer. In one embodiment, an interferometry apparatus comprises a reference beam directed along a reference path, and a measurement beam spatially separated from the reference beam and being directed along a measurement path contacting a measurement object. The reference beam and the measurement beam have a single frequency. At least a portion of the reference beam and at least a portion of the measurement beam overlapping along a common path. One or more masks are disposed in the common path or in the reference path and the measurement path to spatially isolate the reference beam and the measurement beam from one another.

  2. Phase error compensation methods for high-accuracy profile measurement

    NASA Astrophysics Data System (ADS)

    Cai, Zewei; Liu, Xiaoli; Peng, Xiang; Zhang, Zonghua; Jiang, Hao; Yin, Yongkai; Huang, Shujun

    2016-04-01

    In a phase-shifting algorithm-based fringe projection profilometry, the nonlinear intensity response, called the gamma effect, of the projector-camera setup is a major source of error in phase retrieval. This paper proposes two novel, accurate approaches to realize both active and passive phase error compensation based on a universal phase error model which is suitable for a arbitrary phase-shifting step. The experimental results on phase error compensation and profile measurement of standard components verified the validity and accuracy of the two proposed approaches which are robust when faced with changeable measurement conditions.

  3. Simulation of Systematic Errors in Phase-Referenced VLBI Astrometry

    NASA Astrophysics Data System (ADS)

    Pradel, N.; Charlot, P.; Lestrade, J.-F.

    2005-12-01

    The astrometric accuracy in the relative coordinates of two angularly-close radio sources observed with the phase-referencing VLBI technique is limited by systematic errors. These include geometric errors and atmospheric errors. Based on simulation with the SPRINT software, we evaluate the impact of these errors in the estimated relative source coordinates for standard VLBA observations. Such evaluations are useful to estimate the actual accuracy of phase-referenced VLBI astrometry.

  4. Self-Nulling Beam Combiner Using No External Phase Inverter

    NASA Technical Reports Server (NTRS)

    Bloemhof, Eric E.

    2010-01-01

    A self-nulling beam combiner is proposed that completely eliminates the phase inversion subsystem from the nulling interferometer, and instead uses the intrinsic phase shifts in the beam splitters. Simplifying the flight instrument in this way will be a valuable enhancement of mission reliability. The tighter tolerances on R = T (R being reflection and T being transmission coefficients) required by the self-nulling configuration actually impose no new constraints on the architecture, as two adaptive nullers must be situated between beam splitters to correct small errors in the coatings. The new feature is exploiting the natural phase shifts in beam combiners to achieve the 180 phase inversion necessary for nulling. The advantage over prior art is that an entire subsystem, the field-flipping optics, can be eliminated. For ultimate simplicity in the flight instrument, one might fabricate coatings to very high tolerances and dispense with the adaptive nullers altogether, with all their moving parts, along with the field flipper subsystem. A single adaptive nuller upstream of the beam combiner may be required to correct beam train errors (systematic noise), but in some circumstances phase chopping reduces these errors substantially, and there may be ways to further reduce the chop residuals. Though such coatings are beyond the current state of the art, the mechanical simplicity and robustness of a flight system without field flipper or adaptive nullers would perhaps justify considerable effort on coating fabrication.

  5. Interferometric phase measurement techniques for coherent beam combining

    NASA Astrophysics Data System (ADS)

    Antier, Marie; Bourderionnet, Jérôme; Larat, Christian; Lallier, Eric; Primot, Jérôme; Brignon, Arnaud

    2015-03-01

    Coherent beam combining of fiber amplifiers provides an attractive mean of reaching high power laser. In an interferometric phase measurement the beams issued for each fiber combined are imaged onto a sensor and interfere with a reference plane wave. This registration of interference patterns on a camera allows the measurement of the exact phase error of each fiber beam in a single shot. Therefore, this method is a promising candidate toward very large number of combined fibers. Based on this technique, several architectures can be proposed to coherently combine a high number of fibers. The first one based on digital holography transfers directly the image of the camera to spatial light modulator (SLM). The generated hologram is used to compensate the phase errors induced by the amplifiers. This architecture has therefore a collective phase measurement and correction. Unlike previous digital holography technique, the probe beams measuring the phase errors between the fibers are co-propagating with the phase-locked signal beams. This architecture is compatible with the use of multi-stage isolated amplifying fibers. In that case, only 20 pixels per fiber on the SLM are needed to obtain a residual phase shift error below λ/10rms. The second proposed architecture calculates the correction applied to each fiber channel by tracking the relative position of the interference finges. In this case, a phase modulator is placed on each channel. In that configuration, only 8 pixels per fiber on the camera is required for a stable close loop operation with a residual phase error of λ/20rms, which demonstrates the scalability of this concept.

  6. Phasing piston error in segmented telescopes.

    PubMed

    Jiang, Junlun; Zhao, Weirui

    2016-08-22

    To achieve a diffraction-limited imaging, the piston errors between the segments of the segmented primary mirror telescope should be reduced to λ/40 RMS. We propose a method to detect the piston error by analyzing the intensity distribution on the image plane according to the Fourier optics principle, which can capture segments with the piston errors as large as the coherence length of the input light and reduce these to 0.026λ RMS (λ = 633nm). This method is adaptable to any segmented and deployable primary mirror telescope. Experiments have been carried out to validate the feasibility of the method. PMID:27557192

  7. Method and apparatus for optical phase error correction

    DOEpatents

    DeRose, Christopher; Bender, Daniel A.

    2014-09-02

    The phase value of a phase-sensitive optical device, which includes an optical transport region, is modified by laser processing. At least a portion of the optical transport region is exposed to a laser beam such that the phase value is changed from a first phase value to a second phase value, where the second phase value is different from the first phase value. The portion of the optical transport region that is exposed to the laser beam can be a surface of the optical transport region or a portion of the volume of the optical transport region. In an embodiment of the invention, the phase value of the optical device is corrected by laser processing. At least a portion of the optical transport region is exposed to a laser beam until the phase value of the optical device is within a specified tolerance of a target phase value.

  8. SAR image quality effects of damped phase and amplitude errors

    NASA Astrophysics Data System (ADS)

    Zelenka, Jerry S.; Falk, Thomas

    The effects of damped multiplicative, amplitude, or phase errors on the image quality of synthetic-aperture radar systems are considered. These types of errors can result from aircraft maneuvers or the mechanical steering of an antenna. The proper treatment of damped multiplicative errors can lead to related design specifications and possibly an enhanced collection capability. Only small, high-frequency errors are considered. Expressions for the average intensity and energy associated with a damped multiplicative error are presented and used to derive graphic results. A typical example is used to show how to apply the results of this effort.

  9. Error analysis in post linac to driver linac transport beam line of RAON

    NASA Astrophysics Data System (ADS)

    Kim, Chanmi; Kim, Eun-San

    2016-07-01

    We investigated the effects of magnet errors in the beam transport line connecting the post linac to the driver linac (P2DT) in the Rare Isotope Accelerator in Korea (RAON). The P2DT beam line is bent by 180-degree to send the radioactive Isotope Separation On-line (ISOL) beams accelerated in Linac-3 to Linac-2. This beam line transports beams with multi-charge state 132Sn45,46,47. The P2DT beam line includes 42 quadrupole, 4 dipole and 10 sextupole magnets. We evaluate the effects of errors on the trajectory of the beam by using the TRACK code, which includes the translational and the rotational errors of the quadrupole, dipole and sextupole magnets in the beam line. The purpose of this error analysis is to reduce the rate of beam loss in the P2DT beam line. The distorted beam trajectories can be corrected by using six correctors and seven monitors.

  10. Compensation of body shake errors in terahertz beam scanning single frequency holography for standoff personnel screening

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Li, Chao; Sun, Zhao-Yang; Zhao, Yu; Wu, Shi-You; Fang, Guang-You

    2016-08-01

    In the terahertz (THz) band, the inherent shake of the human body may strongly impair the image quality of a beam scanning single frequency holography system for personnel screening. To realize accurate shake compensation in imaging processing, it is quite necessary to develop a high-precision measure system. However, in many cases, different parts of a human body may shake to different extents, resulting in greatly increasing the difficulty in conducting a reasonable measurement of body shake errors for image reconstruction. In this paper, a body shake error compensation algorithm based on the raw data is proposed. To analyze the effect of the body shake on the raw data, a model of echoed signal is rebuilt with considering both the beam scanning mode and the body shake. According to the rebuilt signal model, we derive the body shake error estimated method to compensate for the phase error. Simulation on the reconstruction of point targets with shake errors and proof-of-principle experiments on the human body in the 0.2-THz band are both performed to confirm the effectiveness of the body shake compensation algorithm proposed. Project supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. YYYJ-1123).

  11. Laser Phase Errors in Seeded Free Electron Lasers

    SciTech Connect

    Ratner, D.; Fry, A.; Stupakov, G.; White, W.; /SLAC

    2012-04-17

    Harmonic seeding of free electron lasers has attracted significant attention as a method for producing transform-limited pulses in the soft x-ray region. Harmonic multiplication schemes extend seeding to shorter wavelengths, but also amplify the spectral phase errors of the initial seed laser, and may degrade the pulse quality and impede production of transform-limited pulses. In this paper we consider the effect of seed laser phase errors in high gain harmonic generation and echo-enabled harmonic generation. We use simulations to confirm analytical results for the case of linearly chirped seed lasers, and extend the results for arbitrary seed laser envelope and phase.

  12. Detection and correction of wavefront errors caused by slight reference tilt in two-step phase-shifting digital holography.

    PubMed

    Xu, Xianfeng; Cai, Luzhong; Gao, Fei; Jia, Yulei; Zhang, Hui

    2015-11-10

    A simple and convenient method, without the need for any additional optical devices and measurements, is suggested to improve the quality of the reconstructed object wavefront in two-step phase-shifting digital holography by decreasing the errors caused by reference beam tilt, which often occurs in practice and subsequently introduces phase distortion in the reconstructed wave. The effects of reference beam tilt in two-step generalized interferometry is analyzed theoretically, showing that this tilt incurs no error either on the extracted phase shift or on the retrieved real object wave amplitude on the recording plane, but causes great deformation of the recovered object wavefront. A corresponding error detection and correction approach is proposed, and the formulas to calculate the tilt angle and correct the wavefront are deduced. A series of computer simulations to find and remove the wavefront errors caused by reference beam tilt demonstrate the effectiveness of this method. PMID:26560791

  13. An algorithm based on carrier squeezing interferometry for multi-beam phase extraction in Fizeau interferometer

    NASA Astrophysics Data System (ADS)

    Cheng, Jinlong; Gao, Zhishan; Wang, Kailiang; Yang, Zhongming; Wang, Shuai; Yuan, Qun

    2015-10-01

    Multi-beam interference will exist in the cavity of Fizeau interferometer due to the high reflectivity of test optics. The random phase shift error will be generated by some factors such as the environmental vibration, air turbulence, etc. Both these will cause phase retrieving error. We proposed a non-iterative approach called Carrier Squeezing Multi-beam Interferometry (CSMI) algorithm, which is based on the Carrier squeezing interferometry (CSI) technique to retrieve the phase distribution from multiple-beam interferograms with random phase shift errors. The intensity of multiple-beam interference was decomposed into fundamental wave and high-order harmonics, by using the Fourier series expansion. Multi-beam phase shifting interferograms with linear carrier were rearranged by row or column, to fuse one frame of spatial-temporal fringes. The lobe of the fundamental component related to the phase and the lobes of high-order harmonics and phase shift errors were separated in the frequency domain, so the correct phase was extracted by filtering out the fundamental component. Suppression of the influence from high-order harmonic components, as well as random phase shift error is validated by numerical simulations. Experiments were also executed by using the proposed CSMI algorithm for mirror with high reflection coefficient, showing its advantage comparing with normal phase retrieving algorithms.

  14. First-order approximation error analysis of Risley-prism-based beam directing system.

    PubMed

    Zhao, Yanyan; Yuan, Yan

    2014-12-01

    To improve the performance of a Risley-prism system for optical detection and measuring applications, it is necessary to be able to determine the direction of the outgoing beam with high accuracy. In previous works, error sources and their impact on the performance of the Risley-prism system have been analyzed, but their numerical approximation accuracy was not high. Besides, pointing error analysis of the Risley-prism system has provided results for the case when the component errors, prism orientation errors, and assembly errors are certain. In this work, the prototype of a Risley-prism system was designed. The first-order approximations of the error analysis were derived and compared with the exact results. The directing errors of a Risley-prism system associated with wedge-angle errors, prism mounting errors, and bearing assembly errors were analyzed based on the exact formula and the first-order approximation. The comparisons indicated that our first-order approximation is accurate. In addition, the combined errors produced by the wedge-angle errors and mounting errors of the two prisms together were derived and in both cases were proved to be the sum of errors caused by the first and the second prism separately. Based on these results, the system error of our prototype was estimated. The derived formulas can be implemented to evaluate beam directing errors of any Risley-prism beam directing system with a similar configuration. PMID:25607958

  15. Are simple IMRT beams more robust against MLC error? Exploring the impact of MLC errors on planar quality assurance and plan quality for different complexity beams.

    PubMed

    Wang, Jiazhou; Jin, Xiance; Peng, Jiayuan; Xie, Jiang; Chen, Junchao; Hu, Weigang

    2016-01-01

    This study investigated the impact of beam complexities on planar quality assur-ance and plan quality robustness by introducing MLC errors in intensity-modulate radiation therapy. Forty patients' planar quality assurance (QA) plans were enrolled in this study, including 20 dynamic MLC (DMLC) IMRT plans and 20 static MLC (SMLC) IMRT plans. The total beam numbers were 150 and 160 for DMLC and SMLC, respectively. Six different magnitudes of MLC errors were introduced to these beams. Gamma pass rates were calculated by comparing error-free fluence and error-induced fluence. The plan quality variation was acquired by comparing PTV coverage. Eight complexity scores were calculated based on the beam flu-ence and the MLC sequence. The complexity scores include fractal dimension, monitor unit, modulation index, fluence map complexity, weighted average of field area, weighted average of field perimeter, and small aperture ratio (< 5 cm2 and < 50cm2). The Spearman's rank correlation coefficient was calculated to analyze the correlation between these scores and gamma pass rate and plan quality varia-tion. For planar QA, the most significant complexity index was fractal dimension for DMLC (p = -0.40) and weighted segment area for SMLC (p = 0.27) at low magnitude MLC error. For plan quality, the most significant complexity index was weighted segment perimeter for DMLC (p = 0.56) and weighted segment area for SMLC (p= 0.497) at low magnitude MLC error. The sensitivity of planar QA was weakly associated with the field complexity with low magnitude MLC error, but the plan quality robustness was associated with beam complexity. Plans with simple beams were more robust to MLC error. PMID:27167272

  16. Magnetospheric Multiscale (MMS) Mission Commissioning Phase Orbit Determination Error Analysis

    NASA Technical Reports Server (NTRS)

    Chung, Lauren R.; Novak, Stefan; Long, Anne; Gramling, Cheryl

    2009-01-01

    The Magnetospheric MultiScale (MMS) mission commissioning phase starts in a 185 km altitude x 12 Earth radii (RE) injection orbit and lasts until the Phase 1 mission orbits and orientation to the Earth-Sun li ne are achieved. During a limited time period in the early part of co mmissioning, five maneuvers are performed to raise the perigee radius to 1.2 R E, with a maneuver every other apogee. The current baseline is for the Goddard Space Flight Center Flight Dynamics Facility to p rovide MMS orbit determination support during the early commissioning phase using all available two-way range and Doppler tracking from bo th the Deep Space Network and Space Network. This paper summarizes th e results from a linear covariance analysis to determine the type and amount of tracking data required to accurately estimate the spacecraf t state, plan each perigee raising maneuver, and support thruster cal ibration during this phase. The primary focus of this study is the na vigation accuracy required to plan the first and the final perigee ra ising maneuvers. Absolute and relative position and velocity error hi stories are generated for all cases and summarized in terms of the ma ximum root-sum-square consider and measurement noise error contributi ons over the definitive and predictive arcs and at discrete times inc luding the maneuver planning and execution times. Details of the meth odology, orbital characteristics, maneuver timeline, error models, and error sensitivities are provided.

  17. Phase shifter for antenna beam steering

    NASA Astrophysics Data System (ADS)

    Jindal, Ravi; Razban, Tchanguiz

    2016-03-01

    Wide band Array Antenna operates in Ku-band (10.7-12.7 GHz) frequency composed of N×N radiating elements. This antenna aims at the reception of television satellite signals. The goal of this research is to provide better possibility of electronic beam control instead of manual or mechanical control, and design compact and low cost phase shifters to be inserted in the feeding network of this antenna. The electronic control of the phase shifter will allow the control of beam steering. The emphasis of this project will be done at the beginning on the design of a good phase shifter in Ku band. The aim of this research is to define, simulate, release and measure a continuous phase shifter. Better reflection loss, low transmission loss, low Cost of array antennas, large range of phase-shifter, phase flatness and bandwidth will be achieved by providing better gain.

  18. Phase error statistics of a phase-locked loop synchronized direct detection optical PPM communication system

    NASA Technical Reports Server (NTRS)

    Natarajan, Suresh; Gardner, C. S.

    1987-01-01

    Receiver timing synchronization of an optical Pulse-Position Modulation (PPM) communication system can be achieved using a phased-locked loop (PLL), provided the photodetector output is suitably processed. The magnitude of the PLL phase error is a good indicator of the timing error at the receiver decoder. The statistics of the phase error are investigated while varying several key system parameters such as PPM order, signal and background strengths, and PPL bandwidth. A practical optical communication system utilizing a laser diode transmitter and an avalanche photodiode in the receiver is described, and the sampled phase error data are presented. A linear regression analysis is applied to the data to obtain estimates of the relational constants involving the phase error variance and incident signal power.

  19. SYSTEMATIC ERROR REDUCTION: NON-TILTED REFERENCE BEAM METHOD FOR LONG TRACE PROFILER.

    SciTech Connect

    QIAN,S.; QIAN, K.; HONG, Y.; SENG, L.; HO, T.; TAKACS, P.

    2007-08-25

    Systematic error in the Long Trace Profiler (LTP) has become the major error source as measurement accuracy enters the nanoradian and nanometer regime. Great efforts have been made to reduce the systematic error at a number of synchrotron radiation laboratories around the world. Generally, the LTP reference beam has to be tilted away from the optical axis in order to avoid fringe overlap between the sample and reference beams. However, a tilted reference beam will result in considerable systematic error due to optical system imperfections, which is difficult to correct. Six methods of implementing a non-tilted reference beam in the LTP are introduced: (1) application of an external precision angle device to measure and remove slide pitch error without a reference beam, (2) independent slide pitch test by use of not tilted reference beam, (3) non-tilted reference test combined with tilted sample, (4) penta-prism scanning mode without a reference beam correction, (5) non-tilted reference using a second optical head, and (6) alternate switching of data acquisition between the sample and reference beams. With a non-tilted reference method, the measurement accuracy can be improved significantly. Some measurement results are presented. Systematic error in the sample beam arm is not addressed in this paper and should be treated separately.

  20. Nonmechanical beam steering using optical phased arrays

    NASA Astrophysics Data System (ADS)

    Dillon, Thomas E.; Schuetz, Christopher A.; Martin, Richard D.; Mackrides, Daniel G.; Curt, Petersen F.; Bonnett, James; Prather, Dennis W.

    2011-11-01

    Beam steering is an enabling technology for establishment of ad hoc communication links, directed energy for infrared countermeasures, and other in-theater defense applications. The development of nonmechanical beam steering techniques is driven by requirements for low size, weight, and power, and high slew rate, among others. The predominant beam steering technology currently in use relies on gimbal mounts, which are relatively large, heavy, and slow, and furthermore create drag on the airframes to which they are mounted. Nonmechanical techniques for beam steering are currently being introduced or refined, such as those based on liquid crystal spatial light modulators; however, drawbacks inherent to some of these approaches include narrow field of regard, low speed operation, and low optical efficiency. An attractive method that we explore is based on optical phased arrays, which has the potential to overcome the aforementioned issues associated with other mechanical and nonmechanical beam steering techniques. The optical array phase locks a number of coherent optical emitters in addition to applying arbitrary phase profiles across the array, thereby synthesizing beam shapes that can be steered and utilized for a diverse range of applications.

  1. Measurement of four-degree-of-freedom error motions based on non-diffracting beam

    NASA Astrophysics Data System (ADS)

    Zhai, Zhongsheng; Lv, Qinghua; Wang, Xuanze; Shang, Yiyuan; Yang, Liangen; Kuang, Zheng; Bennett, Peter

    2016-05-01

    A measuring method for the determination of error motions of linear stages based on non-diffracting beams (NDB) is presented. A right-angle prism and a beam splitter are adopted as the measuring head, which is fixed on the moving stage in order to sense the straightness and angular errors. Two CCDs are used to capture the NDB patterns that are carrying the errors. Four different types error s, the vertical straightness error and three rotational errors (the pitch, roll and yaw errors), can be separated and distinguished through theoretical analysis of the shift in the centre positions in the two cameras. Simulation results show that the proposed method using NDB can measure four-degrees-of-freedom errors for the linear stage.

  2. Effect of transmitting beam position error on the imaging quality of a Fourier telescope

    NASA Astrophysics Data System (ADS)

    Zhou, Zhi-sheng; Bin, Xiang-Li; Zhang, Wen-xi; Li, Yang; Kong, Xin-xin; Lv, Xiao-yu

    2013-09-01

    The effect of beam position error on the imaging quality of a Fourier telescope is analyzed in this paper. First, the origin of the transmitting beam position error and the error types are discussed. Second, a numerical analysis is performed. To focus on the transmitting beam position error, other noise sources exclusive of the reconstruction process are neglected. The Strehl ratio is set to be the objective function and the transfer function of the position error is constructed. Based on the numerical model, the features of Strehl ratio reduction caused by position error are deduced. Third, simulations are performed to study the position error effect on the imaging quality. A plot of the Strehl ratio versus the different levels of position errors is obtained and the simulation results validate the numerical model to a certain extent. According to the simulation results, a high value of the transmitting beam position error obviously degrades the imaging quality of the system; thus, it is essential to contain the position error within a relatively low level.

  3. Pointing error analysis of Risley-prism-based beam steering system.

    PubMed

    Zhou, Yuan; Lu, Yafei; Hei, Mo; Liu, Guangcan; Fan, Dapeng

    2014-09-01

    Based on the vector form Snell's law, ray tracing is performed to quantify the pointing errors of Risley-prism-based beam steering systems, induced by component errors, prism orientation errors, and assembly errors. Case examples are given to elucidate the pointing error distributions in the field of regard and evaluate the allowances of the error sources for a given pointing accuracy. It is found that the assembly errors of the second prism will result in more remarkable pointing errors in contrast with the first one. The pointing errors induced by prism tilt depend on the tilt direction. The allowances of bearing tilt and prism tilt are almost identical if the same pointing accuracy is planned. All conclusions can provide a theoretical foundation for practical works. PMID:25321377

  4. The effect of electron beam geometric deformation errors on the small-signal characteristic of ECRM

    NASA Astrophysics Data System (ADS)

    Yongjian, Yu

    1993-08-01

    In this paper is studied the effect of electron beam geometric deformation errors on the small — signal characteristics of the TE{mn/o} mode Electron Cyclotron Resonance Maser (ECRM), based on the elliptically cross—sectional e—beam deformation model. As an example, the effect of small geometric deformation errors on the TE{01/o} mode fundamental ECRM coupling coefficient is quantitatively shown.

  5. Developing beam phasing on the Nova laser

    SciTech Connect

    Ehrlich, R.B.; Amendt, P.A.; Dixit, S.N.; Hammel, B.A.; Kalantar, D.H.; Pennington, D.M.; Weiland, T.L.

    1997-03-10

    We are presently adding the capability to irradiate indirectly-driven Nova targets with two rings of illumination inside each end of the hohlraum for studies of time-dependent second Legendre (P2) and time- integrated fourth Legendre (P4) flux asymmetry control. The rings will be formed with specially designed kinoform phase plates (KPPs), which will direct each half of each beam into two separate rings that are nearly uniform azimuthally. The timing and temporal pulse shape of the outer rings will be controlled independently from those of the inner rings, allowing for phasing of the pulse shapes to control time dependent asymmetry. Modifications to the incident beam diagnostics (IBDS) will enable us to verify that acceptable levels of power balance among the contributing segments of each ring have been achieved on each shot. Current techniques for precision beam pointing and timing are expected to be sufficiently accurate for these experiments. We present a design for an affordable retrofit to achieve beam phasing on Nova, results of a simplified demonstration, and calculations highlighting the anticipated benefits.

  6. Some effects of quantization on a noiseless phase-locked loop. [sampling phase errors

    NASA Technical Reports Server (NTRS)

    Greenhall, C. A.

    1979-01-01

    If the VCO of a phase-locked receiver is to be replaced by a digitally programmed synthesizer, the phase error signal must be sampled and quantized. Effects of quantizing after the loop filter (frequency quantization) or before (phase error quantization) are investigated. Constant Doppler or Doppler rate noiseless inputs are assumed. The main result gives the phase jitter due to frequency quantization for a Doppler-rate input. By itself, however, frequency quantization is impractical because it makes the loop dynamic range too small.

  7. Experimental analysis of beam pointing system based on liquid crystal optical phase array

    NASA Astrophysics Data System (ADS)

    Shi, Yubin; Zhang, Jianmin; Zhang, Zhen

    2016-06-01

    In this paper, we propose and demonstrate an elementary non-mechanical beam aiming and steering system with a single liquid crystal optical phase array (LC-OPA) and charge-coupled device (CCD). With the conventional method of beam steering control, the LC-OPA device can realize one dimensional beam steering continuously. An improved beam steering strategy is applied to realize two dimensional beam steering with a single LC-OPA. The whole beam aiming and steering system, including an LC-OPA and a retroreflective target, is controlled by the monitor. We test the feasibility of beam steering strategy both in one dimension and in two dimension at first, then the whole system is build up based on the improved strategy. The experimental results show that the max experimental pointing error is 56 µrad, and the average pointing error of the system is 19 µrad.

  8. Stitching-error reduction in gratings by shot-shifted electron-beam lithography

    NASA Technical Reports Server (NTRS)

    Dougherty, D. J.; Muller, R. E.; Maker, P. D.; Forouhar, S.

    2001-01-01

    Calculations of the grating spatial-frequency spectrum and the filtering properties of multiple-pass electron-beam writing demonstrate a tradeoff between stitching-error suppression and minimum pitch separation. High-resolution measurements of optical-diffraction patterns show a 25-dB reduction in stitching-error side modes.

  9. Numerical phase retrieval from beam intensity measurements in three planes

    NASA Astrophysics Data System (ADS)

    Bruel, Laurent

    2003-05-01

    A system and method have been developed at CEA to retrieve phase information from multiple intensity measurements along a laser beam. The device has been patented. Commonly used devices for beam measurement provide phase and intensity information separately or with a rather poor resolution whereas the MIROMA method provides both at the same time, allowing direct use of the results in numerical models. Usual phase retrieval algorithms use two intensity measurements, typically the image plane and the focal plane (Gerschberg-Saxton algorithm) related by a Fourier transform, or the image plane and a lightly defocus plane (D.L. Misell). The principal drawback of such iterative algorithms is their inability to provide unambiguous convergence in all situations. The algorithms can stagnate on bad solutions and the error between measured and calculated intensities remains unacceptable. If three planes rather than two are used, the data redundancy created confers to the method good convergence capability and noise immunity. It provides an excellent agreement between intensity determined from the retrieved phase data set in the image plane and intensity measurements in any diffraction plane. The method employed for MIROMA is inspired from GS algorithm, replacing Fourier transforms by a beam-propagating kernel with gradient search accelerating techniques and special care for phase branch cuts. A fast one dimensional algorithm provides an initial guess for the iterative algorithm. Applications of the algorithm on synthetic data find out the best reconstruction planes that have to be chosen. Robustness and sensibility are evaluated. Results on collimated and distorted laser beams are presented.

  10. Active and passive compensation of APPLE II-introduced multipole errors through beam-based measurement

    NASA Astrophysics Data System (ADS)

    Chung, Ting-Yi; Huang, Szu-Jung; Fu, Huang-Wen; Chang, Ho-Ping; Chang, Cheng-Hsiang; Hwang, Ching-Shiang

    2016-08-01

    The effect of an APPLE II-type elliptically polarized undulator (EPU) on the beam dynamics were investigated using active and passive methods. To reduce the tune shift and improve the injection efficiency, dynamic multipole errors were compensated using L-shaped iron shims, which resulted in stable top-up operation for a minimum gap. The skew quadrupole error was compensated using a multipole corrector, which was located downstream of the EPU for minimizing betatron coupling, and it ensured the enhancement of the synchrotron radiation brightness. The investigation methods, a numerical simulation algorithm, a multipole error correction method, and the beam-based measurement results are discussed.

  11. Correction of beam errors in high power laser diode bars and stacks

    NASA Astrophysics Data System (ADS)

    Monjardin, J. F.; Nowak, K. M.; Baker, H. J.; Hall, D. R.

    2006-09-01

    The beam errors of an 11 bar laser diode stack fitted with fast-axis collimator lenses have been corrected by a single refractive plate, produced by laser cutting and polishing. The so-called smile effect is virtually eliminated and collimator aberration greatly reduced, improving the fast-axis beam quality of each bar by a factor of up to 5. The single corrector plate for the whole stack ensures that the radiation from all the laser emitters is parallel to a common axis. Beam-pointing errors of the bars have been reduced to below 0.7 mrad.

  12. Correction of phase-error for phase-resolved k-clocked optical frequency domain imaging

    NASA Astrophysics Data System (ADS)

    Mo, Jianhua; Li, Jianan; de Boer, Johannes F.

    2012-01-01

    Phase-resolved optical frequency domain imaging (OFDI) has emerged as a promising technique for blood flow measurement in human tissues. Phase stability is essential for this technique to achieve high accuracy in flow velocity measurement. In OFDI systems that use k-clocking for the data acquisition, phase-error occurs due to jitter in the data acquisition electronics. We presented a statistical analysis of jitter represented as point shifts of the k-clocked spectrum. We demonstrated a real-time phase-error correction algorithm for phase-resolved OFDI. A 50 KHz wavelength-swept laser (Axsun Technologies) based balanced-detection OFDI system was developed centered at 1310 nm. To evaluate the performance of this algorithm, a stationary gold mirror was employed as sample for phase analysis. Furthermore, we implemented this algorithm for imaging of human skin. Good-quality skin structure and Doppler image can be observed in real-time after phase-error correction. The results show that the algorithm can effectively correct the jitter-induced phase error in OFDI system.

  13. Investigation of phase error correction for digital sinusoidal phase-shifting fringe projection profilometry

    NASA Astrophysics Data System (ADS)

    Ma, S.; Quan, C.; Zhu, R.; Tay, C. J.

    2012-08-01

    Digital sinusoidal phase-shifting fringe projection profilometry (DSPFPP) is a powerful tool to reconstruct three-dimensional (3D) surface of diffuse objects. However, a highly accurate profile is often hindered by nonlinear response, color crosstalk and imbalance of a pair of digital projector and CCD/CMOS camera. In this paper, several phase error correction methods, such as Look-Up-Table (LUT) compensation, intensity correction, gamma correction, LUT-based hybrid method and blind phase error suppression for gray and color-encoded DSPFPP are described. Experimental results are also demonstrated to evaluate the effectiveness of each method.

  14. Wide-aperture laser beam measurement using transmission diffuser: errors modeling

    NASA Astrophysics Data System (ADS)

    Matsak, Ivan S.

    2015-06-01

    Instrumental errors of measurement wide-aperture laser beam diameter were modeled to build measurement setup and justify its metrological characteristics. Modeled setup is based on CCD camera and transmission diffuser. This method is appropriate for precision measurement of large laser beam width from 10 mm up to 1000 mm. It is impossible to measure such beams with other methods based on slit, pinhole, knife edge or direct CCD camera measurement. The method is suitable for continuous and pulsed laser irradiation. However, transmission diffuser method has poor metrological justification required in field of wide aperture beam forming system verification. Considering the fact of non-availability of a standard of wide-aperture flat top beam modelling is preferred way to provide basic reference points for development measurement system. Modelling was conducted in MathCAD. Super-Lorentz distribution with shape parameter 6-12 was used as a model of the beam. Using theoretical evaluations there was found that the key parameters influencing on error are: relative beam size, spatial non-uniformity of the diffuser, lens distortion, physical vignetting, CCD spatial resolution and, effective camera ADC resolution. Errors were modeled for 90% of power beam diameter criteria. 12-order Super-Lorentz distribution was primary model, because it precisely meets experimental distribution at the output of test beam forming system, although other orders were also used. The analytic expressions were obtained analyzing the modelling results for each influencing data. Attainability of <1% error based on choice of parameters of expression was shown. The choice was based on parameters of commercially available components of the setup. The method can provide up to 0.1% error in case of using calibration procedures and multiple measurements.

  15. EFFECT OF SOLENOID FIELD ERRORS ON ELECTRON BEAM TEMPERATURES IN THE RHIC ELECTRON COOLER.

    SciTech Connect

    MONTAG,C.KEWISCH,J.

    2003-05-12

    As part of a future upgrade to the Relativistic Heavy Ion Collider (RHIC), electron cooling is foreseen to decrease ion beam emittances. Within the electron cooling section, the ''hot'' ion beam is immersed in a ''cold'' electron beam. The cooling effect is further enhanced by a solenoid field in the cooling section, which forces the electrons to spiral around the field lines with a (Larmor) radius of 10 micrometers, reducing the effective transverse temperature by orders of magnitude. Studies of the effect of solenoid field errors on electron beam temperatures are reported.

  16. Pixelated mask spatial carrier phase shifting interferometry algorithms and associated errors

    SciTech Connect

    Kimbrough, Bradley T

    2006-07-01

    In both temporal and spatial carrier phase shifting interferometry, the primary source of phase calculation error results from an error in the relative phase shift between sample points. In spatial carrier phase shifting interferometry, this phase shifting error is caused directly by the wave front under test and is unavoidable. In order to minimize the phase shifting error, a pix elated spatial carrier phase shifting technique has been developed by 4D technologies. This new technique allows for the grouping of phase shifted pixels together around a single point in two dimensions,minimizing the phase shift change due to the spatial variation in the test wavefront. A formula for the phase calculation error in spatial carrier phase shifting interferometry is derived. The error associated with the use of linear N-point averaging algorithms is presented and compared with those of the pix elated spatial carrier technique.

  17. Active retrodirective arrays for SPS beam pointing. [phase conjugation

    NASA Technical Reports Server (NTRS)

    Chernoff, R.

    1980-01-01

    The basic requirement of the SPS beam pointing system is that it deliver a certain amount of S-band (lambda = 12.5 cm) power to a 9.6 km diameter receiving rectenna on the ground. The power is transmitted from a 1.0 km diameter antenna array on the SPS, which is, for a rectenna at about plus or minus 40 deg. latitude, some 37.5x10 to the 6th power km distant. At the present time ARA's appear to be the best bet to realize this very stringent beam pointing requirement. An active retrodirective array (ARA) transmits a beam towards the apparent source of an illuminating signal called the pilot. The array produces, not merely reflects, RF power. Retrodirectivity is achieved by retransmitting from each element of the array a signal whose phase is the "conjugate" of that received by the element. Phase conjugate circuits and pointing errors in ARA's are described. Results obtained using a 2-element X-band ARA and an 8-element S-band ARA are included.

  18. Signal distortion due to beam-pointing error in a chopper modulated laser system.

    PubMed

    Eklund, H

    1978-01-15

    The detector output has been studied for a long-distance system with a chopped cw laser as transmitter source. It is shown experimentally that the pulse distortion of the detected signal is dependent on the beam-pointing error. Parameters reflecting the pulse distortion are defined. The beam deviation in 1-D is found to be strongly related to these parameters. The result is in agreement with a theoretical model based upon the Fresnel diffraction theory. Possible applications in beam-tracking systems, communications systems, and atmospheric studies are discussed. PMID:20174398

  19. SU-E-T-377: Inaccurate Positioning Might Introduce Significant MapCheck Calibration Error in Flatten Filter Free Beams

    SciTech Connect

    Wang, S; Chao, C; Chang, J

    2014-06-01

    Purpose: This study investigates the calibration error of detector sensitivity for MapCheck due to inaccurate positioning of the device, which is not taken into account by the current commercial iterative calibration algorithm. We hypothesize the calibration is more vulnerable to the positioning error for the flatten filter free (FFF) beams than the conventional flatten filter flattened beams. Methods: MapCheck2 was calibrated with 10MV conventional and FFF beams, with careful alignment and with 1cm positioning error during calibration, respectively. Open fields of 37cmx37cm were delivered to gauge the impact of resultant calibration errors. The local calibration error was modeled as a detector independent multiplication factor, with which propagation error was estimated with positioning error from 1mm to 1cm. The calibrated sensitivities, without positioning error, were compared between the conventional and FFF beams to evaluate the dependence on the beam type. Results: The 1cm positioning error leads to 0.39% and 5.24% local calibration error in the conventional and FFF beams respectively. After propagating to the edges of MapCheck, the calibration errors become 6.5% and 57.7%, respectively. The propagation error increases almost linearly with respect to the positioning error. The difference of sensitivities between the conventional and FFF beams was small (0.11 ± 0.49%). Conclusion: The results demonstrate that the positioning error is not handled by the current commercial calibration algorithm of MapCheck. Particularly, the calibration errors for the FFF beams are ~9 times greater than those for the conventional beams with identical positioning error, and a small 1mm positioning error might lead to up to 8% calibration error. Since the sensitivities are only slightly dependent of the beam type and the conventional beam is less affected by the positioning error, it is advisable to cross-check the sensitivities between the conventional and FFF beams to detect

  20. Optical synthetic-aperture radar processor archietecture with quadratic phase-error correction

    SciTech Connect

    Dickey, F.M.; Mason, J.J. )

    1990-10-15

    Uncompensated phase errors limit the image quality of synthetic-aperture radar. We present an acousto-optic synthetic-aperture radar processor architecture capable of measuring the quadratic phase error. This architecture allows for the error signal to be fed back to the processor to generate the corrected image.

  1. Canceling the momentum in a phase-shifting algorithm to eliminate spatially uniform errors.

    PubMed

    Hibino, Kenichi; Kim, Yangjin

    2016-08-10

    In phase-shifting interferometry, phase modulation nonlinearity causes both spatially uniform and nonuniform errors in the measured phase. Conventional linear-detuning error-compensating algorithms only eliminate the spatially variable error component. The uniform error is proportional to the inertial momentum of the data-sampling weight of a phase-shifting algorithm. This paper proposes a design approach to cancel the momentum by using characteristic polynomials in the Z-transform space and shows that an arbitrary M-frame algorithm can be modified to a new (M+2)-frame algorithm that acquires new symmetry to eliminate the uniform error. PMID:27534475

  2. Ion beam machining error control and correction for small scale optics.

    PubMed

    Xie, Xuhui; Zhou, Lin; Dai, Yifan; Li, Shengyi

    2011-09-20

    Ion beam figuring (IBF) technology for small scale optical components is discussed. Since the small removal function can be obtained in IBF, it makes computer-controlled optical surfacing technology possible to machine precision centimeter- or millimeter-scale optical components deterministically. Using a small ion beam to machine small optical components, there are some key problems, such as small ion beam positioning on the optical surface, material removal rate, ion beam scanning pitch control on the optical surface, and so on, that must be seriously considered. The main reasons for the problems are that it is more sensitive to the above problems than a big ion beam because of its small beam diameter and lower material ratio. In this paper, we discuss these problems and their influences in machining small optical components in detail. Based on the identification-compensation principle, an iterative machining compensation method is deduced for correcting the positioning error of an ion beam with the material removal rate estimated by a selected optimal scanning pitch. Experiments on ϕ10 mm Zerodur planar and spherical samples are made, and the final surface errors are both smaller than λ/100 measured by a Zygo GPI interferometer. PMID:21947039

  3. Steady-state phase error for a phase-locked loop subjected to periodic Doppler inputs

    NASA Technical Reports Server (NTRS)

    Chen, C.-C.; Win, M. Z.

    1991-01-01

    The performance of a carrier phase locked loop (PLL) driven by a periodic Doppler input is studied. By expanding the Doppler input into a Fourier series and applying the linearized PLL approximations, it is easy to show that, for periodic frequency disturbances, the resulting steady state phase error is also periodic. Compared to the method of expanding frequency excursion into a power series, the Fourier expansion method can be used to predict the maximum phase error excursion for a periodic Doppler input. For systems with a large Doppler rate fluctuation, such as an optical transponder aboard an Earth orbiting spacecraft, the method can be applied to test whether a lower order tracking loop can provide satisfactory tracking and thereby save the effect of a higher order loop design.

  4. Autofocus of SAR imagery degraded by ionospheric-induced phase errors

    SciTech Connect

    Jakowatz, C.V. Jr.; Eichel, P.H.; Ghiglia, D.C.

    1989-01-01

    It has been suggested that synthetic aperture radar (SAR) images obtained from platforms such as SEASAT are subject to potential degradation by ionospheric-induced phase errors. This premise is based upon data from various satellite experiments that indicate large levels of phase scintillation in auroral zone data. Current models for phase errors induced by the ionosphere suggest that the phase error power spectrum is power law. This implies that the resulting phase errors contain significant components up to the Nyquist limit. Traditional sub-aperture based autofocus techniques, designed to correct uncompensated platform motion errors, are inadequate due to their inability to estimate higher order error terms. A new non-parametric phase error correction scheme developed at Sandia National Laboratories, however, has been demonstrated to remove phase errors of arbitrary structure. Consequently, our new algorithm is a viable candidate for correcting ionospheric phase errors. In this paper we show examples of SAR images degraded by simulated ionospheric phase errors. These images demonstrate that such errors cause smearing with complicated sidelobe structure. Restoration of these images via the new algorithm illustrates its superiority to classical sub-aperture based autofocus techniques.

  5. Automatic component calibration and error diagnostics for model-based accelerator control. Phase I final report

    SciTech Connect

    Dr. Carl Stern; Dr. Martin Lee

    1999-06-28

    Phase I work studied the feasibility of developing software for automatic component calibration and error correction in beamline optics models. A prototype application was developed that corrects quadrupole field strength errors in beamline models.

  6. Effects and correction of magneto-optic spatial light modulator phase errors in an optical correlator

    NASA Technical Reports Server (NTRS)

    Downie, John D.; Hine, Butler P.; Reid, Max B.

    1992-01-01

    The optical phase errors introduced into an optical correlator by the input and filter plane magnetooptic spatial light modulators have been studied. The magnitude of these phase errors is measured and characterized, their effects on the correlation results are evaluated, and a means of correction by a design modification of the binary phase-only optical-filter function is presented. The efficacy of the phase-correction technique is quantified and is found to restore the correlation characteristics to those obtained in the absence of errors, to a high degree. The phase errors of other correlator system elements are also discussed and treated in a similar fashion.

  7. Sensitivity analysis and optimization method for the fabrication of one-dimensional beam-splitting phase gratings

    PubMed Central

    Pacheco, Shaun; Brand, Jonathan F.; Zaverton, Melissa; Milster, Tom; Liang, Rongguang

    2015-01-01

    A method to design one-dimensional beam-spitting phase gratings with low sensitivity to fabrication errors is described. The method optimizes the phase function of a grating by minimizing the integrated variance of the energy of each output beam over a range of fabrication errors. Numerical results for three 1x9 beam splitting phase gratings are given. Two optimized gratings with low sensitivity to fabrication errors were compared with a grating designed for optimal efficiency. These three gratings were fabricated using gray-scale photolithography. The standard deviation of the 9 outgoing beam energies in the optimized gratings were 2.3 and 3.4 times lower than the optimal efficiency grating. PMID:25969268

  8. Analysis of the effects of mismatched errors on coherent beam combining based on a self-imaging waveguide

    NASA Astrophysics Data System (ADS)

    Tao, R.; Wang, X.; Zhou, Pu; Si, Lei

    2016-01-01

    A theoretical model of coherent beam combining (CBC) based on a self-imaging waveguide (SIW) is built and the effects of mismatched errors on SIW-based CBC are simulated and analysed numerically. With the combination of the theoretical model and the finite difference beam propagation method, two main categories of errors, assembly and nonassembly errors, are numerically studied to investigate their effect on the beam quality by using the M2 factor. The optimisation of the SIW and error control principle of the system is briefly discussed. The generalised methodology offers a good reference for investigating waveguide-based high-power coherent combining of fibre lasers in a comprehensive way.

  9. Model studies of the beam-filling error for rain-rate retrieval with microwave radiometers

    NASA Technical Reports Server (NTRS)

    Ha, Eunho; North, Gerald R.

    1995-01-01

    Low-frequency (less than 20 GHz) single-channel microwave retrievals of rain rate encounter the problem of beam-filling error. This error stems from the fact that the relationship between microwave brightness temperature and rain rate is nonlinear, coupled with the fact that the field of view is large or comparable to important scales of variability of the rain field. This means that one may not simply insert the area average of the brightness temperature into the formula for rain rate without incurring both bias and random error. The statistical heterogeneity of the rain-rate field in the footprint of the instrument is key to determining the nature of these errors. This paper makes use of a series of random rain-rate fields to study the size of the bias and random error associated with beam filling. A number of examples are analyzed in detail: the binomially distributed field, the gamma, the Gaussian, the mixed gamma, the lognormal, and the mixed lognormal ('mixed' here means there is a finite probability of no rain rate at a point of space-time). Of particular interest are the applicability of a simple error formula due to Chiu and collaborators and a formula that might hold in the large field of view limit. It is found that the simple formula holds for Gaussian rain-rate fields but begins to fail for highly skewed fields such as the mixed lognormal. While not conclusively demonstrated here, it is suggested that the notionof climatologically adjusting the retrievals to remove the beam-filling bias is a reasonable proposition.

  10. The effect of exit beam phase aberrations on parallel beam coherent x-ray reconstructions

    SciTech Connect

    Hruszkewycz, S. O.; Fuoss, P. H.; Harder, R.; Xiao, X.

    2010-12-15

    Diffraction artifacts from imperfect x-ray windows near the sample are an important consideration in the design of coherent x-ray diffraction measurements. In this study, we used simulated and experimental diffraction patterns in two and three dimensions to explore the effect of phase imperfections in a beryllium window (such as a void or inclusion) on the convergence behavior of phasing algorithms and on the ultimate reconstruction. A predictive relationship between beam wavelength, sample size, and window position was derived to explain the dependence of reconstruction quality on beryllium defect size. Defects corresponding to this prediction cause the most damage to the sample exit wave and induce signature error oscillations during phasing that can be used as a fingerprint of experimental x-ray window artifacts. The relationship between x-ray window imperfection size and coherent x-ray diffractive imaging reconstruction quality explored in this work can play an important role in designing high-resolution in situ coherent imaging instrumentation and will help interpret the phasing behavior of coherent diffraction measured in these in situ environments.

  11. The effect of exit beam phase aberrations on parallel beam coherent x-ray reconstructions.

    SciTech Connect

    Hruszkewycz, S. O.; Harder, R.; Xiao, X.; Fuoss, P. H.

    2010-12-01

    Diffraction artifacts from imperfect x-ray windows near the sample are an important consideration in the design of coherent x-ray diffraction measurements. In this study, we used simulated and experimental diffraction patterns in two and three dimensions to explore the effect of phase imperfections in a beryllium window (such as a void or inclusion) on the convergence behavior of phasing algorithms and on the ultimate reconstruction. A predictive relationship between beam wavelength, sample size, and window position was derived to explain the dependence of reconstruction quality on beryllium defect size. Defects corresponding to this prediction cause the most damage to the sample exit wave and induce signature error oscillations during phasing that can be used as a fingerprint of experimental x-ray window artifacts. The relationship between x-ray window imperfection size and coherent x-ray diffractive imaging reconstruction quality explored in this work can play an important role in designing high-resolution in situ coherent imaging instrumentation and will help interpret the phasing behavior of coherent diffraction measured in these in situ environments.

  12. Experimental analysis of beam aiming and pointing system with phased only spatial light modulators

    NASA Astrophysics Data System (ADS)

    Shi, Yubin; Feng, Guobin; Si, Lei

    2015-05-01

    In this paper, an advanced non-mechanical beam aiming and pointing system is presented. Traditional beam steering is based on the mechanical systems. In the complex and expensive systems, beam jittering and many other problems are major limitations. However, beam steering with optical phased array (OPA) devices can realize agile beam control with random access pointing and high efficiency. Our system is mainly based on phased only spatial light modulators (SLM), which can realize beam steering non-mechanically. Based on the conventional one dimensional beam steering method of SLM, two dimensional beam steering method was presented at first in order to demonstrate the feasibility of the whole system. Then the whole system was tested. Our beam steering system can steer beam to a target which was moving at the speed of 3.8mrad/s within the field of view. The RMS error of the system was 0.0246mrad in one dimension, and 0.139mrad in two dimension respectively. Meanwhile the whole process was recorded by another camera in order to show the results.

  13. Sparse Auto-Calibration for Radar Coincidence Imaging with Gain-Phase Errors

    PubMed Central

    Zhou, Xiaoli; Wang, Hongqiang; Cheng, Yongqiang; Qin, Yuliang

    2015-01-01

    Radar coincidence imaging (RCI) is a high-resolution staring imaging technique without the limitation of relative motion between target and radar. The sparsity-driven approaches are commonly used in RCI, while the prior knowledge of imaging models needs to be known accurately. However, as one of the major model errors, the gain-phase error exists generally, and may cause inaccuracies of the model and defocus the image. In the present report, the sparse auto-calibration method is proposed to compensate the gain-phase error in RCI. The method can determine the gain-phase error as part of the imaging process. It uses an iterative algorithm, which cycles through steps of target reconstruction and gain-phase error estimation, where orthogonal matching pursuit (OMP) and Newton’s method are used, respectively. Simulation results show that the proposed method can improve the imaging quality significantly and estimate the gain-phase error accurately. PMID:26528981

  14. Radar coincidence imaging with phase error using Bayesian hierarchical prior modeling

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaoli; Wang, Hongqiang; Cheng, Yongqiang; Qin, Yuliang

    2016-01-01

    Radar coincidence imaging (RCI) is a high-resolution imaging technique without the limitation of relative motion between target and radar. In sparsity-driven RCI, the prior knowledge of imaging model requires to be known accurately. However, the phase error generally exists as a model error, which may cause inaccuracies of the model and defocus the image. The problem is formulated using Bayesian hierarchical prior modeling, and the self-calibration variational message passing (SC-VMP) algorithm is proposed to improve the performance of RCI with phase error. The algorithm determines the phase error as part of the imaging process. The scattering coefficient and phase error are iteratively estimated using VMP and Newton's method, respectively. Simulation results show that the proposed algorithm can estimate the phase error accurately and improve the imaging quality significantly.

  15. Superconducting resonator used as a beam phase detector.

    SciTech Connect

    Sharamentov, S. I.; Pardo, R. C.; Ostroumov, P. N.; Clifft, B. E.; Zinkann, G. P.; Physics

    2003-05-01

    Beam-bunch arrival time has been measured for the first time by operating superconducting cavities, normally part of the linac accelerator array, in a bunch-detecting mode. The very high Q of the superconducting cavities provides high sensitivity and allows for phase-detecting low-current beams. In detecting mode, the resonator is operated at a very low field level comparable to the field induced by the bunched beam. Because of this, the rf field in the cavity is a superposition of a 'pure' (or reference) rf and the beam-induced signal. A new method of circular phase rotation (CPR), allowing extraction of the beam phase information from the composite rf field was developed. Arrival time phase determination with CPR is better than 1{sup o} (at 48 MHz) for a beam current of 100 nA. The electronics design is described and experimental data are presented.

  16. Highly efficient electron vortex beams generated by nanofabricated phase holograms

    SciTech Connect

    Grillo, Vincenzo; Mafakheri, Erfan; Frabboni, Stefano

    2014-01-27

    We propose an improved type of holographic-plate suitable for the shaping of electron beams. The plate is fabricated by a focused ion beam on a silicon nitride membrane and introduces a controllable phase shift to the electron wavefunction. We adopted the optimal blazed-profile design for the phase hologram, which results in the generation of highly efficient (25%) electron vortex beams. This approach paves the route towards applications in nano-scale imaging and materials science.

  17. Refracting type laser beam scanner with minimum across-scan error

    NASA Astrophysics Data System (ADS)

    Khattak, Anwar S.

    1993-11-01

    An economical refracting type laser beam scanning device, exhibiting a minimum across-scan error without corrective measures, is described. The main structural assembly of the device consists of a rotating prism, a fixed spherical lens, and a fixed convex spherical auxiliary reflector (SAR). Trigonometric equations are developed to determine the radius of curvature of the SAR and the size of the exit pupil. Resolution analyses are presented for a specific set of design parameters.

  18. A review of setup error in supine breast radiotherapy using cone-beam computed tomography.

    PubMed

    Batumalai, Vikneswary; Holloway, Lois; Delaney, Geoff P

    2016-01-01

    Setup error in breast radiotherapy (RT) measured with 3-dimensional cone-beam computed tomography (CBCT) is becoming more common. The purpose of this study is to review the literature relating to the magnitude of setup error in breast RT measured with CBCT. The different methods of image registration between CBCT and planning computed tomography (CT) scan were also explored. A literature search, not limited by date, was conducted using Medline and Google Scholar with the following key words: breast cancer, RT, setup error, and CBCT. This review includes studies that reported on systematic and random errors, and the methods used when registering CBCT scans with planning CT scan. A total of 11 relevant studies were identified for inclusion in this review. The average magnitude of error is generally less than 5mm across a number of studies reviewed. The common registration methods used when registering CBCT scans with planning CT scan are based on bony anatomy, soft tissue, and surgical clips. No clear relationships between the setup errors detected and methods of registration were observed from this review. Further studies are needed to assess the benefit of CBCT over electronic portal image, as CBCT remains unproven to be of wide benefit in breast RT. PMID:27311516

  19. Random and systematic beam modulator errors in dynamic intensity modulated radiotherapy

    NASA Astrophysics Data System (ADS)

    Parsai, Homayon; Cho, Paul S.; Phillips, Mark H.; Giansiracusa, Robert S.; Axen, David

    2003-05-01

    This paper reports on the dosimetric effects of random and systematic modulator errors in delivery of dynamic intensity modulated beams. A sliding-widow type delivery that utilizes a combination of multileaf collimators (MLCs) and backup diaphragms was examined. Gaussian functions with standard deviations ranging from 0.5 to 1.5 mm were used to simulate random positioning errors. A clinical example involving a clival meningioma was chosen with optic chiasm and brain stem as limiting critical structures in the vicinity of the tumour. Dose calculations for different modulator fluctuations were performed, and a quantitative analysis was carried out based on cumulative and differential dose volume histograms for the gross target volume and surrounding critical structures. The study indicated that random modulator errors have a strong tendency to reduce minimum target dose and homogeneity. Furthermore, it was shown that random perturbation of both MLCs and backup diaphragms in the order of σ = 1 mm can lead to 5% errors in prescribed dose. In comparison, when MLCs or backup diaphragms alone was perturbed, the system was more robust and modulator errors of at least σ = 1.5 mm were required to cause dose discrepancies greater than 5%. For systematic perturbation, even errors in the order of +/-0.5 mm were shown to result in significant dosimetric deviations.

  20. Channel calibration for digital array radar in the presence of amplitude-phase and mutual coupling errors

    NASA Astrophysics Data System (ADS)

    Li, Weixing; Zhang, Yue; Lin, Jianzhi; Chen, Zengping

    2015-10-01

    Amplitude-phase errors and mutual coupling errors among multi-channels in digital array radar (DAR) will seriously deteriorate the performance of signal processing such as digital beam-forming (DBF) and high resolution direction finding. In this paper, a combined algorithm for error calibration in DAR has been demonstrated. The algorithm firstly estimates the amplitude-phase errors of each channel using interior calibration sources with the help of the calibration network. Then the signals from far field are received and the amplitude-phase errors are compensated. According to the subspace theories, the relationship between the principle eigenvectors and distorted steering vectors is expressed, and the cost function containing the mutual coupling matrix (MCM) and incident directions is established. Making use of the properties of MCM of uniform linear array, Gauss-Newton method is implied to iteratively compute the MCM and the direction of arrival (DOA). Simulation results have shown the effectiveness and performance of proposed algorithm. Based on an 8-elements DAR test-bed, experiments are carried out in anechoic chamber. The results illustrate that the algorithm is feasible in actual systems.

  1. Phased laser array for generating a powerful laser beam

    DOEpatents

    Holzrichter, John F.; Ruggiero, Anthony J.

    2004-02-17

    A first injection laser signal and a first part of a reference laser beam are injected into a first laser element. At least one additional injection laser signal and at least one additional part of a reference laser beam are injected into at least one additional laser element. The first part of a reference laser beam and the at least one additional part of a reference laser beam are amplified and phase conjugated producing a first amplified output laser beam emanating from the first laser element and an additional amplified output laser beam emanating from the at least one additional laser element. The first amplified output laser beam and the additional amplified output laser beam are combined into a powerful laser beam.

  2. Per-beam, planar IMRT QA passing rates do not predict clinically relevant patient dose errors

    SciTech Connect

    Nelms, Benjamin E.; Zhen Heming; Tome, Wolfgang A.

    2011-02-15

    Purpose: The purpose of this work is to determine the statistical correlation between per-beam, planar IMRT QA passing rates and several clinically relevant, anatomy-based dose errors for per-patient IMRT QA. The intent is to assess the predictive power of a common conventional IMRT QA performance metric, the Gamma passing rate per beam. Methods: Ninety-six unique data sets were created by inducing four types of dose errors in 24 clinical head and neck IMRT plans, each planned with 6 MV Varian 120-leaf MLC linear accelerators using a commercial treatment planning system and step-and-shoot delivery. The error-free beams/plans were used as ''simulated measurements'' (for generating the IMRT QA dose planes and the anatomy dose metrics) to compare to the corresponding data calculated by the error-induced plans. The degree of the induced errors was tuned to mimic IMRT QA passing rates that are commonly achieved using conventional methods. Results: Analysis of clinical metrics (parotid mean doses, spinal cord max and D1cc, CTV D95, and larynx mean) vs IMRT QA Gamma analysis (3%/3 mm, 2/2, 1/1) showed that in all cases, there were only weak to moderate correlations (range of Pearson's r-values: -0.295 to 0.653). Moreover, the moderate correlations actually had positive Pearson's r-values (i.e., clinically relevant metric differences increased with increasing IMRT QA passing rate), indicating that some of the largest anatomy-based dose differences occurred in the cases of high IMRT QA passing rates, which may be called ''false negatives.'' The results also show numerous instances of false positives or cases where low IMRT QA passing rates do not imply large errors in anatomy dose metrics. In none of the cases was there correlation consistent with high predictive power of planar IMRT passing rates, i.e., in none of the cases did high IMRT QA Gamma passing rates predict low errors in anatomy dose metrics or vice versa. Conclusions: There is a lack of correlation between

  3. Error analysis of the phase-shifting technique when applied to shadow moire

    SciTech Connect

    Han, Changwoon; Han Bongtae

    2006-02-20

    An exact solution for the intensity distribution of shadow moire fringes produced by a broad spectrum light is presented. A mathematical study quantifies errors in fractional fringe orders determined by the phase-shifting technique, and its validity is corroborated experimentally. The errors vary cyclically as the distance between the reference grating and the specimen increases. The amplitude of the maximum error is approximately 0.017 fringe, which defines the theoretical limit of resolution enhancement offered by the phase-shifting technique.

  4. Radio metric errors due to mismatch and offset between a DSN antenna beam and the beam of a troposphere calibration instrument

    NASA Technical Reports Server (NTRS)

    Linfield, R. P.; Wilcox, J. Z.

    1993-01-01

    Two components of the error of a troposphere calibration measurement were quantified by theoretical calculations. The first component is a beam mismatch error, which occurs when the calibration instrument senses a conical volume different from the cylindrical volume sampled by a Deep Space Network (DSN) antenna. The second component is a beam offset error, which occurs if the calibration instrument is not mounted on the axis of the DSN antenna. These two error sources were calculated for both delay (e.g., VLBI) and delay rate (e.g., Doppler) measurements. The beam mismatch error for both delay and delay rate drops rapidly as the beamwidth of the troposphere calibration instrument (e.g., a water vapor radiometer or an infrared Fourier transform spectrometer) is reduced. At a 10-deg elevation angle, the instantaneous beam mismatch error is 1.0 mm for a 6-deg beamwidth and 0.09 mm for a 0.5-deg beam (these are the full angular widths of a circular beam with uniform gain out to a sharp cutoff). Time averaging for 60-100 sec will reduce these errors by factors of 1.2-2.2. At a 20-deg elevation angle, the lower limit for current Doppler observations, the beam-mismatch delay rate error is an Allan standard deviation over 100 sec of 1.1 x 10(exp -14) with a 4-deg beam and 1.3 x 10(exp -l5) for a 0.5-deg beam. A 50-m beam offset would result in a fairly modest (compared to other expected error sources) delay error (less than or equal to 0.3 mm for 60-sec integrations at any elevation angle is greater than or equal to 6 deg). However, the same offset would cause a large error in delay rate measurements (e.g., an Allan standard deviation of 1.2 x 10(exp -14) over 100 sec at a 20-deg elevation angle), which would dominate over other known error sources if the beamwidth is 2 deg or smaller. An on-axis location is essential for accurate troposphere calibration of delay rate measurements. A half-power beamwidth (for a beam with a tapered gain profile) of 1.2 deg or smaller is

  5. The effects of betatron phase advances on beam-beam and its compensation in RHIC

    SciTech Connect

    Luo, Y.; Fischer, W.; Gu, X.; Tepikian, S.; Trbojevic, D.

    2011-03-28

    In this article we perform simulation studies to investigate the effects of betatron phase advances between the beam-beam interaction points on half-integer resonance driving term, second order chromaticty and dynamic aperture in RHIC. The betatron phase advances are adjusted with artificial matrices inserted in the middle of arcs. The lattices for the 2011 RHIC polarized proton (p-p) run and 2010 RHIC Au-Au runs are used in this study. We also scan the betatron phase advances between IP8 and the electron lens for the proposed Blue ring lattice with head-on beam-beam compensation.

  6. Overview of Phase Space Manipulations of Relativistic Electron Beams

    SciTech Connect

    Xiang, Dao; /SLAC

    2012-08-31

    Phase space manipulation is a process to rearrange beam's distribution in 6-D phase space. In this paper, we give an overview of the techniques for tailoring beam distribution in 2D, 4D, and 6D phase space to meet the requirements of various applications. These techniques become a new focus of accelerator physics R&D and very likely these advanced concepts will open up new opportunities in advanced accelerators and the science enabled by them.

  7. Optical beam forming techniques for phased array antennas

    NASA Technical Reports Server (NTRS)

    Wu, Te-Kao; Chandler, C.

    1993-01-01

    Conventional phased array antennas using waveguide or coax for signal distribution are impractical for large scale implementation on satellites or spacecraft because they exhibit prohibitively large system size, heavy weight, high attenuation loss, limited bandwidth, sensitivity to electromagnetic interference (EMI) temperature drifts and phase instability. However, optical beam forming systems are smaller, lighter, and more flexible. Three optical beam forming techniques are identified as applicable to large spaceborne phased array antennas. They are (1) the optical fiber replacement of conventional RF phased array distribution and control components, (2) spatial beam forming, and (3) optical beam splitting with integrated quasi-optical components. The optical fiber replacement and the spatial beam forming approaches were pursued by many organizations. Two new optical beam forming architectures are presented. Both architectures involve monolithic integration of the antenna radiating elements with quasi-optical grid detector arrays. The advantages of the grid detector array in the optical process are the higher power handling capability and the dynamic range. One architecture involves a modified version of the original spatial beam forming approach. The basic difference is the spatial light modulator (SLM) device for controlling the aperture field distribution. The original liquid crystal light valve SLM is replaced by an optical shuffling SLM, which was demonstrated for the 'smart pixel' technology. The advantages are the capability of generating the agile beams of a phased array antenna and to provide simultaneous transmit and receive functions. The second architecture considered is the optical beam splitting approach. This architecture involves an alternative amplitude control for each antenna element with an optical beam power divider comprised of mirrors and beam splitters. It also implements the quasi-optical grid phase shifter for phase control and grid

  8. Direct focusing error correction with ring-wide TBT beam position data

    SciTech Connect

    Yang, M.J.; /Fermilab

    2011-03-01

    Turn-By-Turn (TBT) betatron oscillation data is a very powerful tool in studying machine optics. Hundreds and thousands of turns of free oscillations are taken in just few tens of milliseconds. With beam covering all positions and angles at every location TBT data can be used to diagnose focusing errors almost instantly. This paper describes a new approach that observes focusing error collectively over all available TBT data to find the optimized quadrupole strength, one location at a time. Example will be shown and other issues will be discussed. The procedure presented clearly has helped to reduce overall deviations significantly, with relative ease. Sextupoles, being a permanent feature of the ring, will need to be incorporated into the model. While cumulative effect from all sextupoles around the ring may be negligible on turn-to-turn basis it is not so in this transfer line analysis. It should be noted that this procedure is not limited to looking for quadrupole errors. By modifying the target of minimization it could in principle be used to look for skew quadrupole errors and sextupole errors as well.

  9. Correction of magnetooptic device phase errors in optical correlators through filter design modifications

    NASA Technical Reports Server (NTRS)

    Downie, John D.; Reid, Max B.; Hine, Butler P.

    1991-01-01

    We address the problem of optical phase errors in an optical correlator introduced by the input and filter plane spatial light modulators. Specifically, we study a laboratory correlator with magnetooptic spatial light modulator (MOSLM) devices. We measure and characterize the phase errors, analyze their effects on the correlation process, and discuss a means of correction through a design modification of the binary phase-only optical filter function. The phase correction technique is found to produce correlation results close to those of an error-free correlator.

  10. Fringe order error in multifrequency fringe projection phase unwrapping: reason and correction.

    PubMed

    Zhang, Chunwei; Zhao, Hong; Zhang, Lu

    2015-11-10

    A multifrequency fringe projection phase unwrapping algorithm (MFPPUA) is important to fringe projection profilometry, especially when a discontinuous object is measured. However, a fringe order error (FOE) may occur when MFPPUA is adopted. An FOE will result in error to the unwrapped phase. Although this kind of phase error does not spread, it brings error to the eventual 3D measurement results. Therefore, an FOE or its adverse influence should be obviated. In this paper, reasons for the occurrence of an FOE are theoretically analyzed and experimentally explored. Methods to correct the phase error caused by an FOE are proposed. Experimental results demonstrate that the proposed methods are valid in eliminating the adverse influence of an FOE. PMID:26560763

  11. Coarse-Frequency-Comb Multiple-Beam Interferometry: Phase Assessment Using Common Phase Shifting Procedures

    NASA Astrophysics Data System (ADS)

    Schwider, J.

    2010-04-01

    interferometry in combination with frequency comb illumination. Through the use of a set of properly selected wavelengths the resulting interference pattern will become on the one hand more and more cosine-type with increasing enhancement factors and on the other hand it will be shown how the nonlinear relationship of the intensity distribution on the phase in the multiple beam interferometer can be overcome. Typical systematic errors show a periodicity with 4-times the fringe frequency of the interference pattern. By using the averaging of the measuring results of two measurements having a phase offset of π/4 it is possible to reduce this error by at least one order of magnitude. The impact of the nonlinear intensity profile of multiple beam fringes in transmitted light can in addition be reduced through inverted intensity values in the common phase shifting equations. It will be shown that in this way repeatability values can be obtained of 1.2 A˚ peak to valley and 0.12 A˚ rms.

  12. Motion-induced phase error estimation and correction in 3D diffusion tensor imaging.

    PubMed

    Van, Anh T; Hernando, Diego; Sutton, Bradley P

    2011-11-01

    A multishot data acquisition strategy is one way to mitigate B0 distortion and T2∗ blurring for high-resolution diffusion-weighted magnetic resonance imaging experiments. However, different object motions that take place during different shots cause phase inconsistencies in the data, leading to significant image artifacts. This work proposes a maximum likelihood estimation and k-space correction of motion-induced phase errors in 3D multishot diffusion tensor imaging. The proposed error estimation is robust, unbiased, and approaches the Cramer-Rao lower bound. For rigid body motion, the proposed correction effectively removes motion-induced phase errors regardless of the k-space trajectory used and gives comparable performance to the more computationally expensive 3D iterative nonlinear phase error correction method. The method has been extended to handle multichannel data collected using phased-array coils. Simulation and in vivo data are shown to demonstrate the performance of the method. PMID:21652284

  13. Effect of Field Errors in Muon Collider IR Magnets on Beam Dynamics

    SciTech Connect

    Alexahin, Y.; Gianfelice-Wendt, E.; Kapin, V.V.; /Fermilab

    2012-05-01

    In order to achieve peak luminosity of a Muon Collider (MC) in the 10{sup 35} cm{sup -2}s{sup -1} range very small values of beta-function at the interaction point (IP) are necessary ({beta}* {le} 1 cm) while the distance from IP to the first quadrupole can not be made shorter than {approx}6 m as dictated by the necessity of detector protection from backgrounds. In the result the beta-function at the final focus quadrupoles can reach 100 km making beam dynamics very sensitive to all kind of errors. In the present report we consider the effects on momentum acceptance and dynamic aperture of multipole field errors in the body of IR dipoles as well as of fringe-fields in both dipoles and quadrupoles in the ase of 1.5 TeV (c.o.m.) MC. Analysis shows these effects to be strong but correctable with dedicated multipole correctors.

  14. Beam-phase monitoring with non-destructive pickup

    SciTech Connect

    Bogaty, J.; Clifft, B.E.

    1995-08-01

    An intensity and phase-sensitive capacitive pickup was installed at the entrance to the PII linac. This device is based on an extension of the design of the Beam Current Monitor developed as part of the ATLAS radiation safety system. The purpose of the pickup is to allow the arrival phase of the beam from the ECR source at the entrance to the PII linac to be set to a standard which reproduces previous tune conditions and establishes a standard. The new pickups and associated electronics demonstrated sensitivity well below 1 electrical nanoamp but can handle beam currents of many electrical microamps as well. In addition to phase information, beam current is also measured by the units thus providing a continuous, non-intercepting current readout as well. From the very first use of PII, we established a few {open_quotes}reference tunes{close_quotes} for the linac and scaled those tunes for any other beam desired. For such scaling to work properly, the velocity and phase of the beam from the ion source must be fixed and reproducible. In last year`s FWP the new ATLAS Master Oscillator System was described. The new system has the ability of easily adjusting the beam arrival phase at the entrance to each of the major sections of the facility - PII, Booster, ATLAS. Our present techniques for establishing the beam arrival phase at the entrance of each of the linac sections are cumbersome and, sometimes, intellectually challenging. The installation of these capacitative pickups at the entrance to each of the linac sections will make the determination and setting of the beam arrival phase direct, simple, and dynamic. This should dramatically shorten our setup time for {open_quotes}old-tune{close_quotes} configurations and increase useful operating hours. Permanent electronics for the PII entrance pickup is under construction.

  15. Simulation-aided investigation of beam hardening induced errors in CT dimensional metrology

    NASA Astrophysics Data System (ADS)

    Tan, Ye; Kiekens, Kim; Welkenhuyzen, Frank; Angel, J.; De Chiffre, L.; Kruth, Jean-Pierre; Dewulf, Wim

    2014-06-01

    Industrial x-ray computed tomography (CT) systems are being increasingly used as dimensional measuring machines. However, micron level accuracy is not always achievable, as of yet. The measurement accuracy is influenced by many factors, such as the workpiece properties, x-ray voltage, filter, beam hardening, scattering and calibration methods (Kruth et al 2011 CIRP Ann. Manuf. Technol. 60 821-42, Bartscher et al 2007 CIRP Ann. Manuf. Technol. 56 495-8, De Chiffre et al 2005 CIRP Ann. Manuf. Technol. 54 479-82, Schmitt and Niggemann 2010 Meas. Sci. Technol. 21 054008). Since most of these factors are mutually correlated, it remains challenging to interpret measurement results and to identify the distinct error sources. Since simulations allow isolating the different affecting factors, they form a useful complement to experimental investigations. Dewulf et al (2012 CIRP Ann. Manuf. Technol. 61 495-8) investigated the influence of beam hardening correction parameters on the diameter of a calibrated steel pin in different experimental set-ups. It was clearly shown that an inappropriate beam hardening correction can result in significant dimensional errors. This paper confirms these results using simulations of a pin surrounded by a stepped cylinder: a clear discontinuity in the measured diameter of the inner pin is observed where it enters the surrounding material. The results are expanded with an investigation of the beam hardening effect on the measurement results for both inner and outer diameters of the surrounding stepped cylinder. Accuracy as well as the effect on the uncertainty determination is discussed. The results are compared with simulations using monochromatic beams in order to have a benchmark which excludes beam hardening effects and x-ray scattering. Furthermore, based on the above results, the authors propose a case-dependent calibration artefact for beam hardening correction and edge offset determination. In the final part of the paper, the

  16. Soliton-guided phase shifter and beam splitter

    SciTech Connect

    Steiglitz, Ken

    2010-03-15

    We propose, analyze, and study numerically a phase shifter for light wave packets trapped by Kerr solitons in a nonlinear medium. We also study numerically a previously proposed soliton-guided nonpolarizing beam splitter.

  17. Blind phase error suppression for color-encoded digital fringe projection profilometry

    NASA Astrophysics Data System (ADS)

    Ma, S.; Zhu, R.; Quan, C.; Li, B.; Tay, C. J.; Chen, L.

    2012-04-01

    Color-encoded digital fringe projection profilometry (CDFPP) has the advantage of fast speed, non-contact and full-field testing. It is one of the most important dynamic three-dimensional (3D) profile measurement techniques. However, due to factors such as color cross-talk and gamma distortion of electro-optical devices, phase errors arise when conventional phase-shifting algorithms with fixed phase shift values are utilized to retrieve phases. In this paper, a simple and effective blind phase error suppression approach based on isotropic n-dimensional fringe pattern normalization (INFPN) and carrier squeezing interferometry (CSI) is proposed. It does not require pre-calibration for the gamma and color-coupling coefficients or the phase shift values. Simulation and experimental works show that our proposed approach is able to effectively suppress phase errors and achieve accurate measurement results in CDFPP.

  18. Phase conjugation of a quantum-degenerate atomic fermion beam.

    PubMed

    Search, Chris P; Meystre, Pierre

    2003-09-01

    We discuss the possibility of phase conjugation of an atomic Fermi field via nonlinear wave mixing in an ultracold gas. It is shown that for a beam of fermions incident on an atomic phase-conjugate mirror, a time-reversed backward propagating fermionic beam is generated similar to the case in nonlinear optics. By adopting an operational definition of the phase, we show that it is possible to infer the presence of the phase-conjugate field by the loss of the interference pattern in an atomic interferometer. PMID:14525466

  19. Compact and phase-error-robust multilayered AWG-based wavelength selective switch driven by a single LCOS.

    PubMed

    Sorimoto, Keisuke; Tanizawa, Ken; Uetsuka, Hisato; Kawashima, Hitoshi; Mori, Masahiko; Hasama, Toshifumi; Ishikawa, Hiroshi; Tsuda, Hiroyuki

    2013-07-15

    A novel liquid crystal on silicon (LCOS)-based wavelength selective switch (WSS) is proposed, fabricated, and demonstrated. It employs a multilayered arrayed waveguide grating (AWG) as a wavelength multiplex/demultiplexer. The LCOS deflects spectrally decomposed beams channel by channel and switches them to desired waveguide layers of the multilayered AWG. In order to obtain the multilayered AWG with high yield, phase errors of the AWG is externally compensated for by an additional phase modulation with the LCOS. This additional phase modulation is applied to the equivalent image of the facet of the AWG, which is projected by a relay lens. In our previously-reported WSS configuration, somewhat large footprint and increased cost were the drawbacks, since two LCOSs were required: one LCOS was driven for the inter-port switching operation, and the other was for the phase-error compensation. In the newly proposed configuration, on the other hand, both switching and compensation operations are performed using a single LCOS. This reduction of the component count is realized by introducing the folded configuration with a reflector. The volume of the WSS optics is 80 × 100 × 60 mm3, which is approximately 40% smaller than the previous configuration. The polarization-dependent loss and inter-channel crosstalk are less than 1.5 dB and -21.0 dB, respectively. An error-free transmission of 40-Gbit/s NRZ-OOK signal through the WSS is successfully demonstrated. PMID:23938561

  20. Beam-Switch Transient Effects in the RF Path of the ICAPA Receive Phased Array Antenna

    NASA Technical Reports Server (NTRS)

    Sands, O. Scott

    2003-01-01

    When the beam of a Phased Array Antenna (PAA) is switched from one pointing direction to another, transient effects in the RF path of the antenna are observed. Testing described in the report has revealed implementation-specific transient effects in the RF channel that are associated with digital clocking pulses that occur with transfer of data from the Beam Steering Controller (BSC) to the digital electronics of the PAA under test. The testing described here provides an initial assessment of the beam-switch phenomena by digitally acquiring time series of the RF communications channel, under CW excitation, during the period of time that the beam switch transient occurs. Effects are analyzed using time-frequency distributions and instantaneous frequency estimation techniques. The results of tests conducted with CW excitation supports further Bit-Error-Rate (BER) testing of the PAA communication channel.

  1. Phase error suppression by low-pass filtering for synthetic aperture imaging ladar

    NASA Astrophysics Data System (ADS)

    Sun, Zhiwei; Hou, Peipei; Zhi, Ya'nan; Sun, Jianfeng; Zhou, Yu; Xu, Qian; Lu, Zhiyong; Liu, Liren

    2014-09-01

    Compared to synthetic aperture radar (SAR), synthetic aperture imaging ladar (SAIL) is more sensitive to the phase errors induced by atmospheric turbulence, undesirable line-of-sight translation-vibration and waveform phase error, because the light wavelength is about 3-6 orders of magnitude less than that of the radio frequency. This phase errors will deteriorate the imaging results. In this paper, an algorithm based on low-pass filtering to suppress the phase error is proposed. In this algorithm, the azimuth quadratic phase history with phase error is compensated, then the fast Fourier transform (FFT) is performed in azimuth direction, after the low-pass filtering, the inverse FFT is performed, then the image is reconstructed simultaneously in the range and azimuth direction by the two-dimensional (2D) FFT. The highfrequency phase error can be effectively eliminated hence the imaging results can be optimized by this algorithm. The mathematical analysis by virtue of data-collection equation of side-looking SAIL is presented. The theoretical modeling results are also given. In addition, based on this algorithm, a principle scheme of optical processor is proposed. The verified experiment is performed employing the data obtained from a SAIL demonstrator.

  2. A multimode DLL with trade-off between multiphase and static phase error

    NASA Astrophysics Data System (ADS)

    Dandan, Zhang; Wenrui, Zhu; Wei, Li; Zhihong, Huang; Lijiang, Gao; Haigang, Yang

    2014-05-01

    A multimode DLL with trade-off between multiphase and static phase error is presented. By adopting a multimode control circuit to regroup the delay line, a better static phase error performance can be achieved while reducing the number of output phases. The DLL accomplishes three operation modes: mode1 with a four-phase output, mode2 with a two-phase output and a better static phase error performance, and mode3 with only a one-phase output but the best static phase error performance. The proposed DLL has been fabricated in 0.13 μm CMOS technology and measurement results show that the static phase errors of mode1, mode2 and mode3 are -18.2 ps, 11.8 ps and -6:44 ps, respectively, at 200 MHz. The measured RMS and peak-to-peak jitters of mode1, mode2 and mode3 are 2.0 ps, 2.2 ps, 2.1 ps and 10 ps, 9.3 ps, 10 ps respectively.

  3. Cone Beam Computed Tomography Number Errors and Consequences for Radiotherapy Planning: An Investigation of Correction Methods

    SciTech Connect

    Poludniowski, Gavin G.; Evans, Philip M.; Webb, Steve

    2012-09-01

    Purpose: The potential of keV cone beam computed tomography (CBCT) for guiding adaptive replanning is well-known. There are impediments to this, one being CBCT number accuracy. The purpose of this study was to investigate CBCT number correction methods and the affect of residual inaccuracies on dose deposition. Four different correction strategies were applied to the same patient data to compare performance and the sophistication of correction-method needed for acceptable dose errors. Methods and Materials: Planning CT and CBCT reconstructions were used for 12 patients (6 brain, 3 prostate, and 3 bladder cancer patients). All patients were treated using Elekta linear accelerators and XVI imaging systems. Two of the CBCT number correction methods investigated were based on an algorithm previously proposed by the authors but only previously applied to phantoms. Two further methods, based on an approach previously suggested in the research literature, were also examined. Dose calculations were performed using scans of a 'worst' subset of patients using the Pinnacle{sup 3} version 9.0 treatment planning system and the patients' clinical plans. Results: All mean errors in CBCT number were <50 HU, and all correction methods performed well or adequately in dose calculations. The worst single dose discrepancy identified for any of the examined methods or patients was 3.0%. Mean errors in the doses to treatment volumes or organs at risk were negatively correlated with the mean error in CT number. That is, a mean CT number that was too large, averaged over the entire CBCT volume, implied an underdosing in a volume-of-interest and vice versa. Conclusions: Results suggest that (1) the correction of CBCT numbers to within a mean error of 50 HU in the scan volume provides acceptable discrepancies in dose (<3%) and (2) this is achievable with even quite unsophisticated correction methods.

  4. Poster — Thur Eve — 08: Rotational errors with on-board cone beam computed tomography

    SciTech Connect

    Ali, E. S. M.; Webb, R.; Nyiri, B.

    2014-08-15

    The focus of this study is on the Elekta XVI on-board cone beam computed tomography (CBCT) system. A rotational mismatch as large as 0.5° is observed between clockwise (CW) and counter-clockwise (CCW) CBCT scans. The error could affect non-isocentric treatments (e.g., lung SBRT and acoustic neuroma), as well as off-axis organs-at-risk. The error is caused by mislabeling of the projections with a lagging gantry angle, which is caused by the finite image acquisition time and delays in the imaging system. A 30 cm diameter cylindrical phantom with 5 mm diameter holes is used for the scanning. CW and CCW scans are acquired for five gantry speeds (360 to 120 deg./min.) on six linacs from three generations (MLCi, MLCi2, and Agility). Additional scans are acquired with different x-ray pulse widths for the same mAs. In the automated CBCT analysis (using ImageJ), the CW/CCW mismatch in a series of line profiles is identified and used to calculate the rotational error. Results are consistent among all linacs and indicate that the error varies linearly with gantry speed. The finite width of the x-ray pulses is a major but predictable contributor to the delay causing the error. For 40 ms pulses, the delay is 34 ± 1 ms. A simple solution applied in our clinic is adjusting the gantry angle offset to make the CCW one-minute scans correct. A more involved approach we are currently investigating includes adjustments of pulse width and mA, resulting in focal spot changes, with potential impact on image quality.

  5. Low-phase-error offset-compensated switched-capacitor integrator

    NASA Technical Reports Server (NTRS)

    Ki, W.-H.; Temes, G. C.

    1990-01-01

    A modification of the offset-compensated switched-capacitor integrator is described. The resulting circuit has a reduced delay and low gain distortion. It also retains the simplicity and low phase errors of earlier schemes.

  6. The Pancharatnam-Berry phase in polarization singular beams

    NASA Astrophysics Data System (ADS)

    Kumar, Vijay; Viswanathan, Nirmal K.

    2013-04-01

    Space-variant inhomogeneously polarized field formed due to superposition of orthogonally polarized Gaussian (LG00) and Laguerre-Gaussian (LG01) beams results in polarization singular beams with different morphology structures such as lemon, star and dipole patterns around the C-point in the beam cross-section. The Pancharatnam-Berry phase plays a critical role in the formation and characteristics of these spatially inhomogeneous fields. We present our experimental results wherein we measure the variable geometric phase by tracking the trajectory of the component vortices in the beam cross-section, by interfering with selective polarization states and by tracking different latitudes on the Poincaré sphere without the effect of a dynamic phase.

  7. Controllable Airy-like beams induced by tunable phase patterns

    NASA Astrophysics Data System (ADS)

    Li, D.; Qian, Y.

    2016-01-01

    We propose and experimentally observe a novel family of Airy-like beams. First, we theoretically investigate the physical generation of our proposed controllable Airy-like beams by introducing a rotation angle factor into the phase function, which can regulate and flexibly control the beam wavefront. Meanwhile we can also readily control the main lobes of these beams to follow appointed parabolic trajectories using the rotation angle factor. We also demonstrate that the controllable Airy-like beams lack the properties of being diffraction-free and self-healing. The experiments are performed and the results are in accord with the theoretical simulations. We believe that the intriguing characteristics of our proposed Airy-like beams could provide more degrees of freedom, and are likely to give rise to new applications and lend versatility to the emerging field.

  8. Simulation of phase noise for coherent beam combination

    NASA Astrophysics Data System (ADS)

    Hu, Qi-qi; Huang, Zhi-meng; Tang, Xuan; Luo, Yong-quan; Zhang, Da-yong

    2015-02-01

    Active coherent beam combination has been a hot area of research for several years. Particular algorithm module is used to stabilize the phase difference between beamlets, and make them coherent. The phase noise increases with the raising power of laser output. Under low power condition, we simulate the phase noise of high power laser amplifier by the Arbitrary Function Generators (AFGs), and send them to the phase modulators to destabilize the phase, to test the performance of the phase lock algorithm. The experimental results show the feasibility.

  9. Stabilization of signal beam intensity for fault-tolerant automatic routing with double phase conjugate mirrors

    NASA Astrophysics Data System (ADS)

    Kato, Hayato; Okamoto, Atsushi; Bunsen, Masatoshi

    2004-06-01

    We have proposed a fault-tolerant automatic routing method with two photorefractive double phase conjugate mirrors (DPCMs) for free space optical communication by now. In this method, a signal beam can be all-optically and automatically switched from a main line to a backup line when the main line is shut off by obstacles. The optical link between a transmitter and a receiver is kept without any electronic devices and complex optical configuration because the adequate communication line is automatically selected by two DPCMs which are generated by the signal beam and support beams in one photorefractive crystal. In this report, we equalize the signal beam intensities on the main line and the backup line to increase the reliability of communication. If a coupling strength ratio between two DPCMs is inappropriate, the signal beam intensities on both lines become inequality and this induces the increase of the bit error rate in beam detection. Therefore, it is necessary to adjust the signal beam intensities by changing the coupling strength ratio between two DPCMs. We show that the signal beam intensities on both lines can be equalized completely by using the optimum coupling strength ratio between two DPCMs, e.g. about 1.28 in BaTiO3 crystal.

  10. Simple Array Beam-Shaping Using Phase-Only Adjustments.

    SciTech Connect

    Doerry, Armin W.

    2015-07-01

    Conventional beam-shaping for array antennas is accomplished via an amplitude-taper on the elemental radiators. It is well known that proper manipulation of the elemental phases can also shape the antenna far-field pattern. A fairly simple transformation from a desired amplitude-taper to a phase-taper can yield nearly equivalent results.

  11. Method of error analysis for phase-measuring algorithms applied to photoelasticity.

    PubMed

    Quiroga, J A; González-Cano, A

    1998-07-10

    We present a method of error analysis that can be applied for phase-measuring algorithms applied to photoelasticity. We calculate the contributions to the measurement error of the different elements of a circular polariscope as perturbations of the Jones matrices associated with each element. The Jones matrix of the real polariscope can then be calculated as a sum of the nominal matrix and a series of contributions that depend on the errors associated with each element separately. We apply this method to the analysis of phase-measuring algorithms for the determination of isoclinics and isochromatics, including comparisons with real measurements. PMID:18285900

  12. A log-likelihood-gain intensity target for crystallographic phasing that accounts for experimental error

    PubMed Central

    Read, Randy J.; McCoy, Airlie J.

    2016-01-01

    The crystallographic diffraction experiment measures Bragg intensities; crystallo­graphic electron-density maps and other crystallographic calculations in phasing require structure-factor amplitudes. If data were measured with no errors, the structure-factor amplitudes would be trivially proportional to the square roots of the intensities. When the experimental errors are large, and especially when random errors yield negative net intensities, the conversion of intensities and their error estimates into amplitudes and associated error estimates becomes nontrivial. Although this problem has been addressed intermittently in the history of crystallographic phasing, current approaches to accounting for experimental errors in macromolecular crystallography have numerous significant defects. These have been addressed with the formulation of LLGI, a log-likelihood-gain function in terms of the Bragg intensities and their associated experimental error estimates. LLGI has the correct asymptotic behaviour for data with large experimental error, appropriately downweighting these reflections without introducing bias. LLGI abrogates the need for the conversion of intensity data to amplitudes, which is usually performed with the French and Wilson method [French & Wilson (1978 ▸), Acta Cryst. A35, 517–525], wherever likelihood target functions are required. It has general applicability for a wide variety of algorithms in macromolecular crystallography, including scaling, characterizing anisotropy and translational noncrystallographic symmetry, detecting outliers, experimental phasing, molecular replacement and refinement. Because it is impossible to reliably recover the original intensity data from amplitudes, it is suggested that crystallographers should always deposit the intensity data in the Protein Data Bank. PMID:26960124

  13. A log-likelihood-gain intensity target for crystallographic phasing that accounts for experimental error.

    PubMed

    Read, Randy J; McCoy, Airlie J

    2016-03-01

    The crystallographic diffraction experiment measures Bragg intensities; crystallographic electron-density maps and other crystallographic calculations in phasing require structure-factor amplitudes. If data were measured with no errors, the structure-factor amplitudes would be trivially proportional to the square roots of the intensities. When the experimental errors are large, and especially when random errors yield negative net intensities, the conversion of intensities and their error estimates into amplitudes and associated error estimates becomes nontrivial. Although this problem has been addressed intermittently in the history of crystallographic phasing, current approaches to accounting for experimental errors in macromolecular crystallography have numerous significant defects. These have been addressed with the formulation of LLGI, a log-likelihood-gain function in terms of the Bragg intensities and their associated experimental error estimates. LLGI has the correct asymptotic behaviour for data with large experimental error, appropriately downweighting these reflections without introducing bias. LLGI abrogates the need for the conversion of intensity data to amplitudes, which is usually performed with the French and Wilson method [French & Wilson (1978), Acta Cryst. A35, 517-525], wherever likelihood target functions are required. It has general applicability for a wide variety of algorithms in macromolecular crystallography, including scaling, characterizing anisotropy and translational noncrystallographic symmetry, detecting outliers, experimental phasing, molecular replacement and refinement. Because it is impossible to reliably recover the original intensity data from amplitudes, it is suggested that crystallographers should always deposit the intensity data in the Protein Data Bank. PMID:26960124

  14. Power Spectrum of Uplink Array Signals with Random Phase and Delay Errors

    NASA Technical Reports Server (NTRS)

    Vilnrotter, Victor A.

    2011-01-01

    Link Array signals emanating from different antennas must be compensated for Doppler and delay in order to achieve the N(sup 2) array gain predicted by theory. However compensation is never perfect, leaving residual errors that cause losses in array gain and degradation in signal quality. Here we develop a mathematical model for Uplink Array signals in the presence of phase and delay errors, similar to well-known multipath analyses but with features unique to this problem. The resulting losses and distortions are described, and the power spectral density of the array signal derived first conditioned on a given error vector, then averaged over distributions deemed suitable for Uplink Array applications. The impact of phase and delay errors on array gain and signal distortion are addressed, and the maximum data throughput is quantified in terms of the assumed error statistics.

  15. Neural network calibration of a snapshot birefringent Fourier transform spectrometer with periodic phase errors.

    PubMed

    Luo, David; Kudenov, Michael W

    2016-05-16

    Systematic phase errors in Fourier transform spectroscopy can severely degrade the calculated spectra. Compensation of these errors is typically accomplished using post-processing techniques, such as Fourier deconvolution, linear unmixing, or iterative solvers. This results in increased computational complexity when reconstructing and calibrating many parallel interference patterns. In this paper, we describe a new method of calibrating a Fourier transform spectrometer based on the use of artificial neural networks (ANNs). In this way, it is demonstrated that a simpler and more straightforward reconstruction process can be achieved at the cost of additional calibration equipment. To this end, we provide a theoretical model for general systematic phase errors in a polarization birefringent interferometer. This is followed by a discussion of our experimental setup and a demonstration of our technique, as applied to data with and without phase error. The technique's utility is then supported by comparison to alternative reconstruction techniques using fast Fourier transforms (FFTs) and linear unmixing. PMID:27409947

  16. A phase-space beam position monitor for synchrotron radiation

    PubMed Central

    Samadi, Nazanin; Bassey, Bassey; Martinson, Mercedes; Belev, George; Dallin, Les; de Jong, Mark; Chapman, Dean

    2015-01-01

    The stability of the photon beam position on synchrotron beamlines is critical for most if not all synchrotron radiation experiments. The position of the beam at the experiment or optical element location is set by the position and angle of the electron beam source as it traverses the magnetic field of the bend-magnet or insertion device. Thus an ideal photon beam monitor would be able to simultaneously measure the photon beam’s position and angle, and thus infer the electron beam’s position in phase space. X-ray diffraction is commonly used to prepare monochromatic beams on X-ray beamlines usually in the form of a double-crystal monochromator. Diffraction couples the photon wavelength or energy to the incident angle on the lattice planes within the crystal. The beam from such a monochromator will contain a spread of energies due to the vertical divergence of the photon beam from the source. This range of energies can easily cover the absorption edge of a filter element such as iodine at 33.17 keV. A vertical profile measurement of the photon beam footprint with and without the filter can be used to determine the vertical centroid position and angle of the photon beam. In the measurements described here an imaging detector is used to measure these vertical profiles with an iodine filter that horizontally covers part of the monochromatic beam. The goal was to investigate the use of a combined monochromator, filter and detector as a phase-space beam position monitor. The system was tested for sensitivity to position and angle under a number of synchrotron operating conditions, such as normal operations and special operating modes where the photon beam is intentionally altered in position and angle at the source point. The results are comparable with other methods of beam position measurement and indicate that such a system is feasible in situations where part of the synchrotron beam can be used for the phase-space measurement. PMID:26134798

  17. Large-aperture continuous-phase diffractive optical element for beam transform

    NASA Astrophysics Data System (ADS)

    Tan, Qiaofeng; Yan, Yingbai; Jin, Guofan; Wu, Minxian

    1999-11-01

    Beam transform, such as to obtain uniform focal spot with flat top, steep edge, low side lobes and high light efficiency, can be realized well by diffractive optical element (DOE). The DOE has many advantages, such as high light efficiency and strong phase distribution design flexibility. To increase the light efficiency and decrease large-angle scattering, continuous phase DOE should be used. The phase design is competed by a kind of multi-resolution hybrid algorithm based on hill-climbing and simulated annealing, which exploits sufficiently strong convergence ability of the hill climbing and global optimization potential of the simulated annealing. A kind of phase distribution with good geometrical structure and diameter 80 mm is obtained by choosing disturbance function, receipt and refused probability and so on. The simulated results show that the light efficiency is more than 95 percent, and the non-uniformity is less than 5 percent. Because the etching depth is direct proportion to the exposure time, to obtain continuous phase DOE, a kind of hollowed-out mask, namely gray-scale mask is used to control exposure time of each are. The mask is manufactured by linear cutting machine. The continuous phase DOE with diameter 80mm is fabricated by ion-etching with the mask. Finally, the tolerance of manufacturing error including depth error and alignment error are analyzed.

  18. Balancing the Lifetime and Storage Overhead on Error Correction for Phase Change Memory

    PubMed Central

    An, Ning; Wang, Rui; Gao, Yuan; Yang, Hailong; Qian, Depei

    2015-01-01

    As DRAM is facing the scaling difficulty in terms of energy cost and reliability, some nonvolatile storage materials were proposed to be the substitute or supplement of main memory. Phase Change Memory (PCM) is one of the most promising nonvolatile memory that could be put into use in the near future. However, before becoming a qualified main memory technology, PCM should be designed reliably so that it can ensure the computer system’s stable running even when errors occur. The typical wear-out errors in PCM have been well studied, but the transient errors, that caused by high-energy particles striking on the complementary metal-oxide semiconductor (CMOS) circuit of PCM chips or by resistance drifting in multi-level cell PCM, have attracted little focus. In this paper, we propose an innovative mechanism, Local-ECC-Global-ECPs (LEGE), which addresses both soft errors and hard errors (wear-out errors) in PCM memory systems. Our idea is to deploy a local error correction code (ECC) section to every data line, which can detect and correct one-bit errors immediately, and a global error correction pointers (ECPs) buffer for the whole memory chip, which can be reloaded to correct more hard error bits. The local ECC is used to detect and correct the unknown one-bit errors, and the global ECPs buffer is used to store the corrected value of hard errors. In comparison to ECP-6, our method provides almost identical lifetimes, but reduces approximately 50% storage overhead. Moreover, our structure reduces approximately 3.55% access latency overhead by increasing 1.61% storage overhead compared to PAYG, a hard error only solution. PMID:26158524

  19. Beam Position and Phase Monitor - Wire Mapping System

    SciTech Connect

    Watkins, Heath A; Shurter, Robert B.; Gilpatrick, John D.; Kutac, Vincent G.; Martinez, Derwin

    2012-04-10

    The Los Alamos Neutron Science Center (LANSCE) deploys many cylindrical beam position and phase monitors (BPPM) throughout the linac to measure the beam central position, phase and bunched-beam current. Each monitor is calibrated and qualified prior to installation to insure it meets LANSCE requirements. The BPPM wire mapping system is used to map the BPPM electrode offset, sensitivity and higher order coefficients. This system uses a three-axis motion table to position the wire antenna structure within the cavity, simulating the beam excitation of a BPPM at a fundamental frequency of 201.25 MHz. RF signal strength is measured and recorded for the four electrodes as the antenna position is updated. An effort is underway to extend the systems service to the LANSCE facility by replacing obsolete electronic hardware and taking advantage of software enhancements. This paper describes the upgraded wire positioning system's new hardware and software capabilities including its revised antenna structure, motion control interface, RF measurement equipment and Labview software upgrades. The main purpose of the wire mapping system at LANSCE is to characterize the amplitude response versus beam central position of BPPMs before they are installed in the beam line. The wire mapping system is able to simulate a beam using a thin wire and measure the signal response as the wire position is varied within the BPPM aperture.

  20. Shaping the beam profile of an elliptical Gaussian beam by an elliptical phase aperture

    NASA Astrophysics Data System (ADS)

    Wen, Wei; Wu, Gaofeng; Song, Kehui; Dong, Yiming

    2013-03-01

    Based on the generalized Collins integral formula, an analytical paraxial propagation formula for an elliptical Gaussian beam (EGB) passing through an astigmatic ABCD optical system with an elliptical phase aperture is derived by use of a tensor method. As an application example, we study the propagation properties of an EGB passing through an elliptical aperture in free space. It is found that the elliptical phase aperture can be used for shaping the beam profile of an EGB, which is useful in many applications, such as free space optical communication and material thermal processing. The elliptical phase aperture induced changes of the propagation factors of an EGB are also analyzed.

  1. Simultaneous phase-shifting interferometry: immune to azimuth error of fast-axes in retarder array.

    PubMed

    Zheng, Donghui; Chen, Lei; Li, Jinpeng; Gu, Chenfeng; Zhu, Wenhua; Han, Zhigang

    2015-11-20

    Simultaneous phase-shifting interferometry based on a 2×2 retarder array with random fast-axes (RARF-SPSI) is proposed for real-time wavefront measurements. The retarder array is used as the phase-shift component, where the phase retardances are π/2, π, 3π/2, and 2π and the four fast-axes of the four retarders can be somewhat random. In this paper, the mathematical model of RARF-SPSI is built by using a Stokes vector and a Mueller matrix, the phase demodulation method through solving equations is derived, and the coefficient matrix of the equations that is associated with the azimuth of the fast-axes is calculated by Fourier analysis. Then the corresponding simulation analysis is executed. In the experiment, four simultaneous phase-shifting interferograms are captured and the phase distribution under test is demodulated through the proposed method. Compared with the four-bucket phase-shifting algorithm adopted in traditional simultaneous phase-shifting interferometry, the ripple error is suppressed well. The advantage of the proposed RARF-SPSI is that there is no need to calibrate the fast-axes of the phase-shift component before measuring; in other words, the phase demodulation error caused by the azimuth error of fast-axes is eliminated. PMID:26836541

  2. Error Analysis of Cine Phase Contrast MRI Velocity Measurements used for Strain Calculation

    PubMed Central

    Jensen, Elisabeth R.; Morrow, Duane A.; Felmlee, Joel P.; Odegard, Gregory M.; Kaufman, Kenton R.

    2014-01-01

    Cine Phase Contrast (CPC) MRI offers unique insight into localized skeletal muscle behavior by providing the ability to quantify muscle strain distribution during cyclic motion. Muscle strain is obtained by temporally integrating and spatially differentiating CPC-encoded velocity. The aim of this study was to quantify measurement accuracy and precision and to describe error propagation into displacement and strain. Using an MRI-compatible jig to move a B-gel phantom within a 1.5T MRI bore, CPC-encoded velocities were collected. The three orthogonal encoding gradients (through plane, frequency, and phase) were evaluated independently in post-processing. Two systematic error types were corrected: eddy current-induced bias and calibration-type error. Measurement accuracy and precision were quantified before and after removal of systematic error. Through plane- and frequency-encoded data accuracy were within 0.4mm/s after removal of systematic error – a 70% improvement over the raw data. Corrected phase-encoded data accuracy was within 1.3mm/s. Measured random error was between 1 to 1.4mm/s, which followed the theoretical prediction. Propagation of random measurement error into displacement and strain was found to depend on the number of tracked time segments, time segment duration, mesh size, and dimensional order. To verify this, theoretical predictions were compared to experimentally calculated displacement and strain error. For the parameters tested, experimental and theoretical results aligned well. Random strain error approximately halved with a two-fold mesh size increase, as predicted. Displacement and strain accuracy were within 2.6mm and 3.3%, respectively. These results can be used to predict the accuracy and precision of displacement and strain in user-specific applications. PMID:25433567

  3. Phase errors in diffraction-limited imaging: contrast limits for sparse aperture masking

    NASA Astrophysics Data System (ADS)

    Ireland, M. J.

    2013-08-01

    Bispectrum phase, closure phase and their generalization to kernel phase are all independent of pupil-plane phase errors to first order. This property, when used with sparse aperture masking behind adaptive optics, has been used recently in high-contrast observations at or inside the formal diffraction limit of large telescopes. Finding the limitations to these techniques requires an understanding of spatial and temporal third-order phase effects, as well as effects such as time-variable dispersion when coupled with the non-zero bandwidths in real observations. In this paper, formulae describing many of these errors are developed, so that a comparison can be made to fundamental noise processes of photon noise and background noise. I show that the current generation of aperture-masking observations of young solar-type stars, taken carefully in excellent observing conditions, are consistent with being limited by temporal phase noise and photon noise. This has relevance for plans to combine pupil remapping with spatial filtering. Finally, I describe calibration strategies for kernel phase, including the optimized calibrator weighting as used for LkCa15, and the restricted kernel phase POISE (phase observationally independent of systematic errors) technique that avoids explicit dependence on calibrators.

  4. Correction of phase extraction error in phase-shifting interferometry based on Lissajous figure and ellipse fitting technology.

    PubMed

    Liu, Fengwei; Wu, Yongqian; Wu, Fan

    2015-04-20

    The accuracy of phase-shifting interferometers (PSI) is crippled by nonlinearity of the phase shifter and instability of the environment such as vibration and air turbulence. A general algorithm, utilizing Lissajous figures and ellipse fitting, of correcting the phase extraction error in the phase shifting interferometry is described in this paper. By plotting N against D, where N and D represent the numerator and denominator terms of the phase extraction function (i.e. an arctangent function) respectively, a Lissajous ellipse is created. Once the parameters of the ellipse are determined by ellipse fitting, one can transform the ellipse to a unit circle (ETC). Through this process the phase extraction error caused by random phase shift errors can be corrected successfully. Proposed method is non-iterated, adapts to all phase shifting algorithms (PSAs), and has high accuracy. Some factors that may affect the performance of proposed method are discussed in numerical simulations. Optical experiments are implemented to validate the effectiveness of proposed algorithm. PMID:25969117

  5. Improved beam smoothing with SSD using generalized phase modulation

    SciTech Connect

    Rothenberg, J.E.

    1997-01-01

    The smoothing of the spatial illumination of an inertial confinement fusion target is examined by its spatial frequency content. It is found that the smoothing by spectral dispersion method, although efficient for glass lasers, can yield poor smoothing at low spatial frequency. The dependence of the smoothed spatial spectrum on the characteristics of phase modulation and dispersion is examined for both sinusoidal and more general phase modulation. It is shown that smoothing with non-sinusoidal phase modulation can result in spatial spectra which are substantially identical to that obtained with the induced spatial incoherence or similar method where random phase plates are present in both methods and identical beam divergence is assumed.

  6. Optical pupil relay design for SILEX - Optimising wavefront error and transmit/receive beams co-alignment

    NASA Astrophysics Data System (ADS)

    Jonas, Reginald P.

    1992-06-01

    This paper describes some of the key parameters that have been considered for the European Satellite Interorbital Link EXperiment (SILEX) optical relay lens design. Particular attention has been given to the specific requirement of transmit/receive beams co-alignment. The method of evaluating co-alignment errors is described and the effect of manufacturing tolerances and environmental long term stability on the co-alignment error investigated.

  7. Phase errors elimination in compact digital holoscope (CDH) based on a reasonable mathematical model

    NASA Astrophysics Data System (ADS)

    Wen, Yongfu; Qu, Weijuan; Cheng, Cheeyuen; Wang, Zhaomin; Asundi, Anand

    2015-03-01

    In the compact digital holoscope (CDH) measurement process, theoretically, we need to ensure the distances between the reference wave and object wave to the hologram plane exactly match. However, it is not easy to realize in practice due to the human factors. This can lead to a phase error in the reconstruction result. In this paper, the strict theoretical analysis of the wavefront interference is performed to demonstrate the mathematical model of the phase error and then a phase errors elimination method is proposed based on the advanced mathematical model, which has a more explicit physical meaning. Experiments are carried out to verify the performance of the presented method and the results indicate that it is effective and allows the operator can make operation more flexible.

  8. Phase errors in high line density CGH used for aspheric testing: beyond scalar approximation.

    PubMed

    Peterhänsel, S; Pruss, C; Osten, W

    2013-05-20

    One common way to measure asphere and freeform surfaces is the interferometric Null test, where a computer generated hologram (CGH) is placed in the object path of the interferometer. If undetected phase errors are present in the CGH, the measurement will show systematic errors. Therefore the absolute phase of this element has to be known. This phase is often calculated using scalar diffraction theory. In this paper we discuss the limitations of this theory for the prediction of the absolute phase generated by different implementations of CGH. Furthermore, for regions where scalar approximation is no longer valid, rigorous simulations are performed to identify phase sensitive structure parameters and evaluate fabrication tolerances for typical gratings. PMID:23736387

  9. Phase Error Correction in Time-Averaged 3D Phase Contrast Magnetic Resonance Imaging of the Cerebral Vasculature

    PubMed Central

    MacDonald, M. Ethan; Forkert, Nils D.; Pike, G. Bruce; Frayne, Richard

    2016-01-01

    Purpose Volume flow rate (VFR) measurements based on phase contrast (PC)-magnetic resonance (MR) imaging datasets have spatially varying bias due to eddy current induced phase errors. The purpose of this study was to assess the impact of phase errors in time averaged PC-MR imaging of the cerebral vasculature and explore the effects of three common correction schemes (local bias correction (LBC), local polynomial correction (LPC), and whole brain polynomial correction (WBPC)). Methods Measurements of the eddy current induced phase error from a static phantom were first obtained. In thirty healthy human subjects, the methods were then assessed in background tissue to determine if local phase offsets could be removed. Finally, the techniques were used to correct VFR measurements in cerebral vessels and compared statistically. Results In the phantom, phase error was measured to be <2.1 ml/s per pixel and the bias was reduced with the correction schemes. In background tissue, the bias was significantly reduced, by 65.6% (LBC), 58.4% (LPC) and 47.7% (WBPC) (p < 0.001 across all schemes). Correction did not lead to significantly different VFR measurements in the vessels (p = 0.997). In the vessel measurements, the three correction schemes led to flow measurement differences of -0.04 ± 0.05 ml/s, 0.09 ± 0.16 ml/s, and -0.02 ± 0.06 ml/s. Although there was an improvement in background measurements with correction, there was no statistical difference between the three correction schemes (p = 0.242 in background and p = 0.738 in vessels). Conclusions While eddy current induced phase errors can vary between hardware and sequence configurations, our results showed that the impact is small in a typical brain PC-MR protocol and does not have a significant effect on VFR measurements in cerebral vessels. PMID:26910600

  10. BEAM POSITION AND PHASE MONITORS FOR THE LANSCE LINAC

    SciTech Connect

    McCrady, Rodney C.; Gilpatrick, John D.; Power, John F.

    2011-01-01

    New beam-position and phase monitors are under development for the linac at the Los Alamos Neutron Science Center (LANSCE). Transducers have been designed and are being fabricated. We are considering many options for the electronic instrumentation to process the signals and provide position and phase data with the necessary precision and flexibility to serve the various required functions. We'll present the various options under consideration for instrumentation along with the advantages and shortcomings of these options.

  11. BEAM POSITION AND PHASE MONITORS FOR THE LANSCE LINAC

    SciTech Connect

    McCrady, Rodney C.; Gilpatrick, John D.; Watkins, Heath A.

    2012-04-11

    New beam-position and phase monitors are under development for the linac at the Los Alamos Neutron Science Center (LANSCE.) Transducers have been designed and are being installed. We are considering many options for the electronic instrumentation to process the signals and provide position and phase data with the necessary precision and flexibility to serve the various required functions. We'll present the various options under consideration for instrumentation along with the advantages and shortcomings of these options.

  12. Phase-modulated beams technique for thin photorefractive films characterization

    NASA Astrophysics Data System (ADS)

    Barmenkov, Yu. O.; Kir'yanov, A. V.; Starodumov, A. N.; Kozhevnikov, N. M.; Lemmetyinen, H.

    2000-04-01

    The phase-modulated beams technique is developed for nonlinear thin photorefractive films characterization. In the Raman-Nath diffraction approximation, the formulas are deduced, allowing us to measure the amplitude of phase grating recorded in a film and its nonlinear refractive index n2. The method is applied for studying Langmuir-Blodgett multilayer thin (˜0.6 μm) films of Bacteriorhodopsin at wavelength 633 nm.

  13. Characteristics of medication errors made by students during the administration phase: a descriptive study.

    PubMed

    Wolf, Zane Robinson; Hicks, Rodney; Serembus, Joanne Farley

    2006-01-01

    Faculty concentrate on teaching nursing students about safe medication administration practices and on challenging them to develop skills for calculating drug dose and intravenous flow rate problems. In spite of these efforts, students make medication errors and little is known about the attributes of these errors. Therefore, this descriptive, retrospective, secondary analysis study examined the characteristics of medication errors made by nursing students during the administration phase of the medication use process as reported to the MEDMARX, a database operated by the United States Pharmacopeia through the Patient Safety Program. Fewer than 3% of 1,305 student-made medication errors occurring in the administration process resulted in patient harm. Most were omission errors, followed by errors of giving the wrong dose (amount) of a drug. The most prevalent cause of the errors was students' performance deficits, whereas inexperience and distractions were leading contributing factors. The antimicrobial therapeutic class of drugs and the 10 subcategories within this class were the most commonly reported medications involved. Insulin was the highest-frequency single medication reported. Overall, this study shows that students' administration errors may be more frequent than suspected. Faculty might consider curriculum revisions that incorporate medication use safety throughout each course in nursing major courses. PMID:16459288

  14. Breast Patient Setup Error Assessment: Comparison of Electronic Portal Image Devices and Cone-Beam Computed Tomography Matching Results

    SciTech Connect

    Topolnjak, Rajko; Sonke, Jan-Jakob; Nijkamp, Jasper; Rasch, Coen; Minkema, Danny; Remeijer, Peter; Vliet-Vroegindeweij, Corine van

    2010-11-15

    Purpose: To quantify the differences in setup errors measured with the cone-beam computed tomography (CBCT) and electronic portal image devices (EPID) in breast cancer patients. Methods and Materials: Repeat CBCT scan were acquired for routine offline setup verification in 20 breast cancer patients. During the CBCT imaging fractions, EPID images of the treatment beams were recorded. Registrations of the bony anatomy for CBCT to planning CT and EPID to digitally reconstructed-radiographs (DRRs) were compared. In addition, similar measurements of an anthropomorphic thorax phantom were acquired. Bland-Altman and linear regression analysis were performed for clinical and phantom registrations. Systematic and random setup errors were quantified for CBCT and EPID-driven correction protocols in the EPID coordinate system (U, V), with V parallel to the cranial-caudal axis and U perpendicular to V and the central beam axis. Results: Bland-Altman analysis of clinical EPID and CBCT registrations yielded 4 to 6-mm limits of agreement, indicating that both methods were not compatible. The EPID-based setup errors were smaller than the CBCT-based setup errors. Phantom measurements showed that CBCT accurately measures setup error whereas EPID underestimates setup errors in the cranial-caudal direction. In the clinical measurements, the residual bony anatomy setup errors after offline CBCT-based corrections were {Sigma}{sub U} = 1.4 mm, {Sigma}{sub V} = 1.7 mm, and {sigma}{sub U} = 2.6 mm, {sigma}{sub V} = 3.1 mm. Residual setup errors of EPID driven corrections corrected for underestimation were estimated at {Sigma}{sub U} = 2.2mm, {Sigma}{sub V} = 3.3 mm, and {sigma}{sub U} = 2.9 mm, {sigma}{sub V} = 2.9 mm. Conclusion: EPID registration underestimated the actual bony anatomy setup error in breast cancer patients by 20% to 50%. Using CBCT decreased setup uncertainties significantly.

  15. Phase-diversity phase-sensitive amplification in fiber loop with polarization beam splitter

    NASA Astrophysics Data System (ADS)

    Inoue, K.

    2015-10-01

    In this paper, we propose a parametric amplification scheme based on phase-sensitive amplification in an optical fiber. The proposed system consists of a nonlinear fiber and a dispersive medium in a loop configuration with a polarization beam splitter, where phase-sensitive amplification occurs bi-directionally. The dispersive medium shifts the relative phase between signal and pump lights, due to which the amplified signal light is always obtained regardless of the signal input phase, i.e., a phase-diversity operation is achieved, while the output phase is digitized as in conventional phase-sensitive amplifiers.

  16. X-Ray cone-beam phase tomography formulas based on phase-attenuation duality.

    PubMed

    Wu, Xizeng; Liu, Hong

    2005-08-01

    We present a detailed derivation of the phase-retrieval formula based on the phase-attenuation duality that we recently proposed in previous brief communication. We have incorporated the effects of x-ray source coherence and detector resolution into the phase-retrieval formula as well. Since only a single image is needed for performing the phase retrieval by means of this new approach, we point out the great advantages of this new approach for implementation of phase tomography. We combine our phase-retrieval formula with the Feldkamp-Davis-Kresss (FDK) cone-beam reconstruction algorithm to provide a three-dimensional phase tomography formula for soft tissue objects of relatively small sizes, such as small animals or human breast. For large objects we briefly show how to apply Katsevich's cone-beam reconstruction formula to the helical phase tomography as well. PMID:19498608

  17. Performance modeling of the effects of aperture phase error, turbulence, and thermal blooming on tiled subaperture systems

    NASA Astrophysics Data System (ADS)

    Leakeas, Charles L.; Capehart, Shay R.; Bartell, Richard J.; Cusumano, Salvatore J.; Whiteley, Matthew R.

    2011-06-01

    Laser weapon systems comprised of tiled subapertures are rapidly emerging in importance in the directed energy community. Performance models of these laser weapon systems have been developed from numerical simulations of a high fidelity wave-optics code called WaveTrain which is developed by MZA Associates. System characteristics such as mutual coherence, differential jitter, and beam quality rms wavefront error are defined for a focused beam on the target. Engagement scenarios are defined for various platform and target altitudes, speeds, headings, and slant ranges along with the natural wind speed and heading. Inputs to the performance model include platform and target height and velocities, Fried coherence length, Rytov number, isoplanatic angle, thermal blooming distortion number, Greenwood and Tyler frequencies, and atmospheric transmission. The performance model fit is based on power-in-the-bucket (PIB) values against the PIB from the simulation results for the vacuum diffraction-limited spot size as the bucket. The goal is to develop robust performance models for aperture phase error, turbulence, and thermal blooming effects in tiled subaperture systems.

  18. A hybrid method for synthetic aperture ladar phase-error compensation

    NASA Astrophysics Data System (ADS)

    Hua, Zhili; Li, Hongping; Gu, Yongjian

    2009-07-01

    As a high resolution imaging sensor, synthetic aperture ladar data contain phase-error whose source include uncompensated platform motion and atmospheric turbulence distortion errors. Two previously devised methods, rank one phase-error estimation algorithm and iterative blind deconvolution are reexamined, of which a hybrid method that can recover both the images and PSF's without any a priori information on the PSF is built to speed up the convergence rate by the consideration in the choice of initialization. To be integrated into spotlight mode SAL imaging model respectively, three methods all can effectively reduce the phase-error distortion. For each approach, signal to noise ratio, root mean square error and CPU time are computed, from which we can see the convergence rate of the hybrid method can be improved because a more efficient initialization set of blind deconvolution. Moreover, by making a further discussion of the hybrid method, the weight distribution of ROPE and IBD is found to be an important factor that affects the final result of the whole compensation process.

  19. Propagation of laser beam parameters through pure phase transmittances

    NASA Astrophysics Data System (ADS)

    Piquero, G.; Mejías, P. M.; Martínez-Herrero, R.

    1996-02-01

    The propagation laws of the intensity moments of a laser beam through ABCD optical systems are generalized to include pure phase transmittances. This is done by representing the behaviour of such transmittances by means of a 4 × 4 matrix, M, which can be handled, to some extent, as the ABCD-matrices associated with ordinary first-order optical systems. This formalism enables the application of ABCD propagation formulae to cascaded optical systems containing pure phase transmittances. Matrix M is used to determine the intensity moments at the output of two special quartic phase transmittances, namely, a circular spherically aberrated lens and a pair of orthogonal cylindrical (also aberrated) lenses.

  20. Nanowire growth by an electron beam induced massive phase transformation

    SciTech Connect

    Sood, Shantanu; Kisslinger, Kim; Gouma, Perena

    2014-11-15

    Tungsten trioxide nanowires of a high aspect ratio have been synthesized in-situ in a TEM under an electron beam of current density 14A/cm² due to a massive polymorphic reaction. Sol-gel processed pseudocubic phase nanocrystals of tungsten trioxide were seen to rapidly transform to one dimensional monoclinic phase configurations, and this reaction was independent of the substrate on which the material was deposited. The mechanism of the self-catalyzed polymorphic transition and accompanying radical shape change is a typical characteristic of metastable to stable phase transformations in nanostructured polymorphic metal oxides. A heuristic model is used to confirm the metastable to stable growth mechanism. The findings are important to the control electron beam deposition of nanowires for functional applications starting from colloidal precursors.

  1. Nanowire growth by an electron beam induced massive phase transformation

    DOE PAGESBeta

    Sood, Shantanu; Kisslinger, Kim; Gouma, Perena

    2014-11-15

    Tungsten trioxide nanowires of a high aspect ratio have been synthesized in-situ in a TEM under an electron beam of current density 14A/cm² due to a massive polymorphic reaction. Sol-gel processed pseudocubic phase nanocrystals of tungsten trioxide were seen to rapidly transform to one dimensional monoclinic phase configurations, and this reaction was independent of the substrate on which the material was deposited. The mechanism of the self-catalyzed polymorphic transition and accompanying radical shape change is a typical characteristic of metastable to stable phase transformations in nanostructured polymorphic metal oxides. A heuristic model is used to confirm the metastable to stablemore » growth mechanism. The findings are important to the control electron beam deposition of nanowires for functional applications starting from colloidal precursors.« less

  2. Single beam Fourier transform digital holographic quantitative phase microscopy

    SciTech Connect

    Anand, A. Chhaniwal, V. K.; Mahajan, S.; Trivedi, V.; Faridian, A.; Pedrini, G.; Osten, W.; Dubey, S. K.; Javidi, B.

    2014-03-10

    Quantitative phase contrast microscopy reveals thickness or height information of a biological or technical micro-object under investigation. The information obtained from this process provides a means to study their dynamics. Digital holographic (DH) microscopy is one of the most used, state of the art single-shot quantitative techniques for three dimensional imaging of living cells. Conventional off axis DH microscopy directly provides phase contrast images of the objects. However, this process requires two separate beams and their ratio adjustment for high contrast interference fringes. Also the use of two separate beams may make the system more vulnerable to vibrations. Single beam techniques can overcome these hurdles while remaining compact as well. Here, we describe the development of a single beam DH microscope providing whole field imaging of micro-objects. A hologram of the magnified object projected on to a diffuser co-located with a pinhole is recorded with the use of a commercially available diode laser and an arrayed sensor. A Fourier transform of the recorded hologram directly yields the complex amplitude at the image plane. The method proposed was investigated using various phase objects. It was also used to image the dynamics of human red blood cells in which sub-micrometer level thickness variation were measurable.

  3. Magnitude and clinical relevance of translational and rotational patient setup errors: A cone-beam CT study

    SciTech Connect

    Guckenberger, Matthias . E-mail: guckenberg_m@klinik.uni-wuerzburg.de; Meyer, Juergen; Vordermark, Dirk; Baier, Kurt; Wilbert, Juergen; Flentje, Michael

    2006-07-01

    Purpose: To establish volume imaging using an on-board cone-beam CT (CB-CT) scanner for evaluation of three-dimensional patient setup errors. Methods and Materials: The data from 24 patients were included in this study, and the setup errors using 209 CB-CT studies and 148 electronic portal images were analyzed and compared. The effect of rotational errors alone, translational errors alone, and combined rotational and translational errors on target coverage and sparing of organs at risk was investigated. Results: Translational setup errors using the CB-CT scanner and an electronic portal imaging device differed <1 mm in 70.7% and <2 mm in 93.2% of the measurements. Rotational errors >2{sup o} were recorded in 3.7% of pelvic tumors, 26.4% of thoracic tumors, and 12.4% of head-and-neck tumors; the corresponding maximal rotational errors were 5{sup o}, 8{sup o}, and 6{sup o}. No correlation between the magnitude of translational and rotational setup errors was observed. For patients with elongated target volumes and sharp dose gradients to adjacent organs at risk, both translational and rotational errors resulted in considerably decreased target coverage and highly increased doses to the organs at risk compared with the initial treatment plan. Conclusions: The CB-CT scanner has been successfully established for the evaluation of patient setup errors, and its feasibility in day-to-day clinical practice has been demonstrated. Our results have indicated that rotational errors are of clinical significance for selected patients receiving high-precision radiotherapy.

  4. High rates of phasing errors in highly polymorphic species with low levels of linkage disequilibrium.

    PubMed

    Bukowicki, Marek; Franssen, Susanne U; Schlötterer, Christian

    2016-07-01

    Short read sequencing of diploid individuals does not permit the direct inference of the sequence on each of the two homologous chromosomes. Although various phasing software packages exist, they were primarily tailored for and tested on human data, which differ from other species in factors that influence phasing, such as SNP density, amounts of linkage disequilibrium (LD) and sample sizes. Despite becoming increasingly popular for other species, the reliability of phasing in non-human data has not been evaluated to a sufficient extent. We scrutinized the phasing accuracy for Drosophila melanogaster, a species with high polymorphism levels and reduced LD relative to humans. We phased two D. melanogaster populations and compared the results to the known haplotypes. The performance increased with size of the reference panel and was highest when the reference panel and phased individuals were from the same population. Full genomic SNP data and inclusion of sequence read information also improved phasing. Despite humans and Drosophila having similar switch error rates between polymorphic sites, the distances between switch errors were much shorter in Drosophila with only fragments <300-1500 bp being correctly phased with ≥95% confidence. This suggests that the higher SNP density cannot compensate for the higher recombination rate in D. melanogaster. Furthermore, we show that populations that have gone through demographic events such as bottlenecks can be phased with higher accuracy. Our results highlight that statistically phased data are particularly error prone in species with large population sizes or populations lacking suitable reference panels. PMID:26929272

  5. Measurement of the surface form error of large aperture plane optical surfaces with a polarization phase-shifting liquid reference reflection Fizeau interferometer.

    PubMed

    Chatterjee, Sanjib; Kumar, Y Pavan; Singh, Rishipal; Singh, Sarvendra

    2016-01-10

    A polarization phase-shifting liquid reference reflection Fizeau interferometer has been proposed. A polarization cyclic path optical configuration along with a concave telescope mirror is used to produce a pair of expanded, collimated p and s polarized beams with a small angular separation between them. The collimated beams are deflected along a vertical direction toward a Fizeau interferometer cavity formed between a liquid surface that acts as a reference surface and a plane test surface. Either the p or s polarized beam is allowed to strike the liquid surface normally and the orientation of the test surface is adjusted to reflect the other beam, having orthogonal linear polarization, in the direction of the normally reflected reference beam from the liquid surface. A combination of a quarter-wave plate and linear polarizer is used to apply polarization phase shift between the test and reference beams, and quantitative surface form error is measured by applying phase-shifting interferometry. A method for elimination of the residual system aberration is discussed. Results obtained for an optically polished BK-7 disk of clear aperture diameter ≈160  mm are presented. PMID:26835767

  6. Optics for Phase Ionization Cooling of Muon Beams

    SciTech Connect

    R.P. Johnson; S.A. Bogacz; Y.S. Derbenev

    2006-06-26

    The realization of a muon collider requires a reduction of the 6D normalized emittance of an initially generated muon beam by a factor of more than 106. Analytical and simulation studies of 6D muon beam ionization cooling in a helical channel filled with pressurized gas or liquid hydrogen absorber indicate that a factor of 106 is possible. Further reduction of the normalized 4D transverse emittance by an additional two orders of magnitude is envisioned using Parametric-resonance Ionization Cooling (PIC). To realize the phase shrinkage effect in the parametric resonance method, one needs to design a focusing channel free of chromatic and spherical aberrations. We report results of our study of a concept of an aberration-free wiggler transport line with an alternating dispersion function. Resonant beam focusing at thin beryllium wedge absorber plates positioned near zero dispersion points then provides the predicted PIC effect.

  7. The effects of digitizing rate and phase distortion errors on the shock response spectrum

    NASA Technical Reports Server (NTRS)

    Wise, J. H.

    1983-01-01

    Some of the methods used for acquisition and digitization of high-frequency transients in the analysis of pyrotechnic events, such as explosive bolts for spacecraft separation, are discussed with respect to the reduction of errors in the computed shock response spectrum. Equations are given for maximum error as a function of the sampling rate, phase distortion, and slew rate, and the effects of the characteristics of the filter used are analyzed. A filter is noted to exhibit good passband amplitude, phase response, and response to a step function is a compromise between the flat passband of the elliptic filter and the phase response of the Bessel filter; it is suggested that it be used with a sampling rate of 10f (5 percent).

  8. Optimization of finite-size errors in finite-temperature calculations of unordered phases

    NASA Astrophysics Data System (ADS)

    Iyer, Deepak; Srednicki, Mark; Rigol, Marcos

    2015-06-01

    It is common knowledge that the microcanonical, canonical, and grand-canonical ensembles are equivalent in thermodynamically large systems. Here, we study finite-size effects in the latter two ensembles. We show that contrary to naive expectations, finite-size errors are exponentially small in grand canonical ensemble calculations of translationally invariant systems in unordered phases at finite temperature. Open boundary conditions and canonical ensemble calculations suffer from finite-size errors that are only polynomially small in the system size. We further show that finite-size effects are generally smallest in numerical linked cluster expansions. Our conclusions are supported by analytical and numerical analyses of classical and quantum systems.

  9. Optimization of finite-size errors in finite-temperature calculations of unordered phases

    NASA Astrophysics Data System (ADS)

    Iyer, Deepak; Srednicki, Mark; Rigol, Marcos

    It is common knowledge that the microcanonical, canonical, and grand canonical ensembles are equivalent in thermodynamically large systems. Here, we study finite-size effects in the latter two ensembles. We show that contrary to naive expectations, finite-size errors are exponentially small in grand canonical ensemble calculations of translationally invariant systems in unordered phases at finite temperature. Open boundary conditions and canonical ensemble calculations suffer from finite-size errors that are only polynomially small in the system size. We further show that finite-size effects are generally smallest in numerical linked cluster expansions. Our conclusions are supported by analytical and numerical analyses of classical and quantum systems.

  10. Environment-assisted error correction of single-qubit phase damping

    NASA Astrophysics Data System (ADS)

    Trendelkamp-Schroer, Benjamin; Helm, Julius; Strunz, Walter T.

    2011-12-01

    Open quantum system dynamics of random unitary type may in principle be fully undone. Closely following the scheme of environment-assisted error correction proposed by Gregoratti and Werner [J. Mod. Opt.10.1080/09500340308234541 50, 915 (2003)], we explicitly carry out all steps needed to invert a phase-damping error on a single qubit. Furthermore, we extend the scheme to a mixed-state environment. Surprisingly, we find cases for which the uncorrected state is closer to the desired state than any of the corrected ones.

  11. Quantitative, comparable coherent anti-Stokes Raman scattering (CARS) spectroscopy: correcting errors in phase retrieval

    NASA Astrophysics Data System (ADS)

    Camp, Charles H., Jr.; Lee, Young Jong; Cicerone, Marcus T.

    2016-04-01

    Coherent anti-Stokes Raman scattering (CARS) microspectroscopy has demonstrated significant potential for biological and materials imaging. To date, however, the primary mechanism of disseminating CARS spectroscopic information is through pseudocolor imagery, which explicitly neglects a vast majority of the hyperspectral data. Furthermore, current paradigms in CARS spectral processing do not lend themselves to quantitative sample-to-sample comparability. The primary limitation stems from the need to accurately measure the so-called nonresonant background (NRB) that is used to extract the chemically-sensitive Raman information from the raw spectra. Measurement of the NRB on a pixel-by-pixel basis is a nontrivial task; thus, reference NRB from glass or water are typically utilized, resulting in error between the actual and estimated amplitude and phase. In this manuscript, we present a new methodology for extracting the Raman spectral features that significantly suppresses these errors through phase detrending and scaling. Classic methods of error-correction, such as baseline detrending, are demonstrated to be inaccurate and to simply mask the underlying errors. The theoretical justification is presented by re-developing the theory of phase retrieval via the Kramers-Kronig relation, and we demonstrate that these results are also applicable to maximum entropy method-based phase retrieval. This new error-correction approach is experimentally applied to glycerol spectra and tissue images, demonstrating marked consistency between spectra obtained using different NRB estimates, and between spectra obtained on different instruments. Additionally, in order to facilitate implementation of these approaches, we have made many of the tools described herein available free for download.

  12. Phase error analysis and compensation for phase shifting profilometry with projector defocusing.

    PubMed

    Zheng, Dongliang; Da, Feipeng; Kemao, Qian; Seah, Hock Soon

    2016-07-20

    Phase shifting profilometry (PSP) using binary fringe patterns with projector defocusing is promising for high-speed 3D shape measurement. To obtain a high-quality phase, the projector usually requires a high defocusing level, which leads to a drastic fall in fringe contrast. Due to its convenience and high speed, PSP using squared binary patterns with small phase shifting algorithms and slight defocusing is highly desirable. In this paper, the phase accuracies of the classical phase shifting algorithms are analyzed theoretically, and then compared using both simulation and experiment. We also adapt two algorithms for PSP using squared binary patterns, which include a Hilbert three-step PSP and a double three-step PSP. Both algorithms can increase phase accuracy, with the latter featuring additional invalid point detection. The adapted algorithms are also compared with the classical algorithms. Based on our analysis and comparison results, proper algorithm selection can be easily made according to the practical requirement. PMID:27463929

  13. Error detection and correction for a multiple frequency quaternary phase shift keyed signal

    NASA Astrophysics Data System (ADS)

    Hopkins, Kevin S.

    1989-06-01

    A multiple frequency quaternary phased shift (MFQPSK) signaling system was developed and experimentally tested in a controlled environment. In order to insure that the quality of the received signal is such that information recovery is possible, error detection/correction (EDC) must be used. Various EDC coding schemes available are reviewed and their application to the MFQPSK signal system is analyzed. Hamming, Golay, Bose-Chaudhuri-Hocquenghem (BCH), Reed-Solomon (R-S) block codes as well as convolutional codes are presented and analyzed in the context of specific MFQPSK system parameters. A computer program was developed in order to compute bit error probabilities as a function of signal to noise ratio. Results demonstrate that various EDC schemes are suitable for the MFQPSK signal structure, and that significant performance improvements are possible with the use of certain error correction codes.

  14. Wavelength error analysis in a multiple-beam Fizeau laser wavemeter having a linear diode array readout

    NASA Technical Reports Server (NTRS)

    Robinson, D. M.; Fales, C. L., Jr.; Skolaut, M. W., Jr.

    1985-01-01

    An estimate of the wavelength accuracy of a laser wavemeter is performed for a system consisting of a multiple-beam Fizeau interferometer and a linear photosensor array readout. The analysis consists of determining the fringe position errors which result when various noise sources are included in the fringe forming and detection process. Two methods of estimating the fringe centers are considered: (1) maximum pixel current location, and (2) average pixel location for two detectors with nearly equal output currents. Wavelength error results for these two methods are compared for some typical wavemeter parameters.

  15. Simplified formula for mean cycle-slip time of phase-locked loops with steady-state phase error.

    NASA Technical Reports Server (NTRS)

    Tausworthe, R. C.

    1972-01-01

    Previous work shows that the mean time from lock to a slipped cycle of a phase-locked loop is given by a certain double integral. Accurate numerical evaluation of this formula for the second-order loop is extremely vexing because the difference between exponentially large quantities is involved. The presented article demonstrates a method in which a much-reduced precision program can be used to obtain the mean first-cycle slip time for a loop of arbitrary degree tracking at a specified SNR and steady-state phase error. It also presents a simple approximate formula that is asymptotically tight at higher loop SNR.

  16. Quantifying error of lidar and sodar Doppler beam swinging measurements of wind turbine wakes using computational fluid dynamics

    DOE PAGESBeta

    Lundquist, J. K.; Churchfield, M. J.; Lee, S.; Clifton, A.

    2015-02-23

    Wind-profiling lidars are now regularly used in boundary-layer meteorology and in applications such as wind energy and air quality. Lidar wind profilers exploit the Doppler shift of laser light backscattered from particulates carried by the wind to measure a line-of-sight (LOS) velocity. The Doppler beam swinging (DBS) technique, used by many commercial systems, considers measurements of this LOS velocity in multiple radial directions in order to estimate horizontal and vertical winds. The method relies on the assumption of homogeneous flow across the region sampled by the beams. Using such a system in inhomogeneous flow, such as wind turbine wakes ormore » complex terrain, will result in errors. To quantify the errors expected from such violation of the assumption of horizontal homogeneity, we simulate inhomogeneous flow in the atmospheric boundary layer, notably stably stratified flow past a wind turbine, with a mean wind speed of 6.5 m s-1 at the turbine hub-height of 80 m. This slightly stable case results in 15° of wind direction change across the turbine rotor disk. The resulting flow field is sampled in the same fashion that a lidar samples the atmosphere with the DBS approach, including the lidar range weighting function, enabling quantification of the error in the DBS observations. The observations from the instruments located upwind have small errors, which are ameliorated with time averaging. However, the downwind observations, particularly within the first two rotor diameters downwind from the wind turbine, suffer from errors due to the heterogeneity of the wind turbine wake. Errors in the stream-wise component of the flow approach 30% of the hub-height inflow wind speed close to the rotor disk. Errors in the cross-stream and vertical velocity components are also significant: cross-stream component errors are on the order of 15% of the hub-height inflow wind speed (1.0 m s−1) and errors in the vertical velocity measurement exceed the actual

  17. Quantifying error of lidar and sodar Doppler beam swinging measurements of wind turbine wakes using computational fluid dynamics

    SciTech Connect

    Lundquist, J. K.; Churchfield, M. J.; Lee, S.; Clifton, A.

    2015-02-23

    Wind-profiling lidars are now regularly used in boundary-layer meteorology and in applications such as wind energy and air quality. Lidar wind profilers exploit the Doppler shift of laser light backscattered from particulates carried by the wind to measure a line-of-sight (LOS) velocity. The Doppler beam swinging (DBS) technique, used by many commercial systems, considers measurements of this LOS velocity in multiple radial directions in order to estimate horizontal and vertical winds. The method relies on the assumption of homogeneous flow across the region sampled by the beams. Using such a system in inhomogeneous flow, such as wind turbine wakes or complex terrain, will result in errors.

    To quantify the errors expected from such violation of the assumption of horizontal homogeneity, we simulate inhomogeneous flow in the atmospheric boundary layer, notably stably stratified flow past a wind turbine, with a mean wind speed of 6.5 m s-1 at the turbine hub-height of 80 m. This slightly stable case results in 15° of wind direction change across the turbine rotor disk. The resulting flow field is sampled in the same fashion that a lidar samples the atmosphere with the DBS approach, including the lidar range weighting function, enabling quantification of the error in the DBS observations. The observations from the instruments located upwind have small errors, which are ameliorated with time averaging. However, the downwind observations, particularly within the first two rotor diameters downwind from the wind turbine, suffer from errors due to the heterogeneity of the wind turbine wake. Errors in the stream-wise component of the flow approach 30% of the hub-height inflow wind speed close to the rotor disk. Errors in the cross-stream and vertical velocity components are also significant: cross-stream component errors are on the order of 15% of the hub-height inflow wind speed (1.0 m s−1) and errors in the vertical velocity measurement

  18. Sparsity-based moving target localization using multiple dual-frequency radars under phase errors

    NASA Astrophysics Data System (ADS)

    Al Kadry, Khodour; Ahmad, Fauzia; Amin, Moeness G.

    2015-05-01

    In this paper, we consider moving target localization in urban environments using a multiplicity of dual-frequency radars. Dual-frequency radars offer the benefit of reduced complexity and fast computation time, thereby permitting real-time indoor target localization and tracking. The multiple radar units are deployed in a distributed system configuration, which provides robustness against target obscuration. We develop the dual-frequency signal model for the distributed radar system under phase errors and employ a joint sparse scene reconstruction and phase error correction technique to provide accurate target location and velocity estimates. Simulation results are provided that validate the performance of the proposed scheme under both full and reduced data volumes.

  19. Error catastrophe and phase transition in the empirical fitness landscape of HIV

    NASA Astrophysics Data System (ADS)

    Hart, Gregory R.; Ferguson, Andrew L.

    2015-03-01

    We have translated clinical sequence databases of the p6 HIV protein into an empirical fitness landscape quantifying viral replicative capacity as a function of the amino acid sequence. We show that the viral population resides close to a phase transition in sequence space corresponding to an "error catastrophe" beyond which there is lethal accumulation of mutations. Our model predicts that the phase transition may be induced by drug therapies that elevate the mutation rate, or by forcing mutations at particular amino acids. Applying immune pressure to any combination of killer T-cell targets cannot induce the transition, providing a rationale for why the viral protein can exist close to the error catastrophe without sustaining fatal fitness penalties due to adaptive immunity.

  20. Idling error and SWAP/MOVE operation in RezQu architecture for phase qubits

    NASA Astrophysics Data System (ADS)

    Galiautdinov, Andrei; Korotkov, Alexander

    2011-03-01

    We analyze several basic operations in the RezQu architecture for superconducting phase qubits recently proposed by John Martinis, concentrating on the idling error, generation of single-excitation states, and the single-excitation transfer (which we call MOVE) between a phase qubit and its memory. We show that the idling error is negligible, being proportional to the sixth power of the coupling strength. We also show that in the rotating wave approximation the MOVE operation, which is simpler than the usual SWAP, can be realized perfectly using a tune/detune pulse with four adjustable parameters. The pulse consists of the front ramp (with proper shaping), a constant near-resonant overshoot, and an arbitrary rear ramp. This work was supported by NSA and IARPA under ARO grant No. W911NF-10-1-0334.

  1. Parameter dimension of turbulence-induced phase errors and its effects on estimation in phase diversity

    NASA Technical Reports Server (NTRS)

    Thelen, Brian J.; Paxman, Richard G.

    1994-01-01

    The method of phase diversity has been used in the context of incoherent imaging to estimate jointly an object that is being imaged and phase aberrations induced by atmospheric turbulence. The method requires a parametric model for the phase-aberration function. Typically, the parameters are coefficients to a finite set of basis functions. Care must be taken in selecting a parameterization that properly balances accuracy in the representation of the phase-aberration function with stability in the estimates. It is well known that over parameterization can result in unstable estimates. Thus a certain amount of model mismatch is often desirable. We derive expressions that quantify the bias and variance in object and aberration estimates as a function of parameter dimension.

  2. Analytical solution of two-phase spherical Stefan problem by heat polynomials and integral error functions

    NASA Astrophysics Data System (ADS)

    Kharin, Stanislav N.; Sarsengeldin, Merey M.; Nouri, Hassan

    2016-08-01

    On the base of the Holm model, we represent two phase spherical Stefan problem and its analytical solution, which can serve as a mathematical model for diverse thermo-physical phenomena in electrical contacts. Suggested solution is obtained from integral error function and its properties which are represented in the form of series whose coefficients have to be determined. Convergence of solution series is proved.

  3. Beam Phase Space of an Intense Ion Beam in a Neutralizing Plasma

    NASA Astrophysics Data System (ADS)

    Seidl, Peter A.; Bazouin, Guillaume; Beneytout, Alice; Lidia, Steven M.; Vay, Jean-Luc; Grote, David P.

    2011-10-01

    The Neutralized Drift Compression Experiment (NDCX-I) generates high intensity ion beams to explore warm dense matter physics. Transverse final focusing is accomplished with an 8-Tesla, 10-cm long pulsed solenoid magnet combined with a background neutralizing plasma to effectively cancel the space charge field of the ion beam. We report on phase space measurements of the beam before the neutralization channel and of the focused ion beam at the target plane. These are compared to WARP particle-in-cell simulations of the ion beam propagation through the focusing system and neutralizing plasma. Due to the orientation of the plasma sources with respect to the focusing magnet, the plasma distribution within the final focusing lens is strongly affected by the magnetic field, an effect which can influence the peak intensity at the target and which is included in the model of the experiment. Work performed under auspices of U.S. DoE by LLNL, LBNL under Contracts DE-AC52-07NA27344, DE-AC02-05CH1123.

  4. Phase and synchronous detector theory as applied to beam position and intensity measurements

    SciTech Connect

    Gilpatrick, J.D.

    1995-05-01

    A popular signal processing technique for beam position measurements uses the principle of amplitude-to-phase (AM/PM) conversion and phase detection. This technique processes position-sensitive beam-image-current probe-signals into output signals that are proportional to the beam`s position. These same probe signals may be summed and processed in a different fashion to provide output signals that are proportional to the peak beam current which is typically referred to as beam intensity. This paper derives the transfer functions for the AM/PM beam position and peak beam current processors.

  5. Suppression of backreflection error in resonator integrated optic gyro by the phase difference traversal method.

    PubMed

    Wang, Junjie; Feng, Lishuang; Wang, Qiwei; Jiao, Hongchen; Wang, Xiao

    2016-04-01

    The phase difference traversal (PDT) method is proposed to suppress the backreflection-induced error in resonator integrated optic gyro (RIOG). Theoretical analysis shows that the backreflection-induced zero-bias fluctuation is periodical and sine/cosine-like. By forcing the phase difference between the CW and CCW incident light to traverse the interval [0, 2π] repeatedly and rapidly enough, the fluctuation can be low-pass filtered and, hence, the backreflection-induced error can be effectively suppressed. A RIOG apparatus is built up, with multi-wave hybrid phase modulation to traverse the phase difference and in-phase modulation to set the operation point. A short-term bias stability of 0.0055 deg/s and a long-term bias stability of 0.013 deg/s are successfully demonstrated which, to the best of our knowledge, are the best results reported to date for the buried-type silica waveguide ring resonator-based RIOG. PMID:27192293

  6. Laser-beam apodization with a graded random phase window.

    PubMed

    Haas, R A; Summers, M A; Linford, G J

    1986-10-01

    Experiments and analysis indicate that graded random phase modulation can be used to apodize a laser beam. In the case of an obscuration or a hard edge it can prevent the formation of Fresnel-diffraction ripples. For example, here the interaction of a 1-microm-wavelength laser beam with a central obscuration of half-width a = 100 microm is studied theoretically. It is found that if the exit surface of a window, placed immediately downstream of the obstacle, is randomly modulated with a Gaussian amplitude transverse correlation length l = 50 microm and a mean-square amplitude that decreases exponentially from a peak height of ~1 microm(2) away from the center of the obscuration with transverse scale length L = 500 microm, then the Fresnel-diffraction ripples normally produced by the obscuration are eliminated. The scaling of these results is also discussed. The calculations are in general agreement with experimental results. PMID:19738707

  7. Tailoring phase-space in neutron beam extraction

    NASA Astrophysics Data System (ADS)

    Weichselbaumer, S.; Brandl, G.; Georgii, R.; Stahn, J.; Panzner, T.; Böni, P.

    2015-09-01

    In view of the trend towards smaller samples and experiments under extreme conditions it is important to deliver small and homogeneous neutron beams to the sample area. For this purpose, elliptic and/or Montel mirrors are ideally suited as the phase space of the neutrons can be defined far away from the sample. Therefore, only the useful neutrons will arrive at the sample position leading to a very low background. We demonstrate the ease of designing neutron transport systems using simple numeric tools, which are verified using Monte-Carlo simulations that allow taking into account effects of gravity and finite beam size. It is shown that a significant part of the brilliance can be transferred from the moderator to the sample. Our results may have a serious impact on the design of instruments at spallation sources such as the European Spallation Source (ESS) in Lund, Sweden.

  8. Quality improvement of partially coherent symmetric-intensity beams caused by quartic phase distortions.

    PubMed

    Martínez-Herrero, R; Mejías, P M; Piquero, G

    1992-12-01

    The effects that quartic phase distortions produce in the beam-quality parameter of partially coherent symmetric-intensitybeams are studied. An analytical expression for the beam-quality parameter at the output plane of a pure phase plate with quartic phase aberration has been derived. Explicit conditions to improve the beam quality are provided, and the corresponding optimized beam-quality value that can be attained for a given field has been determined. PMID:19798272

  9. Experimental generation of Hermite-Gauss and Ince-Gauss beams through kinoform phase holograms

    NASA Astrophysics Data System (ADS)

    Mellado-Villaseñor, Gabriel; Aguirre-Olivas, Dilia; Sánchez-de-la-Llave, David; Arrizón, Victor

    2015-08-01

    We generate Hermite-Gauss and Ince-Gauss beams by using kinoform phase holograms encoded onto a liquid crystal display. The phase transmittance of this holograms coincide with the phases of such beams. Scale versions of the desired beams appear at the Fourier domain of the KPHs. When an appropriated pupil size is employed, the method synthesizes HG and IG beams with relatively high accuracy and high efficiency. It is noted that experimental and numerical results are agreement with the theory.

  10. Single-beam phase retrieval with partially coherent light illumination

    NASA Astrophysics Data System (ADS)

    Zhou, Meiling; Min, Junwei; Gao, Peng; Liang, Yansheng; Lei, Ming; Yao, Baoli

    2016-01-01

    A single-beam phase retrieval method with partially coherent illumination is proposed. By using an obverse and reverse iterative (ORI) algorithm, objects can be reconstructed within less time by recording a sequence of diffraction patterns at different axial planes under partially coherent light illumination. Partially coherent light illumination reduces coherent noise and the number of diffraction patterns needed for reconstruction. Thus, the whole process is fast and has high immunity to external perturbation due to the reference-less configuration. Both simulation and experimental results are presented to demonstrate the feasibility of the proposed approach.

  11. Simulation of oxide phases formation under pulsed electron beam

    NASA Astrophysics Data System (ADS)

    Kryukova, O. N.; Maslov, A. L.

    2016-04-01

    This paper presents the mathematical model of evolution phase composition in the TiNi+Si system under impulsive electron beam. It was assumed that the initial coating contains small concentration of molecular oxygen. This model is one-demensional, and takes into account the phenomena of diffusion, chemical reactions, and thermal effects of chemical reactions. Results of the numerical modeling had show that the oxide of titanium and triple solution TiNiSi formed in significant amounts, and triple solution preferentially forms in the substrate. Other oxides must be formed in trace amounts.

  12. Analysis of counting errors in the phase/Doppler particle analyzer

    NASA Technical Reports Server (NTRS)

    Oldenburg, John R.

    1987-01-01

    NASA is investigating the application of the Phase Doppler measurement technique to provide improved drop sizing and liquid water content measurements in icing research. The magnitude of counting errors were analyzed because these errors contribute to inaccurate liquid water content measurements. The Phase Doppler Particle Analyzer counting errors due to data transfer losses and coincidence losses were analyzed for data input rates from 10 samples/sec to 70,000 samples/sec. Coincidence losses were calculated by determining the Poisson probability of having more than one event occurring during the droplet signal time. The magnitude of the coincidence loss can be determined, and for less than a 15 percent loss, corrections can be made. The data transfer losses were estimated for representative data transfer rates. With direct memory access enabled, data transfer losses are less than 5 percent for input rates below 2000 samples/sec. With direct memory access disabled losses exceeded 20 percent at a rate of 50 samples/sec preventing accurate number density or mass flux measurements. The data transfer losses of a new signal processor were analyzed and found to be less than 1 percent for rates under 65,000 samples/sec.

  13. Effect of initial phase on error in electron energy obtained using paraxial approximation for a focused laser pulse in vacuum

    SciTech Connect

    Singh, Kunwar Pal; Arya, Rashmi; Malik, Anil K.

    2015-09-14

    We have investigated the effect of initial phase on error in electron energy obtained using paraxial approximation to study electron acceleration by a focused laser pulse in vacuum using a three dimensional test-particle simulation code. The error is obtained by comparing the energy of the electron for paraxial approximation and seventh-order correction description of the fields of Gaussian laser. The paraxial approximation predicts wrong laser divergence and wrong electron escape time from the pulse which leads to prediction of higher energy. The error shows strong phase dependence for the electrons lying along the axis of the laser for linearly polarized laser pulse. The relative error may be significant for some specific values of initial phase even at moderate values of laser spot sizes. The error does not show initial phase dependence for a circularly laser pulse.

  14. SITE project. Phase 1: Continuous data bit-error-rate testing

    NASA Astrophysics Data System (ADS)

    Fujikawa, Gene; Kerczewski, Robert J.

    1992-09-01

    The Systems Integration, Test, and Evaluation (SITE) Project at NASA LeRC encompasses a number of research and technology areas of satellite communications systems. Phase 1 of this project established a complete satellite link simulator system. The evaluation of proof-of-concept microwave devices, radiofrequency (RF) and bit-error-rate (BER) testing of hardware, testing of remote airlinks, and other tests were performed as part of this first testing phase. This final report covers the test results produced in phase 1 of the SITE Project. The data presented include 20-GHz high-power-amplifier testing, 30-GHz low-noise-receiver testing, amplitude equalization, transponder baseline testing, switch matrix tests, and continuous-wave and modulated interference tests. The report also presents the methods used to measure the RF and BER performance of the complete system. Correlations of the RF and BER data are summarized to note the effects of the RF responses on the BER.

  15. SITE project. Phase 1: Continuous data bit-error-rate testing

    NASA Technical Reports Server (NTRS)

    Fujikawa, Gene; Kerczewski, Robert J.

    1992-01-01

    The Systems Integration, Test, and Evaluation (SITE) Project at NASA LeRC encompasses a number of research and technology areas of satellite communications systems. Phase 1 of this project established a complete satellite link simulator system. The evaluation of proof-of-concept microwave devices, radiofrequency (RF) and bit-error-rate (BER) testing of hardware, testing of remote airlinks, and other tests were performed as part of this first testing phase. This final report covers the test results produced in phase 1 of the SITE Project. The data presented include 20-GHz high-power-amplifier testing, 30-GHz low-noise-receiver testing, amplitude equalization, transponder baseline testing, switch matrix tests, and continuous-wave and modulated interference tests. The report also presents the methods used to measure the RF and BER performance of the complete system. Correlations of the RF and BER data are summarized to note the effects of the RF responses on the BER.

  16. The backward phase flow and FBI-transform-based Eulerian Gaussian beams for the Schroedinger equation

    SciTech Connect

    Leung Shingyu; Qian Jianliang

    2010-11-20

    We propose the backward phase flow method to implement the Fourier-Bros-Iagolnitzer (FBI)-transform-based Eulerian Gaussian beam method for solving the Schroedinger equation in the semi-classical regime. The idea of Eulerian Gaussian beams has been first proposed in . In this paper we aim at two crucial computational issues of the Eulerian Gaussian beam method: how to carry out long-time beam propagation and how to compute beam ingredients rapidly in phase space. By virtue of the FBI transform, we address the first issue by introducing the reinitialization strategy into the Eulerian Gaussian beam framework. Essentially we reinitialize beam propagation by applying the FBI transform to wavefields at intermediate time steps when the beams become too wide. To address the second issue, inspired by the original phase flow method, we propose the backward phase flow method which allows us to compute beam ingredients rapidly. Numerical examples demonstrate the efficiency and accuracy of the proposed algorithms.

  17. Detailed calculation of spectral noise caused by measurement errors of Mach-Zehnder interferometer optical path phases in a spatial heterodyne spectrometer with a phase shift scheme.

    PubMed

    Takada, Kazumasa; Seino, Mitsuyoshi; Chiba, Akito; Okamoto, Katsunari

    2013-04-20

    We calculate the root mean square (rms) value of the spectral noise caused by optical path phase measurement errors in a spatial heterodyne spectrometer (SHS) featuring a complex Fourier transformation. In our calculation the deviated phases of each Mach-Zehnder interferometer in the in-phase and quadrature states are treated as statistically independent random variables. We show that the rms value is proportional to the rms error of the phase measurement and that the proportionality coefficient is given analytically. The relationship enables us to estimate the potential performance of the SHS such as the sidelobe suppression ratio for a given measurement error. PMID:23669661

  18. Space telemetry degradation due to Manchester data asymmetry induced carrier tracking phase error

    NASA Technical Reports Server (NTRS)

    Nguyen, Tien M.

    1991-01-01

    The deleterious effects that the Manchester (or Bi-phi) data asymmetry has on the performance of phase-modulated residual carrier communication systems are analyzed. Expressions for the power spectral density of an asymmetric Manchester data stream, the interference-to-carrier signal power ratio (I/C), and the error probability performance are derived. Since data asymmetry can cause undesired spectral components at the carrier frequency, the I/C ratio is given as a function of both the data asymmetry and the telemetry modulation index. Also presented are the data asymmetry and asymmetry-induced carrier tracking loop and the system bit-error rate to various parameters of the models.

  19. Using Lambert W function and error function to model phase change on microfluidics

    NASA Astrophysics Data System (ADS)

    Bermudez Garcia, Anderson

    2014-05-01

    Solidification and melting modeling on microfluidics are solved using Lambert W's function and error's functions. Models are formulated using the heat's diffusion equation. The generic posed case is the melting of a slab with time dependent surface temperature, having a micro or nano-fluid liquid phase. At the beginning the solid slab is at melting temperature. A slab's face is put and maintained at temperature greater than the melting limit and varying in time. Lambert W function and error function are applied via Maple to obtain the analytic solution evolution of the front of microfluidic-solid interface, it is analytically computed and slab's corresponding melting time is determined. It is expected to have analytical results to be useful for food engineering, cooking engineering, pharmaceutical engineering, nano-engineering and bio-medical engineering.

  20. Errors incurred in a plane-wave-type expansion of a Gaussian beam. [in laser force calculations on light scattering aerosol experiments

    NASA Technical Reports Server (NTRS)

    Kattawar, G. W.

    1980-01-01

    The multipole expansion obtained by Morita et al. (1968) of the Gaussian laser beam used to levitate an aerosol particle in order that its complete phase matrix may be measured is compared with that of Tsai and Pogorzelski (1975) in order to demonstrate the effect of the incorrect expansion used by Morita. Errors incurred by the use of an equation in which one side satisfies the scalar wave equation while the other side does not and can be reduced to a plane wave amplitude are calculated as functions of the inverse of the wave number times the beam waist, the wave number times the radial spherical coordinate and the angular spherical coordinate. Errors on the order of a few percent, considered undetectable are obtained in the squared-field amplitudes due to the expansion, however, they are found to become significant (several tens of percent) when the angle is zero. It is concluded that the expansion of Morita should only be used in the regions where the spherical angle is less than 0.01 and its product with the wave number and the radial spherical coordinate is less than unity.

  1. Axially symmetric loop phase-conjugation scheme with broadband longitudinally dispersed light beams

    SciTech Connect

    Odintsov, Vladimir I

    2004-07-31

    A loop phase-conjugation scheme based on an axially symmetric four-wave interaction of focused light beams is proposed. It is shown that, when a longitudinal dispersion is introduced into the light beams, this scheme allows a phase conjugation of spatially coherent broadband radiation. The region of coherent interaction of focused longitudinally dispersed light beams is estimated. (nonlinear optical phenomena)

  2. Effects on flat-beam generation from space-charge force and beamline errors

    SciTech Connect

    Sun, Y.-E.; Kim, K.-J.; Piot, P.; /Fermilab

    2005-05-01

    The transformation of a round, angular-momentum-dominated electron beam produced in a photoinjector into a flat beam using a transformer composed of three skew-quadrupoles [1] has been developed theoretically [2, 3] and experimentally [4]. In this paper, we present numerical and analytical studies of space-charge forces, and evaluate the corresponding limits on the ratio of vertical-to-horizontal emittances. We also investigate the sensitivities of flat-beam emittances on the quadrupole misalignments in each of the six degrees of freedom.

  3. Bit error rate testing of fiber optic data links for MMIC-based phased array antennas

    NASA Technical Reports Server (NTRS)

    Shalkhauser, K. A.; Kunath, R. R.; Daryoush, A. S.

    1990-01-01

    The measured bit-error-rate (BER) performance of a fiber optic data link to be used in satellite communications systems is presented and discussed. In the testing, the link was measured for its ability to carry high burst rate, serial-minimum shift keyed (SMSK) digital data similar to those used in actual space communications systems. The fiber optic data link, as part of a dual-segment injection-locked RF fiber optic link system, offers a means to distribute these signals to the many radiating elements of a phased array antenna. Test procedures, experimental arrangements, and test results are presented.

  4. Positioning Errors of Pencil-beam Interferometers for Long TraceProfilers

    SciTech Connect

    Yashchuk, Valeriy V.

    2006-07-12

    We analyze the random noise and the systematic errors of the positioning of the interference patterns in the long trace profilers (LTP). The analysis, based on linear regression methods, allows the estimation of the contributions to the positioning error of a number of effects, including non-uniformity of the detector photo-response and pixel pitch, read-out and dark signal noise, ADC resolution, as well as signal shot noise. The dependence of the contributions on pixel size and on total number of pixels involved in positioning is derived analytically. The analysis, when applied to the LTP II available at the ALS optical metrology laboratory, has shown that the main source for the random positioning error of the interference pattern is the read-out noise estimated to be {approx}0.2 rad. The photo-diode-array photo-response and pixel pitch non-uniformity determine the magnitude of the systematic positioning error and are found to be {approx}0.3 rad for each of the effects. Recommendations for an optimal fitting strategy, detector selection and calibration are provided. Following these recommendations will allow the reduction of the error of LTP interference pattern positioning to a level adequate for the slope measurement with 0.1-rad accuracy.

  5. Simultaneous optical image compression and encryption using error-reduction phase retrieval algorithm

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Liu, Zhengjun; Liu, Shutian

    2015-12-01

    We report a simultaneous image compression and encryption scheme based on solving a typical optical inverse problem. The secret images to be processed are multiplexed as the input intensities of a cascaded diffractive optical system. At the output plane, a compressed complex-valued data with a lot fewer measurements can be obtained by utilizing error-reduction phase retrieval algorithm. The magnitude of the output image can serve as the final ciphertext while its phase serves as the decryption key. Therefore the compression and encryption are simultaneously completed without additional encoding and filtering operations. The proposed strategy can be straightforwardly applied to the existing optical security systems that involve diffraction and interference. Numerical simulations are performed to demonstrate the validity and security of the proposal.

  6. Silicon ion irradiation effects on the magnetic properties of ion beam synthesized CoPt phase

    SciTech Connect

    Balaji, S.; Amirthapandian, S.; Panigrahi, B. K.; Mangamma, G.; Kalavathi, S.; Gupta, Ajay; Nair, K. G. M.

    2012-06-05

    Ion beam mixing of Pt/Co bilayers using self ion (Pt{sup +}) beam results in formation of CoPt phase. Upon ion beam annealing the ion mixed samples using 4 MeV Si{sup +} ions at 300 deg. C, diffusion of Co towards the Pt/Co interface is observed. The Si{sup +} ion beam rotates the magnetization of the CoPt phase from in plane to out of plane of the film.

  7. Realization of a phase bunching effect for minimization of beam phase width in a central region of an AVF cyclotron

    NASA Astrophysics Data System (ADS)

    Miyawaki, Nobumasa; Fukuda, Mitsuhiro; Kurashima, Satoshi; Okumura, Susumu; Kashiwagi, Hirotsugu; Nara, Takayuki; Ishibori, Ikuo; Yoshida, Ken-ichi; Yokota, Watalu; Nakamura, Yoshiteru; Arakawa, Kazuo; Kamiya, Tomihiro

    2011-04-01

    A phase bunching effect has been achieved for the first time using a rising slope of the dee voltage waveform produced at the first acceleration gap between the RF shielding cover of the inflector and the puller in the new central region of the JAEA AVF cyclotron. The feasibility of the phase bunching effect in the central region for a two-dee system with a span angle of 86° in three acceleration harmonic modes was assessed by a simple geometrical analysis of particle trajectories and a three-dimensional beam orbit simulation using the calculated electric field and a measured magnetic field. The simulation indicated that the initial beam phase width of 40 RF degrees is compressed to 11 RF degrees (about 28% of the initial phase width) in the second harmonic mode. A phase width of 1.5 RF degrees FWHM for a 260 MeV 20Ne7+ beam accelerated in the second harmonic mode was observed when using a 4 mm phase slit gap. The phase width reduction was considerably enhanced by the bunching effect, compared with the beam phase width of 7.3 RF degrees FWHM in the same harmonic mode for a 10 MeV H+ beam accelerated in the original central region. The ratio of the beam current for the 1.5 RF degrees FWHM phase width with 4 mm phase slit gap restriction to the full beam current without the phase slit was drastically improved to 80%, while the beam current was less than 1% of the full beam when narrowing the phase slit gap to obtain the 7.3 RF degrees FWHM phase width in the original central region.

  8. The study of the structural stability of the spiral laser beams propagation through inhomogeneous phase medium

    NASA Astrophysics Data System (ADS)

    Zinchik, Alexander A.; Muzychenko, Yana B.

    2015-06-01

    This paper discusses theoretical and experimental results of the investigation of light beams that retain their intensity structure during propagation and focusing. Spiral laser beams are a family of laser beams that preserve the structural stability up to scale and rotation with the propagation. Properties of spiral beams are of practical interest for laser technology, medicine and biotechnology. Researchers use a spiral beams for movement and manipulation of microparticles. Functionality laser manipulators can be significantly enhanced by using spiral beams whose intensity remains invariable. It is well known, that these beams has non-zero orbital angular momentum. Spiral beams have a complicated phase distribution in cross section. In this paper we investigate the structural stability of the laser beams having a spiral phase structure by passing them through an inhomogeneous phase medium. Laser beam is passed through a medium is characterized by a random distribution of phase in the range 0..2π. The modeling was performed using VirtualLab 5.0 (manufacturer LightTrans GmbH). Compared the intensity distribution of the spiral and ordinary laser beam after the passage of the inhomogeneous medium. It is shown that the spiral beams exhibit a significantly better structural stability during the passage phase heterogeneous environments than conventional laser beams. The results obtained in the simulation are tested experimentally. Experimental results show good agreement with the theoretical results.

  9. Phase conjugation upon SBS of a focused laser speckle beam

    SciTech Connect

    Bogachev, V A; Kochemasov, G G; Starikov, F A

    2008-09-30

    The phase conjugation (PC) of a focused Gaussian laser beam with a partial spatial coherence of the wave front is studied numerically and theoretically upon SBS within the framework of a three-dimensional nonstationary SBS model, which takes into account transient processes and SBS saturation. The dependences of the PC coefficient h on the laser radiation power are obtained for different excesses of the angular divergence over the diffraction limit {xi}. It is found that for the given reflectance of laser radiation from the SBS mirror, the PC coefficient monotonically decreases with increasing the divergence. For example, under the near threshold SBS conditions, h decreases from 70% to 30%, when {xi} increases from 1 to 10. For the given divergence, the PC coefficient increases with increasing the reflectance and approaches the ideal one (h > 90%) upon deep SBS saturation, when the reflectance exceeds 90%-95%. (nonlinear optical phenomena)

  10. Time-delayed directional beam phased array antenna

    DOEpatents

    Fund, Douglas Eugene; Cable, John William; Cecil, Tony Myron

    2004-10-19

    An antenna comprising a phased array of quadrifilar helix or other multifilar antenna elements and a time-delaying feed network adapted to feed the elements. The feed network can employ a plurality of coaxial cables that physically bridge a microstrip feed circuitry to feed power signals to the elements. The cables provide an incremental time delay which is related to their physical lengths, such that replacing cables having a first set of lengths with cables having a second set of lengths functions to change the time delay and shift or steer the antenna's main beam. Alternatively, the coaxial cables may be replaced with a programmable signal processor unit adapted to introduce the time delay using signal processing techniques applied to the power signals.

  11. Efficient generation of Hermite-Gauss and Ince-Gauss beams through kinoform phase elements.

    PubMed

    Aguirre-Olivas, Dilia; Mellado-Villaseñor, Gabriel; Sánchez-de-la-Llave, David; Arrizón, Victor

    2015-10-01

    We discuss the generation of Hermite-Gauss and Ince-Gauss beams employing phase elements whose transmittances coincide with the phase modulations of such beams. A scaled version of the desired field appears, distorted by marginal optical noise, at the element's Fourier domain. The motivation to perform this study is that, in the context of the proposed approach, the desired beams are generated with the maximum possible efficiency. A disadvantage of the method is the distortion of the desired beams by the influence of several nondesired beam modes generated by the phase elements. We evaluate such distortion employing the root mean square deviation as a figure of merit. PMID:26479622

  12. Impacts of double-ended beam-pointing error on system performance

    NASA Astrophysics Data System (ADS)

    Horkin, Phil R.

    2000-05-01

    Optical Intersatellite links have been investigated for many years, but to date have enjoyed few spaceborne applications. The literature is rich in articles describing system issues such as jitter and pointing effects, but this author believes that simplifications generally made lead to significant errors. Simplifications made, for example, due to the complexity of joint distribution functions are easily overcome with widely available computer tools. Satellite- based data transport systems must offer similar Quality of Service (QoS) parameters as fiber-based transport. The movement to packet-based protocols adds additional constraints not often considered in past papers. BER may no longer be the dominant concern; packet loss, misdelivery, or severely corrupted packets can easily dominate the error budgets. The aggregation of static and dynamic pointing errors on both ends of such a link dramatically reduces the QoS. The approach described in this paper provides the terminal designer the methodology to analytically balance the impacts of these error sources against implementation solutions.

  13. Analysis of errors detected in external beam audit dosimetry program at Mexican radiotherapy centers

    NASA Astrophysics Data System (ADS)

    Álvarez-Romero, José T.; Tovar-Muñoz, Víctor M.

    2012-10-01

    Presented and analyzed are the causes of deviation observed in the pilot postal dosimetry audit program to verify the absorbed dose to water Dw in external beams of teletherapy 60Co and/or linear accelerators in Mexican radiotherapy centers, during the years 2007-2011.

  14. Creating Ruddlesden-Popper phases by hybrid molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Haislmaier, Ryan C.; Stone, Greg; Alem, Nasim; Engel-Herbert, Roman

    2016-07-01

    The synthesis of a 50 unit cell thick n = 4 Srn+1TinO3n+1 (Sr5Ti4O13) Ruddlesden-Popper (RP) phase film is demonstrated by sequentially depositing SrO and TiO2 layers in an alternating fashion using hybrid molecular beam epitaxy (MBE), where Ti was supplied using titanium tetraisopropoxide (TTIP). A detailed calibration procedure is outlined for determining the shuttering times to deposit SrO and TiO2 layers with precise monolayer doses using in-situ reflection high energy electron diffraction (RHEED) as feedback. Using optimized Sr and TTIP shuttering times, a fully automated growth of the n = 4 RP phase was carried out over a period of >4.5 h. Very stable RHEED intensity oscillations were observed over the entire growth period. The structural characterization by X-ray diffraction and high resolution transmission electron microscopy revealed that a constant periodicity of four SrTiO3 perovskite unit cell blocks separating the double SrO rocksalt layer was maintained throughout the entire film thickness with a very little amount of planar faults oriented perpendicular to the growth front direction. These results illustrate that hybrid MBE is capable of layer-by-layer growth with atomic level precision and excellent flux stability.

  15. Method of phase space beam dilution utilizing bounded chaos generated by rf phase modulation

    NASA Astrophysics Data System (ADS)

    Pham, Alfonse N.; Lee, S. Y.; Ng, K. Y.

    2015-12-01

    This paper explores the physics of chaos in a localized phase-space region produced by rf phase modulation applied to a double rf system. The study can be exploited to produce rapid particle bunch broadening exhibiting longitudinal particle distribution uniformity. Hamiltonian models and particle-tracking simulations are introduced to understand the mechanism and applicability of controlled particle diffusion. When phase modulation is applied to the double rf system, regions of localized chaos are produced through the disruption and overlapping of parametric resonant islands and configured to be bounded by well-behaved invariant tori to prevent particle loss. The condition of chaoticity and the degree of particle dilution can be controlled by the rf parameters. The method has applications in alleviating adverse space-charge effects in high-intensity beams, particle bunch distribution uniformization, and industrial radiation-effects experiments.

  16. Correction of timing errors in photomultiplier tubes used in phase-modulation fluorometry.

    PubMed

    Lakowicz, J R; Cherek, H; Balter, A

    1981-09-01

    The measurement of fluorescence lifetimes is known to be hindered by the wavelength-dependent and photocathode area-dependent time response of photomultiplier tubes. A simple and direct method is described to minimize these effects in photomultiplier tubes used for phase-modulation fluorometry. Reference fluorophores of known lifetime were used in place of the usual scattering reference. The emission wavelengths of the reference and sample were matched by either filters or a monochromator, and the use of a fluorophore rather than a scatterer decreases the differences in spatial distribution of light emanating from the reference and sample. Thus photomultiplier tube artifacts are minimized. Five reference fluorophores were selected on the basis of availability, ease of solution preparation, and constancy of lifetime with temperature and emission wavelength. These compounds are p-terphenyl, PPO, PPD, POPOP and dimethyl POPOP. These compounds are dissolved in ethanol to give standard solutions that can be used over the temperature range from -55 to +55 degrees C. Purging with inert gas is not necessary. The measured phase and modulation of the reference solution is used, in conjunction with the known reference lifetime, to calculate the actual phase and modulation of the excitation beam. The use of standard fluorophores does not require separate experiments to quantify photomultiplier effects, and does not increase the time required for the measurement of fluorescence lifetimes. Examples are presented which demonstrate the elimination of artifactual photomultiplier effects in measurements of the lifetimes of NADH (0.4 ns) and indole solutions quenched by iodide. In addition, the use of these reference solutions increases the accuracy of fluorescence lifetime measurements ranging to 30 ns. We judge this method to provide more reliable lifetime measurements by the phase and modulation method. The test solutions and procedures we describe may be used by other

  17. Complex phase error and motion estimation in synthetic aperture radar imaging

    NASA Astrophysics Data System (ADS)

    Soumekh, M.; Yang, H.

    1991-06-01

    Attention is given to a SAR wave equation-based system model that accurately represents the interaction of the impinging radar signal with the target to be imaged. The model is used to estimate the complex phase error across the synthesized aperture from the measured corrupted SAR data by combining the two wave equation models governing the collected SAR data at two temporal frequencies of the radar signal. The SAR system model shows that the motion of an object in a static scene results in coupled Doppler shifts in both the temporal frequency domain and the spatial frequency domain of the synthetic aperture. The velocity of the moving object is estimated through these two Doppler shifts. It is shown that once the dynamic target's velocity is known, its reconstruction can be formulated via a squint-mode SAR geometry with parameters that depend upon the dynamic target's velocity.

  18. Relative position determination of a lunar rover using the biased differential phase delay of same-beam VLBI

    NASA Astrophysics Data System (ADS)

    Chen, Ming; Liu, Qinghui; Wu, Yajun; Zhao, Rongbing; Dai, Zhiqiang

    2011-12-01

    When only data transmission signals with a bandwidth of 1 MHz exist in the rover, the position can be obtained using the differential group delay data of the same-beam very long baseline interferometry (VLBI). The relative position between a lunar rover and a lander can be determined with an error of several hundreds of meters. When the guidance information of the rover is used to determine relative position, the rover's wheel skid behavior and integral movement may influence the accuracy of the determined position. This paper proposes a new method for accurately determining relative position. The differential group delay and biased differential phase delay are obtained from the same-beam VLBI observation, while the modified biased differential phase delay is obtained using the statistic mean value of the differential group delay and the biased phase delay as basis. The small bias in the modified biased phase delay is estimated together with other parameters when the relative position of the rover is calculated. The effectiveness of the proposed method is confirmed using the same-beam VLBI observation data of SELENE. The radio sources onboard the rover and the lander are designed for same-beam VLBI observations. The results of the simulations of the differential delay of the same-beam VLBI observation between the rover and the lander show that the differential delay is sensitive to relative position. An approach to solving the relative position and a strategy for tracking are also introduced. When the lunar topography data near the rover are used and the observations are scheduled properly, the determined relative position of the rover may be nearly as accurate as that solved using differential phase delay data.

  19. Propagation of Gaussian beams through a modified von Karman phase screen

    NASA Astrophysics Data System (ADS)

    Whitfield, Erica M.; Banerjee, Partha P.; Haus, Joseph W.

    2012-10-01

    Gaussian beam propagation through a thin screen and an extended random media has been studied using a beam propagation method. We use the modified von Karman spectrum model to describe the phase screen statistics. The scintillation index is analyzed as a function of the structure constant, phase screen location, the initial width and curvature of the Gaussian beam, etc. The numerical simulations are extended using a pair of Gaussian beams. We examine the interference of the beams and measure the fringe visibility at the target. The results are correlated with the scintillation index.

  20. Growth and phase velocity of self-modulated beam-driven plasma waves.

    PubMed

    Schroeder, C B; Benedetti, C; Esarey, E; Grüner, F J; Leemans, W P

    2011-09-30

    A long, relativistic particle beam propagating in an overdense plasma is subject to the self-modulation instability. This instability is analyzed and the growth rate is calculated, including the phase relation. The phase velocity of the wake is shown to be significantly less than the beam velocity. These results indicate that the energy gain of a plasma accelerator driven by a self-modulated beam will be severely limited by dephasing. In the long-beam, strongly coupled regime, dephasing is reached in a homogeneous plasma in less than four e foldings, independent of beam-plasma parameters. PMID:22107202

  1. Growth and Phase Velocity of Self-Modulated Beam-Driven Plasma Waves

    SciTech Connect

    Schroeder, C. B.; Benedetti, C.; Esarey, E.; Leemans, W. P.; Gruener, F. J.

    2011-09-30

    A long, relativistic particle beam propagating in an overdense plasma is subject to the self-modulation instability. This instability is analyzed and the growth rate is calculated, including the phase relation. The phase velocity of the wake is shown to be significantly less than the beam velocity. These results indicate that the energy gain of a plasma accelerator driven by a self-modulated beam will be severely limited by dephasing. In the long-beam, strongly coupled regime, dephasing is reached in a homogeneous plasma in less than four e foldings, independent of beam-plasma parameters.

  2. Growth and phase velocity of self-modulated beam-driven plasma waves

    SciTech Connect

    Benedetti, Carlo; Esarey, Eric; Gruener, Florian; Leemans, Wim

    2011-09-20

    A long, relativistic particle beam propagating in an overdense plasma is subject to the self-modulation instability. This instability is analyzed and the growth rate is calculated, including the phase relation. The phase velocity of the wake is shown to be significantly less than the beam velocity. These results indicate that the energy gain of a plasma accelerator driven by a self-modulated beam will be severely limited by dephasing. In the long-beam, strongly-coupled regime, dephasing is reached in a homogeneous plasma in less than four e-foldings, independent of beam-plasma parameters.

  3. Correction of vignetting and distortion errors induced by two-axis light beam steering

    PubMed Central

    Gao, Liang; Tkaczyk, Tomasz S.

    2012-01-01

    A mirror facet’s angle correction approach is presented for eliminating pupil plane distortions and sub-field image vignetting in the image mapping spectrometry (IMS). The two-axis light reflection problem on the image mapper is solved and a rigorous analytical solution is provided. The cellular fluorescence imaging experiment demonstrates that, with an angle-corrected image mapper, the acquired image quality of spectral channels has been significantly improved compared to previous IMS images. The proposed mathematical model can also be used in solving general two-axis beam steering problems for instruments with active optical mirrors. PMID:24976654

  4. Combining the switched-beam and beam-steering capabilities in a 2-D phased array antenna system

    NASA Astrophysics Data System (ADS)

    Tsai, Yi-Che; Chen, Yin-Bing; Hwang, Ruey-Bing

    2016-01-01

    This paper presents the development, fabrication, and measurement of a novel beam-forming system consisting of 16 subarray antennas, each containing four aperture-coupled patch antennas, and the application of this system in smart wireless communication systems. The beam patterns of each of the subarray antennas can be switched toward one of nine zones over a half space by adjusting the specific phase delay angles among the four antenna elements. Furthermore, when all subarrays are pointed at the same zone, slightly continuous beam steering in around 1° increments can be achieved by dynamically altering the progressive phase delay angle among the subarrays. Phase angle calibration was implemented by coupling each transmitter output and down converter into the in-phase/quadrature baseband to calculate the correction factor to the weight. In addition, to validate the proposed concepts and the fabricated 2-D phased array antenna system, this study measured the far-field radiation patterns of the aperture-coupled patch array integrated with feeding networks and a phase-calibration system to carefully verify its spatially switched-beam and beam-steering characteristics at a center frequency of 2.4 GHz which can cover the industrial, scientific, and medical band and some long-term evolution applications. In addition, measured results were compared with calculated results, and agreement between them was observed.

  5. On detector linearity and precision of beam shift detection for quantitative differential phase contrast applications.

    PubMed

    Zweck, Josef; Schwarzhuber, Felix; Wild, Johannes; Galioit, Vincent

    2016-09-01

    Differential phase contrast is a STEM imaging mode where minute sideways deflections of the electron probe are monitored, usually by using a position sensitive device (Chapman, 1984 [1]; Lohr et al., 2012 [2]) or, alternatively in some cases, a fast camera (Müller et al., 2012 [3,4]; Yang et al., 2015 [5]; Pennycook et al., 2015 [6]) as a pixelated detector. While traditionally differential phase contrast electron microscopy was mainly focused on investigations of micro-magnetic domain structures and their specific features, such as domain wall widths, etc. (Chapman, 1984 [1]; Chapman et al., 1978, 1981, 1985 [7-9]; Sannomiya et al., 2004 [10]), its usage has recently been extended to mesoscopic (Lohr et al., 2012, 2016 [2,12]; Bauer et al., 2014 [11]; Shibata et al., 2015 [13]) and nano-scale electric fields (Shibata et al., 2012 [14]; Mueller et al., 2014 [15]). In this paper, the various interactions which can cause a beam deflection are reviewed and expanded by two so far undiscussed mechanisms which may be important for biological applications. As differential phase contrast microscopy strongly depends on the ability to detect minute beam deflections we first treat the linearity problem for an annular four quadrant detector and then determine the factors which limit the minimum measurable deflection angle, such as S/N ratio, current density, dwell time and detector geometry. Knowing these factors enables the experimenter to optimize the set-up for optimum performance of the microscope and to get a clear figure for the achievable field resolution error margins. PMID:27376783

  6. Twist phase-induced polarization changes in electromagnetic Gaussian Schell-model beams

    NASA Astrophysics Data System (ADS)

    Cai, Y.; Korotkova, O.

    2009-08-01

    Electromagnetic Gaussian Schell-model (EGSM) beam with twist phase (i.e., twisted EGSM beam) is introduced as an extension of its scalar version based on the unified theory of coherence and polarization. We show how analytical paraxial propagation formulae of isotropic and anisotropic EGSM beams passing through a general astigmatic ABCD optical system can be modified in the presence of the twist phase. Numerical examples demonstrate that the twist phase affects the spectral density, the state of coherence, and the degree of polarization of EGSM beams on propagation.

  7. Arbitrary polarized beams generated and detected by one phase-only LC-SLM

    NASA Astrophysics Data System (ADS)

    Chen, Dong; Qi, Junli; Wang, Weihua; Chen, Yu; Gu, Guohua; Chu, Delin; Zhang, Qianghua; Deng, Haifei; Zhao, Sugui; Han, Jiajia; Wang, Rongfei

    2014-09-01

    Arbitrary polarized beams, including homogeneously polarized beams and cylindrical vector beams, have been generated by an experimental setup with one phase-only liquid crystal spatial light modulator, and a four-path method was demonstrated to measure the polarization degree of detected beams. Besides, another method was proposed to measure the polarization directions of cylindrical vector beams. The polarized states can be calculated by controlling the spatial light modulator and optical intensity obtained from a CCD. The generation setup and detection methods have simple structure and low cost, and they are available for multi wavelength input beams, and the detection methods can realize real-time and on-line measurement.

  8. Generation of optical crystals and quasicrystal beams: Kaleidoscopic patterns and phase singularity

    SciTech Connect

    Chen, Y. F.; Liang, H. C.; Lin, Y. C.; Tzeng, Y. S.; Su, K. W.; Huang, K. F.

    2011-05-15

    We explore the feasibility of the generation of pseudonondiffracting optical beams related to crystal and quasicrystal structures. It is experimentally confirmed that optical crystal and quasicrystal beams can be remarkably generated with a collimated light to illuminate a high-precision mask with multiple apertures regularly distributed on a ring. We also found that exotic kaleidoscopic patterns can be exhibited with the high-order quasicrystal beams. More importantly, the structures of phase singularities in optical quasicrystal beams are manifested.

  9. Effects of errors in velocity tilt on maximum longitudinal compression during neutralized drift compression of intense beam pulses: I. general description

    SciTech Connect

    Kaganovich, Igor D.; Massidda, Scottt; Startsev, Edward A.; Davidson, Ronald C.; Vay, Jean-Luc; Friedman, Alex

    2012-06-21

    Neutralized drift compression offers an effective means for particle beam pulse compression and current amplification. In neutralized drift compression, a linear longitudinal velocity tilt (head-to-tail gradient) is applied to the non-relativistic beam pulse, so that the beam pulse compresses as it drifts in the focusing section. The beam current can increase by more than a factor of 100 in the longitudinal direction. We have performed an analytical study of how errors in the velocity tilt acquired by the beam in the induction bunching module limit the maximum longitudinal compression. It is found that the compression ratio is determined by the relative errors in the velocity tilt. That is, one-percent errors may limit the compression to a factor of one hundred. However, a part of the beam pulse where the errors are small may compress to much higher values, which are determined by the initial thermal spread of the beam pulse. It is also shown that sharp jumps in the compressed current density profile can be produced due to overlaying of different parts of the pulse near the focal plane. Examples of slowly varying and rapidly varying errors compared to the beam pulse duration are studied. For beam velocity errors given by a cubic function, the compression ratio can be described analytically. In this limit, a significant portion of the beam pulse is located in the broad wings of the pulse and is poorly compressed. The central part of the compressed pulse is determined by the thermal spread. The scaling law for maximum compression ratio is derived. In addition to a smooth variation in the velocity tilt, fast-changing errors during the pulse may appear in the induction bunching module if the voltage pulse is formed by several pulsed elements. Different parts of the pulse compress nearly simultaneously at the target and the compressed profile may have many peaks. The maximum compression is a function of both thermal spread and the velocity errors. The effects of the

  10. Experimental generation of Mathieu-Gauss beams with a phase-only spatial light modulator.

    PubMed

    Hernández-Hernández, R J; Terborg, R A; Ricardez-Vargas, I; Volke-Sepúlveda, K

    2010-12-20

    We present a novel method for the efficient generation of even, odd, and helical Mathieu-Gauss beams of arbitrary order and ellipticity by means of a phase-only spatial light modulator (SLM). Our method consists of displaying the phase of the desired beam in the SLM; the reconstructed field is obtained on-axis following a spatial filtering process with an annular aperture. The propagation invariance and topological properties of the generated beams are investigated numerically and experimentally. PMID:21173824

  11. The Gouy phase anomaly for harmonic and time-domain paraxial Gaussian beams

    NASA Astrophysics Data System (ADS)

    Nowack, Robert L.; Kainkaryam, Sribharath M.

    2011-02-01

    The Gouy phase anomaly resulting from the focusing of wave solutions is illustrated using 2-D paraxial Gaussian beams. For harmonic Gaussian beams, this gives rise to a continuous variation of the Gouy phase as a function of propagation distance. This is in contrast to the discontinuous phase anomaly at caustics for ray solutions. However, as the beam-width of a Gaussian beam at a focus gets smaller, the Gouy phase anomaly becomes more concentrated near the focus and approaches that of the ray solution. The Gouy phase for a harmonic Gaussian beam is first illustrated in a homogeneous medium, and then in a quadratic velocity waveguide where the beam can pass through multiple focus points. However for multiple focus points, care must be taken to ensure that the phase remains continuous. Finally, an example is shown of the Gouy phase for a time-domain signal using a Gabor wavelet. This is validated using the finite difference method, and illustrates the progressive phase advance of a time-domain signal modifying the pulse shape with distance. Intuitively, as a wave solution gets `squeezed' at a focus, it `squirts' forward by slightly increasing its apparent speed in the propagation direction and modifying the pulse shape. However, this is a phase advance and not a group or energy advance and does not violate causality. Nonetheless, this could potentially influence the interpretation of travel-times using correlation techniques when using sources that generate beamed signals, for example from transducer sources in the laboratory.

  12. Effect of beam broadening on the VHF Doppler mini-radar simple method for correcting wind velocity errors

    NASA Astrophysics Data System (ADS)

    Candusso, J.-P.; Crochet, M.

    2001-01-01

    A Doppler VHF mini-radar has been developed at LSEET (Laboratoire de Sondages de l'Environnement Terrestre) to permit investigations at low altitudes, where classical large ST-VHF profilers are blind in the first kilometers of the atmosphere, and UHF boundary layer radars are disturbed by precipitations, birds and insects echoes. Due to a small size of the antenna array, beam broadening effects are important and can provide errors in the atmospheric parameter estimation (reflectivity and wind velocity). A simple overlapping correction method based on the decomposition of the power spectrum is employed to retrieve wind velocity profiles. Measurements from a high-resolution ST radar are used as a benchmark which allows data comparisons and evaluation of this new method.

  13. Developing an Error Model for Ionospheric Phase Distortions in L-Band SAR and InSAR Data

    NASA Astrophysics Data System (ADS)

    Meyer, F. J.; Agram, P. S.

    2014-12-01

    Many of the recent and upcoming spaceborne SAR systems are operating in the L-band frequency range. The choice of L-band has a number of advantages especially for InSAR applications. These include deeper penetration into vegetation, higher coherence, and higher sensitivity to soil moisture. While L-band SARs are undoubtedly beneficial for a number of earth science disciplines, their signals are susceptive to path delay effects in the ionosphere. Many recent publications indicate that the ionosphere can have detrimental effects on InSAR coherence and phase. It has also been shown that the magnitude of these effects strongly depends on the time of day and geographic location of the image acquisition as well as on the coincident solar activity. Hence, in order to provide realistic error estimates for geodetic measurements derived from L-band InSAR, an error model needs to be developed that is capable of describing ionospheric noise. With this paper, we present a global ionospheric error model that is currently being developed in support of NASA's future L-band SAR mission NISAR. The system is based on a combination of empirical data analysis and modeling input from the ionospheric model WBMOD, and is capable of predicting ionosphere-induced phase noise as a function of space and time. The error model parameterizes ionospheric noise using a power spectrum model and provides the parameters of this model in a global 1x1 degree raster. From the power law model, ionospheric errors in deformation estimates can be calculated. In Polar Regions, our error model relies on a statistical analysis of ionospheric-phase noise in a large number of SAR data from previous L-band SAR missions such as ALOS PALSAR and JERS-1. The focus on empirical analyses is due to limitations of WBMOD in high latitude areas. Outside of the Polar Regions, the ionospheric model WBMOD is used to derive ionospheric structure parameters for as a function of solar activity. The structure parameters are

  14. Effects of Random Circuit Fabrication Errors on Small Signal Gain and on Output Phase In a Traveling Wave Tube

    NASA Astrophysics Data System (ADS)

    Rittersdorf, I. M.; Antonsen, T. M., Jr.; Chernin, D.; Lau, Y. Y.

    2011-10-01

    Random fabrication errors may have detrimental effects on the performance of traveling-wave tubes (TWTs) of all types. A new scaling law for the modification in the average small signal gain and in the output phase is derived from the third order ordinary differential equation that governs the forward wave interaction in a TWT in the presence of random error that is distributed along the axis of the tube. Analytical results compare favorably with numerical results, in both gain and phase modifications as a result of random error in the phase velocity of the slow wave circuit. Results on the effect of the reverse-propagating circuit mode will be reported. This work supported by AFOSR, ONR, L-3 Communications Electron Devices, and Northrop Grumman Corporation.

  15. Biometrics based key management of double random phase encoding scheme using error control codes

    NASA Astrophysics Data System (ADS)

    Saini, Nirmala; Sinha, Aloka

    2013-08-01

    In this paper, an optical security system has been proposed in which key of the double random phase encoding technique is linked to the biometrics of the user to make it user specific. The error in recognition due to the biometric variation is corrected by encoding the key using the BCH code. A user specific shuffling key is used to increase the separation between genuine and impostor Hamming distance distribution. This shuffling key is then further secured using the RSA public key encryption to enhance the security of the system. XOR operation is performed between the encoded key and the feature vector obtained from the biometrics. The RSA encoded shuffling key and the data obtained from the XOR operation are stored into a token. The main advantage of the present technique is that the key retrieval is possible only in the simultaneous presence of the token and the biometrics of the user which not only authenticates the presence of the original input but also secures the key of the system. Computational experiments showed the effectiveness of the proposed technique for key retrieval in the decryption process by using the live biometrics of the user.

  16. A line scanned light-sheet microscope with phase shaped self-reconstructing beams.

    PubMed

    Fahrbach, Florian O; Rohrbach, Alexander

    2010-11-01

    We recently demonstrated that Microscopy with Self-Reconstructing Beams (MISERB) increases both image quality and penetration depth of illumination beams in strongly scattering media. Based on the concept of line scanned light-sheet microscopy, we present an add-on module to a standard inverted microscope using a scanned beam that is shaped in phase and amplitude by a spatial light modulator. We explain technical details of the setup as well as of the holograms for the creation, positioning and scaling of static light-sheets, Gaussian beams and Bessel beams. The comparison of images from identical sample areas illuminated by different beams allows a precise assessment of the interconnection between beam shape and image quality. The superior propagation ability of Bessel beams through inhomogeneous media is demonstrated by measurements on various scattering media. PMID:21164769

  17. Semiconductor diode laser having an intracavity spatial phase controller for beam control and switching

    DOEpatents

    Hohimer, J.P.

    1994-06-07

    A high-power broad-area semiconductor laser having a intracavity spatial phase controller is disclosed. The integrated intracavity spatial phase controller is easily formed by patterning an electrical contact metallization layer when fabricating the semiconductor laser. This spatial phase controller changes the normally broad far-field emission beam of such a laser into a single-lobed near-diffraction-limited beam at pulsed output powers of over 400 mW. Two operating modes, a thermal and a gain operating mode, exist for the phase controller, allowing for steering and switching the beam as the modes of operation are switched, and the emission beam may be scanned, for example, over a range of 1.4 degrees or switched by 8 degrees. More than one spatial phase controller may be integrated into the laser structure. 6 figs.

  18. Semiconductor diode laser having an intracavity spatial phase controller for beam control and switching

    DOEpatents

    Hohimer, John P.

    1994-01-01

    A high-power broad-area semiconductor laser having a intracavity spatial phase controller is disclosed. The integrated intracavity spatial phase controller is easily formed by patterning an electrical contact metallization layer when fabricating the semiconductor laser. This spatial phase controller changes the normally broad far-field emission beam of such a laser into a single-lobed near-diffraction-limited beam at pulsed output powers of over 400 mW. Two operating modes, a thermal and a gain operating mode, exist for the phase controller, allowing for steering and switching the beam as the modes of operation are switched, and the emission beam may be scanned, for example, over a range of 1.4 degrees or switched by 8 degrees. More than one spatial phase controller may be integrated into the laser structure.

  19. Hermite-Gaussian beams with self-forming spiral phase distribution

    NASA Astrophysics Data System (ADS)

    Zinchik, Alexander A.; Muzychenko, Yana B.

    2014-05-01

    Spiral laser beams is a family of laser beams that preserve the structural stability up to scale and rotate with the propagation. Properties of spiral beams are of practical interest for laser technology, medicine and biotechnology. Researchers use a spiral beams for movement and manipulation of microparticles. Spiral beams have a complicated phase distribution in cross section. This paper describes the results of analytical and computer simulation of Hermite-Gaussian beams with self-forming spiral phase distribution. In the simulation used a laser beam consisting of the sum of the two modes HG TEMnm and TEMn1m1. The coefficients n1, n, m1, m were varied. Additional phase depending from the coefficients n, m, m1, n1 imposed on the resulting beam. As a result, formed the Hermite Gaussian beam phase distribution which takes the form of a spiral in the process of distribution. For modeling was used VirtualLab 5.0 (manufacturer LightTrans GmbH).

  20. Amplitude and phase beam characterization using a two-dimensional wavefront sensor

    SciTech Connect

    Neal, D.R.; Alford, W.J.; Gruetzner, J.K.; Warren, M.E.

    1996-09-01

    We have developed a two-dimensional Shack-Hartman wavefront sensor that uses binary optic lenslet arrays to directly measure the wavefront slope (phase gradient) and amplitude of the laser beam. This sensor uses an array of lenslets that dissects the beam into a number of samples. The focal spot location of each of these lenslets (measured by a CCD camera) is related to the incoming wavefront slope over the lenslet. By integrating these measurements over the laser aperture, the wavefront or phase distribution can be determined. Since the power focused by each lenslet is also easily determined, this allows a complete measurement of the intensity and phase distribution of the laser beam. Furthermore, all the information is obtained in a single measurement. Knowing the complete scalar field of the beam allows the detailed prediction of the actual beam`s characteristics along its propagation path. In particular, the space- beamwidth product M{sup 2}, can be obtained in a single measurement. The intensity and phase information can be used in concert with information about other elements in the optical train to predict the beam size, shape, phase and other characteristics anywhere in the optical train. We present preliminary measurements of an Ar{sup +} laser beam and associated M{sup 2} calculations.

  1. The effects of receiver tracking phase error on the performance of the concatenated Reed-Solomon/Viterbi channel coding system

    NASA Technical Reports Server (NTRS)

    Liu, K. Y.

    1981-01-01

    Analytical and experimental results are presented of the effects of receiver tracking phase error, caused by weak signal conditions on either the uplink or the downlink or both, on the performance of the concatenated Reed-Solomon (RS) Viterbi channel coding system. The test results were obtained under an emulated S band uplink and X band downlink, two way space communication channel in the telecommunication development laboratory of JPL with data rates ranging from 4 kHz to 20 kHz. It is shown that, with ideal interleaving, the concatenated RS/Viterbi coding system is capable of yielding large coding gains at very low bit error probabilities over the Viterbi decoded convolutional only coding system. Results on the effects of receiver tracking phase errors on the performance of the concatenated coding system with antenna array combining are included.

  2. Longitudinal phase-space coating of beam in a storage ring

    NASA Astrophysics Data System (ADS)

    Bhat, C. M.

    2014-06-01

    In this Letter, I report on a novel scheme for beam stacking without any beam emittance dilution using a barrier rf system in synchrotrons. The general principle of the scheme called longitudinal phase-space coating, validation of the concept via multi-particle beam dynamics simulations applied to the Fermilab Recycler, and its experimental demonstration are presented. In addition, it has been shown and illustrated that the rf gymnastics involved in this scheme can be used in measuring the incoherent synchrotron tune spectrum of the beam in barrier buckets and in producing a clean hollow beam in longitudinal phase space. The method of beam stacking in synchrotrons presented here is the first of its kind.

  3. Phase Space Tomography: A Simple, Portable and Accurate Technique to Map Phase Spaces of Beams with Space Charge

    SciTech Connect

    Stratakis, D.; Kishek, R. A.; Bernal, S.; Walter, M.; Haber, I.; Fiorito, R.; Thangaraj, J. C. T.; Quinn, B.; Reiser, M.; O'Shea, P. G.; Li, H.

    2006-11-27

    In order to understand the charged particle dynamics, e.g. the halo formation, emittance growth, x-y energy transfer and coupling, knowledge of the actual phase space is needed. Other the past decade there is an increasing number of articles who use tomography to map the beam phase space and measure the beam emittance. These studies where performed at high energy facilities where the effect of space charge was neglible and therefore not considered in the analysis. This work extends the tomography technique to beams with space charge. In order to simplify the analysis linear forces where assumed. By carefully modeling the tomography process using the particle-in-cell code WARP we test the validity of our assumptions and the accuracy of the reconstructed phase space. Finally, we report experimental results of phase space mapping at the University of Maryland Electron Ring (UMER) using tomography.

  4. Nonparaxial multi-Gaussian beam models and measurement models for phased array transducers.

    PubMed

    Zhao, Xinyu; Gang, Tie

    2009-01-01

    A nonparaxial multi-Gaussian beam model is proposed in order to overcome the limitation that paraxial Gaussian beam models lose accuracy in simulating the beam steering behavior of phased array transducers. Using this nonparaxial multi-Gaussian beam model, the focusing and steering sound fields generated by an ultrasonic linear phased array transducer are calculated and compared with the corresponding results obtained by paraxial multi-Gaussian beam model and more exact Rayleigh-Sommerfeld integral model. In addition, with help of this novel nonparaxial method, an ultrasonic measurement model is provided to investigate the sensitivity of linear phased array transducers versus steering angles. Also the comparisons of model predictions with experimental results are presented to certify the accuracy of this provided measurement model. PMID:18774152

  5. Coherent-phase or random-phase acceleration of electron beams in solar flares

    NASA Technical Reports Server (NTRS)

    Aschwanden, Markus J.; Benz, Arnold O.; Montello, Maria L.

    1994-01-01

    Time structures of electron beam signatures at radio wavelengths are investigated to probe correlated versus random behavior in solar flares. In particular we address the issue whether acceleration and injection of electron beams is coherently modulated by a single source, or whether the injection is driven by a stochastic (possibly spatially fragmented) process. We analyze a total of approximately = 6000 type III bursts observed by Ikarus (Zurich) in the frequency range of 100-500 MHz, during 359 solar flares with simultaneous greater than or = 25 keV hard X-ray emission, in the years 1890-1983. In 155 flares we find a total of 260 continuous type III groups, with an average number of 13 +/- 9 bursts per group, a mean duration of D = 12 +/- 14 s, a mean period of P = 2.0 +/- 1.2 s, with the highest burst rate at a frequency of nu = 310 +/- 120 MHz. Pulse periods have been measured between 0.5 and 10 s, and can be described by an exponential distribution, i.e., N(P) varies as e (exp -P/1.0s). The period shows a frequency dependence of P(nu)=46(exp-0.6)(sub MHz)s for different flares, but is invariant during a particular flare. We measure the mean period P and its standard deviation sigma (sub p) in each type III group, and quantify the degree of periodicity (or phase-coherence) by the dimensionless parameter sigma (sub p)P. The representative sample of 260 type III burst groups shows a mean periodicity of sigma (sub p/P) = 0.37 +/- 0.12, while Monte Carlo simulations of an equivalent set of truly random time series show a distinctly different value of sigma (sub p)P = 0.93 +/- 0.26. This result indicates that the injection of electron beams is coherently modulated by a particle acceleration source which is either compact or has a global organization on a timescale of seconds, in contrast to an incoherent acceleration source, which is stochastic either in time or space. We discuss the constraints on the size of the acceleration region resulting from electron beam

  6. Phasing surface emitting diode laser outputs into a coherent laser beam

    DOEpatents

    Holzrichter, John F.

    2006-10-10

    A system for generating a powerful laser beam includes a first laser element and at least one additional laser element having a rear laser mirror, an output mirror that is 100% reflective at normal incidence and <5% reflective at an input beam angle, and laser material between the rear laser mirror and the output mirror. The system includes an injector, a reference laser beam source, an amplifier and phase conjugater, and a combiner.

  7. Adaptive optimisation of a generalised phase contrast beam shaping system

    NASA Astrophysics Data System (ADS)

    Kenny, F.; Choi, F. S.; Glückstad, J.; Booth, M. J.

    2015-05-01

    The generalised phase contrast (GPC) method provides versatile and efficient light shaping for a range of applications. We have implemented a generalised phase contrast system that used two passes on a single spatial light modulator (SLM). Both the pupil phase distribution and the phase contrast filter were generated by the SLM. This provided extra flexibility and control over the parameters of the system including the phase step magnitude, shape, radius and position of the filter. A feedback method for the on-line optimisation of these properties was also developed. Using feedback from images of the generated light field, it was possible to dynamically adjust the phase filter parameters to provide optimum contrast.

  8. Optical simulation of laser beam phase-shaping focusing optimization in biological tissues

    NASA Astrophysics Data System (ADS)

    Gomes, Ricardo; Vieira, Pedro; Coelho, João. M. P.

    2013-11-01

    In this paper we report the development of an optical simulator that can be used in the development of methodologies for compensate/decrease the light scattering effect of most biological tissues through phase-shaping methods. In fact, scattering has long been a major limitation for the medical applications of lasers where in-depth tissues concerns due to the turbid nature of most biological media in the human body. In developing the simulator, two different approaches were followed: one using multiple identical beams directed to the same target area and the other using a phase-shaped beam. In the multiple identical beams approach (used mainly to illustrate the limiting effect of scattering on the beam's propagation) there was no improvement in the beam focus at 1 mm compared to a single beam layout but, in phase-shaped beam approach, a 8x improvement on the radius of the beam at the same depth was achieved. The models were created using the optical design software Zemax and numerical algorithms created in Matlab programming language to shape the beam wavefront. A dedicated toolbox allowed communication between both programs. The use of the two software's proves to be a simple and powerful solution combining the best of the two and allowing a significant potential for adapting the simulations to new systems and thus allow to assess their response and define critical engineering parameters prior to laboratorial implementation.

  9. The influence of radio altimeter errors on pilot performance during the final approach and landing phase of an RPV mission

    NASA Technical Reports Server (NTRS)

    Howard, J. C.

    1975-01-01

    Due to the fact that remotely piloted vehicles (RPV's) are currently being flown from fixed base control centers, kinesthetic and real world peripheral vision cues are absent. The absence of these cues complicates the piloting task, particularly during the final approach and landing phase of a mission. The pilot's task is futher complicated by errors in the displayed altitude information. To determine the influence of these errors on pilot performance during the final approach and landing phase of a mission, an experiment was conducted in which pilot subjects were asked to fly a fixed base simulation of a Piper PA-30 aircraft, using degraded altitude information. For this experiment, the chevron component of the display configuration was driven by a radio altimeter. Four altimeters were used, each with a different error characteristic, but within the range specified for the Sperry series of radio altimeters. Results indicate that for range of errors considered, there is no significant difference in landing performance that can be attributed to errors in altitude information.

  10. Quantifying Errors in Flow Measurement Using Phase Contrast Magnetic Resonance Imaging: Comparison of Several Boundary Detection Methods

    PubMed Central

    Jiang, Jing; Kokeny, Paul; Ying, Wang; Magnano, Chris; Zivadinov, Robert; Haacke, E. Mark

    2014-01-01

    Quantifying flow from phase-contrast MRI (PC-MRI) data requires that the vessels of interest be segmented. This estimate of the vessel area will dictate the type and magnitude of the error sources that affect the flow measurement. These sources of errors are well understood and mathematical expressions have been derived for them in previous work. However, these expressions contain many parameters that render them difficult to use for making practical error estimates. In this work, some realistic assumptions were made that allow for the simplification of such expressions in order to make them more useful. These simplified expressions were then used to numerically simulate the effect of segmentation accuracy and provide some criteria that if met, would keep errors in flow quantification below 10% or 5%. Four different segmentation methods were used on simulated and phantom MRA data to verify the theoretical results. Numerical simulations showed that including partial volumed edge pixels in vessel segmentation provides less error than missing them. This was verified with MRA simulations, as the best performing segmentation method generally included such pixels. Further, it was found that to obtain a flow error of less than 10% (5%), the vessel should be at least 4 (5) pixels in diameter, have an SNR of at least 10:1 and a peak velocity to saturation cut-off velocity ratio of at least 5:3. PMID:25460329

  11. Determination of the misalignment error of a compound zero-order waveplate using the spectroscopic phase shifting method

    NASA Astrophysics Data System (ADS)

    Zheng, Quan; Han, Zhigang; Chen, Lei

    2016-09-01

    The spectroscopic phase shifting method was proposed to determine the misalignment error of a compound zero-order waveplate. The waveplate, which is composed of two separate multi-order quartz waveplates, was measured by a polarizer-waveplate-analyser setup with a spectrometer as the detector. The theoretical relationship between the misalignment error and the azimuth of the polarized light that emerged from the waveplate was studied by comparing two forms of the Jones matrix of the waveplate. Four spectra were obtained to determine the wavelength-dependent azimuth using a phase shifting algorithm when the waveplate was rotated to four detection angles. The misalignment error was ultimately solved from the wavelength-dependent azimuth by the Levenberg-Marquardt method. Experiments were conducted at six misalignment angles. The measured results of the misalignment angle agree well with their nominal values, indicating that the spectroscopic phase shifting method can be a reliable way to measure the misalignment error of a compound zero-order waveplate.

  12. Anisotropic pure-phase plates for quality improvement of partially coherent, partially polarized beams.

    PubMed

    Martínez-Herrero, Rosario; Mejías, Pedro M; Piquero, Gemma

    2003-03-01

    From a theoretical point of view, the use of anisotropic pure-phase plates (APP) is considered in order to improve the quality parameter of certain partially coherent, partially polarized beams. It is shown that, to optimize the beam-quality parameter, the phases of the two Cartesian components of the field at the output of the APP plate should be identical and should exhibit a quadratic dependence on the radial polar coordinate. PMID:12630845

  13. Anisotropic pure-phase plates for quality improvement of partially coherent, partially polarized beams

    NASA Astrophysics Data System (ADS)

    MartíNez-Herrero, Rosario; MejíAs, Pedro M.; Piquero, Gemma

    2003-03-01

    From a theoretical point of view, the use of anisotropic pure-phase plates (APP) is considered in order to improve the quality parameter of certain partially coherent, partially polarized beams. It is shown that, to optimize the beam-quality parameter, the phases of the two Cartesian components of the field at the output of the APP plate should be identical and should exhibit a quadratic dependence on the radial polar coordinate.

  14. Laser beam collimation using a phase conjugate Twyman-Green interferometer

    NASA Technical Reports Server (NTRS)

    Shukla, R. P.; Dokhanian, M.; George, M. C.; Venkateswarlu, Putcha

    1991-01-01

    This paper presents an improved technique for testing laser beam collimation using a phase conjugate Twyman-Green interferometer. The technique is useful for measuring laser beam divergence. It is possible using this technique to detect the defocusing of the order of one micrometer for a well corrected collimating lens. A relation is derived for the defocusing that can be detected by the phase conjugate interferometer.

  15. Optical phased array using high-contrast grating all-pass filters for fast beam steering

    NASA Astrophysics Data System (ADS)

    Yang, Weijian; Sun, Tianbo; Rao, Yi; Chan, Trevor; Megens, Mischa; Yoo, Byung-Wook; Horsley, David A.; Wu, Ming C.; Chang-Hasnain, Connie J.

    2013-03-01

    A novel 8x8 optical phased array based on high-contrast grating (HCG) all-pass filters (APFs) is experimentally demonstrated with high speed beam steering. Highly efficient phase tuning is achieved by micro-electro-mechanical actuation of the HCG to tune the cavity length of the APFs. Using APF phase-shifters allows a large phase shift with an actuation range of only tens of nanometers. The ultrathin HCG further ensures a high tuning speed (0.626 MHz). Both one-dimensional and two-dimensional HCGs are demonstrated as the actuation mirrors of the APF arrays with high beam steering performance.

  16. Forming and steering of symmetrical multiple laser beams in optical phased array

    NASA Astrophysics Data System (ADS)

    Liu, Xiang; Zhang, Jian; Wu, Liying; Gan, Yu; Wang, Dong; Ge, Jiajia

    2010-04-01

    Multi-beam technology is one of the key technologies in optical phased array systems for multi-object treatment and multi-task operation. A multi-beam forming and steering method was proposed. This method uses isosceles triangle multilevel phase grating (ITMPG) to form multiple beams simultaneously. Phase profile of the grating is a quantized isosceles triangle with stairs. By changing the phase difference corresponding to the triangle height, multiple beams can be steered symmetrically. It took 34 ms to calculate a set of parameters for one ITMPG, namely one steering. A liquid crystal spatial light modulator was used for the experiment, which formed 6 gratings. The distortion of which had been compensated with the accuracy of 0.0408 λ. Each grating included 16 phase elements with the same period. Steering angle corresponded to the triangle height, which is the phase difference. Relative diffraction efficiency for multiple beams was greater than 81%, intensity nonuniformity was less than 0.134, and the deflection resolution was 2.263 mrad. Experimental results demonstrate that the proposed method can be used to form and steer symmetrical multiple beams simultaneously with the same intensity and high diffraction efficiency in the far field, the deflection resolution is related to the reciprocal of grating period.

  17. Spot Scanning Proton Beam Therapy for Prostate Cancer: Treatment Planning Technique and Analysis of Consequences of Rotational and Translational Alignment Errors

    SciTech Connect

    Meyer, Jeff; Bluett, Jaques; Amos, Richard

    2010-10-01

    Purpose: Conventional proton therapy with passively scattered beams is used to treat a number of tumor sites, including prostate cancer. Spot scanning proton therapy is a treatment delivery means that improves conformal coverage of the clinical target volume (CTV). Placement of individual spots within a target is dependent on traversed tissue density. Errors in patient alignment perturb dose distributions. Moreover, there is a need for a rational planning approach that can mitigate the dosimetric effect of random alignment errors. We propose a treatment planning approach and then analyze the consequences of various simulated alignment errors on prostate treatments. Methods and Materials: Ten control patients with localized prostate cancer underwent treatment planning for spot scanning proton therapy. After delineation of the clinical target volume, a scanning target volume (STV) was created to guide dose coverage. Errors in patient alignment in two axes (rotational and yaw) as well as translational errors in the anteroposterior direction were then simulated, and dose to the CTV and normal tissues were reanalyzed. Results: Coverage of the CTV remained high even in the setting of extreme rotational and yaw misalignments. Changes in the rectum and bladder V45 and V70 were similarly minimal, except in the case of translational errors, where, as a result of opposed lateral beam arrangements, much larger dosimetric perturbations were observed. Conclusions: The concept of the STV as applied to spot scanning radiation therapy and as presented in this report leads to robust coverage of the CTV even in the setting of extreme patient misalignments.

  18. Nanoengineering of Ruddlesden-Popper phases using molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Haeni, Jeffrey Hewlett

    Epitaxial films including superlattices of the A n+1BnO3 n+1 Ruddlesden-Popper homologous series with A=Sr and Ba and B=Ti and Ru have been grown by reactive molecular beam epitaxy (MBE) on (LaAlO3)0.3--(SrAl0.5Ta 0.5O3)0.7 (LSAT), SrTiO3, DyScO 3 and Si substrates. The strict composition control necessary for the synthesis of these phases was achieved through the use of reflection high-energy electron diffraction (RHEED) intensity oscillations. The first five members of the Srn+1 TinO3n+1 and the Sr n+1RunO3 n+1 Ruddlesden-Popper homologous series, i.e., Sr 2TiO4, Sr3Ti2O7, Sr 4Ti3O10, Sr5Ti4O13 , and Sr6Ti5O16, and Sr2RuO 4, Sr3Ru2O7, Sr4Ru 3O10, Sr5Ru4O13, and Sr 6Ru5O16, respectively, were grown with layer-by-layer deposition. Dielectric measurements indicate that the dielectric constant tensor coefficient epsilon33 of the Srn +1TinO3n +1 series increases from a minimum of 44 +/- 4 in the n = 1 (Sr2TiO4) film to a maximum of 263 +/- 2 in the n = infinity (SrTiO3) film. XPS measurements on Sr2TiO4/SrTiO3 heterostructures indicate a type II interface between the two materials, with a valence band offset of -0.40 +/- 0.1 eV, and a conduction band offset of -0.2 +/- 0.1 eV. Epitaxial SrTiO3 thin films grown on DyScO3 and LSAT substrates show dramatically different dielectric properties, as measured with interdigitated electrodes. The film on DyScO3 is under biaxial tensile strain and shows significant room temperature tunability and a sharp Curie-Weiss peak at 293 K. Under biaxial compressive strain, the SrTiO 3 exhibits negligible room temperature tunability. Epitaxial SrTiO3/BaTiO3 short period superlattices were grown with nearly atomically-abrupt interfaces that are maintained even after annealing to high temperature. In addition, cross-sectional TEM reveals that all superlattice periods grown are coherently strained to the underlying (001) SrTiO3 and (001) LSAT substrates. Epitaxial SrRuO3 layers were grown on Si (100) on which a thin epitaxial (Ba,Sr)O/SrSi2

  19. Propagation of the power-exponent-phase vortex beam in paraxial ABCD system.

    PubMed

    Lao, Guanming; Zhang, Zhaohui; Zhao, Daomu

    2016-08-01

    The general analytical formula for the propagation of the power-exponent-phase vortex (PEPV) beam through a paraxial ABCD optical system is derived. On that basis the evolution of the intensity distribution of such a beam in free space and the focusing system is investigated. In addition, some experiments are carried out, which verify the theoretical predictions. Both of the theoretical and experimental results show that the beam's profile can be modulated by the topological charge and the power order of the PEPV beam. PMID:27505774

  20. Continuous Beam Steering From a Segmented Liquid Crystal Optical Phased Array

    NASA Technical Reports Server (NTRS)

    Titus, Charles M.; Pouch, John; Nguyen, Hung; Miranda, Felix; Bos, Philip J.

    2002-01-01

    Optical communications to and from deep space probes will require beams possessing divergence on the order of a microradian, and must be steered with sub-microradian precision. Segmented liquid crystal spatial phase modulators, a type of optical phased array, are considered for this ultra-high resolution beam steering. It is shown here that in an ideal device of this type, there are ultimately no restrictions on the angular resolution. Computer simulations are used to obtain that result, and to analyze the influence of beam truncation and substrate flatness on the performance of this type of device.

  1. Continuous Beam Steering From A Segmented Liquid Crystal Optical Phased Array

    NASA Technical Reports Server (NTRS)

    Pouch, John; Nguyen, Hung; Miranda, Felix; Titus, Charles M.; Bos, Philip J.

    2002-01-01

    Optical communications to and from deep space probes will require beams possessing divergence on the order of a microradian, and must be steered with sub-microradian precision. Segmented liquid crystal spatial phase modulators, a type of optical phased array, are considered for this ultra-high resolution beam steering. It is shown here that in an ideal device of this type, there are ultimately no restrictions on the angular resolution. Computer simulations are used to obtain that result, and to analyze the influence of beam truncation and substrate flatness on the performance of this type of device.

  2. Spatially varying geometric phase in classically entangled vector beams of light

    NASA Astrophysics Data System (ADS)

    King-Smith, Andrew; Leary, Cody

    We present theoretical results describing a spatially varying geometric (Pancharatnam) phase present in vector modes of light, in which the polarization and transverse spatial mode degrees of freedom exhibit classical entanglement. We propose an experimental setup capable of characterizing this effect, in which a vector mode propagates through a Mach-Zehnder interferometer with a birefringent phase retarder present in one arm. Since the polarization state of a classically entangled light beam exhibits spatial variation across the transverse mode profile, the phase retarder gives rise to a spatially varying geometric phase in the beam propagating through it. When recombined with the reference beam from the other interferometer arm, the presence of the geometric phase is exhibited in the resulting interference pattern. We acknowledge funding from the Research Corporation for Science Advancement by means of a Cottrell College Science Award.

  3. Semiconductor diode laser having an intracavity spatial phase controller for beam control and switching

    SciTech Connect

    Hohimer, J.P.

    1992-12-31

    A high-power broad-area semiconductor laser having a intracavity spatial phase controller is disclosed. The integrated intracavity spatial phase controller is easily formed by patterning an electrical contact metallization layer when fabricating the semiconductor laser. This spatial phase controller changes the normally broad far-field emission bean, of such a laser into a single-lobed near-diffraction-limited beam at pulsed output powers of over 400 mW. Two operating modes, a thermal and a gain operating mode, exist for the phase controller, allowing for steering and switching the beam as the modes of operation are switched, and the emission beam may be scanned, for example, over a range of 1.4 degrees or switched by 8 degrees. More than one spatial phase controller may be integrated into the laser structure.

  4. Adaptive optimisation of a generalised phase contrast beam shaping system

    PubMed Central

    Kenny, F.; Choi, F.S.; Glückstad, J.; Booth, M.J.

    2015-01-01

    The generalised phase contrast (GPC) method provides versatile and efficient light shaping for a range of applications. We have implemented a generalised phase contrast system that used two passes on a single spatial light modulator (SLM). Both the pupil phase distribution and the phase contrast filter were generated by the SLM. This provided extra flexibility and control over the parameters of the system including the phase step magnitude, shape, radius and position of the filter. A feedback method for the on-line optimisation of these properties was also developed. Using feedback from images of the generated light field, it was possible to dynamically adjust the phase filter parameters to provide optimum contrast. PMID:26089573

  5. Report for simultaneous, multiple independently steered beam study for Airborne Electronically Steerable Phased Array (AESPA) program

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Design concepts of an array for the formation of multiple, simultaneous, independently pointed beams for satellite communication links were investigated through tradeoffs of various approaches which were conceived as possible solutions to the problem. After the preferred approach was selected, a more detailed design was configured and is presented as a candidate system that should be given further consideration for development leading to a preliminary design. This array uses an attenuator and a phase shifter with every element. The aperture excitation necessary to form the four beams is calculated and then placed across the array using these devices. Pattern analysis was performed for two beam and four beam cases with numerous patterns being presented. Parameter evaluation shown includes pointing accuracy and beam shape, sidelobe characteristics, gain control, and beam normalization. It was demonstrated that a 4 bit phase shifter and a 6 bit, 30 dB attenuator were sufficient to achieve adequate pattern performances. The phase amplitude steered multibeam array offers the flexibility of 1 to 4 beams with an increase in gain of 6 dB if only one beam is selected.

  6. Analysis of laser beam quality degradation caused by quartic phase aberrations.

    PubMed

    Siegman, A E

    1993-10-20

    Simple formulas are derived for the degradation in the beam-quality factor, M(2), of an arbitrary laser beam caused by quartic phase distortions such as those that might occur in a spherically aberrated optical component, a thermally aberrated laser output window, or a divergent beam emerging from a high-index dielectric medium as in a wide-stripe, unstable-resonator diode laser. A new formula for the defocus correction that is needed to collimate optimally a beam with quartic phase aberration is also derived. Analytical results and numerical examples are given for both radially aberrated and one-dimensionaltransversely aberrated cases, and a simple experimental measurement of the beam-quality degradation produced by a thin plano-convex lens is shown to be in good agreement with the theory. PMID:20856411

  7. Design of Transversal Phase Space Meter for Atomic Hydrogen Beam Source

    NASA Astrophysics Data System (ADS)

    Belov, A. S.

    2016-02-01

    For optimization of polarized atomic beam sources apparatus it is important to have detailed information about characteristics of sources of hydrogen atoms, especially, taking into account present intensity limitations of polarized atomic beam sources. Usually, longitudinal velocity distribution of hydrogen atoms produced by RF dissociator is measured while transversal phase space of unpolarized atomic hydrogen beams was not measured up to now. In this work we report and discuss a design of transversal phase space meter for pulsed atomic hydrogen beam source. The meter design is based on “two slits” method which is well known from ion beam technique. Specific feature of the meter are movable sensitive detector of hydrogen atoms and molecules.

  8. Transformation of phase dislocations under acousto-optic interaction of optical and acoustical Bessel beams

    NASA Astrophysics Data System (ADS)

    Belyi, V. N.; Khilo, P. A.; Kazak, N. S.; Khilo, N. A.

    2016-07-01

    The generation of wavefront phase dislocations of vortex Bessel light beams under acousto-optic (AO) diffraction in uniaxial crystals has been investigated. For the first time the process of AO interaction is studied with participation of Bessel acoustic beams instead of plane waves. A mathematical description of AO interaction is provided, which supposes the satisfaction of two types of phase-matching condition. The acousto-optic processes of transferring optical singularities onto the wavefront of BLBs are investigated and the generation of high-order optical vortices is considered at the interaction of optical and acoustical Bessel beams. The change of Bessel function order or phase dislocation order is explained as a result of the spin–orbital interaction under acousto-optic diffraction of vortex Bessel beams.

  9. Simplex method in problems of light-beam phase control.

    PubMed

    Chesnokov, S S; Davletshina, I V

    1995-12-20

    The possibility of the application of the simplex method to problems of wave-front control for light beams propagating in a nonlinear medium is investigated. A numerical analysis of simplex-method effectiveness in comparison with the gradient procedure of hill climbing is carried out. The regimes of stationary and nonstationary wind refraction are considered. The simplest optimization of the simplex size and the control basis is done. PMID:21068958

  10. Electronically controlled optical beam-steering by an active phased array of metallic nanoantennas.

    PubMed

    DeRose, C T; Kekatpure, R D; Trotter, D C; Starbuck, A; Wendt, J R; Yaacobi, A; Watts, M R; Chettiar, U; Engheta, N; Davids, P S

    2013-02-25

    An optical phased array of nanoantenna fabricated in a CMOS compatible silicon photonics process is presented. The optical phased array is fed by low loss silicon waveguides with integrated ohmic thermo-optic phase shifters capable of 2π phase shift with ∼ 15 mW of applied electrical power. By controlling the electrical power to the individual integrated phase shifters fixed wavelength steering of the beam emitted normal to the surface of the wafer of 8° is demonstrated for 1 × 8 phased arrays with periods of both 6 and 9 μm. PMID:23482053