Science.gov

Sample records for beam sputtering method

  1. Confined ion beam sputtering device and method

    DOEpatents

    Sharp, Donald J.

    1988-01-01

    A hollow cylindrical target, lined internally with a sputter deposit material and open at both ends, surrounds a substrate on which sputtered deposition is to be obtained. An ion beam received through either one or both ends of the open cylindrical target is forced by a negative bias applied to the target to diverge so that ions impinge at acute angles at different points of the cylindrical target surface. The ion impingement results in a radially inward and downstream directed flux of sputter deposit particles that are received by the substrate. A positive bias applied to the substrate enhances divergence of the approaching ion beams to generate a higher sputtered deposition flux rate. Alternatively, a negative bias applied to the substrate induces the core portion of the ion beams to reach the substrate and provide ion polishing of the sputtered deposit thereon.

  2. Confined ion beam sputtering device and method

    DOEpatents

    Sharp, D.J.

    1986-03-25

    A hollow cylindrical target, lined internally with a sputter deposit material and open at both ends, surrounds a substrate on which sputtered deposition is to be obtained. An ion beam received through either one or both ends of the open cylindrical target is forced by a negative bias applied to the target to diverge so that ions impinge at acute angles at different points of the cylindrical target surface. The ion impingement results in a radially inward and downstream directed flux of sputter deposit particles that are received by the substrate. A positive bias applied to the substrate enhances divergence of the approaching ion beams to generate a higher sputtered deposition flux rate. Alternatively, a negative bias applied to the substrate induces the core portion of the ion beams to reach the substrate and provide ion polishing of the sputtered deposit thereon.

  3. Ion beam sputter target and method of manufacture

    SciTech Connect

    Higdon, Clifton; Elmoursi, Alaa A.; Goldsmith, Jason; Cook, Bruce; Blau, Peter; Jun, Qu; Milner, Robert

    2014-09-02

    A target for use in an ion beam sputtering apparatus made of at least two target tiles where at least two of the target tiles are made of different chemical compositions and are mounted on a main tile and geometrically arranged on the main tile to yield a desired chemical composition on a sputtered substrate. In an alternate embodiment, the tiles are of varied thickness according to the desired chemical properties of the sputtered film. In yet another alternate embodiment, the target is comprised of plugs pressed in a green state which are disposed in cavities formed in a main tile also formed in a green state and the assembly can then be compacted and then sintered.

  4. Ion beam sputter etching

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Rutledge, Sharon K.

    1986-01-01

    An ion beam etching process which forms extremely high aspect ratio surface microstructures using thin sputter masks is utilized in the fabrication of integrated circuits. A carbon rich sputter mask together with unmasked portions of a substrate is bombarded with inert gas ions while simultaneous carbon deposition occurs. The arrival of the carbon deposit is adjusted to enable the sputter mask to have a near zero or even slightly positive increase in thickness with time while the unmasked portions have a high net sputter etch rate.

  5. Ion beam sputtering of fluoropolymers

    NASA Technical Reports Server (NTRS)

    Sovey, J. S.

    1978-01-01

    Etching and deposition of fluoropolymers are of considerable industrial interest for applications dealing with adhesion, chemical inertness, hydrophobicity, and dielectric properties. This paper describes ion beam sputter processing rates as well as pertinent characteristics of etched targets and films. An argon ion beam source was used to sputter etch and deposit the fluoropolymers PTFE, FEP, and CTFE. Ion beam energy, current density, and target temperature were varied to examine effects on etch and deposition rates. The ion etched fluoropolymers yield cone or spire-like surface structures which vary depending upon the type of polymer, ion beam power density, etch time, and target temperature. Also presented are sputter target and film characteristics which were documented by spectral transmittance measurements, X-ray diffraction, ESCA, and SEM photomicrographs.

  6. Comparative analysis of electrophysical properties of ceramic tantalum pentoxide coatings, deposited by electron beam evaporation and magnetron sputtering methods

    NASA Astrophysics Data System (ADS)

    Donkov, N.; Mateev, E.; Safonov, V.; Zykova, A.; Yakovin, S.; Kolesnikov, D.; Sudzhanskaya, I.; Goncharov, I.; Georgieva, V.

    2014-12-01

    Ta2O5 ceramic coatings have been deposited on glass substrates by e-beam evaporation and magnetron sputtering methods. For the magnetron sputtering process Ta target was used. X-ray diffraction measurements show that these coatings are amorphous. XPS survey spectra of the ceramic Ta2O5 coatings were obtained. All spectra consist of well-defined XPS lines of Ta 4f, 4d, 4p and 4s; O 1s; C 1s. Ta 4f doublets are typical for Ta2O5 coatings with two main peaks. Scanning electron microscopy and atomic force microscopy images of the e-beam evaporated and magnetron sputtered Ta2O5 ceramic coatings have revealed a relatively flat surface with no cracks. The dielectric properties of the tantalum pentoxide coatings have been investigated in the frequency range of 100 Hz to 1 MHz. The electrical behaviour of e-beam evaporated and magnetron sputtered Ta2O5 ceramic coatings have also been compared. The deposition process conditions principally effect the structure parameters and electrical properties of Ta2O5 ceramic coatings. The coatings deposited by different methods demonstrate the range of dielectric parameters due to the structural and stoichiometric composition changes

  7. Method of making an ion beam sputter-etched ventricular catheter for hydrocephalus shunt

    NASA Technical Reports Server (NTRS)

    Banks, B. A. (Inventor)

    1984-01-01

    The centricular catheter comprises a multiplicity of inlet microtubules. Each microtubule has both a large opening at its inlet end and a multiplicity of microscopic openings along its lateral surfaces. The microtubules are perforated by an ion beam sputter etch technique. The holes are etched in each microtubule by directing an ion beam through an electro formed mesh mask producing perforations having diameters ranging from about 14 microns to about 150 microns. This structure assures a reliable means for shunting cerebrospinal fluid from the cerebral ventricles to selected areas of the body.

  8. Properties of Electron-Beam Irradiated CuInSe2 Layers by Multi-Step Sputtering Method.

    PubMed

    Kim, Chae-Woong; Kim, Jin Hyeok; Jeong, Chaehwan

    2015-10-01

    Typically, CuInSe2 (CIS) based thin films for photovoltaic devices are deposited by co-evaporation or by deposition of the metals, followed by treatment in a selenium environment. This article describes CIS films that are instead deposited by DC and RF magnetron sputtering from binary Cu2Se and In2Se3 targets without the supply of selenium. As a novel method, electron beam annealing was used for crystallization of Cu2Se/In2Se3 stacked precursors. The surface, cross-sectional morphology, and compositional ratio of CIS films were investigated to confirm the possibility in crystallization without any addition of selenium. Our work demonstrates that the e-beam annealing method can be a good candidate for the rapid crystallization of Cu-In-Se sputtered precursors. PMID:26726419

  9. Development of long-lived thick carbon stripper foils for high energy heavy ion accelerators by a heavy ion beam sputtering method

    NASA Astrophysics Data System (ADS)

    Muto, Hideshi; Ohshiro, Yukimitsu; Kawasaki, Katsunori; Oyaizu, Michihiro; Hattori, Toshiyuki

    2013-04-01

    In the past decade, we have developed extremely long-lived carbon stripper foils of 1-50 μg/cm2 thickness prepared by a heavy ion beam sputtering method. These foils were mainly used for low energy heavy ion beams. Recently, high energy negative Hydrogen and heavy ion accelerators have started to use carbon stripper foils of over 100 μg/cm2 in thickness. However, the heavy ion beam sputtering method was unsuccessful in production of foils thicker than about 50 μg/cm2 because of the collapse of carbon particle build-up from substrates during the sputtering process. The reproduction probability of the foils was less than 25%, and most of them had surface defects. However, these defects were successfully eliminated by introducing higher beam energies of sputtering ions and a substrate heater during the sputtering process. In this report we describe a highly reproducible method for making thick carbon stripper foils by a heavy ion beam sputtering with a Krypton ion beam.

  10. Development of long-lived thick carbon stripper foils for high energy heavy ion accelerators by a heavy ion beam sputtering method

    SciTech Connect

    Muto, Hideshi; Ohshiro, Yukimitsu; Kawasaki, Katsunori; Oyaizu, Michihiro; Hattori, Toshiyuki

    2013-04-19

    In the past decade, we have developed extremely long-lived carbon stripper foils of 1-50 {mu}g/cm{sup 2} thickness prepared by a heavy ion beam sputtering method. These foils were mainly used for low energy heavy ion beams. Recently, high energy negative Hydrogen and heavy ion accelerators have started to use carbon stripper foils of over 100 {mu}g/cm{sup 2} in thickness. However, the heavy ion beam sputtering method was unsuccessful in production of foils thicker than about 50 {mu}g/cm{sup 2} because of the collapse of carbon particle build-up from substrates during the sputtering process. The reproduction probability of the foils was less than 25%, and most of them had surface defects. However, these defects were successfully eliminated by introducing higher beam energies of sputtering ions and a substrate heater during the sputtering process. In this report we describe a highly reproducible method for making thick carbon stripper foils by a heavy ion beam sputtering with a Krypton ion beam.

  11. Masking Technique for Ion-Beam Sputter Etching

    NASA Technical Reports Server (NTRS)

    Banks, B. A.; Rutledge, S. K.

    1986-01-01

    Improved process for fabrication of integrated circuits developed. Technique utilizes simultaneous ion-beam sputter etching and carbon sputter deposition in conjunction with carbon sputter mask or organic mask decomposed to produce carbon-rich sputter-mask surface. Sputter etching process replenishes sputter mask with carbon to prevent premature mask loss.

  12. Method and means of directing an ion beam onto an insulating surface for ion implantation or sputtering

    DOEpatents

    Gruen, Dieter M.; Krauss, Alan R.; Siskind, Barry

    1981-01-01

    A beam of ions is directed under control onto an insulating surface by supplying simultaneously a stream of electrons directed at the same surface in a quantity sufficient to neutralize the overall electric charge of the ion beam and result in a net zero current flow to the insulating surface. The ion beam is adapted particularly both to the implantation of ions in a uniform areal disposition over the insulating surface and to the sputtering of atoms or molecules of the insulator onto a substrate.

  13. Ion beam sputtering in electric propulsion facilities

    NASA Technical Reports Server (NTRS)

    Sovey, James S.; Patterson, Michael J.

    1991-01-01

    Experiments were undertaken to determine sputter yields of potential ion beam target materials, to assess the impact of charge exchange on beam diagnostics in large facilities, and to examine material erosion and deposition after a 957-hour test of a 5 kW-class ion thruster. The xenon ion sputter yield of flexible graphite was lower than other graphite forms especialy at high angles of incidence. Ion beam charge exchange effects were found to hamper beam probe current collection diagnostics even at pressures from 0.7 to 1.7 mPa. Estimates of the xenon ion beam envelope were made and predictions of the thickness of sputter deposited coatings in the facility were compared with measurements.

  14. Ion beam sputtering in electric propulsion facilities

    NASA Technical Reports Server (NTRS)

    Sovey, James S.; Patterson, Michael J.

    1991-01-01

    Experiments were undertaken to determine sputter yields of potential ion beam target materials, to assess the impact of charge exchange on beam diagnostics in large facilities, and to examine material erosion and deposition after a 957 hr test of a 5 kW-class ion thruster. The xenon ion sputter yield of flexible graphite was lower than other graphite forms especially at high angles of incidence. Ion beam charge exchange effects were found to hamper beam probe current collection diagnostics even at pressures from 0.7 to 1.7 mPa. Estimates of the xenon ion beam envelope were made and predictions of the thickness of sputter deposited coatings in the facility were compared with measurements.

  15. Ion beam sputter deposited diamond like films

    NASA Technical Reports Server (NTRS)

    Banks, B. A.; Rutledge, S. K.

    1982-01-01

    A single argon ion beam source was used to sputter deposit carbon films on fused silica, copper, and tantalum substrates under conditions of sputter deposition alone and sputter deposition combined with simultaneous argon ion bombardment. Simultaneously deposited and ion bombarded carbon films were prepared under conditions of carbon atom removal to arrival ratios of 0, 0.036, and 0.71. Deposition and etch rates were measured for films on fused silica substrates. Resulting characteristics of the deposited films are: electrical resistivity of densities of 2.1 gm/cu cm for sputter deposited films and 2.2 gm/cu cm for simultaneously sputter deposited and Ar ion bombarded films. For films approximately 1700 A thick deposited by either process and at 5550 A wavelength light the reflectance was 0.2, the absorptance was 0.7, the absorption coefficient was 67,000 cm to the -1 and the transmittance was 0.1.

  16. Effect of annealing on magnetic properties of Nd-Fe-B thin films prepared by ECR ion beam sputtering method

    NASA Astrophysics Data System (ADS)

    Tokumaru, R.; Tamano, S.; Goto, S.; Madeswaran, S.; Tokiwa, K.; Watanabe, T.

    2009-11-01

    Nd-Fe-B thin films were prepared by electron cyclotron resonance (ECR) ion beam sputtering and subsequent annealing. The influence of annealing on the magnetic properties and X-ray diffraction patterns of the product films was investigated. Amorphous films deposited at room temperature were annealed at temperatures between 600 and 800 °C. The c-axis oriented crystallization of the Nd2Fe14B phase did not appear by annealing of the buffer layer and magnetic Nd-Fe-B layer deposited at room temperature, and the hysteresis loops of the films indicated magnetic isotropy.

  17. Ion-beam sputtering increases solar-cell efficiency

    NASA Technical Reports Server (NTRS)

    Burk, D. E.; Dubow, J. B.; Sites, R. R.

    1977-01-01

    Ion-beam sputtering, fabrication of oxide-semiconductor-on-silicon (OSOS) solar cells, results in cells of 12% efficiency. Ion-beam sputtering technique is compatible with low-cost continuous fabrication and requires no high-temperature processing.

  18. Ion beam sputter etching and deposition of fluoropolymers

    NASA Technical Reports Server (NTRS)

    Banks, B. A.; Sovey, J. S.; Miller, T. B.; Crandall, K. S.

    1978-01-01

    Fluoropolymer etching and deposition techniques including thermal evaporation, RF sputtering, plasma polymerization, and ion beam sputtering are reviewed. Etching and deposition mechanisms and material characteristics are discussed. Ion beam sputter etch rates for polytetrafluoroethylene (PTFE) were determined as a function of ion energy, current density and ion beam power density. Peel strengths were measured for epoxy bonds to various ion beam sputtered fluoropolymers. Coefficients of static and dynamic friction were measured for fluoropolymers deposited from ion bombarded PTFE.

  19. Ion beam sputter etching and deposition of fluoropolymers

    NASA Technical Reports Server (NTRS)

    Banks, B. A.; Sovey, J. S.; Miller, T. B.; Crandall, K. S.

    1978-01-01

    Fluoropolymer etching and deposition techniques including thermal evaporation, RF sputtering, plasma polymerization, and ion beam sputtering are reviewed. Etching and deposition mechanism and material characteristics are discussed. Ion beam sputter etch rates for polytetrafluoroethylene (PTFE) were determined as a function of ion energy, current density and ion beam power density. Peel strengths were measured for epoxy bonds to various ion beam sputtered fluoropolymers. Coefficients of static and dynamic friction were measured for fluoropolymers deposited from ion bombarded PTFE.

  20. Monte Carlo simulations of nanoscale focused neon ion beam sputtering.

    PubMed

    Timilsina, Rajendra; Rack, Philip D

    2013-12-13

    A Monte Carlo simulation is developed to model the physical sputtering of aluminum and tungsten emulating nanoscale focused helium and neon ion beam etching from the gas field ion microscope. Neon beams with different beam energies (0.5-30 keV) and a constant beam diameter (Gaussian with full-width-at-half-maximum of 1 nm) were simulated to elucidate the nanostructure evolution during the physical sputtering of nanoscale high aspect ratio features. The aspect ratio and sputter yield vary with the ion species and beam energy for a constant beam diameter and are related to the distribution of the nuclear energy loss. Neon ions have a larger sputter yield than the helium ions due to their larger mass and consequently larger nuclear energy loss relative to helium. Quantitative information such as the sputtering yields, the energy-dependent aspect ratios and resolution-limiting effects are discussed. PMID:24231648

  1. Ion Beam Sputtered Coatings of Bioglass

    NASA Technical Reports Server (NTRS)

    Hench, Larry L.; Wilson, J.; Ruzakowski, Patricia Henrietta Anne

    1982-01-01

    The ion beam sputtering technique available at the NASA-Lewis was used to apply coatings of bioglass to ceramic, metallic, and polymeric substrates. Experiments in vivo and in vitro described investigate these coatings. Some degree of substrate masking was obtained in all samples although stability and reactivity equivalent to bulk bioglass was not observed in all coated samples. Some degree of stability was seen in all coated samples that were reacted in vitro. Both metallic and ceramic substrates coated in this manner failed to show significantly improved coatings over those obtained with existing techniques. Implantation of the coated ceramic substrate samples in bone gave no definite bonding as seen with bulk glass; however, partial and patchy bonding was seen. Polymeric substrates in these studies showed promise of success. The coatings applied were sufficient to mask the underlying reactive test surface and tissue adhesion of collagen to bioglass was seen. Hydrophilic, hydrophobic, charged, and uncharged polymeric surfaces were successfully coated.

  2. Ion beam sputtering of Ag - Angular and energetic distributions of sputtered and scattered particles

    NASA Astrophysics Data System (ADS)

    Feder, René; Bundesmann, Carsten; Neumann, Horst; Rauschenbach, Bernd

    2013-12-01

    Ion beam sputter deposition (IBD) provides intrinsic features which influence the properties of the growing film, because ion properties and geometrical process conditions generate different energy and spatial distribution of the sputtered and scattered particles. A vacuum deposition chamber is set up to measure the energy and spatial distribution of secondary particles produced by ion beam sputtering of different target materials under variation of geometrical parameters (incidence angle of primary ions and emission angle of secondary particles) and of primary ion beam parameters (ion species and energies).

  3. Ion beam sputter deposited zinc telluride films

    NASA Technical Reports Server (NTRS)

    Gulino, D. A.

    1985-01-01

    Zinc telluride is of interest as a potential electronic device material, particularly as one component in an amorphous superlattice, which is a new class of interesting and potentially useful materials. Some structural and electronic properties of ZnTe films deposited by argon ion beam sputter depoairion are described. Films (up to 3000 angstroms thick) were deposited from a ZnTe target. A beam energy of 1000 eV and a current density of 4 mA/sq. cm. resulted in deposition rates of approximately 70 angstroms/min. The optical band gap was found to be approximately 1.1 eV, indicating an amorphous structure, as compared to a literature value of 2.26 eV for crystalline material. Intrinsic stress measurements showed a thickness dependence, varying from tensile for thicknesses below 850 angstroms to compressive for larger thicknesses. Room temperature conductivity measurement also showed a thickness dependence, with values ranging from 1.86 x to to the -6/ohm. cm. for 300 angstrom film to 2.56 x 10 to the -1/ohm. cm. for a 2600 angstrom film. Measurement of the temperature dependence of the conductivity for these films showed complicated behavior which was thickness dependent. Thinner films showed at least two distinct temperature dependent conductivity mechanisms, as described by a Mott-type model. Thicker films showed only one principal conductivity mechanism, similar to what might be expected for a material with more crystalline character.

  4. Ion beam sputter deposited zinc telluride films

    NASA Technical Reports Server (NTRS)

    Gulino, D. A.

    1986-01-01

    Zinc telluride is of interest as a potential electronic device material, particularly as one component in an amorphous superlattice, which is a new class of interesting and potentially useful materials. Some structural and electronic properties of ZnTe films deposited by argon ion beam sputter deposition are described. Films (up to 3000 angstroms thick) were deposited from a ZnTe target. A beam energy of 1000 eV and a current density of 4 mA/sq cm resulted in deposition rates of approximately 70 angstroms/min. The optical band gap was found to be approximately 1.1 eV, indicating an amorphous structure, as compared to a literature value of 2.26 eV for crystalline material. Intrinsic stress measurements showed a thickness dependence, varying from tensile for thicknesses below 850 angstroms to compressive for larger thicknesses. Room temperature conductivity measurement also showed a thickness dependence, with values ranging from 1.86 x 10 to the -6th/ohm cm for 300 angstrom film to 2.56 x 10 to the -1/ohm cm for a 2600 angstrom film. Measurement of the temperature dependence of the conductivity for these films showed complicated behavior which was thickness dependent. Thinner films showed at least two distinct temperature dependent conductivity mechanisms, as described by a Mott-type model. Thicker films showed only one principal conductivity mechanism, similar to what might be expected for a material with more crystalline character.

  5. Lifetime dependence of nitrided carbon stripper foils on sputter angle during N+ ion beam sputtering

    NASA Astrophysics Data System (ADS)

    Sugai, I.; Oyaizu, M.; Takeda, Y.; Kawakami, H.; Kawasaki, K.; Hattori, T.; Kadono, T.

    2015-09-01

    We fabricated high-lifetime thin nitride carbon stripper (NCS) foils with high nitrogen contents using ion-beam sputtering with reactive nitrogen gas and investigated the dependence of their lifetimes on the sputter angle. The nitrogen in carbon foils plays a critical role in determining their lifetime. Therefore, in order to investigate the effects of the nitrogen level in NCS foils on foil lifetime, we measured the sputtering yield for different sputter angles at a sputtering voltage of 10 kV while using carbon-based targets. We also measured the nitrogen-to-carbon thickness ratios of the foils using Rutherford backscattering spectrometry. The foils made at a sputter angle of 15° using a glassy amorphous carbon target exhibited an average increase of 200-fold in lifetime when compared to commercially available foils.

  6. Stress reduction in ion beam sputtered mixed oxide films.

    PubMed

    Pond, B J; Debar, J I; Carniglia, C K; Raj, T

    1989-07-15

    Thin films deposited by ion beam sputtering typically have a high compressive stress. This paper demonstrates that this stress can be reduced by cosputtering two materials. Thin film mixtures of zirconia (ZrO(2)) and silica (SiO(2)) were prepared with a range of compositions using ion beam sputtering. The refractive index was found to vary almost linearly with composition. The large stress observed in zirconia films was found to be reduced significantly by the addition of silica. PMID:20555602

  7. Stress reduction in ion beam sputtered mixed oxide films

    SciTech Connect

    Pond, B. J.; DeBar, J. I.; Carniglia, C. K.; Raj, T.

    1989-07-15

    Thin films deposited by ion beam sputtering typically have a high compressive stress. This paper demonstrates that this stress can be reduced by cosputtering two materials. Thin film mixtures of zirconia (ZrO/sub 2/) and silica (SiO/sub 2/) were prepared with a range of compositions using ion beam sputtering. The refractive index was found to vary almost linearly with composition. The large stress observed in zirconia films was found to be reduced significantly by the addition of silica.

  8. Electron-beam activated thermal sputtering of thermoelectric materials.

    SciTech Connect

    Wu, J.; He, J.; Han, M-K.; Sootsman, J. R.; Girard, S.; Arachchige, I. U.; Kanatzidis, M. G.; Dravid, V. P.

    2011-08-01

    Thermoelectricity and Seebeck effect have long been observed and validated in bulk materials. With the development of advanced tools of materials characterization, here we report the first observation of such an effect in the nanometer scale: in situ directional sputtering of several thermoelectric materials inside electron microscopes. The temperature gradient introduced by the electron beam creates a voltage-drop across the samples, which enhances spontaneous sputtering of specimen ions. The sputtering occurs along a preferential direction determined by the direction of the temperature gradient. A large number of nanoparticles form and accumulate away from the beam location as a result. The sputtering and re-crystallization are found to occur at temperatures far below the melting points of bulk materials. The sputtering occurs even when a liquid nitrogen cooling holder is used to keep the overall temperature at -170 C. This unique phenomenon that occurred in the nanometer scale may provide useful clues to understanding the mechanism of thermoelectric effect.

  9. Electron-beam activated thermal sputtering of thermoelectric materials

    SciTech Connect

    Wu Jinsong; Dravid, Vinayak P.; He Jiaqing; Han, Mi-Kyung; Sootsman, Joseph R.; Girard, Steven; Arachchige, Indika U.; Kanatzidis, Mercouri G.

    2011-08-15

    Thermoelectricity and Seebeck effect have long been observed and validated in bulk materials. With the development of advanced tools of materials characterization, here we report the first observation of such an effect in the nanometer scale: in situ directional sputtering of several thermoelectric materials inside electron microscopes. The temperature gradient introduced by the electron beam creates a voltage-drop across the samples, which enhances spontaneous sputtering of specimen ions. The sputtering occurs along a preferential direction determined by the direction of the temperature gradient. A large number of nanoparticles form and accumulate away from the beam location as a result. The sputtering and re-crystallization are found to occur at temperatures far below the melting points of bulk materials. The sputtering occurs even when a liquid nitrogen cooling holder is used to keep the overall temperature at -170 deg. C. This unique phenomenon that occurred in the nanometer scale may provide useful clues to understanding the mechanism of thermoelectric effect.

  10. Hydrogenated amorphous silicon deposited by ion-beam sputtering

    NASA Technical Reports Server (NTRS)

    Lowe, V. E.; Henin, N.; Tu, C.-W.; Tavakolian, H.; Sites, J. R.

    1981-01-01

    Hydrogenated amorphous silicon films 1/2 to 1 micron thick were deposited on metal and glass substrates using ion-beam sputtering techniques. The 800 eV, 2 mA/sq cm beam was a mixture of argon and hydrogen ions. The argon sputtered silicon from a pure (7.6 cm) single crystal wafer, while the hydrogen combined with the sputtered material during the deposition. Hydrogen to argon pressure ratios and substrate temperatures were varied to minimize the defect state density in the amorphous silicon. Characterization was done by electrical resistivity, index of refraction and optical absorption of the films.

  11. Deposition of reactively ion beam sputtered silicon nitride coatings

    NASA Technical Reports Server (NTRS)

    Grill, A.

    1982-01-01

    An ion beam source was used to deposit silicon nitride films by reactively sputtering a silicon target with beams of Ar + N2 mixtures. The nitrogen fraction in the sputtering gas was 0.05 to 0.80 at a total pressure of 6 to 2 millionth torr. The ion beam current was 50 mA at 500 V. The composition of the deposited films was investigated by auger electron spectroscopy and the rate of deposition was determined by interferometry. A relatively low rate of deposition of about 2 nm. one-tenth min. was found. AES spectra of films obtained with nitrogen fractions higher than 0.50 were consistent with a silicon to nitrogen ratio corresponding to Si3N4. However the AES spectra also indicated that the sputtered silicon nitride films were contaminated with oxygen and carbon and contained significant amounts of iron, nickel, and chromium, most probably sputtered from the holder of the substrate and target.

  12. Electrostatic particle trap for ion beam sputter deposition

    DOEpatents

    Vernon, Stephen P.; Burkhart, Scott C.

    2002-01-01

    A method and apparatus for the interception and trapping of or reflection of charged particulate matter generated in ion beam sputter deposition. The apparatus involves an electrostatic particle trap which generates electrostatic fields in the vicinity of the substrate on which target material is being deposited. The electrostatic particle trap consists of an array of electrode surfaces, each maintained at an electrostatic potential, and with their surfaces parallel or perpendicular to the surface of the substrate. The method involves interception and trapping of or reflection of charged particles achieved by generating electrostatic fields in the vicinity of the substrate, and configuring the fields to force the charged particulate material away from the substrate. The electrostatic charged particle trap enables prevention of charged particles from being deposited on the substrate thereby enabling the deposition of extremely low defect density films, such as required for reflective masks of an extreme ultraviolet lithography (EUVL) system.

  13. Development of Zn and Eu beams by plasma sputtering

    NASA Astrophysics Data System (ADS)

    Kumar, P.; Rodrigues, G.; Kanjilal, D.; Roy, A.; Singh, Beer Pal; Kumar, R.

    2006-05-01

    Accelerated ion beams of various species are important tools to engineer the materials. The low energy ion beam facility (LEIBF) at Nuclear Science Centre (NSC) provides the ion beams of energy in the range of a few keV to a few MeV. The LEIBF is fully operational since 2001 and its performance has been tested very well with ion beams from noble gases. Metallic and rare earth ion beams have important role in the field of nano-technology and enhancement of optical properties of semiconducting nano-particles inside various matrices. During the last few years, an effort was made to extract ion beams of various metal and rare earth elements using different techniques. Here we describe the successful development of Zn and Eu ion beams using sputtering technique in electron cyclotron resonance (ECR) ion source. Operational experience to produce such kind of beams and results on beam analysis are described in the paper.

  14. Neutral beam dose and sputtering characteristics in an ion implantation system

    NASA Technical Reports Server (NTRS)

    Roberts, A. S., Jr.; Ash, R. L.; Berger, M. H.

    1973-01-01

    A technique and instrument design for calorimetric detection of the neutral atom content of a 60 keV argon ion beam. A beam sampling method is used to measure local heat flux to a small platinum wire at steady state; integration of power density profiles leads to a determination of equivalent neutral beam current. The fast neutral production occurs as a result of charge transfer processes in the region of the beam system between analyzing magnet and beam stop where the pressure remains less than .00001 torr. A description of the neutral beam detector is given in section along with a presentation of results. An elementary analysis of sputter material transport from target to substrate was performed; the analysis relates to semiconductor sputtering.

  15. Surface modification of biomedical implants using ion-beam-assisted sputter deposition

    NASA Astrophysics Data System (ADS)

    Ektessabi, A. M.

    1997-05-01

    Hydroxy-apatite (Ca 10(PO 4) 6(OH) 2), owing to its good bioaffinity and enhancement of osseo-integration, is a potential material for coating on dental and orthopedic implants. At present, hydroxy-apatite is coated on metal implants by a plasma-spraying method or is used in its bulk form in reconstruction surgery. In this paper, experimental results are given for preparation of hydroxy-apatite thin films on various biomedical implant materials using ion-beam sputter deposition and ion-beam-assisted sputter deposition methods. By using the ion-beam-assisted sputter deposition method, the adhesion of hydroxy-apatite thin films to substrate has improved significantly and increased to a level comparable to Ti and Al oxide thin films. Relative atomic densities of Ca, P, O and H in hydroxy-apatite thin films were obtained using ion-beam analysis methods such as RBS, RE-RBS, ERDA, and PIXE. The relative concentrations of Ca, and P were affected by assisting-beam density, and stoichiometric films were obtained for certain assisting-beam current densities.

  16. Thickness-dependent crystallization on thermal anneal for titania/silica nm-layer composites deposited by ion beam sputter method.

    PubMed

    Pan, Huang-Wei; Wang, Shun-Jin; Kuo, Ling-Chi; Chao, Shiuh; Principe, Maria; Pinto, Innocenzo M; DeSalvo, Riccardo

    2014-12-01

    Crystallization following thermal annealing of thin film stacks consisting of alternating nm-thick titania/silica layers was investigated. Several prototypes were designed, featuring a different number of titania/silica layer pairs, and different thicknesses (in the range from 4 to 40 nm, for the titania layers), but the same nominal refractive index (2.09) and optical thickness (a quarter of wavelength at 1064 nm). The prototypes were deposited by ion beam sputtering on silicon substrates. All prototypes were found to be amorphous as-deposited. Thermal annealing in air at progressive temperatures was subsequently performed. It was found that the titania layers eventually crystallized forming the anatase phase, while the silica layers remained always amorphous. However, progressively thinner layers exhibited progressively higher threshold temperatures for crystallization onset. Accordingly it can be expected that composites with thinner layers will be able to sustain higher annealing temperatures without crystallizing, and likely yielding better optical and mechanical properties for advanced coatings application. These results open the way to the use of materials like titania and hafnia, that crystallize easily under thermal anneal, but ARE otherwise promising candidate materials for HR coatings necessary for cryogenic 3rd generation laser interferometric gravitational wave detectors. PMID:25606914

  17. Sputtering

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1976-01-01

    The potential of using the sputtering process as a deposition technique is reviewed; however, the manufacturing and sputter etching aspects are also discussed. The basic mechanism for dc and rf sputtering is described. Sputter deposition is presented in terms of the unique advantageous features it offers such as versatility, momentum transfer, stoichiometry, sputter etching, target geometry (coating and complex surfaces), precise controls, flexibility, ecology, and sputtering rates. Sputtered film characteristics, such as strong adherence and coherence and film morphology, are briefly evaluated in terms of varying the sputtering parameters. Also discussed are some of the specific industrial areas which are turning to sputter deposition techniques.

  18. Sputtering - A vacuum deposition method for coating material.

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1972-01-01

    The sputtering method is discussed in terms of the unique features which sputter offers in depositing coatings. These features include versatility, momentum transfer, configuration of target, precise controls, and a relatively slow deposition rate. Sputtered films are evaluated in terms of adherence, coherence, and the internal stresses. The observed strong adherence is attributed to the high kinetic energies of the sputtered material, sputter etched surface, and the submicroscopic particle size. Film thickness can be controlled to a millionth of a centimeter. Very adherent films of sputtered PTFE (teflon) can be deposited in a single operation on any type of material and on any geometrical configuration.

  19. Direct analytical method of contact position effects on the energy-level alignments at organic semiconductor/electrode interfaces using photoemission spectroscopy combined with Ar gas cluster ion beam sputtering

    NASA Astrophysics Data System (ADS)

    Yun, Dong-Jin; Chung, JaeGwan; Kim, Seong Heon; Kim, Yongsu; Park, SungHoon; Seol, Minsu; Heo, Sung

    2015-11-01

    Poly(3, 4-ethylenedioxythiophene) (PEDOT) polymerized with poly(4-styrenesulfonate) (PSS) is one of the most widely used conducting organic electrodes owing to its outstanding optical/electrical properties and high work function. Because its work function depends significantly on the molecular arrangements between PEDOT and PSS molecules on the surface, the contact position of PEDOT:PSS films on organic semiconductors (OSCs) must also be an essential consideration. However, existing analysis methods based on in situ deposition/analysis are limited in their ability to accurately investigate the electronic structures of the buried interface regions under the solution-processed electrode or OSC layer in organic devices. Therefore, to overcome such limitations, we propose a top-down method based on photoemission spectroscopy analysis combined with Ar gas cluster ion beam (GCIB) sputtering. Through this method, both energy-level alignments and molecular distributions at various OSC/electrode interfaces can be successfully characterized without reference to any deposition process.

  20. Pattern evolution during ion beam sputtering; reductionistic view

    NASA Astrophysics Data System (ADS)

    Kim, J.-H.; Kim, J.-S.

    2016-09-01

    The development of the ripple pattern during the ion beam sputtering (IBS) is expounded via the evolution of its constituent ripples. For that purpose, we perform numerical simulation of the ripple evolution that is based on Bradley-Harper model and its non-linear extension. The ripples are found to evolve via various well-defined processes such as ripening, averaging, bifurcation and their combinations, depending on their neighboring ripples. Those information on the growth kinetics of each ripple allow the detailed description of the pattern development in real space that the instability argument and the diffraction study both made in k-space cannot provide.

  1. Molecular sputter depth profiling using carbon cluster beams

    PubMed Central

    Winograd, Nicholas

    2010-01-01

    Sputter depth profiling of organic films while maintaining the molecular integrity of the sample has long been deemed impossible because of the accumulation of ion bombardment-induced chemical damage. Only recently, it was found that this problem can be greatly reduced if cluster ion beams are used for sputter erosion. For organic samples, carbon cluster ions appear to be particularly well suited for such a task. Analysis of available data reveals that a projectile appears to be more effective as the number of carbon atoms in the cluster is increased, leaving fullerene ions as the most promising candidates to date. Using a commercially available, highly focused C60q+ cluster ion beam, we demonstrate the versatility of the technique for depth profiling various organic films deposited on a silicon substrate and elucidate the dependence of the results on properties such as projectile ion impact energy and angle, and sample temperature. Moreover, examples are shown where the technique is applied to organic multilayer structures in order to investigate the depth resolution across film-film interfaces. These model experiments allow collection of valuable information on how cluster impact molecular depth profiling works and how to understand and optimize the depth resolution achieved using this technique. PMID:19649771

  2. Ion beam sputtering of fluoropolymers. [etching polymer films and target surfaces

    NASA Technical Reports Server (NTRS)

    Sovey, J. S.

    1978-01-01

    Ion beam sputter processing rates as well as pertinent characteristics of etched targets and films are described. An argon ion beam source was used to sputter etch and deposit the fluoropolymers PTFE, FEP, and CTFE. Ion beam energy, current density, and target temperature were varied to examine effects on etch and deposition rates. The ion etched fluoropolymers yield cone or spire-like surface structures which vary depending upon the type of polymer, ion beam power density, etch time, and target temperature. Sputter target and film characteristics documented by spectral transmittance measurements, X-ray diffraction, ESCA, and SEM photomicrographs are included.

  3. Optical absorption of ion-beam sputtered amorphous silicon coatings

    NASA Astrophysics Data System (ADS)

    Steinlechner, Jessica; Martin, Iain W.; Bassiri, Riccardo; Bell, Angus; Fejer, Martin M.; Hough, Jim; Markosyan, Ashot; Route, Roger K.; Rowan, Sheila; Tornasi, Zeno

    2016-03-01

    Low mechanical loss at low temperatures and a high index of refraction should make silicon optimally suited for thermal noise reduction in highly reflective mirror coatings for gravitational wave detectors. However, due to high optical absorption, amorphous silicon (aSi) is unsuitable for being used as a direct high-index coating material to replace tantala. A possible solution is a multimaterial design, which enables exploitation of the excellent mechanical properties of aSi in the lower coating layers. The possible number of aSi layers increases with absorption reduction. In this work, the optimum heat treatment temperature of aSi deposited via ion-beam sputtering was investigated and found to be 450 °C . For this temperature, the absorption after deposition of a single layer of aSi at 1064 nm and 1550 nm was reduced by more than 80%.

  4. A self-sputtering ion source: A new approach to quiescent metal ion beams

    SciTech Connect

    Oks, Efim M.; Anders, Andre

    2009-09-03

    A new metal ion source is presented based on sustained self-sputtering plasma in a magnetron discharge. Metals exhibiting high self-sputtering yield like Cu, Ag, Zn, and Bi can be used in a high-power impulse magnetron sputtering (HIPIMS) discharge such that the plasma almost exclusively contains singly charged metal ions of the target material. The plasma and extracted ion beam are quiescent. The ion beams consist mostly of singly charged ions with a space-charge limited current density which reached about 10 mA/cm2 at an extraction voltage of 45 kV and a first gap spacing of 12 mm.

  5. A self-sputtering ion source: A new approach to quiescent metal ion beams

    SciTech Connect

    Oks, Efim

    2010-02-15

    A new metal ion source is presented based on sustained self-sputtering plasma in a magnetron discharge. Metals exhibiting high self-sputtering yield such as Cu, Ag, Zn, and Bi can be used in a high-power impulse magnetron sputtering discharge such that the plasma almost exclusively contains singly charged metal ions of the target material. The plasma and extracted ion beam are quiescent. The ion beams consist mostly of singly charged ions with a space-charge limited current density which reached about 10 mA/cm{sup 2} at an extraction voltage of 45 kV and a first gap spacing of 12 mm.

  6. Method of sputter etching a surface

    DOEpatents

    Henager, Jr., Charles H.

    1984-01-01

    The surface of a target is textured by co-sputter etching the target surface with a seed material adjacent thereto, while the target surface is maintained at a pre-selected temperature. By pre-selecting the temperature of the surface while sputter etching, it is possible to predetermine the reflectance properties of the etched surface. The surface may be textured to absorb sunlight efficiently and have minimal emittance in the infrared region so as to be well-suited for use as a solar absorber for photothermal energy conversion.

  7. Method of sputter etching a surface

    DOEpatents

    Henager, C.H. Jr.

    1984-02-14

    The surface of a target is textured by co-sputter etching the target surface with a seed material adjacent thereto, while the target surface is maintained at a pre-selected temperature. By pre-selecting the temperature of the surface while sputter etching, it is possible to predetermine the reflectance properties of the etched surface. The surface may be textured to absorb sunlight efficiently and have minimal emittance in the infrared region so as to be well-suited for use as a solar absorber for photothermal energy conversion. 4 figs.

  8. Improving the laser damage resistance of oxide thin films and multilayers via tailoring ion beam sputtering parameters

    NASA Astrophysics Data System (ADS)

    Cosar, M. B.; Ozhan, A. E. S.; Aydogdu, G. H.

    2015-05-01

    Ion beam sputtering is one of the widely used methods for manufacturing laser optical components due to its advantages such as uniformity, reproducibility, suitability for multilayer coatings and growth of dielectric materials with high packing densities. In this study, single Ta2O5 layers and Ta2O5/SiO2 heterostructures were deposited on optical quality glass substrates by dual ion beam sputtering. We focused on the effect of deposition conditions like substrate cleaning, assistance by 12 cm diameter ion beam source and oxygen partial pressure on the laser-induced damage threshold of Ta2O5 single layers. Afterwards, the obtained information is employed to a sample design and produces a Ta2O5/SiO2 multilayer structure demonstrating low laser-induced damage without a post treatment procedure.

  9. Micrometer-Scale Machining of Metals and Polymers Enabled by Focused Ion Beam Sputtering

    SciTech Connect

    Adams, D.P.; Benavides, G.L.; Vasile, M.J.

    1998-12-22

    This work combines focused ion beam sputtering and ultra-precision machining for microfabrication of metal alloys and polymers. Specifically, micro-end mills are made by Ga ion beam sputtering of a cylindrical tool shank. Using an ion energy of 20keV, the focused beam defines the tool cutting edges that have submicrometer radii of curvature. We demonstrate 25 {micro}m diameter micromilling tools having 2, 4 and 5 cutting edges. These tools fabricate fine channels, 26-28 microns wide, in 6061 aluminum, brass, and polymethyl methacrylate. Micro-tools are structurally robust and operate for more than 5 hours without fracture.

  10. Particle beam experiments for the analysis of reactive sputtering processes in metals and polymer surfaces.

    PubMed

    Corbella, Carles; Grosse-Kreul, Simon; Kreiter, Oliver; de los Arcos, Teresa; Benedikt, Jan; von Keudell, Achim

    2013-10-01

    A beam experiment is presented to study heterogeneous reactions relevant to plasma-surface interactions in reactive sputtering applications. Atom and ion sources are focused onto the sample to expose it to quantified beams of oxygen, nitrogen, hydrogen, noble gas ions, and metal vapor. The heterogeneous surface processes are monitored in situ by means of a quartz crystal microbalance and Fourier transform infrared spectroscopy. Two examples illustrate the capabilities of the particle beam setup: oxidation and nitriding of aluminum as a model of target poisoning during reactive magnetron sputtering, and plasma pre-treatment of polymers (PET, PP). PMID:24182103

  11. Particle beam experiments for the analysis of reactive sputtering processes in metals and polymer surfaces

    SciTech Connect

    Corbella, Carles; Grosse-Kreul, Simon; Kreiter, Oliver; Arcos, Teresa de los; Benedikt, Jan; Keudell, Achim von

    2013-10-15

    A beam experiment is presented to study heterogeneous reactions relevant to plasma-surface interactions in reactive sputtering applications. Atom and ion sources are focused onto the sample to expose it to quantified beams of oxygen, nitrogen, hydrogen, noble gas ions, and metal vapor. The heterogeneous surface processes are monitored in situ by means of a quartz crystal microbalance and Fourier transform infrared spectroscopy. Two examples illustrate the capabilities of the particle beam setup: oxidation and nitriding of aluminum as a model of target poisoning during reactive magnetron sputtering, and plasma pre-treatment of polymers (PET, PP)

  12. Particle beam experiments for the analysis of reactive sputtering processes in metals and polymer surfaces

    NASA Astrophysics Data System (ADS)

    Corbella, Carles; Grosse-Kreul, Simon; Kreiter, Oliver; de los Arcos, Teresa; Benedikt, Jan; von Keudell, Achim

    2013-10-01

    A beam experiment is presented to study heterogeneous reactions relevant to plasma-surface interactions in reactive sputtering applications. Atom and ion sources are focused onto the sample to expose it to quantified beams of oxygen, nitrogen, hydrogen, noble gas ions, and metal vapor. The heterogeneous surface processes are monitored in situ by means of a quartz crystal microbalance and Fourier transform infrared spectroscopy. Two examples illustrate the capabilities of the particle beam setup: oxidation and nitriding of aluminum as a model of target poisoning during reactive magnetron sputtering, and plasma pre-treatment of polymers (PET, PP).

  13. Study on the roughness evolution of optical surfaces during ion beam sputtering

    NASA Astrophysics Data System (ADS)

    Liang, Xiao; Wang, Xiang; Gu, Yong-Qiang; Zheng, Jin-Jin; Yang, Huai-Jiang; Sui, Yong-Xin

    2015-10-01

    Ion beam machining technology has been extensively adopted to obtain an ultraprecision surface in ultraviolet lithography optics. However, there exist complex mechanisms leading the surface to evolve complicated topographies and increasing roughness. We build a kinetic model integrating with the typical sputter theory and a bond-counting Monte Carlo algorithm based on the compound materials to investigate the surface roughness evolution during ion beam sputtering. The influences of primary sputter, reflection, secondary sputter, geometrical shadowing, redeposition, and thermal diffusion were all taken into consideration to compose a dynamic evolution process. In calculation, using this model the surface first possesses a period of smoothing and then goes into a roughening stage, where the roughness follows the regular power law. Quantitative analyses of surface roughness derived from calculations are also examined and compared with experiments.

  14. Peculiarities of temperature dependent ion beam sputtering and channeling of crystalline bismuth

    NASA Astrophysics Data System (ADS)

    Langegger, Rupert; Hradil, Klaudia; Steiger-Thirsfeld, Andreas; Bertagnolli, Emmerich; Lugstein, Alois

    2014-08-01

    In this paper, we report on the surface evolution of focused ion beam treated single crystalline Bi(001) with respect to different beam incidence angles and channeling effects. ‘Erosive’ sputtering appears to be the dominant mechanism at room temperature (RT) and diffusion processes during sputtering seem to play only a minor role for the surface evolution of Bi. The sputtering yield of Bi(001) shows anomalous behavior when increasing the beam incidence angle along particular azimuthal angles of the specimen. The behavior of the sputtering yield could be related to channeling effects and the relevant channeling directions are identified. Dynamic annealing processes during ion irradiation retain the crystalline quality of the Bi specimen allowing ion channeling at RT. Lowering the specimen temperature to T = -188 °C reduces dynamic annealing processes and thereby disables channeling effects. Furthermore unexpected features are observed at normal beam incidence angle. Spike-like features appear during the ion beam induced erosion, whose growth directions are not determined by the ion beam but by the channeling directions of the Bi specimen.

  15. Ion beam sputter modification of the surface morphology of biological implants

    NASA Technical Reports Server (NTRS)

    Weigand, A. J.; Banks, B. A.

    1976-01-01

    The surface chemistry and texture of materials used for biological implants may significantly influence their performance and biocompatibility. Recent interest in the microscopic control of implant surface texture has led to the evaluation of ion beam sputtering as a potentially useful surface roughening technique. Ion sources, similar to electron bombardment ion thrusters designed for propulsive applications, are used to roughen the surfaces of various biocompatible alloys or polymer materials. These materials are typically used for dental implants, orthopedic prostheses, vascular prostheses, and artificial heart components. Masking techniques and resulting surface textures are described along with progress concerning evaluation of the biological response to the ion beam sputtered surfaces.

  16. Fabrication of OSOS cells by neutral ion beam sputtering. [Oxide Semiconductor On Silicon solar cells

    NASA Technical Reports Server (NTRS)

    Burk, D. E.; Dubow, J. B.; Sites, J. R.

    1976-01-01

    Oxide semiconductor on silicon (OSOS) solar cells have been fabricated from various indium tin oxide (In2O3)x(SnO2)1-x compositions sputtered onto p-type single crystal silicon substrates with a neutralized argon ion beam. High temperature processing or annealing was not required. The highest efficiency was achieved with x = 0.91 and was 12 percent. The cells are environmentally rugged, chemically stable, and show promise for still higher efficiencies. Moreover, the ion beam sputtering fabrication technique is amenable to low cost, continuous processing.

  17. Ion-beam-sputter modification of the surface morphology of biological implants

    NASA Technical Reports Server (NTRS)

    Weigand, A. J.; Banks, B. A.

    1977-01-01

    The surface chemistry and texture of materials used for biological implants may significantly influence their performance and biocompatibility. Recent interest in the microscopic control of implant surface texture has led to the evaluation of ion-beam sputtering as a potentially useful surface roughening technique. Ion sources, similar to electron-bombardment ion thrusters designed for propulsive applications, are used to roughen the surfaces of various biocompatible alloys or polymer materials. These materials are typically used for dental implants, orthopedic prostheses, vascular prostheses, and artificial heart components. Masking techniques and resulting surface textures are described along with progress concerning evaluation of the biological response to the ion-beam-sputtered surfaces.

  18. Contamination removal by ion sputtering

    NASA Astrophysics Data System (ADS)

    Shaw, Christopher G.

    1990-11-01

    Experimental investigations are described for ion-beam sputtering and RF-plasma sputtering to determine the effectiveness of the methods for removing contaminants from an optical surface. The effects of ion-beam sputtering are tested with an ion gun and measured by mounting a 5-MHz quartz-crystal microbalance on a sample holder and simulating spacecraft contamination. RF-plasma sputtering involves the application of an alternating electric field to opposing electrodes immersed in a low density gas, and is tested with the same setup. The energy dependence of the sputtering yields is measured to determine whether the different contaminants are removed and whether the mirror surface is affected. Ion-beam sputtering removes all contaminants tested, but also affects the mirror surface at high energies. When the correct DC bias is applied, RF sputtering can remove the contaminants without removing the metal-mirror surface.

  19. Interfacial electrical properties of ion-beam sputter deposited amorphous carbon on silicon

    NASA Technical Reports Server (NTRS)

    Khan, A. A.; Woollam, J. A.; Chung, Y.; Banks, B.

    1983-01-01

    Amorphous, 'diamond-like' carbon films have been deposited on Si substrates, using ion-beam sputtering. The interfacial properties are studied using capacitance and conductance measurements. Data are analyzed using existing theories for interfacial electrical properties. The density of electronic states at the interface, along with corresponding time constants are determined.

  20. Monte Carlo simulations of nanoscale focused neon ion beam sputtering of copper: elucidating resolution limits and sub-surface damage.

    PubMed

    Timilsina, R; Tan, S; Livengood, R; Rack, P D

    2014-12-01

    A three dimensional Monte Carlo simulation program was developed to model physical sputtering and to emulate vias nanomachined by the gas field ion microscope. Experimental and simulation results of focused neon ion beam induced sputtering of copper are presented and compared to previously published experiments. The simulation elucidates the nanostructure evolution during the physical sputtering of high aspect ratio nanoscale features. Quantitative information such as the energy-dependent sputtering yields, dose dependent aspect ratios, and resolution-limiting effects are discussed. Furthermore, the nuclear energy loss and implant concentration beneath the etch front is correlated with the sub-surface damage revealed by transmission electron microscopy at different beam energies. PMID:25387461

  1. Monte Carlo simulations of nanoscale focused neon ion beam sputtering of copper: elucidating resolution limits and sub-surface damage

    NASA Astrophysics Data System (ADS)

    Timilsina, R.; Tan, S.; Livengood, R.; Rack, P. D.

    2014-12-01

    A three dimensional Monte Carlo simulation program was developed to model physical sputtering and to emulate vias nanomachined by the gas field ion microscope. Experimental and simulation results of focused neon ion beam induced sputtering of copper are presented and compared to previously published experiments. The simulation elucidates the nanostructure evolution during the physical sputtering of high aspect ratio nanoscale features. Quantitative information such as the energy-dependent sputtering yields, dose dependent aspect ratios, and resolution-limiting effects are discussed. Furthermore, the nuclear energy loss and implant concentration beneath the etch front is correlated with the sub-surface damage revealed by transmission electron microscopy at different beam energies.

  2. Synthesis of sputtered thin films in low energy ion beams

    NASA Astrophysics Data System (ADS)

    Howson, R. P.

    1997-01-01

    Magnetron sputtering is a process which gives a highly energetic depositing species. The growing film can be further bombarded with ions of the heavy gas used for sputtering by directing a plasma of it onto the surface. This can be done quite simply by using an unbalanced magnetron. The immersion of an insulating or isolated substrate-film combination in this plasma leads to a self-bias of around 30 V appearing on it's surface and a bombardment of low energy ions of the sputtering gas of several milli-amps per square centimetre. If the residual gas contains a reactive component, to form a compound film, then the gas is made much more reactive and less is needed to form the stoichiometric film. This can take place in a continuously operating system made stable using partial pressure control of the reactive gas with plasma emission monitoring or something similar. It can also be operated when the process of deposition is separated in time from the process of reaction and is repeated to build the film. We have called this process successive-plasma-anodisation (SPA) and it can be achieved by mechanically transferring the substrate between two magnetrons, one to deposit the metal film and one, which is unbalanced, to provide an oxygen plasma. It can also be operated by pulsing the reactive gas under carefully controlled conditions. Examples are given of the synthesis of compound films using low energy ion bombardment with these techniques and it is demonstrated that excellent films of a large range of oxides and nitrides can be made.

  3. Methods of beam cooling

    SciTech Connect

    Sessler, A.M.

    1996-02-01

    Diverse methods which are available for particle beam cooling are reviewed. They consist of some highly developed techniques such as radiation damping, electron cooling, stochastic cooling and the more recently developed, laser cooling. Methods which have been theoretically developed, but not yet achieved experimentally, are also reviewed. They consist of ionization cooling, laser cooling in three dimensions and stimulated radiation cooling.

  4. Determining the sputter yields of molybdenum in low-index crystal planes via electron backscattered diffraction, focused ion beam and atomic force microscope

    SciTech Connect

    Huang, H.S.; Chiu, C.H.; Hong, I.T.; Tung, H.C.; Chien, F.S.-S.

    2013-09-15

    Previous literature has used several monocrystalline sputtering targets with various crystalline planes, respectively, to investigate the variations of the sputter yield of materials in different crystalline orientations. This study presents a method to measure the sputtered yields of Mo for the three low-index planes (100), (110), and (111), through using an easily made polycrystalline target. The procedure was firstly to use electron backscattered diffraction to identify the grain positions of the three crystalline planes, and then use a focused ion beam to perform the micro-milling of each identified grain, and finally the sputter yields were calculated from the removed volumes, which were measured by atomic force microscope. Experimental results showed that the sputter yield of the primary orientations for Mo varied as Y{sub (110)} > Y{sub (100)} > Y{sub (111)}, coincidental with the ranking of their planar atomic packing densities. The concept of transparency of ion in the crystalline substance was applied to elucidate these results. In addition, the result of (110) orientation exhibiting higher sputter yield is helpful for us to develop a Mo target with a higher deposition rate for use in industry. By changing the deformation process from straight rolling to cross rolling, the (110) texture intensity of the Mo target was significantly improved, and thus enhanced the deposition rate. - Highlights: • We used EBSD, FIB and AFM to measure the sputter yields of Mo in low-index planes. • The sputter yield of the primary orientations for Mo varied as Y{sub (110)} > Y{sub (100)} > Y{sub (111)}. • The transparency of ion was used to elucidate the differences in the sputter yield. • We improved the sputter rate of polycrystalline Mo target by adjusting its texture.

  5. Effects of polycrystallinity in nano patterning by ion-beam sputtering

    SciTech Connect

    Yoon, Sun Mi; Kim, J.-S.; Yoon, D.; Cheong, H.; Kim, Y.; Lee, H. H.

    2014-07-14

    Employing graphites with distinctly different mean grain sizes, we study the effects of polycrystallinity on the pattern formation by ion-beam sputtering. The grains influence the growth of the ripples in a highly anisotropic fashion; both the mean uninterrupted ripple length along the ridges and the surface width depend on the mean size of the grains, which is attributed to the large sputter yield at the grain boundary compared with that on the terrace. In contrast, the ripple wavelength does not depend on the mean size of the grains, indicating that the mass transport across the grain boundaries should efficiently proceed by both thermal diffusion and ion-induced processes.

  6. Temporal evolution of the chemical structure during the pattern transfer by ion-beam sputtering

    NASA Astrophysics Data System (ADS)

    Ha, N.-B.; Jeong, S.; Yu, S.; Ihm, H.-I.; Kim, J.-S.

    2015-01-01

    Ru films patterned by ion-beam sputtering (IBS) serve as sacrificial masks for the transfer of the patterns to Si(1 0 0) and metallic glass substrates by continued IBS. Under the same sputter condition, however, both bare substrates remain featureless. Chemical analyses of the individual nano structures simultaneously with the investigation of their morphological evolution reveal that the pattern transfer, despite its apparent success, suffers from premature degradation before the mask is fully removed by IBS. Moreover, the residue of the mask or Ru atoms stubbornly remains near the surface, resulting in unintended doping or alloying of both patterned substrates.

  7. Mechanical and thermoelastic characteristics of optical thin films deposited by dual ion beam sputtering.

    PubMed

    Cetinörgü, Eda; Baloukas, Bill; Zabeida, Oleg; Klemberg-Sapieha, Jolanta E; Martinu, Ludvik

    2009-08-10

    Mechanical and thermoelastic properties of optical films are very important to ensure the performance of optical interference filters and optical coating systems. We systematically study the growth and the mechanical and thermoelastic characteristics of niobium oxide (Nb(2)O(5)), tantalum oxide (Ta(2)O(5)), and silicon dioxide (SiO(2)) thin films prepared by dual ion beam sputtering. First, we investigate the stress (sigma), hardness (H), reduced Young's modulus (E(r)), and scratch resistance. Second, we focus on the methodology and assessment of the coefficient of thermal expansion (CTE) and Poisson's ratio (nu) using the two-substrate method. For the high refractive index films, namely, Nb(2)O(5) (n at 550 nm=2.30) and Ta(2)O(5) (n at 550 nm=2.13), we obtained H approximately 6 GPa, E(r) approximately 125 GPa, CTE=4.9x10(-6) degrees C(-1), nu=0.22, and H approximately 7 GPa, E(r) approximately 133 GPa, CTE=4.4x10(-6) degrees C(-1), and nu=0.27, respectively. In comparison, for SiO(2) (n at 550 nm=1.48), these values are H approximately 9.5 GPa, E(r) approximately 87 GPa, CTE=2.1x10(-6) degrees C(-1), and nu=0.11. Correlations between the growth conditions (secondary beam ion energy and ion current), the microstructure, and the film properties are discussed. PMID:19668268

  8. Roughness evolution of sol-gel optical coatings by ion beam sputtering

    NASA Astrophysics Data System (ADS)

    Gailly, P.; Dubreuil, O.; Fleury-Frenette, K.

    2015-12-01

    The surface roughness evolution of two silica-based sol-gel materials under 650 eV argon ion beam sputtering has been investigated. The liquid sol-gel solutions were applied on silicon substrates using the dip coating technique and thermally cured to obtain thin solid films and their thicknesses were then controlled over the samples surface using spectroscopic ellipsometry. The surface roughness of the sol-gel films was measured using both interferometric profilometry and atomic force microscopy depending on the obtained sputtering depths. We observed a significant increase of the roughness according to the sputtering depth, faster in the case of sol-gel layers than with bulk fused silica. Interestingly, the sputtering rates of the sol-gel layers were found much higher than the rate obtained on bulk fused silica. The development of micron scale holes with relatively stable interstices is supposed to rule the surface roughness evolution. AFM measurements revealed a regular submicron scale lateral structure which nanometric amplitude is amplified within sputtering.

  9. Calcium phosphate coatings produced by radiofrequency magnetron sputtering method

    NASA Astrophysics Data System (ADS)

    Bolbasov, E. N.; Zheravin, A. A.; Klimov, I. A.; Kulbakin, D. E.; Perelmuter, V. M.; Tverdokhlebov, S. I.; Cherdyntseva, N. V.; Choinzonov, E. L.

    2016-08-01

    Calcium phosphate coatings on titanium implants surface, produced by radio frequency (RF) magnetron sputtering method with hydroxyapatite solid target were investigated. It was found that produced coatings are calcium deficient compared to stoichiometric hydroxyapatite. The surface of the coatings is highly rough at the nanoscale and highly elastic. In vivo experiments on rats revealed that titanium implants with the calcium phosphate coatings do not cause negative tissue reaction after 6 months incubation period.

  10. Method and apparatus for improved high power impulse magnetron sputtering

    DOEpatents

    Anders, Andre

    2013-11-05

    A high power impulse magnetron sputtering apparatus and method using a vacuum chamber with a magnetron target and a substrate positioned in the vacuum chamber. A field coil being positioned between the magnetron target and substrate, and a pulsed power supply and/or a coil bias power supply connected to the field coil. The pulsed power supply connected to the field coil, and the pulsed power supply outputting power pulse widths of greater that 100 .mu.s.

  11. Nanopatterning of mica surface under low energy ion beam sputtering

    SciTech Connect

    Metya, A.; Ghose, D.; Mollick, S. A.; Majumdar, A.

    2012-04-01

    Irradiation of crystalline muscovite mica samples by 500 eV Ar{sup +} ions at different incident angles can induce significant surface morphological variations. A periodic ripple pattern of nano-dimensions forms in the angle window 47 deg. -70 deg. . On the other hand, tilted conical protrusions develop on the surface at grazing incidence angles around 80 deg. . From the derivative of the topographic images the distribution of the side-facet slopes in the ion incidence plane are measured, which is found to be strongly related to the pattern morphology. Additionally, it has been shown that, for the ripple structures, the base angles can be tuned by changing the ion fluence. An asymmetric sawtooth profile of the ripples obtained at low fluence is transformed to a symmetrical triangular profile at high fluence. As the slopes are found to be small, the pattern formation is not provoked by the gradient-dependent erosion mechanism rather it is the general effect of the curvature-dependent sputtering phenomena.

  12. Investigation of surface characteristics evolution and laser damage performance of fused silica during ion-beam sputtering

    NASA Astrophysics Data System (ADS)

    Xu, Mingjin; Dai, Yifan; Zhou, Lin; Shi, Feng; Wan, Wen; Xie, Xuhui; Sui, Tingting

    2016-08-01

    Surface characteristics have great influence on the optical properties especially the laser radiation resistivity of optics. In this paper, the surface characteristics evolutions of fused silica during ion-beam sputtering and their effects on the laser damage performance were investigated. The results show that roughness change is strongly removal depth dependent and a super-smooth surface (0.25 nm RMS) can be obtained by the ion-induced smoothing effect. The concentration of metal impurities (especially Ce element) in subsurface can be effectively decreased after the removal of polishing re-deposition layer. During ion-beam sputtering process, the plastic scratches can be removed while the brittle cracks can be broadened and passivated without increase in the depth direction. Laser damage threshold of fused silica improved by 36% after ion-beam sputtering treatment. Research results have a guiding significance for ion-beam sputtering process technology of fused silica optics.

  13. Effect of surface texture by ion beam sputtering on implant biocompatibility and soft tissue attachment

    NASA Technical Reports Server (NTRS)

    Gibbons, D. F.

    1977-01-01

    The objectives in this report were to use the ion beam sputtering technique to produce surface textures on polymers, metals, and ceramics. The morphology of the texture was altered by varying both the width and depth of the square pits which were formed by ion beam erosion. The width of the ribs separating the pits were defined by the mask used to produce the texture. The area of the surface containing pits varies as the width was changed. The biological parameters used to evaluate the biological response to the texture were: (1) fibrous capsule and inflammatory response in subcutaneous soft tissue; (2) strength of the mechanical attachment of the textured surface by the soft tissue; and (3) morphology of the epidermal layer interfacing the textured surface of percutaneous connectors. Because the sputter yield on teflon ribs was approximately an order of magnitude larger than any other material the majority of the measurements presented in the report were obtained with teflon.

  14. Method and apparatus for sputtering utilizing an apertured electrode and a pulsed substrate bias

    NASA Technical Reports Server (NTRS)

    Przybyszewski, J. S.; Shaltens, R. K. (Inventor)

    1973-01-01

    The method and equipment used for sputtering by use of an apertured electrode and a pulsed substrate bias are discussed. The technique combines the advantages of ion plating with the versatility of a radio frequency sputtered source. Electroplating is accomplished by passing a pulsed high voltage direct current to the article being plated during radio frequency sputtering.

  15. Control of silicon oxynitrides refractive index by reactive-assisted ion beam sputter deposition

    NASA Astrophysics Data System (ADS)

    Ida, Michel; Chaton, Patrick; Rafin, B.

    1994-11-01

    This paper presents the properties of silicon oxynitrides obtained by reactive ion beam sputter deposition: Dual Ion Beam System. Control of refractive index was achieved by adjusting the process parameters as ion beam current, ion beam energy and reactive gas partial pressure of oxygen and nitrogen. The main difficulty was to achieve stoichiometric nitride, it has been shown that energetic ionized nitrogen was needed to obtain silicon nitride. The major parameter, to obtain variable compositions between silica and silicon nitride, was the oxygen partial pressure with a fixed nitrogen partial pressure. Optical constants in the visible range, refractive index and extinction coefficient, have been measured by spectrophotometry and spectroscopic ellipsometry. Stoichiometry, contamination and packing density have been measured by Rutherford Backscattering and Nuclear Reaction Analysis. The correlation between the film composition and optical constants is shown. Various test results indicate that silicon oxynitrides obtained by reactive assisted ion beam sputtering are high quality optical materials. These films are homogeneous isotropic, with a high packing density. The extinction coefficient is in the order of 10-4 after 300 degree(s)C annealing. All values of refractive index between 1.49 and 2.1 can be chosen.

  16. Systematic investigations of low energy Ar ion beam sputtering of Si and Ag

    NASA Astrophysics Data System (ADS)

    Feder, R.; Frost, F.; Neumann, H.; Bundesmann, C.; Rauschenbach, B.

    2013-12-01

    Ion beam sputter deposition (IBD) delivers some intrinsic features influencing the growing film properties, because ion properties and geometrical process conditions generate different energy and spatial distributions of the sputtered and scattered particles. Even though IBD has been used for decades, the full capabilities are not investigated systematically and specifically used yet. Therefore, a systematic and comprehensive analysis of the correlation between the properties of the ion beam, the generated secondary particles and backscattered ions and the deposited films needs to be done.A vacuum deposition chamber has been set up which allows ion beam sputtering of different targets under variation of geometrical parameters (ion incidence angle, position of substrates and analytics in respect to the target) and of ion beam parameters (ion species, ion energy) to perform a systematic and comprehensive analysis of the correlation between the properties of the ion beam, the properties of the sputtered and scattered particles, and the properties of the deposited films. A set of samples was prepared and characterized with respect to selected film properties, such as thickness and surface topography. The experiments indicate a systematic influence of the deposition parameters on the film properties as hypothesized before. Because of this influence, the energy distribution of secondary particles was measured using an energy-selective mass spectrometer. Among others, experiments revealed a high-energetic maximum for backscattered primary ions, which shifts with increasing emission angle to higher energies. Experimental data are compared with Monte Carlo simulations done with the well-known Transport and Range of Ions in Matter, Sputtering version (TRIM.SP) code [J.P. Biersack, W. Eckstein, Appl. Phys. A: Mater. Sci. Process. 34 (1984) 73]. The thicknesses of the films are in good agreement with those calculated from simulated particle fluxes. For the positions of the

  17. Ion beam analysis and co-sputtering simulation (CO-SS) of bi-metal films produced by magnetron co-sputtering

    NASA Astrophysics Data System (ADS)

    Cruz, J.; Andrade, E.; Muhl, S.; Canto, C.; de Lucio, O.; Chávez, E.; Rocha, M. F.; Garcés-Medina, E.

    2016-03-01

    Magnetron sputtering is widely used to deposit thin films on different types of substrates. An important application of this method is to make multicomponent thin films using co-sputtering, where two or more elements are included in the target. The thickness and elemental composition of the films depend on the experimental parameters used, the system geometry and the spatial distribution of the elements in the target. If the target is made of two spatially separate pieces of the materials, then the composition of the deposit depends on a combination of the relative areas, the sputtering yield and the angular distribution of the emission of the sputtered flux of each material. In this work, a co-sputtering simulation program, known as CO-SS, was developed to simulate the thickness and composition of metal films produced by DC magnetron sputtering (Al) and co-sputtering (Al + Ti). The CO-SS code models the angular distribution of particles ejected by sputtering from the target, where this is assumed to vary as cosn β , where n is a free parameter and β is the angle of ejection relative to the normal to the surface of the target, and the sputtering yield of each material. The program also takes into account other geometry factors such as the distance between the target and the substrate, and the size of the substrate. Rutherford backscattering (RBS) using 4He was employed to measure the thickness and the composition of the films deposited on glass cover slides in order to assess the CO-SS program. The film thickness was also measured by profilometry. The CO-SS code was found to accurately model the experimental results for both the Al and Ti/Al films. The CO-SS code is freely available for use from http://demonstrations.wolfram.com/CoSputteringSimulationCOSS/.

  18. Nanoscale pattern formation at surfaces under ion-beam sputtering: A perspective from continuum models

    NASA Astrophysics Data System (ADS)

    Cuerno, Rodolfo; Castro, Mario; Muñoz-García, Javier; Gago, Raúl; Vázquez, Luis

    2011-05-01

    Although reports on surface nanostructuring of solid targets by low to medium energy ion irradiation date back to the 1960s, only with the advent of high resolution tools for surface/interface characterization has the high potential of this procedure been recognized as a method for efficient production of surface patterns. Such morphologies are made up of periodic arrangements of nanometric sized features, like ripples and dots, with interest for technological applications due to their electronic, magnetic, and optical properties. Thus, roughly for the last ten years large efforts have been directed towards harnessing this nanofabrication technique. However, and particularly in view of recent experimental developments, we can say that the basic mechanisms controlling these pattern formation processes remain poorly understood. The lack of nanostructuring at low angles of incidence on some pure monoelemental targets, the role of impurities in the surface dynamics and other recent observations are challenging the classic view on the phenomenon as the mere interplay between the curvature dependence of the sputtering yield and surface diffusion. We review the main attempts at a theoretical (continuum) description of these systems, with emphasis on recent developments. Strong hints already exist that the nature of the morphological instability has to be rethought as originating in the material flow that is induced by the ion beam.

  19. Kinetic Monte Carlo simulation of self-organized pattern formation induced by ion beam sputtering using crater functions

    NASA Astrophysics Data System (ADS)

    Yang, Zhangcan; Lively, Michael A.; Allain, Jean Paul

    2015-02-01

    The production of self-organized nanostructures by ion beam sputtering has been of keen interest to researchers for many decades. Despite numerous experimental and theoretical efforts to understand ion-induced nanostructures, there are still many basic questions open to discussion, such as the role of erosion or curvature-dependent sputtering. In this work, a hybrid MD/kMC (molecular dynamics/kinetic Monte Carlo) multiscale atomistic model is developed to investigate these knowledge gaps, and its predictive ability is validated across the experimental parameter space. This model uses crater functions, which were obtained from MD simulations, to model the prompt mass redistribution due to single-ion impacts. Defect migration, which is missing from previous models that use crater functions, is treated by a kMC Arrhenius method. Using this model, a systematic study was performed for silicon bombarded by Ar+ ions of various energies (100 eV, 250 eV, 500 eV, 700 eV, and 1000 eV) at incidence angles of 0∘ to 80∘. The simulation results were compared with experimental findings, showing good agreement in many aspects of surface evolution, such as the phase diagram. The underestimation of the ripple wavelength by the simulations suggests that surface diffusion is not the main smoothening mechanism for ion-induced pattern formation. Furthermore, the simulated results were compared with moment-description continuum theory and found to give better results, as the simulation did not suffer from the same mathematical inconsistencies as the continuum model. The key finding was that redistributive effects are dominant in the formation of flat surfaces and parallel-mode ripples, but erosive effects are dominant at high angles when perpendicular-mode ripples are formed. Ion irradiation with simultaneous sample rotation was also simulated, resulting in arrays of square-ordered dots. The patterns obtained from sample rotation were strongly correlated to the rotation speed and to

  20. Ion beam sputter deposition of TiNi shape memory alloy thin films

    NASA Astrophysics Data System (ADS)

    Davies, Sam T.; Tsuchiya, Kazuyoshi

    1999-08-01

    The development of functional or smart materials for integration into microsystem is of increasing interest. An example is the shape memory effect exhibited by certain metal alloys which, in principle, can be exploited in the fabrication of micro-scale manipulators or actuators, thereby providing on-chip micromechanical functionality. We have investigated an ion beam sputter deposition process for the growth of TiNi shape memory alloy thin films and demonstrated the required control to produce equiatomic composition, uniform coverage and atomic layer-by-layer growth rates on engineering surfaces. The process uses argon ions at intermediate energy produced by a Kaufman-type ion source to sputter non-alloyed targets of high purity titanium and nickel. Precise measurements of deposition rates allows compositional control during thin film growth. As the sputtering targets and substrates are remote from the discharge plasma, deposition occurs under good vacuum of approximately 10-6 mtorr thus promoting high quality films. Furthermore, the ion beam energetics allow deposition at relatively low substrate temperatures of < 150 degrees C with as-deposited films exhibiting shape memory properties without post-process high temperature annealing. Thermal imagin is used to monitor changes which are characteristic of the shape memory effect and is indicative of changes in specific heat capacity and thermal conductivity as the TiNi shape memory alloy undergoes martensitic to austenitic phase transformations.

  1. Method of making segmented pyrolytic graphite sputtering targets

    DOEpatents

    McKernan, Mark A.; Alford, Craig S.; Makowiecki, Daniel M.; Chen, Chih-Wen

    1994-01-01

    Anisotropic pyrolytic graphite wafers are oriented and bonded together such that the graphite's high thermal conductivity planes are maximized along the back surface of the segmented pyrolytic graphite target to allow for optimum heat conduction away from the sputter target's sputtering surface and to allow for maximum energy transmission from the target's sputtering surface.

  2. Method of making segmented pyrolytic graphite sputtering targets

    DOEpatents

    McKernan, M.A.; Alford, C.S.; Makowiecki, D.M.; Chen, C.W.

    1994-02-08

    Anisotropic pyrolytic graphite wafers are oriented and bonded together such that the graphite's high thermal conductivity planes are maximized along the back surface of the segmented pyrolytic graphite target to allow for optimum heat conduction away from the sputter target's sputtering surface and to allow for maximum energy transmission from the target's sputtering surface. 2 figures.

  3. Ion beam sputter deposition of V 2O 5 thin films

    NASA Astrophysics Data System (ADS)

    Gallasch, T.; Stockhoff, T.; Baither, D.; Schmitz, G.

    V 2O 5 thin films were deposited by means of dc-ion beam sputtering. To determine the influence of various deposition parameters, samples were characterized by X-ray diffractometry and transmission electron microscopy. Using electron energy loss spectroscopy, the oxidation state of vanadium was quantified based on the chemical shift of absorption edges. Measurement of in-plane direct current showed that the electronic conductivity varies over several orders of magnitude depending on the preparation conditions. The desired structure suitable for battery applications is achieved by sputtering under partial pressure of oxygen and suitable post-annealing under ambient atmosphere. Reversible intercalation of Li into the produced thin films was demonstrated.

  4. Transparent aluminium nanowire electrodes with optical and electrical anisotropic response fabricated by defocused ion beam sputtering

    NASA Astrophysics Data System (ADS)

    Repetto, Diego; Giordano, Maria Caterina; Martella, Christian; Buatier de Mongeot, Francesco

    2015-02-01

    Self-organized Al nanowire (NW) electrodes have been obtained by defocused Ion Beam Sputtering (IBS) of polycrystalline Al films grown by sputter deposition. The electrical sheet resistance of the electrode has been acquired in situ during ion bombardment of the samples, evidencing an increase of the electronic transport anisotropy as a function of ion fluence between the two directions parallel and orthogonal to the NWs axis. Optical spectra in transmission also show a large dichroism between the two directions, suggesting the role of localized plasmons in the UV spectral range. The results show that Al NW electrodes, prepared under experimental conditions which are compatible with those of conventional industrial coaters and implanters, could represent a low cost alternative to the transparent conductive oxides employed in optoelectronic devices.

  5. Ion beam sputter etching of orthopedic implanted alloy MP35N and resulting effects on fatigue

    NASA Technical Reports Server (NTRS)

    Wintucky, E. G.; Christopher, M.; Bahnuik, E.; Wang, S.

    1981-01-01

    The effects of two types of argon ion sputter etched surface structures on the tensile stress fatigue properties of orthopedic implant alloy MP35N were investigated. One surface structure was a natural texture resulting from direct bombardment by 1 keV argon ions. The other structure was a pattern of square holes milled into the surface by a 1 keV argon ion beam through a Ni screen mask. The etched surfaces were subjected to tensile stress only in fatigue tests designed to simulate the cyclic load conditions experienced by the stems of artificial hip joint implants. Both types of sputter etched surface structures were found to reduce the fatigue strength below that of smooth surface MP35N.

  6. Ion beam sputter-etched ventricular catheter for hydrocephalus shunt

    NASA Technical Reports Server (NTRS)

    Banks, B. A. (Inventor)

    1983-01-01

    A cerebrospinal fluid shunt in the form of a ventricular catheter for controlling the condition of hydrocephalus by relieving the excessive cerebrospinal fluid pressure is described. A method for fabrication of the catheter and shunting the cerebral fluid from the cerebral ventricles to other areas of the body is also considered. Shunt flow failure occurs if the ventricle collapse due to improper valve function causing overdrainage. The ventricular catheter comprises a multiplicity of inlet microtubules. Each microtubule has both a large openings at its inlet end and a multiplicity of microscopic openings along its lateral surfaces.

  7. The optimization of incident angles of low-energy oxygen ion beams for increasing sputtering rate on silicon samples

    NASA Astrophysics Data System (ADS)

    Sasaki, T.; Yoshida, N.; Takahashi, M.; Tomita, M.

    2008-12-01

    In order to determine an appropriate incident angle of low-energy (350-eV) oxygen ion beam for achieving the highest sputtering rate without degradation of depth resolution in SIMS analysis, a delta-doped sample was analyzed with incident angles from 0° to 60° without oxygen bleeding. As a result, 45° incidence was found to be the best analytical condition, and it was confirmed that surface roughness did not occur on the sputtered surface at 100-nm depth by using AFM. By applying the optimized incident angle, sputtering rate becomes more than twice as high as that of the normal incident condition.

  8. One-dimensional pattern of Au nanodots by ion-beam sputtering: formation and mechanism.

    PubMed

    Kim, J-H; Ha, N-B; Kim, J-S; Joe, M; Lee, K-R; Cuerno, R

    2011-07-15

    Highly ordered one-dimensional arrays of nanodots, or nanobeads, are fabricated by forming nanoripples and nanodots in sequence, entirely by ion-beam sputtering (IBS) of Au(001). This demonstrates the capability of IBS for the fabrication of sophisticated nanostructures via hierarchical self-assembly. The intricate nanobead pattern ideally serves to identify the governing mechanisms for the pattern formation: nonlinear effects, especially local redeposition and surface-confined transport, are essential both for the formation and the preservation of the one-dimensional order of the nanobead pattern. PMID:21625038

  9. Nonlinear ripple dynamics on amorphous surfaces patterned by ion beam sputtering.

    PubMed

    Muñoz-García, Javier; Castro, Mario; Cuerno, Rodolfo

    2006-03-01

    Erosion by ion-beam sputtering (IBS) of amorphous targets at off-normal incidence frequently produces a (nanometric) rippled surface pattern, strongly resembling macroscopic ripples on aeolian sand dunes. A suitable generalization of continuum descriptions of the latter allows us to describe theoretically for the first time the main nonlinear features of ripple dynamics by IBS, namely, wavelength coarsening and nonuniform translation velocity, that agree with similar results in experiments and discrete models. These properties are seen to be the anisotropic counterparts of in-plane ordering and (interrupted) pattern coarsening in IBS experiments on rotating substrates and at normal incidence. PMID:16606197

  10. Adherence of ion beam sputter deposited metal films on H-13 steel

    NASA Technical Reports Server (NTRS)

    Mirtich, M. J.

    1980-01-01

    An electron bombardment argon ion source was used to sputter deposit 17 different metal and metal oxide films ranging in thickness from 1 to 8 micrometers on H-13 steel substrates. The film adherence to the substrate surface was measured using a tensile test apparatus. Comparisons in bond strength were made between ion beam, ion plating, and RF deposited films. A protective coating to prevent heat checking in H-13 steel dies used for aluminum die casting was studied. The results of exposing the coated substrates to temperatures up to 700 degrees are presented.

  11. Physical processes in directed ion beam sputtering. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Robinson, R. S.

    1979-01-01

    The general operation of a discharge chamber for the production of ions is described. A model is presented for the magnetic containment of both primary and secondary or Maxwellian electrons in the discharge plasma. Cross sections were calculated for energy and momentum transfer in binary collisions between like pairs of Ar, Kr, and Xe atoms in the energy range from about 1 eV to 1000 eV. These calculations were made from available pair interaction potentials using a classical model. Experimental data from the literature were fit to a theoretical expression for the Ar resonance charge exchange cross section over the same energy range. A model was developed that describes the processes of conical texturing of a surface due to simultaneous directed ion beam etching and sputter deposition of an impurity material. This model accurately predicts both a minimum temperature for texturing to take place and the variation of cone density with temperature. It also provides the correct order of magnitude of cone separation. It was predicted from the model, and subsequently verified experimentally, that a high sputter yield material could serve as a seed for coning of a lower sputter yield substrate. Seeding geometries and seed deposition rates were studied to obtain an important input to the theoretical texturing model.

  12. Sputtering: A vacuum deposition method for coating material

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1972-01-01

    The sputtering process is described in terms of its features: versatility, momentum transfer, configuration of target, precise controls and the relatively slow deposition rate. Sputtered films are evaluated in terms of adherence, coherence, and internal stresses. The strong adherence is attributed to the high kinetic energies of the sputtered material, sputter etched (cleaned) surface, and the submicroscopic particle size. An illustration is a sputtered solid film lubricant such as MoS2. Friction tests were conducted on a thin, 2000 A deg thick MoS2 film. These films are very dense and without observable pinholes, and the particle to particle cohesion is strong. Tolerances (film thickness) can be controlled to a millionth of a centimeter. Very adherent films of sputtered Teflon can be deposited in a single operation on any type of material (metal, glass, paper) and on any geometrical configuration with a dense adherent film.

  13. Conformal growth of Mo/Si multilayers on grating substrates using collimated ion beam sputtering

    NASA Astrophysics Data System (ADS)

    Voronov, D. L.; Gawlitza, P.; Cambie, R.; Dhuey, S.; Gullikson, E. M.; Warwick, T.; Braun, S.; Yashchuk, V. V.; Padmore, H. A.

    2012-05-01

    Deposition of multilayers on saw-tooth substrates is a key step in the fabrication of multilayer blazed gratings (MBG) for extreme ultraviolet and soft x-rays. Growth of the multilayers can be perturbed by shadowing effects caused by the highly corrugated surface of the substrates, which results in distortion of the multilayer stack structure and degradation of performance of MBGs. To minimize the shadowing effects, we used an ion-beam sputtering machine with a highly collimated atomic flux to deposit Mo/Si multilayers on saw-tooth substrates. The sputtering conditions were optimized by finding a balance between smoothening and roughening processes in order to minimize degradation of the groove profile in the course of deposition and at the same time to keep the interfaces of a multilayer stack smooth enough for high efficiency. An optimal value of energy of 200 eV for sputtering Kr+ ions was found by deposition of test multilayers on flat substrates at a range of ion energies. Two saw-tooth substrates were deposited at energies of 200 eV and 700 eV for the sputtering ions. It was found that reduction of the ion energy improved the blazing performance of the MBG and resulted in a 40% gain in the diffraction efficiency due to better replication of the groove profile by the multilayer. As a result of the optimization performed, an absolute diffraction efficiency of 28.8% was achieved for the 2nd blaze order of the MBG with a groove density of 7350 lines/mm at a wavelength of 13.5 nm. Details of the growth behavior of the multilayers on flat and saw-tooth substrates are discussed in terms of the linear continuous model of film growth.

  14. Conformal growth of Mo/Si multilayers on grating substrates using collimated ion beam sputtering

    SciTech Connect

    Voronov, D. L.; Cambie, R.; Dhuey, S.; Gullikson, E. M.; Warwick, T.; Yashchuk, V. V.; Padmore, H. A.; Gawlitza, P.; Braun, S.

    2012-05-01

    Deposition of multilayers on saw-tooth substrates is a key step in the fabrication of multilayer blazed gratings (MBG) for extreme ultraviolet and soft x-rays. Growth of the multilayers can be perturbed by shadowing effects caused by the highly corrugated surface of the substrates, which results in distortion of the multilayer stack structure and degradation of performance of MBGs. To minimize the shadowing effects, we used an ion-beam sputtering machine with a highly collimated atomic flux to deposit Mo/Si multilayers on saw-tooth substrates. The sputtering conditions were optimized by finding a balance between smoothening and roughening processes in order to minimize degradation of the groove profile in the course of deposition and at the same time to keep the interfaces of a multilayer stack smooth enough for high efficiency. An optimal value of energy of 200 eV for sputtering Kr{sup +} ions was found by deposition of test multilayers on flat substrates at a range of ion energies. Two saw-tooth substrates were deposited at energies of 200 eV and 700 eV for the sputtering ions. It was found that reduction of the ion energy improved the blazing performance of the MBG and resulted in a 40% gain in the diffraction efficiency due to better replication of the groove profile by the multilayer. As a result of the optimization performed, an absolute diffraction efficiency of 28.8% was achieved for the 2nd blaze order of the MBG with a groove density of 7350 lines/mm at a wavelength of 13.5 nm. Details of the growth behavior of the multilayers on flat and saw-tooth substrates are discussed in terms of the linear continuous model of film growth.

  15. Residual stress in sputtered gold films on quartz measured by the cantilever beam deflection technique.

    PubMed

    Thornell, G; Ericson, F; Hedlund, C; Ohrmaim, J; Schweitz, J A; Portnoff, G

    1999-01-01

    With resonator applications in mind, the residual stress in sputtered gold electrodes on quartz has been investigated with respect to various deposition rates (2, 10, and 50 A/s), pressures (1.0 and 3.0 10(-3) mbar), deposition temperatures (80 degrees C and room temperature (RT)), film thicknesses (approx. 400 to 800 A), and substrate smoothnesses (lapped and polished), using the cantilever beam deflection method. Samples were monitored for 4 weeks at room temperature followed by 13 weeks of annealing at 85 degrees C. The initial stress (ranging from -180 to -60 MPa) was compressive for all samples but turned tensile (a few megaPascals) in some of the samples after annealing. A significant decrease in initial compressive stress appeared with samples coated at an elevated temperature. From samples prepared at lower pressure and differing only in film thickness and substrate roughness, an increased compressive stress was found in thicker films and on rougher surfaces. The stress relaxation has been fitted to an exponential expression, and an attempt to relate the stress to a frequency shift (typically a few parts per million for ordinary, 100-mum thick AT blanks) has been made. With the help of transmission electron microscopy (TEM) the film morphology was investigated and related to the deposition parameters and aging. Judging from the increase in compressive stress and grain refinement with increased deposition rate and decreased pressure, the atomic peening mechanism is the most likely reason for the induced stress. Rutherford backscattering spectrometry (RBS) was employed to rule out the inclusion of argon (below or around 0.5%) as an explanation. From the vague, but clearly discernible, trend toward faster RT stress relaxation with higher initial stress, together with the finer film morphology, the relief mechanism is believed to be stress-promoted grain boundary diffusion. PMID:18238503

  16. ITO/InP solar cells: A comparison of devices fabricated by ion beam and RF sputtering of the ITO

    NASA Technical Reports Server (NTRS)

    Coutts, T. J.

    1987-01-01

    This work was performed with the view of elucidating the behavior of indium tin oxide/indium phosphide (ITO/InP) solar cells prepared by RF and ion beam sputtering. It was found that using RF sputter deposition of the ITO always leads to more efficient devices than ion beam sputter deposition. An important aspect of the former technique is the exposure of the single crystal p-InP substrates to a very low plasma power prior to deposition. Substrates treated in this manner have also been used for ion beam deposition of ITO. In this case the cells behave very similarly to the RF deposited cells, thus suggesting that the lower power plasma exposure (LPPE) is the crucial process step.

  17. Method for measuring and controlling beam current in ion beam processing

    DOEpatents

    Kearney, Patrick A.; Burkhart, Scott C.

    2003-04-29

    A method for producing film thickness control of ion beam sputter deposition films. Great improvements in film thickness control is accomplished by keeping the total current supplied to both the beam and suppressor grids of a radio frequency (RF) in beam source constant, rather than just the current supplied to the beam grid. By controlling both currents, using this method, deposition rates are more stable, and this allows the deposition of layers with extremely well controlled thicknesses to about 0.1%. The method is carried out by calculating deposition rates based on the total of the suppressor and beam currents and maintaining the total current constant by adjusting RF power which gives more consistent values.

  18. The ion beam sputtering facility at KURRI: Coatings for advanced neutron optical devices

    NASA Astrophysics Data System (ADS)

    Hino, Masahiro; Oda, Tatsuro; Kitaguchi, Masaaki; Yamada, Norifumi L.; Tasaki, Seiji; Kawabata, Yuji

    2015-10-01

    We describe a film coating facility for the development of multilayer mirrors for use in neutron optical devices that handle slow neutron beams. Recently, we succeeded in fabricating a large neutron supermirror with high reflectivity using an ion beam sputtering system (KUR-IBS), as well as all neutron supermirrors in two neutron guide tubes at BL06 at J-PARC/MLF. We also realized a large flexible self-standing m=5 NiC/Ti supermirror and very small d-spacing (d=1.65 nm) multilayer sheets. In this paper, we present an overview of the performance and utility of non-magnetic neutron multilayer mirrors fabricated with the KUR-IBS

  19. Ion Beam Sputter Fabrication of Micro-Grooving and Micro-Threading Tools

    SciTech Connect

    ADAMS,DAVID P.; VASILE,M.J.; KRISHNAN,A.S.M.

    1999-11-05

    This paper presents techniques for fabricating microscopic, nonplanar features in a variety of materials. Micro-grooving and micro-threading tools having cutting dimensions of 10-30{micro}m are made by focused ion beam sputtering and used in ultra-precision machining. Tool fabrication involves directing a 20 keV gallium beam at polished cylindrical punches made of cobalt M42 high-speed steel or C2 tungsten carbide. This creates cutting edges having radii of curvature less than 0.4 {micro}m, and rake features similar to conventional lathe tools. Clearance for minimizing frictional drag of a tool results from the sputter yield dependence on ion herd target incidence angle. Numerically controlled, ultra-precision machining with micro-grooving tools results in a close matching between tool width and feature size. Microtools controllably machine 13 {micro}m wide, 4 {micro}m deep, helical grooves in polymethyl methacrylate and 6061-T6 Al cylindrical substrates. Micro-grooving tools also fabricate sinusoidal waveform features in polished metal substrates.

  20. Laser beam pulse formatting method

    DOEpatents

    Daly, Thomas P.; Moses, Edward I.; Patterson, Ralph W.; Sawicki, Richard H.

    1994-01-01

    A method for formatting a laser beam pulse (20) using one or more delay loops (10). The delay loops (10) have a partially reflective beam splitter (12) and a plurality of highly reflective mirrors (14) arranged such that the laser beam pulse (20) enters into the delay loop (10) through the beam splitter (12) and circulates therein along a delay loop length (24) defined by the mirrors (14). As the laser beam pulse (20) circulates within the delay loop (10) a portion thereof is emitted upon each completed circuit when the laser beam pulse (20) strikes the beam splitter (12). The laser beam pulse (20) is thereby formatted into a plurality of sub-pulses (50, 52, 54 and 56). The delay loops (10) are used in combination to produce complex waveforms by combining the sub-pulses (50, 52, 54 and 56) using additive waveform synthesis.

  1. Laser beam pulse formatting method

    DOEpatents

    Daly, T.P.; Moses, E.I.; Patterson, R.W.; Sawicki, R.H.

    1994-08-09

    A method for formatting a laser beam pulse using one or more delay loops is disclosed. The delay loops have a partially reflective beam splitter and a plurality of highly reflective mirrors arranged such that the laser beam pulse enters into the delay loop through the beam splitter and circulates therein along a delay loop length defined by the mirrors. As the laser beam pulse circulates within the delay loop a portion thereof is emitted upon each completed circuit when the laser beam pulse strikes the beam splitter. The laser beam pulse is thereby formatted into a plurality of sub-pulses. The delay loops are used in combination to produce complex waveforms by combining the sub-pulses using additive waveform synthesis. 8 figs.

  2. Method of cold welding using ion beam technology

    NASA Technical Reports Server (NTRS)

    Sater, B. L. (Inventor)

    1981-01-01

    A method for cold welding metal joints is described. In order to remove the contamination layer on the surface of the metal, an ion beam generator is used in a vacuum environment. A gas, such as xenon or argon, is ionized and accelerated toward the metal surface. The beam of gas effectively sputters away the surface oxides and contamination layer so that clean underlying metal is exposed in the area to be welded. The use of this method allows cold welding with minimal deformation. Both similar and dissimilar metals can be cold welded with this method.

  3. Apparatus for and method of controlling sputter coating

    SciTech Connect

    Boys, R.

    1985-02-19

    The magnetic field of a magnetron sputter coating apparatus is controlled in response to measurements of plasma parameters to control deposition parameters, such as sputter deposition rate and material deposition thickness profile. From time to time the apparatus is standardized to change preset values for parameters of the plasma to manage the deposition parameters.

  4. Nanopatterning of silicon surfaces by low-energy ion-beam sputtering: dependence on the angle of ion incidence

    NASA Astrophysics Data System (ADS)

    Gago, R.; Vázquez, L.; Cuerno, R.; Varela, M.; Ballesteros, C.; Albella, J. M.

    2002-06-01

    We report on the production of nanoscale patterning on Si substrates by low-energy ion-beam sputtering. The surface morphology and structure of the irradiated surface were studied by atomic force microscopy (AFM) and high-resolution transmission electron microscopy (HRTEM). Under ion irradiation at off-normal incidence angle (~50°), AFM images show the formation of both nanoripple and sawtooth-like structures for sputtering times longer than 20 min. The latter feature coarsens appreciably after 60 min of sputtering, inducing a large increase in the surface roughness. This behaviour is attributed to the preferential direction determined on the substrate by the ion beam for this incidence angle, leading to shadowing effects among surface features in the sputtering process. Under irradiation at normal incidence, the formation of an hexagonal array of nanodots is induced for irradiation times longer than 2 min. The shape and crystallinity of the nanodots were determined by HRTEM. At this incidence angle, the surface roughness is very low and remains largely unchanged even after 16 h of sputtering. For the two angle conditions studied, the formation of the corresponding surface structures can be understood as the interplay between an instability due to the sputtering yield dependence on the local surface curvature and surface smoothing processes such as surface diffusion.

  5. Comparison of AlN films grown by RF magnetron sputtering and ion-assisted molecular beam epitaxy

    SciTech Connect

    Chan, J.; Fu, T.; Cheung, N.W.; Ross, J.; Newman, N.; Rubin, M.

    1993-04-01

    Crystalline aluminum nitride (AlN) thin films were formed on various substrates by using RF magnetron sputtering of an A1 target in a nitrogen plasma and also by ion-assisted molecular beam epitaxy (IAMBE). Basal-oriented AlN/(111) Si showed a degradation of crystallinity with increased substrate temperature from 550 to 770 C, while the crystallinity of AlN/(0001) A1{sub 2}O{sub 3} samples improved from 700 to 850 C. The optical absorption characteristics of the AlN/(0001) A1{sub 2}O{sub 3} films as grown by both deposition methods revealed a decrease in subbandgap absorption with increased substrate temperature.

  6. Scanning-electron-microscopy observations and mechanical characteristics of ion-beam-sputtered surgical implant alloys

    NASA Technical Reports Server (NTRS)

    Weigand, A. J.; Meyer, M. L.; Ling, J. S.

    1977-01-01

    An electron bombardment ion thruster was used as an ion source to sputter the surfaces of orthopedic prosthetic metals. Scanning electron microscopy photomicrographs were made of each ion beam textured surface. The effect of ion texturing an implant surface on its bond to bone cement was investigated. A Co-Cr-W alloy and surgical stainless steel were used as representative hard tissue implant materials to determine effects of ion texturing on bulk mechanical properties. Work was done to determine the effect of substrate temperature on the development of an ion textured surface microstructure. Results indicate that the ultimate strength of the bulk materials is unchanged by ion texturing and that the microstructure will develop more rapidly if the substrate is heated prior to ion texturing.

  7. Characterization of zirconia- and niobia-silica mixture coatings produced by ion-beam sputtering

    SciTech Connect

    Melninkaitis, Andrius; Tolenis, Tomas; Mazule, Lina; Mirauskas, Julius; Sirutkaitis, Valdas; Mangote, Benoit; Fu Xinghai; Zerrad, Myriam; Gallais, Laurent; Commandre, Mireille; Kicas, Simonas; Drazdys, Ramutis

    2011-03-20

    ZrO{sub 2}-SiO{sub 2} and Nb{sub 2}O{sub 5}-SiO{sub 2} mixture coatings as well as those of pure zirconia (ZrO{sub 2}), niobia (Nb{sub 2}O{sub 5}), and silica (SiO{sub 2}) deposited by ion-beam sputtering were investigated. Refractive-index dispersions, bandgaps, and volumetric fractions of materials in mixed coatings were analyzed from spectrophotometric data. Optical scattering, surface roughness, nanostructure, and optical resistance were also studied. Zirconia-silica mixtures experience the transition from crystalline to amorphous phase by increasing the content of SiO{sub 2}. This also results in reduced surface roughness. All niobia and silica coatings and their mixtures were amorphous. The obtained laser-induced damage thresholds in the subpicosecond range also correlates with respect to the silica content in both zirconia- and niobia-silica mixtures.

  8. Thermal stability of magnetron and ion beam sputtered top and bottom spin-valve films

    SciTech Connect

    Mao, Ming; Cerjan, Charlie; Hung, Stephanie; Miloslavsky, Lena; Chien, Chester; Sant, Sudhi

    2001-06-01

    The thermal stability of top and bottom IrMn exchange-biased spin-valve films prepared by ion beam deposition (IBD) and magnetron sputtering physical vapor deposition (PVD) is compared. These films exhibit identical temperature dependence for the exchange bias field H{sub ex}, with a blocking temperature of T{sub B}=250{degree}C, that is independent of preparation technique. Isothermal annealing at temperatures below T{sub B} led to a ln(t) dependent degradation in H{sub ex}, suggesting a thermal activation process. The high crystallographic quality of the IBD films leads to a superior stability compared to PVD films. Top spin-valve films are also found to be more stable than bottom spin-valve films. {copyright} 2001 American Institute of Physics.

  9. Characterization of ion beam and magnetron sputtered thin Ta/NiFe films

    NASA Astrophysics Data System (ADS)

    Mao, M.; Leng, Q.; Huai, Y.; Johnson, P.; Miller, M.; Tong, H.-C.; Miloslavsky, L.; Qian, C.; Wang, J.; Hegde, H.

    1999-04-01

    Thin Ta/NiFe films were deposited using ion beam deposition (IBD), pulsed, and static magnetron sputtering techniques. These NiFe films show anisotropy field values ˜4 Oe, easy axis coercivities ⩽1 Oe, and hard axis coercivities ⩽0.3 Oe. IBD films exhibit higher magnetoresistance ratios (ΔR/R), while little difference is noted between different deposition techniques in the sheet resistance of NiFe films. A ΔR/R value of 1.8% has been measured for a 90 Å IBD NiFe films. X-ray diffraction measurements indicate that NiFe films of the same thickness have about the same grain size regardless of deposition technique, however, IBD films exhibit superior (111) texture and crystallinity. Our results clearly indicate that the superior magnetic properties of thin IBD Ta/NiFe films are a result of high crystallographic quality of these films.

  10. Thermal stability of magnetron and ion beam sputtered top and bottom spin-valve films

    NASA Astrophysics Data System (ADS)

    Mao, Ming; Cerjan, Charlie; Hung, Stephanie; Miloslavsky, Lena; Chien, Chester; Sant, Sudhi

    2001-06-01

    The thermal stability of top and bottom IrMn exchange-biased spin-valve films prepared by ion beam deposition (IBD) and magnetron sputtering physical vapor deposition (PVD) is compared. These films exhibit identical temperature dependence for the exchange bias field Hex, with a blocking temperature of TB=250 °C, that is independent of preparation technique. Isothermal annealing at temperatures below TB led to a ln(t) dependent degradation in Hex, suggesting a thermal activation process. The high crystallographic quality of the IBD films leads to a superior stability compared to PVD films. Top spin-valve films are also found to be more stable than bottom spin-valve films.

  11. Optical and tribomechanical stability of optically variable interference security devices prepared by dual ion beam sputtering.

    PubMed

    Çetinörgü-Goldenberg, Eda; Baloukas, Bill; Zabeida, Oleg; Klemberg-Sapieha, Jolanta; Martinu, Ludvik

    2011-07-01

    Optical security devices applied to banknotes and other documents are exposed to different types of harsh environments involving the cycling of temperature, humidity, chemical agents, and tribomechanical intrusion. In the present work, we study the stability of optically variable devices, namely metameric interference filters, prepared by dual ion beam sputtering onto polycarbonate and glass substrates. Specifically, we assess the color difference as well as the changes in the mechanical properties and integrity of all-dielectric and metal-dielectric systems due to exposure to bleach, detergent and acetone agents, and heat and humidity. The results underline a significant role of the substrate material, of the interfaces, and of the nature and microstructure of the deposited films in long term stability under everyday application conditions. PMID:21743540

  12. Measurement and analysis on ion barrier film of MCP by ion beam sputtering deposition

    NASA Astrophysics Data System (ADS)

    Zhang, Ni; Zhu, Yu-Feng; Li, Dan; Nie, Jing; Zhang, Fan; Zhang, Tai-min; Liu, Xiao-jian; Liu, Zhao-lu; Cheng, Wei; Chen, Chang

    2015-03-01

    Ion barrier film (IBF) on the input side surface of Micro-channel Plate (MCP ) has a dual role in the high electron transmittance and high ionic blocking rate, and the quality of the film is very strict, so to choose a good coating way to meet the application of IBF-MCP in the third image intensifier is very important. Ion beam sputtering deposition (IBSD) technology is a relatively mature coating technology which can obtain a dense strong adhesion and smooth, high-quality film. This paper is carried out from the quality analysis on surface morphology, crystal structure and coating quality and comparison with qualified film to determine a better way to prepare IBF on the input side surface of MCP.

  13. The Growth Mechanism of Silicon Nanodots Synthesized by Sputtering Method

    SciTech Connect

    Sakrani, Samsudi; Idrees, Fatima Aldaw; Othaman, Zulkafli; Ismail, Abd. Khamim

    2011-05-25

    Silicon quantum dots have been grown on sapphire substrate using a self-assembly method of physical vapour deposition. The samples were fabricated at low sputtering rate and varying experimental conditions. Apparently, the onset of nucleation took place during the first 5 minutes of deposition, followed by a further growth of stable islands so-called nanodots, with the measured radii comparable to the predicted values. Other measurement results confirmed the existence of these dots, including the bandgap energy {approx}1.80 eV from PL and a 5% at. silicon from EDX. The nucleation parameters were predicted as follows: Free energy change per unit volume {Delta}G{sub v{approx}}-2.4x10{sup 5} Jmol{sup -1}; Surface energies per unit area, {gamma}{sub LN} = 1.48 Jm{sup -2}, {gamma}{sub NS} = 21.6-88.3 Jcm{sup -2} and {gamma}{sub LS} 0.82x10{sup -2} Jm{sup -2}; Critical energies {Delta}G* = 6.83x10{sup -16}-3.68x10{sup -14} J; Critical radii r* = 20-72 nm. This experimental evidence strongly support the early stage growth model of silicon quantum dot deposited on corning glass substrate.

  14. The Growth Mechanism of Silicon Nanodots Synthesized by Sputtering Method

    NASA Astrophysics Data System (ADS)

    Sakrani, Samsudi; Idrees, Fatima Aldaw; Othaman, Zulkafli; Ismail, Abd. Khamim

    2011-05-01

    Silicon quantum dots have been grown on sapphire substrate using a self-assembly method of physical vapour deposition. The samples were fabricated at low sputtering rate and varying experimental conditions. Apparently, the onset of nucleation took place during the first 5 minutes of deposition, followed by a further growth of stable islands so-called nanodots, with the measured radii comparable to the predicted values. Other measurement results confirmed the existence of these dots, including the bandgap energy ˜1.80 eV from PL and a 5% at. silicon from EDX. The nucleation parameters were predicted as follows: Free energy change per unit volume ΔGv˜-2.4×105Jmol-1; Surface energies per unit area, γLN = 1.48 Jm-2, γNS = 21.6-88.3 Jcm-2 and γLS = 0.82×10-2 Jm-2; Critical energies ΔG* = 6.83×10-16-3.68×10-14 J; Critical radii r* = 20-72 nm. This experimental evidence strongly support the early stage growth model of silicon quantum dot deposited on corning glass substrate.

  15. Effect of Ar Ion Beam Pre-Treatment of Poly(ethylene terephthalate) Substrate on the Mechanical and Electrical Stability of Flexible InSnO Films Grown by Roll-to-Roll Sputtering System

    NASA Astrophysics Data System (ADS)

    Choi, Kwang-Hyuk; Kim, Han-Ki

    2013-10-01

    We investigated the effects of Ar ion beam irradiation on a flexible poly(ethylene terephthalate) (PET) substrate as surface pre-treatment method in the roll-to-roll (R2R) sputtering system and its contribution to the electrical durability of flexible InSnO (ITO) electrode upon that the flexible PET substrate under repeated mechanical stresses. It was found that the Ar ion beam irradiation of the flexible PET surface could improve an adhesion between R2R sputter-grown ITO film and the PET substrate. X-ray photoelectron spectroscopy results showed that the Ar ion beam irradiation lead to an increase of hydrophilic functional groups when the working pressure, Ar ion beam power, and exposure time increases. Repetitive bending stresses for the flexible ITO/PET film which fabricated through the surface pre-treatment by Ar ion beam irradiation showed more stable electrical durability than those of ITO films on the wet-cleaned PET substrate due to enhanced interfacial adhesion between the ITO film and PET surface. This suggests that the Ar ion beam pre-treatment before sputtering of ITO film in R2R sputtering system is an effective technique to improve the adhesion between ITO film and PET substrate.

  16. Magnetron sputtering as a method of thin-film catalyst development for electrochemical sensors

    NASA Astrophysics Data System (ADS)

    Medvedeva, E. A.

    2016-07-01

    The aim of this work was to develop a thin-film Pt/C catalyst on the fluoroplastic substrates by means of the magnetron sputtering method in order to use as reference and working electrodes of electrochemical cells.

  17. Ion-beam sputtered amorphous silicon films for cryogenic precision measurement systems

    NASA Astrophysics Data System (ADS)

    Murray, Peter G.; Martin, Iain W.; Craig, Kieran; Hough, James; Robie, Raymond; Rowan, Sheila; Abernathy, Matt R.; Pershing, Teal; Penn, Steven

    2015-09-01

    Thermal noise resulting from the mechanical loss of multilayer dielectric coatings is expected to impose a limit to the sensitivities of precision measurement systems used in fundamental and applied science. In the case of gravitational wave astronomy, future interferometric gravitational wave detectors are likely to operate at cryogenic temperatures to reduce such thermal noise and ameliorate thermal loading effects, with the desirable thermomechanical properties of silicon making it an attractive mirror substrate choice for this purpose. For use in such a precision instrument, appropriate coatings of low thermal noise are essential. Amorphous silicon (a -Si ) deposited by e-beam and other techniques has been shown to have low mechanical loss. However, to date, the levels of mechanical and optical loss for a -Si when deposited by ion-beam sputtering (the technique required to produce amorphous mirrors of the specification for gravitational wave detector mirrors) are unknown. In this paper results from measurements of the mechanical loss of a series of IBS a -Si films are presented which show that reductions are possible in coating thermal noise of a factor of 1.5 at 120 K and 2.1 at 20 K over the current best IBS coatings (alternating stacks of silica and titania-doped tantala), with further reductions feasible under appropriate heat treatments.

  18. Fluoropolymer Films Deposited by Argon Ion-Beam Sputtering of Polytetrafluoroethylene

    NASA Technical Reports Server (NTRS)

    Golub, Morton A.; Banks, Bruce A.; Kliss, Mark (Technical Monitor)

    1998-01-01

    The FT-IR, XPS and UV spectra of fluoropolymer films (SPTFE-I) deposited by argon ion-beam sputtering of polytetrafluoroethylene (PTFE) were obtained and compared with prior corresponding spectra of fluoropolymer films (SPTFE-P) deposited by argon rf plasma sputtering of PTFE. Although the F/C ratios for SPTFE-I and -P (1.63 and 1.51) were similar, their structures were quite different in that there was a much higher concentration of CF2 groups in SPTFE-I than in SPTFE-P, ca. 61 and 33% of the total carbon contents, respectively. The FT-IR spectra reflect that difference, that for SPTFE-I showing a distinct doublet at 1210 and 1150 per centimeter while that for SPTFE-P presents a broad, featureless band at ca. 1250 per centimeter. The absorbance of the 1210-per centimeter band in SPTFE-I was proportional to the thickness of the film, in the range of 50-400 nanometers. The SPTFE-I was more transparent in the UV than SPTFE-P at comparable thickness. The mechanism for SPTFE-I formation likely involves "chopping off" of oligomeric segments of PTFE as an accompaniment to "plasma" polymerization of TFE monomer or other fluorocarbon fragments generated in situ from PTFE on impact with energetic Ar ions. Data are presented for SPTFE-I deposits and the associated Ar(+) bombarded PTFE targets where a fresh target was used for each run or a single target was used for a sequence of runs.

  19. Method for sputtering with low frequency alternating current

    DOEpatents

    Timberlake, John R.

    1996-01-01

    Low frequency alternating current sputtering is provided by connecting a low frequency alternating current source to a high voltage transformer having outer taps and a center tap for stepping up the voltage of the alternating current. The center tap of the transformer is connected to a vacuum vessel containing argon or helium gas. Target electrodes, in close proximity to each other, and containing material with which the substrates will be coated, are connected to the outer taps of the transformer. With an applied potential, the gas will ionize and sputtering from the target electrodes onto the substrate will then result. The target electrodes can be copper or boron, and the substrate can be stainless steel, aluminum, or titanium. Copper coatings produced are used in place of nickel and/or copper striking.

  20. Method for sputtering with low frequency alternating current

    DOEpatents

    Timberlake, J.R.

    1996-04-30

    Low frequency alternating current sputtering is provided by connecting a low frequency alternating current source to a high voltage transformer having outer taps and a center tap for stepping up the voltage of the alternating current. The center tap of the transformer is connected to a vacuum vessel containing argon or helium gas. Target electrodes, in close proximity to each other, and containing material with which the substrates will be coated, are connected to the outer taps of the transformer. With an applied potential, the gas will ionize and sputtering from the target electrodes onto the substrate will then result. The target electrodes can be copper or boron, and the substrate can be stainless steel, aluminum, or titanium. Copper coatings produced are used in place of nickel and/or copper striking. 6 figs.

  1. Symmetry of surface nanopatterns induced by ion-beam sputtering: Role of anisotropic surface diffusion

    NASA Astrophysics Data System (ADS)

    Renedo, Javier; Cuerno, Rodolfo; Castro, Mario; Muñoz-García, Javier

    2016-04-01

    Ion-beam sputtering (IBS) is a cost-effective technique able to produce ordered nanopatterns on the surfaces of different materials. To date, most theoretical studies of this process have focused on systems which become amorphous under irradiation, e.g., semiconductors at room temperature. Thus, in spite of the large amount of experimental work on metals, or more recently on semiconductors at high temperatures, such experimental contexts have received relatively little theoretical attention. These systems are characterized by transport mechanisms, e.g., surface diffusion, which are anisotropic as a reflection of the crystalline structure not being overruled by the irradiation. Here, we generalize a previous continuum theory of IBS at normal incidence, in order to account for anisotropic surface diffusion. We explore systematically our generalized model in order to understand the role of anisotropy in the space-ordering properties of the resulting patterns. In particular, we derive a height equation which predicts morphological transitions among hexagonal and rectangular patterns as a function of system parameters and employ an angular correlation function to assess these pattern symmetries. By suitably choosing experimental conditions, it is found that one might be able to experimentally control the type of order displayed by the patterns produced.

  2. The Electric, Magnetic, and Optical Characterization of Permalloy Oxide Grown by Dual-Ion Beam Sputtering

    NASA Astrophysics Data System (ADS)

    Compton, Maclyn; Leblanc, Elizabeth; Geerts, Wilhelmus; Simpson, Nelson; Robinson, Michael

    2014-03-01

    Permalloy (Ni80Fe20) is a commonly used soft magnetic material in magnetic reading heads. Its magnetic properties do not depend on stress, a parameter difficult to control in thin film devices. Permalloy Oxide (PyO) on the other hand, has a high resistivity (>4 .103 Ω cm), is anti-ferromagnetic and has recently been shown to strongly enhance the performance of lateral spin valve devices. Historically, the oxidation of permalloy has been seen as a defect that should be avoided by appropriate encapsulation and very little is known on its electric and optical properties. We deposited thin PyO films by Dual Ion Beam Sputtering (DIBS) at room temperature on various substrates. Van der Pauw and Hall measurements were carried out from 77K to 400K and at magnetic fields up to 9T in order to determine its electronic bandgap, resistivity, free carrier concentration, and its mobility. The dielectric properties and defects were studied using a CV-setup and an impedance analyzer. Magnetic measurements were conducted on a Quantum Design PPMS VSM to determine the state of oxidation. Optical properties were measured by a M2000 Woollam variable angle spectroscopic ellipsometer. These properties were used to determine film thickness, bandgap and the optical constants of PyO. The authors would like to thank Research Corporation for financial support.

  3. Ion beam and plasma methods of producing diamondlike carbon films

    NASA Technical Reports Server (NTRS)

    Swec, Diane M.; Mirtich, Michael J.; Banks, Bruce A.

    1988-01-01

    A variety of plasma and ion beam techniques was employed to generate diamondlike carbon films. These methods included the use of RF sputtering, dc glow discharge, vacuum arc, plasma gun, ion beam sputtering, and both single and dual ion beam deposition. Since films were generated using a wide variety of techniques, the physico-chemical properties of these films varied considerably. In general, these films had characteristics that were desirable in a number of applications. For example, the films generated using both single and dual ion beam systems were evaluated for applications including power electronics as insulated gates and protective coatings on transmitting windows. These films were impervious to reagents which dissolve graphitic and polymeric carbon structures. Nuclear reaction and combustion analysis indicated hydrogen to carbon ratios to be 1.00, which allowed the films to have good transmittance not only in the infrared, but also in the visible. Other evaluated properties of these films include band gap, resistivity, adherence, density, microhardness, and intrinsic stress. The results of these studies and those of the other techniques for depositing diamondlike carbon films are presented.

  4. Laser beam alignment apparatus and method

    DOEpatents

    Gruhn, Charles R.; Hammond, Robert B.

    1981-01-01

    The disclosure relates to an apparatus and method for laser beam alignment. Thermoelectric properties of a disc in a laser beam path are used to provide an indication of beam alignment and/or automatic laser alignment.

  5. Laser beam alignment apparatus and method

    DOEpatents

    Gruhn, C.R.; Hammond, R.B.

    The disclosure related to an apparatus and method for laser beam alignment. Thermoelectric properties of a disc in a laser beam path are used to provide an indication of beam alignment and/or automatic laser alignment.

  6. Structure and composition of zirconium carbide thin-film grown by ion beam sputtering for optical applications

    SciTech Connect

    Singh, Amol Modi, Mohammed H. Dhawan, Rajnish Lodha, G. S.

    2014-04-24

    Thin film of compound material ZrC was deposited on Si (100) wafer using ion beam sputtering method. The deposition was carried out at room temperature and at base pressure of 3×10{sup −5} Pa. X-ray photoelectron spectroscopy (XPS) measurements were performed for determining the surface chemical compositions. Grazing incidence x-ray reflectivity (GIXRR) measurements were performed to study the film thickness, roughness and density. From GIXRR curve roughness value of the film was found less than 1 nm indicating smooth surface morphology. Films density was found 6.51 g/cm{sup 3}, which is close to bulk density. Atomic force microscopy (AFM) measurements were performed to check the surface morphology. AFM investigation showed that the film surface is smooth, which corroborate the GIXRR data. Figure 2 of the original article PDF file, as supplied to AIP Publishing, contained a PDF processing error. This article was updated on 12 May 2014 to correct that error.

  7. Depth profiling using total reflection X-ray fluorescence spectrometry alone and in combination with ion beam sputtering

    NASA Astrophysics Data System (ADS)

    Schwenke, H.; Knoth, J.; Günther, R.; Wiener, G.; Bormann, R.

    1997-07-01

    The capability of total reflection X-ray fluorescence spectrometry (TXRF) for depth profiling is examined by means of selected examples including organometallic layers, an implantation profile of arsenic in silicon and a layered nickel/cobalt structure. For structures without density differences that are deeper than 20 nm or so, and also for buried layers and for the examination of sharp interfaces, which require the highest resolution, two different combinations of ion beam sputtering with TXRF have been employed. A microsectioning technique was investigated in which samples were etched to a bevel shape and subsequently scanned by TXRF. A depth resolution of 2.5 nm was obtained. Alternatively, the so called "transfer technique" was investigated. This involves surface atoms being sputtered by an ion beam and immediately deposited on a silicon wafer rotated behind a slit which is moved in step with the sputter progress. Subsequently, the wafer is scanned by TXRF. Using this technique, the width of a coherent Ti/Al interface within a layered structure was measured to be 1.4 nm. The depth resolutions of the "microsectioning" and the "transfer" techniques are compared with data from RBS, XPS, SIMS and SNMS.

  8. Liquid crystal surface alignments by using ion beam sputtered magnetic thin films

    SciTech Connect

    Wu, H.-Y.; Pan, R.-P.

    2007-08-13

    A method for liquid crystal surface alignment by using a one-step, ion beam bombardment of the glass substrates is demonstrated. Precoating by polyimide is not necessary. The authors show that the homeotropic alignment is achieved due to orientation of the diamagnetic nematogenic molecules by the magnetic field from the {gamma}-Fe{sub 2}O{sub 3} ferrimagnetic thin films created on the substrates by ion beam bombardment. The film exhibits a high Curie temperature well above 300 K and a compensation temperature which is the typical feature of ferrimagnetism. This is a simple, noncontact, and reliable alignment method for liquid crystal devices.

  9. The mechanism of controlling liquid crystal surface pretilt angle on plasma beam sputtered films

    NASA Astrophysics Data System (ADS)

    Pan, Ru-Pin; Huang, Meng-Chiou; Wu, Wei-Ta; Lai, Cheng-Wei; Wu, Hsin-Ying

    2012-02-01

    In liquid crystal (LC) devices, the surface alignment is essential. The polyimide (PI) film is commonly used to make LC molecules parallel to the surface. A rubbing process is usually applied to choose a particular direction on the surface. A pretilt angle is also induced, which is useful but usually very small. In previous works, we have found out that the sputtered ion-oxide films can give a homeotropic alignment to LC, i,e, the LC molecules are perpendicular to the surface. In this work, we combine these two effects by sputtering the ion-oxide particles onto the PI coated glasses. By adjusting the sputtering conditions, the LC alignment are controlled. A wide range of pretilt angles have been achieved, while the rubbing process is no longer required. A thorough study by varying the sputtering conditions, such as voltage, current, and time duration, and observing the pretilt angles is carried out. The sputtered surfaces are examined with scanning electron microscope to see the coverage. By considering the charge distribution and electric field within the sputter, a quantitative model is then developed, which explains how the sputtering conditions affect the pretilt angles almost perfectly.

  10. Investigation of ion-beam machining methods for replicated x-ray optics

    NASA Technical Reports Server (NTRS)

    Drueding, Thomas W.

    1996-01-01

    The final figuring step in the fabrication of an optical component involves imparting a specified contour onto the surface. This can be expensive and time consuming step. The recent development of ion beam figuring provides a method for performing the figuring process with advantages over standard mechanical methods. Ion figuring has proven effective in figuring large optical components. The process of ion beam figuring removes material by transferring kinetic energy from impinging neutral particles. The process utilizes a Kaufman type ion source, where a plasma is generated in a discharge chamber by controlled electric potentials. Charged grids extract and accelerate ions from the chamber. The accelerated ions form a directional beam. A neutralizer outside the accelerator grids supplies electrons to the positive ion beam. It is necessary to neutralize the beam to prevent charging workpieces and to avoid bending the beam with extraneous electro-magnetic fields. When the directed beam strikes the workpiece, material sputters in a predicable manner. The amount and distribution of material sputtered is a function of the energy of the beam, material of the component, distance from the workpiece, and angle of incidence of the beam. The figuring method described here assumes a constant beam removal, so that the process can be represented by a convolution operation. A fixed beam energy maintains a constant sputtering rate. This temporally and spatially stable beam is held perpendicular to the workpiece at a fixed distance. For non-constant removal, corrections would be required to model the process as a convolution operation. Specific figures (contours) are achieved by rastering the beam over the workpiece at varying velocities. A unique deconvolution is performed, using series-derivative solution developed for the system, to determine these velocities.

  11. Effect of high-energy electron-beam irradiation on the optical properties of ion-beam-sputtered silicon oxynitride thin films.

    PubMed

    Karanth, Shivaprasad; Shanbhogue, Ganesh H; Nagendra, C L

    2005-10-10

    Silicon oxynitride thin films are prepared by ion-beam sputtering, and the optical properties and surface chemical composition are studied by spectrophotometric and x-ray photoelectron spectroscopy, respectively. It is seen that the films sputtered by use of nitrogen alone as the sputtering species from a silicon nitride target are completely transparent (k < 0.005) and have a refractive-index dispersion from 1.85 to 1.71 over the visible and near-infrared spectral regions, and the films show distinct spectral lines that are due to silicon, Si(2s), nitrogen, N(1s), and oxygen, O(1s). Sputter deposition of argon and of argon and nitrogen produces silicon-rich silicon oxynitride films that are absorbent and have high refractive indices. These films have a direct electronic transition, with a threshold energy of 1.75 eV. Electron irradiation transforms optically transparent silicon oxynitride films into silicon-rich silicon oxynitride films that have higher refractive indices and are optically absorbing owing to the presence of nonsaturated silicon in the irradiated films. The degradation in current responsivity of silicon photodetectors, under electron irradiation, is within 3% over the wavelength region from 450 to 750 nm, which is entirely due to the degradation of optical properties of silicon oxynitride antireflection coatings. PMID:16237933

  12. Beam shuttering interferometer and method

    DOEpatents

    Deason, Vance A.; Lassahn, Gordon D.

    1993-01-01

    A method and apparatus resulting in the simplification of phase shifting interferometry by eliminating the requirement to know the phase shift between interferograms or to keep the phase shift between interferograms constant. The present invention provides a simple, inexpensive means to shutter each independent beam of the interferometer in order to facilitate the data acquisition requirements for optical interferometry and phase shifting interferometry. By eliminating the requirement to know the phase shift between interferograms or to keep the phase shift constant, a simple, economical means and apparatus for performing the technique of phase shifting interferometry is provide which, by thermally expanding a fiber optical cable changes the optical path distance of one incident beam relative to another.

  13. Beam shuttering interferometer and method

    DOEpatents

    Deason, V.A.; Lassahn, G.D.

    1993-07-27

    A method and apparatus resulting in the simplification of phase shifting interferometry by eliminating the requirement to know the phase shift between interferograms or to keep the phase shift between interferograms constant. The present invention provides a simple, inexpensive means to shutter each independent beam of the interferometer in order to facilitate the data acquisition requirements for optical interferometry and phase shifting interferometry. By eliminating the requirement to know the phase shift between interferograms or to keep the phase shift constant, a simple, economical means and apparatus for performing the technique of phase shifting interferometry is provide which, by thermally expanding a fiber optical cable changes the optical path distance of one incident beam relative to another.

  14. Method for splitting low power laser beams

    SciTech Connect

    Pierscionek, B.K. )

    1990-04-01

    A new method for producing parallel rays from a laser beam using a cylindrical lens and pinholes is presented. This method can produce a greater number of emergent rays than using a {ital beam} {ital splitter}.

  15. Sputtering erosion in ion and plasma thrusters

    NASA Astrophysics Data System (ADS)

    Ray, Pradosh K.

    1995-08-01

    An experimental set-up to measure low-energy (below 1 keV) sputtering of materials is described. The materials to be bombarded represent ion thruster components as well as insulators used in the stationary plasma thruster. The sputtering takes place in a 9 inch diameter spherical vacuum chamber. Ions of argon, krypton and xenon are used to bombard the target materials. The sputtered neutral atoms are detected by a secondary neutral mass spectrometer (SNMS). Samples of copper, nickel, aluminum, silver and molybdenum are being sputtered initially to calibrate the spectrometer. The base pressure of the chamber is approximately 2 x 10(exp -9) Torr. the primary ion beam is generated by an ion gun which is capable of delivering ion currents in the range of 20 to 500 nA. The ion beam can be focused to a size approximately 1 mm in diameter. The mass spectrometer is positioned 10 mm from the target and at 90 deg angle to the primary ion beam direction. The ion beam impinges on the target at 45 deg. For sputtering of insulators, charge neutralization is performed by flooding the sample with electrons generated from an electron gun. Preliminary sputtering results, methods of calculating the instrument response function of the spectrometer and the relative sensitivity factors of the sputtered elements will be discussed.

  16. Sputtering erosion in ion and plasma thrusters

    NASA Technical Reports Server (NTRS)

    Ray, Pradosh K.

    1995-01-01

    An experimental set-up to measure low-energy (below 1 keV) sputtering of materials is described. The materials to be bombarded represent ion thruster components as well as insulators used in the stationary plasma thruster. The sputtering takes place in a 9 inch diameter spherical vacuum chamber. Ions of argon, krypton and xenon are used to bombard the target materials. The sputtered neutral atoms are detected by a secondary neutral mass spectrometer (SNMS). Samples of copper, nickel, aluminum, silver and molybdenum are being sputtered initially to calibrate the spectrometer. The base pressure of the chamber is approximately 2 x 10(exp -9) Torr. the primary ion beam is generated by an ion gun which is capable of delivering ion currents in the range of 20 to 500 nA. The ion beam can be focused to a size approximately 1 mm in diameter. The mass spectrometer is positioned 10 mm from the target and at 90 deg angle to the primary ion beam direction. The ion beam impinges on the target at 45 deg. For sputtering of insulators, charge neutralization is performed by flooding the sample with electrons generated from an electron gun. Preliminary sputtering results, methods of calculating the instrument response function of the spectrometer and the relative sensitivity factors of the sputtered elements will be discussed.

  17. Oxygen vacancy mediated enhanced photo-absorption from ZnO(0001) nanostructures fabricated by atom beam sputtering

    NASA Astrophysics Data System (ADS)

    Solanki, Vanaraj; Joshi, Shalik R.; Mishra, Indrani; Kabiraj, D.; Mishra, N. C.; Avasthi, D. K.; Varma, Shikha

    2016-08-01

    The nanoscale patterns created on the ZnO(0001) surfaces during atom beam irradiation have been investigated here for their photo absorption response. Preferential sputtering, during irradiation, promotes Zn-rich zones that serve as the nucleation centers for the spontaneous creation of nanostructures. Nanostructured surfaces with bigger (78 nm) nanodots, displaying hexagonal ordering and long ranged periodic behavior, show higher photo absorption and a ˜0.09 eV reduced bandgap. These nanostructures also demonstrate higher concentration of oxygen vacancies which are crucial for these results. The enhanced photo-response, as observed here, has been achieved in the absence of any dopant elements.

  18. Towards an electro-magnetic field separation of deposited material implemented in an ion beam sputter process

    SciTech Connect

    Malobabic, Sina; Jupe, Marco; Ristau, Detlev

    2013-06-03

    Nowadays, Ion Beam Sputter (IBS) processes are very well optimized on an empirical basis. To achieve further progresses, a modification of the IBS process by guiding the coating material using an axial magnetic field and an additional electrical field has been studied. The electro-magnetic (EM) field leads to a significant change in plasma properties and deposition rate distributions, whereas an increase in deposition rate along the centerline of the axial EM field around 150% was observed. These fundamental studies on the prototype are the basis for the development of an applicable and workable design of a separation device.

  19. Improvement of electrical and optical properties of molybdenum oxide thin films by ultralow pressure sputtering method

    SciTech Connect

    Sook Oh, Myeong; Seob Yang, Bong; Ho Lee, Jong; Ha Oh, Seong; Soo Lee, Ung; Jang Kim, Yoon; Joon Kim, Hyeong; Soo Huh, Myung

    2012-05-15

    In this work, we investigated the structural, electrical and optical properties of molybdenum oxide thin films deposited by the reactive dc magnetron sputtering method. The molybdenum oxide films were prepared at sputtering pressures ranging from 6.7 x 10{sup -1} to 6.7 x 10{sup -2} Pa. In order to promote their electrical conductivity, all the deposited MoO{sub x} films were annealed in Ar ambient at 450 deg. C for 8 h. The resistivity of the MoO{sub x} films varied from 10{sup -4} to 10{sup -2}{Omega} cm depending on the O{sub 2} content in the sputtering ambient. The lowering of the resistivity of the MoO{sub 2} films was mainly attributed to the formation of a monoclinic MoO{sub 2} polycrystalline phase. As the sputtering pressure decreased, the content of monoclinic polycrystalline MoO{sub 2} phase increased, resulting in low resistivity films. The formation of the dominant MoO{sub 2} phase at lower sputtering pressures was attributed to the stress induced crystallization. The post-deposition annealed (PDA) MoO{sub x} film, deposited at an ultralow sputtering pressure (6.7 x 10{sup -2} Pa) and O{sub 2} content of 40%, had an atomic ratio of O to Mo {approx_equal} 2.85 and was highly transparent and conductive: the transmittance in the visible wavelength range of 400-500 nm was about 73% and the resistivity was 1.05 x 10{sup -3}{Omega} cm. This result is superior to those of MoO{sub x} films epitaxially grown by the pulse laser deposition method.

  20. Sputtered pin amorphous silicon semi-conductor device and method therefor

    DOEpatents

    Moustakas, Theodore D.; Friedman, Robert A.

    1983-11-22

    A high efficiency amorphous silicon PIN semi-conductor device is constructed by the sequential sputtering of N, I and P layers of amorphous silicon and at least one semi-transparent ohmic electrode. A method of construction produces a PIN device, exhibiting enhanced physical integrity and facilitates ease of construction in a singular vacuum system and vacuum pump down procedure.

  1. Fabrication of nanogradient coatings for laser devices using the method of magnetron sputtering

    SciTech Connect

    Abramov, N F; Volpyan, O D; Obod, Yu A; Dronskii, R V

    2013-09-30

    Significant advantages of the magnetron sputtering method for producing complex high-quality optical coatings for laser devices are shown. Technology aspects of efficient fabrication of such coatings are considered. The capabilities of the developed automated technological and control equipment are described. (nanogradient dielectric coatings and metamaterials)

  2. Thin copper oxide films prepared by ion beam sputtering with subsequent thermal oxidation: Application in chemiresistors

    NASA Astrophysics Data System (ADS)

    Horak, P.; Bejsovec, V.; Vacik, J.; Lavrentiev, V.; Vrnata, M.; Kormunda, M.; Danis, S.

    2016-12-01

    Copper oxide films were prepared by thermal oxidation of thin Cu films deposited on substrates by ion beam sputtering. The subsequent oxidation was achieved in the temperature range of 200 °C-600 °C with time of treatment from 1 to 7 h (with a 1-h step) in a furnace open to air. At temperatures 250 °C-600 °C, the dominant phase formed was CuO, while at 200 °C mainly the Cu2O phase was identified. However, the oxidation at 200 °C led to a more complicated composition - in the depth Cu2O phase was observed, though in the near-surface layer the CuO dominant phase was found with a significant presence of Cu(OH)2. A limited amount of Cu2O was also found in samples annealed at 600 °C. The sheet resistance RS of the as-deposited Cu sample was 2.22 Ω/□, after gradual annealing RS was measured in the range 2.64 MΩ/□-2.45 GΩ/□. The highest RS values were obtained after annealing at 300 °C and 350 °C, respectively. Oxygen depth distribution was studied using the 16O(α,α) nuclear reaction with the resonance at energy 3032 keV. It was confirmed that the higher oxidation degree of copper is located in the near-surface region. Preliminary tests of the copper oxide films as an active layer of a chemiresistor were also performed. Hydrogen and methanol vapours, with a concentration of 1000 ppm, were detected by the sensor at an operating temperature of 300 °C and 350 °C, respectively. The response of the sensors, pointed at the p-type conductivity, was improved by the addition of thin Pd or Au catalytic films to the oxidic film surface. Pd-covered films showed an increased response to hydrogen at 300 °C, while Au-covered films were more sensitive to methanol vapours at 350 °C.

  3. Noble gas incorporation in sputtered and ion beam assisted grown silicon films

    SciTech Connect

    van Veen, A. . Inter-Faculty Reactor Inst.); Greuter, M.J.W.; Niesen, L. . Dept. of Physics); Nielsen, B.; Lynn, K.G. )

    1991-01-01

    Gas desorption measurements have been performed on sputter deposited silicon films. The sputter gas was argon or krypton. Parameters influencing the incorporation process e.g. bias voltage, substrate temperature and arrival rate ratio of silicon and noble gas atoms have been systematically varied. The films, a-Si and c-Si, have been characterised by various techniques for composition and defect analysis. A model has been applied to describe the composition of the growing silicon layer. Underlying mechanisms like gas-gas sputtering have been studied in separate ion implantation experiments. For a-Si concentrations as high as 6% Ar and Kr have been found. An important effect is the injection of self-interstitial atoms caused by the low energy heavy ion bombardment. It causes the layer to grow without large open volume defects.

  4. Noble gas incorporation in sputtered and ion beam assisted grown silicon films

    SciTech Connect

    van Veen, A.; Greuter, M.J.W.; Niesen, L.; Nielsen, B.; Lynn, K.G.

    1991-12-31

    Gas desorption measurements have been performed on sputter deposited silicon films. The sputter gas was argon or krypton. Parameters influencing the incorporation process e.g. bias voltage, substrate temperature and arrival rate ratio of silicon and noble gas atoms have been systematically varied. The films, a-Si and c-Si, have been characterised by various techniques for composition and defect analysis. A model has been applied to describe the composition of the growing silicon layer. Underlying mechanisms like gas-gas sputtering have been studied in separate ion implantation experiments. For a-Si concentrations as high as 6% Ar and Kr have been found. An important effect is the injection of self-interstitial atoms caused by the low energy heavy ion bombardment. It causes the layer to grow without large open volume defects.

  5. Low-Energy Sputtering Research

    NASA Technical Reports Server (NTRS)

    Ray, P. K.; Shutthanandan, V.

    1999-01-01

    An experimental study is described to measure low-energy (less than 600 eV) sputtering yields of molybdenum with xenon ions using Rutherford backscattering spectroscopy (RBS) and secondary neutral mass spectroscopy (SNMS). An ion gun was used to generate the ion beam. The ion current density at the target surface was approximately 30 (micro)A/sq cm. For RBS measurements, the sputtered material was collected on a thin aluminum strip which was mounted on a semi-circular collector plate. The target was bombarded with 200 and 500 eV xenon ions at normal incidence. The differential sputtering yields were measured using the RBS method with 1 MeV helium ions. The differential yields were fitted with a cosine fitting function and integrated with respect to the solid angle to provide the total sputtering yields. The sputtering yields obtained using the RBS method are in reasonable agreement with those measured by other researchers using different techniques. For the SNMS measurements, 150 to 600 eV xenon ions were used at 50deg angle of incidence. The SNMS spectra were converted to sputtering yields for perpendicular incidence by normalizing SNMS spectral data at 500 eV with the yield measured by Rutherford backscattering spectrometry. Sputtering yields as well as the shape of the yield-energy curve obtained in this manner are in reasonable agreement with those measured by other researchers using different techniques. Sputtering yields calculated by using two semi-spherical formulations agree reasonably well with measured data. The isotopic composition of secondary ions were measured by bombarding copper with xenon ions at energies ranging from 100 eV to 1.5 keV. The secondary ion flux was found to be enriched in heavy isotopes at low incident ion energies. The heavy isotope enrichment was observed to decrease with increasing impact energy. Beyond 700 eV, light isotopes were sputtered preferentially with the enrichment remaining nearly constant.

  6. Tunneling behavior in ion-assist ion-beam sputtered CoFe/MgO/NiFe magnetic tunnel junctions

    SciTech Connect

    Singh, Braj Bhusan; Chaudhary, Sujeet; Pandya, Dinesh K.

    2012-11-15

    Graphical abstract: Display Omitted Highlights: ► Dual ion beam sputtered MgO barrier for MTJs. ► ∼12% TMR at 60 K. ► Glazman and Matveev model fitted for quantification of elastic and inelastic tunneling conductance through barrier. -- Abstract: Magnetic tunnel junctions (MTJs) consisting of CoFe and NiFe as ferromagnetic electrodes and MgO as insulating barrier fabricated through in situ shadow masking employing ion beam sputtering are studied for their tunneling magnetoresistance (TMR) and temperature dependence of the tunneling conductance behavior. The tunneling characteristics of these MTJs exhibited barrier height of 0.7 eV and width of 3.3 nm. These MTJs possessed ∼12% TMR at 60 K. The temperature dependence of conductance behavior of these junctions have revealed finite contributions from inelastic tunneling through the barrier via hopping conduction via present localized states which arise due to the presence of ionic interstitial defects in the MgO oxide barrier. The fitting of the data reveals that thirteenth order of hopping conduction is operative through MgO barrier.

  7. Opto-structural studies of well-dispersed silicon nano-crystals grown by atom beam sputtering.

    PubMed

    Saxena, Nupur; Kumar, Pragati; Kabiraj, Debulal; Kanjilal, Dinakar

    2012-01-01

    Synthesis and characterization of nano-crystalline silicon grown by atom beam sputtering technique are reported. Rapid thermal annealing of the deposited films is carried out in Ar + 5% H2 atmosphere for 5 min at different temperatures for precipitation of silicon nano-crystals. The samples are characterized for their optical and structural properties using various techniques. Structural studies are carried out by micro-Raman spectroscopy, Fourier transform infrared spectroscopy, transmission electron microscopy (TEM), high resolution transmission electron microscopy, and selected area electron diffraction. The optical properties are studied by photoluminescence and UV-vis absorption spectroscopy, and bandgaps are evaluated. The bandgaps are found to decrease after rapid thermal treatment. The micro-Raman studies show the formation of nano-crystalline silicon in as-deposited as well as annealed films. The shifting and broadening in Raman peak suggest formation of nano-phase in the samples. Results of micro-Raman, photoluminescence, and TEM studies suggest the presence of a bimodal crystallite size distribution for the films annealed at higher temperatures. The results show that atom beam sputtering is a suitable technique to synthesize nearly mono-dispersed silicon nano-crystals. The size of the nano-crystals may be controlled by varying annealing parameters. PMID:23031449

  8. Opto-structural studies of well-dispersed silicon nano-crystals grown by atom beam sputtering

    NASA Astrophysics Data System (ADS)

    Saxena, Nupur; Kumar, Pragati; Kabiraj, Debulal; Kanjilal, Dinakar

    2012-10-01

    Synthesis and characterization of nano-crystalline silicon grown by atom beam sputtering technique are reported. Rapid thermal annealing of the deposited films is carried out in Ar + 5% H2 atmosphere for 5 min at different temperatures for precipitation of silicon nano-crystals. The samples are characterized for their optical and structural properties using various techniques. Structural studies are carried out by micro-Raman spectroscopy, Fourier transform infrared spectroscopy, transmission electron microscopy (TEM), high resolution transmission electron microscopy, and selected area electron diffraction. The optical properties are studied by photoluminescence and UV-vis absorption spectroscopy, and bandgaps are evaluated. The bandgaps are found to decrease after rapid thermal treatment. The micro-Raman studies show the formation of nano-crystalline silicon in as-deposited as well as annealed films. The shifting and broadening in Raman peak suggest formation of nano-phase in the samples. Results of micro-Raman, photoluminescence, and TEM studies suggest the presence of a bimodal crystallite size distribution for the films annealed at higher temperatures. The results show that atom beam sputtering is a suitable technique to synthesize nearly mono-dispersed silicon nano-crystals. The size of the nano-crystals may be controlled by varying annealing parameters.

  9. Improved beam propagation method equations.

    PubMed

    Nichelatti, E; Pozzi, G

    1998-01-01

    Improved beam propagation method (BPM) equations are derived for the general case of arbitrary refractive-index spatial distributions. It is shown that in the paraxial approximation the discrete equations admit an analytical solution for the propagation of a paraxial spherical wave, which converges to the analytical solution of the paraxial Helmholtz equation. The generalized Kirchhoff-Fresnel diffraction integral between the object and the image planes can be derived, with its coefficients expressed in terms of the standard ABCD matrix. This result allows the substitution, in the case of an unaberrated system, of the many numerical steps with a single analytical step. We compared the predictions of the standard and improved BPM equations by considering the cases of a Maxwell fish-eye and of a Luneburg lens. PMID:18268554

  10. Broad, intense, quiescent beam of singly charged metal ions obtained by extraction from self-sputtering plasma far above the runaway threshold

    SciTech Connect

    Anders, Andre; Oks, Efim

    2009-05-19

    Dense metal plasmas obtained by self-sputtering far above the runway threshold are well suited to generate intense quiescent ion beams. The dilemma of high current density and charge state purity can be solved when using target materials of low surface binding energy by utilizing non-resonant exchange reactions before ion extraction. Space-charge-limited quiescent beams of Cu+, Zn+, and Bi+ with ~;;10 mA/cm2 have been obtained through multi-aperture gridded ion extraction up to 45 kV from self-sputtering plasmas.

  11. Electron beam induced coloration and luminescence in layered structure of WO{sub 3} thin films grown by pulsed dc magnetron sputtering

    SciTech Connect

    Karuppasamy, A.; Subrahmanyam, A.

    2007-06-01

    Tungsten oxide thin films have been deposited by pulsed dc magnetron sputtering of tungsten in argon and oxygen atmosphere. The as-deposited WO{sub 3} film is amorphous, highly transparent, and shows a layered structure along the edges. In addition, the optical properties of the as-deposited film show a steplike behavior of extinction coefficient. However, the electron beam irradiation (3.0 keV) of the as-deposited films results in crystallization, coloration (deep blue), and luminescence (intense red emission). The above changes in physical properties are attributed to the extraction of oxygen atoms from the sample and the structural modifications induced by electron bombardment. The present method of coloration and luminescence has a potential for fabricating high-density optical data storage device.

  12. Conformal growth of Mo/Si multilayers on grating substrates using collimated ion beam sputtering

    SciTech Connect

    Gawlitza, Peter; Cambie, Rossana; Dhuey, Scott; Gullikson, Eric; Warwick, Tony; Braun, Stefan; Yashchuk, Valeriy; Padmore, Howard

    2012-01-23

    Deposition of multilayers on saw-tooth substrates is a key step in the fabrication of multilayer blazed gratings (MBG) for extreme ultraviolet and soft x-rays. Growth of the multilayers can be perturbed by shadowing effects caused by the highly corrugated surface of the substrates, which results in distortion of the multilayer stack structure and degradation of performance of MBGs. To minimize the shadowing effects we used an ionbeam sputtering machine with a highly collimated atomic flux to deposit Mo/Si multilayers on saw-tooth substrates. The sputtering conditions were optimized by finding a balance between smoothening and roughening processes in order to minimize degradation of the groove profile in the course of deposition and at the same time to keep the interfaces of a multilayer stack smooth enough for high efficiency. An optimal value of energy of 200 eV for sputtering Kr{sup +} ions was found by deposition of test multilayers on flat substrates at a range of ion energies. Two saw-tooth substrates were deposited at energies of 200 eV and 700 eV for the sputtering ions. It was found that reduction of the ion energy improved the blazing performance of the MBG and resulted in a 40% gain in the diffraction efficiency due to better replication of the groove profile by the multilayer. As a result of the optimization performed, an absolute diffraction efficiency of 28.8% was achieved for the 2nd blaze order of the MBG with a groove density of 7350 lines/mm at a wavelength of 13.5 nm. Details of the growth behavior of the multilayers on flat and saw-tooth substrates are discussed in terms of the Linear Continuous Model of film growth.

  13. A Comparative High-Resolution Electron Microscope Study of Ag Clusters Produced by a Sputter-Gas Aggregation and Ion Cluster Beam Technique

    NASA Astrophysics Data System (ADS)

    Hohl, Georg-Friedrich; Hihara, Takehiko; Sakurai, Masaki; Oishi, Takashi; Wakoh, Kimio; Sumiyama, Kenji; Suzuki, Kenji

    1994-03-01

    Ag clusters were formed by a sputter-gas-aggregation process [H. Haberland et al..: J. Vac. Sci. Technol. A 10 (1992) 3266] and the ionized cluster beam (ICB) [T. Takagi: Ionized-Cluster Beam Deposition and Epitaxy (Noyes, Park Ridge, 1988)] technique. The Ag clusters deposited on collodion-coated microgrids were investigated by high-resolution transmission electron microscopy. The diameter of those clusters, d, ranges from 1 nm up to about 10 nm for specimens produced by the sputter-gas aggregation technique, depending on the sputter condition and the deposition time. Comparable times of the ICB deposition lead to a broader distribution up to d≈20 nm, suggesting the formation of islands with extremely flat shapes. High percentages of crystalline particles obtained by both techniques are either single crystals or multiple twins with clear lattice images.

  14. Solar Ion Sputter Deposition in the Lunar Regolith: Experimental Simulation Using Focused-Ion Beam Techniques

    NASA Technical Reports Server (NTRS)

    Christoffersen, R.; Rahman, Z.; Keller, L. P.

    2012-01-01

    As regions of the lunar regolith undergo space weathering, their component grains develop compositionally and microstructurally complex outer coatings or "rims" ranging in thickness from a few 10 s to a few 100's of nm. Rims on grains in the finest size fractions (e.g., <20 m) of mature lunar regoliths contain optically-active concentrations of nm size metallic Fe spherules, or "nanophase Fe(sup o)" that redden and attenuate optical reflectance spectral features important in lunar remote sensing. Understanding the mechanisms for rim formation is therefore a key part of connecting the drivers of mineralogical and chemical changes in the lunar regolith with how lunar terrains are observed to become space weathered from a remotely-sensed point of view. As interpreted based on analytical transmission electron microscope (TEM) studies, rims are produced from varying relative contributions from: 1) direct solar ion irradiation effects that amorphize or otherwise modify the outer surface of the original host grain, and 2) nanoscale, layer-like, deposition of extrinsic material processed from the surrounding soil. This extrinsic/deposited material is the dominant physical host for nanophase Fe(sup o) in the rims. An important lingering uncertainty is whether this deposited material condensed from regolith components locally vaporized in micrometeorite or larger impacts, or whether it formed as solar wind ions sputtered exposed soil and re-deposited the sputtered ions on less exposed areas. Deciding which of these mechanisms is dominant, or possibility exclusive, has been hampered because there is an insufficient library of chemical and microstructural "fingerprints" to distinguish deposits produced by the two processes. Experimental sputter deposition / characterization studies relevant to rim formation have particularly lagged since the early post-Apollo experiments of Hapke and others, especially with regard to application of TEM-based characterization techniques. Here

  15. Optical switching properties of VOx thin films deposited on Si3N4 substrates using ion beam sputtering

    NASA Astrophysics Data System (ADS)

    Lu, Jianing; Hu, Ming; Liang, Jiran; Chen, Tao; Tan, Lei

    2009-07-01

    Vanadium dioxide (VO2) thin films, for their property of metal-insulator transition (MIT), have drawn many researchers' attention on optical devices study. Nowadays it is complicated to fabricate single-phase VO2) thin films. Ion beam sputtering is adopted to deposit VOx thin films (main component is VO2) ) on Si3N4, while sputtering power, substrate temperature and partial oxygen pressure of VOx are adjusted. Then annealing technology is utilized to improve the parameter property of VOx thin films. The thin films are tested by AFM, XPS, XRD, Fourier transform infrared spectrometry, tunable semiconductor laser and optical power meter. Both temperature-driven phasetransition and photoexcitation phasetransition of VOx thin films are applied. The samples are heated from 20°C to 80°C, discovering that the phasetransition temperature is about 59°C and the value of resistance before the phasetransition is two orders of magnitude over the value of resistance after the phasetransition. At the wavelength of 1550 nm, the transmission is from 32% to 1%. Besides, the extinction ratio of the thin films sample is obtained. The optical properties show that the VOx thin films have an apparent switching effect in the optical communication fields.

  16. Structural analysis of the outermost hair surface using TOF-SIMS with gas cluster ion beam sputtering.

    PubMed

    Lshikawa, Kazutaka; Okamoto, Masayuki; Aoyagi, Satoka

    2016-06-01

    A hair cuticle, which consists of flat overlapping scales that surround the hair fiber, protects inner tissues against external stimuli. The outermost surface of the cuticle is covered with a thin membrane containing proteins and lipids called the epicuticle. In a previous study, the authors conducted a depth profile analysis of a hair cuticle's amino acid composition to characterize its multilayer structure. Time-of-flight secondary ion mass spectrometry with a bismuth primary ion source was used in combination with the C60 sputtering technique for the analysis. It was confirmed that the lipids and cysteine-rich layer exist on the outermost cuticle surface, which is considered to be the epicuticle, though the detailed structure of the epicuticle has not been clarified. In this study, depth profile analysis of the cuticle surface was conducted using the argon gas cluster ion beam (Ar-GCIB) sputtering technique, in order to characterize the structure of the epicuticle. The shallow depth profile of the cuticle surface was investigated using an Ar-GCIB impact energy of 5 keV. Compared to the other amino acid peaks rich in the epicuticle, the decay of 18-methyleicosanic acid (18-MEA) thiolate peak was the fastest. This result suggests that the outermost surface of the hair is rich in 18-MEA. In conclusion, our results indicate that the outermost surfaces of cuticles have a multilayer (lipid and protein layers), which is consistent with the previously proposed structure. PMID:26822506

  17. Technology and applications of broad-beam ion sources used in sputtering. Part I. Ion source technology

    SciTech Connect

    Kaufman, H.R.; Cuomo, J.J.; Harper, J.M.E.

    1982-09-01

    The technology of broad-beam ion sources used in sputtering applications is reviewed. The most frequently used discharge chambers are described, together with procedures for predicting performance. A new, compact ion source is described. Ion acceleration is reviewed, with particular emphasis on recent low-energy techniques. Some of these techniques include three-grid, small-hole two-grid, and one-grid ion optics. A new material for fabrication of high-precision ion optics is silicon. Because no stresses are introduced with the etching techniques used, the finished grid can be held to very close tolerances. A recent innovation for sputtering applications is the use of Hall-current acceleration. This technique uses a magnetic field interacting with an electron current to provide the accelerating electric field, thereby avoiding the usual space-charge limit on ion current density that is associated with gridded optics. Electron emission is also reviewed, with new hollow cathodes promising improved lifetimes. The overall picture is one of greatly improved ion source capability, with particularly large improvements in low-energy ion current densities.

  18. Structural and magnetic properties of ion beam sputtered Co2FeAl full Heusler alloy thin films

    NASA Astrophysics Data System (ADS)

    Husain, Sajid; Kumar, Ankit; Chaudhary, Sujeet; Svedlindh, Peter

    2016-05-01

    Co2FeAl full Heusler alloy thin films grown at different temperatures on Si(100) substrates using ion beam sputtering system have been investigated. X-ray diffraction (XRD) patterns revealed the A2 disordered phase in these films. The deduced lattice parameter slightly increases with increase in the growth temperature. The saturation magnetization it is found to increase with increase in growth temperature. The magnetic anisotropy has been studied using angle dependent magneto-optical Kerr effect. In the room temperature deposited film, the combination of cubic and uniaxial anisotropy have been observed with weak in-plane uniaxial anisotropy which increases with growth temperature. The uniaxial anisotropy is attributed to the anisotropic interfacial bonding in these Co2FeAl /Si(100) heterostructures.

  19. Ion beam sputter-deposited thin film coatings for protection of spacecraft polymers in low Earth orbit

    NASA Technical Reports Server (NTRS)

    Banks, B. A.; Mirtich, M. J.; Rutledge, S. K.; Swec, D. M.; Nahra, H. K.

    1985-01-01

    Ion beam sputter-deposited thin films of Al2O3, SiO2, and a codeposited mixture of predominantly SiO2 with small amounts of a fluoropolymer were evaluated both in laboratory plasma ashing tests and in space on board shuttle flight STS-8 for effectiveness in preventing oxidation of polyimide Kapton. Measurements of mass loss and optical performance of coated and uncoated polyimide samples exposed to the low Earth orbital environment are presented. Optical techniques were used to measure loss rates of protective films exposed to atomic oxygen. Results of the analysis of the space flight exposed samples indicate that thin film metal oxide coatings are very effective in protecting the polyimide. Metal oxide coatings with a small amount of fluoropolymer codeposited have the additional benefit of great flexibility.

  20. Tunneling conductance studies in the ion-beam sputtered CoFe/Mg/MgO/NiFe magnetic tunnel junctions

    SciTech Connect

    Singh, Braj Bhusan; Chaudhary, Sujeet

    2013-06-03

    Magnetic tunnel junctions consisting of CoFe(10 nm)/Mg(1 nm)/MgO(3.5 nm)/NiFe(10 nm) are grown at room temperature using dual ion beam sputtering via in-situ shadow masking. The effective barrier thickness and average barrier height are estimated to be 3.5 nm (2.9 nm) and 0.69 eV (1.09 eV) at 290 K (70 K), respectively. The tunnel magnetoresistance value of 0.2 % and 2.3 % was observed at 290 K and 60 K, respectively. The temperature dependence of tunneling conductance revealed the presence of localized states present within the forbidden gap of the MgO barrier leading to finite inelastic spin independent tunneling contributions, which degrade the TMR value.

  1. Ion beam sputter-deposited thin film coatings for protection of spacecraft polymers in low earth orbit

    NASA Technical Reports Server (NTRS)

    Banks, B. A.; Mirtich, M. J.; Rutledge, S. K.; Swec, D. M.; Nahra, H. K.

    1985-01-01

    Ion beam sputter-deposited thin films at Al2O3, SiO2, and a codeposited mixture of predominantly SiO2 with small amounts of fluoropolymer were evaluated both in laboratory plasma ashing tests and in space on board Shuttle flight STS-8 for effectiveness in preventing oxidation of polyimide Kapton. Measurements of mass loss and optical performance of coated and uncoated polyimide samples exposed to the low earth orbital environment are presented. Optical techniques were used to measure loss rates of protective films exposed to atomic oxygen. Results of the analysis of the space flight exposed samples indicate that thin film metal oxide coatings are very effective in protecting the polyimide. Metal oxide coatings with a small amount of fluoropolymer codeposited have the additional benefit of great flexibility.

  2. Ferroelectric polarization and resistive switching characteristics of ion beam assisted sputter deposited BaTiO3 thin films

    NASA Astrophysics Data System (ADS)

    Silva, J. P. B.; Kamakshi, Koppole; Sekhar, K. C.; Moreira, J. Agostinho; Almeida, A.; Pereira, M.; Gomes, M. J. M.

    2016-05-01

    In this work, 150 nm thick polycrystalline BaTiO3 (BTO) films were deposited on Pt/TiO2/SiO2/Si substrate by ion beam assisted sputter deposition technique. The bias voltage dependent resistive switching (RS) and ferroelectric polarization characteristics of Au/BTO/Pt devices are investigated. The devices display the stable bipolar RS characteristics without an initial electroforming process. Fittings to current-voltage (I-V) curves suggest that low and high resistance states are governed, respectively, by filamentary model and trap controlled space charge limited conduction mechanism, where the oxygen vacancies act as traps. Presence of oxygen vacancies is evidenced from the photoluminescence spectrum. The devices also display P-V loops with remnant polarization (Pr) of 5.7 μC/cm2 and a coercive electric field (Ec) of 173.0 kV/cm. The coupling between the ferroelectric polarization and RS effect in BTO films is demonstrated.

  3. Photocatalytic activity of nanosized TiO2 thin film prepared by magnetron sputtering method.

    PubMed

    Kang, Sang-Jun; Kim, Ki-Joong; Chung, Min-Chul; Jung, Sang-Chul; Boo, Su-Il; Cho, Soon Kye; Jeong, Woon-Jo; Ahn, Ho-Geun

    2011-02-01

    Nanosized TiO2 thin film on the substrate such as stainless steel plate and slide glass film were prepared by magnetron sputtering method, and these TiO2 thin films were characterized by field emission-scanning electron microscopy (FE-SEM). Photocatalytic activity for Methyl-ethyl-ketone (MEK) and acetaldehyde were measured using a closed circulating reaction system through the various ultra violet (UV) sources. From the results of SEM images, nanosized TiO2 thin film was uniformly coated on slide glass, ranging from 360 nm to 370 nm. Photocatalytic activity of MEK over TiO2 thin film on stainless steel plate did not occur by UV-A irradiation, but was efficiently decomposed by UV-B and UV-C. Also, acetaldehyde could be decomposed than MEK. The effect of sputtering conditions on their structure and photocatalytic activities were investigated in detail. PMID:21456269

  4. A new Cs sputter ion source with polyatomic ion beams for SIMS applications.

    SciTech Connect

    Belykh, S. F.; Palitsin, V. V.; Veryovkin, I. V.; Kovarsky, A. P.; Chang, R. J. H.; Adriaens, A.; Dowsett, M. G.; Adams, F.; Materials Science Division; Univ. Warwick; Ioffe Phys.-Tech. Inst.; Ghent Univ.; Univ. Antwerp

    2007-08-02

    A simple design for a cesium sputter ion source compatible with vacuum and ion-optical systems as well as with electronics of the commercially available Cameca IMS-4f instrument is reported. This ion source has been tested with the cluster primary ions of Si{sub n}{sup -} and Cu{sub n}{sup -}. Our experiments with surface characterization and depth profiling conducted to date demonstrate improvements of the analytical capabilities of the secondary ion mass spectrometry instrument due to the nonadditive enhancement of secondary ion emission and shorter ion ranges of polyatomic projectiles compared to atomic ones with the same impact energy.

  5. New Cs sputter ion source with polyatomic ion beams for secondary ion mass spectrometry applications

    SciTech Connect

    Belykh, S. F.; Palitsin, V. V.; Veryovkin, I. V.; Kovarsky, A. P.; Chang, R. J. H.; Adriaens, A.; Dowsett, M. G.; Adams, F.

    2007-08-15

    A simple design for a cesium sputter ion source compatible with vacuum and ion-optical systems as well as with electronics of the commercially available Cameca IMS-4f instrument is reported. This ion source has been tested with the cluster primary ions of Si{sub n}{sup -} and Cu{sub n}{sup -}. Our experiments with surface characterization and depth profiling conducted to date demonstrate improvements of the analytical capabilities of the secondary ion mass spectrometry instrument due to the nonadditive enhancement of secondary ion emission and shorter ion ranges of polyatomic projectiles compared to atomic ones with the same impact energy.

  6. Electrostatic energy analyzer measurements of low energy zirconium beam parameters in a plasma sputter-type negative ion source

    SciTech Connect

    Malapit, Giovanni M.; Mahinay, Christian Lorenz S.; Poral, Matthew D.; Ramos, Henry J.

    2012-02-15

    A plasma sputter-type negative ion source is utilized to produce and detect negative Zr ions with energies between 150 and 450 eV via a retarding potential-type electrostatic energy analyzer. Traditional and modified semi-cylindrical Faraday cups (FC) inside the analyzer are employed to sample negative Zr ions and measure corresponding ion currents. The traditional FC registered indistinct ion current readings which are attributed to backscattering of ions and secondary electron emissions. The modified Faraday cup with biased repeller guard ring, cut out these signal distortions leaving only ringings as issues which are theoretically compensated by fitting a sigmoidal function into the data. The mean energy and energy spread are calculated using the ion current versus retarding potential data while the beam width values are determined from the data of the transverse measurement of ion current. The most energetic negative Zr ions yield tighter energy spread at 4.11 eV compared to the least energetic negative Zr ions at 4.79 eV. The smallest calculated beam width is 1.04 cm for the negative Zr ions with the highest mean energy indicating a more focused beam in contrast to the less energetic negative Zr ions due to space charge forces.

  7. Particle beam injector system and method

    DOEpatents

    Guethlein, Gary

    2013-06-18

    Methods and devices enable coupling of a charged particle beam to a radio frequency quadrupole accelerator. Coupling of the charged particle beam is accomplished, at least in-part, by relying on of sensitivity of the input phase space acceptance of the radio frequency quadrupole to the angle of the input charged particle beam. A first electric field across a beam deflector deflects the particle beam at an angle that is beyond the acceptance angle of the radio frequency quadrupole. By momentarily reversing or reducing the established electric field, a narrow portion of the charged particle beam is deflected at an angle within the acceptance angle of the radio frequency quadrupole. In another configuration, beam is directed at an angle within the acceptance angle of the radio frequency quadrupole by the first electric field and is deflected beyond the acceptance angle of the radio frequency quadrupole due to the second electric field.

  8. Reactive ion-beam-sputtering of fluoride coatings for the UV/VUV range

    NASA Astrophysics Data System (ADS)

    Schink, Harald; Kolbe, Jurgen; Zimmermann, F.; Ristau, Detlev; Welling, Herbert

    1991-06-01

    Fluoride coatings produced by thermal evaporation suffer from high scatter losses ageing and cracking due to high tensile stress. These problems impose severe limitations to the production of low loss multilayer coatings for the VUV range. A key position for improved performance is the microstructure of the layers. The aim of our investigations is to improve the microstructure of A1F3- and LaF3-'' films by ionbeamsputtering. Scatter measurements of single layers revealed lower values for lBS than for boat evaporation. Unfortunately sputtered fluoride films nave high absorption losses caused by decomposition of the coating material. By sputtering in reactive atmospheres and annealing we were able to reduce the absorption losses significantly. Antireflective as well as high reflective coatings were produced. Reflection and transmission values were obtained with a VUV-spectrophotometer. Damage tests at the 193 mu ArF laser wavelength were performed at the Laser-Laboratorium Gttingen. Key words: ion-beamsputtering fluoride films UVcoatings VUV-coatings color-center laser damage A]. F3 MgF2 LaF3. 1.

  9. Focused ion beam source method and apparatus

    DOEpatents

    Pellin, Michael J.; Lykke, Keith R.; Lill, Thorsten B.

    2000-01-01

    A focused ion beam having a cross section of submicron diameter, a high ion current, and a narrow energy range is generated from a target comprised of particle source material by laser ablation. The method involves directing a laser beam having a cross section of critical diameter onto the target, producing a cloud of laser ablated particles having unique characteristics, and extracting and focusing a charged particle beam from the laser ablated cloud. The method is especially suited for producing focused ion beams for semiconductor device analysis and modification.

  10. Adherence of ion beam sputter deposited metal films on H-13 steel

    NASA Technical Reports Server (NTRS)

    Mirtich, M. J.

    1980-01-01

    An electron bombardment argon ion source sputter deposited 17 metals and metal oxides on H-13 steel. The films ranged 1 to 8 micrometers in thickness and their adherence was generally greater than the capacity of the measuring device; adherence quality depended on proper precleaning of the substrate before deposition. N2 or air was introduced for correct stoichiometry in metallic compounds. Au, Ag, MgO, and Ta5Si3 films 8 microns thick have bond strength equal to 1 micron coatings; the bond strength of pure metallic films up to 5 microns thick was greater than the epoxy to film bond (8000 psi). The results of exposures of coated material to temperatures up to 700 C are presented.

  11. Auger electron nanoscale mapping and x-ray photoelectron spectroscopy combined with gas cluster ion beam sputtering to study an organic bulk heterojunction

    SciTech Connect

    Heon Kim, Seong; Heo, Sung; Ihn, Soo-Ghang; Yun, Sungyoung; Hwan Park, Jong; Chung, Yeonji; Lee, Eunha; Park, Gyeongsu; Yun, Dong-Jin

    2014-06-16

    The lateral and vertical distributions of organic p/n bulk heterojunctions for an organic solar cell device are, respectively, investigated using nanometer-scale Auger electron mapping and using X-ray photoelectron spectroscopy (XPS) with Ar gas cluster ion beam (GCIB) sputtering. The concentration of sulfur, present only in the p-type material, is traced to verify the distribution of p-type (donor) and n-type (acceptor) materials in the blended structure. In the vertical direction, a considerable change in atomic sulfur concentration is observed using XPS depth profiling with Ar GCIB sputtering. In addition, Auger electron mapping of sulfur reveals the lateral 2-dimensional distribution of p- and n-type materials. The combination of Auger electron mapping with Ar GCIB sputtering should thereby allow the construction of 3-dimensional distributions of p- and n-type materials in organic photovoltaic cells.

  12. Optical and structural properties of YF3 thin films prepared by ion-assisted deposition or ion beam sputtering techniques

    NASA Astrophysics Data System (ADS)

    Robic, Jean-Yves; Muffato, Viviane; Chaton, Patrick; Ida, Michel; Berger, M.

    1994-11-01

    The properties of materials in thin films are strongly dependent on the coating techniques and on the technological parameters. We have investigated about some optical and structural properties of YF3 thin films prepared using different energetic techniques: ion assisted deposition (IAD) and ion beam sputtering (IBS). The properties of the thin films obtained by these energetic processes are compared to the properties obtained by classical electron beam evaporation. In classical evaporation, the optical properties in the visible range depend on the temperature of the deposition and on the incidence of the vapor flux. The optical properties are correlated with the density of the films measured by Rutherford backscattering. In the case of IAD, the influence on optical properties, both in the visible and in the infrared range, of some technological parameters (pressure, ion energy and ion density) are illustrated. The refractive index and the extinction coefficient have been obtained by spectrophotometry. Furthermore, we show that IBS may lead to YF3 layers of high density.

  13. Sputter deposition of metallic thin film and directpatterning

    SciTech Connect

    Ji, L.; Chen, Y.; Jiang, X.; Ji, Q.; Leung, K.-N.

    2005-09-09

    A compact apparatus is developed for deposition of metal thin film. The system employs an RF discharge plasma source with a straight RF antenna, which is made of or covered with deposition material, serving as sputtering target at the same time. The average deposition rate of copper thin film is as high as 450nm/min. By properly allocating the metal materials on the sputtering antenna, mixture deposition of multiple metal species is achieved. Using an ion beam imprinting scheme also taking advantage of ion beam focusing technique, two different schemes of direct patterning deposition process are developed: direct depositing patterned metallic thin film and resistless ion beam sputter patterning. Preliminary experiments have demonstrated direct pattern transfer from a template with feature size of micro scale; patterns with more than 10x reduction are achieved by sputtering patterning method.

  14. Correlation study of structural, optical and electrical properties of amorphous carbon thin films prepared by ion beam sputtering deposition technique

    NASA Astrophysics Data System (ADS)

    Mohagheghpour, E.; Rajabi, M.; Gholamipour, R.; Larijani, M. M.; Sheibani, S.

    2016-01-01

    The correlation of structural, optical and electrical properties of amorphous carbon thin films deposited by ion beam sputtering technique on the glass substrate was investigated. The film thickness varied over a wide range from 57 to 408 nm by controlling the deposition time. Raman spectra and X-ray photoelectron spectroscopy showed that the size of the graphite crystallites with sp2 bonds (La) and the sp3/sp2 fraction are smaller than 1.5 nm and 1.4, respectively. The values of ID/IG ratio, the 'G' peak position, and surface roughness depend on the film thickness; all of them increased by increasing film thickness up to 360 nm, and then decreased by increasing time and thickness. Furthermore, the resistivity followed similar trends of these structural properties. According to Tauc equation the optical band gap of these films was in the range of 3.2-3.9 eV. A broad emission peak at around 2.94 eV was observed on a photoluminescence spectrum of amorphous carbon film with highest resistivity.

  15. Direct growth of Ge quantum dots on a graphene/SiO2/Si structure using ion beam sputtering deposition

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Wang, R. F.; Zhang, J.; Li, H. S.; Zhang, J.; Qiu, F.; Yang, J.; Wang, C.; Yang, Y.

    2016-07-01

    The growth of Ge quantum dots (QDs) using the ion beam sputtering deposition technique has been successfully conducted directly on single-layer graphene supported by SiO2/Si substrate. The results show that the morphology and size of Ge QDs on graphene can be modulated by tuning the Ge coverage. Charge transfer behavior, i.e. doping effect in graphene has been demonstrated at the interface of Ge/graphene. Compared with that of traditional Ge dots grown on Si substrate, the positions of both corresponding photoluminescence (PL) peaks of Ge QDs/graphene hybrid structure undergo a large red-shift, which can probably be attributed to the lack of atomic intermixing and the existence of surface states in this hybrid material. According to first-principles calculations, the Ge growth on the graphene should follow the so-called Volmer–Weber mode instead of the Stranski–Krastanow one which is observed generally in the traditional Ge QDs/Si system. The calculations also suggest that the interaction between Ge and graphene layer can be enhanced with the decrease of the Ge coverage. Our results may supply a prototype for fabricating novel optoelectronic devices based on a QDs/graphene hybrid nanostructure.

  16. Direct growth of Ge quantum dots on a graphene/SiO2/Si structure using ion beam sputtering deposition.

    PubMed

    Zhang, Z; Wang, R F; Zhang, J; Li, H S; Zhang, J; Qiu, F; Yang, J; Wang, C; Yang, Y

    2016-07-29

    The growth of Ge quantum dots (QDs) using the ion beam sputtering deposition technique has been successfully conducted directly on single-layer graphene supported by SiO2/Si substrate. The results show that the morphology and size of Ge QDs on graphene can be modulated by tuning the Ge coverage. Charge transfer behavior, i.e. doping effect in graphene has been demonstrated at the interface of Ge/graphene. Compared with that of traditional Ge dots grown on Si substrate, the positions of both corresponding photoluminescence (PL) peaks of Ge QDs/graphene hybrid structure undergo a large red-shift, which can probably be attributed to the lack of atomic intermixing and the existence of surface states in this hybrid material. According to first-principles calculations, the Ge growth on the graphene should follow the so-called Volmer-Weber mode instead of the Stranski-Krastanow one which is observed generally in the traditional Ge QDs/Si system. The calculations also suggest that the interaction between Ge and graphene layer can be enhanced with the decrease of the Ge coverage. Our results may supply a prototype for fabricating novel optoelectronic devices based on a QDs/graphene hybrid nanostructure. PMID:27302495

  17. The atomic structure and chemical composition of HfOx (x < 2) films prepared by ion-beam sputtering deposition

    NASA Astrophysics Data System (ADS)

    Aliev, V. S.; Gerasimova, A. K.; Kruchinin, V. N.; Gritsenko, V. A.; Prosvirin, I. P.; Badmaeva, I. A.

    2016-08-01

    Non-stoichiometric HfOx films of different chemical composition (x < 2) were fabricated by ion-beam sputtering deposition (IBSD) at room temperature. The ratio of O and Hf atoms in films x was varied by setting the O2 partial pressure in a chamber. An effect of chemical composition on the atomic structure of the films was studied by reflection high-energy electron diffraction, x-ray photoelectron spectroscopy and field emission scanning electron microscopy methods. The films were found to be amorphous, consisting only of three components: Hf-metal clusters, Hf4O7 suboxide and stoichiometric HfO2. The relative concentration of these components varies with changing x. The surface of the films contains the increased oxygen content compared to the bulk. It was found that the Hf4O7 suboxide concentration is maximal at x = 1.8. The concept of hafnium oxide film growth by the IBSD method is proposed to explain the lack of suboxides variety in the films and the instability of HfO2, when annealed at high temperature.

  18. Study of structural and electrical properties of thin NiOx films prepared by ion beam sputtering of Ni and subsequent thermo-oxidation

    NASA Astrophysics Data System (ADS)

    Horak, P.; Lavrentiev, V.; Bejsovec, V.; Vacik, J.; Danis, S.; Vrnata, M.; Khun, J.

    2013-11-01

    Nickel oxide thin films were prepared by thermal annealing of thin Ni films (thickness ca 47 nm) deposited by ion beam sputtering. The thermal annealing was performed at 350 °C and 400 °C with elected time (1-7 hours) in a quartz furnace opened to air. During annealing the samples underwent structural changes, as well as changes of their electrical properties. The structural properties (surface morphology and occurrence of crystalline phases) were analyzed by the AFM and XRD methods, O and Ni depth concentration profiles by the NRA method, and electrical properties (sheet resistance) by the van der Pauw 4-point technique. The sheet resistance ( R S ) of the as-deposited sample was found to be 12.03 Ω/□; after open air thermal annealing at 350 °C for 1 h the value was found to be almost the same, 11.67 Ω/□. After 2 h of annealing, however, a sharp increase in the sheet resistance ( R S = 1.46 MΩ/□) was observed. At this stage the deposit formed largely oxidized Ni layer with a distinct polycrystalline structure. The sharp increase of sheet resistance was ascribed to the oxidation of the Ni layer, leaving only a smaller amount of isolated Ni particles unoxidized. Almost complete oxidation was found after 7 h of annealing at 350 °C. At 400 °C was almost complete oxidation recorded already after 1 h of annealing.

  19. Comparison of Methods for Evaluation of the Bactericidal Activity of Copper-Sputtered Surfaces against Methicillin-Resistant Staphylococcus aureus

    PubMed Central

    Rio, Laura; Kusiak-Nejman, Ewelina; Kiwi, John; Bétrisey, Bertrand; Pulgarin, César; Trampuz, Andrej

    2012-01-01

    Bacteria can survive on hospital textiles and surfaces, from which they can be disseminated, representing a source of health care-associated infections (HCAIs). Surfaces containing copper (Cu), which is known for its bactericidal properties, could be an efficient way to lower the burden of potential pathogens. The antimicrobial activity of Cu-sputtered polyester surfaces, obtained by direct-current magnetron sputtering (DCMS), against methicillin-resistant Staphylococcus aureus (MRSA) was tested. The Cu-polyester microstructure was characterized by high-resolution transmission electron microscopy to determine the microstructure of the Cu nanoparticles and by profilometry to assess the thickness of the layers. Sputtering at 300 mA for 160 s led to a Cu film thickness of 20 nm (100 Cu layers) containing 0.209% (wt/wt) polyester. The viability of MRSA strain ATCC 43300 on Cu-sputtered polyester was evaluated by four methods: (i) mechanical detachment, (ii) microcalorimetry, (iii) direct transfer onto plates, and (iv) stereomicroscopy. The low efficacy of mechanical detachment impeded bacterial viability estimations. Microcalorimetry provided only semiquantitative results. Direct transfer onto plates and stereomicroscopy seemed to be the most suitable methods to evaluate the bacterial inactivation potential of Cu-sputtered polyester surfaces, since they presented the least experimental bias. Cu-polyester samples sputtered for 160 s by DCMS were further tested against 10 clinical MRSA isolates and showed a high level of bactericidal activity, with a 4-log10 reduction in the initial MRSA load (106 CFU) within 1 h. Cu-sputtered polyester surfaces might be of use to prevent the transmission of HCAI pathogens. PMID:22983970

  20. Surface treatment method for 1/f noise suppression in reactively sputtered nickel oxide film

    NASA Astrophysics Data System (ADS)

    Kim, Dong Soo; Park, Seung-Man; Lee, Hee Chul

    2012-07-01

    A surface treatment method combined with O2 plasma treatment and Ar+ bombardment is proposed for 1/f noise suppression in a reactively sputtered NiO film as a micro-bolometer sensing material. The 1/f noise power spectral density on a sample prepared by the proposed surface treatment method prior to the contact formation is suppressed to a level roughly 18 times lower than that on an untreated sample. The improved noise characteristic can be ascribed to the cooperative effects of the two steps in the proposed surface treatment method. In its effects, the oxygen plasma treatment is supposed to increase the Ni3+ component on the surface of the NiO film, which in turn increases the hole concentration on the surface. Additional Ar+ bombardment is expected to remove contaminants on the surface of the NiO film, leading to a low contact resistance.

  1. Tribological properties of metal doped a-C film by RF magnetron sputtering method

    SciTech Connect

    Park, Yong Seob; Jung, Tae-Hwan; Lim, Dong-Gun; Park, Young; Kim, Hyungchul; Choi, Won Seok

    2012-10-15

    We deposited various metal doped amorphous carbon (a-C:Me) films by radio frequency (RF) magnetron co-sputtering method. Tungsten (W), molybdenum (Mo), and chromium (Cr) were used as the doping metals in a-C film. The applied power on carbon and metal (W, Mo, and Cr) target were 150 W and 40 W, respectively. a-C:Me films exhibited smooth and uniform surface roughness and the hardness over 15 GPa. Specially, a-C:W film showed the maximum hardness of 18.5 GPa. The coefficient of friction of a-C:W film is relatively lower than that of other films and the critical load value of a-C:W film is higher. These results are related to the concentration of metal in the carbon matrix by the difference of sputtering yield and the change of the structure by the metal bonding. Consequently, W metal is good candidate as the doping metal for the improvement of tribological characteristics.

  2. Ultraviolet optical and microstructural properties of MgF2 and LaF3 coatings deposited by ion-beam sputtering and boat and electron-beam evaporation

    NASA Astrophysics Data System (ADS)

    Ristau, Detlev; Gunster, Stefan; Bosch, Salvador; Duparre, Angela; Masetti, Enrico; Ferre-Borrull, Josep; Kiriakidis, George; Peiro, Francesca; Quesnel, Etienne; Tikhonravov, Alexander

    2002-06-01

    Single layers of MgF2 and LaF3 were deposited upon superpolished fused-silica and CaF2 substrates by ion-beam sputtering (IBS) as well as by boat and electron beam (e-beam) evaporation and were characterized by a variety of complementary analytical techniques. Besides undergoing photometric and ellipsometric inspection, the samples were investigated at 193 and 633 nm by an optical scatter measurement facility. The structural properties were assessed with atomic-force microscopy, x-ray diffraction, TEM techniques that involved conventional thinning methods for the layers. For measurement of mechanical stress in the coatings, special silicon substrates were coated and analyzed. The dispersion behavior of both deposition materials, which was determined on the basis of various independent photometric measurements and data reduction techniques, is in good agreement with that published in the literature and with the bulk properties of the materials. The refractive indices of the MgF2 coatings ranged from 1.415 to 1.440 for the wavelength of the ArF excimer laser (193 nm) and from 1.435 to 1.465 for the wavelength of the F2 excimer laser (157 nm). For single layers of LaF3 the refractive indices extended from 1.67 to 1.70 at 193 nm to approx1.80 at 157 nm. The IBS process achieves the best homogeneity and the lowest surface roughness values (close to 1 nmrms) of the processes compared in the joint experiment. In contrast to MgF2 boat and e-beam evaporated coatings, which exhibit tensile mechanical stress ranging from 300 to 400 MPa, IBS coatings exhibit high compressive stress of as much as 910 MPa. A similar tendency was found for coating stress in LaF3 single layers. Experimental results are discussed with respect to the microstructural and compositional properties as well as to the surface topography of the coatings.

  3. Nanosecond laser-induced damage at different initial temperatures of Ta{sub 2}O{sub 5} films prepared by dual ion beam sputtering

    SciTech Connect

    Xu, Cheng Jia, Jiaojiao; Fan, Heliang; Qiang, Yinghuai; Liu, Jiongtian; Yang, Di; Hu, Guohang; Li, Dawei

    2014-08-07

    Ta{sub 2}O{sub 5} films were deposited by dual ion beam sputtering method. The nanosecond laser-induced damage threshold (LIDT) at different initial temperatures and time of the films was investigated by an in situ high temperature laser-induced damage testing platform. It was shown that, when the initial temperature increased from 298 K to 383 K, the LIDT at 1064 nm and 12 ns significantly decreased by nearly 14%. Then the LIDT at 1064 nm and 12 ns decreased slower with the same temperature increment. Different damage morphologies were found at different initial temperatures. At low initial temperatures, it was the defects-isolated damage while at high initial temperatures it was the defects-combined damage. The theoretical calculations based on the defect-induced damage model revealed that both the significant increase of the highest temperature and the duration contributed to the different damage morphologies. With the initial temperature being increased, the thermal-stress coupling damage mechanism transformed gradually to the thermal dominant damage mechanism.

  4. Sputter shadowing improved by using a tungsten target.

    PubMed

    Colquhoun, W R; Cassimeris, L U

    1985-05-01

    This work builds upon a previous paper (W. Colquhoun, 1984, J. Ultrastruct. Res. 87, 97) in which a sputter shadowing device was briefly described. The device allowed TEM specimens to be shadowed in a conventional sputter coater. Images obtained by sputter shadowing with a standard Au/Pd target were of good quality but were slightly inferior to the best that could be obtained by e--beam evaporation of tungsten. Here we show that construction and use of a tungsten target greatly improves the quality of the sputter shadowed deposit. Images of DNA and ribosomal subunits contrasted by sputter shadowing with tungsten are shown. The DNA images indicate that sputter shadowing with tungsten is a gentle contrasting technique. The sputter shadowed images of the 30 S ribosomal subunits show the major features of the particle revealed by evaporation shadowing using the most sophisticated of methods in that technology. Advantages of sputter shadowing are discussed and a rationale for the improved grain obtained by sputtering tungsten is suggested. PMID:2935642

  5. Simultaneous ion sputter polishing and deposition

    NASA Technical Reports Server (NTRS)

    Rutledge, S.; Banks, B.; Brdar, M.

    1981-01-01

    Results of experiments to study ion beam sputter polishing in conjunction with simultaneous deposition as a mean of polishing copper surfaces are presented. Two types of simultaneous ion sputter polishing and deposition were used in these experiments. The first type utilized sputter polishing simultaneous with vapor deposition, and the second type utilized sputter polishing simultaneous with sputter deposition. The etch and deposition rates of both techniques were studied, as well as the surface morphology and surface roughness.

  6. Apparatus and method for laser beam diagnosis

    DOEpatents

    Salmon, J.T. Jr.

    1991-08-27

    An apparatus and method are disclosed for accurate, real time monitoring of the wavefront curvature of a coherent laser beam. Knowing the curvature, it can be quickly determined whether the laser beam is collimated, or focusing (converging), or de-focusing (diverging). The apparatus includes a lateral interferometer for forming an interference pattern of the laser beam to be diagnosed. The interference pattern is imaged to a spatial light modulator (SLM), whose output is a coherent laser beam having an image of the interference pattern impressed on it. The SLM output is focused to obtain the far-field diffraction pattern. A video camera, such as CCD, monitors the far-field diffraction pattern, and provides an electrical output indicative of the shape of the far-field pattern. Specifically, the far-field pattern comprises a central lobe and side lobes, whose relative positions are indicative of the radius of curvature of the beam. The video camera's electrical output may be provided to a computer which analyzes the data to determine the wavefront curvature of the laser beam. 11 figures.

  7. Apparatus and method for laser beam diagnosis

    DOEpatents

    Salmon, Jr., Joseph T.

    1991-01-01

    An apparatus and method is disclosed for accurate, real time monitoring of the wavefront curvature of a coherent laser beam. Knowing the curvature, it can be quickly determined whether the laser beam is collimated, or focusing (converging), or de-focusing (diverging). The apparatus includes a lateral interferometer for forming an interference pattern of the laser beam to be diagnosed. The interference pattern is imaged to a spatial light modulator (SLM), whose output is a coherent laser beam having an image of the interference pattern impressed on it. The SLM output is focused to obtain the far-field diffraction pattern. A video camera, such as CCD, monitors the far-field diffraction pattern, and provides an electrical output indicative of the shape of the far-field pattern. Specifically, the far-field pattern comprises a central lobe and side lobes, whose relative positions are indicative of the radius of curvature of the beam. The video camera's electrical output may be provided to a computer which analyzes the data to determine the wavefront curvature of the laser beam.

  8. Fabrication of LiCoO{sub 2} thin film cathodes by DC magnetron sputtering method

    SciTech Connect

    Noh, Jung-pil; Cho, Gyu-bong; Jung, Ki-taek; Kang, Won-gyeong; Ha, Chung-wan; Ahn, Hyo-jun; Ahn, Jou-Hyeon; Nam, Tae-hyun; Kim, Ki-won

    2012-10-15

    LiCoO{sub 2} thin films were fabricated on Al substrate by direct current magnetron sputtering method. The effects of Ar/O{sub 2} gas rates and annealing temperatures were investigated. Crystal structures and surface morphologies of the deposited films were investigated by X-ray diffraction, Raman scattering spectroscopy and field emission scanning electron microscopy. The as-deposited LiCoO{sub 2} thin films exhibited amorphous structure. The crystallization starts at the annealing temperature over 400 °C. However, the annealed films have the partially disordered structure without completely ordered crystalline structure even at 600 °C annealing. The electrochemical properties of the LiCoO{sub 2} films were investigated by the charge–discharge and cycle measurements. The 500 °C annealing film has the highest capacity retention rate of 78.2% at 100th cycles.

  9. Synthesis of silicon oxynitride by ion beam sputtering and the effects of nitrogen ion-assisted bombardment

    NASA Astrophysics Data System (ADS)

    Lambrinos, M. F.; Valizadeh, R.; Colligon, J. S.

    1997-05-01

    Thin silicon oxynitride (SiO xN y) films were synthesised without substrate heating by means of N 2+ ion-beam sputtering of a silicon nitride target at an energy of 1000 eV in a N 2 and O 2 ambient with and without 200 eV N 2+ ion assistance. Unassisted films were deposited in a controlled O 2 partial pressure ranging from ambient to 5.0 × 10 -3 Pa whereas assisted films were deposited at a fixed O 2 partial pressure of 1.0 × 10 -3 Pa. The O/(O+N) atomic fraction and the SiO xN y asymmetric stretch mode IR absorption peak wavenumber of unassisted films increased almost linearly with increasing O 2 partial pressure, from 0.2 to 1.0 and 860 cm -1 to 1050 cm -1, respectively, while their refractive indices decreased from 1.92 to 1.46. The behaviour of the SiO xN y film refractive index with the SiO 2 fraction has been compared to that predicted by Drude, Lorentz-Lorenz and Bruggeman models under the assumption that the film is a mixture of SiO 2 and Si 3N 4 phases. For a fixed O 2 partial pressure, the O content of the N 2+ ion-assisted films increased with an increase in the N + ion to Si atom arrival ratio from 0 to 3. This increase in O content correlate with changes in the film refractive index and SiO xN y asymmetric stretch mode absorption peak position, from 1.56 to 1.43 and 1014 cm -1 to 1054 cm -1, respectively, indicating that the O/N atomic ratio increases with increasing N + ion to Si atom ratio until film properties consistent with stoichiometric SiO 2 are obtained.

  10. Plasmonic properties of Ag nanoparticles embedded in GeO2-SiO2 matrix by atom beam sputtering.

    PubMed

    Mohapatra, Satyabrata

    2016-02-01

    Nanocomposite thin films containing Ag nanoparticles embedded in the GeO2-SiO2 matrix were synthesized by the atom beam co-sputtering technique. The structural, optical and plasmonic properties and the chemical composition of the nanocomposite thin films were studied by transmission electron microscopy (TEM) with energy dispersive X-ray spectroscopy (EDX), UV-visible absorption spectroscopy and X-ray photoelectron spectroscopy (XPS). UV-visible absorption studies on Ag-SiO2 nanocomposites revealed the presence of a strong localized surface plasmon resonance (LSPR) peak characteristic of Ag nanoparticles at 413 nm, which showed a blue shift of 26 nm (413 to 387 nm) along with a significant broadening and drastic decrease in intensity with the incorporation of 16 at% of Ge into the SiO2 matrix. TEM studies on Ag-GeO2-SiO2 nanocomposite thin films confirmed the presence of Ag nanoparticles with an average size of 3.8 nm in addition to their aggregates with an average size of 16.2 nm. Thermal annealing in air resulted in strong enhancement in the intensity of the LSPR peak, which showed a regular red shift of 51 nm (from 387 to 438 nm) with the increase in annealing temperature up to 500 °C. XPS studies showed that annealing in air resulted in oxidation of excess Ge atoms in the nanocomposite into GeO2. Our work demonstrates the possibility of controllably tuning the LSPR of Ag nanoparticles embedded in the GeO2-SiO2 matrix by single-step thermal annealing, which is interesting for optical applications. PMID:26766559

  11. Magnetron sputtering system for coatings deposition with activation of working gas mixture by low-energy high-current electron beam

    NASA Astrophysics Data System (ADS)

    Gavrilov, N. V.; Kamenetskikh, A. S.; Men'shakov, A. I.; Bureyev, O. A.

    2015-11-01

    For the purposes of efficient decomposition and ionization of the gaseous mixtures in a system for coatings deposition using reactive magnetron sputtering, a low-energy (100-200 eV) high-current electron beam is generated by a grid-stabilized plasma electron source. The electron source utilizes both continuous (up to 20 A) and pulse-periodic mode of discharge with a self-heated hollow cathode (10-100 A; 0.2 ms; 10-1000 Hz). The conditions for initiation and stable burning of the high-current pulse discharge are studied along with the stable generation of a low-energy electron beam within the gas pressure range of 0.01 - 1 Pa. It is shown that the use of the electron beam with controllable parameters results in reduction of the threshold values both for the pressure of gaseous mixture and for the fluxes of molecular gases. Using such a beam also provides a wide range (0.1-10) of the flux density ratios of ions and sputtered atoms over the coating surface, enables an increase in the maximum pulse density of ion current from plasma up to 0.1 A, ensures an excellent adhesion, optimizes the coating structure, and imparts improved properties to the superhard nanocomposite coatings of (Ti,Al)N/a-Si3N4 and TiC/-a-C:H. Mass-spectrometric measurements of the beam-generated plasma composition proved to demonstrate a twofold increase in the average concentration of N+ ions in the Ar-N2 plasma generated by the high-current (100 A) pulsed electron beam, as compared to the dc electron beam.

  12. Method for producing uranium atomic beam source

    DOEpatents

    Krikorian, Oscar H.

    1976-06-15

    A method for producing a beam of neutral uranium atoms is obtained by vaporizing uranium from a compound UM.sub.x heated to produce U vapor from an M boat or from some other suitable refractory container such as a tungsten boat, where M is a metal whose vapor pressure is negligible compared to that of uranium at the vaporization temperature. The compound, for example, may be the uranium-rhenium compound, URe.sub.2. An evaporation rate in excess of about 10 times that of conventional uranium beam sources is produced.

  13. An innovative experimental setup for the measurement of sputtering yield induced by keV energy ions

    NASA Astrophysics Data System (ADS)

    Salou, P.; Lebius, H.; Benyagoub, A.; Langlinay, T.; Lelièvre, D.; Ban-d'Etat, B.

    2013-09-01

    An innovative experimental equipment allowing to study the sputtering induced by ion beam irradiation is presented. The sputtered particles are collected on a catcher which is analyzed in situ by Auger electron spectroscopy without breaking the ultra high vacuum (less than 10-9 mbar), avoiding thus any problem linked to possible contamination. This method allows to measure the angular distribution of sputtering yield. It is now possible to study the sputtering of many elements such as carbon based materials. Preliminary results are presented in the case of highly oriented pyrolytic graphite and tungsten irradiated by an Ar+ beam at 2.8 keV and 7 keV, respectively.

  14. Synthesis of in-plane and stacked graphene/hexagonal boron nitride heterostructures by combining with ion beam sputtering deposition and chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Meng, Jun Hua; Zhang, Xing Wang; Wang, Hao Lin; Ren, Xi Biao; Jin, Chuan Hong; Yin, Zhi Gang; Liu, Xin; Liu, Heng

    2015-09-01

    Graphene/hexagonal boron nitride (h-BN) heterostructures have attracted a great deal of attention in recent years due to their unique and complementary properties for use in a wide range of potential applications. However, it still remains a challenge to synthesize large-area high quality samples by a scalable growth method. In this work, we present the synthesis of both in-plane and stacked graphene/h-BN heterostructures on Cu foils by sequentially depositing h-BN via ion beam sputtering deposition (IBSD) and graphene with chemical vapor deposition (CVD). Due to a significant difference in the growth rate of graphene on h-BN and Cu, the in-plane graphene/h-BN heterostructures were rapidly formed on h-BN domain/Cu substrates. The large-area vertically stacked graphene/h-BN heterostructures were obtained by using the continuous h-BN film as a substrate. Furthermore, the well-designed sub-bilayered h-BN substrates provide direct evidence that the monolayered h-BN on Cu exhibits higher catalytic activity than the bilayered h-BN on Cu. The growth method applied here may have great potential in the scalable preparation of large-area high-quality graphene/h-BN heterostructures.Graphene/hexagonal boron nitride (h-BN) heterostructures have attracted a great deal of attention in recent years due to their unique and complementary properties for use in a wide range of potential applications. However, it still remains a challenge to synthesize large-area high quality samples by a scalable growth method. In this work, we present the synthesis of both in-plane and stacked graphene/h-BN heterostructures on Cu foils by sequentially depositing h-BN via ion beam sputtering deposition (IBSD) and graphene with chemical vapor deposition (CVD). Due to a significant difference in the growth rate of graphene on h-BN and Cu, the in-plane graphene/h-BN heterostructures were rapidly formed on h-BN domain/Cu substrates. The large-area vertically stacked graphene/h-BN heterostructures were

  15. Low temperature Ti-Si-C thin film deposition by ion beam assisted methods

    NASA Astrophysics Data System (ADS)

    Twardowska, Agnieszka; Rajchel, Boguslaw; Jaworska, Lucyna

    2010-11-01

    Thin, multiphase Ti-Si-C coatings were formed by IBSD or by IBAD methods on AISI 316L steel substrates in room temperature, using single Ti3SiC2 target. In those methods the TiXSiCY coatings were formed from the flux of energetic atoms and ions obtained by ion sputtering of the Ti3SiC2 compound sample. As sputtering beam the beam of Ar+ ions at energy of 15keV was applied. In the IBAD method the dynamically formed coatings were additionally bombarded by beam of Ar+ ions at energy of 15keV. The ion beams parameters were obtained by using Monte Carlo computer simulations. The morphology (SEM, TEM), chemical (EDS/EDX) and phase composition (XRD) examinations of formed coatings were provided as well as confocal Raman microspectroscopy. Analyzed coatings were relatively thin (150nm-1μm), flat and dense. XRD analysis indicated in amorphous TiSi, the traces of Ti5Si3 and other phases from Ti-Si-C system (TiSi, TiSi2,Ti3SiC2). For chemical bonds investigation, the laser beam with length of 532nm was used. Those analyses were performed in the low (LR) or in high (HR) resolution modes in room temperature and in 4000C. In the HR mode the spectral resolution was close to 2 cm-1. In Raman spectra peaks at: 152cm-1, 216cm-1, 278cm-1, 311 cm-1, 608cm-1, 691cm-1 were recorded. Nanoindentation tests were done on coated and uncoated substrates with diamond, Berkovich-type indenter. Vickers hardness HIT and reduced elastic modulus EIT were calculated using Olivier& Pharr method. HIT for coated substrates was in the range 2.7 to 5.3 GPa, EIT was 160 GPa.

  16. The influence of Atomic Oxygen on the Figure of Merit of Indium Tin Oxide thin Films grown by reactive Dual Ion Beam Sputtering

    NASA Astrophysics Data System (ADS)

    Geerts, Wilhelmus; Simpson, Nelson; Woodall, Allen; Compton, Maclyn

    2014-03-01

    Indium Tin Oxide (ITO) is a transparent conducting oxide that is used in flat panel displays and optoelectronics. Highly conductive and transparent ITO films are normally produced by heating the substrate to 300 Celsius during deposition excluding plastics to be used as a substrate material. We investigated whether high quality ITO films can be sputtered at room temperature using atomic instead of molecular oxygen. The films were deposited by dual ion beam sputtering (DIBS). During deposition the substrate was exposed to a molecular or an atomic oxygen flux. Microscope glass slides and silicon wafers were used as substrates. A 29 nm thick SIO2 buffer layer was used. Optical properties were measured with a M2000 Woollam variable angle spectroscopic ellipsometer. Electrical properties were measured by linear four point probe using a Jandel 4pp setup employing silicon carbide electrodes, high input resistance, and Keithley low bias current buffer amplifiers. The figure of merit (FOM), i.e. the ratio of the conductivity and the average optical absorption coefficient (400-800 nm), was calculated from the optical and electric properties and appeared to be 1.2 to 5 times higher for the samples sputtered with atomic oxygen. The largest value obtained for the FOM was 0.08 reciprocal Ohms. The authors would like to thank the Research Corporation for Financial Support.

  17. Effective beam method for element concentrations.

    PubMed

    Tolhurst, Thomas; Barbi, Mauricio; Tokaryk, Tim

    2015-03-01

    There is a great diversity of research being conducted at synchrotron facilities around the world and a diverse set of beamlines to accommodate this research. Time is a precious commodity at synchrotron facilities; therefore, methods that can maximize the time spent collecting data are of value. At the same time the incident radiation spectrum, necessary for some research, may not be known on a given beamline. A preliminary presentation of a method applicable to X-ray fluorescence spectrocopic analyses that overcomes the lack of information about the incident beam spectrum that addresses both of these concerns is given here. The method is equally applicable for other X-ray sources so long as local conditions are considered. It relies on replacing the polychromatic spectrum in a standard fundamental parameters analysis with a set of effective monochromatic photon beams. A beam is associated with each element and can be described by an analytical function allowing extension to elements not included in the necessary calibration measurement(s). PMID:25723941

  18. Effective beam method for element concentrations

    PubMed Central

    Tolhurst, Thomas; Barbi, Mauricio; Tokaryk, Tim

    2015-01-01

    There is a great diversity of research being conducted at synchrotron facilities around the world and a diverse set of beamlines to accommodate this research. Time is a precious commodity at synchrotron facilities; therefore, methods that can maximize the time spent collecting data are of value. At the same time the incident radiation spectrum, necessary for some research, may not be known on a given beamline. A preliminary presentation of a method applicable to X-ray fluorescence spectrocopic analyses that overcomes the lack of information about the incident beam spectrum that addresses both of these concerns is given here. The method is equally applicable for other X-ray sources so long as local conditions are considered. It relies on replacing the polychromatic spectrum in a standard fundamental parameters analysis with a set of effective monochromatic photon beams. A beam is associated with each element and can be described by an analytical function allowing extension to elements not included in the necessary calibration measurement(s). PMID:25723941

  19. The electromagnetic shielding of Ni films deposited on cenosphere particles by magnetron sputtering method

    NASA Astrophysics Data System (ADS)

    Yu, Xiaozheng; Shen, Zhigang

    2009-09-01

    Ni-coated cenosphere particles were successfully fabricated by an ultrasonic-assisted magnetron sputtering equipment. Their surface morphology and microstructure were analyzed using field emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD). FE-SEM results indicate that the Ni films coated by magnetron sputtering are uniform and compact. Ni film uniformity was related with the sputtering power and a large uniform film could be achieved at lower sputtering power. XRD results imply that the Ni film coated on cenospheres was a face-centered cubic (fcc) structure and the crystallization of film sample increases with increasing the sputtering power. The electromagnetic interference (EMI) shielding effectiveness (SE) of Ni-coated cenosphere particles were measured to be 4-27 dB over a frequency range 80-100 GHz, higher than those of uncoated cenosphere particles. The higher sputtering power and Ni film thickness are the higher EMI SE of the specimens. Ni-coated cenosphere particles are most promising alternative candidates for millimeter wave EMI shielding due to their lightweight, low cost, ease of processing, high floating time, good dispersion and tunable conductivities as compared with typical electromagnetic wave countermeasure materials.

  20. Analysis of (TiO II) X(Ta IIO 5) 1-X composite films prepared by radio frequency ion beam sputtering deposition

    NASA Astrophysics Data System (ADS)

    Tang, Chien-Jen; Wu, Yung-Chi; Lee, Cheng-Chung

    2006-08-01

    Using two or more materials to deposit a composite film has an advantage to get a film with desired refractive index. Besides, its optical property and mechanical property are better than a film deposited by a single material. In this study, (TiO II) X(Ta IIO 5) 1-X composite films have been prepared by a radio frequency ion beam sputtering deposition (RF-IBSD) where x was determined by the area ratio of titanium to tantalum targets. The optical constants of (TiO II) X(Ta IIO 5) 1-X composite films were calculated from their spectra by using envelope method. The refractive indices ranged from 2.481 to 2.165 at 550nm, and the extinction coefficients were lower than 1x10 -3 for wavelength in the ranges of 400nm to 600nm and lower than 1x10 -4 for wavelength longer than 600nm. The surface roughness of all composite films was about 0.1nm. The stress decreased from -520MPa for pure TiO II film to less than -280MPa for the composite films as measured by a phase-shift Twyman-Green interferometer. When the content of TiO II was less than 79.5%, the composite films were amorphous even post-baked to 400°C as measured by x-ray diffraction. The composite films mixed with TiO II and Ta IIO 5 can improve thermal stability and reduce extinction coefficient and stress. Composite films can replace the conventional high refractive index layer prepared by a single material to fabricate multilayer filters, and it is also suitable for high temperature applications, such as high reflection coating of projector lamps.

  1. Method for producing an atomic oxygen beam

    NASA Technical Reports Server (NTRS)

    Outlaw, Ronald A. (Inventor)

    1989-01-01

    A method for producing an atomic oxygen beam is provided by the present invention. First, a material 10' is provided which dissociates molecular oxygen and dissolves atomic oxygen into its bulk. Next, molecular oxygen is exposed to entrance surface 11' of material 10'. Next, material 10' is heated by heater 17' to facilitate the permeation of atomic oxygen through material 10' to the UHV side 12'. UHV side 12' is interfaced with an ultra-high vacuum (UHV) environment provided by UHV pump 15'. The atomic oxygen on the UHV side 12' is excited to a non-binding state by exciter 14' thus producing the release of atomic oxygen to form an atomic oxygen beam 35'.

  2. Ultraviolet optical and microstructural properties of MgF2 and LaF3 coatings deposited by ion-beam sputtering and boat and electron-beam evaporation.

    PubMed

    Ristau, Detlev; Günster, Stefan; Bosch, Salvador; Duparré, Angela; Masetti, Enrico; Ferré-Borrull, Josep; Kiriakidis, George; Peiró, Francesca; Quesnel, Etienne; Tikhonravov, Alexander

    2002-06-01

    Single layers of MgF2 and LaF3 were deposited upon superpolished fused-silica and CaF2 substrates by ion-beam sputtering (IBS) as well as by boat and electron beam (e-beam) evaporation and were characterized by a variety of complementary analytical techniques. Besides undergoing photometric and ellipsometric inspection, the samples were investigated at 193 and 633 nm by an optical scatter measurement facility. The structural properties were assessed with atomic-force microscopy, x-ray diffraction, TEM techniques that involved conventional thinning methods for the layers. For measurement of mechanical stress in the coatings, special silicon substrates were coated and analyzed. The dispersion behavior of both deposition materials, which was determined on the basis of various independent photometric measurements and data reduction techniques, is in good agreement with that published in the literature and with the bulk properties of the materials. The refractive indices of the MgF2 coatings ranged from 1.415 to 1.440 for the wavelength of the ArF excimer laser (193 nm) and from 1.435 to 1.465 for the wavelength of the F2 excimer laser (157 nm). For single layers of LaF3 the refractive indices extended from 1.67 to 1.70 at 193 nm to approximately 1.80 at 157 nm. The IBS process achieves the best homogeneity and the lowest surface roughness values (close to 1 nm(rms)) of the processes compared in the joint experiment. In contrast to MgF2 boat and e-beam evaporated coatings, which exhibit tensile mechanical stress ranging from 300 to 400 MPa, IBS coatings exhibit high compressive stress of as much as 910 MPa. A similar tendency was found for coating stress in LaF3 single layers. Experimental results are discussed with respect to the microstructural and compositional properties as well as to the surface topography of the coatings. PMID:12064402

  3. Ion-beam sputtering deposition and magnetoelectric properties of layered heterostructures (FM/PZT/FM)n, where FM - Co or Ni78Fe22

    NASA Astrophysics Data System (ADS)

    Stognij, Alexander; Novitskii, Nikolai; Sazanovich, Andrei; Poddubnaya, Nadezhda; Sharko, Sergei; Mikhailov, Vladimir; Nizhankovski, Viktor; Dyakonov, Vladimir; Szymczak, Henryk

    2013-08-01

    Magnetoelectric properties of layered heterostructures (FM/PZT/FM)n (n≤ 3) obtained by ion-beam sputtering deposition of ferromagnetic metal (FM), where FM is the cobalt (Co) or permalloy Ni78Fe22, onto ferroelectric ceramic based on lead zirconate titanate (PZT) have been studied. The polished ferroelectric plates in thickness from 400 to 20 μm were subjected to finished treatment by ion-beam sputtering. After plasma activation they were covered by the ferromagnetic films from 1 to 6 μm in thickness. Enhanced characteristics of these structures were reached by means of both the thickness optimization of ferroelectric and ferromagnetic layers and obtaining of ferromagnetic/ferroelectric interfaces being free from defects and foreign impurities. Assuming on the basis of analysis of elastic stresses in the ferromagnetic film that the magnetoelectric effect forms within ferromagnetic/ferroelectric interface, the structures with 2-3 ferromagnetic layers were obtained. In layered heterostructure (Py/PZT/Py)3, the optimal thickness of ferromagnetic film was 2 μm, and outer and inner ferroelectric layers had 20 μm and 80 μm in thickness, respectively. For such structure the maximal magnetoelectric voltage coefficient of 250 mV/(cm Oe) was reached at a frequency 100 Hz in magnetic field of 0.25 T at room temperature. The structures studied can serve as energy-independent elements detecting the change of magnetic or electric fields in electronic devices based on magnetoelectric effect.

  4. Method for sputtering a PIN amorphous silicon semi-conductor device having partially crystallized P and N-layers

    DOEpatents

    Moustakas, Theodore D.; Maruska, H. Paul

    1985-07-09

    A high efficiency amorphous silicon PIN semiconductor device having partially crystallized (microcrystalline) P and N layers is constructed by the sequential sputtering of N, I and P layers and at least one semi-transparent ohmic electrode. The method of construction produces a PIN device, exhibiting enhanced electrical and optical properties, improved physical integrity, and facilitates the preparation in a singular vacuum system and vacuum pump down procedure.

  5. Mass spectrometer and methods of increasing dispersion between ion beams

    DOEpatents

    Appelhans, Anthony D.; Olson, John E.; Delmore, James E.

    2006-01-10

    A mass spectrometer includes a magnetic sector configured to separate a plurality of ion beams, and an electrostatic sector configured to receive the plurality of ion beams from the magnetic sector and increase separation between the ion beams, the electrostatic sector being used as a dispersive element following magnetic separation of the plurality of ion beams. Other apparatus and methods are provided.

  6. Characterizing a proton beam with two different methods in beam halo experiments

    NASA Astrophysics Data System (ADS)

    Jiang, Hong-Ping; Fu, Shi-Nian; Peng, Jun; Cheng, Peng; Huang, Tao; Li, Peng; Li, Fang; Li, Jian; Liu, Hua-Chang; Liu, Mei-Fei; Meng, Ming; Meng, Cai; Mu, Zhen-Cheng; Rong, Lin-Yan; Ouyang, Hua-Fu; Sun, Biao; Wang, Bo; Tian, Jian-Min; Wang, Biao; Wang, Sheng-Chang; Yao, Yuan; Xu, Tao-Guang; Xu, Xin-An; Xin, Wen-Qu; Zhao, Fu-Xiang; Zeng, Lei; Zhou, Wen-Zhong

    2014-08-01

    In beam halo experiments, it is very important to correctly characterize the RFQ output proton beam. In order to simulate the beam dynamics properly, we must first know the correct initial beam parameters. We have used two different methods, quadrupole scans and multi-wire scanners to determine the transverse phase-space properties of the proton beam. The experimental data were analyzed by fitting to the 3-D nonlinear simulation code IMPACT. For the quadrupole scan method, we found that the RMS beam radius and the measured beam-core profiles agreed very well with the simulations. For the multi-wire scanner method, we choose the case of a matched beam. By fitting the IMPACT simulation results to the measured data, we obtained the Courant-Snyder parameters and the emittance of the beam. The difference between the two methods is about eight percent, which is acceptable in our experiments.

  7. A novel approach for the characterization of a bilayer of phenyl-c71-butyric-acid-methyl ester and pentacene using ultraviolet photoemission spectroscopy and argon gas cluster ion beam sputtering process

    SciTech Connect

    Yun, Dong-Jin; Chung, JaeGwan; Jung, Changhoon; Chung, Yeonji; Kim, SeongHeon; Lee, Seunghyup; Kim, Ki-Hong; Han, Hyouksoo; Park, Gyeong-Su; Park, SungHoon

    2013-09-07

    The material arrangement and energy level alignment of an organic bilayer comprising of phenyl-c71-butyric-acid-methyl ester (PCBM-71) and pentacene were studied using ultraviolet photoelectron spectroscopy (UPS) and the argon gas cluster ion beam (GCIB) sputtering process. Although there is a small difference in the full width at half maximum of the carbon C 1s core level peaks and differences in the oxygen O 1s core levels of an X-ray photoemission spectroscopy spectra, these differences are insufficient to clearly distinguish between PCBM-71 and pentacene layers and to classify the interface and bulk regions. On the other hand, the valence band structures in the UPS spectra contain completely distinct configurations for the PCBM-71 and pentacene layers, even when they have similar atomic compositions. According to the valence band structures of the PCBM-71/pentacene/electrodes, the highest unoccupied molecular orbital (HOMO) region of pentacene is at least 0.8 eV closer to the Fermi level than that of PCBM-71 and it does not overlap with any of the chemical states in the valence band structure of PCBM-71. Therefore, by just following the variations in the area of the HOMO region of pentacene, the interface/bulk regions of the PCBM/pentacene layers were distinctly categorized. Besides, the variation of valence band structures as a function of the Ar GCIB sputtering time fully corroborated with the surface morphologies observed in the atomic force microscope images. In summary, we believe that the novel approach, which involves UPS analysis in conjunction with Ar GCIB sputtering, can be one of the best methods to characterize the material distribution and energy level alignments of stacks of organic layers.

  8. Stress induced growth of Sn nanowires in a single step by sputtering method

    NASA Astrophysics Data System (ADS)

    Yadav, A.; Patel, N.; Miotello, A.; Kothari, D. C.

    2015-06-01

    Sn nanowires in aluminum film have been synthesized in a single step by co-sputtering of Al and Sn targets. Due to immiscibility of Sn and Al, co-sputtering leads to generation of stress in the composite film. In order to attain thermodynamic equilibrium, Sn separates from Al and diffuses towards the grain boundaries. External perturbation due to ambient atmosphere leads to corrosion at the grain boundaries forming pits which provide path for Sn to evolve. Owing to this, extrusion of Sn nanowires from Al film occurs to release the residual stress in the film.

  9. Stress induced growth of Sn nanowires in a single step by sputtering method

    SciTech Connect

    Yadav, A. Kothari, D. C.; Patel, N.; Miotello, A.

    2015-06-24

    Sn nanowires in aluminum film have been synthesized in a single step by co-sputtering of Al and Sn targets. Due to immiscibility of Sn and Al, co-sputtering leads to generation of stress in the composite film. In order to attain thermodynamic equilibrium, Sn separates from Al and diffuses towards the grain boundaries. External perturbation due to ambient atmosphere leads to corrosion at the grain boundaries forming pits which provide path for Sn to evolve. Owing to this, extrusion of Sn nanowires from Al film occurs to release the residual stress in the film.

  10. Migration by the Kirchhoff, slant stack, and Gaussian beam methods

    SciTech Connect

    Hale, D.

    1992-08-01

    Gaussian beam migration offers features that are unmatched by any other single depth migration method. Unfortunately, computer algorithms for Gaussian beam migration are more complicated and difficult to understand that those for most other methods. One way to simplify Gaussian beam migration is to understand how it is related to other methods that may be more familiar. In particular, Gaussian beam migration is similar to Kirchhoff integral migration. It is also similar to the phase-shift (or slant stack) migration method. In a sense, the Gaussian beam approach to depth migration is to combine the best of these more familiar methods to obtain an efficient, robust, and flexible method for seismic imaging.

  11. Migration by the Kirchhoff, slant stack, and Gaussian beam methods

    SciTech Connect

    Hale, D.

    1992-01-01

    Gaussian beam migration offers features that are unmatched by any other single depth migration method. Unfortunately, computer algorithms for Gaussian beam migration are more complicated and difficult to understand that those for most other methods. One way to simplify Gaussian beam migration is to understand how it is related to other methods that may be more familiar. In particular, Gaussian beam migration is similar to Kirchhoff integral migration. It is also similar to the phase-shift (or slant stack) migration method. In a sense, the Gaussian beam approach to depth migration is to combine the best of these more familiar methods to obtain an efficient, robust, and flexible method for seismic imaging.

  12. Fabrication of sharp tungsten-coated tip for atomic force microscopy by ion-beam sputter deposition

    SciTech Connect

    Kinoshita, Yukinori; Naitoh, Yoshitaka; Li, Yan Jun; Sugawara, Yasuhiro

    2011-11-15

    Tungsten (W) is significantly suitable as a tip material for atomic force microscopy (AFM) because its high mechanical stiffness enables the stable detection of tip-sample interaction forces. We have developed W sputter-coating equipment to compensate the drawbacks of conventional Si cantilever tips used in AFM measurements. By employing an ion gun commonly used for sputter cleaning of a cantilever tip, the equipment is capable of depositing conductive W films in the preparation chamber of a general ultrahigh vacuum (UHV)-AFM system without the need for an additional chamber or transfer system. This enables W coating of a cantilever tip immediately after sputter cleaning of the tip apex and just before the use in AFM observations. The W film consists of grain structures, which prevent tip dulling and provide sharpness (<3 nm in radius of curvature at the apex) comparable to that of the original Si tip apex. We demonstrate that in non-contact (NC)-AFM measurement, a W-coated Si tip can clearly resolve the atomic structures of a Ge(001) surface without any artifacts, indicating that, as a force sensor, the fabricated W-coated Si tip is superior to a bare Si tip.

  13. Validating mass spectrometry measurements of nuclear materials via a non-contact volume analysis method of ion sputter craters

    SciTech Connect

    Willingham, David G.; Naes, Benjamin E.; Fahey, Albert J.

    2015-01-01

    A combination of secondary ion mass spectrometry, optical profilometry and a statistically-driven algorithm was used to develop a non-contact volume analysis method to validate the useful yields of nuclear materials. The volume analysis methodology was applied to ion sputter craters created in silicon and uranium substrates sputtered by 18.5 keV O- and 6.0 keV Ar+ ions. Sputter yield measurements were determined from the volume calculations and were shown to be comparable to Monte Carlo calculations and previously reported experimental observations. Additionally, the volume calculations were used to determine the useful yields of Si+, SiO+ and SiO2+ ions from the silicon substrate and U+, UO+ and UO2+ ions from the uranium substrate under 18.5 keV O- and 6.0 keV Ar+ ion bombardment. This work represents the first steps toward validating the interlaboratory and cross-platform performance of mass spectrometry for the analysis of nuclear materials.

  14. Multi-jump magnetic switching in ion-beam sputtered amorphous Co{sub 20}Fe{sub 60}B{sub 20} thin films

    SciTech Connect

    Raju, M.; Chaudhary, Sujeet; Pandya, D. K.

    2013-08-07

    Unconventional multi-jump magnetization reversal and significant in-plane uniaxial magnetic anisotropy (UMA) in the ion-beam sputtered amorphous Co{sub 20}Fe{sub 60}B{sub 20}(5–75 nm) thin films grown on Si/amorphous SiO{sub 2} are reported. While such multi-jump behavior is observed in CoFeB(10 nm) film when the magnetic field is applied at 10°–20° away from the easy-axis, the same is observed in CoFeB(12.5 nm) film when the magnetic field is 45°–55° away from easy-axis. Unlike the previous reports of multi-jump switching in epitaxial films, their observance in the present case of amorphous CoFeB is remarkable. This multi-jump switching is found to disappear when the films are crystallized by annealing at 420 °C. The deposition geometry and the energy of the sputtered species appear to intrinsically induce a kind of bond orientation anisotropy in the films, which leads to the UMA in the as-grown amorphous CoFeB films. Exploitation of such multi-jump switching in amorphous CoFeB thin films could be of technological significance because of their applications in spintronic devices.

  15. Magnetically attached sputter targets

    DOEpatents

    Makowiecki, D.M.; McKernan, M.A.

    1994-02-15

    An improved method and assembly for attaching sputtering targets to cathode assemblies of sputtering systems which includes a magnetically permeable material is described. The magnetically permeable material is imbedded in a target base that is brazed, welded, or soldered to the sputter target, or is mechanically retained in the target material. Target attachment to the cathode is achieved by virtue of the permanent magnets and/or the pole pieces in the cathode assembly that create magnetic flux lines adjacent to the backing plate, which strongly attract the magnetically permeable material in the target assembly. 11 figures.

  16. Magnetically attached sputter targets

    DOEpatents

    Makowiecki, Daniel M.; McKernan, Mark A.

    1994-01-01

    An improved method and assembly for attaching sputtering targets to cathode assemblies of sputtering systems which includes a magnetically permeable material. The magnetically permeable material is imbedded in a target base that is brazed, welded, or soldered to the sputter target, or is mechanically retained in the target material. Target attachment to the cathode is achieved by virtue of the permanent magnets and/or the pole pieces in the cathode assembly that create magnetic flux lines adjacent to the backing plate, which strongly attract the magnetically permeable material in the target assembly.

  17. Initial alignment method for free space optics laser beam

    NASA Astrophysics Data System (ADS)

    Shimada, Yuta; Tashiro, Yuki; Izumi, Kiyotaka; Yoshida, Koichi; Tsujimura, Takeshi

    2016-08-01

    The authors have newly proposed and constructed an active free space optics transmission system. It is equipped with a motor driven laser emitting mechanism and positioning photodiodes, and it transmits a collimated thin laser beam and accurately steers the laser beam direction. It is necessary to introduce the laser beam within sensible range of the receiver in advance of laser beam tracking control. This paper studies an estimation method of laser reaching point for initial laser beam alignment. Distributed photodiodes detect laser luminescence at respective position, and the optical axis of laser beam is analytically presumed based on the Gaussian beam optics. Computer simulation evaluates the accuracy of the proposed estimation methods, and results disclose that the methods help us to guide the laser beam to a distant receiver.

  18. Development of W/C soft x-ray multilayer mirror by ion beam sputtering (IBS) system for below 50A wavelength

    SciTech Connect

    Biswas, A.; Bhattacharyya, D.

    2012-06-25

    A home-made Ion Beam Sputtering (IBS) system has been developed in our laboratory. Using the IBS system single layer W and single layer C film has been deposited at 1000eV Ar ion energy and 10mA ion current. The W-film has been characterized by grazing Incidence X-ray reflectrometry (GIXR) technique and Atomic Force Microscope technique. The single layer C-film has been characterized by Spectroscopic Ellipsometric technique. At the same deposition condition 25-layer W/C multilayer film has been deposited which has been designed for using as mirror at 30 Degree-Sign grazing incidence angle around 50A wavelength. The multilayer sample has been characterized by measuring reflectivity of CuK{alpha} radiation and soft x-ray radiation around 50A wavelength.

  19. Influence of in-situ annealing ambient on p-type conduction in dual ion beam sputtered Sb-doped ZnO thin films

    SciTech Connect

    Pandey, Sushil Kumar; Kumar Pandey, Saurabh; Awasthi, Vishnu; Mukherjee, Shaibal; Gupta, M.; Deshpande, U. P.

    2013-08-12

    Sb-doped ZnO (SZO) films were deposited on c-plane sapphire substrates by dual ion beam sputtering deposition system and subsequently annealed in-situ in vacuum and in various proportions of O{sub 2}/(O{sub 2} + N{sub 2})% from 0% (N{sub 2}) to 100% (O{sub 2}). Hall measurements established all SZO films were p-type, as was also confirmed by typical diode-like rectifying current-voltage characteristics from p-ZnO/n-ZnO homojunction. SZO films annealed in O{sub 2} ambient exhibited higher hole concentration as compared with films annealed in vacuum or N{sub 2} ambient. X-ray photoelectron spectroscopic analysis confirmed that Sb{sup 5+} states were more preferable in comparison to Sb{sup 3+} states for acceptor-like Sb{sub Zn}-2V{sub Zn} complex formation in SZO films.

  20. Characterization of ion beam sputtered deposited W/Si multilayers by grazing incidence x-ray diffraction and x-ray reflectivity technique

    NASA Astrophysics Data System (ADS)

    Dhawan, Rajnish; Rai, Sanjay

    2016-05-01

    W/Si multilayers four samples have been deposited on silicon substrate using ion beam sputtering system. Thickness of tungsten (W) varies from around 10 Å to 40 Å while the silicon (Si) thickness remains constant at around 30 Å in multilayers [W-Si]x4. The samples have been characterized by grazing incidence X-ray diffraction (GIXRD) and X-ray reflectivity technique (XRR). GIXRD study shows the crystalline behaviour of W/Si multilayer by varying W thickness and it is found that above 20 Å the W film transform from amorphous to crystalline phase and X-ray reflectivity data shows that the roughnesses of W increases on increasing the W thicknesses in W/Si multilayers.

  1. Blue electroluminescence from Sb-ZnO/Cd-ZnO/Ga-ZnO heterojunction diode fabricated by dual ion beam sputtering.

    PubMed

    Pandey, Sushil Kumar; Awasthi, Vishnu; Verma, Shruti; Mukherjee, Shaibal

    2014-12-15

    p-type Sb-doped ZnO/i-CdZnO/n-type Ga-doped ZnO was grown by dual ion beam sputtering deposition system. Current-voltage characteristics of the heterojunction showed a diode-like rectifying behavior with a turn-on voltage of ~5 V. The diode yielded blue electroluminescence emissions at around 446 nm in forward biased condition at room temperature. The emission intensity increased with the increase of the injection current. A red shifting of the emission peak position was observed with the increment of ambient temperature, indicating a change of band gap of the CdZnO active layer with temperature in low-temperature measurement. PMID:25607047

  2. Growth of Co2FeAl Heusler alloy thin films on Si(100) having very small Gilbert damping by Ion beam sputtering

    PubMed Central

    Husain, Sajid; Akansel, Serkan; Kumar, Ankit; Svedlindh, Peter; Chaudhary, Sujeet

    2016-01-01

    The influence of growth temperature Ts (300–773 K) on the structural phase ordering, static and dynamic magnetization behaviour has been investigated in ion beam sputtered full Heusler alloy Co2FeAl (CFA) thin films on industrially important Si(100) substrate. The B2 type magnetic ordering is established in these films based on the clear observation of the (200) diffraction peak. These ion beam sputtered CFA films possess very small surface roughness of the order of subatomic dimensions (<3 Å) as determined from the fitting of XRR spectra and also by AFM imaging. This is supported by the occurrence of distinct Kiessig fringes spanning over the whole scanning range (~4°) in the x-ray reflectivity (XRR) spectra. The Gilbert damping constant α and effective magnetization 4πMeff are found to vary from 0.0053 ± 0.0002 to 0.0015 ± 0.0001 and 13.45 ± 00.03 kG to 14.03 ± 0.04 kG, respectively. These Co2FeAl films possess saturation magnetization ranging from 4.82 ± 0.09 to 5.22 ± 0.10 μB/f.u. consistent with the bulk L21-type ordering. A record low α-value of 0.0015 is obtained for Co2FeAl films deposited on Si substrate at Ts ~ 573 K. PMID:27357004

  3. Growth of Co2FeAl Heusler alloy thin films on Si(100) having very small Gilbert damping by Ion beam sputtering

    NASA Astrophysics Data System (ADS)

    Husain, Sajid; Akansel, Serkan; Kumar, Ankit; Svedlindh, Peter; Chaudhary, Sujeet

    2016-06-01

    The influence of growth temperature Ts (300–773 K) on the structural phase ordering, static and dynamic magnetization behaviour has been investigated in ion beam sputtered full Heusler alloy Co2FeAl (CFA) thin films on industrially important Si(100) substrate. The B2 type magnetic ordering is established in these films based on the clear observation of the (200) diffraction peak. These ion beam sputtered CFA films possess very small surface roughness of the order of subatomic dimensions (<3 Å) as determined from the fitting of XRR spectra and also by AFM imaging. This is supported by the occurrence of distinct Kiessig fringes spanning over the whole scanning range (~4°) in the x-ray reflectivity (XRR) spectra. The Gilbert damping constant α and effective magnetization 4πMeff are found to vary from 0.0053 ± 0.0002 to 0.0015 ± 0.0001 and 13.45 ± 00.03 kG to 14.03 ± 0.04 kG, respectively. These Co2FeAl films possess saturation magnetization ranging from 4.82 ± 0.09 to 5.22 ± 0.10 μB/f.u. consistent with the bulk L21-type ordering. A record low α-value of 0.0015 is obtained for Co2FeAl films deposited on Si substrate at Ts ~ 573 K.

  4. Growth of Co2FeAl Heusler alloy thin films on Si(100) having very small Gilbert damping by Ion beam sputtering.

    PubMed

    Husain, Sajid; Akansel, Serkan; Kumar, Ankit; Svedlindh, Peter; Chaudhary, Sujeet

    2016-01-01

    The influence of growth temperature Ts (300-773 K) on the structural phase ordering, static and dynamic magnetization behaviour has been investigated in ion beam sputtered full Heusler alloy Co2FeAl (CFA) thin films on industrially important Si(100) substrate. The B2 type magnetic ordering is established in these films based on the clear observation of the (200) diffraction peak. These ion beam sputtered CFA films possess very small surface roughness of the order of subatomic dimensions (<3 Å) as determined from the fitting of XRR spectra and also by AFM imaging. This is supported by the occurrence of distinct Kiessig fringes spanning over the whole scanning range (~4°) in the x-ray reflectivity (XRR) spectra. The Gilbert damping constant α and effective magnetization 4πMeff are found to vary from 0.0053 ± 0.0002 to 0.0015 ± 0.0001 and 13.45 ± 00.03 kG to 14.03 ± 0.04 kG, respectively. These Co2FeAl films possess saturation magnetization ranging from 4.82 ± 0.09 to 5.22 ± 0.10 μB/f.u. consistent with the bulk L21-type ordering. A record low α-value of 0.0015 is obtained for Co2FeAl films deposited on Si substrate at Ts ~ 573 K. PMID:27357004

  5. Large Area Microcorrals and Cavity Formation on Cantilevers using a Focused Ion Beam

    SciTech Connect

    Saraf, Laxmikant V.; Britt, David W.

    2011-09-14

    We utilize focused ion beam (FIB) to explore various sputtering parameters to form large area microcorrals and cavities on cantilevers. Microcorrals were rapidly created by modifying ion beam blur and overlaps. Modification in FIB sputtering parameters affects the periodicity and shape of corral microstructure. Cantilever deflections show ion beam amorphization effects as a function of sputtered area and cantilever base cavities with or without side walls. The FIB sputtering parameters address a method for rapid creation of a cantilever tensiometer with integrated fluid storage and delivery.

  6. Ion-beam mixed ultra-thin cobalt suicide (CoSi2) films by cobalt sputtering and rapid thermal annealing

    NASA Astrophysics Data System (ADS)

    Kal, S.; Kasko, I.; Ryssel, H.

    1995-10-01

    The influence of ion-beam mixing on ultra-thin cobalt silicide (CoSi2) formation was investigated by characterizing the ion-beam mixed and unmixed CoSi2 films. A Ge+ ion-implantation through the Co film prior to silicidation causes an interface mixing of the cobalt film with the silicon substrate and results in improved silicide-to-silicon interface roughness. Rapid thermal annealing was used to form Ge+ ion mixed and unmixed thin CoSi2 layer from 10 nm sputter deposited Co film. The silicide films were characterized by secondary neutral mass spectroscopy, x-ray diffraction, tunneling electron microscopy (TEM), Rutherford backscattering, and sheet resistance measurements. The experi-mental results indicate that the final rapid thermal annealing temperature should not exceed 800°C for thin (<50 nm) CoSi2 preparation. A comparison of the plan-view and cross-section TEM micrographs of the ion-beam mixed and unmixed CoSi2 films reveals that Ge+ ion mixing (45 keV, 1 × 1015 cm-2) produces homogeneous silicide with smooth silicide-to-silicon interface.

  7. Method for sputtering a PIN microcrystalline/amorphous silicon semiconductor device with the P and N-layers sputtered from boron and phosphorous heavily doped targets

    DOEpatents

    Moustakas, Theodore D.; Maruska, H. Paul

    1985-04-02

    A silicon PIN microcrystalline/amorphous silicon semiconductor device is constructed by the sputtering of N, and P layers of silicon from silicon doped targets and the I layer from an undoped target, and at least one semi-transparent ohmic electrode.

  8. Electron beam directed energy device and methods of using same

    DOEpatents

    Retsky, Michael W.

    2007-10-16

    A method and apparatus is disclosed for an electron beam directed energy device. The device consists of an electron gun with one or more electron beams. The device includes one or more accelerating plates with holes aligned for beam passage. The plates may be flat or preferably shaped to direct each electron beam to exit the electron gun at a predetermined orientation. In one preferred application, the device is located in outer space with individual beams that are directed to focus at a distant target to be used to impact and destroy missiles. The aimings of the separate beams are designed to overcome Coulomb repulsion. A method is also presented for directing the beams to a target considering the variable terrestrial magnetic field. In another preferred application, the electron beam is directed into the ground to produce a subsurface x-ray source to locate and/or destroy buried or otherwise hidden objects including explosive devices.

  9. One method to uniformize LD Gaussian beam

    NASA Astrophysics Data System (ADS)

    Liu, Xu

    2001-10-01

    The uniformization of Gaussian beam intensity is necessary in many applications. In active night-vision, monitoring targets especially requires this. IR semiconductor laser is widely used in the area because of its low power-consumption and small size. But the effects of the product are restrained due to system output Gaussian beam of ununiform intensity. The essay discusses a former system design and then gives an improved experimental scheme with some exciting results. The previous structure was as follows. High power SQW-LD beam was coupled to a plastic optical fiber (POF) directly, and then output through a lens. With its angle varied, targets ranged from 60 to 100 meters can be monitored. But unfortunately there were interference speckles folded on the target. An experimental system based on the thoughts of fiber transmission and complex filter was designed to improve the distribution of Gaussian beam intensity, with the result that the relatively well-distributed beam was got. Laser wavefront propagated through a very small pinhole whose diameter was 20 micrometers or so. The pinhole acted as an amplitude filter. Then the beam was coupled directly into a multi-mode quartz fiber whose core/cladding layer diameter parameter was 50/125micrometers . It conveyed laser beam about 200 mm. At the end of the fiber, several phase plates stood. Laser beam transmitted through the fiber was then phase-filtered and at last beam-expanded by a lens to illuminate the target. The more plates you used, the more uniform the illuminated picture was on condition the beam intensity was so strong that the CCD device could respond to.

  10. Beam conditioning for FELs: Consequences and methods

    SciTech Connect

    Wolski, A.; Penn, G.; Sessler, A.; Wurtele, J.

    2004-06-29

    The consequences of beam conditioning in four example cases (VISA, a Soft X-Ray FEL, LCLS and a ''Greenfield'' FEL) are examined. It is shown that in emittance limited cases, proper conditioning reduces sensitivity to the transverse emittance and, furthermore, allows for stronger focusing in the undulator. Simulations show higher saturation power, with gain lengths reduced by a factor of two or more. The beam dynamics in a general conditioning system are studied, with ''matching conditions'' derived for achieving conditioning without growth in the effective emittance. Various conditioning lattices are considered, and expressions derived for the amount of conditioning provided in each case when the matching conditions are satisfied. These results show that there is no fundamental obstacle to producing beam conditioning, and that the problem can be reduced to one of proper lattice design. Nevertheless, beam conditioning will not be easy to implement in practice.

  11. Shielded beam delivery apparatus and method

    DOEpatents

    Hershcovitch, Ady; Montano, Rory Dominick

    2006-07-11

    An apparatus includes a plasma generator aligned with a beam generator for producing a plasma to shield an energized beam. An electrode is coaxially aligned with the plasma generator and followed in turn by a vortex generator coaxially aligned with the electrode. A target is spaced from the vortex generator inside a fluid environment. The electrode is electrically biased relative to the electrically grounded target for driving the plasma toward the target inside a vortex shield.

  12. Properties of nano structured Ag-TiO{sub 2} composite coating on stainless steel using RF sputtering method

    SciTech Connect

    Bakar, S. Abu; Jamuna-Thevi, K.; Abu, N.; Mohd Toff, M. R.

    2012-07-02

    RF Sputtering system is one of the Physical Vapour Deposition (PVD) methods that have been widely used to produce hard coating. This technique is used to deposit thin layers of metallic substrates such as stainless steel (SS). From this process, a good adhesiveness and wear resistance coating can be produced for biomedical applications. In this study, RF sputtering method was used to deposit TiO{sub 2}-Ag composite coatings via various deposition parameters. The parameters are RF power of 350W, gas composition (Ar: O{sub 2}) 50:5 and deposition time at 1, 2, 4 and 6 hours. Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD) and Raman spectroscopy were used to characterize surface area of coated samples. The formation of nanocrystalline thin film and the surface morphology were examined using SEM. The crystallite size of TiO{sub 2}-Ag composite coatings were estimated between 20-60 nm based on XRD analysis using Scherer equation and SEM evaluation. The Raman and XRD results suggested that the structure of the TiO{sub 2}-Ag consist of anatase and rutile phases. It also showed that the intensity of anatase peaks increased after samples undergone annealing process at 500 Degree-Sign C.

  13. Effects of boron dopants of Si (001) substrates on formation of Ge layers by sputter epitaxy method

    NASA Astrophysics Data System (ADS)

    Tsukamoto, Takahiro; Hirose, Nobumitsu; Kasamatsu, Akifumi; Mimura, Takashi; Matsui, Toshiaki; Suda, Yoshiyuki

    2013-10-01

    The formation of Ge layers on boron-doped Si (001) substrates by our sputter epitaxy method has been investigated. The surface morphology of Ge layers grown on Si substrates depends on the substrate resistance, and flat Ge layers are obtained on Si substrates with 0.015 Ω cm resistivity. Highly boron-doped Si substrates cause a transition in the dislocation structure from complex dislocations with 60° dislocation glide planes to 90° pure-edge dislocations, resulting in the formation of flat Ge layers. Furthermore, we have found that the surface morphology of the Ge layers improves with increasing Ge layer thickness. Ge atoms migrating on the deposited Ge layers tend to position themselves at the reactive sites, where the reactivity is related to the number of bonding contacts between the Ge atom and the surface. This modifies the surface morphology, resulting in a flatter surface. Boron dopants together with the sputter epitaxy method effectively suppress the growth of Ge islands and result in the formation of flat Ge layers.

  14. Effects of boron dopants of Si (001) substrates on formation of Ge layers by sputter epitaxy method

    SciTech Connect

    Tsukamoto, Takahiro; Suda, Yoshiyuki; Hirose, Nobumitsu; Kasamatsu, Akifumi; Mimura, Takashi; Matsui, Toshiaki

    2013-10-21

    The formation of Ge layers on boron-doped Si (001) substrates by our sputter epitaxy method has been investigated. The surface morphology of Ge layers grown on Si substrates depends on the substrate resistance, and flat Ge layers are obtained on Si substrates with 0.015 Ω cm resistivity. Highly boron-doped Si substrates cause a transition in the dislocation structure from complex dislocations with 60° dislocation glide planes to 90° pure-edge dislocations, resulting in the formation of flat Ge layers. Furthermore, we have found that the surface morphology of the Ge layers improves with increasing Ge layer thickness. Ge atoms migrating on the deposited Ge layers tend to position themselves at the reactive sites, where the reactivity is related to the number of bonding contacts between the Ge atom and the surface. This modifies the surface morphology, resulting in a flatter surface. Boron dopants together with the sputter epitaxy method effectively suppress the growth of Ge islands and result in the formation of flat Ge layers.

  15. Properties of nano structured Ag-TiO2 composite coating on stainless steel using RF sputtering method

    NASA Astrophysics Data System (ADS)

    Bakar, S. Abu; Jamuna-Thevi, K.; Abu, N.; Mohd Toff, M. R.

    2012-07-01

    RF Sputtering system is one of the Physical Vapour Deposition (PVD) methods that have been widely used to produce hard coating. This technique is used to deposit thin layers of metallic substrates such as stainless steel (SS). From this process, a good adhesiveness and wear resistance coating can be produced for biomedical applications. In this study, RF sputtering method was used to deposit TiO2-Ag composite coatings via various deposition parameters. The parameters are RF power of 350W, gas composition (Ar: O2) 50:5 and deposition time at 1, 2, 4 and 6 hours. Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD) and Raman spectroscopy were used to characterize surface area of coated samples. The formation of nanocrystalline thin film and the surface morphology were examined using SEM. The crystallite size of TiO2-Ag composite coatings were estimated between 20-60 nm based on XRD analysis using Scherer equation and SEM evaluation. The Raman and XRD results suggested that the structure of the TiO2-Ag consist of anatase and rutile phases. It also showed that the intensity of anatase peaks increased after samples undergone annealing process at 500 °C.

  16. Sputter target

    DOEpatents

    Gates, Willard G.; Hale, Gerald J.

    1980-01-01

    The disclosure relates to an improved sputter target for use in the deposition of hard coatings. An exemplary target is given wherein titanium diboride is brazed to a tantalum backing plate using a gold-palladium-nickel braze alloy.

  17. Work Function Modification of Tungsten-Doped Indium Oxides Deposited by the Co-Sputtering Method.

    PubMed

    Oh, Gyujin; Jeon, Jia; Lee, Kyoung Su; Kim, Eun Kyu

    2016-05-01

    We have studied the work function modification of tungsten-doped indium oxides (IWOs) through the co-sputtering of indium oxide (In2O3) and indium tungsten oxide (In2O3 80 wt% + WO3 20 wt%) via a radio frequency (RF) magnetron sputtering system. By controlling the elemental deposition of IWOs, the resultant work functions varied from 4.37 eV to 4.1 eV. The IWO thin films showed excellent properties for application as transparent conducting oxide materials in the region of 0 to 2.43 at.% of tungsten versus the total metal content. The carrier concentration of n-type IWO thin films varied from 8.39 x 10(19) cm(-3) to 8.58 x 10(21) cm(-3), while the resistivity varied from 3.15 x 10(-4) Ωcm to 2.26 x 10(-3) Ωcm. The largest measured optical band gap was 3.82 eV determined at 2.43 at.% of tungsten atoms relative to the total amount of metal atoms, while the smallest optical band gap was 3.6 eV at 4.78 at.% of tungsten. IWO films containing more than 2.43 at.% of tungsten atoms relative to the total number of metal atoms revealed an average transmittance of over 80% within the visible light region. PMID:27483882

  18. Setup for in situ X-ray diffraction studies of thin film growth by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Ellmer, K.; Mientus, R.; Weiß, V.; Rossner, H.

    2001-07-01

    A novel method is described for the in situ-investigation of nucleation and growth of thin films during magnetron sputtering. Energy dispersive X-ray diffraction with synchrotron light is used for the structural analysis during film growth. An in situ-magnetron sputtering chamber was constructed and installed at a synchrotron radiation beam line with a bending magnet. The white synchrotron light (1-70 keV) passes the sputtering chamber through Kapton windows and hits one of the substrates on a four-fold sample holder. The diffracted beam, observed under a fixed diffraction angle between 3° and 10°, is energy analyzed by a high purity Ge-detector. The in situ-EDXRD setup is demonstrated for the growth of tin-doped indium oxide (ITO) films prepared by reactive magnetron sputtering from a metallic target.

  19. Systems and methods of varying charged particle beam spot size

    SciTech Connect

    Chen, Yu-Jiuan

    2014-09-02

    Methods and devices enable shaping of a charged particle beam. A modified dielectric wall accelerator includes a high gradient lens section and a main section. The high gradient lens section can be dynamically adjusted to establish the desired electric fields to minimize undesirable transverse defocusing fields at the entrance to the dielectric wall accelerator. Once a baseline setting with desirable output beam characteristic is established, the output beam can be dynamically modified to vary the output beam characteristics. The output beam can be modified by slightly adjusting the electric fields established across different sections of the modified dielectric wall accelerator. Additional control over the shape of the output beam can be excreted by introducing intentional timing de-synchronization offsets and producing an injected beam that is not fully matched to the entrance of the modified dielectric accelerator.

  20. High power pulsed magnetron sputtering: A method to increase deposition rate

    SciTech Connect

    Raman, Priya McLain, Jake; Ruzic, David N; Shchelkanov, Ivan A.

    2015-05-15

    High power pulsed magnetron sputtering (HPPMS) is a state-of-the-art physical vapor deposition technique with several industrial applications. One of the main disadvantages of this process is its low deposition rate. In this work, the authors report a new magnetic field configuration, which produces deposition rates twice that of conventional magnetron's dipole magnetic field configuration. Three different magnet pack configurations are discussed in this paper, and an optimized magnet pack configuration for HPPMS that leads to a higher deposition rate and nearly full-face target erosion is presented. The discussed magnetic field produced by a specially designed magnet assembly is of the same size as the conventional magnet assembly and requires no external fields. Comparison of deposition rates with different power supplies and the electron trapping efficiency in complex magnetic field arrangements are discussed.

  1. Magnetron sputtered boron films

    DOEpatents

    Makowiecki, Daniel M.; Jankowski, Alan F.

    1998-01-01

    A method is described for the production of thin boron and titanium/boron films by magnetron sputter deposition. The amorphous boron films contain no morphological growth features, unlike those found when thin films are prepared by various physical vapor deposition processes. Magnetron sputter deposition method requires the use of a high density crystalline boron sputter target which is prepared by hot isostatic pressing. Thin boron films prepared by this method are useful for producing hardened surfaces, surfacing machine tools, etc. and for ultra-thin band pass filters as well as the low Z element in low Z/high Z optical components, such as mirrors which enhance reflectivity from grazing to normal incidence.

  2. Magnetron sputtered boron films

    DOEpatents

    Makowiecki, D.M.; Jankowski, A.F.

    1998-06-16

    A method is described for the production of thin boron and titanium/boron films by magnetron sputter deposition. The amorphous boron films contain no morphological growth features, unlike those found when thin films are prepared by various physical vapor deposition processes. Magnetron sputter deposition method requires the use of a high density crystalline boron sputter target which is prepared by hot isostatic pressing. Thin boron films prepared by this method are useful for producing hardened surfaces, surfacing machine tools, etc. and for ultra-thin band pass filters as well as the low Z element in low Z/high Z optical components, such as mirrors which enhance reflectivity from grazing to normal incidence. 8 figs.

  3. Beam Conditioning for FELs: Consequences and Methods

    SciTech Connect

    Wolski, Andrzej; Penn, Gregory; Sessler, Andrew; Wurtele, Jonathan

    2003-10-09

    The consequences of beam conditioning in four example cases (VISA, a Soft X-Ray FEL, LCLS and a ''Greenfield'' FEL) are examined. It is shown that in emittance limited cases, proper conditioning reduces sensitivity to the transverse emittance, and allows stronger focusing in the undulator. Simulations show higher saturation power, with gain lengths reduced up to a factor of two. The beam dynamics in a general conditioning system are studied, with ''matching conditions'' derived for achieving conditioning without growth in effective emittance. Various conditioners are considered, and expressions derived for the amount of conditioning provided in each case when the matching conditions are satisfied. We discuss the prospects for conditioners based on laser and plasma systems.

  4. Stress relaxation in dual ion beam sputtered Nb2O5 and SiO2 thin films: application in a Fabry-Pérot filter array with 3D nanoimprinted cavities

    NASA Astrophysics Data System (ADS)

    Ullah, Anayat; Wilke, Hans; Memon, Imran; Shen, Yannan; Nguyen, Duc Toan; Woidt, Carsten; Hillmer, Hartmut

    2015-05-01

    Miniaturized spectrometers can be implemented using Fabry-Pérot (FP) filter arrays. Such filters are defined by two parallel mirrors with a resonance cavity in between. For high optical quality, ion beam sputtered distributed Bragg reflectors (DBRs), with alternating high and low refractive index material pairs, can be used as the FP mirrors; while 3D nanoimprint technology provides an efficient way of implementing multiple organic FP cavities of different heights in a single step. However, the high residual stress in ion beam sputtered films results in poor adhesion between the DBR films and the organic polymer cavities, causing debonding of the DBR. Therefore, the residual stress of the ion beam sputtered films forming the DBRs must be reduced. Niobium pentoxide (Nb2O5) and silicon dioxide (SiO2) are used as the DBR materials in this work due to their high index contrast, resulting in high reflectivity for only a few alternating pairs. Stress relaxation in ion beam sputtered Nb2O5 and SiO2 films is achieved in this work by deposition under simultaneous high energy ion bombardment (oxygen and argon gas mixture) from a second ion source. Using this technique, the film density and hence compressive film stress for both Nb2O5 and SiO2 films is reduced without introducing any additional optical absorption in the films. FP filter arrays fabricated with stress reduced Nb2O5 and SiO2 as DBR films exhibit high optical and mechanical performance, with good adhesion between the films and the polymer cavity.

  5. The effect of substrate bias voltages on impact resistance of CrAlN coatings deposited by modified ion beam enhanced magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Chunyan, Yu; Linhai, Tian; Yinghui, Wei; Shebin, Wang; Tianbao, Li; Bingshe, Xu

    2009-01-01

    CrAlN coatings were deposited on silicon and AISI H13 steel substrates using a modified ion beam enhanced magnetron sputtering system. The effect of substrate negative bias voltages on the impact property of the CrAlN coatings was studied. The X-ray diffraction (XRD) data show that all CrAlN coatings were crystallized in the cubic NaCl B1 structure, with the (1 1 1), (2 0 0) (2 2 0) and (2 2 2) diffraction peaks observed. Two-dimensional surface morphologies of CrAlN coatings were investigated by atomic force microscope (AFM). The results show that with increasing substrate bias voltage the coatings became more compact and denser, and the microhardness and fracture toughness of the coatings increased correspondingly. In the dynamic impact resistance tests, the CrAlN coatings displayed better impact resistance with the increase of bias voltage, due to the reduced emergence and propagation of the cracks in coatings with a very dense structure and the increase of hardness and fracture toughness in coatings.

  6. Atom penetration from a thin film into the substrate during sputtering by polyenergetic Ar{sup +} ion beam with mean energy of 9.4 keV

    SciTech Connect

    Kalin, B.A.; Gladkov, V.P.; Volkov, N.V.; Sabo, S.E.

    1995-12-31

    Penetration of alien atoms (Be, Ni) into Be, Al, Zr, Si and diamond was investigated under Ar{sup +} ion bombardment of samples having thermally evaporated films of 30--50 nm. Sputtering was carried out using a wide energy spectrum beam of Ar{sup +} ions of 9.4 keV to dose D = 1 {times} 10{sup 16}--10{sup 19} ion/cm{sup 2}. Implanted atom distribution in the targets was measured by Rutherford backscattering spectrometry (RBS) of H{sup +} and He{sup +} ions with energy of 1.6 MeV as well as secondary ion mass-spectrometry (SIMS). During the bombardment, the penetration depth of Ar atoms increases with dose linearly. This depth is more than 3--20 times deeper than the projected range of bombarding ions and recoil atoms. This is a deep action effect. The analysis shows that the experimental data for foreign atoms penetration depth are similar to the data calculated for atom migration through the interstitial site in a field of internal (lateral) compressive stresses created in the near-surface layer of the substrate as a result of implantation. Under these experimental conditions atom ratio r{sub i}/r{sub m} (r{sub i} -- radius of dopant, r{sub m} -- radius target of substrate) can play a principal determining role.

  7. Cupric and cuprous oxide by reactive ion beam sputter deposition and the photosensing properties of cupric oxide metal-semiconductor-metal Schottky photodiodes

    NASA Astrophysics Data System (ADS)

    Hong, Min-Jyun; Lin, Yong-Chen; Chao, Liang-Chiun; Lin, Pao-Hung; Huang, Bohr-Ran

    2015-08-01

    Cupric (CuO) and cuprous (Cu2O) oxide thin films have been deposited by reactive ion beam sputter deposition at 400 °C with an Ar:O2 ratio from 2:1 to 12:1. With an Ar:O2 ratio of 2:1, single phase polycrystalline CuO thin films were obtained. Decreasing oxygen flow rate results in CuO + Cu2O and Cu2O + Cu mixed thin films. As Ar:O2 ratio reaches 12:1, Cu2O nanorods with diameter of 250 nm and length longer than 1 μm were found across the sample. Single phase CuO thin film exhibits an indirect band gap of 1.3 eV with a smooth surface morphology. CuO metal-semiconductor-metal (MSM) Schottky photodiodes (PD) were fabricated by depositing Cu interdigitated electrodes on CuO thin films. Photosensing properties of the CuO PD were characterized from 350 to 1300 nm and a maximum responsivity of 43 mA/W was found at λ = 700 nm. The MSM PD is RC limited with a decay time constant less than 1 μs.

  8. A photoluminescence comparison of CdTe thin films grown by molecular-beam epitaxy, metalorganic chemical vapor deposition, and sputtering in ultrahigh vacuum

    NASA Astrophysics Data System (ADS)

    Feng, Z. C.; Bevan, M. J.; Krishnaswamy, S. V.; Choyke, W. J.

    1988-09-01

    High perfection CdTe thin films have been grown on (001) InSb and CdTe substrates by molecular-beam epitaxy, metalorganic chemical vapor deposition (MOCVD), and sputtering in ultrahigh vacuum techniques. The quality of the as-grown CdTe films are characterized by 2-K photoluminescence. The spectra show strong and sharp exciton transitions and weak 1.40-1.50-eV defect-related bands. Radiative defect densities of lower than 0.002 are realized. High-resolution spectroscopy shows that the full width at half maximum of the principal bound exciton lines is about 0.1 meV. Such small ρ values and narrow photoluminescence lines have not been previously reported. The largest luminescence efficiency is observed for MOCVD-CdTe films grown on CdTe substrates. A variety of impurities appear to be responsible for the observed radiative transitions in these three kinds of CdTe films. We attempt to assign the observed impurity related lines by a comparison with ``known'' impurities in bulk CdTe spectra given in the literature.

  9. Effect of discharge current and deposition temperature on roughness and density of NbC films fabricated by ion beam sputtering technique

    SciTech Connect

    Dhawan, Rajnish Rai, Sanjay Lodha, G. S.

    2014-04-24

    NbC films were prepared using Ion beam sputtering system at various discharges current from 0.4 amps to 1.2 amps at room temperature. Effect of temperature on NbC films were also studied by depositing NbC films at various temperatures from room temperature to 200,300,400 and 600°C. X-ray reflectivity (XRR) study shows that surface roughness of the film decreases with decrease in discharge current. The optimum lowest roughness 3.2Å having density 92% of bulk was achieved at discharge current 0.6 amps at 3.0 cm{sup 3}/min Ar gas flow. X-ray study also shows that film roughness decreases with increase in temperature of the film and after a certain temperature it increases with increase in temperature. The lowest surface roughness 2.1Å was achieved at 300°C with density 83% of bulk NbC at constant discharge current 0.6 amps.

  10. Ion Beam Analysis, structure and corrosion studies of nc-TiN/a-Si3N4 nanocomposite coatings deposited by sputtering on AISI 316L

    NASA Astrophysics Data System (ADS)

    García, J.; Canto, C. E.; Flores, M.; Andrade, E.; Rodríguez, E.; Jiménez, O.; Solis, C.; de Lucio, O. G.; Rocha, M. F.

    2014-07-01

    In this work, nanocomposite coatings of nc-TiN/a-Si3N4, were deposited on AISI 316L stainless steel substrate by a DC and RF reactive magnetron co-sputtering technique using an A-N2 plasma. The structure of the coatings was characterized by means of XRD (X-ray Diffraction). The substrate and coating corrosion resistance were evaluated by potentiodynamic polarization using a Ringer solution as electrolyte. Corrosion tests were conducted with the purpose to evaluate the potential of this coating to be used on biomedical alloys. IBA (Ion Beam Analysis) techniques were applied to measure the elemental composition profiles of the films and, XPS (X-ray Photoelectron Spectroscopy) were used as a complementary technique to obtain information about the compounds present in the films. The nanocomposite coatings of nc-TiN/a-Si3N4 show crystalline (TiN) and amorphous (Si3N4) phases which confer a better protection against the corrosion effects compared with that of the AISI 316L.

  11. Low temperature growth of Co{sub 2}MnSi films on diamond semiconductors by ion-beam assisted sputtering

    SciTech Connect

    Nishiwaki, M.; Ueda, K. Asano, H.

    2015-05-07

    High quality Schottky junctions using Co{sub 2}MnSi/diamond heterostructures were fabricated. Low temperature growth at ∼300–400 °C by using ion-beam assisted sputtering (IBAS) was necessary to obtain abrupt Co{sub 2}MnSi/diamond interfaces. Only the Co{sub 2}MnSi films formed at ∼300–400 °C showed both saturation magnetization comparable to the bulk values and large negative anisotropic magnetoresistance, which suggests half-metallic nature of the Co{sub 2}MnSi films, of ∼0.3% at 10 K. Schottky junctions formed using the Co{sub 2}MnSi films showed clear rectification properties with rectification ratio of more than 10{sup 7} with Schottky barrier heights of ∼0.8 eV and ideality factors (n) of ∼1.2. These results indicate that Co{sub 2}MnSi films formed at ∼300–400 °C by IBAS are a promising spin source for spin injection into diamond semiconductors.

  12. Method of enhancing cyclotron beam intensity

    DOEpatents

    Hudson, Ed D.; Mallory, Merrit L.

    1977-01-01

    When an easily ionized support gas such as xenon is added to the cold cathode in sources of the Oak Ridge Isochronous Cyclotron, large beam enhancements are produced. For example, .sup.20 Ne.sup.7+ is increased from 0.05 enA to 27 enA, and .sup.16 O.sup.5+ intensities in excess of 35 e.mu.A have been extracted for periods up to 30 minutes. Approximately 0.15 cc/min of the easily ionized support gas is supplied to the ion source through a separate gas feed line and the primary gas flow is reduced by about 30%.

  13. Sputter metalization of Wolter type optical elements

    NASA Technical Reports Server (NTRS)

    Ledger, A. M.

    1977-01-01

    An analytical task showed that the coating thickness distribution for both internal and external optical elements coated using either electron beam or sputter sources can be made uniform and will not affect the surface figure of coated elements. Also, sputtered samples of nickel, molybdenum, iridium and ruthenium deposited onto both hot and cold substrates showed excellent adhesion.

  14. A method of calculating the ultimate strength of continuous beams

    NASA Technical Reports Server (NTRS)

    Newlin, J A; Trayer, George W

    1931-01-01

    The purpose of this study was to investigate the strength of continuous beams after the elastic limit has been passed. As a result, a method of calculation, which is applicable to maximum load conditions, has been developed. The method is simpler than the methods now in use and it applies properly to conditions where the present methods fail to apply.

  15. Sputter etching of hemispherical bearings

    NASA Technical Reports Server (NTRS)

    Schiesser, R. J.

    1972-01-01

    Technique was developed for fabricating three dimensional pumping grooves on gas bearings by sputter etching. Method eliminates problems such as groove nonuniformity, profile, and finish, which are associated with normal grooving methods.

  16. Fatigue Testing of Wing Beam by the Resonance Method

    NASA Technical Reports Server (NTRS)

    Bleakney, William M

    1938-01-01

    Preliminary fatigue tests on two aluminum-alloy wing-beam specimens subjected to reversed axial loading are described. The motion used consists in incorporating one or two reciprocating motors in a resonance system of which the specimen is the spring element. A description is given of the reciprocating motors, and of the method of assembling and adjusting the vibrating system. The results indicate that the method is well adapted to fatigue tests of not only uniform wing beams but also wing beams with asymmetrical local reinforcements.

  17. Accurate Method for Determining Adhesion of Cantilever Beams

    SciTech Connect

    Michalske, T.A.; de Boer, M.P.

    1999-01-08

    Using surface micromachined samples, we demonstrate the accurate measurement of cantilever beam adhesion by using test structures which are adhered over long attachment lengths. We show that this configuration has a deep energy well, such that a fracture equilibrium is easily reached. When compared to the commonly used method of determining the shortest attached beam, the present method is much less sensitive to variations in surface topography or to details of capillary drying.

  18. Accurate method for determining adhesion of cantilever beams

    SciTech Connect

    de Boer, M.P.; Michalske, T.A.

    1999-07-01

    Using surface micromachined samples, we demonstrate the accurate measurement of cantilever beam adhesion by using test structures which are adhered over long attachment lengths. We show that this configuration has a deep energy well, such that a fracture equilibrium is easily reached. When compared to the commonly used method of determining the shortest attached beam, the present method is much less sensitive to variations in surface topography or to details of capillary drying. {copyright} {ital 1999 American Institute of Physics.}

  19. Innovative real-time and non-destructive method of beam profile measurement under large beam current irradiation for BNCT

    NASA Astrophysics Data System (ADS)

    Takada, M.; Kamada, S.; Suda, M.; Fujii, R.; Nakamura, M.; Hoshi, M.; Sato, H.; Endo, S.; Hamano, T.; Arai, S.; Higashimata, A.

    2012-10-01

    We developed a real-time and non-destructive method of beam profile measurement on a target under large beam current irradiation, and without any complex radiation detectors or electrical circuits. We measured the beam profiles on a target by observing the target temperature using an infrared-radiation thermometer camera. The target temperatures were increased and decreased quickly by starting and stopping the beam irradiation within 1 s in response speed. Our method could trace beam movements rapidly. The beam size and position were calibrated by measuring O-ring heat on the target. Our method has the potential to measure beam profiles at beam current over 1 mA for proton and deuteron with the energy around 3 MeV and allows accelerator operators to adjust the beam location during beam irradiation experiments without decreasing the beam current.

  20. Evaluation of left ventricular assist device pump bladders cast from ion-sputtered polytetrafluorethylene mandrels

    NASA Technical Reports Server (NTRS)

    1982-01-01

    A highly thromboresistant blood contacting interface for use in implanatable blood pump is investigated. Biomaterials mechanics, dynamics, durability, surface morphology, and chemistry are among the critical consideration pertinent to the choice of an appropriate blood pump bladder material. The use of transfer cast biopolymers from ion beam textured surfaces is investigated to detect subtle variations in blood pump surface morphology using Biomer as the biomaterial of choice. The efficacy of ion beam sputtering as an acceptable method of fabricating textured blood interfaces is evaluated. Aortic grafts and left ventricular assist devices were implanted in claves; the blood interfaces were fabricated by transfer casting methods from ion beam textured polytetrafluorethylene mandrels. The mandrels were textured by superimposing a 15 micron screen mesh; ion sputtering conditions were 300 volts beam energy, 40 to 50 mA beam, and a mandrel to source distance of 25 microns.

  1. Laser spectroscopy of sputtered atoms

    SciTech Connect

    Gruen, D.M.; Pellin, M.J.; Young, C.E.; Calaway, W.F.

    1985-01-01

    The use of laser radiation to study the sputtering process is of relatively recent origin. Much has been learned from this work about the basic physics of the sputtering process itself through measurements of velocity and excited state distributions of sputtered atoms and the effects of adsorbates on substrate sputtering yields. Furthermore, the identification, characterization, and sensitive detection of sputtered atoms by laser spectroscopy has led to the development of in situ diagnostics for impurity fluxes in the plasma edge regions of tokamaks and of ultrasensitive methods (ppB Fe in Si) for surface analysis with ultralow (picocoulomb) ion fluences. The techniques involved in this work, laser fluorescence and multiphoton resonance ionization spectroscopy, will be described and illustrations given of results achieved up to now. 55 refs., 5 figs., 1 tab.

  2. New method of beam bunching in free-ion lasers

    SciTech Connect

    Bessonov, E.G.

    1995-12-31

    An effective ion beam bunching method is suggested. This method is based on a selective interaction of line spectrum laser light (e.g. axial mode structure light) with non-fully stripped ion beam cooled in a storage rings, arranging the ion beam in layers in radial direction of an energy-longitudinal coordinate plane and following rotation of the beam at the right angle after switching on the RF cavity or undulator grouper/buncher. Laser cooling of the ion beam can be used at this position after switching off the resonator to decrease the energy spread caused by accelerating field of the resonator. A relativistic multilayer ion mirror will be produced this way. Both monochromatic laser beams and intermediate monochromaticity and bandwidth light sources of spontaneous incoherent radiation can be used for production of hard and high power electromagnetic radiation by reflection from this mirror. The reflectivity of the mirror is rather high because of the cross-section of the backward Rayleigh scattering of photon light by non-fully stripped relativistic ions ({approximately}{lambda}{sup 2}) is much greater ({approximately} 10{divided_by}15 orders) then Thompson one ({approximately} r{sub e}{sup 2}). This position is valid even in the case of non-monochromatic laser light ({Delta}{omega}/{omega} {approximately} 10{sup -4}). Ion cooling both in longitudinal plane and three-dimensional radiation ion cooling had been proposed based on this observation. The using of these cooling techniques will permit to store high current and low emittance relativistic ion beams in storage rings. The bunched ion beam can be used in ordinary Free-Ion Lasers as well. After bunching the ion beam can be extracted from the storage ring in this case. Storage rings with zero momentum compaction function will permit to keep bunching of the ion beam for a long time.

  3. Direct comparative study on the energy level alignments in unoccupied/occupied states of organic semiconductor/electrode interface by constructing in-situ photoemission spectroscopy and Ar gas cluster ion beam sputtering integrated analysis system

    SciTech Connect

    Yun, Dong-Jin Chung, JaeGwan; Kim, Yongsu; Park, Sung-Hoon; Kim, Seong-Heon; Heo, Sung

    2014-10-21

    Through the installation of electron gun and photon detector, an in-situ photoemission and damage-free sputtering integrated analysis system is completely constructed. Therefore, this system enables to accurately characterize the energy level alignments including unoccupied/occupied molecular orbital (LUMO/HOMO) levels at interface region of organic semiconductor/electrode according to depth position. Based on Ultraviolet Photoemission Spectroscopy (UPS), Inverse Photoemission Spectroscopy (IPES), and reflective electron energy loss spectroscopy, the occupied/unoccupied state of in-situ deposited Tris[4-(carbazol-9-yl)phenyl]amine (TCTA) organic semiconductors on Au (E{sub LUMO}: 2.51 eV and E{sub HOMO}: 1.35 eV) and Ti (E{sub LUMO}: 2.19 eV and E{sub HOMO}: 1.69 eV) electrodes are investigated, and the variation of energy level alignments according to work function of electrode (Au: 4.81 eV and Ti: 4.19 eV) is clearly verified. Subsequently, under the same analysis condition, the unoccupied/occupied states at bulk region of TCTA/Au structures are characterized using different Ar gas cluster ion beam (Ar GCIB) and Ar ion sputtering processes, respectively. While the Ar ion sputtering process critically distorts both occupied and unoccupied states in UPS/IPES spectra, the Ar GCIB sputtering process does not give rise to damage on them. Therefore, we clearly confirm that the in-situ photoemission spectroscopy in combination with Ar GCIB sputtering allows of investigating accurate energy level alignments at bulk/interface region as well as surface region of organic semiconductor/electrode structure.

  4. p-type conduction from Sb-doped ZnO thin films grown by dual ion beam sputtering in the absence of oxygen ambient

    SciTech Connect

    Kumar Pandey, Sushil; Kumar Pandey, Saurabh; Awasthi, Vishnu; Kumar, Ashish; Mukherjee, Shaibal; Deshpande, Uday P.; Gupta, Mukul

    2013-10-28

    Sb-doped ZnO (SZO) thin films were deposited on c-plane sapphire substrates by dual ion beam sputtering deposition system in the absence of oxygen ambient. The electrical, structural, morphological, and elemental properties of SZO thin films were studied for films grown at different substrate temperatures ranging from 200 °C to 600 °C and then annealed in situ at 800 °C under vacuum (pressure ∼5 × 10{sup −8} mbar). Films grown for temperature range of 200–500 °C showed p-type conduction with hole concentration of 1.374 × 10{sup 16} to 5.538 × 10{sup 16} cm{sup −3}, resistivity of 66.733–12.758 Ω cm, and carrier mobility of 4.964–8.846 cm{sup 2} V{sup −1} s{sup −1} at room temperature. However, the film grown at 600 °C showed n-type behavior. Additionally, current-voltage (I–V) characteristic of p-ZnO/n-Si heterojunction showed a diode-like behavior, and that further confirmed the p-type conduction in ZnO by Sb doping. X-ray diffraction measurements showed that all SZO films had (002) preferred crystal orientation. X-ray photoelectron spectroscopy analysis confirmed the formation of Sb{sub Zn}–2V{sub Zn} complex caused acceptor-like behavior in SZO films.

  5. Epitaxial Bi3Fe5O12(001) films grown by pulsed laser deposition and reactive ion beam sputtering techniques

    NASA Astrophysics Data System (ADS)

    Adachi, N.; Denysenkov, V. P.; Khartsev, S. I.; Grishin, A. M.; Okuda, T.

    2000-09-01

    We report on processing and comparative characterization of epitaxial Bi3Fe5O12 (BIG) films grown onto Gd3(ScGa)5O12[GSGG,(001)] single crystal using pulsed laser deposition (PLD) and reactive ion beam sputtering (RIBS) techniques. A very high deposition rate of about 0.8 μm/h has been achieved in the PLD process. Comprehensive x-ray diffraction analyses reveal epitaxial quality both of the films: they are single phase, exclusively (001) oriented, the full width at half maximum of the rocking curve of (004) Bragg reflection is 0.06 deg for PLD and 0.05 deg for RIBS film, strongly in-plane textured with cube-on-cube film-to-substrate epitaxial relationship. Saturation magnetization 4πMs and Faraday rotation at 635 nm were found to be 1400 Gs and -7.8 deg/μm in PLD-BIG, and 1200 Gs and -6.9 deg/μm in RIBS-BIG. Ferromagnetic resonance (FMR) measurements performed at 9.25 GHz yielded the gyromagnetic ratio γ=1.797×107l/s Oe, 1.826×107 l/s Oe; the constants of uniaxial magnetic anisotropy were Ku*=-8.66×104erg/cm3, -8.60×104 erg/cm3; the cubic magnetic anisotropy K1=-2.7×103 erg/cm3,-3.8×103 erg/cm3; and the FMR linewidth ΔH=25 and 34 Oe for PLD and RIBS films correspondingly. High Faraday rotation, low microwave loss, and low coercive field ⩽40 Oe of BIG/GSGG(001) films promise their use in integrated magneto-optic applications.

  6. Effect of film thickness on the magneto-structural properties of ion beam sputtered transition metal–metalloid FeCoNbB/Si (100) alloy thin films

    NASA Astrophysics Data System (ADS)

    Gupta, Pooja; Tripathi, Yagyanidhi; Kumar, Dileep; Rai, S. K.; Gupta, Mukul; Reddy, V. R.; Svec, Peter

    2016-08-01

    The structure and magnetic properties of ion beam sputtered transition metal–metalloid FeCoNbB/Si(100) alloy thin film have been studied as a function of film thickness using complementary techniques of x-ray reflectivity (XRR), grazing incidence x-ray diffraction, and magneto optical Kerr effect. Thicknesses of the films range from ∼200 to 1500 Å. The coercivity of all the films ranges between 4 and 14 Oe, which suggests soft magnetic nature of FeCoNbB/Si thin films. Films with thickness up to 800 Å are amorphous in nature and are found to possess uniaxial magnetic anisotropy in the film plane, although no magnetic field was applied during deposition. The presence of the two fold symmetry in such amorphous thin films may be attributed to quenched-in stresses developed during deposition. Upon increasing the film thickness to ∼1200 Å and above, the structure of FeCoNbB films transforms from amorphous to partially nanocrystalline structure and has bcc-FeCo nanocrystalline phase dispersed in remaining amorphous matrix. The crystalline volume fraction (cvf) of the films is found to be proportional to the film thickness. Azimuthal angle dependence of remanence confirms the presence of in-plane four-fold anisotropy (FFA) in the crystalline film with cvf ∼75%. Synchrotron x-ray diffraction measurement using area detector suggests random orientation of crystallites and thus clearly establishes that FFA is not related to texture/cubic symmetry in such polycrystalline thin films. As supported by asymmetric Bragg diffraction measurements, the origin of FFA in such partially crystalline thin film is ascribed to the additional compressive stresses developed in the film upon crystallization. Results indicate that promising soft magnetic properties in such films can be optimized by controlling the film thickness. The revelation of controllable and tunable anisotropy suggests that FeCoNbB thin films can have potential application in electromagnetic applications.

  7. Fabrication of highly (110)-oriented BaCeO3-based proton-conductive oxide thin films by RF magnetron sputtering method

    NASA Astrophysics Data System (ADS)

    Sato, Tomoya; Inoue, Takaaki; Ichinose, Daichi; Funakubo, Hiroshi; Uchiyama, Kiyoshi

    2016-02-01

    A proton-conductive BaCe0.9Y0.1O3-δ (BCYO) thin-film, one of the candidates for the electrolyte of intermediate-temperature solid oxide fuel cells (IT-SOFCs), was deposited on (111)Pt/TiO2/SiO2/(100)Si substrate by the RF magnetron sputtering method. The sputtering conditions, i.e., deposition temperature, pressure, and sputtering gases, were examined to improve the crystallinity of the films. The BCYO films deposited at more than 500 °C were well crystallized and showed only 110 diffraction. The addition of O2 into the sputtering gas causes adverse results of lower crystallinity and lower deposition rates. A wide-range XRD reciprocal space mapping also revealed that the (110)-oriented BCYO films can be obtained on (111)Pt/TiO2/SiO2/(100)Si substrates without the need to use any buffer layers. We consider that this BCYO film possibly shows high proton conductivity and may be a suitable material for the SOFC electrolyte because of its high crystallinity.

  8. Gaussian beam profile shaping apparatus, method therefore and evaluation thereof

    DOEpatents

    Dickey, F.M.; Holswade, S.C.; Romero, L.A.

    1999-01-26

    A method and apparatus maps a Gaussian beam into a beam with a uniform irradiance profile by exploiting the Fourier transform properties of lenses. A phase element imparts a design phase onto an input beam and the output optical field from a lens is then the Fourier transform of the input beam and the phase function from the phase element. The phase element is selected in accordance with a dimensionless parameter which is dependent upon the radius of the incoming beam, the desired spot shape, the focal length of the lens and the wavelength of the input beam. This dimensionless parameter can also be used to evaluate the quality of a system. In order to control the radius of the incoming beam, optics such as a telescope can be employed. The size of the target spot and the focal length can be altered by exchanging the transform lens, but the dimensionless parameter will remain the same. The quality of the system, and hence the value of the dimensionless parameter, can be altered by exchanging the phase element. The dimensionless parameter provides design guidance, system evaluation, and indication as to how to improve a given system. 27 figs.

  9. Gaussian beam profile shaping apparatus, method therefor and evaluation thereof

    DOEpatents

    Dickey, Fred M.; Holswade, Scott C.; Romero, Louis A.

    1999-01-01

    A method and apparatus maps a Gaussian beam into a beam with a uniform irradiance profile by exploiting the Fourier transform properties of lenses. A phase element imparts a design phase onto an input beam and the output optical field from a lens is then the Fourier transform of the input beam and the phase function from the phase element. The phase element is selected in accordance with a dimensionless parameter which is dependent upon the radius of the incoming beam, the desired spot shape, the focal length of the lens and the wavelength of the input beam. This dimensionless parameter can also be used to evaluate the quality of a system. In order to control the radius of the incoming beam, optics such as a telescope can be employed. The size of the target spot and the focal length can be altered by exchanging the transform lens, but the dimensionless parameter will remain the same. The quality of the system, and hence the value of the dimensionless parameter, can be altered by exchanging the phase element. The dimensionless parameter provides design guidance, system evaluation, and indication as to how to improve a given system.

  10. Microstructure and Optical Properties of AgxO Prepared by Direct-Current Magnetron-Sputtering Method

    NASA Astrophysics Data System (ADS)

    Gao, Xiao-Yong; Liu, Xu-Wei; Wang, Song-You; Liu, Yu-Fen; Lin, Qing-Geng; Lu, Jing-Xiao

    2008-04-01

    Two series of AgxO films are prepared on glass substrates by dc magnetron-sputtering method at room tempera- ture and 90°C under different oxygen to argon gas ratio (OAR) conditions. The microstructure is investigated by XRD and SEM in order to obtain the information on the component evolution of AgO+Ag2O to Ag2O. Its optical properties are investigated by reflectance and absorption spectroscopy to extract the information on metallic and dielectric behaviour evolution of Ag2O, AgO and silver particles and the interband transition. The results indicate that the AgxO film prepared at room temperature is mainly made up of AgO and Ag2O clusters while Ag2O is the primary component of AgxO prepared at 90°C. The AgxO film mainly consisting of the primary component shows indirect interband transition structure occurring at 2.89 eV. Combination of increasing OAR and substrate temperature is an effective method to lower the threshold of thermal decomposition temperature of AgxO and to deal with the bottleneck of short-wavelength optical and magneto-optical storage.

  11. Method of deposition by molecular beam epitaxy

    DOEpatents

    Chalmers, S.A.; Killeen, K.P.; Lear, K.L.

    1995-01-10

    A method is described for reproducibly controlling layer thickness and varying layer composition in an MBE deposition process. In particular, the present invention includes epitaxially depositing a plurality of layers of material on a substrate with a plurality of growth cycles whereby the average of the instantaneous growth rates for each growth cycle and from one growth cycle to the next remains substantially constant as a function of time. 9 figures.

  12. Method of deposition by molecular beam epitaxy

    DOEpatents

    Chalmers, Scott A.; Killeen, Kevin P.; Lear, Kevin L.

    1995-01-01

    A method is described for reproducibly controlling layer thickness and varying layer composition in an MBE deposition process. In particular, the present invention includes epitaxially depositing a plurality of layers of material on a substrate with a plurality of growth cycles whereby the average of the instantaneous growth rates for each growth cycle and from one growth cycle to the next remains substantially constant as a function of time.

  13. Method for separating FEL output beams from long wavelength radiation

    DOEpatents

    Neil, George; Shinn, Michelle D.; Gubeli, Joseph

    2016-04-26

    A method for improving the output beam quality of a free electron laser (FEL) by reducing the amount of emission at wavelengths longer than the electron pulse length and reducing the amount of edge radiation. A mirror constructed of thermally conductive material and having an aperture therein is placed at an oblique angle with respect to the beam downstream of the bending magnet but before any sensitive use of the FEL beam. The aperture in the mirror is sized to deflect emission longer than the wavelength of the FEL output while having a minor impact on the FEL output beam. A properly sized aperture will enable the FEL radiation, which is coherent and generally at a much shorter wavelength than the bending radiations, to pass through the aperture mirror. The much higher divergence bending radiations will subsequently strike the aperture mirror and be reflected safely out of the way.

  14. A new method for generating a hollow Gaussian beam

    NASA Astrophysics Data System (ADS)

    Wei, Cun; Lu, Xingyuan; Wu, Gaofeng; Wang, Fei; Cai, Yangjian

    2014-04-01

    Hollow Gaussian beam (HGB) was introduced 10 years ago (Cai et al. in Opt Lett 28:1084, 2003). In this paper, we introduce a new method for generating a HGB through transforming a Laguerre-Gaussian beam with radial index 0 and azimuthal index l into a HGB with mode n = l/2. Furthermore, we report experimental generation of a HGB based on the proposed method, and we carry out experimental study of the focusing properties of the generated HGB. Our experimental results agree well with the theoretical predictions.

  15. Method to improve optical parametric oscillator beam quality

    DOEpatents

    Smith, Arlee V.; Alford, William J.; Bowers, Mark S.

    2003-11-11

    A method to improving optical parametric oscillator (OPO) beam quality having an optical pump, which generates a pump beam at a pump frequency greater than a desired signal frequency, a nonlinear optical medium oriented so that a signal wave at the desired signal frequency and a corresponding idler wave are produced when the pump beam (wave) propagates through the nonlinear optical medium, resulting in beam walk off of the signal and idler waves, and an optical cavity which directs the signal wave to repeatedly pass through the nonlinear optical medium, said optical cavity comprising an equivalently even number of non-planar mirrors that produce image rotation on each pass through the nonlinear optical medium. Utilizing beam walk off where the signal wave and said idler wave have nonparallel Poynting vectors in the nonlinear medium and image rotation, a correlation zone of distance equal to approximately .rho.L.sub.crystal is created which, through multiple passes through the nonlinear medium, improves the beam quality of the OPO output.

  16. Thickness Effects of TiC Interlayer on Tribological Properties of Diamond-Like Carbon Prepared by Unbalanced Magnetron Sputtering Method.

    PubMed

    Park, Chulmin; Lee, Jaehyeong; Park, Yong Seob

    2015-11-01

    We investigated the tribological properties of diamond-like carbon (DLC) films prepared with TiC interlayer of various thicknesses as the adhesive layer. DLC and TiC thin films were prepared using unbalanced magnetron (UBM) sputtering method using graphite and titanium as targets. TiC films as the interlayer were deposited under DLC films and various physical, tribological, and structural properties of the films fabricated with various TiC interlayer thicknesses were investigated. With various TiC interlayer thicknesses under DLC films, the tribological properties of films were improved with increasing thickness and the DLC/TiC layer fabricated by unbalanced magnetron sputtering method are exhibited maximum high hardness over 27 GPa and high elastic modulus over 242 GPa, and a smooth surface below 0.09 nm. PMID:26726633

  17. Shallow gas cloud illumination analysis by the focal beam method

    NASA Astrophysics Data System (ADS)

    Latiff, Abdul Halim Abdul

    2016-02-01

    This research will address the illumination issue of seismic data below a shallow gas cloud, also known as shallow gas accumulation. In general, poor and distorted seismic data underneath gas zones depend on four major factors; namely the velocity of the gas zones, the depth of the target reflector, the location of the source and the receiver during seismic acquisition, and the frequency of the seismic signals. These factors will be scrutinized in detail by using the focal beam method. The focal beam method incorporates the double focusing concept in order to obtain two important attributes for illumination analysis: (i) Resolution function beam, (ii) amplitude versus ray parameter (AVP) imprint, which is obtained by transforming the modelled data into the radon domain. Both illumination attributes are then applied to a gas-affected field in the Malaysia Basin. The results show well-defined illumination beneath the shallow anomalies and provide a better representation of the subsurface.

  18. Ion-beam technologies

    SciTech Connect

    Fenske, G.R.

    1993-01-01

    This compilation of figures and diagrams reviews processes for depositing diamond/diamond-like carbon films. Processes addressed are chemical vapor deposition (HFCVD, PACVD, etc.), plasma vapor deposition (plasma sputtering, ion beam sputtering, evaporation, etc.), low-energy ion implantation, and hybrid processes (biased sputtering, IBAD, biased HFCVD, etc.). The tribological performance of coatings produced by different means is discussed.

  19. Method and apparatus to monitor a beam of ionizing radiation

    SciTech Connect

    Blackburn, Brandon W.; Chichester, David L.; Watson, Scott M.; Johnson, James T.; Kinlaw, Mathew T.

    2015-06-02

    Methods and apparatus to capture images of fluorescence generated by ionizing radiation and determine a position of a beam of ionizing radiation generating the fluorescence from the captured images. In one embodiment, the fluorescence is the result of ionization and recombination of nitrogen in air.

  20. A METHOD TO CONTROL MULTIPASS BEAM BREAKUP IN RECIRCULATING LINACS

    SciTech Connect

    Byung Yunn

    2003-05-01

    We investigate a method to control the multipass dipole beam breakup instability in a recirculating linac including energy recovery. Effectiveness of an external feedback system for such a goal is shown clearly in a simplified model. We also verify the theoretical result with a simulation study.

  1. Composition of sputtered material from CuNi alloy during Xe + ion sputtering at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Sekine, Shigeyuki; Shimizu, Hazime; Ichimura, Singo

    1995-04-01

    Polycrystalline CuNi alloys were sputtered by 3 kV Xe + ions at elevated temperatures to analyze the ion-beam-induced diffusion. The time evolution of the composition of the sputtered materials from the start of the sputtering was measured by TOF-SNMS (time-of-flight sputtered neutral mass spectrometry). During removal of the Gibbsian segregation layer of copper, the sputtered flux consisted of almost only copper atoms. Then, the copper content gradually decreased due to the formation of a sputter-induced copper-depleted surface layer, and reached an almost steady state with still higher copper content than the bulk composition. From the temperature dependence of the composition at the quasi-steady state the activation energy of copper transportation through a high diffusivity path was derived to be 54 kJ mol -1 (0.56 eV). The high diffusivity path was assigned to copper diffusion through grain boundaries.

  2. High-mobility ZrInO thin-film transistor prepared by an all-DC-sputtering method at room temperature

    PubMed Central

    Xiao, Peng; Dong, Ting; Lan, Linfeng; Lin, Zhenguo; Song, Wei; Luo, Dongxiang; Xu, Miao; Peng, Junbiao

    2016-01-01

    Thin-film transistors (TFTs) with zirconium-doped indium oxide (ZrInO) semiconductor were successfully fabricated by an all-DC-sputtering method at room temperature. The ZrInO TFT without any intentionally annealing steps exhibited a high saturation mobility of 25.1 cm2V−1s−1. The threshold voltage shift was only 0.35 V for the ZrInO TFT under positive gate bias stress for 1 hour. Detailed studies showed that the room-temperature ZrInO thin film was in the amorphous state with low carrier density because of the strong bonding strength of Zr-O. The room-temperature process is attractive for its compatibility with almost all kinds of the flexible substrates, and the DC sputtering process is good for the production efficiency improvement and the fabrication cost reduction. PMID:27118177

  3. High-mobility ZrInO thin-film transistor prepared by an all-DC-sputtering method at room temperature.

    PubMed

    Xiao, Peng; Dong, Ting; Lan, Linfeng; Lin, Zhenguo; Song, Wei; Luo, Dongxiang; Xu, Miao; Peng, Junbiao

    2016-01-01

    Thin-film transistors (TFTs) with zirconium-doped indium oxide (ZrInO) semiconductor were successfully fabricated by an all-DC-sputtering method at room temperature. The ZrInO TFT without any intentionally annealing steps exhibited a high saturation mobility of 25.1 cm(2)V(-1)s(-1). The threshold voltage shift was only 0.35 V for the ZrInO TFT under positive gate bias stress for 1 hour. Detailed studies showed that the room-temperature ZrInO thin film was in the amorphous state with low carrier density because of the strong bonding strength of Zr-O. The room-temperature process is attractive for its compatibility with almost all kinds of the flexible substrates, and the DC sputtering process is good for the production efficiency improvement and the fabrication cost reduction. PMID:27118177

  4. High rate deposition of photocatalytic TiO{sub 2} films with high activity by hollow cathode gas-flow sputtering method

    SciTech Connect

    Kubo, Yoshiyuki; Iwabuchi, Yoshinori; Yoshikawa, Masato; Sato, Yasushi; Shigesato, Yuzo

    2008-07-15

    Photocatalytic TiO{sub 2} films were deposited by a hollow cathode gas-flow sputtering method using two Ti metal targets mounted parallel to each other. The Ar and O{sub 2} flow rates were 3000 and 0-50 SCCM (SCCM denotes cubic centimeter per minute at STP), respectively, and total gas pressure during the deposition was maintained at 45 Pa. The highest deposition rate for the photocatalytic TiO{sub 2} films was 162 nm/min at 30 SCCM of O{sub 2} flow. The as-deposited films and postannealed films, annealed in air at 300 deg. C for 1 h, were used to carry out photocatalytic decomposition of acetaldehyde (CH{sub 3}CHO). In particular, the postannealed films showed extremely high photocatalytic activity compared to the photocatalytic activity of films deposited by conventional reactive sputtering.

  5. High-mobility ZrInO thin-film transistor prepared by an all-DC-sputtering method at room temperature

    NASA Astrophysics Data System (ADS)

    Xiao, Peng; Dong, Ting; Lan, Linfeng; Lin, Zhenguo; Song, Wei; Luo, Dongxiang; Xu, Miao; Peng, Junbiao

    2016-04-01

    Thin-film transistors (TFTs) with zirconium-doped indium oxide (ZrInO) semiconductor were successfully fabricated by an all-DC-sputtering method at room temperature. The ZrInO TFT without any intentionally annealing steps exhibited a high saturation mobility of 25.1 cm2V‑1s‑1. The threshold voltage shift was only 0.35 V for the ZrInO TFT under positive gate bias stress for 1 hour. Detailed studies showed that the room-temperature ZrInO thin film was in the amorphous state with low carrier density because of the strong bonding strength of Zr-O. The room-temperature process is attractive for its compatibility with almost all kinds of the flexible substrates, and the DC sputtering process is good for the production efficiency improvement and the fabrication cost reduction.

  6. A method for generating double-ring-shaped vector beams

    NASA Astrophysics Data System (ADS)

    Huan, Chen; Xiao-Hui, Ling; Zhi-Hong, Chen; Qian-Guang, Li; Hao, Lv; Hua-Qing, Yu; Xu-Nong, Yi

    2016-07-01

    We propose a method for generating double-ring-shaped vector beams. A step phase introduced by a spatial light modulator (SLM) first makes the incident laser beam have a nodal cycle. This phase is dynamic in nature because it depends on the optical length. Then a Pancharatnam–Berry phase (PBP) optical element is used to manipulate the local polarization of the optical field by modulating the geometric phase. The experimental results show that this scheme can effectively create double-ring-shaped vector beams. It provides much greater flexibility to manipulate the phase and polarization by simultaneously modulating the dynamic and the geometric phases. Project supported by the National Natural Science Foundation of China (Grant No. 11547017), the Hubei Engineering University Research Foundation, China (Grant No. z2014001), and the Natural Science Foundation of Hubei Province, China (Grant No. 2014CFB578).

  7. Cardiac rate detection method based on the beam splitter prism

    NASA Astrophysics Data System (ADS)

    Yang, Lei; Liu, Xiaohua; Liu, Ming; Zhao, Yuejin; Dong, Liquan; Zhao, Ruirui; Jin, Xiaoli; Zhao, Jingsheng

    2013-09-01

    A new cardiac rate measurement method is proposed. Through the beam splitter prism, the common-path optical system of transmitting and receiving signals is achieved. By the focusing effect of the lens, the small amplitude motion artifact is inhibited and the signal-to-noise is improved. The cardiac rate is obtained based on the PhotoPlethysmoGraphy (PPG). We use LED as the light source and use photoelectric diode as the receiving tube. The LED and the photoelectric diode are on the different sides of the beam splitter prism and they form the optical system. The signal processing and display unit is composed by the signal processing circuit, data acquisition device and computer. The light emitted by the modulated LED is collimated by the lens and irradiates the measurement target through the beam splitter prism. The light reflected by the target is focused on the receiving tube through the beam splitter prism and another lens. The signal received by the photoelectric diode is processed by the analog circuit and obtained by the data acquisition device. Through the filtering and Fast Fourier Transform, the cardiac rate is achieved. We get the real time cardiac rate by the moving average method. We experiment with 30 volunteers, containing different genders and different ages. We compare the signals captured by this method to a conventional PPG signal captured concurrently from a finger. The results of the experiments are all relatively agreeable and the biggest deviation value is about 2bmp.

  8. Simplex method in problems of light-beam phase control.

    PubMed

    Chesnokov, S S; Davletshina, I V

    1995-12-20

    The possibility of the application of the simplex method to problems of wave-front control for light beams propagating in a nonlinear medium is investigated. A numerical analysis of simplex-method effectiveness in comparison with the gradient procedure of hill climbing is carried out. The regimes of stationary and nonstationary wind refraction are considered. The simplest optimization of the simplex size and the control basis is done. PMID:21068958

  9. Sputtering and ion plating

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The proceedings of a conference on sputtering and ion plating are presented. Subjects discussed are: (1) concepts and applications of ion plating, (2) sputtering for deposition of solid film lubricants, (3) commercial ion plating equipment, (4) industrial potential for ion plating and sputtering, and (5) fundamentals of RF and DC sputtering.

  10. The effect of Si content on structure and mechanical features of silicon-containing calcium-phosphate-based films deposited by RF-magnetron sputtering on titanium substrate treated by pulsed electron beam

    NASA Astrophysics Data System (ADS)

    Surmeneva, M.; Tyurin, A.; Mukhametkaliyev, T.; Teresov, A.; Koval, A.; Pirozhkova, T.; Shuvarin, I.; Chudinova, E.; Surmenev, R.

    2015-11-01

    Silicon-containing calcium phosphate (Si-CaP) coatings were fabricated by radio frequency (rf) magnetron sputtering using the targets prepared from hydroxyapatite (HA) powder with different silicon content. A powder of Si-HA (Ca10(PO4)6-x(SiO4)x(OH)2-x, x=0.5 and 1.72) was prepared by mechanochemical activation and then used as a precursor-powder to prepare a target for sputtering. The titanium substrate was acid etched and treated with pulsed electron beam with an energy density of 15 J/cm2. The average crystallite size as determined by XRD was 28 nm for the coatings obtained using the target prepared from the Si-HA powder (x=0.5), whereas Si-CaP (Si-HA powder x=1.72) films showed an amorphous structure. The nanohardness and the Young's modulus of the Si-CaP coating (x=0.5) deposited on titanium treated by pulsed electron beam are enhanced to 4.5 and 113 GPa compared to titanium substrate. Increase of Si content resulted in a dramatic decrease of the nanohardness and Young's modulus of Si-CaP films. However, Si-CaP coatings with the highest Si content revealed significantly lower values of elastic modulus, but slightly higher values of H/E and H3/E2 than did the non-coated specimens. Rf-magnetron sputtering allowed us to produce Si- CaP coatings with higher nanohardness and lower elastic modulus compared to titanium substrate.

  11. Physical and Optical Properties of SnO2/ZnO Film Prepared by an RF Magnetron Sputtering Method.

    PubMed

    Park, Jooyoung; Lee, Ikjae; Kim, Jaeyong

    2016-03-01

    Al-, Ga-, and In-doped ZnO thin films are widely used in many technical applications, such as in solar cells and on transparent conducting oxides having high optical transmission and low resistivity values. We prepared SnO2-doped ZnO thin films on quartz substrates by using an RF magnetron sputtering method at a substrate temperature of 350 degrees C. The ratio of SnO2 to ZnO was varied from 0 to 5:5 to investigate the effects of Sn on structure and physical properties of ZnO film. The samples were synthesized at a base pressure of 1.3 x 10(-4) Pa with a working pressure of 1.3 Pa and an RF power of 40 W under Ar atmosphere. The results of X-ray diffraction data revealed that pure ZnO films exhibit a strong (002) orientation and a polycrystalline wurzite hexagonal structure. However, as increasing the SnO2 concentration, ZnO transforms to an amorphous phase. The results of the Hall-effect-measurement system revealed that the resistivity values of the films increased as increasing the doping level of SnO2. The AFM data of morphology and microstructure showed that the grain size decreased with increasing SnO2 contents while the total area of grain the boundary increased. The average value of the transmittance of the films in the visible light range was 80-95% and was shifted toward to the shorter wavelengths of the absorption edges with increasing SnO2 contents. PMID:27455746

  12. Magnetron sputtering source

    DOEpatents

    Makowiecki, D.M.; McKernan, M.A.; Grabner, R.F.; Ramsey, P.B.

    1994-08-02

    A magnetron sputtering source for sputtering coating substrates includes a high thermal conductivity electrically insulating ceramic and magnetically attached sputter target which can eliminate vacuum sealing and direct fluid cooling of the cathode assembly. The magnetron sputtering source design results in greater compactness, improved operating characteristics, greater versatility, and low fabrication cost. The design easily retrofits most sputtering apparatuses and provides for safe, easy, and cost effective target replacement, installation, and removal. 12 figs.

  13. Magnetron sputtering source

    DOEpatents

    Makowiecki, Daniel M.; McKernan, Mark A.; Grabner, R. Fred; Ramsey, Philip B.

    1994-01-01

    A magnetron sputtering source for sputtering coating substrates includes a high thermal conductivity electrically insulating ceramic and magnetically attached sputter target which can eliminate vacuum sealing and direct fluid cooling of the cathode assembly. The magnetron sputtering source design results in greater compactness, improved operating characteristics, greater versatility, and low fabrication cost. The design easily retrofits most sputtering apparatuses and provides for safe, easy, and cost effective target replacement, installation, and removal.

  14. Computer studies of the surface mechanism of preferential sputtering of two-component solids. Ion beam analysis of surface composition in low dose regime

    NASA Astrophysics Data System (ADS)

    Samoilov, Vladimir N.; Tatur, Andrei E.; Yastrzhembsky, Vladimir I.

    1996-09-01

    We investigated the process of collision cascade propagation through the solid-vacuum boundary for two-component targets: WSi, MoSi and VSi. The surface mechanism of preferential sputtering of atoms of light component based on stronger deflection of light atoms towards surface normal when scattering by heavy neighbouring surface atoms during ejection was studied. Simulations for ejection of 450 000 Si or W atoms from the surface of WSi for cos {ϑ 0}/{E 02} and {1}/{E 02} initial distributions gave {Si}/{W} sputtering ratio equal to 1.29-1.55 (for 1:1 {Si}/{W} concentration ratio at the surface) giving necessary addition to the Andersen-Sigmund formula which underestimated that ratio in comparison with available experimental data. Analysis of integral energy distributions of atoms of the components gave {Si}/{W} ratio maximum equal to 3.18-5.00 for energy interval 0.0-0.4 eV. Maxima of integral energy distributions of sputtered atoms were observed at 1.8 eV for Si and 3.4 eV for W in calculations with equal binding energies for atoms of light and heavy components in good agreement with experiment. The surface mechanism was shown to be the alternative mechanism in formation of observed maxima difference with respect to nonidentity of binding energy values for atoms of components proposed by Szymonski [Phys. Lett. A 82 (1981) 203]. The two-cone structure of ejection vs. initial polar angle for Si atoms sputtered was revealed and explained. Results obtained gave the new approach to solve the inverse problem of reconstruction of surface composition in low dose SNMS and showed that the surface mechanism of preferential sputtering is to be accounted for in analytical calculations of surface composition. Ejection was simulated in the plane containing the neighbouring surface atom.

  15. A beam hardening correction method based on HL consistency

    NASA Astrophysics Data System (ADS)

    Mou, Xuanqin; Tang, Shaojie; Yu, Hengyong

    2006-08-01

    XCT with polychromatic tube spectrum causes artifact called beam hardening effect. The current correction in CT device is carried by apriori polynomial from water phantom experiment. This paper proposes a new beam hardening correction algorithm that the correction polynomial depends on the relativity of projection data in angles, which obeys Helgasson-Ludwig Consistency (HL Consistency). Firstly, a bi-polynomial is constructed to characterize the beam hardening effect based on the physical model of medical x-ray imaging. In this bi-polynomial, a factor r(γ,β) represents the ratio of the attenuation contributions caused by high density mass (bone, etc.) to low density mass (muscle, vessel, blood, soft tissue, fat, etc.) respectively in the projection angle β and fan angle γ. Secondly, let r(γ,β)=0, the bi-polynomial is degraded as a sole-polynomial. The coefficient of this polynomial can be calculated based on HL Consistency. Then, the primary correction is reached, which is also more efficient in theoretical than the correction method in current CT devices. Thirdly, based on the result of a normal CT reconstruction from the corrected projection data, r(γ,β) can be estimated. Fourthly, the coefficient of bi-polynomial can also be calculated based HL Consistency and the final correction are achieved. Experiments of circular cone beam CT indicate this method an excellent property. Correcting beam hardening effect based on HL Consistency, not only achieving a self-adaptive and more precise correction, but also getting rid of regular inconvenient water phantom experiments, will renovate the correction technique of current CT devices.

  16. Annealing dependence of residual stress and optical properties of TiO2 thin film deposited by different deposition methods.

    PubMed

    Chen, Hsi-Chao; Lee, Kuan-Shiang; Lee, Cheng-Chung

    2008-05-01

    Titanium oxide (TiO(2)) thin films were prepared by different deposition methods. The methods were E-gun evaporation with ion-assisted deposition (IAD), radio-frequency (RF) ion-beam sputtering, and direct current (DC) magnetron sputtering. Residual stress was released after annealing the films deposited by RF ion-beam or DC magnetron sputtering but not evaporation, and the extinction coefficient varied significantly. The surface roughness of the evaporated films exceeded that of both sputtered films. At the annealing temperature of 300 degrees C, anatase crystallization occurred in evaporated film but not in the RF ion-beam or DC magnetron-sputtered films. TiO(2) films deposited by sputtering were generally more stable during annealing than those deposited by evaporation. PMID:18449260

  17. Method to render second order beam optics programs symplectic

    SciTech Connect

    Douglas, D.; Servranckx, R.V.

    1984-10-01

    We present evidence that second order matrix-based beam optics programs violate the symplectic condition. A simple method to avoid this difficulty, based on a generating function approach to evaluating transfer maps, is described. A simple example illustrating the non-symplectricity of second order matrix methods, and the effectiveness of our solution to the problem, is provided. We conclude that it is in fact possible to bring second order matrix optics methods to a canonical form. The procedure for doing so has been implemented in the program DIMAT, and could be implemented in programs such as TRANSPORT and TURTLE, making them useful in multiturn applications. 15 refs.

  18. Ion beam texturing

    NASA Technical Reports Server (NTRS)

    Hudson, W. R.

    1976-01-01

    A microscopic surface texture is created by sputter etching a surface while simultaneously sputter depositing a lower sputter yield material onto the surface. A xenon ion beam source has been used to perform this texturing process on samples as large as three centimeters in diameter. Ion beam textured surface structures have been characterized with SEM photomicrographs for a large number of materials including Cu, Al, Si, Ti, Ni, Fe, Stainless steel, Au, and Ag. Surfaces have been textured using a variety of low sputter yield materials - Ta, Mo, Nb, and Ti. The initial stages of the texture creation have been documented, and the technique of ion beam sputter removal of any remaining deposited material has been studied. A number of other texturing parameters have been studied such as the variation of the texture with ion beam power, surface temperature, and the rate of texture growth with sputter etching time.

  19. Method and apparatus for laser-controlled proton beam radiology

    DOEpatents

    Johnstone, Carol J.

    1998-01-01

    A proton beam radiology system provides cancer treatment and proton radiography. The system includes an accelerator for producing an H.sup.- beam and a laser source for generating a laser beam. A photodetachment module is located proximate the periphery of the accelerator. The photodetachment module combines the H.sup.- beam and laser beam to produce a neutral beam therefrom within a subsection of the H.sup.- beam. The photodetachment module emits the neutral beam along a trajectory defined by the laser beam. The photodetachment module includes a stripping foil which forms a proton beam from the neutral beam. The proton beam is delivered to a conveyance segment which transports the proton beam to a patient treatment station. The photodetachment module further includes a laser scanner which moves the laser beam along a path transverse to the cross-section of the H.sup.- beam in order to form the neutral beam in subsections of the H.sup.- beam. As the scanning laser moves across the H.sup.- beam, it similarly varies the trajectory of the proton beam emitted from the photodetachment module and in turn varies the target location of the proton beam upon the patient. Intensity modulation of the proton beam can also be achieved by controlling the output of the laser.

  20. Method and apparatus for laser-controlled proton beam radiology

    DOEpatents

    Johnstone, C.J.

    1998-06-02

    A proton beam radiology system provides cancer treatment and proton radiography. The system includes an accelerator for producing an H{sup {minus}} beam and a laser source for generating a laser beam. A photodetachment module is located proximate the periphery of the accelerator. The photodetachment module combines the H{sup {minus}} beam and laser beam to produce a neutral beam therefrom within a subsection of the H{sup {minus}} beam. The photodetachment module emits the neutral beam along a trajectory defined by the laser beam. The photodetachment module includes a stripping foil which forms a proton beam from the neutral beam. The proton beam is delivered to a conveyance segment which transports the proton beam to a patient treatment station. The photodetachment module further includes a laser scanner which moves the laser beam along a path transverse to the cross-section of the H{sup {minus}} beam in order to form the neutral beam in subsections of the H{sup {minus}} beam. As the scanning laser moves across the H{sup {minus}} beam, it similarly varies the trajectory of the proton beam emitted from the photodetachment module and in turn varies the target location of the proton beam upon the patient. Intensity modulation of the proton beam can also be achieved by controlling the output of the laser. 9 figs.

  1. Effects of the duty ratio on the niobium oxide film deposited by pulsed-DC magnetron sputtering methods.

    PubMed

    Eom, Ji Mi; Oh, Hyun Gon; Cho, Il Hwan; Kwon, Sang Jik; Cho, Eou Sik

    2013-11-01

    Niobium oxide (Nb2O5) films were deposited on p-type Si wafers and sodalime glasses at a room temperature using in-line pulsed-DC magnetron sputtering system with various duty ratios. The different duty ratio was obtained by varying the reverse voltage time of pulsed DC power from 0.5 to 2.0 micros at the fixed frequency of 200 kHz. From the structural and optical characteristics of the sputtered NbOx films, it was possible to obtain more uniform and coherent NbOx films in case of the higher reverse voltage time as a result of the cleaning effect on the Nb2O5 target surface. The electrical characteristics from the metal-insulator-semiconductor (MIS) fabricated with the NbOx films shows the leakage currents are influenced by the reverse voltage time and the Schottky barrier diode characteristics. PMID:24245329

  2. Method to control deposition rate instabilities—High power impulse magnetron sputtering deposition of TiO{sub 2}

    SciTech Connect

    Kossoy, Anna E-mail: anna.kossoy@gmail.com; Magnusson, Rögnvaldur L.; Tryggvason, Tryggvi K.; Leosson, Kristjan; Olafsson, Sveinn

    2015-03-15

    The authors describe how changes in shutter state (open/closed) affect sputter plasma conditions and stability of the deposition rate of Ti and TiO{sub 2} films. The films were grown by high power impulse magnetron sputtering in pure Ar and in Ar/O{sub 2} mixture from a metallic Ti target. The shutter state was found to have an effect on the pulse waveform for both pure Ar and reactive sputtering of Ti also affecting stability of TiO{sub 2} deposition rate. When the shutter opened, the shape of pulse current changed from rectangular to peak-plateau and pulse energy decreased. The authors attribute it to the change in plasma impedance and gas rarefaction originating in geometry change in front of the magnetron. TiO{sub 2} deposition rate was initially found to be high, 1.45 Å/s, and then dropped by ∼40% during the first 5 min, while for Ti the change was less obvious. Instability of deposition rate poses significant challenge for growing multilayer heterostructures. In this work, the authors suggest a way to overcome this by monitoring the integrated average energy involved in the deposition process. It is possible to calibrate and control the film thickness by monitoring the integrated pulse energy and end growth when desired integrated pulse energy level has been reached.

  3. EQUAL OPTICAL PATH BEAM SPLITTERS BY USE OF AMPLITUDE-SPLITTING AND WAVEFRONT-SPLITTING METHODS FOR PENCIL BEAM INTERFEROMETER.

    SciTech Connect

    QIAN,S.TAKACS,P.

    2003-08-03

    A beam splitter to create two separated parallel beams is a critical unit of a pencil beam interferometer, for example the long trace profiler (LTP). The operating principle of the beam splitter can be based upon either amplitude-splitting (AS) or wavefront-splitting (WS). For precision measurements with the LTP, an equal optical path system with two parallel beams is desired. Frequency drift of the light source in a non-equal optical path system will cause the interference fringes to drift. An equal optical path prism beam splitter with an amplitude-splitting (AS-EBS) beam splitter and a phase shift beam splitter with a wavefront-splitting (WS-PSBS) are introduced. These beam splitters are well suited to the stability requirement for a pencil beam interferometer due to the characteristics of monolithic structure and equal optical path. Several techniques to produce WS-PSBS by hand are presented. In addition, the WS-PSBS using double thin plates, made from microscope cover plates, has great advantages of economy, convenience, availability and ease of adjustment over other beam splitting methods. Comparison of stability measurements made with the AS-EBS, WS-PSBS, and other beam splitters is presented.

  4. A Green's function method for heavy ion beam transport

    NASA Technical Reports Server (NTRS)

    Shinn, J. L.; Wilson, J. W.; Schimmerling, W.; Shavers, M. R.; Miller, J.; Benton, E. V.; Frank, A. L.; Badavi, F. F.

    1995-01-01

    The use of Green's function has played a fundamental role in transport calculations for high-charge high-energy (HZE) ions. Two recent developments have greatly advanced the practical aspects of implementation of these methods. The first was the formulation of a closed-form solution as a multiple fragmentation perturbation series. The second was the effective summation of the closed-form solution through nonperturbative techniques. The nonperturbative methods have been recently extended to an inhomogeneous, two-layer transport media to simulate the lead scattering foil present in the Lawrence Berkeley Laboratories (LBL) biomedical beam line used for cancer therapy. Such inhomogeneous codes are necessary for astronaut shielding in space. The transport codes utilize the Langley Research Center atomic and nuclear database. Transport code and database evaluation are performed by comparison with experiments performed at the LBL Bevalac facility using 670 A MeV 20Ne and 600 A MeV 56Fe ion beams. The comparison with a time-of-flight and delta E detector measurement for the 20Ne beam and the plastic nuclear track detectors for 56Fe show agreement up to 35%-40% in water and aluminium targets, respectively.

  5. A Green's function method for heavy ion beam transport.

    PubMed

    Shinn, J L; Wilson, J W; Schimmerling, W; Shavers, M R; Miller, J; Benton, E V; Frank, A L; Badavi, F F

    1995-08-01

    The use of Green's function has played a fundamental role in transport calculations for high-charge high-energy (HZE) ions. Two recent developments have greatly advanced the practical aspects of implementation of these methods. The first was the formulation of a closed-form solution as a multiple fragmentation perturbation series. The second was the effective summation of the closed-form solution through nonperturbative techniques. The nonperturbative methods have been recently extended to an inhomogeneous, two-layer transport media to simulate the lead scattering foil present in the Lawrence Berkeley Laboratories (LBL) biomedical beam line used for cancer therapy. Such inhomogeneous codes are necessary for astronaut shielding in space. The transport codes utilize the Langley Research Center atomic and nuclear database. Transport code and database evaluation are performed by comparison with experiments performed at the LBL Bevalac facility using 670 A MeV 20Ne and 600 A MeV 56Fe ion beams. The comparison with a time-of-flight and delta E detector measurement for the 20Ne beam and the plastic nuclear track detectors for 56Fe show agreement up to 35%-40% in water and aluminium targets, respectively. PMID:7480630

  6. A hybrid electron cyclotron resonance metal ion source with integrated sputter magnetron for the production of an intense Al+ ion beam

    NASA Astrophysics Data System (ADS)

    Weichsel, T.; Hartung, U.; Kopte, T.; Zschornack, G.; Kreller, M.; Philipp, A.

    2015-09-01

    A metal ion source prototype has been developed: a combination of magnetron sputter technology with 2.45 GHz electron cyclotron resonance (ECR) ion source technology—a so called magnetron ECR ion source (MECRIS). An integrated ring-shaped sputter magnetron with an Al target is acting as a powerful metal atom supply in order to produce an intense current of singly charged metal ions. Preliminary experiments show that an Al+ ion current with a density of 167 μA/cm2 is extracted from the source at an acceleration voltage of 27 kV. Spatially resolved double Langmuir probe measurements and optical emission spectroscopy were used to study the plasma states of the ion source: sputter magnetron, ECR, and MECRIS plasma. Electron density and temperature as well as Al atom density were determined as a function of microwave and sputter magnetron power. The effect of ECR heating is strongly pronounced in the center of the source. There the electron density is increased by one order of magnitude from 6 × 109 cm-3 to 6 × 1010 cm-3 and the electron temperature is enhanced from about 5 eV to 12 eV, when the ECR plasma is ignited to the magnetron plasma. Operating the magnetron at constant power, it was observed that its discharge current is raised from 1.8 A to 4.8 A, when the ECR discharge was superimposed with a microwave power of 2 kW. At the same time, the discharge voltage decreased from about 560 V to 210 V, clearly indicating a higher plasma density of the MECRIS mode. The optical emission spectrum of the MECRIS plasma is dominated by lines of excited Al atoms and shows a significant contribution of lines arising from singly ionized Al. Plasma emission photography with a CCD camera was used to prove probe measurements and to identify separated plasma emission zones originating from the ECR and magnetron discharge.

  7. Genetic Algorithms: A New Method for Neutron Beam Spectral Characterization

    SciTech Connect

    David W. Freeman

    2000-06-04

    A revolutionary new concept for solving the neutron spectrum unfolding problem using genetic algorithms (GAs) has recently been introduced. GAs are part of a new field of evolutionary solution techniques that mimic living systems with computer-simulated chromosome solutions that mate, mutate, and evolve to create improved solutions. The original motivation for the research was to improve spectral characterization of neutron beams associated with boron neutron capture therapy (BNCT). The GA unfolding technique has been successfully applied to problems with moderate energy resolution (up to 47 energy groups). Initial research indicates that the GA unfolding technique may well be superior to popular unfolding methods in common use. Research now under way at Kansas State University is focused on optimizing the unfolding algorithm and expanding its energy resolution to unfold detailed beam spectra based on multiple foil measurements. Indications are that the final code will significantly outperform current, state-of-the-art codes in use by the scientific community.

  8. Laser beam apparatus and method for analyzing solar cells

    DOEpatents

    Staebler, David L.

    1980-01-01

    A laser beam apparatus and method for analyzing, inter alia, the current versus voltage curve at the point of illumination on a solar cell and the open circuit voltage of a solar cell. The apparatus incorporates a lock-in amplifier, and a laser beam light chopper which permits the measurement of the AC current of the solar cell at an applied DC voltage at the position on the solar cell where the cell is illuminated and a feedback scheme which permits the direct scanning measurements of the open circuit voltage. The accuracy of the measurement is a function of the intensity and wavelength of the laser light with respect to the intensity and wavelength distribution of sunlight and the percentage the dark current is at the open circuit voltage to the short circuit current of the solar cell.

  9. Vertical beam emittance correction with independent component analysis measurement method

    NASA Astrophysics Data System (ADS)

    Wang, Fei

    The storage ring performance is determined by the vertical beam size, that is by the vertical emittance, which is determined by two factors: the vertical dispersion generated in the bending magnets, and the coupling of the oscillations in the vertical and horizontal plane. In this dissertation, a detailed study of the main source of the vertical emittance and effective correction methods are presented. Simulations show that the vertical emittance is dominated by the contribution due to photon emission with non-zero vertical dispersion in bending magnets. An effective method to make vertical dispersion correction is to analysis the harmonics of the vertical dispersion and to eliminate the largest components of the stopband integral with harmonics near the vertical betatron tune. A stopband correction scheme is being implemented in which the excitation of skew-quadrupole correctors is determined from measurements of the resonance strengths (stopband widths) of major resonances. This method can correct the vertical dispersion function and the coupling strength simultaneously without identifying the source of errors. Studies show the coupling strength and the vertical dispersion can be controlled individually in the quadruple-bend achromatic low emittance lattice. Resulting improvement in machine performance is that the equilibrium vertical emittance is reduced by the factor of 7. Effective correction depends on precise beam measurements. Independent component analysis for BPM turn-by-turn data has shown the potential to be a useful tool for diagnostics and optics verification. The effectiveness of employing the independent component analysis (ICA) method to measure the vertical dispersion function is studied. This method for extracting the beta function and phase advance for the beam position monitors is presented. The accuracy of optical functions thus calculated is affected by different factors in a different manner. The most influent factors on the accuracy are

  10. A geometric calibration method for cone beam CT systems

    SciTech Connect

    Yang, Kai; Kwan, Alexander L. C.; Miller, DeWitt F.; Boone, John M.

    2006-06-15

    Cone beam CT systems are being deployed in large numbers for small animal imaging, dental imaging, and other specialty applications. A new high-precision method for cone beam CT system calibration is presented in this paper. It uses multiple projection images acquired from rotating point-like objects (metal ball bearings) and the angle information generated from the rotating gantry system is also used. It is assumed that the whole system has a mechanically stable rotation center and that the detector does not have severe out-of-plane rotation (<2 deg.). Simple geometrical relationships between the orbital paths of individual BBs and five system parameters were derived. Computer simulations were employed to validate the accuracy of this method in the presence of noise. Equal or higher accuracy was achieved compared with previous methods. This method was implemented for the geometrical calibration of both a micro CT scanner and a breast CT scanner. The reconstructed tomographic images demonstrated that the proposed method is robust and easy to implement with high precision.

  11. Fast multiscale Gaussian beam methods for wave equations in bounded convex domains

    SciTech Connect

    Bao, Gang; Lai, Jun; Qian, Jianliang

    2014-03-15

    Motivated by fast multiscale Gaussian wavepacket transforms and multiscale Gaussian beam methods which were originally designed for pure initial-value problems of wave equations, we develop fast multiscale Gaussian beam methods for initial boundary value problems of wave equations in bounded convex domains in the high frequency regime. To compute the wave propagation in bounded convex domains, we have to take into account reflecting multiscale Gaussian beams, which are accomplished by enforcing reflecting boundary conditions during beam propagation and carrying out suitable reflecting beam summation. To propagate multiscale beams efficiently, we prove that the ratio of the squared magnitude of beam amplitude and the beam width is roughly conserved, and accordingly we propose an effective indicator to identify significant beams. We also prove that the resulting multiscale Gaussian beam methods converge asymptotically. Numerical examples demonstrate the accuracy and efficiency of the method.

  12. Sputtering Threshold Energies of Heavy Ions

    NASA Technical Reports Server (NTRS)

    Mantenieks, Maris A.

    1999-01-01

    Sputter erosion in ion thrusters has been measured in lifetests at discharge voltages as low as 25 V. Thruster operation at this discharge voltage results in component erosion rates sufficiently low to satisfy most mission requirements. It has been recognized that most of the internal sputtering in ion thrusters is done by doubly charged ions. Knowledge of the sputtering threshold voltage of a xenon molybdenum system would be beneficial in understanding the sputtering process as well as making more accurate calculations of the sputtering rates of ion thruster components. Sputtering threshold energies calculated from various formulations found in the literature results in values ranging from 28 to 200 eV. It is evident that some of these formulations cannot be relied upon to provide sputtering thresholds with any degree of accuracy. This paper re-examines the threshold energies measurements made in the early sixties by Askerov and Sena, and Stuart and Wehner. The threshold voltages as derived by Askerov and au have been reevaluated by using a different extrapolation method of sputter yields at low ion energies. The resulting threshold energies are in general similar to those measured by Stuart and Wehner. An empirical relationship is derived,for mercury and xenon ions for the ratio of the sputtering threshold energy to the sublimation energy as a function of the ratio of target to ion atomic mass.

  13. Electron-Beam Diagnostic Methods for Hypersonic Flow Diagnostics

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The purpose of this work was the evaluation of the use of electron-bean fluorescence for flow measurements during hypersonic flight. Both analytical and numerical models were developed in this investigation to evaluate quantitatively flow field imaging concepts based upon the electron beam fluorescence technique for use in flight research and wind tunnel applications. Specific models were developed for: (1) fluorescence excitation/emission for nitrogen, (2) rotational fluorescence spectrum for nitrogen, (3) single and multiple scattering of electrons in a variable density medium, (4) spatial and spectral distribution of fluorescence, (5) measurement of rotational temperature and density, (6) optical filter design for fluorescence imaging, and (7) temperature accuracy and signal acquisition time requirements. Application of these models to a typical hypersonic wind tunnel flow is presented. In particular, the capability of simulating the fluorescence resulting from electron impact ionization in a variable density nitrogen or air flow provides the capability to evaluate the design of imaging instruments for flow field mapping. The result of this analysis is a recommendation that quantitative measurements of hypersonic flow fields using electron-bean fluorescence is a tractable method with electron beam energies of 100 keV. With lower electron energies, electron scattering increases with significant beam divergence which makes quantitative imaging difficult. The potential application of the analytical and numerical models developed in this work is in the design of a flow field imaging instrument for use in hypersonic wind tunnels or onboard a flight research vehicle.

  14. Design method for automotive high-beam LED optics

    NASA Astrophysics Data System (ADS)

    Byzov, Egor V.; Moiseev, Mikhail A.; Doskolovich, Leonid L.; Kazanskiy, Nikolay L.

    2015-09-01

    New analytical method for the calculation of the LED secondary optics for automotive high-beam lamps is presented. Automotive headlamps should illuminate the road and the curb at the distance of 100-150 meters and create a bright, flat, relatively powerful light beam. To generate intensity distribution of this kind we propose to use TIR optical element (collimator working on the total internal reflection principle) with array of microlenses (optical corrector) on the upper surface. TIR part of the optical element enables reflection of the side rays to the front direction and provides a collimated beam which incidents on the microrelief. Microrelief, in its turn, dissipates the light flux in horizontal direction to meet the requirements of the Regulations 112, 113 and to provide well-illuminated area across the road in the far field. As an example, we computed and simulated the optical element with the diameter of 33 millimeters and the height of 22 millimeters. Simulation data shows that three illuminating modules including Cree XP-G2 LED and lens allow generating an appropriate intensity distribution for the class D of UNECE Regulations.

  15. Transport of sputtered neutral particles

    SciTech Connect

    Parker, G.J.; Hitchon, W.N.G.; Koch, D.J. ||

    1995-04-01

    The initial deposition rate of sputtered material along the walls of a trench is calculated numerically. The numerical scheme is a nonstatistical description of long-mean-free-path transport in the gas phase. Gas-phase collisions are included by using a ``transition matrix`` to describe the particle motion, which in the present work is from the source through a cylindrical chamber and into a rectangular trench. The method is much faster and somewhat more accurate than Monte Carlo methods. Initial deposition rates of sputtered material along the walls of the trench are presented for various physical and geometrical situations, and the deposition rates are compared to other computational and experimental results.

  16. On the limitations of linear beams for the problems of moving mass-beam interaction using a meshfree method

    NASA Astrophysics Data System (ADS)

    Kiani, Keivan; Nikkhoo, Ali

    2012-02-01

    This paper deals with the capabilities of linear and nonlinear beam theories in predicting the dynamic response of an elastically supported thin beam traversed by a moving mass. To this end, the discrete equations of motion are developed based on Lagrange's equations via reproducing kernel particle method (RKPM). For a particular case of a simply supported beam, Galerkin method is also employed to verify the results obtained by RKPM, and a reasonably good agreement is achieved. Variations of the maximum dynamic deflection and bending moment associated with the linear and nonlinear beam theories are investigated in terms of moving mass weight and velocity for various beam boundary conditions. It is demonstrated that for majority of the moving mass velocities, the differences between the results of linear and nonlinear analyses become remarkable as the moving mass weight increases, particularly for high levels of moving mass velocity. Except for the cantilever beam, the nonlinear beam theory predicts higher possibility of moving mass separation from the base beam compared to the linear one. Furthermore, the accuracy levels of the linear beam theory are determined for thin beams under large deflections and small rotations as a function of moving mass weight and velocity in various boundary conditions.

  17. Production of a highly charged uranium ion beam with RIKEN superconducting electron cyclotron resonance ion source

    SciTech Connect

    Higurashi, Y.; Ohnishi, J.; Nakagawa, T.; Haba, H.; Fujimaki, M.; Komiyama, M.; Kamigaito, O.; Tamura, M.; Aihara, T.; Uchiyama, A.

    2012-02-15

    A highly charged uranium (U) ion beam is produced from the RIKEN superconducting electron cyclotron resonance ion source using 18 and 28 GHz microwaves. The sputtering method is used to produce this U ion beam. The beam intensity is strongly dependent on the rod position and sputtering voltage. We observe that the emittance of U{sup 35+} for 28 GHz microwaves is almost the same as that for 18 GHz microwaves. It seems that the beam intensity of U ions produced using 28 GHz microwaves is higher than that produced using 18 GHz microwaves at the same Radio Frequency (RF) power.

  18. Method and system for treating an interior surface of a workpiece using a charged particle beam

    DOEpatents

    Swenson, David Richard

    2007-05-23

    A method and system of treating an interior surface on an internal cavity of a workpiece using a charged particle beam. A beam deflector surface of a beam deflector is placed within the internal cavity of the workpiece and is used to redirect the charged particle beam toward the interior surface to treat the interior surface.

  19. Beam splitter and method for generating equal optical path length beams

    DOEpatents

    Qian, Shinan; Takacs, Peter

    2003-08-26

    The present invention is a beam splitter for splitting an incident beam into first and second beams so that the first and second beams have a fixed separation and are parallel upon exiting. The beam splitter includes a first prism, a second prism, and a film located between the prisms. The first prism is defined by a first thickness and a first perimeter which has a first major base. The second prism is defined by a second thickness and a second perimeter which has a second major base. The film is located between the first major base and the second major base for splitting the incident beam into the first and second beams. The first and second perimeters are right angle trapezoidal shaped. The beam splitter is configured for generating equal optical path length beams.

  20. A hybrid electron cyclotron resonance metal ion source with integrated sputter magnetron for the production of an intense Al{sup +} ion beam

    SciTech Connect

    Weichsel, T. Hartung, U.; Kopte, T.; Zschornack, G.; Kreller, M.; Philipp, A.

    2015-09-15

    A metal ion source prototype has been developed: a combination of magnetron sputter technology with 2.45 GHz electron cyclotron resonance (ECR) ion source technology—a so called magnetron ECR ion source (MECRIS). An integrated ring-shaped sputter magnetron with an Al target is acting as a powerful metal atom supply in order to produce an intense current of singly charged metal ions. Preliminary experiments show that an Al{sup +} ion current with a density of 167 μA/cm{sup 2} is extracted from the source at an acceleration voltage of 27 kV. Spatially resolved double Langmuir probe measurements and optical emission spectroscopy were used to study the plasma states of the ion source: sputter magnetron, ECR, and MECRIS plasma. Electron density and temperature as well as Al atom density were determined as a function of microwave and sputter magnetron power. The effect of ECR heating is strongly pronounced in the center of the source. There the electron density is increased by one order of magnitude from 6 × 10{sup 9} cm{sup −3} to 6 × 10{sup 10} cm{sup −3} and the electron temperature is enhanced from about 5 eV to 12 eV, when the ECR plasma is ignited to the magnetron plasma. Operating the magnetron at constant power, it was observed that its discharge current is raised from 1.8 A to 4.8 A, when the ECR discharge was superimposed with a microwave power of 2 kW. At the same time, the discharge voltage decreased from about 560 V to 210 V, clearly indicating a higher plasma density of the MECRIS mode. The optical emission spectrum of the MECRIS plasma is dominated by lines of excited Al atoms and shows a significant contribution of lines arising from singly ionized Al. Plasma emission photography with a CCD camera was used to prove probe measurements and to identify separated plasma emission zones originating from the ECR and magnetron discharge.

  1. A hybrid electron cyclotron resonance metal ion source with integrated sputter magnetron for the production of an intense Al⁺ ion beam.

    PubMed

    Weichsel, T; Hartung, U; Kopte, T; Zschornack, G; Kreller, M; Philipp, A

    2015-09-01

    A metal ion source prototype has been developed: a combination of magnetron sputter technology with 2.45 GHz electron cyclotron resonance (ECR) ion source technology-a so called magnetron ECR ion source (MECRIS). An integrated ring-shaped sputter magnetron with an Al target is acting as a powerful metal atom supply in order to produce an intense current of singly charged metal ions. Preliminary experiments show that an Al(+) ion current with a density of 167 μA/cm(2) is extracted from the source at an acceleration voltage of 27 kV. Spatially resolved double Langmuir probe measurements and optical emission spectroscopy were used to study the plasma states of the ion source: sputter magnetron, ECR, and MECRIS plasma. Electron density and temperature as well as Al atom density were determined as a function of microwave and sputter magnetron power. The effect of ECR heating is strongly pronounced in the center of the source. There the electron density is increased by one order of magnitude from 6 × 10(9) cm(-3) to 6 × 10(10) cm(-3) and the electron temperature is enhanced from about 5 eV to 12 eV, when the ECR plasma is ignited to the magnetron plasma. Operating the magnetron at constant power, it was observed that its discharge current is raised from 1.8 A to 4.8 A, when the ECR discharge was superimposed with a microwave power of 2 kW. At the same time, the discharge voltage decreased from about 560 V to 210 V, clearly indicating a higher plasma density of the MECRIS mode. The optical emission spectrum of the MECRIS plasma is dominated by lines of excited Al atoms and shows a significant contribution of lines arising from singly ionized Al. Plasma emission photography with a CCD camera was used to prove probe measurements and to identify separated plasma emission zones originating from the ECR and magnetron discharge. PMID:26429434

  2. Novel method for unambiguous ion identification in mixed ion beams extracted from an electron beam ion trap

    SciTech Connect

    Meissl, W.; Simon, M. C.; Crespo Lopez-Urrutia, J. R.; Tawara, H.; Ullrich, J.; Winter, HP.; Aumayr, F.

    2006-09-15

    A novel technique to identify small fluxes of mixed highly charged ion beams extracted from an electron beam ion trap is presented and practically demonstrated. The method exploits projectile charge state dependent potential emission of electrons as induced by ion impact on a metal surface to separate ions with identical or very similar mass-to-charge ratio.

  3. Design method for four-reflector type beam waveguide systems

    NASA Technical Reports Server (NTRS)

    Betsudan, S.; Katagi, T.; Urasaki, S.

    1986-01-01

    Discussed is a method for the design of four reflector type beam waveguide feed systems, comprised of a conical horn and 4 focused reflectors, which are used widely as the primary reflector systems for communications satellite Earth station antennas. The design parameters for these systems are clarified, the relations between each parameter are brought out based on the beam mode development, and the independent design parameters are specified. The characteristics of these systems, namely spillover loss, crosspolarization components, and frequency characteristics, and their relation to the design parameters, are also shown. It is also indicated that design parameters which decide the dimensions of the conical horn or the shape of the focused reflectors can be unerringly established once the design standard for the system has been selected as either: (1) minimizing the crosspolarization component by keeping the spillover loss to within acceptable limits, or (2) minimizing the spillover loss by maintaining the crossover components below an acceptable level and the independent design parameters, such as the respective sizes of the focused reflectors and the distances between the focussed reflectors, etc., have been established according to mechanical restrictions. A sample design is also shown. In addition to being able to clarify the effects of each of the design parameters on the system and improving insight into these systems, the efficiency of these systems will also be increased with this design method.

  4. Graphical Methods for Separating Beam and Target Fragmentation Regions

    NASA Astrophysics Data System (ADS)

    Londergan, J. T.; Mathieu, V.; Szczepaniak, A. P.; Joint Physics Analysis Center Collaboration

    2015-10-01

    For reactions involving three or more final-state particles, graphical methods can help to elucidate the dominant reaction mechanism. Van Hove introduced a longitudinal phase space plot, which categorizes reaction products in terms of their longitudinal moments. We review the construction of such plots, and show how they are useful in separating beam and target fragmentation regimes. We summarize the information that can be obtained from Van Hove plots, and use these plots to analyze reactions with three or four strongly-interacting particles in the final state. As an example, we apply these methods to simulated data for the reaction π- + p -->π- + η (η ') + p . We show how cuts in the Van Hove plot can be utilized to isolate various two-body processes that contribute to this reaction. We also show how the dominant reaction processes change with the beam energy. VM and APS supported by US DOE, Grants DE-AC05-06OR23177 and DE-FG0287-ER40365; JTL by NSF-PHY-1205019.

  5. Adjoint methods for external beam inverse treatment planning

    NASA Astrophysics Data System (ADS)

    Kowalok, Michael E.

    Forward and adjoint radiation transport methods may both be used to determine the dosimetric relationship between source parameters and voxel elements of a phantom. Forward methods consider one specific tuple of source parameters and calculate the response in all voxels of interest. This response is often cast as the dose delivered per unit source-weight. Adjoint transport methods, conversely, consider one particular voxel and calculate the response of that voxel in relation to all possible source parameters. In this regard, adjoint methods provide an "adjoint function" in addition to a dose value. Although the dose is for a single voxel only, the adjoint function illustrates the source parameters, (e.g. beam positions and directions) that are most important to delivering the dose to that voxel. In this regard, adjoint methods of analysis lend themselves in a natural way to optimization problems and perturbation studies. This work investigates the utility of adjoint analytic methods for treatment planning and for Monte Carlo dose calculations. Various methods for implementing this approach are discussed, along with their strengths and weaknesses. The complementary nature of adjoint and forward techniques is illustrated and exploited. Also, several features of the Monte Carlo codes MCNP and MCNPX are reviewed for treatment planning applications.

  6. Split-step non-paraxial beam propagation method

    NASA Astrophysics Data System (ADS)

    Sharma, Anurag; Agrawal, Arti

    2004-06-01

    A new method for solving the wave equation is presented, which, being non-paraxial, is applicable to wide-angle beam propagation. It shows very good stability characteristics in the sense that relatively larger step-sizes can be used. It is both faster and easier to implement. The method is based on symmetrized splitting of operators, one representing the propagation through a uniform medium and the other, the effect of the refractive index variation of the guiding structure. The method can be implemented in the FD-BPM, FFT-BPM and collocation schemes. The method is stable for a step size of 1 micron in a graded index waveguide with accuracy better than 0.001 in the field overlap integral for 1000-micron propagation. At a tilt angle of 50°, the method shows an error less than 0.001 with 0.25-micron step. In the benchmark test, the present method shows a relative power of ~0.96 in a 100 micron long waveguide with 1000 propagation steps and 800 sample points, while FD-BPM with Pade(2,2) approximation gives a relative power of 0.95 with 1000 sample points and 2048 propagation steps. Thus, the method requires fewer points, is easier to implement, faster, more accurate and highly stable.

  7. Active Beam Shaping System and Method Using Sequential Deformable Mirrors

    NASA Technical Reports Server (NTRS)

    Norman, Colin A. (Inventor); Pueyo, Laurent A. (Inventor)

    2015-01-01

    An active optical beam shaping system includes a first deformable mirror arranged to at least partially intercept an entrance beam of light and to provide a first reflected beam of light, a second deformable mirror arranged to at least partially intercept the first reflected beam of light from the first deformable mirror and to provide a second reflected beam of light, and a signal processing and control system configured to communicate with the first and second deformable mirrors. The first deformable mirror, the second deformable mirror and the signal processing and control system together provide a large amplitude light modulation range to provide an actively shaped optical beam.

  8. Device and method for electron beam heating of a high density plasma

    DOEpatents

    Thode, L.E.

    A device and method for relativistic electron beam heating of a high density plasma in a small localized region are described. A relativistic electron beam generator produces a high voltage electron beam which propagates along a vacuum drift tube and is modulated to initiate electron bunching within the beam. The beam is then directed through a low density gas chamber which provides isolation between the vacuum modulator and the relativistic electron beam target. The relativistic beam is then applied to a high density target plasma which typically comprises DT, DD, hydrogen boron or similar thermonuclear gas at a density of 10/sup 17/ to 10/sup 20/.

  9. Method and apparatus for timing of laser beams in a multiple laser beam fusion system

    DOEpatents

    Eastman, Jay M.; Miller, Theodore L.

    1981-01-01

    The optical path lengths of a plurality of comparison laser beams directed to impinge upon a common target from different directions are compared to that of a master laser beam by using an optical heterodyne interferometric detection technique. The technique consists of frequency shifting the master laser beam and combining the master beam with a first one of the comparison laser beams to produce a time-varying heterodyne interference pattern which is detected by a photo-detector to produce an AC electrical signal indicative of the difference in the optical path lengths of the two beams which were combined. The optical path length of this first comparison laser beam is adjusted to compensate for the detected difference in the optical path lengths of the two beams. The optical path lengths of all of the comparison laser beams are made equal to the optical path length of the master laser beam by repeating the optical path length adjustment process for each of the comparison laser beams. In this manner, the comparison laser beams are synchronized or timed to arrive at the target within .+-.1.times.10.sup.-12 second of each other.

  10. A new method for beam stacking in storage rings

    SciTech Connect

    Bhat, C.M.; /Fermilab

    2008-06-01

    Recently, I developed a new beam stacking scheme for synchrotron storage rings called 'longitudinal phase-space coating' (LPSC). This scheme has been convincingly validated by multi-particle beam dynamics simulations and has been demonstrated with beam experiments at the Fermilab Recycler. Here, I present the results from both simulations and experiments. The beam stacking scheme presented here is the first of its kind.

  11. Graphene: the ultimately thin sputtering shield

    NASA Astrophysics Data System (ADS)

    Herbig, Charlotte; Michely, Thomas

    2016-06-01

    Scanning tunneling microscopy methods are applied to investigate the potential of monolayer graphene as a sputtering shield for the underlying metal substrate. To visualize the effect, a bare and a graphene protected Ir(111) surface are irradiated with 500 eV Xe+, as well as 200 eV Xe+ and Ar+ ions, all at 1000 K. By quantitatively evaluating the sputtered material from the surface vacancy island area, we find a drastic decrease in metal sputtering for the graphene protected surface. It is demonstrated that efficient sputter protection relies on self-repair of the ion damage in graphene, which takes place efficiently in the temperature range of chemical vapor deposition growth. Based on the generality of the underlying principles of ion damage, graphene self-repair, and graphene growth, we speculate that efficient sputter protection is possible for a broad range of metals and alloys.

  12. Method and apparatus for efficient photodetachment and purification of negative ion beams

    DOEpatents

    Beene, James R.; Liu, Yuan; Havener, Charles C.

    2008-02-26

    Methods and apparatus are described for efficient photodetachment and purification of negative ion beams. A method of purifying an ion beam includes: inputting the ion beam into a gas-filled multipole ion guide, the ion beam including a plurality of ions; increasing a laser-ion interaction time by collisional cooling the plurality of ions using the gas-filled multipole ion guide, the plurality of ions including at least one contaminant; and suppressing the at least one contaminant by selectively removing the at least one contaminant from the ion beam by electron photodetaching at least a portion of the at least one contaminant using a laser beam.

  13. Synthesis and characterization of pure anatase phase nanocrystalline TiO2 thin film by magnetron sputtering method

    NASA Astrophysics Data System (ADS)

    Pawar, Nimisha; Bhargava, Ankita; Dayal, Saurabh; Kumar, C. Sasi

    2016-05-01

    In present work, our focus is to deposit anatase phase nanocrystalline TiO2 thin films. In order to prepare Titanium oxide films we first deposited Titanium thin films using DC magnetron sputtering and then the substrates were annealed in a muffle furnace at different temperatures. Further the samples were characterized for analysis of phase, morphology and optical properties using XRD, SEM, AFM and photoluminescence spectroscopy respectively. XRD shows the formation of tetragonal phase TiO2 with lattice parameters values a= 3.8 Å and c=9.6 Å. The surface roughness value of the films were found to vary from 1.6 nm to 15.9 nm. The grain size as estimated from AFM varies from 48 nm to 125 nm at different temperatures. Thus, the results revealed the formation of ultra-smooth anatase phase pure nanocrystalline TiO2 spherical particles.

  14. Method for changing the cross section of a laser beam

    DOEpatents

    Sweatt, William C.; Seppala, Lynn

    1995-01-01

    A technique is disclosed herein in which a circular optical beam, for example a copper vapor laser (CVL) beam, is converted to a beam having a profile other than circular, e.g. square or triangular. This is accomplished by utilizing a single optical mirror having a reflecting surface designed in accordance with a specifically derived formula in order to make the necessary transformation, without any substantial light loss and without changing substantially the intensity profile of the circular beam which has a substantially uniform intensity profile. In this way, the output beam can be readily directed into the dye cell of a dye laser.

  15. Method for changing the cross section of a laser beam

    DOEpatents

    Sweatt, W.C.; Seppala, L.

    1995-12-05

    A technique is disclosed herein in which a circular optical beam, for example a copper vapor laser (CVL) beam, is converted to a beam having a profile other than circular, e.g. square or triangular. This is accomplished by utilizing a single optical mirror having a reflecting surface designed in accordance with a specifically derived formula in order to make the necessary transformation, without any substantial light loss and without changing substantially the intensity profile of the circular beam which has a substantially uniform intensity profile. In this way, the output beam can be readily directed into the dye cell of a dye laser. 4 figs.

  16. ION BEAM ETCHING EFFECTS IN BIOLOGICAL MICROANALYSIS

    EPA Science Inventory

    Oxygen ion beam sputter etching used in SIMS has been shown to produce morphologic effects which have similarities and differences in comparison to rf plasma etching of biological specimens. Sputter yield variations resulting from structural microheterogeneity are illustrated (e....

  17. METHOD OF PRODUCING AND ACCELERATING AN ION BEAM

    NASA Technical Reports Server (NTRS)

    Foster, John E. (Inventor)

    2005-01-01

    A method of producing and accelerating an ion beam comprising the steps of providing a magnetic field with a cusp that opens in an outward direction along a centerline that passes through a vertex of the cusp: providing an ionizing gas that sprays outward through at least one capillary-like orifice in a plenum that is positioned such that the orifice is on the centerline in the cusp, outward of the vortex of the cusp; providing a cathode electron source, and positioning it outward of the orifice and off of the centerline; and positively charging the plenum relative to the cathode electron source such that the plenum functions as m anode. A hot filament may be used as the cathode electron source, and permanent magnets may be used to provide the magnetic field.

  18. Moving receive beam method and apparatus for synthetic aperture radar

    DOEpatents

    Kare, Jordin T.

    2001-01-01

    A method and apparatus for improving the performance of Synthetic Aperture Radar (SAR) systems by reducing the effect of "edge losses" associated with nonuniform receiver antenna gain. By moving the receiver antenna pattern in synchrony with the apparent motion of the transmitted pulse along the ground, the maximum available receiver antenna gain can be used at all times. Also, the receiver antenna gain for range-ambiguous return signals may be reduced, in some cases, by a large factor. The beam motion can be implemented by real-time adjustment of phase shifters in an electronically-steered phased-array antenna or by electronic switching of feed horns in a reflector antenna system.

  19. Mixed composition materials suitable for vacuum web sputter coating

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Rutledge, Sharon K.; Dever, Joyce A.; Bruckner, Eric J.; Walters, Patricia; Hambourger, Paul D.

    1996-01-01

    Ion beam sputter deposition techniques were used to investigate simultaneous sputter etching of two component targets so as to produce mixed composition films. Although sputter deposition has been largely confined to metals and metal oxides, at least one polymeric material, poly-tetra-fluorethylene, has been demonstrated to produce sputtered fragments which repolymerize upon deposition to produce a highly cross-linked fluoropolymer resembling that of the parent target Fluoropolymer-filled silicon dioxide and fluoropolymer-filled aluminum oxide coatings have been deposited by means of ion beam sputter coat deposition resulting in films having material properties suitable for aerospace and commercial applications. The addition of fluoropolymer to silicon dioxide films was found to increase the hydrophobicity of the resulting mixed films; however, adding fluoropolymer to aluminum oxide films resulted in a reduction in hydrophobicity, thought to be caused by aluminum fluoride formation.

  20. Arrayed waveguide grating using the finite difference beam propagation method

    NASA Astrophysics Data System (ADS)

    Toledo, M. C. F.; Alayo, M. I.

    2013-03-01

    The purpose of this work is to analyze by simulation the coupling effects occurring in Arrayed Waveguide Grating (AWG) using the finite difference beam propagation method (FD-BPM). Conventional FD-BPM techniques do not immediately lend themselves to the analysis of large structures such as AWG. Cooper et al.1 introduced a description of the coupling between the interface of arrayed waveguides and star couplers using the numerically-assisted coupled-mode theory. However, when the arrayed waveguides are spatially close, such that, there is strong coupling between them, and coupled-mode theory is not adequate. On the other hand, Payne2 developed an exact eigenvalue equation for the super modes of a straight arrayed waveguide which involve a computational overhead. In this work, an integration of both methods is accomplished in order to describe the behavior of the propagation of light in guided curves. This new method is expected to reduce the necessary effort for simulation while also enabling the simulation of large and curved arrayed waveguides using a fully vectorial finite difference technique.

  1. Comparison of the Sputter Rates of Oxide Films Relative to the Sputter Rate of SiO2

    SciTech Connect

    Baer, Donald R.; Engelhard, Mark H.; Lea, Alan S.; Nachimuthu, Ponnusamy; Droubay, Timothy C.; Kim, J.; Lee, B.; Mathews, C.; Opila, R. L.; Saraf, Laxmikant V.; Stickle, William F.; Wallace, Robert; Wright, B. S.

    2010-09-02

    Because of the increasing technological importance of oxide films for a variety of applications, there is a growing interest in knowing the sputter rates for a wide variety of oxides. To support needs of users of the Environmental Molecular Sciences Laboratory (EMSL) User facility as well as our research programs, we have made a series of measurements of the sputter rates for oxide films that have been grown by oxygen plasma assisted molecular beam epitaxy (OPA-MBE), pulsed laser deposition (PLD), Atomic Layer Deposition (ALD), electrochemical oxidation, or sputter deposition. The sputter rates for these oxide films were determined in comparison to the sputter rates for thermally grown SiO2, a common sputter rate reference material. The film thicknesses and densities of these films were usually measured using x-ray reflectivity (XRR). These samples were mounted in an x-ray photoelectron spectroscopy (XPS) system or an Auger electron spectrometer for sputtering measurements using argon ion sputtering. Although the primary objective was to determine relative sputter rates at a fixed angle, the measurements were also used to determine: i) the angle dependence of the relative sputter rates; ii) the energy dependence of the relative sputter rates; and iii) the extent of ion beam reduction for the various oxides. Materials examined include: SiO2 (reference films), Al2O3, CeO2, Cr2O3, Fe2O3, HfO2, ITO (In-Sn-oxide) Ta2O5, TiO2 (anatase and rutile) and ZnO. We find that the sputter rates for the oxides can vary up to a factor of two (usually slower) from that observed for SiO2. The ratios of sputter rates to SiO2 appear to be relatively independent of ion beam energy for the range of 1kV to 4 kV and for incident angles of less than 50º. As expected, the ion beam reduction of the oxides varies with the sputter angle. These studies demonstrate that we can usually obtain sputter rate reproducibility better than 5% for similar oxide films.

  2. Solar system sputtering

    NASA Technical Reports Server (NTRS)

    Tombrello, T. A.

    1982-01-01

    The sites and materials involved in solar system sputtering of planetary surfaces are reviewed, together with existing models for the processes of sputtering. Attention is given to the interaction of the solar wind with planetary atmospheres in terms of the role played by the solar wind in affecting the He-4 budget in the Venus atmosphere, and the erosion and differentiation of the Mars atmosphere by solar wind sputtering. The study is extended to the production of isotopic fractionation and anomalies in interplanetary grains by irradiation, and to erosion effects on planetary satellites with frozen volatile surfaces, such as with Io, Europa, and Ganymede. Further measurements are recommended of the molecular form of the ejected material, the yields and energy spectra of the sputtered products, the iosotopic fractionation sputtering causes, and the possibility of electronic sputtering enhancement with materials such as silicates.

  3. Sputter deposition for multi-component thin films

    DOEpatents

    Krauss, Alan R.; Auciello, Orlando

    1990-01-01

    Ion beam sputter-induced deposition using a single ion beam and a multicomponent target is capable of reproducibly producing thin films of arbitrary composition, including those which are close to stoichiometry. Using a quartz crystal deposition monitor and a computer controlled, well-focused ion beam, this sputter-deposition approach is capable of producing metal oxide superconductors and semiconductors of the superlattice type such as GaAs-AlGaAs as well as layered metal/oxide/semiconductor/superconductor structures. By programming the dwell time for each target according to the known sputtering yield and desired layer thickness for each material, it is possible to deposit composite films from a well-controlled sub-monolayer up to thicknesses determined only by the available deposition time. In one embodiment, an ion beam is sequentially directed via a set of X-Y electrostatic deflection plates onto three or more different element or compound targets which are constituents of the desired film. In another embodiment, the ion beam is directed through an aperture in the deposition plate and is displaced under computer control to provide a high degree of control over the deposited layer. In yet another embodiment, a single fixed ion beam is directed onto a plurality of sputter targets in a sequential manner where the targets are each moved in alignment with the beam under computer control in forming a multilayer thin film. This controlled sputter-deposition approach may also be used with laser and electron beams.

  4. Sputter deposition for multi-component thin films

    DOEpatents

    Krauss, A.R.; Auciello, O.

    1990-05-08

    Ion beam sputter-induced deposition using a single ion beam and a multicomponent target is capable of reproducibly producing thin films of arbitrary composition, including those which are close to stoichiometry. Using a quartz crystal deposition monitor and a computer controlled, well-focused ion beam, this sputter-deposition approach is capable of producing metal oxide superconductors and semiconductors of the superlattice type such as GaAs-AlGaAs as well as layered metal/oxide/semiconductor/superconductor structures. By programming the dwell time for each target according to the known sputtering yield and desired layer thickness for each material, it is possible to deposit composite films from a well-controlled sub-monolayer up to thicknesses determined only by the available deposition time. In one embodiment, an ion beam is sequentially directed via a set of X-Y electrostatic deflection plates onto three or more different element or compound targets which are constituents of the desired film. In another embodiment, the ion beam is directed through an aperture in the deposition plate and is displaced under computer control to provide a high degree of control over the deposited layer. In yet another embodiment, a single fixed ion beam is directed onto a plurality of sputter targets in a sequential manner where the targets are each moved in alignment with the beam under computer control in forming a multilayer thin film. This controlled sputter-deposition approach may also be used with laser and electron beams. 10 figs.

  5. Means and method for the focusing and acceleration of parallel beams of charged particles

    DOEpatents

    Maschke, Alfred W.

    1983-07-05

    A novel apparatus and method for focussing beams of charged particles comprising planar arrays of electrostatic quadrupoles. The quadrupole arrays may comprise electrodes which are shared by two or more quadrupoles. Such quadrupole arrays are particularly adapted to providing strong focussing forces for high current, high brightness, beams of charged particles, said beams further comprising a plurality of parallel beams, or beamlets, each such beamlet being focussed by one quadrupole of the array. Such arrays may be incorporated in various devices wherein beams of charged particles are accelerated or transported, such as linear accelerators, klystron tubes, beam transport lines, etc.

  6. Method and apparatus for reducing coherence of high-power laser beams

    DOEpatents

    Moncur, Norman K.; Mayer, Frederick J.

    1978-01-01

    Method and apparatus for reducing the coherence and for smoothing the power density profile of a collimated high-power laser beam in which the beam is focused at a point on the surface of a target fabricated of material having a low atomic number. The initial portion of the focused beam heats the material to form a hot reflective plasma at the material surface. The remaining, major portion of the focused beam is reflected by the plasma and recollected to form a collimated beam having reduced beam coherence.

  7. Investigation of the biaxial stress of Al-doped ZnO thin films on a flexible substrate with RF magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Huang, Kuo-Ting; Chen, Hsi-Chao; Cheng, Po-Wei; Chang, Jhe-Ming

    2016-01-01

    Transparent conductive Al-doped ZnO (AZO) thin films were deposited onto poly(ethylene terephthalate) (PET) substrate, using the radio frequency (RF) magnetron sputtering method. The residual stress of flexible electronics was investigated by a double beam shadow moiré interferometer with phase shifting interferometry (PSI). Moreover, the biaxial stress of AZO thin films can be graphically represented by using Mohr’s circle of stress. The residual stress of AZO thin films becomes more compressive with the increase in sputtering power. The maximum residual stress is -1115.74 MPa, and the shearing stress is 490.57 MPa at a sputtering power of 200 W. The trends of residual stress were evidenced by the X-ray diffraction (XRD) patterns and optical properties of AZO thin films. According to the evaluation results of the refractive index and the extinction coefficient, the AZO thin films have better quality when the sputtering power less than 100 W.

  8. Preparation of Ca-Si Films on (001) Al2O3 Substrates by an RF Magnetron Sputtering Method and Their Electrical Properties

    NASA Astrophysics Data System (ADS)

    Uehara, Mutsuo; Akiyama, Kensuke; Shimizu, Takao; Matsushima, Masaaki; Uchida, Hiroshi; Kimura, Yoshisato; Funakubo, Hiroshi

    2016-06-01

    The constituent phases, electrical conductivity, and Seebeck coefficient of Ca-Si films deposited on (001) Al2O3 substrates by a radio frequency magnetron sputtering method using a Mg disk target with Ca and Si chips are investigated. X-ray diffraction analysis indicates that the films consist of a single phase of CaSi2, CaSi or Ca5Si3 that are deposited together with the films consisting of a mixture of CaSi2 and CaSi. Films with a CaSi2 or CaSi single phase exhibit a metallic behavior. In contrast, films with a Ca5Si3 single phase show p-type conduction and their Seebeck coefficient reaches 90 μV/K at 400°C.

  9. Optical properties and surface morphology of Li-doped ZnO thin films deposited on different substrates by DC magnetron sputtering method

    NASA Astrophysics Data System (ADS)

    Mohamed, Galal A.; Mohamed, El-Maghraby; Abu El-Fadl, A.

    2001-12-01

    Thin films of zinc oxide doped with Zn 1- xLi xO with x=0.2 (ZnO : Li), have been prepared on sapphire, MgO and quartz substrates by DC magnetron sputtering method at 5 mTorr. The substrate temperatures were fixed to about 573 K. We have measured the transmission and reflection spectra and determined the absorption coefficient, optical band-gap ( Egdopt), the high frequency dielectric constant ε‧ ∞ and the carrier concentration N for the as-prepared films at room temperature. The films show direct allowed optical transitions with Egdopt values of 3.38, 3.43 and 3.29 eV for films deposited on sapphire, MgO and quartz substrates, respectively. The dependence of the obtained results on the substrate type are discussed.

  10. Effect of Substrate Temperature on Ti/TiO2 Layers Growth Using a Combined Sputtering/Sol-Gel Combustion Method.

    PubMed

    Kim, Sang-Gon; Sung, Youl-Moon; Shin, Hoon-Kyu

    2015-02-01

    A combined radio frequency sputtering/sol-gel combustion method was investigated in order to obtain optimum process condition for fabrication of a Titanium (Ti)/Titanium oxide (TiO2) films electrode of transparent conductive oxide-less dye-sensitized solar cells (TCO-less DSCs), Experimentally, the substrate temperature was changed from R.T. to 500 °C, and it was found that there existed an optimum value for efficient performance of the cell. The porous Ti layer with low sheet resistance (-2.5 Ω/sq.) can be prepared by substrate temperature 250 °C under RF power 300 W and Ar 8 mTorr. The efficiency (η) of the cell was 6.52% [FF: 0.76, VOC: 0.72 V, JSC: 11.91 mA/cm2]. PMID:26353715

  11. Simulation of nanoindentation experiment on RF magnetron sputtered nanocolumnar V2O5 film using finite element method

    NASA Astrophysics Data System (ADS)

    Porwal, Deeksha; Gupta, A. K.; Pillai, Anju M.; Sharma, Anand Kumar; Mukhopadhyay, Anoop Kumar; Khan, Kallol; Dey, Arjun

    2016-07-01

    The present work reports the nanomechanical behavior of a pulsed radio frequency (RF) magnetron sputtered vanadium pentoxide (V2O5) film deposited on silicon (Si) substrate using a combination of nanoindentation experiments and a finite element model (FEM). Deposited V2O5 film is characterized by x-ray diffraction (XRD), nanoprofilometry, field emission scanning electron microscopy (FESEM), nanoindentation and FEM. The phase pure 6.16 μm V2O5 film shows a nanocolumnar structure. The film exhibits nanohardness (H) of 0.16 ± 0.013 GPa and Young’s modulus (E) of about 12.05 ± 1.41 GPa. The FEM reproduces experimentally obtained load versus depth (P–h) plot and subsequently give yield stress and strain hardening component data of V2O5 film on Si substrate. Stress–strain behavior and von-Mises stress distribution of the V2O5 film with Si substrate system are also simulated. The FE model confirms the local maximum equivalent stress active underneath the nanoindenters to be nearly twice as high as the yield stress and thereby explains the plastic deformation observed in the V2O5 film.

  12. Apparatus and method for improving radiation coherence and reducing beam emittance

    DOEpatents

    Csonka, P.L.

    1992-05-12

    A method and apparatus for increasing the coherence and reducing the emittance of a beam-shaped pulse operates by splitting the pulse into multiple sub-beams, delaying the propagation of the various sub-beams by varying amounts, and then recombining the sub-beams by means of a rotating optical element to form a pulse of longer duration with improved transverse coherence. 16 figs.

  13. Apparatus and method for improving radiation coherence and reducing beam emittance

    DOEpatents

    Csonka, Paul L.

    1992-01-01

    A method and apparatus for increasing the coherence and reducing the emittance of a beam-shaped pulse operates by splitting the pulse into multiple sub-beams, delaying the propagation of the various sub-beams by varying amounts, and then recombining the sub-beams by means of a rotating optical element to form a pulse of longer duration with improved transverse coherence.

  14. Overview of Recent Trends in Beam Cooling Methods and Technology

    SciTech Connect

    Meshkov, Igor; Moehl, Dieter

    2006-03-20

    In this introductory paper, we try to give an idea of new developments in beam cooling since COOL03. We will concentrate on trends in electron cooling, stochastic cooling, muon cooling and beam crystallization; trends, which we think, will mark the future. We hope to touch upon some of the major ideas and topics that will be developed in detail at this workshop.

  15. Resonance ionization mass spectrometry of ion beam sputtered neutrals for element- and isotope-selective analysis of plutonium in micro-particles.

    PubMed

    Erdmann, N; Kratz, J-V; Trautmann, N; Passler, G

    2009-11-01

    Micro-particles containing actinides are of interest for risk assessments of contaminated areas, nuclear forensic analyses, and IAEA as well as Euratom safeguards programs. For their analysis, secondary ion mass spectrometry (SIMS) has been established as the state-of-the-art standard technique. In the case of actinide mixtures within the particles, however, SIMS suffers from isobaric interferences (e.g., (238)U/(238)Pu, (241)Am/(241)Pu). This can be eliminated by applying resonance ionization mass spectrometry which is based on stepwise resonant excitation and ionization of atoms with laser light, followed by mass spectrometric detection of the produced ions, combining high elemental selectivity with the analysis of isotopic compositions. This paper describes the instrumental modifications for coupling a commercial time-of-flight (TOF)-SIMS apparatus with three-step resonant post-ionization of the sputtered neutrals using a high-repetition-rate (kHz) Nd:YAG laser pumped tunable titanium:sapphire laser system. Spatially resolved ion images obtained from actinide-containing particles in TOF-SIMS mode demonstrate the capability for isotopic and spatial resolution. Results from three-step resonant post-ionization of bulk Gd and Pu samples successfully demonstrate the high elemental selectivity of this process. PMID:19557397

  16. Simultaneous determination of electron beam profile and material response using self-consistent iterative method

    NASA Astrophysics Data System (ADS)

    Kandel, Yudhishthir; Denbeaux, Gregory

    2016-08-01

    We develop a novel iterative method to accurately measure electron beam shape (current density distribution) and monotonic material response as a function of position. A common method is to scan an electron beam across a knife edge along many angles to give an approximate measure of the beam profile, however such scans are not easy to obtain in all systems. The present work uses only an electron beam and multiple exposed regions of a thin film of photoresist to measure the complete beam profile for any beam shape, where the material response is characterized externally. This simplifies the setup of new experimental tools. We solve for self-consistent photoresist thickness loss response to dose and the electron beam profile simultaneously by optimizing a novel functional iteratively. We also show the successful implementation of the method in a real world data set corrupted by noise and other experimental variabilities.

  17. Preparation of nitrogen-substituted TiO2 thin film photocatalysts by the radio frequency magnetron sputtering deposition method and their photocatalytic reactivity under visible light irradiation.

    PubMed

    Kitano, Masaaki; Funatsu, Keisho; Matsuoka, Masaya; Ueshima, Michio; Anpo, Masakazu

    2006-12-21

    Nitrogen-substituted TiO2 (N-TiO2) thin film photocatalysts have been prepared by a radio frequency magnetron sputtering (RF-MS) deposition method using a N2/Ar mixture sputtering gas. The effect of the concentration of substituted nitrogen on the characteristics of the N-TiO2 thin films was investigated by UV-vis absorption spectroscopy, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and scanning electron microscopy (SEM) analyses. The absorption band of the N-TiO2 thin film was found to shift smoothly to visible light regions up to 550 nm, its extent depending on the concentration of nitrogen substituted within the TiO2 lattice in a range of 2.0-16.5%. The N-TiO2 thin film photocatalyst with a nitrogen concentration of 6.0% exhibited the highest reactivity for the photocatalytic oxidation of 2-propanol diluted in water even under visible (lambda > or = 450 nm) or solar light irradiation. Moreover, N-TiO2 thin film photocatalysts prepared on conducting glass electrodes showed anodic photocurrents attributed to the photooxidation of water under visible light, its extent depending on wavelengths up to 550 nm. The absorbed photon to current conversion efficiencies reached 25.2% and 22.4% under UV (lambda = 360 nm) and visible light (lambda = 420 nm), respectively. UV-vis and photoelectrochemical investigations also confirmed that these thin films remain thermodynamically and mechanically stable even under heat treatment at 673 K. In addition, XPS and XRD studies revealed that a significantly high substitution of the lattice O atoms of the TiO2 with the N atoms plays a crucial role in the band gap narrowing of the TiO2 thin films, enabling them to absorb and operate under visible light irradiation as a highly reactive, effective photocatalyst. PMID:17165971

  18. In vitro Cyto and Blood Compatibility of Titanium Containing Diamond-Like Carbon Prepared by Hybrid Sputtering Method

    NASA Astrophysics Data System (ADS)

    Krishnasamy Navaneetha, Pandiyaraj; Jan, Heeg; Andreas, Lampka; Fabian, Junge; Torsten, Barfels; Marion, Wienecke; Young, Ha Rhee; Hyoung, Woo Kim

    2012-09-01

    In recent years, diamond-like carbon films (DLC) have been given more attention in research in the biomedical industry due to their potential application as surface coating on biomedical materials such as metals and polymer substrates. There are many ways to prepare metal containing DLC films deposited on polymeric film substrates, such as coatings from carbonaceous precursors and some means that incorporate other elements. In this study, we investigated both the surface and biocompatible properties of titanium containing DLC (Ti-DLC) films. The Ti-DLC films were prepared on the surface of poly (ethylene terephthalate) (PET) film as a function of the deposition power level using reactive sputtering technique. The films' hydrophilicity was studied by contact angle and surface energy tests. Their surface morphology was studied by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Their elemental chemical composition was analyzed using energy dispersive X-spectra (EDX) and X-ray photoelectron spectroscopy (XPS). Their blood and cell compatibility was studied by in vitro tests, including tests on platelet adhesion, thrombus formation, whole blood clotting time and osteoblast cell compatibility. Significant changes in the morphological and chemical composition of the Ti-DLC films were observed and found to be a function of the deposition level. These morphological and chemical changes reduced the interfacial tension between Ti-DLC and blood proteins as well as resisted the adhesion and activation of platelets on the surface of the Ti-DLC films. The cell compatibility results exhibited significant growth of osteoblast cells on the surface of Ti incorporated DLC film compared with that of DLC film surface.

  19. Secondary growth mechanism of SiGe islands deposited on a mixed-phase microcrystalline Si by ion beam co-sputtering.

    PubMed

    Ke, S Y; Yang, J; Qiu, F; Wang, Z Q; Wang, C; Yang, Y

    2015-11-01

    We discuss the SiGe island co-sputtering deposition on a microcrystalline silicon (μc-Si) buffer layer and the secondary island growth based on this pre-SiGe island layer. The growth phenomenon of SiGe islands on crystalline silicon (c-Si) is also investigated for comparison. The pre-SiGe layer grown on μc-Si exhibits a mixed-phase structure, including SiGe islands and amorphous SiGe (a-SiGe) alloy, while the layer deposited on c-Si shows a single-phase island structure. The preferential growth and Ostwald ripening growth are shown to be the secondary growth mechanism of SiGe islands on μc-Si and c-Si, respectively. This difference may result from the effect of amorphous phase Si (AP-Si) in μc-Si on the island growth. In addition, the Si-Ge intermixing behavior of the secondary-grown islands on μc-Si is interpreted by constructing the model of lateral atomic migration, while this behavior on c-Si is ascribed to traditional uphill atomic diffusion. It is found that the aspect ratios of the preferential-grown super islands are higher than those of the Ostwald-ripening ones. The lower lateral growth rate of super islands due to the lower surface energy of AP-Si on the μc-Si buffer layer for the non-wetting of Ge at 700 °C and the stronger Si-Ge intermixing effect at 730 °C may be responsible for this aspect ratio difference. PMID:26457572

  20. Secondary growth mechanism of SiGe islands deposited on a mixed-phase microcrystalline Si by ion beam co-sputtering

    NASA Astrophysics Data System (ADS)

    Ke, S. Y.; Yang, J.; Qiu, F.; Wang, Z. Q.; Wang, C.; Yang, Y.

    2015-11-01

    We discuss the SiGe island co-sputtering deposition on a microcrystalline silicon (μc-Si) buffer layer and the secondary island growth based on this pre-SiGe island layer. The growth phenomenon of SiGe islands on crystalline silicon (c-Si) is also investigated for comparison. The pre-SiGe layer grown on μc-Si exhibits a mixed-phase structure, including SiGe islands and amorphous SiGe (a-SiGe) alloy, while the layer deposited on c-Si shows a single-phase island structure. The preferential growth and Ostwald ripening growth are shown to be the secondary growth mechanism of SiGe islands on μc-Si and c-Si, respectively. This difference may result from the effect of amorphous phase Si (AP-Si) in μc-Si on the island growth. In addition, the Si-Ge intermixing behavior of the secondary-grown islands on μc-Si is interpreted by constructing the model of lateral atomic migration, while this behavior on c-Si is ascribed to traditional uphill atomic diffusion. It is found that the aspect ratios of the preferential-grown super islands are higher than those of the Ostwald-ripening ones. The lower lateral growth rate of super islands due to the lower surface energy of AP-Si on the μc-Si buffer layer for the non-wetting of Ge at 700 °C and the stronger Si-Ge intermixing effect at 730 °C may be responsible for this aspect ratio difference.

  1. Beam Conditioning for Free Electron Lasers:Consequences and Methods

    SciTech Connect

    Wolski, A.; Penn, G.; Sessler, A.; Wurtele, J.; /LBL, Berkeley /UC, Berkeley, Astron. Dept.

    2010-12-14

    The consequences of beam conditioning in four example cases [VISA, a soft x-ray free-electron laser (FEL), LCLS, and a 'Greenfield' FEL] are examined. It is shown that in emittance limited cases, proper conditioning reduces sensitivity to the transverse emittance and, furthermore, allows for stronger focusing in the undulator. Simulations show higher saturation power, with gain lengths reduced by a factor of 2 or more. The beam dynamics in a general conditioning system are studied, with 'matching conditions' derived for achieving conditioning without growth in the effective emittance. Various conditioning lattices are considered, and expressions derived for the amount of conditioning provided in each case when the matching conditions are satisfied. These results show that there is no fundamental obstacle to producing beam conditioning, and that the problem can be reduced to one of proper lattice design. Nevertheless, beam conditioning will not be easy to implement in practice.

  2. Beam conditioning for free electron lasers: Consequences and methods

    NASA Astrophysics Data System (ADS)

    Wolski, A.; Penn, G.; Sessler, A.; Wurtele, J.

    2004-08-01

    The consequences of beam conditioning in four example cases [VISA, a soft x-ray free-electron laser (FEL), LCLS, and a “Greenfield” FEL] are examined. It is shown that in emittance limited cases, proper conditioning reduces sensitivity to the transverse emittance and, furthermore, allows for stronger focusing in the undulator. Simulations show higher saturation power, with gain lengths reduced by a factor of2 or more. The beam dynamics in a general conditioning system are studied, with “matching conditions” derived for achieving conditioning without growth in the effective emittance. Various conditioning lattices are considered, and expressions derived for the amount of conditioning provided in each case when the matching conditions are satisfied. These results show that there is no fundamental obstacle to producing beam conditioning, and that the problem can be reduced to one of proper lattice design. Nevertheless, beam conditioning will not be easy to implement in practice.

  3. Electrostatic dispersion lenses and ion beam dispersion methods

    DOEpatents

    Dahl, David A [Idaho Falls, ID; Appelhans, Anthony D [Idaho Falls, ID

    2010-12-28

    An EDL includes a case surface and at least one electrode surface. The EDL is configured to receive through the EDL a plurality of ion beams, to generate an electrostatic field between the one electrode surface and either the case surface or another electrode surface, and to increase the separation between the beams using the field. Other than an optional mid-plane intended to contain trajectories of the beams, the electrode surface or surfaces do not exhibit a plane of symmetry through which any beam received through the EDL must pass. In addition or in the alternative, the one electrode surface and either the case surface or the other electrode surface have geometries configured to shape the field to exhibit a less abrupt entrance and/or exit field transition in comparison to another electrostatic field shaped by two nested, one-quarter section, right cylindrical electrode surfaces with a constant gap width.

  4. Heavy ion beams in extended materials - Computational methods and experiment

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Schimmerling, W.; Wong, M.; Townsend, L. W.

    1987-01-01

    The transport of heavy ion beams in extended materials is a problem of interest in accelerator and space shielding, radiation therapy, and astrophysical and radiobiological studies. The beam particles change their energy and direction of motion through atomic/molecular collisions and undergo occasional radical transformation in nuclear collision. In health physics applications, a heavy ion beam of initially well defined radiation quality is transformed into a complex mixture of diverse quality components after passing through a modest amount of material. This transformation of radiation quality must be understood to adequately explain the biological response of tissue to heavy ion radiation. A theoretical/experimental program to define an ion beam and its products in extended matter is described.

  5. Micro-beam friction liner and method of transferring energy

    DOEpatents

    Mentesana, Charles

    2007-07-17

    A micro-beam friction liner adapted to increase performance and efficiency and reduce wear in a piezoelectric motor or actuator or other device using a traveling or standing wave to transfer energy in the form of torque and momentum. The micro-beam friction liner comprises a dense array of micro-beam projections having first ends fixed relative to a rotor and second ends projecting substantially toward a plurality of teeth of a stator, wherein the micro-beam projections are compressed and bent during piezoelectric movement of the stator teeth, thereby storing the energy, and then react against the stator teeth to convert the stored energy stored to rotational energy in the rotor.

  6. Method and apparatus for varying accelerator beam output energy

    DOEpatents

    Young, Lloyd M.

    1998-01-01

    A coupled cavity accelerator (CCA) accelerates a charged particle beam with rf energy from a rf source. An input accelerating cavity receives the charged particle beam and an output accelerating cavity outputs the charged particle beam at an increased energy. Intermediate accelerating cavities connect the input and the output accelerating cavities to accelerate the charged particle beam. A plurality of tunable coupling cavities are arranged so that each one of the tunable coupling cavities respectively connect an adjacent pair of the input, output, and intermediate accelerating cavities to transfer the rf energy along the accelerating cavities. An output tunable coupling cavity can be detuned to variably change the phase of the rf energy reflected from the output coupling cavity so that regions of the accelerator can be selectively turned off when one of the intermediate tunable coupling cavities is also detuned.

  7. Expanded beam deflection method for simultaneous measurement of displacement and vibrations of multiple microcantilevers

    SciTech Connect

    Nieradka, K.; MaloziePc, G.; Kopiec, D.; Gotszalk, T.

    2011-10-15

    Here we present an extension of optical beam deflection (OBD) method for measuring displacement and vibrations of an array of microcantilevers. Instead of focusing on the cantilever, the optical beam is either focused above or below the cantilever array, or focused only in the axis parallel to the cantilevers length, allowing a wide optical line to span multiple cantilevers in the array. Each cantilever reflects a part of the incident beam, which is then directed onto a photodiode array detector in a manner allowing distinguishing between individual beams. Each part of reflected beam behaves like a single beam of roughly the same divergence angle in the bending sensing axis as the incident beam. Since sensitivity of the OBD method depends on the divergence angle of deflected beam, high sensitivity is preserved in proposed expanded beam deflection (EBD) method. At the detector, each spot's position is measured at the same time, without time multiplexing of light sources. This provides real simultaneous readout of entire array, unavailable in most of competitive methods, and thus increases time resolution of the measurement. Expanded beam can also span another line of cantilevers allowing monitoring of specially designed two-dimensional arrays. In this paper, we present first results of application of EBD method to cantilever sensors. We show how thermal noise resolution can be easily achieved and combined with thermal noise based resonance frequency measurement.

  8. Expanded beam deflection method for simultaneous measurement of displacement and vibrations of multiple microcantilevers.

    PubMed

    Nieradka, K; Małozięć, G; Kopiec, D; Grabiec, P; Janus, P; Sierakowski, A; Gotszalk, T

    2011-10-01

    Here we present an extension of optical beam deflection (OBD) method for measuring displacement and vibrations of an array of microcantilevers. Instead of focusing on the cantilever, the optical beam is either focused above or below the cantilever array, or focused only in the axis parallel to the cantilevers length, allowing a wide optical line to span multiple cantilevers in the array. Each cantilever reflects a part of the incident beam, which is then directed onto a photodiode array detector in a manner allowing distinguishing between individual beams. Each part of reflected beam behaves like a single beam of roughly the same divergence angle in the bending sensing axis as the incident beam. Since sensitivity of the OBD method depends on the divergence angle of deflected beam, high sensitivity is preserved in proposed expanded beam deflection (EBD) method. At the detector, each spot's position is measured at the same time, without time multiplexing of light sources. This provides real simultaneous readout of entire array, unavailable in most of competitive methods, and thus increases time resolution of the measurement. Expanded beam can also span another line of cantilevers allowing monitoring of specially designed two-dimensional arrays. In this paper, we present first results of application of EBD method to cantilever sensors. We show how thermal noise resolution can be easily achieved and combined with thermal noise based resonance frequency measurement. PMID:22047334

  9. METHOD AND APPARATUS FOR PULSING A CHARGED PARTICLE BEAM

    DOEpatents

    Aaland, K.; Kuenning, R.W.; Harmon, R.K.

    1961-05-01

    A system is offered for pulsing a continuous beam of charged particles to form beam pulses that are consistently rectangular and of precise time durations which may be varied over an extremely wide range at a widely variable range of repetition rates. The system generally comprises spaced deflection plates on opposite sides of a beam axis in between which a unidirectional bias field is established to deflect the beam for impingement on an off-axis collector. The bias field is periodically neutralized by the application of fast rise time substantially rectangular pulses to one of the deflection plates in opposition to the bias field and then after a time delay to the other deflection plate in aiding relation to the bias field and during the flat crest portion of the bias opposing pulses. The voltage distribution of the resulting deflection field then includes neutral or zero portions which are of symmetrical substantially rectangular configuration relative to time and during which the beam axially passes the collector in the form of a substantially rectangular beam pulse.

  10. CRIS: A new method in isomeric beam production

    NASA Astrophysics Data System (ADS)

    Lynch, K. M.; Billowes, J.; Bissell, M. L.; Budincevic, I.; Cocolios, T. E.; De Groote, R. P.; De Schepper, S.; Fedosseev, V. N.; Flanagan, K. T.; Franchoo, S.; Garcia Ruiz, R. F.; Heylen, H.; Marsh, B. A.; Mason, P. J. R.; Neyens, G.; Procter, T. J.; Rossel, R. E.; Rothe, S.; Simpson, G. S.; Smith, A. J.; Strashnov, I.; Stroke, H. H.; Walker, P. M.; Wendt, K. D. A.; Wood, R. T.

    2013-12-01

    The Collinear Resonance Ionization Spectroscopy (CRIS) experiment at ISOLDE, CERN, uses laser radiation to stepwise excite and ionize an atomic beam for the purpose of ultra-sensitive detection of rare isotopes, and hyperfine-structure measurements. The technique also offers the ability to purify an ion beam that is heavily contaminated with radioactive isobars, including the ground state of an isotope from its isomer, allowing decay spectroscopy on nuclear isomeric states to be performed. The isomeric ion beam is selected by resonantly exciting one of its hyperfine structure levels, and subsequently ionizing it. This selectively ionized beam is deflected to a decay spectroscopy station (DSS). This consists of a rotating wheel implantation system for alpha- and beta-decay spectroscopy, and up to three germanium detectors around the implantation site for gamma-ray detection. Resonance ionization spectroscopy and the new technique of laser assisted nuclear decay spectroscopy have recently been performed at the CRIS beam line on the neutron-deficient francium isotopes. Here an overview of the two techniques will be presented, alongside a description of the CRIS beam line and DSS.

  11. Method and apparatus for monitoring the power of a laser beam

    DOEpatents

    Paris, Robert D.; Hackel, Richard P.

    1996-01-01

    A method for monitoring the power of a laser beam in real time is disclosed. At least one optical fiber is placed through the laser beam, where a portion of light from the laser beam is coupled into the optical fiber. The optical fiber may be maintained in a stationary position or moved periodically over a cross section of the laser beam to couple light from each area traversed. Light reaching both fiber ends is monitored according to frequency and processed to determine the power of the laser beam.

  12. Method and apparatus for monitoring the power of a laser beam

    DOEpatents

    Paris, R.D.; Hackel, R.P.

    1996-02-06

    A method for monitoring the power of a laser beam in real time is disclosed. At least one optical fiber is placed through the laser beam, where a portion of light from the laser beam is coupled into the optical fiber. The optical fiber may be maintained in a stationary position or moved periodically over a cross section of the laser beam to couple light from each area traversed. Light reaching both fiber ends is monitored according to frequency and processed to determine the power of the laser beam. 6 figs.

  13. Laser-driven deflection arrangements and methods involving charged particle beams

    DOEpatents

    Plettner, Tomas; Byer, Robert L.

    2011-08-09

    Systems, methods, devices and apparatus are implemented for producing controllable charged particle beams. In one implementation, an apparatus provides a deflection force to a charged particle beam. A source produces an electromagnetic wave. A structure, that is substantially transparent to the electromagnetic wave, includes a physical structure having a repeating pattern with a period L and a tilted angle .alpha., relative to a direction of travel of the charged particle beam, the pattern affects the force of the electromagnetic wave upon the charged particle beam. A direction device introduces the electromagnetic wave to the structure to provide a phase-synchronous deflection force to the charged particle beam.

  14. Enhancement of exchange bias and training effect in ion-beam sputtered Fe{sub 46}Mn{sub 54}/Ni{sub 81}Fe{sub 19} bilayers

    SciTech Connect

    Fulara, Himanshu; Chaudhary, Sujeet Kashyap, Subhash C.; Granville, Simon

    2014-01-28

    We present a remarkable enhancement by 300% of the exchange-bias field at room temperature, without affecting the coercivity value, via optimum magnetic annealing (250 °C/3 kOe) in ion-beam sputtered FeMn(30 nm)/NiFe(10 nm) bilayers. This specific behavior has been attributed to a higher degree of γ-FeMn(111) orientation that offers more interfacial FeMn moments to get pinned with the moments of the adjacent NiFe layer. Unlike the absence of training effect at room temperature, a pronounced training effect and an accompanying magnetization reversal asymmetry are evidenced upon field cooling below 50 K due to the presence of biaxial exchange induced anisotropy across the interdiffused FeMn/NiFe interface. The present findings not only have technological significance but also are of relevance to the understanding of interfacial spin disorder and frustration in these exchange-biased systems.

  15. Hollow target magnetron-sputter-type solid material ion source.

    PubMed

    Sasaki, D; Ieki, S; Kasuya, T; Wada, M

    2012-02-01

    A thin-walled aluminum (Al) hollow electrode has been inserted into an ion source to serve as an electrode for a radio frequency magnetron discharge. The produced plasma stabilized by argon (Ar) gas sputters the Al electrode to form a beam of Al(+) and Ar(+) ions. The total beam current extracted through a 3 mm diameter extraction hole has been 50 μA, with the Al(+) ion beam occupying 30% of the total beam current. PMID:22380320

  16. Hollow target magnetron-sputter-type solid material ion source

    SciTech Connect

    Sasaki, D.; Ieki, S.; Kasuya, T.; Wada, M.

    2012-02-15

    A thin-walled aluminum (Al) hollow electrode has been inserted into an ion source to serve as an electrode for a radio frequency magnetron discharge. The produced plasma stabilized by argon (Ar) gas sputters the Al electrode to form a beam of Al{sup +} and Ar{sup +} ions. The total beam current extracted through a 3 mm diameter extraction hole has been 50 {mu}A, with the Al{sup +} ion beam occupying 30% of the total beam current.

  17. Apparatus and method for increasing the bandwidth of a laser beam

    DOEpatents

    Chaffee, Paul H.

    1991-01-01

    A method and apparatus is disclosed that provides a laser output beam having a broad bandwidth and an intensity smooth over time. The bandwidth of the laser output can be varied easily by varying the intensity of a broadband source. The present invention includes an optical modulation apparatus comprising a narrowband laser that outputs a horizontally polarized beam (a "signal beam") and a broadband laser that outputs a vertically polarized beam (a "pump beam") whose intensity varies rapidly. The two beam are coupled into a birefringent laser material so that the respective polarizations coincide with the principal axes of the material. As the two beams travel through the material, the polarization preserving properties of the birefringent material maintain the respective polarizations of the two beam; however there is coupling between the two beams as a result of cross phase modulations, which induces a bandwidth change of the signal beam. The amount of bandwidth change is dependent upon the average intensity of the pump beam. The beams are coupled out from the birefringent material and the modulated signal beam is separated by a polarization selector. The modulated signal beam now has a wider bandwidth, and its shape remains smooth in time. This signal beam can be applied to incoherence inducing systems. The different bandwidths required by these different incoherence inducing systems can be obtained by varying the intensity of the pump beam. The United States Government has rights in this invention pursuant to Contract No. W7405-ENG-48 between the United States Department of Energy and the University of California for the operation of Lawrence Livermore National Laboratory.

  18. Low-damage high-throughput grazing-angle sputter deposition on graphene

    SciTech Connect

    Chen, C.-T.; Gajek, M.; Raoux, S.; Casu, E. A.

    2013-07-15

    Despite the prevalence of sputter deposition in the microelectronics industry, it has seen very limited applications for graphene electronics. In this letter, we report systematic investigation of the sputtering induced damages in graphene and identify the energetic sputtering gas neutrals as the primary cause of graphene disorder. We further demonstrate a grazing-incidence sputtering configuration that strongly suppresses fast neutral bombardment and retains graphene structure integrity, creating considerably lower damage than electron-beam evaporation. Such sputtering technique yields fully covered, smooth thin dielectric films, highlighting its potential for contact metals, gate oxides, and tunnel barriers fabrication in graphene device applications.

  19. Comparison of the sputter rates of oxide films relative to the sputter rate of SiO{sub 2}

    SciTech Connect

    Baer, D. R.; Engelhard, M. H.; Lea, A. S.; Nachimuthu, P.; Droubay, T. C.; Kim, J.; Lee, B.; Mathews, C.; Opila, R. L.; Saraf, L. V.; Stickle, W. F.; Wallace, R. M.; Wright, B. S.

    2010-09-15

    There is a growing interest in knowing the sputter rates for a wide variety of oxides because of their increasing technological importance in many different applications. To support the needs of users of the Environmental Molecular Sciences Laboratory, a national scientific user facility, as well as our research programs, the authors made a series of measurements of the sputter rates from oxide films that have been grown by oxygen plasma-assisted molecular beam epitaxy, pulsed laser deposition, atomic layer deposition, electrochemical oxidation, or sputter deposition. The sputter rates for these oxide films were determined in comparison with those from thermally grown SiO{sub 2}, a common reference material for sputter rate determination. The film thicknesses and densities for most of these oxide films were measured using x-ray reflectivity. These oxide films were mounted in an x-ray photoelectron or Auger electron spectrometer for sputter rate measurements using argon ion sputtering. Although the primary objective of this work was to determine relative sputter rates at a fixed angle, the measurements also examined (i) the angle dependence of the relative sputter rates, (ii) the energy dependence of the relative sputter rates, and (iii) the extent of ion beam induced reduction for some oxides. Oxide films examined include SiO{sub 2}, Al{sub 2}O{sub 3}, CeO{sub 2}, Cr{sub 2}O{sub 3}, Fe{sub 2}O{sub 3}, HfO{sub 2}, In-Sn oxide, Ta{sub 2}O{sub 5}, TiO{sub 2} (anatase, rutile, and amorphous), and ZnO. The authors found that the sputter rates for the oxides can vary up to a factor of 2 (usually lower) from that observed for SiO{sub 2}. The ratios of sputter rates relative to those of SiO{sub 2} appear to be relatively independent of ion beam energy in the range of 1-4 kV and for incident angles <50 deg. As expected, the extent of ion beam induced reduction of the oxides varies with the sputter angle.

  20. Corrosion Behaviour of Sputtered Alumina Thin Films

    NASA Astrophysics Data System (ADS)

    Reddy, I. Neelakanta; Dey, Arjun; Sridhara, N.; Anoop, S.; Bera, Parthasarathi; Rani, R. Uma; Anandan, Chinnasamy; Sharma, Anand Kumar

    2015-10-01

    Corrosion studies of sputtered alumina thin films grown on stainless steel (SS) 304 were carried out by linear polarization and electrochemical impedance spectroscopy. Noticeable changes were not observed in morphology and surface roughness of films after carrying out the corrosion test. Corrosion current density (icorr) of alumina coated SS decreased up to 10-10 A cm-2 while icorr value in the range of 10-5-10-6 A cm-2 was observed for bare SS. The direct sputtered film showed superior corrosion resistance behaviour than the reactive sputtered film. This might be attributed to the difference in thickness of the films sputtered by direct and reactive methods. The electronic structure of deposited alumina films was studied both before and after corrosion test by X-ray photoelectron spectroscopy technique which also confirmed no structural changes of alumina film after exposing it to corrosive environment.

  1. Large Area Sputter Coating on Glass

    NASA Astrophysics Data System (ADS)

    Katayama, Yoshihito

    Large glass has been used for commercial buildings, housings and vehicles for many years. Glass size for flat displays is getting larger and larger. The glass for the 8th generation is more than 5 m2 in area. Demand of the large glass is increasing not only in these markets but also in a solar cell market growing drastically. Therefore, large area coating is demanded to plus something else on glass more than ever. Sputtering and pyrolysis are the major coating methods on large glass today. Sputtering process is particularly popular because it can deposit a wide variety of materials in good coating uniformity on the glass. This paper describes typical industrial sputtering system and recent progress in sputtering technology. It also shows typical coated glass products in architectural, automotive and display fields and comments on their functions, film stacks and so on.

  2. Sputtering of uranium

    NASA Technical Reports Server (NTRS)

    Gregg, R.; Tombrello, T. A.

    1978-01-01

    Results are presented for an experimental study of the sputtering of U-235 atoms from foil targets by hydrogen, helium, and argon ions, which was performed by observing tracks produced in mica by fission fragments following thermal-neutron-induced fission. The technique used allowed measurements of uranium sputtering yields of less than 0.0001 atom/ion as well as yields involving the removal of less than 0.01 monolayer of the uranium target surface. The results reported include measurements of the sputtering yields for 40-120-keV protons, 40-120-keV He-4(+) ions, and 40- and 80-keV Ar-40(+) ions, the mass distribution of chunks emitted during sputtering by the protons and 80-keV Ar-40(+) ions, the total chunk yield during He-4(+) sputtering, and some limited data on molecular sputtering by H2(+) and H3(+). The angular distribution of the sputtered uranium is discussed, and the yields obtained are compared with the predictions of collision cascade theory.

  3. White light interferometry for quantitative surface characterization in ion sputtering experiments.

    SciTech Connect

    Baryshev, S. V.; Zinovev, A. V.; Tripa, C. E.; Erck, R. A.; Veryovkin, I. V.

    2012-07-01

    White light interferometry (WLI) can be used to obtain surface morphology information on dimensional scale of millimeters with lateral resolution as good as {approx}1 {micro}m and depth resolution down to 1 nm. By performing true three-dimensional imaging of sample surfaces, the WLI technique enables accurate quantitative characterization of the geometry of surface features and compares favorably to scanning electron and atomic force microscopies by avoiding some of their drawbacks. In this paper, results of using the WLI imaging technique to characterize the products of ion sputtering experiments are reported. With a few figures, several example applications of the WLI method are illustrated when used for (i) sputtering yield measurements and time-to-depth conversion, (ii) optimizing ion beam current density profiles, the shapes of sputtered craters, and multiple ion beam superposition and (iii) quantitative characterization of surfaces processed with ions. In particular, for sputter depth profiling experiments of {sup 25}Mg, {sup 44}Ca and {sup 53}Cr ion implants in Si (implantation energy of 1 keV per nucleon), the depth calibration of the measured depth profile curves determined by the WLI method appeared to be self-consistent with TRIM simulations for such projectile-matrix systems. In addition, high depth resolution of the WLI method is demonstrated for a case of a Genesis solar wind Si collector surface processed by gas cluster ion beam: a 12.5 nm layer was removed from the processed surface, while the transition length between the processed and untreated areas was 150 {micro}m.

  4. Production of pulsed atomic oxygen beams via laser vaporization methods

    NASA Technical Reports Server (NTRS)

    Brinza, David E.; Coulter, Daniel R.; Liang, Ranty H.; Gupta, Amitava

    1986-01-01

    The generation of energetic pulsed atomic oxygen beams by laser-driven evaporation of cryogenically frozen ozone/oxygen films and thin indium-tin oxide (ITO) films is reported. Mass spectroscopy is used in the mass and energy characterization of beams from the ozone/oxygen films, and a peak flux of 3 x 10 to the 20th/sq m per sec at 10 eV is found. Analysis of the time-of-flight data suggests that several processes contribute to the formation of the oxygen beam. Results show the absence of metastable states such as the 2p(3)3s(1)(5S) level of atomic oxygen blown-off from the ITO films. The present process has application to the study of the oxygen degradation problem of LEO materials.

  5. An interpretation and guide to single-pass beam shaping methods using SLMs and DMDs

    NASA Astrophysics Data System (ADS)

    Stilgoe, Alexander B.; Kashchuk, Anatolii V.; Preece, Daryl; Rubinsztein-Dunlop, Halina

    2016-06-01

    Exquisite manipulations of light can be performed with devices such as spatial light modulators (SLMs) and digital micromirror devices (DMDs). These devices can be used to simulate transverse paraxial beam wavefunction eigenstates such as the Hermite–Laguerre–Gaussian mode families. We investigate several beam shaping methods in terms of the wavefunctions of scattered light. Our analysis of the efficiency, behaviour and limitations of beam shaping methods is applied to both theory and experiment. The deviation from the ideal output from a valid beam shaping method is shown to be due to experimental factors which are not necessarily being accounted for. Incident beam mode shape, aberration, and the amplitude/phase transfer functions of the DMD and SLM impact the distribution of scattered light and hence the effectiveness and efficiency of a beam shaping method. Correcting for these particular details of the optical system accounts for all differences in efficiency and mode fidelity between experiment and theory. We explicitly show the impact of experimental parameter variations so that these problems may be diagnosed and corrected in an experimental beam shaping apparatus. We show that several beam shaping methods can be used for the production of beam modes in a single pass and the choice is based on the particular experimental conditions.

  6. An (ultra) high-vacuum compatible sputter source for oxide thin film growth

    SciTech Connect

    Mayr, Lukas; Köpfle, Norbert; Auer, Andrea; Klötzer, Bernhard; Penner, Simon

    2013-09-15

    A miniaturised CF-38 mountable sputter source for oxide and metal thin film preparation with enhanced high-vacuum and ultra-high-vacuum compatibility is described. The all home-built sputtering deposition device allows a high flexibility also in oxidic sputter materials, suitable deposition rates for preparation of films in the nm- and the sub-monolayer regime and excellent reliability and enhanced cleanliness for usage in UHV chambers. For a number of technologically important – yet hardly volatile – materials, the described source represents a significant improvement over thermal deposition techniques like electron-beam- or thermal evaporation, as especially the latter are no adequate tool to prepare atomically clean layers of refractory oxide materials. Furthermore, it is superior to commercially available magnetron sputter devices, especially for applications, where highly reproducible sub-monolayer thin film preparation under very clean UHV conditions is required (e.g., for studying phase boundary effects in catalysis). The device in turn offers the usage of a wide selection of evaporation materials and special target preparation procedures also allow the usage of pressed oxide powder targets. To prove the performance of the sputter-source, test preparations with technologically relevant oxide components, comprising ZrO{sub 2} and yttrium-stabilized ZrO{sub 2}, have been carried out. A wide range of characterization methods (electron microscopy, X-ray photoelectron spectroscopy, low-energy ion scattering, atomic force microscopy, and catalytic testing) were applied to demonstrate the properties of the sputter-deposited thin film systems.

  7. An (ultra) high-vacuum compatible sputter source for oxide thin film growth.

    PubMed

    Mayr, Lukas; Köpfle, Norbert; Auer, Andrea; Klötzer, Bernhard; Penner, Simon

    2013-09-01

    A miniaturised CF-38 mountable sputter source for oxide and metal thin film preparation with enhanced high-vacuum and ultra-high-vacuum compatibility is described. The all home-built sputtering deposition device allows a high flexibility also in oxidic sputter materials, suitable deposition rates for preparation of films in the nm- and the sub-monolayer regime and excellent reliability and enhanced cleanliness for usage in UHV chambers. For a number of technologically important--yet hardly volatile--materials, the described source represents a significant improvement over thermal deposition techniques like electron-beam- or thermal evaporation, as especially the latter are no adequate tool to prepare atomically clean layers of refractory oxide materials. Furthermore, it is superior to commercially available magnetron sputter devices, especially for applications, where highly reproducible sub-monolayer thin film preparation under very clean UHV conditions is required (e.g., for studying phase boundary effects in catalysis). The device in turn offers the usage of a wide selection of evaporation materials and special target preparation procedures also allow the usage of pressed oxide powder targets. To prove the performance of the sputter-source, test preparations with technologically relevant oxide components, comprising ZrO2 and yttrium-stabilized ZrO2, have been carried out. A wide range of characterization methods (electron microscopy, X-ray photoelectron spectroscopy, low-energy ion scattering, atomic force microscopy, and catalytic testing) were applied to demonstrate the properties of the sputter-deposited thin film systems. PMID:24089841

  8. Hollow metal target magnetron sputter type radio frequency ion source.

    PubMed

    Yamada, N; Kasuya, T; Tsubouchi, N; Wada, M

    2014-02-01

    A 70 mm diameter 70 mm long compact ion source equipped with a hollow sputtering target has been designed and tested. The hollow sputtering target serves as the radio frequency (RF) plasma excitation electrode at 13.56 MHz. A stable beam of Cu(+) has been extracted when Ar was used as the discharge support gas. In the extracted beam, Cu(+) had occupied more than 85% of the total ion current. Further increase in Cu(+) ions in the beam is anticipated by increasing the RF power and Ar pressure. PMID:24593636

  9. Hollow metal target magnetron sputter type radio frequency ion source

    SciTech Connect

    Yamada, N. Kasuya, T.; Wada, M.; Tsubouchi, N.

    2014-02-15

    A 70 mm diameter 70 mm long compact ion source equipped with a hollow sputtering target has been designed and tested. The hollow sputtering target serves as the radio frequency (RF) plasma excitation electrode at 13.56 MHz. A stable beam of Cu{sup +} has been extracted when Ar was used as the discharge support gas. In the extracted beam, Cu{sup +} had occupied more than 85% of the total ion current. Further increase in Cu{sup +} ions in the beam is anticipated by increasing the RF power and Ar pressure.

  10. Formation of a Pt-Decorated Au Nanoparticle Monolayer Floating on an Ionic Liquid by the Ionic Liquid/Metal Sputtering Method and Tunable Electrocatalytic Activities of the Resulting Monolayer.

    PubMed

    Sugioka, Daisuke; Kameyama, Tatsuya; Kuwabata, Susumu; Yamamoto, Takahisa; Torimoto, Tsukasa

    2016-05-01

    A novel strategy to prepare a bimetallic Au-Pt particle film was developed through sequential sputter deposition of Au and Pt on a room temperature ionic liquid (RTIL). Au sputter deposition onto an RTIL containing hydroxyl-functionalized cations produced a monolayer of Au particles 4.2 nm in size on the liquid surface. Subsequent Pt sputtering onto the original Au particle monolayer floating on the RTIL enabled decoration of individual Au particles with Pt metals, resulting in the formation of a bimetallic Au-Pt particle monolayer with a Pt-enriched particle surface. The particle size slightly increased to 4.8 nm with Pt deposition for 120 min. The shell layer of a bimetallic particle was composed of Au-Pt alloy, the composition of which was tunable by controlling the Pt sputter deposition time. The electrochemical surface area (ECSA) was determined by cyclic voltammetry of bimetallic Au-Pt particle monolayers transferred onto HOPG electrodes by a horizontal liftoff method. The Pt surface coverage, determined by ECSAs of Au and Pt, increased from 0 to 56 mol % with elapse of the Pt sputter deposition time up to 120 min. Thus-obtained Au-Pt particle films exhibited electrocatalytic activity for methanol oxidation reaction (MOR) superior to the activities of pure Au or Pt particles. Volcano-type dependence was observed between the MOR activity and Pt surface coverage on the particles. Maximum activity was obtained for Au-Pt particles with a Pt coverage of 49 mol %, being ca. 120 times higher than that of pure Pt particles. This method enables direct decoration of metal particles with different noble metal atoms, providing a novel strategy to develop highly efficient multinary particle catalysts. PMID:27074631

  11. Production of pulsed atomic oxygen beams via laser vaporization methods

    NASA Technical Reports Server (NTRS)

    Brinza, David E.; Coulter, Daniel R.; Liang, Ranty H.; Gupta, Amitava

    1987-01-01

    Energetic pulsed atomic oxygen beams were generated by laser-driven evaporation of cryogenically frozen ozone/oxygen films and thin films of indium-tin oxide (ITO). Mass and energy characterization of beams from the ozone/oxygen films were carried out by mass spectrometry. The peak flux, found to occur at 10 eV, is estimated from this data to be 3 x 10(20) m(-2) s(-1). Analysis of the time-of-flight data indicates a number of processes contribute to the formation of the atomic oxygen beam. The absence of metastable states such as the 2p(3) 3s(1) (5S) level of atomic oxygen blown off from ITO films is supported by the failure to observe emission at 777.3 nm from the 2p(3) 3p(1) (5P sub J) levels. Reactive scattering experiments with polymer film targets for atomic oxygen bombardment are planned using a universal crossed molecular beam apparatus.

  12. A new method for RF power generation for two-beam linear colliders

    SciTech Connect

    Braun, H.; Corsini, R.; DAmico, T.; Delahaye, J.P.; Guignard, G.; Johnson, C.; Millich, A.; Pearce, P.; Rinolfi, L.; Riche, A.; Schulte, D.; Thorndahl, L.; Valentini, M.; Wilson, I.; Ruth, R.D.

    1999-05-01

    In this paper we discuss a new approach to two-beam acceleration. The energy for RF production is initially stored in a long-pulse electron beam which is efficiently accelerated to about 1.2 GeV by a fully loaded, conventional, low frequency ({approximately}1 GHz) linac. The beam pulse length is twice the length of the high-gradient linac. Segments of this long pulse beam are compressed using combiner rings to create a sequence of higher peak power drive beams with gaps in between. This train of drive beams is distributed from the end of the linac against the main beam direction down a common transport line so that each drive beam can power a section of the main linac. After a 180-degree turn, each high-current, low-energy drive beam is decelerated in low-impedance decelerator structures, and the resulting power is used to accelerate the low-current, high-energy beam in the main linac. The method discussed here seems relatively inexpensive, is very flexible and can be used to accelerate beams for linear colliders over the entire frequency and energy range. {copyright} {ital 1999 American Institute of Physics.}

  13. A new method for RF power generation for two-beam linear colliders

    SciTech Connect

    Braun, H.; Corsini, R.; D'Amico, T.; Delahaye, J. P.; Guignard, G.; Johnson, C.; Millich, A.; Pearce, P.; Rinolfi, L.; Riche, A.; Schulte, D.; Thorndahl, L.; Valentini, M.; Wilson, I.; Ruth, R. D.

    1999-05-07

    In this paper we discuss a new approach to two-beam acceleration. The energy for RF production is initially stored in a long-pulse electron beam which is efficiently accelerated to about 1.2 GeV by a fully loaded, conventional, low frequency ({approx}1 GHz) linac. The beam pulse length is twice the length of the high-gradient linac. Segments of this long pulse beam are compressed using combiner rings to create a sequence of higher peak power drive beams with gaps in between. This train of drive beams is distributed from the end of the linac against the main beam direction down a common transport line so that each drive beam can power a section of the main linac. After a 180-degree turn, each high-current, low-energy drive beam is decelerated in low-impedance decelerator structures, and the resulting power is used to accelerate the low-current, high-energy beam in the main linac. The method discussed here seems relatively inexpensive, is very flexible and can be used to accelerate beams for linear colliders over the entire frequency and energy range.

  14. A new method of rapid power measurement for MW-scale high-current particle beams

    NASA Astrophysics Data System (ADS)

    Xu, Yongjian; Hu, Chundong; Xie, Yuanlai; Liu, Zhimin; Xie, Yahong; Liu, Sheng; Liang, Lizheng; Jiang, Caichao; Sheng, Peng; Yu, Ling

    2015-09-01

    MW-scale high current particle beams are widely applied for plasma heating in the magnetic confinement fusion devices, in which beam power is an important indicator for efficient heating. Generally, power measurement of MW-scale high current particle beam adopts water flow calorimetry (WFC). Limited by the principles of WFC, the beam power given by WFC is an averaged value. In this article a new method of beam power for MW-scale high-current particle beams is introduced: (1) the temperature data of thermocouples embedded in the beam stopping elements were obtained using high data acquire system, (2) the surface heat flux of the beam stopping elements are calculated using heat transfer, (3) the relationships between positions and heat flux were acquired using numerical simulation, (4) the real-time power deposited on the beam stopping elements can be calculated using surface integral. The principle of measurement was described in detail and applied to the EAST neutral beam injector for demonstration. The result is compared with that measured by WFC. Comparison of the results shows good accuracy and applicability of this measuring method.

  15. Comparative study of beam losses and heat loads reduction methods in MITICA beam source

    NASA Astrophysics Data System (ADS)

    Sartori, E.; Agostinetti, P.; Dal Bello, S.; Marcuzzi, D.; Serianni, G.; Sonato, P.; Veltri, P.

    2014-02-01

    In negative ion electrostatic accelerators a considerable fraction of extracted ions is lost by collision processes causing efficiency loss and heat deposition over the components. Stripping is proportional to the local density of gas, which is steadily injected in the plasma source; its pumping from the extraction and acceleration stages is a key functionality for the prototype of the ITER Neutral Beam Injector, and it can be simulated with the 3D code AVOCADO. Different geometric solutions were tested aiming at the reduction of the gas density. The parameter space considered is limited by constraints given by optics, aiming, voltage holding, beam uniformity, and mechanical feasibility. The guidelines of the optimization process are presented together with the proposed solutions and the results of numerical simulations.

  16. Comparative study of beam losses and heat loads reduction methods in MITICA beam source

    SciTech Connect

    Sartori, E. Agostinetti, P.; Dal Bello, S.; Marcuzzi, D.; Serianni, G.; Veltri, P.; Sonato, P.

    2014-02-15

    In negative ion electrostatic accelerators a considerable fraction of extracted ions is lost by collision processes causing efficiency loss and heat deposition over the components. Stripping is proportional to the local density of gas, which is steadily injected in the plasma source; its pumping from the extraction and acceleration stages is a key functionality for the prototype of the ITER Neutral Beam Injector, and it can be simulated with the 3D code AVOCADO. Different geometric solutions were tested aiming at the reduction of the gas density. The parameter space considered is limited by constraints given by optics, aiming, voltage holding, beam uniformity, and mechanical feasibility. The guidelines of the optimization process are presented together with the proposed solutions and the results of numerical simulations.

  17. TH-C-BRD-02: Analytical Modeling and Dose Calculation Method for Asymmetric Proton Pencil Beams

    SciTech Connect

    Gelover, E; Wang, D; Hill, P; Flynn, R; Hyer, D

    2014-06-15

    Purpose: A dynamic collimation system (DCS), which consists of two pairs of orthogonal trimmer blades driven by linear motors has been proposed to decrease the lateral penumbra in pencil beam scanning proton therapy. The DCS reduces lateral penumbra by intercepting the proton pencil beam near the lateral boundary of the target in the beam's eye view. The resultant trimmed pencil beams are asymmetric and laterally shifted, and therefore existing pencil beam dose calculation algorithms are not capable of trimmed beam dose calculations. This work develops a method to model and compute dose from trimmed pencil beams when using the DCS. Methods: MCNPX simulations were used to determine the dose distributions expected from various trimmer configurations using the DCS. Using these data, the lateral distribution for individual beamlets was modeled with a 2D asymmetric Gaussian function. The integral depth dose (IDD) of each configuration was also modeled by combining the IDD of an untrimmed pencil beam with a linear correction factor. The convolution of these two terms, along with the Highland approximation to account for lateral growth of the beam along the depth direction, allows a trimmed pencil beam dose distribution to be analytically generated. The algorithm was validated by computing dose for a single energy layer 5×5 cm{sup 2} treatment field, defined by the trimmers, using both the proposed method and MCNPX beamlets. Results: The Gaussian modeled asymmetric lateral profiles along the principal axes match the MCNPX data very well (R{sup 2}≥0.95 at the depth of the Bragg peak). For the 5×5 cm{sup 2} treatment plan created with both the modeled and MCNPX pencil beams, the passing rate of the 3D gamma test was 98% using a standard threshold of 3%/3 mm. Conclusion: An analytical method capable of accurately computing asymmetric pencil beam dose when using the DCS has been developed.

  18. Method and apparatus for real time imaging and monitoring of radiotherapy beams

    DOEpatents

    Majewski, Stanislaw; Proffitt, James; Macey, Daniel J.; Weisenberger, Andrew G.

    2011-11-01

    A method and apparatus for real time imaging and monitoring of radiation therapy beams is designed to preferentially distinguish and image low energy radiation from high energy secondary radiation emitted from a target as the result of therapeutic beam deposition. A detector having low sensitivity to high energy photons combined with a collimator designed to dynamically image in the region of the therapeutic beam target is used.

  19. Heavy particle transport in sputtering systems

    NASA Astrophysics Data System (ADS)

    Trieschmann, Jan

    2015-09-01

    This contribution aims to discuss the theoretical background of heavy particle transport in plasma sputtering systems such as direct current magnetron sputtering (dcMS), high power impulse magnetron sputtering (HiPIMS), or multi frequency capacitively coupled plasmas (MFCCP). Due to inherently low process pressures below one Pa only kinetic simulation models are suitable. In this work a model appropriate for the description of the transport of film forming particles sputtered of a target material has been devised within the frame of the OpenFOAM software (specifically dsmcFoam). The three dimensional model comprises of ejection of sputtered particles into the reactor chamber, their collisional transport through the volume, as well as deposition of the latter onto the surrounding surfaces (i.e. substrates, walls). An angular dependent Thompson energy distribution fitted to results from Monte-Carlo simulations is assumed initially. Binary collisions are treated via the M1 collision model, a modified variable hard sphere (VHS) model. The dynamics of sputtered and background gas species can be resolved self-consistently following the direct simulation Monte-Carlo (DSMC) approach or, whenever possible, simplified based on the test particle method (TPM) with the assumption of a constant, non-stationary background at a given temperature. At the example of an MFCCP research reactor the transport of sputtered aluminum is specifically discussed. For the peculiar configuration and under typical process conditions with argon as process gas the transport of aluminum sputtered of a circular target is shown to be governed by a one dimensional interaction of the imposed and backscattered particle fluxes. The results are analyzed and discussed on the basis of the obtained velocity distribution functions (VDF). This work is supported by the German Research Foundation (DFG) in the frame of the Collaborative Research Centre TRR 87.

  20. Fundamental sputtering studies: Nonresonant ionization of sputtered neutrals

    SciTech Connect

    Burnett, J.W.; Pellin, M.J.; Calaway, W.F.; Gruen, D.M. ); Yates, J.T. Jr. . Dept. of Chemistry)

    1989-01-04

    Because of the practical importance of sputtering, numerous theories and computer simulations are used for predicting many aspects of the sputtering process. Unfortunately, many of the calculated sputtering results are untested by experiment. Until recently, most sputtering experiments required either very high ion fluences or the detection of only minor constituents of the sputtered flux, i.e., ions. These techniques may miss the subtleties involved in the sputtering process. High-detection-efficiency mass spectrometry, coupled with the laser ionization of neutral atoms, allows the detection of the major sputtered species with very low incident ion fluences. The depth-of-origin of sputtered atoms is one example of an important but poorly understood aspect of the sputtering process. By following the sputtering yield of a substrate atom with various coverages of an adsorbed overlayer, the depth of origin of sputtered atoms has been determined. Our results indicate that two-thirds of the sputtered flux originates in the topmost atomic layer. The ion-dose dependence of sputtering yields has long been assumed to be quite minor for low- to-moderate primary ion fluences. We have observed a two-fold decrease in the sputtering yield of the Ru(0001) surface for very low primary ion fluences. Data analysis results in a cross section for damage of 2.7 {plus minus} 1.0 {times} 10{sup {minus}15}cm{sup 2}. 40 refs., 3 figs., 2 tabs.

  1. Apparatus and method for increasing the bandwidth of a laser beam

    DOEpatents

    Wilcox, Russell B.

    1992-01-01

    A method and apparatus using sinusoidal cross-phase modulation, provides a laser pulse having a very broad bandwidth while substantially retaining the input laser's temporal shape. The modulator may be used in a master oscillator system for a laser having a master oscillator-power amplifier (MOPA) configration. The modulator utilizes a first laser providing an output wavelength .lambda. and a second laser providing an output wavelength shifted by a small amount to .lambda.+.DELTA..lambda.. Each beam has a single, linear polarization. Each beam is coupled into a length of polarization-preserving optical fiber. The first laser beam is coupled into the optical fiber with the beam's polarization aligned with the fiber's main axis, and the second beam is coupled into the fiber with its polarization rotated from the main axis by a predetermined angle. Within the fiber, the main axis' polarization defines an interference beam and the orthogonal axis' polarization defines a signal beam. In the interference beam, the first laser beam and the parallel polarized vector component of the other beam interfere to create areas of high and low intensity, which modulates the signal beam by cross phase modulation. Upon exit from the optical fiber, the beams are coupled out and the modulated signal beam is separated out by a polarization selector. The signal beam can be applied to coherence reducing systems to provide an output that is temporally and spatially incoherent. The U.S. Government has rights in this invention pursuant to Contract No. W7405-ENG-48 between the U.S. Department of Energy and the University of California for the operation of Lawrence Livermore National Laboratory.

  2. Ion Micro Beam, promising methods for interdisciplinary research

    NASA Astrophysics Data System (ADS)

    Cutroneo, M.; Havranek, V.; Torrisi, L.; Svecova, B.

    2016-05-01

    An increasing attractiveness of top-down nanotechnology using nuclear microprobe techniques have been gathered to the micro and nano patterning process for polymers. This paper presents the research activity on innovative promising techniques able to produce three- dimensional (3D) micro-structures in polymeric resists as well as to obtain images of fabricated nanostructures at Tandetron Laboratory (LT) of the Nuclear Physics Institute in Rez (Czech Republic). The Proton Beam Writing (PBW) technique was used to irradiate PMMA resist with energy of MeVs protons. The fabricated patterns were developed in chemical bath using different etching rates. An overview of micro-scale structures have been fabricated selecting the beam, the energy, the fluence and the exposition time. The produced structures were investigated by different analysis techniques among which Scanning Transmission Ion Microscopy (STIM). The characterizations of the fabricated microtunnels are presented and discussed.

  3. Apparatus and methods for continuous beam fourier transform mass spectrometry

    DOEpatents

    McLuckey, Scott A.; Goeringer, Douglas E.

    2002-01-01

    A continuous beam Fourier transform mass spectrometer in which a sample of ions to be analyzed is trapped in a trapping field, and the ions in the range of the mass-to-charge ratios to be analyzed are excited at their characteristic frequencies of motion by a continuous excitation signal. The excited ions in resonant motions generate real or image currents continuously which can be detected and processed to provide a mass spectrum.

  4. Beam-cooling methods in the NICA project

    NASA Astrophysics Data System (ADS)

    Kostromin, S. A.; Meshkov, I. N.; Sidorin, A. O.; Smirnov, A. V.; Trubnikov, G. V.; Shurkhno, N.

    2012-07-01

    The Nuclotron-based Ion Collider Facility (NICA) is a new accelerator complex under construction at the Joint Institute for Nuclear Research (JINR) for experiments with colliding beams of heavy ions up to gold at energies as high as 4.5 × 4.5 GeV/u aimed at studying hot and dense strongly interacting nuclear matter and searching for possible indications of the mixed phase state and critical points of phase transitions. This facility comprises an ion source of the electron-string type, a 3-MeV/u linear accelerator, a 600-MeV/u superconducting booster synchrotron (Booster), a Nuclotron (upgraded superconducting synchrotron with a maximum energy of 4.5 GeV/u for ions with the charge-to-mass ratio Z/ A = 1/3), and a collider consisting of two vertically separated superconducting rings with an average luminosity of 1027 cm-2 s-1 in an energy range over 3.0 GeV/u. Beam cooling is supposed to be used in two NICA elements, the Booster, and the collider rings. The Booster is intended for the storage of 197Au31+ ions to an intensity of about 4 × 109 particles; their acceleration to the energy 600 MeV/u, which is sufficient for the complete stripping of nuclei (an increase in the injection energy and the charge state of ions makes the requirements for vacuum conditions in the Nuclotron less stringent); and the formation of the necessary beam emittance using the electron cooling system. Two independent beam-cooling systems, a stochastic one and an electron one, are supposed to be used in the collider. The parameters of the cooling systems, the optimum mode of operation for the collider, and the arrangement and design of the elements of the systems are discussed.

  5. Influence of deposition temperature on the growth of rutile TiO2 nanostructures by CBD method on seed layer prepared by RF magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Selman, Abbas M.; Hassan, Z.

    2013-12-01

    Rutile titanium dioxide (TiO2) nanostructures were successfully fabricated using the simple chemical bath deposition method at various deposition temperatures. These nanostructures were fabricated on (100 ± 10 nm) TiO2 seed layer coated glass, which was prepared via radio frequency (RF) magnetron sputtering at a substrate temperature of 350 °C. The synthesized TiO2 nanostructures were annealed at 550 °C for 2 h and examined via X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), photoluminescence (PL), and Raman spectroscopy. The XRD patterns showed the presence of the peaks characteristic of rutile phase. The band gap of the TiO2 nanostructures was calculated using the UV-vis absorption spectrum and was determined to be between 3.15 and 3.24 eV. The Raman spectra contained three characteristic bands at 232, 446 and 612 cm-1, which correspond to the tetragonal TiO2 rutile. The results showed good quality of nanocrystalline TiO2 rutile phase.

  6. Phase transformations in nanostructured coatings based on Zr-Y-O and produced by a pulse magnetron sputtering method

    SciTech Connect

    Fedorischeva, Marina V. Kalashnikov, Mark P. Sergeev, Victor P.

    2015-10-27

    Deposition of nanostructured coatings on the basis of Zr-Y-O was implemented by the pulse magnetron methods. Structural-phase states and morphology of the nanostructured coatings were investigated by TEM, SEM and the high-temperature X-ray method. The method of the high-temperature X-ray diffraction revealed the presence of reversible phase transition of the tetragonal phase to the monoclinic phase, which can ensure stress relaxation and closure of surface cracks.

  7. Development of ion transportation, extraction and neutralization systems for atomic beam resonance method

    NASA Astrophysics Data System (ADS)

    Nagae, Daisuke; Asahi, Koichiro; Miyoshi, Hisanori; Shimada, Kenzi; Yoshimi, Akihiro; Ueno, Hideki; Murata, Jiro; Uchida, Makoto; Kameda, Daisuke; Kato, Go; Emori, Shoken; Kijima, Go; Oshima, Sachiko; Takemura, Makoto; Arai, Takemasa; Kobayashi, Yoshio; Haseyama, Tomohito; Schmidt-Ott, W. D.

    2005-11-01

    A device that produces a low-energy and largely spin polarized RI beam based on the atomic beam resonance method (RIABR) has been developed. We have performed measurements of stopping and drifting an incoming RI ion beam in a gas chamber, extraction of the ions into a vacuum region, and neutralization of the extracted low-energy ion beam. The drift efficiency of RI ions in a gas and the extraction efficiency at a Laval-type glass nozzle were found to be 0.72±0.04 and 0.033, respectively. The result of the experiment for the neutralization is also discussed.

  8. Device and method for electron beam heating of a high density plasma

    DOEpatents

    Thode, Lester E.

    1981-01-01

    A device and method for relativistic electron beam heating of a high density plasma in a small localized region. A relativistic electron beam generator produces a high voltage electron beam which propagates along a vacuum drift tube and is modulated to initiate electron bunching within the beam. The beam is then directed through a low density gas chamber which provides isolation between the vacuum modulator and the relativistic electron beam target. The relativistic beam is then applied to a high density target plasma which typically comprises DT, DD, hydrogen boron or similar thermonuclear gas at a density of 10.sup.17 to 10.sup.20 electrons per cubic centimeter. The target plasma is ionized prior to application of the electron beam by means of a laser or other preionization source. Utilizing a relativistic electron beam with an individual particle energy exceeding 3 MeV, classical scattering by relativistic electrons passing through isolation foils is negligible. As a result, relativistic streaming instabilities are initiated within the high density target plasma causing the relativistic electron beam to efficiently deposit its energy into a small localized region within the high density plasma target.

  9. Modeling the spatial shape of nondiffracting beams: Experimental generation of Frozen Waves via holographic method

    NASA Astrophysics Data System (ADS)

    Vieira, Tárcio A.; Zamboni-Rached, Michel; Gesualdi, Marcos R. R.

    2014-03-01

    In this paper we experimentally implement the spatial shape modeling of nondiffracting optical beams via computer generated holograms reconstructed optically by spatial light modulators. The results reported here are an experimental confirmation of the so-called Frozen Wave method, developed a few years ago. Optical beams of this type have potential applications in optical tweezers, medicine, atom guiding, remote sensing, etc.

  10. SYSTEMATIC ERROR REDUCTION: NON-TILTED REFERENCE BEAM METHOD FOR LONG TRACE PROFILER.

    SciTech Connect

    QIAN,S.; QIAN, K.; HONG, Y.; SENG, L.; HO, T.; TAKACS, P.

    2007-08-25

    Systematic error in the Long Trace Profiler (LTP) has become the major error source as measurement accuracy enters the nanoradian and nanometer regime. Great efforts have been made to reduce the systematic error at a number of synchrotron radiation laboratories around the world. Generally, the LTP reference beam has to be tilted away from the optical axis in order to avoid fringe overlap between the sample and reference beams. However, a tilted reference beam will result in considerable systematic error due to optical system imperfections, which is difficult to correct. Six methods of implementing a non-tilted reference beam in the LTP are introduced: (1) application of an external precision angle device to measure and remove slide pitch error without a reference beam, (2) independent slide pitch test by use of not tilted reference beam, (3) non-tilted reference test combined with tilted sample, (4) penta-prism scanning mode without a reference beam correction, (5) non-tilted reference using a second optical head, and (6) alternate switching of data acquisition between the sample and reference beams. With a non-tilted reference method, the measurement accuracy can be improved significantly. Some measurement results are presented. Systematic error in the sample beam arm is not addressed in this paper and should be treated separately.

  11. Photoluminescence and compositional-structural properties of ion-beam sputter deposited Er-doped TiO{sub 2−x}N{sub x} films: Their potential as a temperature sensor

    SciTech Connect

    Scoca, D. Morales, M.; Merlo, R.; Alvarez, F.; Zanatta, A. R.

    2015-05-28

    Er-doped TiO{sub 2−x}N{sub x} films were grown by Ar{sup +} ion-beam sputtering a Ti + Er target under different N{sub 2} + O{sub 2} high-purity atmospheres. The compositional-structural properties of the samples were investigated after thermal annealing the films up to 1000 °C under a flow of oxygen. Sample characterization included x-ray photoelectron spectroscopy, grazing incidence x-ray diffraction, Raman scattering, and photoluminescence experiments. According to the experimental data, both composition and atomic structure of the samples were very sensitive to the growth conditions and annealing temperature. In the as-deposited form, the N-rich TiO{sub 2−x}N{sub x} films presented TiN crystallites and no photoluminescence. As the thermal treatments proceed, the films were transformed into TiO{sub 2} and Er{sup 3+}-related light emission were observed in the visible and near-infrared ranges at room-temperature. Whereas the development of TiO{sub 2} occurred due to the insertion-diffusion of oxygen in the films, light emission originated because of optical bandgap widening and/or structural-chemical variations in the vicinity of the Er{sup 3+} ions. Finally, the photoluminescence results in the visible range suggested the potential of the present samples in producing an optically based temperature sensor in the ∼150–500 K range.

  12. Production of (211)At by a vertical beam irradiation method.

    PubMed

    Nagatsu, Kotaro; Minegishi, Katsuyuki; Fukada, Masami; Suzuki, Hisashi; Hasegawa, Sumitaka; Zhang, Ming-Rong

    2014-12-01

    We produced (211)At by irradiating the semi-sealed encapsulated Bi target with an external vertical beam. At 28.5MeV, the yield of (211)At was 22MBq/μAh (600μCi/μAh). (211)At was recovered by dry distillation, and 80% of the produced (211)At was successfully obtained in dry Na(211)At form within 2h from the end of bombardment (EOB). The radionuclidic purity of (211)At was >99% at 5h from EOB. PMID:25439168

  13. Method and system for controlling the position of a beam of light

    DOEpatents

    Steinkraus, Jr., Robert F.; Johnson, Gary W.; Ruggiero, Anthony J.

    2011-08-09

    An method and system for laser beam tracking and pointing is based on a conventional position sensing detector (PSD) or quadrant cell but with the use of amplitude-modulated light. A combination of logarithmic automatic gain control, filtering, and synchronous detection offers high angular precision with exceptional dynamic range and sensitivity, while maintaining wide bandwidth. Use of modulated light enables the tracking of multiple beams simultaneously through the use of different modulation frequencies. It also makes the system resistant to interfering light sources such as ambient light. Beam pointing is accomplished by feeding back errors in the measured beam position to a beam steering element, such as a steering mirror. Closed-loop tracking performance is superior to existing methods, especially under conditions of atmospheric scintillation.

  14. Atomic sputtering in the analytical electron microscope

    SciTech Connect

    Bradley, C.R.; Zaluzec, N.J.

    1988-08-01

    The advent of UHV medium voltage electron microscopes has brought the microanalyst to a regime of operating conditions in which electron beam induced damage can now be introduced to metallic specimens of medium to high atomic number. We report upon calculations of electron beam induced atomic sputtering which will have bearing upon the next generation of medium voltage analytical electron microscopes. The cross-section calculations reported herein have been completed for all solid elements of the periodic table for incident electron energies up to 1.5 MeV. All computer codes needed to duplicate these computations are available through the EMMPDL. 12 refs., 2 figs., 1 tab.

  15. Method and system for producing sputtered thin films with sub-angstrom thickness uniformity or custom thickness gradients

    DOEpatents

    Folta, James A.; Montcalm, Claude; Walton, Christopher

    2003-01-01

    A method and system for producing a thin film with highly uniform (or highly accurate custom graded) thickness on a flat or graded substrate (such as concave or convex optics), by sweeping the substrate across a vapor deposition source with controlled (and generally, time-varying) velocity. In preferred embodiments, the method includes the steps of measuring the source flux distribution (using a test piece that is held stationary while exposed to the source), calculating a set of predicted film thickness profiles, each film thickness profile assuming the measured flux distribution and a different one of a set of sweep velocity modulation recipes, and determining from the predicted film thickness profiles a sweep velocity modulation recipe which is adequate to achieve a predetermined thickness profile. Aspects of the invention include a practical method of accurately measuring source flux distribution, and a computer-implemented method employing a graphical user interface to facilitate convenient selection of an optimal or nearly optimal sweep velocity modulation recipe to achieve a desired thickness profile on a substrate. Preferably, the computer implements an algorithm in which many sweep velocity function parameters (for example, the speed at which each substrate spins about its center as it sweeps across the source) can be varied or set to zero.

  16. On the role of ion-based imaging methods in modern ion beam therapy

    SciTech Connect

    Magallanes, L. Rinaldi, I.; Brons, S.; Marcelos, T. Parodi, K.; Takechi, M.; Voss, B.; Jäkel, O.

    2014-11-07

    External beam radiotherapy techniques have the common aim to maximize the radiation dose to the target while sparing the surrounding healthy tissues. The inverted and finite depth-dose profile of ion beams (Bragg peak) allows for precise dose delivery and conformai dose distribution. Furthermore, increased radiobiological effectiveness of ions enhances the capability to battle radioresistant tumors. Ion beam therapy requires a precise determination of the ion range, which is particularly sensitive to range uncertainties. Therefore, novel imaging techniques are currently investigated as a tool to improve the quality of ion beam treatments. Approaches already clinically available or under development are based on the detection of secondary particles emitted as a result of nuclear reactions (e.g., positron-annihilation or prompt gammas, charged particles) or transmitted high energy primary ion beams. Transmission imaging techniques make use of the beams exiting the patient, which have higher initial energy and lower fluence than the therapeutic ones. At the Heidelberg Ion Beam Therapy Center, actively scanned energetic proton and carbon ion beams provide an ideal environment for the investigation of ion-based radiography and tomography. This contribution presents the rationale of ion beam therapy, focusing on the role of ion-based transmission imaging methods towards the reduction of range uncertainties and potential improvement of treatment planning.

  17. On the role of ion-based imaging methods in modern ion beam therapy

    NASA Astrophysics Data System (ADS)

    Magallanes, L.; Brons, S.; Marcelos, T.; Takechi, M.; Voss, B.; Jäkel, O.; Rinaldi, I.; Parodi, K.

    2014-11-01

    External beam radiotherapy techniques have the common aim to maximize the radiation dose to the target while sparing the surrounding healthy tissues. The inverted and finite depth-dose profile of ion beams (Bragg peak) allows for precise dose delivery and conformai dose distribution. Furthermore, increased radiobiological effectiveness of ions enhances the capability to battle radioresistant tumors. Ion beam therapy requires a precise determination of the ion range, which is particularly sensitive to range uncertainties. Therefore, novel imaging techniques are currently investigated as a tool to improve the quality of ion beam treatments. Approaches already clinically available or under development are based on the detection of secondary particles emitted as a result of nuclear reactions (e.g., positron-annihilation or prompt gammas, charged particles) or transmitted high energy primary ion beams. Transmission imaging techniques make use of the beams exiting the patient, which have higher initial energy and lower fluence than the therapeutic ones. At the Heidelberg Ion Beam Therapy Center, actively scanned energetic proton and carbon ion beams provide an ideal environment for the investigation of ion-based radiography and tomography. This contribution presents the rationale of ion beam therapy, focusing on the role of ion-based transmission imaging methods towards the reduction of range uncertainties and potential improvement of treatment planning.

  18. Nonpropulsive applications of ion beams

    NASA Technical Reports Server (NTRS)

    Hudson, W. R.

    1976-01-01

    Eight centimeter ion beam sources utilizing xenon and argon have been developed that operate over a wide range of beam energies and currents. Three types of processes have been studied: sputter deposition, ion beam machining, and ion beam surface texturing. The broad range of source operating conditions allows optimum sputter deposition of various materials. An ion beam source was used to ion mill laser reflection holograms using photoresist patterns on silicon. Ion beam texturing was tried with many materials and has a multitude of potential applications.

  19. Three-beam interferogram analysis method for surface flatness testing of glass plates and wedges

    NASA Astrophysics Data System (ADS)

    Sunderland, Zofia; Patorski, Krzysztof

    2015-09-01

    When testing transparent plates with high quality flat surfaces and a small angle between them the three-beam interference phenomenon is observed. Since the reference beam and the object beams reflected from both the front and back surface of a sample are detected, the recorded intensity distribution may be regarded as a sum of three fringe patterns. Images of that type cannot be succesfully analyzed with standard interferogram analysis methods. They contain, however, useful information on the tested plate surface flatness and its optical thickness variations. Several methods were elaborated to decode the plate parameters. Our technique represents a competitive solution which allows for retrieval of phase components of the three-beam interferogram. It requires recording two images: a three-beam interferogram and the two-beam one with the reference beam blocked. Mutually subtracting these images leads to the intensity distribution which, under some assumptions, provides access to the two component fringe sets which encode surfaces flatness. At various stages of processing we take advantage of nonlinear operations as well as single-frame interferogram analysis methods. Two-dimensional continuous wavelet transform (2D CWT) is used to separate a particular fringe family from the overall interferogram intensity distribution as well as to estimate the phase distribution from a pattern. We distinguish two processing paths depending on the relative density of fringe sets which is connected with geometry of a sample and optical setup. The proposed method is tested on simulated data.

  20. Dynamic modeling and analysis of the PZT-bonded composite Timoshenko beams: Spectral element method

    NASA Astrophysics Data System (ADS)

    Lee, Usik; Kim, Daehwan; Park, Ilwook

    2013-03-01

    The health of thin laminated composite beams is often monitored using the ultrasonic guided waves excited by wafer-type piezoelectric transducers (PZTs). Thus, for the smart composite beams which consist of a laminated composite base beam and PZT layers, it is very important to develop a very reliable mathematical model and to use a very accurate computational method to predict accurate dynamic characteristics at very high ultrasonic frequency. In this paper, the axial-bending-shear-lateral contraction coupled differential equations of motion are derived first by the Hamilton's principle with Lagrange multipliers. The smart composite beam is represented by a Timoshenko beam model by adopting the first-order shear deformation theory (FSDT) for the laminated composite base beam. The axial deformation of smart composite beam is improved by taking into account the effects of lateral contraction by adopting the concept of Mindlin-Herrmann rod theory. The spectral element model is then formulated by the variation approach from coupled differential equations of motion transformed into the frequency domain via the discrete Fourier transform. The high accuracy of the present spectral element model is verified by comparing with other solution methods: the finite element model developed in this paper and the commercial FEA package ANSYS. Finally the dynamics and wave characteristics of some example smart composite beams are investigated through the numerical studies.

  1. Carbon nitride films formed using sputtering and negative carbon ion sources

    SciTech Connect

    Murzin, I.H.; Tompa, G.S.; Wei, J.; Muratov, V.; Fischer, T.E.; Yakovlev, V.

    1997-12-01

    The authors report the results of using sputtering and negative carbon ion sources to prepare thin films of carbon nitride. In this work, they compare the structural, tribological, and optical properties of the carbon nitride films that were prepared by two different ion assisted techniques. In the first approach they used a magnetron gun to sputter deposit carbon in a nitrogen atmosphere. The second method utilized a beam of negatively charged carbon ions of 1 to 5 {micro}A/cm{sup 2} current density impinging the substrate simultaneously with a positive nitrogen ion beam produced by a Kaufman source. They were able to synthesize microscopically smooth coatings with the carbon to nitrogen ratio of 1:0.47. These films possess wear rates lower than 5 {times} 10{sup {minus}7} mm{sup 3}/Nm and friction coefficients in the range of 0.16 to 0.6. Raman spectroscopy revealed that the magnetron sputtered films are more structurally disordered than those formed with the negative carbon ion gun. FTIR showed the presence of the C{triple_bond}N stretching mode in both types of films. Finally, spectroscopic ellipsometry produced films with dielectric constants as low as 2.3 in the photon energy range from 1.2 to 5 eV.

  2. A Local Coordinate Approach in the MLPG Method for Beam Problems

    NASA Technical Reports Server (NTRS)

    Raju, Ivatury S.; Phillips, Dawn R.

    2002-01-01

    System matrices for Euler-Bernoulli beam problems for the meshless local Petrov-Galerkin (MLPG) method deteriorate as the number of nodes in the beam models are consistently increased. The reason for this behavior is explained. To overcome this difficulty and improve the accuracy of the solutions, a local coordinate approach for the evaluation of the generalized moving least squares shape functions and their derivatives is proposed. The proposed approach retains the accuracy of the MLPG methods.

  3. Determination of composition in stoichiometric Co-N ultrathin films by nitrogen plasma sputtering

    NASA Astrophysics Data System (ADS)

    Su, C. W.; Huang, M. S.; Chang, Y. C.; Tsai, T. H.; Lee, Y. H.; Lee, J. C.

    2009-02-01

    This work utilizes low-energy sputtering to incorporate the generated nitrogen plasma into an epitaxial 1.4nm Co film on the surface of a ZnO(002) substrate. In this method, ultrathin Co-N amorphous films were formed. Interestingly, Co is key to the formation of Co-N films. Without the deposition of Co on the ZnO(002), nitride films cannot be formed. Observations of the surface composition of the Co-N films after the firing of a N+ ion beam onto it demonstrated that the surface concentration of Co reduced at the same rate as the reduction in the concentration of N upon successive sputtering. Theoretical calculations based on the Auger peak-to-peak amplitudes established that the composition of the amorphous Co-N thin films may be Co3N2.

  4. The Use of Higher-Order Difference Methods in Beam Vibration Analysis

    NASA Technical Reports Server (NTRS)

    Greenwood, Donald T.

    1961-01-01

    Simple and higher-order difference methods for the solution for the natural frequencies of vibration of a uniform beam are compared. The same basic higher-order method is used throughout for the interior cells, but three different methods of boundary-condition representation are given. Tables and graphs of the error in mode frequencies, as compared with a continuous beam, are given for the various methods as a function of the number of cells. It is concluded that higher-order methods improve accuracy for a given number of cells, with essentially no change in the quantity of computing equipment required.

  5. Research of beam control system component simulation and separation method of the kinematics coupling

    NASA Astrophysics Data System (ADS)

    Yue, Yufang; Xie, Xiaogang; Zhang, Jianzhu; An, Jianzhu; Zhang, Feizhou

    2015-02-01

    EasyLaser is component-based laser system simulation software. Beam control system simulation is a main part of EasyLaser, which can be used for systems with multi-optical paths, multi-wavelength beams, and multi-controllers. A new numerical method about general kinematics separation is proposed for beam control system simulation. It provides axis rotation conversion relationships due to orientation data of apparatus of system, such as gimal, sensor and optical mirror. It gives their coupling and uncoupling matrixes in kinematics and controller model. The matrixes could change every iterative time automatically during the dynamic tracking process. The main advantage of the method is more suitable to solve the problems that the gimbal movement and geometry optical transmission are considered simultaneously. By using the method, sensor images and undershoot data are updated automatically. And further the kinematic driver or controller signals are separated automatically. Therefore the tracking and beam control can be designed without consideration of the system kinematical composition. Then the beam control system simulation has the virtues of generality, flexibility, and usability. No matter what kinds of gimbal and optical path, designer needs only to consider tracking and beam control aspects. In addition, a union beam control example for atmosphere transmission correction is given. It includes tracking tilt mirror and adaptive optics system. Simulation results show that the low-frequency fluctuation is restrained effectively and the high-frequency fluctuation is corrected obviously.

  6. Two-dimensional differential calibration method for a neutron dosemeter using a thermal neutron beam.

    PubMed

    Matsumoto, Tetsuro; Harano, Hideki; Masuda, Akihiko; Nishiyama, Jun; Matsue, Hideaki; Uritani, Akira; Nunomiya, Tomoya

    2013-08-01

    A new thermal neutron calibration method to experimentally determine the energy response function of a neutron detector using a pulse parallel beam and the time-of-flight (TOF) technique is developed. The calibration method was experimentally demonstrated for a (3)He proportional counter and an electric personal dosemeter using a pulsed thermal neutron beam from the research reactor JRR-3M. The responses of the detectors were successfully obtained as a function of neutron energy. However, detailed information on the detector structure is required to obtain the spatial response distribution for the detector. The authors further propose an improved calibration method obtaining the spatial response distribution using a pulsed narrow beam, the TOF technique and a beam scanning technique. PMID:23509397

  7. Exact image method for Gaussian beam problems involving a planar interface

    NASA Technical Reports Server (NTRS)

    Lindell, I. V.

    1987-01-01

    Exact image method, recently introduced for the solution of electromagnetic field problems involving sources above a planar interface or two homogeneous media, is shown to be valid also for sources located in complex space, which makes its application possible for Gaussian beam analysis. It is demonstrated that the Goos-Hanchen shift and the angular shift of a TE polarized beam are correctly given as asymptotic results by the exact reflection image theory. Also, the apparent image location giving the correct Gaussian beam transmitted through the interface is obtained as another asymptotic check. The present theory makes it possible to calculate the exact coupling from the Gaussian beam to the reflected and refracted beams, as well as to the surface wave.

  8. A method of forming a high-quality electron beam for free electron masers

    SciTech Connect

    Samsonov, S.V.; Bratman, V.L.; Manuilov, V.N.

    1995-12-31

    A large number of electron microwave devices require initially rectilinear high-quality electron beams for effective operation. In FEMS such beams are pumped up to sufficiently high operating-oscillation velocity and small initial particle oscillations (cyclotron oscillations if the beam is focused by an axial magnetic field) can lead to a rather large transverse velocity spread and, correspondingly, axial velocity spread. Thus, an acute problem for these devices (essentially more important than for Cherenkov-type devices) is the formation of a beam in which electrons initially move along the axis with minimum oscillations. A new method to form such a beam by a two-electrode axially-symmetrical gun of simple configuration immersed in a uniform axial magnetic field is discussed in this paper. This method allows to improve the quality of an electron beam passing through a narrow anode outlet. It is well-known that the anode aperture acts as an electrostatic lens and disperses the electron beam. In the presence of an axial magnetic field this unwanted dispersing action can be compensated simultaneously for all electrons of the paraxial electron beam by means of a magnetic field generated by a small additional coil placed down-stream from the anode aperture. If the coil length is equal to half the electron Larmor step, then the action of the border cod fields comes to two kicks which, being correctly phased, compensate the spurious rotary electron velocities. Computer simulations using the EPOSR-code intended for the calculation of electron guns both for the temperature- and space-charge-limited regimes prove the effectiveness of this method. In particular, for a version of field-emission gun the correcting coil reduces about five times the maximum transverse velocity in the beam. Positive effect from applying this method was proved at a realization of a high-efficiency CARM-oscillator.

  9. Stress development and relaxation during sputter deposition film growth

    NASA Astrophysics Data System (ADS)

    Meng, Fanyu

    The stress development and relaxation of magnetron sputtered copper and amorphous-silicon (a-Si) films at room temperature are studied. Samples were prepared as a function of pressure and deposition power. In-situ stress measurements with the wafer curvature method were made using a helium neon gas laser system with a 10mm beam splitter. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to perform post-growth microstructural and surface analysis. SEM cross-section analysis was used to determine the final film thickness. Phase compositions were studied by X-ray diffraction. The growth rates of copper films decreased with increasing pressure. Copper film stress development followed a non-monotonic compressive, tensile then tensile relaxation curve. In order to investigate further the nature of the stress relaxation, stress curves both after deposition was stopped and after it is restarted were also measured. Correlations between growth rate and pressure were also observed in a-Si sputter deposition. In some contrast to what was observed for Cu deposition, stress measurement during a-Si deposition showed a trend of tensile development and relaxation at all pressures studied. In a new approach to understanding stress relaxation during film growth, an acoustic emission (AE) system is introduced to measure the AE energy during sputter deposition. Evidence shows a certain relation between the strain energy of films calculated using the measured stresses and AE energy recorded during the deposition. AE energy occurs immediately after deposition starts and follows the trend of stress development (increasing hits and energies) and relaxation (decreasing hits and energies). No further signal was detected after deposition, matching the results of stress curve measurements showing that stress magnitude after deposition stays at the same level as before deposition stopped. Results also show a lower AE energy magnitude with increasing deposition

  10. Method and apparatus for measuring the momentum, energy, power, and power density profile of intense particle beams

    DOEpatents

    Gammel, George M.; Kugel, Henry W.

    1992-10-06

    A method and apparatus for determining the power, momentum, energy, and power density profile of high momentum mass flow. Small probe projectiles of appropriate size, shape and composition are propelled through an intense particle beam at equal intervals along an axis perpendicular to the beam direction. Probe projectiles are deflected by collisions with beam particles. The net beam-induced deflection of each projectile is measured after it passes through the intense particle beam into an array of suitable detectors.

  11. Large-area, continuous and high electrical performances of bilayer to few layers MoS2 fabricated by RF sputtering via post-deposition annealing method.

    PubMed

    Hussain, Sajjad; Singh, Jai; Vikraman, Dhanasekaran; Singh, Arun Kumar; Iqbal, Muhammad Zahir; Khan, Muhammad Farooq; Kumar, Pushpendra; Choi, Dong-Chul; Song, Wooseok; An, Ki-Seok; Eom, Jonghwa; Lee, Wan-Gyu; Jung, Jongwan

    2016-01-01

    We report a simple and mass-scalable approach for thin MoS2 films via RF sputtering combined with the post-deposition annealing process. We have prepared as-sputtered film using a MoS2 target in the sputtering system. The as-sputtered film was subjected to post-deposition annealing to improve crystalline quality at 700 °C in a sulfur and argon environment. The analysis confirmed the growth of continuous bilayer to few-layer MoS2 film. The mobility value of ~29 cm(2)/Vs and current on/off ratio on the order of ~10(4) were obtained for bilayer MoS2. The mobility increased up to ~173-181 cm(2)/Vs, respectively, for few-layer MoS2. The mobility of our bilayer MoS2 FETs is larger than any previously reported values of single to bilayer MoS2 grown on SiO2/Si substrate with a SiO2 gate oxide. Moreover, our few-layer MoS2 FETs exhibited the highest mobility value ever reported for any MoS2 FETs with a SiO2 gate oxide. It is presumed that the high mobility behavior of our film could be attributed to low charged impurities of our film and dielectric screening effect by an interfacial MoOxSiy layer. The combined preparation route of RF sputtering and post-deposition annealing process opens up the novel possibility of mass and batch production of MoS2 film. PMID:27492282

  12. Large-area, continuous and high electrical performances of bilayer to few layers MoS2 fabricated by RF sputtering via post-deposition annealing method

    PubMed Central

    Hussain, Sajjad; Singh, Jai; Vikraman, Dhanasekaran; Singh, Arun Kumar; Iqbal, Muhammad Zahir; Khan, Muhammad Farooq; Kumar, Pushpendra; Choi, Dong-Chul; Song, Wooseok; An, Ki-Seok; Eom, Jonghwa; Lee, Wan-Gyu; Jung, Jongwan

    2016-01-01

    We report a simple and mass-scalable approach for thin MoS2 films via RF sputtering combined with the post-deposition annealing process. We have prepared as-sputtered film using a MoS2 target in the sputtering system. The as-sputtered film was subjected to post-deposition annealing to improve crystalline quality at 700 °C in a sulfur and argon environment. The analysis confirmed the growth of continuous bilayer to few-layer MoS2 film. The mobility value of ~29 cm2/Vs and current on/off ratio on the order of ~104 were obtained for bilayer MoS2. The mobility increased up to ~173–181 cm2/Vs, respectively, for few-layer MoS2. The mobility of our bilayer MoS2 FETs is larger than any previously reported values of single to bilayer MoS2 grown on SiO2/Si substrate with a SiO2 gate oxide. Moreover, our few-layer MoS2 FETs exhibited the highest mobility value ever reported for any MoS2 FETs with a SiO2 gate oxide. It is presumed that the high mobility behavior of our film could be attributed to low charged impurities of our film and dielectric screening effect by an interfacial MoOxSiy layer. The combined preparation route of RF sputtering and post-deposition annealing process opens up the novel possibility of mass and batch production of MoS2 film. PMID:27492282

  13. Large-area, continuous and high electrical performances of bilayer to few layers MoS2 fabricated by RF sputtering via post-deposition annealing method

    NASA Astrophysics Data System (ADS)

    Hussain, Sajjad; Singh, Jai; Vikraman, Dhanasekaran; Singh, Arun Kumar; Iqbal, Muhammad Zahir; Khan, Muhammad Farooq; Kumar, Pushpendra; Choi, Dong-Chul; Song, Wooseok; An, Ki-Seok; Eom, Jonghwa; Lee, Wan-Gyu; Jung, Jongwan

    2016-08-01

    We report a simple and mass-scalable approach for thin MoS2 films via RF sputtering combined with the post-deposition annealing process. We have prepared as-sputtered film using a MoS2 target in the sputtering system. The as-sputtered film was subjected to post-deposition annealing to improve crystalline quality at 700 °C in a sulfur and argon environment. The analysis confirmed the growth of continuous bilayer to few-layer MoS2 film. The mobility value of ~29 cm2/Vs and current on/off ratio on the order of ~104 were obtained for bilayer MoS2. The mobility increased up to ~173–181 cm2/Vs, respectively, for few-layer MoS2. The mobility of our bilayer MoS2 FETs is larger than any previously reported values of single to bilayer MoS2 grown on SiO2/Si substrate with a SiO2 gate oxide. Moreover, our few-layer MoS2 FETs exhibited the highest mobility value ever reported for any MoS2 FETs with a SiO2 gate oxide. It is presumed that the high mobility behavior of our film could be attributed to low charged impurities of our film and dielectric screening effect by an interfacial MoOxSiy layer. The combined preparation route of RF sputtering and post-deposition annealing process opens up the novel possibility of mass and batch production of MoS2 film.

  14. Heavy ion irradiation of crystalline water ice. Cosmic ray amorphisation cross-section and sputtering yield

    NASA Astrophysics Data System (ADS)

    Dartois, E.; Augé, B.; Boduch, P.; Brunetto, R.; Chabot, M.; Domaracka, A.; Ding, J. J.; Kamalou, O.; Lv, X. Y.; Rothard, H.; da Silveira, E. F.; Thomas, J. C.

    2015-04-01

    Context. Under cosmic irradiation, the interstellar water ice mantles evolve towards a compact amorphous state. Crystalline ice amorphisation was previously monitored mainly in the keV to hundreds of keV ion energies. Aims: We experimentally investigate heavy ion irradiation amorphisation of crystalline ice, at high energies closer to true cosmic rays, and explore the water-ice sputtering yield. Methods: We irradiated thin crystalline ice films with MeV to GeV swift ion beams, produced at the GANIL accelerator. The ice infrared spectral evolution as a function of fluence is monitored with in-situ infrared spectroscopy (induced amorphisation of the initial crystalline state into a compact amorphous phase). Results: The crystalline ice amorphisation cross-section is measured in the high electronic stopping-power range for different temperatures. At large fluence, the ice sputtering is measured on the infrared spectra, and the fitted sputtering-yield dependence, combined with previous measurements, is quadratic over three decades of electronic stopping power. Conclusions: The final state of cosmic ray irradiation for porous amorphous and crystalline ice, as monitored by infrared spectroscopy, is the same, but with a large difference in cross-section, hence in time scale in an astrophysical context. The cosmic ray water-ice sputtering rates compete with the UV photodesorption yields reported in the literature. The prevalence of direct cosmic ray sputtering over cosmic-ray induced photons photodesorption may be particularly true for ices strongly bonded to the ice mantles surfaces, such as hydrogen-bonded ice structures or more generally the so-called polar ices. Experiments performed at the Grand Accélérateur National d'Ions Lourds (GANIL) Caen, France. Part of this work has been financed by the French INSU-CNRS programme "Physique et Chimie du Milieu Interstellaire" (PCMI) and the ANR IGLIAS.

  15. Extending the photoresponse of TiO2 to the visible light region: photoelectrochemical behavior of TiO2 thin films prepared by the radio frequency magnetron sputtering deposition method.

    PubMed

    Kikuchi, Hisashi; Kitano, Masaaki; Takeuchi, Masato; Matsuoka, Masaya; Anpo, Masakazu; Kamat, Prashant V

    2006-03-23

    TiO(2) thin films prepared by a radio frequency magnetron sputtering (RF-MS) deposition method were found to show an enhanced photoelectrochemical response in the visible light region. By controlling the temperature and the gaseous medium during the deposition step, it was possible to control the properties of these films. The photoelectrochemical behavior of the sputtered TiO(2) thin films was compared with that of a commercial TiO(2) sample, and the sputtered films showed higher incident photon to the charge carrier generation efficiency (IPCE of 12.6% at 350 nm) as well as power conversion efficiency (0.33% at 1.84 mW/cm(2)) than the commercial TiO(2) sample. Femtosecond transient absorption spectroscopy experiments have revealed that a major fraction of photogenerated electrons and holes recombine within a few picoseconds, thus limiting photocurrent generation efficiency. The mechanistic insights obtained in the present study should aid in designing semiconductor nanostructures that will maximize the charge separation efficiency and extend the response of the large band gap semiconductor TiO(2) into visible light regions. PMID:16539493

  16. Systems and methods for detecting an image of an object using multi-beam imaging from an X-ray beam having a polychromatic distribution

    DOEpatents

    Parham, Christopher A; Zhong, Zhong; Pisano, Etta; Connor, Jr., Dean M

    2015-03-03

    Systems and methods for detecting an image of an object using a multi-beam imaging system from an x-ray beam having a polychromatic energy distribution are disclosed. According to one aspect, a method can include generating a first X-ray beam having a polychromatic energy distribution. Further, the method can include positioning a plurality of monochromator crystals in a predetermined position to directly intercept the first X-ray beam such that a plurality of second X-ray beams having predetermined energy levels are produced. Further, an object can be positioned in the path of the second X-ray beams for transmission of the second X-ray beams through the object and emission from the object as transmitted X-ray beams. The transmitted X-ray beams can each be directed at an angle of incidence upon one or more crystal analyzers. Further, an image of the object can be detected from the beams diffracted from the analyzer crystals.

  17. Sputter-deposited fuel cell membranes and electrodes

    NASA Technical Reports Server (NTRS)

    Narayanan, Sekharipuram R. (Inventor); Jeffries-Nakamura, Barbara (Inventor); Chun, William (Inventor); Ruiz, Ron P. (Inventor); Valdez, Thomas I. (Inventor)

    2001-01-01

    A method for preparing a membrane for use in a fuel cell membrane electrode assembly includes the steps of providing an electrolyte membrane, and sputter-depositing a catalyst onto the electrolyte membrane. The sputter-deposited catalyst may be applied to multiple sides of the electrolyte membrane. A method for forming an electrode for use in a fuel cell membrane electrode assembly includes the steps of obtaining a catalyst, obtaining a backing, and sputter-depositing the catalyst onto the backing. The membranes and electrodes are useful for assembling fuel cells that include an anode electrode, a cathode electrode, a fuel supply, and an electrolyte membrane, wherein the electrolyte membrane includes a sputter-deposited catalyst, and the sputter-deposited catalyst is effective for sustaining a voltage across a membrane electrode assembly in the fuel cell.

  18. Ion-beam apparatus and method for analyzing and controlling integrated circuits

    DOEpatents

    Campbell, Ann N.; Soden, Jerry M.

    1998-01-01

    An ion-beam apparatus and method for analyzing and controlling integrated circuits. The ion-beam apparatus comprises a stage for holding one or more integrated circuits (ICs); a source means for producing a focused ion beam; and a beam-directing means for directing the focused ion beam to irradiate a predetermined portion of the IC for sufficient time to provide an ion-beam-generated electrical input signal to a predetermined element of the IC. The apparatus and method have applications to failure analysis and developmental analysis of ICs and permit an alteration, control, or programming of logic states or device parameters within the IC either separate from or in combination with applied electrical stimulus to the IC for analysis thereof. Preferred embodiments of the present invention including a secondary particle detector and an electron floodgun further permit imaging of the IC by secondary ions or electrons, and allow at least a partial removal or erasure of the ion-beam-generated electrical input signal.

  19. Ion-beam apparatus and method for analyzing and controlling integrated circuits

    DOEpatents

    Campbell, A.N.; Soden, J.M.

    1998-12-01

    An ion-beam apparatus and method for analyzing and controlling integrated circuits are disclosed. The ion-beam apparatus comprises a stage for holding one or more integrated circuits (ICs); a source means for producing a focused ion beam; and a beam-directing means for directing the focused ion beam to irradiate a predetermined portion of the IC for sufficient time to provide an ion-beam-generated electrical input signal to a predetermined element of the IC. The apparatus and method have applications to failure analysis and developmental analysis of ICs and permit an alteration, control, or programming of logic states or device parameters within the IC either separate from or in combination with applied electrical stimulus to the IC for analysis thereof. Preferred embodiments of the present invention including a secondary particle detector and an electron floodgun further permit imaging of the IC by secondary ions or electrons, and allow at least a partial removal or erasure of the ion-beam-generated electrical input signal. 4 figs.

  20. Reconstructing accurate ToF-SIMS depth profiles for organic materials with differential sputter rates.

    PubMed

    Taylor, Adam J; Graham, Daniel J; Castner, David G

    2015-09-01

    To properly process and reconstruct 3D ToF-SIMS data from systems such as multi-component polymers, drug delivery scaffolds, cells and tissues, it is important to understand the sputtering behavior of the sample. Modern cluster sources enable efficient and stable sputtering of many organics materials. However, not all materials sputter at the same rate and few studies have explored how different sputter rates may distort reconstructed depth profiles of multicomponent materials. In this study spun-cast bilayer polymer films of polystyrene and PMMA are used as model systems to optimize methods for the reconstruction of depth profiles in systems exhibiting different sputter rates between components. Transforming the bilayer depth profile from sputter time to depth using a single sputter rate fails to account for sputter rate variations during the profile. This leads to inaccurate apparent layer thicknesses and interfacial positions, as well as the appearance of continued sputtering into the substrate. Applying measured single component sputter rates to the bilayer films with a step change in sputter rate at the interfaces yields more accurate film thickness and interface positions. The transformation can be further improved by applying a linear sputter rate transition across the interface, thus modeling the sputter rate changes seen in polymer blends. This more closely reflects the expected sputtering behavior. This study highlights the need for both accurate evaluation of component sputter rates and the careful conversion of sputter time to depth, if accurate 3D reconstructions of complex multi-component organic and biological samples are to be achieved. The effects of errors in sputter rate determination are also explored. PMID:26185799

  1. Evaporation model for beam based additive manufacturing using free surface lattice Boltzmann methods

    NASA Astrophysics Data System (ADS)

    Klassen, Alexander; Scharowsky, Thorsten; Körner, Carolin

    2014-07-01

    Evaporation plays an important role in many technical applications including beam-based additive manufacturing processes, such as selective electron beam or selective laser melting (SEBM/SLM). In this paper, we describe an evaporation model which we employ within the framework of a two-dimensional free surface lattice Boltzmann method. With this method, we solve the hydrodynamics as well as thermodynamics of the molten material taking into account the mass and energy losses due to evaporation and the recoil pressure acting on the melt pool. Validation of the numerical model is performed by measuring maximum melt depths and evaporative losses in samples of pure titanium and Ti-6Al-4V molten by an electron beam. Finally, the model is applied to create processing maps for an SEBM process. The results predict that the penetration depth of the electron beam, which is a function of the acceleration voltage, has a significant influence on evaporation effects.

  2. A spectral method for halo particle definition in intense mismatched beams

    SciTech Connect

    Dorf, Mikhail A.; Davidson, Ronald C.; Startsev, Edward A.

    2011-04-15

    An advanced spectral analysis of a mismatched charged particle beam propagating through a periodic focusing transport lattice is utilized in particle-in-cell (PIC) simulations. It is found that the betatron frequency distribution function of a mismatched space-charge-dominated beam has a bump-on-tail structure attributed to the beam halo particles. Based on this observation, a new spectral method for halo particle definition is proposed that provides the opportunity to carry out a quantitative analysis of halo particle production by a beam mismatch. In addition, it is shown that the spectral analysis of the mismatch relaxation process provides important insights into the emittance growth attributed to the halo formation and the core relaxation processes. Finally, the spectral method is applied to the problem of space-charge transport limits.

  3. THE METHODS OF PRODUCING AND ANALYZING POLARIZED NEUTRON BEAMS FOR HYSPEC AT THE SNS.

    SciTech Connect

    SHAPIRO, S.M.; PASSELL, L.; ZALIZNYAK, A.; GHOSH, V.J.; LEONHARDT, W.L.; HAGEN, M.E.

    2005-04-25

    The Hybrid Spectrometer (HYSPEC), under construction at the SNS on beam line 14B, is the only inelastic scattering instrument designed to enable polarization of the incident and the scattered neutron beams. A Heusler monochromator will replace the graphite crystal for producing polarized neutrons. In the scattered beam it is planned to use a collimator--multi-channel supermirror bender array to analyze the polarization of the scattered beam over the final energy range from 5-20 meV. Other methods of polarization analysis under consideration such as transmission filters using He{sup 3}, Sm, and polarized protons are considered. Their performance is estimated and a comparison of the various methods of polarization is made.

  4. Device and method for generating a beam of acoustic energy from a borehole, and applications thereof

    SciTech Connect

    Vu, Cung Khac; Sinha, Dipen N; Pantea, Cristian; Nihei, Kurt T; Schmitt, Denis P; Skelt, Christopher

    2013-10-01

    In some aspects of the invention, a method of generating a beam of acoustic energy in a borehole is disclosed. The method includes generating a first acoustic wave at a first frequency; generating a second acoustic wave at a second frequency different than the first frequency, wherein the first acoustic wave and second acoustic wave are generated by at least one transducer carried by a tool located within the borehole; transmitting the first and the second acoustic waves into an acoustically non-linear medium, wherein the composition of the non-linear medium produces a collimated beam by a non-linear mixing of the first and second acoustic waves, wherein the collimated beam has a frequency based upon a difference between the first frequency and the second frequency; and transmitting the collimated beam through a diverging acoustic lens to compensate for a refractive effect caused by the curvature of the borehole.

  5. New Spectral Method for Halo Particle Definition in Intense Mis-matched Beams

    SciTech Connect

    Dorf, Mikhail A.; Davidson, Ronald C.; Startsev, Edward A.

    2011-04-27

    An advanced spectral analysis of a mis-matched charged particle beam propagating through a periodic focusing transport lattice is utilized in particle-in-cell (PIC) simulations. It is found that the betatron frequency distribution function of a mismatched space-charge-dominated beam has a bump-on-tail structure attributed to the beam halo particles. Based on this observation, a new spectral method for halo particle definition is proposed that provides the opportunity to carry out a quantitative analysis of halo particle production by a beam mismatch. In addition, it is shown that the spectral analysis of the mismatch relaxation process provides important insights into the emittance growth attributed to the halo formation and the core relaxation processes. Finally, the spectral method is applied to the problem of space-charge transport limits.

  6. Gaussian Beam Propagation in a Kerr Type Metamaterial Medium Using ABCD Matrix Method

    NASA Astrophysics Data System (ADS)

    Keshavarz, A.; Naseri, M.

    2016-08-01

    In this paper, a split step ABCD matrix method is suggested to investigate Gaussian beam propagation in a Kerr type metamaterial medium. This method is based on dividing the medium interval into subsequent steps. Meanwhile, Gaussian beam profile in every step is obtained by finding the ABCD matrix of that particular step, and is used to find the ABCD matrix of the next step. Results of the suggested matrix method have been compared with the results of numerical split-step Fourier method for a Kerr medium, which indicates a good agreement. Then, we use the ABCD matrix to investigate Gaussian beams propagation in a Kerr type metamaterial, which is also in agreement with pervious results by other methods.

  7. Ion beam thruster shield

    NASA Technical Reports Server (NTRS)

    Power, J. L. (Inventor)

    1976-01-01

    An ion thruster beam shield is provided that comprises a cylindrical housing that extends downstream from the ion thruster and a plurality of annular vanes which are spaced along the length of the housing, and extend inwardly from the interior wall of the housing. The shield intercepts and stops all charge exchange and beam ions, neutral propellant, and sputter products formed due to the interaction of beam and shield emanating from the ion thruster outside of a fixed conical angle from the thruster axis. Further, the shield prevents the sputter products formed during the operation of the engine from escaping the interior volume of the shield.

  8. System and method for delivery of neutron beams for medical therapy

    DOEpatents

    Nigg, D.W.; Wemple, C.A.

    1999-07-06

    A neutron delivery system that provides improved capability for tumor control during medical therapy is disclosed. The system creates a unique neutron beam that has a bimodal or multi-modal energy spectrum. This unique neutron beam can be used for fast-neutron therapy, boron neutron capture therapy (BNCT), or both. The invention includes both an apparatus and a method for accomplishing the purposes of the invention. 5 figs.

  9. System and method for delivery of neutron beams for medical therapy

    DOEpatents

    Nigg, David W.; Wemple, Charles A.

    1999-01-01

    A neutron delivery system that provides improved capability for tumor control during medical therapy. The system creates a unique neutron beam that has a bimodal or multi-modal energy spectrum. This unique neutron beam can be used for fast-neutron therapy, boron neutron capture therapy (BNCT), or both. The invention includes both an apparatus and a method for accomplishing the purposes of the invention.

  10. A split beam method for measuring time-resolved circular dichroism

    NASA Astrophysics Data System (ADS)

    Wenzel, Stephan; Buss, Volker

    1997-04-01

    An improvement to the Lewis-Kliger method for measuring transient circular dichroism on the nanosecond time scale is described. The method uses a single-probe beam that is split into two different beams of plane polarized light entering the sample and a retarder from opposite directions in different succession. Rochon polarizers are used as high-quality polarizing beam splitters to select the slow axis component of the emerging elliptical polarized light beams. The intensities of the light beams are determined by an imaging spectrograph coupled to an intensified charge coupled device detector. The split beam method reduces the need for very precise calibration of the central strain plate acting as a retarder and controlling the ellipticity of the probe light. The necessary calculations are simple and can be shown to be equivalent to the formulas derived by Lewis and Kliger. The static CD spectrum of vitamin B12 is presented and compared to a spectrum obtained with a commercial instrument and standard technique. The time resolution of the instrument is demonstrated by observation of photobleaching of carbon monoxy myoglobin from horse heart muscle.

  11. Sputtering effect of low-energy ions on biological target: The analysis of sputtering product of urea and capsaicin

    NASA Astrophysics Data System (ADS)

    Zhang, Lili; Xu, Xue; Wu, Yuejin

    2013-08-01

    Sputtering is a process whereby atoms are ejected from a solid target material due to bombardment of the target by energetic particles. Recent years, ion implantation was successfully applied to biological research based on the fragments sputtering and form open paths in cell structure caused by ion sputtering. In this study, we focused on urea and chilli pepper pericarp samples implanted with N+ and Ar+ ions. To investigate the sputtering effect, we designed a collecting unit containing a disk sample and a glass pipe. The urea content and capsaicin content recovered from glass pipes were adopted to represent the sputtering product. The result of urea showed that the sputtering effect is positively correlated with the ion energy and dose, also affected by the ion type. The result of capsaicin was different from that of urea at 20 keV and possibly due to biological complex composition and structure. Therefore the sputtering yield depended on both the parameters of incident ions and the state of target materials. The sputtering yield of urea was also simulated by computational method achieved through the TRIM program. The trajectories of primary and recoiled atoms were calculated on the basis of the binary collision approximation using Monte Carlo method. The experimental results were much higher than the calculated results. The possible explanation is that in the physical model the target were assumed as a disordered lattice and independent atoms, which is much less complicated than that of the biological models.

  12. A surrogate-based metaheuristic global search method for beam angle selection in radiation treatment planning

    PubMed Central

    Zhang, H H; Gao, S; Chen, W; Shi, L; D’Souza, W D; Meyer, R R

    2013-01-01

    An important element of radiation treatment planning for cancer therapy is the selection of beam angles (out of all possible coplanar and non-coplanar angles in relation to the patient) in order to maximize the delivery of radiation to the tumor site and minimize radiation damage to nearby organs-at-risk. This category of combinatorial optimization problem is particularly difficult because direct evaluation of the quality of treatment corresponding to any proposed selection of beams requires the solution of a large-scale dose optimization problem involving many thousands of variables that represent doses delivered to volume elements (voxels) in the patient. However, if the quality of angle sets can be accurately estimated without expensive computation, a large number of angle sets can be considered, increasing the likelihood of identifying a very high quality set. Using a computationally efficient surrogate beam set evaluation procedure based on single-beam data extracted from plans employing equally-spaced beams (eplans), we have developed a global search metaheuristic process based on the Nested Partitions framework for this combinatorial optimization problem. The surrogate scoring mechanism allows us to assess thousands of beam set samples within a clinically acceptable time frame. Tests on difficult clinical cases demonstrate that the beam sets obtained via our method are superior quality. PMID:23459411

  13. Noncoplanar beam angle optimization in IMRT treatment planning using pattern search methods

    NASA Astrophysics Data System (ADS)

    Rocha, Humberto; Dias, Joana M.; Ferreira, Brígida C.; Lopes, Maria C.

    2015-05-01

    Radiation therapy is used to treat localized cancers, aiming to deliver a dose of radiation to the tumor volume to sterilize all cancer cells while minimizing the collateral effects on the surrounding healthy organs and tissues. The planning of radiation therapy treatments requires decisions regarding the angles used for radiation incidence, the fluence intensities and, if multileaf collimators are used, the definition of the leaf sequencing. The beam angle optimization problem consists in finding the optimal number and incidence directions of the irradiation beams. The selection of appropriate radiation incidence directions is important for the quality of the treatment. However, the possibility of improving the quality of treatment plans by an optimized selection of the beam incidences is seldom done in the clinical practice. Adding the possibility for noncoplanar incidences is even more rarely used. Nevertheless, the advantage of noncoplanar beams is well known. The optimization of noncoplanar beam incidences may further allow the reduction of the number of beams needed to reach a clinically acceptable plan. In this paper we present the benefits of using pattern search methods for the optimization of the highly non-convex noncoplanar beam angle optimization problem.

  14. A surrogate-based metaheuristic global search method for beam angle selection in radiation treatment planning

    NASA Astrophysics Data System (ADS)

    Zhang, H. H.; Gao, S.; Chen, W.; Shi, L.; D'Souza, W. D.; Meyer, R. R.

    2013-03-01

    An important element of radiation treatment planning for cancer therapy is the selection of beam angles (out of all possible coplanar and non-coplanar angles in relation to the patient) in order to maximize the delivery of radiation to the tumor site and minimize radiation damage to nearby organs-at-risk. This category of combinatorial optimization problem is particularly difficult because direct evaluation of the quality of treatment corresponding to any proposed selection of beams requires the solution of a large-scale dose optimization problem involving many thousands of variables that represent doses delivered to volume elements (voxels) in the patient. However, if the quality of angle sets can be accurately estimated without expensive computation, a large number of angle sets can be considered, increasing the likelihood of identifying a very high quality set. Using a computationally efficient surrogate beam set evaluation procedure based on single-beam data extracted from plans employing equally-spaced beams (eplans), we have developed a global search metaheuristic process based on the nested partitions framework for this combinatorial optimization problem. The surrogate scoring mechanism allows us to assess thousands of beam set samples within a clinically acceptable time frame. Tests on difficult clinical cases demonstrate that the beam sets obtained via our method are of superior quality.

  15. Recent advancements in sputter-type heavy negative ion sources

    SciTech Connect

    Alton, G.D.

    1989-01-01

    Significant advancement have been made in sputter-type negative ion sources which utilize direct surface ionization, or a plasma to form the positive ion beam used to effect sputtering of samples containing the material of interest. Typically, such sources can be used to generate usable beam intensities of a few ..mu..A to several mA from all chemically active elements, depending on the particular source and the electron affinity of the element in question. The presentation will include an introduction to the fundamental processes underlying negative ion formation by sputtering from a low work function surface and several sources will be described which reflect the progress made in this technology. 21 refs., 9 figs., 1 tab.

  16. Production of intense metal ion beams from ECR ion sources using the MIVOC method

    NASA Astrophysics Data System (ADS)

    Bogomolov, S. L.; Bondarchenko, A. E.; Efremov, A. A.; Kuzmenkov, K. I.; Lebedev, A. N.; Lebedev, K. V.; Lebedev, V. Ya.; Loginov, V. N.; Mironov, V. E.; Yazvitsky, N. Yu.

    2015-12-01

    The production of metal ion beams by electron cyclotron resonance (ECR) ion sources using the MIVOC (Metal Ions from Volatile Compounds) method is described. The method is based on the use of metal compounds which have high vapor pressure at room temperature, e.g., C2B10H12, Fe(C5H5)2, etc. Intense ion beams of B and Fe were produced using this method at the FLNR JINR cyclotrons. Experiments on the production of cobalt, chromium, vanadium, germanium, and hafnium ion beams were performed at the test bench of ECR ion sources. Main efforts were put into production and acceleration of 50Ti ion beams at the U-400 cyclotron. The experiments on the production of 50Ti ion beams were performed at the test bench using natural and enriched compounds of titanium (CH3)5C5Ti(CH3)3. In these experiments, 80 μA 48Ti5+ and 70 μA 48Ti11+ beam currents were obtained at different settings of the source. Following successful tests, two 3-week runs were performed with 50Ti beams at the U-400 cyclotron aimed to perform experiments on the spectroscopy of superheavy elements. The intensity of the injected 50Ti5+ beam was 50-60 μA. The source worked stably during experiments. The compound consumption rate was determined at about 2.4 mg/h, which corresponded to the 50Ti consumption of 0.6 mg/h.

  17. A method for evaluating aberration in the crossover image in mask irradiation optics of electron beam

    NASA Astrophysics Data System (ADS)

    Sohda, Yasunari; Ohta, Hiroya; Saitou, Norio

    2002-02-01

    A method for evaluating aberration in the crossover image in a cell projection lithography system has been developed. In an electron-beam lithography system of projection-type such as a cell projection lithography system, the aberration in the crossover image causes the electron beam to pass off-axis in the electron optics. Optical simulation has quantitatively shown that the aberration in the crossover image causes an electron-beam blur and a positioning error on a writing sample. The evaluating method consists of four square apertures and a mark-detection function in a cell projection system. By measuring each position of the images of the four square apertures on the writing sample at difference focuses, the aberration can be calculated. The field curvature and the astigmatism in a cell projection system were evaluated by using this method. The field curvature agrees with the simulation. In addition, the measurement of the effect of beam alignment is also demonstrated. It is thus concluded that the method can effectively evaluate the aberration in the crossover image. This method is also useful for other projection-type lithographies of charged particles—like ion and electron beams.

  18. Magnetron sputtered boron films and Ti/B multilayer structures

    SciTech Connect

    Makowiecki, D.M.; Jankowski, A.F.

    1991-03-11

    A method is described for the production of thin boron and titanium/boron films by magnetron sputter deposition. The amorphous boron films contain no morphological growth features, unlike those found when thin films are prepared by various physical vapor 5 deposition processes. Magnetron sputter deposition method requires the use of a high density crystalline boron sputter target which is prepared by hot isostatic pressing. Thin boron films prepared by this method are useful for ultra-thin band pass filters as well as the low Z element in low Z/high Z mirrors which enhance reflectivity 10 from grazing to normal incidence.

  19. Magnetron sputtered boron films and Ti/B multilayer structures

    DOEpatents

    Makowiecki, D.M.; Jankowski, A.F.

    1995-02-14

    A method is described for the production of thin boron and titanium/boron films by magnetron sputter deposition. The amorphous boron films contain no morphological growth features, unlike those found when thin films are prepared by various physical vapor deposition processes. Magnetron sputter deposition method requires the use of a high density crystalline boron sputter target which is prepared by hot isostatic pressing. Thin boron films prepared by this method are useful for ultra-thin band pass filters as well as the low Z element in low Z/high Z mirrors which enhance reflectivity from grazing to normal incidence. 6 figs.

  20. Magnetron sputtered boron films and TI/B multilayer structures

    DOEpatents

    Makowiecki, Daniel M.; Jankowski, Alan F.

    1993-01-01

    A method is described for the production of thin boron and titanium/boron films by magnetron sputter deposition. The amorphous boron films contain no morphological growth features, unlike those found when thin films are prepared by various physical vapor deposition processes. Magnetron sputter deposition method requires the use of a high density crystalline boron sputter target which is prepared by hot isostatic pressing. Thin boron films prepared by this method are useful for ultra-thin band pass filters as well as the low Z element in low Z/high Z mirrors which enhance reflectivity from grazing to normal incidence.

  1. Magnetron sputtered boron films and Ti/B multilayer structures

    DOEpatents

    Makowiecki, Daniel M.; Jankowski, Alan F.

    1995-01-01

    A method is described for the production of thin boron and titanium/boron films by magnetron sputter deposition. The amorphous boron films contain no morphological growth features, unlike those found when thin films are prepared by various physical vapor deposition processes. Magnetron sputter deposition method requires the use of a high density crystalline boron sputter target which is prepared by hot isostatic pressing. Thin boron films prepared by this method are useful for ultra-thin band pass filters as well as the low Z element in low Z/high Z mirrors which enhance reflectivity from grazing to normal incidence.

  2. Magnetron sputtered boron films and TI/B multilayer structures

    DOEpatents

    Makowiecki, D.M.; Jankowski, A.F.

    1993-04-20

    A method is described for the production of thin boron and titanium/boron films by magnetron sputter deposition. The amorphous boron films contain no morphological growth features, unlike those found when thin films are prepared by various physical vapor deposition processes. Magnetron sputter deposition method requires the use of a high density crystalline boron sputter target which is prepared by hot isostatic pressing. Thin boron films prepared by this method are useful for ultra-thin band pass filters as well as the low Z element in low Z/high Z mirrors which enhance reflectivity from grazing to normal incidence.

  3. Interlaminar Stresses by Refined Beam Theories and the Sinc Method Based on Interpolation of Highest Derivative

    NASA Technical Reports Server (NTRS)

    Slemp, Wesley C. H.; Kapania, Rakesh K.; Tessler, Alexander

    2010-01-01

    Computation of interlaminar stresses from the higher-order shear and normal deformable beam theory and the refined zigzag theory was performed using the Sinc method based on Interpolation of Highest Derivative. The Sinc method based on Interpolation of Highest Derivative was proposed as an efficient method for determining through-the-thickness variations of interlaminar stresses from one- and two-dimensional analysis by integration of the equilibrium equations of three-dimensional elasticity. However, the use of traditional equivalent single layer theories often results in inaccuracies near the boundaries and when the lamina have extremely large differences in material properties. Interlaminar stresses in symmetric cross-ply laminated beams were obtained by solving the higher-order shear and normal deformable beam theory and the refined zigzag theory with the Sinc method based on Interpolation of Highest Derivative. Interlaminar stresses and bending stresses from the present approach were compared with a detailed finite element solution obtained by ABAQUS/Standard. The results illustrate the ease with which the Sinc method based on Interpolation of Highest Derivative can be used to obtain the through-the-thickness distributions of interlaminar stresses from the beam theories. Moreover, the results indicate that the refined zigzag theory is a substantial improvement over the Timoshenko beam theory due to the piecewise continuous displacement field which more accurately represents interlaminar discontinuities in the strain field. The higher-order shear and normal deformable beam theory more accurately captures the interlaminar stresses at the ends of the beam because it allows transverse normal strain. However, the continuous nature of the displacement field requires a large number of monomial terms before the interlaminar stresses are computed as accurately as the refined zigzag theory.

  4. Applications of ion beam technology

    NASA Technical Reports Server (NTRS)

    Gelerinter, E.; Spielberg, N.

    1980-01-01

    Wire adhesion in steel belted radial tires; carbon fibers and composite; cold welding, brazing, and fabrication; hydrogen production, separation, and storage; membrane use; catalysis; sputtering and texture; and ion beam implantation are discussed.

  5. Quantitative depth profiling by laser-ionization sputtered neutral mass spectrometry

    NASA Astrophysics Data System (ADS)

    Higashi, Yasuhiro

    1999-01-01

    Depth profiling by laser-ionization sputtered neutral mass spectrometry (SNMS) is reviewed. The matrix effects, including surface and interface effects, in laser-ionization SNMS and secondary ion mass spectrometry (SIMS) are compared with each other and discussed. Laser-ionization SNMS can provide depth profiles with much smaller matrix effects than conventional SIMS. Depth resolution can effectively be improved by using grazing incidence for the primary ion beam with little interfacial effect. The quantification method in laser-ionization SNMS is also mentioned.

  6. A new method for beam-damage-diagnosis using adaptive fuzzy neural structure and wavelet analysis

    NASA Astrophysics Data System (ADS)

    Nguyen, Sy Dzung; Ngo, Kieu Nhi; Tran, Quang Thinh; Choi, Seung-Bok

    2013-08-01

    In this work, we present a new beam-damage-locating (BDL) method based on an algorithm which is a combination of an adaptive fuzzy neural structure (AFNS) and an average quantity solution to wavelet transform coefficient (AQWTC) of beam vibration signal. The AFNS is used for remembering undamaged-beam dynamic properties, while the AQWTC is used for signal analysis. Firstly, the beam is divided into elements and excited to be vibrated. Vibrating signal at each element, which is displacement in this work, is measured, filtered and transformed into wavelet signal with a used-scale-sheet to calculate the corresponding difference of AQWTC between two cases: undamaged status and the status at the checked time. Database about this difference is then used for finding out the elements having strange features in wavelet quantitative analysis, which directly represents the beam-damage signs. The effectiveness of the proposed approach which combines fuzzy neural structure and wavelet transform methods is demonstrated by experiment on measured data sets in a vibrated beam-type steel frame structure. `

  7. A new method to calculate the beam charge for an integrating current transformer

    SciTech Connect

    Wu Yuchi; Han Dan; Zhu Bin; Dong Kegong; Tan Fang; Gu Yuqiu

    2012-09-15

    The integrating current transformer (ICT) is a magnetic sensor widely used to precisely measure the charge of an ultra-short-pulse charged particle beam generated by traditional accelerators and new laser-plasma particle accelerators. In this paper, we present a new method to calculate the beam charge in an ICT based on circuit analysis. The output transfer function shows an invariable signal profile for an ultra-short electron bunch, so the function can be used to evaluate the signal quality and calculate the beam charge through signal fitting. We obtain a set of parameters in the output function from a standard signal generated by an ultra-short electron bunch (about 1 ps in duration) at a radio frequency linear electron accelerator at Tsinghua University. These parameters can be used to obtain the beam charge by signal fitting with excellent accuracy.

  8. Beam injection improvement for electron cyclotron resonance charge breeders

    SciTech Connect

    Lamy, T.; Angot, J.; Sortais, P.; Thuillier, T.

    2012-02-15

    The injection of a 1+ beam into an electron cyclotron resonance (ECR) charge breeder is classically performed through a grounded tube placed on its axis at the injection side. This tube presents various disadvantages for the operation of an ECR charge breeder. First experiments without a grounded tube show a better use of the microwave power and a better charge breeding efficiency. The optical acceptance of the charge breeder without decelerating tube allows the injection of high intensity 1+ ion beams at high energy, allowing metals sputtering inside the ion source. The use of this method for refractory metallic ion beams production is evaluated.

  9. Advanced methods for the computation of particle beam transport and the computation of electromagnetic fields and beam-cavity interactions. Final report

    SciTech Connect

    Dragt, A.J.; Gluckstern, R.L.

    1992-11-01

    The University of Maryland Dynamical Systems and Accelerator Theory Group carries out research in two broad areas: the computation of charged particle beam transport using Lie algebraic methods and advanced methods for the computation of electromagnetic fields and beam-cavity interactions. Important improvements in the state of the art are believed to be possible in both of these areas. In addition, applications of these methods are made to problems of current interest in accelerator physics including the theoretical performance of present and proposed high energy machines. The Lie algebraic method of computing and analyzing beam transport handles both linear and nonlinear beam elements. Tests show this method to be superior to the earlier matrix or numerical integration methods. It has wide application to many areas including accelerator physics, intense particle beams, ion microprobes, high resolution electron microscopy, and light optics. With regard to the area of electromagnetic fields and beam cavity interactions, work is carried out on the theory of beam breakup in single pulses. Work is also done on the analysis of the high frequency behavior of longitudinal and transverse coupling impedances, including the examination of methods which may be used to measure these impedances. Finally, work is performed on the electromagnetic analysis of coupled cavities and on the coupling of cavities to waveguides.

  10. An angular multigrid method for computing mono-energetic particle beams in Flatland

    SciTech Connect

    Boergers, Christoph MacLachlan, Scott

    2010-04-20

    Beams of microscopic particles penetrating scattering background matter play an important role in several applications. The parameter choices made here are motivated by the problem of electron-beam cancer therapy planning. Mathematically, a steady particle beam penetrating matter, or a configuration of several such beams, is modeled by a boundary value problem for a Boltzmann equation. Grid-based discretization of such a problem leads to a system of algebraic equations. This system is typically very large because of the large number of independent variables in the Boltzmann equation-six if no dimension-reducing assumptions other than time independence are made. If grid-based methods are to be practical for these problems, it is therefore necessary to develop very fast solvers for the discretized problems. For beams of mono-energetic particles interacting with a passive background, but not with each other, in two space dimensions, the first author proposed such a solver, based on angular domain decomposition, some time ago. Here, we propose and test an angular multigrid algorithm for the same model problem. Our numerical experiments show rapid, grid-independent convergence. For high-resolution calculations, our method is substantially more efficient than the angular domain decomposition method. In addition, unlike angular domain decomposition, the angular multigrid method works well even when the angular diffusion coefficient is fairly large.

  11. X-ray beam method for displacement measurement in hostile environments

    NASA Technical Reports Server (NTRS)

    Jordan, Eric H.; Pease, D. M.; Canistraro, H.; Brew, Dale

    1989-01-01

    A new method of extensometry using an X-ray beam was devised, and the results of current testing reveal it to be highly feasible. This technique has been shown to provide a non-contacting system that is immune to problems associated with density variations in gaseous environments, that plague currently available optical methods. This advantage is a result of the non-refracting penetrating nature of X-rays. The method is based on X-ray-induced X-ray fluorescence of targets, which subsequently serve as fudicial markers. Some target materials have melting points over 1600 degrees C which will facilitate measurement at extremely high temperatures. A highly focused intense X-ray beam, which is produced using a Johansen 'bent crystal', is then scanned across the target, which responds by fluorescing X-rays when stimulated by the incident beam. This secondary radiation is monitored using a detector. By carefully measuring beam orientation, change in target edge position can be determined. Many variations on this basic theme are now possible such as two targets demarcating a gage length, or a beam shadowing method using opaque targets.

  12. Damage identification in beam type structures based on statistical moment using a two step method

    NASA Astrophysics Data System (ADS)

    Wang, Dansheng; Xiang, Wei; Zhu, Hongping

    2014-02-01

    This paper defines a novel damage index-strain statistical moment, and formulates the fourth strain statistical moment (FSSM) of beam-type structures under white noise excitation. Based on this newly defined strain statistical moment index and the least square optimization algorithm, a two-step damage identification method is proposed. This two-step method is operated like this: first use the difference curves of FSSMs before and after damage to locate damage elements; then for those identified damage elements, employ the model updating method based on the least square algorithm to assess their damage severity. Numerical studies on a simply supported beam and a two-span continuous beam are performed and the study results show that the newly defined index is effective to locate damages, even when the noise intensity is as high as 15 percent. Integrating with the least square-based model updating technique, the damage severities of beam-type structures can also be determined quantitatively. In this way, the proposed two-step method is verified and found to be capable of identifying damage positions and severities of beam-type structures and insensitive to measurement noise.

  13. Free-Vibration Analysis of Rotating Beams by a Variable-Order Finite-Element Method

    NASA Technical Reports Server (NTRS)

    Hodges, Dewey H.; Rutkowski, Michael J.

    1981-01-01

    The free vibration of rotating beams is analyzed by means of a finite-element method of variable order. This method entails displacement functions that are a complete power series of a variable number of terms. The terms are arranged so that the generalized coordinates are composed of displacements and slopes at the element extremities and, additionally, displacements at certain points within the element. The displacement is assumed to be analytic within an element and thus can be approximated to any degree of accuracy desired by a complete power series. Numerical results are presented for uniform beams with zero and nonzero hub radii, tapered beams, and a nonuniform beam with discontinuities. Since the present method reduces to a conventional beam finite-element method for a cubic displacement function, the results are compared and found to be superior to the conventional results in terms of accuracy for a given number of degrees of freedom. Indeed, essentially exact eigenvalues and eigenvectors are obtained with this technique, which is far more rapidly convergent than other approaches in the literature.

  14. Intergalactic medium metal enrichment through dust sputtering

    NASA Astrophysics Data System (ADS)

    Bianchi, Simone; Ferrara, Andrea

    2005-04-01

    We study the motion of dust grains into the intergalactic medium (IGM) around redshift z= 3, to test the hypothesis that grains can efficiently pollute the gas with metals through sputtering. We use the results available in the literature for radiation-driven dust ejection from galaxies as initial conditions and follow the motion onwards. Via this mechanism, grains are ejected into the IGM with velocities >100 km s-1 as they move supersonically, grains can be efficiently eroded by non-thermal sputtering. However, Coulomb and collisional drag forces effectively reduce the charged grain velocity. Up-to-date sputtering yields for graphite and silicate (olivine) grains have been derived using the code TRANSPORT OF IONS IN MATTER (TRIM), for which we provide analytic fits. After training our method on a homogeneous density case, we analyse the grain motion and sputtering in the IGM density field as derived from a Λ cold dark matter (CDM) cosmological simulation at z= 3.27. We found that only large (a>~ 0.1μm) grains can travel up to considerable distances (few ×100 kpc physical) before being stopped. Resulting metallicities show a well-defined trend with overdensity δ. The maximum metallicities are reached for 10 < δ < 100[corresponding to systems, in quasi-stellar object (QSO) absorption spectra, with 14.5 < log N(HI) < 16]. However the distribution of sputtered metals is very inhomogeneous, with only a small fraction of the IGM volume polluted by dust sputtering (filling factors of 18 per cent for Si and 6 per cent for C). For the adopted size distribution, grains are never completely destroyed; nevertheless, the extinction and gas photoelectric heating effects resulting from this population of intergalactic grains are well below current detection limits.

  15. Analysis of transverse shear strains in pre-twisted thick beams using variational asymptotic method

    SciTech Connect

    Ameen, Maqsood M.; Harursampath, Dineshkumar E-mail: dinesh@aero.iisc.ernet.in

    2015-03-10

    The cross-sectional stiffness matrix is derived for a pre-twisted, moderately thick beam made of transversely isotropic materials and having rectangular cross sections. An asymptotically-exact methodology is used to model the anisotropic beam from 3-D elasticity, without any further assumptions. The beam is allowed to have large displacements and rotations, but small strain is assumed. The strain energy is computed making use of the beam constitutive law and kinematical relations derived with the inclusion of geometrical nonlinearities and an initial twist. The energy functional is minimized making use of the Variational Asymptotic Method (VAM), thereby reducing the cross section to a point on the beam reference line with appropriate properties, forming a 1-D constitutive law. VAM is a mathematical technique employed in the current problem to rigorously split the 3-D analysis of beams into two: a 2-D analysis over the beam cross-sectional domain, which provides a compact semi-analytical form of the properties of the cross sections, and a nonlinear 1-D analysis of the beam ref-erence curve. In this method, as applied herein, the cross-sectional analysis is performed asymptotically by taking advantage of a material small parameter and two geometric small parameters. 3-D strain components are derived using kinematics and arranged in orders of the small parameters. Closed-form expressions are derived for the 3-D non-linear warping and stress fields. Warping functions are obtained by the minimization of strain energy subject to certain set of constraints that render the 1-D strain measures well-defined. The zeroth-order 3-D warping field thus yielded is then used to integrate the 3-D strain energy density over the cross section, resulting in the 1-D strain energy density, which in turn helps identify the corresponding cross-sectional stiffness matrix. The model is capable of predicting interlaminar and transverse shear stresses accurately up to first order.

  16. A novel method involving Matlab coding to determine the distribution of a collimated ionizing radiation beam

    NASA Astrophysics Data System (ADS)

    Ioan, M.-R.

    2016-08-01

    In ionizing radiation related experiments, precisely knowing of the involved parameters it is a very important task. Some of these experiments are involving the use of electromagnetic ionizing radiation such are gamma rays and X rays, others make use of energetic charged or not charged small dimensions particles such are protons, electrons, neutrons and even, in other cases, larger accelerated particles such are helium or deuterium nuclei are used. In all these cases the beam used to hit an exposed target must be previously collimated and precisely characterized. In this paper, a novel method to determine the distribution of the collimated beam involving Matlab coding is proposed. The method was implemented by using of some Pyrex glass test samples placed in the beam where its distribution and dimension must be determined, followed by taking high quality pictures of them and then by digital processing the resulted images. By this method, information regarding the doses absorbed in the exposed samples volume are obtained too.

  17. A new optical image encryption method based on multi-beams interference and vector composition

    NASA Astrophysics Data System (ADS)

    Chen, Linfei; Liu, Jingyu; Wen, Jisen; Gao, Xiong; Mao, Haidan; Shi, Xiaoyan; Qu, Qingling

    2015-06-01

    In this paper, a new method for optical image encryption based on multi-beams interference principle and vector composition is proposed. In this encryption, the original image is encoded into n-1 phase only masks which are regarded as the keys of the encryption system and a ciphertext according to multi-beams interference principle and vector composition. In decryption process, n beams of parallel incident light illuminate at the phase only masks and the ciphertext, and we can obtain the decrypted image at output plane after Fourier transforms. The security of the proposed method is discussed, finding that no decrypted image can be obtained only when all the keys used are right. Furthermore, the keys can be stored separately resulting in improving the security of encryption system. Computer simulation results are presented to verify the validity of the proposed method.

  18. Ion beam microtexturing of surfaces

    NASA Technical Reports Server (NTRS)

    Robinson, R. S.

    1981-01-01

    Some recent work in surface microtecturing by ion beam sputtering is described. The texturing is accomplished by deposition of an impurity onto a substrate while simultaneously bombarding it with an ion beam. A summary of the theory regarding surface diffusion of impurities and the initiation of cone formation is provided. A detailed experimental study of the time-development of individual sputter cones is described. A quasi-liquid coating was observed that apparently reduces the sputter rate of the body of a cone compared to the bulk material. Experimental measurements of surface diffusion activation energies are presented for a variety of substrate-seed combinations and range from about 0.3 eV to 1.2 eV. Observations of apparent crystal structure in sputter cones are discussed. Measurements of the critical temperature for cone formation are also given along with a correlation of critical temperature with substrate sputter rate.

  19. Energy exchange between a laser beam and charged particles using inverse transition radiation and method for its use

    DOEpatents

    Kimura, Wayne D.; Romea, Richard D.; Steinhauer, Loren C.

    1998-01-01

    A method and apparatus for exchanging energy between relativistic charged particles and laser radiation using inverse diffraction radiation or inverse transition radiation. The beam of laser light is directed onto a particle beam by means of two optical elements which have apertures or foils through which the particle beam passes. The two apertures or foils are spaced by a predetermined distance of separation and the angle of interaction between the laser beam and the particle beam is set at a specific angle. The separation and angle are a function of the wavelength of the laser light and the relativistic energy of the particle beam. In a diffraction embodiment, the interaction between the laser and particle beams is determined by the diffraction effect due to the apertures in the optical elements. In a transition embodiment, the interaction between the laser and particle beams is determined by the transition effect due to pieces of foil placed in the particle beam path.

  20. System and method for sonic wave measurements using an acoustic beam source

    DOEpatents

    Vu, Cung Khac; Sinha, Dipen N.; Pantea, Cristian

    2015-08-11

    A method and system for investigating structure near a borehole are described herein. The method includes generating an acoustic beam by an acoustic source; directing at one or more azimuthal angles the acoustic beam towards a selected location in a vicinity of a borehole; receiving at one or more receivers an acoustic signal, the acoustic signal originating from a reflection or a refraction of the acoustic wave by a material at the selected location; and analyzing the received acoustic signal to characterize features of the material around the borehole.

  1. The new applications of sputtering and ion plating

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1977-01-01

    The potential industrial applications of sputtering and ion plating are strictly governed by the unique features these methods possess. The outstanding features of each method, the resultant coating characteristics and the various sputtering modes and configurations are discussed. New, more complex coatings and deposits can be developed such as graded composition structures (metal-ceramic seals), laminated and dispersion strengthened composites which improve the mechanical properties and high temperature stability. Specific industrial areas where future effort of sputtering and ion plating will concentrate to develop intricate alloy or compound coatings and solve difficult problem areas are discussed.

  2. Multiple-mode nonlinear free and forced vibrations of beams using finite element method

    NASA Technical Reports Server (NTRS)

    Mei, Chuh; Decha-Umphai, Kamolphan

    1987-01-01

    Multiple-mode nonlinear free and forced vibration of a beam is analyzed by the finite element method. The geometric nonlinearity is investigated. Inplane displacement and inertia (IDI) are also considered in the formulation. Harmonic force matrix is derived and explained. Nonlinear free vibration can be simply treated as a special case of the general forced vibration by setting the harmonic force matrix equal to zero. The effect of the higher modes is more pronouced for the clamped supported beam than the simply supported one. Beams without IDI yield more effect of the higher modes than the one with IDI. The effects of IDI are to reduce nonlinearity. For beams with end supports restrained from axial movement (immovable cases), only the hardening type nonlinearity is observed. However, beams of small slenderness ratio (L/R = 20) with movable end supports, the softening type nonlinearity is found. The concentrated force case yields a more severe response than the uniformly distributed force case. Finite element results are in good agreement with the solution of simple elliptic response, harmonic balance method, and Runge-Kutte method and experiment.

  3. Method for maximizing the brightness of the bunches in a particle injector by converting a highly space-charged beam to a relativistic and emittance-dominated beam

    DOEpatents

    Hannon, Fay

    2016-08-02

    A method for maximizing the brightness of the bunches in a particle injector by converting a highly space-charged beam to a relativistic and emittance-dominated beam. The method includes 1) determining the bunch charge and the initial kinetic energy of the highly space-charge dominated input beam; 2) applying the bunch charge and initial kinetic energy properties of the highly space-charge dominated input beam to determine the number of accelerator cavities required to accelerate the bunches to relativistic speed; 3) providing the required number of accelerator cavities; and 4) setting the gradient of the radio frequency (RF) cavities; and 5) operating the phase of the accelerator cavities between -90 and zero degrees of the sinusoid of phase to simultaneously accelerate and bunch the charged particles to maximize brightness, and until the beam is relativistic and emittance-dominated.

  4. The role of surface microstructure in the sputtering of graphite

    SciTech Connect

    Youchison, D.L.; Nahemow, M.D. ); McGrath, R.T. ); Baratta, A.J. )

    1991-05-01

    Extensive exposure to tokamak plasmas may result in significant alterations to the surface microstructure of graphite plasma-facing components. A change in microstructure from a commercial isotropic graphite to an amorphous carbon film may produce a significant change in the total sputtering yield and the level of plasma contamination. To investigate this sensitivity to surface microstructure, sputtering experiments on a variety of graphites with various surface structures were performed using the ion--surface interaction system (ISIS).{sup 1} ISIS is a computerized ion beam sputtering system equipped with twin quartz crystal microbalances capable of simultaneously monitoring both sputtering and redeposition of the beam target material. ISIS was used to obtain sputtering data on two orientations of pyrolytic graphite at seven energies between 100 eV and 10 keV. Helium bombardment perpendicular to the prism plane produced yields 2 to 7 times higher than on the basal plane. Proton bombardment perpendicular to the prism plane produced yields 45% higher than those on the basal plane. Amorphous graphite films produced from Poco AXF-5Q and Union Carbide ATJ graphites using an argon radio-frequency (rf) plasma discharge were also irradiated. Sputtering yields on the amorphous films were as much as 50% to an order of magnitude higher than those measured on commercial bulk samples. Pre and post-irradiation scanning electron microscopy of selected targets was performed to monitor surface microstructure. A structural mechanism responsible for the magnitude of physical sputtering is suggested, and an effective surface binding energy is introduced to quantify this structural dependence.

  5. Xenon Sputter Yield Measurements for Ion Thruster Materials

    NASA Technical Reports Server (NTRS)

    Williams, John D.; Gardner, Michael M.; Johnson, Mark L.; Wilbur, Paul J.

    2003-01-01

    In this paper, we describe a technique that was used to measure total and differential sputter yields of materials important to high specific impulse ion thrusters. The heart of the technique is a quartz crystal monitor that is swept at constant radial distance from a small target region where a high current density xenon ion beam is aimed. Differential sputtering yields were generally measured over a full 180 deg arc in a plane that included the beam centerline and the normal vector to the target surface. Sputter yield results are presented for a xenon ion energy range from 0.5 to 10 keV and an angle of incidence range from 0 deg to 70 deg from the target surface normal direction for targets consisting of molybdenum, titanium, solid (Poco) graphite, and flexible graphite (grafoil). Total sputter yields are calculated using a simple integration procedure and comparisons are made to sputter yields obtained from the literature. In general, the agreement between the available data is good. As expected for heavy xenon ions, the differential and total sputter yields are found to be strong functions of angle of incidence. Significant under- and over-cosine behavior is observed at low- and high-ion energies, respectively. In addition, strong differences in differential yield behavior are observed between low-Z targets (C and Ti) and high-Z targets (Mo). Curve fits to the differential sputter yield data are provided. They should prove useful to analysts interested in predicting the erosion profiles of ion thruster components and determining where the erosion products re-deposit.

  6. Modeling liquid-crystal devices with the three-dimensional full-vector beam propagation method

    NASA Astrophysics Data System (ADS)

    Wang, Qian; Farrell, Gerald; Semenova, Yuliya

    2006-08-01

    Simulation of light propagation within nematic liquid-crystal (LC) devices is considered, of which the director is aligned normal to the z axis. A three-dimensional full-vector finite-difference beam propagation method for an anisotropic medium is presented and an alternating direction implicit scheme is adopted. Simulations of light propagation in a bulk polarization converter, a waveguide with a LC covering layer, and an integrated polarization splitter and optical switch are presented. Comparison with an existing simulation method is carried out for beam behavior within the bulk polarization converter. The effect of strong surface anchoring of a LC cell on the beam behaviors within the integrated switch is also demonstrated.

  7. Modeling liquid-crystal devices with the three-dimensional full-vector beam propagation method.

    PubMed

    Wang, Qian; Farrell, Gerald; Semenova, Yuliya

    2006-08-01

    Simulation of light propagation within nematic liquid-crystal (LC) devices is considered, of which the director is aligned normal to the z axis. A three-dimensional full-vector finite-difference beam propagation method for an anisotropic medium is presented and an alternating direction implicit scheme is adopted. Simulations of light propagation in a bulk polarization converter, a waveguide with a LC covering layer, and an integrated polarization splitter and optical switch are presented. Comparison with an existing simulation method is carried out for beam behavior within the bulk polarization converter. The effect of strong surface anchoring of a LC cell on the beam behaviors within the integrated switch is also demonstrated. PMID:16835661

  8. Modeling laser beam diffraction and propagation by the mode-expansion method.

    PubMed

    Snyder, James J

    2007-08-01

    In the mode-expansion method for modeling propagation of a diffracted beam, the beam at the aperture can be expanded as a weighted set of orthogonal modes. The parameters of the expansion modes are chosen to maximize the weighting coefficient of the lowest-order mode. As the beam propagates, its field distribution can be reconstructed from the set of weighting coefficients and the Gouy phase of the lowest-order mode. We have developed a simple procedure to implement the mode-expansion method for propagation through an arbitrary ABCD matrix, and we have demonstrated that it is accurate in comparison with direct calculations of diffraction integrals and much faster. PMID:17676115

  9. Device and method for generating a beam of acoustic energy from a borehole, and applications thereof

    DOEpatents

    Vu, Cung Khac; Sinha, Dipen N.; Pantea, Cristian; Nihei, Kurt T.; Schmitt, Denis P.; Skelt, Chirstopher

    2013-10-15

    In some aspects of the invention, a method of generating a beam of acoustic energy in a borehole is disclosed. The method includes generating a first acoustic wave at a first frequency; generating a second acoustic wave at a second frequency different than the first frequency, wherein the first acoustic wave and second acoustic wave are generated by at least one transducer carried by a tool located within the borehole; transmitting the first and the second acoustic waves into an acoustically non-linear medium, wherein the composition of the non-linear medium produces a collimated beam by a non-linear mixing of the first and second acoustic waves, wherein the collimated beam has a frequency based upon a difference between the first frequency range and the second frequency, and wherein the non-linear medium has a velocity of sound between 100 m/s and 800 m/s.

  10. Sputtered protective coatings for die casting dies

    NASA Technical Reports Server (NTRS)

    Mirtich, M. J.; Nieh, C. Y.; Wallace, J. F.

    1981-01-01

    This investigation determined whether selected ion beam sputtered coatings on H-13 die steel would have the potential of improving the thermal fatigue behavior of the steel used as a die in aluminum die casting. The coatings were selected to test candidate insulators and metals capable of providing protection of the die surface. The studies indicate that 1 micrometer thick W and Pt coatings reduced the thermal fatigue more than any other coating tested and are candidates to be used on a die surface to increase die life.

  11. Method for reduction of selected ion intensities in confined ion beams

    DOEpatents

    Eiden, G.C.; Barinaga, C.J.; Koppenaal, D.W.

    1998-06-16

    A method for producing an ion beam having an increased proportion of analyte ions compared to carrier gas ions is disclosed. Specifically, the method has the step of addition of a charge transfer gas to the carrier analyte combination that accepts charge from the carrier gas ions yet minimally accepts charge from the analyte ions thereby selectively neutralizing the carrier gas ions. Also disclosed is the method as employed in various analytical instruments including an inductively coupled plasma mass spectrometer. 7 figs.

  12. NOVEL METHODS FOR EXPERIMENTAL CHARACTERIZATION OF 3D SUPERCONDUCTING LINAC BEAM DYNAMICS

    SciTech Connect

    Shishlo, Andrei P

    2013-01-01

    This paper describes an approach to measure initial Twiss parameters in transverse and longitudinal directions at the entrance of a linac with independent short accelerating cavities. For the transverse plane the usual technique of transverse profiles is used, and for the longitudinal direction a recently developed non-intercepting method is applied. The new method is based on a beam position monitor amplitudes analysis. The applicability of the methods are discussed and demonstrated on an example of the Spallation Neutron Source superconducting linac.

  13. Method for reduction of selected ion intensities in confined ion beams

    DOEpatents

    Eiden, Gregory C.; Barinaga, Charles J.; Koppenaal, David W.

    1998-01-01

    A method for producing an ion beam having an increased proportion of analyte ions compared to carrier gas ions is disclosed. Specifically, the method has the step of addition of a charge transfer gas to the carrier analyte combination that accepts charge from the carrier gas ions yet minimally accepts charge from the analyte ions thereby selectively neutralizing the carrier gas ions. Also disclosed is the method as employed in various analytical instruments including an inductively coupled plasma mass spectrometer.

  14. A generalized reverse projection method for fan beam geometry under partially coherent illumination

    NASA Astrophysics Data System (ADS)

    Wu, Z.; Wang, Z. L.; Gao, K.; Zhang, K.; Ge, X.; Wang, D. J.; Wang, S. H.; Chen, J.; Pan, Z. Y.; Zhu, P. P.; Wu, Z. Y.

    2014-02-01

    In this paper, a generalized reverse projection (RP) method for grating-based fan beam phase contrast imaging is presented. Compared to the original RP method, rays rather than projection images are taken into account during the information extraction process. We also discuss the influence of partial coherence on the extracted information. Theoretical derivations and numerical simulations are performed to confirm the validity of the method.

  15. Adherence of sputtered titanium carbides

    NASA Technical Reports Server (NTRS)

    Brainard, W. A.; Wheeler, D. R.

    1979-01-01

    Sputtered coatings of the refractory metal carbides are of great interest for applications where hard wear-resistant materials are desired. The usefulness of sputtered refractory carbides is often limited, in practice, by spalling or interfacial separation. In this work improvements in the adherence of refractory carbides on iron, nickel and titanium based alloys were obtained by using oxidation, reactive sputtering or sputtered interlayers to alter the coating-substrate interfacial region. X-ray photoelectron spectroscopy and argon ion etching were used to characterize the interfacial regions, and an attempt was made to correlate adherence as measured in wear tests with the chemical nature of the interface.

  16. Shear Lag in Box Beams Methods of Analysis and Experimental Investigations

    NASA Technical Reports Server (NTRS)

    Kuhn, Paul; Chiarito, Patrick T

    1942-01-01

    The bending stresses in the covers of box beams or wide-flange beams differ appreciably from the stresses predicted by the ordinary bending theory on account of shear deformation of the flanges. The problem of predicting these differences has become known as the shear-lag problem. The first part of this paper deals with methods of shear-lag analysis suitable for practical use. The second part of the paper describes strain-gage tests made by the NACA to verify the theory. Three tests published by other investigators are also analyzed by the proposed method. The third part of the paper gives numerical examples illustrating the methods of analysis. An appendix gives comparisons with other methods, particularly with the method of Ebner and Koller.

  17. A case study of analysis methods for large deflections of a cantilever beam

    NASA Technical Reports Server (NTRS)

    Craig, L. D.

    1994-01-01

    A load case study of geometric nonlinear large deflections of a cantilever beam is presented. The bending strain must remain elastic. Closed form solution and finite element methods of analysis are illustrated and compared for three common load cases. A nondimensional nomogram for each case is presented in the summary.

  18. Highly Accurate Beam Torsion Solutions Using the p-Version Finite Element Method

    NASA Technical Reports Server (NTRS)

    Smith, James P.

    1996-01-01

    A new treatment of the classical beam torsion boundary value problem is applied. Using the p-version finite element method with shape functions based on Legendre polynomials, torsion solutions for generic cross-sections comprised of isotropic materials are developed. Element shape functions for quadrilateral and triangular elements are discussed, and numerical examples are provided.

  19. A case study of analysis methods for large deflections of a cantilever beam

    NASA Astrophysics Data System (ADS)

    Craig, L. D.

    1994-05-01

    A load case study of geometric nonlinear large deflections of a cantilever beam is presented. The bending strain must remain elastic. Closed form solution and finite element methods of analysis are illustrated and compared for three common load cases. A nondimensional nomogram for each case is presented in the summary.

  20. A Meshless Local Petrov-Galerkin Method for Euler-Bernoulli Beam Problems

    NASA Technical Reports Server (NTRS)

    Raju, I. S.; Phillips, D. R.

    2002-01-01

    An accurate and yet simple Meshless Local Petrov-Galerkin (MLPG) formulation for analyzing beam problems is presented. In the formulation, simple weight functions are chosen as test functions. The use of these functions shows that the weak form can be integrated with conventional Gaussian integration. The MLPG method was evaluated by applying the formulation to a variety of patch test and thin beam problems. The formulation successfully reproduced exact solutions to machine accuracy when test functions with C2 continuity and an appropriate order of basis functions are used.