Science.gov

Sample records for beams ii experimentos

  1. Experimentos submarinos

    NASA Video Gallery

    NEEMO se lleva a cabo en un laboratorio submarino llamado Aquarius. De la mano del astronauta de la NASA José Hernández conoce alguno de los experimentos que los astronautas (o acuanautas) hacen mi...

  2. Beam-beam effects in the Tevatron Run II

    SciTech Connect

    Shiltsev, V.; Alexahin, Yu.; Lebedev, V.; Lebrun, P.; Moore, R.; Sen, T.; Valishev, A.; Zhang, X.L.; /FERMILAB

    2005-05-01

    Electromagnetic long-range and head-on interactions of high intensity proton and antiproton beams are significant sources of beam loss and lifetime limitations in the Tevatron Collider Run II (2001-present). We present observations of the beam-beam phenomena in the Tevatron and results of relevant beam studies. We analyze the data and various methods employed in high energy physics (HEP) operation, predict the performance for planned luminosity upgrades and discuss ways to improve it.

  3. DARHT-II Downstream Beam Transport Beamline

    SciTech Connect

    Westenskow, G A; Bertolini, L R; Duffy, P T; Paul, A C

    2000-08-01

    This paper describes the mechanical design of the downstream beam transport line for the second axis of the Dual Axis Radiographic Hydrodynamic Test (DARHT II) Facility. The DARHT-II project is a collaboration between LANL, LBNL and LLNL. DARHT II is a 20-MeV, 2000-Amperes, 2-{micro}sec linear induction accelerator designed to generate short bursts of x-rays for the purpose of radiographing dense objects. The downstream beam transport line is approximately 20-meter long region extending from the end of the accelerator to the bremsstrahlung target. Within this proposed transport line there are 15 conventional solenoid, quadrupole and dipole magnets; as well as several specialty magnets, which transport and focus the beam to the target and to the beam dumps. There are two high power beam dumps, which are designed to absorb 80-kJ per pulse during accelerator start-up and operation. Aspects of the mechanical design of these elements are presented.

  4. Relativistic atomic beam spectroscopy II

    SciTech Connect

    1991-12-31

    We are requesting support for a postdoctoral person to participate in H{sup -} studies at Los Alamos. In addition, we are requesting funding for a state-of-the-art YAG laser system that would allow us to obtain data at three times our present rate with improved beam quality.

  5. NSLS-II Beam Diagnostics Overview

    SciTech Connect

    Singh,O.; Alforque, R.; Bacha, B.; Blednykh, A.; Cameron, P.; Cheng, W.; Dalesio, L. B.; Della Penna, A. J.; doom, L.; Fliller, R. P.; Ganetis, G.; Heese, R.; Hseuh, H-C.; Johnson, E. D.; Kosciuk, b. N.; Kramer, S. L.; Krinsky, S.; Mead, J.; Ozaki, S.; Padrazo, D.; Pinayev, I.; Ravindranath, R. V.; Rose, J.; Shaftan, T.; Sharma, S.; Skaritka, J.; Tanabe, T.; Tian, Y.; Willeke, F. J.; Yu, L-H.

    2009-05-04

    A new 3rd generation light source (NSLS-II) is in the early stages of construction at Brookhaven National Laboratory. The NSLS-II facility will provide ultra high brightness and flux with exceptional beam stability. It presents several challenges for diagnostics and instrumentation, related to the extremely small emittance. In this paper, we present an overview of all planned instrumentation systems, results from research and development activities; and then focus on other challenging aspects.

  6. Beam-tracking studies with RINGBEARER II

    SciTech Connect

    Masamitsu, J.A.; Yu, S.S.; Chambers, F.W.

    1982-11-22

    This report presents results from the RINGBEARER II linearized monopole/dipole particle simulation for an intense relativistic electron beam propagating in a gas near three types of channels: (1) pre-existing conductivity, (2) density, and (3) density with pre-existing conductivity. Comparisons are made with earlier analytic results for the initial conditions for the pre-existing conductivity channel.

  7. Beam transfer and extraction at LAMPF II

    SciTech Connect

    Colton, E.P.

    1983-01-01

    Protons will be single-turn extracted from the LAMPF II synchrotron at 30 Hz. On alternate pulses they will be single-turn injected into a storage ring. Both processes utilize fast kickers and Lambertson septum magnets. Half-integer resonant extraction will be used to slow-extract the beam from the storage ring over a time spread of 1/15 s. The slow extraction occurs using electrostatic wire and iron septa.

  8. NSLS-II RF BEAM POSITION MONITOR

    SciTech Connect

    Vetter, K.; Della Penna, A. J.; DeLong, J.; Kosciuk, B.; Mead, J.; Pinayev, I.; Singh, O.; Tian, Y.; Ha, K.; Portmann, G.; Sebek J.

    2011-03-28

    An internal R&D program has been undertaken at BNL to develop a sub-micron RF Beam Position Monitor (BPM) for the NSLS-II 3rd generation light source that is currently under construction. The BPM R&D program started in August 2009. Successful beam tests were conducted 15 months from the start of the program. The NSLS-II RF BPM has been designed to meet all requirements for the NSLS-II Injection system and Storage Ring. Housing of the RF BPM's in +-0.1 C thermally controlled racks provide sub-micron stabilization without active correction. An active pilot-tone has been incorporated to aid long-term (8hr min) stabilization to 200nm RMS. The development of a sub-micron BPM for the NSLS-II has successfully demonstrated performance and stability. Pilot Tone calibration combiner and RF synthesizer has been implemented and algorithm development is underway. The program is currently on schedule to start production development of 60 Injection BPM's starting in the Fall of 2011. The production of {approx}250 Storage Ring BPM's will overlap the Injection schedule.

  9. Beam Position Monitor System for PEP II

    SciTech Connect

    Smith, Stephen R.; Aiello, G.Roberto; Hendrickson, Linda J.; Johnson, Ronald G.; Mills, Mark R.; Olsen, Jeff J.; /SLAC

    2011-09-12

    We describe the beam position monitor system built for PEP-II, the B-factory at SLAC. The system reports beam position for bunches of between 5 x 10{sup 8} and 8 x 10{sup 10} electron charges, either singly or as continuous streams of bunches every 4.2 ns. Resolution at full charge is to be better than 10 microns in a single turn. Higher resolution is available via on-board multi-turn averaging. The position signal is processed in a 20 MHz bandwidth around 952 MHz. This bandwidth, rather broader than that typical of RF position monitors, allows good resolution for low charge single bunches. Additional novel features include stringent control of return losses in order to minimize cross-talk between nearby bunches which may contain very different charges. The digitizing electronics is multiplexed between the two PEP-II storage rings. Design, construction, and installation experience, as well as first results with beam are presented.

  10. First beam at DARHT-II

    SciTech Connect

    Ekdahl, C. A.; Abeyta, E. O.; Caudill, L. D.; Dalmas, D. A.; Eversole, S. A.; Harrison, J. F.; Holzscheiter, M. H.; Johnson, J. B.; Jacquez, E. B.; McCuistian, B. T.; Nielson, K. E.; Oro, D. M.; Schauer, M. M.; Studebaker, J. K.; Sullivan, G. K.; Temple, R. D.

    2003-01-01

    The second axis of the Dual Axis Radiographic Hydro-Test (DARHT) facility will provide up to four short (<100 ns) radiation pulses for flash radiography of high-explosive driven implosion experiments. To accomplish this the DARHT-I1 linear induction accelerator (LIA) will produce a 2-kA electron beam with 18-MeV kinetic energy, constant to within 2 0.5% for 2-ps. A fast kicker will cleave four short pulses out of the 2-ps flattop, with the bulk of the beam diverted into a dump. The short pulses will then be transported to the final-focus magnet, and focused onto a tantalum target for conversion to bremsstrahlung pulses for radiography. DARHT-II is a collaborative effort between Los Alamos, Livermore, and Berkeley National Laboratories. The first tests of the second axis accelerator, described herein, were performed to demonstrate the technology and to meet the performance requirements for closing out the DARHT-II construction project.

  11. An electron beam detector for the FLASH II beam dump

    NASA Astrophysics Data System (ADS)

    Good, J.; Kube, G.; Leuschner, N.; Perlick, F.; Sachwitz, M.; Schmitz, M.; Wittenburg, K.; Wohlenberg, T.

    2013-05-01

    After the generation of the laser light, a dipole deflects the highly energetic electron beam of FLASH (Free Electron Laser Hamburg) into a dump. A detector is developed to monitor the position, dimensions and profile of the electron beam. Scintillation light is emitted due to the electrons hitting a luminescent screen located in front of the dump aperture. This light is guided by an optical system external to the vacuum to a CCD camera for optical analysis of the generated image. In this paper the layouts of two different optical systems are presented, both of which will be redundantly installed at FLASH II. The conventional lens-mirror-arrangement, consisting of three single collecting lenses, two mirrors and a zoom lens, is supposed to have a theoretical resolution of 0.25 mm. The second optical system is based on radiation-hard optical fibres. For the latter it is planned to test the impact of radiation on the optical qualities of the bundle by installing it into a "radioactive hot spot" at the bunch compressor in the FLASH accelerator. This test setup will also be presented.

  12. Measuring the emittance of the DARHT-II electron beam

    NASA Astrophysics Data System (ADS)

    Ekdahl, Carl; Bartsch, Richard; Custer, Dan; Ridlon, Rae; Rose, Evan; Eylon, Shmuel; Broste, William; Johnson, Jefferey

    2001-10-01

    The DARHT-II linear induction accelerator (LIA) is being built for radiography of large-scale, explosively-driven hydrodynamics experiments. When fully operational, DARHT-II will have an electron beam current of 2-kA and a beam energy of 18 MeV. The two-microsecond beam pulse will be chopped into four short pulses for time resolution of hydrodynamic motion. A small radiographic spot size is a requirement for DARHT-II. The DARHT-II LIA design emphasizes low beam emittance to reduce the spot size. Measuring the emittance of a high-power, 2-micro-sec beam presents special challenges, and we will discuss two different approaches. In the first technique a fast solenoid is employed to focus the beam onto an imaging screen in 120 ns to prevent overheating of the screen and consequent beam disruption by evolved gas/plasma/ions. The fast-focus coil must produce a 1 kG field over an effective length of 50 cm. The design and testing of this coil and its pulsed-power driver will be presented. The second technique uses non-invasive diamagnetic loop measurements, from which the beam radius can be inferred, at several locations. A beam envelope code is then used to find the most likely emittance that fits the data. In this presentation these methods are compared with respect to expected uncertainties, and the resulting accuracy of emittance determination.

  13. Lithium ion beam driven hohlraums for PBFA II

    SciTech Connect

    Dukart, R.J.

    1994-05-06

    In our light ion inertial confinement fusion (ICF) program, fusion capsules are driven with an intense x-ray radiation field produced when an intense beam of ions penetrates a radiation case and deposits energy in a foam x-ray conversion region. A first step in the program is to generate and measure these intense fields on the Particle Beam Fusion Accelerator II (PBFA II). Our goal is to generate a 100-eV radiation temperature in lithium ion beam driven hohlraums, the radiation environment which will provide the initial drive temperature for ion beam driven implosion systems designed to achieve high gain. In this paper, we describe the design of such hohlraum targets and their predicted performance on PBFA II as we provide increasing ion beam intensities.

  14. PHOTOMETRIC SUPERNOVA COSMOLOGY WITH BEAMS AND SDSS-II

    SciTech Connect

    Hlozek, Renee; Kunz, Martin; Bassett, Bruce; Smith, Mat; Newling, James; Varughese, Melvin; Kessler, Rick; Frieman, Joshua; Bernstein, Joseph P.; Kuhlmann, Steve; Marriner, John; Campbell, Heather; Lampeitl, Hubert; Nichol, Robert C.; Dilday, Ben; Falck, Bridget; Riess, Adam G.; Sako, Masao; Schneider, Donald P.

    2012-06-20

    Supernova (SN) cosmology without spectroscopic confirmation is an exciting new frontier, which we address here with the Bayesian Estimation Applied to Multiple Species (BEAMS) algorithm and the full three years of data from the Sloan Digital Sky Survey II Supernova Survey (SDSS-II SN). BEAMS is a Bayesian framework for using data from multiple species in statistical inference when one has the probability that each data point belongs to a given species, corresponding in this context to different types of SNe with their probabilities derived from their multi-band light curves. We run the BEAMS algorithm on both Gaussian and more realistic SNANA simulations with of order 10{sup 4} SNe, testing the algorithm against various pitfalls one might expect in the new and somewhat uncharted territory of photometric SN cosmology. We compare the performance of BEAMS to that of both mock spectroscopic surveys and photometric samples that have been cut using typical selection criteria. The latter typically either are biased due to contamination or have significantly larger contours in the cosmological parameters due to small data sets. We then apply BEAMS to the 792 SDSS-II photometric SNe with host spectroscopic redshifts. In this case, BEAMS reduces the area of the {Omega}{sub m}, {Omega}{sub {Lambda}} contours by a factor of three relative to the case where only spectroscopically confirmed data are used (297 SNe). In the case of flatness, the constraints obtained on the matter density applying BEAMS to the photometric SDSS-II data are {Omega}{sup BEAMS}{sub m} = 0.194 {+-} 0.07. This illustrates the potential power of BEAMS for future large photometric SN surveys such as Large Synoptic Survey Telescope.

  15. Beam-Ion Instability in PEP-II

    SciTech Connect

    Heifets, S.; Kulikov, A.; Wang, Min-Huey; Wienands, U.; /SLAC

    2007-11-07

    The instability in the PEP-II electron ring has been observed while reducing the clearing gap in the bunch train. We study the ion effects in the ring summarizing existing theories of the beam-ion interaction, comparing them with observations, and estimating effect on luminosity in the saturation regime. Considering the gap instability we suggest that the instability is triggered by the beam-ion instability, and discuss other mechanisms pertinent to the instability.

  16. Beam position monitor system for PEP-II

    SciTech Connect

    Aiello, G.R.; Johnson, R.G.; Martin, D.J.; Mills, M.R.; Olsen, J.J.; Smith, S.R.

    1997-01-01

    The beam position monitor (BPM) system for PEP-II, the B-Factory under construction at SLAC, is described in this paper. The system must measure closed orbit for a 3-A multibunch beam and turn-by-turn position for a low-current single bunch injected in a 200-ns gap in the multibunch beam. A system that combines broadband and narrowband capabilities and provides data at high bandwidth was designed. It includes a filter-isolator box (FIB) that selects a harmonic of the bunch spacing (952 MHz) and absorbs the other frequency components; a CAMAC-based wideband I&Q demodulator, ADC, and signal processor that provides beam position information to the control system; and a calibrator that must work even in presence of beam, correcting for electronic measurement errors. This paper describes the system requirements, the electronics design, and the laboratory tests. {copyright} {ital 1997 American Institute of Physics.}

  17. Beam Loss Control for the NSLS-II Storage Ring

    SciTech Connect

    Kramer, S.L.; Choi, J.

    2011-03-28

    The shielding design for the NSLS-II storage ring is designed for the full injected beam losses in two periods of the ring around the injection point, but for the remainder of the ring its shielded for {le} 10% top-off injection beam. This will require a system to insure that beam losses do not exceed these levels for time sufficient to cause excessive radiation exposure outside the shield walls. This beam Loss Control and Monitoring (LCM) system will control the beam losses to the more heavily shielded injection region while monitoring the losses outside this region. To achieve this scrapers are installed in the injection region to intercept beam particles that might be lost outside this region. The scrapers will be thin (< 1Xrad) that will allow low energy electrons to penetrate and the subsequent dipole will separate them from the stored beam. These thin scrapers will reduce the radiation from the scraper compared to thicker scrapers. The dipole will provide significant local shielding for particles that hit inside the gap and a source for the loss monitor system that will measure the amount of beam lost in the injection region.

  18. Beam Loss Monitors for NSLS-II Storage Ring

    SciTech Connect

    Kramer, S.L.; Cameron, P.

    2011-03-28

    The shielding for the NSLS-II storage ring will provide adequate protection for the full injected beam losses in two cells of the ring around the injection point, but the remainder of the ring is shielded for lower losses of <10% top-off injection beam current. This will require a system to insure that beam losses do not exceed levels for a period of time that could cause excessive radiation exposure outside the shield walls. This beam Loss Control and Monitoring system will have beam loss monitors that will measure where the beam charge is lost around the ring, to warn operators if losses approach the design limits. To measure the charge loss quantitatively, we propose measuring the electron component of the shower as beam electrons hit the vacuum chamber (VC) wall. This will be done using the Cerenkov light as electrons transit ultra-pure fused silica rods placed close to the inner edge of the VC. The entire length of the rod will collect light from the electrons of the spread out shower resulting from the small glancing angle of the lost beam particles to the VC wall. The design and measurements results of the prototype Cerenkov BLM will be presented.

  19. DESIGN OF BEAM TRANSFER LINES FOR THE NSLS II

    SciTech Connect

    TSOUPAS,N.; ROSE, J.; PINAYEV, I.; SHAFTAN, T.; STELMACH, C.

    2007-06-25

    The NSLS-II light source which is a proposed facility to be built at Brookhaven National Laboratory utilizes two synchrotron accelerator rings: the booster and the Storage ring (SR). Designing the NSLS-11 injector we considered two options for the booster layout, where the rings either (a) share the same tunnel, but placed at different horizontal planes or (b) booster is located in a separate building. The booster which accepts beam from the linac, accelerates the electron beam to an energy of 3.0 GeV and the beam is extracted to the Booster to Storage Ring (BtS) transport line which transports the beam and injects it into the SR ring. The design procedure for each of the two options of the BtS line and other details about the optics and the magnetic elements of the line are presented in this paper.

  20. Neutralization tests on the SERT II spacecraft. [of ion beams

    NASA Technical Reports Server (NTRS)

    Kerslake, W. R.; Domitz, S.

    1979-01-01

    Orbit precession returned the SERT II spacecraft to continuous sunlight in January 1979 for the first time since early 1972, and new experiments were planned and conducted. Neutralization of an ion beam was accomplished by a second neutralizer cathode located 1 meter away. Plasma potential measurements were made of the plasma surrounding the ion beam and connecting the beam to the second neutralizer. When the density of the connecting plasma was increased by turning on the main discharge of a neighboring ion thruster, the neutralization of the ion beam occurred with improved (lower) coupling voltage. These and other tests reported should aid in the future design of spacecraft using electric thruster systems. Data taken indicate that cross neutralization of ion thrusters in a multiple thruster array should occur readily.

  1. Light ion sources and target results on PBFA II (Particle Beam Fusion Accelerator II)

    SciTech Connect

    Cook, D.L.; Bailey, J.E.; Bieg, K.W.; Bloomquist, D.D.; Coats, R.S.; Chandler, G.C.; Cuneo, M.E.; Derzon, M.S.; Desjarlais, M.P.; Dreike, P.L.; Dukart, R.J.; Gerber, R.A.; Johnson, D.J.; Leeper, R.J.; Lockner, T.R.; McDaniel, D.H.; Maenchen, J.E.; Matzen, M.K.; Mehlhorn, T.A.; Mix, L.P.; Moats, A.R.; Nelson, W.E.; Pointon, T.D.; Pregenzer, A.L.; Quintenz, J.P.; Renk, T.J.; Rosenthal, S.E.; Ruiz, C.L.; Slutz, S.A.; Stinnett, R

    1990-01-01

    Advances in ion beam theory, diagnostics, and experiments in the past two years have enabled efficient generation of intense proton beams on PBFA II, and focusing of the beam power to 5.4 TW/cm{sup 2} on a 6-mm-diameter target. Target experiments have been started with the intense proton beams, since the range of protons at 4--5 MeV is equivalent to that of lithium at 30 MeV. Three series of experiments have been conducted using planar, conical, and cylindrical targets. These tests have provided information on ion beam power density, uniformity, and energy deposition. In order to increase the power density substantially for target implosion experiments, we are now concentrating on development of high voltage lithium ion beams. 10 refs., 13 figs.

  2. Ion beam generation and focusing on PBFA (Particle Beam Fusion Accelerator) II

    SciTech Connect

    Stinnett, R.W.; Bailey, J.E.; Bieg, K.W.; Coats, R.S.; Chandler, G.; Derzon, M.S.; Desjarlais, M.P.; Dreike, P.L.; Gerber, R.A.; Johnson, D.J.; Leeper, R.J.; Lockner, T.R.; Maenchen, J.; Mehlhorn, T.A.; Pregenzer, A.L.; Quintenz, J.P.; Renk, T.J.; Rosenthal, S.E.; Ruiz, C.L.; Slutz, S.A.; Stygar, W.A.; Tisone, G.C.; Woodworth, J.R. ); Maron, Y. (Weizmann Inst. of Science, R

    1990-01-01

    During the past year we have succeeded in obtaining a 5 TW/cm{sup 2} proton focus on Sandia National Laboratories' Particle Beam Fusion Accelerator (PBFA) II. This has allowed us to shift our experimental emphasis to the implementation of an improved ion diode geometry for higher voltage operation, full azimuthal beam characterization, and especially lithium ion source experiments. We have made significant progress in each of these areas during the past year, demonstrating 10 MV diode operation, {plus minus}10% azimuthal beam symmetry, and promising initial results from lithium ion source experiments. 8 refs., 6 figs.

  3. Focused electron beam induced deposition of pure SIO II

    NASA Astrophysics Data System (ADS)

    Perentes, Alexandre; Hoffmann, Patrik; Munnik, Frans

    2007-02-01

    Focused electron beam induced processing (FEBID) equipments are the "all in one" tools for high resolution investigation, and modification of nano-devices. Focused electron beam induced deposition from a gaseous precursor usually results in a nano-composite sub-structured material, in which the interesting material is embedded in an amorphous carbonaceous matrix. Using the Hydrogen free tetraisocyanatosilane Si(NCO) 4 molecule as Si source, we show how a controlled oxygen flux, simultaneously injected with the precursor vapors, causes contaminants to vanish from the FEB deposits obtained and leads to the deposition of pure SiO II. The chemical composition of the FEBID material could be controlled from SiC IINO 3 to SiO II, the latter containing undetectable foreign element contamination. The [O II] / [TICS] ratio needed to obtain SiO II in our FEB deposition equipment is larger than 300. The evolution of the FEBID material chemical composition is presented as function of the [O II] / [TICS] molecular flux ratios. A hypothetical decomposition pathway of this silane under these conditions is discussed based on the different species formed under electron bombardment of TICS. Transmission electron microscopy investigations demonstrated that the deposited oxide is smooth (roughness sub 2nm) and amorphous. Infrared spectroscopy confirmed the low concentration of hydroxyl groups. The Hydrogen content of the deposited oxide, measured by elastic recoil detection analysis, is as low as 1 at%. 193nm wavelength AIMS investigations of 125nm thick SiO II pads (obtained with [O II] / [TICS] = 325) showed an undetectable light absorption.

  4. Beam-Based Solenoid Compensation for the PEP-II

    SciTech Connect

    Cai, Yunhai

    1999-08-26

    Commissioning the compensation system of the solenoid in the BaBar detector presents a challenging problem due to the complexity of the system, which uses twelve normal quadrupoles and twelve skew quadrupoles in each ring. The setting of these skew quadrupoles needs to be readjusted according to the machine optical parameters since the machines always have some unknown errors. In this paper, we will describe a beam based method to match the coupling and optics in the interaction region to compensate for the optical effects due to the solenoid. The method has been successfully used to find the wrong polarities and the wrong scaling factor of the skew quadrupoles in the early stage of the commissioning. It is being refined to set the skew quadrupoles in the machines in order to reduce the beam size at the interaction point and improve the luminosity of PEP-II.

  5. Simulation of PEP-II beam position monitors

    SciTech Connect

    Ng, C.K.; Weiland, T.; Martin, D.; Smith, S.; Kurita, N.

    1995-05-01

    The authors use MAFIA to analyze the PEP-II button-type beam position monitors (BPMs). Employing proper termination of the BPM into a coaxial cable, the output signal at the BPM can be determined. Thus the issues of sensitivity and power output can be addressed quantitatively, including all transient effects and wakefields. Besides this first quantitative analysis of a true BPM 3D structure, they find that internal resonant modes are a major source of high value narrow-band impedances. These are evaluated and methods are presented to suppress these parasitic resonances below the tolerable limit of multibunch instabilities.

  6. Upgrade of beam energy measurement system at BEPC-II

    NASA Astrophysics Data System (ADS)

    Zhang, Jian-Yong; Cai, Xiao; Mo, Xiao-Hu; Guo, Di-Zhou; Wang, Jian-Li; Liu, Bai-Qi; Achasov, M. N.; Krasnov, A. A.; Muchnoi, N. Yu.; Pyata, E. E.; Mamoshkina, E. V.; Harris, F. A.

    2016-07-01

    The beam energy measurement system is of great importance for both BEPC-II accelerator and BES-III detector. The system is based on measuring the energies of Compton back-scattered photons. In order to meet the requirements of data taking and improve the measurement accuracy, the system has continued to be upgraded, which involves the updating of laser and optics subsystems, replacement of a view-port of the laser to the vacuum insertion subsystem, the use of an electric cooling system for a high purity germanium detector, and improvement of the data acquisition and processing subsystem. The upgrade system guarantees the smooth and efficient measurement of beam energy at BEPC-II and enables accurate offline energy values for further physics analysis at BES-III. Supported in part by National Natural Science Foundation of China (NSFC)(11375206, 10775142, 10825524, 11125525, 11235011), the Ministry of Science and Technology of China (2015CB856700, 2015CB856705), State key laboratory of particle and detection and electronics; and the CAS Center for Excellence in Particle Physics (CCEPP); the RFBR grant(14-02-00129-a), U.S. Department of Energy (DE-FG02-04ER41291, DE-FG02-05ER41374, DE-FG02-94ER40823, DESC0010118), U.S. National Science Foundation, part of this work related to the design of ZnSe viewports is supported by the Russian Science Foundation (14-50-00080)

  7. Simulations of ion beams for NDCX-II

    NASA Astrophysics Data System (ADS)

    Grote, D. P.; Friedman, A.; Sharp, W. M.

    2014-01-01

    NDCX-II, the second neutralized drift compression experiment, is a moderate energy, high current accelerator designed to drive targets for warm dense matter and IFE-relevant energy coupling studies, and to serve as a testbed for high current accelerator physics. As part of the design process, studies were carried out to assess the sensitivities of the accelerator to errors, and to further optimize the design in concert with the evolving pulsed power engineering. The Warp code was used to carry out detailed simulations in both axisymmetric and full 3-D geometry. Ensembles of simulations were carried out to characterize the effects of errors, such as timing jitter and noise on the accelerator waveforms, noise on the source waveform, and solenoid and source offsets. In some cases, the ensemble studies resulted in better designs, revealing operating points with improved performance and showing possible means for further improvement. These studies also revealed a new non-paraxial effect of the final focus solenoid on the beam, which must be taken into account in designing an optimal final focusing system.

  8. Fractionalization of optical beams: II. Elegant Laguerre Gaussian modes

    NASA Astrophysics Data System (ADS)

    Gutiérrez-Vega, Julio C.

    2007-05-01

    We apply the tools of fractional calculus to introduce new fractional-order solutions of the paraxial wave equation that smoothly connect the elegant Laguerre-Gaussian beams of integral-order. The solutions are characterized in general by two fractional indices and are obtained by fractionalizing the creation operators used to create elegant Laguerre-Gauss beams from the fundamental Gaussian beam. The physical and mathematical properties of the circular fractional beams are discussed in detail. The orbital angular momentum carried by the fractional beam is a continuous function of the angular mode index and it is not restricted to take only discrete values.

  9. The Mechanical Design for the DARHT-II Downstream Beam Transport Line

    NASA Astrophysics Data System (ADS)

    Westenskow, Glen

    This paper describes the mechanical design of the downstream beam transport line for the second axis of the Dual Axis Radiographic Hydrodynamic Test (DARHT II) Facility. The DARHT-II project is a collaboration between LANL, LBNL and LLNL. DARHT II is a 20-MeV, 2000-Amperes, 2-msec linear induction accelerator designed to generate short bursts of x-rays for the purpose of radiographing dense objects. The down-stream beam transport line is approximately 20-meter long region extending from the end of the accelerator to the bremsstrahlung target. Within this proposed transport line there are 15 conventional solenoid, quadrupole and dipole magnets; as well as several speciality magnets, which transport and focus the beam to the target and to the beam dumps. There are two high power beam dumps, which are designed to absorb 80-kJ per pulse during accelerator start-up and operation. Aspects of the mechanical design of these elements are presented.

  10. Online beam energy measurement of Beijing electron positron collider II linear accelerator.

    PubMed

    Wang, S; Iqbal, M; Liu, R; Chi, Y

    2016-02-01

    This paper describes online beam energy measurement of Beijing Electron Positron Collider upgraded version II linear accelerator (linac) adequately. It presents the calculation formula, gives the error analysis in detail, discusses the realization in practice, and makes some verification. The method mentioned here measures the beam energy by acquiring the horizontal beam position with three beam position monitors (BPMs), which eliminates the effect of orbit fluctuation, and is much better than the one using the single BPM. The error analysis indicates that this online measurement has further potential usage such as a part of beam energy feedback system. The reliability of this method is also discussed and demonstrated in this paper. PMID:26931839

  11. Online beam energy measurement of Beijing electron positron collider II linear accelerator

    NASA Astrophysics Data System (ADS)

    Wang, S.; Iqbal, M.; Liu, R.; Chi, Y.

    2016-02-01

    This paper describes online beam energy measurement of Beijing Electron Positron Collider upgraded version II linear accelerator (linac) adequately. It presents the calculation formula, gives the error analysis in detail, discusses the realization in practice, and makes some verification. The method mentioned here measures the beam energy by acquiring the horizontal beam position with three beam position monitors (BPMs), which eliminates the effect of orbit fluctuation, and is much better than the one using the single BPM. The error analysis indicates that this online measurement has further potential usage such as a part of beam energy feedback system. The reliability of this method is also discussed and demonstrated in this paper.

  12. A closed form of a kurtosis parameter of a hypergeometric-Gaussian type-II beam

    NASA Astrophysics Data System (ADS)

    F, Khannous; A, A. A. Ebrahim; A, Belafhal

    2016-04-01

    Based on the irradiance moment definition and the analytical expression of waveform propagation for hypergeometric-Gaussian type-II beams passing through an ABCD system, the kurtosis parameter is derived analytically and illustrated numerically. The kurtosis parameters of the Gaussian beam, modified Bessel modulated Gaussian beam with quadrature radial and elegant Laguerre–Gaussian beams are obtained by treating them as special cases of the present treatment. The obtained results show that the kurtosis parameter depends on the change of the beam order m and the hollowness parameter p, such as its decrease with increasing m and increase with increasing p.

  13. Electron beam injection during active experiments. II - Collisional effects

    NASA Technical Reports Server (NTRS)

    Winglee, R. M.

    1990-01-01

    During active beam experiments, the presence of high neutral densities at low altitudes and/or during thruster firings has been observed to modify the spacecraft charging and the properties of the beam. Two-dimensional (three-velocity) electromagnetic particle simulations with ionizing collisions incorporated are used to investigate the modification of the beam-plasma interaction as the neutral density is increased. It is shown that when the spacecraft is uniformly immersed in a neutral cloud, most of the ionization is produced by direct ionization by the beam and its secondaries, rather than via vehicle-induced or wave-induced ionization for the neutral densities considered.

  14. Electron beam dynamics in the DARHT-II linear induction accelerator

    SciTech Connect

    Ekdahl, Carl A; Abeyta, Epifanio O; Aragon, Paul; Archuleta, Rita; Cook, Gerald; Dalmas, Dale; Esquibel, Kevin; Gallegos, Robert A; Garnett, Robert; Harrison, James F; Johnson, Jeffrey B; Jacquez, Edward B; Mccuistian, Brian T; Montoya, Nicholas A; Nath, Subrata; Nielsen, Kurt; Oro, David; Prichard, Benjamin; Rowton, Lawrence; Sanchez, Manolito; Scarpetti, Raymond; Schauer, Martin M; Seitz, Gerald; Schulze, Martin; Bender, Howard A; Broste, William B; Carlson, Carl A; Frayer, Daniel K; Johnson, Douglas E; Tom, C Y; Trainham, C; Genoni, Thomas; Hughes, Thomas; Toma, Carsten

    2008-01-01

    The DARHT-II linear induction accelerator (LIA) accelerates a 2-kA electron beam to more than 17 MeV. The beam pulse has a greater than 1.5-microsecond flattop region over which the electron kinetic energy is constant to within 1%. The beam dynamics are diagnosed with 21 beam-position monitors located throughout the injector, accelerator, and after the accelerator exit, where we also have beam imaging diagnostics. We discuss the tuning of the injector and accelerator, and present data for the resulting beam dynamics. We discuss the tuning procedures and other methods used to minimize beam motion, which is undesirable for its application as a bremsstrahlung source for multi-pulse radiography of exlosively driven hydrodynamic experiments. We also present beam stability measurements, which we relate to previous stability experiments at lower current and energy.

  15. Reconstruction of Initial Beam Conditions at the Exit of the DARHT II Accelerator

    SciTech Connect

    Paul, A.C.

    2000-02-18

    We consider a technique of determining the initial beam conditions of the DARHT II accelerator by measuring the beam size under three different magnetic transport settings. This may be time gated to resolve the parameters as a function of time within the 2000 nsec pulse. This technique leads to three equations in three unknowns with solution giving the accelerator exit beam radius, tilt, and emittance. We find that systematic errors cancel and so are not a problem in the initial beam condition unfolding. Random uncorrelated shot to shot errors can be managed by one of three strategies: (1) make the transport system optically de-magnifying; (2) average over many individual shots; or (3) make the random uncorrelated shot to shot errors sufficiently small. The high power of the DARHT II beam requires that the beam transport system leading to a radius measuring apparatus be optically magnifying. This means that the shot to shot random errors must either be made small (less than about 1%) or that we average each of the three beam radius determinations over many individual shots. We find that for the anticipated DARHT II beam parameters that 60 to 120 shots should be sufficient to determine the accelerator beam parameters.

  16. Lattice design and beam dynamics studies for the PLS-II

    NASA Astrophysics Data System (ADS)

    Shin, S.; Kim, D.; Hwang, I.; Kim, M.; Choi, J.; Liu, G.; Hou, J.; Chunjarean, S.; Kim, K.-R.; Huang, J.; Nam, S.

    2013-08-01

    Pohang Light Source (PLS) [1] had operated for 14 year successfully. To meet the request of the increasing user community, the PLS-II that is the upgrade project of PLS have been carried out. Main design goals of the PLS-II lattice are to increase beam energy to 3 GeV, to increase number of insertion devices by factor of two (20 IDs), to increase beam current to 400 mA and to reduce beam emittance below 10 nm with existing PLS tunnel and injection system. Following the desired design criteria, DBA lattice had been chosen such that the full storage ring includes 12 long straight sections and 12 short straight sections for installation of insertion devices with keeping beam emittance as small as possible. Through the six months of commissioning in the later half of 2011 and user operation in full period of 2012, we have successfully operated 14 insertion devices operation and top-up operation with 200 mA beam current and 5.8 nm beam emittance. It is especially important that good understanding of the machine operation and limitations can be achieved by comparison of experimental and simulation data during realizing final PLS-II goal and stable operation. Therefore, this paper describes the results of lattice design and beam dynamics studies for the PLS-II [2,3].

  17. RF generation in the DARHT Axis-II beam dump

    SciTech Connect

    Ekdahl, Carl A. Jr.

    2012-05-03

    We have occasionally observed radio-frequency (RF) electromagnetic signals in the downstream transport (DST) of the second axis linear induction accelerator (LIA) at the dual-axis radiographic hydrodynamic testing (DARHT) facility. We have identified and eliminated some of the sources by eliminating the offending cavities. However, we still observe strong RF in the range 1 GHz t0 2 GHz occurring late in the {approx}2-{micro}s pulse that can be excited or prevented by varying the downstream tune. The narrow frequency width (<0.5%) and near exponential growth at the dominant frequency is indicative of a beam-cavity interaction, and electro-magnetic simulations of cavity structure show a spectrum rich in resonances in the observed frequency range. However, the source of beam produced RF in the cavity resonance frequency range has not been identified, and it has been the subject of much speculation, ranging from beam-plasma or beam-ion instabilities to unstable cavity coupling.

  18. Summary II - Fusion Ion sources, Beam Formation, Acceleration and Neutralisation

    SciTech Connect

    Jones, T. T. C.

    2007-08-10

    The 11th International Symposium on the Production and Neutralization of Negative Ions and Beams was held in Santa Fe, New Mexico on 13th - 15th September 2006 and was hosted by Los Alamos National Laboratory. This summary covers the sessions of the Symposium devoted to the topics listed in the title.

  19. Beam dynamics of the Neutralized Drift Compression Experiment-II (NDCX-II),a novel pulse-compressing ion accelerator

    SciTech Connect

    Friedman, A.; Barnard, J.J.; Cohen, R.H.; Grote, D.P.; Lund, S.M.; Sharp, W.M.; Faltens, A.; Henestroza, E.; Jung, J.-Y.; Kwan, J.W.; Lee, E.P.; Leitner, M.A.; Logan, B.G.; Vay, J.-L.; Waldron, W.L.; Davidson, R.C.; Dorf, M.; Gilson, E.P.; Kaganovich, I.D.

    2009-12-19

    Intense beams of heavy ions are well suited for heating matter to regimes of emerging interest. A new facility, NDCX-II, will enable studies of warm dense matter at {approx}1 eV and near-solid density, and of heavy-ion inertial fusion target physics relevant to electric power production. For these applications the beam must deposit its energy rapidly, before the target can expand significantly. To form such pulses, ion beams are temporally compressed in neutralizing plasma; current amplification factors of {approx}50-100 are routinely obtained on the Neutralized Drift Compression Experiment (NDCX) at LBNL. In the NDCX-II physics design, an initial non-neutralized compression renders the pulse short enough that existing high-voltage pulsed power can be employed. This compression is first halted and then reversed by the beam's longitudinal space-charge field. Downstream induction cells provide acceleration and impose the head-to-tail velocity gradient that leads to the final neutralized compression onto the target. This paper describes the discrete-particle simulation models (1-D, 2-D, and 3-D) employed and the space-charge-dominated beam dynamics being realized.

  20. Beam dynamics of the Neutralized Drift Compression Experiment-II (NDCX-II), a novel pulse-compressing ion accelerator

    SciTech Connect

    Friedman, A; Barnard, J J; Cohen, R H; Grote, D P; Lund, S M; Sharp, W M; Faltens, A; Henestroza, E; Jung, J; Kwan, J W; Lee, E P; Leitner, M A; Logan, B G; Vay, J; Waldron, W L; Davidson, R C; Dorf, M; Gilson, E P; Kaganovich, I

    2009-11-19

    Intense beams of heavy ions are well suited for heating matter to regimes of emerging interest. A new facility, NDCX-II, will enable studies of warm dense matter at {approx}1 eV and near-solid density, and of heavy-ion inertial fusion target physics relevant to electric power production. For these applications the beam must deposit its energy rapidly, before the target can expand significantly. To form such pulses, ion beams are temporally compressed in neutralizing plasma; current amplification factors of {approx}50-100 are routinely obtained on the Neutralized Drift Compression Experiment (NDCX) at LBNL. In the NDCX-II physics design, an initial non-neutralized compression renders the pulse short enough that existing high-voltage pulsed power can be employed. This compression is first halted and then reversed by the beam's longitudinal space-charge field. Downstream induction cells provide acceleration and impose the head-to-tail velocity gradient that leads to the final neutralized compression onto the target. This paper describes the discrete-particle simulation models (1-D, 2-D, and 3-D) employed and the space-charge-dominated beam dynamics being realized.

  1. Controlling FAMA by the Ptolemy II model of ion beam transport

    NASA Astrophysics Data System (ADS)

    Balvanović, R.; Rađenović, B.; Beličev, P.; Nešković, N.

    2009-08-01

    FAMA is a facility for modification and analysis of materials with ion beams. Due to the wide range of ion beams and energies used in the facility and its future expansion, the need has arisen for faster tuning of ion beams transport control parameters. With this aim, a new approach to modeling ion-beam transport system was developed, based on the Ptolemy II modeling and design framework. A model in Ptolemy II is a hierarchical aggregation of components called actors, which communicate with other actors using tokens, or pieces of data. Each ion optical element is modeled by a composite actor implementing beam matrix transformation function, while tokens carry beam matrix data. A basic library of models of typical ion optical elements is developed, and a complex model of FAMA ion beam transport system is hierarchically integrated with bottom-up approach. The model is extended to include control functions. The developed model is modular, flexible and extensible. The results obtained by simulation on the model demonstrate easy and efficient tuning of beam line control parameters. Fine tuning of control parameters, due to uncertainties inherent to modeling, still has to be performed on-line.

  2. Beam-based calibrations of the BPM offset at C-ADS Injector II

    NASA Astrophysics Data System (ADS)

    Chen, Wei-Long; Wang, Zhi-Jun; Feng, Chi; Dou, Wei-Ping; Tao, Yue; Jia, Huan; Wang, Wang-Sheng; Liu, Shu-Hui; He, Yuan

    2016-07-01

    Beam-based BPM offset calibration was carried out for Injector II at the C-ADS demonstration facility at the Institute of Modern Physics (IMP), Chinese Academy of Science (CAS). By using the steering coils integrated in the quadrupoles, the beam orbit can be effectively adjusted and BPM positions recorded at the Medium Energy Beam Transport of the Injector II Linac. The studies were done with a 2 mA, 2.1 MeV proton beam in pulsed mode. During the studies, the “null comparison method” was applied for the calibration. This method is less sensitive to errors compared with the traditional transmission matrix method. In addition, the quadrupole magnet’s center can also be calibrated with this method. Supported by National Natural Science Foundation of China (91426303, 11525523)

  3. GPD physics with polarized muon beams at COMPASS-II

    SciTech Connect

    Ferrero, Andrea [CEA-Saclay, DSM Collaboration: COMPASS Collaboration

    2013-04-15

    A major part of the future COMPASS program is dedicated to the investigation of the nucleon structure through Deeply Virtual Compton Scattering (DVCS) and Deeply Virtual Meson Production (DVMP). COMPASS will measure DVCS and DVMP reactions with a high intensity muon beam of 160 GeV and a 2.5 m-long liquid hydrogen target surrounded by a new TOF system. The availability of muon beams with high energy and opposite charge and polarization will allow to access the Compton form factor related to the dominant GPD H and to study the x{sub B}-dependence of the t-slope of the pure DVCS cross section and to study nucleon tomography. Projections on the achievable accuracies and preliminary results of pilot measurements will be presented.

  4. Analysis and control of the photon beam position at PLS-II

    PubMed Central

    Ko, J.; Kim, I.-Y.; Kim, C.; Kim, D.-T.; Huang, J.-Y.; Shin, S.

    2016-01-01

    At third-generation light sources, the photon beam position stability is a critical issue for user experiments. In general, photon beam position monitors are developed to detect the real photon beam position, and the position is controlled by a feedback system in order to maintain the reference photon beam position. At Pohang Light Source II, a photon beam position stability of less than 1 µm r.m.s. was achieved for a user service period in the beamline, where the photon beam position monitor is installed. Nevertheless, a detailed analysis of the photon beam position data was necessary in order to ensure the performance of the photon beam position monitor, since it can suffer from various unknown types of noise, such as background contamination due to upstream or downstream dipole radiation, and undulator gap dependence. This paper reports the results of a start-to-end study of the photon beam position stability and a singular value decomposition analysis to confirm the reliability of the photon beam position data. PMID:26917132

  5. Compensation of Beam Line Polarizing Effects at UE112 of BESSY II

    SciTech Connect

    Bahrdt, J.; Follath, R.; Frentrup, W.; Gaupp, A.; Scheer, M.

    2010-06-23

    Reflections in synchrotron radiation beam lines tend to change the state of polarization of the radiation. This effect is more pronounced for steep angle of incidence, i.e. at low photon energy (say below 100 eV) beam lines. The APPLE II undulator UE112 at BESSY has all four magnetic rows shiftable and thus generates any state of polarization. To provide any intended polarization state at the sample we perform polarization measurements based on simple and fast linear polarization analysis that together with calculations of the undulator radiation predicts undulator settings that cancel beam line polarization effects.

  6. Modification of the radial beam port of ITU TRIGA Mark II research reactor for BNCT applications.

    PubMed

    Akan, Zafer; Türkmen, Mehmet; Çakir, Tahir; Reyhancan, İskender A; Çolak, Üner; Okka, Muhittin; Kiziltaş, Sahip

    2015-05-01

    This paper aims to describe the modification of the radial beam port of ITU (İstanbul Technical University) TRIGA Mark II research reactor for BNCT applications. Radial beam port is modified with Polyethylene and Cerrobend collimators. Neutron flux values are measured by neutron activation analysis (Au-Cd foils). Experimental results are verified with Monte Carlo results. The results of neutron/photon spectrum, thermal/epithermal neutron flux, fast group photon fluence and change of the neutron fluxes with the beam port length are presented. PMID:25746919

  7. Reconstruction of Initial Beam Conditions at the Exit of the DARHT II Accelerator

    NASA Astrophysics Data System (ADS)

    Paul, Arthur

    We consider a technique to determine the initial beam conditions of the DARHT II Accelerator by measuring the beam size under three different magnetic transport settings. This may be time gated to resolve the parameters as a function of time within the 2000 nsec pulse. This technique leads to three equations in three unknowns with solution giving the accelerator exit beam radius, tilt and emittance. We find that systematic errors cancel and so are not a problem in unfolding the initial beam conditions. Random uncorrelated shot to shot errors can be managed by one of three strategies: 1) make the transport system optically de-magnifying; 2) average over many individual shots; or 3) make the random uncorrelated shot to shot errors sufficiently small. The high power of the DARHT II beam requires that the beam transport system leading to a radius measuring apparatus be optically magnifying. This means that the shot to shot random errors must either be made small (less than about 1%) or that we average each of the three beam radius determinations over many individual shots.

  8. Present status of the electron beam diagnostics system of the PLS-II linac

    NASA Astrophysics Data System (ADS)

    Choi, Jae-Young; Kim, Changbum; Kim, Mungyung; Kim, Dotae; Kim, Jae Myung; Lee, Eunhee; Kim, Ghyung Hwa; Shin, Seunghwan; Huang, Jung Yun

    2015-02-01

    The PLS-II, the upgraded PLS (Pohang Light Source), has been providing users with photon beams in the top-up mode since March 2013. The requirements for the PLS-II linac to achieve the top-up injection are very demanding because it is a full energy injector with a very limited energy margin. One of the requirements is to ensure high injection efficiency in order to minimize the beam loss at the storage ring injection point and the experimental hall during injection because loss leads to a high radiation level in the experimental hall. The energy stability and energy spread of the accelerated electron beam are fundamental parameters to monitor and manage for high injection efficiency. An energy feedback system consisting of a stripline-type beam position monitor and the last klystron was implemented. To diagnose the injected beam's energy and energy spread in real time during top-up mode injection, we installed an optical transition radiation (OTR) monitor system upstream of the beam transport line (BTL) after the first bending magnet. The energy and the energy spread ranges can be controlled with a horizontal slit installed after the OTR monitor. The vertical beam size of the accelerated beam must be decreased for efficient injection because the electron beam is injected into the storage ring with many in-vacuum undulators of small gaps. For this purpose, two vertical slits were installed in the BTL region. We will describe mainly those instruments closely related to top-up operation, though other beam diagnostic instruments have been used since PLS.

  9. Detector dose response in megavoltage small photon beams. II. Pencil beam perturbation effects

    SciTech Connect

    Bouchard, Hugo Duane, Simon; Kamio, Yuji; Palmans, Hugo; Seuntjens, Jan

    2015-10-15

    Purpose: To quantify detector perturbation effects in megavoltage small photon fields and support the theoretical explanation on the nature of quality correction factors in these conditions. Methods: In this second paper, a modern approach to radiation dosimetry is defined for any detector and applied to small photon fields. Fano’s theorem is adapted in the form of a cavity theory and applied in the context of nonstandard beams to express four main effects in the form of perturbation factors. The pencil-beam decomposition method is detailed and adapted to the calculation of perturbation factors and quality correction factors. The approach defines a perturbation function which, for a given field size or beam modulation, entirely determines these dosimetric factors. Monte Carlo calculations are performed in different cavity sizes for different detection materials, electron densities, and extracameral components. Results: Perturbation effects are detailed with calculated perturbation functions, showing the relative magnitude of the effects as well as the geometrical extent to which collimating or modulating the beam impacts the dosimetric factors. The existence of a perturbation zone around the detector cavity is demonstrated and the approach is discussed and linked to previous approaches in the literature to determine critical field sizes. Conclusions: Monte Carlo simulations are valuable to describe pencil beam perturbation effects and detail the nature of dosimetric factors in megavoltage small photon fields. In practice, it is shown that dosimetric factors could be avoided if the field size remains larger than the detector perturbation zone. However, given a detector and beam quality, a full account for the detector geometry is necessary to determine critical field sizes.

  10. Optical encoder based on a nondiffractive beam II

    SciTech Connect

    Lutenberg, Ariel; Perez-Quintian, Fernando

    2009-01-10

    In a previous work, we introduced the design of an optical encoder based on a nondiffractive beam and demonstrated that it generates a suitable output sinusoidal signal [Appl. Opt.47, 2201-2206 (2008)APOPAI0003-693510.1364/AO.47.002201]. In this work, we experimentally, analytically, and numerically study the dependence of the system performance on its parameters (grating pitch, photodetector size, etc.) and propose three different optimization criteria for which the tolerance to variations in the system parameters is also analyzed. We conclude that the proposed design generates a suitable output signal, with high contrast and very low harmonic distortion, while having a remarkable tolerance to variations in its parameters and to mechanical perturbations.

  11. PEP-II vacuum system - joining SS flanges to copper beam chambers

    SciTech Connect

    Fetzko, S.; Hoyt, E.; Cummings, U.

    1994-06-01

    Various methods of joining stainless steel flanges to the copper PEP-II high-energy ring vacuum chambers was investigated with regard to metallurgical soundness, reliability, complexity, and cost. The most promising method appears to be direct electron-beam welding.

  12. Study of the transverse beam motion in the DARHT Phase II accelerator

    SciTech Connect

    Chen, Yu-Jiuan; Fawley, W M; Houck, T L

    1998-08-20

    The accelerator for the second-axis of the Dual Axis Radiographic Hydrodynamic Test (DARHT) facility will accelerate a 4-kA, 3-MeV, 2--µs long electron current pulse to 20 MeV. The energy variation of the beam within the flat-top portion of the current pulse is (plus or equal to) 0.5%. The performance of the DARHT Phase II radiographic machine requires the transverse beam motion to be much less than the beam spot size which is about 1.5 mm diameter on the x-ray converter. In general, the leading causes of the transverse beam motion in an accelerator are the beam breakup instability (BBU) and the corkscrew motion. We have modeled the transverse beam motion in the DARHT Phase II accelerator with various magnetic tunes and accelerator cell configurations by using the BREAKUP code. The predicted sensitivity of corkscrew motion and BBU growth to different tuning algorithms will be presented.

  13. Correlation study of a beam-position monitor and a photon-beam-position monitor in the PLS-II

    NASA Astrophysics Data System (ADS)

    Kim, Changbum; Shin, Seunghwan; Hwang, Ilmoon; Lee, Byung-Joon; Joo, Young-Do; Ha, Taekyun; Yoon, Jong Chel; Kim, Ghyung Hwa; Kim, Mungyung; Lee, Eun Hee; Kim, Ilyou; Huang, Jung-Yun

    2015-01-01

    The beam stability is one of the most important issues for the user service of the synchrotron radiation facility. After the upgrade of the Pohang Light Source (PLS-II), the electron-beam orbit is maintained within a root-mean-squred (rms) 1- μm range by using an orbit feedback system. However, that does not guarantee the radiation stability at the end of the beamline because unknown factors, such as focusing mirrors and double-crystal monocrometers, are present in the beamline. As a first step to solve this problem, photon-beam-position monitors (PBPMs) are installed in the front ends of the beamline to monitor the radiation stability. If the radiation is stable at the starting point of the beamline, we can move to the other components downstream that make the radiation unstable. In this paper, a correlation study will be presented between the beam-position monitor (BPM) and the PBPM. In addition, the effect of the orbit feedback system on the correlation will be described.

  14. Beam Loading Generated by the LOLA-IV Structure in TTF-II

    SciTech Connect

    Bane, Karl LF

    2003-09-17

    The LOLA-IV transverse detecting cavity [1] is used in the Sub-Picosecond Photon Source (SPPS) as a diagnostic for measuring the length of very short bunches (with rms length on the order of tens of microns). It is envisioned to use the same structure for the same purpose in the Tesla Test Facility (TTF)-II. However, unlike the SPPS, the TTF-II may also run in multi-bunch mode, and the question arises, How serious is the beam loading that would be induced? In this report we address this question and find that, for LOLA-IV in TTF-II, the variation in beam-loading induced energy is confined to the first {approx} 80 bunches, and that the total spread in induced energy--the difference in energy between the bunch in the train with the highest energy and the one with the lowest energy--is very small, {approx} 0.03%.

  15. Luminosity Improvement at PEP-II Based on Optics Model and Beam-Beam Simulation

    SciTech Connect

    Cai, Y.; Colocho, W.; Diecker, F-J.; Nosochkov, Y.; Raimondi, P.; Seeman, J.; Sonnad, K.; Sullivan, M.; Turner, J.; Weaver, M.; Wienands, U.; Wittmer, W.; Woodley, M.; Yan, Y.; Yock, G.; /SLAC

    2006-06-21

    Since the beginning of this year, we have made significant improvements in the machine optics at PEP-II. As a result, the specific luminosity increased nearly 20%. The largest luminosity gain actually came from minimizing nonlinear chromatic effects and running both rings much closer to the half integer resonance in the horizontal plane.

  16. Simulation and interpretation of ion beam diagnostics on PBFA-II

    SciTech Connect

    Mehlhorn, T.A.; Nelson, W.E.; Maenchen, J.E.; Stygar, W.A.; Ruiz, C.L.; Lockner, T.R.; Johnson, D.J.

    1988-08-01

    Ion diode and beam focusing experiments are in progress on PBFA-II working toward an ultimate goal of significant burn of an ICF pellet. Beam diagnostics on these experiments include a Thomson parabola, K..cap alpha.. x-ray pinhole cameras, filtered ion pinhole cameras, and a magnetic spectrometer. We are developing two new computer programs to simulate and interpret the data obtained from these diagnostics. VId-smcapsA is a VAX-based program that manipulates and unfolds data from digitized particle and x-ray diagnostic images. VId-smcapsA operations include: image display, background subtraction, relative-to-absolute coordinate transformations, and image projection into the beam reference frame. p-smcapsIc-smcapsd-smcapsIAg-smcaps allows us to study the effects of time-dependent ion focusing on the performance of ion beam diagnostics.

  17. Overview of Beam Instrumentation and Diagnostics for the NSLS-II Project

    SciTech Connect

    Singh,O.

    2008-05-04

    A new, ultra-bright 3rd generation light source, the NSLS-II Project, is planned to be built at Brookhaven National Laboratory. The light source being developed will have unprecedently small beam horizontal emittance and will provide the radiation sources with a brightness of 3 x 10{sup 21} photons/sec/0.1%BW/mm{sup 2}/mrad{sup 2}. In this paper we present the detailed specifications and a comprehensive description of the planned beam instrumentation system and the first results of the ongoing instrumentation R&D activities on beyond state-of-the-art subsystems.

  18. Active and passive compensation of APPLE II-introduced multipole errors through beam-based measurement

    NASA Astrophysics Data System (ADS)

    Chung, Ting-Yi; Huang, Szu-Jung; Fu, Huang-Wen; Chang, Ho-Ping; Chang, Cheng-Hsiang; Hwang, Ching-Shiang

    2016-08-01

    The effect of an APPLE II-type elliptically polarized undulator (EPU) on the beam dynamics were investigated using active and passive methods. To reduce the tune shift and improve the injection efficiency, dynamic multipole errors were compensated using L-shaped iron shims, which resulted in stable top-up operation for a minimum gap. The skew quadrupole error was compensated using a multipole corrector, which was located downstream of the EPU for minimizing betatron coupling, and it ensured the enhancement of the synchrotron radiation brightness. The investigation methods, a numerical simulation algorithm, a multipole error correction method, and the beam-based measurement results are discussed.

  19. Suppression of the Beam Instability Related to Electron Cloud at PEP-II B-Factory

    SciTech Connect

    Kulikov, A.

    2004-12-06

    PEP-II B-factory operates at a record high circulating current--currently {approx}2.5 A in the positron ring. Electron cloud effects became apparent when the positron ring current reached {approx}0.7 A with a bunch current {approx}1.5 mA. Initially, electron cloud induced beam instabilities significantly limited collider luminosity. However, suppression of the electron cloud related beam instabilities have been achieved with {approx}30 Gauss solenoids covering the drift sections of LER vacuum chamber.

  20. Study on transient beam loading compensation for China ADS proton linac injector II

    NASA Astrophysics Data System (ADS)

    Gao, Zheng; He, Yuan; Wang, Xian-Wu; Chang, Wei; Zhang, Rui-Feng; Zhu, Zheng-Long; Zhang, Sheng-Hu; Chen, Qi; Powers, Tom

    2016-05-01

    Significant transient beam loading effects were observed during beam commissioning tests of prototype II of the injector for the accelerator driven sub-critical (ADS) system, which took place at the Institute of Modern Physics, Chinese Academy of Sciences, between October and December 2014. During these tests experiments were performed with continuous wave (CW) operation of the cavities with pulsed beam current, and the system was configured to make use of a prototype digital low level radio frequency (LLRF) controller. The system was originally operated in pulsed mode with a simple proportional plus integral and deviation (PID) feedback control algorithm, which was not able to maintain the desired gradient regulation during pulsed 10 mA beam operations. A unique simple transient beam loading compensation method which made use of a combination of proportional and integral (PI) feedback and feedforward control algorithm was implemented in order to significantly reduce the beam induced transient effect in the cavity gradients. The superconducting cavity field variation was reduced to less than 1.7% after turning on this control algorithm. The design and experimental results of this system are presented in this paper. Supported by National Natural Science Foundation of China (91426303, 11525523)

  1. CONSTRAINTS ON QUASAR LIFETIMES AND BEAMING FROM THE He II Ly{alpha} FOREST

    SciTech Connect

    Furlanetto, Steven R.; Lidz, Adam

    2011-07-10

    We show that comparisons of He II Ly{alpha} forest lines of sight to nearby quasar populations can strongly constrain the lifetimes and emission geometry of quasars. By comparing the He II and H I Ly{alpha} forests along a particular line of sight, one can trace fluctuations in the hardness of the radiation field (which are driven by fluctuations in the He II ionization rate). Because this high-energy background is highly variable-thanks to the rarity of the bright quasars that dominate it and the relatively short attenuation lengths of these photons-it is straightforward to associate features in the radiation field with their source quasars. Here we quantify how finite lifetimes and beamed emission geometries affect these expectations. Finite lifetimes induce a time delay that displaces the observed radiation peak relative to the quasar. For beamed emission, geometry dictates that sources invisible to the observer can still create a peak in the radiation field. We show that both these models produce substantial populations of 'bare' peaks (without an associated quasar) for reasonable parameter values (lifetimes {approx}10{sup 6}-10{sup 8} yr and beaming angles {approx}< 90 deg.). A comparison to existing quasar surveys along two He II Ly{alpha} forest lines of sight rules out isotropic emission and infinite lifetime at high confidence; they can be accommodated either by moderate beaming or lifetimes {approx}10{sup 7}-10{sup 8} yr. We also show that the distribution of radial displacements between peaks and their quasars can unambiguously distinguish these two models, although larger statistical samples are needed.

  2. Achieving Stability Requirements for Nanoprobe and Long Beam Lines at NSLS II. A Comprehensive Study

    SciTech Connect

    Simos,N.; Fallier, M.; Hill, J.; Berman, L.; Evans-Lutterodt, K.; Broadbent, A.

    2008-06-23

    Driven by beam stability requirements at the NSLS II synchrotron, such that the desired small beam sizes and high brightness are both realized and stable, a comprehensive study has been launched seeking to provide assurances that stability at the nanometer level at critical x-ray beam-lines, is achievable, given the natural and cultural vibration environment at the selected site. The study consists of (a) an extensive investigation of the site to evaluate the existing ground vibration, in terms of amplitude, frequency content and coherence, and (b) of a numerical study of wave propagation and interaction with the infrastructure of the sensitive lines. The paper presents results from both aspects of the study.

  3. Design and Fabrication of the Lithium Beam Ion Injector for NDCX-II

    SciTech Connect

    Takakuwa, J.

    2011-03-01

    A 130 keV injector is developed for the NDCX-II facility. It consists of a 10.9 cm diameter lithium doped alumina-silicate ion source heated to {approx}1300 C and 3 electrodes. Other components include a segmented Rogowski coil for current and beam position monitoring, a gate valve, pumping ports, a focusing solenoid, a steering coil and space for inspection and maintenance access. Significant design challenges including managing the 3-4 kW of power dissipation from the source heater, temperature uniformity across the emitter surface, quick access for frequent ion source replacement, mechanical alignment with tight tolerance, and structural stabilization of the cantilevered 27-inch OD graded HV ceramic column. The injector fabrication is scheduled to complete by May 2011, and assembly and installation is scheduled to complete by the beginning of July. The Neutralized Drift Compression eXperiment (NDCX-II) is for the study of high energy density physics and inertial fusion energy research utilizing a lithium ion (Li+) beam with a current of 93 mA and a pulse length of 500 ns (compressed to 1 ns at the target). The injector is one of the most complicated sections of the NDCX-II accelerator demanding significant design and fabrication resources. It needs to accommodate a relatively large ion source (10.9 cm), a high heat load (3-4 kW) and specific beam optics developed from the physics model. Some specific design challenges are noted in this paper.

  4. GYMNOS Modeling of Electron Beam Dynamics for the Injector and Final Focus Regions of the ETA-II Accelerator

    NASA Astrophysics Data System (ADS)

    Kueny, C. S.; Wang, L.-F.; Chen, Y.-J.; Hewett, D. W.

    1999-11-01

    The 2-D axisymmetric PIC code GYMNOS has been used to model electron beam dynamics in the ETA-II accelerator at LLNL. Experiments on ETA-II seek to produce a high-brightness, low-emittance electron beam and deliver it to an X-ray converter target. These experiments are relevant to the DARHT II (Dual Axis Radiography Hydrodynamic Test) and AHF (Advanced Hydrotest Facility) projects, which will provide X-ray radiography diagnostics as part of the US Science-Based Stockpile Stewardship Program. We present simulations of both the ETA-II injector which produces the initial beam, and of the target region where X-ray generation occurs. GYMNOS employs the Embedded Curved Boundary (ECB) model to provide accurate beam modeling near the injector cathode and the target surfaces, and was recently upgraded with a non-uniform mesh to efficiently model the beam over a range of spatial scales. Modeling of the ETA-II injector has provided guidance on experimental parameters necessary for producing a high-quality beam for transport through the accelerator. Simulations of the target region have modeled the effects of backstreaming ions and backscattered electrons on beam dynamics, and investigated possible measures to minimize degradation in beam quality and final spot size.

  5. Polarized Atomic Hydrogen Beam Tests in the Mark-II Ultra-Cold Jet Target.

    NASA Astrophysics Data System (ADS)

    Luppov, V. G.; Blinov, B. B.; Gladycheva, S. E.; Kageya, T.; Kantsyrev, D. Yu.; Krisch, A. D.; Murray, J. R.; Neumann, J. J.; Raymond, R. S.; Borisov, N. S.; Kleppner, D.; Davidenko, A. M.; Grishin, V. N.

    2000-04-01

    To study spin effects in high energy collisions, we are developing an ultra-cold high-density jet target of proton-spin-polarized hydrogen atoms (Mark-II). The target uses a 12 Tesla magnetic field and a 0.3 K separation cell coated with superfluid helium-4 to produce a slow monochromatic electron-spin-polarized atomic hydrogen beam; an rf transition unit then converts this into a proton-spin-polarized beam, which is focused by a superconducting sextupole into the interaction region. Recently, the Jet produced a measured electron-spin-polarized atomic hydrogen beam of about 10^15 H s-1 into a 0.3 cm^2 area at the detector. This intensity corresponds to the free jet density of about 10^11 H cm-3 with a proton polarization of about 50%. So far, the intensity is limited by the high insulation vacuum pressure due to the evaporation of the separation cell's helium film. The beam's angular and radial distributions were measured. A test of a new superfluid-^4He-coated parabolic mirror, attached to the separation cell, appeared to increase the beam intensity by a factor of about 3, as expected.

  6. Simulation and modeling of the Gamble II self-pinched ion beam transport experiment

    SciTech Connect

    Rose, D.V.; Ottinger, P.F.; Hinshelwood, D.D.

    1999-07-01

    Progress in numerical simulations and modeling of the self-pinched ion beam transport experiment at the Naval Research Laboratory (NRL) is reviewed. In the experiment, a 1.2-MeV, 100-kA proton beam enters a 1-m long, transport region filled with a low pressure gas (30--250 mTorr helium, or 1 Torr air). The time-dependent velocity distribution function of the injected ion beam is determined from an orbit code that uses a pinch-reflex ion diode model and the measured voltage and current from this diode on the Gamble II generator at NRL. This distribution function is used as the beam input condition for numerical simulations carried out using the hybrid particle-in-cell code IPROP. Results of the simulations will be described, and detailed comparisons will be made with various measurements, including line-integrated electron-density, proton-fluence, and beam radial-profile measurements. As observed in the experiment, the simulations show evidence of self-pinching for helium pressures between 35 and 80 mTorr. Simulations and measurements in 1 Torr air show ballistic transport. The relevance of these results to ion-driven inertial confinement fusion will be discussed.

  7. Proton Beam Therapy of Stage II and III Non-Small-Cell Lung Cancer

    SciTech Connect

    Nakayama, Hidetsugu; Satoh, Hiroaki; Sugahara, Shinji; Kurishima, Koichi; Tsuboi, Koji; Sakurai, Hideyuki; Ishikawa, Shigemi; Tokuuye, Koichi

    2011-11-15

    Purpose: The present retrospective study assessed the role of proton beam therapy (PBT) in the treatment of patients with Stage II or III non-small-cell lung cancer who were inoperable or ineligible for chemotherapy because of co-existing disease or refusal. Patients and Methods: Between November 2001 and July 2008, PBT was given to 35 patients (5 patients with Stage II, 12 with Stage IIIA, and 18 with Stage IIIB) whose median age was 70.3 years (range, 47.4-85.4). The median proton dose given was 78.3 Gy (range, 67.1-91.3) (relative biologic effectiveness). Results: Local progression-free survival for Stage II-III patients was 93.3% at 1 year and 65.9% at 2 years during a median observation period of 16.9 months. Four patients (11.4%) developed local recurrence, 13 (37.1%) developed regional recurrence, and 7 (20.0%) developed distant metastases. The progression-free survival rate for Stage II-III patients was 59.6% at 1 year and 29.2% at 2 years. The overall survival rate of Stage II-III patients was 81.8% at 1 year and 58.9% at 2 years. Grade 3 or greater toxicity was not observed. A total of 15 patients (42.9%) developed Grade 1 and 6 (17.1%) Grade 2 toxicity. Conclusion: PBT for Stage II-III non-small-cell lung cancer without chemotherapy resulted in good local control and low toxicity. PBT has a definite role in the treatment of patients with Stage II-III non-small-cell lung cancer who are unsuitable for surgery or chemotherapy.

  8. Calibration of the beam-position monitor system for the SLAC PEP-II B factory

    SciTech Connect

    Johnson, R.; Smith, S.; Kurita, N.

    1997-06-01

    The Beam-Position Monitors (BPM) for the PEP-II B Factory consist of four 1.5-cm diameter button style pickups mounted on the diagonals of the quadrupole vacuum chambers. Before installation of the vacuum chambers in the quadrupole assemblies, the electrical center of the BPMs is measured with respect to the mechanical center in a calibration test stand. In this paper the calibration test stand is described and the precision and accuracy of the calibrations are presented. After installation of the quadrupole assemblies in the PEP-II tunnel, the passive attenuation for each channel of the system is measured to preserve the accuracy of the calibration. Finally, the active electronics includes an onboard calibrator. Results for these portions of the calibration are presented.

  9. Self-polarization smoothing technique based on 2×2 beam array and type II+II third-harmonic generation system.

    PubMed

    Fuquan, Li; Fang, Wang; Wei, Han; Bin, Feng; Lidan, Zhou

    2013-05-10

    Polarization smoothing (PS) is highly desired for inertial confinement fusion, high-power laser facilities. A self-PS technique based on 2×2 beam array and type II+II third-harmonic generation (THG) system is proposed in this paper. This scheme takes advantage of a type II+II THG system, which induces a 35° angle between the polarization states of output third-harmonic laser and input fundamental laser. It rotates two THG systems in a 2×2 beam array by 180° to obtain a 70° polarization angle between two sets of output lasers. Simulation results show that the intensity contrast of the overlapped focal spot can be reduced at 1.34× without inserting any additional optics. This approaches the maximum value of various PS techniques (i.e., 1.41×). PMID:23669860

  10. Beam size and position measurement based on logarithm processing algorithm in HLS II

    NASA Astrophysics Data System (ADS)

    Chao-Cai, Cheng; Bao-Gen, Sun; Yong-Liang, Yang; Ze-Ran, Zhou; Ping, Lu; Fang-Fang, Wu; Ji-Gang, Wang; Kai, Tang; Qing, Luo; Hao, Li; Jia-Jun, Zheng; Qing-Ming, Duan

    2016-04-01

    A logarithm processing algorithm to measure beam transverse size and position is proposed and preliminary experimental results in Hefei Light Source II (HLS II) are given. The algorithm is based on only 4 successive channels of 16 anode channels of multianode photomultiplier tube (MAPMT) R5900U-00-L16, which has typical rise time of 0.6 ns and effective area of 0.8×16 mm for a single anode channel. In the paper, we first elaborate the simulation results of the algorithm with and without channel inconsistency. Then we calibrate the channel inconsistency and verify the algorithm using a general current signal processor Libera Photon in a low-speed scheme. Finally we get turn-by-turn beam size and position and calculate the vertical tune in a high-speed scheme. The experimental results show that measured values fit well with simulation results after channel differences are calibrated, and the fractional part of the tune in vertical direction is 0.3628, which is very close to the nominal value 0.3621. Supported by National Natural Science Foundation of China (11005105, 11175173)

  11. Threshold in electron-beam end-pumped II-VI lasers

    NASA Astrophysics Data System (ADS)

    Colak, S.; Khurgin, J.; Seemungal, W.; Hebling, A.

    1987-10-01

    Electron-beam end-pumped lasers from different bulk-grown II-VI compounds have been experimentally studied and compared under similar preparation and excitation conditions. The first results on electron-beam pumped CdMnTe lasers and end-pumped CdTe lasers are reported. The order of lowest to highest threshold is found to be from CdSe, ZnCdSe, CdS, CdTe, CdMnTe, and ZnSe. The comparisons between lasing conditions are used to evaluate the contribution of the intrinsic semiconductor parameters to lasing threshold. Experiments with a large number of samples indicate that the influence of intrinsic and extrinsic parameters on lasing threshold are in most cases comparable. Therefore, for most bulk II-VI lasers, the average threshold pump power density reductions with the elimination of extrinsic factors are expected to be less than several times. These findings are further supported by threshold and relative slope efficiency measurements on lasers with different output mirror couplings.

  12. Beam Transport and Diagnostics for the NSLS-II Injection System

    SciTech Connect

    Fliller III,R.; Alforque, R.; Heese, R.; Meier, R.; Rose, J.; Shaftan, T.; Singh, O.; Tsoupas, N.

    2009-05-04

    The NSLS-II is a state of the art 3 GeV synchrotron light source being developed at BNL. The injection system will consist of a 200 MeV linac, 3 GeV booster synchrotron, and associated transfer lines. The transport lines between the linac and booster (LtB) and the booster and storage ring (BSR) must satisfy a number of requirements. In addition to transporting the beam while maintaining the beam emittance, these lines must allow for commissioning, provide appropriate diagnostics, allow for the appropriate safety devices and in the case of the BSR line, provide a stable beam for top off injection. Appropriate diagnostics are also necessary in the linac and booster to complement the measurements in the transfer lines and to allow for fast commissioning. In this paper we discuss the design of the transfer lines for the NSLSII along with the incorporated diagnostics and safety systems. Necessary diagnostics in the linac and booster are also discussed.

  13. Performance of the beam position monitor system for the SLAC PEP-II B factory

    SciTech Connect

    Johnson, Ronald G.; Smith, Stephen R.; Aiello, G. Roberto

    1998-12-10

    The beam position monitor (BPM) system for the SLAC PEP-II B Factory was designed to measure the positions of single-bunch single-turn to multibunch multi-turn beams in both rings of the facility. Each BPM is based on four button-style pickups. At most locations the buttons are connected to provide single-axis information (x only or y only). Operating at a harmonic (952 MHz) of the bunch spacing, the BPM system combines broadband and narrowband capabilities and provides data at a high rate. The active electronics system is multiplexed for signals from the high-energy ring (HER) and low-energy ring (LER). The system will be briefly described; however, the main purpose of the present paper is to present operational results. The BPM system operated successfully during commissioning of the HER (primarily) and the LER over the past year. Results to be presented include on-line calibration, single-bunch single-turn resolution (<100 {mu}m), and multibunch multi-turn resolution (<3 {mu}m), multiplexing, and absolute calibration. Thus far, the system has met or exceeded all the requirements that have been tested. The remaining requirements will be tested when both rings are completed and commissioned this summer. In addition, typical results of beam physics studies relying on the BPM system will be presented.

  14. Performance of the beam position monitor system for the SLAC PEP-II {ital B} factory

    SciTech Connect

    Johnson, R.G.; Smith, S.R.; Aiello, G.R.

    1998-12-01

    The beam position monitor (BPM) system for the SLAC PEP-II {ital B} Factory was designed to measure the positions of single-bunch single-turn to multibunch multi-turn beams in both rings of the facility. Each BPM is based on four button-style pickups. At most locations the buttons are connected to provide single-axis information ({ital x} only or {ital y} only). Operating at a harmonic (952 MHz) of the bunch spacing, the BPM system combines broadband and narrowband capabilities and provides data at a high rate. The active electronics system is multiplexed for signals from the high-energy ring (HER) and low-energy ring (LER). The system will be briefly described; however, the main purpose of the present paper is to present operational results. The BPM system operated successfully during commissioning of the HER (primarily) and the LER over the past year. Results to be presented include on-line calibration, single-bunch single-turn resolution ({lt}100 {mu}m), and multibunch multi-turn resolution ({lt}3 {mu}m), multiplexing, and absolute calibration. Thus far, the system has met or exceeded all the requirements that have been tested. The remaining requirements will be tested when both rings are completed and commissioned this summer. In addition, typical results of beam physics studies relying on the BPM system will be presented. {copyright} {ital 1998 American Institute of Physics.}

  15. Belle-II VXD radiation monitoring and beam abort with sCVD diamond sensors

    NASA Astrophysics Data System (ADS)

    Adamczyk, K.; Aihara, H.; Angelini, C.; Aziz, T.; Babu, V.; Bacher, S.; Bahinipati, S.; Barberio, E.; Baroncelli, T.; Basith, A. K.; Batignani, G.; Bauer, A.; Behera, P. K.; Bergauer, T.; Bettarini, S.; Bhuyan, B.; Bilka, T.; Bosi, F.; Bosisio, L.; Bozek, A.; Buchsteiner, F.; Casarosa, G.; Ceccanti, M.; Červenkov, D.; Chendvankar, S. R.; Dash, N.; Divekar, S. T.; Doležal, Z.; Dutta, D.; Forti, F.; Friedl, M.; Hara, K.; Higuchi, T.; Horiguchi, T.; Irmler, C.; Ishikawa, A.; Jeon, H. B.; Joo, C.; Kandra, J.; Kang, K. H.; Kato, E.; Kawasaki, T.; Kodyš, P.; Kohriki, T.; Koike, S.; Kolwalkar, M. M.; Kvasnička, P.; Lanceri, L.; Lettenbicher, J.; Mammini, P.; Mayekar, S. N.; Mohanty, G. B.; Mohanty, S.; Morii, T.; Nakamura, K. R.; Natkaniec, Z.; Negishi, K.; Nisar, N. K.; Onuki, Y.; Ostrowicz, W.; Paladino, A.; Paoloni, E.; Park, H.; Pilo, F.; Profeti, A.; Rashevskaya, I.; Rao, K. K.; Rizzo, G.; Rozanska, M.; Sandilya, S.; Sasaki, J.; Sato, N.; Schultschik, S.; Schwanda, C.; Seino, Y.; Shimizu, N.; Stypula, J.; Tanaka, S.; Tanida, K.; Taylor, G. N.; Thalmeier, R.; Thomas, R.; Tsuboyama, T.; Uozumi, S.; Urquijo, P.; Vitale, Lorenzo; Volpi, M.; Watanuki, S.; Watson, I. J.; Webb, J.; Wiechczynski, J.; Williams, S.; Würkner, B.; Yamamoto, H.; Yin, H.; Yoshinobu, T.

    2016-07-01

    The Belle-II VerteX Detector (VXD) has been designed to improve the performances with respect to Belle and to cope with an unprecedented luminosity of 8 ×1035cm-2s-1 achievable by the SuperKEKB. Special care is needed to monitor both the radiation dose accumulated throughout the life of the experiment and the instantaneous radiation rate, in order to be able to promptly react to sudden spikes for the purpose of protecting the detectors. A radiation monitoring and beam abort system based on single-crystal diamond sensors is now under an active development for the VXD. The sensors will be placed in several key positions in the vicinity of the interaction region. The severe space limitations require a challenging remote readout of the sensors.

  16. Electron-Beam Switches For A High Peak Power Sled-II Pulse Compressor

    SciTech Connect

    Hirshfield, Jay, L.

    2015-12-02

    Omega-P demonstrated triggered electron-beam switches on the L=2 m dual-delay-line X-band pulse compressor at Naval Research Laboratory (NRL). In those experiments, with input pulses of up to 9 MW from the Omega-P/NRL X-band magnicon, output pulses having peak powers of 140-165 MW and durations of 16-20 ns were produced, with record peak power gains M of 18-20. Switch designs are described based on the successful results that should be suitable for use with the existing SLAC SLED-II delay line system, to demonstrate C=9, M=7, and n>>78%, yielding 173ns compressed pulses with peak powers up to 350MW with input of a single 50-MW.

  17. Interaction-Point Phase-Space Characterization using Single-Beam and Luminous-Region Measurements at PEP-II

    SciTech Connect

    Kozanecki, W; Bevan, A.J.; Viaud, B.F.; Cai, Y.; Fisher, A.S.; O'Grady, C.; Lindquist, B.; Roodman, A.; J.M.Thompson, M.Weaver; /SLAC

    2008-09-09

    We present an extensive experimental characterization of the e{sup {+-}} phase space at the interaction point of the SLAC PEP-II B-Factory, that combines a detailed mapping of luminous-region observables using the BABAR detector, with stored-beam measurements by accelerator techniques.

  18. Electron beam dynamics in the long-pulse, high-current DARHT-II linear induction accelerator

    SciTech Connect

    Ekdahl, Carl A; Abeyta, Epifanio O; Aragon, Paul; Archuleta, Rita; Cook, Gerald; Dalmas, Dale; Esquibel, Kevin; Gallegos, Robert A; Garnett, Robert; Harrison, James F; Johnson, Jeffrey B; Jacquez, Edward B; Mccuistian, Brian T; Montoya, Nicholas A; Nath, Subrato; Nielsen, Kurt; Oro, David; Prichard, Benjamin; Rowton, Lawrence; Sanchez, Manolito; Scarpetti, Raymond; Schauer, Martin M; Seitz, Gerald; Schulze, Martin; Bender, Howard A; Broste, William B; Carlson, Carl A; Frayer, Daniel K; Johnson, Douglas E; Tom, C Y; Williams, John; Hughes, Thomas; Anaya, Richard; Caporaso, George; Chambers, Frank; Chen, Yu - Jiuan; Falabella, Steve; Guethlein, Gary; Raymond, Brett; Richardson, Roger; Trainham, C; Weir, John; Genoni, Thomas; Toma, Carsten

    2009-01-01

    The DARHT-II linear induction accelerator (LIA) now accelerates 2-kA electron beams to more than 17 MeV. This LIA is unique in that the accelerated current pulse width is greater than 2 microseconds. This pulse has a flat-top region where the final electron kinetic energy varies by less than 1% for more than 1.5 microseconds. The long risetime of the 6-cell injector current pulse is 0.5 {micro}s, which can be scraped off in a beam-head cleanup zone before entering the 68-cell main accelerator. We discuss our experience with tuning this novel accelerator; and present data for the resulting beam transport and dynamics. We also present beam stability data, and relate these to previous stability experiments at lower current and energy.

  19. Stability of the Helical TomoTherapy Hi·Art II detector for treatment beam irradiations.

    PubMed

    Schombourg, Karin; Bochud, François; Moeckli, Raphaël

    2014-01-01

    The Hi·Art II Helical TomoTherapy (HT) unit is equipped with a built-in onboard MVCT detector used for patient imaging and beam monitoring. Our aim was to study the detector stability for treatment beam measurements. We studied the MVCT detector response with the 6 MV photon beam over time, throughout short-term (during an irradiation) and long-term (two times 50 days) periods. Our results show a coefficient of variation ≤ 1% for detector chambers inside the beam (excluding beam gradients) for short- and long-term response of the MVCT detector. Larger variations were observed in beam gradients and an influence of the X-ray target where degradation was found. The results assume that an 'air scan' procedure is performed daily to recalibrate the detector with the imaging beam. On short term, the detector response stability is comparable to other devices. Long-term measure- ments during two 50-day periods show a good reproducibility.  PMID:25493514

  20. Geometric corrections on sidescan sonar images based on bathymetry. Application with SeaMARC II and Sea Beam data

    NASA Astrophysics Data System (ADS)

    Cervenka, Pierre; de Moustier, Christian; Lonsdale, Peter F.

    1994-10-01

    Acoustic backscatter images of the seafloor obtained with sidescan sonar systems are displayed most often using a flat bottom assumption. Whenever this assumption is not valid, pixels are mapped incorrectly in the image frame, yielding distorted representations of the seafloor. Here, such distortions are corrected by using an appropriate representation of the relief, as measured by the sonar that collected the acoustic backscatter information. In addition, all spatial filtering operations required in the pixel relocation process take the sonar geometry into account. Examples of the process are provided by data collected in the Northeastern Pacific over Fieberling Guyot with the SeaMARC II bathymetric sidescan sonar system and the Sea Beam multibeam echo-sounder. The nearly complete (90%) Sea Beam bathymetry coverage of the Guyot serves as a reference to quantify the distortions found in the backscatter images and to evaluate the accuracy of the corrections performed with SeaMARC II bathymetry. As a byproduct, the processed SeaMARC II bathymetry and the Sea Beam bathymetry adapted to the SeaMARC II sonar geometry exhibit a 35m mean-square difference over the entire area surveyed.

  1. Laboratory Astrophysics at the LLNL Electron Beam Ion Traps EBIT I& EBIT II

    SciTech Connect

    Beeriersdorder, P; Chen, H; May, M J; Thorn, D; Brown, G V; Boyce, K R; Kelly, R L; Porter, F S; Stahle, C K; Szymkowiak, A E; Tillotson, W; Behar, E; Gu, M F; Kahn, S M

    2002-06-18

    In order to provide a complete, accurate set of atomic data for interpreting spectra provided by missions such as XMM-Newton, the Chandra X-Ray Observatory, and Astro-E2, we have harnessed the Lawrence Livermore National Laboratory's electron beam ion traps EBIT-I, EBIT-II, and Super-EBIT for laboratory astrophysics. In support of this work we have developed a number of unique techniques, including the ability to experimentally simulate a Maxwellian distribution of electron energies and measuring low-energy charge exchange cross sections using the ''magnetic trapping mode''. We have also built, and operated a full suite of spectrometers spanning the 1-7000 {angstrom} wavelength band, the most recent, being the NASA/Goddard Space Flight Center's Astro-E 6 x 6 engineering spare microcalorimeter array. Results of our efforts include a complete list of wavelengths of the Fe L-shell transitions, measurements of absolute and relative cross sections for direct, impact, dielectronic, and resonance excitation, and measurements of low energy charge transfer reactions. A brief overview of the LLNL, ebit facility, its capabilities, and some results will be discussed.

  2. MUST II: Large solid angle light charged particle telescope for inverse kinematics studies with radioactive beams

    SciTech Connect

    Pollacco, E.; Atkin, E.; Auger, F.; Baron, P.; Drouart, A.; Rouger, M.; Boujrad, A.; Olivier, L.; Raine, B.; Roussel-Chomaz, P.; Saillant, F.; Tripon, M.

    2003-08-26

    Over the past four years we have studied (p,p'), (d,p) ,(d,3He) and other reactions using radioactive beams in inverse kinematics to obtain spectroscopic information for nuclei away from the valley of stability After a general overview of the experimental method we will describe our ongoing MUST II development. This is to build a very compact (1000cm3) three stage telescope with an active area of 100cm2 with position resolution of 0.7x0.7 mm2 and time of flight measurement. The mass identification and energy dynamic range is of 0.4 to 80 MeV.A up to alpha particles. The compactness of the array is assured through the use of an ASIC development to measure the time of flight and energy. The large solid angle coverage of 2.6sr and compactness of this array will allow it to be used in particle-gamma coincidence experiments.

  3. Laboratory Astrophysics at the LLNL Electron Beam Ion Traps: EBIT-I and EBIT-II

    NASA Technical Reports Server (NTRS)

    Brown, G. V.; Boyce, K. R.; Kelley, R. L.; Porter, F. S.; Stahle, C. K.; Szymkowiak, A. E.; Tillotson, W.; Beiersdorfer, P.; Chen, H.; May, M. J.

    2002-01-01

    In order to provide a complete, accurate set of atomic data for interpreting spectra provided by missions such as XMM-Newton, the Chandra X-Ray Observatory, and Astro-E2, we have harnessed the Lawrence Livermore National Laboratory's electron beam ion traps EBIT-I. EBIT-II, and Super-EBIT for laboratory astrophysics. In support of this work we have developed a number of unique techniques, including the ability to experimentally simulate a Maxwellian distribution of electron energies and measuring low-energy charge exchange cross sections using the magnetic trapping mode. We have also built and operated a full suite of spectrometers spanning the 1-7000 Angstrom wavelength band, the most recent being a spectrometer based on a spare Astro-E (6 x 6) microcalorimeter array. Results of our efforts include a complete list of wavelengths of the Fe L-shell transitions, measurements of absolute and relative cross sections for direct impact, dielectronic, and resonance excitation, and measurements of low energy charge transfer reactions. A brief overview of the LLNL ebit facility, its capabilities, and some results will be discussed.

  4. Laboratory Astrophysics at the LLNL Electron Beam Ion Traps EBIT-I and EBIT-II

    NASA Astrophysics Data System (ADS)

    Brown, G. V.; Boyce, R.; Kelley, R. L.; Porter, F. S.; Stahle, C. K.; Szymkowiak, A. E.; Tillotson, W.; Beiersdorfer, P.; Chen, H.; May, M. J.; Thorn, D.; Behar, E.; Gu, M. F.; Kahn, S. M.

    2002-11-01

    In order to provide a complete, accurate set of atomic data for interpreting spectra provided by XMM-Newton, the Chandra X-Ray Observatory, and Astro-E2, and to test the accuracy of spectral modeling packages already in use, we have developed an extensive Laboratory Astrophysics program at the LLNL electron beam ion traps ebit-i and ebit-ii.Over the last decade we have developed the ability to reproduce and isolate the radiative processes that occur in a variety of astrophysical plasmas, such as plasmas in coronal equilibrium found in stellar coronae, ionizing plasmas found in supernova remnants, and recombining plasmas found near accretion sources. In support of this work we have built a suite of spectrometers that measure radiation spanning the 1--7000 Å wavelength band, the most recent addition being the spare NASA/GSFC Astro-E 6x6 microcalorimeter array [1]. An overview of some of the results of our measurements of Fe L-shell line emission will be presented, including excitation cross sections as a function of impact electron energy and contributions from dielectronic recombination [2], absolute excitation cross sections [3], transition wavelengths [4], and relative line intensities measured under non-equilibrium conditions. Work by the University of California, LLNL was performed under Contract No. W-7405-Eng-48 and supported by NASA SARA P.O. No. S-03958G and NASA High Energy Astrophysics X-ray Astronomy Research and Analysis Grant NAGW- 4185.

  5. Stage II endometrial carcinoma treated with external-beam radiotherapy, intracavitary application of cesium, and surgery

    SciTech Connect

    Podczaski, E.S.; Kaminski, P.; Manetta, A.; Louk, D.; Andrews, C.; Larson, J.; DeGeest, K.; Mortel, R. )

    1989-11-01

    From September 1972 to September 1987, thirty-six patients with stage II carcinoma of the endometrium were treated with external-beam radiotherapy to the pelvis, a single intracavitary application of cesium-137, and extrafascial hysterectomy with adnexectomy. Patients were followed for a median of 54.4 months. Overall 2- and 5-year actuarial survival rates were 83 and 58%, respectively. Survival was analyzed in terms of the independent variables surgical stage, presence of a gross cervical lesion, and residual disease within the myometrium or cervix. Factors contributing to patients survival were analyzed by the log-rank method. The 12 patients with a gross cervical lesion had an adverse prognosis, as compared to those without such a lesion (P less than 0.05). Seven of the twelve patients (58%) with a cervical lesion at clinical staging demonstrated persistent or recurrent disease. The presence of extrauterine disease at surgery was a major prognostic factor in patient survival (P less than 0.01). All six patients with extrauterine disease expired 2.3 to 53.0 months after hysterectomy. Two patients with persistence of disease expired 2.3 and 7.5 months after hysterectomy. Eleven patients developed recurrent disease 2.1 to 56.5 months after hysterectomy. All presented with distant metastases. Four of the thirteen patients with persistent or recurrent disease had no residual tumor within the myometrium.

  6. A Shot Parameter Specification Subsystem for automated control of PBFA (Particle Beam Fusion Accelerator) II accelerator shots

    SciTech Connect

    Spiller, J.L.

    1987-01-01

    The Shot Parameter Specification Subsystem (SPSS) is an integral part of the automatic control system developed for the Particle Beam Fusion Accelerator II (PBFA II) by the Control Monitor (C/M) Software Development Team. This system has been designed to fully utilize the accelerator by tailoring shot parameters to the needs of the experimenters. The SPSS is the key to this flexibility. Automatic systems will be required on many pulsed power machines for the fastest turnaround, the highest reliability, and most cost effective operation. These systems will require the flexibility and the ease of use that is part of the SPSS. The PBFA II control system has proved to be an effective modular system, flexible enough to meet the demands of both the fast track construction of PBFA II and the control needs of Hermes III at the Simulation Technology Laboratory. This system is expected to meet the demands of most future machine changes.

  7. Modeling FAMA ion beam diagnostics based on the Ptolemy II model

    NASA Astrophysics Data System (ADS)

    Balvanović, R.; Beličev, P.; Radjenović, B.

    2012-10-01

    The previously developed model of ion beam transport control of the FAMA facility is further enhanced by equipping it with the model of ion beam diagnostics. The model of control, executing once, is adjusted so that it executes in iterative mode, where each iteration samples the input beam normally distributed over initial phase space and calculates a single trajectory through the facility beam lines. The model takes into account only the particles that manage to pass through all the beam line apertures, emulating in this way a Faraday cup and a beam profile meter. Generated are also beam phase space distributions and horizontal and vertical beam profiles at the end of the beam transport lines the FAMA facility consists of. By adding the model of ion beam diagnostics to the model of ion beam transport control, the process of determining optimal ion beam control parameters is eased and speeded up, and the understanding of influence of control parameters on the ion beam characteristics is improved.

  8. MUST II: Large solid angle light charged particle telescope for studies with radioactive beams

    SciTech Connect

    Pollacco, E.; Auger, F.; Baron, P.; Drouart, A.; Druillole, F.; Gillibert, A.; Lapoux, L. V.; Nalpas, L.; Rouger, M.; Baronick, J.; Beaumel, D.; Blumenfeld, Y.; Edelbruck, P.; Hammache, F.; Lavergne, L.; Leterrier, L.; Boujrad, A.; Houaner, C.; Gregory, L.

    2006-04-26

    A large area telescope for measurements with radioactive beams in inverse kinematics for transfer reactions or unbound final states is described. The performance and the first beam tests results are described.

  9. Optimisation of NSLS-II Blade X-ray Beam Position Monitors: from Photoemission type to Diamond Detector

    SciTech Connect

    ILINSKI P.

    2012-07-10

    Optimisation of blade type x-ray beam position monitors (XBPM) was performed for NSLS-II undulator IVU20. Blade material, con and #64257;guration and operation principle was analysed in order to improve XBPM performance. Optimisation is based on calculation of the XBPM signal spatial distribution. Along with standard photoemission type XBPM a Diamond Detector Blades (DDB) were analysed as blades for XBPMs. DDB XBPMs can help to overcome drawbacks of the photoemission blade XBPMs.

  10. Time resolved, 2-D hard X-ray imaging of relativistic electron-beam target interactions on ETA-II

    SciTech Connect

    Crist, C.E.; Sampayan, S.; Westenskow, G.; Caporaso, G.; Houck, T.; Weir, J.; Trimble, D.; Krogh, M.

    1998-11-01

    Advanced radiographic applications require a constant source size less than 1 mm. To study the time history of a relativistic electron beam as it interacts with a bremsstrahlung converter, one of the diagnostics they use is a multi-frame time-resolved hard x-ray camera. They are performing experiments on the ETA-II accelerator at Lawrence Livermore National Laboratory to investigate details of the electron beam/converter interactions. The camera they are using contains 6 time-resolved images, each image is a 5 ns frame. By starting each successive frame 10 ns after the previous frame, they create a 6-frame movie from the hard x-rays produced from the interaction of the 50-ns electron beam pulse.

  11. Forced response of a cantilever beam with a dry friction damper attached. I - Theory. II - Experiment

    NASA Technical Reports Server (NTRS)

    Dowell, E. H.; Schwartz, H. B.

    1983-01-01

    A theoretical and experimental study of the forced vibration response of a cantilevered beam with Coulomb damping nonlinearity is described. Viscous damping in the beam is neglected. Beam and dry friction damper configurations of interest for applications to turbine blade vibrations are considered. It is shown that the basic phenomena found by Dowell (1983) for a simply supported beam with an attached dry friction damper of specific geometry also apply to a cantilevered beam and a more general representation of the dry friction damper and its associated mass and stiffness.

  12. Time-dependent beam focusing at the DARHT-II injector diode

    SciTech Connect

    Eylon, S.; Henestroza, E.; Fawley, W.; Yu, S.

    1999-07-30

    The injector for the second axis of the Dual-Axis Radiographic Hydrotest Facility (DARHT) is being designed and constructed at LBNL. The injector consists of a single gap diode extracting 2{micro}s, 2kA, 3.2 MeV electron beam from a 6.5 inches diameter thermionic dispenser cathode. The injector is powered through a ceramic column by a Marx generator. We also investigated the possibility of extracting a beam current of 4 kA. The focusing system for the electron beam consists of a Pierce electrostatic focusing electrode at the cathode and three solenoidal focusing magnets positioned between the anode and induction accelerator input. The off-energy components (beam-head) during the 400 ns energy rise time are overfocused, leading to beam envelope mismatch and growth resulting in the possibility of beam hitting the accelerator tube walls. The anode focusing magnets can be tuned to avoid the beam spill in the 2kA case. To allow beam-head control for the 4kA case we are considering the introduction of time-varying magnetic focusing field along the accelerator axis generated by a single-loop solenoid magnet positioned in the anode beam tube. We will present the beam-head dynamics calculations as well as the solenoid design and preliminary feasibility test results.

  13. SEEP II, Shelf Edge Exchange Processes-II: Chlorophyll a fluorescence, temperature, and beam attenuation measurements from moored fluorometers

    SciTech Connect

    Medeiros, W.H.; Wirick, C.D.

    1992-02-01

    The Shelf Edge Exchange Processes (SEEP) program sponsored by the United States Department of Energy is a multi-institutional effort designed to investigate the flux of suspended material from the continental shelf to the waters of the upper slope, and then possibly into the slope sediments. The first SEEP experiment (SEEP I) was across the outer continental shelf of New England during 1983--1984 and consisted of a series of nine cruises and a mooring array. The second experiment (SEEP II) focused specifically of the shelf/slope frontal region of the mid-Atlantic Bight off the Delmarva peninsula. This report presents data collected during SEEP II. The SEEP II experiment consisted of a series of ten cruises and mooring arrays as well as over-flights by NASA aircraft. The cruises were consecutively designated SEEP2-01 to SEEP2-10. Hydrographic data were collected on all cruises except SEEP2-04 and SEEP2-07 during which benthic processes were investigated. Mooring arrays were deployed during three cruises in the Spring, Summer and Winter of 1988. Brookhaven National Laboratory deployed sixteen fluorometer instrument packages on their moorings with sensors to measure: the in vivo fluorescence of phytoplankton, temperature, subsurface light, dissolved oxygen, and water transparency. Data from the fluorometer, temperature, and transmissometer sensors are reported herein.

  14. The coaxial gyrotron with two electron beams. II. Dual frequency operation

    SciTech Connect

    Liu Shenggang; Yuan Xuesong; Liu Diwei; Yan Yang; Zhang Yaxin; Li Hongfu; Zhong Renbin

    2007-10-15

    The dual frequency operation (DFO) of the coaxial gyrotron with two electron beams (CGTB) has been investigated in this part by means of both linear theory and computer simulation. In such an operation, the cavity is at degeneration and one beam works at the first harmonic while another at high harmonic. Making use of the coupled-mode theory, the dispersion equation considering the coupling of two beams and two modes has been obtained. The results of the numerical calculation and the particle in cell simulation show that CGTB with DFO can obtain high output power at two different frequencies simultaneously. In addition, the power of the high harmonic can be enhanced due to the nonlinear coupling between two beams, and some interesting and important phenomena of CGTB with DFO revealed in the paper are of significance in physics.

  15. Wake fields, potential well distortion and beam stability in the LER PEP-II

    SciTech Connect

    Heifets, S.A.

    1996-02-01

    Longitudinal and transverse wake fields are constructed for LER PEP-II. The effects of potential well distortion and the single bunch longitudinal stability are discussed for LER PEP-II storage ring. The coupled-bunch stability recalculated with the updated impedance.

  16. Molecular beam epitaxial growth and characterization of Bi{sub 2}Se{sub 3}/II-VI semiconductor heterostructures

    SciTech Connect

    Chen, Zhiyi Zhao, Lukas; Krusin-Elbaum, Lia; Garcia, Thor Axtmann; Tamargo, Maria C.; Hernandez-Mainet, Luis C.; Deng, Haiming

    2014-12-15

    Surfaces of three-dimensional topological insulators (TIs) have been proposed to host quantum phases at the interfaces with other types of materials, provided that the topological properties of interfacial regions remain unperturbed. Here, we report on the molecular beam epitaxy growth of II-VI semiconductor–TI heterostructures using c-plane sapphire substrates. Our studies demonstrate that Zn{sub 0.49}Cd{sub 0.51}Se and Zn{sub 0.23}Cd{sub 0.25}Mg{sub 0.52}Se layers have improved quality relative to ZnSe. The structures exhibit a large relative upward shift of the TI bulk quantum levels when the TI layers are very thin (∼6nm), consistent with quantum confinement imposed by the wide bandgap II-VI layers. Our transport measurements show that the characteristic topological signatures of the Bi{sub 2}Se{sub 3} layers are preserved.

  17. Stray light in cone beam optical computed tomography: II. Reduction using a convergent light source.

    PubMed

    Dekker, Kurtis H; Battista, Jerry J; Jordan, Kevin J

    2016-04-01

    Optical cone beam computed tomography (CBCT) using a broad beam and CCD camera is a fast method for densitometry of 3D optical gel dosimeters. However, diffuse light sources introduce considerable stray light into the imaging system, leading to underestimation of attenuation coefficients and non-uniformities in CT images unless corrections are applied to each projection image. In this study, the light source of a commercial optical CT scanner is replaced with a convergent cone beam source consisting of almost exclusively image forming primary rays. The convergent source is achieved using a small isotropic source and a Fresnel lens. To characterize stray light effects, full-field cone beam CT imaging is compared to fan beam CT (FBCT) using a 1 cm high fan beam aperture centered on the optic axis of the system. Attenuating liquids are scanned within a large 96 mm diameter uniform phantom and in a small 13.5 mm diameter finger phantom. For the uniform phantom, cone and fan beam CT attenuation coefficients agree within a maximum deviation of (1  ±  2)% between mean values over a wide range from 0.036 to 0.43 cm(-1). For the finger phantom, agreement is found with a maximum deviation of (4  ±  2)% between mean values over a range of 0.1-0.47 cm(-1). With the convergent source, artifacts associated with refractive index mismatch and vessel optical features are more pronounced. Further optimization of the source size to achieve a balance between quantitative accuracy and artifact reduction should enable practical, accurate 3D dosimetry, avoiding time consuming 3D scatter measurements. PMID:26988107

  18. Stray light in cone beam optical computed tomography: II. Reduction using a convergent light source

    NASA Astrophysics Data System (ADS)

    Dekker, Kurtis H.; Battista, Jerry J.; Jordan, Kevin J.

    2016-04-01

    Optical cone beam computed tomography (CBCT) using a broad beam and CCD camera is a fast method for densitometry of 3D optical gel dosimeters. However, diffuse light sources introduce considerable stray light into the imaging system, leading to underestimation of attenuation coefficients and non-uniformities in CT images unless corrections are applied to each projection image. In this study, the light source of a commercial optical CT scanner is replaced with a convergent cone beam source consisting of almost exclusively image forming primary rays. The convergent source is achieved using a small isotropic source and a Fresnel lens. To characterize stray light effects, full-field cone beam CT imaging is compared to fan beam CT (FBCT) using a 1 cm high fan beam aperture centered on the optic axis of the system. Attenuating liquids are scanned within a large 96 mm diameter uniform phantom and in a small 13.5 mm diameter finger phantom. For the uniform phantom, cone and fan beam CT attenuation coefficients agree within a maximum deviation of (1  ±  2)% between mean values over a wide range from 0.036 to 0.43 cm-1. For the finger phantom, agreement is found with a maximum deviation of (4  ±  2)% between mean values over a range of 0.1-0.47 cm-1. With the convergent source, artifacts associated with refractive index mismatch and vessel optical features are more pronounced. Further optimization of the source size to achieve a balance between quantitative accuracy and artifact reduction should enable practical, accurate 3D dosimetry, avoiding time consuming 3D scatter measurements.

  19. Theory of longitudinal beam halo in RF linacs: II. envelope-particle resonances

    SciTech Connect

    Lund, S.M.; Barnard, J.J.

    1997-05-01

    Using the core/test-particle model described in a companion paper in these proceedings (``Theory of Longitudinal Halo in rf Linacs: I. Core/Test Particle Formulation,`` by J. J. Barnard and S. M. Lund), we analyze longitudinal beam halo produced by resonant self-field interactions in intense, ion-beam rf linacs. It is shown that particles moving in the presence of the space-charge forces of an oscillating, mismatched ellipsoidal beam bunch can be resonantly driven to large longitudinal amplitude. This resonantly produced halo is first analyzed in a limit where it is most simply understood, with particles moving purely longitudinally and with linear rf focusing. Then modifications of the resonance induced by nonlinear rf and transverse-longitudinal coupling are explored.

  20. Secondary Electron Yield Measurements and Groove Chambers Tests in the PEP-II Beam Line Straights Sections

    SciTech Connect

    Pivi, M.T.F.; King, F.; Kirby, R.E.; Markiewicz, T; Raubenheimer, T.O.; Seeman, J.; Wang, L.; /SLAC

    2008-07-03

    Beam instability caused by the electron cloud has been observed in positron and proton storage rings and it is expected to be a limiting factor in the performance of the positron Damping Ring (DR) of future Linear Colliders such as ILC and CLIC [1, 2]. In the Positron Low Energy Ring (LER) of the PEP-II accelerator, we have installed vacuum chambers with rectangular grooves in a straight magnetic-free section to test this promising possible electron cloud mitigation technique. We have also installed a special chamber to monitor the secondary electron yield of TiN and TiZrV (NEG) coating, Copper, Stainless Steel and Aluminum under the effect of electron and photon conditioning in situ in the beam line. In this paper, we describe the ongoing R&D effort to mitigate the electron cloud effect for the ILC damping ring, the latest results on in situ secondary electron yield conditioning and recent update on the groove tests in PEP-II.

  1. AGS SUPER NEUTRINO BEAM FACILITY ACCELERATOR AND TARGET SYSTEM DESIGN (NEUTRINO WORKING GROUP REPORT-II).

    SciTech Connect

    DIWAN,M.; MARCIANO,W.; WENG,W.; RAPARIA,D.

    2003-04-21

    This document describes the design of the accelerator and target systems for the AGS Super Neutrino Beam Facility. Under the direction of the Associate Laboratory Director Tom Kirk, BNL has established a Neutrino Working Group to explore the scientific case and facility requirements for a very long baseline neutrino experiment. Results of a study of the physics merit and detector performance was published in BNL-69395 in October 2002, where it was shown that a wide-band neutrino beam generated by a 1 MW proton beam from the AGS, coupled with a half megaton water Cerenkov detector located deep underground in the former Homestake mine in South Dakota would be able to measure the complete set of neutrino oscillation parameters: (1) precise determination of the oscillation parameters {Delta}m{sub 32}{sup 2} and sin{sup 2} 2{theta}{sub 32}; (2) detection of the oscillation of {nu}{sub {mu}}-{nu}{sub e} and measurement of sin{sup 2} 2{theta}{sub 13}; (3) measurement of {Delta}m{sub 21}{sup 2} sin 2{theta}{sub 12} in a {nu}{sub {mu}} {yields} {nu}{sub e} appearance mode, independent of the value of {theta}{sub 13}; (4) verification of matter enhancement and the sign of {Delta}m{sub 32}{sup 2}; and (5) determination of the CP-violation parameter {delta}{sub CP} in the neutrino sector. This report details the performance requirements and conceptual design of the accelerator and the target systems for the production of a neutrino beam by a 1.0 MW proton beam from the AGS. The major components of this facility include a new 1.2 GeV superconducting linac, ramping the AGS at 2.5 Hz, and the new target station for 1.0 MW beam. It also calls for moderate increase, about 30%, of the AGS intensity per pulse. Special care is taken to account for all sources of proton beam loss plus shielding and collimation of stray beam halo particles to ensure equipment reliability and personal safety. A preliminary cost estimate and schedule for the accelerator upgrade and target system are also

  2. Power Oscillator Circuit Modeling And Redesign For The Particle Beam Fusion Accelerator II (PBFA-II) Switch Trigger Laser

    NASA Astrophysics Data System (ADS)

    Smith, David L.; Hamil, Roy A.; Prestwich, Kenneth R.; Rohwein, Gerald J.; Donovan, Guy L.; Schaub, Charles M.

    1987-05-01

    The energy output and reliability of the multi-joule, injection-locked KrF laser used to trigger the PBFA II accelerator gas switches were improved through modifications identified in modeling the Blumlein driver circuit for the power oscillator. A combination of the SCEPTRE1 network solver code and JASON2 electrostatic field code were used to model the laser pulse-forming circuit in its single-channel rail gap configuration and modified versions with three or five discrete switches across the 1.45-m-wide, water-insulated transmission line. Three regularly spaced trigatron spark gaps resulted in a more uniformly driven laser volume with lower variations in voltages (10%) and rise times (9%) along its length. With the new configuration, over 3000 shots have been recorded without a single misfire compared to an average of ---25 shots before a prefire with the original design. The gas mix and pressure had to be optimized to match a given driver pulse voltage and rise time to achieve maximum performance from the laser. We summarize the model results which led to our decision to change the Blumlein switch configuration.

  3. Study of ADI (After Develop Inspection) on photo resist wafers using electron beam (II)

    NASA Astrophysics Data System (ADS)

    Hayashi, Teruyuki; Saito, Misako; Fujihara, Kaoru; Shibuya, Setsuko; Kudou, Y.; Nagaike, Hiroshi; Lin, Joseph; Jau, Jack

    2007-03-01

    We have clarified that the low-damage, high-resolution defect inspection of the photo resist patterns is ensured by the electron-beam defect inspection equipment for 32-nm generation and beyond. It has first been confirmed that the CD variations on the 65-nm width line structure formed on an ArF resist under general inspection conditions are equal to or less than the CD variations due to a general CD-SEM. We have also succeeded in understanding the resist deterioration mechanism when the ArF resist is exposed to e-beams. This understanding has led us to learn that the layer that, located in the vicinity of the resist surface, is deteriorated by e-beams has its etching rate lowered to cause even improvement on the etching resistance. These findings have enabled us to use inspection conditions that cause lower damage to resists. By using those conditions, we have been able to inspect ArF resist line-space structure wafers with line width of 65nm and pitch width of 140nm. The inspection successfully detected 15 to 20nm programmed extrusion defects with a capture rate of at least 95% and a nuisance rate of 5% or less. It has thus been revealed that e-beam defect inspection equipment are useful for inspecting defects on resist wafers with 32-nm generation and beyond.

  4. MODULATION OF LOW ENERGY BEAM TO GENERATE PREDEFINED BUNCH TRAINS FOR THE NSLS-II TOP-OFF INJECTION

    SciTech Connect

    Wang, G.M.; Cheng, W.X.; Shaftan, T.; Fliller, R.; Heese, R.; Rose, J.

    2011-03-28

    The NSLS II linac will produce a bunch train, 80-150 bunches long with 2 ns bunch spacing. Having the ability to tailor the bunch train can lead to the smaller bunch to bunch charge variation in the storage ring. A stripline is planned to integrate into the linac baseline to achieve this tailoring. The stripline must have a fast field rise and fall time to tailor each bunch. The beam dynamics is minimally affected by including the extra space for the stripline. This paper discusses the linac beam dynamics with stripline, and the optimal design of the stripline. A stripline is to be integrated in the linac to match the storage ring uniform bunch charge requirement, which simplifies the gun pulser electronics and looses the edge uniform requirement. It is located at low energy to lower the stripline power supply requirement and limit the dumped electron radiation. By turning off the stripline, the beam dynamics through linac is comparable with the baseline design. More advanced ideas can be explored. If a DC corrector along with the stripline is used, the core bunch trains gets kick from the stripline while the head and the tail of bunch train just gets a DC kick. The stripline power supply waveform is a single flat top waveform with fast rise and drop and the pulse length is {approx}200 ns long or 100 bunches, which may be easier from the power supply view point. We are also considering the bunch by bunch charge manipulation to match the storage ring uniform bunch charge distribution requirement. By modulating the flat top waveform at 250 MHz with adjustable amplitude, each the bunch center is either at 45 degree or 135 degree. Only the head or tail of the bunch is trimmed out. Although each bunch center deviation from idea center is very different at low energy, it is gradually minimized with beam energy increase.

  5. Non-Linear Analysis of Mode II Fracture in the end Notched Flexure Beam

    NASA Astrophysics Data System (ADS)

    Rizov, V.

    2016-03-01

    Analysis is carried-out of fracture in the End Notched Flex- ure (ENF) beam configuration, taking into account the material nonlin- earity. For this purpose, the J-integral approach is applied. A non-linear model, based on the Classical beam theory is used. The mechanical be- haviour of the ENF configuration is described by the Ramberg-Osgood stress-strain curve. It is assumed that the material possesses the same properties in tension and compression. The influence is evaluated of the material constants in the Ramberg-Osgood stress-strain equation on the fracture behaviour. The effect of the crack length on the J-integral value is investigated, too. The analytical approach, developed in the present paper, is very useful for parametric analyses, since the simple formulae obtained capture the essentials of the non-linear fracture in the ENF con- figuration.

  6. In-beam separation and mass determination of superheavy nuclei. Part II

    NASA Astrophysics Data System (ADS)

    Malyshev, O. N.; Yeremin, A. V.; Popeko, A. G.; Belozerov, A. V.; Chelnokov, M. L.; Chepigin, V. I.; Gorshkov, V. A.; Hofmann, S.; Itkis, M. G.; Kabachenko, A. P.; Oganessian, Yu. Ts.; Sagaidak, R. N.; Šáro, Š.; Shutov, A. V.; Svirikhin, A. I.

    2004-01-01

    Within the past 15 years, the recoil separator VASSILISSA has been used for the investigations of evaporation residues produced in complete fusion reactions induced by heavy ions. The study of decay properties and formation of cross-sections of the isotopes of elements 110, 112 and 114 was performed using high-intensity 48Ca beams and 232Th, 238U, 242Pu targets. For further experiments aimed at the synthesis of the superheavy element isotopes ( Z⩾110) with the use of intense 48Ca extracted beams, improvements in the ion optical system of the separator and the focal plane detector system have been made. The results from the test reactions and new results for the isotope 283112 are presented.

  7. Design of the button beam position monitor for PEP-II

    SciTech Connect

    Kurita, N.; Martin, D.; Smith, S.; Ng, C.; Nordby, M.; Perkins, C.

    1995-08-01

    The beam position monitor (BPM) was designed to provide a robust UHV feedthru and a reliable electromagnetic sensor. Stringent resolution requirements at low beam currents, bunch parameters, along with mechanical and chamber requirements produced challenges in the electrical, thermal, and structural design of the BPM`s. Numerical modeling and experimental analyses were used to optimize the design. The higher order modes (HOM`s) and beam impedance were modeled using MAFIA. Measurements agreed with the calculated 1 {Omega} transfer impedance at the 952 MHz signal processing frequency, and the first two HOM`s found in MAFIA. Tests and analysis both showed the button signal power approaching 40 W. Temperature and stress distributions were analyzed using this power loading with ANSYS. An electronic grade CuNi was selected for the BPM to reliably weld into the copper chambers. Pin seal and compressive joints were considered for the insulator vacuum seals. Both glassy ceramic-to-metal and ceramic-to-metal seals were evaluated.

  8. Turn-by-Turn Imaging of the Transverse Beam Profile in PEP-II

    SciTech Connect

    Fisher, Alan A.; Petree, Mark; /SLAC

    2006-12-18

    During injection or instability, the transverse profile of an individual bunch in a storage ring can change significantly in a few turns. However, most synchrotron-light imaging techniques are not designed for this time scale. We have developed a novel diagnostic that enhances the utility of a fast gated camera by adding, inexpensively, some features of a dual-axis streak camera, in order to watch the turn-by-turn evolution of the transverse profile, in both x and y. The beam's elliptical profile is reshaped using cylindrical lenses to form a tall and narrow ellipse--essentially the projection of the full ellipse onto one transverse axis. We do this projection twice, by splitting the beam into two paths at different heights, and rotating the ellipse by 90{sup o} on one path. A rapidly rotating mirror scans these vertical ''pencils'' of light horizontally across the photocathode of the camera, which is gated for 3 ns on every Nth ring turn. A single readout of the camera captures 100 images, looking like a stroboscopic photograph of a moving object. We have observed the capture of injected charge into a bunch and the rapid change of beam size at the onset of a fast instability.

  9. Studies and optimization of Pohang Light Source-II superconducting radio frequency system at stable top-up operation with beam current of 400 mA

    SciTech Connect

    Joo, Youngdo Yu, Inha; Park, Insoo; Chun, Myunghwan; Lee, Byung-Joon; Hwang, Ilmoon; Ha, Taekyun; Shin, Seunghwan; Sohn, Younguk

    2014-12-21

    After three years of upgrading work, the Pohang Light Source-II (PLS-II) is now successfully operating. The final quantitative goal of PLS-II is a top-up user-service operation with beam current of 400 mA to be completed by the end of 2014. During the beam store test up to 400 mA in the storage ring (SR), it was observed that the vacuum pressure around the radio frequency (RF) window of the superconducting cavity rapidly increases over the interlock level limiting the availability of the maximum beam current storing. Although available beam current is enhanced by setting a higher RF accelerating voltage, it is better to keep the RF accelerating voltage as low as possible in the long time top-up operation. We investigated the cause of the window vacuum pressure increment by studying the changes in the electric field distribution at the superconducting cavity and waveguide according to the beam current. In our simulation, an equivalent physical modeling was developed using a finite-difference time-domain code. The simulation revealed that the electric field amplitude at the RF window is exponentially increased as the beam current increases, thus this high electric field amplitude causes a RF breakdown at the RF window, which comes with the rapid increase of window vacuum pressure. The RF accelerating voltage of PLS-II RF system was set to 4.95 MV, which was estimated using the maximum available beam current that works as a function of RF voltage, and the top-up operation test with the beam current of 400 mA was successfully carried out.

  10. Processing of O.F.E. copper beam chambers for PEP-II high energy ring

    SciTech Connect

    Hoyt, E.; Hoyt, M.; Kirby, R.; Perkins, C.; Wright, D.; Farvid, A.

    1995-08-01

    Using laboratory scale and full size PEP-II vacuum chambers, chemical cleaning, glow discharge and thermal process effects were evaluated using surface analysis by x-ray photoelectron spectroscopy (XPS). These processes were optimized to reduce surface carbon and thereby minimize photodesorption gas loads. The relation of surface carbon to ion dose was investigated and compared for pure argon, 5% oxygen in argon, and pure hydrogen plasmas. Argon incorporation was noted only when the copper was oxidized in the mixed gas. Surfaces, stable in ambient atmosphere, were obtained having surface carbon values less than 10%. These optimized recipes will be used in processing copper vacuum chambers for the PEP-II B-Factory.

  11. PLASMA EFFECTS ON FAST PAIR BEAMS. II. REACTIVE VERSUS KINETIC INSTABILITY OF PARALLEL ELECTROSTATIC WAVES

    SciTech Connect

    Schlickeiser, R.; Krakau, S.; Supsar, M. E-mail: steffen.krakau@rub.de

    2013-11-01

    The interaction of TeV gamma-rays from distant blazars with the extragalactic background light produces relativistic electron-positron pair beams by the photon-photon annihilation process. Using the linear instability analysis in the kinetic limit, which properly accounts for the longitudinal and the small but finite perpendicular momentum spread in the pair momentum distribution function, the growth rate of parallel propagating electrostatic oscillations in the intergalactic medium is calculated. Contrary to the claims of Miniati and Elyiv, we find that neither the longitudinal nor the perpendicular spread in the relativistic pair distribution function significantly affect the electrostatic growth rates. The maximum kinetic growth rate for no perpendicular spread is even about an order of magnitude greater than the corresponding reactive maximum growth rate. The reduction factors in the maximum growth rate due to the finite perpendicular spread in the pair distribution function are tiny and always less than 10{sup –4}. We confirm earlier conclusions by Broderick et al. and our group that the created pair beam distribution function is quickly unstable in the unmagnetized intergalactic medium. Therefore, there is no need to require the existence of small intergalactic magnetic fields to scatter the produced pairs, so that the explanation (made by several authors) for the Fermi non-detection of the inverse Compton scattered GeV gamma-rays by a finite deflecting intergalactic magnetic field is not necessary. In particular, the various derived lower bounds for the intergalactic magnetic fields are invalid due to the pair beam instability argument.

  12. Demonstration of no feasibility of a crystalline beam in a Betatron Magnet II

    SciTech Connect

    Ruggiero, A.G.

    1993-12-31

    This paper investigates the feasibility of a Crystalline Beam in a weak-focusing Betatron Magnet. The curvature effect due to the bending magnet is also investigated. The case of circular one- dimensional string of electrically-charged particles is examined. It is found that the motion is unstable due to the dependence of the precession movement with the radial displacement. That is a form of negative-mass instability which can be avoided with an alternating-focussing structure. The calculation of the particle-particle interaction as well as of the forces due to the external magnetic field is done directly in the laboratory frame.

  13. A new method for designing dual foil electron beam forming systems. II. Feasibility of practical implementation of the method

    NASA Astrophysics Data System (ADS)

    Adrich, Przemysław

    2016-05-01

    In Part I of this work a new method for designing dual foil electron beam forming systems was introduced. In this method, an optimal configuration of the dual foil system is found by means of a systematic, automatized scan of system performance in function of its parameters. At each point of the scan, Monte Carlo method is used to calculate the off-axis dose profile in water taking into account detailed and complete geometry of the system. The new method, while being computationally intensive, minimizes the involvement of the designer. In this Part II paper, feasibility of practical implementation of the new method is demonstrated. For this, a prototype software tools were developed and applied to solve a real life design problem. It is demonstrated that system optimization can be completed within few hours time using rather moderate computing resources. It is also demonstrated that, perhaps for the first time, the designer can gain deep insight into system behavior, such that the construction can be simultaneously optimized in respect to a number of functional characteristics besides the flatness of the off-axis dose profile. In the presented example, the system is optimized in respect to both, flatness of the off-axis dose profile and the beam transmission. A number of practical issues related to application of the new method as well as its possible extensions are discussed.

  14. On the whole spectrum of Timoshenko beams. Part II: further applications

    NASA Astrophysics Data System (ADS)

    Cazzani, Antonio; Stochino, Flavio; Turco, Emilio

    2016-04-01

    The problem of free vibrations of the Timoshenko beam model has been addressed in the first part of this paper. A careful analysis of the governing equations has shown that the vibration spectrum consists of two parts, separated by a transition frequency, which, depending on the applied boundary conditions, might be itself part of the spectrum. Here, as an extension, the case of a doubly clamped beam is considered. For both parts of the spectrum, the values of natural frequencies are computed and the expressions of eigenmodes are provided: this allows to acknowledge that the nature of vibration modes changes when moving across the transition frequency. This case is a meaningful example of more general ones, where the wave-numbers equation cannot be written in a factorized form and hence must be solved by general root-finding methods for nonlinear transcendental equations. These theoretical results can be used as further benchmarks for assessing the correctness of the numerical values provided by several numerical techniques, e.g. finite element models.

  15. Model-based beam control for illumination of remote objects, part II: laboratory testbed

    NASA Astrophysics Data System (ADS)

    Basu, Santasri; Voelz, David; Chandler, Susan M.; Lukesh, Gordon W.; Sjogren, Jon

    2004-10-01

    When a laser beam propagates through the atmosphere, it is subject to corrupting influences including mechanical vibrations, turbulence and tracker limitations. As a result, pointing errors can occur, causing loss of energy or signal at the target. Nukove Scientific Consulting has developed algorithms to estimate these pointing errors from the statistics of the return photons from the target. To prove the feasibility of this approach for real-time estimation, an analysis tool called RHINO was developed by Nukove. Associated with this effort, New Mexico State University developed a laboratory testbed, the ultimate objective being to test the estimation algorithms under controlled conditions and to stream data into RHINO to prove the feasibility of real-time operation. The present paper outlines the description of this testbed and the results obtained through RHINO when the testbed was used to test the estimation approach.

  16. Updated analytical solutions of continuity equation for electron beams precipitation - II. Mixed energy losses

    NASA Astrophysics Data System (ADS)

    Zharkova, V. V.; Dobranskis, R. R.

    2016-06-01

    In this paper we consider simultaneous analytical solutions of continuity equations for electron beam precipitation (a) in collisional losses and (b) in ohmic losses, or mixed energy losses (MEL) by applying the iterative method to calculate the resulting differential densities at given precipitation depth. The differential densities of precipitating electrons derived from the analytical solutions for MELs reveal increased flattening at energies below 10-30 keV compared to a pure collisional case. This flattening becomes stronger with an increasing precipitation depth turning into a positive slope at greater precipitation depths in the chromosphere resulting in a differential density distribution with maximum that shifts towards higher energies with increase in column depth, while the differential densities combining precipitating and returning electrons are higher at lower energies than those for a pure collisional case. The resulting hard X-ray (HXR) emission produced by the beams with different initial energy fluxes and spectral indices is calculated using the MEL approach for different ratios between the differential densities of precipitating and returning electrons. The number of returning electrons can be even further enhanced by a magnetic mirroring, not considered in the present model, while dominating at lower atmospheric depths where the magnetic convergence and magnitude are the highest. The proposed MEL approach provides an opportunity to account simultaneously for both collisional and ohmic losses in flaring events, which can be used for a quick spectral fitting of HXR spectra and evaluation of a fraction of returning electrons versus precipitating ones. The semi-analytical MEL approach is used for spectral fitting to Reuven High Energy Solar Spectroscopic Imager observations of nine C, M and X class flares revealing a close fit to the observations and good resemblance to numerical FP solutions.

  17. Laser beam scanning by rotary mirrors. II. Conic-section scan patterns.

    PubMed

    Li, Y

    1995-10-01

    Part II of this study is an application of the general theory of Part I to the following scanners: the galvanometer-based scanner, the paddle scanner, and the regular polygon. The scan field produced by these scanners is (or approximates) a circular cone. Therefore the scan pattern on the plane of observation can be one of the following curves, circle, ellipse, parabola, or hyperbola, depending on the position and orientation of the plane. Special topics to be addressed are (1) the effect of input offset, (2) the locus of the instantaneous scan center and the waist of the scan field, (3) the scanning on curved surfaces, and (4) the generalization of the scan-field expression. In Part III, X-Y scanning will be studied. PMID:21060489

  18. Physics with gamma-beams and charged particle detectors: I) Nuclear structure II) Nuclear astrophysics

    NASA Astrophysics Data System (ADS)

    Gai, Moshe

    2015-02-01

    The Charged Particle Working Group (CPWG) is proposing to construct large area Silicon Strip Detector (SSD), a gas Time Projection Chamber detector read by an electronic readout system (eTPC) and a Bubble Chamber (BC) containing superheated high purity water to be used in measurements utilizing intense gamma-ray beams from the newly constructed ELI-NP facility at Magurele, Bucharest in Romania. We intend to use the SSD and eTPC detectors to address essential problems in nuclear structure physics, such as clustering and the many alpha-decay of light nuclei such as 12C and 16O . All three detectors (SSD, eTPC and BC) will be used to address central problems in nuclear astrophysics such as the astrophysical cross section factor of the 12C (α,γ) reaction and other processes central to stellar evolution. The CPWG intends to submit to the ELI-NP facility a Technical Design Report (TDR) for the proposed detectors.

  19. Physics with gamma-beams and charged particle detectors: I) Nuclear structure II) Nuclear astrophysics

    SciTech Connect

    Gai, Moshe

    2015-02-24

    The Charged Particle Working Group (CPWG) is proposing to construct large area Silicon Strip Detector (SSD), a gas Time Projection Chamber detector read by an electronic readout system (eTPC) and a Bubble Chamber (BC) containing superheated high purity water to be used in measurements utilizing intense gamma-ray beams from the newly constructed ELI-NP facility at Magurele, Bucharest in Romania. We intend to use the SSD and eTPC detectors to address essential problems in nuclear structure physics, such as clustering and the many alpha-decay of light nuclei such as {sup 12}C and {sup 16}O. All three detectors (SSD, eTPC and BC) will be used to address central problems in nuclear astrophysics such as the astrophysical cross section factor of the {sup 12}C(α,γ) reaction and other processes central to stellar evolution. The CPWG intends to submit to the ELI-NP facility a Technical Design Report (TDR) for the proposed detectors.

  20. The Influence of the Form of a Wooden Beam on Its Stiffness and Strength II : Form Factors of Beams Subjected to Transverse Loading Only

    NASA Technical Reports Server (NTRS)

    Newlin, J A; Trayer, G W

    1924-01-01

    The general aim of the investigation described in this report is the achievement of efficient design in wing beams. The purpose of the tests was to determine factors to apply to the usual beam formula in order that the properties of wood based on tests of rectangular sections might be used as a basis of design for beams of any sections and if practical to develop formulas for determining such factors and to verify them by experiment. Such factors for various sections have been determined from test by comparing properties of the beam in question to similar properties of matched beams 2 by 2 inches in section. Furthermore, formulas were worked out, more or less empirical in character, which check all of these test values remarkably well.

  1. Safety training and safe operating procedures written for PBFA (Particle Beam Fusion Accelerator) II and applicable to other pulsed power facilities

    SciTech Connect

    Donovan, G.L.; Goldstein, S.A.

    1986-12-01

    To ensure that work in advancing pulsed power technology is performed with an acceptably low risk, pulsed power research facilities at Sandia National Laboratories must satisfy general safety guidelines established by the Department of Energy, policies and formats of the Environment, Safety, and Health (ES and H) Department, and detailed procedures formulated by the Pulsed Power Sciences Directorate. The approach to safety training and to writing safe operating procedures, and the procedures presented here are specific to the Particle Beam Fusion Accelerator II (PBFA II) Facility but are applicable as guidelines to other research and development facilities which have similar hazards.

  2. Central electron temperature estimations of TJ-II neutral beam injection heated plasmas based on the soft x ray multi-foil technique

    SciTech Connect

    Baiao, D.; Varandas, C.

    2012-05-15

    The core electron temperature (T{sub e0}) of neutral beam heated plasmas is determined in TJ-II stellarator by using soft x ray detectors with beryllium filters of different thickness, based on the method known as the foil absorption technique. T{sub e0} estimations are done with the impurity code IONEQ, making use of complementary information from the TJ-II soft x ray tomography and the VUV survey diagnostics. When considering the actual electron density and temperature profile shapes, an acceptable agreement is found with Thomson scattering measurements for 8 different magnetic configurations. The impact of the use of both neutral beam injectors on the T{sub e0} measurements is addressed. Also, the behaviour of T{sub e0} during spontaneous profile transitions is presented.

  3. On the relation between incident and emergent light beams of optical fibers. II. Single-mode fibers.

    NASA Astrophysics Data System (ADS)

    Imai, H.; Sakurai, T.

    1999-03-01

    The change in F-ratio when a beam of light goes through an optical fiber is examined for a single-mode fiber (core radius = 9 μm). A previous study (Makita and Imai 1988) showed that, for multi-mode fibers, the F-ratio of the output beam is smaller (i.e. the beam spreads) than the F-ratio of the input beam. Such degradation in F-ratio is not seen in a single-mode fiber because the output beam's F-ratio is fixed by the mode propagating in the fiber.

  4. Measurements of the Propagation of EM Waves through the Vacuum Chamber of the PEP-II Low Energy Ring for Beam Diagnostics

    SciTech Connect

    Byrd, John Michael; De Santis, S.; Pivi, MTF; /SLAC

    2008-01-23

    We present the results of our measurements of the electron cloud density in the PEP-II low energy ring (LER) by propagating a TE wave into the beam pipe. By connecting a signal generator to a beam position monitor button we can excite a signal above the vacuum chamber cut-off frequency and measure its propagation through the beam pipe with a spectrum analyzer connected to another button about 50 meters away. The measurement can be performed with different beam conditions and also at different settings of the solenoids used to reduce the build up of electrons. The presence of a modulation in the TE wave transmission, synchronous with the beam revolution frequency, which appear to increase in depth when the solenoids are switched off, seem to be directly correlated to the electron cloud density in the region between the two BPM's. In this paper we present and discuss the measurements taken in the Interaction Region 12 straight of the LER during 2006 and the first part of 2007.

  5. ToF-SIMS and laser-SNMS analysis of Madin-Darby canine kidney II cells with silver nanoparticles using an argon cluster ion beam.

    PubMed

    Nees, Ricarda; Pelster, Andreas; Körsgen, Martin; Jungnickel, Harald; Luch, Andreas; Galla, Hans-Joachim; Arlinghaus, Heinrich F

    2016-06-01

    The use of nanoparticles is one of the fastest expanding fields in industrial as well as in medical applications, owing to their remarkable characteristics. Silver nanoparticles (AgNPs) are among the most-commercialized nanoparticles because of their antibacterial effects. Laser postionization secondary neutral mass spectrometry (laser-SNMS) and time-of-flight secondary ion mass spectrometry in combination with argon cluster ion sputtering was used for the first time to investigate the effects of AgNPs on Madin-Darby canine kidney (MDCK) II cells. Depth profiles and high-resolution three dimensional (3D) images of nanoparticles and organic compounds from cells were obtained using an Ar cluster ion beam for sputtering and Bi3 (+) primary ions for the analysis. The 3D distribution of AgNPs and other organic compounds in MDCK II cells could be readily detected with very high efficiency, sensitivity, and submicron lateral resolution. The argon cluster ion beam is well suited for the sputtering of biological samples. It enables a high sample removal rate along with low molecular degradation. The outer membrane, the cytoplasm, and the nuclei of the cells could be clearly visualized using the signals PO(+) and C3H8N(+) or CN(+) and C3H8N(+). The laser-SNMS images showed unambiguously that AgNPs are incorporated by MDCK II cells and often form silver aggregates with a diameter of a few micrometers, mainly close to the outside of the cell nuclei. PMID:26671480

  6. Two experiments with cold atoms: I. Application of Bessel beams for atom optics, and II. Spectroscopic measurements of Rydberg blockade effect

    NASA Astrophysics Data System (ADS)

    Arakelyan, Ilya

    In this dissertation we report the results of two experimental projects with laser-cooled rubidium atoms: I. Application of Bessel beams for atom optics, and II. Spectroscopic measurements of Rydberg blockade effect. The first part of the thesis is devoted to the development of new elements of atom optics based on blue-detuned high-order Bessel beams. Properties of a 4thorder Bessel beam as an atomic guide were investigated for various parameters of the hollow beam, such as the detuning from an atomic resonance, size and the order of the Bessel beam. We extended its application to create more complicated interferometer-type structures by demonstrating a tunnel lock, a novel device that can split an atomic cloud, transport it, delay, and switch its propagation direction between two guides. We reported a first-time demonstration of an atomic beam switch based on the combination of two crossed Bessel beams. We achieved the 30% efficiency of the switch limited by the geometrical overlap between the cloud and the intersection volume of the two tunnels, and investigate the heating processes induced by the switch. We also showed other applications of crossed Bessel beams, such as a 3-D optical trap for atoms confined in the intersection volume of two hollow beams and a splitter of the atomic density. The second part of this dissertation is devoted to the spectroscopic measurements of the Rydberg blockade effect, a conditional suppression of Rydberg excitations depending on the state of a control atom. We assembled a narrow-linewidth, tunable, frequency stabilized laser system at 480 nm to excite laser-cooled rubidium atoms to Rydberg states with a high principal quantum number n ˜ 50 through a two-photon transition. We applied the laser system to observe the Autler-Townes splitting of the intermediate 5p3/2 state and used the broadening of the resonance features to investigate the enhancement of Rydberg-Rydberg interactions in the presence of an external electric field.

  7. Photon stimulated desorption (PSD) measurements of extruded copper and of welded copper beam chambers for the PEP II asymmetric B-factory

    SciTech Connect

    Foerster, C.L.; Lanni, C.; Perkins, C.; Calderon, M.; Barletta, W.

    1994-12-31

    PEP II is being built as a higher luminosity electron-positron collider, with asymmetric beams of 9 GeV and 3.1 GeV, having maximum currents of 3.0 A. Based on the previous work on the NSLS VUV beamline U10B, a copper was selected for construction of UHV beam chambers and absorbers to minimize the pressure rise from synchrotron radiation during operation. An extruded beam chamber and a welded beam chamber were fabricated from the selected copper for PSD measurements on NSLS X-ray beamline X28A. The chambers were exposed to white light with a critical energy of 5 KeV, both direct and through a 0.010 inch thick Beryllium filter. Each chamber was exposed to a dose of approximately 10{sup 23} photons per meter at an incidence angle of 25 mrad, after argon glow conditioning and a 150 C vacuum bake. Desorption yields for H{sub 2} CO, CO{sub 2}, and CH{sub 4} are reported as a function of accumulated photon flux, critical energy, and chamber preparation. The results are compared with the previous work on beamline U10B and with those of other published work for copper.

  8. Photon stimulated desorption measurements of extruded copper and of welded copper beam chambers for the PEP-II asymmetric B factory

    SciTech Connect

    Foerster, C.L.; Lanni, C.; Perkins, C.; Calderon, M.; Barletta, W.

    1995-05-01

    PEP II is being built as a higher luminosity electron--positron collider with asymmetric beams of 9 and 3.1 GeV, having maximum currents of 3.0 A. Based on our previous work on the National Synchrotron Light Source (NSLS) vacuum ultraviolet beamline U10B, a copper was selected for construction of ultrahigh vacuum beam chambers and absorbers to minimize the pressure rise from synchrotron radiation during operation. An extruded beam chamber and a welded beam chamber were fabricated from the selected copper for photon stimulated desorption measurements on the NSLS x-ray beamline X28A. The chambers were exposed to white light with a critical energy of 5 keV, both directly and through a 0.010-in.-thick beryllium filter. Each chamber was exposed to a dose of approximately 10{sup 23} photons per meter at an incidence angle of 25 mrad, after argon glow preconditioning and a 150 {degree}C vacuum bake. Desorption yields for H{sub 2} CO, CO{sub 2}, and CH{sub 4} are reported as a function of accumulated photon flux, critical energy, and chamber preparation. The results are compared with the previous work on the beamline U10B and with those of other published work on copper. {copyright} {ital 1995} {ital American} {ital Vacuum} {ital Society}

  9. Photodiode-Based X-Ray Beam-Position Monitor With High Spatial-Resolution for the NSLS-II Beamlines

    SciTech Connect

    Yoon, P.S.; Siddons, D. P.

    2009-05-25

    We developed a photodiode-based monochromatic X-ray beam-position monitor (X-BPM) with high spatial resolution for the project beamlines of the NSLS-II. A ring array of 32 Si PIN-junction photodiodes were designed for use as a position sensor, and a low-noise HERMES4 ASIC chip was integrated into the electronic readout system. A series of precision measurements to characterize electrically the Si-photodiode sensor and the ASIC chip demonstrated that the inherent noise is sufficiently below tolerance levels. Following up modeling of detector's performance, including geometrical optimization using a Gaussian beam, we fabricated and assembled a first prototype. In this paper, we describe the development of this new state-of-the-art X-ray BPM along the beamline, in particular, downstream from the monochromator.

  10. Comparison of interradicular distances and cortical bone thickness in Thai patients with Class I and Class II skeletal patterns using cone-beam computed tomography

    PubMed Central

    Khumsarn, Nattida; Patanaporn, Virush; Jotikasthira, Dhirawat

    2016-01-01

    Purpose This study evaluated and compared interradicular distances and cortical bone thickness in Thai patients with Class I and Class II skeletal patterns, using cone-beam computed tomography (CBCT). Materials and Methods Pretreatment CBCT images of 24 Thai orthodontic patients with Class I and Class II skeletal patterns were included in the study. Three measurements were chosen for investigation: the mesiodistal distance between the roots, the width of the buccolingual alveolar process, and buccal cortical bone thickness. All distances were recorded at five different levels from the cementoenamel junction (CEJ). Descriptive statistical analysis and t-tests were performed, with the significance level for all tests set at p<0.05. Results Patients with a Class II skeletal pattern showed significantly greater maxillary mesiodistal distances (between the first and second premolars) and widths of the buccolingual alveolar process (between the first and second molars) than Class I skeletal pattern patients at 10 mm above the CEJ. The maxillary buccal cortical bone thicknesses between the second premolar and first molar at 8 mm above the CEJ in Class II patients were likewise significantly greater than in Class I patients. Patients with a Class I skeletal pattern showed significantly wider mandibular buccolingual alveolar processes than did Class II patients (between the first and second molars) at 4, 6, and 8 mm below the CEJ. Conclusion In both the maxilla and mandible, the mesiodistal distances, the width of the buccolingual alveolar process, and buccal cortical bone thickness tended to increase from the CEJ to the apex in both Class I and Class II skeletal patterns. PMID:27358819

  11. Plasma Potential Measurements by the Heavy Ion Beam Probe Diagnostic in Fusion Plasmas: Biasing Experiments in the TJ-II Stellarator and T-10 Tokamak

    SciTech Connect

    Melnikov, A.V.; Hidalgo, C.; Eliseev, L.G.

    2004-09-15

    The effect of edge biasing on plasma potential was investigated in the TJ-II stellarator and the T-10 tokamak. The Heavy Ion Beam Probe (HIBP) diagnostic, a unique tool for studying the core potential directly, was used in both machines. Experiments in TJ-II show that it is possible to modify the global confinement and edge plasma parameters with limiter biasing, illustrating the direct impact of radial electric fields on TJ-II confinement properties. For the first time it was shown that the plasma column in a stellarator can be charged as a whole for a hot, near-reactor-relevant plasma. The plasma potential and electric fields evolve on two different characteristic time scales. Although the experimental conditions in the two machines have many important differences, the basic features of plasma potential behavior have some similarities: The potential response has the same polarity and scale as the biasing voltage, and the fluctuations are suppressed near the electrode/limiter region. However, whereas both edge and core plasma potential are affected by biasing in TJ-II, the potential changes mainly near the biased electrode in T-10.

  12. Combined Phase SpaceCharacterization at the PEP-II IP using Single-beam and Luminous-region Measurements

    SciTech Connect

    Bevan, A.; Kozanecki, W.; Viaud, B.; Cai, Y.; Fisher, A.; O'Grady, C.; Thompson, J.; Weaver, M.; /SLAC

    2006-06-23

    We present a novel method to characterize the e{sup {+-}} phase space at the IP of the SLAC B-factory, that combines single-beam measurements with a detailed mapping of luminous-region observables. Transverse spot sizes are determined in the two rings with synchrotron-light monitors and extrapolated to the IP using measured lattice functions. The specific luminosity, which is proportional to the inverse product of the overlap IP beam sizes, is continuously monitored using radiative/Bhabha events. The spatial variation of the luminosity and of the transverse-boost distribution of the colliding e{sup {+-}}, are measured using e{sup +}e{sup -} {yields} {mu}{sup +}{mu}{sup -} events reconstructed in the BABAR detector. The combination of these measurements provide constraints on the emittances, horizontal and vertical spot sizes, angular divergences and {beta} functions of both beams at the IP during physics data-taking. Preliminary results of this combined spot-size analysis are confronted with independent measurements of IP {beta}-functions and overlap IP beam sizes at low beam current.

  13. Experimental Measurements of the Secondary Electron Yield in the Experimental Measurement of the Secondary Electron Yield in the PEP-II Particle Accelerator Beam Line

    SciTech Connect

    Pivi, M.T.F.; Collet, G.; King, F.; Kirby, R.E.; Markiewicz, T.; Raubenheimer, T.O.; Seeman, J.; Le Pimpec, F.; /PSI, Villigen

    2010-08-25

    Beam instability caused by the electron cloud has been observed in positron and proton storage rings and it is expected to be a limiting factor in the performance of the positron Damping Ring (DR) of future Linear Colliders (LC) such as ILC and CLIC. To test a series of promising possible electron cloud mitigation techniques as surface coatings and grooves, in the Positron Low Energy Ring (LER) of the PEP-II accelerator, we have installed several test vacuum chambers including (i) a special chamber to monitor the variation of the secondary electron yield of technical surface materials and coatings under the effect of ion, electron and photon conditioning in situ in the beam line; (ii) chambers with grooves in a straight magnetic-free section; and (iii) coated chambers in a dedicated newly installed 4-magnet chicane to study mitigations in a magnetic field region. In this paper, we describe the ongoing R&D effort to mitigate the electron cloud effect for the LC damping ring, focusing on the first experimental area and on results of the reduction of the secondary electron yield due to in situ conditioning.

  14. Investigation of a direction sensitive sapphire detector stack at the 5 GeV electron beam at DESY-II

    NASA Astrophysics Data System (ADS)

    Karacheban, O.; Afanaciev, K.; Hempel, M.; Henschel, H.; Lange, W.; Leonard, J. L.; Levy, I.; Lohmann, W.; Schuwalow, S.

    2015-08-01

    Extremely radiation hard sensors are needed in particle physics experiments to instrument the region near the beam pipe. Examples are beam halo and beam loss monitors at the Large Hadron Collider, FLASH or XFEL. Currently artificial diamond sensors are widely used. In this paper single crystal sapphire sensors are considered as a promising alternative. Industrially grown sapphire wafers are available in large sizes, are of low cost and, like diamond sensors, can be operated without cooling. Here we present results of an irradiation study done with sapphire sensors in a high intensity low energy electron beam. Then, a multichannel direction-sensitive sapphire detector stack is described. It comprises 8 sapphire plates of 1 cm2 size and 525 μ m thickness, metallized on both sides, and apposed to form a stack. Each second metal layer is supplied with a bias voltage, and the layers in between are connected to charge-sensitive preamplifiers. The performance of the detector was studied in a 5 GeV electron beam. The charge collection efficiency measured as a function of the bias voltage rises with the voltage, reaching about 10% at 095 V. The signal size obtained from electrons crossing the stack at this voltage is about 02200 e, where e is the unit charge. The signal size is measured as a function of the hit position, showing variations of up to 20% in the direction perpendicular to the beam and to the electric field. The measurement of the signal size as a function of the coordinate parallel to the electric field confirms the prediction that mainly electrons contribute to the signal. Also evidence for the presence of a polarisation field was observed.

  15. Analysis of (TiO II) X(Ta IIO 5) 1-X composite films prepared by radio frequency ion beam sputtering deposition

    NASA Astrophysics Data System (ADS)

    Tang, Chien-Jen; Wu, Yung-Chi; Lee, Cheng-Chung

    2006-08-01

    Using two or more materials to deposit a composite film has an advantage to get a film with desired refractive index. Besides, its optical property and mechanical property are better than a film deposited by a single material. In this study, (TiO II) X(Ta IIO 5) 1-X composite films have been prepared by a radio frequency ion beam sputtering deposition (RF-IBSD) where x was determined by the area ratio of titanium to tantalum targets. The optical constants of (TiO II) X(Ta IIO 5) 1-X composite films were calculated from their spectra by using envelope method. The refractive indices ranged from 2.481 to 2.165 at 550nm, and the extinction coefficients were lower than 1x10 -3 for wavelength in the ranges of 400nm to 600nm and lower than 1x10 -4 for wavelength longer than 600nm. The surface roughness of all composite films was about 0.1nm. The stress decreased from -520MPa for pure TiO II film to less than -280MPa for the composite films as measured by a phase-shift Twyman-Green interferometer. When the content of TiO II was less than 79.5%, the composite films were amorphous even post-baked to 400°C as measured by x-ray diffraction. The composite films mixed with TiO II and Ta IIO 5 can improve thermal stability and reduce extinction coefficient and stress. Composite films can replace the conventional high refractive index layer prepared by a single material to fabricate multilayer filters, and it is also suitable for high temperature applications, such as high reflection coating of projector lamps.

  16. Part II/Addendum Electron Beam Cooling between EBIS LINAC and Booster; Is Single Pass Cooling Possible?

    SciTech Connect

    Hershcovitch,A.

    2008-07-01

    Due to some miscommunication, incomplete data was erroneously used in examining electron beam cooling for reducing momentum of gold ions exiting the EBIS LINAC before injection into the booster. Corrected calculations still indicate that single pass cooling is, in principle, feasible; momentum spread can be reduced by an order of magnitude in about one meter. Preliminary results suggest that this cooling deserves further consideration.

  17. High energy beam lines

    NASA Astrophysics Data System (ADS)

    Marchetto, M.; Laxdal, R. E.

    2014-01-01

    The ISAC post accelerator comprises an RFQ, DTL and SC-linac. The high energy beam lines connect the linear accelerators as well as deliver the accelerated beams to two different experimental areas. The medium energy beam transport (MEBT) line connects the RFQ to the DTL. The high energy beam transport (HEBT) line connects the DTL to the ISAC-I experimental stations (DRAGON, TUDA-I, GPS). The DTL to superconducting beam (DSB) transport line connects the ISAC-I and ISAC-II linacs. The superconducting energy beam transport (SEBT) line connects the SC linac to the ISAC-II experimental station (TUDA-II, HERACLES, TIGRESS, EMMA and GPS). All these lines have the function of transporting and matching the beams to the downstream sections by manipulating the transverse and longitudinal phase space. They also contain diagnostic devices to measure the beam properties.

  18. Beam-beam effects in the Tevatron

    SciTech Connect

    Shiltsev, V.; Alexahin, Y.; Lebedev, V.; Lebrun, P.; Moore, R.S.; Sen, T.; Tollestrup, A.; Valishev, A.; Zhang, X.L.; /Fermilab

    2005-01-01

    The Tevatron in Collider Run II (2001-present) is operating with 6 times more bunches, many times higher beam intensities and luminosities than in Run I (1992-1995). Electromagnetic long-range and head-on interactions of high intensity proton and antiproton beams have been significant sources of beam loss and lifetime limitations. We present observations of the beam-beam phenomena in the Tevatron and results of relevant beam studies. We analyze the data and various methods employed in operations, predict the performance for planned luminosity upgrades, and discuss ways to improve it.

  19. Ionization of gases by a pulsed electron beam as studied by self-focusing. II. Polyatomic gases

    SciTech Connect

    Arai, H.; Hotta, H.

    1981-09-15

    In order to analyze data on the self-focusing of a pulsed electron beam in polyatomic gases, the net current I/sub net/ in H/sub 2/, N/sub 2/, and CH/sub 4/ was computed self-consistently as functions of time in the pressure range between 5 and 300 Torr of these gases by using swarm parameters. The computational result indicates that the larger dose D/sub obs/, observed by a piled dosimeter on the beam axis, is attributed to the larger I/sub net/, which is mainly determined by a mean ionization time t/sub 1/ for secondary ionization by the electric field induced by the pulsed beam. When values of D/sub obs/ for different gases are compared at the same pressure, the larger D/sub obs/ is given by the larger t/sub i/. This relationship is demonstrated for several polyatomic gases by estimating t/sub i/ from various parameters in a function of secondary electron energy or E/p such as the electron drift velocity, the first Townsend ionization coefficient, the ionization cross section, and so on. For the short pulse duration of a Febetron 706, electron--ion recombination processes scarcely affect I/sub net/ except at high pressures of some polyatomic gases, while the effect of electron-attachment processes is appreciable in SF/sub 6/, CCl/sub 2/F/sub 2/, and N/sub 2/O.

  20. Design of a High Resolution and High Flux Beam line for VUV Angle-Resolved Photoemission at UVSOR-II

    SciTech Connect

    Kimura, Shin-ichi; Ito, Takahiro; Nakamura, Eiken; Hosaka, Masahito; Katoh, Masahiro

    2007-01-19

    A high-energy-resolution angle-resolved photoemission beamline in the vacuum-ultraviolet (VUV) region has been designed for a 750 MeV synchrotron light source UVSOR-II. The beamline equips an APPLE-II-type undulator with the horizontally/vertically linear and right/left circular polarizations, a modified Wadsworth-type monochromator and a high-resolution photoelectron analyzer. The monochromator covers the photon energy range of 6 - 40 eV. The energy resolution (hv/{delta}hv) and the photon flux on samples are expected to be 2 x 104 and 1012 photons/sec at 10 eV, 4 x 104 and 5 x 1011 photons/sec at 20 eV, and 6 x 104 and 1011 photons/sec at 40 eV, respectively. The beamline provides the high-resolution angle-resolved photoemission spectroscopy less than 1 meV in the whole VUV energy range.

  1. Optimizing a neutron-beam focusing device for the direct geometry time-of-flight spectrometer TOFTOF at the FRM II reactor source

    NASA Astrophysics Data System (ADS)

    Rasmussen, N. G.; Simeoni, G. G.; Lefmann, K.

    2016-04-01

    A dedicated beam-focusing device has been designed for the direct geometry thermal-cold neutron time-of-flight spectrometer TOFTOF at the neutron facility FRM II (Garching, Germany). The prototype, based on the compressed Archimedes' mirror concept, benefits from the adaptive-optics technology (adjustable supermirror curvature) and the compact size (only 0.5 m long). We have simulated the neutron transport across the entire guide system. We present a detailed computer characterization of the existing device, along with the study of the factors mostly influencing the future improvement. We have optimized the simulated prototype as a function of the neutron wavelength, accounting also for all relevant features of a real instrument like the non-reflecting side edges. The results confirm the "chromatic" displacement of the focal point (flux density maximum) at fixed supermirror curvature, and the ability of a variable curvature to keep the focal point at the sample position. Our simulations are in excellent agreement with theoretical predictions and the experimentally measured beam profile. With respect to the possibility of a further upgrade, we find that supermirror coatings with m-values higher than 3.5 would have only marginal influence on the optimal behaviour, whereas comparable spectrometers could take advantage of longer focusing segments, with particular impact for the thermal region of the neutron spectrum.

  2. X-ray-based measurement of composition during electron beam melting of AISI 316 stainless steel: Part II. Evaporative processes and simulation

    NASA Astrophysics Data System (ADS)

    Ritchie, M.; Lee, P. D.; Mitchell, A.; Cockcroft, S. L.; Wang, T.

    2003-03-01

    An energy dispersive X-ray (EDX) detector mounted on a laboratory scale electron beam furnace (30 kW) was employed to assess the potential use of X-rays as a means of on-line composition monitoring during electron beam (E B) melting of alloys. The design and construction of the collimation and protection systems used for the EDX are described in Part I. In Part II, a mathematical simulation of the heat, mass, and momentum transfer was performed for comparison to the EDX and vapor deposition results. The predicted flow patterns and evaporation rates are used to explain the differences between the two experimental methods. For the EDX spectra measured, the X-rays generated were from the center of the hearth where fluid flow rising from the bulk of the pool is sufficient to maintain the bulk composition despite the high evaporative flux from the surface. The flow moves radially outward from the center of the pool, with the volatile species being depleted. The vapor deposition technique measures the entire region, giving an average surface composition, and it therefore differs from the EDX results, which gave a near bulk composition. This combined study using in-situ EDX measurements and numerical simulations both provided an insight into the phenomena controlling the evaporation in an EB-heated system and demonstrated the viability of using EDX to measure the bulk composition during EB melting processes.

  3. Fluorescence-type Monochromatic X-ray Beam-position Monitor with High-spatial Resolution for the NSLS-II Beamlines

    SciTech Connect

    Yoon, Phil S.; Siddons, D. Peter

    2010-06-23

    We developed a fluorescence-type monochromatic X-ray beam-position monitor (X-BPM) with high-spatial resolution for end-station experiments at the initial project beamlines of the NSLS-II. We designed a ring array of multi-segmented Si PIN-junction photodiodes to use as a position sensor. Further, we integrated a low-noise charge-preamplification HERMES4 ASIC chip into an electronic readout system for photon-counting application. A series of precision measurements to characterize electronically the Si-photodiode sensor and the ASIC chip demonstrated that the inherent noise from the detector system is sufficiently low to meet our stringent requirements. Using a Gaussian beam, we parametrically modeled the optimum working distance to ensure the detector's best performance. Based upon the results from the parametric modeling, prototypes of the next versions of the X-BPM are being developed. In this paper, we describe the methodology for developing the new compact monochromatic X-ray BPM, including its instrumentation, detector modeling, and future plan.

  4. A Phase II study of external-beam radiotherapy and endovascular brachytherapy with PTA and stenting for femoropopliteal artery restenosis

    SciTech Connect

    Narayan, Kailash . E-mail: kailash.narayan@petermac.org; Denton, Michael; Das, Ram; Bernshaw, David; Rolfo, Aldo; Dyk, Sylvia van; Mirakian, Alex

    2006-09-01

    Purpose: To assess the safety and seek evidence of efficacy of combined external-beam radiotherapy (EBRT) and endovascular brachytherapy in the treatment of stenotic vascular lesions. Methods and Materials: Seventeen patients with high risk for restenosis of femoropopliteal arteries were enrolled in this study from February 2000 to August 2002. The external beam radiotherapy regimen consisted of 10 Gy in 5 fractions of 2 Gy, starting on Day 0. This was followed on Day 6 by angiography, stent placement, and intraluminal brachytherapy to a dose of 10 Gy at 1.2 mm from stent surface. The EBRT was continued from the same day to another 10 Gy in 2 Gy daily fractions for 5 days. Results: The follow up ranged from 33 months to 60 months. At the time of analysis 15 of 17 patients were alive with patent stents. Of these, 10 were symptom-free. Two patients died of unrelated causes. Conclusions: The combination of EBRT and endovascular brachytherapy provided adequate dose distribution without any geographical miss or 'candy wrapper' restenosis. No incidence of aneurysmal dilation of radiated vascular segment was observed. The treatment was feasible, well tolerated, and achieved 88% stenosis free survival.

  5. Controlling the electron energy distribution function of electron beam generated plasmas with molecular gas concentration: II. Numerical modeling

    NASA Astrophysics Data System (ADS)

    Petrov, G. M.; Boris, D. R.; Petrova, Tz B.; Lock, E. H.; Fernsler, R. F.; Walton, S. G.

    2013-12-01

    In this work, the second in a series of two, a spatially averaged model of an electron beam generated Ar-N2 plasma is developed to identify the processes behind the measured influence of trace amounts of N2 on the development of the electron energy distribution function. The model is based on the numerical solution of the electron Boltzmann equation self-consistently coupled to a set of rate balance equations for electrons, argon and nitrogen species. Like the experiments, the calculations cover only the low-energy portion (<50 eV) of the electron energy distribution, and therefore a source term is added to the Boltzmann equation to represent ionization by the beam. Similarly, terms representing ambipolar diffusion along and across the magnetic field are added to allow for particle loss and electrostatic cooling from the ambipolar electric field. This work focuses on the changes introduced by adding a small admixture of nitrogen to an argon background. The model predictions for the electron energy distribution function, electron density and temperature are in good agreement with the experimentally measured data reported in part I, where it was found that the electron and ion energy distributions can be controlled by adjusting the fraction of nitrogen in the gas composition.

  6. The effect of plasma inhomogeneities on (i) radio emission generation by non-gyrotropic electron beams and (ii) particle acceleration by Langmuir waves

    NASA Astrophysics Data System (ADS)

    Tsiklauri, D.

    2014-12-01

    Extensive particle-in-cell simulations of fast electron beams injected in a background magnetised plasma with a decreasing density profile were carried out. These simulations were intended to further shed light on a newly proposed mechanism for the generation of electromagnetic waves in type III solar radio bursts [1]. Here recent progress in an alternative to the plasma emission model using Particle-In-Cell, self-consistent electromagnetic wave emission simulations of solar type III radio bursts will be presented. In particular, (i) Fourier space drift (refraction) of non-gyrotropic electron beam-generated wave packets, caused by the density gradient [1,2], (ii) parameter space investigation of numerical runs [3], (iii) concurrent generation of whistler waves [4] and a separate problem of (iv) electron acceleration by Langmuir waves in a background magnetised plasma with an increasing density profile [5] will be discussed. In all considered cases the density inhomogeneity-induced wave refraction plays a crucial role. In the case of non-gyrotropic electron beam, the wave refaction transforms the generated wave packets from standing into freely escaping EM radiation. In the case of electron acceleration by Langmuir waves, a positive density gradient in the direction of wave propagation causes a decrease in the wavenumber, and hence a higher phase velocity vph=ω/k. The k-shifted wave is then subject to absorption by a faster electron by wave-particle interaction. The overall effect is an increased number of high energy electrons in the energy spectrum. [1] D. Tsiklauri, Phys. Plasmas 18, 052903 (2011) [2] H. Schmitz, D. Tsiklauri, Phys. Plasmas 20, 062903 (2013) [3] R. Pechhacker, D. Tsiklauri, Phys. Plasmas 19, 112903 (2012) [4] M. Skender, D. Tsiklauri, Phys. Plasmas 21, 042904 (2014) [5] R. Pechhacker, D. Tsiklauri, Phys. Plasmas 21, 012903 (2014)

  7. Salvage brachytherapy in combination with interstitial hyperthermia for locally recurrent prostate carcinoma following external beam radiation therapy: a prospective phase II study.

    PubMed

    Kukiełka, Andrzej M; Strnad, Vratislav; Stauffer, Paul; Dąbrowski, Tomasz; Hetnał, Marcin; Nahajowski, Damian; Walasek, Tomasz; Brandys, Piotr; Matys, Robert

    2015-06-01

    Optimal treatment for patients with only local prostate cancer recurrence after external beam radiation therapy (EBRT) failure remains unclear. Possible curative treatments are radical prostatectomy, cryosurgery, and brachytherapy. Several single institution series proved that high-dose-rate brachytherapy (HDRBT) and pulsed-dose-rate brachytherapy (PDRBT) are reasonable options for this group of patients with acceptable levels of genitourinary and gastrointestinal toxicity. A standard dose prescription and scheme have not been established yet, and the literature presents a wide range of fractionation protocols. Furthermore, hyperthermia has shown the potential to enhance the efficacy of re-irradiation. Consequently, a prospective trial is urgently needed to attain clear structured prospective data regarding the efficacy of salvage brachytherapy with adjuvant hyperthermia for locally recurrent prostate cancer. The purpose of this report is to introduce a new prospective phase II trial that would meet this need. The primary aim of this prospective phase II study combining Iridium-192 brachytherapy with interstitial hyperthermia (IHT) is to analyze toxicity of the combined treatment; a secondary aim is to define the efficacy (bNED, DFS, OS) of salvage brachytherapy. The dose prescribed to PTV will be 30 Gy in 3 fractions for HDRBT, and 60 Gy in 2 fractions for PDRBT. During IHT, the prostate will be heated to the range of 40-47°C for 60 minutes prior to brachytherapy dose delivery. The protocol plans for treatment of 77 patients. PMID:26207116

  8. Operation Sun Beam, Shots Little Feller I, II and Johnie Boy. Project officers report. Project 6. 6. Electromagnetic measurements

    SciTech Connect

    Henderson, W.D.; Livingston, P.M.; Rutter, R.L.

    1985-09-01

    Of considerable interest from both a physical and practical viewpoint is the coupling of electromagnetic energy from a nuclear explosion into various electrical systems in the vicinity of the burst. A series of electromagnetic measurements were made on Shots Little Feller I, Little Feller II, and Johnie Boy. It is clear from the records that radiation shielding must be given closer consideration in future tests. Due to equipment failure and radiation inactivation, only the Johnie Boy dynamic current measurement and the passive peak current indicators on all three events are interpretable.

  9. Electron-beam-enhanced oxidation processes in II-VI compound semiconductors observed by high-resolution electron microscopy

    SciTech Connect

    Thangaraj, N.; Wessels, B.W.

    1990-02-01

    Enhanced oxidation of ZnS and ZnSe semiconductor surfaces has been observed in situ during electron irradiation in a high-resolution electron microscope. The phase present at the surface region has been identified as ZnO by optical diffractogram and selected area electron diffraction techniques. For ZnS oxidation, both hexagonal ZnO having a random orientation and cubic ZnO in perfect epitaxial relationship with the bulk ZnS were observed. Enhanced oxidation of ZnSe to ZnO has also been observed under electron beam irradiation. However, only the hexagonal form was observed. The oxidation rates for both ZnS and ZnSe depended on electron flux but was independent of orientation. A model in which the oxidation process is limited by diffusion through the oxide film is proposed. By electron irradiation the diffusion rate is enhanced presumably by a nonthermal process.

  10. Grafting of acrylamide to nylon-6 by the electron-beam preirradiation technique. II. Kinetic aspects and film permeability

    SciTech Connect

    Haruvy, Y.; Rajbenbach, L.A.; Jagur-Grodzinski, J.

    1982-07-01

    Single- and multilayered laminated nylon-6 films were grafted with acrylamide (AM) using the electron-beam preirradiation technique. Very high grafting yields were obtained within short time periods. Grafting onto single films was shown to proceed via diffusion free pseudo zero-order kinetics. Grafting onto multilayered films was diffusion controlled. Scanning electron microscope measurements indicate uniform grafting of single-film membranes and asymmetric grafting of membranes prepared by grafting onto multilayered films. The permeability of grafted membranes to a number of permeants was found to increase with extent of grafting. The specific permeability to both water and solutes exceeded that of the dialysis grade cellophane at 500% graft. The selectivity of grafted films towards various solutes had also been found to be higher than that of cellophane.

  11. Electron beam irradiated polyamide-6,6 films—II: mechanical and dynamic mechanical properties and water absorption behavior

    NASA Astrophysics Data System (ADS)

    Sengupta, Rajatendu; Tikku, V. K.; Somani, Alok K.; Chaki, Tapan K.; Bhowmick, Anil K.

    2005-04-01

    Electron beam irradiation of poly(iminohexamethylene-iminoadipoyl) (Polyamide-6,6) films was carried out over a range of irradiation doses (20-500 kGy) in air. The mechanical properties were studied and the optimum radiation dose was 200 kGy, where the ultimate tensile stress (UTS), 10% modulus, elongation at break (EB) and toughness showed significant improvement over the unirradiated film. At a dose of 200 kGy, the UTS was improved by 19%, the 10% modulus by ˜9% and the EB by ˜200% over the control. The dynamic mechanical properties of the films were studied in the temperature region 303-473 K to observe the changes in the glass transition temperature ( Tg) and loss tangent (tan δ) with radiation dose. The storage modulus of the film receiving a radiation dose of 200 kGy was higher than the unirradiated film. The water uptake characteristics of the Polyamide-6,6 films were investigated. The water uptake was less for the films that received a radiation dose of 200 and 500 kGy than the unirradiated film. The role of crystallinity, crosslinking and chain scission in affecting the tensile, dynamic mechanical and water absorption properties was discussed.

  12. Beam-beam issues in asymmetric colliders

    SciTech Connect

    Furman, M.A.

    1992-07-01

    We discuss generic beam-beam issues for proposed asymmetric e{sup +}- e{sup -} colliders. We illustrate the issues by choosing, as examples, the proposals by Cornell University (CESR-B), KEK, and SLAC/LBL/LLNL (PEP-II).

  13. Beam-beam instability

    SciTech Connect

    Chao, A.W.

    1983-08-01

    The subject of beam-beam instability has been studied since the invention of the colliding beam storage rings. Today, with several colliding beam storage rings in operation, it is not yet fully understood and remains an outstanding problem for the storage ring designers. No doubt that good progress has been made over the years, but what we have at present is still rather primitive. It is perhaps possible to divide the beam-beam subject into two areas: one on luminosity optimization and another on the dynamics of the beam-beam interaction. The former area concerns mostly the design and operational features of a colliding beam storage ring, while the later concentrates on the experimental and theoretical aspects of the beam-beam interaction. Although both areas are of interest, our emphasis is on the second area only. In particular, we are most interested in the various possible mechanisms that cause the beam-beam instability.

  14. Design of a digital beam attenuation system for computed tomography. Part II. Performance study and initial results

    SciTech Connect

    Szczykutowicz, Timothy P.; Mistretta, Charles A.

    2013-02-15

    Purpose: The purpose of this work is to present a performance study of the digital beam attenuator (DBA) for implementing fluence field modulated CT (FFMCT) using a simulation framework developed to model the incorporation of the DBA into an existing CT system. Additionally, initial results will be presented using a prototype DBA and the realization of the prototype will be described. To our knowledge, this study represents the first experimental use of a device capable of modulating x-ray fluence as a function of fan angle using a CT geometry. Methods: To realize FFMCT, the authors propose to use a wedge design in which one wedge is held stationary and another wedge is moved over the stationary wedge. Due to the wedge shape, the composite thickness of the two wedges changes as a function of the amount of overlap between the wedges. This design allows for the wedges to modulate the photon fluence incident onto a patient. Using a simulation environment, the effect of changing the number of wedges has on dose, scatter, detector dynamic range, and noise uniformity is explored. Experimental results are presented using a prototype DBA having ten Fe wedges and a c-arm CT system geometry. The experimental DBA results are compared to non-DBA scans using scatter and detector dynamic range as metrics. Both flat field and bowtie filtered CT acquisitions were simulated for comparison with the DBA. Results: Numerical results suggest that substantial gains in noise uniformity and scatter-to-primary ratio (SPR) can be obtained using only seven wedges. After seven wedges, the decrease in noise ununiformity and SPR falls off at a lower rate. Simulations comparing CT acquisitions between flat field, bowtie enabled, and DBA CT acquisitions suggest DBA-FFMCT can reduce dose relative to flat field CT by Almost-Equal-To 3 times. A bowtie filter under the same imaging conditions was shown to only allow a dose reduction of 1.65 times. Experimentally, a 10 wedge DBA prototype result showed

  15. Design of a digital beam attenuation system for computed tomography. Part II. Performance study and initial results

    PubMed Central

    Szczykutowicz, Timothy P.; Mistretta, Charles A.

    2013-01-01

    Purpose: The purpose of this work is to present a performance study of the digital beam attenuator (DBA) for implementing fluence field modulated CT (FFMCT) using a simulation framework developed to model the incorporation of the DBA into an existing CT system. Additionally, initial results will be presented using a prototype DBA and the realization of the prototype will be described. To our knowledge, this study represents the first experimental use of a device capable of modulating x-ray fluence as a function of fan angle using a CT geometry. Methods: To realize FFMCT, the authors propose to use a wedge design in which one wedge is held stationary and another wedge is moved over the stationary wedge. Due to the wedge shape, the composite thickness of the two wedges changes as a function of the amount of overlap between the wedges. This design allows for the wedges to modulate the photon fluence incident onto a patient. Using a simulation environment, the effect of changing the number of wedges has on dose, scatter, detector dynamic range, and noise uniformity is explored. Experimental results are presented using a prototype DBA having ten Fe wedges and a c-arm CT system geometry. The experimental DBA results are compared to non-DBA scans using scatter and detector dynamic range as metrics. Both flat field and bowtie filtered CT acquisitions were simulated for comparison with the DBA. Results: Numerical results suggest that substantial gains in noise uniformity and scatter-to-primary ratio (SPR) can be obtained using only seven wedges. After seven wedges, the decrease in noise ununiformity and SPR falls off at a lower rate. Simulations comparing CT acquisitions between flat field, bowtie enabled, and DBA CT acquisitions suggest DBA-FFMCT can reduce dose relative to flat field CT by ≈3 times. A bowtie filter under the same imaging conditions was shown to only allow a dose reduction of 1.65 times. Experimentally, a 10 wedge DBA prototype result showed a SPR

  16. The effect of plasma inhomogeneities on (i) radio emission generation by non-gyrotropic electron beams and (ii) particle acceleration by Langmuir waves

    NASA Astrophysics Data System (ADS)

    Tsiklauri, David

    2015-04-01

    Extensive particle-in-cell simulations of fast electron beams injected in a background magnetised plasma with a decreasing density profile were carried out. These simulations were intended to further shed light on a newly proposed mechanism for the generation of electromagnetic waves in type III solar radio bursts [1]. Here recent progress in an alternative to the plasma emission model using Particle-In-Cell, self-consistent electromagnetic wave emission simulations of solar type III radio bursts will be presented. In particular, (i) Fourier space drift (refraction) of non-gyrotropic electron beam-generated wave packets, caused by the density gradient [1,2], (ii) parameter space investigation of numerical runs [3], (iii) concurrent generation of whistler waves [4] and a separate problem of (iv) electron acceleration by Langmuir waves in a background magnetised plasma with an increasing density profile [5] will be discussed. In all considered cases the density inhomogeneity-induced wave refraction plays a crucial role. In the case of non-gyrotropic electron beam, the wave refraction transforms the generated wave packets from standing into freely escaping EM radiation. In the case of electron acceleration by Langmuir waves, a positive density gradient in the direction of wave propagation causes a decrease in the wavenumber, and hence a higher phase velocity vph = ω/k. The k-shifted wave is then subject to absorption by a faster electron by wave-particle interaction. The overall effect is an increased number of high energy electrons in the energy spectrum. [1] D. Tsiklauri, Phys. Plasmas 18, 052903 (2011); http://dx.doi.org/10.1063/1.3590928 [2] H. Schmitz, D. Tsiklauri, Phys. Plasmas 20, 062903 (2013); http://dx.doi.org/10.1063/1.4812453 [3] R. Pechhacker, D. Tsiklauri, Phys. Plasmas 19, 112903 (2012); http://dx.doi.org/10.1063/1.4768429 [4] M. Skender, D. Tsiklauri, Phys. Plasmas 21, 042904 (2014); http://dx.doi.org/10.1063/1.4871723 [5] R. Pechhacker, D. Tsiklauri

  17. Review of ultrasound image guidance in external beam radiotherapy part II: intra-fraction motion management and novel applications.

    PubMed

    O'Shea, Tuathan; Bamber, Jeffrey; Fontanarosa, Davide; van der Meer, Skadi; Verhaegen, Frank; Harris, Emma

    2016-04-21

    Imaging has become an essential tool in modern radiotherapy (RT), being used to plan dose delivery prior to treatment and verify target position before and during treatment. Ultrasound (US) imaging is cost-effective in providing excellent contrast at high resolution for depicting soft tissue targets apart from those shielded by the lungs or cranium. As a result, it is increasingly used in RT setup verification for the measurement of inter-fraction motion, the subject of Part I of this review (Fontanarosa et al 2015 Phys. Med. Biol. 60 R77-114). The combination of rapid imaging and zero ionising radiation dose makes US highly suitable for estimating intra-fraction motion. The current paper (Part II of the review) covers this topic. The basic technology for US motion estimation, and its current clinical application to the prostate, is described here, along with recent developments in robust motion-estimation algorithms, and three dimensional (3D) imaging. Together, these are likely to drive an increase in the number of future clinical studies and the range of cancer sites in which US motion management is applied. Also reviewed are selections of existing and proposed novel applications of US imaging to RT. These are driven by exciting developments in structural, functional and molecular US imaging and analytical techniques such as backscatter tissue analysis, elastography, photoacoustography, contrast-specific imaging, dynamic contrast analysis, microvascular and super-resolution imaging, and targeted microbubbles. Such techniques show promise for predicting and measuring the outcome of RT, quantifying normal tissue toxicity, improving tumour definition and defining a biological target volume that describes radiation sensitive regions of the tumour. US offers easy, low cost and efficient integration of these techniques into the RT workflow. US contrast technology also has potential to be used actively to assist RT by manipulating the tumour cell environment and by

  18. Review of ultrasound image guidance in external beam radiotherapy part II: intra-fraction motion management and novel applications

    NASA Astrophysics Data System (ADS)

    O'Shea, Tuathan; Bamber, Jeffrey; Fontanarosa, Davide; van der Meer, Skadi; Verhaegen, Frank; Harris, Emma

    2016-04-01

    Imaging has become an essential tool in modern radiotherapy (RT), being used to plan dose delivery prior to treatment and verify target position before and during treatment. Ultrasound (US) imaging is cost-effective in providing excellent contrast at high resolution for depicting soft tissue targets apart from those shielded by the lungs or cranium. As a result, it is increasingly used in RT setup verification for the measurement of inter-fraction motion, the subject of Part I of this review (Fontanarosa et al 2015 Phys. Med. Biol. 60 R77-114). The combination of rapid imaging and zero ionising radiation dose makes US highly suitable for estimating intra-fraction motion. The current paper (Part II of the review) covers this topic. The basic technology for US motion estimation, and its current clinical application to the prostate, is described here, along with recent developments in robust motion-estimation algorithms, and three dimensional (3D) imaging. Together, these are likely to drive an increase in the number of future clinical studies and the range of cancer sites in which US motion management is applied. Also reviewed are selections of existing and proposed novel applications of US imaging to RT. These are driven by exciting developments in structural, functional and molecular US imaging and analytical techniques such as backscatter tissue analysis, elastography, photoacoustography, contrast-specific imaging, dynamic contrast analysis, microvascular and super-resolution imaging, and targeted microbubbles. Such techniques show promise for predicting and measuring the outcome of RT, quantifying normal tissue toxicity, improving tumour definition and defining a biological target volume that describes radiation sensitive regions of the tumour. US offers easy, low cost and efficient integration of these techniques into the RT workflow. US contrast technology also has potential to be used actively to assist RT by manipulating the tumour cell environment and by

  19. Combustion chemistry and flame structure of furan group biofuels using molecular-beam mass spectrometry and gas chromatography – Part II: 2-Methylfuran

    PubMed Central

    Tran, Luc-Sy; Togbé, Casimir; Liu, Dong; Felsmann, Daniel; Oßwald, Patrick; Glaude, Pierre-Alexandre; Fournet, René; Sirjean, Baptiste; Battin-Leclerc, Frédérique; Kohse-Höinghaus, Katharina

    2013-01-01

    This is Part II of a series of three papers which jointly address the combustion chemistry of furan and its alkylated derivatives 2-methylfuran (MF) and 2,5-dimethylfuran (DMF) under premixed low-pressure flame conditions. Some of them are considered to be promising biofuels. With furan as a common basis studied in Part I of this series, the present paper addresses two laminar premixed low-pressure (20 and 40 mbar) flat argon-diluted (50%) flames of MF which were studied with electron-ionization molecular-beam mass spectrometry (EI-MBMS) and gas chromatography (GC) for equivalence ratios φ=1.0 and 1.7, identical conditions to those for the previously reported furan flames. Mole fractions of reactants, products as well as stable and reactive intermediates were measured as a function of the distance above the burner. Kinetic modeling was performed using a comprehensive reaction mechanism for all three fuels given in Part I and described in the three parts of this series. A comparison of the experimental results and the simulation shows reasonable agreement, as also seen for the furan flames in Part I before. This set of experiments is thus considered to be a valuable additional basis for the validation of the model. The main reaction pathways of MF consumption have been derived from reaction flow analyses, and differences to furan combustion chemistry under the same conditions are discussed. PMID:24518895

  20. Producao d Dijatos por Dupla Troca de Pomeron Exclusiva no Experimento D0

    SciTech Connect

    Murilo Santana Rangel

    2008-01-01

    The first search for exclusive diffractive dijet production with invariant mass ≳ 100 GeV in Run II of the Fermilab Tevatron Collider is performed. The set of data used is the Run IIa, corresponding to an integrated luminosity of 30 pb-1 of p$\\bar{p}$ collisions at √s = 1.96 TeV taken with the D0 detector. At 95% CL, an upper limit for the ratio between the number of diffractive exclusive events and the number of non diffractive events is set to be 7.5 x 10-6, excluding two of the three models proposed to explain this production.

  1. Continuous 7-Days-A-Week External Beam Irradiation in Locally Advanced Cervical Cancer: Final Results of the Phase I/II Study

    SciTech Connect

    Serkies, Krystyna; Dziadziuszko, Rafal; Jassem, Jacek

    2012-03-01

    Purpose: To evaluate the feasibility and efficacy of definitive continuous 7-days-a-week pelvic irradiation without breaks between external beam radiotherapy and brachytherapy in locally advanced cervical cancer. Methods and Materials: Between November 1998 and December 1999, 30 patients with International Federation of Obstetrics and Gynecology Stage IIB or IIIB cervical cancer were included in a prospective Phase I/II study of continuous 7-days-a-week pelvic irradiation, to the total Manchester point B dose of 40.0-57.6 Gy. The first 13 patients (Group A) were given a daily tumor dose of 1.6 Gy, and the remaining 17 patients (Group B) were given 1.8 Gy. One or two immediate brachytherapy applications (point A dose 10-20 Gy, each) were performed in 28 cases. Results: Two patients did not complete the irradiation because of apparent early progression of disease during the irradiation. Eleven of the 28 evaluable patients (39%; 45% and 35% in Groups A and B, respectively) completed their treatment within the prescribed overall treatment time. Acute toxicity (including severe European Organisation for Research and Treatment of Cancer/Radiation Therapy Oncology Group Grade 3 and 4 effects in 40%) was experienced by 83% of patients and resulted in unplanned treatment interruptions in 40% of all patients (31% and 47% of patients in Groups A and B, respectively). Severe intestinal side effects occurred in 31% and 41% of Patients in Groups A and B, respectively (p = 0.71). The 5-year overall survival probability was 33%. Cancer recurrence occurred in 63% of patients: 20% inside and 57% outside the pelvis. Cumulative incidence of late severe bowel and urinary bladder toxicity at 24 months was 15%. Conclusion: Continuous irradiation in locally advanced cervical cancer is associated with a high incidence of severe acute toxicity, resulting in unplanned treatment interruptions. Late severe effects and survival after continuous radiotherapy do not substantially differ from

  2. Relativistic atomic beam spectroscopy II

    SciTech Connect

    1989-12-31

    The negative ion of H is one of the simplest 3-body atomic systems. The techniques we have developed for experimental study of atoms moving near speed of light have been productive. This proposal request continuing support for experimental studies of the H{sup -} system, principally at the 800 MeV linear accelerator (LAMPF) at Los Alamos. Four experiments are currently planned: photodetachment of H{sup -} near threshold in electric field, interaction of relativistic H{sup -} ions with matter, high excitations and double charge escape in H{sup -}, and multiphoton detachment of electrons from H{sup -}.

  3. Encircled energy for systems with truncated-Gaussian apertures of different Fresnel numbers. II. Maximizing beam energy concentration on a target.

    PubMed

    Li, Yajun

    2007-07-01

    In Part I of this study [J. Opt. Soc. Am. A24, 2023 (2007)] the Q(2n) functions of E. Wolf and the Y(n) functions of H. H. Hopkins have been generalized for evaluating the fraction of the total energy in systems with focused truncated Gaussian beams by apertures of different Fresnel numbers and different ratios of aperture radius to beam radius. The generalized special functions provide a mathematical basis for a rigorous study of maximizing beam energy concentration on a target. This subject is addressed under two subtitles: (1) active focusing of a Gaussian beam onto a distant target and (2) optimizing photodetection in a focused field. PMID:17728827

  4. Encircled energy for systems with truncated-Gaussian apertures of different Fresnel numbers. II. Maximizing beam energy concentration on a target

    NASA Astrophysics Data System (ADS)

    Li, Yajun

    2007-07-01

    In Part I of this study [J. Opt. Soc. Am. A24, 2023 (2007)] the Q2n functions of E. Wolf and the Yn functions of H. H. Hopkins have been generalized for evaluating the fraction of the total energy in systems with focused truncated Gaussian beams by apertures of different Fresnel numbers and different ratios of aperture radius to beam radius. The generalized special functions provide a mathematical basis for a rigorous study of maximizing beam energy concentration on a target. This subject is addressed under two subtitles: (1) active focusing of a Gaussian beam onto a distant target and (2) optimizing photodetection in a focused field.

  5. Experiments on current-driven three-dimensional ion sound turbulence. I - Return-current limited electron beam injection. II - Wave dynamics

    NASA Technical Reports Server (NTRS)

    Stenzel, R. L.

    1978-01-01

    Pulsed electron beam injection into a weakly collisional magnetized background plasma is investigated experimentally; properties of the electron beam and background plasma, as well as the low-frequency instabilities and wave dynamics, are discussed. The current of the injected beam closes via a field-aligned return current of background electrons. Through study of the frequency and wavenumber distribution, together with the electron distribution function, the low-frequency instabilities associated with the pulsed injection are identified as ion acoustic waves driven unstable by the return current. The frequency cut-off of the instabilities predicted from renormalized plasma turbulence theory, has been verified experimentally.

  6. Alveolar bone thickness and lower incisor position in skeletal Class I and Class II malocclusions assessed with cone-beam computed tomography

    PubMed Central

    Ucar, Faruk Izzet; Buyuk, Suleyman Kutalmis; Ozer, Torun; Uysal, Tancan

    2013-01-01

    Objective To evaluate lower incisor position and bony support between patients with Class II average- and high-angle malocclusions and compare with the patients presenting Class I malocclusions. Methods CBCT records of 79 patients were divided into 2 groups according to sagittal jaw relationships: Class I and II. Each group was further divided into average- and high-angle subgroups. Six angular and 6 linear measurements were performed. Independent samples t-test, Kruskal-Wallis, and Dunn post-hoc tests were performed for statistical comparisons. Results Labial alveolar bone thickness was significantly higher in Class I group compared to Class II group (p = 0.003). Lingual alveolar bone angle (p = 0.004), lower incisor protrusion (p = 0.007) and proclination (p = 0.046) were greatest in Class II average-angle patients. Spongious bone was thinner (p = 0.016) and root apex was closer to the labial cortex in high-angle subgroups when compared to the Class II average-angle subgroup (p = 0.004). Conclusions Mandibular anterior bony support and lower incisor position were different between average- and high-angle Class II patients. Clinicians should be aware that the range of lower incisor movement in high-angle Class II patients is limited compared to average- angle Class II patients. PMID:23814708

  7. Summary of Working Group 7, Part II: Linac protection and collimation of megawatt micron sized 250--500 GeV electron beams

    SciTech Connect

    Irwin, J.

    1992-11-01

    The average beam powers and beam size anticipated for next generation linear colliders make them awesome tools of destruction. Systems for protection will be crucial. A scheme for linac structure protection by sacrificial collimators is presented in Section 3. No matter what precautionary measures are taken, the tails of the beam will be populated by hard coulomb collisions along the linac. To remove these halos before reaching the final focus system optics, where particle showers can blind the detector, it will be necessary to collimate these beams. Section 5 discusses the equations governing the parameters of a conventional collimation system. Wakefields determine gap sizes and lattice functions. Materials properties dictate minimum beam sizes at collimators so they can withstand occasionally mis-steered beams. Spoiler scattering and edge scattering effects mandate that the final doublet phase be collimated twice, and depending on the results of further tracking studies, it may be necessary to collimate each phase two times. Section 6 describes a nonlinear collimation system that can collimate beams to smaller apertures than the conventional system. The tolerances for such systems resemble final focus tolerances. Section T addresses the problem of repopulation of the tails after the collimation system. The main conclusions are that it appears possible to collimate the beams for these machines with conventional passively protected collimation systems. However the length of present designs, which collimate energy and both transverse planes and meet the requirements of complete tail scraping, exceed one kilometer per linac. A collimation system may also be desirable at the low energy end of the linac to minimize collimation of high energy particles.

  8. KTeV beam systems design report

    SciTech Connect

    Bocean, V.; Childress, S.; Coleman, R.

    1997-09-01

    The primary and secondary beams for the KTeV experiments E799-II and E832 are discussed. The specifications are presented and justified. The technical details of the implementation of the primary beam transport and stability are detailed. The target, beam dump, and radiation safety issues are discussed. The details of the collimation system for the pair of secondary beams are presented.

  9. DARHT II Scaled Accelerator Tests on the ETA II Accelerator*

    SciTech Connect

    Weir, J T; Anaya Jr, E M; Caporaso, G J; Chambers, F W; Chen, Y; Falabella, S; Lee, B S; Paul, A C; Raymond, B A; Richardson, R A; Watson, J A; Chan, D; Davis, H A; Day, L A; Scarpetti, R D; Schultze, M E; Hughes, T P

    2005-05-26

    The DARHT II accelerator at LANL is preparing a series of preliminary tests at the reduced voltage of 7.8 MeV. The transport hardware between the end of the accelerator and the final target magnet was shipped to LLNL and installed on ETA II. Using the ETA II beam at 5.2 MeV we completed a set of experiments designed reduce start up time on the DARHT II experiments and run the equipment in a configuration adapted to the reduced energy. Results of the beam transport using a reduced energy beam, including the kicker and kicker pulser system will be presented.

  10. Propagation of high-energy laser beams through the earth's atmosphere II; Proceedings of the Meeting, Los Angeles, CA, Jan. 21-23, 1991

    NASA Technical Reports Server (NTRS)

    Ulrich, Peter B. (Editor); Wilson, Leroy E. (Editor)

    1991-01-01

    Consideration is given to turbulence at the inner scale, modeling turbulent transport in laser beam propagation, variable wind direction effects on thermal blooming correction, realistic wind effects on turbulence and thermal blooming compensation, wide bandwidth spectral measurements of atmospheric tilt turbulence, remote alignment of adaptive optical systems with far-field optimization, focusing infrared laser beams on targets in space without using adaptive optics, and a simplex optimization method for adaptive optics system alignment. Consideration is also given to ground-to-space multiline propagation at 1.3 micron, a path integral approach to thermal blooming, functional reconstruction predictions of uplink whole beam Strehl ratios in the presence of thermal blooming, and stability analysis of semidiscrete schemes for thermal blooming computation.

  11. Randomized Control Trial: Evaluating Aluminum-Based Antiperspirant Use, Axilla Skin Toxicity, and Reported Quality of Life in Women Receiving External Beam Radiotherapy for Treatment of Stage 0, I, and II Breast Cancer

    SciTech Connect

    Watson, Linda C.; Gies, Donna; Thompson, Emmanuel; Thomas, Bejoy

    2012-05-01

    Purpose: Standard skin care instructions regarding the use of antiperspirants during radiotherapy to the breast varies across North America. Women have articulated that when instructed to not use antiperspirant, the potential for body odor is distressing. Historical practices and individual opinions have often guided practice in this field. The present study had 2 purposes. To evaluate whether the use of aluminum-based antiperspirant while receiving external beam radiotherapy for stage 0, I, or II breast cancer will increase axilla skin toxicity and to evaluate whether the use of antiperspirant during external beam radiotherapy improves quality of life. Methods: A total of 198 participants were randomized to either the experimental group (antiperspirant) or control group (standard care-wash only). The skin reactions in both groups were measured weekly and 2 weeks after treatment using the National Cancer Institute Common Toxicity Criteria Adverse Events, version 3, toxicity grading criteria. Both groups completed the Functional Assessment for Chronic Illness Therapy's questionnaire for the breast population quality of life assessment tool, with additional questions evaluating the effect of underarm antiperspirant use on quality of life before treatment, immediately after treatment, and 2 weeks after treatment during the study. Results: The skin reaction data were analyzed using the generalized estimating equation. No statistically significant difference was seen in the skin reaction between the 2 groups over time. The quality of life data also revealed no statistically significant difference between the 2 groups over time. Conclusions: Data analysis indicates that using antiperspirant routinely during external beam radiotherapy for Stage 0, I, or II breast cancer does not affect the intensity of the skin reaction or the self-reported quality of life. This evidence supports that in this particular population, there is no purpose to restrict these women from using

  12. Beam width evolution of astigmatic hollow Gaussian beams in highly nonlocal nonlinear media

    NASA Astrophysics Data System (ADS)

    Yang, Zhen-Feng; Jiang, Xue-Song; Yang, Zhen-Jun; Li, Jian-Xing; Zhang, Shu-Min

    We investigate the beam width evolution of astigmatic hollow Gaussian beams propagating in highly nonlocal nonlinear media. The input-power-induced different evolutions of the beam width are illustrated: (i) the beam widths in two transverse directions are compressed or broadened at the same time; (ii) the beam width in one transverse direction keeps invariant, and the other is compressed or broadened; (iii) furthermore, the beam width in one transverse direction is compressed, whereas it in the other transverse direction is broadened.

  13. Beam director design report

    SciTech Connect

    Younger, F.C.

    1986-08-01

    A design and fabrication effort for a beam director is documented. The conceptual design provides for the beam to pass first through a bending and focusing system (or ''achromat''), through a second achromat, through an air-to-vacuum interface (the ''beam window''), and finally through the vernier steering system. Following an initial concept study for a beam director, a prototype permanent magnet 30/sup 0/ beam-bending achromat and prototype vernier steering magnet were designed and built. In volume II, copies are included of the funding instruments, requests for quotations, purchase orders, a complete set of as-built drawings, magnetic measurement reports, the concept design report, and the final report on the design and fabrication project. (LEW)

  14. Hypofractionated High-Dose Proton Beam Therapy for Stage I Non-Small-Cell Lung Cancer: Preliminary Results of A Phase I/II Clinical Study

    SciTech Connect

    Hata, Masaharu . E-mail: mhata@syd.odn.ne.jp; Tokuuye, Koichi; Kagei, Kenji; Sugahara, Shinji; Nakayama, Hidetsugu; Fukumitsu, Nobuyoshi; Hashimoto, Takayuki; Mizumoto, Masashi; Ohara, Kiyoshi; Akine, Yasuyuki

    2007-07-01

    Purpose: To present treatment outcomes of hypofractionated high-dose proton beam therapy for Stage I non-small-cell lung cancer (NSCLC). Methods and Materials: Twenty-one patients with Stage I NSCLC (11 with Stage IA and 10 with Stage IB) underwent hypofractionated high-dose proton beam therapy. At the time of irradiation, patient age ranged from 51 to 85 years (median, 74 years). Nine patients were medically inoperable because of comorbidities, and 12 patients refused surgical resection. Histology was squamous cell carcinoma in 6 patients, adenocarcinoma in 14, and large cell carcinoma in 1. Tumor size ranged from 10 to 42 mm (median, 25 mm) in maximum diameter. Three and 18 patients received proton beam irradiation with total doses of 50 Gy and 60 Gy in 10 fractions, respectively, to primary tumor sites. Results: Of 21 patients, 2 died of cancer and 2 died of pneumonia at a median follow-up period of 25 months. The 2-year overall and cause-specific survival rates were 74% and 86%, respectively. All but one of the irradiated tumors were controlled during the follow-up period. Five patients showed recurrences 6-29 months after treatment, including local progression and new lung lesions outside of the irradiated volume in 1 and 4 patients, respectively. The local progression-free and disease-free rates were 95% and 79% at 2 years, respectively. No therapy-related toxicity of Grade {>=}3 was observed. Conclusions: Hypofractionated high-dose proton beam therapy seems feasible and effective for Stage I NSCLC. Proton beams may contribute to enhanced efficacy and lower toxicity in the treatment of patients with Stage I NSCLC.

  15. Beam-Beam Simulations with the Gaussian Code TRS

    SciTech Connect

    Matter, Regina S.

    2000-06-26

    The authors have summarized the main features of the beam-beam simulation code TRS and presented two sample applications to the PEP-II collider. The code has been successfully tested against analytic results and against other simulation codes whenever such comparisons are meaningful. The soft-gaussian approximation is believed to represent reliably incoherent beam-beam effects. The code has been used to perform studies for the PEP-II collider. For example, simulated tune scans reveal undesirable operating points due to beam blowup from synchrotron sidebands. The dynamical beta effect, clearly seen in these simulations, also influences the choice of a working point. The code has been used to establish the adequate beam separation at the parasitic collision points [24], and has been applied to the proposed muon collider [25], including the effects from the instability of the muon.

  16. TH-C-12A-02: Comparison of Two RapidArc Delivery Strategies in Stereotactic Body Radiotherapy of Stage I and II Peripheral Lung Tumors with Unflattened Beams

    SciTech Connect

    Huang, B; Lu, J; Chen, J; Chen, C; Lin, P; Kuang, Y

    2014-06-15

    Purpose: The full arcs strategy used in SBRT with RapidArc and unflattened (FFF) beams in large and heterogeneous peripheral non-smallcell lung cancer (NSCLC) appears to be suboptimal as it increases the disadvantageous dose to the contralateral lung, which potentially increases the toxicity to surrounding tissues. In this study, we investigated, for the first time, the dose delivery strategies using partial arcs (PA) and the fully rotational arcs with avoidance sectors (FAAS) for SBRT with FFF beams in peripheral NSCLC patients. Methods: Eighteen patients with NSCLC (stage I and II) were selected for this study. Nine patients with a GTV <= 10cc were designated as the small tumor group. The remaining nine patients with a GTV between 10 cc and 44 cc were assigned to the large tumor group. The treatment plans were generated in eighteen patients using PA and FAAS, respectively, and delivered with a Varian TrueBeam Linac. Dosimetry of the target and organs at risk (OAR), total MU, out-of-field dose, and delivery time were analyzed. Delta4 and Portal dosimetry were employed to evaluate the delivery accuracy. Results: or the small tumor group, the FAAS plans significantly achieved a better conformity index, the lower total MU and out-of-field dose, a shorter treatment time, and the reduced doses to cord, heart, and lung (p < 0.05). But the target doses were slightly higher than that delivered by PA plans. For the large tumor group, the PA plans significantly attained a better conformity index and a shorter treatment time (p < 0.05). Furthermore, all plans achieved a high pass rate, with all the gamma indices greater than 97% at the Γ{sub 3mm,} {sub 3%} threshold. Conclusion: This study suggests that FAAS strategy is more beneficial for small tumor patients undergoing lung SBRT with FFF beams. However, for large tumor patients, PA strategy is recommended. NIH/NIGMS grant U54 GM104944, Lincy Endowed Assistant Professorship.

  17. Long-Term Results of an RTOG Phase II Trial (00-19) of External-Beam Radiation Therapy Combined With Permanent Source Brachytherapy for Intermediate-Risk Clinically Localized Adenocarcinoma of the Prostate

    SciTech Connect

    Lawton, Colleen A.; Yan, Yan; Lee, W. Robert; Gillin, Michael; Firat, Selim; Baikadi, Madhava; Crook, Juanita; Kuettel, Michael; Morton, Gerald; Sandler, Howard

    2012-04-01

    Purpose: External-beam radiation therapy combined with low-doserate permanent brachytherapy are commonly used to treat men with localized prostate cancer. This Phase II trial was performed to document late gastrointestinal or genitourinary toxicity as well as biochemical control for this treatment in a multi-institutional cooperative group setting. This report defines the long-term results of this trial. Methods and Materials: All eligible patients received external-beam radiation (45 Gy in 25 fractions) followed 2-6 weeks later by a permanent iodine 125 implant of 108 Gy. Late toxicity was defined by the Radiation Therapy Oncology Group/European Organization for Research and Treatment of Cancer late radiation morbidity scoring scheme. Biochemical control was defined by the American Society for Therapeutic Radiology and Oncology (ASTRO) Consensus definition and the ASTRO Phoenix definition. Results: One hundred thirty-eight patients were enrolled from 20 institutions, and 131 were eligible. Median follow-up (living patients) was 8.2 years (range, 2.7-9.3 years). The 8-year estimate of late grade >3 genitourinary and/or gastrointestinal toxicity was 15%. The most common grade >3 toxicities were urinary frequency, dysuria, and proctitis. There were two grade 4 toxicities, both bladder necrosis, and no grade 5 toxicities. In addition, 42% of patients complained of grade 3 impotence (no erections) at 8 years. The 8-year estimate of biochemical failure was 18% and 21% by the Phoenix and ASTRO consensus definitions, respectively. Conclusion: Biochemical control for this treatment seems durable with 8 years of follow-up and is similar to high-dose external beam radiation alone or brachytherapy alone. Late toxicity in this multi-institutional trial is higher than reports from similar cohorts of patients treated with high-dose external-beam radiation alone or permanent low-doserate brachytherapy alone, perhaps suggesting further attention to strategies that limit doses to

  18. Operation Sun Beam, Shots Little Feller II and Small Boy. Project Officer's report - Project 7. 16. Airborne E-field radiation measurements of electromagnetic-pulse phenomena

    SciTech Connect

    Butler, K.L.

    1985-09-01

    Airborne measurements of the absolute vertical electric field (E-field) of the radiated electromagnetic pulse were attempted for Shots Little Feller II and Small Boy. Instrumentation included calibrated vertical whip antennas, wideband magnetic tape recorders, and photographs of oscilloscope traces. One instrumented aircraft participated in Little Feller II (C-131F); two aircraft participated in Small Boy (a C-131F and an A-3A). No detectable signals were recorded for either event. It is concluded that the vertical E-field intensities encountered were below the calibrated levels of the instrumentation or the method of instrumentation and calibration was inadequate for nonrepetitive pulse signals.

  19. Six fractions per week of external beam radiotherapy and high-dose-rate brachytherapy for carcinoma of the uterine cervix: A phase I/II study

    SciTech Connect

    Yoon, Sang Min; Huh, Seung Jae . E-mail: sjhuh@smc.samsung.co.kr; Park, Won; Lee, Jeung Eun; Park, Young Je; Nam, Hee Rim; Lim, Do Hoon; Ahn, Yong Chan

    2006-08-01

    Purpose: This study evaluated the treatment results of external beam radiotherapy administered in six fractions per week and high-dose-rate (HDR) brachytherapy for the treatment of cervical cancer. Methods and Materials: From July 2000 to July 2003, 43 patients were enrolled in this study. The patients received 45 Gy from a 10-MV photon beam using four-field box or anterior-posterior beams. Parametrial regions and the pelvic side walls were boosted with up to 50.4 Gy using a midline block. The daily fraction dose was 1.8 Gy administered in six-weekly fractions, from Monday to Saturday. HDR brachytherapy was also delivered at doses of 24 Gy to point A in six fractions twice a week. The median follow-up time was 37 months (range, 9-60 months). Results: The median overall treatment time was 51 days for all patients (range, 44-62 days). Thirty-four patients (79.1%) achieved complete remission and 8 (18.6%) achieved partial remission after radiotherapy. Locoregional recurrence occurred in 5 patients (11.6%), and a distant metastasis was encountered in 6 patients (13.9%). The 3-year overall survival, locoregional, and distant metastasis-free survival rates were 74.7%, 87.8%, and 84.7%, respectively. Grade 2 and 3 late rectal complications were encountered in 3 (6.5%) and 1 (2.2%), respectively. There were no Grade 3 late bladder complications. Conclusions: Six fractions per week of external beam radiotherapy and HDR brachytherapy is an effective treatment for patients with a carcinoma of the uterine cervix and can be used as a possible alternative to concomitant chemoradiotherapy in elderly patients or in patients with co-morbidity.

  20. What is LAMPF II

    SciTech Connect

    Thiessen, H.A.

    1982-08-01

    The present conception of LAMPF II is a high-intensity 16-GeV synchrotron injected by the LAMPF 800-MeV H/sup -/ beam. The proton beam will be used to make secondary beams of neutrinos, muons, pions, kaons, antiprotons, and hyperons more intense than those of any existing or proposed accelerator. For example, by taking maximum advantage of a thick target, modern beam optics, and the LAMPF II proton beam, it will be possible to make a negative muon beam with nearly 100% duty factor and nearly 100 times the flux of the existing Stopped Muon Channel (SMC). Because the unique features of the proposed machine are most applicable to beams of the same momentum as LAMPF (that is, < 2 GeV/c), it may be possible to use most of the experimental areas and some of the auxiliary equipment, including spectrometers, with the new accelerator. The complete facility will provide improved technology for many areas of physics already available at LAMPF and will allow expansion of medium-energy physics to include kaons, antiprotons, and hyperons. When LAMPF II comes on line in 1990 LAMPF will have been operational for 18 years and a major upgrade such as this proposal will be reasonable and prudent.

  1. Phase II Trial of Combined High-Dose-Rate Brachytherapy and External Beam Radiotherapy for Adenocarcinoma of the Prostate: Preliminary Results of RTOG 0321

    SciTech Connect

    Hsu, I-Chow; Bae, Kyounghwa; Shinohara, Katsuto; Pouliot, Jean; Purdy, James; Ibbott, Geoffrey; Speight, Joycelyn; Vigneault, Eric; Ivker, Robert M.D.; Sandler, Howard M.D.

    2010-11-01

    Purpose: To estimate the rate of late Grade 3 or greater genitourinary (GU) and gastrointestinal (GI) adverse events (AEs) after treatment with external beam radiotherapy and prostate high-dose-rate (HDR) brachytherapy. Methods and Materials: Each participating institution submitted computed tomography-based HDR brachytherapy dosimetry data electronically for credentialing and for each study patient. Patients with locally confined Stage T1c-T3b prostate cancer were eligible for the present study. All patients were treated with 45 Gy in 25 fractions using external beam radiotherapy and one HDR implant delivering 19 Gy in two fractions. All AEs were graded according to the Common Terminology Criteria for Adverse Events, version 3.0. Late GU/GI AEs were defined as those occurring >9 months from the start of the protocol treatment, in patients with {>=}18 months of potential follow-up. Results: A total of 129 patients from 14 institutions were enrolled in the present study. Of the 129 patients, 125 were eligible, and AE data were available for 112 patients at analysis. The pretreatment characteristics of the patients were as follows: Stage T1c-T2c, 91%; Stage T3a-T3b, 9%; prostate-specific antigen level {<=}10 ng/mL, 70%; prostate-specific antigen level >10 but {<=}20 ng/mL, 30%; and Gleason score 2-6, 10%; Gleason score 7, 72%; and Gleason score 8-10, 18%. At a median follow-up of 29.6 months, three acute and four late Grade 3 GU/GI AEs were reported. The estimated rate of late Grade 3-5 GU and GI AEs at 18 months was 2.56%. Conclusion: This is the first prospective, multi-institutional trial of computed tomography-based HDR brachytherapy and external beam radiotherapy. The technique and doses used in the present study resulted in acceptable levels of AEs.

  2. Trends in the Utilization of Adjuvant Vaginal Cuff Brachytherapy and/or External Beam Radiation Treatment in Stage I and II Endometrial Cancer: A Surveillance, Epidemiology, and End-Results Study

    SciTech Connect

    Patel, Mehul K.; Cote, Michele L.; Ali-Fehmi, Rouba; Buekers, Thomas; Munkarah, Adnan R.; Elshaikh, Mohamed A.

    2012-05-01

    Purpose: The optimal adjuvant radiation treatment for endometrial carcinoma (EC) remains controversial. Adjuvant vaginal cuff brachytherapy (VB) has emerged as an increasingly common treatment modality. However, the time trends for using VB, external beam radiation therapy (EBRT), or combined therapy (VB+EBRT) have not been well characterized. We therefore examined the utilization trends of VB, EBRT, and VB+EBRT for adjuvant RT in International Federation of Gynecologic Oncology (FIGO) stage I and II EC over time. Methods and Materials: We evaluated treatment patterns for 48,122 patients with EC diagnosed between January 1995 and December 2005, using the National Cancer Institute's Surveillance, Epidemiology, and End Results (SEER) public use database. Chi-squared tests were used to assess differences by radiation type (VB, EBRT, and VB+EBRT) and various demographic and clinical variables. Results: Analyses were limited to 9,815 patients (20.4%) with EC who met the inclusion criteria. Among women who received adjuvant RT, the proportion receiving VB increased yearly (12.9% in 1995 compared to 32.8% in 2005 (p < 0.0001). The increasing use of VB was proportional to the decreasing use of EBRT (56.1% in 1995 to 45.8% in 2005; p < 0.0001) and VB+EBRT (31.0% in 1995 to 21.4% in 2005; p < 0.001). Conclusions: This population-based report demonstrates an increasing trend in the use of VB in the adjuvant setting after hysterectomy for treatment of women with FIGO stage I-II EC. VB alone appears to be replacing pelvic EBRT and VB+EBRT therapy in the management of stage I-II EC.

  3. A process model for the heat-affected zone microstructure evolution in duplex stainless steel weldments: Part II. Application to electron beam welding

    NASA Astrophysics Data System (ADS)

    Hemmer, H.; Grong, Ø.; Klokkehaug, S.

    2000-03-01

    In the present investigation, a process model for electron beam (EB) welding of different grades of duplex stainless steels (i.e. SAF 2205 and 2507) has been developed. A number of attractive features are built into the original finite element code, including (1) a separate module for prediction of the penetration depth and distribution of the heat source into the plate, (2) adaptive refinement of the three-dimensional (3-D) element mesh for quick and reliable solution of the differential heat flow equation, and (3) special subroutines for calculation of the heat-affected zone (HAZ) microstructure evolution. The process model has been validated by comparison with experimental data obtained from in situ thermocouple measurements and optical microscope examinations. Subsequently, its aptness to alloy design and optimization of welding conditions for duplex stainless steels is illustrated in different numerical examples and case studies pertaining to EB welding of tubular joints.

  4. Relationship Between Microstructure, Strength, and Fracture in an Al-Zn-Mg Electron Beam Weld: Part II: Mechanical Characterization and Modeling

    NASA Astrophysics Data System (ADS)

    Puydt, Quentin; Flouriot, Sylvain; Ringeval, Sylvain; De Geuser, Frédéric; Estevez, Rafael; Parry, Guillaume; Deschamps, Alexis

    2014-12-01

    This paper presents an experimental and modeling study of the mechanical behavior of an electron beam welded EN-AW 7020 aluminum alloy. The heterogeneous distribution of mechanical properties is characterized by micro-tensile tests and by strain field measurements using digital image correlation technic. These results are related to the microstructural observation presented in the companion paper. The mechanical behavior of the weld is simulated by a finite element model including a Gurson-type damage evolution model for void evolution. The model is shown to be capable of describing accurately experimental situations where the sample geometry is varied, resulting in stress triaxiality ratios ranging from 0.45 to 1.3.

  5. Relationship Between Microstructure, Strength, and Fracture in an Al-Zn-Mg Electron Beam Weld: Part II: Mechanical Characterization and Modeling

    NASA Astrophysics Data System (ADS)

    Puydt, Quentin; Flouriot, Sylvain; Ringeval, Sylvain; De Geuser, Frédéric; Estevez, Rafael; Parry, Guillaume; Deschamps, Alexis

    2014-09-01

    This paper presents an experimental and modeling study of the mechanical behavior of an electron beam welded EN-AW 7020 aluminum alloy. The heterogeneous distribution of mechanical properties is characterized by micro-tensile tests and by strain field measurements using digital image correlation technic. These results are related to the microstructural observation presented in the companion paper. The mechanical behavior of the weld is simulated by a finite element model including a Gurson-type damage evolution model for void evolution. The model is shown to be capable of describing accurately experimental situations where the sample geometry is varied, resulting in stress triaxiality ratios ranging from 0.45 to 1.3.

  6. Pre- and initial stages of epitaxy in alkali halide systems. II. Interaction of molecular beams of CsCl with (100) surfaces of NaCl

    NASA Astrophysics Data System (ADS)

    Dabringhaus, H.; Haag, M.

    The interaction of molecular beams of CsCl with (100) surfaces of NaCl is studied for crystal temperatures between 560 and 620 K and for molecular beam fluxes between 2 × 10 7 and 2 × 10 13 cm -2 s -1 by measurements of transient and steady state desorption fluxes, by static SIMS, and by electron microscopy. Also for the large Cs + ions a fast cation exchange Cs + ⇌ Na + between CsCl molecules adsorbed on the terrace and the outermost surface layer of the NaCl crystal is observed. The results for undersaturation are interpreted by incorporation of Cs + ions in the outermost surface layer of the NaCl crystal and by adsorption of CsCl molecules at the monatomic steps on the surface. The outermost surface layer proves to have a maximum capacity for Cs + of 2.4 × 10 11 cm -2. The residence time of Cs + ions in the outermost surface layer is determined as τ0 = 1.6 × 10 -12 exp(1.49 (eV)/ kT), the time for desorption of CsCl molecules from the monatomic steps as τ1 = 2.9 × 10 -14 exp(1.60 (eV)/ kT). By experiments with an additional NaCl flux onto the surface it is shown that τ0 is the time for a back-exchange of Cs + ions from the outermost surface layer against Na + from NaCl admolecules. For supersaturation the growth of polymorphic CsCl islands is observed. In the first growth stages these islands show the NaCl-type structure, while for later growth stages the CsCl type structure is found. A comparative discussion of all studied alkali halide systems shows that the different results can be attributed to the different radii of guest and host cation and to lattice misfits, respectively.

  7. Experimental demonstration of beam-beam compensation by Tevatron electron lenses and prospects for the LHC

    SciTech Connect

    Shiltsev, V.; Alexahin, Y.; Kamerdzhiev, V.; Kuznetsov, G.; Zhang, X.L.; Bishofberger, K.; /Los Alamos

    2007-06-01

    Electromagnetic long-range and head-on interactions of high intensity proton and antiproton beams are significant sources of beam loss and lifetime limitations in the Tevatron Collider Run II (2001-present). We present observations of the beam-beam phenomena in the Tevatron and results of relevant beam studies. We analyze the data and various methods employed in high energy physics (HEP) operation, predict the performance for planned luminosity upgrades and discuss ways to improve it.

  8. Effects of prenatal irradiation with an accelerated heavy-ion beam on postnatal development in rats: II. Further study on neurophysiologic alterations

    NASA Astrophysics Data System (ADS)

    Wang, B.; Murakami, M.; Eguchi-Kasai, K.; Nojima, K.; Shang, Y.; Tanaka, K.; Watanabe, K.; Fujita, K.; Moreno, S. G.; Coffigny, H.; Hayata, I.

    Organogenesis is a highly radiosensitive period, study of prenatal exposure to high LET heavy ion beams on postnatal development is important for clarifying the radiation risk in space and promoting the evidence-based mechanism research. The effects from heavy ion irradiations are not well studied as those for low LET radiations such as X-rays in this field, even the ground-based investigations remain to be addressed. Using the Heavy Ion Medical Accelerator in Chiba (HIMAC) and Wistar rats, postnatal neurophysiological development in offspring was investigated following exposure of pregnant rats to accelerated neon-ion beams with a LET value of about 30 keV/μm at a dose range from 0.1 to 2.0 Gy on the 15th day of gestation. The age for appearance of four physiologic markers and attainment of five neonatal reflexes, and gain in body weight were monitored. Male offspring were evaluated as young adults using two behavioral tests including open field and hole-board dipping tests. The effects of X-rays at 200 kVp measured for the same biological end points were studied for comparison. For most of the endpoints at early age, significant neurophysiological alteration was observed even in offspring receiving 0.1 Gy of accelerated neon ions but not X-rays. All offspring receiving 2.0 Gy of accelerated neon ions died prior to weaning. Offspring prenatally irradiated with neon ions generally showed higher incidences of prenatal death, increased preweaning mortality, markedly delayed accomplishment in physiological markers and reflexes, significantly lower body weight and reduced ratios of main organ weight to body weight, and altered behavior compared to those exposed to X-rays at doses of 0.1 1.5 Gy. These findings indicate that irradiations with neon ions at 0.1 1.5 Gy on day 15 of gestation caused varied developmental alterations in offspring, and efficient dose leading to the detrimental effects seemed to be lower than that of X-rays.

  9. Multi-Institutional Phase II Study of Proton Beam Therapy for Organ-Confined Prostate Cancer Focusing on the Incidence of Late Rectal Toxicities

    SciTech Connect

    Nihei, Keiji; Ogino, Takashi; Onozawa, Masakatsu; Murayama, Shigeyuki; Fuji, Hiroshi; Murakami, Masao; Hishikawa, Yoshio

    2011-10-01

    Purpose: Proton beam therapy (PBT) is theoretically an excellent modality for external beam radiotherapy, providing an ideal dose distribution. However, it is not clear whether PBT for prostate cancer can clinically control toxicities. The purpose of the present study was to estimate prospectively the incidence of late rectal toxicities after PBT for organ-confined prostate cancer. Methods and Materials: The major eligibility criteria included clinical Stage T1-T2N0M0; initial prostate-specific antigen level of {<=}20 ng/mL and Gleason score {<=}7; no hormonal therapy or hormonal therapy within 12 months before registration; and written informed consent. The primary endpoint was the incidence of late Grade 2 or greater rectal toxicity at 2 years. Three institutions in Japan participated in the present study after institutional review board approval from each. PBT was delivered to a total dose of 74 GyE in 37 fractions. The patients were prospectively followed up to collect the data on toxicities using the National Cancer Institute-Common Toxicity Criteria, version 2.0. Results: Between 2004 and 2007, 151 patients were enrolled in the present study. Of the 151 patients, 75, 49, 9, 17, and 1 had Stage T1c, T2a, T2b, T2c, and T3a, respectively. The Gleason score was 4, 5, 6, and 7 in 5, 15, 80 and 51 patients, respectively. The initial prostate-specific antigen level was <10 or 10-20 ng/mL in 102 and 49 patients, respectively, and 42 patients had received hormonal therapy and 109 had not. The median follow-up period was 43.4 months. Acute Grade 2 rectal and bladder toxicity temporarily developed in 0.7% and 12%, respectively. Of the 147 patients who had been followed up for >2 years, the incidence of late Grade 2 or greater rectal and bladder toxicity was 2.0% (95% confidence interval, 0-4.3%) and 4.1% (95% confidence interval, 0.9-7.3%) at 2 years, respectively. Conclusion: The results of the present prospective study have revealed a valuable piece of evidence that

  10. Tevatron End-of-Run Beam Physics Experiments

    SciTech Connect

    Valishev, A.; Gu, X.; Miyamoto, R.; White, S.; Schmidt, F.; Qiang, J.; /LBNL

    2012-05-01

    Before the Tevatron Collider Run II ended in September of 2011, a number of specialized beam study periods were dedicated to the experiments on various accelerator physics concepts and effects during the last year of the machine operation. The study topics included collimation with bent crystals and hollow electron beams, diffusion measurements and various aspects of beam-beam interactions. In this report we concentrate on the subject of beam-beam interactions, summarizing the results of beam experiments. The covered topics include offset collisions, coherent beam stability, effect of the bunch-length-to-beta-function ratio, and operation of AC dipole with colliding beams.

  11. Evaluation of antimony segregation in InAs/InAs1-xSbx type-II superlattices grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Lu, Jing; Luna, Esperanza; Aoki, Toshihiro; Steenbergen, Elizabeth H.; Zhang, Yong-Hang; Smith, David J.

    2016-03-01

    InAs/InAs1-xSbx type II superlattices designed for mid-wavelength infrared photo-detection have been studied using several electron microscopy methods, with specific attention directed towards interface chemical diffusion caused by Sb segregation. Reciprocal-space image analysis using the geometric phase method showed asymmetric interfacial strain profiles at the InAs-on-InAsSb interface. Measurement of local Sb compositional profiles across the superlattices using electron energy-loss spectroscopy and 002 dark-field imaging confirmed asymmetric Sb distribution, with the InAs-on-InAsSb interface being chemically graded. In contrast, the InAsSb-on-InAs interface showed a small intrinsic interface width. Careful evaluation of the experimental Sb composition profiles using a combined segregation and sigmoidal model reached quantitative agreement. Segregation dominated over the sigmoidal growth at the InAs-on-InAsSb interface, and the segregation probability of 0.81 ± 0.01 obtained from the two microscopy techniques agreed well within experimental error. Thus, 81% of Sb atoms from the topmost layers segregated into the next layer during growth causing the interfaces to be broadened over a length of ˜3 nm. This strong Sb segregation occurred throughout the whole superlattice stack, and would likely induce undesirable effects on band-gap engineering, such as blue-shift or broadening of the optical response, as well as weakened absorption.

  12. Characterisation of strip silicon detectors for the ATLAS Phase-II Upgrade with a micro-focused X-ray beam

    NASA Astrophysics Data System (ADS)

    Poley, L.; Blue, A.; Bates, R.; Bloch, I.; Díez, S.; Fernandez-Tejero, J.; Fleta, C.; Gallop, B.; Greenall, A.; Gregor, I.-M.; Hara, K.; Ikegami, Y.; Lacasta, C.; Lohwasser, K.; Maneuski, D.; Nagorski, S.; Pape, I.; Phillips, P. W.; Sperlich, D.; Sawhney, K.; Soldevila, U.; Ullan, M.; Unno, Y.; Warren, M.

    2016-07-01

    The planned HL-LHC (High Luminosity LHC) in 2025 is being designed to maximise the physics potential through a sizable increase in the luminosity up to 6·1034 cm‑2s‑1. A consequence of this increased luminosity is the expected radiation damage at 3000 fb‑1 after ten years of operation, requiring the tracking detectors to withstand fluences to over 1·1016 1 MeV neq/cm2. In order to cope with the consequent increased readout rates, a complete re-design of the current ATLAS Inner Detector (ID) is being developed as the Inner Tracker (ITk). Two proposed detectors for the ATLAS strip tracker region of the ITk were characterized at the Diamond Light Source with a 3 μm FWHM 15 keV micro focused X-ray beam. The devices under test were a 320 μm thick silicon stereo (Barrel) ATLAS12 strip mini sensor wire bonded to a 130 nm CMOS binary readout chip (ABC130) and a 320 μm thick full size radial (end-cap) strip sensor - utilizing bi-metal readout layers - wire bonded to 250 nm CMOS binary readout chips (ABCN-25). A resolution better than the inter strip pitch of the 74.5 μm strips was achieved for both detectors. The effect of the p-stop diffusion layers between strips was investigated in detail for the wire bond pad regions. Inter strip charge collection measurements indicate that the effective width of the strip on the silicon sensors is determined by p-stop regions between the strips rather than the strip pitch.

  13. Beam diagnostics

    SciTech Connect

    Bogaty, J.; Clifft, B.E.; Zinkann, G.P.; Pardo, R.C.

    1995-08-01

    The ECR-PII injector beam line is operated at a fixed ion velocity. The platform high voltage is chosen so that all ions have a velocity of 0.0085c at the PII entrance. If a previous tune configuration for the linac is to be used, the beam arrival time must be matched to the previous tune as well. A nondestructive beam-phase pickup detector was developed and installed at the entrance to the PII linac. This device provides continuous phase and beam current information and allows quick optimization of the beam injected into PII. Bunches traverse a short tubular electrode thereby inducing displacement currents. These currents are brought outside the vacuum interface where a lumped inductance resonates electrode capacitance at one of the bunching harmonic frequencies. This configuration yields a basic sensitivity of a few hundred millivolts signal per microampere of beam current. Beam-induced radiofrequency signals are summed against an offset frequency generated by our master oscillator. The resulting kilohertz difference frequency conveys beam intensity and bunch phase information which is sent to separate processing channels. One channel utilizes a phase locked loop which stabilizes phase readings if beam is unstable. The other channel uses a linear full wave active rectifier circuit which converts kilohertz sine wave signal amplitude to a D.C. voltage representing beam current. A prototype set of electronics is now in use with the detector and we began to use the system in operation to set the arrival beam phase. A permanent version of the electronics system for the phase detector is now under construction. Additional nondestructive beam intensity and phase monitors at the {open_quotes}Booster{close_quotes} and {open_quotes}ATLAS{close_quotes} linac sections are planned as well as on some of the high-energy beam lines. Such a monitor will be particularly useful for FMA experiments where the primary beam hits one of the electric deflector plates.

  14. PEP-II Status

    SciTech Connect

    Sullivan, M.; Bertsche, K.; Browne, M.; Cai, Y.; Cheng, W.; Colocho, W.; Decker, F.-J.; Donald, M.; Ecklund, S.; Erickson, R.; Fisher, A.S.; Fox, J.; Heifets, S.; Himel, T.; Iverson, R.; Kulikov, A.; Novokhatski, A.; Pacak, V.; Pivi, M.; Rivetta, C.; Ross, M.; /SLAC /Saclay /Frascati

    2008-07-25

    PEP-II and BaBar have just finished run 7, the last run of the SLAC B-factory. PEP-II was one of the few high-current e+e- colliding accelerators and holds the present world record for stored electrons and stored positrons. It has stored 2.07 A of electrons, nearly 3 times the design current of 0.75 A and it has stored 3.21 A of positrons, 1.5 times more than the design current of 2.14 A. High-current beams require careful design of several systems. The feedback systems that control instabilities, the RF system stability loops, and especially the vacuum systems have to handle the higher power demands. We present here some of the accomplishments of the PEP-II accelerator and some of the problems we encountered while running high-current beams.

  15. Pulsed electron beam precharger

    SciTech Connect

    Finney, W.C.; Shelton, W.N.

    1990-01-01

    Electrostatic collection of a high resistivity aerosol using the Electron Beam Precipitator (EBP) collecting section was demonstrated during this reporting period (Quarter Five). Collection efficiency experiments were designed to confirm and extend some of the work performed under the previous contract. The reason for doing this was to attempt to improve upon the collection efficiency of the precipitator alone when testing with a very high resistivity, moderate-to-high concentration dust load. From the collector shakedown runs, a set of suitable operational parameters were determined for the downstream electrostatic collecting sections of the Electron Beam Precipitator wind tunnel. These parameters, along with those for the MINACC electron beam, will generally be held constant while the numerous precharging parameters are varied to produce an optimum particle charge. The electrostatic collector experiments were part of a larger, comprehensive investigation on electron beam precharging of high resistivity aerosol particles performed during the period covered by Quarters Five, Six, and Seven. This body of work used the same experimental apparatus and procedures and the experimental run period lasted nearly continuously for six months. A summary of the Quarter Five work is presented in the following paragraphs. Section II-A of TPR 5 contains a report on the continuing effort which was expended on the modification and upgrade of the pulsed power supply and the monitoring systems prior to the initiation of the electron beam precharging experimental work.

  16. Progress report on beam-beam compensation with electron lenses in Tevatron

    SciTech Connect

    Vladimir Shiltsev et al.

    2003-07-09

    We discuss the original idea of beam-beam compensation (BBC) in Section I, sequence of events in 2001-2002 and use of the Tevatron Electron Beam (TEL) for DC beam removal in Section II, (anti)proton lifetime improvement in Section III, experimental data on the BBC attempts in Section IV and, conclusively, Section V is devoted to discussion on important phenomena, needed improvements and future plans.

  17. Electron Beam Ablation and Deposition

    NASA Astrophysics Data System (ADS)

    Kovaleski, S. D.; Gilgenbach, R. M.; Ang, L. K.; Lau, Y. Y.

    1997-11-01

    Ablation of fused silica, titanium nitride, and boron nitride with a channel spark electron beam is being studied. The channel spark is a low energy (15-20kV), high current (1600A) electron beam source developed at KFK(G. Muller and C. Schultheiss, Proc. of Beams `94, Vol. II, p833). This is a pseudospark device which operates in the ion focused regime of electron beam transport. For this reason, a low pressure (10-15mTorr of Ar) background gas is used to provide electron beam focusing. Plume composition and excitation has been studied via optical emission spectroscopy. Ablation has also been imaged photographically. Electron density gradients and densities are being studied through laser deflection. Film deposition experiments are also being performed. Electron transport and energy deposition in metals are being simulated in the ITS-TIGER code(Sandia Report No. SAND 91-1634).

  18. 14th international symposium on molecular beams

    SciTech Connect

    Not Available

    1992-09-01

    This report discusses research being conducted with molecular beams. The general topic areas are as follows: Clusters I; reaction dynamics; atomic and molecular spectroscopy; clusters II; new techniques; photodissociation & dynamics; and surfaces.

  19. 14th international symposium on molecular beams

    SciTech Connect

    Not Available

    1992-01-01

    This report discusses research being conducted with molecular beams. The general topic areas are as follows: Clusters I; reaction dynamics; atomic and molecular spectroscopy; clusters II; new techniques; photodissociation dynamics; and surfaces.

  20. Beam tuning

    SciTech Connect

    Pardo, R.C.; Zinkann, G.P.

    1995-08-01

    A program for configuring the linac, based on previously run configurations for any desired beam was used during the past year. This program uses only a small number of empirical tunes to scale resonator fields to properly accelerate a beam with a different charge-to-mass (q/A) ratio from the original tune configuration. The program worked very well for the PII linac section where we can easily match a new beam`s arrival phase and velocity to the tuned value. It was also fairly successful for the Booster and ATLAS sections of the linac, but not as successful as for the PII linac. Most of the problems are associated with setting the beam arrival time correctly for each major linac section. This problem is being addressed with the development of the capacitive pickup beam phase monitor discussed above. During the next year we expect to improve our ability to quickly configure the linac for new beams and reduce the time required for linac tuning. Already the time required for linac tuning as a percentage of research hours has decreased from 22% in FY 1993 to 15% in the first quarter of FY 1995.

  1. Performance of the KTeV high-energy neutral kaon beam at Fermilab

    SciTech Connect

    Bocean, V.

    1998-06-01

    The performance of the primary and secondary beams for the KTeV experiments E832 and E799-II is reviewed. The beam was commissioned in the summer of 1996 and initially operated for approximately one year. The report includes results on the primary beam, target station including primary beam dump and muon sweeping system, neutral beam collimation system, and alignment.

  2. NSLS II Vacuum System

    SciTech Connect

    Ferreira, M.; Doom, L.; Hseuh, H.; Longo, C.; Settepani, P.; Wilson, K.; Hu, J.

    2009-09-13

    National Synchrotron Light Source II, being constructed at Brookhaven, is a 3-GeV, 500 mA, 3rd generation synchrotron radiation facility with ultra low emittance electron beams. The storage ring vacuum system has a circumference of 792 m and consists of over 250 vacuum chambers with a simulated average operating pressure of less than 1 x 10{sup -9} mbar. A summary of the update design of the vacuum system including girder supports of the chambers, gauges, vacuum pumps, bellows, beam position monitors and simulation of the average pressure will be shown. A brief description of the techniques and procedures for cleaning and mounting the chambers are given.

  3. Run II luminosity progress

    SciTech Connect

    Gollwitzer, K.; /Fermilab

    2007-06-01

    The Fermilab Tevatron Collider Run II program continues at the energy and luminosity frontier of high energy particle physics. To the collider experiments CDF and D0, over 3 fb{sup -1} of integrated luminosity has been delivered to each. Upgrades and improvements in the Antiproton Source of the production and collection of antiprotons have led to increased number of particles stored in the Recycler. Electron cooling and associated improvements have help make a brighter antiproton beam at collisions. Tevatron improvements to handle the increased number of particles and the beam lifetimes have resulted in an increase in luminosity.

  4. DARHT AXIS II Beam Position Monitors

    SciTech Connect

    Johnson, Jeff; Ekdahl, Carl; Broste, William

    2004-11-10

    One of Los Alamos National Laboratory's (LANL's) primary responsibilities for national security is to certify the readiness of our nation's nuclear stockpile. Since the end of underground testing in 1994, LANL has used non-nuclear experiments and computational models to certify our stockpile. The Dual Axis Radiographic Hydrodynamic Test (DARHT) Facility is the next tool scientists will utilize for stockpile certification. DARHT will soon be capable of producing a three dimensional, time resolved radiographic image of a nuclear weapon pit during implosion. Data from these radiographic images will be used to validate the computational models used to study nuclear weapons. The first axis of DARHT with its single-pulse capability has been in use for about 2 years. Data returned from DARHT's First axis has been exceptional, producing the highest resolution radiographic image ever for a pit test.

  5. DARHT AXIS II Beam Position Monitors

    NASA Astrophysics Data System (ADS)

    Johnson, Jeff; Ekdahl, Carl; Broste, William

    2004-11-01

    One of Los Alamos National Laboratory's (LANL's) primary responsibilities for national security is to certify the readiness of our nation's nuclear stockpile. Since the end of underground testing in 1994, LANL has used non-nuclear experiments and computational models to certify our stockpile. The Dual Axis Radiographic Hydrodynamic Test (DARHT) Facility is the next tool scientists will utilize for stockpile certification. DARHT will soon be capable of producing a three dimensional, time resolved radiographic image of a nuclear weapon pit during implosion. Data from these radiographic images will be used to validate the computational models used to study nuclear weapons. The first axis of DARHT with its single-pulse capability has been in use for about 2 years. Data returned from DARHT's First axis has been exceptional, producing the highest resolution radiographic image ever for a pit test.

  6. Beam-beam deflection and signature curves for elliptic beams

    SciTech Connect

    Ziemann, V.

    1990-10-22

    In this note we will present closed expressions for the beam-beam deflection angle for arbitrary elliptic beams including tilt. From these expressions signature curves, i.e., systematic deviations from the round beam deflection curve due to ellipticity or tilt are derived. In the course of the presentation we will prove that it is generally impossible to infer individual beam sizes from beam-beam deflection scans. 3 refs., 2 figs.

  7. Beam loss

    NASA Astrophysics Data System (ADS)

    VanGinneken, A.; Edwards, D.; Harrison, M.

    1989-04-01

    This paper presents results from simulations of beam losses during the operation of a superconducting accelerator. The calculations use a combination of hadron/electromagnetic cascade plus elastic scattering codes with accelerator tracking routines. These calculations have been used in conjunction with the design of the Fermilab Tevatron. First accelerator geometry is described. The rest of the paper discusses a detailed attempt to simulate a fast extraction cycle, essentially in chronological order. Beginning with an unperturbed beam, the simulation generates proton phase-space distributions incident on the electrostatic septum. These interact either elastically or inelastically with the septum wires, and the products of these interactions are traced through the machine. Where these leave the accelerator, energy deposition levels in the magnets are calculated together with the projected response of the beam-loss monitors in this region. Finally, results of the calculation are compared with experimental data. (AIP)

  8. Infrared Risley beam pointer

    NASA Astrophysics Data System (ADS)

    Harford, Steven T.; Gutierrez, Homero; Newman, Michael; Pierce, Robert; Quakenbush, Tim; Wallace, John; Bornstein, Michael

    2014-03-01

    Ball Aerospace & Technologies Corp. (BATC) has developed a Risley Beam Pointer (RBP) mechanism capable of agile slewing, accurate pointing and high bandwidth. The RBP is comprised of two wedged prisms that offer a wide Field of Regard (FOR) and may be manufactured and operated with diffraction limited optical quality. The tightly packaged mechanism is capable of steering a 4 inch beam over a 60° half angle cone with better than 60 μrad precision. Absolute accuracy of the beam steering is better than 1 mrad. The conformal nature of the RBP makes it an ideal mechanism for use on low altitude aircraft and unmanned aerial vehicles. Unique aspects of the opto-mechanical design include i) thermal compliance to maintain bearing preload and optical figure over a wide temperature range; and ii) packaging of a remote infrared sensor that periodically reports the temperature of both prisms for accurate determination of the index of refraction. The pointing control system operates each prism independently and employs an inner rate loop nested within an outer position loop. Mathematics for the transformation between line-of-sight coordinates and prism rotation are hosted on a 200 MHz microcontroller with just 516 KB of RAM.

  9. BEAM DIAGNOSTICS USING BPM SIGNALS FROM INJECTED AND STORED BEAMS IN A STORAGE RING

    SciTech Connect

    Wang, G.M.; Shaftan; T.; Cheng; W.X.; Fliller; R.; Heese; R.; Singh; O.; Willeke; F.

    2011-03-28

    Many modern light sources are operating in top-off injection mode or are being upgraded to top-off injection mode. The storage ring always has the stored beam and injected beam for top-off injection mode. So the BPM data is the mixture of both beam positions and the injected beam position cannot be measured directly. We propose to use dedicated wide band BPM electronics in the NSLS II storage ring to retrieve the injected beam trajectory with the singular value decomposition (SVD) method. The beam position monitor (BPM) has the capability to measure bunch-by-bunch beam position. Similar electronics can be used to measure the bunch-by-bunch beam current which is necessary to get the injection beam position. The measurement precision of current needs to be evaluated since button BPM sum signal has position dependence. The injected beam trajectory can be measured and monitored all the time without dumping the stored beam. We can adjust and optimize the injected beam trajectory to maximize the injection efficiency. We can also measure the storage ring acceptance by mapping the injected beam trajectory.

  10. Estudo da Oscilação de Neutrinos Muônicos Usando Dados Atmosféricos e de Acelerador nos Experimentos MINOS e MINOS+

    SciTech Connect

    Medeiros, Michelle Mesquita de

    2015-01-01

    The MINOS (Main Injector Neutrino Oscillation Search) and MINOS+ experiments were designed to study neutrino oscillations using a muon neutrino beam which is detected in two different locations, in the Near Detector and in the Far Detector. The distance between the detectors allows the beam neutrinos to oscillate to a different flavor. Therefore, a disappearance of the muon neutrinos from the beam is observed in the Far Detector. The Far Detector has a special apparatus which makes possible the selection of atmospheric neutrinos and antineutrinos. These come from interactions of cosmic rays with the Earth’s atmosphere. Both detectors have a magnetic field, allowing the distiction between neutrinos and antineutrinos interactions. This thesis presents the first combined analysis of data from the MINOS and MINOS+ experiments. We have analyzed the combined neutrino energy spectrum from the complete MINOS beam data and the first, more energetic, MINOS+ beam data. The disappearance of the muon neutrinos was observed and the data has shown to be congruent with the oscillation model. Beyond that, we have measured the atmospheric oscillation parameters of the beam and atmospheric neutrinos and antineutrinos from MINOS combined with the atmospheric neutrinos and antineutrinos from MINOS+. Assuming the same oscillation parameters for both neutrinos and antineutrinos, the best fit is obtained for inverted hierarchy and lower octant with Δm2 32 = 2:37 X 10-3 eV2 and sin2 θ 23 = 0:43, and the limits m2 32 = [2,29 - 2,49] 10-3 eV2 (68%) and sin2 θ23 = 0.36 - 0.66 (90%). These results are the most precise measurement of the neutrinos mass splitting using muon neutrino disappearance data only.

  11. Simulation results of corkscrew motion in DARHT-II

    SciTech Connect

    Chan, K. D.; Ekdahl, C. A.; Chen, Y. J.; Hughes, T. P.

    2003-01-01

    DARHT-II, the second axis of the Dual-Axis Radiographic Hydrodynamics Test Facility, is being commissioned. DARHT-II is a linear induction accelerator producing 2-microsecond electron beam pulses at 20 MeV and 2 kA. These 2-microsecond pulses will be chopped into four short pulses to produce time resolved x-ray images. Radiographic application requires the DARHT-II beam to have excellent beam quality, and it is important to study various beam effects that may cause quality degradation of a DARHT-II beam. One of the beam dynamic effects under study is 'corkscrew' motion. For corkscrew motion, the beam centroid is deflected off axis due to misalignments of the solenoid magnets. The deflection depends on the beam energy variation, which is expected to vary by {+-}0.5% during the 'flat-top' part of a beam pulse. Such chromatic aberration will result in broadening of beam spot size. In this paper, we will report simulation results of our study of corkscrew motion in DARHT-II. Sensitivities of beam spot size to various accelerator parameters and the strategy for minimizing corkscrew motion will be described. Measured magnet misalignment is used in the simulation.

  12. Slow extraction at LAMPF II

    SciTech Connect

    Colton, E.P.

    1985-10-01

    Half-integer resonant extraction will be used to slow extract the 45 GeV proton beam from the LAMPF II main ring during a time spread of 1/6 sec. High extraction efficiency is obtained by performing the extraction in a high-beta long straight section and by utilizing an electrostatic wire septum and iron septum.

  13. Slow extraction at LAMPF II

    SciTech Connect

    Colton, E.P.

    1985-01-01

    Half-integer resonant extraction will be used to slow extract the 45 GeV proton beam from the LAMPF II main ring during a time spread of 1/6 sec. High extration efficiency is obtained by performing the extraction in a high-beta long straight section and by utilizing an electrostatic wire septum and iron septum. 3 refs., 4 figs.

  14. NSLS-II RF SYSTEMS

    SciTech Connect

    Rose, J.; Gash, W.; Holub, B.; Kawashima, Y.; Ma, H.; Towne, N.; Yeddulla, M.

    2011-03-28

    The NSLS-II is a new third generation light source being constructed at Brookhaven Lab. The storage ring is optimized for low emittance by use of damping wigglers to reduce the emittance to below 1 nm-rad. The RF systems are designed to provide stable beam through tight RF phase and amplitude stability requirements.

  15. External Beam Therapy (EBT)

    MedlinePlus

    ... Physician Resources Professions Site Index A-Z External Beam Therapy (EBT) External beam therapy (EBT) is a ... follow-up should I expect? What is external beam therapy and how is it used? External beam ...

  16. CEBAF beam loss accounting

    SciTech Connect

    Ursic, R.; Mahoney, K.; Hovater, C.; Hutton, A.; Sinclair, C.

    1995-12-31

    This paper describes the design and implementation of a beam loss accounting system for the CEBAF electron accelerator. This system samples the beam curent throughout the beam path and measures the beam current accurately. Personnel Safety and Machine Protection systems use this system to turn off the beam when hazardous beam losses occur.

  17. Consequences of the angular spectrum decomposition of a focused beam, including slower than c beam propagation

    NASA Astrophysics Data System (ADS)

    Gouesbet, Gérard; Lock, James A.

    2016-07-01

    When dealing with light scattering and propagation of an electromagnetic beam, there are essentially two kinds of expansions which have been used to describe the incident beam (i) a discrete expansion involving beam shape coefficients and (ii) a continuous expansion in terms of an angular spectrum of plane waves. In this paper, we demonstrate that the angular spectrum decomposition readily leads to two important consequences, (i) laser light beams travel in free space with an effective velocity that is smaller than the speed of light c, and (ii) the optical theorem does not hold for arbitrary shaped beams, both in the case of electromagnetic waves and scalar waves, e.g. quantum and acoustical waves.

  18. Beam quality measure for vector beams.

    PubMed

    Ndagano, Bienvenu; Sroor, Hend; McLaren, Melanie; Rosales-Guzmán, Carmelo; Forbes, Andrew

    2016-08-01

    Vector beams have found a myriad of applications, from laser materials processing to microscopy, and are now easily produced in the laboratory. They are usually differentiated from scalar beams by qualitative measures, for example, visual inspection of beam profiles after a rotating polarizer. Here we introduce a quantitative beam quality measure for vector beams and demonstrate it on cylindrical vector vortex beams. We show how a single measure can be defined for the vector quality, from 0 (purely scalar) to 1 (purely vector). Our measure is derived from a quantum toolkit, which we show applies to classical vector beams. PMID:27472580

  19. Fermilab Proton Beam for Mu2e

    SciTech Connect

    Syphers, M.J.; /Fermilab

    2009-10-01

    Plans to use existing Fermilab facilities to provide beam for the Muon to Electron Conversion Experiment (Mu2e) are under development. The experiment will follow the completion of the Tevatron Collider Run II, utilizing the beam lines and storage rings used today for antiproton accumulation without considerable reconfiguration. The proposed Mu2e operating scenario is described as well as the accelerator issues being addressed to meet the experimental goals.

  20. Oscillator strength measurements in samarium(II), neodymium(II) and praseodymium(II)

    NASA Astrophysics Data System (ADS)

    Li, Ruohong

    A knowledge of the abundances of lanthanide ions in stellar photospheres is valuable in astrophysics, especially for chemically peculiar stars. However, the determination of elemental abundances is often limited by inadequate knowledge of oscillator strengths. Combining independently measured values of radiative lifetimes and branching fractions is an effective and precise method to measure oscillator strengths. It avoids absolute intensity measurements, requiring a knowledge of the absolute number density of particles and absolute measurements of intensity, and furthermore decreases the systematic error greatly. In the previous work of our group, the lifetimes of Sm II, Nd II and Pr II were obtained. In this thesis work, we measured the corresponding branching fractions of these lanthanide ions using a fast-ion-beam laser-induced- fluorescence technique. The power of this technique is that ions are selectively excited by a laser, which ensures that every branch comes from a single upper level and gets rid of spectral blends. Besides, the low ion-beam density ensures that the systematic errors due to collisions and radiation trapping are negligible. Combining the branching fractions with our previously measured lifetimes, we obtained 608, 430 and 260 oscillator strength values for Sm II, Nd II and Pr II transitions, respectively, over the wavelength range 350-850 nm. These transitions originate from 69 upper levels in the range 21 655 cm -1 -29 388 cm -1 for Sm II, 46 upper levels in the range 22 697 cm -1 -29 955 cm -1 for Nd II, and 32 levels in the range 22 040 cm -1 -28 577 cm -1 for Pr II. Of the 260 measured oscillator strength values of Pr II, 183 have been determined accurately for the first time. The uncertainties arise principally from systematic uncertainties of the efficiency calibration of the optical detection system (7.1%), with smaller statistical contributions (1.5%). Comparisons are made to prior measurements.

  1. Beam instrumentation for the Tevatron Collider

    SciTech Connect

    Moore, Ronald S.; Jansson, Andreas; Shiltsev, Vladimir; /Fermilab

    2009-10-01

    The Tevatron in Collider Run II (2001-present) is operating with six times more bunches and many times higher beam intensities and luminosities than in Run I (1992-1995). Beam diagnostics were crucial for the machine start-up and the never-ending luminosity upgrade campaign. We present the overall picture of the Tevatron diagnostics development for Run II, outline machine needs for new instrumentation, present several notable examples that led to Tevatron performance improvements, and discuss the lessons for future colliders.

  2. INITIAL COMMISSIONING OF NDCX-II

    SciTech Connect

    Lidia, S.; Arbelaez, D.; Greenway, W.; Jung, J. -Y.; Kwan, J.; Lipton, T.; Pekedis, A.; Roy, P.; Seidl, P.; Takakuwa, J.; Waldron, W.; Friedman, A.; Grote, D.; Sharp, W.; Gilson, E.

    2012-05-15

    The Neutralized Drift Compression Experiment-II (NDCX-II) will generate ion beam pulses for studies of Warm Dense Matter and heavy-ion-driven Inertial Fusion Energy. The machine will accelerate 20-50 nC of Li+ to 1.2-3 MeV energy, starting from a 10.9-cm alumino-silicate ion source. At the end of the accelerator the ions are focused to a sub-mm spot size onto a thin foil (planar) target. The pulse duration is compressed from ~;;500 ns at the source to sub-ns at the target following beam transport in a neutralizing plasma. We first describe the injector, accelerator, transport, final focus and diagnostic facilities. We then report on the results of early commissioning studies that characterize beam quality and beam transport, acceleration waveform shaping and beam current evolution. We present simulation results to benchmark against the experimental measurements.

  3. Beam-Bem interactions

    SciTech Connect

    Kim, Hyung Jin; /Fermilab

    2011-12-01

    In high energy storage-ring colliders, the nonlinear effect arising from beam-beam interactions is a major source that leads to the emittance growth, the reduction of beam life time, and limits the collider luminosity. In this paper, two models of beam-beam interactions are introduced, which are weak-strong and strong-strong beam-beam interactions. In addition, space-charge model is introduced.

  4. TARN II project

    SciTech Connect

    Katayama, T.

    1985-04-01

    On the basis of the achievement of the accelerator studies at present TARN, it is decided to construct the new ring TARN II which will be operated as an accumulator, accelerator, cooler and stretcher. It has the maximum magnetic rigidity of 7 Txm corresponding to the proton energy 1.3 GeV and the ring diameter is around 23 m. Light and heavy ions from the SF cyclotron will be injected and accelerated to the working energy where the ring will be operated as a desired mode, for example a cooler ring mode. At the cooler ring operation, the strong cooling devices such as stochastic and electron beam coolings will work together with the internal gas jet target for the precise nuclear experiments. TARN II is currently under the contruction with the schedule of completion in 1986. In this paper general features of the project are presented.

  5. Juno II

    NASA Technical Reports Server (NTRS)

    1959-01-01

    The Juno II launch vehicle, shown here, was a modified Jupiter Intermediate-Range Ballistic missionile, developed by Dr. Wernher von Braun and the rocket team at Redstone Arsenal in Huntsville, Alabama. Between December 1958 and April 1961, the Juno II launched space probes Pioneer III and IV, as well as Explorer satellites VII, VIII and XI.

  6. Collider and detector protection at beam accidents

    SciTech Connect

    I. L. Rakhno; N. V. Mokhov; A. I. Drozhdin

    2003-12-10

    Dealing with beam loss due to abort kicker prefire is considered for hadron colliders. The prefires occurred at Tevatron (Fermilab) during Run I and Run II are analyzed and a protection system implemented is described. The effect of accidental beam loss in the Large Hadron Collider (LHC) at CERN on machine and detector components is studied via realistic Monte Carlo calculations. The simulations show that beam loss at an unsynchronized beam abort would result in severe heating of conventional and superconducting magnets and possible damage to the collider detector elements. A proposed set of collimators would reduce energy deposition effects to acceptable levels. Special attention is paid to reducing peak temperature rise within the septum magnet and minimizing quench region length downstream of the LHC beam abort straight section.

  7. Simple beam profile monitor

    SciTech Connect

    Gelbart, W.; Johnson, R. R.; Abeysekera, B.

    2012-12-19

    An inexpensive beam profile monitor is based on the well proven rotating wire method. The monitor can display beam position and shape in real time for particle beams of most energies and beam currents up to 200{mu}A. Beam shape, position cross-section and other parameters are displayed on a computer screen.

  8. BMEWS Radar Beam Generation and Projection Clear Air Force ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    BMEWS Radar Beam Generation and Projection - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  9. BNL ATF II beamlines design

    SciTech Connect

    Fedurin, M.; Jing, Y.; Stratakis, D.; Swinson, C.

    2015-05-03

    The Brookhaven National Laboratory. Accelerator Test Facility (BNL ATF) is currently undergoing a major upgrade (ATF-II). Together with a new location and much improved facilities, the ATF will see an upgrade in its major capabilities: electron beam energy and quality and CO2 laser power. The electron beam energy will be increased in stages, first to 100-150 MeV followed by a further increase to 500 MeV. Combined with the planned increase in CO2 laser power (from 1-100 TW), the ATF-II will be a powerful tool for Advanced Accelerator research. A high-brightness electron beam, produced by a photocathode gun, will be accelerated and optionally delivered to multiple beamlines. Besides the energy range (up to a possible 500 MeV in the final stage) the electron beam can be tailored to each experiment with options such as: small transverse beam size (<10 um), short bunch length (<100 fsec) and, combined short and small bunch options. This report gives a detailed overview of the ATFII capabilities and beamlines configuration.

  10. Design of the DARHT-II Downstream Beamline

    SciTech Connect

    Westenskow, G A; Bertolini, L R; Chen, Y -J; Fessenden, T J; Paul, A C; Watson, J A

    2002-06-07

    This paper describes the design of the downstream beam transport line for the second axis of the Dual Axis Radiographic Hydrodynamic Test (DARHT-II) Facility. The DARHT-II project is a collaboration between LANL, LBNL and LLNL. DARHT II is a 18.4-MeV, 2000-Amperes, 2-{micro}sec linear induction accelerator designed to generate short bursts of x-rays for the purpose of radiographing dense objects. The downstream beam transport line is approximately 22-meter long region extending from the end of the accelerator to the bremsstrahlung target. The principal element of the beam transport section is the fast deflector, or kicker system, used to generate four micropulses from the primary accelerator beam. Within this proposed transport line there are also several conventional solenoid, quadrupole and dipole magnets which transport and focus the beam to the target and to the beam dumps.

  11. Beam halo in high-intensity beams

    SciTech Connect

    Wangler, T.P. )

    1993-12-25

    In space-charge dominated beams the nonlinear space-charge forces produce a filamentation pattern, which in projection to the 2-D phase spaces results in a 2-component beam consisting of an inner core and a diffuse outer halo. The beam-halo is of concern for a next generation of cw, high-power proton linacs that could be applied to intense neutron generators for nuclear materials processing. We describe what has been learned about beam halo and the evolution of space-charge dominated beams using numerical simulations of initial laminar beams in uniform linear focusing channels. We present initial results from a study of beam entropy for an intense space-charge dominated beam.

  12. Beam halo in high-intensity beams

    SciTech Connect

    Wangler, T.P.

    1993-06-01

    In space-charge dominated beams the nonlinear space-charge forces produce a filamentation pattern, which in projection to the 2-D phase spaces results in a 2-component beam consisting of an inner core and a diffuse outer halo. The beam-halo is of concern for a next generation of cw, high-power proton linacs that could be applied to intense neutron generators for nuclear materials processing. The author describes what has been learned about beam halo and the evolution of space-charge dominated beams using numerical simulations of initial laminar beams in uniform linear focusing channels. Initial results are presented from a study of beam entropy for an intense space-charge dominated beam.

  13. Beam halo in high-intensity beams

    SciTech Connect

    Wangler, T.P.

    1993-01-01

    In space-charge dominated beams the nonlinear space-charge forces produce a filamentation pattern, which in projection to the 2-D phase spaces results in a 2-component beam consisting of an inner core and a diffuse outer halo. The beam-halo is of concern for a next generation of cw, high-power proton linacs that could be applied to intense neutron generators for nuclear materials processing. The author describes what has been learned about beam halo and the evolution of space-charge dominated beams using numerical simulations of initial laminar beams in uniform linear focusing channels. Initial results are presented from a study of beam entropy for an intense space-charge dominated beam.

  14. Relativistic electron beam generator

    DOEpatents

    Mooney, L.J.; Hyatt, H.M.

    1975-11-11

    A relativistic electron beam generator for laser media excitation is described. The device employs a diode type relativistic electron beam source having a cathode shape which provides a rectangular output beam with uniform current density.

  15. TOPICAL REVIEW Dosimetry for ion beam radiotherapy

    NASA Astrophysics Data System (ADS)

    Karger, Christian P.; Jäkel, Oliver; Palmans, Hugo; Kanai, Tatsuaki

    2010-11-01

    Recently, ion beam radiotherapy (including protons as well as heavier ions) gained considerable interest. Although ion beam radiotherapy requires dose prescription in terms of iso-effective dose (referring to an iso-effective photon dose), absorbed dose is still required as an operative quantity to control beam delivery, to characterize the beam dosimetrically and to verify dose delivery. This paper reviews current methods and standards to determine absorbed dose to water in ion beam radiotherapy, including (i) the detectors used to measure absorbed dose, (ii) dosimetry under reference conditions and (iii) dosimetry under non-reference conditions. Due to the LET dependence of the response of films and solid-state detectors, dosimetric measurements are mostly based on ion chambers. While a primary standard for ion beam radiotherapy still remains to be established, ion chamber dosimetry under reference conditions is based on similar protocols as for photons and electrons although the involved uncertainty is larger than for photon beams. For non-reference conditions, dose measurements in tissue-equivalent materials may also be necessary. Regarding the atomic numbers of the composites of tissue-equivalent phantoms, special requirements have to be fulfilled for ion beams. Methods for calibrating the beam monitor depend on whether passive or active beam delivery techniques are used. QA measurements are comparable to conventional radiotherapy; however, dose verification is usually single field rather than treatment plan based. Dose verification for active beam delivery techniques requires the use of multi-channel dosimetry systems to check the compliance of measured and calculated dose for a representative sample of measurement points. Although methods for ion beam dosimetry have been established, there is still room for developments. This includes improvement of the dosimetric accuracy as well as development of more efficient measurement techniques.

  16. Tunable beam displacer

    SciTech Connect

    Salazar-Serrano, Luis José; Valencia, Alejandra; Torres, Juan P.

    2015-03-15

    We report the implementation of a tunable beam displacer, composed of a polarizing beam splitter (PBS) and two mirrors, that divides an initially polarized beam into two parallel beams whose separation can be continuously tuned. The two output beams are linearly polarized with either vertical or horizontal polarization and no optical path difference is introduced between them. The wavelength dependence of the device as well as the maximum separation between the beams achievable is limited mainly by the PBS characteristics.

  17. Beam imaging sensor

    DOEpatents

    McAninch, Michael D.; Root, Jeffrey J.

    2016-07-05

    The present invention relates generally to the field of sensors for beam imaging and, in particular, to a new and useful beam imaging sensor for use in determining, for example, the power density distribution of a beam including, but not limited to, an electron beam or an ion beam. In one embodiment, the beam imaging sensor of the present invention comprises, among other items, a circumferential slit that is either circular, elliptical or polygonal in nature.

  18. Beam imaging sensor

    SciTech Connect

    McAninch, Michael D; Root, Jeffrey J

    2015-03-31

    The present invention relates generally to the field of sensors for beam imaging and, in particular, to a new and useful beam imaging sensor for use in determining, for example, the power density distribution of a beam including, but not limited to, an electron beam or an ion beam. In one embodiment, the beam imaging sensor of the present invention comprises, among other items, a circumferential slit that is either circular, elliptical or polygonal in nature.

  19. PARALLEL MEASUREMENT AND MODELING OF TRANSPORT IN THE DARHT II BEAMLINE ON ETA II

    SciTech Connect

    Chambers, F W; Raymond, B A; Falabella, S; Lee, B S; Richardson, R A; Weir, J T; Davis, H A; Schultze, M E

    2005-05-31

    To successfully tune the DARHT II transport beamline requires the close coupling of a model of the beam transport and the measurement of the beam observables as the beam conditions and magnet settings are varied. For the ETA II experiment using the DARHT II beamline components this was achieved using the SUICIDE (Simple User Interface Connecting to an Integrated Data Environment) data analysis environment and the FITS (Fully Integrated Transport Simulation) model. The SUICIDE environment has direct access to the experimental beam transport data at acquisition and the FITS predictions of the transport for immediate comparison. The FITS model is coupled into the control system where it can read magnet current settings for real time modeling. We find this integrated coupling is essential for model verification and the successful development of a tuning aid for the efficient convergence on a useable tune. We show the real time comparisons of simulation and experiment and explore the successes and limitations of this close coupled approach.

  20. Photosystem II

    ScienceCinema

    James Barber

    2010-09-01

    James Barber, Ernst Chain Professor of Biochemistry at Imperial College, London, gives a BSA Distinguished Lecture titled, "The Structure and Function of Photosystem II: The Water-Splitting Enzyme of Photosynthesis."

  1. CW silver ion laser with electron beam excitation

    NASA Astrophysics Data System (ADS)

    Wernsman, B.; Prabhuram, T.; Lewis, K.; Gonzalez, F.; Villagran, M.

    1988-08-01

    A CW laser power of 140 mW was obtained in the 840.39-nm transition of Ag II by electron-beam excitation. The electron-beam excited metal-vapor ion laser is capable of operating using metals with high vaporization temperatures, and is of interest for generation of CW coherent radiation in the 220-260-nm spectral region.

  2. The PEP-II design

    SciTech Connect

    Sullivan, M.K.

    1995-05-01

    The Stanford Linear Accelerator Center (SLAC), Lawrence Berkeley Laboratory (LBL), Lawrence Livermore National Laboratory (LLNL) Positron Electron Project-II (PEP-II) is a design for a high-luminosity, asymmetric energy, electron-positron colliding beam accelerator that will operate at the center-of-mass energy of the {Upsilon}4S (10.58 GeV). The goal of the design is to achieve a large enough integrated luminosity with a moving center-of-mass reference frame to he able to observe the predicted rare decay modes of the {Upsilon}4S that do not conserve charge parity (CP).

  3. Antenna Beam Coverage Concepts

    NASA Technical Reports Server (NTRS)

    Estabrook, Polly; Motamedi, Masoud

    1990-01-01

    The strawman Personal Access Satellite System (PASS) design calls for the use of a CONUS beam for transmission between the supplier and the satellite and for fixed beams for transmission between the basic personal terminal and the satellite. The satellite uses a 3 m main reflector for transmission at 20 GHz and a 2 m main reflector for reception at 30 GHz. There are several types of spot beams under consideration for the PASS system besides fixed beams. The beam pattern of a CONUS coverage switched beam is shown along with that of a scanning beam. A switched beam refers to one in which the signal from the satellite is connected alternatively to various feed horns. Scanning beams are taken to mean beams whose footprints are moved between contiguous regions in the beam's coverage area. The advantages and disadvantages of switched and/or scanning beams relative to fixed beams. The consequences of using switched/scanning in lieu of fixed beams in the PASS design and attempts are made to evaluate the listed advantages and disadvantages. Two uses of switched/scanning beams are examined. To illustrate the implications of switched beams use on PASS system design, operation at two beam scan rates is explored.

  4. Beam halo in mismatched proton beams.

    SciTech Connect

    Wangler, Thomas P.,; Allen, C. K.; Chan, D.; Colestock, P. L. ,; Crandall, K. R.; Qiang, J.; Garnett, R. W.; Lysenko, W. P.; Gilpatrick, J. D.; Schneider, J. D.; Schulze, M. E.; Sheffield, R. L.; Smith, H. V.

    2002-01-01

    Progress was made during the past decade towards a better understanding of halo formation caused by beam mismatch in high-intensity beams. To test these ideas an experiment was carried out at Los Alamos with proton beams in a 52-quadrupole focusing channel. Rms emittances and beam widths were obtained from measured beam profiles for comparison with the maximum emittance growth predictions of a free-energy model and the maximum haloamplitude predictions of a particle-core model. The experimental results are also compared with multiparticle simulations. In this paper we will present the experimental results and discuss the implications with respect to the validity of both the models and the simulations. Keywords: beam halo, emittance growth, beam profiles, simulations, space charge, mismatch

  5. Beam-beam interactions for bunched and unbunched beams

    SciTech Connect

    Courant, E D

    1980-01-01

    The beam-beam interaction is analyzed in terms of Chirikov's stochasticity model. Stochastic blow-up occurs when the density of resonance regions in phase space becomes large, and Arnold diffusion is assumed to depend on the density parameter below the stochastic threshold. The relation between the density parameter and the tune shift epsilon is affected by bunching of the beam and also by variations in the strengths of several interaction regions and by beam misalignment. It is seen that bunching can reduce the tolerable epsilon by as much as an order of magnitude in proton storage rings.

  6. Telecommunication using muon beams

    DOEpatents

    Arnold, Richard C.

    1976-01-01

    Telecommunication is effected by generating a beam of mu mesons or muons, varying a property of the beam at a modulating rate to generate a modulated beam of muons, and detecting the information in the modulated beam at a remote location.

  7. DARHT-II Energy Analyzer

    SciTech Connect

    Paul, A C; Hawkins, S; McCarrick, J; Sullivan, J; Watson, J; Westenskow, G; Eylon, S; Fessenden, T J; Nexsen, W

    2003-05-06

    An energy analyzer system is being built for the DARHT-II accelerator similar to the energy analyzer used on the Astron accelerator. This system consists of a scattering wire, magnetic bend, and null signal detector. The wire thickness of 40 mil carbon and the scattering angle of 11 degrees is chosen for good signal to noise ratio. The dipole bend angle is 60 degrees, with a 30 cm radius of curvature. The image-plane focal distance is chosen for the required energy resolution. The energy resolution and acceptance are 0.1% and {+-}5% with a time response of 10 nsec. The wire must survive the 2{micro}sec 2kA, 18.4 MeV DARHT-II beam. The MCNP code was used to study the wire scattered properties. The scattered beam fills the available 1x2 cm dipole aperture. The dispersion normal to the beam direction is 0.43 cm%. The detector is a PIN diode array which determines the beam position on the chip. This array consists of 40 2.5x0.1x0.25 mm bins with a gain in excess of 10000. The system will be installed in the space between the debris blocker and the cruncher solenoid up-stream from the shuttle dump.

  8. LANSCE beam current limiter

    SciTech Connect

    Gallegos, F.R.

    1996-06-01

    The Radiation Security System (RSS) at the Los Alamos Neutron Science Center (LANSCE) provides personnel protection from prompt radiation due to accelerated beam. Active instrumentation, such as the Beam Current Limiter, is a component of the RSS. The current limiter is designed to limit the average current in a beam line below a specific level, thus minimizing the maximum current available for a beam spill accident. The beam current limiter is a self-contained, electrically isolated toroidal beam transformer which continuously monitors beam current. It is designed as fail-safe instrumentation. The design philosophy, hardware design, operation, and limitations of the device are described.

  9. Pulsed high-power beams

    SciTech Connect

    Reginato, L.L.; Birx, D.L.

    1988-06-01

    The marriage of induction linac technology with nonlinear magnetic modulators has produced some unique capabilities. It is now possible to produce short-pulse electron beams with average currents measured in amperes, at gradients approaching 1-MeV/m, and with power efficiencies exceeding 50%. A 70-Mev, 3-kA induction accelerator (ETA II) constructed at the Lawrence Livermore National Laboratory incorporates the pulse technology concepts that have evolved over the past several years. The ETA II is a linear induction accelerator and provides a test facility for demonstration of the high-average-power components and high-brightness sources used in such accelerators. The pulse drive for the accelerator is based on state-of-the-art magnetic pulse compressors with very high peak-power capability, repetition rates exceeding 1 kHz, and excellent reliability. 6 figs.

  10. Nonlinear optical properties of the active medium in intracavity phase conjugation of the radiation of a pulsed electron-beam-controlled discharge CO{sub 2} laser. II. Theoretical analysis

    SciTech Connect

    Galushkin, M G; Mitin, Konstantin V; Ionin, Andrei A; Kotkov, A A

    1998-10-31

    Numerical simulation is used as the basis of an analysis of nonlinear optical properties of the active medium in intracavity four-wave mixing of the radiation of a pulsed electron-beam-controlled discharge CO{sub 2} laser on saturated-gain and refractive-index diffraction gratings. The reflection coefficient of the phase-conjugated signal is determined for various cavity Q-factors, specific input energies, and pressures of the laser-active mixture. A comparison is made of the theoretical and experimental results. It is found that the rate of formation of amplitude gratings is governed primarily by the initial population inversion and by the intensities of the interacting waves. It is shown that transient phase gratings make the dominant contribution to the phase-conjugate reflection coefficient at high pressures of the mixture. (nonlinear optical phenomena)