Science.gov

Sample records for bedside ultrasound measurement

  1. Bedside emergency cardiac ultrasound in children

    PubMed Central

    Doniger, Stephanie J

    2010-01-01

    Bedside emergency ultrasound has rapidly developed over the past several years and has now become part of the standard of care for several applications. While it has only recently been applied to critically ill pediatric patients, several of the well-established adult indications may be applied to pediatric patients. One of the most important and life-saving applications is bedside echocardiography. While bedside emergency ultrasonography does not serve to replace formal comprehensive studies, it serves as an extension of the physical examination. It is especially useful as a rapid and effective tool in the diagnosis of pericardial effusions, tamponade and in distinguishing potentially reversible causes of pulseless electrical activity from asystole. Most recently, left ventricular function and inferior vena cava measurements have proven helpful in the assessment of undifferentiated hypotension and shock in adults and children. Future research remains to be carried out in determining the efficacy of bedside ultrasonography in pediatric-specific pathology such as congenital heart disease. This article serves as a comprehensive review of the adult literature and a review of the recent applications in the pediatric emergency department. It also highlights the techniques of bedside ultrasonography with examples of normal and pathologic images. PMID:20930974

  2. Emergency department bedside ultrasound diagnosis of retinoblastoma in a child.

    PubMed

    Presley, Bradley C; Flannigan, Matthew J

    2013-10-01

    A 30-month-old boy presented to a Haitian emergency department with proptosis, periorbital edema, and progressive blindness. Bedside ultrasound examination revealed bilateral ocular masses with dense calcifications pathognomonic for retinoblastoma. This case illustrates the diagnostic utility of bedside ultrasound for an advanced case of retinoblastoma in a resource-poor setting. Ocular ultrasound technique is also reviewed. PMID:24084617

  3. Utility and Potential of Bedside Ultrasound in Palliative Care

    PubMed Central

    Dhamija, Ekta; Thulkar, Sanjay; Bhatnagar, Sushma

    2015-01-01

    Bedside ultrasound is an important tool in modern palliative care practice. It can be utilized for rapid diagnostic evaluation or as an image guidance to perform invasive therapeutic procedures. With advent of portable ultrasound machines, it can also be used in community or home care settings, apart from palliative care wards. Major applications of bedside ultrasound include drainage of malignant pleural effusions and ascites, nerve blocks, venous access, evaluation of urinary obstruction, deep vein thrombosis and abscesses. Bedside ultrasound leads to better clinical decision-making as well as more accurate and faster invasive therapeutic procedures. It also enhances patient comfort and reduces cost burden. However, use of bedside ultrasound is still not widespread among palliative care givers, owing to initial cost, lack of basic training in ultrasound and apprehensions about its use. A team approach involving radiologists is important to develop integration of bedside ultrasound in palliative care. PMID:26009664

  4. Elevated Intracranial Pressure Diagnosis with Emergency Department Bedside Ocular Ultrasound

    PubMed Central

    Amin, D.; McCormick, T.; Mailhot, T.

    2015-01-01

    Bedside sonographic measurement of optic nerve sheath diameter can aid in the diagnosis of elevated intracranial pressure in the emergency department. This case report describes a 21-year-old female presenting with 4 months of mild headache and 2 weeks of recurrent, transient binocular vision loss. Though limited by patient discomfort, fundoscopic examination suggested the presence of blurred optic disc margins. Bedside ocular ultrasound (BOUS) revealed wide optic nerve sheath diameters and bulging optic discs bilaterally. Lumbar puncture demonstrated a cerebrospinal fluid (CSF) opening pressure of 54 cm H2O supporting the suspected diagnosis of idiopathic intracranial hypertension. Accurate fundoscopy can be vital to the appropriate diagnosis and treatment of patients with suspected elevated intracranial pressure, but it is often technically difficult or poorly tolerated by the photophobic patient. BOUS is a quick and easily learned tool to supplement the emergency physician's fundoscopic examination and help identify patients with elevated intracranial pressure. PMID:26587297

  5. Elevated Intracranial Pressure Diagnosis with Emergency Department Bedside Ocular Ultrasound.

    PubMed

    Amin, D; McCormick, T; Mailhot, T

    2015-01-01

    Bedside sonographic measurement of optic nerve sheath diameter can aid in the diagnosis of elevated intracranial pressure in the emergency department. This case report describes a 21-year-old female presenting with 4 months of mild headache and 2 weeks of recurrent, transient binocular vision loss. Though limited by patient discomfort, fundoscopic examination suggested the presence of blurred optic disc margins. Bedside ocular ultrasound (BOUS) revealed wide optic nerve sheath diameters and bulging optic discs bilaterally. Lumbar puncture demonstrated a cerebrospinal fluid (CSF) opening pressure of 54 cm H2O supporting the suspected diagnosis of idiopathic intracranial hypertension. Accurate fundoscopy can be vital to the appropriate diagnosis and treatment of patients with suspected elevated intracranial pressure, but it is often technically difficult or poorly tolerated by the photophobic patient. BOUS is a quick and easily learned tool to supplement the emergency physician's fundoscopic examination and help identify patients with elevated intracranial pressure. PMID:26587297

  6. Bedside ultrasound education in Canadian medical schools: A national survey

    PubMed Central

    Steinmetz, Peter; Dobrescu, Octavian; Oleskevich, Sharon; Lewis, John

    2016-01-01

    Background This study was carried out to determine the extent and characteristics of bedside ultrasound teaching in medical schools across Canada. Methods A cross-sectional, survey-based study was used to assess undergraduate bedside ultrasound education in the 17 accredited medical schools in Canada. The survey, consisting of 19 questions was pilot-tested, web-based, and completed over a period of seven months in 2014. Results Approximately half of the 13 responding medical schools had integrated bedside ultrasound teaching into their undergraduate curriculum. The most common trends in undergraduate ultrasound teaching related to duration (1–5 hours/year in 50% of schools), format (practical and theoretical in 67% of schools), and logistics (1:4 instructor to student ratio in 67% of schools). The majority of responding vice-deans indicated that bedside ultrasound education should be integrated into the medical school curriculum (77%), and cited a lack of ultrasound machines and infrastructure as barriers to integration. Conclusions This study documents the current characteristics of undergraduate ultrasound education in Canada. PMID:27103956

  7. The efficacy of bedside chest ultrasound: from accuracy to outcomes.

    PubMed

    Hew, Mark; Tay, Tunn Ren

    2016-09-01

    For many respiratory physicians, point-of-care chest ultrasound is now an integral part of clinical practice. The diagnostic accuracy of ultrasound to detect abnormalities of the pleura, the lung parenchyma and the thoracic musculoskeletal system is well described. However, the efficacy of a test extends beyond just diagnostic accuracy. The true value of a test depends on the degree to which diagnostic accuracy efficacy influences decision-making efficacy, and the subsequent extent to which this impacts health outcome efficacy. We therefore reviewed the demonstrable levels of test efficacy for bedside ultrasound of the pleura, lung parenchyma and thoracic musculoskeletal system.For bedside ultrasound of the pleura, there is evidence supporting diagnostic accuracy efficacy, decision-making efficacy and health outcome efficacy, predominantly in guiding pleural interventions. For the lung parenchyma, chest ultrasound has an impact on diagnostic accuracy and decision-making for patients presenting with acute respiratory failure or breathlessness, but there are no data as yet on actual health outcomes. For ultrasound of the thoracic musculoskeletal system, there is robust evidence only for diagnostic accuracy efficacy.We therefore outline avenues to further validate bedside chest ultrasound beyond diagnostic accuracy, with an emphasis on confirming enhanced health outcomes. PMID:27581823

  8. Bedside Ultrasound in Resuscitation and the Rapid Ultrasound in Shock Protocol

    PubMed Central

    Seif, Dina; Perera, Phillips; Mailhot, Thomas; Riley, David; Mandavia, Diku

    2012-01-01

    Assessment of hemodynamic status in a shock state remains a challenging issue in Emergency Medicine and Critical Care. As the use of invasive hemodynamic monitoring declines, bedside-focused ultrasound has become a valuable tool in the evaluation and management of patients in shock. No longer a means to simply evaluate organ anatomy, ultrasound has expanded to become a rapid and noninvasive method for the assessment of patient physiology. Clinicians caring for critical patients should strongly consider integrating ultrasound into their resuscitation pathways. PMID:23133747

  9. Cardiac Limited Ultrasound Examination Techniques to Augment the Bedside Cardiac Physical Examination.

    PubMed

    Kimura, Bruce J; Shaw, David J; Amundson, Stan A; Phan, James N; Blanchard, Daniel G; DeMaria, Anthony N

    2015-09-01

    The current practice of physical diagnosis is dependent on physician skills and biases, inductive reasoning, and time efficiency. Although the clinical utility of echocardiography is well known, few data exist on how to integrate 2-dimensional screening "quick-look" ultrasound applications into a novel, modernized cardiac physical examination. We discuss the evidence basis behind ultrasound "signs" pertinent to the cardiovascular system and elemental in synthesis of bedside diagnoses and propose the application of a brief cardiac limited ultrasound examination based on these signs. An ultrasound-augmented cardiac physical examination can be taught in traditional medical education and has the potential to improve bedside diagnosis and patient care. PMID:26269293

  10. Bedside ultrasound can predict nonalcoholic fatty liver disease in the hands of clinicians using a prototype image.

    PubMed

    Riley, Thomas R; Mendoza, Alfredo; Bruno, Michael A

    2006-05-01

    This study was designed to test whether ultrasound can be used to diagnose nonalcoholic fatty liver disease (NAFLD) utilizing a prototype. We collected 115 ultrasounds. A prototype was chosen that represented NAFLD; 5 features of NAFLD prototype were described. Ultrasounds were read blinded to diagnosis as matching prototype or not. A 20-minute teaching session was made to a group of 15 providers. Ten ultrasounds were presented for comparison to prototype with intraobserver reliability measured. Of 20 patients shown by liver biopsy to have NAFLD, 16 were successfully predicted by comparison to the prototype (sensitivity 80%). In 94 of 95 cases, ultrasound predicted those without NAFLD (specificity 99%). The positive predictive value was 94% and negative predictive value 96%. Training results showed substantial agreement with a kappa score of 0.76 with 95% of cases identified correctly. In conclusion, physicians can apply a bedside ultrasound to identify NAFLD when compared to prototype. PMID:16783524

  11. Accuracy of ED Bedside Ultrasound for Identification of gallstones: retrospective analysis of 575 studies

    PubMed Central

    Scruggs, William; Fox, J. Christian; Potts, Brian; Zlidenny, Alexander; McDonough, JoAnne; Anderson, Craig L.; Larson, Jarrod; Barajas, Graciela; Langdorf, Mark I.

    2008-01-01

    Study Objective To determine the ability of emergency department (ED) physicians to diagnose cholelithiasis with bedside ultrasound. Methods ED gallbladder ultrasounds recorded over 37 months were compared to radiology ultrasound interpretation. Results Of 1,690 ED gallbladder ultrasound scans performed during this period, radiology ultrasound was performed in 575/1690 (34%) cases. ED physician bedside interpretation was 88% sensitive [95% CI, 84–91] and 87% specific [95% CI, 82–91], while positive predictive value (PPV) was 91% [88–94%] and negative predictive value (NPV) was 83% [78–87%], using radiology interpretation as the criterion reference. Conclusion ED physician ultrasound of the gallbladder for cholelithiasis is both sensitive and specific. PMID:19561694

  12. The BUDDY (Bedside Ultrasound to Detect Dehydration in Youth) study

    PubMed Central

    2014-01-01

    Background Prior research suggests that the ratio of the ultrasound-measured diameter of the inferior vena cava to the aorta correlates with the level of dehydration in children. This study was designed to externally validate this and to access the accuracy of the ultrasound measured inspiratory IVC collapse and physician gestalt to predict significant dehydration in children in the emergency department. Methods We prospectively enrolled a non-consecutive cohort of children ≤18 years old. Patient weight, ultrasound measurements of the IVC and Ao, and physician gestalt were recorded. The percent weight change from presentation to discharge was used to calculate the degree of dehydration. A weight change of ≥5% was considered clinically significant dehydration. Receiver operating characteristic (ROC) curves were constructed for each of the ultrasound measurements and physician gestalt. Sensitivity (SN) and specificity (SP) were calculated based on previously established cutoff points of the IVC/Ao ratio (0.8), the IVC collapsibility index of 50%, and a new cut off point of IVC collapsibility index of 80% or greater. Intra-class correlation coefficients were calculated to assess the degree of inter-rater reliability between ultrasound observers. Results Of 113 patients, 10.6% had significant dehydration. The IVC/Ao ratio had an area under the ROC curve (AUC) of 0.72 (95% CI 0.53 to 0.91) and, with a cutoff of 0.8, produced a SN of 67% and a SP of 71% for the diagnosis of significant dehydration. The IVC collapsibility index of 50% had an AUC of 0.58 (95% CI 0.44 to 0.72) and, with a cutoff of 80% collapsibility, produced a SN of 83% and a SP of 42%. The intra-class correlation coefficient was 0.83 for the IVC/Ao ratio and 0.70 for the IVC collapsibility. Physician gestalt had an AUC of 0.61 (95% CI 0.44 to 0.78) and, with a cutoff point of 5, produced a SN of 42% and a SP of 65%. Conclusions The ultrasound-measured IVC/Ao ratio is a modest predictor of significant

  13. Retained Products of Conception: An Atypical Presentation Diagnosed Immediately with Bedside Emergency Ultrasound

    PubMed Central

    Adkins, Kristin; Minardi, Joseph; Setzer, Erin; Williams, Debra

    2016-01-01

    Background. Retained products of conception is an important diagnosis to consider in patients presenting with postpartum complaints. Bedside ultrasound is a rapid, accurate, noninvasive modality to evaluate these patients. Objective. To report an atypical case of retained products of conception diagnosed with bedside ultrasound in the emergency department. Case Report. A 27-year-old female who was 1-month postpartum presented with vaginal bleeding, pelvic pain, and no fever. At the time of initial H&P, bedside ultrasound revealed echogenic material within the endometrial cavity with blood flow seen by color Doppler consistent with retained products of conception. The bedside ultrasound rapidly narrowed the differential and allowed a definitive diagnosis immediately. Ob/Gyn was consulted and dilation and curettage was performed in the operating room. Conclusions. Retained products of conception is an important diagnosis for the emergency physician to consider in at-risk patients. The sonographic findings are easily obtained and interpreted by emergency physicians. Earlier diagnosis of this disease process should lead to more focused patient evaluations and management. PMID:26966600

  14. Portable bedside ultrasound: the visual stethoscope of the 21st century

    PubMed Central

    2012-01-01

    Over the past decade technological advances in the realm of ultrasound have allowed what was once a cumbersome and large machine to become essentially hand-held. This coupled with a greater understanding of lung sonography has revolutionized our bedside assessment of patients. Using ultrasound not as a diagnostic test, but instead as a component of the physical exam, may allow it to become the stethoscope of the 21st century. PMID:22400903

  15. Bedside gallbladder ultrasound for the primary care physician.

    PubMed

    Tollefson, Brian J; Hoda, Nicholas E; Fromang, Graves; Stone, Mary

    2015-03-01

    Modern ultrasound machines are relatively inexpensive to own and simple to operate. Basic ultrasound exams can be easily learned and mastered. As with any clinical exam skill, practice makes perfect. Providers interested in learning ultrasound should seek hands-on guidance from an expert in the field. There are several quality hands-on ultrasound courses (http:// emergencyultrasound.com/) as well as free online videos (http:// emergency ultrasound teaching.com/index.html). The emergency ultrasound team at UMMC will be offering a hands-on ultrasound training course in the spring of 2015. Please contact Dr Brian Tollefson for specific dates and times of the course (btollefson@umc.edu). PMID:26050444

  16. Spontaneous Pneumomediastinum on Bedside Ultrasound: Case Report and Review of the Literature

    PubMed Central

    Zachariah, Sybil; Gharahbaghian, Laleh; Perera, Phillips; Joshi, Nikita

    2015-01-01

    Spontaneous pneumomediastinum is a rare disease process with no clear etiology, although it is thought to be related to changes in intrathoracic pressure causing chest pain and dyspnea. We present a case of a 17-year-old male with acute chest pain evaluated initially by bedside ultrasound, which showed normal lung sliding but poor visualization of the parasternal and apical cardiac views due to significant air artifact, representing air in the thoracic cavity. The diagnosis was later verified by chest radiograph. We present a case report on ultrasound-diagnosed pneumomediastinum, and we review the diagnostic modalities to date. PMID:25834681

  17. Bedside Lung Ultrasound During Acute Chest Syndrome in Sickle Cell Disease

    PubMed Central

    Razazi, Keyvan; Deux, Jean-François; de Prost, Nicolas; Boissier, Florence; Cuquemelle, Elise; Galactéros, Frédéric; Rahmouni, Alain; Maître, Bernard; Brun-Buisson, Christian; Mekontso Dessap, Armand

    2016-01-01

    Abstract Lung ultrasound (LU) is increasingly used to assess pleural and lung disease in intensive care unit (ICU) and emergency unit at the bedside. We assessed the performance of bedside chest radiograph (CR) and LU during severe acute chest syndrome (ACS), using computed tomography (CT) as the reference standard. We prospectively explored 44 ACS episodes (in 41 patients) admitted to the medical ICU. Three imaging findings were evaluated (consolidation, ground-glass opacities, and pleural effusion). A score was used to quantify and compare loss of lung aeration with each technique and assess its association with outcome. A total number of 496, 507, and 519 lung regions could be assessed by CT scan, bedside CR, and bedside LU, respectively. Consolidations were the most common pattern and prevailed in lung bases (especially postero-inferior regions). The agreement with CT scan patterns was significantly higher for LU as compared to CR (κ coefficients of 0.45 ± 0.03 vs 0.30 ± 0.03, P < 0.01 for the parenchyma, and 0.73 ± 0.08 vs 0.06 ± 0.09, P < 0.001 for pleural effusion). The Bland and Altman analysis showed a nonfixed bias of −1.0 (P = 0.12) between LU score and CT score whereas CR score underestimated CT score with a fixed bias of −5.8 (P < 0.001). The specificity for the detection of consolidated regions or pleural effusion (using CT scan as the reference standard) was high for LU and CR, whereas the sensitivity was high for LU but low for CR. As compared to others, ACS patients with an LU score above the median value of 11 had a larger volume of transfused and exsanguinated blood, greater oxygen requirements, more need for mechanical ventilation, and a longer ICU length of stay. LU outperformed CR for the diagnosis of consolidations and pleural effusion during ACS. Higher values of LU score identified patients at risk of worse outcome. PMID:26886600

  18. Development of competencies for the use of bedside ultrasound for assessment and cannulation of hemodialysis vascular access.

    PubMed

    Marticorena, Rosa M; Mills, Linda; Sutherland, Kelly; McBride, Norma; Kumar, Latha; Bachynski, Jovina Concepcion; Rivers, Carol; Petershofer, Elizabeth J; Hunter, Joyce; Luscombe, Rick; Donnelly, Sandra

    2015-01-01

    Use of ultrasound for hemodialysis vascular access assessment and real-time cannulation requires specialized training. In order to obtain basic hand-eye coordination, theoretical sessions on ultrasound use, as well as practical sessions using phantom models are recommended prior to its use in the clinical setting with patients. New users of this technology need to consider that all competencies can be achieved with daily use of ultrasound at the bedside. It takes approximately 500 guided cannulations to achieve the highest level of competency described above. PMID:26964424

  19. Measurements in ultrasound

    SciTech Connect

    Goldberg, B.B.; Kurtz, A.B.; Goldberg, P.

    1988-01-01

    This book gathers all published and original data pertaining to anatomical measurements as projected on ultrasound scans. It covers all major anatomic regions and organ systems, including abdomen, pelvic, obstetrical, head and neck, and heart.

  20. The use of ultrasound to guide interventions: from bench to bedside and back again.

    PubMed

    Bainbridge, Daniel

    2010-09-01

    The ultrasound machine was originally devised as a diagnostic tool to help evaluate heart structure and function. With recent advances in ultrasound, including live 3D ultrasound, its potential to guide interventions within the heart has increasingly been recognized. Cardiologists have adapted this technology and have now published guidelines on the use of ultrasound to guide interventional procedures. Anesthesiologists have also used ultrasound with much success in cardiac operating rooms (ORs) to guide cannula placement and, to a limited extent, interventions. The focus of this article is a review of the author's work on ultrasound and virtual reality-guided cardiac interventions, both in the research laboratory and in the OR. PMID:20705640

  1. Performance of Bedside Diagnostic Ultrasound in an Ebola Isolation Unit: The Emory University Hospital Experience

    PubMed Central

    Moreno, Courtney C.; Kraft, Colleen S.; Vanairsdale, Sharon; Kandiah, Prem; Klopman, Matthew A.; Ribner, Bruce S.; Tridandapani, Srini

    2015-01-01

    OBJECTIVE Individuals with Ebola virus disease, a contagious and potentially lethal infection, are now being treated in specialized units in the United States. We describe Emory University's initial experience, current operating procedures, and ongoing planning with diagnostic ultrasound in the isolation unit. CONCLUSION Ultrasound use has been limited to date. Future planning considerations include deciding what types of ultrasound studies will be performed, which personnel will acquire the images, and which ultrasound machine will be used. PMID:25730332

  2. BET 3: Bedside lung ultrasound for the diagnosis of pneumonia in children.

    PubMed

    Audette, Louis-David; Parent, Marc-Charles

    2016-08-01

    A short cut review was carried to examine the evidence for the use of ultrasound in diagnosing pneumonia in paediatric patients. A literature search was performed that found one systematic review and meta-analysis based on eight papers and a further five relevant papers. The author, date and country of publication, patient group studied, study type, relevant outcomes, results and study weaknesses of these papers are tabulated. The clinical bottom line is that lung ultrasound appears to have an acceptable sensitivity and specificity for the diagnosis of pneumonia in children when performed by an experienced sonographer. PMID:27440771

  3. Body Mass Index is a Poor Predictor of Bedside Appendix Ultrasound Success or Accuracy

    PubMed Central

    Lam, Samuel H.F.; Kerwin, Christopher; Konicki, P. John; Goodwine, Diana; Lambert, Michael J.

    2016-01-01

    Introduction The objective of this study was to determine whether there is a relationship between body mass index (BMI) and success or accuracy rate of beside ultrasound (BUS) for the diagnosis of appendicitis. Methods Patients four years of age and older presenting to the emergency department with suspected appendicitis were eligible. Enrollment was by convenience sampling. After informed consent, BUS was performed by trained emergency physicians who had undergone a minimum of one-hour didactic training on the use of BUS to diagnose appendicitis. We ascertained subject outcomes by a combination of medical record review and telephone follow up. Calculated BMI for adults and children were divided into four categories (underweight, normal, overweight, obese) according to Centers for Disease Control and Prevention classifications. Results A total of 125 subjects consented for the study, and 116 of them had adequate image data for final analysis. Seventy (60%) of the subjects were children. Prevalence of appendicitis was 39%. Fifty-two (45%) of the BUS studies were diagnostic (successful). Overall accuracy rate was 75%. Analysis by chi-square test or Mann-Whitney U test did not find any significant correlation between BMI category and BUS success. Similarly, there was no significant correlation between BMI category and BUS accuracy. The same conclusion was reached when children and adults were analyzed separately, or when subjects were dichotomized into underweight/normal and overweight/obese categories. Conclusion BMI category alone is a poor predictor of appendix BUS success or accuracy. PMID:27429696

  4. Bedside lung ultrasound in the evaluation of acute decompensated heart failure.

    PubMed

    Leidi, Federica; Casella, Francesco; Cogliati, Chiara

    2016-06-01

    Dyspnea is a common presenting complaint in the emergency department (ED) and a leading cause of hospitalization in intensive care unit (ICU) and medical wards. Ultrasound (US) has traditionally been considered inadequate to explore the aerated lung. However, in the past 15 years LUS gained broader application, at least in part thanks to the interpretation of the artefacts generated by the interaction of US and lung structures/content. The total reflection of US beam occurring at the pleural level determines the artefactual image of the aerated lung: an homogenous 'foggy-like' picture under the pleural line. As the air content of the lungs decreases due to interstitial imbibition, deposition of collagen or presence of blood, vertical artefacts -arising from the pleural line and moving synchronously with the respiration- called B-lines appear. Multiple and bilateral B-lines identify the alveolar-interstitial syndrome (AIS). The most common cause of AIS is the wet lung: the more the congestion burden, the more the extent of the B-lines, which become confluent until the so-called white lung in case of pulmonary edema. Many studies showed a higher accuracy of LUS in diagnosing acute decompensated heart failure (ADHF) as compared to chest X-ray As recently shown, the integration of LUS to clinical assessment allow to differentiate cardiogenic dyspnea with sensitivity and specificity greater than 95 %. Moreover, LUS can easily detect pleural effusion -frequently present in ADHF-appearing as an anechoic area in the recumbent area of the thorax, delimited inferiorly by the diaphragmatic dome and superiorly by the aerated lung. PMID:26885846

  5. From boardroom to bedside: how to define and measure hospital quality.

    PubMed

    Heenan, Michael; Khan, Haajra; Binkley, Dorothy

    2010-01-01

    Following the release of its strategic plan, in which patient safety and quality were highlighted as key directions, St. Joseph's Healthcare Hamilton recognized the importance of engaging its board of trustees to achieve these goals. Following a collaborative retreat with senior management, medical staff leadership and professional practice leaders, the board enhanced its governance oversight on quality. By removing quality from the consent agenda, defining quality and selecting a series of "big dot" measures, the board has led the development of a culture of quality that cascades from the boardroom to the bedside. This article describes how the organization followed a systematic process to define quality and select big dot quality indicators. PMID:20104038

  6. Ultrasound, normal fetus - abdomen measurements (image)

    MedlinePlus

    ... Many health care providers like to have fetal measurements to verify the size of the fetus and ... any abnormalities. This ultrasound is of an abdominal measurement. It shows a cross-section of the abdomen, ...

  7. Ultrasound, normal fetus - head measurements (image)

    MedlinePlus

    ... Many health care providers like to have fetal measurements to verify the size of the fetus and ... any abnormalities. This ultrasound is of a head measurement, indicated by the cross hairs and dotted lines.

  8. The relationship between inferior vena cava diameter measured by bedside ultrasonography and central venous pressure value

    PubMed Central

    Citilcioglu, Serenat; Sebe, Ahmet; Oguzhan Ay, Mehmet; Icme, Ferhat; Avci, Akkan; Gulen, Muge; Sahan, Mustafa; Satar, Salim

    2014-01-01

    Objective: We aimed to present inferior vena cava (IVC) diameter as a guiding method for detection of relationship between IVC diameter measured noninvasively with the help of ultrasonography (USG) and central venous pressure (CVP) and evaluation of patient's intravascular volume status. Methods: Patients over the age of 18, to whom a central venous catheter was inserted to their subclavian vein or internal jugular vein were included in our study. IVC diameter measurements were recorded in millimeters following measurement by the same clinician with the help of USG both at the end-inspiratory and end-expiratory phase. CVP measurements were viewed on the monitor by means of piezoelectric transducer and recorded in mmHg. SPSS 18.0 package program was used for statistical analysis of data. Results: Forty five patients were included in the study. The patients had the diagnosis of malignancy (35.6%), sepsis (13.3%), pneumonia, asthma, chronic obstructive pulmonary disease (11.1%). 11 patients (24.4%) required mechanical ventilation while 34 (75.6%) patients had spontaneous respiration. In patients with spontaneous respiration, a significant relationship was found between IVC diameters measured by ultrasonography at the end of expiratory and inspiratory phases and measured CVP values at the same phases (for expiratory p = 0.002, for inspiratory p= 0.001). There was no statistically significant association between IVC diameters measured by ultrasonography at the end of expiration and inspiration and measured CVP values at the same phases in mechanically ventilated patients. Conclusions: IVC diameter measured by bedside ultrasonography can be used for determination of the intravascular volume status of the patients with spontaneous respiration. PMID:24772133

  9. The effects of oxygen induced pulmonary vasoconstriction on bedside measurement of pulmonary gas exchange.

    PubMed

    Weinreich, Ulla M; Thomsen, Lars P; Rees, Stephen E; Rasmussen, Bodil S

    2016-04-01

    In patients with respiratory failure measurements of pulmonary gas exchange are of importance. The bedside automatic lung parameter estimator (ALPE) of pulmonary gas exchange is based on changes in inspired oxygen (FiO2) assuming that these changes do not affect pulmonary circulation. This assumption is investigated in this study. Forty-two out of 65 patients undergoing coronary artery bypass grafting (CABG) had measurements of mean pulmonary arterial pressure (MPAP), cardiac output and pulmonary capillary wedge pressure thus enabling the calculation of pulmonary vascular resistance (PVR) at each FiO2 level. The research version of ALPE was used and FiO2 was step-wise reduced a median of 0.20 and ultimately returned towards baseline values, allowing 6-8 min' steady state period at each of 4-6 levels before recording the oxygen saturation (SpO2). FiO2 reduction led to median decrease in SpO2 from 99 to 92 %, an increase in MPAP of 4 mmHg and an increase in PVR of 36 dyn s cm(-5). Changes were immediately reversed on returning FiO2 towards baseline. In this study changes in MPAP and PVR are small and immediately reversible consistent with small changes in pulmonary gas exchange. This indicates that mild deoxygenation induced pulmonary vasoconstriction does not have significant influences on the ALPE parameters in patients after CABG. PMID:25962614

  10. Computing Health Quality Measures Using Informatics for Integrating Biology and the Bedside

    PubMed Central

    Murphy, Shawn N

    2013-01-01

    Background The Health Quality Measures Format (HQMF) is a Health Level 7 (HL7) standard for expressing computable Clinical Quality Measures (CQMs). Creating tools to process HQMF queries in clinical databases will become increasingly important as the United States moves forward with its Health Information Technology Strategic Plan to Stages 2 and 3 of the Meaningful Use incentive program (MU2 and MU3). Informatics for Integrating Biology and the Bedside (i2b2) is one of the analytical databases used as part of the Office of the National Coordinator (ONC)’s Query Health platform to move toward this goal. Objective Our goal is to integrate i2b2 with the Query Health HQMF architecture, to prepare for other HQMF use-cases (such as MU2 and MU3), and to articulate the functional overlap between i2b2 and HQMF. Therefore, we analyze the structure of HQMF, and then we apply this understanding to HQMF computation on the i2b2 clinical analytical database platform. Specifically, we develop a translator between two query languages, HQMF and i2b2, so that the i2b2 platform can compute HQMF queries. Methods We use the HQMF structure of queries for aggregate reporting, which define clinical data elements and the temporal and logical relationships between them. We use the i2b2 XML format, which allows flexible querying of a complex clinical data repository in an easy-to-understand domain-specific language. Results The translator can represent nearly any i2b2-XML query as HQMF and execute in i2b2 nearly any HQMF query expressible in i2b2-XML. This translator is part of the freely available reference implementation of the QueryHealth initiative. We analyze limitations of the conversion and find it covers many, but not all, of the complex temporal and logical operators required by quality measures. Conclusions HQMF is an expressive language for defining quality measures, and it will be important to understand and implement for CQM computation, in both meaningful use and population

  11. Feasibility of freehand ultrasound to measure anatomical features associated with deep tissue injury risk.

    PubMed

    Akins, Jonathan S; Vallely, Jaxon J; Karg, Patricia E; Kopplin, Kara; Gefen, Amit; Poojary-Mazzotta, Prerna; Brienza, David M

    2016-09-01

    Deep tissue injuries (DTI) are severe forms of pressure ulcers that start internally and are difficult to diagnose. Magnetic resonance imaging (MRI) is the currently preferred imaging modality to measure anatomical features associated with DTI, but is not a clinically feasible risk assessment tool. B-mode ultrasound (US) is proposed as a practical, alternative technology suitable for bedside or outpatient clinic use. The goal of this research was to confirm US as an imaging modality for acquiring measurements of anatomical features associated with DTI. Tissue thickness measurements using US were reliable (ICC=.948) and highly correlated with MRI measurements (muscle r=.988, p ≤ .001; adipose r=.894, p ≤ .001; total r=.919; p ≤ .001). US measures of muscle tissue thickness were 5.4mm (34.1%) higher than MRI, adipose tissue thickness measures were 1.6mm (11.9%) lower, and total tissue thickness measures were 3.8mm (12.8%) higher. Given the reliability and ability to identify high-risk anatomies, as well as the cost effectiveness and availability, US measurements show promise for use in future development of a patient-specific, bedside, biomechanical risk assessment tool to guide clinicians in appropriate interventions to prevent DTI. PMID:27387907

  12. [Rapid diagnostic in the emergency unit: bedside sonography].

    PubMed

    Wastl, Daniel; Borgmann, Thomas; Helwig, Kirsten; Dietrich, Christoph Frank

    2016-03-01

    Using bedside ultrasound in the emergency room includes point of care sonography (echoscopy) and several protocols (RUSH, FATE, etc.). The aim of these protocols is to evaluate the life threatening emergency care situation without interrupting the clinical work flow. This article also compares the definition of emergency care echocardiography and focused ultrasound of the heart. In addition this article gives an overview about compression sonography of veins. Examples are presented on how to use bedside ultrasound in clinical settings. PMID:26939100

  13. Bedside saccadometry as an objective and quantitative measure of hemisphere-specific neurological function in patients undergoing cranial surgery.

    PubMed

    Saleh, Y; Marcus, H J; Iorga, R; Nouraei, R; Carpenter, R H; Nandi, D

    2015-02-01

    Cranial surgery continues to carry a significant risk of neurological complications. New bedside tools that can objectively and quantitatively evaluate cerebral function may allow for earlier detection of such complications, more rapid initiation of therapy, and improved patient outcomes. We assessed the potential of saccadic eye movements as a measure of cerebral function in patients undergoing cranial surgery peri-operatively. Visually evoked saccades were measured in 20 patients before (-12 hours) and after (+2 and +5 days) undergoing cranial surgery. Hemisphere specific saccadic latencies were measured using a simple step-task and saccadic latency distributions were compared using the Kolmogorov-Smirnov test. Saccadic latency values were incorporated into an empirically validated mathematical model (Linear Approach to Threshold with Ergodic Rate [LATER] model) for further analysis (using Wilcoxon signed rank test). Thirteen males and seven females took part in our study (mean age 55 ± 4.9 years). Following cranial surgery, saccades initiated by the cerebral hemisphere on the operated side demonstrated significant deteriorations in function after 2 days (p < 0.01) that normalised after 5 days. Analysis using the LATER model confirmed these findings, highlighting decreased cerebral information processing as a potential mechanism for noted changes (p < 0.05). No patients suffered clinical complications after surgery. To conclude, bedside saccadometry can demonstrate hemisphere-specific changes after surgery in the absence of clinical symptoms. The LATER model confirms these findings and offers a mechanistic explanation for this change. Further work will be necessary to assess the practical validity of these changes in relation to clinical complications after surgery. PMID:25282394

  14. Fuzzy similarity measures for ultrasound tissue characterization

    NASA Astrophysics Data System (ADS)

    Emara, Salem M.; Badawi, Ahmed M.; Youssef, Abou-Bakr M.

    1995-03-01

    Computerized ultrasound tissue characterization has become an objective means for diagnosis of diseases. It is difficult to differentiate diffuse liver diseases, namely cirrhotic and fatty liver from a normal one, by visual inspection from the ultrasound images. The visual criteria for differentiating diffused diseases is rather confusing and highly dependent upon the sonographer's experience. The need for computerized tissue characterization is thus justified to quantitatively assist the sonographer for accurate differentiation and to minimize the degree of risk from erroneous interpretation. In this paper we used the fuzzy similarity measure as an approximate reasoning technique to find the maximum degree of matching between an unknown case defined by a feature vector and a family of prototypes (knowledge base). The feature vector used for the matching process contains 8 quantitative parameters (textural, acoustical, and speckle parameters) extracted from the ultrasound image. The steps done to match an unknown case with the family of prototypes (cirr, fatty, normal) are: Choosing the membership functions for each parameter, then obtaining the fuzzification matrix for the unknown case and the family of prototypes, then by the linguistic evaluation of two fuzzy quantities we obtain the similarity matrix, then by a simple aggregation method and the fuzzy integrals we obtain the degree of similarity. Finally, we find that the similarity measure results are comparable to the neural network classification techniques and it can be used in medical diagnosis to determine the pathology of the liver and to monitor the extent of the disease.

  15. Frequency and number of ultrasound lung rockets (B-lines) using a regionally based lung ultrasound examination named vet BLUE (veterinary bedside lung ultrasound exam) in dogs with radiographically normal lung findings.

    PubMed

    Lisciandro, Gregory R; Fosgate, Geoffrey T; Fulton, Robert M

    2014-01-01

    Lung ultrasound is superior to lung auscultation and supine chest radiography for many respiratory conditions in human patients. Ultrasound diagnoses are based on easily learned patterns of sonographic findings and artifacts in standardized images. By applying the wet lung (ultrasound lung rockets or B-lines, representing interstitial edema) versus dry lung (A-lines with a glide sign) concept many respiratory conditions can be diagnosed or excluded. The ultrasound probe can be used as a visual stethoscope for the evaluation of human lungs because dry artifacts (A-lines with a glide sign) predominate over wet artifacts (ultrasound lung rockets or B-lines). However, the frequency and number of wet lung ultrasound artifacts in dogs with radiographically normal lungs is unknown. Thus, the primary objective was to determine the baseline frequency and number of ultrasound lung rockets in dogs without clinical signs of respiratory disease and with radiographically normal lung findings using an 8-view novel regionally based lung ultrasound examination called Vet BLUE. Frequency of ultrasound lung rockets were statistically compared based on signalment, body condition score, investigator, and reasons for radiography. Ten left-sided heart failure dogs were similarly enrolled. Overall frequency of ultrasound lung rockets was 11% (95% confidence interval, 6-19%) in dogs without respiratory disease versus 100% (95% confidence interval, 74-100%) in those with left-sided heart failure. The low frequency and number of ultrasound lung rockets observed in dogs without respiratory disease and with radiographically normal lungs suggests that Vet BLUE will be clinically useful for the identification of canine respiratory conditions. PMID:24382172

  16. Resonant ultrasound spectroscopy for elastic constant measurements

    SciTech Connect

    Dixon, R.D.; Migliori, A.; Roe, L.H.

    1993-12-31

    All objects exhibit vibrational resonances when mechanically excited. These resonant frequencies are determined by density, geometry, and elastic moduli. Resonant ultrasound spectroscopy (RUS) takes advantage of the known relationship between the parameters. In particular, for a freely suspended object, with three of the four parameters (vibrational spectra, density, geometry, or elastic moduli) known the remaining one can be calculated. From a materials characterization standpoint it is straight-forward to measure density and geometry but less so to measure all the elastic moduli. It has recently become possible to quickly and accurately measure vibrational spectra, and using code written at Los Alamos, calculate all the elastic moduli simultaneously. This is done to an accuracy of better than one percent for compression and 0.1 percent for shear. RUS provides rapid acquisition of materials information here-to-fore obtainable only with difficulty. It will greatly facilitate the use of real materials properties in models and thus make possible more realistic modeling results. The technique is sensitive to phase changes and microstructure. This offers a change to input real data into microstructure and phase change models. It will also enable measurement of moduli at locations in and about a weld thus providing information for a validating coupled thermomechanical calculations.

  17. Ultrasound image velocimetry for rheological measurements

    NASA Astrophysics Data System (ADS)

    Gurung, A.; Haverkort, J. W.; Drost, S.; Norder, B.; Westerweel, J.; Poelma, C.

    2016-09-01

    Ultrasound image velocimetry (UIV) allows for the non-intrusive measurement of a wide range of flows without the need for optical transparency. In this study, we used UIV to measure the local velocity field of a model drilling fluid that exhibits yield stress flow behavior. The radial velocity profile was used to determine the yield stress and the Herschel–Bulkley model flow index n and the consistency index k. Reference data were obtained using the conventional offline Couette rheometry. A comparison showed reasonable agreement between the two methods. The discrepancy in model parameters could be attributed to inherent differences between the methods, which cannot be captured by the three-parameter model used. Overall, with a whole flow field measurement technique such as UIV, we were able to quantify the complex rheology of a model drilling fluid. These preliminary results show that UIV can be used as a non-intrusive diagnostic for in situ, real-time measurement of complex opaque flow rheology.

  18. Ultrasound Detection of Lung Hepatization

    PubMed Central

    Durant, Andrea; Nagdev, Arun

    2010-01-01

    Bedside ultrasound interrogation of the thorax can aide the clinician in determining the cause of the respiratory dysfunction. Often plain radiographs are not sufficient to differentiate pathology. We present a case in which bedside ultrasound defined the pathology without the need for further imaging. PMID:21079701

  19. Ultrasound field measurement using a binary lens

    PubMed Central

    Clement, G.T.; Nomura, H.; Kamakura, T.

    2014-01-01

    Field characterization methods using a scattering target in the absence of a point-like receiver have been well described in which scattering is recorded by a relatively large receiver located outside the field of measurement. Unfortunately, such methods are prone to artifacts due to averaging across the receiver surface. To avoid this problem while simultaneously increasing the gain of a received signal, the present study introduces a binary plate lens designed to focus spherically-spreading waves onto a planar region having a nearly-uniform phase proportional to that of the target location. The lens is similar to a zone plate, but modified to produce a biconvex-like behavior, such that it focuses both planar and spherically spreading waves. A measurement device suitable for characterizing narrowband ultrasound signals in air is designed around this lens by coupling it to a target and planar receiver. A prototype device is constructed and used to characterize the field of a highly-focused 400 kHz air transducer along 2 radial lines. Comparison of the measurements with numeric predictions formed from nonlinear acoustic simulation showed good relative pressure correlation, with mean differences of 10% and 12% over center 3dB FWHM drop and 12% and 17% over 6dB. PMID:25643084

  20. Capillary bedside blood glucose measurement in neonates: missing a diagnosis of galactosemia.

    PubMed

    Özbek, Mehmet Nuri; Öcal, Murat; Tanrıverdi, Sibel; Baysal, Birsen; Deniz, Ahmet; Öncel, Kahraman; Demirbilek, Hüseyin

    2015-03-01

    A number of factors may lead to inaccuracy in measurement of capillary blood glucose with a glucometer. Measurement of other carbohydrate molecules such as galactose and fructose along with glucose can potentially be a cause of error. We report a newborn patient who was referred to our hospital with conjugated bilirubinemia, hepatomegaly and high capillary blood glucose levels measured with a glucometer. Simultaneous biochemical measurements revealed normal blood glucose levels. Further investigation led to a diagnosis of classical galactosemia. Capillary blood glucose level measured with glucometer also dropped to normal values following cessation of breastfeeding and initiation of feeding with a lactose-free formula. PMID:25800483

  1. Ultrasound

    MedlinePlus Videos and Cool Tools

    Ultrasound is a useful procedure for monitoring the baby's development in the uterus. Ultrasound uses inaudible sound waves to ... no known risks for ultrasound at present, it is highly recommended that pregnant women consult their physician ...

  2. Ultrasound

    MedlinePlus

    Ultrasound is a type of imaging. It uses high-frequency sound waves to look at organs and ... liver, and other organs. During pregnancy, doctors use ultrasound to view the fetus. Unlike x-rays, ultrasound ...

  3. Comparative evaluation of ultrasound scanner accuracy in distance measurement

    NASA Astrophysics Data System (ADS)

    Branca, F. P.; Sciuto, S. A.; Scorza, A.

    2012-10-01

    The aim of the present study is to develop and compare two different automatic methods for accuracy evaluation in ultrasound phantom measurements on B-mode images: both of them give as a result the relative error e between measured distances, performed by 14 brand new ultrasound medical scanners, and nominal distances, among nylon wires embedded in a reference test object. The first method is based on a least squares estimation, while the second one applies the mean value of the same distance evaluated at different locations in ultrasound image (same distance method). Results for both of them are proposed and explained.

  4. Focused ultrasound thermal therapy system with ultrasound image guidance and temperature measurement feedback.

    PubMed

    Lin, Kao-Han; Young, Sun-Yi; Hsu, Ming-Chuan; Chan, Hsu; Chen, Yung-Yaw; Lin, Win-Li

    2008-01-01

    In this study, we developed a focused ultrasound (FUS) thermal therapy system with ultrasound image guidance and thermocouple temperature measurement feedback. Hydraulic position devices and computer-controlled servo motors were used to move the FUS transducer to the desired location with the measurement of actual movement by linear scale. The entire system integrated automatic position devices, FUS transducer, power amplifier, ultrasound image system, and thermocouple temperature measurement into a graphical user interface. For the treatment procedure, a thermocouple was implanted into a targeted treatment region in a tissue-mimicking phantom under ultrasound image guidance, and then the acoustic interference pattern formed by image ultrasound beam and low-power FUS beam was employed as image guidance to move the FUS transducer to have its focal zone coincident with the thermocouple tip. The thermocouple temperature rise was used to determine the sonication duration for a suitable thermal lesion as a high power was turned on and ultrasound image was used to capture the thermal lesion formation. For a multiple lesion formation, the FUS transducer was moved under the acoustic interference guidance to a new location and then it sonicated with the same power level and duration. This system was evaluated and the results showed that it could perform two-dimensional motion control to do a two-dimensional thermal therapy with a small localization error 0.5 mm. Through the user interface, the FUS transducer could be moved to heat the target region with the guidance of ultrasound image and acoustic interference pattern. The preliminary phantom experimental results demonstrated that the system could achieve the desired treatment plan satisfactorily. PMID:19163216

  5. Ultrasound Strain Measurements for Evaluating Local Pulmonary Ventilation

    PubMed Central

    Rubin, Jonathan M.; Horowitz, Jeffrey C.; Sisson, Thomas H.; Kim, Kang; Ortiz, Luis A.; Hamilton, James D.

    2015-01-01

    Local lung function is difficult to evaluate, because most lung function estimates are either global in nature, e.g. pulmonary function tests, or require equipment that cannot be used at a patient's bedside, such as computed tomograms. Yet, local function measurements would be highly desirable for many reasons. In a recent publication [1], we were able to track displacements of the lung surface during breathing. We have now extended these results to measuring lung strains during respiration as a means of assessing local lung ventilation. We studied two normal human volunteers and 12 mice with either normal lung function or experimentally induced pulmonary fibrosis. The difference in strains between the control, normal mice and those with pulmonary fibrosis was significant (p < 0.02), while the strains measured in the human volunteers closely matched linear strains predicted from the literature. Ultrasonography may be able to assess local lung ventilation. PMID:26635917

  6. Clinical workflow for spinal curvature measurement with portable ultrasound

    NASA Astrophysics Data System (ADS)

    Tabanfar, Reza; Yan, Christina; Kempston, Michael; Borschneck, Daniel; Ungi, Tamas; Fichtinger, Gabor

    2016-03-01

    PURPOSE: Spinal curvature monitoring is essential in making treatment decisions in scoliosis. Monitoring entails radiographic examinations, however repeated ionizing radiation exposure has been shown to increase cancer risk. Ultrasound does not emit ionizing radiation and is safer for spinal curvature monitoring. We investigated a clinical sonography protocol and challenges associated with position-tracked ultrasound in spinal curvature measurement in scoliosis. METHODS: Transverse processes were landmarked along each vertebra using tracked ultrasound snapshots. The transverse process angle was used to determine the orientation of each vertebra. We tested our methodology on five patients in a local pediatric scoliosis clinic, comparing ultrasound to radiographic curvature measurements. RESULTS: Despite strong correlation between radiographic and ultrasound curvature angles in phantom studies, we encountered new challenges in the clinical setting. Our main challenge was differentiating transverse processes from ribs and other structures during landmarking. We observed up to 13° angle variability for a single vertebra and a 9.85° +/- 10.81° difference between ultrasound and radiographic Cobb angles for thoracic curvatures. Additionally, we were unable to visualize anatomical landmarks in the lumbar region where soft tissue depth was 25-35mm. In volunteers with large Cobb angles (greater than 40° thoracic and 60° lumbar), we observed spinal protrusions resulting in incomplete probe-skin contact and partial ultrasound images not suitable for landmarking. CONCLUSION: Spinal curvature measurement using tracked ultrasound is viable on phantom spine models. In the clinic, new challenges were encountered which must be resolved before a universal sonography protocol can be developed.

  7. Ultrasound

    MedlinePlus

    Ultrasound uses high-frequency sound waves to make images of organs and structures inside the body. ... An ultrasound machine makes images so that organs inside the body can be examined. The machine sends out high- ...

  8. NONINVASIVE MEASUREMENT OF LOCAL THERMAL DIFFUSIVITY USING BACKSCATTERED ULTRASOUND AND FOCUSED ULTRASOUND HEATING

    PubMed Central

    Anand, Ajay; Kaczkowski, Peter J.

    2009-01-01

    Previously, noninvasive methods of estimating local tissue thermal and acoustic properties using backscattered ultrasound have been proposed in the literature. In this article, a noninvasive method of estimating local thermal diffusivity in situ during focused ultrasound heating using beamformed acoustic backscatter data and applying novel signal processing techniques is developed. A high intensity focused ultrasound (HIFU) transducer operating at subablative intensities is employed to create a brief local temperature rise of no more than 10°C. Beamformed radio-frequency (RF) data are collected during heating and cooling using a clinical ultrasound scanner. Measurements of the time-varying “acoustic strain”, that is, spatiotemporal variations in the RF echo shifts induced by the temperature related sound speed changes, are related to a solution of the heat transfer equation to estimate the thermal diffusivity in the heated zone. Numerical simulations and experiments performed in vitro in tissue mimicking phantoms and excised turkey breast muscle tissue demonstrate agreement between the ultrasound derived thermal diffusivity estimates and independent estimates made by a traditional hot-wire technique. The new noninvasive ultrasonic method has potential applications in thermal therapy planning and monitoring, physiological monitoring and as a means of noninvasive tissue characterization. PMID:18450361

  9. Noninvasive measurement of local thermal diffusivity using backscattered ultrasound and focused ultrasound heating.

    PubMed

    Anand, Ajay; Kaczkowski, Peter J

    2008-09-01

    Previously, noninvasive methods of estimating local tissue thermal and acoustic properties using backscattered ultrasound have been proposed in the literature. In this article, a noninvasive method of estimating local thermal diffusivity in situ during focused ultrasound heating using beamformed acoustic backscatter data and applying novel signal processing techniques is developed. A high intensity focused ultrasound (HIFU) transducer operating at subablative intensities is employed to create a brief local temperature rise of no more than 10 degrees C. Beamformed radio-frequency (RF) data are collected during heating and cooling using a clinical ultrasound scanner. Measurements of the time-varying "acoustic strain", that is, spatiotemporal variations in the RF echo shifts induced by the temperature related sound speed changes, are related to a solution of the heat transfer equation to estimate the thermal diffusivity in the heated zone. Numerical simulations and experiments performed in vitro in tissue mimicking phantoms and excised turkey breast muscle tissue demonstrate agreement between the ultrasound derived thermal diffusivity estimates and independent estimates made by a traditional hot-wire technique. The new noninvasive ultrasonic method has potential applications in thermal therapy planning and monitoring, physiological monitoring and as a means of noninvasive tissue characterization. PMID:18450361

  10. Measurement of corneal tangent modulus using ultrasound indentation.

    PubMed

    Wang, Li-Ke; Huang, Yan-Ping; Tian, Lei; Kee, Chea-Su; Zheng, Yong-Ping

    2016-09-01

    Biomechanical properties are potential information for the diagnosis of corneal pathologies. An ultrasound indentation probe consisting of a load cell and a miniature ultrasound transducer as indenter was developed to detect the force-indentation relationship of the cornea. The key idea was to utilize the ultrasound transducer to compress the cornea and to ultrasonically measure the corneal deformation with the eyeball overall displacement compensated. Twelve corneal silicone phantoms were fabricated with different stiffness for the validation of measurement with reference to an extension test. In addition, fifteen fresh porcine eyes were measured by the developed system in vitro. The tangent moduli of the corneal phantoms calculated using the ultrasound indentation data agreed well with the results from the tensile test of the corresponding phantom strips (R(2)=0.96). The mean tangent moduli of the porcine corneas measured by the proposed method were 0.089±0.026MPa at intraocular pressure (IOP) of 15mmHg and 0.220±0.053MPa at IOP of 30mmHg, respectively. The coefficient of variation (CV) and intraclass correlation coefficient (ICC) of tangent modulus were 14.4% and 0.765 at 15mmHg, and 8.6% and 0.870 at 30mmHg, respectively. The preliminary study showed that ultrasound indentation could be applied to the measurement of corneal tangent modulus with good repeatability and improved measurement accuracy compared to conventional surface displacement-based measurement method. The ultrasound indentation can be a potential tool for the corneal biomechanical properties measurement in vivo. PMID:27262352

  11. Magnetorheological fluid characterization using ultrasound measurements

    NASA Astrophysics Data System (ADS)

    Rodríguez-López, J.; Elvira, L.; Montero de Espinosa, F.

    2012-12-01

    In this work the variations of velocity of sound and attenuation in magnetorheological (MR) suspensions have been studied when the temperature and the intensity of magnetic field have been varied and, also, when the suspension is observed for a long period of time. It has been shown that the behaviour of the MR fluids depends strongly on the fluid used as solvent when temperature is varied. Regarding the sedimentation process, it has been proved that the application of an external magnetic field enhances the stabilization process. Analyzing the hysteretic behaviour it is seen that the system does not recover its initial state when the magnetic field is removed, because the ordered microstructure does not disappear completely. As ultrasound parameters are sensitive to changes in the temperature, in the structure and also in the volume fraction, they are a promising tool to characterize MR fluids in order to improve its performances.

  12. Using light scattering to measure the response of individual ultrasound contrast microbubbles subjected to pulsed ultrasound in vitro.

    PubMed

    Guan, Jingfeng; Matula, Thomas J

    2004-11-01

    Light scattering was used to measure the radial pulsations of individual ultrasound contrast microbubbles subjected to pulsed ultrasound. Highly diluted Optison or Sonazoid microbubbles were injected into either a water bath or an aqueous solution containing small quantities of xanthan gum. Individual microbubbles were insonified by ultrasound pulses from either a commercial diagnostic ultrasound machine or a single element transducer. The instantaneous response curves of the microbubbles were measured. Linear and nonlinear microbubble oscillations were observed. Good agreement was obtained by fitting a bubble dynamics model to the data. The pulse-to-pulse evolution of individual microbubbles was investigated, the results of which suggest that the shell can be semipermeable, and possibly weaken with subsequent pulses. There is a high potential that light scattering can be used to optimize diagnostic ultrasound techniques, understand microbubble evolution, and obtain specific information about shell parameters. PMID:15603131

  13. Automatic Measurement of Venous Pressure Using B-Mode Ultrasound.

    PubMed

    Crimi, Alessandro; Makhinya, Maxim; Baumann, Ulrich; Thalhammer, Christoph; Szekely, Gabor; Goksel, Orcun

    2016-02-01

    Central venous pressure (CVP) information is crucial in clinical situations, such as cardiac failure, intravascular volume overload, and sepsis. The measurement of CVP, however, requires the catheterization of vena cava through the subclavian or internal jugular veins, which is an impractical and costly procedure with related risk of complications. Peripheral venous pressure (PVP), which correlates with CVP under certain patient positioning, can be measured noninvasively using ultrasound via controlled compressions of a superficial vein. This paper presents an automatic system for acquiring such noninvasive measurements. Robust signal and image processing techniques developed for this purpose are introduced in this paper. The proposed standalone mobile platform collects images in real time from the display output of any ultrasound machine, meanwhile measuring the pressure on the skin underneath the ultrasound transducer via a liquid-filled pouch. The image and pressure data are synchronized through an automated temporal calibration procedure. During forearm compressions, blood vessels are detected and tracked in the images using robust geometric (ellipse) models, the parameters of which are used further in the model-based estimation of PVP. The proposed system was tested in 56 image sequences on 14 healthy volunteers, and was shown to achieve measurements with errors comparable to or lower than the interoperator variability of expert manual assessments. PMID:26186764

  14. Ultrasound

    MedlinePlus

    ... please enable JavaScript. Ultrasound uses high-frequency sound waves to make images of organs and structures inside ... examined. The machine sends out high-frequency sound waves, which reflect off body structures. A computer receives ...

  15. Non-Invasive Measurement of Intracranial Pressure Pulsation using Ultrasound

    NASA Technical Reports Server (NTRS)

    Ueno, Toshiaki; Ballard, R. E.; Yost, W. T.; Hargens, A. R.

    1997-01-01

    Exposure to microgravity causes a cephalad fluid shift which may elevate intracranial pressure (ICP). Elevation in ICP may affect cerebral hemodynamics in astronauts during space flight. ICP is, however, a difficult parameter to measure due to the invasiveness of currently available techniques. We already reported our development of a non-invasive ultrasound device for measurement of ICP. We recently modified the device so that we might reproducibly estimate ICP changes in association with cardiac cycles. In the first experiment, we measured changes in cranial distance with the ultrasound device in cadavera while changing ICP by infusing saline into the lateral ventricle. In the second experiment, we measured changes in cranial distance in five healthy volunteers while placing them in 60 deg, 30 deg head-up tilt, supine, and 10 deg head-down tilt position. In the cadaver study, fast Fourier transformation revealed that cranial pulsation is clearly associated with ICP pulsation. The ratio of cranial distance and ICP pulsation is 1.3microns/mmHg. In the tilting study, the magnitudes of cranial pulsation are linearly correlated to tilt angles (r=0.87). The ultrasound device has sufficient sensitivity to detect cranial pulsation in association with cardiac cycles. By analyzing the magnitude of cranial pulsation, estimates of ICP during space flight are possible.

  16. HIFU Ultrasound Power Measurements at INRiM

    NASA Astrophysics Data System (ADS)

    Durando, G.; Guglielmone, C.; Musacchio, C.

    2011-02-01

    In this work the new system for the ultrasound power measurement of High Intensity Focused Ultrasound transducers realized at INRIM ultrasounds laboratory is presented. The system is based on a submersible load cell that takes the place of the balance. This solution presents essentially two advantages. The first one, of mechanical nature, is relevant to the fact that the target is directly connected to the force transducer, eliminating unwanted target motion at high power. The second, of electric nature, concerns the possibility to reduce the insonation time (the ON period of the electric driving signal to the HIFU transducer) under of 2 s, and is allowed for by the faster response of the force transducer (700 Hz bandwidth). The main components of uncertainty and the overall budget of the measurement system are presented together with the results of measures of conductance, G, carried on a HIFU transducer, at the work frequencies 2.0 MHz and 6.38 MHz, for values of power ranging from 10 W to 100 W. The results of the ultrasonic conductance, G, obtained with the new system are compared with values obtained using the traditional measuring system for low powers (P <= 20W).

  17. Dual-plane ultrasound flow measurements in liquid metals

    NASA Astrophysics Data System (ADS)

    Büttner, Lars; Nauber, Richard; Burger, Markus; Räbiger, Dirk; Franke, Sven; Eckert, Sven; Czarske, Jürgen

    2013-05-01

    An ultrasound measurement system for dual-plane, two-component flow velocity measurements especially in opaque liquids is presented. Present-day techniques for measuring local flow structures in opaque liquids disclose considerable drawbacks concerning line-wise measurement of single ultrasound probes. For studying time-varying flow patterns, conventional ultrasound techniques are either limited by time-consuming mechanical traversing or by the sequential operation of single probes. The measurement system presented within this paper employs four transducer arrays with a total of 100 single elements which allows for flow mapping without mechanical traversing. A high frame rate of several 10 Hz has been achieved due to an efficient parallelization scheme using time-division multiplexing realized by a microcontroller-based electronic switching matrix. The functionality and capability of the measurement system are demonstrated on a liquid metal flow at room temperature inside a cube driven by a rotating magnetic field (RMF). For the first time, the primary and the secondary flow have been studied in detail and simultaneously using a configuration with two crossed measurement planes. The experimental data confirm predictions made by numeric simulation. After a sudden switching on of the RMF, inertial oscillations of the secondary flow were observed by means of a time-resolved measurement with a frame rate of 3.4 Hz. The experiments demonstrate that the presented measurement system is able to investigate complex and transient flow structures in opaque liquids. Due to its ability to study the temporal evolution of local flow structures, the measurement system could provide considerable progress for fluid dynamics research, in particular for applications in the food industry or liquid metal technologies.

  18. Using Ultrasound to Measure Mud Rheological Properties

    NASA Astrophysics Data System (ADS)

    Maa, P. Y. P. Y.; Kwon, J. I.; Park, K. S.

    2015-12-01

    In order to predict the dynamic responses of newly consolidated cohesive sediment beds, a better understanding of the material rheological properties (bulk density, ρ, kinematic viscosity, ν, and shear modulus, G, assuming mud is a simple Voigt viscoelastic model) of these sediment beds is needed. An acoustic approach that uses a commercially available 250 kHz shear wave transducer and tone-burst waves has been developed to measure those properties. This approach uses a 86.3 mm long delay-line (DL) to separate the generated pressure and shear waves, and measures the reflected shear waves as well as the reflected pressure waves caused at the interface between the delay line and the mud to interpret these properties. By using materials (i.e., air, water, olive oil, and honey) with available rheological properties to establish a calibration relationship between the information carried by the measured reflected waves and those given material properties, the mud properties as well as thνe change of these properties during consolidation can be interpreted. Using jelly pudding as a check, a value of G ≈ 12310 N/m2 and ν ≈ 5 x 10-5 m2/s were estimated. For the consolidating kaolinite bed (with zero salinity and initial suspended sediment concentration about 420 g/cm3), the measurements show that the shear modulus developed after about 40 hours and approached a value on the order of 15000 N/m2 after about 100 hours. The initial kinematic viscosity was about 5 x 10-4 m2/s, and it decreased slowly with time and approached a low plateau between 10-6 and 10-7 m2/s after 300 hours. The measured bulk density showed a small increasing rate during the entire consolidation period, except at a short period between 80 and 90 hours after consolidation. Results from this study suggest a promising approach for developing an in-situ instrument to measure mud properties, as well as many other materials in other industries.

  19. Ultrasound velocities for axial eye length measurement.

    PubMed

    Hoffer, K J

    1994-09-01

    Since 1974, I have used individual sound velocities for each eye condition encountered for axial length measurement. The calculation results in 1,555 M/sec for the average phakic eye. A slower speed of 1,549 M/sec was found for an extremely long (30 mm) eye and a higher speed of 1,561 M/sec was noted for an extremely short (20 mm) eye. This inversely proportional velocity change can best be adjusted for by measuring the phakic eye at 1,532 M/sec and correcting the result by dividing the square of the measured axial length (AL1,532)2 by the difference of the measured axial length (AL1,532) minus 0.35 mm. A velocity of 1,534 M/sec was found for all aphakic eyes regardless of their length, and correction is clinically significant. The velocity of an eye containing a poly(methyl methacrylate) intraocular lens is not different from an average phakic eye but it does magnify the effect of axial length change. I recommend measuring the pseudophakic eye at 1,532 M/sec and adding to the result (AL1,532), + 0.04 + 44% of the IOL thickness. The speed for an eye with a silicone IOL was found to be 1,476 M/sec (or AL1,532 + 0.04 - 56% of IOL thickness) and for glass, 1,549 M/sec (or AL1,532 + 0.04 + 75% of IOL thickness). A speed of 1,139 M/sec was found for a phakic eye with silicone oil filling most of the vitreous cavity and 1,052 M/sec for an aphakic eye filled with oil. For varying volumes of oil, each eye should be calculated individually. The speed was 534 M/sec for phakic eyes filled with gas. Eyes containing a silicone IOL or oil or gas will create clinically significant errors (3 to 10 diopters) if the sound velocity is not corrected. PMID:7996413

  20. Improved self- and external assessment of the clinical abilities of medical students through structured improvement measures in an internal medicine bedside course

    PubMed Central

    Fünger, S. M.; Lesevic, H.; Rosner, S.; Ott, I.; Berberat, P.; Nikendei, C.; Sonne, C.

    2016-01-01

    Background: Bedside courses are of outstanding importance when training medical students. The fact that less and less teaching is taking place nowadays at the patient's bedside makes it all the more important that the available time be put to effective use. The aim of this study was to check whether structured improvement measures in the course (scripts, lecturer briefing, e-learning cases) would improve the abilities of the students on the basis of a subjective self-assessment as well as an external assessment by the lecturers with respect to clinical abilities. Methods: Bedside teaching takes place in the fourth study year in the Medical Clinics of the TU Munich. Both students and lecturers had the chance to hand in an anonymous, quantitative self- and external assessment of the clinical abilities of the students (German grading system) after every course date. This assessment took place online in the three categories "Medical history & examination", "Diagnosis" and "Therapy". An overall period of four semesters, each with 6 course dates, was investigated. After two of the total of four semesters in the study, the course was changed by introducing scripts, lecturer briefing as well as interactive e-learning cases. The self- and external assessment was compared both within the semester (date 1-3: A; date 4-6: B), during the course as well as before and after introducing the improvement measures ("before" (T0): SS 2012, SS 2013, "after" (T1): WS 2013/2014, SS 2014). Results: There was a significant improvement in one's own abilities on the basis of the self-assessment within each semester when comparing the first (A) and the last (B) course dates. Moreover, there was a significant improvement in the performances in all three categories when T0 was compared with T1, from both the point of view of the students ("Medical history & examination": T0 =2.5±0.9, T1=2.2±0.7, pp<0.001; "Diagnosis" T0=3.1±1.0, T1=2.8 ±0.9, pp<0.001; "Therapy": T0=3.8±1.3, T1=3.5±1.2, pp

  1. Phased-array ultrasound technology enhances accuracy of dual frequency ultrasound measurements - towards improved ultrasound bone diagnostics.

    PubMed

    Linder, Hans; Malo, Markus K H; Liukkonen, Jukka; Jurvelin, Jukka S; Töyräs, Juha

    2016-08-01

    Overlying soft tissues attenuate ultrasound backscattered from bone, complicating diagnostics of osteoporosis at the most important fracture sites. Dual-frequency ultrasound technique (DFUS) has been proposed to solve this problem through determination of thickness and composition of overlying soft tissue. This study applies DFUS technique for the first time with a phased-array transducer to investigate if the thickness of two interfering layers (oil and water) can be accurately determined in a variety of configurations. Results indicate that DFUS may be used with phased-array ultrasound systems, making them a suitable combination to consider in future development of clinical in vivo ultrasound methodologies. PMID:27187271

  2. Ultrasound Velocity Measurement in a Liquid Metal Electrode.

    PubMed

    Perez, Adalberto; Kelley, Douglas H

    2015-01-01

    A growing number of electrochemical technologies depend on fluid flow, and often that fluid is opaque. Measuring the flow of an opaque fluid is inherently more difficult than measuring the flow of a transparent fluid, since optical methods are not applicable. Ultrasound can be used to measure the velocity of an opaque fluid, not only at isolated points, but at hundreds or thousands of points arrayed along lines, with good temporal resolution. When applied to a liquid metal electrode, ultrasound velocimetry involves additional challenges: high temperature, chemical activity, and electrical conductivity. Here we describe the experimental apparatus and methods that overcome these challenges and allow the measurement of flow in a liquid metal electrode, as it conducts current, at operating temperature. Temperature is regulated within ±2 °C using a Proportional-Integral-Derivative (PID) controller that powers a custom-built furnace. Chemical activity is managed by choosing vessel materials carefully and enclosing the experimental setup in an argon-filled glovebox. Finally, unintended electrical paths are carefully prevented. An automated system logs control settings and experimental measurements, using hardware trigger signals to synchronize devices. This apparatus and these methods can produce measurements that are impossible with other techniques, and allow optimization and control of electrochemical technologies like liquid metal batteries. PMID:26273726

  3. Ultrasound measurement of transcranial distance during head-down tilt

    NASA Technical Reports Server (NTRS)

    Torikoshi, S.; Wilson, M. H.; Ballard, R. E.; Watenpaugh, D. E.; Murthy, G.; Yost, W. T.; Cantrell, J. H.; Chang, D. S.; Hargens, A. R.

    1995-01-01

    Exposure to microgravity elevates blood pressure and flow in the head, which may increase intracranial volume (ICV) and intracranial pressure (ICP). Rhesus monkeys exposed to simulated microgravity in the form of 6 degree head-down tilt (HDT) experience elevated ICP. With humans, twenty-four hours of 6 degree HDT bed rest increases cerebral blood flow velocity relative to pre-HDT upright posture. Humans exposed to acute 6 degree HDT experiments increased ICP, measured with the tympanic membrane displacement (TMD) technique. Other studies suggest that increased ICP in humans and cats causes measurable cranial bone movement across the sagittal suture. Due to the slightly compliant nature of the cranium, elevation of the ICP will increase ICV and transcranial distance. Currently, several non-invasive approaches to monitor ICP are being investigated. Such techniques include TMD and modal analysis of the skull. TMD may not be reliable over a large range of ICP and neither method is capable of measuring the small changes in pressure. Ultrasound, however, may reliably measure small distance changes that accompany ICP fluctuations. The purpose of our study was to develop and evaluate an ultrasound technique to measure transcranial distance changes during HDT.

  4. Automatic fetal measurements in ultrasound using constrained probabilistic boosting tree.

    PubMed

    Carneiro, Gustavo; Georgescu, Bogdan; Good, Sara; Comaniciu, Dorin

    2007-01-01

    Automatic delineation and robust measurement of fetal anat-omical structures in 2D ultrasound images is a challenging task due to the complexity of the object appearance, noise, shadows, and quantity of information to be processed. Previous solutions rely on explicit encoding of prior knowledge and formulate the problem as a perceptual grouping task solved through clustering or variational approaches. These methods are known to be limited by the validity of the underlying assumptions and cannot capture complex structure appearances. We propose a novel system for fast automatic obstetric measurements by directly exploiting a large database of expert annotated fetal anatomical structures in ultrasound images. Our method learns to distinguish between the appearance of the object of interest and background by training a discriminative constrained probabilistic boosting tree classifier. This system is able to handle previously unsolved problems in this domain, such as the effective segmentation of fetal abdomens. We show results on fully automatic measurement of head circumference, biparietal diameter, abdominal circumference and femur length. Unparalleled extensive experiments show that our system is, on average, close to the accuracy of experts in terms of segmentation and obstetric measurements. Finally, this system runs under half second on a standard dual-core PC computer. PMID:18044614

  5. Concentration measurement of yeast suspensions using high frequency ultrasound backscattering.

    PubMed

    Elvira, Luis; Vera, Pedro; Cañadas, Francisco Jesús; Shukla, Shiva Kant; Montero, Francisco

    2016-01-01

    This work proposes the use of an ultrasound based technique to measure the concentration of yeasts in liquid suspension. This measurement was achieved by the detection and quantification of ultrasonic echoes backscattered by the cells. More specifically, the technique was applied to the detection and quantification of Saccharomyces cerevisiae. A theoretical approach was proposed to get the average density and sound speed of the yeasts, which were found to be 1116 kg/m(3) and 1679 m/s, respectively. These parameters were needed to model the waves backscattered by each single cell. A pulse-echo arrangement working around 50 MHz, being able to detect echoes from single yeasts was used to characterize experimentally yeast solutions from 10(2) to 10(7)cells/ml. The Non-negative Matrix Factorization denoising technique was applied for data analysis. This technique required a previous learning of the spectral patterns of the echoes reflected from yeasts in solution and the base noise from the liquid medium. Comparison between pulse correlation (without denoising) and theoretical and experimental pattern learning was made to select the best signal processing. A linear relation between ultrasound output and concentration was obtained with correlation coefficient R(2)=0.996 for the experimental learning. Concentrations from 10(4) to 10(7)cells/ml were detected above the base noise. These results show the viability of using the ultrasound backscattering technique to detect yeasts and measure their concentration in liquid cultures, improving the sensitivity obtained using spectrophotometric methods by one order of magnitude. PMID:26361271

  6. Diagnostic image quality in gynaecological ultrasound: Who should measure it, what should we measure and how?

    PubMed Central

    Knapp, Karen

    2013-01-01

    Assessment of diagnostic image quality in gynaecological ultrasound is an important aspect of imaging department quality assurance. This may be addressed through audit, but who should undertake the audit, what should be measured and how, remains contentious. The aim of this study was to identify whether peer audit is a suitable method of assessing the diagnostic quality of gynaecological ultrasound images. Nineteen gynaecological ultrasound studies were independently assessed by six sonographers utilising a pilot version of an audit tool. Outcome measures were levels of inter-rater agreement using different data collection methods (binary scores, Likert scale, continuous scale), effect of ultrasound study difficulty on study score and whether systematic differences were present between reviewers of different clinical grades and length of experience. Inter-rater agreement ranged from moderate to good depending on the data collection method. A continuous scale gave the highest level of inter-rater agreement with an intra-class correlation coefficient of 0.73. A strong correlation (r = 0.89) between study difficulty and study score was yielded. Length of clinical experience between reviewers had no effect on the audit scores, but individuals of a higher clinical grade gave significantly lower scores than those of a lower grade (p = 0.04). Peer audit is a promising tool in the assessment of ultrasound image quality. Continuous scales seem to be the best method of data collection implying a strong element of heuristically driven decision making by reviewing ultrasound practitioners.

  7. Measurement of Mechanical Properties of Soft Tissue with Ultrasound Vibrometry

    NASA Astrophysics Data System (ADS)

    Nenadich, I.; Bernal, M.; Greenleaf, J. F.

    The cardiovascular diseases atherosclerosis, coronary artery disease, hypertension and heart failure have been related to stiffening of vessels and myocardium. Noninvasive measurements of mechanical properties of cardiovascular tissue would facilitate detection and treatment of disease in early stages, thus reducing mortality and possibly reducing cost of treatment. While techniques capable of measuring tissue elasticity have been reported, the knowledge of both elasticity and viscosity is necessary to fully characterize mechanical properties of soft tissues. In this article, we summarize the Shearwave Dispersion Ultrasound Vibrometry (SDUV) method developed by our group and report on advances made in characterizing stiffness of large vessels and myocardium. The method uses radiation forceFadiation force to excite shear waves in soft tissue and pulse echo ultrasound to measure the motion. The speed of propagation of shear waves at different frequencies is used to generate dispersions curves for excised porcine left-ventricular free-wall myocardium and carotid arteries. An antisymmetric Lamb wave model was fitted to the LV myocardium dispersion curves to obtain elasticity and viscosity moduli. The results suggest that the speed of shear wave propagation in four orthogonal directions on the surface of the excised myocardium is similar. These studies show that the SDUV method has potential for clinical application in noninvasive quantification of elasticity and viscosity of vessels and myocardium.

  8. Objective measurement of accommodative biometric changes using ultrasound biomicroscopy

    PubMed Central

    Ramasubramanian, Viswanathan; Glasser, Adrian

    2015-01-01

    PURPOSE To demonstrate that ultrasound biomicroscopy (UBM) can be used for objective quantitative measurements of anterior segment accommodative changes. SETTING College of Optometry, University of Houston, Houston, Texas, USA. DESIGN Prospective cross-sectional study. METHODS Anterior segment biometric changes in response to 0 to 6.0 diopters (D) of accommodative stimuli in 1.0 D steps were measured in eyes of human subjects aged 21 to 36 years. Imaging was performed in the left eye using a 35 MHz UBM (Vumax) and an A-scan ultrasound (A-5500) while the right eye viewed the accommodative stimuli. An automated Matlab image-analysis program was developed to measure the biometry parameters from the UBM images. RESULTS The UBM-measured accommodative changes in anterior chamber depth (ACD), lens thickness, anterior lens radius of curvature, posterior lens radius of curvature, and anterior segment length were statistically significantly (P < .0001) linearly correlated with accommodative stimulus amplitudes. Standard deviations of the UBM-measured parameters were independent of the accommodative stimulus demands (ACD 0.0176 mm, lens thickness 0.0294 mm, anterior lens radius of curvature 0.3350 mm, posterior lens radius of curvature 0.1580 mm, and anterior segment length 0.0340 mm). The mean difference between the A-scan and UBM measurements was −0.070 mm for ACD and 0.166 mm for lens thickness. CONCLUSIONS Accommodating phakic eyes imaged using UBM allowed visualization of the accommodative response, and automated image analysis of the UBM images allowed reliable, objective, quantitative measurements of the accommodative intraocular biometric changes. PMID:25804579

  9. Measuring tissue blood flow using ultrasound modulated diffused light

    NASA Astrophysics Data System (ADS)

    Ron, A.; Racheli, N.; Breskin, I.; Metzger, Y.; Silman, Z.; Kamar, M.; Nini, A.; Shechter, R.; Balberg, M.

    2012-02-01

    We demonstrate the ability of a novel device employing ultrasound modulation of near infrared light (referred as "Ultrasound tagged light" or UTL) to perform non-invasive monitoring of blood flow in the microvascular level in tissue. Monitoring microcirculatory blood flow is critical in clinical situations affecting flow to different organs, such as the brain or the limbs. . However, currently there are no non-invasive devices that measure microcirculatory blood flow in deep tissue continuously. Our prototype device (Ornim Medical, Israel) was used to monitor tissue blood flow on anesthetized swine during controlled manipulations of increased and decreased blood flow. Measurements were done on the calf muscle and forehead of the animal and compared with Laser Doppler (LD). ROC analysis of the sensitivity and specificity for detecting an increase in blood flow on the calf muscle, demonstrated AUC = 0.951 for 23 systemic manipulations of cardiac output by Epinephrine injection, which is comparable to AUC = 0.943 using laser Doppler. Some examples of cerebral blood flow monitoring are presented, along with their individual ROC curves. UTL flowmetry is shown to be effective in detecting changes in cerebral and muscle blood flow in swine, and has merit in clinical applications.

  10. The Bedside Sherlock Holmes

    PubMed Central

    Fitzgerald, Faith T.; Tierney, Lawrence M.

    1982-01-01

    There are a multitude of diagnostic clues contained in clothing, jewelry, possessions and other extracorporeal attachments that each patient brings with him or her to a physician. Because of the emphasis of classic physical diagnosis on the body of a patient solely, and because of modern practices that may have patients stripped of these articles before the first encounter with their physician, these interesting and enlightening findings are often ignored or unavailable. Incorporation of these observations into the panoply of data obtained from the history and physical examination will enhance both the accuracy and adventure of differential diagnosis. Such exercises in observation, moreover, may increase general physical diagnostic skills as well as enliven bedside rounds. PMID:7135953

  11. Improving nurse–physician teamwork through interprofessional bedside rounding

    PubMed Central

    Henkin, Stanislav; Chon, Tony Y; Christopherson, Marie L; Halvorsen, Andrew J; Worden, Lindsey M; Ratelle, John T

    2016-01-01

    Background Teamwork between physicians and nurses has a positive association with patient satisfaction and outcomes, but perceptions of physician–nurse teamwork are often suboptimal. Objective To improve nurse–physician teamwork in a general medicine inpatient teaching unit by increasing face-to-face communication through interprofessional bedside rounds. Intervention From July 2013 through October 2013, physicians (attendings and residents) and nurses from four general medicine teams in a single nursing unit participated in bedside rounding, which involved the inclusion of nurses in morning rounds with the medicine teams at the patients’ bedside. Based on stakeholder analysis and feedback, a checklist for key patient care issues was created and utilized during bedside rounds. Assessment To assess the effect of bedside rounding on nurse–physician teamwork, a survey of selected items from the Safety Attitudes Questionnaire (SAQ) was administered to participants before and after the implementation of bedside rounds. The number of pages to the general medicine teams was also measured as a marker of physician–nurse communication. Results Participation rate in bedside rounds across the four medicine teams was 58%. SAQ response rates for attendings, residents, and nurses were 36/36 (100%), 73/73 (100%), and 32/73 (44%) prior to implementation of bedside rounding and 36 attendings (100%), 72 residents (100%), and 14 (19%) nurses after the implementation of bedside rounding, respectively. Prior to bedside rounding, nurses provided lower teamwork ratings (percent agree) than residents and attendings on all SAQ items; but after the intervention, the difference remained significant only on SAQ item 2 (“In this clinical area, it is not difficult to speak up if I perceive a problem with patient care”, 64% for nurses vs 79% for residents vs 94% for attendings, P=0.02). Also, resident responses improved on SAQ item 1 (“Nurse input is well received in this area

  12. Measurement of normal portal venous blood flow by Doppler ultrasound.

    PubMed

    Brown, H S; Halliwell, M; Qamar, M; Read, A E; Evans, J M; Wells, P N

    1989-04-01

    The volume flow rate of blood in the portal vein was measured using a duplex ultrasound system. The many errors inherent in the duplex method were assessed with particular reference to the portal vein and appropriate correction factors were obtained by in vitro calibration. The effect of posture on flow was investigated by examining 45 healthy volunteers in three different positions; standing, supine and tilted head down at 20 degrees from the horizontal. The mean volume blood flow in the supine position was 864 (188)ml/min (mean 1SD). When standing, the mean volume blood flow was significantly reduced by 26% to 662 (169)ml/min. There was, however, no significant difference between flow when supine and when tilted head down at 20 degrees from the horizontal. PMID:2653973

  13. Non-Invasive Measurement of Pulsatile Intracranial Pressures Using Ultrasound

    NASA Technical Reports Server (NTRS)

    Ueno, Toshiaki; Ballard, Richard E.; Shuer, Lawrence M.; Cantrell, John H.; Cantrell, John H.; Hargens, Alan R.

    1997-01-01

    Early detection of elevated intracranial pressure (ICP) will aid clinical decision-making for head trauma, brain tumor and other cerebrovascular diseases. Conventional methods, however, require surgical procedures which take time and are accompanied by increased risk of infection. Accordingly we have developed and refined a new ultrasound device to measure skull movements which are known to occur in conjunction with altered ICP. The principle of this device is based upon pulse phase locked loop (PPLL), which enables us to detect changes in distance on the order of microns between an ultrasound transducer on one side of the skull and the opposite inner surface of the cranium. The present study was designed to verify this measurement technique in cadavera. Transcranial distance was increased in steps of 10 mmHg from zero to 50 mmHg by saline infusion into the lateral ventricle of two cadavera. In separate experiments, pulsations of ICP with the amplitudes of zero to 2 mmHg were generated by rhythmic injections of saline using a syringe. When the ICP was stepwise increased from zero to 50 mmHg, transcranial distance increased in proportion with the ICP increase (y=12 x - 76, r=0.938), where y is changes in transcranial distance in microns and x is ICP in mmHg. In the data recorded while ICP pulsations were generated, fast Fourier transform analysis demonstrated that cranial pulsations were clearly associated with ICP pulsations. The results indicate that changes in transcranial distance is linearly correlated with those in ICP, and also that the PPLL device has sufficient sensitivity to detect transcranial pulsations which occur in association with the cardiac cycle. By analyzing the magnitude of cranial pulsations, we may be able to estimate the pressure-volume index in the cranium. As a result, estimates of intracranial compliance may be possible by using the PPLL device. Further studies are necessary in normal subjects and patients.

  14. Quantitative measurement of ultrasound pressure field by optical phase contrast method and acoustic holography

    NASA Astrophysics Data System (ADS)

    Oyama, Seiji; Yasuda, Jun; Hanayama, Hiroki; Yoshizawa, Shin; Umemura, Shin-ichiro

    2016-07-01

    A fast and accurate measurement of an ultrasound field with various exposure sequences is necessary to ensure the efficacy and safety of various ultrasound applications in medicine. The most common method used to measure an ultrasound pressure field, that is, hydrophone scanning, requires a long scanning time and potentially disturbs the field. This may limit the efficiency of developing applications of ultrasound. In this study, an optical phase contrast method enabling fast and noninterfering measurements is proposed. In this method, the modulated phase of light caused by the focused ultrasound pressure field is measured. Then, a computed tomography (CT) algorithm used to quantitatively reconstruct a three-dimensional (3D) pressure field is applied. For a high-intensity focused ultrasound field, a new approach that combines the optical phase contrast method and acoustic holography was attempted. First, the optical measurement of focused ultrasound was rapidly performed over the field near a transducer. Second, the nonlinear propagation of the measured ultrasound was simulated. The result of the new approach agreed well with that of the measurement using a hydrophone and was improved from that of the phase contrast method alone with phase unwrapping.

  15. IGBT-based kilovoltage pulsers for ultrasound measurement applications.

    PubMed

    Gammell, Paul M; Harris, Gerald R

    2003-12-01

    Two high-voltage pulser designs are presented that offer advantages in some ultrasound measurement applications, such as driving thick ultrasonic source transducers used for broadband measurements of attenuation or hydrophone frequency response and directivity. The pulsers use integrated gate bipolar transistors (IGBTs) as the switching devices, and in one design an output voltage pulse is produced that has a peak amplitude nearly twice that of the supply voltage. The pulsers are inexpensive and relatively easy to construct. The power supply need only provide the average current to charge the capacitors, as opposed to the much higher peak pulse current. With a 1200 V supply and a pulse repetition frequency of 200 Hz, the nondoubling and doubling pulsers provided peak voltages of greater than 1100 V and 2200 V, respectively, into loads ranging from 50 omega to 500 omega. For a 50 omega load, slewing rates of 38 V/ns and 23 V/ns were measured for the nondoubling and doubling pulsers, respectively. For a 500 omega load these values were 56 V/ns and 36 V/ns. PMID:14761043

  16. Design of a Thermoacoustic Sensor for Low Intensity Ultrasound Measurements Based on an Artificial Neural Network.

    PubMed

    Xing, Jida; Chen, Jie

    2015-01-01

    In therapeutic ultrasound applications, accurate ultrasound output intensities are crucial because the physiological effects of therapeutic ultrasound are very sensitive to the intensity and duration of these applications. Although radiation force balance is a benchmark technique for measuring ultrasound intensity and power, it is costly, difficult to operate, and compromised by noise vibration. To overcome these limitations, the development of a low-cost, easy to operate, and vibration-resistant alternative device is necessary for rapid ultrasound intensity measurement. Therefore, we proposed and validated a novel two-layer thermoacoustic sensor using an artificial neural network technique to accurately measure low ultrasound intensities between 30 and 120 mW/cm2. The first layer of the sensor design is a cylindrical absorber made of plexiglass, followed by a second layer composed of polyurethane rubber with a high attenuation coefficient to absorb extra ultrasound energy. The sensor determined ultrasound intensities according to a temperature elevation induced by heat converted from incident acoustic energy. Compared with our previous one-layer sensor design, the new two-layer sensor enhanced the ultrasound absorption efficiency to provide more rapid and reliable measurements. Using a three-dimensional model in the K-wave toolbox, our simulation of the ultrasound propagation process demonstrated that the two-layer design is more efficient than the single layer design. We also integrated an artificial neural network algorithm to compensate for the large measurement offset. After obtaining multiple parameters of the sensor characteristics through calibration, the artificial neural network is built to correct temperature drifts and increase the reliability of our thermoacoustic measurements through iterative training about ten seconds. The performance of the artificial neural network method was validated through a series of experiments. Compared to our previous

  17. Design of a Thermoacoustic Sensor for Low Intensity Ultrasound Measurements Based on an Artificial Neural Network

    PubMed Central

    Xing, Jida; Chen, Jie

    2015-01-01

    In therapeutic ultrasound applications, accurate ultrasound output intensities are crucial because the physiological effects of therapeutic ultrasound are very sensitive to the intensity and duration of these applications. Although radiation force balance is a benchmark technique for measuring ultrasound intensity and power, it is costly, difficult to operate, and compromised by noise vibration. To overcome these limitations, the development of a low-cost, easy to operate, and vibration-resistant alternative device is necessary for rapid ultrasound intensity measurement. Therefore, we proposed and validated a novel two-layer thermoacoustic sensor using an artificial neural network technique to accurately measure low ultrasound intensities between 30 and 120 mW/cm2. The first layer of the sensor design is a cylindrical absorber made of plexiglass, followed by a second layer composed of polyurethane rubber with a high attenuation coefficient to absorb extra ultrasound energy. The sensor determined ultrasound intensities according to a temperature elevation induced by heat converted from incident acoustic energy. Compared with our previous one-layer sensor design, the new two-layer sensor enhanced the ultrasound absorption efficiency to provide more rapid and reliable measurements. Using a three-dimensional model in the K-wave toolbox, our simulation of the ultrasound propagation process demonstrated that the two-layer design is more efficient than the single layer design. We also integrated an artificial neural network algorithm to compensate for the large measurement offset. After obtaining multiple parameters of the sensor characteristics through calibration, the artificial neural network is built to correct temperature drifts and increase the reliability of our thermoacoustic measurements through iterative training about ten seconds. The performance of the artificial neural network method was validated through a series of experiments. Compared to our previous

  18. Diaphragm breathing movement measurement using ultrasound and radiographic imaging: a concurrent validity.

    PubMed

    Noh, Dong K; Lee, Jae J; You, Joshua H

    2014-01-01

    Recent ultrasound imaging evidence asserts that the diaphragm is an important multifunctional muscle to control breathing as well as stabilize the core and posture in humans. However, the validity and accuracy of ultrasound for the measurement of dynamic diaphragm movements during breathing and functional core activities have not been determined. The specific aim of this study was to validate the accuracy of ultrasound imaging measurements of diaphragm movements by concurrently comparing these measurements to the gold standard of radiographic imaging measurements. A total of 14 asymptomatic adults (9 males, 5 females; mean age =28.4 ± 3.0 years) were recruited to participate in the study. Ultrasound and radiographic images were used concurrently to determine diaphragm movement (inspiration, expiration, and excursion) during tidal breathing. Pearson correlation analysis showed strong correlations, ranging from r=0.78 to r=0.83, between ultrasound and radiographic imaging measurements of the diaphragm during inhalation, exhalation, and excursion. These findings suggest that ultrasound imaging measurement is useful to accurately evaluate diaphragm movements during tidal breathing. Clinically, ultrasound imaging measurements can be used to diagnose and treat diaphragm movement impairments in individuals with neuromuscular disorders including spinal cord injuries, stroke, and multiple sclerosis. PMID:24211983

  19. Transverse Ultrasound Measurements in 4He Single Crystals

    NASA Astrophysics Data System (ADS)

    Syshchenko, O.; Beamish, J.

    2008-02-01

    Recently, Kim and Chan (Science 305:1941, 2004; Phys. Rev. Lett. 97:115302, 2006) have reported an anomalous decoupling transition of solid 4He in a torsional oscillator measurement, and interpret their results as evidence for non-classical rotational inertia and a possible supersolid phase of 4He. The detailed nature and properties of such a “supersolid” state in 4He are still far from being clear, although there are clues from experiments involving 3He impurities, different sample cell geometries, annealing effects and grain boundary flow. Defects produced during crystal growth or deformation (e.g. dislocations) may affect supersolidity, or even produce it, and they are expected to have significant impact on the elastic properties of the solid. The supersolid fraction could also decouple from the lattice and produce a decrease in the transverse sound speed. We have begun the experiments in this laboratory to study such effects, measuring the velocity and attenuation of transverse ultrasound at 10 MHz in 4He single crystals grown at constant pressure.

  20. Noninvasive measurement of pulsatile intracranial pressure using ultrasound

    NASA Technical Reports Server (NTRS)

    Ueno, T.; Ballard, R. E.; Shuer, L. M.; Cantrell, J. H.; Yost, W. T.; Hargens, A. R.

    1998-01-01

    The present study was designed to validate our noninvasive ultrasonic technique (pulse phase locked loop: PPLL) for measuring intracranial pressure (ICP) waveforms. The technique is based upon detecting skull movements which are known to occur in conjunction with altered intracranial pressure. In bench model studies, PPLL output was highly correlated with changes in the distance between a transducer and a reflecting target (R2 = 0.977). In cadaver studies, transcranial distance was measured while pulsations of ICP (amplitudes of zero to 10 mmHg) were generated by rhythmic injections of saline. Frequency analyses (fast Fourier transformation) clearly demonstrate the correspondence between the PPLL output and ICP pulse cycles. Although theoretically there is a slight possibility that changes in the PPLL output are caused by changes in the ultrasonic velocity of brain tissue, the decreased amplitudes of the PPLL output as the external compression of the head was increased indicates that the PPLL output represents substantial skull movement associated with altered ICP. In conclusion, the ultrasound device has sufficient sensitivity to detect transcranial pulsations which occur in association with the cardiac cycle. Our technique makes it possible to analyze ICP waveforms noninvasively and will be helpful for understanding intracranial compliance and cerebrovascular circulation.

  1. BROADBAND ATTENUATION MEASUREMENTS OF PHOSPHOLIPID-SHELLED ULTRASOUND CONTRAST AGENTS

    PubMed Central

    Raymond, Jason L.; Haworth, Kevin J.; Bader, Kenneth B.; Radhakrishnan, Kirthi; Griffin, Joseph K.; Huang, Shao-Ling; McPherson, David D.; Holland, Christy K.

    2014-01-01

    The aim of this study was to characterize the frequency-dependent acoustic attenuation of three phospholipid-shelled ultrasound contrast agents (UCAs): Definity, MicroMarker and echogenic liposomes. A broadband through-transmission technique allowed for measurement over 2 to 25 MHz with a single pair of transducers. Viscoelastic shell parameters of the UCAs were estimated using a linearized model developed by N. de Jong, L. Hoff, T. Skotland and N. Bom (Ultrasonics 1992; 30:95–103). The effect of diluent on the attenuation of these UCA suspensions was evaluated by performing attenuation measurements in 0.5% (w/v) bovine serum albumin and whole blood. Changes in attenuation and shell parameters of the UCAs were investigated at room temperature (25°C) and physiologic temperature (37°C). The attenuation of the UCAs diluted in 0.5% (w/v) bovine serum albumin was found to be identical to the attenuation of UCAs in whole blood. For each UCA, attenuation was higher at 37°C than at 25°C, underscoring the importance of conducting characterization studies at physiologic temperature. Echogenic liposomes exhibited a larger increase in attenuation at 37°C versus 25°C than either Definity or MicroMarker. PMID:24262056

  2. Comparison of portable and conventional ultrasound imaging in spinal curvature measurement

    NASA Astrophysics Data System (ADS)

    Yan, Christina; Tabanfar, Reza; Kempston, Michael; Borschneck, Daniel; Ungi, Tamas; Fichtinger, Gabor

    2016-03-01

    PURPOSE: In scoliosis monitoring, tracked ultrasound has been explored as a safer imaging alternative to traditional radiography. The use of ultrasound in spinal curvature measurement requires identification of vertebral landmarks, but bones have reduced visibility in ultrasound imaging and high quality ultrasound machines are often expensive and not portable. In this work, we investigate the image quality and measurement accuracy of a low cost and portable ultrasound machine in comparison to a standard ultrasound machine in scoliosis monitoring. METHODS: Two different kinds of ultrasound machines were tested on three human subjects, using the same position tracker and software. Spinal curves were measured in the same reference coordinate system using both ultrasound machines. Lines were defined by connecting two symmetric landmarks identified on the left and right transverse process of the same vertebrae, and spinal curvature was defined as the transverse process angle between two such lines, projected on the coronal plane. RESULTS: Three healthy volunteers were scanned by both ultrasound configurations. Three experienced observers localized transverse processes as skeletal landmarks and obtained transverse process angles in images obtained from both ultrasounds. The mean difference per transverse process angle measured was 3.00 +/-2.1°. 94% of transverse processes visualized in the Sonix Touch were also visible in the Telemed. Inter-observer error in the Telemed was 4.5° and 4.3° in the Sonix Touch. CONCLUSION: Price, convenience and accessibility suggest the Telemed to be a viable alternative in scoliosis monitoring, however further improvements in measurement protocol and image noise reduction must be completed before implementing the Telemed in the clinical setting.

  3. Is transabdominal ultrasound scanning of cervical measurement in mid-trimester pregnancy a useful alternative to transvaginal ultrasound scan?

    PubMed Central

    Chaudhury, Kalyansree; Ghosh, Mrinalkanti; Halder, Atin; Senapati, Sourav; Chaudhury, Sudeshna

    2013-01-01

    Objective The aim of this study is to assess the correlation between transabdominal and transvaginal ultrasound measurements of the cervix in pregnancy. If transabdominal ultrasound measurement of cervical length is found to provide effective information, it could be used in patient counselling and when making clinical decisions. Material and Methods One hundred and twenty seven pregnant patients between 18–26 weeks of pregnancy were enrolled in this prospective study for measuring cervical length, both by transabdominal and transvaginal ultrasound scan after bladder emptying. Transabdominal and transvaginal measurements were compared and correlated. Results In patients with transvaginal ultrasound scan (TVS) cervical length ≤32 mm, TVS cervical length was found to be shorter than by transabdominal ultrasound scan (TAS). Most of these patients needed >3 cm of vertical pocket of urine in the bladder for adequate visualisation of the cervix. In patients with TVS cervical length >32 mm, the TVS measurement of the cervix was longer than the TAS measurement of the cervix. In these patients, the cervix could be seen by TAS when there was either ≤3 cm vertical pocket of urine in the bladder or an empty bladder. Statistical tests showed that there is a significant difference between TAS and TVS cervical measurements and that there is a significant association between these two measurements. Conclusion Most of the patients needed variable degrees of bladder filling for adequate visualisation of the cervix. Although minimal bladder filling does not influence TAS measurements of cervical length, moderate fullness of the bladder does cause an apparent increase in TAS measurements of cervical length. If the cervical length is ≥30 mm by TAS, regardless of urine content in the bladder, the patient can be assured vis a vis their risk of preterm labour as far as cervical length is concerned. However, in patients with TAS cervical measurement <30 mm and where the bladder

  4. Accuracy of Bedside Paediatric Early Warning System (BedsidePEWS) in a Pediatric Stem Cell Transplant Unit.

    PubMed

    Gawronski, Orsola; Ciofi Degli Atti, Marta L; Di Ciommo, Vincenzo; Cecchetti, Corrado; Bertaina, Alice; Tiozzo, Emanuela; Raponi, Massimiliano

    2016-07-01

    Hospital mortality in children who undergo stem cell transplant (SCT) is high. Early warning scores aim at identifying deteriorating patients and at preventing adverse outcomes. The bedside pediatric early warning system (BedsidePEWS) is a pediatric early warning score based on 7 clinical indicators, ranging from 0 (all indicators within normal ranges for age) to 26. The aim of this case-control study was to assess the performance of BedsidePEWS in identifying clinical deterioration events among children admitted to an SCT unit. Cases were defined as clinical deterioration events; controls were all the other patients hospitalized on the same ward at the time of case occurrence. BedsidePEWS was retrospectively measured at 4-hour intervals in cases and controls 24 hours before an event (T4-T24). We studied 19 cases and 80 controls. The score significantly increased in cases from a median of 4 at T24 to a median of 14 at T4. The proportion of correctly classified cases and controls was >90% since T8. The area under the curve receiver operating characteristic was 0.9. BedsidePEWS is an accurate screening tool to predict clinical deterioration in SCT patients. PMID:26497915

  5. Viscoelastic Property Measurement in Thin Tissue Constructs Using Ultrasound

    PubMed Central

    Liu, Dalong; Ebbini, Emad S.

    2010-01-01

    We present a dual-element concave ultrasound transducer system for generating and tracking of localized tissue displacements in thin tissue constructs on rigid substrates. The system is comprised of a highly focused PZT-4 5-MHz acoustic radiation force (ARF) transducer and a confocal 25-MHz polyvinylidene fluoride imaging transducer. This allows for the generation of measurable displacements in tissue samples on rigid substrates with thickness values down to 500 µm. Impulse-like and longer duration sine-modulated ARF pulses are possible with intermittent M-mode data acquisition for displacement tracking. The operations of the ARF and imaging transducers are strictly synchronized using an integrated system for arbitrary waveform generation and data capture with a shared timebase. This allows for virtually jitter-free pulse-echo data well suited for correlation-based speckle tracking. With this technique we could faithfully capture the entire dynamics of the tissue axial deformation at pulse-repetition frequency values up to 10 kHz. Spatio-temporal maps of tissue displacements in response to a variety of modulated ARF beams were produced in tissue-mimicking elastography phantoms on rigid substrates. The frequency response was measured for phantoms with different modulus and thickness values. The frequency response exhibited resonant behavior with the resonance frequency being inversely proportional to the sample thickness. This resonant behavior can be used in obtaining high-contrast imaging using magnitude and phase response to sinusoidally modulated ARF beams. Furthermore, a second order forced harmonic oscillator (FHO) model was shown to capture this resonant behavior. Based on the FHO model, we used the extended Kalman filter (EKF) for tracking the apparent modulus and viscosity of samples subjected to dc and sinusoidally modulated ARF. The results show that the stiffness (apparent modulus) term in the FHO is largely time-invariant and can be estimated robustly

  6. Bedside placement of a retrievable inferior vena cava filter in a morbidly obese patient guided by modified IVUS approach.

    PubMed

    Patel, Nishit; Saucedo, Jorge

    2012-12-01

    Deep vein thrombosis and pulmonary embolism are major causes of morbidity and mortality in trauma patients. Anticoagulation therapy is often contraindicated in these patient populations. The retrievable inferior vena cava (IVC) filter provides a good option for preventing pulmonary embolism in the immediate injury and postoperative periods. Bedside IVC filter placement by guidance of intravascular ultrasound eliminates the risk of transportation; it is safe, efficient, and cost effective. We hereby present a case of bedside IVC filter placement in a morbidly obese patient with modified intravascular ultrasound approach. PMID:23220991

  7. Measurement of Thermal Effects of Doppler Ultrasound: An In Vitro Study

    PubMed Central

    Helmy, Samir; Bader, Yvonne; Koch, Marianne; Tiringer, Denise; Kollmann, Christian

    2015-01-01

    Objective Ultrasound is considered a safe imaging modality and is routinely applied during early pregnancy. However, reservations are expressed concerning the application of Doppler ultrasound in early pregnancy due to energy emission of the ultrasound probe and its conversion to heat. The objective of this study was to evaluate the thermal effects of emitted Doppler ultrasound of different ultrasound machines and probes by means of temperature increase of in-vitro test-media. Methods We investigated the energy-output of 5 vaginal and abdominal probes of 3 ultrasound machines (GE Healthcare, Siemens, Aloka). Two in-vitro test objects were developed at the Center for Medical Physics and Biomedical Engineering, Medical University Vienna (water bath and hydrogel bath). Temperature increase during Doppler ultrasound emission was measured via thermal sensors, which were placed inside the test objects or on the probes’ surface. Each probe was emitting for 5 minutes into the absorbing test object with 3 different TI/MI settings in Spectral Doppler mode. Results During water bath test, temperature increase varied between 0.1 and 1.0°C, depending on probe, setting and focus, and was found highest for spectral Doppler mode alone. Maximum temperature increase was found during the surface heating test, where values up to 2.4°C could be measured within 5 minutes of emission. Conclusions Activation of Doppler ultrasound in the waterbath model causes a significant increase of temperature within one minute. Thermally induced effects on the embryo cannot be excluded when using Doppler ultrasound in early pregnancy. PMID:26302465

  8. Consideration on suppression of cancer cell proliferation by ultrasound exposure using sonochemical and biological measurements

    NASA Astrophysics Data System (ADS)

    Watanabe, A.; Nishimura, H.; Kawashima, N.; Takeuchi, S.

    2004-01-01

    The suppression methods of cancer cells proliferation using ultrasound exposure are investigated to develop a new minimally invasive cancer treatment method. A stainless steel vibrating plate with a Langevin type transducer is attached to the bottom of a water tank of the ultrasound exposure system used in this study. Ultrasound was irradiated to cancer cells of mouse T lymphoma (EL-4) in a flask. A decreasing tendency of the number of viable cancer cells exposed to ultrasound of 150 kHz and acoustic intensity ISPTP of 750 mW/cm2 was confirmed in the culturing process. Then, the suppression mechanism of cancer cell proliferation by ultrasound exposure was considered through confirmation of apoptosis and necrosis with the exposed cancer cells by electrophoresis and enzyme activity measurements. It was found that the apoptosis was induced on the cancer cells after ultrasound exposure. We confirmed the generation of hydroxyl radical in water in the water tank by ESR device. When the hydroxyl radicals were scavenged by adding ethanol to the culture medium for cancer cells, the apoptosis was not induced and proliferation was not suppressed. Therefore, we found that generation of activated oxygen in the culturing medium by ultrasound exposure was caused to apoptosis induction and suppression of cancer cell proliferation. We will present the results of above consideration in this conference.

  9. Ultrasound Elastography: The New Frontier in Direct Measurement of Muscle Stiffness

    PubMed Central

    Brandenburg, Joline E.; Eby, Sarah F.; Song, Pengfei; Zhao, Heng; Brault, Jeffrey S.; Chen, Shigao; An, Kai-Nan

    2014-01-01

    The use of brightness-mode ultrasound and Doppler ultrasound in physical medicine and rehabilitation has increased dramatically. The continuing evolution of ultrasound technology has also produced ultrasound elastography, a cutting-edge technology that can directly measure the mechanical properties of tissue, including muscle stiffness. Its real-time and direct measurements of muscle stiffness can aid the diagnosis and rehabilitation of acute musculoskeletal injuries and chronic myofascial pain. It can also help monitor outcomes of interventions affecting muscle in neuromuscular and musculoskeletal diseases, and it can better inform the functional prognosis. This technology has implications for even broader use of ultrasound in physical medicine and rehabilitation practice, but more knowledge about its uses and limitations is essential to its appropriate clinical implementation. In this review, we describe different ultrasound elastography techniques for studying muscle stiffness, including strain elastography, acoustic radiation force impulse imaging, and shear-wave elastography. We discuss the basic principles of these techniques, including the strengths and limitations of their measurement capabilities. We review the current muscle research, discuss physiatric clinical applications of these techniques, and note directions for future research. PMID:25064780

  10. Genetic analysis of ultrasound and carcass measurement traits in a regional hanwoo steer population.

    PubMed

    Hwang, Jeong Mi; Cheong, Jae Kyoung; Kim, Sam Su; Jung, Bong Hwan; Koh, Myung Jae; Kim, Hyeong Cheol; Choy, Yun Ho

    2014-04-01

    Ultrasound measurements of backfat thickness (UBF), longissimus muscle area (ULMA) and marbling score (UMS) and carcass measurements of carcass weight (CW), backfat thickness (BF), longissimus muscle area (LMA), and marbling score (MS) on 7,044 Hanwoo steers were analyzed to estimate genetic parameters. Data from Hanwoo steers that were raised, finished in Hoengseong-gun, Gangwon-do (province) and shipped to slaughter houses during the period from October 2010 to April 2013 were evaluated. Ultrasound measurements were taken at approximately three months before slaughter by an experienced operator using a B-mode real-time ultrasound device (HS-2000, FHK Co. Ltd., Tokyo, Japan) with a 3.5 MHz linear probe. Ultrasound scanning was on the left side between 13th rib and the first lumbar vertebrae. All slaughtering processes and carcass evaluations were performed in accordance with the guidelines of beef grading system of Korea. To estimate genetic parameters, multiple trait animal models were applied. Fixed effects included in the models were: the effects of farm, contemporary group effects (year-season at the time of ultrasound scanning in the models for UBF, ULMA, and UMS, and year-season at slaughter in the models for CW, BF, LMA, and MS), the effects of ultrasound technicians as class variables and the effects of the age in days at ultrasound scanning or at slaughtering as linear covariates, respectively for ultrasound and carcass measures. Heritability estimates obtained from our analyses were 0.37 for UBF, 0.13 for ULMA, 0.27 for UMS, 0.44 for CW, 0.33 for BF, 0.36 for LMA and 0.54 MS, respectively. Genetic correlations were strongly positive between corresponding traits of ultrasound and carcass measures. Genetic correlation coefficient between UBF and BF estimate was 0.938, between ULMA and LMA was 0.767 and between UMS and MS was 0.925. These results suggest that ultrasound measurement traits are genetically similar to carcass measurement traits. PMID:25049974

  11. Genetic Analysis of Ultrasound and Carcass Measurement Traits in a Regional Hanwoo Steer Population

    PubMed Central

    Hwang, Jeong Mi; Cheong, Jae Kyoung; Kim, Sam Su; Jung, Bong Hwan; Koh, Myung Jae; Kim, Hyeong Cheol; Choy, Yun Ho

    2014-01-01

    Ultrasound measurements of backfat thickness (UBF), longissimus muscle area (ULMA) and marbling score (UMS) and carcass measurements of carcass weight (CW), backfat thickness (BF), longissimus muscle area (LMA), and marbling score (MS) on 7,044 Hanwoo steers were analyzed to estimate genetic parameters. Data from Hanwoo steers that were raised, finished in Hoengseong-gun, Gangwon-do (province) and shipped to slaughter houses during the period from October 2010 to April 2013 were evaluated. Ultrasound measurements were taken at approximately three months before slaughter by an experienced operator using a B-mode real-time ultrasound device (HS-2000, FHK Co. Ltd., Tokyo, Japan) with a 3.5 MHz linear probe. Ultrasound scanning was on the left side between 13th rib and the first lumbar vertebrae. All slaughtering processes and carcass evaluations were performed in accordance with the guidelines of beef grading system of Korea. To estimate genetic parameters, multiple trait animal models were applied. Fixed effects included in the models were: the effects of farm, contemporary group effects (year-season at the time of ultrasound scanning in the models for UBF, ULMA, and UMS, and year-season at slaughter in the models for CW, BF, LMA, and MS), the effects of ultrasound technicians as class variables and the effects of the age in days at ultrasound scanning or at slaughtering as linear covariates, respectively for ultrasound and carcass measures. Heritability estimates obtained from our analyses were 0.37 for UBF, 0.13 for ULMA, 0.27 for UMS, 0.44 for CW, 0.33 for BF, 0.36 for LMA and 0.54 MS, respectively. Genetic correlations were strongly positive between corresponding traits of ultrasound and carcass measures. Genetic correlation coefficient between UBF and BF estimate was 0.938, between ULMA and LMA was 0.767 and between UMS and MS was 0.925. These results suggest that ultrasound measurement traits are genetically similar to carcass measurement traits. PMID:25049974

  12. Ultrasound stylet for non-image-guided ventricular catheterization.

    PubMed

    Coulson, Nathaniel K; Chiarelli, Peter A; Su, David K; Chang, Jason J; MacConaghy, Brian; Murthy, Revathi; Toms, Peter; Robb, Terrence L; Ellenbogen, Richard G; Browd, Samuel R; Mourad, Pierre D

    2015-10-01

    OBJECT Urgent ventriculostomy placement can be a lifesaving procedure in the setting of hydrocephalus or elevated intracranial pressure. While external ventricular drain (EVD) insertion is common, there remains a high rate of suboptimal drain placement. Here, the authors seek to demonstrate the feasibility of an ultrasound-based guidance system that can be inserted into an existing EVD catheter to provide a linear ultrasound trace that guides the user toward the ventricle. METHODS The ultrasound stylet was constructed as a thin metal tube, with dimensions equivalent to standard catheter stylets, bearing a single-element, ceramic ultrasound transducer at the tip. Ultrasound backscatter signals from the porcine ventricle were processed by custom electronics to offer real-time information about ventricular location relative to the catheter. Data collected from the prototype device were compared with reference measurements obtained using standard clinical ultrasound imaging. RESULTS A study of porcine ventricular catheterization using the experimental device yielded a high rate of successful catheter placement after a single pass (10 of 12 trials), despite the small size of pig ventricles and the lack of prior instruction on porcine ventricular architecture. A characteristic double-peak signal was identified, which originated from ultrasound reflections off of the near and far ventricular walls. Ventricular dimensions, as obtained from the width between peaks, were in agreement with standard ultrasound reference measurements (p < 0.05). Furthermore, linear ultrasound backscatter data permitted in situ measurement of the stylet distance to the ventricular wall (p < 0.05), which assisted in catheter guidance. CONCLUSIONS The authors have demonstrated the ability of the prototype ultrasound stylet to guide ventricular access in the porcine brain. The alternative design of the device makes it potentially easy to integrate into the standard workflow for bedside EVD

  13. Measuring the yield stress in magnetorheological fluids using ultrasounds

    NASA Astrophysics Data System (ADS)

    Rodríguez-López, Jaime; Elvira, Luis; Montero de Espinosa Freijo, Francisco; Bossis, Georges; de Vicente, Juan

    2013-02-01

    In this work, we propose a method to accurately determine the yield stress in magnetorheological (MR) fluids using ultrasounds. The setup is constructed, and experimental data are obtained on a model conventional MR fluid under steady shear stress ramp-up tests. By using video-microscopy, ultrasonic techniques, and rheometry simultaneously, it is possible to precisely determine the yield stress at experimentally accessible times.

  14. Instrumentation for bedside analysis of swallowing disorders.

    PubMed

    Greco, Catiuscia S S; Nunes, Luiz G Q; Melo, Pedro L

    2010-01-01

    Disordered swallowing, or dysphagia, is a common problem seen in patients undergoing treatment for cancer, stroke and neurodegenerative illnesses. This disease is associated with aspiration-induced chest infections. The methods currently used for diagnosis, however, are qualitative or based on expensive equipment. Swallowing accelerometry is a promising low-cost, quantitative and noninvasive tool for the evaluation of swallowing. This work describes the design and application of a bedside instrument able to evaluate swallowing mechanisms and to identify patients at risk of aspiration. Three-axis swallowing accelerometry was used to measure the neck vibrations associated with deglutition, providing analog signals to a virtual instrument developed in LabVIEW environment. In vivo tests in normal subjects as well as tests with disphagic patients showed that the system was able to easily and non-invasively detect changes in the swallowing acceleration pattern associated with increasing values of water volume (p < 0.02) and disphagia. We concluded that the developed system could be a useful tool for the objective bedside evaluation of patients at risk of aspiration. PMID:21096774

  15. Bedside evaluation of dizzy patients.

    PubMed

    Huh, Young-Eun; Kim, Ji-Soo

    2013-10-01

    In recent decades there has been marked progress in the imaging and laboratory evaluation of dizzy patients. However, detailed history taking and comprehensive bedside neurotological evaluation remain crucial for a diagnosis of dizziness. Bedside neurotological evaluation should include examinations for ocular alignment, spontaneous and gaze-evoked nystagmus, the vestibulo-ocular reflex, saccades, smooth pursuit, and balance. In patients with acute spontaneous vertigo, negative head impulse test, direction-changing nystagmus, and skew deviation mostly indicate central vestibular disorders. In contrast, patients with unilateral peripheral deafferentation invariably have a positive head impulse test and mixed horizontal-torsional nystagmus beating away from the lesion side. Since suppression by visual fixation is the rule in peripheral nystagmus and is frequent even in central nystagmus, removal of visual fixation using Frenzel glasses is required for the proper evaluation of central as well as peripheral nystagmus. Head-shaking, cranial vibration, hyperventilation, pressure to the external auditory canal, and loud sounds may disclose underlying vestibular dysfunction by inducing nystagmus or modulating the spontaneous nystagmus. In patients with positional vertigo, the diagnosis can be made by determining patterns of the nystagmus induced during various positional maneuvers that include straight head hanging, the Dix-Hallpike maneuver, supine head roll, and head turning and bending while sitting. Abnormal smooth pursuit and saccades, and severe imbalance also indicate central pathologies. Physicians should be familiar with bedside neurotological examinations and be aware of the clinical implications of the findings when evaluating dizzy patients. PMID:24285961

  16. The influence of cortical end-plate on broadband ultrasound attenuation measurements at the human calcaneus using scanning confocal ultrasound

    NASA Astrophysics Data System (ADS)

    Xia, Yi; Lin, Wei; Qin, Yi-Xian

    2005-09-01

    Quantitative ultrasound (QUS) assessment, including broadband ultrasound attenuation (BUA), is an efficient technique for assessing bone quality in various statuses, e.g., osteoporosis. While assessing trabecular bone loss is essential to bone quality, the existence of cortical bone can substantially reduce the accuracy of BUA measurement. In this study, we developed an approach to quantify the influence of the cortical end-plate in the QUS on 18 cadaver calcanei using both analytical and experimental analyses. A simplified cortical-trabecular-cortical sandwich model has been developed for simulation of wave propagations. Results show that the cortical end-plate has a significant effect on BUA (yielding 8.5+/-3.6 dB/MHz in cortical bone alone), approximately 15% of the BUA value over the whole bone BUA measurement (54.1+/-20.1 dB/MHz). The phenomenon has been predicted by the developed analytical model with a high correlation (r2=0.63,p<0.0001). The data have suggested that the mechanism of the BUA attributed to the cortical end-plate is primarily due to the ultrasonic wave transmission and reflection within the cortical layers. Therefore, the influence of the cortical end-plate in BUA can be quantified and incorporated into the QUS assessment for bone quality, which may provide insight into BUA measurement for accurate diagnosis of bone diseases.

  17. Bone vibration measurement using ultrasound: application to detection of hip prosthesis loosening.

    PubMed

    Rowlands, A; Duck, F A; Cunningham, J L

    2008-04-01

    Hip prosthesis loosening can be determined in vivo using a vibration-based technique called vibrometry. In this technique, a low frequency (<1000Hz) sinusoidal vibration is applied to the femoral condyles and the resulting vibration is measured at the greater trochanter. If the prosthesis is securely fixed, the output vibration signal matches that of the input vibration, whereas if the prosthesis is loose, the output vibration signal is distorted and shows the marked presence of harmonics of the input frequency. One of the main problems with this application of this technique is in measuring the output vibration where significant amounts of soft tissue cover the measurement site. In order to circumvent this problem, an ultrasound probe, normally used for the measurement of blood flow, has been used to measure the output vibration. This has been evaluated by comparing the results obtained from the ultrasound probe with those from a conventional accelerometer in models representing a tight and loose hip prosthesis under simulated clinical conditions. The ultrasound probe was able to consistently detect the output vibration, for both the loose and secure prostheses. Under the test conditions used (which attempted to simulate a large thickness of soft tissue), the ultrasound probe was able to produce a greatly enhanced output vibration signal compared to the accelerometer. This suggests that the use of an ultrasound probe to detect mechanically induced vibration through significant amounts of soft tissue appears to be viable and could lead to enhanced detection of prosthesis loosening using this technique. PMID:17587635

  18. Bedside Reporting: Protocols for Improving Patient Care.

    PubMed

    Ferguson, Teresa D; Howell, Teresa L

    2015-12-01

    Bedside reporting continues to gain much attention and is being investigated to support the premise that "hand-off" communications enhance efficacy in delivery of patient care. Patient inclusion in shift reports enhances good patient outcomes, increased satisfaction with care delivery, enhanced accountability for nursing professionals, and improved communications between patients and their direct care providers. This article discusses the multiple benefits of dynamic dialogue between patients and the health care team, challenges often associated with bedside reporting, and protocols for managing bedside reporting with the major aim of improving patient care. Nursing research supporting the concept of bedside reporting is examined. PMID:26596661

  19. The use of 2D ultrasound elastography for measuring tendon motion and strain.

    PubMed

    Chernak Slane, Laura; Thelen, Darryl G

    2014-02-01

    The goal of the current study was to investigate the fidelity of a 2D ultrasound elastography method for the measurement of tendon motion and strain. Ultrasound phantoms and ex vivo porcine flexor tendons were cyclically stretched to 4% strain while cine ultrasound radiofrequency (RF) data and video data were simultaneously collected. 2D ultrasound elastography was used to estimate tissue motion and strain from RF data, and surface tissue motion and strain were separately estimated using digital image correlation (DIC). There were strong correlations (R(2)>0.97) between DIC and RF measurements of phantom displacement and strain, and good agreement in estimates of peak phantom strain (DIC: 3.5±0.2%; RF: 3.7±0.1%). For tendon, elastographic estimates of displacement profiles also correlated well with DIC measurements (R(2)>0.92), and exhibited similar estimated peak tendon strain (DIC: 2.6±1.4%; RF: 2.2±1.3%). Elastographic tracking with B-Mode images tended to under-predict peak strain for both the phantom and tendon. This study demonstrates the capacity to use quantitative elastographic techniques to measure tendon displacement and strain within an ultrasound image window. The approach may be extendible to in vivo use on humans, which would allow for the non-invasive analysis of tendon deformation in both normal and pathological states. PMID:24388164

  20. The Use of 2D Ultrasound Elastography for Measuring Tendon Motion and Strain

    PubMed Central

    Slane, Laura Chernak; Thelen, Darryl G.

    2014-01-01

    The goal of the current study was to investigate the fidelity of a 2D ultrasound elastography method for the measurement of tendon motion and strain. Ultrasound phantoms and ex vivo porcine flexor tendons were cyclically stretched to 4% strain while cine ultrasound radiofrequency (RF) data and video data were simultaneously collected. 2D ultrasound elastography was used to estimate tissue motion and strain from RF data, and surface tissue motion and strain were separately estimated using digital image correlation (DIC). There were strong correlations (R2 > 0.97) between DIC and RF measurements of phantom displacement and strain, and good agreement in estimates of peak phantom strain (DIC: 3.5 ± 0.2%; RF: 3.7 ± 0.1%). For tendon, elastographic estimates of displacement profiles also correlated well with DIC measurements (R2 > 0.92), and exhibited similar estimated peak tendon strain (DIC: 2.6 ± 1.4%; RF: 2.2 ± 1.3%). Elastographic tracking with B-Mode images tended to under-predict peak strain for both the phantom and tendon. This study demonstrates the capacity to use quantitative elastographic techniques to measure tendon displacement and strain within an ultrasound image window. The approach may be extendible to in vivo use on humans, which would allow for the non-invasive analysis of tendon deformation in both normal and pathological states. PMID:24388164

  1. Reliability of 2D ultrasound measurements of testis size in dolphins taken under voluntary behavior.

    PubMed

    Yuen, Queeny W H; Ying, Michael T C; Brook, Fiona M; Kinoshita, Reimi E

    2009-06-01

    This study was undertaken to evaluate the reliability of two-dimensional (2D) ultrasound in measuring testis size in dolphins, in vivo, with the subject presenting for examination under voluntary or trained behaviour. The testes of five bottlenose dolphins (Tursiops aduncus) were measured once by two operators to test inter-operator variability (reproducibility) and repeatedly measured by the same operator to test intra-operator variability (repeatability). Ultrasound examinations for each test were conducted on the same day to avoid measurement variability due to time difference. The evaluation of reproducibility and repeatability were conducted on separate days. In the ultrasound examination, the length, circumference, depth and width of both testes of the animal were measured. To prevent bias, measurements were not communicated between the operators on-site and repeated measurements were masked. Results showed that both reproducibility and repeatability of all the testis measurements were high (>90%). Overall, measurement variability of the technique was found to be of a satisfactory level. Ultrasound is a useful imaging tool for routine long-term monitoring of the testes in this species of animals. Sources of error due to movements as a result of the subject being in the water during examinations were inevitable and must be taken into account. PMID:19171415

  2. Quantitative Measurement of Highly Focused Ultrasound Pressure Field by Optical Shadowgraph

    NASA Astrophysics Data System (ADS)

    Miyasaka, R.; Harigane, S.; Yoshizawa, S.; Umemura, S.

    2014-06-01

    In the development of medical ultrasound techniques, fast and accurate pressure field measurement is important. The most common method to measure an ultrasound pressure field is mechanically scanning a hydrophone, which takes a long time and might disturb the acoustic field. In this study, we used an optical shadowgraph method. To perform this method quantitatively, it is important to define the optical propagation length precisely. For this purpose, a holographic diffuser was used as the imaging screen. Combined with a computed tomography (CT) algorithm, a pressure field was reconstructed, and the result was compared with that of hydrophone measurement. By using two shadowgraph data from short and long propagation lengths, the pressure field was successfully reconstructed even at a pressure level for high intensity focused ultrasound (HIFU) treatment.

  3. The Effect of Bedside Presentations in the Emergency Department on Patient Satisfaction

    PubMed Central

    Schranz, Craig I.; Sobehart, Robert J.; Fallgatter, Kiva; Riffenburgh, Robert H.; Matteucci, Michael J.

    2011-01-01

    Background Due to increasing time constraints, the use of bedside presentations in resident education has declined. We examined whether patient satisfaction in the emergency department is affected when first-year residents present at the bedside with attendings. Methods We performed an observational, prospective, nonblinded study in the emergency department of a military teaching hospital. We alternately assigned first-year residents to present a convenience sample of 248 patients to the attending physician at the patient's bedside or away from the patient. We measured patient satisfaction by using the Patient Satisfaction Questionaire-18 (PSQ-18), a validated survey instrument that utilizes a Likert scale, and additional nonvalidated survey questions involving Likert and visual analog scales. Results While the median PSQ-18 score of 74 (95% confidence interval [CI], 72–76) was higher for patient satisfaction when residents made bedside presentations than that for standard presentations, 72 (95% CI, 70–74), the difference did not reach statistical significance (P  =  .33). Conclusion There was no significant difference in overall patient satisfaction between residents' bedside presentations and presentations to attendings away from the patient. Although not significant, the differences noted in PSQ-18 subscales of communication, general satisfaction, and interpersonal manner warrant further investigation. Patients did not appear to be uncomfortable with having their care discussed and with having subsequent resident education at the bedside. Future research on patient satisfaction after implementation of standardized bedside teaching techniques 5 help further elucidate this relationship. PMID:23205195

  4. Duplex ultrasound

    MedlinePlus

    Vascular ultrasound; Peripheral vascular ultrasound ... A duplex ultrasound combines traditional ultrasound with Doppler ultrasound . Traditional ultrasound uses sound waves that bounce off blood vessels to create ...

  5. Wide bandwidth dual-frequency ultrasound measurements based on fiber laser sensing technology.

    PubMed

    Lyu, Chengang; Liu, Ying; Wu, Chuang

    2016-07-01

    A dual-frequency ultrasound measurement system based on a distributed Bragg reflector (DBR) fiber laser sensor in a liquid medium was presented. To compare the dual-frequency measurement performance of a DBR fiber laser acoustic sensor with that of a piezoelectric (PZT) ultrasound sensor, two experiments were performed. First, we fixed the driving frequencies of two ultrasound signals at 3 and 5 MHz, and decreased the driving voltage from 15 to 3 V. The outputs of the DBR acoustic sensor show flat-balanced response to dual-frequencies, compared with the PZT acoustic sensor whose response to one of the dual-frequency signals (5 MHz in this paper) has been covered by noise at low acoustic pressure. Then we increased the acoustic pressure by fixing the driving voltage at 20 V, and changed the frequency spacing between the two ultrasound signals. By analyzing the frequency response, sensitivity, signal-to-noise ratio, and noise equivalent pressure of two acoustic sensors under different frequencies, we found that the response of the DBR sensor to wideband dual-frequency is stable, while the response of the PZT sensor deteriorates sharply with increasing frequency spacing. The results demonstrate that the DBR fiber laser sensor performs better for wide bandwidth dual-frequency ultrasound measurements. PMID:27409190

  6. Practical experience of using ultrasound flowmeters at the measurement associated petroleum gas

    NASA Astrophysics Data System (ADS)

    Fazlyyyakhmatov, M. G.; Kashapov, N. F.; Khayritonov, Kh A.; Lazarev, D. K.; Lazarev, V. K.

    2015-06-01

    The results of field tests of several ultrasound flowmeters at existing oil and gas extraction objects are given in the paper. Measured medium - associated petroleum gas. This work aims to create a unified system for measuring the amount and parameters of APG in order to reduce operating costs.

  7. A Preponderance of Elastic Properties of Alpha Plutonium Measured Via Resonant Ultrasound Spectroscopy

    SciTech Connect

    Saleh, Tarik A.; Farrow, Adam M.; Freibert, Franz J.

    2012-06-06

    Samples of {alpha} plutonium were fabricated at the Los Alamos National Laboratory's Plutonium Facility. Cylindrical samples were machined from cast pucks. Precision immersion density and resonant ultrasound spectroscopy (RUS) measurements were completed on 27 new samples, yielding elastic moduli measurements. Mechanical tests were performed in compression yielding stress-strain curves as a function of rate, temperature and phase.

  8. Feasibility of Quantitative Ultrasound Measurement of the Heel Bone in People with Intellectual Disabilities

    ERIC Educational Resources Information Center

    Mergler, S.; Lobker, B.; Evenhuis, H. M.; Penning, C.

    2010-01-01

    Low bone mineral density (BMD) and fractures are common in people with intellectual disabilities (ID). Reduced mobility in case of motor impairment and the use of anti-epileptic drugs contribute to the development of low BMD. Quantitative ultrasound (QUS) measurement of the heel bone is a non-invasive and radiation-free method for measuring bone…

  9. Genetic parameter estimates for carcass and yearling ultrasound measurements in Brangus cattle.

    PubMed

    Moser, D W; Bertrand, J K; Misztal, I; Kriese, L A; Benyshek, L L

    1998-10-01

    Carcass measurements of 12th-rib fat thickness (CARCFAT), longissimus muscle area (CARCLMA), and weight (CARCWT) on 2,028 Brangus and Brangus-sired fed steers and heifers, as well as yearling weights (YWT) and ultrasound measures of 12th-rib fat thickness (USFAT) and longissimus muscle area (USLMA) on 3,583 Brangus bulls and heifers were analyzed to estimate genetic parameters. Data were analyzed using a six-trait animal model and an average information REML algorithm. The model included fixed effects for contemporary group and breed of dam, covariates for age at slaughter or measurement, and random animal and residual effects. Heritabilities for CARCFAT, CARCLMA, CARCWT, USFAT, USLMA, and YWT were .27+/-.05, .39+/-.05, .59+/-.06, .11+/-.03, .29+/-.04, and .40+/-.04, respectively. Genetic correlations between CARCFAT and USFAT, CARCLMA and USLMA, and CARCWT and YWT were .69+/-.18, .66+/-.14, and .61+/-.11, respectively. The favorable and moderately strong genetic correlations between carcass measurements and similar yearling breeding-animal ultrasound measurements indicate that such measurements of 12th-rib fat and longissimus muscle area are useful in predicting genetic values for carcass leanness and longissimus muscle area. Selection using yearling ultrasound measurements of breeding cattle should result in predictable genetic improvement for carcass characteristics. Inclusion of yearling ultrasound measurements for fat thickness and longissimus muscle area should enhance national cattle evaluation programs. PMID:9814892

  10. Morphological and functional relationships with ultrasound measured muscle thickness of the upper extremity and trunk

    PubMed Central

    Loenneke, Jeremy P.; Thiebaud, Robert S.; Loftin, Mark

    2014-01-01

    Unless a subject’s muscle is relatively small, a single image from a standard ultrasound can only measure muscle thickness (MT). Thus, it is important to know whether MT is related to morphological and functional characteristics of individual muscles of the extremity and trunk. In this review, we summarize previously published articles in the upper extremity and trunk demonstrating the relationships between ultrasound-measured MT and muscle morphology (cross-sectional area, CSA and muscle volume, MV) and muscular or respiratory function. The linear relationship between MT and muscle CSA or MV has been observed in biceps brachii, triceps brachii, pectoralis major, psoas major, and supraspinatus muscles. Previous studies suggest that MT in the upper arm and trunk may reflect muscle CSA and MV for the individual muscles. Unfortunately, few studies exist regarding the functional relationship with ultrasound MT in the upper extremity and trunk. Future research is needed to investigate these findings further.

  11. Diffusing-wave spectroscopy in an inhomogeneous object: local viscoelastic spectra from ultrasound-assisted measurement of correlation decay arising from the ultrasound focal volume.

    PubMed

    Chandran, R Sriram; Sarkar, Saikat; Kanhirodan, Rajan; Roy, Debasish; Vasu, Ram Mohan

    2014-07-01

    We demonstrate diffusing-wave spectroscopy (DWS) in a localized region of a viscoelastically inhomogeneous object by measurement of the intensity autocorrelation [g(2)(τ)] that captures only the decay introduced by the temperature-induced Brownian motion in the region. The region is roughly specified by the focal volume of an ultrasound transducer which introduces region specific mechanical vibration owing to insonification. Essential characteristics of the localized non-Markovian dynamics are contained in the decay of the modulation depth [M(τ)], introduced by the ultrasound forcing in the focal volume selected, on g(2)(τ). The modulation depth M(τ(i)) at any delay time τ(i) can be measured by short-time Fourier transform of g(2)(τ) and measurement of the magnitude of the spectrum at the ultrasound drive frequency. By following the established theoretical framework of DWS, we are able to connect the decay in M(τ) to the mean-squared displacement (MSD) of scattering centers and the MSD to G*(ω), the complex viscoelastic spectrum. A two-region composite polyvinyl alcohol phantom with different viscoelastic properties is selected for demonstrating local DWS-based recovery of G*(ω) corresponding to these regions from the measured region specific M(τ(i))vsτ(i). The ultrasound-assisted measurement of MSD is verified by simulating, using a generalized Langevin equation (GLE), the dynamics of the particles in the region selected as well as by the usual DWS experiment without the ultrasound. It is shown that whereas the MSD obtained by solving the GLE without the ultrasound forcing agreed with its experimental counterpart covering small and large values of τ, the match was good only in the initial transients in regard to experimental measurements with ultrasound. PMID:25122299

  12. Diffusing-wave spectroscopy in an inhomogeneous object: Local viscoelastic spectra from ultrasound-assisted measurement of correlation decay arising from the ultrasound focal volume

    NASA Astrophysics Data System (ADS)

    Chandran, R. Sriram; Sarkar, Saikat; Kanhirodan, Rajan; Roy, Debasish; Vasu, Ram Mohan

    2014-07-01

    We demonstrate diffusing-wave spectroscopy (DWS) in a localized region of a viscoelastically inhomogeneous object by measurement of the intensity autocorrelation [g2(τ)] that captures only the decay introduced by the temperature-induced Brownian motion in the region. The region is roughly specified by the focal volume of an ultrasound transducer which introduces region specific mechanical vibration owing to insonification. Essential characteristics of the localized non-Markovian dynamics are contained in the decay of the modulation depth [M(τ)], introduced by the ultrasound forcing in the focal volume selected, on g2(τ). The modulation depth M (τi) at any delay time τi can be measured by short-time Fourier transform of g2(τ) and measurement of the magnitude of the spectrum at the ultrasound drive frequency. By following the established theoretical framework of DWS, we are able to connect the decay in M (τ) to the mean-squared displacement (MSD) of scattering centers and the MSD to G*(ω), the complex viscoelastic spectrum. A two-region composite polyvinyl alcohol phantom with different viscoelastic properties is selected for demonstrating local DWS-based recovery of G*(ω) corresponding to these regions from the measured region specific M (τi)vsτi. The ultrasound-assisted measurement of MSD is verified by simulating, using a generalized Langevin equation (GLE), the dynamics of the particles in the region selected as well as by the usual DWS experiment without the ultrasound. It is shown that whereas the MSD obtained by solving the GLE without the ultrasound forcing agreed with its experimental counterpart covering small and large values of τ, the match was good only in the initial transients in regard to experimental measurements with ultrasound.

  13. Sonochemotherapy: from bench to bedside

    PubMed Central

    Lammertink, Bart H. A.; Bos, Clemens; Deckers, Roel; Storm, Gert; Moonen, Chrit T. W.; Escoffre, Jean-Michel

    2015-01-01

    The combination of microbubbles and ultrasound has emerged as a promising method for local drug delivery. Microbubbles can be locally activated by a targeted ultrasound beam, which can result in several bio-effects. For drug delivery, microbubble-assisted ultrasound is used to increase vascular- and plasma membrane permeability for facilitating drug extravasation and the cellular uptake of drugs in the treated region, respectively. In the case of drug-loaded microbubbles, these two mechanisms can be combined with local release of the drug following destruction of the microbubble. The use of microbubble-assisted ultrasound to deliver chemotherapeutic agents is also referred to as sonochemotherapy. In this review, the basic principles of sonochemotherapy are discussed, including aspects such as the type of (drug-loaded) microbubbles used, the routes of administration used in vivo, ultrasound devices and parameters, treatment schedules and safety issues. Finally, the clinical translation of sonochemotherapy is discussed, including the first clinical study using sonochemotherapy. PMID:26217226

  14. Temperature measurement by thermal strain imaging with diagnostic power ultrasound, with potential for thermal index determination.

    PubMed

    Liang, Hai-Dong; Zhou, Li-Xia; Wells, Peter N T; Halliwell, Michael

    2009-05-01

    Over the years, there has been a substantial increase in acoustic exposure in diagnostic ultrasound as new imaging modalities with higher intensities and frame rates have been introduced; and more electronic components have been packed into the probe head, so that there is a tendency for it to become hotter. With respect to potential thermal effects, including those which may be hazardous occurring during ultrasound scanning, there is a correspondingly growing need for in vivo techniques to guide the operator as to the actual temperature rise occurring in the examined tissues. Therefore, an in vivo temperature estimator would be of considerable practical value. The commonly-used method of tissue thermal index (TI) measurement with a hydrophone in water could underestimate the actual value of TI (in one report by as much as 2.9 times). To obtain meaningful results, it is necessary to map the temperature elevation in 2-D (or 3-D) space. We present methodology, results and validation of a 2-D spatial and temporal thermal strain ultrasound temperature estimation technique in phantoms, and its apparently novel application in tracking the evolution of heat deposition at diagnostic exposure levels. The same ultrasound probe is used for both transmission and reception. The displacement and thermal strain estimation methods are similar to those used in high-intensity focused ultrasound thermal monitoring. The use of radiofrequency signals permits the application of cross correlation as a similarity measurement for tracking feature displacement. The displacement is used to calculate the thermal strain directly related to the temperature rise. Good agreement was observed between the temperature rise and the ultrasound power and scan duration. Thermal strain up to 1.4% was observed during 4000-s scan. Based on the results obtained for the temperature range studied in this work, the technique demonstrates potential for applicability in phantom (and possibly in vivo tissue

  15. A Comparison of Portable Ultrasound and Fully-Equipped Clinical Ultrasound Unit in the Thyroid Size Measurement of the Indo-Pacific Bottlenose Dolphin

    PubMed Central

    Kot, Brian C. W.; Ying, Michael T. C.; Brook, Fiona M.

    2012-01-01

    Measurement of thyroid size and volume is a useful clinical parameter in both human and veterinary medicine, particularly for diagnosing thyroid diseases and guiding corrective therapy. Procuring a fully-equipped clinical ultrasound unit (FCUS) may be difficult in most veterinary settings. The present study evaluated the inter-equipment variability in dolphin thyroid ultrasound measurements between a portable ultrasound unit (PUS) and a FCUS; for both units, repeatability was also assessed. Thyroid ultrasound examinations were performed on 15 apparently healthy bottlenose dolphins with both PUS and FCUS under identical scanning conditions. There was a high level of agreement between the two ultrasound units in dolphin thyroid measurements (ICC = 0.859–0.976). A high intra-operator repeatability in thyroid measurements was found (PUS: ICC = 0.854–0.984, FCUS: ICC = 0.709–0.954). As a conclusion, no substantial inter-equipment variability was found between PUS and FCUS in dolphin thyroid size measurements under identical scanning conditions, supporting further application of PUS for quantitative analyses of dolphin thyroid gland in both research and clinical practices at aquarium settings. PMID:22272311

  16. Visualizing and measuring the temperature field produced by medical diagnostic ultrasound using thermography

    NASA Astrophysics Data System (ADS)

    Vachutka, J.; Grec, P.; Mornstein, V.; Caruana, C. J.

    2008-11-01

    The heating of tissues by diagnostic ultrasound can pose a significant hazard particularly in the imaging of the unborn child. The demonstration of the temperature field in tissue is therefore an important objective in the teaching of biomedical physics to healthcare professionals. The temperature field in a soft tissue model was made visible and measured using thermography. Temperature data from the images were used to investigate the dependence of temperature increase within the model on ultrasound exposure time and distance from the transducer. The experiment will be used within a multi-professional biomedical physics teaching laboratory for enhancing learning regarding the principles of thermography and the thermal effects of ultrasound to medical and healthcare students and also for demonstrating the quantitative use of thermographic imaging to students of biophysics, medical physics and medical technology.

  17. A Multidimensional Investigation of Children's /r/ Productions: Perceptual, Ultrasound, and Acoustic Measures

    ERIC Educational Resources Information Center

    Klein, Harriet B.; McAllister Byun, Tara; Davidson, Lisa; Grigos, Maria I.

    2013-01-01

    Purpose: This study explored relationships among perceptual, ultrasound, and acoustic measurements of children's correct and misarticulated /r/ sounds. Longitudinal data documenting changes across these parameters were collected from 2 children who acquired /r/ over a period of intervention and were compared with data from children with…

  18. Three-Dimensional Quantitative Optical Measurement of Asymmetrically Focused Ultrasound Pressure Field

    NASA Astrophysics Data System (ADS)

    Shimazaki, Yuta; Harigane, Soichiro; Yoshizawa, Shin; Umemura, Shin-ichiro

    2012-07-01

    High-intensity focused ultrasound (HIFU) is used for the treatment of tumors such as prostate cancer. In the development of this technique, an accurate and fast measurement of the HIFU pressure field is important. A hydrophone is generally used for the measurement, but it might disturb the pressure field and scanning it in the field takes a long time. On the other hand, optical ultrasonic field mapping has the advantages of speed and its nature of not by interfering with the acoustic field. In this study, we reconstructed an asymmetric ultrasound field by optical measurement using a computed tomography (CT) algorithm. The asymmetric field was generated by a focused transducer with four elements. Also, the absolute measurement of ultrasonic pressure was checked by measuring the center of the field of the charge-coupled device (CCD) camera. The results showed overall agreement with those of hydrophone measurement.

  19. Exploration Analysis of Carbon Dioxide Levels and Ultrasound Measures of the Eye During ISS Missions

    NASA Technical Reports Server (NTRS)

    Young, M.; Mason, S.; Schaefer, C.; Wear, M. L.; Sargsyan, A.; Garcia, K.; Coble, C.; Gruschkus, S.; Law, J.; Alexander, D.; Meyers, V.; Van Baalen, M.

    2016-01-01

    Enhanced screening for the Visual Impairment/Intracranial Pressure (VIIP) Syndrome, including in-flight ultrasound, was implemented in 2010 to better characterize the changes in vision observed in some long-duration crewmembers. Suggested possible risk factors for VIIP include cardiovascular changes, diet, anatomical and genetic factors, and environmental conditions. As a potent vasodilator, carbon dioxide (CO (sub 2)), which is chronically elevated on the International Space Station (ISS) relative to typical indoor and outdoor ambient levels on Earth, seems a plausible contributor to VIIP. In an effort to understand the possible associations between CO (sub 2) and VIIP, this study analyzes the relationship between ambient CO (sub 2) levels on ISS and ultrasound measures of the eye obtained from ISS fliers. CO (sub 2) measurements will be pulled directly from Operational Data Reduction Complex for the Lab and Node 3 major constituent analyzers (MCAs) on ISS or from sensors located in the European Columbus module, as available. CO (sub 2) measures between ultrasound sessions will be summarized using standard time series class metrics in MATLAB including time-weighted means and variances. Cumulative CO (sub 2) exposure metrics will also be developed. Regression analyses will be used to quantify the relationships between the CO (sub 2) metrics and specific ultrasound measures. Generalized estimating equations will adjust for the repeated measures within individuals. Multiple imputation techniques will be used to adjust for any possible biases in missing data for either CO (sub 2) or ultrasound measures. These analyses will elucidate the possible relationship between CO (sub 2) and changes in vision and also inform future analysis of inflight VIIP data.

  20. System and method for improving ultrasound image acquisition and replication for repeatable measurements of vascular structures

    NASA Technical Reports Server (NTRS)

    Selzer, Robert H. (Inventor); Hodis, Howard N. (Inventor)

    2006-01-01

    High resolution B-mode ultrasound images of the common carotid artery are obtained with an ultrasound transducer using a standardized methodology. Subjects are supine with the head counter-rotated 45 degrees using a head pillow. The jugular vein and carotid artery are located and positioned in a vertical stacked orientation. The transducer is rotated 90 degrees around the centerline of the transverse image of the stacked structure to obtain a longitudinal image while maintaining the vessels in a stacked position. A computerized methodology assists operators to accurately replicate images obtained over several spaced-apart examinations. The methodology utilizes a split-screen display in which the arterial ultrasound image from an earlier examination is displayed on one side of the screen while a real-time live ultrasound image from a current examination is displayed next to the earlier image on the opposite side of the screen. By viewing both images, whether simultaneously or alternately, while manually adjusting the ultrasound transducer, an operator is able to bring into view the real-time image that best matches a selected image from the earlier ultrasound examination. Utilizing this methodology, measurement of vascular dimensions such as carotid arterial IMT and diameter, the coefficient of variation is substantially reduced to values approximating from about 1.0% to about 1.25%. All images contain anatomical landmarks for reproducing probe angulation, including visualization of the carotid bulb, stacking of the jugular vein above the carotid artery, and initial instrumentation settings, used at a baseline measurement are maintained during all follow-up examinations.

  1. Morphological and functional relationships with ultrasound measured muscle thickness of the lower extremity: a brief review.

    PubMed

    Abe, Takashi; Loenneke, Jeremy P; Thiebaud, Robert S

    2015-08-01

    Ultrasound is a potential method for assessing muscle size of the extremity and trunk. In a large muscle, however, a single image from portable ultrasound measures only muscle thickness (MT), not anatomical muscle cross-sectional area (CSA) or muscle volume (MV). Thus, it is important to know whether MT is related to anatomical CSA and MV in an individual muscle of the extremity and trunk. In this review, we summarize previously published articles in the lower extremity demonstrating the relationships between ultrasound MT and muscle CSA or MV as measured by magnetic resonance imaging and computed tomography scans. The relationship between MT and isometric and isokinetic joint performance is also reviewed. A linear relationship is observed between MT and muscle CSA or MV in the quadriceps, adductor, tibialis anterior, and triceps surae muscles. Intrarater correlation coefficients range from 0.90 to 0.99, except for one study. It would appear that anterior upper-thigh MT, mid-thigh MT and posterior thigh MT are the best predictors for evaluating adductor, quadriceps, and hamstrings muscle size, respectively. Despite a limited number of studies, anterior as well as posterior lower leg MT appear to reflect muscle CSA and MV of the lower leg muscles. Based on previous studies, ultrasound measured anterior thigh MT may be a valuable predictor of knee extension strength. Nevertheless, more studies are needed to clarify the relationship between lower extremity function and MT. PMID:27433253

  2. Validation of Doppler ultrasound measurements using particle, image velocimetry in a flow phantom

    NASA Astrophysics Data System (ADS)

    Cosgrove, John; Meagher, Siobhan; Hoskins, Peter; Greated, Clive; Black, Richard

    2001-05-01

    Cardiovascular disease is responsible for over 50% of all deaths in the world and there is a substantial amount of evidence which suggests that abnormal vessel wall shear stress is correlated with the development of atherosclerosis. Wall shear stress is calculated from wall shear rates, the measurement of which is a technically challenging problem for ultrasound. In this study a flow phantom consisting of a meshed-gear pump and corresponding control electronics is used to generate a range of flow waveforms in a straight tube. These flows are measured using Doppler ultrasound and compared to corresponding particle image velocimetry (PIV) measurements and to analytical solutions of the flow equations for a range of Wormersley parameters. Although previous studies have been undertaken calibrating Doppler ultrasound in straight tubes, they have not used PIV. This study serves as a prelude to investigations using PIV to assess the accuracy of Doppler ultrasound in phantoms with anatomically realistic geometries for which there are no analytical solutions to the flow. [Research funded by the Engineering and Physical Sciences Research Council UK.

  3. Validity Study of Vertebral Rotation Measurement Using 3-D Ultrasound in Adolescent Idiopathic Scoliosis.

    PubMed

    Wang, Qian; Li, Meng; Lou, Edmond H M; Chu, Winnie C W; Lam, Tsz-Ping; Cheng, Jack C Y; Wong, Man-Sang

    2016-07-01

    This study aimed to assess the validity of 3-D ultrasound measurements on the vertebral rotation of adolescent idiopathic scoliosis (AIS) under clinical settings. Thirty curves (mean Cobb angle: 21.7° ± 15.9°) from 16 patients with AIS were recruited. 3-D ultrasound and magnetic resonance imaging scans were performed at the supine position. Each of the two raters measured the apical vertebral rotation using the center of laminae (COL) method in the 3-D ultrasound images and the Aaro-Dahlborn method in the magnetic resonance images. The intra- and inter-reliability of the COL method was demonstrated by the intra-class correlation coefficient (ICC) (both [2, K] >0.9, p < 0.05). The COL method showed no significant difference (p < 0.05) compared with the Aaro-Dahlborn method. Furthermore, the agreement between these two methods was demonstrated by the Bland-Altman method, and high correlation was found (r > 0.9, p < 0.05). These results validated the proposed 3-D ultrasound method in the measurements of vertebral rotation in the patients with AIS. PMID:27083978

  4. Measurement of the quadriceps femoris muscle using magnetic resonance and ultrasound imaging.

    PubMed Central

    Walton, J M; Roberts, N; Whitehouse, G H

    1997-01-01

    OBJECTIVES: To define a method for measurement of the cross sectional area and volume of the quadriceps femoris muscle using magnetic resonance imaging (MRI) in conjunction with stereology, and to compare the results of measurements obtained by the MRI method with those obtained by the conventional method of static B-mode ultrasound in order to evaluate whether MRI is a reliable alternative to ultrasound. METHODS: A preliminary MRI study was undertaken on a single female volunteer in order to optimise the scanning technique and sampling design for estimating the muscle volume using the Cavalieri method. Ten healthy volunteers participated in the method comparison study. Each volunteer underwent static B-mode ultrasonography, immediately followed by MRI. The cross sectional area of the quadriceps femoris was estimated at the junction of the proximal one third and distal two thirds of the thigh, and seven systematic sections of the thigh were obtained in order to estimate muscle volume by both modalities. RESULTS: Seven sections through the muscle are required to achieve a coefficient of error of 4-5%. There was no significant difference in the cross sectional area estimates or volume estimates when ultrasound and MRI were compared. CONCLUSION: Muscle cross sectional area and volume can be measured without bias by MRI in conjunction with stereological methods and the method is a reliable alternative to static B-mode ultrasound for this purpose. Images Figure 1 Figure 4 Figure 5 PMID:9132215

  5. Development and Validation of a Method to Measure Lumbosacral Motion Using Ultrasound Imaging.

    PubMed

    van den Hoorn, Wolbert; Coppieters, Michel W; van Dieën, Jaap H; Hodges, Paul W

    2016-05-01

    The study aim was to validate an ultrasound imaging technique to measure sagittal plane lumbosacral motion. Direct and indirect measures of lumbosacral angle change were developed and validated. Lumbosacral angle was estimated by the angle between lines through two landmarks on the sacrum and lowest lumbar vertebrae. Distance measure was made between the sacrum and lumbar vertebrae, and angle was estimated after distance was calibrated to angle. This method was tested in an in vitro spine and an in vivo porcine spine and validated to video and fluoroscopy measures, respectively. R(2), regression coefficients and mean absolute differences between ultrasound measures and validation measures were, respectively: 0.77, 0.982, 0.67° (in vitro, angle); 0.97, 0.992, 0.82° (in vitro, distance); 0.94, 0.995, 2.1° (in vivo, angle); and 0.95, 0.997, 1.7° (in vivo, distance). Lumbosacral motion can be accurately measured with ultrasound. This provides a basis to develop measurements for use in humans. PMID:26895754

  6. Development of distance accuracy measurement program for quality control of diagnostic ultrasound system

    NASA Astrophysics Data System (ADS)

    Kim, Yon-Min; Kim, Moon-Chan; Han, Dong-Kyoon; Cho, Jae-Hwan; Kim, Sang-Hyun

    2013-12-01

    Evaluating the performance of a diagnostic ultrasound system is important. Above all, establishing standards for such evaluations in an objective and systematic way is critical. However, quality control is currently measured based on subjective judgment of an observer. Against this background, this study intended to suggest quantified and objective data that would enable inter-observer variation to be overcome. Five radiological technologists used an ATS-539 multi-purpose ultrasound phantom to conduct measurements in the predetermined method. A digital imaging and communications in medicine (DICOM) standard image was obtained in an ultrasound system by using a self-developed software to measure the accuracy of the distance before the 95% confidence interval was calculated. In order to examine the accuracy of the distance in longitudinal and transverse measurements, we conducted t-tests to evaluate the significance for the results of quality control that was performed manually for the past one year and for the results of quality control that was performed by using software with the same equipment. For the longitudinal and the transverse measurements, the 95% confidence intervals were 100.96-101.29 mm and 83.18-84.26 mm, respectively. The computerized longitudinal measurement showed no significant difference from the manual measurement ( p > 0.05). The results of measurements using of software showed a higher reproducibility.

  7. B-mode, real-time ultrasound for estimating carcass composition in live sheep: Accuracy of ultrasound measures and their relationships with carcass composition

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The accuracy and repeatability of live-animal ultrasound measures, and the relationships of these measures with carcass yield, composition, and value, were investigated using data from 172 wethers. Wethers were F1 progeny from the mating of 4 terminal sire breeds to Rambouillet ewes, and were finis...

  8. Proopiomelanocortin gene polymorphisms and its association with meat quality traits by ultrasound measurement in Chinese cattle.

    PubMed

    Liu, Yongfeng; Zan, Linsen; Li, Linqiang; Xin, Yaping

    2013-10-15

    Ultrasound technology was used to measure live animal meat traits instead of true carcass meat traits for beef production and cattle breeding by an increasing number of institutions. In this study, we analyzed the association between genetic polymorphisms of proopiomelanocortin (POMC) and ultrasound measurement traits in Chinese cattle. Using direct DNA sequencing in 322 individuals of 7 different cattle subpopulation, 7 SNPs were identified for genotyping within 790bp region of intron 2 and exon 3 of POMC. 6586 T>G in intron 2 and 6769 C>T and 7216 C>T in exon 3 were significantly associated with ultrasound backfat thickness (UBF) (P<0.05) and ultrasound loin muscle area (ULMA) (P<0.01) in the total population; 6694 C>T, 6706 T>C, 6796 C>T and 6810 C>T in exon 3 were significantly associated with ULMA (P<0.0001) in the total population. These results clearly suggest that these SNPs of POMC be benefit for selection of individuals with good quality meat in Chinese cattle breeding program. Following validation in other populations and breeds, these markers could be incorporated into breeding programs to increase the rate of improvement in carcass and meat quality traits. PMID:23872232

  9. Measurement of temperature decrease caused by blood flow in focused ultrasound irradiation by thermal imaging method

    NASA Astrophysics Data System (ADS)

    Tsuchiya, Takenobu; Hatano, Yuichi; Mori, Yashunori; Shen, Rakushin; Endoh, Nobuyuki

    2016-07-01

    In this study, to estimate the local temperature changes caused by a thick blood vessel, the temperature distribution in a tissue phantom with a thick blood vessel during focused ultrasound irradiation was measured by a thermal imaging method. The blood flow rate in the simulated blood vessel was varied and the relationship between flow rate and temperature decrease was examined. The phantom using the thermal imaging method is divided into two parts, and the increases in temperature distribution as a function of blood flow rate are measured using a thermocamera under constant ultrasound irradiation. The irradiation conditions of ultrasound waves were a central frequency of 1 MHz, a wave number length of 200 cycles, and a duty ratio of 0.2. The irradiation duration was 5 min, and the ultrasound intensity I SPTA was 36 W/cm2. The amount of temperature decrease caused by the cooling effect of blood flow increased with the blood flow rate and it became constant at a certain threshold of blood flow rate. The threshold of blood flow rate is about 250 ml/min.

  10. Bedside ultrasonography: Applications in critical care: Part I

    PubMed Central

    Chacko, Jose; Brar, Gagan

    2014-01-01

    There is increasing interest in the use of ultrasound to assess and guide the management of critically ill patients. The ability to carry out quick examinations by the bedside to answer specific clinical queries as well as repeatability are clear advantages in an acute care setting. In addition, delays associated with transfer of patients out of the Intensive Care Unit (ICU) and exposure to ionizing radiation may also be avoided. Ultrasonographic imaging looks set to evolve and complement clinical examination of acutely ill patients, offering quick answers by the bedside. In this two-part narrative review, we describe the applications of ultrasonography with a special focus on the management of the critically ill. Part I explores the utility of echocardiography in the ICU, with emphasis on its usefulness in the management of hemodynamically unstable patients. We also discuss lung ultrasonography - a vastly underutilized technology for several years, until intensivists began to realize its usefulness, and obvious advantages over chest radiography. Ultrasonography is rapidly emerging as an important tool in the hands of intensive care physicians. PMID:24914259

  11. Accurate evaluation of viscoelasticity of radial artery wall during flow-mediated dilation in ultrasound measurement

    NASA Astrophysics Data System (ADS)

    Sakai, Yasumasa; Taki, Hirofumi; Kanai, Hiroshi

    2016-07-01

    In our previous study, the viscoelasticity of the radial artery wall was estimated to diagnose endothelial dysfunction using a high-frequency (22 MHz) ultrasound device. In the present study, we employed a commercial ultrasound device (7.5 MHz) and estimated the viscoelasticity using arterial pressure and diameter, both of which were measured at the same position. In a phantom experiment, the proposed method successfully estimated the elasticity and viscosity of the phantom with errors of 1.8 and 30.3%, respectively. In an in vivo measurement, the transient change in the viscoelasticity was measured for three healthy subjects during flow-mediated dilation (FMD). The proposed method revealed the softening of the arterial wall originating from the FMD reaction within 100 s after avascularization. These results indicate the high performance of the proposed method in evaluating vascular endothelial function just after avascularization, where the function is difficult to be estimated by a conventional FMD measurement.

  12. A device for in vivo measurements of quantitative ultrasound variables at the human proximal femur.

    PubMed

    Barkmann, Reinhard; Laugier, Pascal; Moser, Urs; Dencks, Stefanie; Klausner, Michael; Padilla, Frédéric; Haïat, Guilleaume; Glüer, Claus-C

    2008-01-01

    Quantitative ultrasound (QUS) at the calcaneus has similar power as a bone mineral density (BMD)- measurement using DXA for the prediction of osteoporotic fracture risk. Ultrasound equipment is less expensive than DXA and free of ionizing radiation. As a mechanical wave, QUS has the potential of measuring different bone properties than dual X-ray absorptiometry (DXA,) which depends on X-ray attenuation and might be developed into a tool of comprehensive assessment of bone strength. However, site-specific DXA at the proximal femur shows best performance in the prediction of hip fractures. To combine the potential of QUS with measurements directly at the femur, we developed a device for in vivo QUS measurements at this site. Methods comprise ultrasound transmission through the bone, reflection from the bone surface, and backscatter from the inner trabecular structure. The complete area of the proximal femur can be scanned except at the femoral head, which interferes with the ilium. To avoid edge artifacts, a subregion of the proximal femur in the trochanteric region was selected as measurement region. First, in vivo measurements demonstrate a good signal to noise ratio and proper depiction of the proximal femur on an attenuation image. Our results demonstrate the feasibility of in vivo measurements. Further improvements can be expected by refinement of the scanning technique and data evaluation method to enhance the potential of the new method for the estimation of bone strength. PMID:18599408

  13. Can Anatomists Teach Living Anatomy Using Ultrasound as a Teaching Tool?

    ERIC Educational Resources Information Center

    Jurjus, Rosalyn A.; Dimorier, Kathryn; Brown, Kirsten; Slaby, Frank; Shokoohi, Hamid; Boniface, Keith; Liu, Yiju Teresa

    2014-01-01

    The utilization of bedside ultrasound by an increasing number of medical specialties has created the need for more ultrasound exposure and teaching in medical school. Although there is a widespread support for more vertical integration of ultrasound teaching throughout the undergraduate curriculum, little is known about whether the quality of…

  14. A buoyancy method for the measurement of total ultrasound power generated by HIFU transducers.

    PubMed

    Shaw, Adam

    2008-08-01

    Total acoustic output power is a key parameter for most ultrasonic medical equipment and especially for high intensity focused ultrasound (HIFU) systems, which treat certain cancers and other conditions by the noninvasive thermal ablation of the affected tissue. In planar unfocused fields, the use of a radiation force balance has been considered the most accurate method of measuring ultrasound power. However, radiation force is not strictly dependent on the ultrasound power but, rather, on the wave momentum resolved in one direction. Consequently, measurements based on radiation force become progressively less accurate as the ultrasound wave deviates further from a true plane-wave. HIFU transducers can be very strongly focused with F-numbers less than one: under these conditions, the uncertainty associated with use of the radiation force method becomes very significant. In this article, a new method for determining power is described in detail. Instead of radiation force, the new method relies on measuring the change in buoyancy caused by thermal expansion of castor oil inside a target suspended in a water bath. The change in volume is proportional to the incident energy and is independent of focusing or the angle of incidence of the ultrasound. The principles and theory behind the new method are laid out and the characteristics and construction of an appropriate target are examined and the results of validation tests are presented. The uncertainties of the method are calculated to be approximately +/-3.4% in the current implementation, with the potential to reduce these further. The new technique has several important advantages over the radiation force method and offers the potential to be an alternative primary standard method. PMID:18471952

  15. Prospective Controlled Study of Buttock Fat Transfer Using Ultrasound and Photographic Measurements

    PubMed Central

    2016-01-01

    Background: Buttock fat transfer is now the preferred method for gluteal augmentation. However, its efficacy has not been well-documented using measurements. Methods: Twenty-five consecutive patients underwent buttock fat transfer performed by the author. Twenty-one patients returned for measurements ≥3 months after surgery (inclusion rate, 84%). A separate group of 25 patients undergoing cosmetic surgery without buttock fat transfer served as controls. All patients underwent superwet liposuction using total intravenous anesthesia and no prone positioning. A closed filtration system was used to collect the fat. Subcutaneous fat thickness was assessed using ultrasound imaging. Measurements were made on standardized photographs. The data were controlled for change in body mass index. Clinical data were also evaluated. Results: The mean fat volume injected per buttock was 287 mL (range, 70–550 mL). Ultrasound measurements detected a significant increase in the subcutaneous fat thickness (P ≤ 0.001), with mean increments of 0.66 cm for the right buttock and 0.86 cm for the left buttock and no significant change for control patients. The mean calculated fat retention, based on the measured surface area injected, was 66%. Photographic measurements of buttock projection revealed a significant increase in treated patients (P < 0.01) and no significant change in control patients. There were no clinical complications at either recipient or donor sites and no evidence of oily cysts on ultrasound examinations. Conclusions: Photographic and ultrasound measurements, and clinical findings, confirm that buttock fat transfer effectively and safely increases buttock projection. PMID:27579222

  16. Measurement of the Doppler power of flowing blood using ultrasound Doppler devices.

    PubMed

    Huang, Chih-Chung; Chou, Hung-Lung; Chen, Pay-Yu

    2015-02-01

    Measurement of the Doppler power of signals backscattered from flowing blood (henceforth referred to as the Doppler power of flowing blood) and the echogenicity of flowing blood have been used widely to assess the degree of red blood cell (RBC) aggregation for more than 20 y. Many studies have used Doppler flowmeters based on an analogue circuit design to obtain the Doppler shifts in the signals backscattered from flowing blood; however, some recent studies have mentioned that the analogue Doppler flowmeter exhibits a frequency-response problem whereby the backscattered energy is lost at higher Doppler shift frequencies. Therefore, the measured Doppler power of flowing blood and evaluations of RBC aggregation obtained using an analogue Doppler device may be inaccurate. To overcome this problem, the present study implemented a field-programmable gate array-based digital pulsed-wave Doppler flowmeter to measure the Doppler power of flowing blood, in the aim of providing more accurate assessments of RBC aggregation. A clinical duplex ultrasound imaging system that can acquire pulsed-wave Doppler spectrograms is now available, but its usefulness for estimating the ultrasound scattering properties of blood is still in doubt. Therefore, the echogenicity and Doppler power of flowing blood under the same flow conditions were measured using a laboratory pulser-receiver system and a clinical ultrasound system, respectively, for comparisons. The experiments were carried out using porcine blood under steady laminar flow with both RBC suspensions and whole blood. The experimental results indicated that a clinical ultrasound system used to measure the Doppler spectrograms is not suitable for quantifying Doppler power. However, the Doppler power measured using a digital Doppler flowmeter can reveal the relationship between backscattering signals and the properties of blood cells because the effects of frequency response are eliminated. The measurements of the Doppler power and

  17. Bedside pediatric emergency evaluation through ultrasonography.

    PubMed

    Dietrich, Ann M; Coley, Brian D

    2008-11-01

    Bedside US has emerged as a valuable technology for the emergency department physician. It impacts clinical decision-making and the safety of procedures, and it decreases the time and increases the efficiency for completion of procedures. The portability, accuracy and noninvasive nature of US make it an ideal tool for the trained clinician. Bedside US can improve clinical decision-making for the pediatric patient by helping the clinician to identify critical pathology, direct therapeutic maneuvers and determine the futility of resuscitations. Many pediatric procedures, such as vascular access, lumbar puncture and bladder catheterization, are typically performed blindly. Bedside US enhances the success of procedures, minimizes complications and limits the number of attempts necessary to complete a procedure. Bedside US can be a valuable adjunct for complicated and time-sensitive disease processes such as ectopic pregnancy, testicular torsion and hypovolemia by providing information to guide diagnostic and therapeutic interventions that subsequently improve outcomes. PMID:18810417

  18. Measurement and Visualization of Three-Dimensional Vertebra Shape by Freehand Ultrasound Scanning

    NASA Astrophysics Data System (ADS)

    Kohyama, Kazuhiro; Yasumuro, Yoshihiro; Imura, Masataka; Manabe, Yoshitsugu; Oshiro, Osamu; Moroi, Keishichiro; Chihara, Kunihiro

    2005-06-01

    Paracentesis is a common operation for pain clinics and spinal anesthetics administration and requires empirical training and flexible skills to cope with the various cases of individual patients. We propose a method of measuring and visualizing three-dimensional vertebra shapes for assisting anesthesiologists, by an ultrasound imaging technique that is prevalent in many hospitals and has no harmful risks to the human body. The proposed system enables anesthesiologists to investigate vertebra shapes by freehand probing. Three-dimensional reconstruction and graphical rendering can be performed by monitoring the motion of the ultrasound probe and registering the scanned echography into the identical three-dimensional space. Considering the echography imaging features, volume rendering of hard tissue surfaces is achieved and interactive measurement is possible. This paper describes the practicability of the proposed method based on experimental measurement of both phantom and real lumbar vertebre and sacra.

  19. The influence of dairy consumption and physical activity on ultrasound bone measurements in Flemish children.

    PubMed

    De Smet, Stephanie; Michels, Nathalie; Polfliet, Carolien; D'Haese, Sara; Roggen, Inge; De Henauw, Stefaan; Sioen, Isabelle

    2015-03-01

    The study's aim was to analyse whether children's bone status, assessed by calcaneal ultrasound measurements, is influenced by dairy consumption and objectively measured physical activity (PA). Moreover, the interaction between dairy consumption and PA on bone mass was studied. Participants of this cross-sectional study were 306 Flemish children (6-12 years). Body composition was measured with air displacement plethysmography (BodPod), dairy consumption with a Food Frequency Questionnaire, PA with an accelerometer (only in 234 of the 306 children) and bone mass with quantitative ultrasound, quantifying speed of sound (SOS), broadband ultrasound attenuation (BUA) and Stiffness Index (SI). Regression analyses were used to study the associations between dairy consumption, PA, SOS, BUA and SI. Total dairy consumption and non-cheese dairy consumption were positively associated with SOS and SI, but no significant association could be demonstrated with BUA. In contrast, milk consumption, disregarding other dairy products, had no significant effect on calcaneal bone measurements. PA [vigorous PA, moderate to vigorous physical activity (MVPA) and counts per minute] was positively associated and sedentary time was negatively associated with BUA and SI, but no significant influence on SOS could be detected. Dairy consumption and PA (sedentary time and MVPA) did not show any interaction influencing bone measurements. In conclusion, even at young age, PA and dairy consumption positively influence bone mass. Promoting PA and dairy consumption in young children may, therefore, maximize peak bone mass, an important protective factor against osteoporosis later in life. PMID:24633491

  20. Validation of a novel translumbar ultrasound technique for measuring renal dimensions in horses.

    PubMed

    Habershon-Butcher, Jocelyn; Bowen, Mark; Hallowell, Gayle

    2014-01-01

    A reliable method for obtaining renal ultrasonographic measurements in the horse is important for diagnosis and monitoring of clinical renal disease. The aims of this prospective study were to develop and validate a novel translumbar ultrasound technique for measuring renal dimensions in horses. Six Thoroughbred or Thoroughbred part bred horses were recruited. All horses were scheduled for euthanasia due to reasons unrelated to the kidneys. Two observers recorded renal length, width, and depth; and dimensions of the cortex, medulla, pyramids, and pelvis for both kidneys in each horse using novel translumbar and conventional transabdominal ultrasound methods. The same measurements were recorded from post-mortem renal specimens. Both kidneys were consistently identified by both methods in the 15-17th intercostal spaces and paralumbar fossa. Using the translumbar technique, maximal dimensions were obtained for the left kidney in the 16th intercostal space (length 16.2 ± 2.0 cm, width 11.8 ± 0.5 cm, depth 6.4 ± 0.9 cm) and for the right kidney in the 15th intercostal space (length 16.1 ± 1.2 cm, width 13.4 ± 1.2 cm, depth 6.7 ± 0.7 cm). Renal dimensions obtained by transabdominal and translumbar projections did not differ (P > 0.05). Good correlations were found between overall renal dimensions and post-mortem measurements for both ultrasound techniques (r(2) > 0.8), but were better for the translumbar method (mean r(2) = 0.92 cf. 0.88). Good-to-excellent reliability was found for all translumbar ultrasound measurements except for the renal cortex. Reproducibility was better for the larger (overall length, width, and depth) than the smaller (cortex, medulla, and pyramids) structures. Findings indicated that translumbar ultrasonography is a valid method for measuring renal dimensions in horses. PMID:24118511

  1. Three-Dimensional Ultrasound Measurement of Blood Volume Flow in the Umbilical Cord

    PubMed Central

    Pinter, Stephen Z.; Rubin, Jonathan M.; Kripfgans, Oliver D.; Treadwell, Marjorie C.; Romero, Vivian C.; Richards, Michael S.; Zhang, Man; Hall, Anne L.; Fowlkes, J. Brian

    2013-01-01

    Objectives Three-dimensional (3D) umbilical cord blood volume flow measurement with the intention of providing a straightforward, consistent, and accurate method that overcomes the limitations associated with traditional pulsed-wave Doppler flow measurement and provides a means by which to recognize and manage at-risk pregnancies. Methods The first study involved 3D ultrasound volume flow measurements in seven healthy ewes whose pregnancies ranged from 18 to 19 weeks’ gestation (7 singletons). Sonographic umbilical arterial and venous flow measurements from each fetus were compared to the corresponding average measured arterial/venous flow to assess feasibility of measurement in a static vessel. A second complementary study involved 3D ultrasound volume flow measurements in seven healthy women whose pregnancies ranged from 17.9 to 36.3 weeks’ gestation (6 singletons, 1 twin). Umbilical venous flow measurements were compared to similar flow measurements reported in the literature. Pregnancy outcomes were abstracted from the medical records of the recruited patients. Results In the fetal sheep model, arterial/venous flow comparisons yielded errors of 10% or less for eight out of the nine measurements. In the clinical study, venous flow measurements showed agreement with the literature over a range of gestational ages. Two of the seven patients in the clinical study demonstrated lower flow than anticipated for gestational age; one was subsequently diagnosed with intrauterine growth restriction and the other with preeclampsia. Conclusions Accurate measurements of umbilical blood volume flow can be performed with relative ease in both the sheep model and in humans using the proposed 3D ultrasound flow measurement technique. Results encourage further development of the method as a means for diagnosis and identification of at-risk pregnancies. PMID:23197545

  2. The bedside evaluation: ritual and reason.

    PubMed

    Verghese, Abraham; Brady, Erika; Kapur, Cari Costanzo; Horwitz, Ralph I

    2011-10-18

    The bedside evaluation, consisting of the history and physical examination, was once the primary means of diagnosis and clinical monitoring. The recent explosion of imaging and laboratory testing has inverted the diagnostic paradigm. Physicians often bypass the bedside evaluation for immediate testing and therefore encounter an image of the patient before seeing the patient in the flesh. In addition to risking delayed or missed diagnosis of readily recognizable disease, physicians who forgo or circumvent the bedside evaluation risk the loss of an important ritual that can enhance the physician-patient relationship. Patients expect that some form of bedside evaluation will take place when they visit a physician. When physicians complete this evaluation in an expert manner, it can have a salutary effect. If done poorly or not at all, in contrast, it can undermine the physician-patient relationship. Studies suggest that the context, locale, and quality of the bedside evaluation are associated with neurobiological changes in the patient. Recognizing the importance of the bedside evaluation as a healing ritual and a powerful diagnostic tool when paired with judicious use of technology could be a stimulus for the recovery of an ebbing skill set among physicians. PMID:22007047

  3. Central Corneal Thickness Measurement by Ultrasound versus Orbscan II

    PubMed Central

    Faramarzi, Amir; Ziai, Hossein

    2008-01-01

    Purpose To compare Orbscan II and ultrasonic pachymetry for measurement of central corneal thickness (CCT) in eyes scheduled for keratorefractive surgery. Methods CCT was measured using Orbscan II (Bausch & Lomb, USA) and then by ultrasonic pachymetry (Tomey SP-3000, Tomey Ltd, Japan) in 100 eyes of 100 patients with no history of ocular surgery scheduled for excimer laser refractive surgery. Results Mean CCT was 544.7±35.5 (range 453–637) μm by ultrasonic pachymetry versus 546.9±41.6 (range 435–648) μm measured by Orbscan II applying an acoustic factor of 0.92 (P=0.14). The standard deviation of measurements was greater with Orbscan pachymetry but the difference was not statistically significant. Conclusion CCT measurements by Orbscan II (applying an acoustic factor) and by ultrasonic pachymetry are not significantly different; however, when CCT readings by Orbscan II are in the lower range, it is advisable to recheck the measurements using ultrasonic pachymetry. PMID:23479527

  4. Noninvasive Intracranial Volume and Pressure Measurements Using Ultrasound

    NASA Technical Reports Server (NTRS)

    Hargens, A. R.

    1998-01-01

    Prevention of secondary brain injuries following head can be accomplished most easily when intracranial pressure (ICP) is monitored. However, current measurement techniques are invasive and thus not practical in the combat environment. The Pulsed Phase Lock Loop (PPLL) devise, which was developed and patented, uses a unique, noninvasive ultrasonic phase comparison method to measure slight changes in cranial volume which occur with changes in ICP. Year one studies involved instrument improvements and measurement of altered intracranial distance with altered ICP in fresh cadavera. Our software was improved to facilitate future studies of normal subjects and trauma patients. Our bench studies proved that PPLL output correlated highly with changes in path length across a model cranium. Cadaveric studies demonstrated excellent compact, noninvasive devise for monitoring changes in intracranial distance may aid in the early detection of elevated ICP, decreasing risk of secondary brain injury and infection, and returning head-injured patients to duty.

  5. Biaxial Mechanical Testing of Posterior Sclera using High-Resolution Ultrasound Speckle Tracking for Strain Measurements

    PubMed Central

    Cruz-Perez, Benjamin; Tang, Junhua; Morris, Hugh J.; Palko, Joel R.; Pan, Xueliang; Hart, Richard T.; Liu, Jun

    2014-01-01

    This study aimed to characterize the mechanical responses of the sclera, the white outer coat of the eye, under equal-biaxial loading with unrestricted shear. An ultrasound speckle tracking technique was used to measure tissue deformation through sample thickness, expanding the capabilities of surface strain techniques. Eight porcine scleral samples were tested within 72 hours postmortem. High resolution ultrasound scans of scleral cross-sections along the two loading axes were acquired at 25 consecutive biaxial load levels. An additional repeat of the biaxial loading cycle was performed to measure a third normal strain emulating a strain gauge rosette for calculating the in-plane shear. The repeatability of the strain measurements during identical biaxial ramps was evaluated. A correlation-based ultrasound speckle tracking algorithm was used to compute the displacement field and determine the distributive strains in the sample cross-sections. A Fung type constitutive model including a shear term was used to determine the material constants of each individual specimen by fitting the model parameters to the experimental stress-strain data. A non-linear stress-strain response was observed in all samples. The meridian direction had significantly larger strains than the circumferential direction during equal-biaxial loadings (P’s<0.05). The stiffness along the two directions were also significantly different (P=0.02) but highly correlated (R2=0.8). These results showed that the mechanical properties of the porcine sclera were nonlinear and anisotropic under biaxial loading. This work has also demonstrated the feasibility of using ultrasound speckle tracking for strain measurements during mechanical testing. PMID:24438767

  6. Ultrasound Tissue-Mimicking Materials using Oil Gel and Measurement of Their Characteristics

    NASA Astrophysics Data System (ADS)

    Kondo, Toshio; Fujimoto, Hiroyuki

    2002-05-01

    Ultrasound tissue-mimicking material using oil gel for a phantom is proposed. As the material has advantages in that bacteria do not propagate in it and organic liquids contained in it tend not to evaporate, its characteristics are stable with time. The oil gel is manufactured from ethylene glycol and propylene glycol or polypropylene glycol. The sound velocities and the densities of the organic materials for making the oil gel are measured for evaluation of phantom materials.

  7. The increase of ultrasound measurements accuracy with the use of two-frequency sounding

    NASA Astrophysics Data System (ADS)

    Shulgina, Yu V.; Soldatov, A. I.; Rozanova, Ya V.; Soldatov, A. A.; Shulgin, E. M.

    2015-04-01

    In the article the new method for detection of the temporary position of the received echo signal is considered. The method consists in successive emission of sounded impulses on two frequencies and also the current study is concerned with the analysis of ultrasound fluctuation propagation time to and from the deflector on every frequency. The detailed description of the mathematical tool is presented in the article. The math tool used allows the authors to decrease the measurement error with help of calculations needed.

  8. Crack depth measurement in concrete using diffuse ultrasound

    NASA Astrophysics Data System (ADS)

    In, Chi Won; Kim, Jin-Yeon; Jacobs, Laurence L.; Kurtis, Kimberly

    2012-05-01

    Cracking in concrete structures is problematic because these cracks can significantly influence the stability of a concrete structure and compromise its durability. The first step to evaluate the serviceability of an in-field concrete structure is to have accurate information on existing crack depth. It is thus of paramount importance to be able to accurately determine the depth of cracks in these concrete structures. This research employs a diffusive ultrasonic technique to measure the depth of surface cracks in concrete. Ultrasonic measurements on a 25.4 × 33 × 60.96 cm3 concrete block containing an artificial crack with varying depths from 2.54 to 10.16 cm are conducted. Contact transducers with one transmitting and the other receiving the ultrasonic signals are mounted on the concrete surface on opposite sides of the crack. A pulse signal with the duration of 2μs is transmitted. In this frequency regime, wavelengths are sufficiently short (comparable with the aggregate size) so that a diffuse ultrasonic signal is detected. The arrival of the diffuse ultrasonic energy at the receiver is delayed by the existence of the crack. This lag-time and the diffusivity of the concrete sample are measured, and a finite element model is employed to solve the inverse problem to determine the crack depth from these measured diffuse ultrasonic parameters.

  9. Exploratory Analysis of Carbon Dioxide Levels and Ultrasound Measures of the Eye During ISS Missions

    NASA Technical Reports Server (NTRS)

    Schaefer, C.; Young, M.; Mason, S.; Coble, C.; Wear, M. L.; Sargsyan, A.; Garcia, K.; Law. J.; Alexander, D.; Ryder, V. Myers; Van Baalen, M.

    2016-01-01

    Carbon dioxide (CO2) levels on ISS have typically averaged 2.3 to 5.3mm Hg, with large fluctuations occurring over periods of hours and days. CO2 has effects on cerebral vascular tone, resulting in vasodilation and alteration of cerebral blood flow(CBF). Increased CBF leads to elevated intracranial pressure(ICP), which is a factor leading to visual disturbance, headaches, and other central nervous system symptoms. Ultrasound of the optic nerve provides a surrogate measurement of ICP. Inflight ultrasounds were implemented as an enhanced screening tool for the Visual Impairment/Intracranial Pressure (VIIP) Syndrome. This analysis examines the relationships between ambient CO2 levels on ISS and ultrasound measures of the eye in an effort to understand how CO2 may be associated with VIIP and to inform future analysis of inflight VIIP data. Results as shown in Figure2, there was a large timeframe where CO2 readings were removed due to sensor fault errors(see Limitations), from June 2011 to January 2012. After extensive cleaning of the CO2 data, metrics for all of the data were calculated (Table2). Preliminary analyses showed possible associations between variability measures of CO2 and AP diameter (Figure3),and average CO2 exposure and ONSD(Figure4). Adjustments for multiple comparisons were not made due to the exploratory nature of the analysis.

  10. Reliability of measurements of rat lateral gastrocnemius architectural parameters obtained from ultrasound biomicroscopic images.

    PubMed

    Peixinho, Carolina Carneiro; Martins, Natália Santos da Fonseca; de Oliveira, Liliam Fernandes; Machado, João Carlos

    2014-01-01

    This study used ultrasound biomicroscopy (UBM) to quantify the pennation angle (PA) and muscle thickness (MT) of rat skeletal muscle and evaluated the reliability and reproducibility of the method by statistical analysis, determining the coefficient of variation (CV), intraclass correlation coefficient (ICC) and typical error of measurement. A UBM system with a center frequency of 40 MHz was used to acquire images of the right lateral gastrocnemius of ten male Wistar rats on two different days and with two ankle positions (90° or 150°). Two independent measurements of the PA and MT were randomly performed in each of three picture frames. The analysis resulted in CVs of 10.47% and 4.81% for the PA and the MT, respectively, for the ankle at 90° and 9.24% and 5.98% for the ankle at 150°. Additionally, the ICC values ranged from 0.75 to 0.92 for the PA and 0.57 to 0.99 for the MT. Statistically significant differences between the ankle positions were observed for the PA (p = 0.00013). The reliability of the PA and MT measurements for the rat right lateral gastrocnemius, determined from the ultrasound biomicroscopy images, was high (>0.90) for the methodology proposed. This finding indicates the potential of ultrasound biomicroscopy for quantitative muscle characterization and the longitudinal examination of tissue adaptation to different conditions of use, disease and rehabilitation. PMID:24505306

  11. Review article: Use of ultrasound in the developing world

    PubMed Central

    2011-01-01

    As portability and durability improve, bedside, clinician-performed ultrasound is seeing increasing use in rural, underdeveloped parts of the world. Physicians, nurses and medical officers have demonstrated the ability to perform and interpret a large variety of ultrasound exams, and a growing body of literature supports the use of point-of-care ultrasound in developing nations. We review, by region, the existing literature in support of ultrasound use in the developing world and training guidelines currently in use, and highlight indications for emergency ultrasound in the developing world. We suggest future directions for bedside ultrasound use and research to improve diagnostic capacity and patient care in the most remote areas of the globe. PMID:22152055

  12. Ultrasound Doppler Velocimetry Measurements in Turbulent Liquid Metal Channel Flow

    NASA Astrophysics Data System (ADS)

    Rivero, Michel; Jian, Dandan; Karcher, Christian; Cuevas, Sergio

    2010-11-01

    Control of molten metal flow using magnetic fields is important in industrial applications. The Electromagnetic Flow Control Channel (EFCO) is an experimental test facility, located at Ilmenau University of Technology, for the development of such kind of control systems. The working fluid is the low-melting liquid metal alloy GaInSn in eutectic composition. In this channel, flow control is realized by combining and coupling the non-contact flow driving technology of electromagnetic pumps based on rotating permanent magnets and the non-contact flow rate measurement technology termed Lorentz Force Velocimetry (LFV). The flow rate is adjusted by controlling the rotation rate of the permanent magnet system. Physically, LFV is based on measuring the force acting on a magnet system. This force is induced by the melt flow passing through the static magnetic field generated by the system and is proportional to the flow. To calibrate such flow meters, we apply UDV technique to measure and analyse both turbulent hydrodynamic and MHD flow profiles in EFCO at various Reynolds numbers.

  13. Non-invasive measurement of local pulse pressure by pulse wave-based ultrasound manometry (PWUM)

    PubMed Central

    Vappou, J; Luo, J; Okajima, K; Di Tullio, M; Konofagou, E E

    2014-01-01

    The central Blood Pressure (CBP) has been established as a relevant indicator of cardiovascular disease. Despite its significance, CBP remains particularly challenging to measure in standard clinical practice. The objective of this study is to introduce Pulse Wave-based Ultrasound Manometry (PWUM) as a simple-touse, non-invasive ultrasound-based method for quantitative measurement of the central pulse pressure. Arterial wall displacements are estimated using radiofrequency (RF) ultrasound signals acquired at high frame rates and the pulse pressure waveform is estimated using both the distension waveform and the local Pulse Wave Velocity (PWV). The method was tested on the abdominal aorta of 11 healthy subjects (age 35.7± 16 y.o.). PWUM pulse pressure measurements were compared to those obtained by radial applanation tonometry using a commercial system. The average intra-subject variability of the pulse pressure amplitude was found to be equal to 4.2 mmHg, demonstrating good reproducibility of the method. Excellent correlation was found between the waveforms obtained by PWUM and those obtained by tonometry in all subjects (0.94 ultrasound imaging systems. It provides an estimate of the pulse pressure waveform at the imaged location, and may offer therefore the possibility to estimate the pulse pressure at different arterial sites. Future developments include the validation of the method against invasive estimates on patients, as well as its application to other large arteries. PMID:21904023

  14. In vivo measurements of biceps brachii and triceps brachii fascicle lengths using extended field-of-view ultrasound.

    PubMed

    Nelson, Christa M; Dewald, Julius P A; Murray, Wendy M

    2016-06-14

    Muscle fascicle lengths are commonly measured in vivo using static 2D ultrasound. However, static ultrasound is best suited for muscles with shorter, pennate fascicles, in which entire fascicles can be viewed in one static image. An informal review of data from cadaver dissections suggests that over 60% of muscles in the upper and lower limbs have optimal lengths longer than the field-of-view of standard ultrasound transducers. Extended field-of-view ultrasound (EFOV) has been validated for measurement of fascicle lengths, but has yet to be implemented in the upper extremity in humans. In this study, EFOV ultrasound was used to measure the lengths of fascicles sampled from the anterior portion of the biceps brachii (long head) and the distal half of the triceps brachii (lateral head). Data were collected from both limbs of eleven healthy subjects in three elbow postures under passive conditions. Image analysis was completed via Image J. Fascicle length measurements were highly reliable, with intra-class correlations ranging from .92 to .95 for biceps and .81-.92 for triceps (p<.001). Systematic, significant differences in measured lengths, consistent with muscle function, were observed between elbow positions. In vivo measurements for both muscles in this study were within the range of cadaver data. This work establishes the feasibility and reliability of EFOV ultrasound for measurement of the long fascicles of muscles in the upper limb. PMID:27083062

  15. Measurement of shear-wave velocity by ultrasound critical-angle reflectometry (UCR)

    NASA Technical Reports Server (NTRS)

    Mehta, S.; Antich, P.; Blomqvist, C. G. (Principal Investigator)

    1997-01-01

    There exists a growing body of research that relates the measurement of pressure-wave velocity in bone to different physiological conditions and treatment modalities. The shear-wave velocity has been less studied, although it is necessary for a more complete understanding of the mechanical properties of bone. Ultrasound critical-angle reflectometry (UCR) is a noninvasive and nondestructive technique previously used to measure pressure-wave velocities both in vitro and in vivo. This note describes its application to the measurement of shear-wave velocity in bone, whether directly accessible or covered by soft tissue.

  16. Ultrasound annual, 1986

    SciTech Connect

    Sanders, R.C.; Hill, M.C.

    1986-01-01

    This book provides an analyses of developments in the field of diagnostic ultrasound. Endoscopic ultrasound and ultrasound-guided aspiration of ovarian follicles for in vitro fertilization are addressed. The use of Doppler ultrasound to measure blood flow in obstetrics is also examined.

  17. Ultrasound measurements in the spinel compound GeCo2O4

    NASA Astrophysics Data System (ADS)

    Sasame, H.; Yoshimoto, H.; Takahashi, Y.; Watanabe, T.; Takase, K.; Takano, Y.; Hara, S.; Ikeda, Si

    2007-12-01

    Elastic properties of the spinel compound GeCo2O4 were investigated by the ultrasound velocity measurements in the single crystal. Absence of the elastic softening in (C11- C12)/2 in the paramagnetic state suggests the Jahn-Teller inactive character of Co2+, despite the presence of the orbital degree of freedom. The pronounced C44 anomaly in the paramagnetic state near TN alternatively suggests that the ultrasound dominantly couple to the exchange interactions among Co2+ ions by the exchange striction effect. The present results conclude that Co2+ adopts the high spin state in this substance. In the antiferromagnetic phase, new elastic anomalies were observed only in (C11- C12)/2 implying the occurrence of the magnetic transitions triggered by the exchange interactions within the Co2+ bonds along [110] directions.

  18. Ultrasound measurement of pediatric visceral fat thickness: correlations with metabolic and liver profiles

    PubMed Central

    Jung, Jae Hwa; Jung, Mo Kyung; Kim, Ki Eun; Kwon, Ah Reum; Yoon, Choon Sik; Kim, Ho Seong; Kim, Duk-Hee

    2016-01-01

    Purpose Abdominal obesity is a fundamental factor underlying the development of metabolic syndrome. Because of radiation exposure and cost, computed tomography or dual-energy X-ray absorptiometry to evaluate abdominal adiposity are not appropriate in children. Authors evaluated whether ultrasound results could be an indicator of insulin resistance and nonalcoholic fatty liver disease (NAFLD). Methods We enrolled 73 subjects (aged 6–16 years) who were evaluated abdominal adiposity by ultrasound. Subcutaneous fat thickness was defined as the measurement from the skin-fat interface to the linea alba, and visceral fat thickness (VFT) was defined as the thickness from the linea alba to the aorta. Anthropometric and biochemical metabolic parameters were also collected and compared. The subjects who met 2 criteria, radiologic confirmed fatty liver and alanine aminotransferase >40, were diagnosed with NAFLD. Results There was a strong positive correlation between VFT and obesity. VFT was highly correlated with the homeostasis model assessment for insulin resistance score (r=0.403, P<0.001). The area under the curve for VFT as a predictor of NAFLD was 0.875 (95% confidence interval [CI], 0.787–0.964). VFT of 34.3 mm was found to be the discriminating cutoff for NAFLD (sensitivity, 84.6%; specificity, 71.2%, respectively). Conclusion Ultrasound could be useful in measuring VFT and assessing abdominal adiposity in children. Moreover, increased VFT might be an appropriate prognostic factor for insulin resistance and NAFLD. PMID:27462583

  19. Ultrasound modulated light blood flow measurement using intensity autocorrelation function: a Monte-Carlo simulation

    NASA Astrophysics Data System (ADS)

    Tsalach, A.; Metzger, Y.; Breskin, I.; Zeitak, R.; Shechter, R.

    2014-03-01

    Development of techniques for continuous measurement of regional blood flow, and in particular cerebral blood flow (CBF), is essential for monitoring critical care patients. Recently, a novel technique, based on ultrasound modulation of light was developed for non-invasive, continuous CBF monitoring (termed ultrasound-tagged light (UTL or UT-NIRS)), and shown to correlate with readings of 133 Xe SPECT1 and laser Doppler2. Coherent light is introduced into the tissue concurrently with an Ultrasound (US) field. Displacement of scattering centers within the sampled volume induced by Brownian motion, blood flow and the US field affects the photons' temporal correlation. Hence, the temporal fluctuations of the obtained speckle pattern provide dynamic information about the blood flow. We developed a comprehensive simulation, combining the effects of Brownian motion, US and flow on the obtained speckle pattern. Photons trajectories within the tissue are generated using a Monte-Carlo based model. Then, the temporal changes in the optical path due to displacement of scattering centers are determined, and the corresponding interference pattern over time is derived. Finally, the light intensity autocorrelation function of a single speckle is calculated, from which the tissue decorrelation time is determined. The simulation's results are compared with in-vitro experiments, using a digital correlator, demonstrating decorrelation time prediction within the 95% confidence interval. This model may assist in the development of optical based methods for blood flow measurements and particularly, in methods using the acousto-optic effect.

  20. Measuring the volume of uterine fibroids using 2- and 3-dimensional ultrasound and comparison with histopathology.

    PubMed

    Zivković, Nikica; Zivković, Kreiimir; Despot, Albert; Paić, Josip; Zelić, Ana

    2012-12-01

    The aim of this study was clinical testing of the reliability and usability of three-dimensional (3D) and two-dimensional (2D) ultrasound (US) technology. The ultimate aim and purpose of this study was to establish ultrasound methods, standards and protocols for determining the volume of any gynecologic organ or tumor. The study included 31 women in reproductive age and postmenopause. All patients were examined with a RIC 5-9 3D-endovaginal probe (4.3-7.5 MHz) on a Voluson 730 Pro ultrasound device. The volume of myomas was measured by using the existing 2D and 3D ultrasound methods on the above mentioned device. All patients underwent myomectomy or hysterectomy due to clinically and ultrasonographically diagnosed uterine myomas indicating operative intervention. After the operation, the pathologist determined the volume of removed myomas by measuring them in a gauge bowl containing water, i.e. using Archimedes' principle (lift), serving as the control group with histopathologic diagnosis. A total of 155 myoma volumes were processed on 2D display, 31 myoma volumes were preoperatively measured on 3D display and 31 myoma volumes were measured by the pathologist. The values of US measurements for each US method were expressed as mean value of all measurements of myoma volumes. Statistical processing of the results and Student's t-test for independent samples revealed that the 2nd examined US method (measuring of myoma by using an ellipse and the longer tumor diameter) and 4th examined US method (measuring of myoma by using the longer and shorter tumor diameters together with establishing their mean values) in 2D US technique, as well as the 6th examined US method in 3D US technique showed no significant measurement differences in comparison with control measurement in a gauge bowl containing water (p < 0.05), indicating acceptability of the US methods for verifying tumor volumes. The standard error in determining the volume of myomas by the above US methods varied

  1. 2D and 3D endoanal and translabial ultrasound measurement variation in normal postpartum measurements of the anal sphincter complex

    PubMed Central

    MERIWETHER, Kate V.; HALL, Rebecca J.; LEEMAN, Lawrence M.; MIGLIACCIO, Laura; QUALLS, Clifford; ROGERS, Rebecca G.

    2015-01-01

    Introduction Women may experience anal sphincter anatomy changes after vaginal or Cesarean delivery. Therefore, accurate and acceptable imaging options to evaluate the anal sphincter complex (ASC) are needed. ASC measurements may differ between translabial (TL-US) and endoanal ultrasound (EA-US) imaging and between 2D and 3D ultrasound. The objective of this analysis was to describe measurement variation between these modalities. Methods Primiparous women underwent 2D and 3D TL-US imaging of the ASC six months after a vaginal birth (VB) or Cesarean delivery (CD). A subset of women also underwent EA-US measurements. Measurements included the internal anal sphincter (IAS) thickness at proximal, mid, and distal levels and the external anal sphincter (EAS) at 3, 6, 9, and 12 o’clock positions as well as bilateral thickness of the pubovisceralis muscle (PVM). Results 433 women presented for US: 423 had TL-US and 64 had both TL-US and EA-US of the ASC. All IAS measurements were significantly thicker on TL-US than EA-US (all p<0.01), while EAS measurements were significantly thicker on EA-US (p<0.01). PVM measurements with 3D or 2D imaging were similar (p>0.20). On both TL-US and EA-US, there were multiple sites where significant asymmetry existed in left versus right measurements. Conclusion The ultrasound modality used to image the ASC introduces small but significant changes in measurements, and the direction of the bias depends on the muscle and location being imaged. PMID:25344221

  2. Bedside ultrasonography (US), Echoscopy and US point of care as a new kind of stethoscope for Internal Medicine Departments: the training program of the Italian Internal Medicine Society (SIMI).

    PubMed

    Arienti, Vincenzo; Di Giulio, Rosella; Cogliati, Chiara; Accogli, Esterita; Aluigi, Leonardo; Corazza, Gino Roberto

    2014-10-01

    In recent years, thanks to the development of miniaturized ultrasound devices, comparable to personal computers, tablets and even to smart phones, we have seen an increasing use of bedside ultrasound in internal medicine departments as a novel kind of ultrasound stethoscope. The clinical ultrasound-assisted approach has proved to be particularly useful in assessing patients with nodules of the neck, dyspnoea, abdominal pain, and with limb edema. In several cases, it has allowed a simple, rapid and precise diagnosis. Since 2005, the Italian Society of Internal Medicine and its Ultrasound Study Group has been holding a Summer School and training courses in ultrasound for residents in internal medicine. A national network of schools in bedside ultrasound was then organized for internal medicine specialists who want to learn this technique. Because bedside ultrasound is a user-dependent diagnostic method, it is important to define the limits and advantages of different new ultrasound devices, to classify them (i.e. Echoscopy and Point of Care Ultrasound), to establish appropriate different levels of competence and to ensure their specific training. In this review, we describe the point of view of the Italian Internal Medicine Society on these topics. PMID:25145290

  3. Attenuation of laser generated ultrasound in steel at high temperatures; comparison of theory and experimental measurements.

    PubMed

    Kube, Christopher M

    2016-08-01

    This article reexamines some recently published laser ultrasound measurements of the longitudinal attenuation coefficient obtained during annealing of two steel samples (DP600 and S550). Theoretical attenuation models based on perturbation theory are compared to these experimental measurements. It is observed that the Rayleigh attenuation formulas provide the correct qualitative agreement, but overestimate the experimental values. The more general theoretical attenuation model considered here demonstrates strong quantitative agreement, which highlights the applicability of the model during real-time metal processing. PMID:27235777

  4. Ultrasound Velocity Measurements in High-Chromium Steel Under Plastic Deformation

    NASA Astrophysics Data System (ADS)

    Lunev, Aleksey; Bochkareva, Anna; Barannikova, Svetlana; Zuev, Lev

    2016-04-01

    In the present study, the variation of the propagation velocity of ultrasound in the plastic deformation of corrosion-resistant high-chromium steel 40X13 with ferrite-carbide (delivery status), martensitic (quenched) and sorbitol (after high-temperature tempering) structures have beem studied/ It is found that each state shows its view of the loading curve. In the delivery state diagram loading is substantially parabolic throughout, while in the martensitic state contains only linear strain hardening step and in the sorbitol state the plastic flow curve is three-step. The velocity of ultrasonic surface waves (Rayleigh waves) was measured simultaneously with the registration of the loading curve in the investigated steel in tension. It is shown that the dependence of the velocity of ultrasound in active loading is determined by the law of plastic flow, that is, the staging of the corresponding diagram of loading. Structural state of the investigated steel is not only changing the type of the deformation curve under uniaxial tension, but also changes the nature of ultrasound speed of deformation.

  5. Toward predicting tensile strength of pharmaceutical tablets by ultrasound measurement in continuous manufacturing.

    PubMed

    Razavi, Sonia M; Callegari, Gerardo; Drazer, German; Cuitiño, Alberto M

    2016-06-30

    An ultrasound measurement system was employed as a non-destructive method to evaluate its reliability in predicting the tensile strength of tablets and investigate the benefits of incorporating it in a continuous line, manufacturing solid dosage forms. Tablets containing lactose, acetaminophen, and magnesium stearate were manufactured continuously and in batches. The effect of two processing parameters, compaction force and level of shear strain were examined. Young's modulus and tensile strength of tablets were obtained by ultrasound and diametrical mechanical testing, respectively. It was found that as the blend was exposed to increasing levels of shear strain, the speed of sound in the tablets decreased and the tablets became both softer and mechanically weaker. Moreover, the results indicate that two separate tablet material properties (e.g., relative density and Young's modulus) are necessary in order to predict tensile strength. A strategy for hardness prediction is proposed that uses the existing models for Young's modulus and tensile strength of porous materials. Ultrasound testing was found to be very sensitive in differentiating tablets with similar formulation but produced under different processing conditions (e.g., different level of shear strain), thus, providing a fast, and non-destructive method for hardness prediction that could be incorporated to a continuous manufacturing process. PMID:27157310

  6. Pulse-echo ultrasound transit time spectroscopy: A comparison of experimental measurement and simulation prediction.

    PubMed

    Wille, Marie-Luise; Almualimi, Majdi A; Langton, Christian M

    2016-01-01

    Considering ultrasound propagation through complex composite media as an array of parallel sonic rays, a comparison of computer-simulated prediction with experimental data has previously been reported for transmission mode (where one transducer serves as transmitter, the other as receiver) in a series of 10 acrylic step-wedge samples, immersed in water, exhibiting varying degrees of transit time inhomogeneity. In this study, the same samples were used but in pulse-echo mode, where the same ultrasound transducer served as both transmitter and receiver, detecting both 'primary' (internal sample interface) and 'secondary' (external sample interface) echoes. A transit time spectrum was derived, describing the proportion of sonic rays with a particular transit time. A computer simulation was performed to predict the transit time and amplitude of various echoes created, and compared with experimental data. Applying an amplitude-tolerance analysis, 91.7% ± 3.7% of the simulated data were within ±1 standard deviation of the experimentally measured amplitude-time data. Correlation of predicted and experimental transit time spectra provided coefficients of determination (R(2)%) ranging from 100.0% to 96.8% for the various samples tested. The results acquired from this study provide good evidence for the concept of parallel sonic rays. Furthermore, deconvolution of experimental input and output signals has been shown to provide an effective method to identify echoes otherwise lost due to phase cancellation. Potential applications of pulse-echo ultrasound transit time spectroscopy include improvement of ultrasound image fidelity by improving spatial resolution and reducing phase interference artefacts. PMID:26586528

  7. Absolute and relative reliability of lumbar interspinous process ultrasound imaging measurements

    PubMed Central

    Tozawa, Ryosuke; Katoh, Munenori; Aramaki, Hidefumi; Kawasaki, Tsubasa; Nishikawa, Yuichi; Kumamoto, Tsuneo; Fujinawa, Osamu

    2016-01-01

    [Purpose] The intra- and inter-examiner reliabilities of lumbar interspinous process distances measured by ultrasound imaging were examined. [Subjects and Methods] The subjects were 10 males who had no history of orthopedic diseases or dysfunctions. Ten lumbar interspinous images from 360 images captured from 10 subjects were selected. The 10 images were measured by nine examiners. The lumbar interspinous process distance measurements were performed five times by each examiner. In addition, four of the nine examiners measured the distances again after 4 days for test-retest analysis. In statistical analysis, the intraclass correlation coefficient was used to investigate relative reliability, and Bland-Altman analysis was used to investigate absolute reliability. [Results] The intraclass correlation coefficients (1, 1) for intra-examiner reliability ranged from 0.985 to 0.998. For inter-rater reliability, the intraclass correlation coefficient (2, 1) was 0.969. The intraclass correlation coefficients (1, 2) for test-retest reliability ranged from 0.991 to 0.999. The Bland-Altman analysis results indicated no systematic error. [Conclusion] The results indicate that ultrasound measurements of interspinous process distance are highly reliable even when measured only once by a single person.

  8. Evaluation and comparison of current fetal ultrasound image segmentation methods for biometric measurements: a grand challenge.

    PubMed

    Rueda, Sylvia; Fathima, Sana; Knight, Caroline L; Yaqub, Mohammad; Papageorghiou, Aris T; Rahmatullah, Bahbibi; Foi, Alessandro; Maggioni, Matteo; Pepe, Antonietta; Tohka, Jussi; Stebbing, Richard V; McManigle, John E; Ciurte, Anca; Bresson, Xavier; Cuadra, Meritxell Bach; Sun, Changming; Ponomarev, Gennady V; Gelfand, Mikhail S; Kazanov, Marat D; Wang, Ching-Wei; Chen, Hsiang-Chou; Peng, Chun-Wei; Hung, Chu-Mei; Noble, J Alison

    2014-04-01

    This paper presents the evaluation results of the methods submitted to Challenge US: Biometric Measurements from Fetal Ultrasound Images, a segmentation challenge held at the IEEE International Symposium on Biomedical Imaging 2012. The challenge was set to compare and evaluate current fetal ultrasound image segmentation methods. It consisted of automatically segmenting fetal anatomical structures to measure standard obstetric biometric parameters, from 2D fetal ultrasound images taken on fetuses at different gestational ages (21 weeks, 28 weeks, and 33 weeks) and with varying image quality to reflect data encountered in real clinical environments. Four independent sub-challenges were proposed, according to the objects of interest measured in clinical practice: abdomen, head, femur, and whole fetus. Five teams participated in the head sub-challenge and two teams in the femur sub-challenge, including one team who tackled both. Nobody attempted the abdomen and whole fetus sub-challenges. The challenge goals were two-fold and the participants were asked to submit the segmentation results as well as the measurements derived from the segmented objects. Extensive quantitative (region-based, distance-based, and Bland-Altman measurements) and qualitative evaluation was performed to compare the results from a representative selection of current methods submitted to the challenge. Several experts (three for the head sub-challenge and two for the femur sub-challenge), with different degrees of expertise, manually delineated the objects of interest to define the ground truth used within the evaluation framework. For the head sub-challenge, several groups produced results that could be potentially used in clinical settings, with comparable performance to manual delineations. The femur sub-challenge had inferior performance to the head sub-challenge due to the fact that it is a harder segmentation problem and that the techniques presented relied more on the femur's appearance

  9. Interpreting diaphragmatic movement with bedside imaging, review article.

    PubMed

    Haji, K; Royse, A; Green, C; Botha, J; Canty, D; Royse, C

    2016-08-01

    The diaphragm is the most important muscle of respiration. At equilibrium, the load imposed on the diaphragmatic muscles from transdiaphragmatic pressure balances the force generated by diaphragmatic muscles. However, procedural and nonprocedural thoracic and abdominal conditions may disrupt this equilibrium and impair diaphragmatic function. Diaphragmatic dysfunction is associated with respiratory insufficiency and poor outcome. Therefore, rapid diagnosis and early intervention may be useful. Ultrasound imaging provides quick and accurate bedside assessment of the diaphragm. Various imaging techniques have been suggested, using 2-dimensional and M-mode technology. Diaphragm viewing depends on the degree of robe movement, determined by the angle of incidence of the ultrasound beam and by the direction of probe movement. In this review, we will discuss the function of the diaphragm focusing on clinically important anatomical and physiological properties of the diaphragm. We will review the literature regarding various sonographic techniques for diaphragm assessment. We will also explore the evidence for the role of the tidal displacement of subdiaphragmatic organs as a surrogate for diaphragm movement. PMID:27288611

  10. Design and implementation of a smartphone-based portable ultrasound pulsed-wave Doppler device for blood flow measurement.

    PubMed

    Huang, Chih-Chung; Lee, Po-Yang; Chen, Pay-Yu; Liu, Ting-Yu

    2012-01-01

    Blood flow measurement using Doppler ultrasound has become a useful tool for diagnosing cardiovascular diseases and as a physiological monitor. Recently, pocket-sized ultrasound scanners have been introduced for portable diagnosis. The present paper reports the implementation of a portable ultrasound pulsed-wave (PW) Doppler flowmeter using a smartphone. A 10-MHz ultrasonic surface transducer was designed for the dynamic monitoring of blood flow velocity. The directional baseband Doppler shift signals were obtained using a portable analog circuit system. After hardware processing, the Doppler signals were fed directly to a smartphone for Doppler spectrogram analysis and display in real time. To the best of our knowledge, this is the first report of the use of this system for medical ultrasound Doppler signal processing. A Couette flow phantom, consisting of two parallel disks with a 2-mm gap, was used to evaluate and calibrate the device. Doppler spectrograms of porcine blood flow were measured using this stand-alone portable device under the pulsatile condition. Subsequently, in vivo portable system verification was performed by measuring the arterial blood flow of a rat and comparing the results with the measurement from a commercial ultrasound duplex scanner. All of the results demonstrated the potential for using a smartphone as a novel embedded system for portable medical ultrasound applications. PMID:22293750

  11. Acoustic characterization of high intensity focused ultrasound fields: A combined measurement and modeling approach

    PubMed Central

    Canney, Michael S.; Bailey, Michael R.; Crum, Lawrence A.; Khokhlova, Vera A.; Sapozhnikov, Oleg A.

    2008-01-01

    Acoustic characterization of high intensity focused ultrasound (HIFU) fields is important both for the accurate prediction of ultrasound induced bioeffects in tissues and for the development of regulatory standards for clinical HIFU devices. In this paper, a method to determine HIFU field parameters at and around the focus is proposed. Nonlinear pressure waveforms were measured and modeled in water and in a tissue-mimicking gel phantom for a 2 MHz transducer with an aperture and focal length of 4.4 cm. Measurements were performed with a fiber optic probe hydrophone at intensity levels up to 24 000 W∕cm2. The inputs to a Khokhlov–Zabolotskaya–Kuznetsov-type numerical model were determined based on experimental low amplitude beam plots. Strongly asymmetric waveforms with peak positive pressures up to 80 MPa and peak negative pressures up to 15 MPa were obtained both numerically and experimentally. Numerical simulations and experimental measurements agreed well; however, when steep shocks were present in the waveform at focal intensity levels higher than 6000 W∕cm2, lower values of the peak positive pressure were observed in the measured waveforms. This underrepresentation was attributed mainly to the limited hydrophone bandwidth of 100 MHz. It is shown that a combination of measurements and modeling is necessary to enable accurate characterization of HIFU fields. PMID:19062878

  12. Non-invasive ultrasound based temperature measurements at reciprocating screw plastication units: Methodology and applications

    NASA Astrophysics Data System (ADS)

    Straka, Klaus; Praher, Bernhard; Steinbichler, Georg

    2015-05-01

    Previous attempts to accurately measure the real polymer melt temperature in the screw chamber as well as in the screw channels have failed on account of the challenging metrological boundary conditions (high pressure, high temperature, rotational and axial screw movement). We developed a novel ultrasound system - based on reflection measurements - for the online determination of these important process parameters. Using available pressure-volume-temperature (pvT) data from a polymer it is possible to estimate the density and adiabatic compressibility of the material and therefore the pressure and temperature depending longitudinal ultrasound velocity. From the measured ultrasonic reflection time from the screw root and barrel wall and the pressure it is possible to calculate the mean temperature in the screw channel or in the chamber in front of the screw (in opposition to flush mounted infrared or thermocouple probes). By means of the above described system we are able to measure axial profiles of the mean temperature in the screw chamber. The data gathered by the measurement system can be used to develop control strategies for the plastication process to reduce temperature gradients within the screw chamber or as input data for injection moulding simulation.

  13. A noninvasive ultrasound elastography technique for measuring surface waves on the lung.

    PubMed

    Zhang, Xiaoming; Osborn, Thomas; Kalra, Sanjay

    2016-09-01

    The purpose of this work was to demonstrate an ultrasound based surface wave elastography (SWE) technique for generating and detecting surface waves on the lung. The motivation was to develop a noninvasive technique for assessing superficial lung tissue disease including interstitial lung disease (ILD). ILD comprises a number of lung disorders in which the lung tissue is stiffened and damaged due to fibrosis of the lung tissue. Currently, chest radiographs and computed tomography (CT) are the most common clinical methods for evaluating lung disease, but they are associated with radiation and cannot measure lung mechanical properties. The novelty of SWE is to develop a noninvasive and nonionizing technique to measure the elastic properties of superficial lung tissue. We propose to generate waves on the lung surface through wave propagation from a local harmonic vibration excitation on the chest through an intercostal space. The resulting surface wave propagation on the lung is detected using an ultrasound probe through the intercostal space. To demonstrate that surface waves can be generated on the lung, an ex vivo muscle-lung model was developed to evaluate lung surface wave generation and detection. In this model, swine muscle was laid atop a swine lung. A vibration excitation of 0.1s 100Hz wave was generated on the muscle surface and the surface waves on the lung were detected using a linear array ultrasound probe at 5MHz. To test its feasibility for patient use, SWE was used to measure both lungs of an ILD patient through eight intercostal spaces. The mean wave speed was 1.71±0.20m/s (±SD) at the functional residual capacity, while the mean wave speed was 2.36±0.33m/s at the total lung capacity. These studies support the feasibility of SWE for noninvasive measurement of elastic properties of lung and demonstrate potential for assessment of ILD. PMID:27392204

  14. Should intensivist do routine abdominal ultrasound?

    PubMed

    Samanta, Sukhen; Samanta, Sujay; Soni, Kapil Dev; Aggarwal, Richa

    2015-09-01

    Roundworm infestation is common in tropical climate population with a low socioeconomic status. We describe a case of a young male with polytrauma accident who presented with small bowel dysfunction with a high gastric residual volume during enteral feeding. While searching the etiology, the intensivist performed bedside abdominal ultrasound (USG) as a part of whole body USG screening along with clinical examination using different frequency probes to examine bowel movement and ultimately found ascariasis to be the cause. This case report will boost up the wide use of bedside USG by critical care physicians in their patient workup. PMID:26430346

  15. A numerical analysis of a focused ultrasound technique to measure perfusion.

    PubMed

    Anderson, G T; Ye, X

    1994-05-01

    A noninvasive technique to measure perfusion using a focused ultrasound heating source and a thermistor placed on the surface of a tissue is proposed. The method is numerically examined in a model of the canine kidney. The perfusion measurement is shown to depend on several transducer and tissue thermal properties. A two level fractional factorial design simulation is used to map out a parameter value combination that maximizes the sensitivity of the measurement. A technique to numerically assess the uncertainty in the measurement due to uncertainties in the tissue and transducer parameter values is also described. The effects of the medulla and a subcapsular surface layer in the kidney are examined. It is determined that the maximum error in the measured perfusion rate due to all the factors considered is 17 percent for a kidney with a nominal perfusion rate of 300 mL/100g-min and a surface layer of 0.04 cm thickness. PMID:8078324

  16. Automated kidney morphology measurements from ultrasound images using texture and edge analysis

    NASA Astrophysics Data System (ADS)

    Ravishankar, Hariharan; Annangi, Pavan; Washburn, Michael; Lanning, Justin

    2016-04-01

    In a typical ultrasound scan, a sonographer measures Kidney morphology to assess renal abnormalities. Kidney morphology can also help to discriminate between chronic and acute kidney failure. The caliper placements and volume measurements are often time consuming and an automated solution will help to improve accuracy, repeatability and throughput. In this work, we developed an automated Kidney morphology measurement solution from long axis Ultrasound scans. Automated kidney segmentation is challenging due to wide variability in kidney shape, size, weak contrast of the kidney boundaries and presence of strong edges like diaphragm, fat layers. To address the challenges and be able to accurately localize and detect kidney regions, we present a two-step algorithm that makes use of edge and texture information in combination with anatomical cues. First, we use an edge analysis technique to localize kidney region by matching the edge map with predefined templates. To accurately estimate the kidney morphology, we use textural information in a machine learning algorithm framework using Haar features and Gradient boosting classifier. We have tested the algorithm on 45 unseen cases and the performance against ground truth is measured by computing Dice overlap, % error in major and minor axis of kidney. The algorithm shows successful performance on 80% cases.

  17. Subchorionic Hemorrhage Appearing as Twin Gestation on Endovaginal Ultrasound

    PubMed Central

    Kahn, Andy; Kahn, Amy L.; Fox, J Christian; Langdorf, Mark I.

    2008-01-01

    This case study describes a pregnant patient with vaginal bleeding who had a bedside endovaginal ultrasound in the emergency department (ED). The emergency physician identified a live intra-uterine pregnancy (IUP) with another structure that appeared to be a second gestational sac. The patient subsequently had an endovaginal ultrasound in the radiology department 46 minutes later. The attending radiologist described one live IUP and a subchorionic hemorrhage. Comparison of the ED and radiology ultrasound showed that the second structure, identified as a subchorionic hemorrhage, had significantly decreased in size. Endovaginal ultrasound in the evaluation of possible ectopic pregnancy is a useful bedside tool in the ED. We discuss a pitfall that can occur with endocavitary ultrasound when a twin gestation is presumed. PMID:19561718

  18. Nondestructive Measurement Material Characterization of Thermal Sprayed Nickel Aluminum Coatings by using Laser Ultrasound Technique

    NASA Astrophysics Data System (ADS)

    Yeh, Cheng Hung; Wu, Tai Chieh; Yang, Che Hua

    This research focused on characterization of mechanical properties in Nickel-Aluminum coating with different thermal technique and processing parameters at high temperature environment up to 295°C. With the laser ultrasound technique (LUT), guided acoustic waves are generated to propagate on the Ni-Al sprayed coatings. By measuring dispersive phase velocity followed by SCE-UA inversion algorithm. The Young's modulus of coatings which fabricated by HVOF technique is higher than APS technique. This technique is potentially useful to probe the material characterization at high temperature environment in a remote and non-destructive way.

  19. Validation of ultrasound as a noninvasive tool to measure subcutaneous fat depth in leatherback sea turtles (Dermochelys coriacea)

    USGS Publications Warehouse

    Harris, Heather S.; Benson, Scott R.; James, Michael C.; Martin, Kelly J.; Stacy, Brian A.; Daoust, Pierre-Yves; Rist, Paul M.; Work, Thierry M.; Balazs, George H.; Seminoff, Jeffrey A.

    2016-01-01

    Leatherback turtles (Dermochelys coriacea) undergo substantial cyclical changes in body condition between foraging and nesting. Ultrasonography has been used to measure subcutaneous fat as an indicator of body condition in many species but has not been applied in sea turtles. To validate this technique in leatherback turtles, ultrasound images were obtained from 36 live-captured and dead-stranded immature and adult turtles from foraging and nesting areas in the Pacific and Atlantic oceans. Ultrasound measurements were compared with direct measurements from surgical biopsy or necropsy. Tissue architecture was confirmed histologically in a subset of turtles. The dorsal shoulder region provided the best site for differentiation of tissues. Maximum fat depth values with the front flipper in a neutral (45–90°) position demonstrated good correlation with direct measurements. Ultrasound-derived fat measurements may be used in the future for quantitative assessment of body condition as an index of health in this critically endangered species.

  20. VALIDATION OF ULTRASOUND AS A NONINVASIVE TOOL TO MEASURE SUBCUTANEOUS FAT DEPTH IN LEATHERBACK SEA TURTLES (DERMOCHELYS CORIACEA).

    PubMed

    Harris, Heather S; Benson, Scott R; James, Michael C; Martin, Kelly J; Stacy, Brian A; Daoust, Pierre-Yves; Rist, Paul M; Work, Thierry M; Balazs, George H; Seminoff, Jeffrey A

    2016-03-01

    Leatherback turtles (Dermochelys coriacea) undergo substantial cyclical changes in body condition between foraging and nesting. Ultrasonography has been used to measure subcutaneous fat as an indicator of body condition in many species but has not been applied in sea turtles. To validate this technique in leatherback turtles, ultrasound images were obtained from 36 live-captured and dead-stranded immature and adult turtles from foraging and nesting areas in the Pacific and Atlantic oceans. Ultrasound measurements were compared with direct measurements from surgical biopsy or necropsy. Tissue architecture was confirmed histologically in a subset of turtles. The dorsal shoulder region provided the best site for differentiation of tissues. Maximum fat depth values with the front flipper in a neutral (45-90°) position demonstrated good correlation with direct measurements. Ultrasound-derived fat measurements may be used in the future for quantitative assessment of body condition as an index of health in this critically endangered species. PMID:27010287

  1. Detection and Measurement of Stones With Ultrasound Strain Elastography: A Phantom Study.

    PubMed

    Li, Qian; Chen, Lei; Halpern, Elkan F; Samir, Anthony E

    2015-12-01

    The sonoelastographic appearances of stones in a phantom were evaluated in this study. Ten stones were embedded into a tissue-mimicking meat phantom. The stone axial (vertical) and transverse (horizontal) dimensions measured by an electronic digital caliper, gray-scale ultrasound, and strain elastography (SE) were compared in 5 groups with stones embedded at different depths. In this study, physically measured axial and transverse stone dimensions were 1.17 to 6.86 and 1.30 to 11.15 mm, respectively. Strain elastography showed a characteristic 3-layer pattern associated with stones, comprising a superficial transition region, a hard region, and a deep transition region. As SE data were available in group 5, only data of groups 1 to 4 were analyzed. Compared with physical measurements, measurement mean errors of SE horizontal and SE vertical dimensions ranged from -0.20 to 0.42 mm and from -1.28 to -0.05 mm, respectively, in the 4 groups. Paired t testing demonstrated a significant horizontal dimension measurement error difference between B mode and SE method in group 4 (0.44 vs -0.20 mm, P < 0.05; F = 1.18, P > 0.05), but not in the other groups. Strain elastography horizontal dimension measurement error was not statistically correlated with stone size in the 4 groups. Strain elastography vertical dimension measurement error significantly correlated with stone size only in group 4 (P < 0.05). Preliminary results indicate that stone horizontal and vertical dimensions can be measured using SE in a soft tissue phantom, including when shadowing precludes measurement of vertical dimension on conventional 2-dimensional ultrasound. These results provide substantial motivation to further investigate SE as a modality to image stones in clinical practice. PMID:26656990

  2. Measuring myofiber orientations from high-frequency ultrasound images using multiscale decompositions

    NASA Astrophysics Data System (ADS)

    Qin, Xulei; Fei, Baowei

    2014-07-01

    High-frequency ultrasound (HFU) has the ability to image both skeletal and cardiac muscles. The quantitative assessment of these myofiber orientations has a number of applications in both research and clinical examinations; however, difficulties arise due to the severe speckle noise contained in the HFU images. Thus, for the purpose of automatically measuring myofiber orientations from two-dimensional HFU images, we propose a two-step multiscale image decomposition method. It combines a nonlinear anisotropic diffusion filter and a coherence enhancing diffusion filter to extract myofibers. This method has been verified by ultrasound data from simulated phantoms, excised fiber phantoms, specimens of porcine hearts, and human skeletal muscles in vivo. The quantitative evaluations of both phantoms indicated that the myofiber measurements of our proposed method were more accurate than other methods. The myofiber orientations extracted from different layers of the porcine hearts matched the prediction of an established cardiac mode and demonstrated the feasibility of extracting cardiac myofiber orientations from HFU images ex vivo. Moreover, HFU also demonstrated the ability to measure myofiber orientations in vivo.

  3. Imaging informatics based on method of MR temperature measurement in high-intensity focused ultrasound

    NASA Astrophysics Data System (ADS)

    Chen, Xiangjiao; Zhang, Jianguo

    2014-03-01

    MR imaging has been used to perform imaging guided high-intensity focused ultrasound (HIFU) and meanwhile can also be used precisely to measure tissue temperature in theory. But in practice, the temperature environment and target are complex. Therefore, it is difficult to measure targeted temperature just by simply using the theory of numerical calculation based on MR image information. In this presentation, we presented new MR temperature measurement, based on imaging informatics, to measure the targeted tissue temperature in MR imaging guided HIFU therapeutic procedure. By heating up the water phantom experiments under HIFU, the new algorithm gives a satisfactory result compared with existing algorithm. Based on experimental data, we can see the accuracy increase 37.5% from 0.4048℃ up to 0.2530℃ when we choose new algorithms.

  4. Ultrasound imaging measurement of submerged topography in the muddy water physical model

    NASA Astrophysics Data System (ADS)

    Xiao, Xiongwu; Guo, Bingxuan; Li, Deren; Zou, Xianjian; Zhang, Peng; liu, Jian-chen; Zang, Yu-fu

    2015-08-01

    The real-time, accurate measurement of submerged topography is vital for the analysis of riverbed erosion and deposition. This paper describes a novel method of measuring submerged topography in the B-scan image obtained using an ultrasound imaging device. Results show the distribution of gray values in the image has a process of mutation. This mutation process can be used to adaptively track the topographic lines between riverbed and water, based on the continuity of topography in the horizontal direction. The extracted topographic lines, of one pixel width, are processed by a wavelet filtering method. Compared with the actual topography, the measurement accuracy is within 1 mm. It is suitable for the real-time measurement and analysis of all current model topographies with the advantage of good self-adaptation. In particular, it is visible and intuitive for muddy water in the movable-bed model experiment.

  5. Measurement of Transcranial Distance During Head-Down Tilt Using Ultrasound

    NASA Technical Reports Server (NTRS)

    Torikoshi, Shigeyo; Ballard, R. E.; Watenpaugh, D. E.; Murthy, G.; Bowley, S.; Yost, W. T.; Hargens, Alan R.

    1995-01-01

    Exposure to microgravity probably elevates blood pressure and flow in the head which may increase intracranial volume (ICV) and pressure (ICP). Due to the slightly compliant nature of the cranium, any increase of ICP will increase ICV and transcranial distance. We used a noninvasive ultrasound technique to measure transcranial distance (frontal to occipital) during head-down tilt. Seven subjects (ages 26-53) underwent the following tilt angles: 90 deg. upright, 30 deg., 0 deg., -6 deg., -10 deg., -6 deg., 0 deg., 30 deg., and 90 deg. Each angle was maintained for 1 min. Ultrasound wave frequency was collected continuously and transcranial distance was calculated (Delta(x) = x(Delta)f/f, where x is path length and f is frequency of the wave) for each tilt angle. Frequency decreased from 503.687 kHz (90 deg. upright) to 502.619 kHz (-10 deg.). These frequencies translated to an increased transcranial distance of 0.403 mm. Although our data suggest a significant increase in transcranial distance during head-down tilt, this apparent increase may result, in part, from head-down tilt-induced subcutaneous edema or cutaneous blood volume elevation. In three subjects, when the above protocol was repeated with an ace bandage wrapped around the head to minimize such edema, the increased transcranial distance from 90 deg. to -10 deg. was reduced by 0.174 mm. Further development of the technique to quantify bone-to-bone expansion unconfounded by cutaneous fluid is necessary. Therefore, this ultrasound technique may provide measurements of changes in cranial dimensions during microgravity.

  6. An Imageless Ultrasound Device to Measure Local and Regional Arterial Stiffness.

    PubMed

    Sahani, Ashish Kumar; Shah, Malay Ilesh; Radhakrishnan, Ravikumar; Joseph, Jayaraj; Sivaprakasam, Mohanasankar

    2016-02-01

    Arterial stiffness (AS) has been shown to be an important marker for risk assessment of cardiovascular events. Local arterial stiffness (LAS) is conventionally measured by evaluating arterial distensibility at particular arterial sites through ultrasound imaging systems. Regional arterial stiffness (RAS) is generally obtained by evaluating carotid to femoral pulse wave velocity (cfPWV) through tonometric devices. RAS has a better prognostic value than LAS and cfPWV is considered as the gold standard of AS. Over the past few years our group has been developing ARTerial Stiffness Evaluation for Non-Invasive Screening (ARTSENS), an inexpensive and portable device to measure the LAS. It uses a single element ultrasound transducer to obtain A-Mode frames from the desired artery and is fully automated to enable a non-expert to perform measurements. In this work, we report an extension of ARTSENS to enable measurement of cfPWV that now makes it the only fully automatic device that can measure both LAS and RAS. In this paper, we provide a general review of the ARTSENS and compare it with other state-of-the-art AS measurement systems. cfPWV measurement using ARTSENS was cross-validated against SphygmoCor by successive measurements with both devices on 41 human subjects and excellent agreement between both devices was demonstrated (Coefficient of determination and, limits of agreement m/s). The inter-device correlation between ARTSENS and SphygmoCor was found to be better than other similar studies reported in the literature. PMID:25775498

  7. The effect of physical loading on calcaneus quantitative ultrasound measurement: a cross-section study

    PubMed Central

    2012-01-01

    Background Physical loading leads to a deformation of bone microstructure and may influence quantitative ultrasound (QUS) parameters. This study aims at evaluating the effect of physical loading on bone QUS measurement, and further, on the potential of diagnosing osteoporosis using QUS method under physical loading condition. Methods 16 healthy young females (control group) and 45 postmenopausal women (divided into 3 groups according to the years since menopause (YSM)) were studied. QUS parameters were measured at calcaneus under self-weight loading (standing) and no loading (sitting) conditions. Weight-normalized QUS parameter (QUS parameter measured under loading condition divided by the weight of the subject) was proposed to evaluate the influence of loading. T-test, One-Way analysis of variance (one way ANOVA) and receiver operating characteristic (ROC) analysis were applied for analysis. Results In QUS parameters, mainly normalized broadband ultrasound attenuation (nBUA), measured with loading significantly differed from those measured without loading (p < 0.05). The relative changes of weight-normalized QUS parameters on postmenopausal women with respect to premenopausal women under loading condition were larger than those on traditional QUS parameters measured without loading. In ROC analysis, weight-normalized QUS parameters showed their stronger discriminatory ability for menopause. Conclusions Physical loading substantially influenced bone QUS measurement (mainly nBUA). Weight-normalized QUS parameters can discriminate menopause more effectively. By considering the high relationship between menopause and osteoporosis, an inference was drawn that adding physical loading during measurement may be a probable way to improve the QUS based osteoporosis diagnosis. PMID:22584084

  8. Has Bedside Teaching Had Its Day?

    ERIC Educational Resources Information Center

    Qureshi, Zeshan; Maxwell, Simon

    2012-01-01

    Though a diverse array of teaching methods is now available, bedside teaching is arguably the most favoured. Students like it because it is patient-centred, and it includes a high proportion of relevant skills. It is on the decline, coinciding with declining clinical skills of junior doctors. Several factors might account for this: busier…

  9. Bedside Diagnosis of Dysphagia: A Systematic Review

    PubMed Central

    O’Horo, John C.; Rogus-Pulia, Nicole; Garcia-Arguello, Lisbeth; Robbins, JoAnne; Safdar, Nasia

    2015-01-01

    Background Dysphagia is associated with aspiration, pneumonia and malnutrition, but remains challenging to identify at the bedside. A variety of exam protocols and maneuvers are commonly used, but the efficacy of these maneuvers is highly variable. Methods We conducted a comprehensive search of seven databases, including MEDLINE, EMBASE and Scopus, from each database’s earliest inception through June 5th, 2013. Studies reporting diagnostic performance of a bedside examination maneuver compared to a reference gold standard (videofluoroscopic swallow study [VFSS] or flexible endoscopic evaluation of swallowing with sensory testing [FEEST]) were included for analysis. From each study, data were abstracted based on the type of diagnostic method and reference standard study population and inclusion/exclusion characteristics, design and prediction of aspiration. Results The search strategy identified 38 articles meeting inclusion criteria. Overall, most bedside examinations lacked sufficient sensitivity to be used for screening purposes across all patient populations examined. Individual studies found dysphonia assessments, abnormal pharyngeal sensation assessments, dual axis accelerometry, and one description of water swallow testing to be sensitive tools, but none were reported as consistently sensitive. A preponderance of identified studies was in post-stroke adults, limiting the generalizability of results. Conclusions No bedside screening protocol has been shown to provide adequate predictive value for presence of aspiration. Several individual exam maneuvers demonstrated reasonable sensitivity, but reproducibility and consistency of these protocols was not established. More research is needed to design an optimal protocol for dysphagia detection. PMID:25581840

  10. Comparison of sound speed measurements on two different ultrasound tomography devices

    NASA Astrophysics Data System (ADS)

    Sak, Mark; Duric, Neb; Littrup, Peter; Bey-Knight, Lisa; Sherman, Mark; Gierach, Gretchen; Malyarenko, Antonina

    2014-03-01

    Ultrasound tomography (UST) employs sound waves to produce three-dimensional images of breast tissue and precisely measures the attenuation of sound speed secondary to breast tissue composition. High breast density is a strong breast cancer risk factor and sound speed is directly proportional to breast density. UST provides a quantitative measure of breast density based on three-dimensional imaging without compression, thereby overcoming the shortcomings of many other imaging modalities. The quantitative nature of the UST breast density measures are tied to an external standard, so sound speed measurement in breast tissue should be independent of specific hardware. The work presented here compares breast sound speed measurement obtained with two different UST devices. The Computerized Ultrasound Risk Evaluation (CURE) system located at the Karmanos Cancer Institute in Detroit, Michigan was recently replaced with the SoftVue ultrasound tomographic device. Ongoing clinical trials have used images generated from both sets of hardware, so maintaining consistency in sound speed measurements is important. During an overlap period when both systems were in the same exam room, a total of 12 patients had one or both of their breasts imaged on both systems on the same day. There were 22 sound speed scans analyzed from each system and the average breast sound speeds were compared. Images were either reconstructed using saved raw data (for both CURE and SoftVue) or were created during the image acquisition (saved in DICOM format for SoftVue scans only). The sound speed measurements from each system were strongly and positively correlated with each other. The average difference in sound speed between the two sets of data was on the order of 1-2 m/s and this result was not statistically significant. The only sets of images that showed a statistical difference were the DICOM images created during the SoftVue scan compared to the SoftVue images reconstructed from the raw data

  11. MR guided focused ultrasound: technical acceptance measures for a clinical system

    NASA Astrophysics Data System (ADS)

    Gorny, K. R.; Hangiandreou, N. J.; Hesley, G. K.; Gostout, B. S.; McGee, K. P.; Felmlee, J. P.

    2006-06-01

    Magnetic resonance (MR) guided focused ultrasound (MRgFUS) is a hybrid technique which offers efficient and safe focused ultrasound (FUS) treatments of uterine fibroids under MR guidance and monitoring. As a therapy device, MRgFUS requires systematic testing over a wide range of operational parameters prior to use in the clinical environment. We present technical acceptance tests and data for the first clinical MRgFUS system, ExAblate® 2000 (InSightec Inc., Haifa, Israel), that has been FDA approved for treating uterine fibroids. These tests characterize MRgFUS by employing MR temperature measurements in tissue mimicking phantoms. The coronal scan plane is empirically demonstrated to be most reliable for measuring temperature elevations resulting from high intensity ultrasound (US) pulses ('sonications') and shows high sensitivity to changes in sonication parameters. Temperatures measured in the coronal plane were used as a measure of US energy deposited within the focal spot for a range of sonication parameters used in clinical treatments: spot type, spot length, output power, sonication duration, US frequency, and depth of sonication. In addition, MR images acquired during sonications were used to measure effective diameters and lengths of available sonication spot types and lengths. At a constant 60 W output power, the effective spot type diameters were measured to vary between 4.7 ± 0.3 mm and 6.6 ± 0.4 mm; treatment temperatures were found to decrease with increasing spot diameter. Prescribing different spot lengths was found to have no effect on the measured length or on measured temperatures. Tests of MRgFUS positioning accuracy determined errors in the direction parallel to the propagation of the US beam to be significantly greater than those in the perpendicular direction; most sonication spots were erroneously positioned towards the FUS transducer. The tests reported here have been demonstrated to be sufficiently sensitive to detect water leakage

  12. Estimation of multipath transmission parameters for quantitative ultrasound measurements of bone.

    PubMed

    Dencks, Stefanie; Schmitz, Georg

    2013-09-01

    When applying quantitative ultrasound (QUS) measurements to bone for predicting osteoporotic fracture risk, the multipath transmission of sound waves frequently occurs. In the last 10 years, the interest in separating multipath QUS signals for their analysis awoke, and led to the introduction of several approaches. Here, we compare the performances of the two fastest algorithms proposed for QUS measurements of bone: the modified least-squares Prony method (MLSP), and the space alternating generalized expectation maximization algorithm (SAGE) applied in the frequency domain. In both approaches, the parameters of the transfer functions of the sound propagation paths are estimated. To provide an objective measure, we also analytically derive the Cramér-Rao lower bound of variances for any estimator and arbitrary transmit signals. In comparison with results of Monte Carlo simulations, this measure is used to evaluate both approaches regarding their accuracy and precision. Additionally, with simulations using typical QUS measurement settings, we illustrate the limitations of separating two superimposed waves for varying parameters with focus on their temporal separation. It is shown that for good SNRs around 100 dB, MLSP yields better results when two waves are very close. Additionally, the parameters of the smaller wave are more reliably estimated. If the SNR decreases, the parameter estimation with MLSP becomes biased and inefficient. Then, the robustness to noise of the SAGE clearly prevails. Because a clear influence of the interrelation between the wavelength of the ultrasound signals and their temporal separation is observable on the results, these findings can be transferred to QUS measurements at other sites. The choice of the suitable algorithm thus depends on the measurement conditions. PMID:24658719

  13. Brachial artery vasomotion and transducer pressure effect on measurements by active contour segmentation on ultrasound

    SciTech Connect

    Cary, Theodore W.; Sultan, Laith R.; Sehgal, Chandra M.; Reamer, Courtney B.; Mohler, Emile R.

    2014-02-15

    Purpose: To use feed-forward active contours (snakes) to track and measure brachial artery vasomotion on ultrasound images recorded in both transverse and longitudinal views; and to compare the algorithm's performance in each view. Methods: Longitudinal and transverse view ultrasound image sequences of 45 brachial arteries were segmented by feed-forward active contour (FFAC). The segmented regions were used to measure vasomotion artery diameter, cross-sectional area, and distention both as peak-to-peak diameter and as area. ECG waveforms were also simultaneously extracted frame-by-frame by thresholding a running finite-difference image between consecutive images. The arterial and ECG waveforms were compared as they traced each phase of the cardiac cycle. Results: FFAC successfully segmented arteries in longitudinal and transverse views in all 45 cases. The automated analysis took significantly less time than manual tracing, but produced superior, well-behaved arterial waveforms. Automated arterial measurements also had lower interobserver variability as measured by correlation, difference in mean values, and coefficient of variation. Although FFAC successfully segmented both the longitudinal and transverse images, transverse measurements were less variable. The cross-sectional area computed from the longitudinal images was 27% lower than the area measured from transverse images, possibly due to the compression of the artery along the image depth by transducer pressure. Conclusions: FFAC is a robust and sensitive vasomotion segmentation algorithm in both transverse and longitudinal views. Transverse imaging may offer advantages over longitudinal imaging: transverse measurements are more consistent, possibly because the method is less sensitive to variations in transducer pressure during imaging.

  14. Accuracy and robustness of a simple algorithm to measure vessel diameter from B-mode ultrasound images.

    PubMed

    Hunt, Brian E; Flavin, Daniel C; Bauschatz, Emily; Whitney, Heather M

    2016-06-01

    Measurement of changes in arterial vessel diameter can be used to assess the state of cardiovascular health, but the use of such measurements as biomarkers is contingent upon the accuracy and robustness of the measurement. This work presents a simple algorithm for measuring diameter from B-mode images derived from vascular ultrasound. The algorithm is based upon Gaussian curve fitting and a Viterbi search process. We assessed the accuracy of the algorithm by measuring the diameter of a digital reference object (DRO) and ultrasound-derived images of a carotid artery. We also assessed the robustness of the algorithm by manipulating the quality of the image. Across a broad range of signal-to-noise ratio and with varying image edge error, the algorithm measured vessel diameter within 0.7% of the creation dimensions of the DRO. This was a similar level of difference (0.8%) to when an ultrasound image was used. When SNR dropped to 18 dB, measurement error increased to 1.3%. When edge position was varied by as much as 10%, measurement error was well maintained between 0.68 and 0.75%. All these errors fall well within the margin of error established by the medical physics community for quantitative ultrasound measurements. We conclude that this simple algorithm provides consistent and accurate measurement of lumen diameter from B-mode images across a broad range of image quality. PMID:27055985

  15. Correlation of measurement of optic nerve sheath diameter using ultrasound with magnetic resonance imaging

    PubMed Central

    Shirodkar, Chetan G.; Munta, Kartik; Rao, S. Manimala; Mahesh, M. Uma

    2015-01-01

    Background and Aims: Analysis to correlate the measurements of optic nerve sheath diameter (ONSD) obtained by using ultrasound to magnetic resonance imaging (MRI) techniques in order to establish the accuracy of ocular sonography as a noninvasive modality for detecting raised intracranial pressure (ICP). Materials and Methods: A prospective, observational study was performed in 100 cases of adult meningoencephalitis patients admitted to Intensive Care Unit in whom MRI was performed for neurodiagnosis. ONSD was measured in such patients, 3 mm behind the globe in each eye. A mean binocular ONSD >4.6 mm in female and 4.8 mm in male was taken as cut-off values for diagnosing raised ICP. This was compared with ONSD measured on T2-weighted MRI image measured 3 mm behind the globe. The reading obtained from both the methods were compared with Bland–Altman analysis for correlation and the findings were tabulated. Results: The mean ONSD values measured with ultrasonography (USG) and MRI for female were 5.48 ± 0.43 mm and 5.68 ± 0.44 mm and for male were 5.40 ± 0.37 mm and 5.56 ± 0.38 mm, respectively. The mean age of the female and male was 53.90 ± 17.84 and 56.06 ± 15.67 years, respectively. On comparing ultrasound with MRI-derived ONSD values, we found acceptable agreement between both methods for measurements at a depth of 3 mm (r = 0.02, P < 0.001). Conclusion: In our study, we have found a good correlation between ocular USG and MRI of ONSD. The study has shown agreement with the fact that ocular sonography can be used as a noninvasive tool for detecting raised ICP with accuracy. PMID:26321806

  16. Spectroscopic measurement of adipose tissue thickness and comparison with ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Geraskin, Dmitri; Boeth, Heide; Kohl-Bareis, Matthias

    2007-07-01

    Near-infrared spectroscopy (NIRS) is widely applied for applications monitoring skeletal muscle oxygenation. However, this method is obstructed by the subcutaneous adipose tissue thickness (ATT) which might vary between < 1 mm to more than 12 mm. Though diffuse optical imaging can be applied to measure ATT, the objective here is to get this measure from spectroscopic data of a single source-detector distance. For the measurement of the optical lipid signal we used a broad band spatially resolved system (SRS), which is based on measurements of the wavelength dependence of the attenuation A for source detector distances ρ between 29 mm and 39 mm. Ultrasound images served as an anatomical reference of the lipid layer. The measurements were taken on 5 different muscle groups of 20 healthy volunteers, each for left and right limbs, e.g. vastus medialis, vastus lateralis and gastrocnemius muscle on the leg and ventral forearm muscles and biceps brachii muscle on the arm. Different analysis strategies were tested for the best calculation of ATT. There is a good non-linear correlation between optical lipid signal and ultrasound data, with an overall error in ATT prediction of about 0.5 mm. This finding is supported experimentally by additional MRI measurements as well as a multi-layer Monte Carlo (MC) model. Based on this data of the ATT thickness, a newly developed algorithm which exploits the wavelength dependence of the slope in attenuation with respect to source-detector distance and MC simulation for these parameters as a function of absorption and scattering coefficients delivers a considerably better fit of reflectance spectra when fitting haemoglobin concentrations. Implications for the monitoring of muscle oxygen saturation are discussed.

  17. Medical Ultrasound Imaging.

    ERIC Educational Resources Information Center

    Hughes, Stephen

    2001-01-01

    Explains the basic principles of ultrasound using everyday physics. Topics include the generation of ultrasound, basic interactions with material, and the measurement of blood flow using the Doppler effect. (Author/MM)

  18. Ultrasound temporal-spatial phase-interference in complex composite media; a comparison of experimental measurement and simulation prediction.

    PubMed

    Al-Qahtani, Saeed M; Langton, Christian M

    2016-09-01

    The propagation of ultrasound through solid:liquid complex composite media such as cancellous bone suffers from a lack of a comprehensive understanding of the dependence upon density and structure. Assuming that a propagating ultrasound wave may be considered as an array of parallel sonic rays, we may determine the transit time of each by the relative proportion of the two constituents. A transit time spectrum (TTS) describes the proportion of sonic rays having a particular transit time between the minimum (tmin) and maximum (tmax) values; representing, for example, entire bone tissue and marrow respectively in the case of cancellous bone. Langton has proposed that the primary ultrasound attenuation mechanism in such media is phase-interference. The phase-interference of two or more ultrasound pulses detected at a phase-sensitive transducer has both temporal and spatial components. The temporal component is primarily dependent upon the transit time difference (dt) between the pulses and the propagating pulse-length (PL). The spatial component is primarily dependent upon the lateral separation (ds) of the detectedpulses of differing transit time and the lateral dimension of the ultrasound receive transducer aperture (dL). The aim of the paper was to explore these temporal and spatial dependencies through a comparison of experimental measurement and computer simulation in solid:liquid models of varying temporal and spatial complexity. Transmission measurements at nominal ultrasound frequencies of 1MHz and 5MHz were performed, thereby investigating the dependency upon period. The results demonstrated an overall agreement between experimental measurement and computer simulation of 87±16% and 85±12% for temporal and spatial components respectively. It is envisaged that a comprehensive understanding of ultrasound propagation through complex structures such as cancellous bone could provide an improved non-invasive tool for osteoporosis assessment. PMID:27318839

  19. Detection and measurement of fetal anatomies from ultrasound images using a constrained probabilistic boosting tree.

    PubMed

    Carneiro, Gustavo; Georgescu, Bogdan; Good, Sara; Comaniciu, Dorin

    2008-09-01

    We propose a novel method for the automatic detection and measurement of fetal anatomical structures in ultrasound images. This problem offers a myriad of challenges, including: difficulty of modeling the appearance variations of the visual object of interest, robustness to speckle noise and signal dropout, and large search space of the detection procedure. Previous solutions typically rely on the explicit encoding of prior knowledge and formulation of the problem as a perceptual grouping task solved through clustering or variational approaches. These methods are constrained by the validity of the underlying assumptions and usually are not enough to capture the complex appearances of fetal anatomies. We propose a novel system for fast automatic detection and measurement of fetal anatomies that directly exploits a large database of expert annotated fetal anatomical structures in ultrasound images. Our method learns automatically to distinguish between the appearance of the object of interest and background by training a constrained probabilistic boosting tree classifier. This system is able to produce the automatic segmentation of several fetal anatomies using the same basic detection algorithm. We show results on fully automatic measurement of biparietal diameter (BPD), head circumference (HC), abdominal circumference (AC), femur length (FL), humerus length (HL), and crown rump length (CRL). Notice that our approach is the first in the literature to deal with the HL and CRL measurements. Extensive experiments (with clinical validation) show that our system is, on average, close to the accuracy of experts in terms of segmentation and obstetric measurements. Finally, this system runs under half second on a standard dual-core PC computer. PMID:18753047

  20. Facing the danger zone: the use of ultrasound to distinguish cellulitis from abscess in facial infections.

    PubMed

    Lewis, Dywanda L; Butts, Christine J; Moreno-Walton, Lisa

    2014-01-01

    Physical exam alone is often insufficient to determine whether or not cellulitis is accompanied by an abscess. Bedside ultrasound can be a valuable tool in ruling out suspected abscess by allowing direct visualization of a fluid collection. The proximity of the infection to adjacent structures can also be determined, thus aiding clinical decision making. Patients with cellulitis near the eye and nose are of particular concern due to the adjacent facial structures and the anatomy of the venous drainage. Accurately determining the presence or absence of an associated abscess in these patients is a crucial step in treatment planning. The purpose of this report is to (1) emphasize the benefits of bedside ultrasound when used in conjunction with the physical exam to rule out abscess; (2) demonstrate the utility of bedside ultrasound in planning a treatment strategy for soft tissue infection; (3) depict an instance where ultrasound detected an abscess when computed tomography (CT) scan did not. PMID:24851189

  1. [Ultrasound screening for abdominal aortic aneurysms - a rational measure to prevent sudden rupture].

    PubMed

    Torsello, Giovanni; Debus, Eike Sebastian; Schmitz-Rixen, Thomas; Grundmann, Reinhart Thomas

    2016-07-01

    The ruptured abdominal aortic aneurysm (AAA) has still a high hospital mortality rate of about 50 % (intervention and non-corrective treatment combined). With an easy non-invasive and inexpensive measure such as the ultrasound screening rupture threatened aneurysms can be recognized in time and then treated prophylactically, hemorrhagic shock can be avoided. Screening programs in England and Sweden currently describe an AAA prevalence of 1.5 % among screened 65-year-old males. With an absolute risk reduction for aneurysm-related death of 15.1 per 10,000 men invited for screening and a cost of £ 7,370 per quality-adjusted life year (QALY), screening for this target group is highly cost-effective. Comprehensive AAA screening requires defined criteria for the quality of the aortic ultrasound examination and for the surgical treatment of detected large AAA. These interventions should be concentrated in centers obligated to quality registry documentation. Patients with smaller AAA, requiring no repair, should be included in a surveillance program, also with registry of their long-term data. PMID:27404935

  2. Thermochromic Phantom and Measurement Protocol for Qualitative Analysis of Ultrasound Physiotherapy Systems.

    PubMed

    Costa, Rejane M; Alvarenga, André V; Costa-Felix, Rodrigo P B; Omena, Thaís P; von Krüger, Marco A; Pereira, Wagner C A

    2016-01-01

    Thermochromic test bodies are promising tools for qualitatively evaluating the acoustic output of ultrasound physiotherapy systems. Here, a novel phantom, made of silicone mixed with thermochromic powder material, was developed. Additionally, a procedure was developed to evaluate the stability and homogeneity of the phantom in a metrologic and statistical base. Twelve phantoms were divided into three groups. Each group was insonated by a different transducer. An effective intensity of 1.0 W/cm(2) was applied to each phantom; two operators performed the procedure three times in all phantoms. The heated area was measured after image processing. No statistical difference was observed in the heated areas for different samples or in the results for different operators. The heated areas obtained using each transducer were statistically different, indicating that the thermochromic phantom samples had sufficient sensitivity to represent the heated areas of different ultrasonic transducers. Combined with the evaluation procedure, the phantom provides an approach not previously described in the literature. The proposed approach can be used to quickly assess changes in ultrasonic beam cross-sectional shape during the lifetime of ultrasound physiotherapy systems. PMID:26456890

  3. Photoacoustic clutter reduction by inversion of a linear scatter model using plane wave ultrasound measurements

    PubMed Central

    Schwab, Hans-Martin; Beckmann, Martin F.; Schmitz, Georg

    2016-01-01

    Photoacoustic imaging aims to visualize light absorption properties of biological tissue by receiving a sound wave that is generated inside the observed object as a result of the photoacoustic effect. In clinical applications, the strong light absorption in human skin is a major problem. When high amplitude photoacoustic waves that originate from skin absorption propagate into the tissue, they are reflected back by acoustical scatterers and the reflections contribute to the received signal. The artifacts associated with these reflected waves are referred to as clutter or skin echo and limit the applicability of photoacoustic imaging for medical applications severely. This study seeks to exploit the acoustic tissue information gained by plane wave ultrasound measurements with a linear array in order to correct for reflections in the photoacoustic image. By deriving a theory for clutter waves in k-space and a matching inversion approach, photoacoustic measurements compensated for clutter are shown to be recovered. PMID:27446669

  4. Elastic constants of α Ti-7Al measured using resonant ultrasound spectroscopy

    NASA Astrophysics Data System (ADS)

    Adebisi, R. A.; Sathish, S.; Pilchak, A. L.; Shade, P. A.

    2016-02-01

    The five independent elastic constants of a single-phase (α, HCP crystal structure) titanium alloy, Ti-7Al, have been measured for the first time using resonant ultrasound spectroscopy (RUS). RUS is a nondestructive evaluation method that mea-sures the mechanical resonance of solids and uses the resonance frequencies to extract a complete set of elastic constants of the solid material. The elastic constants of titanium alloys vary substantially depending on manufacturing history and composition. In addition, available data on the elastic constants of titanium alloys is limited. The elastic constants data for Ti-7Al are presented in this paper and the results are compared to the available data for other titanium alloys that are similar in composition.

  5. Photoacoustic clutter reduction by inversion of a linear scatter model using plane wave ultrasound measurements.

    PubMed

    Schwab, Hans-Martin; Beckmann, Martin F; Schmitz, Georg

    2016-04-01

    Photoacoustic imaging aims to visualize light absorption properties of biological tissue by receiving a sound wave that is generated inside the observed object as a result of the photoacoustic effect. In clinical applications, the strong light absorption in human skin is a major problem. When high amplitude photoacoustic waves that originate from skin absorption propagate into the tissue, they are reflected back by acoustical scatterers and the reflections contribute to the received signal. The artifacts associated with these reflected waves are referred to as clutter or skin echo and limit the applicability of photoacoustic imaging for medical applications severely. This study seeks to exploit the acoustic tissue information gained by plane wave ultrasound measurements with a linear array in order to correct for reflections in the photoacoustic image. By deriving a theory for clutter waves in k-space and a matching inversion approach, photoacoustic measurements compensated for clutter are shown to be recovered. PMID:27446669

  6. Ultrasound Annual, 1983

    SciTech Connect

    Sanders, R.C.; Hill, M.C.

    1983-01-01

    The 1983 edition of Ultrasound Annual features a state-of-the-art assessment of real-time ultrasound technology and a look at improvements in real-time equipment. Chapters discuss important new obstetric applications of ultrasound in measuring fetal umbilical vein blood flow and monitoring ovarian follicular development in vivo and in vitro fertilization. Other topics covered include transrectal prostate ultrasound using a linear array system; ultrasound of the common bile duct; ultrasound in tropical diseases; prenatal diagnosis of craniospinal anomalies; scrotal ultrasonography; opthalmic ultrasonography; and sonography of the upper abdominal venous system.

  7. Toward Standardized Acoustic Radiation Force (ARF)-Based Ultrasound Elasticity Measurements With Robotic Force Control

    PubMed Central

    Kumar, Shalki; Lily, Kuo; Sen, H. Tutkun; Iordachita, Iulian; Kazanzides, Peter

    2016-01-01

    Objective Acoustic radiation force (ARF)-based approaches to measure tissue elasticity require transmission of a focused high-energy acoustic pulse from a stationary ultrasound probe and ultrasound-based tracking of the resulting tissue displacements to obtain stiffness images or shear wave speed estimates. The method has established benefits in biomedical applications such as tumor detection and tissue fibrosis staging. One limitation, however, is the dependence on applied probe pressure, which is difficult to control manually and prohibits standardization of quantitative measurements. To overcome this limitation, we built a robot prototype that controls probe contact forces for shear wave speed quantification. Methods The robot was evaluated with controlled force increments applied to a tissue-mimicking phantom and in vivo abdominal tissue from three human volunteers. Results The root-mean-square error between the desired and measured forces was 0.07 N in the phantom and higher for the fatty layer of in vivo abdominal tissue. The mean shear wave speeds increased from 3.7 to 4.5 m/s in the phantom and 1.0 to 3.0 m/s in the in vivo fat for compressive forces ranging from 2.5 to 30 N. The standard deviation of shear wave speeds obtained with the robotic approach were low in most cases (< 0.2 m/s) and comparable to that obtained with a semiquantitative landmark-based method. Conclusion Results are promising for the introduction of robotic systems to control the applied probe pressure for ARF-based measurements of tissue elasticity. Significance This approach has potential benefits in longitudinal studies of disease progression, comparative studies between patients, and large-scale multidimensional elasticity imaging. PMID:26552071

  8. Burning Rate Measurement of Solid Propellant Using Ultrasound — Approach and Initial Experiments

    NASA Astrophysics Data System (ADS)

    Song, Sung-Jin; Jeon, Jin Hong; Kim, Hak-Joon; Kim, In-Chul; Yoo, Ji-Chang; Jung, Jung Yong

    2006-03-01

    To measure the burning rate of a solid propellant as a function of pressure using ultrasound, in the present study, a burning camber and an ultrasonic measurement system are specially designed and fabricated. In addition, data acquisition and analysis programs are also developed to determine the burning rate vs. pressure curve from the measured ultrasonic signals and pressures during the tests. Using the developed system, the wave speeds of the propellant are measured in the pre-test and the interface and burning surface echoes are acquired during the burning test together with the pressure inside the bomb. Based on these measurements, the burning rates of two kinds of propellants are successfully determined and compared to those measured by a strand burner method for the verification of the developed system and the proposed data analysis approach. For a propellant with high burning rate, the result obtained by the ultrasonic measurement shows a very good agreement to that measured by the strand burner method. Unfortunately, however, for a propellant with slow burning rate the result shows fairly large discrepancy in the initial experiments carried out in the present study.

  9. Weld pool penetration measurement using ultrasound with thermal gradient correction factors

    NASA Astrophysics Data System (ADS)

    Anderton, John Martin

    Weld penetration is critical to final weld performance. There are many techniques for determining surface parameters of weld pools but the transient nature of the pools, high temperatures and intense electromagnetic energy make direct measurement of the penetration of weld pools difficult. In order to determine weld pool penetration ultrasonically from below the weld pool it is necessary to compensate for the variation in the time of flight of the ultrasound wave due to temperature gradients. This requires both a precise understanding of the location and magnitude of the temperature gradients and the time of flight of ultrasound at the range of temperatures seen in the gradients. Given this information it is possible to develop a correction factor to an ultrasonic time of flight reading that accurately represents the actual penetration of a weld pool. This research examines the electroslag surfacing (ESS) processing of AISI 1005 low carbon steel clad onto a ductile iron substrate. The high temperature cladding on low temperature substrate provides a deep weld penetration. Ultrasonic time of flight measurements were made from a piezoelectric transducer on the backside of the substrate to the solid/liquid interface of the weld pool during welding. The speed of ultrasound over a range of temperatures was determined from furnace heated ductile iron substrates. The sample was stepped and contact piezoelectric methods used to determine time of flight. A finite element model was developed and analyzed to predict thermal gradients in the substrate around the weld pool. The model was correlated to thermocouple data of substrate heating during welding. The predicted thermal gradients and speed/temperature curves are combined with the time of flight measurement to determine the location of the solid/liquid weld interface. An automated seam tracking system for ESS was also developed. This system utilizes a line laser at right angles to the view of a CCD camera which

  10. Reliability of ultrasound thickness measurement of the abdominal muscles during clinical isometric endurance tests.

    PubMed

    ShahAli, Shabnam; Arab, Amir Massoud; Talebian, Saeed; Ebrahimi, Esmaeil; Bahmani, Andia; Karimi, Noureddin; Nabavi, Hoda

    2015-07-01

    The study was designed to evaluate the intra-examiner reliability of ultrasound (US) thickness measurement of abdominal muscles activity when supine lying and during two isometric endurance tests in subjects with and without Low back pain (LBP). A total of 19 women (9 with LBP, 10 without LBP) participated in the study. Within-day reliability of the US thickness measurements at supine lying and the two isometric endurance tests were assessed in all subjects. The intra-class correlation coefficient (ICC) was used to assess the relative reliability of thickness measurement. The standard error of measurement (SEM), minimal detectable change (MDC) and the coefficient of variation (CV) were used to evaluate the absolute reliability. Results indicated high ICC scores (0.73-0.99) and also small SEM and MDC scores for within-day reliability assessment. The Bland-Altman plots of agreement in US measurement of the abdominal muscles during the two isometric endurance tests demonstrated that 95% of the observations fall between the limits of agreement for test and retest measurements. Together the results indicate high intra-tester reliability for the US measurement of the thickness of abdominal muscles in all the positions tested. According to the study's findings, US imaging can be used as a reliable method for assessment of abdominal muscles activity in supine lying and the two isometric endurance tests employed, in participants with and without LBP. PMID:26118508

  11. A system for simultaneously measuring contact force, ultrasound, and position information for use in force-based correction of freehand scanning.

    PubMed

    Burcher, Michael R; Noble, J Alison; Han, Lianghao; Gooding, Mark

    2005-08-01

    During freehand ultrasound imaging, the sonographer places the ultrasound probe on the patient's skin. This paper describes a system that simultaneously records the position of the probe, the contact force between the probe and skin, and the ultrasound image. The system consists of an ultrasound machine, a probe, a force sensor, an optical localizer, and a host computer. Two new calibration methods are demonstrated: a temporal calibration to determine the time delay between force and position measurements, and a gravitational calibration to remove the effect of gravity on the recorded force. Measurements made with the system showed good agreement with those obtained from a standard materials testing machine. The system's uses include three-dimensional (3-D) ultrasound imaging, force-based deformation correction of ultrasound images, and indentation testing. PMID:16245602

  12. 3D thoracoscopic ultrasound volume measurement validation in an ex vivo and in vivo porcine model of lung tumours

    NASA Astrophysics Data System (ADS)

    Hornblower, V. D. M.; Yu, E.; Fenster, A.; Battista, J. J.; Malthaner, R. A.

    2007-01-01

    The purpose of this study was to validate the accuracy and reliability of volume measurements obtained using three-dimensional (3D) thoracoscopic ultrasound (US) imaging. Artificial 'tumours' were created by injecting a liquid agar mixture into spherical moulds of known volume. Once solidified, the 'tumours' were implanted into the lung tissue in both a porcine lung sample ex vivo and a surgical porcine model in vivo. 3D US images were created by mechanically rotating the thoracoscopic ultrasound probe about its long axis while the transducer was maintained in close contact with the tissue. Volume measurements were made by one observer using the ultrasound images and a manual-radial segmentation technique and these were compared with the known volumes of the agar. In vitro measurements had average accuracy and precision of 4.76% and 1.77%, respectively; in vivo measurements had average accuracy and precision of 8.18% and 1.75%, respectively. The 3D thoracoscopic ultrasound can be used to accurately and reproducibly measure 'tumour' volumes both in vivo and ex vivo.

  13. Feasibility of coded vibration in a vibro-ultrasound system for tissue elasticity measurement.

    PubMed

    Zhao, Jinxin; Wang, Yuanyuan; Yu, Jinhua; Li, Tianjie; Zheng, Yong-Ping

    2016-07-01

    The ability of various methods for elasticity measurement and imaging is hampered by the vibration amplitude on biological tissues. Based on the inference that coded excitation will improve the performance of the cross-correlation function of the tissue displacement waves, the idea of exerting encoded external vibration on tested samples for measuring its elasticity is proposed. It was implemented by integrating a programmable vibration generation function into a customized vibro-ultrasound system to generate Barker coded vibration for elasticity measurement. Experiments were conducted on silicone phantoms and porcine muscles. The results showed that coded excitation of the vibration enhanced the accuracy and robustness of the elasticity measurement especially in low signal-to-noise ratio scenarios. In the phantom study, the measured shear modulus values with coded vibration had an R(2 )= 0.993 linear correlation to that of referenced indentation, while for single-cycle pulse the R(2) decreased to 0.987. In porcine muscle study, the coded vibration also obtained a shear modulus value which is more accurate than the single-cycle pulse by 0.16 kPa and 0.33 kPa at two different depths. These results demonstrated the feasibility and potentiality of the coded vibration for enhancing the quality of elasticity measurement and imaging. PMID:27475130

  14. Ultrasound-based Measurement of Molecular Marker Concentration in Large Blood Vessels: A Feasibility Study

    PubMed Central

    Wang, Shiying; Mauldin, F. William; Klibanov, Alexander L.; Hossack, John A.

    2014-01-01

    Ultrasound molecular imaging has demonstrated efficacy in pre-clinical studies for cancer and cardiovascular inflammation. However, these techniques often require lengthy protocols due to waiting periods or additional control microbubble injections. Moreover, they are not capable of quantifying molecular marker concentration in human tissue environments that exhibit variable attenuation and propagation path lengths. Our group recently investigated a modulated Acoustic Radiation Force (ARF)-based imaging sequence, which was demonstrated to detect targeted adhesion independent of control measurements. In the present study, this sequence was tested against various experimental parameters to determine feasibility for quantitative measurements of molecular marker concentration. Results demonstrated that measurements obtained from the sequence (residual-to-saturation ratio, Rresid) were independent of acoustic pressure and attenuation (p> 0.13, n = 10)when acoustic pressures were sufficiently low. The Rresid parameter exhibited a linear relationship with measured molecular marker concentration (R2> 0.94). Consequently, feasibility was demonstrated in vitro, for quantification of molecular marker concentration in large vessels using a modulated ARF-based sequence. Moreover, these measurements were independent of absolute acoustic reflection amplitude and used short imaging protocols(3 min) without control measurements. PMID:25308943

  15. Measurement of Elastic Constant and Refraction Index of Thin Films at Low Temperatures Using Picosecond Ultrasound

    NASA Astrophysics Data System (ADS)

    Tanigaki, Kenichi; Kusumoto, Tatsuya; Ogi, Hirotsugu; Nakamura, Nobutomo; Hirao, Masahiko

    2010-07-01

    In this paper, a picosecond ultrasound measurement is conducted to evaluate the low-temperature elastic and optical properties of thin films and semiconductors. Specimens are cooled with liquid He through a heat exchanger in a cryostat, and an ultrahigh-frequency acoustic pulse is generated using a femtosecond light pulse, which propagates in the film-thickness direction. Pulse echoes of the longitudinal wave and Brillouin oscillation are observed by the changes in reflectivity of the time-delayed probe light, which depend on the material, and give the longitudinal-wave out-of-plane elastic constant. When the stiffness is known, the Brillouin oscillation provides the refractive index. We determined the stiffness of a Pt thin film and the refractive index of Si at 5 K. The methodology developed in this paper is useful for studing the elastic and optical properties of metallic thin films and transparent materials at cryogenic temperatures.

  16. "Bedside" test of static rear stability of occupied wheelchairs.

    PubMed

    Kirby, R L; Kumbhare, D A; MacLeod, D A

    1989-03-01

    The assessment of static stability can be helpful in wheelchair prescription and adjustment, but ordinarily requires a tipping platform. We developed a simple "bedside" test of rear wheelchair stability, using a goniometer and a plumb line. The angle of the wheelchair handle while the occupied wheelchair was on a level surface was subtracted from the angle measured while the occupied chair was balanced over the rear axle. The intraobserver and interobserver reliability and the validity in comparison with platform testing were assessed by studying 30 patient-occupied wheelchairs. There was a high correlation (r = 0.93, p less than 0.001) between the values obtained from the beside and platform tests and no significant difference between them. Intraobserver and interobserver reliabilities were 0.87 (p less than 0.001) and 0.94 (p less than 0.001). There was no significant difference between the first and second test values done by a single observer; the mean difference (+/- 1SD) between observers, 1.3 degrees (+/- 1.6 degrees), was small but statistically significant. The bedside test is simple, reliable, valid, and suitable for use as a screening test for the platform assessment of rear stability. PMID:2923546

  17. Adherence to Criteria for Transvaginal Ultrasound Imaging and Measurement of Cervical Length

    PubMed Central

    Iams, JD; Grobman, WA; Lozitska, A; Spong, CY; Saade, G; Mercer, BM; Tita, AN; Rouse, DJ; Sorokin, Y; Wapner, RJ; Leveno, KJ; Esplin, MS; Tolosa, JE; Thorp, JM; Caritis, SN; Van Dorsten, JP

    2014-01-01

    Background Adherence to published criteria for transvaginal imaging and measurement of cervical length is uncertain. We sought to assess adherence by evaluating images submitted to certify research sonographers for participation in a clinical trial. Study Design We reviewed qualifying test results of sonographers seeking certification to image and measure cervical length in a clinical trial. Participating sonographers were required to access training materials and submit 15 images, three each from five pregnant women not enrolled in the trial. One of two sonologists reviewed all qualifying images. We recorded the proportion of images that did not meet standard criteria (excess compression, landmarks not seen, improper image size, or full maternal bladder) and the proportion in which the cervical length was measured incorrectly. Failure for a given patient was defined as more than one unacceptable image, or more than two acceptable images with incorrect caliper placement or erroneous choice of the “shortest best” cervical length. Certification required satisfactory images and cervical length measurement from four or more patients. Results 327 sonographers submitted 4905 images. 271 sonographers (83%) were certified on the first, 41 (13%) on the second, and 2 (0.6%) on the third submission. 13 never achieved certification. Of 314 who passed, 196 submitted 15 acceptable images that were appropriately measured for all five women. There were 1277 deficient images: 493 were acceptable but incorrectly measured images from sonographers who passed certification because mis-measurement occurred no more than twice. Of 784 deficient images submitted by sonographers who failed the certification, 471 were rejected because of improper measurement (caliper placement and/or failure to identify the shortest best image), and 313 because of failure to obtain a satisfactory image (excessive compression, required landmarks not visible, incorrect image size, brief examination, and

  18. Ultrasound measurements of carotid intima-media thickness by two semi-automated analysis systems.

    PubMed

    Ring, M; Eriksson, M J; Jogestrand, T; Caidahl, K

    2016-09-01

    Increased carotid intima-media thickness (cIMT) is associated with an increased risk of cardiac events and stroke. Several semi-automated edge-detection techniques for measuring cIMT are used for research and in clinical practice. Our aim was to compare two currently available semi-automated techniques for the measurement of cIMT. Carotid ultrasound recordings were obtained from 99 subjects (mean age 54·4 ± 8·9 years, range 33-69) without known cardiovascular diseases using a General Electric (GE) Vivid 7 ultrasound scanner, 8-MHz transducer. The far-wall cIMT was evaluated 1-2 cm proximal to the carotid bulb. Three diastolic images (ECG R-wave) from the left and three images from the right common carotid arteries were analysed using GE and Artery Measurement System (AMS) semi-automated softwares. Mean systolic and diastolic blood pressures were 120 ± 13 and 76 ± 8 mmHg, respectively. The cIMTmean (left + right)/2 by GE and cIMTmean (left + right)/2 AMS were highly correlated (r = 0·92, P<0·001). Higher values were measured by GE (0·72 ± 0·12 mm) compared with AMS (0·69 ± 0·12 mm), and this was significant (P<0·001). The coefficients of variation for the intra-observer variability of cIMTmean (left + right)/2 were 1·0% (GE) and 2·2% (AMS). cIMTmean measured by GE's semi-automated edge-detection method correlated well with that measured by AMS. However, there were small but significant systematic differences between the cIMTmean values measured by the two techniques. Thus, the use of only one type of measurement program seems favourable in follow-up studies and when evaluating treatment effects. PMID:26046377

  19. Prenatal Air Pollution Exposure and Ultrasound Measures of Fetal Growth in Los Angeles, California

    PubMed Central

    Ritz, Beate; Qiu, Jiaheng; Lee, Pei-Chen; Lurmann, Fred; Penfold, Bryan; Weiss, Robert Erin; McConnell, Rob; Arora, Chander; Hobel, Calvin; Wilhelm, Michelle

    2014-01-01

    Background Few previous studies examined the impact of prenatal air pollution exposures on fetal development based on ultrasound measures during pregnancy. Methods In a prospective birth cohort of more than 500 women followed during 1993-1996 in Los Angeles, California, we examined how air pollution impacts fetal growth during pregnancy. Exposure to traffic related air pollution was estimated using CALINE4 air dispersion modeling for nitrogen oxides (NOx) and a land use regression (LUR) model for nitrogen monoxide (NO), nitrogen dioxide (NO2) and NOx. Exposures to carbon monoxide (CO), NO2, ozone (O3) and particles <10 μm in aerodynamic diameter (PM10) were estimated using government monitoring data. We employed a linear mixed effects model to estimate changes in fetal size at approximately 19, 29 and 37 weeks gestation based on ultrasound. Results Exposure to traffic-derived air pollution during 29 to 37 weeks was negatively associated with biparietal diameter at 37 weeks gestation. For each interquartile range (IQR) increase in LUR-based estimates of NO, NO2 and NOx, or freeway CALINE4 NOx we estimated a reduction in biparietal diameter of 0.2-0.3 mm. For women residing within 5 km of a monitoring station, we estimated biparietal diameter reductions of 0.9-1.0 mm per IQR increase in CO and NO2. Effect estimates were robust to adjustment for a number of potential confounders. We did not observe consistent patterns for other growth endpoints we examined. Conclusions Prenatal exposure to traffic-derived pollution was negatively associated with fetal head size measured as biparietal diameter in late pregnancy. PMID:24517884

  20. Ultrasound Estimates of Loin Muscle Measures and Backfat Thickness Augment Live Animal Prediction of Weights of Subprimal Cuts in Sheep.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The efficacy of live animal, real-time, B-mode ultrasound (US) estimates of carcass traits as (partial) predictors of carcass composition warrants investigation in sheep of varying genetic and environmental backgrounds. Our objectives were to 1) evaluate US estimates of corresponding carcass measure...

  1. Fetal head detection and measurement in ultrasound images by a direct inverse randomized Hough transform

    NASA Astrophysics Data System (ADS)

    Lu, Wei; Tan, Jinglu; Floyd, Randall C.

    2005-04-01

    Object detection in ultrasound fetal images is a challenging task for the relatively low resolution and low signal-to-noise ratio. A direct inverse randomized Hough transform (DIRHT) is developed for filtering and detecting incomplete curves in images with strong noise. The DIRHT combines the advantages of both the inverse and the randomized Hough transforms. In the reverse image, curves are highlighted while a large number of unrelated pixels are removed, demonstrating a "curve-pass filtering" effect. Curves are detected by iteratively applying the DIRHT to the filtered image. The DIRHT was applied to head detection and measurement of the biparietal diameter (BPD) and head circumference (HC). No user input or geometric properties of the head were required for the detection. The detection and measurement took 2 seconds for each image on a PC. The inter-run variations and the differences between the automatic measurements and sonographers" manual measurements were small compared with published inter-observer variations. The results demonstrated that the automatic measurements were consistent and accurate. This method provides a valuable tool for fetal examinations.

  2. Broadband ultrasound attenuation imaging: influence of location of region of measurement.

    PubMed

    Damilakis, J; Papadakis, A; Perisinakis, K; Gourtsoyiannis, N

    2001-01-01

    The aim of the study was to investigate the effect of three different regions of interest (ROIs) varying in size and shape on broadband ultrasound attenuation (BUA) measurements of the calcaneus. Two hundred and sixty-five postmenopausal Caucasian women participated in this study. In 43 women osteoporotic fractures were documented on spinal radiographs. Bone mineral density (BMD) measurements of the lumbar spine and the femur were made using dual-energy X-ray absorptiometry. BUA measurements were obtained at a circular ROI automatically determined by the imaging system (ROIc), at a manually traced irregular ROI encompassing the posterior part of the calcaneus (ROIi), and at an anatomical square ROI located in the posterior part of the calcaneus (ROIs). Reproducibility was better in ROIc than in ROIi and ROIs. High correlations were found between BUA measurements with ROIc and ROIs (r = 0.981, P < 0.0001) as well as between those with ROIc and ROIi (r = 0.965, P < 0.0001). There were no significant differences between the correlations of BUA with axial BMD at ROIc compared with ROIi and ROIs. No significant difference was found between the areas under the ROC curve at ROIi, ROIc, and ROIs for women with fractures. The results show that superior reproducibility makes ROIc the most appropriate region of BUA measurement in a comparison with ROIi and ROIs. PMID:11471598

  3. Ultrasound Diagnosis of Bilateral Quadriceps Tendon Rupture After Statin Use

    PubMed Central

    Nesselroade, Ryan D.; Nickels, Leslie Connor

    2010-01-01

    Simultaneous bilateral quadriceps tendon rupture is a rare injury. We report the case of bilateral quadriceps tendon rupture sustained with minimal force while refereeing a football game. The injury was suspected to be associated with statin use as the patient had no other identifiable risk factors. The diagnosis was confirmed using bedside ultrasound. PMID:21079697

  4. Point-of-care ultrasound: seeing the future.

    PubMed

    Morris, Amy E

    2015-01-01

    Practitioners other than radiologists and certified sonographers are increasingly using ultrasound at the bedside to facilitate immediate patient management from both procedural and diagnostic standpoints. This editorial provides a brief overview of the use of point-of-care ultrasound in clinical practice, its potential to improve patient care, and some of the unanswered questions surrounding issues of training, scope of practice, and quality assurance. PMID:25064491

  5. Intravascular ultrasound

    MedlinePlus

    IVUS; Ultrasound - coronary artery; Endovascular ultrasound; Intravascular echocardiography ... A tiny ultrasound wand is attached to the top of a thin tube called a catheter. This ultrasound catheter is inserted ...

  6. Duplex ultrasound

    MedlinePlus

    ... ultrasound with Doppler ultrasound . Traditional ultrasound uses sound waves that bounce off blood vessels to create pictures. Doppler ultrasound records sound waves reflecting off moving objects, such as blood, to ...

  7. Ultrasound analysis of the uterine wall movement for improved electrohysterographic measurement and modeling.

    PubMed

    Rabotti, Chiara; de Lau, Hinke; Haazen, Nicole; Oei, Guid; Mischi, Massimo

    2013-01-01

    During pregnancy, analysis of the electrohysterogram (EHG), which measures the uterine electrical activity, can provide a fundamental contribution for the assessment of uterine contractions and the diagnosis of preterm labor. However, several aspects concerning uterine physiology and its link with EHG measurements are still unclear. As a consequence, the EHG is not yet part of the clinical practice. There is general consensus that modeling and analysis of the EHG can be improved only by understanding and integrating the main properties of the uterine physiology at different levels, e:g:, cellular, tissue, and organ, and of different nature, e:g:, electrical, mechanical, and structural. In this study, we use transabdominal ultrasound (US) measurements to investigate the mechanical changes that the uterus undergoes during pregnancy under the effect of contractions. We refer to this measurement as mechanohysterogram. Analysis of the mechanohysterogram highlights, for the first time, two phenomena that can influence EHG signal interpretation, namely, changes in uterine wall thickness during contractions and respiration-induced uterine wall movements. Our results suggest that these phenomena can affect the interpretation of the EHG and should therefore be taken into account for accurate modeling and assessment of the uterine electrical activity. PMID:24111464

  8. An analysis of temperature-induced errors for an ultrasound distance measuring system. M. S. Thesis

    NASA Technical Reports Server (NTRS)

    Wenger, David Paul

    1991-01-01

    The presentation of research is provided in the following five chapters. Chapter 2 presents the necessary background information and definitions for general work with ultrasound and acoustics. It also discusses the basis for errors in the slant range measurements. Chapter 3 presents a method of problem solution and an analysis of the sensitivity of the equations to slant range measurement errors. It also presents various methods by which the error in the slant range measurements can be reduced to improve overall measurement accuracy. Chapter 4 provides a description of a type of experiment used to test the analytical solution and provides a discussion of its results. Chapter 5 discusses the setup of a prototype collision avoidance system, discusses its accuracy, and demonstrates various methods of improving the accuracy along with the improvements' ramifications. Finally, Chapter 6 provides a summary of the work and a discussion of conclusions drawn from it. Additionally, suggestions for further research are made to improve upon what has been presented here.

  9. Comparison of breast density measurements made using ultrasound tomography and mammography

    NASA Astrophysics Data System (ADS)

    Sak, Mark; Duric, Neb; Littrup, Peter; Bey-Knight, Lisa; Krycia, Mark; Sherman, Mark E.; Boyd, Norman; Gierach, Gretchen L.

    2015-03-01

    Women with elevated mammographic percent density, defined as the ratio of fibroglandular tissue area to total breast area on a mammogram are at an increased risk of developing breast cancer. Ultrasound tomography (UST) is an imaging modality that can create tomographic sound speed images of a patient's breast, which can then be used to measure breast density. These sound speed images are useful because physical tissue density is directly proportional to sound speed. The work presented here updates previous results that compared mammographic breast density measurements with UST breast density measurements within an ongoing study. The current analysis has been expanded to include 158 women with negative digital mammographic screens who then underwent a breast UST scan. Breast density was measured for both imaging modalities and preliminary analysis demonstrated strong and positive correlations (Spearman correlation coefficient rs = 0.703). Additional mammographic and UST related imaging characteristics were also analyzed and used to compare the behavior of both imaging modalities. Results suggest that UST can be used among women with negative mammographic screens as a quantitative marker of breast density that may avert shortcomings of mammography.

  10. In vitro strain measurement in the porcine antrum using ultrasound doppler strain rate imaging.

    PubMed

    Ahmed, Aymen Bushra; Gilja, Odd Helge; Gregersen, Hans; Ødegaard, Svein; Matre, Knut

    2006-04-01

    Strain rate imaging (SRI) enables study of deformation in soft tissues. The aim of this study was to evaluate the accuracy of SRI in measuring strain in the porcine antral wall in vitro. An experimental set-up enabled controlled distension of a porcine stomach in a saline reservoir. Radial strain obtained by SRI was compared with radial strain calculated from B-mode ultrasonography. Circumferential strain obtained by SRI was compared with circumferential strain calculated from sonomicrometry. The agreement between radial strain values measured by SRI and B-mode, along and across several ultrasound (US) beams, using US frequency 6.7 MHz and strain length (SL) = 1.9 mm was = -1.0 +/- 12.1% and 0.5 +/- 13.4%, respectively (mean difference +/- 2SD%) and it was better than with SL 1.2 mm. Compared with sonomicrometry, SRI-determined circumferential strain using 6.7 MHz and SL = 1.9 mm was less accurate, whether averaging along or across several US beams (-9.2 +/- 46.7% and 13.8 +/- 51.2%, respectively). In conclusion, SRI gave accurate measurement of radial strain of the antral wall, but seemed to be less accurate for measurement of circumferential strain for this in vitro set-up. PMID:16616598

  11. Acoustic Doppler velocity measurement system using capacitive micromachined ultrasound transducer array technology.

    PubMed

    Shin, Minchul; Krause, Joshua S; DeBitetto, Paul; White, Robert D

    2013-08-01

    This paper describes the design, fabrication, modeling, and characterization of a small (1 cm(2) transducer chip) acoustic Doppler velocity measurement system using microelectromechanical systems capacitive micromachined ultrasound transducer (cMUT) array technology. The cMUT sensor has a 185 kHz resonant frequency to achieve a 13° beam width for a 1 cm aperture. A model for the cMUT and the acoustic system which includes electrical, mechanical, and acoustic components is provided. Furthermore, this paper shows characterization of the cMUT sensor with a variety of testing procedures including Laser Doppler Vibrometry (LDV), beampattern measurement, reflection testing, and velocity testing. LDV measurements demonstrate that the membrane displacement at the center point is 0.4 nm/V(2) at 185 kHz. The maximum range of the sensor is 60 cm (30 cm out and 30 cm back). A velocity sled was constructed and used to demonstrate measureable Doppler shifts at velocities from 0.2 to 1.0 m/s. The Doppler shifts agree well with the expected frequency shifts over this range. PMID:23927100

  12. In Vitro Ultrasound Measurements of Powered and Unpowered Total Cavopulmonary Connection

    PubMed Central

    Iliff, BP; Kerlo, AEM; Chen, J; Rodefeld, MD; Goergen, CJ

    2015-01-01

    Three-staged Fontan palliation is performed on children suffering from single ventricle congenital heart disease. The series of surgical procedures reroutes blood from the vena cavae directly to the pulmonary arteries, creating a total cavopulmonary connection (TCPC). A viscous impeller pump (VIP) is currently being developed as a cavopulmonary assist device that can modestly augment cavopulmonary flow, reduce systemic venous pressure, and improve ventricular preload. This study used ultrasound to visualize complex flow patterns in powered and unpowered in vitro mock Fontan circulations. The idealized TCPC was modeled with a silicone mold and blood analog made of water and glycerol that was seeded with 10-μm glass beads. B-mode, color Doppler, and pulsed-wave Doppler images were used to visualize complex flow patterns in the idealized TCPC with (1) no VIP, (2) static VIP, and powered VIP rotation rates of (3) 500 and (4) 2,000 rotations per minute (RPM). Pulsed-wave Doppler data showed higher mean velocities and greater variance in the outlets relative to the larger inlets. The maximum inlet velocity ± SD increased from 10.9 ± 3.53 cm/s with no VIP to 15.9 ± 1.03 when the VIP was rotating at 2,000 RPM. Likewise, the maximum outlet velocity increased from 14.9 ± 11.2 cm/s to 18.9 ± 7.25 cm/s at 2,000 RPM. The faster mean velocities with the VIP rotating suggest that the pump augments cavopulmonary flow. The results of this study suggest that measuring complex flow patterns with ultrasound in vivo could be used clinically to optimize VIP positioning and rotation rate during and after implantation. PMID:25621311

  13. Visual Feedback of Continuous Bedside Pressure Mapping to Optimize Effective Patient Repositioning

    PubMed Central

    Scott, Ronald G.; Thurman, Kristen M.

    2014-01-01

    Objective: To evaluate the effectiveness of a new bedside pressure mapping technology for patient repositioning in a long-term acute care hospital. Approach: Bedside caregivers repositioned patients to the best of their abilities, using pillows and positioning aids without the visual feedback from a continuous bedside pressure mapping (CBPM) system. Once positioned, caregivers were shown the image from the CBPM system and allowed to make further adjustments to the patient position. Data from the CBPM device, in the form of visual screenshots and peak pressure values, were obtained after each repositioning phase. Caregivers provided feedback on repositioning with and without the CBPM system. Results: Screenshots displayed lower pressures when the visual feedback from the CBPM systems was utilized by caregivers. Lower peak pressure measurements were also evident when caregivers utilized the image from the CBPM systems. Overall, caregivers felt the system enabled more effective patient positioning and increased the quality of care they provided their patients. Innovation: This is the first bedside pressure mapping device to be continuously used in a clinical setting to provide caregivers and patients visual, instant feedback of pressure, thereby enhancing repositioning and offloading practices. Conclusion: With the visual feedback from the pressure mapping systems, caregivers were able to more effectively reposition patients, decreasing exposure to damaging high pressures. PMID:24804157

  14. Prenatal Exposure to NO2 and Ultrasound Measures of Fetal Growth in the Spanish INMA Cohort

    PubMed Central

    Iñiguez, Carmen; Esplugues, Ana; Sunyer, Jordi; Basterrechea, Mikel; Fernández-Somoano, Ana; Costa, Olga; Estarlich, Marisa; Aguilera, Inmaculada; Lertxundi, Aitana; Tardón, Adonina; Guxens, Mònica; Murcia, Mario; Lopez-Espinosa, Maria-Jose; Ballester, Ferran

    2015-01-01

    Background Air pollution exposure during pregnancy has been associated with impaired fetal growth. However, few studies have measured fetal biometry longitudinally, remaining unclear as to whether there are windows of special vulnerability. Objective The aim was to investigate the impact of nitrogen dioxide (NO2) exposure on fetal and neonatal biometry in the Spanish INMA study. Methods Biparietal diameter (BPD), femur length (FL), abdominal circumference (AC), and estimated fetal weight (EFW) were evaluated for up to 2,478 fetuses in each trimester of pregnancy. Size at 12, 20, and 34 weeks of gestation and growth between these points, as well as anthropometry at birth, were assessed by SD scores derived using cohort-specific growth curves. Temporally adjusted land-use regression was used to estimate exposure to NO2 at home addresses for up to 2,415 fetuses. Associations were investigated by linear regression in each cohort and subsequent meta-analysis. Results A 10-μg/m3 increase in average exposure to NO2 during weeks 0–12 was associated with reduced growth at weeks 0–12 in AC (–2.1%; 95% CI: –3.7, –0.6) and EFW (–1.6%; 95% CI: –3.0, –0.3). The same exposure was inversely associated with reduced growth at weeks 20–34 in BPD (–2.6%; 95% CI: –3.9, –1.2), AC (–1.8%; 95% CI: –3.3, –0.2), and EFW (–2.1%; 95% CI: –3.7, –0.2). A less consistent pattern of association was observed for FL. The negative association of this exposure with BPD and EFW was significantly stronger in smoking versus nonsmoking mothers. Conclusions Maternal exposure to NO2 in early pregnancy was associated with reduced fetal growth based on ultrasound measures of growth during pregnancy and measures of size at birth. Citation Iñiguez C, Esplugues A, Sunyer J, Basterrechea M, Fernández-Somoano A, Costa O, Estarlich M, Aguilera I, Lertxundi A, Tardón A, Guxens M, Murcia M, Lopez-Espinosa MJ, Ballester F, on behalf of the INMA Project. 2016. Prenatal exposure

  15. Serial Measurements of Splanchnic Vein Diameters in Rats Using High-Frequency Ultrasound

    PubMed Central

    Seitz, Bridget M.; Krieger-Burke, Teresa; Fink, Gregory D.; Watts, Stephanie W.

    2016-01-01

    The purpose of this study was to investigate serial ultrasound imaging in rats as a fully non-invasive method to (1) quantify the diameters of splanchnic veins in real time as an indirect surrogate for the capacitance function of those veins, and (2) assess the effects of drugs on venous dimensions. A 21 MHz probe was used on anesthetized male Sprague–Dawley rats to collect images containing the portal vein (PV), superior mesenteric vein (SMV), abdominal inferior vena cava (IVC), and splenic vein (SpV; used as a landmark in timed studies) and the abdominal aorta (AA). Stable landmarks were established that allowed reproducible quantification of cross-sectional diameters within an animal. The average diameters of vessels measured every 5 min over 45 min remained within 0.75 ± 0.15% (PV), 0.2 ± 0.09% (SMV), 0.5 ± 0.12% (IVC), and 0.38 ± 0.06% (AA) of baseline (PV: 2.0 ± 0.12 mm; SMV: 1.7 ± 0.04 mm; IVC: 3.2 ± 0.1 mm; AA: 2.3 ± 0.14 mm). The maximal effects of the vasodilator sodium nitroprusside (SNP; 2 mg/kg, i.v. bolus) on venous diameters were determined 5 min post SNP bolus; the diameters of all noted veins were significantly increased by SNP, while mean arterial pressure (MAP) decreased 29 ± 4 mmHg. By contrast, administration of the venoconstrictor sarafotoxin (S6c; 5 ng/kg, i.v. bolus) significantly decreased PV and SpV, but not IVC, SMV, or AA, diameters 5 min post S6c bolus; MAP increased by 6 ± 2 mmHg. In order to determine if resting splanchnic vein diameters were stable over much longer periods of time, vessel diameters were measured every 2 weeks for 8 weeks. Measurements were found to be highly reproducible within animals over this time period. Finally, to evaluate the utility of vein imaging in a chronic condition, images were acquired from 4-week deoxycorticosterone acetate salt (DOCA-salt) hypertensive and normotensive (SHAM) control rats. All vessel diameters increased from baseline while MAP increased (67 ± 4 mmHg) in DOCA-salt rats

  16. Serial Measurements of Splanchnic Vein Diameters in Rats Using High-Frequency Ultrasound.

    PubMed

    Seitz, Bridget M; Krieger-Burke, Teresa; Fink, Gregory D; Watts, Stephanie W

    2016-01-01

    The purpose of this study was to investigate serial ultrasound imaging in rats as a fully non-invasive method to (1) quantify the diameters of splanchnic veins in real time as an indirect surrogate for the capacitance function of those veins, and (2) assess the effects of drugs on venous dimensions. A 21 MHz probe was used on anesthetized male Sprague-Dawley rats to collect images containing the portal vein (PV), superior mesenteric vein (SMV), abdominal inferior vena cava (IVC), and splenic vein (SpV; used as a landmark in timed studies) and the abdominal aorta (AA). Stable landmarks were established that allowed reproducible quantification of cross-sectional diameters within an animal. The average diameters of vessels measured every 5 min over 45 min remained within 0.75 ± 0.15% (PV), 0.2 ± 0.09% (SMV), 0.5 ± 0.12% (IVC), and 0.38 ± 0.06% (AA) of baseline (PV: 2.0 ± 0.12 mm; SMV: 1.7 ± 0.04 mm; IVC: 3.2 ± 0.1 mm; AA: 2.3 ± 0.14 mm). The maximal effects of the vasodilator sodium nitroprusside (SNP; 2 mg/kg, i.v. bolus) on venous diameters were determined 5 min post SNP bolus; the diameters of all noted veins were significantly increased by SNP, while mean arterial pressure (MAP) decreased 29 ± 4 mmHg. By contrast, administration of the venoconstrictor sarafotoxin (S6c; 5 ng/kg, i.v. bolus) significantly decreased PV and SpV, but not IVC, SMV, or AA, diameters 5 min post S6c bolus; MAP increased by 6 ± 2 mmHg. In order to determine if resting splanchnic vein diameters were stable over much longer periods of time, vessel diameters were measured every 2 weeks for 8 weeks. Measurements were found to be highly reproducible within animals over this time period. Finally, to evaluate the utility of vein imaging in a chronic condition, images were acquired from 4-week deoxycorticosterone acetate salt (DOCA-salt) hypertensive and normotensive (SHAM) control rats. All vessel diameters increased from baseline while MAP increased (67 ± 4 mmHg) in DOCA-salt rats

  17. Uncertainty quantification in modeling and measuring components with resonant ultrasound spectroscopy

    NASA Astrophysics Data System (ADS)

    Biedermann, Eric; Jauriqui, Leanne; Aldrin, John C.; Mayes, Alexander; Williams, Tom; Mazdiyasni, Siamack

    2016-02-01

    Resonant Ultrasound Spectroscopy (RUS) is a nondestructive evaluation (NDE) method which can be used for material characterization, defect detection, process control and life monitoring for critical components in gas turbine engines, aircraft and other systems. Accurate forward and inverse modeling for RUS requires a proper accounting of the propagation of uncertainty due to the model and measurement sources. A process for quantifying the propagation of uncertainty to RUS frequency results for models and measurements was developed. Epistemic and aleatory sources of uncertainty were identified for forward model parameters, forward model material property and geometry inputs, inverse model parameters, and physical RUS measurements. RUS model parametric studies were then conducted for simple geometric samples to determine the sensitivity of RUS frequencies and model inversion results to the various sources of uncertainty. The results of these parametric studies were used to calculate uncertainty bounds associated with each source. Uncertainty bounds were then compared to assess the relative impact of the various sources of uncertainty, and mitigations were identified. The elastic material property inputs for forward models, such as Young's Modulus, were found to be the most significant source of uncertainty in these studies. The end result of this work was the development of an uncertainty quantification process that can be adapted to a broad range of components and materials.

  18. [Quantitative ultrasound].

    PubMed

    Barkmann, R; Glüer, C-C

    2006-10-01

    Methods of quantitative ultrasound (QUS) can be used to obtain knowledge about bone fragility. Comprehensive study results exist showing the power of QUS for the estimation of osteoporotic fracture risk. Nevertheless, the variety of technologies, devices, and variables as well as different degrees of validation of the single devices have to be taken into account. Using methods to simulate ultrasound propagation, the complex interaction between ultrasound and bone could be understood and the propagation could be visualized. Preceding widespread clinical use, it has to be clarified if patients with low QUS values will profit from therapy, as it has been shown for DXA. Moreover, the introduction of quality assurance measures is essential. The user should know the limitations of the methods and be able to interpret the results correctly. Applied in an adequate manner QUS methods could then, due to lower costs and absence of ionizing radiation, become important players in osteoporosis management. PMID:16896637

  19. The influence of steel roughness and granulation on the accuracy of part thickness measurement by means of ultrasounds

    NASA Technical Reports Server (NTRS)

    Sontea, S.; Baltanoiu, M.

    1974-01-01

    Nondestructive measurement of the thickness of one-sided parts can be successfully conducted with the aid of ultrasounds. Using an ultrasonic defectoscope equipped with a highly precise device for thickness measurement, the experimental results obtained and the parameters that influence them are discussed. It is known that the manner of attaching the probe to the surface to be tested is influenced by the roughness of the surface. Likewise, in view of the fact that measurement results are influenced by the velocity of ultrasounds in the material to be investigated, they are also conditioned by the size of the structure. These factors and the manner in which they influence measurement results are also described.

  20. Reliability and Validity of Ultrasound Cross Sectional Area Measurements for Long-Duration Spaceflight

    NASA Technical Reports Server (NTRS)

    Scott, Jessica M.; Martin, David S.; Cunningham, David; Matz, Timothy; Caine, Timothy; Hackney, Kyle J.; Arzeno, Natalia; Ploutz-Snyder, Lori

    2010-01-01

    Limb muscle atrophy and the accompanying decline in function can adversely affect the performance of astronauts during mission-related activities and upon re-ambulation in a gravitational environment. Previous characterization of space flight-induced muscle atrophy has been performed using pre and post flight magnetic resonance imaging (MRI). In addition to being costly and time consuming, MRI is an impractical methodology for assessing in-flight changes in muscle size. Given the mobility of ultrasound (US) equipment, it may be more feasible to evaluate changes in muscle size using this technique. PURPOSE: To examine the reliability and validity of using a customized template to acquire panoramic ultrasound (US) images for determining quadriceps and gastrocnemius anatomical cross sectional area (CSA). METHODS: Vastus lateralis (VL), rectus femoris (RF), medial gastrocnemius (MG), and lateral gastrocnemius (LG) CSA were assessed in 10 healthy individuals (36+/-2 yrs) using US and MRI. Panoramic US images were acquired by 2 sonographers using a customized template placed on the thigh and calf and analyzed by the same 2 sonographers (CX50 Philips). MRI images of the leg were acquired while subjects were supine in a 1.5T scanner (Signa Horizon LX, General Electric) and were analyzed by 3 trained investigators. The average of the 2 US and 3 MRI values were used for validity analysis. RESULTS: High inter-experimenter reliability was found for both the US template and MRI analysis as coefficients of variation across muscles ranged from 2.4 to 4.1% and 2.8 to 3.8%, respectively. Significant correlations were found between US and MRI CSA measures (VL, r = 0.85; RF, r = 0.60; MG, r = 0.86; LG, r = 0.73; p < 0.05). Furthermore, the standard error of measurement between US and MRI ranged from 0.91 to 2.09 sq cm with high limits of agreement analyzed by Bland-Altman plots. However, there were significant differences between absolute values of MRI and US for all muscles

  1. Quantitative head ultrasound measurements to determine thresholds for preterm neonates requiring interventional therapies following intraventricular hemorrhage

    NASA Astrophysics Data System (ADS)

    Kishimoto, Jessica; Fenster, Aaron; Salehi, Fateme; Romano, Walter; Lee, David S. C.; de Ribaupierre, Sandrine

    2016-04-01

    Dilation of the cerebral ventricles is a common condition in preterm neonates with intraventricular hemorrhage (IVH). This post hemorrhagic ventricle dilation (PHVD) can lead to lifelong neurological impairment through ischemic injury due to increased intracranial pressure and without treatment, can lead to death. Clinically, 2D ultrasound (US) through the fontanelles ('soft spots') of the patients are serially acquired to monitor the progression of the ventricle dilation. These images are used to determine when interventional therapies such as needle aspiration of the built up cerebrospinal fluid (CSF) ('ventricle tap', VT) might be indicated for a patient; however, quantitative measurements of the growth of the ventricles are often not performed. There is no consensus on when a neonate with PHVD should have an intervention and often interventions are performed after the potential for brain damage is quite high. Previously we have developed and validated a 3D US system to monitor the progression of ventricle volumes (VV) in IVH patients. We will describe the potential utility of quantitative 2D and 3D US to monitor and manage PHVD in neonates. Specifically, we will look to determine image-based measurement thresholds for patients who will require VT in comparison to patients with PHVD who resolve without intervention. Additionally, since many patients who have an initial VT will require subsequent interventions, we look at the potential for US to determine which PHVD patients will require additional VT after the initial one has been performed.

  2. Physical activity and maternal-fetal circulation measured by Doppler ultrasound

    PubMed Central

    Nguyen, Nghia C.; Evenson, Kelly R.; Savitz, David A.; Chu, Haitao; Thorp, John M.; Daniels, Julie L.

    2012-01-01

    Objective To examine the association of physical activity on maternal-fetal circulation measured by uterine and umbilical artery Doppler flow velocimetry waveforms. Study Design Participants included 781 pregnant women with Doppler ultrasounds of the uterine and umbilical artery and who self-reported past week physical activity. Linear and generalized estimating equation regression models were used to examine these associations. Results Moderate-to-vigorous total and recreational activity were associated with higher uterine artery pulsatility index (PI) and an increased risk of uterine artery notching as compared to reporting no total or recreational physical activity, respectively. Moderate-to-vigorous work activity was associated with lower uterine artery PI and a reduced risk of uterine artery notching as compared to no work activity. No associations were identified with the umbilical circulation measured by the resistance index. Conclusion In this epidemiologic study, recreational and work activity were associated with opposite effects on uterine artery PI and uterine artery notching, though associations were modest in magnitude. PMID:22678142

  3. Inverse problem in anisotropic poroelasticity: drained constants from undrained ultrasound measurements.

    PubMed

    Berryman, James G; Nakagawa, Seiji

    2010-02-01

    Poroelastic analysis has traditionally focused on the relationship between dry and drained constants, which are assumed known, and the saturated or undrained constants, which are assumed unknown. However, there are many applications in this field of study for which the main measurements can only be made on the saturated/undrained system, and then it is uncertain what the effects of the fluids were on the system, since the drained constants remain a mystery. The work presented here shows how to deduce drained constants from undrained constants for anisotropic systems having symmetries ranging from isotropic to orthotropic. Laboratory ultrasound data are then inverted for the drained constants in three granular packings: one of glass beads, and two others for distinct types of more or less angular sand grain packings. Experiments were performed under uniaxial stress, which resulted in hexagonal (transversely isotropic) symmetry of the poroelastic response. One important conclusion from the general analysis is that the drained constants are uniquely related to the undrained constants, assuming that porosity, grain bulk modulus, and pore fluid bulk modulus are already known. Since the resulting system of equations for all the drained constants is linear, measurement error in undrained constants also propagates linearly into the computed drained constants. PMID:20136194

  4. Inverse problem in anisotropic poroelasticity: Drained constants from undrained ultrasound measurements

    SciTech Connect

    Berryman, J.G.; Nakagawa, S.

    2009-11-20

    Poroelastic analysis has traditionally focused on the relationship between dry or drained constants which are assumed known and the saturated or undrained constants which are assumed unknown. However, there are many applications in this field of study for which the main measurements can only be made on the saturated/undrained system, and then it is uncertain what the eects of the uids were on the system, since the drained constants remain a mystery. The work presented here shows how to deduce drained constants from undrained constants for anisotropic systems having symmetries ranging from isotropic to orthotropic. Laboratory ultrasound data are then inverted for the drained constants in three granular packings: one of glass beads, and two others for distinct types of more or less angular sand grain packings. Experiments were performed under uniaxial stress, which resulted in hexagonal (transversely isotropic) symmetry of the poroelastic response. One important conclusion from the general analysis is that the drained constants are uniquely related to the undrained constants, assuming that porosity, grain bulk modulus, and pore uid bulk modulus are already known. Since the resulting system of equations for all the drained constants is linear, measurement error in undrained constants also propagates linearly into the computed drained constants.

  5. A New Nurse's First Days at the Bedside.

    PubMed

    Anderson, Amanda

    2016-06-01

    This column is designed to help new nurses in their first year at the bedside-a time of insecurity, growth, and constant challenges-and to offer advice as they learn what it means to be a nurse. This first article addresses new nurses' anxiety at the bedside and offers practical tips on how to prepare for your first day. PMID:27227869

  6. Ultrasound-assisted musculoskeletal procedures: A practical overview of current literature

    PubMed Central

    Royall, Nelson A; Farrin, Emily; Bahner, David P; Stawicki, Stanislaw PA

    2011-01-01

    Traditionally performed by a small group of highly trained specialists, bedside sonographic procedures involving the musculoskeletal system are often delayed despite the critical need for timely diagnosis and treatment. Due to this limitation, a need evolved for more portability and accessibility to allow performance of emergent musculoskeletal procedures by adequately trained non-radiology personnel. The emergence of ultrasound-assisted bedside techniques and increased availability of portable sonography provided such an opportunity in select clinical scenarios. This review summarizes the current literature describing common ultrasound-based musculoskeletal procedures. In-depth discussion of each ultrasound procedure including pertinent technical details, indications and contraindications is provided. Despite the limited amount of prospective, randomized data in this area, a substantial body of observational and retrospective evidence suggests potential benefits from the use of musculoskeletal bedside sonography. PMID:22474637

  7. Detection and measurement of fetal abdominal contour in ultrasound images via local phase information and iterative randomized Hough transform.

    PubMed

    Wang, Weiming; Qin, Jing; Zhu, Lei; Ni, Dong; Chui, Yim-Pan; Heng, Pheng-Ann

    2014-01-01

    Due to the characteristic artifacts of ultrasound images, e.g., speckle noise, shadows and intensity inhomogeneity, traditional intensity-based methods usually have limited success on the segmentation of fetal abdominal contour. This paper presents a novel approach to detect and measure the abdominal contour from fetal ultrasound images in two steps. First, a local phase-based measure called multiscale feature asymmetry (MSFA) is de ned from the monogenic signal to detect the boundaries of fetal abdomen. The MSFA measure is intensity invariant and provides an absolute measurement for the signi cance of features in the image. Second, in order to detect the ellipse that ts to the abdominal contour, the iterative randomized Hough transform is employed to exclude the interferences of the inner boundaries, after which the detected ellipse gradually converges to the outer boundaries of the abdomen. Experimental results in clinical ultrasound images demonstrate the high agreement between our approach and manual approach on the measurement of abdominal circumference (mean sign difference is 0.42% and correlation coef cient is 0.9973), which indicates that the proposed approach can be used as a reliable and accurate tool for obstetrical care and diagnosis. PMID:24212021

  8. Manual planimetric measurement of carotid plaque volume using three-dimensional ultrasound imaging

    SciTech Connect

    Landry, Anthony; Ainsworth, Craig; Blake, Chris; Spence, J. David; Fenster, Aaron

    2007-04-15

    We investigated the utility of three manual planimetric methods to quantify carotid plaque volume. A single observer measured 15 individual plaques from 15 three-dimensional (3D) ultrasound (3D US) images of patients ten times each using three different planimetric approaches. Individual plaque volumes were measured (range: 32.6-597.1 mm{sup 3}) using a standard planimetric approach (M1) whereby a plaque end was identified and sequential contours were measured. The same plaques were measured using a second approach (M2), whereby plaque ends were first identified and the 3D US image of the plaque was then subdivided into equal intervals. A third method (M3) was used to measure total plaque burden (range: 165.1-1080.0 mm{sup 3}) in a region ({+-}1.5 cm) relative to the carotid bifurcation. M1 systematically underestimated individual plaque volume compared to M2 (V{sub 2}=V{sub 1}+14.0 mm{sup 3}, r=0.99, p=0.006) due to a difference in the mean plaque length measured. Coefficients of variance (CV) for M1 and M2 decrease with increasing plaque volume, with M2 results less than M1. Root mean square difference between experimental and theoretical CV for M2 was 3.2%. The standard deviation in the identification of the transverse location of the carotid bifurcation was 0.56 mm. CVs for plaque burden measured using M3 ranged from 1.2% to 7.6% and were less than CVs determined for individual plaque volumes of the same volume. The utility of M3 was demonstrated by measuring carotid plaque burden and volume change over a period of 3 months in three patients. In conclusion, M2 was determined to be a more superior measurement technique than M1 to measure individual plaque volume. Furthermore, we demonstrated the utility of M3 to quantify regional plaque burden and to quantify change in plaque volume.

  9. Noninvasive measurement of acoustic field inside mother's uterus generated by ultrasound scanning

    NASA Astrophysics Data System (ADS)

    Antonets, V. A.; Kazakov, V. V.

    2015-07-01

    Sounds in the audible range arising in mother's uterus during conventional ultrasound scanning were recorded noninvasively for the first time. It was found that their level is comparable with the level of spoken language.

  10. Frustration effects in spinel compound GeCo2O4 studied by ultrasound velocity measurements

    NASA Astrophysics Data System (ADS)

    Watanabe, Tadataka; Hara, Shigeo; Ikeda, Shin-Ichi

    2009-03-01

    Ultrasound velocity measurements of the cubic spinel GeCo2O4 in the single crystal have been performed for the investigations of shear and compression moduli. The shear moduli reveal the absence of Jahn-Teller activity despite the presence of the orbital degeneracy in the Co2+ ions. This Jahn-Teller inactivity indicates that the intersite orbital-orbital interaction is much stronger than the Jahn-Teller coupling. The compression moduli reveal that the dominant path of the exchange interactions for the antiferromagnetic transition lies in the [111] direction. This exchange-path anisotropy is consistent with the antiferromagnetic structure with the wave vector q parallel [111], suggesting the presence of bond frustration among several ferromagnetic and antiferromagientic interactions. In the JT-inactive condition, the bond frustration can be induced by geometrical orbital frustration of t2g-t2g interaction between the Co2+ ions which can be realized in the pyrochlore lattice of the high spin Co2+ with t2g -orbital degeneracy. In GeCo2O4, the tetragonal elongation below TN releases the orbital frustration by quenching the orbital degeneracy.