Sample records for bees iv genetic

  1. Genetic stock identification of Russian honey bees.

    PubMed

    Bourgeois, Lelania; Sheppard, Walter S; Sylvester, H Allen; Rinderer, Thomas E

    2010-06-01

    A genetic stock certification assay was developed to distinguish Russian honey bees from other European (Apis mellifera L.) stocks that are commercially produced in the United States. In total, 11 microsatellite and five single-nucleotide polymorphism loci were used. Loci were selected for relatively high levels of homogeneity within each group and for differences in allele frequencies between groups. A baseline sample consisted of the 18 lines of Russian honey bees released to the Russian Bee Breeders Association and bees from 34 queen breeders representing commercially produced European honey bee stocks. Suitability tests of the baseline sample pool showed high levels of accuracy. The probability of correct assignment was 94.2% for non-Russian bees and 93.3% for Russian bees. A neighbor-joining phenogram representing genetic distance data showed clear distinction of Russian and non-Russian honey bee stocks. Furthermore, a test of appropriate sample size showed a sample of eight bees per colony maximizes accuracy and consistency of the results. An additional 34 samples were tested as blind samples (origin unknown to those collecting data) to determine accuracy of individual assignment tests. Only one of these samples was incorrectly assigned. The 18 current breeding lines were represented among the 2009 blind sampling, demonstrating temporal stability of the genetic stock identification assay. The certification assay will be used through services provided by a service laboratory, by the Russian Bee Breeders Association to genetically certify their stock. The genetic certification will be used in conjunction with continued selection for favorable traits, such as honey production and varroa and tracheal mite resistance.

  2. Domestication of honey bees was associated with expansion of genetic diversity.

    PubMed

    Oldroyd, Benjamin P

    2012-09-01

    Humans have been keeping honey bees, Apis mellifera, in artificial hives for over 7000 years. Long enough, one might imagine, for some genetic changes to have occurred in domestic bees that would distinguish them from their wild ancestors. Indeed, some have argued that the recent mysterious and widespread losses of commercial bee colonies, are due in part to inbreeding. In this issue of Molecular Ecology, Harpur et al. (2012) show that the domestication of honey bees, rather than reducing genetic variance in the population, has increased it. It seems that the commercial honey bees of Canada are a mongrel lot, with far more variability than their ancestors in Europe. © 2012 Blackwell Publishing Ltd.

  3. Genetic component in learning ability in bees.

    PubMed

    Kerr, W E; Moura Duarte, F A; Oliveira, R S

    1975-10-01

    Twenty-five bees, five from each of five hives, were trained to collect food at a table. When the bee reached the table, time was recorded for 12 visits. Then a blue and yellow pan was substituted for the original metal pan, and time and correct responses were recorded for 30 trips (discrimination phase). Finally, food was taken from the pan and extinction was recorded as incorrect responses for 20 visits. Variance analysis was carried out, and genetic variance was undetected for discrimination, but was detected for extinction. It is concluded that learning is very important for bees, so that any impairment in such ability affects colony survival.

  4. Population genetics of commercial and feral honey bees in Western Australia.

    PubMed

    Chapman, Nadine C; Lim, Julianne; Oldroyd, Benjamin P

    2008-04-01

    Due to the introduction of exotic honey bee (Apis mellifera L.) diseases in the eastern states, the borders of the state of Western Australia were closed to the import of bees for breeding and other purposes > 25 yr ago. To provide genetically improved stock for the industry, a closed population breeding program was established that now provides stock for the majority of Western Australian beekeepers. Given concerns that inbreeding may have resulted from the closed population breeding structure, we assessed the genetic diversity within and between the breeding lines by using microsatellite and mitochondrial markers. We found that the breeding population still maintains considerable genetic diversity, despite 25 yr of selective breeding. We also investigated the genetic distance of the closed population breeding program to that of beekeepers outside of the program, and the feral Western Australian honey bee population. The feral population is genetically distinct from the closed population, but not from the genetic stock maintained by beekeepers outside of the program. The honey bees of Western Australia show three mitotypes, originating from two subspecies: Apis mellifera ligustica (mitotypes C1 and M7b) and Apis mellifera iberica (mitotype M6). Only mitotypes C1 and M6 are present in the commercial populations. The feral population contains all three mitotypes.

  5. Genetic variability in captive populations of the stingless bee Tetragonisca angustula.

    PubMed

    Santiago, Leandro R; Francisco, Flávio O; Jaffé, Rodolfo; Arias, Maria C

    2016-08-01

    Low genetic variability has normally been considered a consequence of animal husbandry and a major contributing factor to declining bee populations. Here, we performed a molecular analysis of captive and wild populations of the stingless bee Tetragonisca angustula, one of the most commonly kept species across South America. Microsatellite analyses showed similar genetic variability between wild and captive populations However, captive populations showed lower mitochondrial genetic variability. Male-mediated gene flow, transport and division of nests are suggested as the most probable explanations for the observed patterns of genetic structure. We conclude that increasing the number of colonies kept through nest divisions does not negatively affect nuclear genetic variability, which seems to be maintained by small-scale male dispersal and human-mediated nest transport. However, the transport of nests from distant localities should be practiced with caution given the high genetic differentiation observed between samples from western and eastern areas. The high genetic structure verified is the result of a long-term evolutionary process, and bees from distant localities may represent unique evolutionary lineages.

  6. Stable genetic diversity despite parasite and pathogen spread in honey bee colonies.

    PubMed

    Jara, Laura; Muñoz, Irene; Cepero, Almudena; Martín-Hernández, Raquel; Serrano, José; Higes, Mariano; De la Rúa, Pilar

    2015-10-01

    In the last decades, the rapid spread of diseases, such as varroosis and nosemosis, associated with massive honey bee colonies mortality around the world has significantly decreased the number and size of honey bee populations and possibly their genetic diversity. Here, we compare the genetic diversity of Iberian honey bee colonies in two samplings performed in 2006 and 2010 in relation to the presence of the pathogenic agents Nosema apis, Nosema ceranae, and Varroa destructor in order to determine whether parasite and pathogen spread in honey bee colonies reflects changes in genetic diversity. We found that the genetic diversity remained similar, while the incidence of N. ceranae increased and the incidence of N. apis and V. destructor decreased slightly. These results indicate that the genetic diversity was not affected by the presence of these pathogenic agents in the analyzed period. However, the two groups of colonies with and without Nosema/Varroa detected showed significant genetic differentiation (G test). A detailed analysis of the allelic segregation of microsatellite loci in Nosema/Varroa-negative colonies and parasitized ones revealed two outlier loci related to genes involved in immune response.

  7. Stable genetic diversity despite parasite and pathogen spread in honey bee colonies

    NASA Astrophysics Data System (ADS)

    Jara, Laura; Muñoz, Irene; Cepero, Almudena; Martín-Hernández, Raquel; Serrano, José; Higes, Mariano; De la Rúa, Pilar

    2015-10-01

    In the last decades, the rapid spread of diseases, such as varroosis and nosemosis, associated with massive honey bee colonies mortality around the world has significantly decreased the number and size of honey bee populations and possibly their genetic diversity. Here, we compare the genetic diversity of Iberian honey bee colonies in two samplings performed in 2006 and 2010 in relation to the presence of the pathogenic agents Nosema apis, Nosema ceranae, and Varroa destructor in order to determine whether parasite and pathogen spread in honey bee colonies reflects changes in genetic diversity. We found that the genetic diversity remained similar, while the incidence of N. ceranae increased and the incidence of N. apis and V. destructor decreased slightly. These results indicate that the genetic diversity was not affected by the presence of these pathogenic agents in the analyzed period. However, the two groups of colonies with and without Nosema/Varroa detected showed significant genetic differentiation (G test). A detailed analysis of the allelic segregation of microsatellite loci in Nosema/Varroa-negative colonies and parasitized ones revealed two outlier loci related to genes involved in immune response.

  8. Bee genera, diversity and abundance in genetically modified canola fields.

    PubMed

    O'Brien, Colton; Arathi, H S

    2018-01-02

    Intensive agricultural practices resulting in large scale habitat loss ranks as the top contributing factors in the global bee decline. Growing Genetically Modified Herbicide Tolerant (GMHT) crops as large monocultures has resulted extensive applications of herbicides leading to the degradation of natural habitats surrounding farmlands. Herbicide tolerance trait is beneficial for crops such as Canola (Brassica napus) that are extremely vulnerable to weed competition. While the trait in itself does not harm pollinators, growing genetically modified herbicide tolerant cultivars indirectly contributes towards pollinator declines through habitat loss. Canola, a mass-flowering crop is highly attractive to bee pollinators and the extensive adoption of the herbicide tolerant trait has led to depletion of non-crop floral resources. Extensive use of herbicide in and near fields with herbicide tolerant cultivars systematically eliminates semi-natural habitats around agricultural fields which consist of non-crop flowering plants. Planting pollinator strips provides floral resources for bees after crop flowering. We document the bee genera in canola and the adjoining pollinator strip. The overlap in bee genera reinforces the importance of pollinator habitats in agricultural landscape.

  9. Simulating a base population in honey bee for molecular genetic studies.

    PubMed

    Gupta, Pooja; Conrad, Tim; Spötter, Andreas; Reinsch, Norbert; Bienefeld, Kaspar

    2012-06-27

    Over the past years, reports have indicated that honey bee populations are declining and that infestation by an ecto-parasitic mite (Varroa destructor) is one of the main causes. Selective breeding of resistant bees can help to prevent losses due to the parasite, but it requires that a robust breeding program and genetic evaluation are implemented. Genomic selection has emerged as an important tool in animal breeding programs and simulation studies have shown that it yields more accurate breeding value estimates, higher genetic gain and low rates of inbreeding. Since genomic selection relies on marker data, simulations conducted on a genomic dataset are a pre-requisite before selection can be implemented. Although genomic datasets have been simulated in other species undergoing genetic evaluation, simulation of a genomic dataset specific to the honey bee is required since this species has a distinct genetic and reproductive biology. Our software program was aimed at constructing a base population by simulating a random mating honey bee population. A forward-time population simulation approach was applied since it allows modeling of genetic characteristics and reproductive behavior specific to the honey bee. Our software program yielded a genomic dataset for a base population in linkage disequilibrium. In addition, information was obtained on (1) the position of markers on each chromosome, (2) allele frequency, (3) χ(2) statistics for Hardy-Weinberg equilibrium, (4) a sorted list of markers with a minor allele frequency less than or equal to the input value, (5) average r(2) values of linkage disequilibrium between all simulated marker loci pair for all generations and (6) average r2 value of linkage disequilibrium in the last generation for selected markers with the highest minor allele frequency. We developed a software program that takes into account the genetic and reproductive biology specific to the honey bee and that can be used to constitute a genomic

  10. Tracking the Genetic Stability of a Honey Bee (Hymenoptera: Apidae) Breeding Program With Genetic Markers.

    PubMed

    Bourgeois, Lelania; Beaman, Lorraine

    2017-08-01

    A genetic stock identification (GSI) assay was developed in 2008 to distinguish Russian honey bees from other honey bee stocks that are commercially produced in the United States. Probability of assignment (POA) values have been collected and maintained since the stock release in 2008 to the Russian Honey Bee Breeders Association. These data were used to assess stability of the breeding program and the diversity levels of the contemporary breeding stock through comparison of POA values and genetic diversity parameters from the initial release to current values. POA values fluctuated throughout 2010-2016, but have recovered to statistically similar levels in 2016 (POA(2010) = 0.82, POA(2016) = 0.74; P = 0.33). Genetic diversity parameters (i.e., allelic richness and gene diversity) in 2016 also remained at similar levels when compared to those in 2010. Estimates of genetic structure revealed stability (FST(2009/2016) = 0.0058) with a small increase in the estimate of the inbreeding coefficient (FIS(2010) = 0.078, FIS(2016) = 0.149). The relationship among breeding lines, based on genetic distance measurement, was similar in 2008 and 2016 populations, but with increased homogeneity among lines (i.e., decreased genetic distance). This was expected based on the closed breeding system used for Russian honey bees. The successful application of the GSI assay in a commercial breeding program demonstrates the utility and stability of such technology to contribute to and monitor the genetic integrity of a breeding stock of an insect species. Published by Oxford University Press on behalf of Entomological Society of America 2017. This work is written by US Government employees and is in the public domain in the US.

  11. Nesting habits influence population genetic structure of a bee living in anthropogenic disturbance.

    PubMed

    Vickruck, J L; Richards, M H

    2017-05-01

    While most organisms are negatively affected by anthropogenic disturbance, a few species thrive in landscapes altered by humans. Typically, native bees are negatively impacted by anthropogenic environmental change, including habitat alteration and climate change. Here, we investigate the population structure of the eastern carpenter bee Xylocopa virginica, a generalist pollinator with a broad geographic range spanning eastern North America. Eastern carpenter bees now nest almost exclusively in artificial wooden structures, linking their geographic distribution and population structure to human activities and disturbance. To investigate the population structure of these bees, we sampled females from 16 different populations from across their range. Nine species-specific microsatellite loci showed that almost all populations are genetically distinct, but with high levels of genetic diversity and low levels of inbreeding overall. Broadly speaking, populations clustered into three distinct genetic groups: a northern group, a western group and a core group. The northern group had low effective population sizes, decreased genetic variability and the highest levels of inbreeding in the data set, suggesting that carpenter bees may be expanding their range northward. The western group was genetically distinct, but lacked signals of a recent range expansion. Climatic data showed that summer and winter temperatures explained a significant amount of the genetic differentiation seen among populations, while precipitation did not. Our results indicate that X. virginica may be one of the rare 'anthrophilic' species that thrive in the face of anthropogenic disturbance. © 2017 John Wiley & Sons Ltd.

  12. Simulating a base population in honey bee for molecular genetic studies

    PubMed Central

    2012-01-01

    Background Over the past years, reports have indicated that honey bee populations are declining and that infestation by an ecto-parasitic mite (Varroa destructor) is one of the main causes. Selective breeding of resistant bees can help to prevent losses due to the parasite, but it requires that a robust breeding program and genetic evaluation are implemented. Genomic selection has emerged as an important tool in animal breeding programs and simulation studies have shown that it yields more accurate breeding value estimates, higher genetic gain and low rates of inbreeding. Since genomic selection relies on marker data, simulations conducted on a genomic dataset are a pre-requisite before selection can be implemented. Although genomic datasets have been simulated in other species undergoing genetic evaluation, simulation of a genomic dataset specific to the honey bee is required since this species has a distinct genetic and reproductive biology. Our software program was aimed at constructing a base population by simulating a random mating honey bee population. A forward-time population simulation approach was applied since it allows modeling of genetic characteristics and reproductive behavior specific to the honey bee. Results Our software program yielded a genomic dataset for a base population in linkage disequilibrium. In addition, information was obtained on (1) the position of markers on each chromosome, (2) allele frequency, (3) χ2 statistics for Hardy-Weinberg equilibrium, (4) a sorted list of markers with a minor allele frequency less than or equal to the input value, (5) average r2 values of linkage disequilibrium between all simulated marker loci pair for all generations and (6) average r2 value of linkage disequilibrium in the last generation for selected markers with the highest minor allele frequency. Conclusion We developed a software program that takes into account the genetic and reproductive biology specific to the honey bee and that can be used to

  13. Genetic diversity affects colony survivorship in commercial honey bee colonies

    NASA Astrophysics Data System (ADS)

    Tarpy, David R.; vanEngelsdorp, Dennis; Pettis, Jeffrey S.

    2013-08-01

    Honey bee ( Apis mellifera) queens mate with unusually high numbers of males (average of approximately 12 drones), although there is much variation among queens. One main consequence of such extreme polyandry is an increased diversity of worker genotypes within a colony, which has been shown empirically to confer significant adaptive advantages that result in higher colony productivity and survival. Moreover, honey bees are the primary insect pollinators used in modern commercial production agriculture, and their populations have been in decline worldwide. Here, we compare the mating frequencies of queens, and therefore, intracolony genetic diversity, in three commercial beekeeping operations to determine how they correlate with various measures of colony health and productivity, particularly the likelihood of queen supersedure and colony survival in functional, intensively managed beehives. We found the average effective paternity frequency ( m e ) of this population of honey bee queens to be 13.6 ± 6.76, which was not significantly different between colonies that superseded their queen and those that did not. However, colonies that were less genetically diverse (headed by queens with m e ≤ 7.0) were 2.86 times more likely to die by the end of the study when compared to colonies that were more genetically diverse (headed by queens with m e > 7.0). The stark contrast in colony survival based on increased genetic diversity suggests that there are important tangible benefits of increased queen mating number in managed honey bees, although the exact mechanism(s) that govern these benefits have not been fully elucidated.

  14. Genetic diversity affects colony survivorship in commercial honey bee colonies.

    PubMed

    Tarpy, David R; Vanengelsdorp, Dennis; Pettis, Jeffrey S

    2013-08-01

    Honey bee (Apis mellifera) queens mate with unusually high numbers of males (average of approximately 12 drones), although there is much variation among queens. One main consequence of such extreme polyandry is an increased diversity of worker genotypes within a colony, which has been shown empirically to confer significant adaptive advantages that result in higher colony productivity and survival. Moreover, honey bees are the primary insect pollinators used in modern commercial production agriculture, and their populations have been in decline worldwide. Here, we compare the mating frequencies of queens, and therefore, intracolony genetic diversity, in three commercial beekeeping operations to determine how they correlate with various measures of colony health and productivity, particularly the likelihood of queen supersedure and colony survival in functional, intensively managed beehives. We found the average effective paternity frequency (m e ) of this population of honey bee queens to be 13.6 ± 6.76, which was not significantly different between colonies that superseded their queen and those that did not. However, colonies that were less genetically diverse (headed by queens with m e  ≤ 7.0) were 2.86 times more likely to die by the end of the study when compared to colonies that were more genetically diverse (headed by queens with m e  > 7.0). The stark contrast in colony survival based on increased genetic diversity suggests that there are important tangible benefits of increased queen mating number in managed honey bees, although the exact mechanism(s) that govern these benefits have not been fully elucidated.

  15. No genetic tradeoffs between hygienic behaviour and individual innate immunity in the honey bee, Apis mellifera.

    PubMed

    Harpur, Brock A; Chernyshova, Anna; Soltani, Arash; Tsvetkov, Nadejda; Mahjoorighasrodashti, Mohammad; Xu, Zhixing; Zayed, Amro

    2014-01-01

    Many animals have individual and social mechanisms for combating pathogens. Animals may exhibit short-term physiological tradeoffs between social and individual immunity because the latter is often energetically costly. Genetic tradeoffs between these two traits can also occur if mutations that enhance social immunity diminish individual immunity, or vice versa. Physiological tradeoffs between individual and social immunity have been previously documented in insects, but there has been no study of genetic tradeoffs involving these traits. There is strong evidence that some genes influence both innate immunity and behaviour in social insects--a prerequisite for genetic tradeoffs. Quantifying genetic tradeoffs is critical for understanding the evolution of immunity in social insects and for devising effective strategies for breeding disease-resistant pollinator populations. We conducted two experiments to test the hypothesis of a genetic tradeoff between social and individual immunity in the honey bee, Apis mellifera. First, we estimated the relative contribution of genetics to individual variation in innate immunity of honey bee workers, as only heritable traits can experience genetic tradeoffs. Second, we examined if worker bees with hygienic sisters have reduced individual innate immune response. We genotyped several hundred workers from two colonies and found that patriline genotype does not significantly influence the antimicrobial activity of a worker's hemolymph. Further, we did not find a negative correlation between hygienic behaviour and the average antimicrobial activity of a worker's hemolymph across 30 honey bee colonies. Taken together, our work indicates no genetic tradeoffs between hygienic behaviour and innate immunity in honey bees. Our work suggests that using artificial selection to increase hygienic behaviour of honey bee colonies is not expected to concurrently compromise individual innate immunity of worker bees.

  16. No Genetic Tradeoffs between Hygienic Behaviour and Individual Innate Immunity in the Honey Bee, Apis mellifera

    PubMed Central

    Harpur, Brock A.; Chernyshova, Anna; Soltani, Arash; Tsvetkov, Nadejda; Mahjoorighasrodashti, Mohammad; Xu, Zhixing; Zayed, Amro

    2014-01-01

    Many animals have individual and social mechanisms for combating pathogens. Animals may exhibit short-term physiological tradeoffs between social and individual immunity because the latter is often energetically costly. Genetic tradeoffs between these two traits can also occur if mutations that enhance social immunity diminish individual immunity, or vice versa. Physiological tradeoffs between individual and social immunity have been previously documented in insects, but there has been no study of genetic tradeoffs involving these traits. There is strong evidence that some genes influence both innate immunity and behaviour in social insects – a prerequisite for genetic tradeoffs. Quantifying genetic tradeoffs is critical for understanding the evolution of immunity in social insects and for devising effective strategies for breeding disease-resistant pollinator populations. We conducted two experiments to test the hypothesis of a genetic tradeoff between social and individual immunity in the honey bee, Apis mellifera. First, we estimated the relative contribution of genetics to individual variation in innate immunity of honey bee workers, as only heritable traits can experience genetic tradeoffs. Second, we examined if worker bees with hygienic sisters have reduced individual innate immune response. We genotyped several hundred workers from two colonies and found that patriline genotype does not significantly influence the antimicrobial activity of a worker’s hemolymph. Further, we did not find a negative correlation between hygienic behaviour and the average antimicrobial activity of a worker’s hemolymph across 30 honey bee colonies. Taken together, our work indicates no genetic tradeoffs between hygienic behaviour and innate immunity in honey bees. Our work suggests that using artificial selection to increase hygienic behaviour of honey bee colonies is not expected to concurrently compromise individual innate immunity of worker bees. PMID:25162411

  17. Genetic structure of Mount Huang honey bee (Apis cerana) populations: evidence from microsatellite polymorphism.

    PubMed

    Liu, Fang; Shi, Tengfei; Huang, Sisi; Yu, Linsheng; Bi, Shoudong

    2016-01-01

    The Mount Huang eastern honey bees ( Apis cerana ) are an endemic population, which is well adapted to the local agricultural and ecological environment. In this study, the genetic structure of seven eastern honey bees ( A. cerana ) populations from Mount Huang in China were analyzed by SSR (simple sequence repeat) markers. The results revealed that 16 pairs of primers used amplified a total of 143 alleles. The number of alleles per locus ranged from 6 to 13, with a mean value of 8.94 alleles per locus. Observed and expected heterozygosities showed mean values of 0.446 and 0.831 respectively. UPGMA cluster analysis grouped seven eastern honey bees in three groups. The results obtained show a high genetic diversity in the honey bee populations studied in Mount Huang, and high differentiation among all the populations, suggesting that scarce exchange of honey bee species happened in Mount Huang. Our study demonstrated that the Mount Huang honey bee populations still have a natural genome worth being protected for conservation.

  18. Genetic structure of the gentle Africanized honey bee population (gAHB) in Puerto Rico.

    PubMed

    Galindo-Cardona, Alberto; Acevedo-Gonzalez, Jenny P; Rivera-Marchand, Bert; Giray, Tugrul

    2013-08-06

    The Africanized honey bee is one of the most spectacular invasions in the Americas. African bees escaped from apiaries in Brazil in 1956, spread over Americas and by 1994 they were reported in Puerto Rico. In contrast to other places, the oceanic island conditions in Puerto Rico may mean a single introduction and different dynamics of the resident European and new-coming Africanized bees.To examine the genetic variation of honey bee feral populations and colonies from different locations in Puerto Rico, we used eight known polymorphic microsatellite loci. In Puerto Rico, gAHB population does not show any genetic structure (Fst = 0.0783), and is best described as one honey bee population, product of hybridization of AHB and EHB. The genetic variability in this Africanized population was similar to that reported in studies from Texas. We observed that European private allele frequencies are high in all but one locus. This contrasts with mainland Africanized populations, where European allele frequencies are diminished. Two loci with European private alleles, one on Linkage Group 7, known to carry two known defensiveness Quantitative Trait Loci (QTLs), and the other on Linkage Group 1, known to carry three functionally studied genes and 11 candidate genes associated with Varroa resistance mechanisms were respectively, significantly greater or lower in European allele frequency than the other loci with European private alleles. Genetic structure of Puerto Rico gAHB differs from mainland AHB populations, probably representing evolutionary processes on the island.

  19. Genetics, Synergists, and Age Affect Insecticide Sensitivity of the Honey Bee, Apis mellifera

    PubMed Central

    Rinkevich, Frank D.; Margotta, Joseph W.; Pittman, Jean M.; Danka, Robert G.; Tarver, Matthew R.; Ottea, James A.; Healy, Kristen B.

    2015-01-01

    The number of honey bee colonies in the United States has declined to half of its peak level in the 1940s, and colonies lost over the winter have reached levels that are becoming economically unstable. While the causes of these losses are numerous and the interaction between them is very complex, the role of insecticides has garnered much attention. As a result, there is a need to better understand the risk of insecticides to bees, leading to more studies on both toxicity and exposure. While much research has been conducted on insecticides and bees, there have been very limited studies to elucidate the role that bee genotype and age has on the toxicity of these insecticides. The goal of this study was to determine if there are differences in insecticide sensitivity between honey bees of different genetic backgrounds (Carniolan, Italian, and Russian stocks) and assess if insecticide sensitivity varies with age. We found that Italian bees were the most sensitive of these stocks to insecticides, but variation was largely dependent on the class of insecticide tested. There were almost no differences in organophosphate bioassays between honey bee stocks (<1-fold), moderate differences in pyrethroid bioassays (1.5 to 3-fold), and dramatic differences in neonicotinoid bioassays (3.4 to 33.3-fold). Synergism bioassays with piperonyl butoxide, amitraz, and coumaphos showed increased phenothrin sensitivity in all stocks and also demonstrated further physiological differences between stocks. In addition, as bees aged, the sensitivity to phenothrin significantly decreased, but the sensitivity to naled significantly increased. These results demonstrate the variation arising from the genetic background and physiological transitions in honey bees as they age. This information can be used to determine risk assessment, as well as establishing baseline data for future comparisons to explain the variation in toxicity differences for honey bees reported in the literature. PMID

  20. Genetic structure of the gentle Africanized honey bee population (gAHB) in Puerto Rico

    PubMed Central

    2013-01-01

    Background The Africanized honey bee is one of the most spectacular invasions in the Americas. African bees escaped from apiaries in Brazil in 1956, spread over Americas and by 1994 they were reported in Puerto Rico. In contrast to other places, the oceanic island conditions in Puerto Rico may mean a single introduction and different dynamics of the resident European and new-coming Africanized bees. To examine the genetic variation of honey bee feral populations and colonies from different locations in Puerto Rico, we used eight known polymorphic microsatellite loci. Results In Puerto Rico, gAHB population does not show any genetic structure (Fst = 0.0783), and is best described as one honey bee population, product of hybridization of AHB and EHB. The genetic variability in this Africanized population was similar to that reported in studies from Texas. We observed that European private allele frequencies are high in all but one locus. This contrasts with mainland Africanized populations, where European allele frequencies are diminished. Two loci with European private alleles, one on Linkage Group 7, known to carry two known defensiveness Quantitative Trait Loci (QTLs), and the other on Linkage Group 1, known to carry three functionally studied genes and 11 candidate genes associated with Varroa resistance mechanisms were respectively, significantly greater or lower in European allele frequency than the other loci with European private alleles. Conclusions Genetic structure of Puerto Rico gAHB differs from mainland AHB populations, probably representing evolutionary processes on the island. PMID:23915100

  1. Characterization of the Active Microbiotas Associated with Honey Bees Reveals Healthier and Broader Communities when Colonies are Genetically Diverse

    PubMed Central

    Mattila, Heather R.; Rios, Daniela; Walker-Sperling, Victoria E.; Roeselers, Guus; Newton, Irene L. G.

    2012-01-01

    Recent losses of honey bee colonies have led to increased interest in the microbial communities that are associated with these important pollinators. A critical function that bacteria perform for their honey bee hosts, but one that is poorly understood, is the transformation of worker-collected pollen into bee bread, a nutritious food product that can be stored for long periods in colonies. We used 16S rRNA pyrosequencing to comprehensively characterize in genetically diverse and genetically uniform colonies the active bacterial communities that are found on honey bees, in their digestive tracts, and in bee bread. This method provided insights that have not been revealed by past studies into the content and benefits of honey bee-associated microbial communities. Colony microbiotas differed substantially between sampling environments and were dominated by several anaerobic bacterial genera never before associated with honey bees, but renowned for their use by humans to ferment food. Colonies with genetically diverse populations of workers, a result of the highly promiscuous mating behavior of queens, benefited from greater microbial diversity, reduced pathogen loads, and increased abundance of putatively helpful bacteria, particularly species from the potentially probiotic genus Bifidobacterium. Across all colonies, Bifidobacterium activity was negatively correlated with the activity of genera that include pathogenic microbes; this relationship suggests a possible target for understanding whether microbes provide protective benefits to honey bees. Within-colony diversity shapes microbiotas associated with honey bees in ways that may have important repercussions for colony function and health. Our findings illuminate the importance of honey bee-bacteria symbioses and examine their intersection with nutrition, pathogen load, and genetic diversity, factors that are considered key to understanding honey bee decline. PMID:22427917

  2. Environmental and genetic influences on flight metabolic rate in the honey bee, Apis mellifera.

    PubMed

    Harrison, Jon F; Fewell, Jennifer H

    2002-10-01

    Flying honey bees demonstrate highly variable metabolic rates. The lowest reported values (approximately 0.3 Wg(-1)) occur in tethered bees generating the minimum lift to support their body weight, free-flying 2-day old bees, winter bees, or bees flying at high air temperatures (45 degrees C). The highest values (approximately 0.8 Wg(-1)) occur in foragers that are heavily loaded or flying in low-density air. In different studies, flight metabolic rate has increased, decreased, or remained constant with air temperature. Current research collectively suggests that this variation occurs because flight metabolic rates decrease at thorax temperatures above or below 38 degrees C. At 30 degrees C, approximately 30% of colonial energy is spent during typical foraging, so variation in flight metabolic rate can strongly affect colony-level energy balance. Higher air temperatures tend to increase colonial net gain rates, efficiencies and honey storage rates due to lower metabolic rates during flight and in the hive. Variation in flight metabolism has a clear genetic basis. Different genetic strains of honey bees often differ in flight metabolic rate, and these differences in flight physiology can be correlated with foraging effort, suggesting a possible pathway for selection effects on flight metabolism.

  3. The population genetics of a solitary oligolectic sweat bee, Lasioglossum (Sphecodogastra) oenotherae (Hymenoptera: Halictidae).

    PubMed

    Zayed, A; Packer, L

    2007-10-01

    Strong evidence exists for global declines in pollinator populations. Data on the population genetics of solitary bees, especially diet specialists, are generally lacking. We studied the population genetics of the oligolectic bee Lasioglossum oenotherae, a specialist on the pollen of evening primrose (Onagraceae), by genotyping 455 females from 15 populations across the bee's North American range at six hyper-variable microsatellite loci. We found significant levels of genetic differentiation between populations, even at small geographic scales, as well as significant patterns of isolation by distance. However, using multilocus genotype assignment tests, we detected 11 first-generation migrants indicating that L. oenotherae's sub-populations are experiencing ongoing gene flow. Southern populations of L. oenotherae were significantly more likely to deviate from Hardy-Weinberg equilibrium and from genotypic equilibrium, suggesting regional differences in gene flow and/or drift and inbreeding. Short-term N(e) estimated using temporal changes in allele frequencies in several populations ranged from approximately 223 to 960. We discuss our findings in terms of the conservation genetics of specialist pollinators, a group of considerable ecological importance.

  4. Genetic diversity of Iranian honey bee (Apis mellifera meda Skorikow, 1829) populations based on ISSR markers.

    PubMed

    Rahimi, A; Mirmoayedi, A; Kahrizi, D; Zarei, L; Jamali, S

    2016-04-30

    Honey bee is one of the most important insects considering its role in agriculture,ecology and economy as a whole. In this study, the genetic diversity of different Iranian honey bee populations was evaluated using inter simple sequence repeat (ISSR) markers. During May to September 2014, 108 young worker honey bees were collected from six different populations in 30 different geoclimatic locations from Golestan, Mazendaran, Guilan, West Azerbaijan, East Azerbaijan, Ardebil provinces of Iran. DNA was extracted from the worker honey bees. The quality and quantity of extracted DNA were measured. A set of ten primers were screened with the laboratory populations of honey bees. The number of fragments produced in the different honey bee populations varied from 3 to 10, varying within 150 to 1500 bp. The used ten ISSR primers generated 40 polymorphic fragments, and the average heterozygosity for each primer was 0.266. Maximum numbers of bands were recorded for primer A1. A dendrogram based on the Unweighted Pair Group Method with Arithmetic mean (UPGMA) method generated two sub-clusters. Honey bee populations of Golestan, Mazendaran, Guilan provinces were located in the first group. The second group included honey bee populations of Ardebil, West Azerbaijan, East Azerbaijan provinces, but this group showed a close relationship with other populations. The results showed obviously the ability of the ISSR marker technique to detect the genetic diversity among the honey bee populations.

  5. Genetic Stock Identification Of Production Colonies Of Russian Honey Bees

    USDA-ARS?s Scientific Manuscript database

    The prevalence of Nosema ceranae in managed honey bee colonies has increased dramatically in the past 10 – 20 years worldwide. A variety of genetic testing methods for species identification and prevalence are now available. However sample size and preservation method of samples prior to testing hav...

  6. Caste-biased gene expression in a facultatively eusocial bee suggests a role for genetic accommodation in the evolution of eusociality

    PubMed Central

    Kingwell, Callum J.; Wcislo, William T.; Robinson, Gene E.

    2017-01-01

    Developmental plasticity may accelerate the evolution of phenotypic novelty through genetic accommodation, but studies of genetic accommodation often lack knowledge of the ancestral state to place selected traits in an evolutionary context. A promising approach for assessing genetic accommodation involves using a comparative framework to ask whether ancestral plasticity is related to the evolution of a particular trait. Bees are an excellent group for such comparisons because caste-based societies (eusociality) have evolved multiple times independently and extant species exhibit different modes of eusociality. We measured brain and abdominal gene expression in a facultatively eusocial bee, Megalopta genalis, and assessed whether plasticity in this species is functionally linked to eusocial traits in other bee lineages. Caste-biased abdominal genes in M. genalis overlapped significantly with caste-biased genes in obligately eusocial bees. Moreover, caste-biased genes in M. genalis overlapped significantly with genes shown to be rapidly evolving in multiple studies of 10 bee species, particularly for genes in the glycolysis pathway and other genes involved in metabolism. These results provide support for the idea that eusociality can evolve via genetic accommodation, with plasticity in facultatively eusocial species like M. genalis providing a substrate for selection during the evolution of caste in obligately eusocial lineages. PMID:28053060

  7. Caste-biased gene expression in a facultatively eusocial bee suggests a role for genetic accommodation in the evolution of eusociality.

    PubMed

    Jones, Beryl M; Kingwell, Callum J; Wcislo, William T; Robinson, Gene E

    2017-01-11

    Developmental plasticity may accelerate the evolution of phenotypic novelty through genetic accommodation, but studies of genetic accommodation often lack knowledge of the ancestral state to place selected traits in an evolutionary context. A promising approach for assessing genetic accommodation involves using a comparative framework to ask whether ancestral plasticity is related to the evolution of a particular trait. Bees are an excellent group for such comparisons because caste-based societies (eusociality) have evolved multiple times independently and extant species exhibit different modes of eusociality. We measured brain and abdominal gene expression in a facultatively eusocial bee, Megalopta genalis, and assessed whether plasticity in this species is functionally linked to eusocial traits in other bee lineages. Caste-biased abdominal genes in M. genalis overlapped significantly with caste-biased genes in obligately eusocial bees. Moreover, caste-biased genes in M. genalis overlapped significantly with genes shown to be rapidly evolving in multiple studies of 10 bee species, particularly for genes in the glycolysis pathway and other genes involved in metabolism. These results provide support for the idea that eusociality can evolve via genetic accommodation, with plasticity in facultatively eusocial species like M. genalis providing a substrate for selection during the evolution of caste in obligately eusocial lineages. © 2017 The Author(s).

  8. In-hive patterns of temporal polyethism in strains of honey bees (Apis mellifera) with distinct genetic backgrounds.

    PubMed

    Siegel, Adam J; Fondrk, M Kim; Amdam, Gro V; Page, Robert E

    2013-01-01

    Honey bee workers exhibit an age-based division of labor (temporal polyethism, DOL). Younger bees transition through sets of tasks within the nest; older bees forage outside. Components of temporal polyethism remain unrevealed. Here, we investigate the timing and pattern of pre-foraging behavior in distinct strains of bees to (1) determine if a general pattern of temporal DOL exists in honey bees, (2) to demonstrate a direct genetic impact on temporal pacing, and (3) to further elucidate the mechanisms controlling foraging initiation. Honey bees selected for differences in stored pollen demonstrate consistent differences in foraging initiation age. Those selected for increased pollen storage (high pollen hoarding strain, HSBs) initiate foraging earlier in life than those selected for decreased pollen storage (low pollen hoarding strain, LSBs). We found that HSBs both initiate and terminate individual pre-foraging tasks earlier than LSBs when housed in a common hive environment. Unselected commercial bees (wild type) generally demonstrated intermediate behavioral timing. There were few differences between genotypes for the proportion of pre-foraging effort dedicated to individual tasks, though total pre-foraging effort differences differed dramatically. This demonstrates that behavioral pacing can be accelerated or slowed, but the pattern of behavior is not fundamentally altered, suggesting a general pattern of temporal behavior in honey bees. This also demonstrates direct genetic control of temporal pacing. Finally, our results suggest that earlier HSB protein (pollen) consumption termination compared to LSBs may contribute to an earlier decline in hemolymph vitellogenin protein titers, which would explain their earlier onset of foraging.

  9. Sex Determination in Bees. IV. Genetic Control of Juvenile Hormone Production in MELIPONA QUADRIFASCIATA (Apidae)

    PubMed Central

    Kerr, Warwick Estevam; Akahira, Yukio; Camargo, Conceição A.

    1975-01-01

    Cell number and volume of corpora allata was determined for 8 phases of development, the first prepupal stage to adults 30 days old, in the social Apidae Melipona quadrifasciata. In the second prepupal stage a strong correlation was found between cell number and body weight ( r=0.651**), and cell number and corpora allata volume in prepupal stage (r=0.535*), which indicates that juvenile hormone has a definite role in caste determination in Melipona. The distribution of the volume of corpus allatum suggest a 3:1 segregation between bees with high volume of corpora allata against low and medium volume. This implies that genes xa and xb code for an enzyme that directly participates in juvenile hormone production. It was also concluded that the number of cells in the second prepupal stage is more important than the weight of the prepupa for caste determination. A scheme summarizing the genic control of sex and caste determination in Melipona bees in the prepupal phase is given. PMID:1213273

  10. Genetic architecture of a hormonal response to gene knockdown in honey bees.

    PubMed

    Ihle, Kate E; Rueppell, Olav; Huang, Zachary Y; Wang, Ying; Fondrk, M Kim; Page, Robert E; Amdam, Gro V

    2015-01-01

    Variation in endocrine signaling is proposed to underlie the evolution and regulation of social life histories, but the genetic architecture of endocrine signaling is still poorly understood. An excellent example of a hormonally influenced set of social traits is found in the honey bee (Apis mellifera): a dynamic and mutually suppressive relationship between juvenile hormone (JH) and the yolk precursor protein vitellogenin (Vg) regulates behavioral maturation and foraging of workers. Several other traits cosegregate with these behavioral phenotypes, comprising the pollen hoarding syndrome (PHS) one of the best-described animal behavioral syndromes. Genotype differences in responsiveness of JH to Vg are a potential mechanistic basis for the PHS. Here, we reduced Vg expression via RNA interference in progeny from a backcross between 2 selected lines of honey bees that differ in JH responsiveness to Vg reduction and measured JH response and ovary size, which represents another key aspect of the PHS. Genetic mapping based on restriction site-associated DNA tag sequencing identified suggestive quantitative trait loci (QTL) for ovary size and JH responsiveness. We confirmed genetic effects on both traits near many QTL that had been identified previously for their effect on various PHS traits. Thus, our results support a role for endocrine control of complex traits at a genetic level. Furthermore, this first example of a genetic map of a hormonal response to gene knockdown in a social insect helps to refine the genetic understanding of complex behaviors and the physiology that may underlie behavioral control in general. © The American Genetic Association. 2015.

  11. Genetic Architecture of a Hormonal Response to Gene Knockdown in Honey Bees

    PubMed Central

    Rueppell, Olav; Huang, Zachary Y.; Wang, Ying; Fondrk, M. Kim; Page, Robert E.; Amdam, Gro V.

    2015-01-01

    Variation in endocrine signaling is proposed to underlie the evolution and regulation of social life histories, but the genetic architecture of endocrine signaling is still poorly understood. An excellent example of a hormonally influenced set of social traits is found in the honey bee (Apis mellifera): a dynamic and mutually suppressive relationship between juvenile hormone (JH) and the yolk precursor protein vitellogenin (Vg) regulates behavioral maturation and foraging of workers. Several other traits cosegregate with these behavioral phenotypes, comprising the pollen hoarding syndrome (PHS) one of the best-described animal behavioral syndromes. Genotype differences in responsiveness of JH to Vg are a potential mechanistic basis for the PHS. Here, we reduced Vg expression via RNA interference in progeny from a backcross between 2 selected lines of honey bees that differ in JH responsiveness to Vg reduction and measured JH response and ovary size, which represents another key aspect of the PHS. Genetic mapping based on restriction site-associated DNA tag sequencing identified suggestive quantitative trait loci (QTL) for ovary size and JH responsiveness. We confirmed genetic effects on both traits near many QTL that had been identified previously for their effect on various PHS traits. Thus, our results support a role for endocrine control of complex traits at a genetic level. Furthermore, this first example of a genetic map of a hormonal response to gene knockdown in a social insect helps to refine the genetic understanding of complex behaviors and the physiology that may underlie behavioral control in general. PMID:25596612

  12. Spatio-temporal Genetic Structure of a Tropical Bee Species Suggests High Dispersal Over a Fragmented Landscape.

    PubMed

    Suni, Sevan S; Bronstein, Judith L; Brosi, Berry J

    2014-03-01

    Habitat destruction threatens biodiversity by reducing the amount of available resources and connectivity among geographic areas. For organisms living in fragmented habitats, population persistence may depend on dispersal, which maintains gene flow among fragments and can prevent inbreeding within them. It is centrally important to understand patterns of dispersal for bees living in fragmented areas given the importance of pollination systems and recently documented declines in bee populations. We used population and landscape genetic techniques to characterize patterns of dispersal over a large fragmented area in southern Costa Rica for the orchid bee species Euglossa championi . First, we estimated levels of genetic differentiation among forest fragments as φ pt , an analog to the traditional summary statistic F st , as well as two statistics that may more adequately represent levels of differentiation, G ' st and D est . Second, we used a Bayesian approach to determine the number and composition of genetic groups in our sample. Third we investigated how genetic differentiation changes with distance. Fourth, we determined the extent to which deforested areas restrict dispersal. Finally, we estimated the extent to which there were temporal differences in allele frequencies within the same forest fragments. Within years we found low levels of differentiation even over 80 km, and no effect of land use type on level of genetic differentiation. However, we found significant genetic differentiation between years. Taken together our results suggest that there are high levels of gene flow over this geographic area, and that individuals show low site fidelity over time.

  13. Clinical application of antenatal genetic diagnosis of osteogenesis imperfecta type IV.

    PubMed

    Yuan, Jing; Li, Song; Xu, YeYe; Cong, Lin

    2015-04-02

    Clinical analysis and genetic testing of a family with osteogenesis imperfecta type IV were conducted, aiming to discuss antenatal genetic diagnosis of osteogenesis imperfecta type IV. Preliminary genotyping was performed based on clinical characteristics of the family members and then high-throughput sequencing was applied to rapidly and accurately detect the changes in candidate genes. Genetic testing of the III5 fetus and other family members revealed missense mutation in c.2746G>A, pGly916Arg in COL1A2 gene coding region and missense and synonymous mutation in COL1A1 gene coding region. Application of antenatal genetic diagnosis provides fast and accurate genetic counseling and eugenics suggestions for patients with osteogenesis imperfecta type IV and their families.

  14. Outbreeding and lack of temporal genetic structure in a drone congregation of the neotropical stingless bee Scaptotrigona mexicana.

    PubMed

    Mueller, Matthias Y; Moritz, Robin Fa; Kraus, F Bernhard

    2012-06-01

    Drone aggregations are a widespread phenomenon in many stingless bee species (Meliponini), but the ultimate and proximate causes for their formation are still not well understood. One adaptive explanation for this phenomenon is the avoidance of inbreeding, which is especially detrimental for stingless bees due to the combined effects of the complementary sex-determining system and the small effective population size caused by eusociality and monandry. We analyzed the temporal genetic dynamics of a drone aggregation of the stingless bee Scaptotrigona mexicana with microsatellite markers over a time window of four weeks. We estimated the drones of the aggregation to originate from a total of 55 colonies using sibship re-construction. There was no detectable temporal genetic differentiation or sub-structuring in the aggregation. Most important, we could exclude all colonies in close proximity of the aggregation as origin of the drones in the aggregation, implicating that they originate from more distant colonies. We conclude that the diverse genetic composition and the distant origin of the drones of the S. mexicana drone congregation provides an effective mechanism to avoid mating among close relatives.

  15. Genetic Bee Colony (GBC) algorithm: A new gene selection method for microarray cancer classification.

    PubMed

    Alshamlan, Hala M; Badr, Ghada H; Alohali, Yousef A

    2015-06-01

    Naturally inspired evolutionary algorithms prove effectiveness when used for solving feature selection and classification problems. Artificial Bee Colony (ABC) is a relatively new swarm intelligence method. In this paper, we propose a new hybrid gene selection method, namely Genetic Bee Colony (GBC) algorithm. The proposed algorithm combines the used of a Genetic Algorithm (GA) along with Artificial Bee Colony (ABC) algorithm. The goal is to integrate the advantages of both algorithms. The proposed algorithm is applied to a microarray gene expression profile in order to select the most predictive and informative genes for cancer classification. In order to test the accuracy performance of the proposed algorithm, extensive experiments were conducted. Three binary microarray datasets are use, which include: colon, leukemia, and lung. In addition, another three multi-class microarray datasets are used, which are: SRBCT, lymphoma, and leukemia. Results of the GBC algorithm are compared with our recently proposed technique: mRMR when combined with the Artificial Bee Colony algorithm (mRMR-ABC). We also compared the combination of mRMR with GA (mRMR-GA) and Particle Swarm Optimization (mRMR-PSO) algorithms. In addition, we compared the GBC algorithm with other related algorithms that have been recently published in the literature, using all benchmark datasets. The GBC algorithm shows superior performance as it achieved the highest classification accuracy along with the lowest average number of selected genes. This proves that the GBC algorithm is a promising approach for solving the gene selection problem in both binary and multi-class cancer classification. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Molecular genetic diversity in populations of the stingless bee Plebeia remota: A case study.

    PubMed

    de Oliveira Francisco, Flávio; Santiago, Leandro Rodrigues; Arias, Maria Cristina

    2013-03-01

    Genetic diversity is a major component of the biological diversity of an ecosystem. The survival of a population may be seriously threatened if its genetic diversity values are low. In this work, we measured the genetic diversity of the stingless bee Plebeia remota based on molecular data obtained by analyzing 15 microsatellite loci and sequencing two mitochondrial genes. Population structure and genetic diversity differed depending on the molecular marker analyzed: microsatellites showed low population structure and moderate to high genetic diversity, while mitochondrial DNA (mtDNA) showed high population structure and low diversity in three populations. Queen philopatry and male dispersal behavior are discussed as the main reasons for these findings.

  17. Honey bees consider larval nutritional status rather than genetic relatedness when selecting larvae for emergency queen rearing.

    PubMed

    Sagili, Ramesh R; Metz, Bradley N; Lucas, Hannah M; Chakrabarti, Priyadarshini; Breece, Carolyn R

    2018-05-16

    In honey bees and many other social insects, production of queens is a vital task, as colony fitness is dependent on queens. The factors considered by honey bee workers in selecting larvae to rear new queens during emergency queen rearing are poorly understood. Identifying these parameters is critical, both in an evolutionary and apicultural context. As female caste development in honey bees is dependent on larval diet (i.e. nutrition), we hypothesized that larval nutritional state is meticulously assessed and used by workers in selection of larvae for queen rearing. To test this hypothesis, we conducted a series of experiments manipulating the nutritional status of one day old larvae by depriving them of brood food for a four-hour period, and then allowing workers to choose larvae for rearing queens from nutritionally deprived and non-deprived larvae. We simultaneously investigated the role of genetic relatedness in selection of larvae for queen rearing. In all the experiments, significantly greater numbers of non-deprived larvae than deprived larvae were selected for queen rearing irrespective of genetic relatedness. Our results demonstrate that honey bees perceive the nutritional state of larvae and use that information when selecting larvae for rearing queens in the natural emergency queen replacement process.

  18. Outbreeding and lack of temporal genetic structure in a drone congregation of the neotropical stingless bee Scaptotrigona mexicana

    PubMed Central

    Mueller, Matthias Y; Moritz, Robin FA; Kraus, F Bernhard

    2012-01-01

    Drone aggregations are a widespread phenomenon in many stingless bee species (Meliponini), but the ultimate and proximate causes for their formation are still not well understood. One adaptive explanation for this phenomenon is the avoidance of inbreeding, which is especially detrimental for stingless bees due to the combined effects of the complementary sex-determining system and the small effective population size caused by eusociality and monandry. We analyzed the temporal genetic dynamics of a drone aggregation of the stingless bee Scaptotrigona mexicana with microsatellite markers over a time window of four weeks. We estimated the drones of the aggregation to originate from a total of 55 colonies using sibship re-construction. There was no detectable temporal genetic differentiation or sub-structuring in the aggregation. Most important, we could exclude all colonies in close proximity of the aggregation as origin of the drones in the aggregation, implicating that they originate from more distant colonies. We conclude that the diverse genetic composition and the distant origin of the drones of the S. mexicana drone congregation provides an effective mechanism to avoid mating among close relatives. PMID:22833802

  19. Genetics of reproduction and regulation of honey bee (Apis mellifera L.) social behavior

    PubMed Central

    Page, Robert E.; Rueppell, Olav; Amdam, Gro V.

    2014-01-01

    Honey bees form complex societies with a division of labor for reproduction, nutrition, nest construction and maintenance, and defense. How does it evolve? Tasks performed by worker honey bees are distributed in time and space. There is no central control over behavior and there is no central genome on which selection can act and effect adaptive change. For 22 years we have been asking these questions by selecting on a single social trait associated with nutrition: the amount of surplus pollen (a source of protein) that is stored in combs of the nest. Forty-two generations of selection have revealed changes at biological levels extending from the society down to the level of the gene. We show how we constructed this vertical understanding of social evolution using behavioral and anatomical analyses, physiology, genetic mapping, and gene knockdowns. We map out the phenotypic and genetic architectures of food storage and foraging behavior and show how they are linked through broad epistasis and pleiotropy affecting a reproductive regulatory network that influences foraging behavior. PMID:22934646

  20. Molecular genetic diversity in populations of the stingless bee Plebeia remota: A case study

    PubMed Central

    de Oliveira Francisco, Flávio; Santiago, Leandro Rodrigues; Arias, Maria Cristina

    2013-01-01

    Genetic diversity is a major component of the biological diversity of an ecosystem. The survival of a population may be seriously threatened if its genetic diversity values are low. In this work, we measured the genetic diversity of the stingless bee Plebeia remota based on molecular data obtained by analyzing 15 microsatellite loci and sequencing two mitochondrial genes. Population structure and genetic diversity differed depending on the molecular marker analyzed: microsatellites showed low population structure and moderate to high genetic diversity, while mitochondrial DNA (mtDNA) showed high population structure and low diversity in three populations. Queen philopatry and male dispersal behavior are discussed as the main reasons for these findings. PMID:23569417

  1. Stakeholder Conference on Bee Health

    EPA Pesticide Factsheets

    USDA and EPA released a comprehensive scientific report on honey bee health in May 2013. The report points to multiple factors playing a role in honey bee colony declines, including parasites and disease, genetics, poor nutrition, and pesticide exposure.

  2. Monogamy in large bee societies: a stingless paradox.

    PubMed

    Jaffé, Rodolfo; Pioker-Hara, Fabiana C; Dos Santos, Charles F; Santiago, Leandro R; Alves, Denise A; de M P Kleinert, Astrid; Francoy, Tiago M; Arias, Maria C; Imperatriz-Fonseca, Vera L

    2014-03-01

    High genetic diversity is important for the functioning of large insect societies. Across the social Hymenoptera (ants, bees, and wasps), species with the largest colonies tend to have a high colony-level genetic diversity resulting from multiple queens (polygyny) or queens that mate with multiple males (polyandry). Here we studied the genetic structure of Trigona spinipes, a stingless bee species with colonies an order of magnitude larger than those of polyandrous honeybees. Genotypes of adult workers and pupae from 43 nests distributed across three Brazilian biomes showed that T. spinipes colonies are usually headed by one singly mated queen. Apart from revealing a notable exception from the general incidence of high genetic diversity in large insect societies, our results reinforce previous findings suggesting the absence of polyandry in stingless bees and provide evidence against the sperm limitation hypothesis for the evolution of polyandry. Stingless bee species with large colonies, such as T. spinipes, thus seem promising study models to unravel alternative mechanisms to increase genetic diversity within colonies or understand the adaptive value of low genetic diversity in large insect societies.

  3. Monogamy in large bee societies: a stingless paradox

    NASA Astrophysics Data System (ADS)

    Jaffé, Rodolfo; Pioker-Hara, Fabiana C.; dos Santos, Charles F.; Santiago, Leandro R.; Alves, Denise A.; de M. P. Kleinert, Astrid; Francoy, Tiago M.; Arias, Maria C.; Imperatriz-Fonseca, Vera L.

    2014-03-01

    High genetic diversity is important for the functioning of large insect societies. Across the social Hymenoptera (ants, bees, and wasps), species with the largest colonies tend to have a high colony-level genetic diversity resulting from multiple queens (polygyny) or queens that mate with multiple males (polyandry). Here we studied the genetic structure of Trigona spinipes, a stingless bee species with colonies an order of magnitude larger than those of polyandrous honeybees. Genotypes of adult workers and pupae from 43 nests distributed across three Brazilian biomes showed that T. spinipes colonies are usually headed by one singly mated queen. Apart from revealing a notable exception from the general incidence of high genetic diversity in large insect societies, our results reinforce previous findings suggesting the absence of polyandry in stingless bees and provide evidence against the sperm limitation hypothesis for the evolution of polyandry. Stingless bee species with large colonies, such as T. spinipes, thus seem promising study models to unravel alternative mechanisms to increase genetic diversity within colonies or understand the adaptive value of low genetic diversity in large insect societies.

  4. Genetic Engineering of Bee Gut Microbiome Bacteria with a Toolkit for Modular Assembly of Broad-Host-Range Plasmids.

    PubMed

    Leonard, Sean P; Perutka, Jiri; Powell, J Elijah; Geng, Peng; Richhart, Darby D; Byrom, Michelle; Kar, Shaunak; Davies, Bryan W; Ellington, Andrew D; Moran, Nancy A; Barrick, Jeffrey E

    2018-05-18

    Engineering the bacteria present in animal microbiomes promises to lead to breakthroughs in medicine and agriculture, but progress is hampered by a dearth of tools for genetically modifying the diverse species that comprise these communities. Here we present a toolkit of genetic parts for the modular construction of broad-host-range plasmids built around the RSF1010 replicon. Golden Gate assembly of parts in this toolkit can be used to rapidly test various antibiotic resistance markers, promoters, fluorescent reporters, and other coding sequences in newly isolated bacteria. We demonstrate the utility of this toolkit in multiple species of Proteobacteria that are native to the gut microbiomes of honey bees ( Apis mellifera) and bumble bees (B ombus sp.). Expressing fluorescent proteins in Snodgrassella alvi, Gilliamella apicola, Bartonella apis, and Serratia strains enables us to visualize how these bacteria colonize the bee gut. We also demonstrate CRISPRi repression in B. apis and use Cas9-facilitated knockout of an S. alvi adhesion gene to show that it is important for colonization of the gut. Beyond characterizing how the gut microbiome influences the health of these prominent pollinators, this bee microbiome toolkit (BTK) will be useful for engineering bacteria found in other natural microbial communities.

  5. Genetics Home Reference: glycogen storage disease type IV

    MedlinePlus

    ... 000 to 800,000 individuals worldwide. Type IV accounts for roughly 3 percent of all cases of glycogen storage disease. Related Information What information about a genetic condition can statistics ...

  6. Honey Bees Inspired Optimization Method: The Bees Algorithm.

    PubMed

    Yuce, Baris; Packianather, Michael S; Mastrocinque, Ernesto; Pham, Duc Truong; Lambiase, Alfredo

    2013-11-06

    Optimization algorithms are search methods where the goal is to find an optimal solution to a problem, in order to satisfy one or more objective functions, possibly subject to a set of constraints. Studies of social animals and social insects have resulted in a number of computational models of swarm intelligence. Within these swarms their collective behavior is usually very complex. The collective behavior of a swarm of social organisms emerges from the behaviors of the individuals of that swarm. Researchers have developed computational optimization methods based on biology such as Genetic Algorithms, Particle Swarm Optimization, and Ant Colony. The aim of this paper is to describe an optimization algorithm called the Bees Algorithm, inspired from the natural foraging behavior of honey bees, to find the optimal solution. The algorithm performs both an exploitative neighborhood search combined with random explorative search. In this paper, after an explanation of the natural foraging behavior of honey bees, the basic Bees Algorithm and its improved versions are described and are implemented in order to optimize several benchmark functions, and the results are compared with those obtained with different optimization algorithms. The results show that the Bees Algorithm offering some advantage over other optimization methods according to the nature of the problem.

  7. Prediction of social structure and genetic relatedness in colonies of the facultative polygynous stingless bee Melipona bicolor (Hymenoptera, Apidae).

    PubMed

    Dos Reis, Evelyze Pinheiro; de Oliveira Campos, Lucio Antonio; Tavares, Mara Garcia

    2011-04-01

    Stingless bee colonies typically consist of one single-mated mother queen and her worker offspring. The stingless bee Melipona bicolor (Hymenoptera: Apidae) shows facultative polygyny, which makes this species particularly suitable for testing theoretical expectations concerning social behavior. In this study, we investigated the social structure and genetic relatedness among workers from eight natural and six manipulated colonies of M. bicolor over a period of one year. The populations of M. bicolor contained monogynous and polygynous colonies. The estimated genetic relatedness among workers from monogynous and polygynous colonies was 0.75 ± 0.12 and 0.53 ± 0.16 (mean ± SEM), respectively. Although the parental genotypes had significant effects on genetic relatedness in monogynous and polygynous colonies, polygyny markedly decreased the relatedness among nestmate workers. Our findings also demonstrate that polygyny in M. bicolor may arise from the adoption of related or unrelated queens.

  8. Prediction of social structure and genetic relatedness in colonies of the facultative polygynous stingless bee Melipona bicolor (Hymenoptera, Apidae)

    PubMed Central

    dos Reis, Evelyze Pinheiro; de Oliveira Campos, Lucio Antonio; Tavares, Mara Garcia

    2011-01-01

    Stingless bee colonies typically consist of one single-mated mother queen and her worker offspring. The stingless bee Melipona bicolor (Hymenoptera: Apidae) shows facultative polygyny, which makes this species particularly suitable for testing theoretical expectations concerning social behavior. In this study, we investigated the social structure and genetic relatedness among workers from eight natural and six manipulated colonies of M. bicolor over a period of one year. The populations of M. bicolor contained monogynous and polygynous colonies. The estimated genetic relatedness among workers from monogynous and polygynous colonies was 0.75 ± 0.12 and 0.53 ± 0.16 (mean ± SEM), respectively. Although the parental genotypes had significant effects on genetic relatedness in monogynous and polygynous colonies, polygyny markedly decreased the relatedness among nestmate workers. Our findings also demonstrate that polygyny in M. bicolor may arise from the adoption of related or unrelated queens. PMID:21734839

  9. Genetic Ablation of Apolipoprotein A-IV Accelerates Alzheimer's Disease Pathogenesis in a Mouse Model

    PubMed Central

    Cui, Yujie; Huang, Mingwei; He, Yingbo; Zhang, Shuyan; Luo, Yongzhang

    2011-01-01

    The link between lipoprotein metabolism and Alzheimer's disease (AD) has been established. Apolipoprotein A-IV (apoA-IV), a component of lipoprotein particles similar to apolipoprotein E, has been suggested to play an important role in brain metabolism. Although there are clinical debates on the function of its polymorphism in AD, the pathologic role of apoA-IV in AD is still unknown. Here, we report that genetic ablation of apoA-IV is able to accelerate AD pathogenesis in mice. In a mouse model that overexpresses human amyloid precursor protein (APP) and presenilin 1, genetic reduction of apoA-IV augments extracellular amyloid-β peptide (Aβ) burden and aggravates neuron loss in the brain. In addition, genetic ablation of apoA-IV also accelerates spatial learning deficits and increases the mortality of mice. We have found that apoA-IV colocalizes within Aβ plaques in APP/presenilin 1 transgenic mice and binds to Aβ in vitro. Subsequent studies show that apoA-IV in this model facilitates Aβ uptake in the Aβ clearance pathway mediated by astrocytes rather than the amyloidogenic pathway of APP processing. Taken together, we conclude that apoA-IV deficiency increases Aβ deposition and results in cognitive damage in the mouse model. Enhancing levels of apoA-IV may have therapeutic potential in AD treatment. PMID:21356380

  10. Distinct subspecies or phenotypic plasticity? Genetic and morphological differentiation of mountain honey bees in East Africa.

    PubMed

    Gruber, Karl; Schöning, Caspar; Otte, Marianne; Kinuthia, Wanja; Hasselmann, Martin

    2013-09-01

    Identifying the forces shaping intraspecific phenotypic and genotypic divergence are of key importance in evolutionary biology. Phenotypic divergence may result from local adaptation or, especially in species with strong gene flow, from pronounced phenotypic plasticity. Here, we examine morphological and genetic divergence among populations of the western honey bee Apis mellifera in the topographically heterogeneous East African region. The currently accepted "mountain refugia hypothesis" states that populations living in disjunct montane forests belong to a different lineage than those in savanna habitats surrounding these forests. We obtained microsatellite data, mitochondrial sequences, and morphometric data from worker honey bees collected from feral colonies in three montane forests and corresponding neighboring savanna regions in Kenya. Honey bee colonies from montane forests showed distinct worker morphology compared with colonies in savanna areas. Mitochondrial sequence data did not support the existence of the two currently accepted subspecies. Furthermore, analyses of the microsatellite data with a Bayesian clustering method did not support the existence of two source populations as it would be expected under the mountain refugia scenario. Our findings suggest that phenotypic plasticity rather than distinct ancestry is the leading cause behind the phenotypic divergence observed between montane forest and savanna honey bees. Our study thus corroborates the idea that high gene flow may select for increased plasticity.

  11. Genetically distinct genogroup IV norovirus strains identified in wastewater.

    PubMed

    Kitajima, Masaaki; Rachmadi, Andri T; Iker, Brandon C; Haramoto, Eiji; Gerba, Charles P

    2016-12-01

    We investigated the prevalence and genetic diversity of genogroup IV norovirus (GIV NoV) strains in wastewater in Arizona, United States, over a 13-month period. Among 50 wastewater samples tested, GIV NoVs were identified in 13 (26 %) of the samples. A total of 47 different GIV NoV strains were identified, which were classified into two genetically distinct clusters: the GIV.1 human cluster and a unique genetic cluster closely related to strains previously identified in Japanese wastewater. The results provide additional evidence of the considerable genetic diversity among GIV NoV strains through the analysis of wastewater containing virus strains shed from all populations.

  12. Genetic diversity and differentiation among insular honey bee populations in the southwest Indian Ocean likely reflect old geographical isolation and modern introductions.

    PubMed

    Techer, Maéva Angélique; Clémencet, Johanna; Simiand, Christophe; Turpin, Patrick; Garnery, Lionel; Reynaud, Bernard; Delatte, Hélène

    2017-01-01

    With globalization the Western honey bee has become a nearly cosmopolitan species, but it was originally restricted to the Old World. This renowned model of biodiversity has diverged into five evolutionary lineages and several geographic "subspecies." If Apis mellifera unicolor is indubitably an African subspecies endemic to Madagascar, its relationship with honey bees from three archipelagos in the southwest Indian Ocean (SWIO) hotspot of biodiversity is misunderstood. We compared recent mtDNA diversity data to an original characterization of the nuclear diversity from honey bees in the Mascarenes and Comoros archipelagos, using 14 microsatellites, but also additional mtDNA tRNALeu-cox2 analysis. Our sampling offers the most comprehensive dataset for the SWIO populations with a total of 3,270 colonies from 10 islands compared with 855 samples from Madagascar, 113 from Africa, and 138 from Europe. Comprehensive mitochondrial screening confirmed that honey bees from La Réunion, Mauritius, and Comoros archipelagos are mainly of African origin (88.1% out of 2,746 colonies) and that coexistence with European lineages occurs only in the Mascarenes. PCA, Bayesian, and genetic differentiation analysis showed that African colonies are not significantly distinct on each island, but have diversified among islands and archipelagos. FST levels progressively decreased in significance from European and African continental populations, to SWIO insular and continental populations, and finally among islands from the same archipelago. Among African populations, Madagascar shared a nuclear background with and was most closely related to SWIO island populations (except Rodrigues). Only Mauritius Island presented clear cytoplasmic disequilibrium and genetic structure characteristic of an admixed population undergoing hybridization, in this case, between A. m. unicolor and A. m. ligustica, A. m. carnica and A. m. mellifera-like individuals. Finally, global genetic clustering analysis

  13. Genetic diversity and differentiation among insular honey bee populations in the southwest Indian Ocean likely reflect old geographical isolation and modern introductions

    PubMed Central

    Clémencet, Johanna; Simiand, Christophe; Turpin, Patrick; Garnery, Lionel; Reynaud, Bernard; Delatte, Hélène

    2017-01-01

    With globalization the Western honey bee has become a nearly cosmopolitan species, but it was originally restricted to the Old World. This renowned model of biodiversity has diverged into five evolutionary lineages and several geographic “subspecies.” If Apis mellifera unicolor is indubitably an African subspecies endemic to Madagascar, its relationship with honey bees from three archipelagos in the southwest Indian Ocean (SWIO) hotspot of biodiversity is misunderstood. We compared recent mtDNA diversity data to an original characterization of the nuclear diversity from honey bees in the Mascarenes and Comoros archipelagos, using 14 microsatellites, but also additional mtDNA tRNALeu-cox2 analysis. Our sampling offers the most comprehensive dataset for the SWIO populations with a total of 3,270 colonies from 10 islands compared with 855 samples from Madagascar, 113 from Africa, and 138 from Europe. Comprehensive mitochondrial screening confirmed that honey bees from La Réunion, Mauritius, and Comoros archipelagos are mainly of African origin (88.1% out of 2,746 colonies) and that coexistence with European lineages occurs only in the Mascarenes. PCA, Bayesian, and genetic differentiation analysis showed that African colonies are not significantly distinct on each island, but have diversified among islands and archipelagos. FST levels progressively decreased in significance from European and African continental populations, to SWIO insular and continental populations, and finally among islands from the same archipelago. Among African populations, Madagascar shared a nuclear background with and was most closely related to SWIO island populations (except Rodrigues). Only Mauritius Island presented clear cytoplasmic disequilibrium and genetic structure characteristic of an admixed population undergoing hybridization, in this case, between A. m. unicolor and A. m. ligustica, A. m. carnica and A. m. mellifera-like individuals. Finally, global genetic clustering

  14. Climate change: impact on honey bee populations and diseases.

    PubMed

    Le Conte, Y; Navajas, M

    2008-08-01

    The European honey bee, Apis mellifera, is the most economically valuable pollinator of agricultural crops worldwide. Bees are also crucial in maintaining biodiversity by pollinating numerous plant species whose fertilisation requires an obligatory pollinator. Apis mellifera is a species that has shown great adaptive potential, as it is found almost everywhere in the world and in highly diverse climates. In a context of climate change, the variability of the honey bee's life-history traits as regards temperature and the environment shows that the species possesses such plasticity and genetic variability that this could give rise to the selection of development cycles suited to new environmental conditions. Although we do not know the precise impact of potential environmental changes on honey bees as a result of climate change, there is a large body of data at our disposal indicating that environmental changes have a direct influence on honey bee development. In this article, the authors examine the potential impact of climate change on honey bee behaviour, physiology and distribution, as well as on the evolution of the honey bee's interaction with diseases. Conservation measures will be needed to prevent the loss of this rich genetic diversity of honey bees and to preserve ecotypes that are so valuable for world biodiversity.

  15. Distinct subspecies or phenotypic plasticity? Genetic and morphological differentiation of mountain honey bees in East Africa

    PubMed Central

    Gruber, Karl; Schöning, Caspar; Otte, Marianne; Kinuthia, Wanja; Hasselmann, Martin

    2013-01-01

    Identifying the forces shaping intraspecific phenotypic and genotypic divergence are of key importance in evolutionary biology. Phenotypic divergence may result from local adaptation or, especially in species with strong gene flow, from pronounced phenotypic plasticity. Here, we examine morphological and genetic divergence among populations of the western honey bee Apis mellifera in the topographically heterogeneous East African region. The currently accepted “mountain refugia hypothesis” states that populations living in disjunct montane forests belong to a different lineage than those in savanna habitats surrounding these forests. We obtained microsatellite data, mitochondrial sequences, and morphometric data from worker honey bees collected from feral colonies in three montane forests and corresponding neighboring savanna regions in Kenya. Honey bee colonies from montane forests showed distinct worker morphology compared with colonies in savanna areas. Mitochondrial sequence data did not support the existence of the two currently accepted subspecies. Furthermore, analyses of the microsatellite data with a Bayesian clustering method did not support the existence of two source populations as it would be expected under the mountain refugia scenario. Our findings suggest that phenotypic plasticity rather than distinct ancestry is the leading cause behind the phenotypic divergence observed between montane forest and savanna honey bees. Our study thus corroborates the idea that high gene flow may select for increased plasticity. PMID:24223262

  16. Genetic differentiation of the stingless bee Tetragonula pagdeni in Thailand using SSCP analysis of a large subunit of mitochondrial ribosomal DNA.

    PubMed

    Thummajitsakul, Sirikul; Klinbunga, Sirawut; Sittipraneed, Siriporn

    2011-08-01

    Genetic diversity and population differentiation of the stingless bee Tetragonula pagdeni (Schwarz) was assessed using single-strand conformational polymorphism (SSCP) analysis of a large subunit of the ribosomal RNA gene (16S rRNA). High levels of genetic variation among individuals within each population (North, Northeast, Central, Prachuap Khiri Khan, Chumphon, and Peninsular Thailand) of T. pagdeni were observed. Analysis of molecular variance indicated significant genetic differentiation among the six geographic populations (Φ (PT) = 0.28, P < 0.001) and between samples collected from north and south of the Isthmus of Kra (Φ (PT) = 0.18, P < 0.001). In addition, Φ (PT) values between all pairwise comparisons were statistically significant (P < 0.01), indicating strong degrees of intraspecific population differentiation. Therefore, PCR-SSCP is a simple and cost-effective technique applicable for routine population genetic analyses in T. pagdeni and other stingless bees. The results also provide an important baseline for the conservation and management of this ecologically important species.

  17. Genetic structure of nest aggregations and drone congregations of the southeast Asian stingless bee Trigona collina.

    PubMed

    Cameron, E C; Franck, P; Oldroyd, B P

    2004-08-01

    In stingless bees, sex is determined by a single complementary sex-determining locus. This method of sex determination imposes a severe cost of inbreeding because an egg fertilized by sperm carrying the same sex allele as the egg results in a sterile diploid male. To explore how reproductive strategies may be used to avoid inbreeding in stingless bees, we studied the genetic structure of a population of 27 colonies and three drone congregations of Trigona collina in Chanthaburi, Thailand. The colonies were distributed across six nest aggregations, each aggregation located in the base of a different fig tree. Genetic analysis at eight microsatellite loci showed that colonies within aggregations were not related. Samples taken from three drone congregations showed that the males were drawn from a large number of colonies (estimated to be 132 different colonies in our largest swarm). No drone had a genotype indicating that it could have originated from the colony that it was directly outside. Combined, these results suggest that movements of drones and possibly movements of reproductive swarms among colony aggregations provide two mechanisms of inbreeding avoidance. Copyright 2004 Blackwell Publishing Ltd

  18. Field Populations of Wild Apis cerana Honey Bees Exhibit Increased Genetic Diversity Under Pesticide Stress Along an Agricultural Intensification Gradient in Eastern India.

    PubMed

    Chakrabarti, Priyadarshini; Sarkar, Sagartirtha; Basu, Parthiba

    2018-05-01

    Pesticides have been reported to be one of the major drivers in the global pollinator losses. The large-scale decline in honey bees, an important pollinator group, has resulted in comprehensive studies on honey bee colonies. Lack of information on native wild pollinators has paved the way for this study, which highlights the underlying evolutionary changes occurring in the wild honey bee populations exposed to pesticides along an agricultural intensification landscape. The study reports an increased genetic diversity in native Apis cerana Fabricius (Hymenoptera: Apidae) populations continually exposed to pesticide stress. An increased heterozygosity, evidenced by a higher electrophoretic banding pattern, was observed in the pesticide-exposed populations for two isozymes involved with xenobiotic metabolism-esterase and glucose-6-phosphate dehydrogenase. Differential banding patterns also revealed a higher percentage of polymorphic loci, number of polymorphic bands, Nei's genetic distance, etc. observed in these populations in the Randomly Amplified Polymorphic DNA-Polymerase Chain Reaction (RAPD-PCR) experiments using three random decamer primers. Higher heterozygosity, being indicative of a more resistant population, implies population survival within the threshold pesticide stress. This study reports such changes for the first time in native wild Indian honey bee populations exposed to pesticides and has far-reaching implications on the population adaptability under pesticide stress.

  19. Fine-scale spatial genetic structure of common and declining bumble bees across an agricultural landscape.

    PubMed

    Dreier, Stephanie; Redhead, John W; Warren, Ian A; Bourke, Andrew F G; Heard, Matthew S; Jordan, William C; Sumner, Seirian; Wang, Jinliang; Carvell, Claire

    2014-07-01

    Land-use changes have threatened populations of many insect pollinators, including bumble bees. Patterns of dispersal and gene flow are key determinants of species' ability to respond to land-use change, but have been little investigated at a fine scale (<10 km) in bumble bees. Using microsatellite markers, we determined the fine-scale spatial genetic structure of populations of four common Bombus species (B. terrestris, B. lapidarius, B. pascuorum and B. hortorum) and one declining species (B. ruderatus) in an agricultural landscape in Southern England, UK. The study landscape contained sown flower patches representing agri-environment options for pollinators. We found that, as expected, the B. ruderatus population was characterized by relatively low heterozygosity, number of alleles and colony density. Across all species, inbreeding was absent or present but weak (FIS  = 0.01-0.02). Using queen genotypes reconstructed from worker sibships and colony locations estimated from the positions of workers within these sibships, we found that significant isolation by distance was absent in B. lapidarius, B. hortorum and B. ruderatus. In B. terrestris and B. pascuorum, it was present but weak; for example, in these two species, expected relatedness of queens founding colonies 1 m apart was 0.02. These results show that bumble bee populations exhibit low levels of spatial genetic structure at fine spatial scales, most likely because of ongoing gene flow via widespread queen dispersal. In addition, the results demonstrate the potential for agri-environment scheme conservation measures to facilitate fine-scale gene flow by creating a more even distribution of suitable habitats across landscapes. © 2014 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.

  20. Shared additive genetic influences on DSM-IV criteria for alcohol dependence in subjects of European ancestry.

    PubMed

    Palmer, Rohan H C; McGeary, John E; Heath, Andrew C; Keller, Matthew C; Brick, Leslie A; Knopik, Valerie S

    2015-12-01

    Genetic studies of alcohol dependence (AD) have identified several candidate loci and genes, but most observed effects are small and difficult to reproduce. A plausible explanation for inconsistent findings may be a violation of the assumption that genetic factors contributing to each of the seven DSM-IV criteria point to a single underlying dimension of risk. Given that recent twin studies suggest that the genetic architecture of AD is complex and probably involves multiple discrete genetic factors, the current study employed common single nucleotide polymorphisms in two multivariate genetic models to examine the assumption that the genetic risk underlying DSM-IV AD is unitary. AD symptoms and genome-wide single nucleotide polymorphism (SNP) data from 2596 individuals of European descent from the Study of Addiction: Genetics and Environment were analyzed using genomic-relatedness-matrix restricted maximum likelihood. DSM-IV AD symptom covariance was described using two multivariate genetic factor models. Common SNPs explained 30% (standard error=0.136, P=0.012) of the variance in AD diagnosis. Additive genetic effects varied across AD symptoms. The common pathway model approach suggested that symptoms could be described by a single latent variable that had a SNP heritability of 31% (0.130, P=0.008). Similarly, the exploratory genetic factor model approach suggested that the genetic variance/covariance across symptoms could be represented by a single genetic factor that accounted for at least 60% of the genetic variance in any one symptom. Additive genetic effects on DSM-IV alcohol dependence criteria overlap. The assumption of common genetic effects across alcohol dependence symptoms appears to be a valid assumption. © 2015 Society for the Study of Addiction.

  1. Estimating the solute transport parameters of the spatial fractional advection-dispersion equation using Bees Algorithm

    NASA Astrophysics Data System (ADS)

    Mehdinejadiani, Behrouz

    2017-08-01

    This study represents the first attempt to estimate the solute transport parameters of the spatial fractional advection-dispersion equation using Bees Algorithm. The numerical studies as well as the experimental studies were performed to certify the integrity of Bees Algorithm. The experimental ones were conducted in a sandbox for homogeneous and heterogeneous soils. A detailed comparative study was carried out between the results obtained from Bees Algorithm and those from Genetic Algorithm and LSQNONLIN routines in FracFit toolbox. The results indicated that, in general, the Bees Algorithm much more accurately appraised the sFADE parameters in comparison with Genetic Algorithm and LSQNONLIN, especially in the heterogeneous soil and for α values near to 1 in the numerical study. Also, the results obtained from Bees Algorithm were more reliable than those from Genetic Algorithm. The Bees Algorithm showed the relative similar performances for all cases, while the Genetic Algorithm and the LSQNONLIN yielded different performances for various cases. The performance of LSQNONLIN strongly depends on the initial guess values so that, compared to the Genetic Algorithm, it can more accurately estimate the sFADE parameters by taking into consideration the suitable initial guess values. To sum up, the Bees Algorithm was found to be very simple, robust and accurate approach to estimate the transport parameters of the spatial fractional advection-dispersion equation.

  2. Estimating the solute transport parameters of the spatial fractional advection-dispersion equation using Bees Algorithm.

    PubMed

    Mehdinejadiani, Behrouz

    2017-08-01

    This study represents the first attempt to estimate the solute transport parameters of the spatial fractional advection-dispersion equation using Bees Algorithm. The numerical studies as well as the experimental studies were performed to certify the integrity of Bees Algorithm. The experimental ones were conducted in a sandbox for homogeneous and heterogeneous soils. A detailed comparative study was carried out between the results obtained from Bees Algorithm and those from Genetic Algorithm and LSQNONLIN routines in FracFit toolbox. The results indicated that, in general, the Bees Algorithm much more accurately appraised the sFADE parameters in comparison with Genetic Algorithm and LSQNONLIN, especially in the heterogeneous soil and for α values near to 1 in the numerical study. Also, the results obtained from Bees Algorithm were more reliable than those from Genetic Algorithm. The Bees Algorithm showed the relative similar performances for all cases, while the Genetic Algorithm and the LSQNONLIN yielded different performances for various cases. The performance of LSQNONLIN strongly depends on the initial guess values so that, compared to the Genetic Algorithm, it can more accurately estimate the sFADE parameters by taking into consideration the suitable initial guess values. To sum up, the Bees Algorithm was found to be very simple, robust and accurate approach to estimate the transport parameters of the spatial fractional advection-dispersion equation. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Status of breeding and use of Russian and VSH bees world-wide

    USDA-ARS?s Scientific Manuscript database

    Research at the USDA Honey Bee Breeding, Genetics and Physiology Laboratory produced two types of honey bees (Apis mellifera) with resistance to Varroa destructor. Colonies of these bees host mite populations that remain small enough to allow beekeepers to eliminate or reduce miticide treatments. S...

  4. Workers make the queens in melipona bees: identification of geraniol as a caste determining compound from labial glands of nurse bees.

    PubMed

    Jarau, Stefan; van Veen, Johan W; Twele, Robert; Reichle, Christian; Gonzales, Eduardo Herrera; Aguilar, Ingrid; Francke, Wittko; Ayasse, Manfred

    2010-06-01

    Reproductive division of labor in advanced eusocial honey bees and stingless bees is based on the ability of totipotent female larvae to develop into either workers or queens. In nearly all species, caste is determined by larval nutrition. However, the mechanism that triggers queen development in Melipona bees is still unresolved. Several hypotheses have been proposed, ranging from the proximate (a genetic determination of caste development) to the ultimate (a model in which larvae have complete control over their own caste fate). Here, we showed that the addition of geraniol, the main compound in labial gland secretions of nurse workers, to the larval food significantly increases the number of larvae that develop into queens. Interestingly, the proportion of queens in treated brood exactly matched the value (25%) predicted by the two-locus, two-allele model of genetic queen determination, in which only females that are heterozygous at both loci are capable of developing into queens. We conclude that labial gland secretions, added to the food of some cells by nurse bees, trigger queen development, provided that the larvae are genetically predisposed towards this developmental pathway. In Melipona beecheii, geraniol acts as a primer pheromone representing the first caste determination substance identified to date.

  5. The African honey bee: factors contributing to a successful biological invasion.

    PubMed

    Scott Schneider, Stanley; DeGrandi-Hoffman, Gloria; Smith, Deborah Roan

    2004-01-01

    The African honey bee subspecies Apis mellifera scutellata has colonized much of the Americas in less than 50 years and has largely replaced European bees throughout its range in the New World. The African bee therefore provides an excellent opportunity to examine the factors that influence invasion success. We provide a synthesis of recent research on the African bee, concentrating on its ability to displace European honey bees. Specifically, we consider (a) the genetic composition of the expanding population and the symmetry of gene flow between African and European bees, (b) the mechanisms that favor the preservation of the African genome, and (c) the possible range and impact of the African bee in the United States.

  6. Reduced SNP Panels for Genetic Identification and Introgression Analysis in the Dark Honey Bee (Apis mellifera mellifera)

    PubMed Central

    Muñoz, Irene; Henriques, Dora; Johnston, J. Spencer; Chávez-Galarza, Julio; Kryger, Per; Pinto, M. Alice

    2015-01-01

    Beekeeping activities, especially queen trading, have shaped the distribution of honey bee (Apis mellifera) subspecies in Europe, and have resulted in extensive introductions of two eastern European C-lineage subspecies (A. m. ligustica and A. m. carnica) into the native range of the M-lineage A. m. mellifera subspecies in Western Europe. As a consequence, replacement and gene flow between native and commercial populations have occurred at varying levels across western European populations. Genetic identification and introgression analysis using molecular markers is an important tool for management and conservation of honey bee subspecies. Previous studies have monitored introgression by using microsatellite, PCR-RFLP markers and most recently, high density assays using single nucleotide polymorphism (SNP) markers. While the latter are almost prohibitively expensive, the information gained to date can be exploited to create a reduced panel containing the most ancestry-informative markers (AIMs) for those purposes with very little loss of information. The objective of this study was to design reduced panels of AIMs to verify the origin of A. m. mellifera individuals and to provide accurate estimates of the level of C-lineage introgression into their genome. The discriminant power of the SNPs using a variety of metrics and approaches including the Weir & Cockerham’s FST, an FST-based outlier test, Delta, informativeness (In), and PCA was evaluated. This study shows that reduced AIMs panels assign individuals to the correct origin and calculates the admixture level with a high degree of accuracy. These panels provide an essential tool in Europe for genetic stock identification and estimation of admixture levels which can assist management strategies and monitor honey bee conservation programs. PMID:25875986

  7. Museum samples reveal rapid evolution by wild honey bees exposed to a novel parasite.

    PubMed

    Mikheyev, Alexander S; Tin, Mandy M Y; Arora, Jatin; Seeley, Thomas D

    2015-08-06

    Understanding genetic changes caused by novel pathogens and parasites can reveal mechanisms of adaptation and genetic robustness. Using whole-genome sequencing of museum and modern specimens, we describe the genomic changes in a wild population of honey bees in North America following the introduction of the ectoparasitic mite, Varroa destructor. Even though colony density in the study population is the same today as in the past, a major loss of haplotypic diversity occurred, indicative of a drastic mitochondrial bottleneck, caused by massive colony mortality. In contrast, nuclear genetic diversity did not change, though hundreds of genes show signs of selection. The genetic diversity within each bee colony, particularly as a consequence of polyandry by queens, may enable preservation of genetic diversity even during population bottlenecks. These findings suggest that genetically diverse honey bee populations can recover from introduced diseases by evolving rapid tolerance, while maintaining much of the standing genetic variation.

  8. Sequential generations of honey bee (Apis mellifera) queens produced using cryopreserved semen.

    PubMed

    Hopkins, Brandon K; Herr, Charles; Sheppard, Walter S

    2012-01-01

    Much of the world's food production is dependent on honey bees for pollination, and expanding food production will further increase the demand for managed pollination services. Apiculturists outside the native range of the honey bee, in the Americas, Australia and eastern Asia, have used only a few of the 27 described subspecies of honey bees (Apis mellifera) for beekeeping purposes. Within the endemic ranges of a particular subspecies, hybridisation can threaten native subspecies when local beekeepers import and propagate non-native honey bees. For many threatened species, cryopreserved germplasm can provide a resource for the preservation of diversity and recovery of endangered populations. However, although instrumental insemination of queen honey bees is well established, the absence of an effective means to cryopreserve honey bee semen has limited the success of efforts to preserve genetic diversity within the species or to develop repositories of honey bee germplasm for breeding purposes. Herein we report that some queens inseminated with cryopreserved semen were capable of producing a substantial number of fertilised offspring. These diploid female larvae were used to produce two additional sequential generations of new queens, which were then back-crossed to the same stock of frozen semen. Our results demonstrate the ability to produce queens using cryopreserved honey bee spermatozoa and the potential for the establishment of a honey bee genetic repository.

  9. Museum samples reveal rapid evolution by wild honey bees exposed to a novel parasite

    PubMed Central

    Mikheyev, Alexander S.; Tin, Mandy M. Y.; Arora, Jatin; Seeley, Thomas D.

    2015-01-01

    Understanding genetic changes caused by novel pathogens and parasites can reveal mechanisms of adaptation and genetic robustness. Using whole-genome sequencing of museum and modern specimens, we describe the genomic changes in a wild population of honey bees in North America following the introduction of the ectoparasitic mite, Varroa destructor. Even though colony density in the study population is the same today as in the past, a major loss of haplotypic diversity occurred, indicative of a drastic mitochondrial bottleneck, caused by massive colony mortality. In contrast, nuclear genetic diversity did not change, though hundreds of genes show signs of selection. The genetic diversity within each bee colony, particularly as a consequence of polyandry by queens, may enable preservation of genetic diversity even during population bottlenecks. These findings suggest that genetically diverse honey bee populations can recover from introduced diseases by evolving rapid tolerance, while maintaining much of the standing genetic variation. PMID:26246313

  10. Landscape effects on extremely fragmented populations of a rare solitary bee, Colletes floralis.

    PubMed

    Davis, Emily S; Murray, Tomás E; Fitzpatrick, Una; Brown, Mark J F; Paxton, Robert J

    2010-11-01

    Globally, there is concern over the decline of bees, an ecologically important group of pollinating insects. Genetic studies provide insights into population structure that are crucial for conservation management but that would be impossible to obtain by conventional ecological methods. Yet conservation genetic studies of bees have primarily focussed on social species rather than the more species-rich solitary bees. Here, we investigate the population structure of Colletes floralis, a rare and threatened solitary mining bee, in Ireland and Scotland using nine microsatellite loci. Genetic diversity was surprisingly as high in Scottish (Hebridean island) populations at the extreme northwestern edge of the species range as in mainland Irish populations further south. Extremely high genetic differentiation among populations was detected; multilocus F(ST) was up to 0.53, and and D(est) were even higher (maximum: 0.85 and 1.00, respectively). A pattern of isolation by distance was evident for sites separated by land. Water appears to act as a substantial barrier to gene flow yet sites separated by sea did not exhibit isolation by distance. C. floralis populations are extremely isolated and probably not in regional migration-drift equilibrium. GIS-based landscape genetic analysis reveals urban areas as a potential and substantial barrier to gene flow. Our results highlight the need for urgent site-specific management action to halt the decline of this and potentially other rare solitary bees. © 2010 Blackwell Publishing Ltd.

  11. Phenotypic and Genetic Analyses of the Varroa Sensitive Hygienic Trait in Russian Honey Bee (Hymenoptera: Apidae) Colonies

    PubMed Central

    Kirrane, Maria J.; de Guzman, Lilia I.; Holloway, Beth; Frake, Amanda M.; Rinderer, Thomas E.; Whelan, Pádraig M.

    2015-01-01

    Varroa destructor continues to threaten colonies of European honey bees. General hygiene, and more specific Varroa Sensitive Hygiene (VSH), provide resistance towards the Varroa mite in a number of stocks. In this study, 32 Russian (RHB) and 14 Italian honey bee colonies were assessed for the VSH trait using two different assays. Firstly, colonies were assessed using the standard VSH behavioural assay of the change in infestation of a highly infested donor comb after a one-week exposure. Secondly, the same colonies were assessed using an “actual brood removal assay” that measured the removal of brood in a section created within the donor combs as a potential alternative measure of hygiene towards Varroa-infested brood. All colonies were then analysed for the recently discovered VSH quantitative trait locus (QTL) to determine whether the genetic mechanisms were similar across different stocks. Based on the two assays, RHB colonies were consistently more hygienic toward Varroa-infested brood than Italian honey bee colonies. The actual number of brood cells removed in the defined section was negatively correlated with the Varroa infestations of the colonies (r2 = 0.25). Only two (percentages of brood removed and reproductive foundress Varroa) out of nine phenotypic parameters showed significant associations with genotype distributions. However, the allele associated with each parameter was the opposite of that determined by VSH mapping. In this study, RHB colonies showed high levels of hygienic behaviour towards Varroa -infested brood. The genetic mechanisms are similar to those of the VSH stock, though the opposite allele associates in RHB, indicating a stable recombination event before the selection of the VSH stock. The measurement of brood removal is a simple, reliable alternative method of measuring hygienic behaviour towards Varroa mites, at least in RHB stock. PMID:25909856

  12. Phenotypic and genetic analyses of the varroa sensitive hygienic trait in Russian honey bee (hymenoptera: apidae) colonies.

    PubMed

    Kirrane, Maria J; de Guzman, Lilia I; Holloway, Beth; Frake, Amanda M; Rinderer, Thomas E; Whelan, Pádraig M

    2014-01-01

    Varroa destructor continues to threaten colonies of European honey bees. General hygiene, and more specific Varroa Sensitive Hygiene (VSH), provide resistance towards the Varroa mite in a number of stocks. In this study, 32 Russian (RHB) and 14 Italian honey bee colonies were assessed for the VSH trait using two different assays. Firstly, colonies were assessed using the standard VSH behavioural assay of the change in infestation of a highly infested donor comb after a one-week exposure. Secondly, the same colonies were assessed using an "actual brood removal assay" that measured the removal of brood in a section created within the donor combs as a potential alternative measure of hygiene towards Varroa-infested brood. All colonies were then analysed for the recently discovered VSH quantitative trait locus (QTL) to determine whether the genetic mechanisms were similar across different stocks. Based on the two assays, RHB colonies were consistently more hygienic toward Varroa-infested brood than Italian honey bee colonies. The actual number of brood cells removed in the defined section was negatively correlated with the Varroa infestations of the colonies (r2 = 0.25). Only two (percentages of brood removed and reproductive foundress Varroa) out of nine phenotypic parameters showed significant associations with genotype distributions. However, the allele associated with each parameter was the opposite of that determined by VSH mapping. In this study, RHB colonies showed high levels of hygienic behaviour towards Varroa -infested brood. The genetic mechanisms are similar to those of the VSH stock, though the opposite allele associates in RHB, indicating a stable recombination event before the selection of the VSH stock. The measurement of brood removal is a simple, reliable alternative method of measuring hygienic behaviour towards Varroa mites, at least in RHB stock.

  13. Functional roles and metabolic niches in the honey bee gut microbiota.

    PubMed

    Bonilla-Rosso, Germán; Engel, Philipp

    2018-06-01

    Gut microbiota studies on diverse animals facilitate our understanding of the general principles governing microbiota-host interactions. The honey bee adds a relevant study system due to the simplicity and experimental tractability of its gut microbiota, but also because bees are important pollinators that suffer from population declines worldwide. The use of gnotobiotic bees combined with genetic tools, 'omics' analysis, and experimental microbiology has recently provided important insights about the impact of the microbiota on bee health and the general functioning of gut ecosystems. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Manipulation of colony environment modulates honey bee aggression and brain gene expression.

    PubMed

    Rittschof, C C; Robinson, G E

    2013-11-01

    The social environment plays an essential role in shaping behavior for most animals. Social effects on behavior are often linked to changes in brain gene expression. In the honey bee (Apis mellifera L.), social modulation of individual aggression allows colonies to adjust the intensity with which they defend their hive in response to predation threat. Previous research has showed social effects on both aggression and aggression-related brain gene expression in honey bees, caused by alarm pheromone and unknown factors related to colony genotype. For example, some bees from less aggressive genetic stock reared in colonies with genetic predispositions toward increased aggression show both increased aggression and more aggressive-like brain gene expression profiles. We tested the hypothesis that exposure to a colony environment influenced by high levels of predation threat results in increased aggression and aggressive-like gene expression patterns in individual bees. We assessed gene expression using four marker genes. Experimentally induced predation threats modified behavior, but the effect was opposite of our predictions: disturbed colonies showed decreased aggression. Disturbed colonies also decreased foraging activity, suggesting that they did not habituate to threats; other explanations for this finding are discussed. Bees in disturbed colonies also showed changes in brain gene expression, some of which paralleled behavioral findings. These results show that bee aggression and associated molecular processes are subject to complex social influences. © 2013 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  15. Nest Suitability, Fine-Scale Population Structure and Male-Mediated Dispersal of a Solitary Ground Nesting Bee in an Urban Landscape

    PubMed Central

    López-Uribe, Margarita M.; Morreale, Stephen J.; Santiago, Christine K.; Danforth, Bryan N.

    2015-01-01

    Bees are the primary pollinators of flowering plants in almost all ecosystems. Worldwide declines in bee populations have raised awareness about the importance of their ecological role in maintaining ecosystem functioning. The naturally strong philopatric behavior that some bee species show can be detrimental to population viability through increased probability of inbreeding. Furthermore, bee populations found in human-altered landscapes, such as urban areas, can experience lower levels of gene flow and effective population sizes, increasing potential for inbreeding depression in wild bee populations. In this study, we investigated the fine-scale population structure of the solitary bee Colletes inaequalis in an urbanized landscape. First, we developed a predictive spatial model to detect suitable nesting habitat for this ground nesting bee and to inform our field search for nests. We genotyped 18 microsatellites in 548 female individuals collected from nest aggregations throughout the study area. Genetic relatedness estimates revealed that genetic similarity among individuals was slightly greater within nest aggregations than among randomly chosen individuals. However, genetic structure among nest aggregations was low (Nei’s GST = 0.011). Reconstruction of parental genotypes revealed greater genetic relatedness among females than among males within nest aggregations, suggesting male-mediated dispersal as a potentially important mechanism of population connectivity and inbreeding avoidance. Size of nesting patch was positively correlated with effective population size, but not with other estimators of genetic diversity. We detected a positive trend between geographic distance and genetic differentiation between nest aggregations. Our landscape genetic models suggest that increased urbanization is likely associated with higher levels of inbreeding. Overall, these findings emphasize the importance of density and distribution of suitable nesting patches for

  16. Nest suitability, fine-scale population structure and male-mediated dispersal of a solitary ground nesting bee in an urban landscape.

    PubMed

    López-Uribe, Margarita M; Morreale, Stephen J; Santiago, Christine K; Danforth, Bryan N

    2015-01-01

    Bees are the primary pollinators of flowering plants in almost all ecosystems. Worldwide declines in bee populations have raised awareness about the importance of their ecological role in maintaining ecosystem functioning. The naturally strong philopatric behavior that some bee species show can be detrimental to population viability through increased probability of inbreeding. Furthermore, bee populations found in human-altered landscapes, such as urban areas, can experience lower levels of gene flow and effective population sizes, increasing potential for inbreeding depression in wild bee populations. In this study, we investigated the fine-scale population structure of the solitary bee Colletes inaequalis in an urbanized landscape. First, we developed a predictive spatial model to detect suitable nesting habitat for this ground nesting bee and to inform our field search for nests. We genotyped 18 microsatellites in 548 female individuals collected from nest aggregations throughout the study area. Genetic relatedness estimates revealed that genetic similarity among individuals was slightly greater within nest aggregations than among randomly chosen individuals. However, genetic structure among nest aggregations was low (Nei's GST = 0.011). Reconstruction of parental genotypes revealed greater genetic relatedness among females than among males within nest aggregations, suggesting male-mediated dispersal as a potentially important mechanism of population connectivity and inbreeding avoidance. Size of nesting patch was positively correlated with effective population size, but not with other estimators of genetic diversity. We detected a positive trend between geographic distance and genetic differentiation between nest aggregations. Our landscape genetic models suggest that increased urbanization is likely associated with higher levels of inbreeding. Overall, these findings emphasize the importance of density and distribution of suitable nesting patches for enhancing

  17. Infestation of Japanese native honey bees by tracheal mite and virus from non-native European honey bees in Japan.

    PubMed

    Kojima, Yuriko; Toki, Taku; Morimoto, Tomomi; Yoshiyama, Mikio; Kimura, Kiyoshi; Kadowaki, Tatsuhiko

    2011-11-01

    Invasion of alien species has been shown to cause detrimental effects on habitats of native species. Insect pollinators represent such examples; the introduction of commercial bumble bee species for crop pollination has resulted in competition for an ecological niche with native species, genetic disturbance caused by mating with native species, and pathogen spillover to native species. The European honey bee, Apis mellifera, was first introduced into Japan for apiculture in 1877, and queen bees have been imported from several countries for many years. However, its effects on Japanese native honey bee, Apis cerana japonica, have never been addressed. We thus conducted the survey of honey bee viruses and Acarapis mites using both A. mellifera and A. c. japonica colonies to examine their infestation in native and non-native honey bee species in Japan. Honey bee viruses, Deformed wing virus (DWV), Black queen cell virus (BQCV), Israeli acute paralysis virus (IAPV), and Sacbrood virus (SBV), were found in both A. mellifera and A. c. japonica colonies; however, the infection frequency of viruses in A. c. japonica was lower than that in A. mellifera colonies. Based on the phylogenies of DWV, BQCV, and SBV isolates from A. mellifera and A. c. japonica, DWV and BQCV may infect both honey bee species; meanwhile, SBV has a clear species barrier. For the first time in Japan, tracheal mite (Acarapis woodi) was specifically found in the dead honey bees from collapsing A. c. japonica colonies. This paper thus provides further evidence that tracheal-mite-infested honey bee colonies can die during cool winters with no other disease present. These results demonstrate the infestation of native honey bees by parasite and pathogens of non-native honey bees that are traded globally.

  18. The power and promise of applying genomics to honey bee health.

    PubMed

    Grozinger, Christina M; Robinson, Gene E

    2015-08-01

    New genomic tools and resources are now being used to both understand honey bee health and develop tools to better manage it. Here, we describe the use of genomic approaches to identify and characterize bee parasites and pathogens, examine interactions among these parasites and pathogens, between them and their bee hosts, and to identify genetic markers for improved breeding of more resilient bee stocks. We also discuss several new genomic techniques that can be used to more efficiently study, monitor and improve bee health. In the case of using RNAi-based technologies to mitigate diseases in bee populations, we highlight advantages, disadvantages and strategies to reduce risk. The increased use of genomic analytical tools and manipulative technologies has already led to significant advances, and holds great promise for improvements in the health of honey bees and other critical pollinator species.

  19. The power and promise of applying genomics to honey bee health

    PubMed Central

    Robinson, Gene E.

    2015-01-01

    New genomic tools and resources are now being used to both understand honey bee health and develop tools to better manage it. Here, we describe the use of genomic approaches to identify and characterize bee parasites and pathogens, examine interactions among these parasites and pathogens, between them and their bee hosts, and to identify genetic markers for improved breeding of more resilient bee stocks. We also discuss several new genomic techniques that can be used to more efficiently study, monitor and improve bee health. In the case of using RNAi-based technologies to mitigate diseases in bee populations, we highlight advantages, disadvantages and strategies to reduce risk. The increased use of genomic analytical tools and manipulative technologies has already led to significant advances, and holds great promise for improvements in the health of honey bees and other critical pollinator species. PMID:26273565

  20. Selection on overdominant genes maintains heterozygosity along multiple chromosomes in a clonal lineage of honey bee.

    PubMed

    Goudie, Frances; Allsopp, Michael H; Oldroyd, Benjamin P

    2014-01-01

    Correlations between fitness and genome-wide heterozygosity (heterozygosity-fitness correlations, HFCs) have been reported across a wide range of taxa. The genetic basis of these correlations is controversial: do they arise from genome-wide inbreeding ("general effects") or the "local effects" of overdominant loci acting in linkage disequilibrium with neutral loci? In an asexual thelytokous lineage of the Cape honey bee (Apis mellifera capensis), the effects of inbreeding have been homogenized across the population, making this an ideal system in which to detect overdominant loci, and to make inferences about the importance of overdominance on HFCs in general. Here we investigate the pattern of zygosity along two chromosomes in 42 workers from the clonal Cape honey bee population. On chromosome III (which contains the sex-locus, a gene that is homozygous-lethal) and chromosome IV we show that the pattern of zygosity is characterized by loss of heterozygosity in short regions followed by the telomeric restoration of heterozygosity. We infer that at least four selectively overdominant genes maintain heterozygosity on chromosome III and three on chromosome IV via local effects acting on neutral markers in linkage disequilibrium. We conclude that heterozygote advantage and local effects may be more common and evolutionarily significant than is generally appreciated. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.

  1. A Meta-Analysis of Effects of Bt Crops on Honey Bees (Hymenoptera: Apidae)

    PubMed Central

    Duan, Jian J.; Marvier, Michelle; Huesing, Joseph; Dively, Galen; Huang, Zachary Y.

    2008-01-01

    Background Honey bees (Apis mellifera L.) are the most important pollinators of many agricultural crops worldwide and are a key test species used in the tiered safety assessment of genetically engineered insect-resistant crops. There is concern that widespread planting of these transgenic crops could harm honey bee populations. Methodology/Principal Findings We conducted a meta-analysis of 25 studies that independently assessed potential effects of Bt Cry proteins on honey bee survival (or mortality). Our results show that Bt Cry proteins used in genetically modified crops commercialized for control of lepidopteran and coleopteran pests do not negatively affect the survival of either honey bee larvae or adults in laboratory settings. Conclusions/Significance Although the additional stresses that honey bees face in the field could, in principle, modify their susceptibility to Cry proteins or lead to indirect effects, our findings support safety assessments that have not detected any direct negative effects of Bt crops for this vital insect pollinator. PMID:18183296

  2. Genetic characterization of Russian honey bee stock selected for improved resistance to Varroa destructor.

    PubMed

    Bourgeois, A Lelania; Rinderer, Thomas E

    2009-06-01

    Maintenance of genetic diversity among breeding lines is important in selective breeding and stock management. The Russian Honey Bee Breeding Program has strived to maintain high levels of heterozygosity among its breeding lines since its inception in 1997. After numerous rounds of selection for resistance to tracheal and varroa mites and improved honey production, 18 lines were selected as the core of the program. These lines were grouped into three breeding blocks that were crossbred to improve overall heterozygosity levels of the population. Microsatellite DNA data demonstrated that the program has been successful. Heterozygosity and allelic richness values are high and there are no indications of inbreeding among the three blocks. There were significant levels of genetic structure measured among the three blocks. Block C was genetically distinct from both blocks A and B (F(ST) = 0.0238), whereas blocks A and B did not differ from each other (F(ST) = 0.0074). The same pattern was seen for genic (based on numbers of alleles) differentiation. Genetic distance, as measured by chord distance, indicates that all of the 18 lines are equally distant, with minimal clustering. The data indicate that the overall design of the breeding program has been successful in maintaining high levels of diversity and avoiding problems associated with inbreeding.

  3. The paratransgenic potential of Lactobacillus kunkeei in the honey bee Apis mellifera.

    PubMed

    Rangberg, A; Mathiesen, G; Amdam, G V; Diep, D B

    2015-01-01

    The honey bee (Apis mellifera) is a domestic insect of high value to human societies, as a crop pollinator in agriculture and a model animal in scientific research. The honey bee, however, has experienced massive mortality worldwide due to the phenomenon Colony Collapse Disorder (CCD), resulting in alarming prospects for crop failure in Europe and the USA. The reasons for CCD are complex and much debated, but several honey bee pathogens are believed to be involved. Paratransgenesis is a Trojan horse strategy, where endogenous microorganisms are used to express effector molecules that antagonise pathogen development. For use in honey bees, paratransgenesis must rely on a set of criteria that the candidate paratransgenic microorganism must fulfil in order to obtain a successful outcome: (1) the candidate must be genetically modifiable to express effector molecules; (2) the modified organism should have no adverse effects on honey bee health upon reintroduction; and (3) it must survive together with other non-pathogenic bee-associated microorganisms. Lactic acid bacteria (LAB) are common gut bacteria in vertebrates and invertebrates, and some have naturally beneficial properties in their host. In the present work we aimed to find a potential paratransgenic candidate within this bacterial group for use in honey bees. Among isolated LAB associated with bee gut microbiota, we found the fructophilic Lactobacillus kunkeei to be the most predominant species during foraging seasons. Four genetically different strains of L. kunkeei were selected for further assessment. We demonstrated (1) that L. kunkeei is transformable; (2) that the transformed cells had no obvious adverse effect on honey bee survival; and (3) that transformed cells survived well in the gut environment of bees upon reintroduction. Our study demonstrates that L. kunkeei fulfils the three criteria for paratransgenesis and can be a suitable candidate for further research on this strategy in honey bees.

  4. Limited social plasticity in the socially polymorphic sweat bee Lasioglossum calceatum.

    PubMed

    Davison, P J; Field, J

    2018-01-01

    Eusociality is characterised by a reproductive division of labour, where some individuals forgo direct reproduction to instead help raise kin. Socially polymorphic sweat bees are ideal models for addressing the mechanisms underlying the transition from solitary living to eusociality, because different individuals in the same species can express either eusocial or solitary behaviour. A key question is whether alternative social phenotypes represent environmentally induced plasticity or predominantly genetic differentiation between populations. In this paper, we focus on the sweat bee Lasioglossum calceatum , in which northern or high-altitude populations are solitary, whereas more southern or low-altitude populations are typically eusocial. To test whether social phenotype responds to local environmental cues, we transplanted adult females from a solitary, northern population, to a southern site where native bees are typically eusocial. Nearly all native nests were eusocial, with foundresses producing small first brood (B1) females that became workers. In contrast, nine out of ten nests initiated by transplanted bees were solitary, producing female offspring that were the same size as the foundress and entered directly into hibernation. Only one of these ten nests became eusocial. Social phenotype was unlikely to be related to temperature experienced by nest foundresses when provisioning B1 offspring, or by B1 emergence time, both previously implicated in social plasticity seen in two other socially polymorphic sweat bees. Our results suggest that social polymorphism in L. calceatum predominantly reflects genetic differentiation between populations, and that plasticity is in the process of being lost by bees in northern populations. Phenotypic plasticity is thought to play a key role in the early stages of the transition from solitary to eusocial behaviour, but may then be lost if environmental conditions become less variable. Socially polymorphic sweat bees exhibit

  5. Test of the invasive pathogen hypothesis of bumble bee decline in North America.

    PubMed

    Cameron, Sydney A; Lim, Haw Chuan; Lozier, Jeffrey D; Duennes, Michelle A; Thorp, Robbin

    2016-04-19

    Emergent fungal diseases are critical factors in global biodiversity declines. The fungal pathogenNosema bombiwas recently found to be widespread in declining species of North American bumble bees (Bombus), with circumstantial evidence suggesting an exotic introduction from Europe. This interpretation has been hampered by a lack of knowledge of global genetic variation, geographic origin, and changing prevalence patterns ofN. bombiin declining North American populations. Thus, the temporal and spatial emergence ofN. bombiand its potential role in bumble bee decline remain speculative. We analyzeNosemaprevalence and genetic variation in the United States and Europe from 1980, before an alleged introduction in the early 1990s, to 2011, extractingNosemaDNA fromBombusnatural history collection specimens from across this time period.Nosema bombiprevalence increased significantly from low detectable frequency in the 1980s to significantly higher frequency in the mid- to late-1990s, corresponding to a period of reported massive infectious outbreak ofN. bombiin commercial bumble bee rearing stocks in North America. Despite the increased frequency, we find no conclusive evidence of an exoticN. bombiorigin based on genetic analysis of globalNosemapopulations; the widespreadNosemastrain found currently in declining United States bumble bees was present in the United States before commercial colony trade. Notably, the USN. bombiis not detectably different from that found predominantly throughout Western Europe, with both regions characterized by low genetic diversity compared with high levels of diversity found in Asia, where commercial bee breeding activities are low or nonexistent.

  6. GENETIC AND ENVIRONMENTAL CONTRIBUTIONS TO THE CO-OCCURRENCE OF DEPRESSIVE PERSONALITY DISORDER AND DSM-IV PERSONALITY DISORDERS

    PubMed Central

    Ørstavik, Ragnhild E.; Kendler, Kenneth S.; Røysamb, Espen; Czajkowski, Nikolai; Tambs, Kristian; Reichborn-Kjennerud, Ted

    2012-01-01

    One of the main controversies with regard to depressive personality disorder (DPD) concerns the co-occurrence with the established DSM-IV personality disorders (PDs). The main aim of this study was to examine to what extent DPD and the DSM-IV PDs share genetic and environmental risk factors, using multivariate twin modeling. The DSM-IV Structured Interview for Personality was applied to 2,794 young adult twins. Paranoid PD from Cluster A, borderline PD from Cluster B, and all three PDs from Cluster C were independently and significantly associated with DPD in multiple regression analysis. The genetic correlations between DPD and the other PDs were strong (.53–.83), while the environmental correlations were moderate (.36–.40). Close to 50% of the total variance in DPD was disorder specific. However, only 5% was due to disorder-specific genetic factors, indicating that a substantial part of the genetic vulnerability to DPD also increases the vulnerability to other PDs. PMID:22686231

  7. Genetic and environmental contributions to the co-occurrence of depressive personality disorder and DSM-IV personality disorders.

    PubMed

    Ørstavik, Ragnhild E; Kendler, Kenneth S; Røysamb, Espen; Czajkowski, Nikolai; Tambs, Kristian; Reichborn-Kjennerud, Ted

    2012-06-01

    One of the main controversies with regard to depressive personality disorder (DPD) concerns the co-occurrence with the established DSM-IV personality disorders (PDs). The main aim of this study was to examine to what extent DPD and the DSM-IV PDs share genetic and environmental risk factors, using multivariate twin modeling. The DSM-IV Structured Interview for Personality was applied to 2,794 young adult twins. Paranoid PD from Cluster A, borderline PD from Cluster B, and all three PDs from Cluster C were independently and significantly associated with DPD in multiple regression analysis. The genetic correlations between DPD and the other PDs were strong (.53-.83), while the environmental correlations were moderate (.36-.40). Close to 50% of the total variance in DPD was disorder specific. However, only 5% was due to disorder-specific genetic factors, indicating that a substantial part of the genetic vulnerability to DPD also increases the vulnerability to other PDs.

  8. Genetic detection and quantification of Nosema apis and N. ceranae in the honey bee.

    PubMed

    Bourgeois, A Lelania; Rinderer, Thomas E; Beaman, Lorraine D; Danka, Robert G

    2010-01-01

    The incidence of nosemosis has increased in recent years due to an emerging infestation of Nosema ceranae in managed honey bee populations in much of the world. A real-time PCR assay was developed to facilitate detection and quantification of both Nosema apis and N. ceranae in both single bee and pooled samples. The assay is a multiplexed reaction in which both species are detected and quantified in a single reaction. The assay is highly sensitive and can detect single copies of the target sequence. Real-time PCR results were calibrated to spore counts generated by standard microscopy procedures. The assay was used to assess bees from commercial apiaries sampled in November 2008 and March 2009. Bees from each colony were pooled. A large amount of variation among colonies was evident, signifying the need to examine large numbers of colonies. Due to sampling constraints, a subset of colonies (from five apiaries) was sampled in both seasons. In November, N. apis levels were 1212+/-148 spores/bee and N. ceranae levels were 51,073+/-31,155 spores/bee. In March, no N. apis was detected, N. ceranae levels were 11,824+/-6304 spores/bee. Changes in N. ceranae levels were evident among apiaries, some increasing and other decreasing. This demonstrates the need for thorough sampling of apiaries and the need for a rapid test for both detection and quantification of both Nosema spp. This assay provides the opportunity for detailed study of disease resistance, infection kinetics, and improvement of disease management practices for honey bees.

  9. Bee Pollen

    MedlinePlus

    ... confuse bee pollen with bee venom, honey, or royal jelly. People take bee pollen for nutrition; as an ... menstrual cycles. This product contains 6 mg of royal jelly, 36 mg of bee pollen extract, bee pollen, ...

  10. Genic control of honey bee dance language dialect.

    PubMed

    Rinderer, T E; Beaman, L D

    1995-10-01

    Behavioural genetic analysis of honey bee dance language shows simple Mendelian genic control over certain dance dialect differences. Worker honey bees of one parent colony (yellow) changed from round to transition dances for foraging distances of 20 m and from transition to waggle dances at 40 m. Worker bees of the other parent colony (black) made these shifts at 30 m and 90 m, respectively. F1 colonies behaved identically to their yellow parent, suggesting dominance. Progeny of backcrossing between the F1 generation and the putative recessive black parent assorted to four classes, indicating that the dialect differences studied are regulated by genes at two unlinked loci, each having two alleles. Honey bee dance communication is complex and highly integrated behaviour. Nonetheless, analysis of a small element of this behaviour, variation in response to distance, suggests that dance communication is regulated by subsets consisting of simple genic systems.

  11. Non-Specific dsRNA-Mediated Antiviral Response in the Honey Bee

    PubMed Central

    Flenniken, Michelle L.; Andino, Raul

    2013-01-01

    Honey bees are essential pollinators of numerous agricultural crops. Since 2006, honey bee populations have suffered considerable annual losses that are partially attributed to Colony Collapse Disorder (CCD). CCD is an unexplained phenomenon that correlates with elevated incidence of pathogens, including RNA viruses. Honey bees are eusocial insects that live in colonies of genetically related individuals that work in concert to gather and store nutrients. Their social organization provides numerous benefits, but also facilitates pathogen transmission between individuals. To investigate honey bee antiviral defense mechanisms, we developed an RNA virus infection model and discovered that administration of dsRNA, regardless of sequence, reduced virus infection. Our results suggest that dsRNA, a viral pathogen associated molecular pattern (PAMP), triggers an antiviral response that controls virus infection in honey bees. PMID:24130869

  12. Genetic control of the honey bee (Apis mellifera) dance language: segregating dance forms in a backcrossed colony.

    PubMed

    Johnson, R N; Oldroyd, B P; Barron, A B; Crozier, R H

    2002-01-01

    We studied the genetic control of the dance dialects that exist in the different subspecies of honey bees (Apis mellifera) by observing the variation in dance form observed in a backcross between two lines that showed widely different dance dialects. To do this we generated the reciprocal of the cross performed by Rinderer and Beaman (1995), thus producing phenotypic segregation of dance forms within a single colony rather than between colonies. Our results are consistent with Rinderer and Beaman (1995) in that inheritance of the transition point from round dancing --> waggle dancing is consistent with control by a single locus with more than one allele. That is, we found one dance type to be dominant in the F(1), and observed a 1:1 segregation of dance in a backcross involving the F(1) and the recessive parent. However, we found some minor differences in dance dialect inheritance, with the most significant being an apparent reversal of dominance between our cross (for us "black" is the dominant dialect) and that of Rinderer and Beaman (1995) (they report "yellow" to be the dominant dialect). We also found that our black bees do not perform a distinct sickle dance, whereas the black bees used by Rinderer and Beaman (1995) did perform such a dance. However, our difference in dominance need not contradict the results of Rinderer and Beaman (1995), as there is no evidence that body color and dominance for dance dialect are linked.

  13. Widespread occurrence of honey bee pathogens in solitary bees.

    PubMed

    Ravoet, Jorgen; De Smet, Lina; Meeus, Ivan; Smagghe, Guy; Wenseleers, Tom; de Graaf, Dirk C

    2014-10-01

    Solitary bees and honey bees from a neighbouring apiary were screened for a broad set of putative pathogens including protists, fungi, spiroplasmas and viruses. Most sampled bees appeared to be infected with multiple parasites. Interestingly, viruses exclusively known from honey bees such as Apis mellifera Filamentous Virus and Varroa destructor Macula-like Virus were also discovered in solitary bees. A microsporidium found in Andrena vaga showed most resemblance to Nosema thomsoni. Our results suggest that bee hives represent a putative source of pathogens for other pollinators. Similarly, solitary bees may act as a reservoir of honey bee pathogens. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Honey bee nest thermoregulation: diversity promotes stability.

    PubMed

    Jones, Julia C; Myerscough, Mary R; Graham, Sonia; Oldroyd, Benjamin P

    2004-07-16

    A honey bee colony is characterized by high genetic diversity among its workers, generated by high levels of multiple mating by its queen. Few clear benefits of this genetic diversity are known. Here we show that brood nest temperatures in genetically diverse colonies (i.e., those sired by several males) tend to be more stable than in genetically uniform ones (i.e., those sired by one male). One reason this increased stability arises is because genetically determined diversity in workers' temperature response thresholds modulates the hive-ventilating behavior of individual workers, preventing excessive colony-level responses to temperature fluctuations.

  15. A Bee Evolutionary Guiding Nondominated Sorting Genetic Algorithm II for Multiobjective Flexible Job-Shop Scheduling.

    PubMed

    Deng, Qianwang; Gong, Guiliang; Gong, Xuran; Zhang, Like; Liu, Wei; Ren, Qinghua

    2017-01-01

    Flexible job-shop scheduling problem (FJSP) is an NP-hard puzzle which inherits the job-shop scheduling problem (JSP) characteristics. This paper presents a bee evolutionary guiding nondominated sorting genetic algorithm II (BEG-NSGA-II) for multiobjective FJSP (MO-FJSP) with the objectives to minimize the maximal completion time, the workload of the most loaded machine, and the total workload of all machines. It adopts a two-stage optimization mechanism during the optimizing process. In the first stage, the NSGA-II algorithm with T iteration times is first used to obtain the initial population N , in which a bee evolutionary guiding scheme is presented to exploit the solution space extensively. In the second stage, the NSGA-II algorithm with GEN iteration times is used again to obtain the Pareto-optimal solutions. In order to enhance the searching ability and avoid the premature convergence, an updating mechanism is employed in this stage. More specifically, its population consists of three parts, and each of them changes with the iteration times. What is more, numerical simulations are carried out which are based on some published benchmark instances. Finally, the effectiveness of the proposed BEG-NSGA-II algorithm is shown by comparing the experimental results and the results of some well-known algorithms already existed.

  16. A Bee Evolutionary Guiding Nondominated Sorting Genetic Algorithm II for Multiobjective Flexible Job-Shop Scheduling

    PubMed Central

    Deng, Qianwang; Gong, Xuran; Zhang, Like; Liu, Wei; Ren, Qinghua

    2017-01-01

    Flexible job-shop scheduling problem (FJSP) is an NP-hard puzzle which inherits the job-shop scheduling problem (JSP) characteristics. This paper presents a bee evolutionary guiding nondominated sorting genetic algorithm II (BEG-NSGA-II) for multiobjective FJSP (MO-FJSP) with the objectives to minimize the maximal completion time, the workload of the most loaded machine, and the total workload of all machines. It adopts a two-stage optimization mechanism during the optimizing process. In the first stage, the NSGA-II algorithm with T iteration times is first used to obtain the initial population N, in which a bee evolutionary guiding scheme is presented to exploit the solution space extensively. In the second stage, the NSGA-II algorithm with GEN iteration times is used again to obtain the Pareto-optimal solutions. In order to enhance the searching ability and avoid the premature convergence, an updating mechanism is employed in this stage. More specifically, its population consists of three parts, and each of them changes with the iteration times. What is more, numerical simulations are carried out which are based on some published benchmark instances. Finally, the effectiveness of the proposed BEG-NSGA-II algorithm is shown by comparing the experimental results and the results of some well-known algorithms already existed. PMID:28458687

  17. Intraspecific queen parasitism in a highly eusocial bee.

    PubMed

    Wenseleers, Tom; Alves, Denise A; Francoy, Tiago M; Billen, Johan; Imperatriz-Fonseca, Vera L

    2011-04-23

    Insect societies are well-known for their advanced cooperation, but their colonies are also vulnerable to reproductive parasitism. Here, we present a novel example of an intraspecific social parasitism in a highly eusocial bee, the stingless bee Melipona scutellaris. In particular, we provide genetic evidence which shows that, upon loss of the mother queen, many colonies are invaded by unrelated queens that fly in from unrelated hives nearby. The reasons for the occurrence of this surprising form of social parasitism may be linked to the fact that unlike honeybees, Melipona bees produce new queens in great excess of colony needs, and that this exerts much greater selection on queens to seek alternative reproductive options, such as by taking over other nests. Overall, our results are the first to demonstrate that queens in highly eusocial bees can found colonies not only via supersedure or swarming, but also by infiltrating and taking over other unrelated nests.

  18. Intraspecific queen parasitism in a highly eusocial bee

    PubMed Central

    Wenseleers, Tom; Alves, Denise A.; Francoy, Tiago M.; Billen, Johan; Imperatriz-Fonseca, Vera L.

    2011-01-01

    Insect societies are well-known for their advanced cooperation, but their colonies are also vulnerable to reproductive parasitism. Here, we present a novel example of an intraspecific social parasitism in a highly eusocial bee, the stingless bee Melipona scutellaris. In particular, we provide genetic evidence which shows that, upon loss of the mother queen, many colonies are invaded by unrelated queens that fly in from unrelated hives nearby. The reasons for the occurrence of this surprising form of social parasitism may be linked to the fact that unlike honeybees, Melipona bees produce new queens in great excess of colony needs, and that this exerts much greater selection on queens to seek alternative reproductive options, such as by taking over other nests. Overall, our results are the first to demonstrate that queens in highly eusocial bees can found colonies not only via supersedure or swarming, but also by infiltrating and taking over other unrelated nests. PMID:20961883

  19. Patterns of range-wide genetic variation in six North American bumble bee (Apidae: Bombus) species.

    PubMed

    Lozier, Jeffrey D; Strange, James P; Stewart, Isaac J; Cameron, Sydney A

    2011-12-01

    The increasing evidence for population declines in bumble bee (Bombus) species worldwide has accelerated research efforts to explain losses in these important pollinators. In North America, a number of once widespread Bombus species have suffered serious reductions in range and abundance, although other species remain healthy. To examine whether declining and stable species exhibit different levels of genetic diversity or population fragmentation, we used microsatellite markers to genotype populations sampled across the geographic distributions of two declining (Bombus occidentalis and Bombus pensylvanicus) and four stable (Bombus bifarius; Bombus vosnesenskii; Bombus impatiens and Bombus bimaculatus) Bombus species. Populations of declining species generally have reduced levels of genetic diversity throughout their range compared to codistributed stable species. Genetic diversity can be affected by overall range size and degree of isolation of local populations, potentially confounding comparisons among species in some cases. We find no evidence for consistent differences in gene flow among stable and declining species, with all species exhibiting weak genetic differentiation over large distances (e.g. >1000 km). Populations on islands and at high elevations experience relatively strong genetic drift, suggesting that some conditions lead to genetic isolation in otherwise weakly differentiated species. B. occidentalis and B. bifarius exhibit stronger genetic differentiation than the other species, indicating greater phylogeographic structure consistent with their broader geographic distributions across topographically complex regions of western North America. Screening genetic diversity in North American Bombus should prove useful for identifying species that warrant monitoring, and developing management strategies that promote high levels of gene flow will be a key component in efforts to maintain healthy populations. © 2011 Blackwell Publishing Ltd.

  20. Wild bees enhance honey bees' pollination of hybrid sunflower.

    PubMed

    Greenleaf, Sarah S; Kremen, Claire

    2006-09-12

    Pollinators are required for producing 15-30% of the human food supply, and farmers rely on managed honey bees throughout the world to provide these services. Yet honey bees are not always the most efficient pollinators of all crops and are declining in various parts of the world. Crop pollination shortages are becoming increasingly common. We found that behavioral interactions between wild and honey bees increase the pollination efficiency of honey bees on hybrid sunflower up to 5-fold, effectively doubling honey bee pollination services on the average field. These indirect contributions caused by interspecific interactions between wild and honey bees were more than five times more important than the contributions wild bees make to sunflower pollination directly. Both proximity to natural habitat and crop planting practices were significantly correlated with pollination services provided directly and indirectly by wild bees. Our results suggest that conserving wild habitat at the landscape scale and altering selected farm management techniques could increase hybrid sunflower production. These findings also demonstrate the economic importance of interspecific interactions for ecosystem services and suggest that protecting wild bee populations can help buffer the human food supply from honey bee shortages.

  1. A Twin Study of Normative Personality and DSM-IV Personality Disorder Criterion Counts: Evidence for Separate Genetic Influences.

    PubMed

    Czajkowski, Nikolai; Aggen, Steven H; Krueger, Robert F; Kendler, Kenneth S; Neale, Michael C; Knudsen, Gun Peggy; Gillespie, Nathan A; Røysamb, Espen; Tambs, Kristian; Reichborn-Kjennerud, Ted

    2018-03-21

    Both normative personality and DSM-IV personality disorders have been found to be heritable. However, there is limited knowledge about the extent to which the genetic and environmental influences underlying DSM personality disorders are shared with those of normative personality. The aims of this study were to assess the phenotypic similarity between normative and pathological personality and to investigate the extent to which genetic and environmental influences underlying individual differences in normative personality account for symptom variance across DSM-IV personality disorders. A large population-based sample of adult twins was assessed for DSM-IV personality disorder criteria with structured interviews at two waves spanning a 10-year interval. At the second assessment, participants also completed the Big Five Inventory, a self-report instrument assessing the five-factor normative personality model. The proportion of genetic and environmental liabilities unique to the individual personality disorder measures, and hence not shared with the five Big Five Inventory domains, were estimated by means of multivariate Cholesky twin decompositions. The median percentage of genetic liability to the 10 DSM-IV personality disorders assessed at wave 1 that was not shared with the Big Five domains was 64%, whereas for the six personality disorders that were assessed concurrently at wave 2, the median was 39%. Conversely, the median proportions of unique environmental liability in the personality disorders for wave 1 and wave 2 were 97% and 96%, respectively. The results indicate that a moderate-to-sizable proportion of the genetic influence underlying DSM-IV personality disorders is not shared with the domain constructs of the Big Five model of normative personality. Caution should be exercised in assuming that normative personality measures can serve as proxies for DSM personality disorders when investigating the etiology of these disorders.

  2. Beekeeping practices and geographic distance, not land use, drive gene flow across tropical bees.

    PubMed

    Jaffé, Rodolfo; Pope, Nathaniel; Acosta, André L; Alves, Denise A; Arias, Maria C; De la Rúa, Pilar; Francisco, Flávio O; Giannini, Tereza C; González-Chaves, Adrian; Imperatriz-Fonseca, Vera L; Tavares, Mara G; Jha, Shalene; Carvalheiro, Luísa G

    2016-11-01

    Across the globe, wild bees are threatened by ongoing natural habitat loss, risking the maintenance of plant biodiversity and agricultural production. Despite the ecological and economic importance of wild bees and the fact that several species are now managed for pollination services worldwide, little is known about how land use and beekeeping practices jointly influence gene flow. Using stingless bees as a model system, containing wild and managed species that are presumed to be particularly susceptible to habitat degradation, here we examine the main drivers of tropical bee gene flow. We employ a novel landscape genetic approach to analyse data from 135 populations of 17 stingless bee species distributed across diverse tropical biomes within the Americas. Our work has important methodological implications, as we illustrate how a maximum-likelihood approach can be applied in a meta-analysis framework to account for multiple factors, and weight estimates by sample size. In contrast to previously held beliefs, gene flow was not related to body size or deforestation, and isolation by geographic distance (IBD) was significantly affected by management, with managed species exhibiting a weaker IBD than wild ones. Our study thus reveals the critical importance of beekeeping practices in shaping the patterns of genetic differentiation across bee species. Additionally, our results show that many stingless bee species maintain high gene flow across heterogeneous landscapes. We suggest that future efforts to preserve wild tropical bees should focus on regulating beekeeping practices to maintain natural gene flow and enhancing pollinator-friendly habitats, prioritizing species showing a limited dispersal ability. © 2016 John Wiley & Sons Ltd.

  3. Genome Sequencing of Museum Specimens Reveals Rapid Changes in the Genetic Composition of Honey Bees in California

    PubMed Central

    Ramirez, Santiago R; Dean, Cheryl A; Sciligo, Amber; Tsutsui, Neil D

    2018-01-01

    Abstract The western honey bee, Apis mellifera, is an enormously influential pollinator in both natural and managed ecosystems. In North America, this species has been introduced numerous times from a variety of different source populations in Europe and Africa. Since then, feral populations have expanded into many different environments across their broad introduced range. Here, we used whole genome sequencing of historical museum specimens and newly collected modern populations from California (USA) to analyze the impact of demography and selection on introduced populations during the past 105 years. We find that populations from both northern and southern California exhibit pronounced genetic changes, but have changed in different ways. In northern populations, honey bees underwent a substantial shift from western European to eastern European ancestry since the 1960s, whereas southern populations are dominated by the introgression of Africanized genomes during the past two decades. Additionally, we identify an isolated island population that has experienced comparatively little change over a large time span. Fine-scale comparison of different populations and time points also revealed SNPs that differ in frequency, highlighting a number of genes that may be important for recent adaptations in these introduced populations. PMID:29346588

  4. Cytochrome c oxidase subunit I barcoding of the green bee-eater (Merops orientalis).

    PubMed

    Arif, I A; Khan, H A; Shobrak, M; Williams, J

    2011-10-21

    DNA barcoding using mitochondrial cytochrome c oxidase subunit I (COI) is regarded as a standard method for species identification. Recent reports have also shown extended applications of COI gene analysis in phylogeny and molecular diversity studies. The bee-eaters are a group of near passerine birds in the family Meropidae. There are 26 species worldwide; five of them are found in Saudi Arabia. Until now, GenBank included a COI barcode for only one species of bee-eater, the European bee-eater (Merops apiaster). We sequenced the 694-bp segment of the COI gene of the green bee-eater M. orientalis and compared the sequences with those of M. apiaster. Pairwise sequence comparison showed 66 variable sites across all the eight sequences from both species, with an interspecific genetic distance of 0.0362. Two and one within-species variable sites were found, with genetic distances of 0.0005 and 0.0003 for M. apiaster and M. orientalis, respectively. This is the first study reporting barcodes for M. orientalis.

  5. Tracking the genetic stability of a honeybee breeding program with genetic markers

    USDA-ARS?s Scientific Manuscript database

    A genetic stock identification (GSI) assay was developed in 2008 to distinguish Russian honey bees from other honey bee stocks that are commercially produced in the United States. Probability of assignment (POA) values have been collected and maintained since the stock release in 2008 to the Russian...

  6. The endangered Iris atropurpurea (Iridaceae) in Israel: honey-bees, night-sheltering male bees and female solitary bees as pollinators.

    PubMed

    Watts, Stella; Sapir, Yuval; Segal, Bosmat; Dafni, Amots

    2013-03-01

    The coastal plain of Israel hosts the last few remaining populations of the endemic Iris atropurpurea (Iridaceae), a Red List species of high conservation priority. The flowers offer no nectar reward. Here the role of night-sheltering male solitary bees, honey-bees and female solitary bees as pollinators of I. atropurpurea is documented. Breeding system, floral longevity, stigma receptivity, visitation rates, pollen loads, pollen deposition and removal and fruit- and seed-set were investigated. The main wild pollinators of this plant are male eucerine bees, and to a lesser extent, but with the potential to transfer pollen, female solitary bees. Honey-bees were found to be frequent diurnal visitors; they removed large quantities of pollen and were as effective as male sheltering bees at pollinating this species. The low density of pollen carried by male solitary bees was attributed to grooming activities, pollen displacement when bees aggregated together in flowers and pollen depletion by honey-bees. In the population free of honey-bee hives, male bees carried significantly more pollen grains on their bodies. Results from pollen analysis and pollen deposited on stigmas suggest that inadequate pollination may be an important factor limiting fruit-set. In the presence of honey-bees, eucerine bees were low removal-low deposition pollinators, whereas honey-bees were high removal-low deposition pollinators, because they removed large amounts into corbiculae and deposited relatively little onto receptive stigmas. Even though overall, both bee taxa were equally effective pollinators, we suggest that honey-bees have the potential to reduce the amount of pollen available for plant reproduction, and to reduce the amount of resources available to solitary bee communities. The results of this study have potential implications for the conservation of this highly endangered plant species if hives are permitted inside reserves, where the bulk of Oncocyclus iris species are

  7. Do managed bees drive parasite spread and emergence in wild bees?

    PubMed

    Graystock, Peter; Blane, Edward J; McFrederick, Quinn S; Goulson, Dave; Hughes, William O H

    2016-04-01

    Bees have been managed and utilised for honey production for centuries and, more recently, pollination services. Since the mid 20th Century, the use and production of managed bees has intensified with hundreds of thousands of hives being moved across countries and around the globe on an annual basis. However, the introduction of unnaturally high densities of bees to areas could have adverse effects. Importation and deployment of managed honey bee and bumblebees may be responsible for parasite introductions or a change in the dynamics of native parasites that ultimately increases disease prevalence in wild bees. Here we review the domestication and deployment of managed bees and explain the evidence for the role of managed bees in causing adverse effects on the health of wild bees. Correlations with the use of managed bees and decreases in wild bee health from territories across the globe are discussed along with suggestions to mitigate further health reductions in wild bees.

  8. Honey Bee Viruses in Wild Bees: Viral Prevalence, Loads, and Experimental Inoculation

    PubMed Central

    Dolezal, Adam G.; Hendrix, Stephen D.; Scavo, Nicole A.; Carrillo-Tripp, Jimena; Harris, Mary A.; Wheelock, M. Joseph; O’Neal, Matthew E.; Toth, Amy L.

    2016-01-01

    Evidence of inter-species pathogen transmission from managed to wild bees has sparked concern that emerging diseases could be causing or exacerbating wild bee declines. While some pathogens, like RNA viruses, have been found in pollen and wild bees, the threat these viruses pose to wild bees is largely unknown. Here, we tested 169 bees, representing 4 families and 8 genera, for five common honey bee (Apis mellifera) viruses, finding that more than 80% of wild bees harbored at least one virus. We also quantified virus titers in these bees, providing, for the first time, an assessment of viral load in a broad spectrum of wild bees. Although virus detection was very common, virus levels in the wild bees were minimal—similar to or lower than foraging honey bees and substantially lower than honey bees collected from hives. Furthermore, when we experimentally inoculated adults of two different bee species (Megachile rotundata and Colletes inaequalis) with a mixture of common viruses that is lethal to honey bees, we saw no effect on short term survival. Overall, we found that honey bee RNA viruses can be commonly detected at low levels in many wild bee species, but we found no evidence that these pathogens cause elevated short-term mortality effects. However, more work on these viruses is greatly needed to assess effects on additional bee species and life stages. PMID:27832169

  9. Honey Bee Viruses in Wild Bees: Viral Prevalence, Loads, and Experimental Inoculation.

    PubMed

    Dolezal, Adam G; Hendrix, Stephen D; Scavo, Nicole A; Carrillo-Tripp, Jimena; Harris, Mary A; Wheelock, M Joseph; O'Neal, Matthew E; Toth, Amy L

    2016-01-01

    Evidence of inter-species pathogen transmission from managed to wild bees has sparked concern that emerging diseases could be causing or exacerbating wild bee declines. While some pathogens, like RNA viruses, have been found in pollen and wild bees, the threat these viruses pose to wild bees is largely unknown. Here, we tested 169 bees, representing 4 families and 8 genera, for five common honey bee (Apis mellifera) viruses, finding that more than 80% of wild bees harbored at least one virus. We also quantified virus titers in these bees, providing, for the first time, an assessment of viral load in a broad spectrum of wild bees. Although virus detection was very common, virus levels in the wild bees were minimal-similar to or lower than foraging honey bees and substantially lower than honey bees collected from hives. Furthermore, when we experimentally inoculated adults of two different bee species (Megachile rotundata and Colletes inaequalis) with a mixture of common viruses that is lethal to honey bees, we saw no effect on short term survival. Overall, we found that honey bee RNA viruses can be commonly detected at low levels in many wild bee species, but we found no evidence that these pathogens cause elevated short-term mortality effects. However, more work on these viruses is greatly needed to assess effects on additional bee species and life stages.

  10. Mitochondrial DNA diversity of honey bees (Apis mellifera) from unmanaged colonies and swarms in the United States.

    PubMed

    Magnus, Roxane M; Tripodi, Amber D; Szalanski, Allen L

    2014-06-01

    To study the genetic diversity of honey bees (Apis mellifera L.) from unmanaged colonies in the United States, we sequenced a portion of the mitochondrial DNA COI-COII region. From the 530 to 1,230 bp amplicon, we observed 23 haplotypes from 247 samples collected from 12 states, representing three of the four A. mellifera lineages known to have been imported into the United States (C, M, and O). Six of the 13 C lineage haplotypes were not found in previous queen breeder studies in the United States. The O lineage accounted for 9% of unmanaged colonies which have not yet been reported in queen breeder studies. The M lineage accounted for a larger portion of unmanaged samples (7%) than queen breeder samples (3%). Based on our mitochondrial DNA data, the genetic diversity of unmanaged honey bees in the United States differs significantly from that of queen breeder populations (p < 0.00001). The detection of genetically distinct maternal lineages of unmanaged honey bees suggests that these haplotypes may have existed outside the managed honey bee population for a long period.

  11. Resource diversity and landscape-level homogeneity drive native bee foraging.

    PubMed

    Jha, Shalene; Kremen, Claire

    2013-01-08

    Given widespread declines in pollinator communities and increasing global reliance on pollinator-dependent crops, there is an acute need to develop a mechanistic understanding of native pollinator population and foraging biology. Using a population genetics approach, we determine the impact of habitat and floral resource distributions on nesting and foraging patterns of a critical native pollinator, Bombus vosnesenskii. Our findings demonstrate that native bee foraging is far more plastic and extensive than previously believed and does not follow a simple optimal foraging strategy. Rather, bumble bees forage further in pursuit of species-rich floral patches and in landscapes where patch-to-patch variation in floral resources is less, regardless of habitat composition. Thus, our results reveal extreme foraging plasticity and demonstrate that floral diversity, not density, drives bee foraging distance. Furthermore, we find a negative impact of paved habitat and a positive impact of natural woodland on bumble bee nesting densities. Overall, this study reveals that natural and human-altered landscapes can be managed for increased native bee nesting and extended foraging, dually enhancing biodiversity and the spatial extent of pollination services.

  12. The endangered Iris atropurpurea (Iridaceae) in Israel: honey-bees, night-sheltering male bees and female solitary bees as pollinators

    PubMed Central

    Watts, Stella; Sapir, Yuval; Segal, Bosmat; Dafni, Amots

    2013-01-01

    Background and Aims The coastal plain of Israel hosts the last few remaining populations of the endemic Iris atropurpurea (Iridaceae), a Red List species of high conservation priority. The flowers offer no nectar reward. Here the role of night-sheltering male solitary bees, honey-bees and female solitary bees as pollinators of I. atropurpurea is documented. Methods Breeding system, floral longevity, stigma receptivity, visitation rates, pollen loads, pollen deposition and removal and fruit- and seed-set were investigated. Key Results The main wild pollinators of this plant are male eucerine bees, and to a lesser extent, but with the potential to transfer pollen, female solitary bees. Honey-bees were found to be frequent diurnal visitors; they removed large quantities of pollen and were as effective as male sheltering bees at pollinating this species. The low density of pollen carried by male solitary bees was attributed to grooming activities, pollen displacement when bees aggregated together in flowers and pollen depletion by honey-bees. In the population free of honey-bee hives, male bees carried significantly more pollen grains on their bodies. Results from pollen analysis and pollen deposited on stigmas suggest that inadequate pollination may be an important factor limiting fruit-set. In the presence of honey-bees, eucerine bees were low removal–low deposition pollinators, whereas honey-bees were high removal–low deposition pollinators, because they removed large amounts into corbiculae and deposited relatively little onto receptive stigmas. Conclusions Even though overall, both bee taxa were equally effective pollinators, we suggest that honey-bees have the potential to reduce the amount of pollen available for plant reproduction, and to reduce the amount of resources available to solitary bee communities. The results of this study have potential implications for the conservation of this highly endangered plant species if hives are permitted inside

  13. Development of an ethanol model using social insects: IV. Influence of ethanol on the aggression of Africanized honey bees (Apis mellifera L.).

    PubMed

    Abramson, Charles I; Place, Aaron J; Aquino, Italo S; Fernandez, Andrea

    2004-06-01

    Experiments were designed to determine whether ethanol influenced aggression in honey bees. Two experiments are reported. In Exp. 1, harnessed honey bees were fed a 1%, 5%, 10%, or 20% ethanol solution. Two control groups received either a sucrose solution only or no pretreatment, respectively. The dependent variable was the number of sting extensions over 10 min. Analysis showed that aggression in harnessed bees was not influenced by prior ethanol consumption. Because there was some suspicion that the extension of the sting apparatus may be hindered by harnessing, and the authors wanted to use a design that increased ecological validity, Exp. 2 was conducted with free-flying bees. Sucrose or 20% ethanol solutions were placed in front of beehives, and the number of stings on a leather patch dangled in front of the hive served as the dependent variable. The experiment was terminated after 5 hr. because bees exposed to ethanol became dangerously aggressive. A unique aspect of the study was that Africanized honey bees were used.

  14. Impact of managed honey bee viruses on wild bees.

    PubMed

    Tehel, Anja; Brown, Mark Jf; Paxton, Robert J

    2016-08-01

    Several viruses found in the Western honey bee (Apis mellifera) have recently been detected in other bee species, raising the possibility of spill-over from managed to wild bee species. Alternatively, these viruses may be shared generalists across flower-visiting insects. Here we explore the former hypothesis, pointing out weaknesses in the current evidence, particularly in relation to deformed wing virus (DWV), and highlighting research areas that may help test it. Data so far suggest that DWV spills over from managed to wild bee species and has the potential to cause population decline. That DWV and other viruses of A. mellifera are found in other bee species needs to be considered for the sustainable management of bee populations. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Hybrid origins of Australian honey bees (Apis mellifera)

    USDA-ARS?s Scientific Manuscript database

    With increased globalisation and homogenisation the maintenance of genetic integrity of local populations of agriculturally important species is of increasing concern. The honey bee provides an interesting perspective as it is both domesticated and wild, with a large native range and much larger int...

  16. The Genome and Methylome of a Subsocial Small Carpenter Bee, Ceratina calcarata

    PubMed Central

    Rehan, Sandra M.; Glastad, Karl M.; Lawson, Sarah P.; Hunt, Brendan G.

    2016-01-01

    Understanding the evolution of animal societies, considered to be a major transition in evolution, is a key topic in evolutionary biology. Recently, new gateways for understanding social evolution have opened up due to advances in genomics, allowing for unprecedented opportunities in studying social behavior on a molecular level. In particular, highly eusocial insect species (caste-containing societies with nonreproductives that care for siblings) have taken center stage in studies of the molecular evolution of sociality. Despite advances in genomic studies of both solitary and eusocial insects, we still lack genomic resources for early insect societies. To study the genetic basis of social traits requires comparison of genomes from a diversity of organisms ranging from solitary to complex social forms. Here we present the genome of a subsocial bee, Ceratina calcarata. This study begins to address the types of genomic changes associated with the earliest origins of simple sociality using the small carpenter bee. Genes associated with lipid transport and DNA recombination have undergone positive selection in C. calcarata relative to other bee lineages. Furthermore, we provide the first methylome of a noneusocial bee. Ceratina calcarata contains the complete enzymatic toolkit for DNA methylation. As in the honey bee and many other holometabolous insects, DNA methylation is targeted to exons. The addition of this genome allows for new lines of research into the genetic and epigenetic precursors to complex social behaviors. PMID:27048475

  17. Two extended haplotype blocks are associated with adaptation to high altitude habitats in East African honey bees

    PubMed Central

    Schöning, Caspar

    2017-01-01

    Understanding the genetic basis of adaption is a central task in biology. Populations of the honey bee Apis mellifera that inhabit the mountain forests of East Africa differ in behavior and morphology from those inhabiting the surrounding lowland savannahs, which likely reflects adaptation to these habitats. We performed whole genome sequencing on 39 samples of highland and lowland bees from two pairs of populations to determine their evolutionary affinities and identify the genetic basis of these putative adaptations. We find that in general, levels of genetic differentiation between highland and lowland populations are very low, consistent with them being a single panmictic population. However, we identify two loci on chromosomes 7 and 9, each several hundred kilobases in length, which exhibit near fixation for different haplotypes between highland and lowland populations. The highland haplotypes at these loci are extremely rare in samples from the rest of the world. Patterns of segregation of genetic variants suggest that recombination between haplotypes at each locus is suppressed, indicating that they comprise independent structural variants. The haplotype on chromosome 7 harbors nearly all octopamine receptor genes in the honey bee genome. These have a role in learning and foraging behavior in honey bees and are strong candidates for adaptation to highland habitats. Molecular analysis of a putative breakpoint indicates that it may disrupt the coding sequence of one of these genes. Divergence between the highland and lowland haplotypes at both loci is extremely high suggesting that they are ancient balanced polymorphisms that greatly predate divergence between the extant honey bee subspecies. PMID:28542163

  18. Genome Sequencing of Museum Specimens Reveals Rapid Changes in the Genetic Composition of Honey Bees in California.

    PubMed

    Cridland, Julie M; Ramirez, Santiago R; Dean, Cheryl A; Sciligo, Amber; Tsutsui, Neil D

    2018-02-01

    The western honey bee, Apis mellifera, is an enormously influential pollinator in both natural and managed ecosystems. In North America, this species has been introduced numerous times from a variety of different source populations in Europe and Africa. Since then, feral populations have expanded into many different environments across their broad introduced range. Here, we used whole genome sequencing of historical museum specimens and newly collected modern populations from California (USA) to analyze the impact of demography and selection on introduced populations during the past 105 years. We find that populations from both northern and southern California exhibit pronounced genetic changes, but have changed in different ways. In northern populations, honey bees underwent a substantial shift from western European to eastern European ancestry since the 1960s, whereas southern populations are dominated by the introgression of Africanized genomes during the past two decades. Additionally, we identify an isolated island population that has experienced comparatively little change over a large time span. Fine-scale comparison of different populations and time points also revealed SNPs that differ in frequency, highlighting a number of genes that may be important for recent adaptations in these introduced populations. © The Author(s) 2018. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  19. Individual responsiveness to shock and colony-level aggression in honey bees: evidence for a genetic component

    PubMed Central

    Avalos, Arian; Rodríguez-Cruz, Yoselyn; Giray, Tugrul

    2015-01-01

    The phenotype of the social group is related to phenotypes of individuals that form that society. We examined how honey bee colony aggressiveness relates to individual response of male drones and foraging workers. Although the natural focus in colony aggression has been on the worker caste, the sterile females engaged in colony maintenance and defense, males carry the same genes. We measured aggressiveness scores of colonies and examined components of individual aggressive behavior in workers and haploid sons of workers from the same colony. We describe for the first time, that males, although they have no stinger, do bend their abdomen (abdominal flexion) in a posture similar to stinging behavior of workers in response to electric shock. Individual worker sting response and movement rates in response to shock were significantly correlated with colony scores. In the case of drones, sons of workers from the same colonies, abdominal flexion significantly correlated but their movement rates did not correlate with colony aggressiveness. Furthermore, the number of workers responding at increasing levels of voltage exhibits a threshold-like response, whereas the drones respond in increasing proportion to shock. We conclude that there are common and caste-specific components to aggressive behavior in honey bees. We discuss implications of these results on social and behavioral regulation and genetics of aggressive response. PMID:25729126

  20. Modeling Honey Bee Populations.

    PubMed

    Torres, David J; Ricoy, Ulises M; Roybal, Shanae

    2015-01-01

    Eusocial honey bee populations (Apis mellifera) employ an age stratification organization of egg, larvae, pupae, hive bees and foraging bees. Understanding the recent decline in honey bee colonies hinges on understanding the factors that impact each of these different age castes. We first perform an analysis of steady state bee populations given mortality rates within each bee caste and find that the honey bee colony is highly susceptible to hive and pupae mortality rates. Subsequently, we study transient bee population dynamics by building upon the modeling foundation established by Schmickl and Crailsheim and Khoury et al. Our transient model based on differential equations accounts for the effects of pheromones in slowing the maturation of hive bees to foraging bees, the increased mortality of larvae in the absence of sufficient hive bees, and the effects of food scarcity. We also conduct sensitivity studies and show the effects of parameter variations on the colony population.

  1. Modeling Honey Bee Populations

    PubMed Central

    Torres, David J.; Ricoy, Ulises M.; Roybal, Shanae

    2015-01-01

    Eusocial honey bee populations (Apis mellifera) employ an age stratification organization of egg, larvae, pupae, hive bees and foraging bees. Understanding the recent decline in honey bee colonies hinges on understanding the factors that impact each of these different age castes. We first perform an analysis of steady state bee populations given mortality rates within each bee caste and find that the honey bee colony is highly susceptible to hive and pupae mortality rates. Subsequently, we study transient bee population dynamics by building upon the modeling foundation established by Schmickl and Crailsheim and Khoury et al. Our transient model based on differential equations accounts for the effects of pheromones in slowing the maturation of hive bees to foraging bees, the increased mortality of larvae in the absence of sufficient hive bees, and the effects of food scarcity. We also conduct sensitivity studies and show the effects of parameter variations on the colony population. PMID:26148010

  2. Colony Collapse Disorder (CCD) and bee age impact honey bee pathophysiology

    PubMed Central

    Traynor, Kirsten S.; Andree, Michael; Lichtenberg, Elinor M.; Chen, Yanping; Saegerman, Claude; Cox-Foster, Diana L.

    2017-01-01

    Honey bee (Apis mellifera) colonies continue to experience high annual losses that remain poorly explained. Numerous interacting factors have been linked to colony declines. Understanding the pathways linking pathophysiology with symptoms is an important step in understanding the mechanisms of disease. In this study we examined the specific pathologies associated with honey bees collected from colonies suffering from Colony Collapse Disorder (CCD) and compared these with bees collected from apparently healthy colonies. We identified a set of pathological physical characteristics that occurred at different rates in CCD diagnosed colonies prior to their collapse: rectum distension, Malpighian tubule iridescence, fecal matter consistency, rectal enteroliths (hard concretions), and venom sac color. The multiple differences in rectum symptomology in bees from CCD apiaries and colonies suggest effected bees had trouble regulating water. To ensure that pathologies we found associated with CCD were indeed pathologies and not due to normal changes in physical appearances that occur as an adult bee ages (CCD colonies are assumed to be composed mostly of young bees), we documented the changes in bees of different ages taken from healthy colonies. We found that young bees had much greater incidences of white nodules than older cohorts. Prevalent in newly-emerged bees, these white nodules or cellular encapsulations indicate an active immune response. Comparing the two sets of characteristics, we determined a subset of pathologies that reliably predict CCD status rather than bee age (fecal matter consistency, rectal distension size, rectal enteroliths and Malpighian tubule iridescence) and that may serve as biomarkers for colony health. In addition, these pathologies suggest that CCD bees are experiencing disrupted excretory physiology. Our identification of these symptoms is an important first step in understanding the physiological pathways that underlie CCD and factors

  3. Colony Collapse Disorder (CCD) and bee age impact honey bee pathophysiology.

    PubMed

    vanEngelsdorp, Dennis; Traynor, Kirsten S; Andree, Michael; Lichtenberg, Elinor M; Chen, Yanping; Saegerman, Claude; Cox-Foster, Diana L

    2017-01-01

    Honey bee (Apis mellifera) colonies continue to experience high annual losses that remain poorly explained. Numerous interacting factors have been linked to colony declines. Understanding the pathways linking pathophysiology with symptoms is an important step in understanding the mechanisms of disease. In this study we examined the specific pathologies associated with honey bees collected from colonies suffering from Colony Collapse Disorder (CCD) and compared these with bees collected from apparently healthy colonies. We identified a set of pathological physical characteristics that occurred at different rates in CCD diagnosed colonies prior to their collapse: rectum distension, Malpighian tubule iridescence, fecal matter consistency, rectal enteroliths (hard concretions), and venom sac color. The multiple differences in rectum symptomology in bees from CCD apiaries and colonies suggest effected bees had trouble regulating water. To ensure that pathologies we found associated with CCD were indeed pathologies and not due to normal changes in physical appearances that occur as an adult bee ages (CCD colonies are assumed to be composed mostly of young bees), we documented the changes in bees of different ages taken from healthy colonies. We found that young bees had much greater incidences of white nodules than older cohorts. Prevalent in newly-emerged bees, these white nodules or cellular encapsulations indicate an active immune response. Comparing the two sets of characteristics, we determined a subset of pathologies that reliably predict CCD status rather than bee age (fecal matter consistency, rectal distension size, rectal enteroliths and Malpighian tubule iridescence) and that may serve as biomarkers for colony health. In addition, these pathologies suggest that CCD bees are experiencing disrupted excretory physiology. Our identification of these symptoms is an important first step in understanding the physiological pathways that underlie CCD and factors

  4. Early gut colonizers shape parasite susceptibility and microbiota composition in honey bee workers

    PubMed Central

    Schwarz, Ryan S.; Moran, Nancy A.; Evans, Jay D.

    2016-01-01

    Microbial symbionts living within animal guts are largely composed of resident bacterial species, forming communities that often provide benefits to the host. Gut microbiomes of adult honey bees (Apis mellifera) include core residents such as the betaproteobacterium Snodgrassella alvi, alongside transient parasites such as the protozoan Lotmaria passim. To test how these species affect microbiome composition and host physiology, we administered S. alvi and/or L. passim inocula to newly emerged worker bees from four genetic backgrounds (GH) and reared them in normal (within hives) or stressed (protein-deficient, asocial) conditions. Microbiota acquired by normal bees were abundant but quantitatively differed across treatments, indicating treatment-associated dysbiosis. Pretreatment with S. alvi made normal bees more susceptible to L. passim and altered developmental and detoxification gene expression. Stressed bees were more susceptible to L. passim and were depauperate in core microbiota, yet supplementation with S. alvi did not alter this susceptibility. Microbiomes were generally more variable by GH in stressed bees, which also showed opposing and comparatively reduced modulation of gene expression responses to treatments compared with normal bees. These data provide experimental support for a link between altered gut microbiota and increased parasite and pathogen prevalence, as observed from honey bee colony collapse disorder. PMID:27482088

  5. A genome-wide signature of positive selection in ancient and recent invasive expansions of the honey bee Apis mellifera

    PubMed Central

    Zayed, Amro; Whitfield, Charles W.

    2008-01-01

    Apis mellifera originated in Africa and extended its range into Eurasia in two or more ancient expansions. In 1956, honey bees of African origin were introduced into South America, their descendents admixing with previously introduced European bees, giving rise to the highly invasive and economically devastating “Africanized” honey bee. Here we ask whether the honey bee's out-of-Africa expansions, both ancient and recent (invasive), were associated with a genome-wide signature of positive selection, detected by contrasting genetic differentiation estimates (FST) between coding and noncoding SNPs. In native populations, SNPs in protein-coding regions had significantly higher FST estimates than those in noncoding regions, indicating adaptive evolution in the genome driven by positive selection. This signal of selection was associated with the expansion of honey bees from Africa into Western and Northern Europe, perhaps reflecting adaptation to temperate environments. We estimate that positive selection acted on a minimum of 852–1,371 genes or ≈10% of the bee's coding genome. We also detected positive selection associated with the invasion of African-derived honey bees in the New World. We found that introgression of European-derived alleles into Africanized bees was significantly greater for coding than noncoding regions. Our findings demonstrate that Africanized bees exploited the genetic diversity present from preexisting introductions in an adaptive way. Finally, we found a significant negative correlation between FST estimates and the local GC content surrounding coding SNPs, suggesting that AT-rich genes play an important role in adaptive evolution in the honey bee. PMID:18299560

  6. A genome-wide signature of positive selection in ancient and recent invasive expansions of the honey bee Apis mellifera.

    PubMed

    Zayed, Amro; Whitfield, Charles W

    2008-03-04

    Apis mellifera originated in Africa and extended its range into Eurasia in two or more ancient expansions. In 1956, honey bees of African origin were introduced into South America, their descendents admixing with previously introduced European bees, giving rise to the highly invasive and economically devastating "Africanized" honey bee. Here we ask whether the honey bee's out-of-Africa expansions, both ancient and recent (invasive), were associated with a genome-wide signature of positive selection, detected by contrasting genetic differentiation estimates (F(ST)) between coding and noncoding SNPs. In native populations, SNPs in protein-coding regions had significantly higher F(ST) estimates than those in noncoding regions, indicating adaptive evolution in the genome driven by positive selection. This signal of selection was associated with the expansion of honey bees from Africa into Western and Northern Europe, perhaps reflecting adaptation to temperate environments. We estimate that positive selection acted on a minimum of 852-1,371 genes or approximately 10% of the bee's coding genome. We also detected positive selection associated with the invasion of African-derived honey bees in the New World. We found that introgression of European-derived alleles into Africanized bees was significantly greater for coding than noncoding regions. Our findings demonstrate that Africanized bees exploited the genetic diversity present from preexisting introductions in an adaptive way. Finally, we found a significant negative correlation between F(ST) estimates and the local GC content surrounding coding SNPs, suggesting that AT-rich genes play an important role in adaptive evolution in the honey bee.

  7. Bee-Wild about Pollinators!

    ERIC Educational Resources Information Center

    Johnson, Bonnie; Kil, Jenny; Evans, Elaine; Koomen, Michele Hollingsworth

    2014-01-01

    With their sunny stripes and fuzzy bodies, bees are beloved--but unfortunately, they are in trouble. Bee decline, of both wild bees as well as managed bees like honey bees, has been in the news for the last several years. Habitat loss, diseases, pests, and pesticides have made it difficult for bees to survive in many parts of our world (Walsh…

  8. Positive and Negative Impacts of Non-Native Bee Species around the World.

    PubMed

    Russo, Laura

    2016-11-28

    Though they are relatively understudied, non-native bees are ubiquitous and have enormous potential economic and environmental impacts. These impacts may be positive or negative, and are often unquantified. In this manuscript, I review literature on the known distribution and environmental and economic impacts of 80 species of introduced bees. The potential negative impacts of non-native bees include competition with native bees for nesting sites or floral resources, pollination of invasive weeds, co-invasion with pathogens and parasites, genetic introgression, damage to buildings, affecting the pollination of native plant species, and changing the structure of native pollination networks. The potential positive impacts of non-native bees include agricultural pollination, availability for scientific research, rescue of native species, and resilience to human-mediated disturbance and climate change. Most non-native bee species are accidentally introduced and nest in stems, twigs, and cavities in wood. In terms of number of species, the best represented families are Megachilidae and Apidae, and the best represented genus is Megachile . The best studied genera are Apis and Bombus , and most of the species in these genera were deliberately introduced for agricultural pollination. Thus, we know little about the majority of non-native bees, accidentally introduced or spreading beyond their native ranges.

  9. Positive and Negative Impacts of Non-Native Bee Species around the World

    PubMed Central

    Russo, Laura

    2016-01-01

    Though they are relatively understudied, non-native bees are ubiquitous and have enormous potential economic and environmental impacts. These impacts may be positive or negative, and are often unquantified. In this manuscript, I review literature on the known distribution and environmental and economic impacts of 80 species of introduced bees. The potential negative impacts of non-native bees include competition with native bees for nesting sites or floral resources, pollination of invasive weeds, co-invasion with pathogens and parasites, genetic introgression, damage to buildings, affecting the pollination of native plant species, and changing the structure of native pollination networks. The potential positive impacts of non-native bees include agricultural pollination, availability for scientific research, rescue of native species, and resilience to human-mediated disturbance and climate change. Most non-native bee species are accidentally introduced and nest in stems, twigs, and cavities in wood. In terms of number of species, the best represented families are Megachilidae and Apidae, and the best represented genus is Megachile. The best studied genera are Apis and Bombus, and most of the species in these genera were deliberately introduced for agricultural pollination. Thus, we know little about the majority of non-native bees, accidentally introduced or spreading beyond their native ranges. PMID:27916802

  10. Chemical profiles of body surfaces and nests from six Bornean stingless bee species.

    PubMed

    Leonhardt, Sara Diana; Blüthgen, Nico; Schmitt, Thomas

    2011-01-01

    Stingless bees (Apidae: Meliponini) are the most diverse group of Apid bees and represent common pollinators in tropical ecosystems. Like honeybees they live in large eusocial colonies and rely on complex chemical recognition and communication systems. In contrast to honeybees, their ecology and especially their chemical ecology have received only little attention, particularly in the Old World. We previously have analyzed the chemical profiles of six paleotropical stingless bee species from Borneo and revealed the presence of species-specific cuticular terpenes- an environmentally derived compound class so far unique among social insects. Here, we compared the bees' surface profiles to the chemistry of their nest material. Terpenes, alkanes, and alkenes were the dominant compound groups on both body surfaces and nest material. However, bee profiles and nests strongly differed in their chemical composition. Body surfaces thus did not merely mirror nests, rendering a passive compound transfer from nests to bees unlikely. The difference between nests and bees was particularly pronounced when all resin-derived compounds (terpenes) were excluded and only genetically determined compounds were considered. When terpenes were included, bee profiles and nest material still differed, because whole groups of terpenes (e.g., sesquiterpenes) were found in nest material of some species, but missing in their chemical profile, indicating that bees are able to influence the terpene composition both in their nests and on their surfaces.

  11. Resource overlap and possible competition between honey bees and wild bees in central Europe.

    PubMed

    Steffan-Dewenter, I; Tscharntke, T

    2000-02-01

    Evidence for interspecific competition between honey bees and wild bees was studied on 15 calcareous grasslands with respect to: (1) foraging radius of honey bees, (2) overlap in resource use, and (3) possible honey bee effects on species richness and abundance of flower-visiting, ground-nesting and trap-nesting wild bees. The grasslands greatly differed in the number of honey bee colonies within a radius of 2 km and were surrounded by agricultural habitats. The number of flower-visiting honey bees on both potted mustard plants and small grassland patches declined with increasing distance from the nearest apiary and was almost zero at a distance of 1.5-2.0 km. Wild bees were observed visiting 57 plant species, whereas honey bees visited only 24 plant species. Percentage resource overlap between honey bees and wild bees was 45.5%, and Hurlbert's index of niche overlap was 3.1. In total, 1849 wild bees from 98 species were recorded on the calcareous grasslands. Neither species richness nor abundance of wild bees were negatively correlated with the density of honey bee colonies (within a radius of 2 km) or the density of flower-visiting honey bees per site. Abundance of flower- visiting wild bees was correlated only with the percentage cover of flowering plants. In 240 trap nests, 1292 bee nests with 6066 brood cells were found. Neither the number of bee species nor the number of brood cells per grassland was significantly correlated with the density of honey bees. Significant correlations were found only between the number of brood cells and the percentage cover of shrubs. The number of nest entrances of ground-nesting bees per square metre was not correlated with the density of honey bees but was negatively correlated with the cover of vegetation. Interspecific competition by honey bees for food resources was not shown to be a significant factor determining abundance and species richness of wild bees.

  12. Pollution monitoring using bees: a new service provided by honey bees

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bromenshenk, J.J.; Thomas, J.M.; Simpson, J.C.

    1983-10-01

    The objectives are to provide a tool for assessing pollutant distributions and the effects of pollutants on living systems. The potential of bees as pollution monitors was studied by examining bees exposed to toxic metals near a smelter in Montana and bees in the area surrounding a hazardous waste disposal site near Puget Sound, Washington. Levels of toxic metals in the bees and brood survival were examined. It was concluded bees were, indeed, suitable indicators of pollution levels. (ACR)

  13. Genetic and environmental influences on dimensional representations of DSM-IV cluster C personality disorders: a population-based multivariate twin study.

    PubMed

    Reichborn-Kjennerud, Ted; Czajkowski, Nikolai; Neale, Michael C; Ørstavik, Ragnhild E; Torgersen, Svenn; Tambs, Kristian; Røysamb, Espen; Harris, Jennifer R; Kendler, Kenneth S

    2007-05-01

    The DSM-IV cluster C Axis II disorders include avoidant (AVPD), dependent (DEPD) and obsessive-compulsive (OCPD) personality disorders. We aimed to estimate the genetic and environmental influences on dimensional representations of these disorders and examine the validity of the cluster C construct by determining to what extent common familial factors influence the individual PDs. PDs were assessed using the Structured Interview for DSM-IV Personality (SIDP-IV) in a sample of 1386 young adult twin pairs from the Norwegian Institute of Public Health Twin Panel (NIPHTP). A single-factor independent pathway multivariate model was applied to the number of endorsed criteria for the three cluster C disorders, using the statistical modeling program Mx. The best-fitting model included genetic and unique environmental factors only, and equated parameters for males and females. Heritability ranged from 27% to 35%. The proportion of genetic variance explained by a common factor was 83, 48 and 15% respectively for AVPD, DEPD and OCPD. Common genetic and environmental factors accounted for 54% and 64% respectively of the variance in AVPD and DEPD but only 11% of the variance in OCPD. Cluster C PDs are moderately heritable. No evidence was found for shared environmental or sex effects. Common genetic and individual environmental factors account for a substantial proportion of the variance in AVPD and DEPD. However, OCPD appears to be largely etiologically distinct from the other two PDs. The results do not support the validity of the DSM-IV cluster C construct in its present form.

  14. Genetic diversity affects colony survivorship in commercial honey bee colonies

    USDA-ARS?s Scientific Manuscript database

    Honey bee (Apis mellifera) queens mate with unusually high numbers of males (average of approximately 12 drones), although there is much variation among queens. One main consequence of such extreme polyandry is an increased diversity of worker genotypes within a colony, which has been shown empirica...

  15. Histone deacetylase inhibitor activity in royal jelly might facilitate caste switching in bees

    PubMed Central

    Spannhoff, Astrid; Kim, Yong Kee; Raynal, Noel J -M; Gharibyan, Vazganush; Su, Ming-Bo; Zhou, Yue-Yang; Li, Jia; Castellano, Sabrina; Sbardella, Gianluca; Issa, Jean-Pierre J; Bedford, Mark T

    2011-01-01

    Worker and queen bees are genetically indistinguishable. However, queen bees are fertile, larger and have a longer lifespan than their female worker counterparts. Differential feeding of larvae with royal jelly controls this caste switching. There is emerging evidence that the queen-bee phenotype is driven by epigenetic mechanisms. In this study, we show that royal jelly—the secretion produced by the hypopharyngeal and mandibular glands of worker bees—has histone deacetylase inhibitor (HDACi) activity. A fatty acid, (E)-10-hydroxy-2-decenoic acid (10HDA), which accounts for up to 5% of royal jelly, harbours this HDACi activity. Furthermore, 10HDA can reactivate the expression of epigenetically silenced genes in mammalian cells. Thus, the epigenetic regulation of queen-bee development is probably driven, in part, by HDACi activity in royal jelly. PMID:21331099

  16. Red mason bees cannot compete with honey bees for floral resources in a cage experiment.

    PubMed

    Hudewenz, Anika; Klein, Alexandra-Maria

    2015-11-01

    Intensive beekeeping to mitigate crop pollination deficits and habitat loss may cause interspecific competition between bees. Studies show negative correlations between flower visitation of honey bees (Apis mellifera) and wild bees, but effects on the reproduction of wild bees were not proven. Likely reasons are that honey bees can hardly be excluded from controls and wild bee nests are generally difficult to detect in field experiments. The goal of this study was to investigate whether red mason bees (Osmia bicornis) compete with honey bees in cages in order to compare the reproduction of red mason bees under different honey bee densities. Three treatments were applied, each replicated in four cages of 18 m³ with 38 red mason bees in all treatments and 0, 100, and 300 honey bees per treatment with 10-20% being foragers. Within the cages, the flower visitation and interspecific displacements from flowers were observed. Niche breadths and resource overlaps of both bee species were calculated, and the reproduction of red mason bees was measured. Red mason bees visited fewer flowers when honey bees were present. Niche breadth of red mason bees decreased with increasing honey bee density while resource overlaps remained constant. The reproduction of red mason bees decreased in cages with honey bees. In conclusion, our experimental results show that in small and isolated flower patches, wild bees can temporarily suffer from competition with honey bees. Further research should aim to test for competition on small and isolated flower patches in real landscapes.

  17. Bee Stings & Their Consequences.

    ERIC Educational Resources Information Center

    Rupp, Robert M.

    1991-01-01

    Relevant information concerning bee stings is provided. Possible reactions to a bee sting and their symptoms, components of bee venom, diagnosis of hypersensitivity, and bee sting prevention and treatment are topics of discussion. The possibility of bee stings occurring during field trips and the required precautions are discussed. (KR)

  18. The Genome and Methylome of a Subsocial Small Carpenter Bee, Ceratina calcarata.

    PubMed

    Rehan, Sandra M; Glastad, Karl M; Lawson, Sarah P; Hunt, Brendan G

    2016-05-13

    Understanding the evolution of animal societies, considered to be a major transition in evolution, is a key topic in evolutionary biology. Recently, new gateways for understanding social evolution have opened up due to advances in genomics, allowing for unprecedented opportunities in studying social behavior on a molecular level. In particular, highly eusocial insect species (caste-containing societies with nonreproductives that care for siblings) have taken center stage in studies of the molecular evolution of sociality. Despite advances in genomic studies of both solitary and eusocial insects, we still lack genomic resources for early insect societies. To study the genetic basis of social traits requires comparison of genomes from a diversity of organisms ranging from solitary to complex social forms. Here we present the genome of a subsocial bee, Ceratina calcarata This study begins to address the types of genomic changes associated with the earliest origins of simple sociality using the small carpenter bee. Genes associated with lipid transport and DNA recombination have undergone positive selection in C. calcarata relative to other bee lineages. Furthermore, we provide the first methylome of a noneusocial bee. Ceratina calcarata contains the complete enzymatic toolkit for DNA methylation. As in the honey bee and many other holometabolous insects, DNA methylation is targeted to exons. The addition of this genome allows for new lines of research into the genetic and epigenetic precursors to complex social behaviors. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  19. Israeli Acute Paralysis Virus: Epidemiology, Pathogenesis and Implications for Honey Bee Health

    PubMed Central

    Chen, Yan Ping; Pettis, Jeffery S.; Corona, Miguel; Chen, Wei Ping; Li, Cong Jun; Spivak, Marla; Visscher, P. Kirk; DeGrandi-Hoffman, Gloria; Boncristiani, Humberto; Zhao, Yan; vanEngelsdorp, Dennis; Delaplane, Keith; Solter, Leellen; Drummond, Francis; Kramer, Matthew; Lipkin, W. Ian; Palacios, Gustavo; Hamilton, Michele C.; Smith, Barton; Huang, Shao Kang; Zheng, Huo Qing; Li, Ji Lian; Zhang, Xuan; Zhou, Ai Fen; Wu, Li You; Zhou, Ji Zhong; Lee, Myeong-L.; Teixeira, Erica W.; Li, Zhi Guo; Evans, Jay D.

    2014-01-01

    Israeli acute paralysis virus (IAPV) is a widespread RNA virus of honey bees that has been linked with colony losses. Here we describe the transmission, prevalence, and genetic traits of this virus, along with host transcriptional responses to infections. Further, we present RNAi-based strategies for limiting an important mechanism used by IAPV to subvert host defenses. Our study shows that IAPV is established as a persistent infection in honey bee populations, likely enabled by both horizontal and vertical transmission pathways. The phenotypic differences in pathology among different strains of IAPV found globally may be due to high levels of standing genetic variation. Microarray profiles of host responses to IAPV infection revealed that mitochondrial function is the most significantly affected biological process, suggesting that viral infection causes significant disturbance in energy-related host processes. The expression of genes involved in immune pathways in adult bees indicates that IAPV infection triggers active immune responses. The evidence that silencing an IAPV-encoded putative suppressor of RNAi reduces IAPV replication suggests a functional assignment for a particular genomic region of IAPV and closely related viruses from the Family Dicistroviridae, and indicates a novel therapeutic strategy for limiting multiple honey bee viruses simultaneously and reducing colony losses due to viral diseases. We believe that the knowledge and insights gained from this study will provide a new platform for continuing studies of the IAPV–host interactions and have positive implications for disease management that will lead to mitigation of escalating honey bee colony losses worldwide. PMID:25079600

  20. Israeli acute paralysis virus: epidemiology, pathogenesis and implications for honey bee health.

    PubMed

    Chen, Yan Ping; Pettis, Jeffery S; Corona, Miguel; Chen, Wei Ping; Li, Cong Jun; Spivak, Marla; Visscher, P Kirk; DeGrandi-Hoffman, Gloria; Boncristiani, Humberto; Zhao, Yan; vanEngelsdorp, Dennis; Delaplane, Keith; Solter, Leellen; Drummond, Francis; Kramer, Matthew; Lipkin, W Ian; Palacios, Gustavo; Hamilton, Michele C; Smith, Barton; Huang, Shao Kang; Zheng, Huo Qing; Li, Ji Lian; Zhang, Xuan; Zhou, Ai Fen; Wu, Li You; Zhou, Ji Zhong; Lee, Myeong-L; Teixeira, Erica W; Li, Zhi Guo; Evans, Jay D

    2014-07-01

    Israeli acute paralysis virus (IAPV) is a widespread RNA virus of honey bees that has been linked with colony losses. Here we describe the transmission, prevalence, and genetic traits of this virus, along with host transcriptional responses to infections. Further, we present RNAi-based strategies for limiting an important mechanism used by IAPV to subvert host defenses. Our study shows that IAPV is established as a persistent infection in honey bee populations, likely enabled by both horizontal and vertical transmission pathways. The phenotypic differences in pathology among different strains of IAPV found globally may be due to high levels of standing genetic variation. Microarray profiles of host responses to IAPV infection revealed that mitochondrial function is the most significantly affected biological process, suggesting that viral infection causes significant disturbance in energy-related host processes. The expression of genes involved in immune pathways in adult bees indicates that IAPV infection triggers active immune responses. The evidence that silencing an IAPV-encoded putative suppressor of RNAi reduces IAPV replication suggests a functional assignment for a particular genomic region of IAPV and closely related viruses from the Family Dicistroviridae, and indicates a novel therapeutic strategy for limiting multiple honey bee viruses simultaneously and reducing colony losses due to viral diseases. We believe that the knowledge and insights gained from this study will provide a new platform for continuing studies of the IAPV-host interactions and have positive implications for disease management that will lead to mitigation of escalating honey bee colony losses worldwide.

  1. Honey bee pathology: current threats to honey bees and beekeeping.

    PubMed

    Genersch, Elke

    2010-06-01

    Managed honey bees are the most important commercial pollinators of those crops which depend on animal pollination for reproduction and which account for 35% of the global food production. Hence, they are vital for an economic, sustainable agriculture and for food security. In addition, honey bees also pollinate a variety of wild flowers and, therefore, contribute to the biodiversity of many ecosystems. Honey and other hive products are, at least economically and ecologically rather, by-products of beekeeping. Due to this outstanding role of honey bees, severe and inexplicable honey bee colony losses, which have been reported recently to be steadily increasing, have attracted much attention and stimulated many research activities. Although the phenomenon "decline of honey bees" is far from being finally solved, consensus exists that pests and pathogens are the single most important cause of otherwise inexplicable colony losses. This review will focus on selected bee pathogens and parasites which have been demonstrated to be involved in colony losses in different regions of the world and which, therefore, are considered current threats to honey bees and beekeeping.

  2. Bees brought to their knees: microbes affecting honey bee health.

    PubMed

    Evans, Jay D; Schwarz, Ryan S

    2011-12-01

    The biology and health of the honey bee Apis mellifera has been of interest to human societies for centuries. Research on honey bee health is surging, in part due to new tools and the arrival of colony-collapse disorder (CCD), an unsolved decline in bees from parts of the United States, Europe, and Asia. Although a clear understanding of what causes CCD has yet to emerge, these efforts have led to new microbial discoveries and avenues to improve our understanding of bees and the challenges they face. Here we review the known honey bee microbes and highlight areas of both active and lagging research. Detailed studies of honey bee-pathogen dynamics will help efforts to keep this important pollinator healthy and will give general insights into both beneficial and harmful microbes confronting insect colonies. Copyright © 2011. Published by Elsevier Ltd.

  3. The Complex Demographic History and Evolutionary Origin of the Western Honey Bee, Apis Mellifera

    PubMed Central

    Tsutsui, Neil D.; Ramírez, Santiago R.

    2017-01-01

    The western honey bee, Apis mellifera, provides critical pollination services to agricultural crops worldwide. However, despite substantial interest and prior investigation, the early evolution and subsequent diversification of this important pollinator remain uncertain. The primary hypotheses place the origin of A. mellifera in either Asia or Africa, with subsequent radiations proceeding from one of these regions. Here, we use two publicly available whole-genome data sets plus newly sequenced genomes and apply multiple population genetic analysis methods to investigate the patterns of ancestry and admixture in native honey bee populations from Europe, Africa, and the Middle East. The combination of these data sets is critical to the analyses, as each contributes samples from geographic locations lacking in the other, thereby producing the most complete set of honey bee populations available to date. We find evidence supporting an origin of A. mellifera in the Middle East or North Eastern Africa, with the A and Y lineages representing the earliest branching lineages. This finding has similarities with multiple contradictory hypotheses and represents a disentangling of genetic relationships, geographic proximity, and secondary contact to produce a more accurate picture of the origins of A. mellifera. We also investigate how previous studies came to their various conclusions based on incomplete sampling of populations, and illustrate the importance of complete sampling in understanding evolutionary processes. These results provide fundamental knowledge about genetic diversity within Old World honey bee populations and offer insight into the complex history of an important pollinator. PMID:28164223

  4. Immunological studies on bee-keepers: specific IgG and subclass typing IgG against bee venom and bee venom components.

    PubMed

    Urbanek, R; Forster, J; Ziupa, J; Karitzky, D

    1980-11-17

    Specific IgE antibodies against bee venom and its components were studied in 23 bee-keepers. The highest IgG serum levels were observed for whole bee venom followed by phospholipase A. The serum levels of specific IgG antibodies against melittin and MCD-peptide were lower, the lowest serum levels being observed for apamin. After a 5 month absence from bee-keeping a fall in the serum levels of IgG antibodies was observed in all the bee-keepers studied. The investigation of the IgG subclass antibodies 1-4 against bee venom and phospholipase A demonstrated the highest serum levels for IgG 4 and IgG 2, the lowest levels were observed for IgG 1. The lowest IgG serum levels were associated with the least effective protection to bee stings. These findings support the concept that specific IgG antibodies prevent the development of allergic symptoms after bee sting.

  5. Israeli acute paralysis virus: epidemiology, pathogenesis and implications for honey bee health and Colony Collapse Disorder (CCD)

    USDA-ARS?s Scientific Manuscript database

    Israeli acute paralysis virus (IAPV) is a widespread RNA virus that was linked with honey bee Colony Collapse Disorder (CCD), the sudden and massive die-off of honey bee colonies in the U.S. in 2006-2007. Here we describe the transmission, prevalence and genetic diversity of IAPV, host transcripti...

  6. A third-generation microsatellite-based linkage map of the honey bee, Apis mellifera, and its comparison with the sequence-based physical map.

    PubMed

    Solignac, Michel; Mougel, Florence; Vautrin, Dominique; Monnerot, Monique; Cornuet, Jean-Marie

    2007-01-01

    The honey bee is a key model for social behavior and this feature led to the selection of the species for genome sequencing. A genetic map is a necessary companion to the sequence. In addition, because there was originally no physical map for the honey bee genome project, a meiotic map was the only resource for organizing the sequence assembly on the chromosomes. We present the genetic (meiotic) map here and describe the main features that emerged from comparison with the sequence-based physical map. The genetic map of the honey bee is saturated and the chromosomes are oriented from the centromeric to the telomeric regions. The map is based on 2,008 markers and is about 40 Morgans (M) long, resulting in a marker density of one every 2.05 centiMorgans (cM). For the 186 megabases (Mb) of the genome mapped and assembled, this corresponds to a very high average recombination rate of 22.04 cM/Mb. Honey bee meiosis shows a relatively homogeneous recombination rate along and across chromosomes, as well as within and between individuals. Interference is higher than inferred from the Kosambi function of distance. In addition, numerous recombination hotspots are dispersed over the genome. The very large genetic length of the honey bee genome, its small physical size and an almost complete genome sequence with a relatively low number of genes suggest a very promising future for association mapping in the honey bee, particularly as the existence of haploid males allows easy bulk segregant analysis.

  7. Genetic and environmental structure of DSM-IV criteria for Antisocial Personality Disorder: a twin study

    PubMed Central

    Rosenström, Tom; Ystrom, Eivind; Torvik, Fartein Ask; Czajkowski, Nikolai Olavi; Gillespie, Nathan A.; Aggen, Steven H.; Krueger, Robert F.; Kendler, Kenneth S; Reichborn-Kjennerud, Ted

    2017-01-01

    Results from previous studies on DSM-IV and DSM-5 Antisocial Personality Disorder (ASPD) have suggested that the construct is etiologically multidimensional. To our knowledge, however, the structure of genetic and environmental influences in ASPD has not been examined using an appropriate range of biometric models and diagnostic interviews. The 7 ASPD criteria (section A) were assessed in a population-based sample of 2794 Norwegian twins by a structured interview for DSM-IV personality disorders. Exploratory analyses were conducted at the phenotypic level. Multivariate biometric models, including both independent and common pathways, were compared. A single phenotypic factor was found, and the best-fitting biometric model was a single-factor common pathway model, with common-factor heritability of 51% (95% CI = 40–67%). In other words, both genetic and environmental correlations between the ASPD criteria could be accounted for by a single common latent variable. The findings support the validity of ASPD as a unidimensional diagnostic construct. PMID:28108863

  8. Genetic and Environmental Structure of DSM-IV Criteria for Antisocial Personality Disorder: A Twin Study.

    PubMed

    Rosenström, Tom; Ystrom, Eivind; Torvik, Fartein Ask; Czajkowski, Nikolai Olavi; Gillespie, Nathan A; Aggen, Steven H; Krueger, Robert F; Kendler, Kenneth S; Reichborn-Kjennerud, Ted

    2017-05-01

    Results from previous studies on DSM-IV and DSM-5 Antisocial Personality Disorder (ASPD) have suggested that the construct is etiologically multidimensional. To our knowledge, however, the structure of genetic and environmental influences in ASPD has not been examined using an appropriate range of biometric models and diagnostic interviews. The 7 ASPD criteria (section A) were assessed in a population-based sample of 2794 Norwegian twins by a structured interview for DSM-IV personality disorders. Exploratory analyses were conducted at the phenotypic level. Multivariate biometric models, including both independent and common pathways, were compared. A single phenotypic factor was found, and the best-fitting biometric model was a single-factor common pathway model, with common-factor heritability of 51% (95% CI 40-67%). In other words, both genetic and environmental correlations between the ASPD criteria could be accounted for by a single common latent variable. The findings support the validity of ASPD as a unidimensional diagnostic construct.

  9. Accuracy of the unified approach in maternally influenced traits--illustrated by a simulation study in the honey bee (Apis mellifera).

    PubMed

    Gupta, Pooja; Reinsch, Norbert; Spötter, Andreas; Conrad, Tim; Bienefeld, Kaspar

    2013-05-06

    The honey bee is an economically important species. With a rapid decline of the honey bee population, it is necessary to implement an improved genetic evaluation methodology. In this study, we investigated the applicability of the unified approach and its impact on the accuracy of estimation of breeding values for maternally influenced traits on a simulated dataset for the honey bee. Due to the limitation to the number of individuals that can be genotyped in a honey bee population, the unified approach can be an efficient strategy to increase the genetic gain and to provide a more accurate estimation of breeding values. We calculated the accuracy of estimated breeding values for two evaluation approaches, the unified approach and the traditional pedigree based approach. We analyzed the effects of different heritabilities as well as genetic correlation between direct and maternal effects on the accuracy of estimation of direct, maternal and overall breeding values (sum of maternal and direct breeding values). The genetic and reproductive biology of the honey bee was accounted for by taking into consideration characteristics such as colony structure, uncertain paternity, overlapping generations and polyandry. In addition, we used a modified numerator relationship matrix and a realistic genome for the honey bee. For all values of heritability and correlation, the accuracy of overall estimated breeding values increased significantly with the unified approach. The increase in accuracy was always higher for the case when there was no correlation as compared to the case where a negative correlation existed between maternal and direct effects. Our study shows that the unified approach is a useful methodology for genetic evaluation in honey bees, and can contribute immensely to the improvement of traits of apicultural interest such as resistance to Varroa or production and behavioural traits. In particular, the study is of great interest for cases where negative correlation

  10. Accuracy of the unified approach in maternally influenced traits - illustrated by a simulation study in the honey bee (Apis mellifera)

    PubMed Central

    2013-01-01

    Background The honey bee is an economically important species. With a rapid decline of the honey bee population, it is necessary to implement an improved genetic evaluation methodology. In this study, we investigated the applicability of the unified approach and its impact on the accuracy of estimation of breeding values for maternally influenced traits on a simulated dataset for the honey bee. Due to the limitation to the number of individuals that can be genotyped in a honey bee population, the unified approach can be an efficient strategy to increase the genetic gain and to provide a more accurate estimation of breeding values. We calculated the accuracy of estimated breeding values for two evaluation approaches, the unified approach and the traditional pedigree based approach. We analyzed the effects of different heritabilities as well as genetic correlation between direct and maternal effects on the accuracy of estimation of direct, maternal and overall breeding values (sum of maternal and direct breeding values). The genetic and reproductive biology of the honey bee was accounted for by taking into consideration characteristics such as colony structure, uncertain paternity, overlapping generations and polyandry. In addition, we used a modified numerator relationship matrix and a realistic genome for the honey bee. Results For all values of heritability and correlation, the accuracy of overall estimated breeding values increased significantly with the unified approach. The increase in accuracy was always higher for the case when there was no correlation as compared to the case where a negative correlation existed between maternal and direct effects. Conclusions Our study shows that the unified approach is a useful methodology for genetic evaluation in honey bees, and can contribute immensely to the improvement of traits of apicultural interest such as resistance to Varroa or production and behavioural traits. In particular, the study is of great interest for

  11. Regulation of behaviorally associated gene networks in worker honey bee ovaries

    PubMed Central

    Wang, Ying; Kocher, Sarah D.; Linksvayer, Timothy A.; Grozinger, Christina M.; Page, Robert E.; Amdam, Gro V.

    2012-01-01

    SUMMARY Several lines of evidence support genetic links between ovary size and division of labor in worker honey bees. However, it is largely unknown how ovaries influence behavior. To address this question, we first performed transcriptional profiling on worker ovaries from two genotypes that differ in social behavior and ovary size. Then, we contrasted the differentially expressed ovarian genes with six sets of available brain transcriptomes. Finally, we probed behavior-related candidate gene networks in wild-type ovaries of different sizes. We found differential expression in 2151 ovarian transcripts in these artificially selected honey bee strains, corresponding to approximately 20.3% of the predicted gene set of honey bees. Differences in gene expression overlapped significantly with changes in the brain transcriptomes. Differentially expressed genes were associated with neural signal transmission (tyramine receptor, TYR) and ecdysteroid signaling; two independently tested nuclear hormone receptors (HR46 and ftz-f1) were also significantly correlated with ovary size in wild-type bees. We suggest that the correspondence between ovary and brain transcriptomes identified here indicates systemic regulatory networks among hormones (juvenile hormone and ecdysteroids), pheromones (queen mandibular pheromone), reproductive organs and nervous tissues in worker honey bees. Furthermore, robust correlations between ovary size and neuraland endocrine response genes are consistent with the hypothesized roles of the ovaries in honey bee behavioral regulation. PMID:22162860

  12. Context affects nestmate recognition errors in honey bees and stingless bees.

    PubMed

    Couvillon, Margaret J; Segers, Francisca H I D; Cooper-Bowman, Roseanne; Truslove, Gemma; Nascimento, Daniela L; Nascimento, Fabio S; Ratnieks, Francis L W

    2013-08-15

    Nestmate recognition studies, where a discriminator first recognises and then behaviourally discriminates (accepts/rejects) another individual, have used a variety of methodologies and contexts. This is potentially problematic because recognition errors in discrimination behaviour are predicted to be context-dependent. Here we compare the recognition decisions (accept/reject) of discriminators in two eusocial bees, Apis mellifera and Tetragonisca angustula, under different contexts. These contexts include natural guards at the hive entrance (control); natural guards held in plastic test arenas away from the hive entrance that vary either in the presence or absence of colony odour or the presence or absence of an additional nestmate discriminator; and, for the honey bee, the inside of the nest. For both honey bee and stingless bee guards, total recognition errors of behavioural discrimination made by guards (% nestmates rejected + % non-nestmates accepted) are much lower at the colony entrance (honey bee: 30.9%; stingless bee: 33.3%) than in the test arenas (honey bee: 60-86%; stingless bee: 61-81%; P<0.001 for both). Within the test arenas, the presence of colony odour specifically reduced the total recognition errors in honey bees, although this reduction still fell short of bringing error levels down to what was found at the colony entrance. Lastly, in honey bees, the data show that the in-nest collective behavioural discrimination by ca. 30 workers that contact an intruder is insufficient to achieve error-free recognition and is not as effective as the discrimination by guards at the entrance. Overall, these data demonstrate that context is a significant factor in a discriminators' ability to make appropriate recognition decisions, and should be considered when designing recognition study methodologies.

  13. Synergistic effects of non-Apis bees and honey bees for pollination services

    PubMed Central

    Brittain, Claire; Williams, Neal; Kremen, Claire; Klein, Alexandra-Maria

    2013-01-01

    In diverse pollinator communities, interspecific interactions may modify the behaviour and increase the pollination effectiveness of individual species. Because agricultural production reliant on pollination is growing, improving pollination effectiveness could increase crop yield without any increase in agricultural intensity or area. In California almond, a crop highly dependent on honey bee pollination, we explored the foraging behaviour and pollination effectiveness of honey bees in orchards with simple (honey bee only) and diverse (non-Apis bees present) bee communities. In orchards with non-Apis bees, the foraging behaviour of honey bees changed and the pollination effectiveness of a single honey bee visit was greater than in orchards where non-Apis bees were absent. This change translated to a greater proportion of fruit set in these orchards. Our field experiments show that increased pollinator diversity can synergistically increase pollination service, through species interactions that alter the behaviour and resulting functional quality of a dominant pollinator species. These results of functional synergy between species were supported by an additional controlled cage experiment with Osmia lignaria and Apis mellifera. Our findings highlight a largely unexplored facilitative component of the benefit of biodiversity to ecosystem services, and represent a way to improve pollinator-dependent crop yields in a sustainable manner. PMID:23303545

  14. Microbiome structure influences infection by the parasite Crithidia bombi in bumble bees.

    PubMed

    Mockler, Blair K; Kwong, Waldan K; Moran, Nancy A; Koch, Hauke

    2018-01-26

    Recent declines in bumble bee populations are of great concern, and have prompted critical evaluations of the role of pathogen introductions and host resistance in bee health. One factor that may influence host resilience when facing infection is the gut microbiota. Previous experiments with Bombus terrestris , a European bumble bee, showed that the gut microbiota can protect against Crithidia bombi , a widespread trypanosomatid parasite of bumble bees. However, the particular characteristics of the microbiome responsible for this protective effect have thus far eluded identification. Using wild and commercially-sourced Bombus impatiens , an important North American pollinator, we conducted cross-wise microbiota transplants to naïve hosts of both backgrounds, and challenged them with Crithidia As with B. terrestris , we find that microbiota-dependent protection against Crithidia operates in B. impatiens Lower Crithidia infection loads were experimentally associated with high microbiome diversity, large gut bacterial populations, and the presence of Apibacter , Lactobacillus Firm-5, and Gilliamella in the gut community. These results indicate that even subtle differences between gut community structures can have a significant impact on the microbiome's ability to defend against parasite infections. Importance Many wild bumble bee populations are under threat by human activity, including through introductions of pathogens via commercially-raised bees. Recently, it was found that the bumble bee gut microbiota can help defend against a common parasite, Crithidia bombi , but the particular factors contributing to this protection are unknown. Using both wild and commercially-raised bees, we conduct microbiota transplants to show that microbiome diversity, total gut bacterial load, and the presence of certain core members of the microbiota may all impact bee susceptibility to Crithidia infection. Bee origin (genetic background) was also a factor. Finally, by examining

  15. Do managed bees have negative effects on wild bees?: A systematic review of the literature

    PubMed Central

    Gratton, Claudio

    2017-01-01

    Managed bees are critical for crop pollination worldwide. As the demand for pollinator-dependent crops increases, so does the use of managed bees. Concern has arisen that managed bees may have unintended negative impacts on native wild bees, which are important pollinators in both agricultural and natural ecosystems. The goal of this study was to synthesize the literature documenting the effects of managed honey bees and bumble bees on wild bees in three areas: (1) competition for floral and nesting resources, (2) indirect effects via changes in plant communities, including the spread of exotic plants and decline of native plants, and (3) transmission of pathogens. The majority of reviewed studies reported negative effects of managed bees, but trends differed across topical areas. Of studies examining competition, results were highly variable with 53% reporting negative effects on wild bees, while 28% reported no effects and 19% reported mixed effects (varying with the bee species or variables examined). Equal numbers of studies examining plant communities reported positive (36%) and negative (36%) effects, with the remainder reporting no or mixed effects. Finally, the majority of studies on pathogen transmission (70%) reported potential negative effects of managed bees on wild bees. However, most studies across all topical areas documented the potential for impact (e.g. reporting the occurrence of competition or pathogens), but did not measure direct effects on wild bee fitness, abundance, or diversity. Furthermore, we found that results varied depending on whether managed bees were in their native or non-native range; managed bees within their native range had lesser competitive effects, but potentially greater effects on wild bees via pathogen transmission. We conclude that while this field has expanded considerably in recent decades, additional research measuring direct, long-term, and population-level effects of managed bees is needed to understand their

  16. Do managed bees have negative effects on wild bees?: A systematic review of the literature.

    PubMed

    Mallinger, Rachel E; Gaines-Day, Hannah R; Gratton, Claudio

    2017-01-01

    Managed bees are critical for crop pollination worldwide. As the demand for pollinator-dependent crops increases, so does the use of managed bees. Concern has arisen that managed bees may have unintended negative impacts on native wild bees, which are important pollinators in both agricultural and natural ecosystems. The goal of this study was to synthesize the literature documenting the effects of managed honey bees and bumble bees on wild bees in three areas: (1) competition for floral and nesting resources, (2) indirect effects via changes in plant communities, including the spread of exotic plants and decline of native plants, and (3) transmission of pathogens. The majority of reviewed studies reported negative effects of managed bees, but trends differed across topical areas. Of studies examining competition, results were highly variable with 53% reporting negative effects on wild bees, while 28% reported no effects and 19% reported mixed effects (varying with the bee species or variables examined). Equal numbers of studies examining plant communities reported positive (36%) and negative (36%) effects, with the remainder reporting no or mixed effects. Finally, the majority of studies on pathogen transmission (70%) reported potential negative effects of managed bees on wild bees. However, most studies across all topical areas documented the potential for impact (e.g. reporting the occurrence of competition or pathogens), but did not measure direct effects on wild bee fitness, abundance, or diversity. Furthermore, we found that results varied depending on whether managed bees were in their native or non-native range; managed bees within their native range had lesser competitive effects, but potentially greater effects on wild bees via pathogen transmission. We conclude that while this field has expanded considerably in recent decades, additional research measuring direct, long-term, and population-level effects of managed bees is needed to understand their

  17. Size and Sex-Dependent Shrinkage of Dutch Bees during One-and-a-Half Centuries of Land-Use Change.

    PubMed

    Oliveira, Mikail O; Freitas, Breno M; Scheper, Jeroen; Kleijn, David

    2016-01-01

    Land-use change and global warming are important factors driving bee decline, but it is largely unknown whether these drivers have resulted in changes in the life-history traits of bees. Recent studies have shown a stronger population decline of large- than small-bodied bee species, suggesting there may have been selective pressure on large, but not on small species to become smaller. Here we test this hypothesis by analyzing trends in bee body size of 18 Dutch species over a 147-year period using specimens from entomological collections. Large-bodied female bees shrank significantly faster than small-bodied female bees (6.5% and 0.5% respectively between 1900 and 2010). Changes in temperature during the flight period of bees did not influence the size-dependent shrinkage of female bees. Male bees did not shrink significantly over the same time period. Our results could imply that under conditions of declining habitat quantity and quality it is advantageous for individuals to be smaller. The size and sex-dependent responses of bees point towards an evolutionary response but genetic studies are required to confirm this. The declining body size of the large bee species that currently dominate flower visitation of both wild plants and insect-pollinated crops may have negative consequences for pollination service delivery.

  18. Sexual response of male Drosophila to honey bee queen mandibular pheromone: implications for genetic studies of social insects.

    PubMed

    Croft, Justin R; Liu, Tom; Camiletti, Alison L; Simon, Anne F; Thompson, Graham J

    2017-02-01

    Honey bees secrete a queen mandibular pheromone that renders workers reproductively altruistic and drones sexually attentive. This sex-specific function of QMP may have evolved from a sexually dimorphic signaling mechanism derived from pre-social ancestors. If so, there is potential for pre-social insects to respond to QMP, and in a manner that is comparable to its normal effect on workers and drones. Remarkably, QMP applied to female Drosophila does induce worker-like qualities [Camiletti et al. (Entomol Exp Appl 147:262, 2013)], and we here extend this comparison to examine the effects of bee pheromone on male fruit flies. We find that male Drosophila melanogaster consistently orient towards a source of queen pheromone in a T-maze, suggesting a recruitment response comparable to the pheromone's normal effect on drones. Moreover, exposure to QMP renders male flies more sexually attentive; they display intensified pre-copulatory behavior towards conspecific females. We can inhibit this sexual effect through a loss-of-olfactory-function mutation, which suggests that the pheromone-responsive behavioral mechanism is olfactory-driven. These pheromone-induced changes to male Drosophila behavior suggest that aspects of sexual signaling are conserved between these two distantly related taxa. Our results highlight a role for Drosophila as a genetically tractable pre-social model for studies of social insect biology.

  19. Bee poison

    MedlinePlus

    ... are also much more likely to sting than European bees. Where Found Bee, wasp, hornet, and yellow ... Philadelphia, PA: Elsevier; 2016:chap 72. Review Date 7/10/2017 Updated by: Jacob L. Heller, MD, ...

  20. Rarely reported, widely distributed, and unexpectedly diverse: molecular characterization of mermithid nematodes (Nematoda: Mermithidae) infecting bumble bees (Hymenoptera: Apidae: Bombus) in the USA.

    PubMed

    Tripodi, Amber D; Strange, James P

    2018-03-16

    Mermithid nematodes (Nematoda: Mermithida: Mermithidae) parasitize a wide range of both terrestrial and aquatic invertebrate hosts, yet are recorded in bumble bees (Insecta: Hymenoptera: Apidae: Bombus) only six times historically. Little is known about the specific identity of these parasites. In a single-season nationwide survey of internal parasites of 3646 bumble bees, we encountered six additional instances of mermithid parasitism in four bumble bee species and genetically characterized them using two regions of 18S to identify the specific host-parasite relationships. Three samples from the northeastern USA are morphologically and genetically identified as Mermis nigrescens, whereas three specimens collected from a single agricultural locality in the southeast USA fell into a clade with currently undescribed species. Nucleotide sequences of the V2-V6 region of 18S from the southeastern specimens were 2.6-3.0% divergent from one another, and 2.2-4.0% dissimilar to the nearest matches to available data. The dearth of available data prohibits positive identification of this parasite and its affinity for specific bumble bee hosts. By doubling the records of mermithid parasitism of bumble bee hosts and providing genetic data, this work will inform future investigations of this rare phenomenon.

  1. Ageing in a eusocial insect: molecular and physiological characteristics of life span plasticity in the honey bee

    PubMed Central

    Münch, D.; Amdam, G. V.; Wolschin, F.

    2008-01-01

    Summary Commonly held views assume that ageing, or senescence, represents an inevitable, passive, and random decline in function that is strongly linked to chronological age. In recent years, genetic intervention of life span regulating pathways, for example, in Drosophila as well as case studies in non-classical animal models, have provided compelling evidence to challenge these views. Rather than comprehensively revisiting studies on the established genetic model systems of ageing, we here focus on an alternative model organism with a wild type (unselected genotype) characterized by a unique diversity in longevity – the honey bee. Honey bee (Apis mellifera) life span varies from a few weeks to more than 2 years. This plasticity is largely controlled by environmental factors. Thereby, although individuals are closely related genetically, distinct life histories can emerge as a function of social environmental change. Another remarkable feature of the honey bee is the occurrence of reverted behavioural ontogeny in the worker (female helper) caste. This behavioural peculiarity is associated with alterations in somatic maintenance functions that are indicative of reverted senescence. Thus, although intraspecific variation in organismal life span is not uncommon, the honey bee holds great promise for gaining insights into regulatory pathways that can shape the time-course of ageing by delaying, halting or even reversing processes of senescence. These aspects provide the setting of our review. We will highlight comparative findings from Drosophila melanogaster and Caenorhabditis elegans in particular, and focus on knowledge spanning from molecular- to behavioural-senescence to elucidate how the honey bee can contribute to novel insights into regulatory mechanisms that underlie plasticity and robustness or irreversibility in ageing. PMID:18728759

  2. Ageing in a eusocial insect: molecular and physiological characteristics of life span plasticity in the honey bee.

    PubMed

    Münch, D; Amdam, G V; Wolschin, F

    2008-01-01

    Commonly held views assume that ageing, or senescence, represents an inevitable, passive, and random decline in function that is strongly linked to chronological age. In recent years, genetic intervention of life span regulating pathways, for example, in Drosophila as well as case studies in non-classical animal models, have provided compelling evidence to challenge these views.Rather than comprehensively revisiting studies on the established genetic model systems of ageing, we here focus on an alternative model organism with a wild type (unselected genotype) characterized by a unique diversity in longevity - the honey bee.Honey bee (Apis mellifera) life span varies from a few weeks to more than 2 years. This plasticity is largely controlled by environmental factors. Thereby, although individuals are closely related genetically, distinct life histories can emerge as a function of social environmental change.Another remarkable feature of the honey bee is the occurrence of reverted behavioural ontogeny in the worker (female helper) caste. This behavioural peculiarity is associated with alterations in somatic maintenance functions that are indicative of reverted senescence. Thus, although intraspecific variation in organismal life span is not uncommon, the honey bee holds great promise for gaining insights into regulatory pathways that can shape the time-course of ageing by delaying, halting or even reversing processes of senescence. These aspects provide the setting of our review.We will highlight comparative findings from Drosophila melanogaster and Caenorhabditis elegans in particular, and focus on knowledge spanning from molecular- to behavioural-senescence to elucidate how the honey bee can contribute to novel insights into regulatory mechanisms that underlie plasticity and robustness or irreversibility in ageing.

  3. Genetic algorithm prediction of two-dimensional group-IV dioxides for dielectrics

    NASA Astrophysics Data System (ADS)

    Singh, Arunima K.; Revard, Benjamin C.; Ramanathan, Rohit; Ashton, Michael; Tavazza, Francesca; Hennig, Richard G.

    2017-04-01

    Two-dimensional (2D) materials present a new class of materials whose structures and properties can differ from their bulk counterparts. We perform a genetic algorithm structure search using density-functional theory to identify low-energy structures of 2D group-IV dioxides A O2 (A =Si , Ge, Sn, Pb). We find that 2D SiO2 is most stable in the experimentally determined bi-tetrahedral structure, while 2D SnO2 and PbO2 are most stable in the 1 T structure. For 2D GeO2, the genetic algorithm finds a new low-energy 2D structure with monoclinic symmetry. Each system exhibits 2D structures with formation energies ranging from 26 to 151 meV/atom, below those of certain already synthesized 2D materials. The phonon spectra confirm their dynamic stability. Using the HSE06 hybrid functional, we determine that the 2D dioxides are insulators or semiconductors, with a direct band gap of 7.2 eV at Γ for 2D SiO2, and indirect band gaps of 4.8-2.7 eV for the other dioxides. To guide future applications of these 2D materials in nanoelectronic devices, we determine their band-edge alignment with graphene, phosphorene, and single-layer BN and MoS2. An assessment of the dielectric properties and electrochemical stability of the 2D group-IV dioxides shows that 2D GeO2 and SnO2 are particularly promising candidates for gate oxides and 2D SnO2 also as a protective layer in heterostructure nanoelectronic devices.

  4. Desynchronizations in bee-plant interactions cause severe fitness losses in solitary bees.

    PubMed

    Schenk, Mariela; Krauss, Jochen; Holzschuh, Andrea

    2018-01-01

    Global warming can disrupt mutualistic interactions between solitary bees and plants when increasing temperature differentially changes the timing of interacting partners. One possible scenario is for insect phenology to advance more rapidly than plant phenology. However, empirical evidence for fitness consequences due to temporal mismatches is lacking for pollinators and it remains unknown if bees have developed strategies to mitigate fitness losses following temporal mismatches. We tested the effect of temporal mismatches on the fitness of three spring-emerging solitary bee species, including one pollen specialist. Using flight cages, we simulated (i) a perfect synchronization (from a bee perspective): bees and flowers occur simultaneously, (ii) a mismatch of 3 days and (iii) a mismatch of 6 days, with bees occurring earlier than flowers in the latter two cases. A mismatch of 6 days caused severe fitness losses in all three bee species, as few bees survived without flowers. Females showed strongly reduced activity and reproductive output compared to synchronized bees. Fitness consequences of a 3-day mismatch were species-specific. Both the early-spring species Osmia cornuta and the mid-spring species Osmia bicornis produced the same number of brood cells after a mismatch of 3 days as under perfect synchronization. However, O. cornuta decreased the number of female offspring, whereas O. bicornis spread the brood cells over fewer nests, which may increase offspring mortality, e.g. due to parasitoids. The late-spring specialist Osmia brevicornis produced fewer brood cells even after a mismatch of 3 days. Additionally, our results suggest that fitness losses after temporal mismatches are higher during warm than cold springs, as the naturally occurring temperature variability revealed that warm temperatures during starvation decreased the survival rate of O. bicornis. We conclude that short temporal mismatches can cause clear fitness losses in solitary bees

  5. Paenibacillus larvae-Directed Bacteriophage HB10c2 and Its Application in American Foulbrood-Affected Honey Bee Larvae

    PubMed Central

    Beims, Hannes; Wittmann, Johannes; Bunk, Boyke; Spröer, Cathrin; Rohde, Christine; Günther, Gabi; Rohde, Manfred; von der Ohe, Werner

    2015-01-01

    Paenibacillus larvae is the causative agent of American foulbrood (AFB), the most serious honey bee brood bacterial disease. We isolated and characterized P. larvae-directed bacteriophages and developed criteria for safe phage therapy. Whole-genome analysis of a highly lytic virus of the family Siphoviridae (HB10c2) provided a detailed safety profile and uncovered its lysogenic nature and a putative beta-lactamase-like protein. To rate its antagonistic activity against the pathogens targeted and to specify potentially harmful effects on the bee population and the environment, P. larvae genotypes ERIC I to IV, representatives of the bee gut microbiota, and a broad panel of members of the order Bacillales were analyzed for phage HB10c2-induced lysis. Breeding assays with infected bee larvae revealed that the in vitro phage activity observed was not predictive of the real-life scenario and therapeutic efficacy. On the basis of the disclosed P. larvae-bacteriophage coevolution, we discuss the future prospects of AFB phage therapy. PMID:26048941

  6. Bees without Flowers: Before Peak Bloom, Diverse Native Bees Find Insect-Produced Honeydew Sugars.

    PubMed

    Meiners, Joan M; Griswold, Terry L; Harris, David J; Ernest, S K Morgan

    2017-08-01

    Bee foragers respond to complex visual, olfactory, and extrasensory cues to optimize searches for floral rewards. Their abilities to detect and distinguish floral colors, shapes, volatiles, and ultraviolet signals and even gauge nectar availability from changes in floral humidity or electric fields are well studied. Bee foraging behaviors in the absence of floral cues, however, are rarely considered. We observed 42 species of wild bees visiting inconspicuous, nonflowering shrubs during early spring in a protected Mediterranean habitat. We determined experimentally that these bees were accessing sugary honeydew secretions from scale insects without the aid of standard cues. While honeydew use is known among some social Hymenoptera, its use across a diverse community of solitary bees is a novel observation. The widespread ability of native bees to locate and use unadvertised, nonfloral sugars suggests unappreciated sensory mechanisms and/or the existence of an interspecific foraging network among solitary bees that may influence how native bees cope with scarcity of floral resources and increasing environmental change.

  7. The Complex Demographic History and Evolutionary Origin of the Western Honey Bee, Apis Mellifera.

    PubMed

    Cridland, Julie M; Tsutsui, Neil D; Ramírez, Santiago R

    2017-02-01

    The western honey bee, Apis mellifera, provides critical pollination services to agricultural crops worldwide. However, despite substantial interest and prior investigation, the early evolution and subsequent diversification of this important pollinator remain uncertain. The primary hypotheses place the origin of A. mellifera in either Asia or Africa, with subsequent radiations proceeding from one of these regions. Here, we use two publicly available whole-genome data sets plus newly sequenced genomes and apply multiple population genetic analysis methods to investigate the patterns of ancestry and admixture in native honey bee populations from Europe, Africa, and the Middle East. The combination of these data sets is critical to the analyses, as each contributes samples from geographic locations lacking in the other, thereby producing the most complete set of honey bee populations available to date. We find evidence supporting an origin of A. mellifera in the Middle East or North Eastern Africa, with the A and Y lineages representing the earliest branching lineages. This finding has similarities with multiple contradictory hypotheses and represents a disentangling of genetic relationships, geographic proximity, and secondary contact to produce a more accurate picture of the origins of A. mellifera. We also investigate how previous studies came to their various conclusions based on incomplete sampling of populations, and illustrate the importance of complete sampling in understanding evolutionary processes. These results provide fundamental knowledge about genetic diversity within Old World honey bee populations and offer insight into the complex history of an important pollinator. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  8. Effects of honey bee (Hymenoptera: Apidae) and bumble bee (Hymenoptera: Apidae) presence on cranberry (Ericales: Ericaceae) pollination.

    PubMed

    Evans, E C; Spivak, M

    2006-06-01

    Honey bees, Apis mellifera L., are frequently used to pollinate commercial cranberries, Vaccinium macrocarpon Ait., but information is lacking on the relative contribution of honey bees and native bees, the effects of surrounding vegetation on bee visitation, and on optimal timing for honey bee introduction. We begin with a descriptive study of numbers of honey bees, bumble bees, and other bees visiting cranberry blossoms, and their subsequent effect on cranberry yield, on three cranberry properties in 1999. The property surrounded by agricultural land, as opposed to wetlands and woodlands, had fewer numbers of all bee types. In 2000, one property did not introduce honey bee colonies, providing an opportunity to document the effect of lack of honey bees on yield. With no honey bees, plants along the edge of the bed had significantly higher berry weights compared with nonedge plants, suggesting that wild pollinators were only effective along the edge. Comparing the same bed between 1999, with three honey bee colonies per acre, and 2000, with no honey bees, we found a significant reduction in average berry size. In 2000, we compared stigma loading on properties with and without honey bees. Significantly more stigmas received the minimum number of tetrads required for fruit set on the property with honey bees. Significantly more tetrads were deposited during mid-bloom compared with early bloom, indicating that mid-bloom was the best time to have honey bees present. This study emphasizes the importance and effectiveness of honey bees as pollinators of commercial size cranberry plantings.

  9. Phenotypic and genetic analyses of the Varroa Sensitive Hygienic trait in Russian Honey Bee (Hymenoptera: Apidae) colonies

    USDA-ARS?s Scientific Manuscript database

    Varroa destructor continues to threaten colonies of European honey bees. General hygiene and more specific VarroaVarroa Sensitive Hygiene (VSH) provide resistance toward the Varroa mite in a number of stocks. In this study, Russian (RHB) and Italian honey bees were assessed for the VSH trait. Two...

  10. Changes in Orchid Bee Communities Across Forest-Agroecosystem Boundaries in Brazilian Atlantic Forest Landscapes.

    PubMed

    De Aguiar, Willian Moura; Sofia, Silvia H; Melo, Gabriel A R; Gaglianone, Maria Cristina

    2015-12-01

    Deforestation has dramatically reduced the extent of Atlantic Forest cover in Brazil. Orchid bees are key pollinators in neotropical forest, and many species are sensitive to anthropogenic interference. In this sense understanding the matrix permeability for these bees is important for maintaining genetic diversity and pollination services. Our main objective was to assess whether the composition, abundance, and diversity of orchid bees in matrices differed from those in Atlantic forest. To do this we sampled orchid bees at 4-mo intervals from 2007 to 2009 in remnants of Atlantic Forest, and in the surrounding pasture and eucalyptus matrices. The abundance, richness, and diversity of orchid bees diminished significantly from the forest fragment toward the matrix points in the eucalyptus and pasture. Some common or intermediate species in the forest areas, such as Eulaema cingulata (F.) and Euglossa fimbriata Moure, respectively, become rare species in the matrices. Our results show that the orchid bee community is affected by the matrices surrounding the forest fragments. They also suggest that connections between forest fragments need to be improved using friendly matrices that can provide more favorable conditions for bees and increase their dispersal between fragments. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Honey bee cognition.

    PubMed

    Gould, J L

    1990-11-01

    The visual memory of honey bees is stored pictorially. Bees will accept a mirror-image reversal of a familiar pattern in the absence of the original, but prefer the original over the reversal; the matching system of bees, therefore, does not incorporate a mirror-image ambiguity. Bees will not accept a rotation of a familiar vertical pattern, but readily recognize any rotation of a horizontal pattern; the context-specific ability to make a mental transformation seems justified by natural contingencies. Bees are able to construct and use cognitive maps of their home area, though it is possible to create conditions under which they lack useful cues. Other experiments suggest that recruits, having attended a dance in the hive specifying the distance and direction of a food source, can evaluate the "plausibility" of the location without leaving the hive; this suggests a kind of imagination.

  12. Hygienic behavior of the honey bee (Apis mellifera) is independent of sucrose responsiveness and foraging ontogeny.

    PubMed

    Goode, Katarzyna; Huber, Zachary; Mesce, Karen A; Spivak, Marla

    2006-03-01

    Hygienic behavior in honey bees is a behavioral mechanism of disease resistance. Bees bred for hygienic behavior exhibit an increased olfactory sensitivity to odors of diseased brood, which is most likely differentially enhanced in the hygienic line by the modulatory effects of octopamine (OA), a noradrenaline-like neuromodulator. Here, we addressed whether the hygienic behavioral state is linked to other behavioral activities known to be modulated by OA. We specifically asked if, during learning trials, bees from hygienic colonies discriminate better between odors of diseased and healthy brood because of differences in sucrose (reward) response thresholds. This determination had to be tested because sucrose response thresholds are susceptible to OA modulation and may have influenced the honey bee's association of the conditioned stimulus (odor) with the unconditioned stimulus (i.e., the sucrose reward). Because the onset of first foraging is also modulated by OA, we also examined whether bees from hygienic colonies differentially forage at an earlier age compared to bees from non-hygienic colonies. Our study revealed that 1-day- and 15- to 20-day-old bees from the hygienic line do not have lower sucrose response thresholds compared to bees from the non-hygienic lines. In addition, hygienic bees did not forage at an earlier age or forage preferentially for pollen as compared to non-hygienic bees. These results support the idea that OA does not function in honey bees simply to enhance the detection of all chemical cues non-selectively or control related behaviors regardless of their environmental milieu. Our results indicate that the behavioral profile of the hygienic bee is sculpted by multiple factors including genetic, neural, social and environmental systems.

  13. Does Cry1Ab protein affect learning performances of the honey bee Apis mellifera L. (Hymenoptera, Apidae)?

    PubMed

    Ramirez-Romero, R; Desneux, N; Decourtye, A; Chaffiol, A; Pham-Delègue, M H

    2008-06-01

    Genetically modified Bt crops are increasingly used worldwide but side effects and especially sublethal effects on beneficial insects remain poorly studied. Honey bees are beneficial insects for natural and cultivated ecosystems through pollination. The goal of the present study was to assess potential effects of two concentrations of Cry1Ab protein (3 and 5000 ppb) on young adult honey bees. Following a complementary bioassay, our experiments evaluated effects of the Cry1Ab on three major life traits of young adult honey bees: (a) survival of honey bees during sub-chronic exposure to Cry1Ab, (b) feeding behaviour, and (c) learning performance at the time that honey bees become foragers. The latter effect was tested using the proboscis extension reflex (PER) procedure. The same effects were also tested using a chemical pesticide, imidacloprid, as positive reference. The tested concentrations of Cry1Ab protein did not cause lethal effects on honey bees. However, honey bee feeding behaviour was affected when exposed to the highest concentration of Cry1Ab protein, with honey bees taking longer to imbibe the contaminated syrup. Moreover, honey bees exposed to 5000 ppb of Cry1Ab had disturbed learning performances. Honey bees continued to respond to a conditioned odour even in the absence of a food reward. Our results show that transgenic crops expressing Cry1Ab protein at 5000 ppb may affect food consumption or learning processes and thereby may impact honey bee foraging efficiency. The implications of these results are discussed in terms of risks of transgenic Bt crops for honey bees.

  14. Bumble Bee Fauna of Palouse Prairie: Survey of Native Bee Pollinators in a Fragmented Ecosystem

    PubMed Central

    Hatten, T. D.; Looney, C.; Strange, J. P.; Bosque-Pérez, N. A.

    2013-01-01

    Bumble bees, Bombus Latreille (Hymenoptera: Apidae:), are dominant pollinators in the northern hemisphere, providing important pollination services for commercial crops and innumerable wild plants. Nationwide declines in several bumble bee species and habitat losses in multiple ecosystems have raised concerns about conservation of this important group. In many regions, such as the Palouse Prairie, relatively little is known about bumble bee communities, despite their critical ecosystem functions. Pitfall trap surveys for ground beetles in Palouse prairie remnants conducted in 2002–2003 contained considerable by-catch of bumble bees. The effects of landscape context, remnant features, year, and season on bumble bee community composition were examined. Additionally, bees captured in 2002–2003 were compared with historic records for the region to assess changes in the presence of individual species. Ten species of bumble bee were captured, representing the majority of the species historically known from the region. Few detectable differences in bumble bee abundances were found among remnants. Community composition differed appreciably, however, based on season, landscape context, and elevation, resulting in different bee assemblages between western, low-lying remnants and eastern, higherelevation remnants. The results suggest that conservation of the still species-rich bumble bee fauna should take into account variability among prairie remnants, and further work is required to adequately explain bumble bee habitat associations on the Palouse. PMID:23902138

  15. Diet quantity influence phenotypic dimorphism during honey bee (Apis mellifera) caste determination

    USDA-ARS?s Scientific Manuscript database

    Queen and worker honey bees are genetically analogous, but morphologically and physiologically different. Nutritional differences in larval diets regulate caste determination. Our recent work indicates diet quantity has a strong influence on caste in honeybees, and that queen induction can occur in ...

  16. Native bees and plant pollination

    USGS Publications Warehouse

    Ginsberg, H.S.

    2004-01-01

    Bees are important pollinators, but evidence suggests that numbers of some species are declining. Decreases have been documented in the honey bee, Apis mellifera (which was introduced to North America), but there are no monitoring programs for the vast majority of native species, so we cannot be sure about the extent of this problem. Recent efforts to develop standardized protocols for bee sampling will help us collect the data needed to assess trends in bee populations. Unfortunately, diversity of bee life cycles and phenologies, and the large number of rare species, make it difficult to assess trends in bee faunas. Changes in bee populations can affect plant reproduction, which can influence plant population density and cover, thus potentially modifying horizontal and vertical structure of a community, microclimate near the ground, patterns of nitrogen deposition, etc. These potential effects of changes in pollination patterns have not been assessed in natural communities. Effects of management actions on bees and other pollinators should be considered in conservation planning.

  17. Honey bee surveillance: a tool for understanding and improving honey bee health.

    PubMed

    Lee, Kathleen; Steinhauer, Nathalie; Travis, Dominic A; Meixner, Marina D; Deen, John; vanEngelsdorp, Dennis

    2015-08-01

    Honey bee surveillance systems are increasingly used to characterize honey bee health and disease burdens of bees in different regions and/or over time. In addition to quantifying disease prevalence, surveillance systems can identify risk factors associated with colony morbidity and mortality. Surveillance systems are often observational, and prove particularly useful when searching for risk factors in real world complex systems. We review recent examples of surveillance systems with particular emphasis on how these efforts have helped increase our understanding of honey bee health. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Differential gene expression of the honey bee Apis mellifera associated with Varroa destructor infection

    PubMed Central

    Navajas, M; Migeon, A; Alaux, C; Martin-Magniette, ML; Robinson, GE; Evans, JD; Cros-Arteil, S; Crauser, D; Le Conte, Y

    2008-01-01

    Background The parasitic mite, Varroa destructor, is the most serious pest of the western honey bee, Apis mellifera, and has caused the death of millions of colonies worldwide. This mite reproduces in brood cells and parasitizes immature and adult bees. We investigated whether Varroa infestation induces changes in Apis mellifera gene expression, and whether there are genotypic differences that affect gene expression relevant to the bee's tolerance, as first steps toward unravelling mechanisms of host response and differences in susceptibility to Varroa parasitism. Results We explored the transcriptional response to mite parasitism in two genetic stocks of A. mellifera which differ in susceptibility to Varroa, comparing parasitized and non-parasitized full-sister pupae from both stocks. Bee expression profiles were analyzed using microarrays derived from honey bee ESTs whose annotation has recently been enhanced by results from the honey bee genome sequence. We measured differences in gene expression in two colonies of Varroa-susceptible and two colonies of Varroa-tolerant bees. We identified a set of 148 genes with significantly different patterns of expression: 32 varied with the presence of Varroa, 116 varied with bee genotype, and 2 with both. Varroa parasitism caused changes in the expression of genes related to embryonic development, cell metabolism and immunity. Bees tolerant to Varroa were mainly characterized by differences in the expression of genes regulating neuronal development, neuronal sensitivity and olfaction. Differences in olfaction and sensitivity to stimuli are two parameters that could, at least in part, account for bee tolerance to Varroa; differences in olfaction may be related to increased grooming and hygienic behavior, important behaviors known to be involved in Varroa tolerance. Conclusion These results suggest that differences in behavior, rather than in the immune system, underlie Varroa tolerance in honey bees, and give an indication

  19. Differential gene expression of the honey bee Apis mellifera associated with Varroa destructor infection.

    PubMed

    Navajas, M; Migeon, A; Alaux, C; Martin-Magniette, Ml; Robinson, Ge; Evans, Jd; Cros-Arteil, S; Crauser, D; Le Conte, Y

    2008-06-25

    The parasitic mite, Varroa destructor, is the most serious pest of the western honey bee, Apis mellifera, and has caused the death of millions of colonies worldwide. This mite reproduces in brood cells and parasitizes immature and adult bees. We investigated whether Varroa infestation induces changes in Apis mellifera gene expression, and whether there are genotypic differences that affect gene expression relevant to the bee's tolerance, as first steps toward unravelling mechanisms of host response and differences in susceptibility to Varroa parasitism. We explored the transcriptional response to mite parasitism in two genetic stocks of A. mellifera which differ in susceptibility to Varroa, comparing parasitized and non-parasitized full-sister pupae from both stocks. Bee expression profiles were analyzed using microarrays derived from honey bee ESTs whose annotation has recently been enhanced by results from the honey bee genome sequence. We measured differences in gene expression in two colonies of Varroa-susceptible and two colonies of Varroa-tolerant bees. We identified a set of 148 genes with significantly different patterns of expression: 32 varied with the presence of Varroa, 116 varied with bee genotype, and 2 with both. Varroa parasitism caused changes in the expression of genes related to embryonic development, cell metabolism and immunity. Bees tolerant to Varroa were mainly characterized by differences in the expression of genes regulating neuronal development, neuronal sensitivity and olfaction. Differences in olfaction and sensitivity to stimuli are two parameters that could, at least in part, account for bee tolerance to Varroa; differences in olfaction may be related to increased grooming and hygienic behavior, important behaviors known to be involved in Varroa tolerance. These results suggest that differences in behavior, rather than in the immune system, underlie Varroa tolerance in honey bees, and give an indication of the specific physiological

  20. Winter Survival of Individual Honey Bees and Honey Bee Colonies Depends on Level of Varroa destructor Infestation

    PubMed Central

    van Dooremalen, Coby; Gerritsen, Lonne; Cornelissen, Bram; van der Steen, Jozef J. M.; van Langevelde, Frank; Blacquière, Tjeerd

    2012-01-01

    Background Recent elevated winter loss of honey bee colonies is a major concern. The presence of the mite Varroa destructor in colonies places an important pressure on bee health. V. destructor shortens the lifespan of individual bees, while long lifespan during winter is a primary requirement to survive until the next spring. We investigated in two subsequent years the effects of different levels of V. destructor infestation during the transition from short-lived summer bees to long-lived winter bees on the lifespan of individual bees and the survival of bee colonies during winter. Colonies treated earlier in the season to reduce V. destructor infestation during the development of winter bees were expected to have longer bee lifespan and higher colony survival after winter. Methodology/Principal Findings Mite infestation was reduced using acaricide treatments during different months (July, August, September, or not treated). We found that the number of capped brood cells decreased drastically between August and November, while at the same time, the lifespan of the bees (marked cohorts) increased indicating the transition to winter bees. Low V. destructor infestation levels before and during the transition to winter bees resulted in an increase in lifespan of bees and higher colony survival compared to colonies that were not treated and that had higher infestation levels. A variety of stress-related factors could have contributed to the variation in longevity and winter survival that we found between years. Conclusions/Significance This study contributes to theory about the multiple causes for the recent elevated colony losses in honey bees. Our study shows the correlation between long lifespan of winter bees and colony loss in spring. Moreover, we show that colonies treated earlier in the season had reduced V. destructor infestation during the development of winter bees resulting in longer bee lifespan and higher colony survival after winter. PMID:22558421

  1. Differential gene expression of two extreme honey bee (Apis mellifera) colonies showing varroa tolerance and susceptibility.

    PubMed

    Jiang, S; Robertson, T; Mostajeran, M; Robertson, A J; Qiu, X

    2016-06-01

    Varroa destructor, an ectoparasitic mite of honey bees (Apis mellifera), is the most serious pest threatening the apiculture industry. In our honey bee breeding programme, two honey bee colonies showing extreme phenotypes for varroa tolerance/resistance (S88) and susceptibility (G4) were identified by natural selection from a large gene pool over a 6-year period. To investigate potential defence mechanisms for honey bee tolerance to varroa infestation, we employed DNA microarray and real time quantitative (PCR) analyses to identify differentially expressed genes in the tolerant and susceptible colonies at pupa and adult stages. Our results showed that more differentially expressed genes were identified in the tolerant bees than in bees from the susceptible colony, indicating that the tolerant colony showed an increased genetic capacity to respond to varroa mite infestation. In both colonies, there were more differentially expressed genes identified at the pupa stage than at the adult stage, indicating that pupa bees are more responsive to varroa infestation than adult bees. Genes showing differential expression in the colony phenotypes were categorized into several groups based on their molecular functions, such as olfactory signalling, detoxification processes, exoskeleton formation, protein degradation and long-chain fatty acid metabolism, suggesting that these biological processes play roles in conferring varroa tolerance to naturally selected colonies. Identification of differentially expressed genes between the two colony phenotypes provides potential molecular markers for selecting and breeding varroa-tolerant honey bees. © 2016 The Royal Entomological Society.

  2. Sepsis and Hemocyte Loss in Honey Bees (Apis mellifera) Infected with Serratia marcescens Strain Sicaria.

    PubMed

    Burritt, Nancy L; Foss, Nicole J; Neeno-Eckwall, Eric C; Church, James O; Hilger, Anna M; Hildebrand, Jacob A; Warshauer, David M; Perna, Nicole T; Burritt, James B

    2016-01-01

    Global loss of honey bee colonies is threatening the human food supply. Diverse pathogens reduce honey bee hardiness needed to sustain colonies, especially in winter. We isolated a free-living Gram negative bacillus from hemolymph of worker honey bees (Apis mellifera) found separated from winter clusters. In some hives, greater than 90% of the dying bees detached from the winter cluster were found to contain this bacterium in their hemolymph. Throughout the year, the same organism was rarely found in bees engaged in normal hive activities, but was detected in about half of Varroa destructor mites obtained from colonies that housed the septic bees. Flow cytometry of hemolymph from septic bees showed a significant reduction of plasmatocytes and other types of hemocytes. Interpretation of the16S rRNA sequence of the bacterium indicated that it belongs to the Serratia genus of Gram-negative Gammaproteobacteria, which has not previously been implicated as a pathogen of adult honey bees. Complete genome sequence analysis of the bacterium supported its classification as a novel strain of Serratia marcescens, which was designated as S. marcescens strain sicaria (Ss1). When compared with other strains of S. marcescens, Ss1 demonstrated several phenotypic and genetic differences, including 65 genes not previously found in other Serratia genomes. Some of the unique genes we identified in Ss1 were related to those from bacterial insect pathogens and commensals. Recovery of this organism extends a complex pathosphere of agents which may contribute to failure of honey bee colonies.

  3. Sepsis and Hemocyte Loss in Honey Bees (Apis mellifera) Infected with Serratia marcescens Strain Sicaria

    PubMed Central

    Burritt, Nancy L.; Foss, Nicole J.; Neeno-Eckwall, Eric C.; Church, James O.; Hildebrand, Jacob A.; Warshauer, David M.; Perna, Nicole T.; Burritt, James B.

    2016-01-01

    Global loss of honey bee colonies is threatening the human food supply. Diverse pathogens reduce honey bee hardiness needed to sustain colonies, especially in winter. We isolated a free-living Gram negative bacillus from hemolymph of worker honey bees (Apis mellifera) found separated from winter clusters. In some hives, greater than 90% of the dying bees detached from the winter cluster were found to contain this bacterium in their hemolymph. Throughout the year, the same organism was rarely found in bees engaged in normal hive activities, but was detected in about half of Varroa destructor mites obtained from colonies that housed the septic bees. Flow cytometry of hemolymph from septic bees showed a significant reduction of plasmatocytes and other types of hemocytes. Interpretation of the16S rRNA sequence of the bacterium indicated that it belongs to the Serratia genus of Gram-negative Gammaproteobacteria, which has not previously been implicated as a pathogen of adult honey bees. Complete genome sequence analysis of the bacterium supported its classification as a novel strain of Serratia marcescens, which was designated as S. marcescens strain sicaria (Ss1). When compared with other strains of S. marcescens, Ss1 demonstrated several phenotypic and genetic differences, including 65 genes not previously found in other Serratia genomes. Some of the unique genes we identified in Ss1 were related to those from bacterial insect pathogens and commensals. Recovery of this organism extends a complex pathosphere of agents which may contribute to failure of honey bee colonies. PMID:28002470

  4. Genetic Differentiation in the Stingless Bee, Scaptotrigona xanthotricha Moure, 1950 (Apidae, Meliponini): a Species with Wide Geographic Distribution in the Atlantic Rainforest.

    PubMed

    Duarte, Olívia M P; Gaiotto, Fernanda A; Costa, Marco A

    2014-01-01

    Stingless bees are important pollinators that are severely threatened by anthropic interference, resulting in a strong population decline. Scaptotrigona xanthotricha has a wide distribution in the Atlantic Rainforest, ranging from the northeastern state of Bahia to Santa Catarina in southern Brazil. To understand the genetic structure of S. xanthotricha, 12 species-specific microsatellite loci were analyzed in 42 colonies sampled throughout the species range. The results indicated 5 distinct clusters throughout the sampled area with high rates of genetic diversity, and the greatest diversity was found in southern Bahia. Greater differentiation was observed between samples from the extremes of the distribution, with an F ST value of 0.189 between cluster 1 and 5. The genetic differentiation analysis for all loci had an F ST value of 0.113, a result that is consistent with the analysis of molecular variance, which revealed 7.72% of the variation occurring between groups. The Mantel correlation between a genetic differentiation matrix and a geographic distance matrix (r = 0.184, P = 0.043) indicated a tendency toward increased differentiation with increased distance. This study revealed the profile of differentiation and distribution of genetic diversity in this species and indicates parameters that should be considered in future taxonomic revisions and activities for its management and conservation. © The American Genetic Association 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Climate-associated phenological advances in bee pollinators and bee-pollinated plants.

    PubMed

    Bartomeus, Ignasi; Ascher, John S; Wagner, David; Danforth, Bryan N; Colla, Sheila; Kornbluth, Sarah; Winfree, Rachael

    2011-12-20

    The phenology of many ecological processes is modulated by temperature, making them potentially sensitive to climate change. Mutualistic interactions may be especially vulnerable because of the potential for phenological mismatching if the species involved do not respond similarly to changes in temperature. Here we present an analysis of climate-associated shifts in the phenology of wild bees, the most important pollinators worldwide, and compare these shifts to published studies of bee-pollinated plants over the same time period. We report that over the past 130 y, the phenology of 10 bee species from northeastern North America has advanced by a mean of 10.4 ± 1.3 d. Most of this advance has taken place since 1970, paralleling global temperature increases. When the best available data are used to estimate analogous rates of advance for plants, these rates are not distinguishable from those of bees, suggesting that bee emergence is keeping pace with shifts in host-plant flowering, at least among the generalist species that we investigated.

  6. Genetic ablation or pharmacological blockade of dipeptidyl peptidase IV does not impact T cell-dependent immune responses

    PubMed Central

    Vora, Kalpit A; Porter, Gene; Peng, Roche; Cui, Yan; Pryor, Kellyann; Eiermann, George; Zaller, Dennis M

    2009-01-01

    Background Current literature suggests that dipeptidyl peptidase IV (DPP-IV; CD26) plays an essential role in T-dependent immune responses, a role that could have important clinical consequences. To rigorously define the role of DPP-IV in the immune system, we evaluated genetic and pharmacological inhibition of the enzyme on T-dependent immune responses in vivo. Results The DPP-IV null animals mounted robust primary and secondary antibody responses to the T dependent antigens, 4-hydroxy-3-nitrophenylacetyl-ovalbumin (NP-Ova) and 4-hydroxy-3-nitrophenylacetyl-chicken gamma globulin (NP-CGG), which were comparable to wild type mice. Serum levels of antigen specific IgM, IgG1, IgG2a, IgG2b and IgG3 were similar between the two groups of animals. DPP-IV null animals mounted an efficient germinal center reaction by day 10 after antigen stimulation that was comparable to wild type mice. Moreover, the antibodies produced by DPP-IV null animals after repeated antigenic challenge were affinity matured. Similar observations were made using wild type animals treated with a highly selective DPP-IV inhibitor during the entire course of the experiments. T cell recall responses to ovalbumin and MOG peptide, evaluated by measuring proliferation and IL-2 release from cells isolated from draining lymph nodes, were equivalent in DPP-IV null and wild type animals. Furthermore, mice treated with DPP-IV inhibitor had intact T-cell recall responses to MOG peptide. In addition, female DPP-IV null and wild type mice treated with DPP-IV inhibitor exhibited normal and robust in vivo cytotoxic T cell responses after challenge with cells expressing the male H-Y minor histocompatibility antigen. Conclusion These data indicate Selective inhibition of DPP-IV does not impair T dependent immune responses to antigenic challenge. PMID:19358731

  7. Why do leafcutter bees cut leaves? New insights into the early evolution of bees.

    PubMed

    Litman, Jessica R; Danforth, Bryan N; Eardley, Connal D; Praz, Christophe J

    2011-12-07

    Stark contrasts in clade species diversity are reported across the tree of life and are especially conspicuous when observed in closely related lineages. The explanation for such disparity has often been attributed to the evolution of key innovations that facilitate colonization of new ecological niches. The factors underlying diversification in bees remain poorly explored. Bees are thought to have originated from apoid wasps during the Mid-Cretaceous, a period that coincides with the appearance of angiosperm eudicot pollen grains in the fossil record. The reliance of bees on angiosperm pollen and their fundamental role as angiosperm pollinators have contributed to the idea that both groups may have undergone simultaneous radiations. We demonstrate that one key innovation--the inclusion of foreign material in nest construction--underlies both a massive range expansion and a significant increase in the rate of diversification within the second largest bee family, Megachilidae. Basal clades within the family are restricted to deserts and exhibit plesiomorphic features rarely observed among modern bees, but prevalent among apoid wasps. Our results suggest that early bees inherited a suite of behavioural traits that acted as powerful evolutionary constraints. While the transition to pollen as a larval food source opened an enormous ecological niche for the early bees, the exploitation of this niche and the subsequent diversification of bees only became possible after bees had evolved adaptations to overcome these constraints.

  8. Genetic organization of the unc-22 IV gene and the adjacent region in Caenorhabditis elegans.

    PubMed

    Rogalski, T M; Baillie, D L

    1985-01-01

    The genetic organization of the region immediately adjacent to the unc-22 IV gene in Caenorhabditis elegans has been studied. We have identified twenty essential genes in this interval of approximately 1.5-map units on Linkage Group IV. The mutations that define these genes were positioned by recombination mapping and complementation with several deficiencies. With few exceptions, the positions obtained by these two methods agreed. Eight of the twenty essential genes identified are represented by more than one allele. Three possible internal deletions of the unc-22 gene have been located by intra-genic mapping. In addition, the right end point of a deficiency or an inversion affecting the adjacent genes let-56 and unc-22 has been positioned inside the unc-22 gene.

  9. Bee sting allergy in beekeepers.

    PubMed

    Eich-Wanger, C; Müller, U R

    1998-10-01

    Beekeepers are strongly exposed to honey bee stings and therefore at an increased risk to develop IgE-mediated allergy to bee venom. We wondered whether bee venom-allergic beekeepers were different from normally exposed bee venom-allergic patients with regard to clinical and immunological parameters as well as their response to venom immunotherapy. Among the 459 bee venom-allergic patients seen over the 5 year period 1987-91, 62 (14%) were beekeepers and 44 (10%) family members of beekeepers. These two groups were compared with 101 normally exposed bee venom-allergic patients matched with the allergic beekeepers for age and sex, regarding clinical parameters, skin sensitivity, specific IgE and IgG antibodies to bee venom as well as safety and efficacy of venom immunotherapy. As expected, allergic beekeepers had been stung most frequently before the first allergic reaction. The three groups showed a similar severity of allergic symptoms following bee stings and had an equal incidence of atopic diseases. Allergic beekeepers showed higher levels of bee venom-specific serum IgG, lower skin sensitivity and lower levels of bee venom specific serum IgE than bee venom-allergic control patients. A negative correlation between number of stings and skin sensitivity as well as specific IgE was found in allergic beekeepers and their family members, while the number of stings was positively correlated with specific IgG in these two groups. Venom immunotherapy was equally effective in the three groups, but better tolerated by allergic beekeepers than the two other groups. The majority of allergic beekeepers continued bee-keeping successfully under the protection of venom immunotherapy. The lower level of sensitivity in diagnostic tests and the better tolerance of immunotherapy in allergic beekeepers is most likely related to the high level of specific IgG in this group.

  10. A cell line resource derived from honey bee (Apis mellifera) embryonic tissues.

    PubMed

    Goblirsch, Michael J; Spivak, Marla S; Kurtti, Timothy J

    2013-01-01

    A major hindrance to the study of honey bee pathogens or the effects of pesticides and nutritional deficiencies is the lack of controlled in vitro culture systems comprised of honey bee cells. Such systems are important to determine the impact of these stress factors on the developmental and cell biology of honey bees. We have developed a method incorporating established insect cell culture techniques that supports sustained growth of honey bee cells in vitro. We used honey bee eggs mid to late in their embryogenesis to establish primary cultures, as these eggs contain cells that are progressively dividing. Primary cultures were initiated in modified Leibovitz's L15 medium and incubated at 32(°)C. Serial transfer of material from several primary cultures was maintained and has led to the isolation of young cell lines. A cell line (AmE-711) has been established that is composed mainly of fibroblast-type cells that form an adherent monolayer. Most cells in the line are diploid (2n = 32) and have the Apis mellifera karyotype as revealed by Giemsa stain. The partial sequence for the mitochondrial-encoded cytochrome c oxidase subunit I (Cox 1) gene in the cell line is identical to those from honey bee tissues and a consensus sequence for A. mellifera. The population doubling time is approximately 4 days. Importantly, the cell line is continuously subcultured every 10-14 days when split at a 1:3 ratio and is cryopreserved in liquid nitrogen. The cell culture system we have developed has potential application for studies aimed at honey bee development, genetics, pathogenesis, transgenesis, and toxicology.

  11. The behavior and social communication of honey bees (Apis mellifera carnica Poll.) under the influence of alcohol.

    PubMed

    Mixson, T Andrew; Abramson, Charles I; Bozic, Janko

    2010-06-01

    In this study, the effects of ethanol on honey bee social communication and behavior within the hive were studied to further investigate the usefulness of honey bees as an ethanol-abuse model. Control (1.5 M sucrose) and experimental (1.5 M sucrose, 2.5% w/v ethanol) solutions were directly administered to individual forager bees via proboscis contact with glass capillary tubes. The duration, frequency, and proportion of time spent performing social and nonsocial behaviors were the dependent variables of interest. No differences in the relative frequency or proportion of time spent performing the target behaviors were observed. However, ethanol consumption significantly decreased bouts of walking, resting, and the duration of trophallactic (i.e., food-exchange) encounters. The results of this study suggest that a low dose of ethanol is sufficient to disrupt both social and nonsocial behaviors in honey bees. In view of these results, future behavioral-genetic investigations of honey bee social behavior are encouraged.

  12. Myosins and DYNLL1/LC8 in the honey bee (Apis mellifera L.) brain.

    PubMed

    Calábria, Luciana Karen; Peixoto, Pablo Marco Veras; Passos Lima, Andreia Barcelos; Peixoto, Leonardo Gomes; de Moraes, Viviane Rodrigues Alves; Teixeira, Renata Roland; Dos Santos, Claudia Tavares; E Silva, Letícia Oliveira; da Silva, Maria de Fátima Rodrigues; dos Santos, Ana Alice Diniz; Garcia-Cairasco, Norberto; Martins, Antônio Roberto; Espreafico, Enilza Maria; Espindola, Foued Salmen

    2011-09-01

    Honey bees have brain structures with specialized and developed systems of communication that account for memory, learning capacity and behavioral organization with a set of genes homologous to vertebrate genes. Many microtubule- and actin-based molecular motors are involved in axonal/dendritic transport. Myosin-Va is present in the honey bee Apis mellifera nervous system of the larvae and adult castes and subcastes. DYNLL1/LC8 and myosin-IIb, -VI and -IXb have also been detected in the adult brain. SNARE proteins, such as CaMKII, clathrin, syntaxin, SNAP25, munc18, synaptophysin and synaptotagmin, are also expressed in the honey bee brain. Honey bee myosin-Va displayed ATP-dependent solubility and was associated with DYNLL1/LC8 and SNARE proteins in the membrane vesicle-enriched fraction. Myosin-Va expression was also decreased after the intracerebral injection of melittin and NMDA. The immunolocalization of myosin-Va and -IV, DYNLL1/LC8, and synaptophysin in mushroom bodies, and optical and antennal lobes was compared with the brain morphology based on Neo-Timm histochemistry and revealed a distinct and punctate distribution. This result suggested that the pattern of localization is associated with neuron function. Therefore, our data indicated that the roles of myosins, DYNLL1/LC8, and SNARE proteins in the nervous and visual systems of honey bees should be further studied under different developmental, caste and behavioral conditions. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Divergence in male sexual odor signal and genetics across populations of the red mason bee, Osmia bicornis, in Europe.

    PubMed

    Conrad, Taina; Paxton, Robert J; Assum, Günter; Ayasse, Manfred

    2018-01-01

    In some insect species, females may base their choice for a suitable mate on male odor. In the red mason bee, Osmia bicornis, female choice is based on a male's odor bouquet as well as its thorax vibrations, and its relatedness to the female, a putative form of optimal outbreeding. Interestingly, O. bicornis can be found as two distinct color morphs in Europe, which are thought to represent subspecies and between which we hypothesize that female discrimination may be particularly marked. Here we investigated (i) if these two colors morphs do indeed represent distinct, reproductively differentiated populations, (ii) how odor bouquets of male O. bicornis vary within and between populations, and (iii) whether variation in male odor correlates with genetic distance, which might represent a cue by which females could optimally outbreed. Using GC and GC-MS analysis of male odors and microsatellite analysis of males and females from 9 populations, we show that, in Denmark, an area of subspecies sympatry, the two color morphs at any one site do not differ, either in odor bouquet or in population genetic differentiation. Yet populations across Europe are distinct in their odor profile as well as being genetically differentiated. Odor differences do not, however, mirror genetic differentiation between populations. We hypothesize that populations from Germany, England and Denmark may be under sexual selection through female choice for local odor profiles, which are not related to color morph though which could ultimately lead to population divergence and speciation.

  14. Live bee acupuncture (Bong-Chim) dermatitis: dermatitis due to live bee acupuncture therapy in Korea.

    PubMed

    Park, Joon Soo; Lee, Min Jung; Chung, Ki Hun; Ko, Dong Kyun; Chung, Hyun

    2013-12-01

    Live bee acupuncture (Bong-Chim) dermatitis is an iatrogenic disease induced by so-called live bee acupuncture therapy, which applies the honeybee (Apis cerana) stinger directly into the lesion to treat various diseases in Korea. We present two cases of live bee acupuncture dermatitis and review previously published articles about this disease. We classify this entity into three stages: acute, subacute, and chronic. The acute stage is an inflammatory reaction, such as anaphylaxis or urticaria. In the chronic stage, a foreign body granuloma may develop from the remaining stingers, similar to that of a bee sting reaction. However, in the subacute stage, unlike bee stings, we see the characteristic histological "flame" figures resulting from eosinophilic stimulation induced by excessive bee venom exposure. We consider this stage to be different from the adverse skin reaction of accidental bee sting. © 2013 The International Society of Dermatology.

  15. Solitary invasive orchid bee outperforms co-occurring native bees to promote fruit set of an invasive Solanum.

    PubMed

    Liu, Hong; Pemberton, Robert W

    2009-03-01

    Our understanding of the effects of introduced invasive pollinators on plants has been exclusively drawn from studies on introduced social bees. One might expect, however, that the impacts of introduced solitary bees, with much lower population densities and fewer foragers, would be small. Yet little is known about the potential effects of naturalized solitary bees on the environment. We took advantage of the recent naturalization of an orchid bee, Euglossa viridissima, in southern Florida to study the effects of this solitary bee on reproduction of Solanum torvum, an invasive shrub. Flowers of S. torvum require specialized buzz pollination. Through timed floral visitor watches and two pollination treatments (control and pollen supplementation) at three forest edge and three open area sites, we found that the fruit set of S. torvum was pollen limited at the open sites where the native bees dominate, but was not pollen limited at the forest sites where the invasive orchid bees dominate. The orchid bee's pollination efficiency was nearly double that of the native halictid bees, and was also slightly higher than that of the native carpenter bee. Experiments using small and large mesh cages (to deny or allow E. viridissima access, respectively) at one forest site indicated that when the orchid bee was excluded, the flowers set one-quarter as many fruit as when the bee was allowed access. The orchid bee was the most important pollinator of the weed at the forest sites, which could pose additional challenges to the management of this weed in the fragmented, endangered tropical hardwood forests in the region. This specialized invasive mutualism may promote populations of both the orchid bee and this noxious weed. Invasive solitary bees, particularly species that are specialized pollinators, appear to have more importance than has previously been recognized.

  16. Paenibacillus larvae-Directed Bacteriophage HB10c2 and Its Application in American Foulbrood-Affected Honey Bee Larvae.

    PubMed

    Beims, Hannes; Wittmann, Johannes; Bunk, Boyke; Spröer, Cathrin; Rohde, Christine; Günther, Gabi; Rohde, Manfred; von der Ohe, Werner; Steinert, Michael

    2015-08-15

    Paenibacillus larvae is the causative agent of American foulbrood (AFB), the most serious honey bee brood bacterial disease. We isolated and characterized P. larvae-directed bacteriophages and developed criteria for safe phage therapy. Whole-genome analysis of a highly lytic virus of the family Siphoviridae (HB10c2) provided a detailed safety profile and uncovered its lysogenic nature and a putative beta-lactamase-like protein. To rate its antagonistic activity against the pathogens targeted and to specify potentially harmful effects on the bee population and the environment, P. larvae genotypes ERIC I to IV, representatives of the bee gut microbiota, and a broad panel of members of the order Bacillales were analyzed for phage HB10c2-induced lysis. Breeding assays with infected bee larvae revealed that the in vitro phage activity observed was not predictive of the real-life scenario and therapeutic efficacy. On the basis of the disclosed P. larvae-bacteriophage coevolution, we discuss the future prospects of AFB phage therapy. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  17. Climate-associated phenological advances in bee pollinators and bee-pollinated plants

    PubMed Central

    Bartomeus, Ignasi; Ascher, John S.; Wagner, David; Danforth, Bryan N.; Colla, Sheila; Kornbluth, Sarah; Winfree, Rachael

    2011-01-01

    The phenology of many ecological processes is modulated by temperature, making them potentially sensitive to climate change. Mutualistic interactions may be especially vulnerable because of the potential for phenological mismatching if the species involved do not respond similarly to changes in temperature. Here we present an analysis of climate-associated shifts in the phenology of wild bees, the most important pollinators worldwide, and compare these shifts to published studies of bee-pollinated plants over the same time period. We report that over the past 130 y, the phenology of 10 bee species from northeastern North America has advanced by a mean of 10.4 ± 1.3 d. Most of this advance has taken place since 1970, paralleling global temperature increases. When the best available data are used to estimate analogous rates of advance for plants, these rates are not distinguishable from those of bees, suggesting that bee emergence is keeping pace with shifts in host-plant flowering, at least among the generalist species that we investigated. PMID:22143794

  18. The conservation and restoration of wild bees.

    PubMed

    Winfree, Rachael

    2010-05-01

    Bees pollinate most of the world's wild plant species and provide economically valuable pollination services to crops; yet knowledge of bee conservation biology lags far behind other taxa such as vertebrates and plants. There are few long-term data on bee populations, which makes their conservation status difficult to assess. The best-studied groups are the genus Bombus (the bumble bees), and bees in the EU generally; both of these are clearly declining. However, it is not known to what extent these groups represent the approximately 20,000 species of bees globally. As is the case for insects in general, bees are underrepresented in conservation planning and protection efforts. For example, only two bee species are on the global IUCN Red List, and no bee is listed under the U.S. Endangered Species Act, even though many bee species are known to be in steep decline or possibly extinct. At present, bee restoration occurs mainly in agricultural contexts, funded by government programs such as agri-environment schemes (EU) and the Farm Bill (USA). This is a promising approach given that many bee species can use human-disturbed habitats, and bees provide valuable pollination services to crops. However, agricultural restorations only benefit species that persist in agricultural landscapes, and they are more expensive than preserving natural habitat elsewhere. Furthermore, such restorations benefit bees in only about half of studied cases. More research is greatly needed in many areas of bee conservation, including basic population biology, bee restoration in nonagricultural contexts, and the identification of disturbance-sensitive bee species.

  19. Mechanisms of increased lifespan in hypoxia in the alfalfa leafcutting bee, Megachile rotundata

    USDA-ARS?s Scientific Manuscript database

    Genetic variation accounts for a small amount of variation in lifespan, while environmental stressors are strong predictors. Hypoxia is an environmental stress that increases longevity in some contexts, but the mechanisms remain poorly understood. In the bee Megachile rotundata, lifespan doubles upo...

  20. Gut Pathology and Responses to the Microsporidium Nosema ceranae in the Honey Bee Apis mellifera

    PubMed Central

    Dussaubat, Claudia; Brunet, Jean-Luc; Higes, Mariano; Colbourne, John K.; Lopez, Jacqueline; Choi, Jeong-Hyeon; Martín-Hernández, Raquel; Botías, Cristina; Cousin, Marianne; McDonnell, Cynthia; Bonnet, Marc; Belzunces, Luc P.; Moritz, Robin F. A.; Le Conte, Yves; Alaux, Cédric

    2012-01-01

    The microsporidium Nosema ceranae is a newly prevalent parasite of the European honey bee (Apis mellifera). Although this parasite is presently spreading across the world into its novel host, the mechanisms by it which affects the bees and how bees respond are not well understood. We therefore performed an extensive characterization of the parasite effects at the molecular level by using genetic and biochemical tools. The transcriptome modifications at the midgut level were characterized seven days post-infection with tiling microarrays. Then we tested the bee midgut response to infection by measuring activity of antioxidant and detoxification enzymes (superoxide dismutases, glutathione peroxidases, glutathione reductase, and glutathione-S-transferase). At the gene-expression level, the bee midgut responded to N. ceranae infection by an increase in oxidative stress concurrent with the generation of antioxidant enzymes, defense and protective response specifically observed in the gut of mammals and insects. However, at the enzymatic level, the protective response was not confirmed, with only glutathione-S-transferase exhibiting a higher activity in infected bees. The oxidative stress was associated with a higher transcription of sugar transporter in the gut. Finally, a dramatic effect of the microsporidia infection was the inhibition of genes involved in the homeostasis and renewal of intestinal tissues (Wnt signaling pathway), a phenomenon that was confirmed at the histological level. This tissue degeneration and prevention of gut epithelium renewal may explain early bee death. In conclusion, our integrated approach not only gives new insights into the pathological effects of N. ceranae and the bee gut response, but also demonstrate that the honey bee gut is an interesting model system for studying host defense responses. PMID:22623972

  1. Gut pathology and responses to the microsporidium Nosema ceranae in the honey bee Apis mellifera.

    PubMed

    Dussaubat, Claudia; Brunet, Jean-Luc; Higes, Mariano; Colbourne, John K; Lopez, Jacqueline; Choi, Jeong-Hyeon; Martín-Hernández, Raquel; Botías, Cristina; Cousin, Marianne; McDonnell, Cynthia; Bonnet, Marc; Belzunces, Luc P; Moritz, Robin F A; Le Conte, Yves; Alaux, Cédric

    2012-01-01

    The microsporidium Nosema ceranae is a newly prevalent parasite of the European honey bee (Apis mellifera). Although this parasite is presently spreading across the world into its novel host, the mechanisms by it which affects the bees and how bees respond are not well understood. We therefore performed an extensive characterization of the parasite effects at the molecular level by using genetic and biochemical tools. The transcriptome modifications at the midgut level were characterized seven days post-infection with tiling microarrays. Then we tested the bee midgut response to infection by measuring activity of antioxidant and detoxification enzymes (superoxide dismutases, glutathione peroxidases, glutathione reductase, and glutathione-S-transferase). At the gene-expression level, the bee midgut responded to N. ceranae infection by an increase in oxidative stress concurrent with the generation of antioxidant enzymes, defense and protective response specifically observed in the gut of mammals and insects. However, at the enzymatic level, the protective response was not confirmed, with only glutathione-S-transferase exhibiting a higher activity in infected bees. The oxidative stress was associated with a higher transcription of sugar transporter in the gut. Finally, a dramatic effect of the microsporidia infection was the inhibition of genes involved in the homeostasis and renewal of intestinal tissues (Wnt signaling pathway), a phenomenon that was confirmed at the histological level. This tissue degeneration and prevention of gut epithelium renewal may explain early bee death. In conclusion, our integrated approach not only gives new insights into the pathological effects of N. ceranae and the bee gut response, but also demonstrate that the honey bee gut is an interesting model system for studying host defense responses.

  2. BeeDoctor, a Versatile MLPA-Based Diagnostic Tool for Screening Bee Viruses

    PubMed Central

    De Smet, Lina; Ravoet, Jorgen; de Miranda, Joachim R.; Wenseleers, Tom; Mueller, Matthias Y.; Moritz, Robin F. A.; de Graaf, Dirk C.

    2012-01-01

    The long-term decline of managed honeybee hives in the world has drawn significant attention to the scientific community and bee-keeping industry. A high pathogen load is believed to play a crucial role in this phenomenon, with the bee viruses being key players. Most of the currently characterized honeybee viruses (around twenty) are positive stranded RNA viruses. Techniques based on RNA signatures are widely used to determine the viral load in honeybee colonies. High throughput screening for viral loads necessitates the development of a multiplex polymerase chain reaction approach in which different viruses can be targeted simultaneously. A new multiparameter assay, called “BeeDoctor”, was developed based on multiplex-ligation probe dependent amplification (MLPA) technology. This assay detects 10 honeybee viruses in one reaction. “BeeDoctor” is also able to screen selectively for either the positive strand of the targeted RNA bee viruses or the negative strand, which is indicative for active viral replication. Due to its sensitivity and specificity, the MLPA assay is a useful tool for rapid diagnosis, pathogen characterization, and epidemiology of viruses in honeybee populations. “BeeDoctor” was used for screening 363 samples from apiaries located throughout Flanders; the northern half of Belgium. Using the “BeeDoctor”, virus infections were detected in almost eighty percent of the colonies, with deformed wing virus by far the most frequently detected virus and multiple virus infections were found in 26 percent of the colonies. PMID:23144717

  3. BeeDoctor, a versatile MLPA-based diagnostic tool for screening bee viruses.

    PubMed

    De Smet, Lina; Ravoet, Jorgen; de Miranda, Joachim R; Wenseleers, Tom; Mueller, Matthias Y; Moritz, Robin F A; de Graaf, Dirk C

    2012-01-01

    The long-term decline of managed honeybee hives in the world has drawn significant attention to the scientific community and bee-keeping industry. A high pathogen load is believed to play a crucial role in this phenomenon, with the bee viruses being key players. Most of the currently characterized honeybee viruses (around twenty) are positive stranded RNA viruses. Techniques based on RNA signatures are widely used to determine the viral load in honeybee colonies. High throughput screening for viral loads necessitates the development of a multiplex polymerase chain reaction approach in which different viruses can be targeted simultaneously. A new multiparameter assay, called "BeeDoctor", was developed based on multiplex-ligation probe dependent amplification (MLPA) technology. This assay detects 10 honeybee viruses in one reaction. "BeeDoctor" is also able to screen selectively for either the positive strand of the targeted RNA bee viruses or the negative strand, which is indicative for active viral replication. Due to its sensitivity and specificity, the MLPA assay is a useful tool for rapid diagnosis, pathogen characterization, and epidemiology of viruses in honeybee populations. "BeeDoctor" was used for screening 363 samples from apiaries located throughout Flanders; the northern half of Belgium. Using the "BeeDoctor", virus infections were detected in almost eighty percent of the colonies, with deformed wing virus by far the most frequently detected virus and multiple virus infections were found in 26 percent of the colonies.

  4. Holistic screening of collapsing honey bee colonies in Spain: a case study.

    PubMed

    Cepero, Almudena; Ravoet, Jorgen; Gómez-Moracho, Tamara; Bernal, José Luis; Del Nozal, Maria J; Bartolomé, Carolina; Maside, Xulio; Meana, Aránzazu; González-Porto, Amelia V; de Graaf, Dirk C; Martín-Hernández, Raquel; Higes, Mariano

    2014-09-15

    Here we present a holistic screening of collapsing colonies from three professional apiaries in Spain. Colonies with typical honey bee depopulation symptoms were selected for multiple possible factors to reveal the causes of collapse. Omnipresent were Nosema ceranae and Lake Sinai Virus. Moderate prevalences were found for Black Queen Cell Virus and trypanosomatids, whereas Deformed Wing Virus, Aphid Lethal Paralysis Virus strain Brookings and neogregarines were rarely detected. Other viruses, Nosema apis, Acarapis woodi and Varroa destructor were not detected. Palinologic study of pollen demonstrated that all colonies were foraging on wild vegetation. Consequently, the pesticide residue analysis was negative for neonicotinoids. The genetic analysis of trypanosomatids GAPDH gene, showed that there is a large genetic distance between Crithidia mellificae ATCC30254, an authenticated cell strain since 1974, and the rest of the presumed C. mellificae sequences obtained in our study or published. This means that the latter group corresponds to a highly differentiated taxon that should be renamed accordingly. The results of this study demonstrate that the drivers of colony collapse may differ between geographic regions with different environmental conditions, or with different beekeeping and agricultural practices. The role of other pathogens in colony collapse has to bee studied in future, especially trypanosomatids and neogregarines. Beside their pathological effect on honey bees, classification and taxonomy of these protozoan parasites should also be clarified.

  5. Male production in stingless bees: variable outcomes of queen-worker conflict.

    PubMed

    Tóth, Eva; Strassmann, Joan E; Nogueira-Neto, Paulo; Imperatriz-Fonseca, Vera L; Queller, David C

    2002-12-01

    The genetic structure of social insect colonies is predicted to affect the balance between cooperation and conflict. Stingless bees are of special interest in this respect because they are singly mated relatives of the multiply mated honeybees. Multiple mating is predicted to lead to workers policing each others' male production with the result that virtually all males are produced by the queen, and this prediction is borne out in honey bees. Single mating by the queen, as in stingless bees, causes workers to be more related to each others' sons than to the queen's sons, so they should not police each other. We used microsatellite markers to confirm single mating in eight species of stingless bees and then tested the prediction that workers would produce males. Using a likelihood method, we found some worker male production in six of the eight species, although queens produced some males in all of them. Thus the predicted contrast with honeybees is observed, but not perfectly, perhaps because workers either lack complete control or because of costs of conflict. The data are consistent with the view that there is ongoing conflict over male production. Our method of estimating worker male production appears to be more accurate than exclusion, which sometimes underestimates the proportion of males that are worker produced.

  6. Clinical and immunological surveys in bee keepers.

    PubMed

    Bousquet, J; Coulomb, Y; Robinet-Levy, M; Michel, F B

    1982-07-01

    Two hundred and fifty bee keepers in the South of France, working seasonally, were clinically investigated by means of a questionnaire. Forty-three per cent had presented anaphylactic symptoms and 7.0% toxic reactions when stung by bees. The personal atopic history was found to be significantly (P less than 0.01) elevated in bee keepers who experienced anaphylaxis. Total serum IgE and been venom-specific IgE were titrated in 100 subjects. Total serum IgE was significantly elevated in allergic bee keepers (P = 0.02). Although bee venom-specific IgE were significantly (P less than 0.01) higher in allergic bee keepers this parameter cannot discriminate between allergic and non-allergic bee keepers owing to a considerable overlap. Bee venom-specific IgG was assayed in seventy subjects. Their level was significantly (P less than 0.001) higher in allergic and non-allergic bee keepers as compared with non-allergic blood donors and non-bee-keeping allergic patients. In both bee keeper groups there was no difference in bee venom-specific IgG titres.

  7. Recipe for a Busy Bee: MicroRNAs in Honey Bee Caste Determination

    PubMed Central

    Skogerboe, Geir; Dai, Shuanjin; Li, Wenfeng; Li, Zhiguo; Liu, Fang; Ni, Ruifeng; Guo, Yu; Chen, Shenglu; Zhang, Shaowu; Chen, Runsheng

    2013-01-01

    Social caste determination in the honey bee is assumed to be determined by the dietary status of the young larvae and translated into physiological and epigenetic changes through nutrient-sensing pathways. We have employed Illumina/Solexa sequencing to examine the small RNA content in the bee larval food, and show that worker jelly is enriched in miRNA complexity and abundance relative to royal jelly. The miRNA levels in worker jelly were 7–215 fold higher than in royal jelly, and both jellies showed dynamic changes in miRNA content during the 4th to 6th day of larval development. Adding specific miRNAs to royal jelly elicited significant changes in queen larval mRNA expression and morphological characters of the emerging adult queen bee. We propose that miRNAs in the nurse bee secretions constitute an additional element in the regulatory control of caste determination in the honey bee. PMID:24349106

  8. Country-specific effects of neonicotinoid pesticides on honey bees and wild bees.

    PubMed

    Woodcock, B A; Bullock, J M; Shore, R F; Heard, M S; Pereira, M G; Redhead, J; Ridding, L; Dean, H; Sleep, D; Henrys, P; Peyton, J; Hulmes, S; Hulmes, L; Sárospataki, M; Saure, C; Edwards, M; Genersch, E; Knäbe, S; Pywell, R F

    2017-06-30

    Neonicotinoid seed dressings have caused concern world-wide. We use large field experiments to assess the effects of neonicotinoid-treated crops on three bee species across three countries (Hungary, Germany, and the United Kingdom). Winter-sown oilseed rape was grown commercially with either seed coatings containing neonicotinoids (clothianidin or thiamethoxam) or no seed treatment (control). For honey bees, we found both negative (Hungary and United Kingdom) and positive (Germany) effects during crop flowering. In Hungary, negative effects on honey bees (associated with clothianidin) persisted over winter and resulted in smaller colonies in the following spring (24% declines). In wild bees ( Bombus terrestris and Osmia bicornis ), reproduction was negatively correlated with neonicotinoid residues. These findings point to neonicotinoids causing a reduced capacity of bee species to establish new populations in the year following exposure. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  9. Field-level sublethal effects of approved bee hive chemicals on Honey Bees (Apis mellifera L).

    PubMed

    Berry, Jennifer A; Hood, W Michael; Pietravalle, Stéphane; Delaplane, Keith S

    2013-01-01

    In a study replicated across two states and two years, we tested the sublethal effects on honey bees of the miticides Apistan (tau fluvalinate) and Check Mite+ (coumaphos) and the wood preservative copper naphthenate applied at label rates in field conditions. A continuous covariate, a colony Varroa mite index, helped us disambiguate the effects of the chemicals on bees while adjusting for a presumed benefit of controlling mites. Mite levels in colonies treated with Apistan or Check Mite+ were not different from levels in non-treated controls. Experimental chemicals significantly decreased 3-day brood survivorship and increased construction of queen supercedure cells compared to non-treated controls. Bees exposed to Check Mite+ as immatures had higher legacy mortality as adults relative to non-treated controls, whereas bees exposed to Apistan had improved legacy mortality relative to non-treated controls. Relative to non-treated controls, Check Mite+ increased adult emergence weight. Although there was a treatment effect on a test of associative learning, it was not possible to statistically separate the treatment means, but bees treated with Apistan performed comparatively well. And finally, there were no detected effects of bee hive chemical on colony bee population, amount of brood, amount of honey, foraging rate, time required for marked released bees to return to their nest, percentage of released bees that return to the nest, and colony Nosema spore loads. To our knowledge, this is the first study to examine sublethal effects of bee hive chemicals applied at label rates under field conditions while disambiguating the results from mite control benefits realized from the chemicals. Given the poor performance of the miticides at reducing mites and their inconsistent effects on the host, these results defend the use of bee health management practices that minimize use of exotic hive chemicals.

  10. Field-Level Sublethal Effects of Approved Bee Hive Chemicals on Honey Bees (Apis mellifera L)

    PubMed Central

    Berry, Jennifer A.; Hood, W. Michael; Pietravalle, Stéphane; Delaplane, Keith S.

    2013-01-01

    In a study replicated across two states and two years, we tested the sublethal effects on honey bees of the miticides Apistan (tau fluvalinate) and Check Mite+ (coumaphos) and the wood preservative copper naphthenate applied at label rates in field conditions. A continuous covariate, a colony Varroa mite index, helped us disambiguate the effects of the chemicals on bees while adjusting for a presumed benefit of controlling mites. Mite levels in colonies treated with Apistan or Check Mite+ were not different from levels in non-treated controls. Experimental chemicals significantly decreased 3-day brood survivorship and increased construction of queen supercedure cells compared to non-treated controls. Bees exposed to Check Mite+ as immatures had higher legacy mortality as adults relative to non-treated controls, whereas bees exposed to Apistan had improved legacy mortality relative to non-treated controls. Relative to non-treated controls, Check Mite+ increased adult emergence weight. Although there was a treatment effect on a test of associative learning, it was not possible to statistically separate the treatment means, but bees treated with Apistan performed comparatively well. And finally, there were no detected effects of bee hive chemical on colony bee population, amount of brood, amount of honey, foraging rate, time required for marked released bees to return to their nest, percentage of released bees that return to the nest, and colony Nosema spore loads. To our knowledge, this is the first study to examine sublethal effects of bee hive chemicals applied at label rates under field conditions while disambiguating the results from mite control benefits realized from the chemicals. Given the poor performance of the miticides at reducing mites and their inconsistent effects on the host, these results defend the use of bee health management practices that minimize use of exotic hive chemicals. PMID:24204638

  11. Using Nonmetric Multidimensional Scaling to Analyze Bee Visitation in East Tennessee Crops as an Indicator of Pollination Services Provided by Honey Bees (Apis mellifera L.) and Native Bees.

    PubMed

    Wilson, Michael E; Skinner, John A; Wszelaki, Annette L; Drummond, Frank

    2016-04-01

    This study investigated bee visitation on 10 agricultural crops grown on diverse small farms in Tennessee to determine the abundance of native bees and honey bees and the partitioning of visitation among crops. Summaries for each crop are used to generate mean proportions of bee visitation by categories of bees. This shows that native bee visits often occur as frequently, or in greater proportions than non-native honey bee visits. Visitation across multiple crops is then analyzed together with nonmetric multidimensional scaling to show how communities of bees that provide crop pollination change depending on the crop. Within squash and pumpkin plantings, continuous and discrete factors, such as "time of day" and "organic practices," further explain shifts in the community composition of flower visitors. Results from this study show that native bees frequently visit flowers on various crops, indicating that they are likely contributing to pollination services in addition to honey bees. Furthermore, the community of bees visiting flowers changes based on crop type, phenology, and spatial-temporal factors. Results suggest that developing pollinator conservation for farms that grow a wide variety of crops will likely require multiple conservation strategies. Farms that concentrate on a single crop may be able to tailor conservation practices toward the most important bees in their system and geographic locale. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Inheritance of thelytoky in the honey bee Apis mellifera capensis

    PubMed Central

    Chapman, N C; Beekman, M; Allsopp, M H; Rinderer, T E; Lim, J; Oxley, P R; Oldroyd, B P

    2015-01-01

    Asexual reproduction via thelytokous parthenogenesis is widespread in the Hymenoptera, but its genetic underpinnings have been described only twice. In the wasp Lysiphlebus fabarum and the Cape honey bee Apis mellifera capensis the origin of thelytoky have each been traced to a single recessive locus. In the Cape honey bee it has been argued that thelytoky (th) controls the thelytoky phenotype and that a deletion of 9 bp in the flanking intron downstream of exon 5 (tae) of the gemini gene switches parthenogenesis from arrhenotoky to thelytoky. To further explore the mode of inheritance of thelytoky, we generated reciprocal backcrosses between thelytokous A. m. capensis and the arrhenotokous A. m. scutellata. Ten genetic markers were used to identify 108 thelytokously produced offspring and 225 arrhenotokously produced offspring from 14 colonies. Patterns of appearance of thelytokous parthenogenesis were inconsistent with a single locus, either th or tae, controlling thelytoky. We further show that the 9 bp deletion is present in the arrhenotokous A. m. scutellata population in South Africa, in A. m. intermissa in Morocco and in Africanized bees from Brazil and Texas, USA, where thelytoky has not been reported. Thus the 9 bp deletion cannot be the cause of thelytoky. Further, we found two novel tae alleles. One contains the previously described 9 bp deletion and an additional deletion of 7 bp nearby. The second carries a single base insertion with respect to the wild type. Our data are consistent with the putative th locus increasing reproductive capacity. PMID:25585920

  13. Transcriptional response of honey bee larvae infected with the bacterial pathogen Paenibacillus larvae

    USDA-ARS?s Scientific Manuscript database

    American foulbrood disease of honey bees is caused by the bacterium Paenibacillus larvae. Infection occurs per os in larvae and systemic infection requires a breaching of the host peritrophic matrix and midgut epithelium. Genetic variation exists for both bacterial virulence and host resistance, and...

  14. Optimization of Straight Cylindrical Turning Using Artificial Bee Colony (ABC) Algorithm

    NASA Astrophysics Data System (ADS)

    Prasanth, Rajanampalli Seshasai Srinivasa; Hans Raj, Kandikonda

    2017-04-01

    Artificial bee colony (ABC) algorithm, that mimics the intelligent foraging behavior of honey bees, is increasingly gaining acceptance in the field of process optimization, as it is capable of handling nonlinearity, complexity and uncertainty. Straight cylindrical turning is a complex and nonlinear machining process which involves the selection of appropriate cutting parameters that affect the quality of the workpiece. This paper presents the estimation of optimal cutting parameters of the straight cylindrical turning process using the ABC algorithm. The ABC algorithm is first tested on four benchmark problems of numerical optimization and its performance is compared with genetic algorithm (GA) and ant colony optimization (ACO) algorithm. Results indicate that, the rate of convergence of ABC algorithm is better than GA and ACO. Then, the ABC algorithm is used to predict optimal cutting parameters such as cutting speed, feed rate, depth of cut and tool nose radius to achieve good surface finish. Results indicate that, the ABC algorithm estimated a comparable surface finish when compared with real coded genetic algorithm and differential evolution algorithm.

  15. Population genomics reveals a candidate gene involved in bumble bee pigmentation.

    PubMed

    Pimsler, Meaghan L; Jackson, Jason M; Lozier, Jeffrey D

    2017-05-01

    Variation in bumble bee color patterns is well-documented within and between species. Identifying the genetic mechanisms underlying such variation may be useful in revealing evolutionary forces shaping rapid phenotypic diversification. The widespread North American species Bombus bifarius exhibits regional variation in abdominal color forms, ranging from red-banded to black-banded phenotypes and including geographically and phenotypically intermediate forms. Identifying genomic regions linked to this variation has been complicated by strong, near species level, genome-wide differentiation between red- and black-banded forms. Here, we instead focus on the closely related black-banded and intermediate forms that both belong to the subspecies B. bifarius nearcticus . We analyze an RNA sequencing (RNAseq) data set and identify a cluster of single nucleotide polymorphisms (SNPs) within one gene, Xanthine dehydrogenase/oxidase -like, that exhibit highly unusual differentiation compared to the rest of the sequenced genome. Homologs of this gene contribute to pigmentation in other insects, and results thus represent a strong candidate for investigating the genetic basis of pigment variation in B. bifarius and other bumble bee mimicry complexes.

  16. Sound: An Element Common to Communication of Stingless Bees and to Dances of the Honey Bee.

    PubMed

    Esch, H; Esch, I; Kerr, W E

    1965-07-16

    Sounds are an important part of the communication behavior, the so-called dances, of the honey bee. Stingless bees, which do not use dances for communication, use sound signals to indicate the existence and, in some cases, the distance of a feeding place. The social organization of communities of stingless bees is more primitive than that of honey bees, yet certain commonfeatures of communication behavior in these two groups lead to a new hypothesis of the evolution of dancing behavior of the honey bee.

  17. Chronic Bee Paralysis Virus and Nosema ceranae Experimental Co-Infection of Winter Honey Bee Workers (Apis mellifera L.)

    PubMed Central

    Toplak, Ivan; Jamnikar Ciglenečki, Urška; Aronstein, Katherine; Gregorc, Aleš

    2013-01-01

    Chronic bee paralysis virus (CBPV) is an important viral disease of adult bees which induces significant losses in honey bee colonies. Despite comprehensive research, only limited data is available from experimental infection for this virus. In the present study winter worker bees were experimentally infected in three different experiments. Bees were first inoculated per os (p/o) or per cuticle (p/c) with CBPV field strain M92/2010 in order to evaluate the virus replication in individual bees. In addition, potential synergistic effects of co-infection with CBPV and Nosema ceranae (N. ceranae) on bees were investigated. In total 558 individual bees were inoculated in small cages and data were analyzed using quantitative real time RT-PCR (RT-qPCR). Our results revealed successful replication of CBPV after p/o inoculation, while it was less effective when bees were inoculated p/c. Dead bees harbored about 1,000 times higher copy numbers of the virus than live bees. Co-infection of workers with CBPV and N. ceranae using either method of virus inoculation (p/c or p/o) showed increased replication ability for CBPV. In the third experiment the effect of inoculation on bee mortality was evaluated. The highest level of bee mortality was observed in a group of bees inoculated with CBPV p/o, followed by a group of workers simultaneously inoculated with CBPV and N. ceranae p/o, followed by the group inoculated with CBPV p/c and the group with only N. ceranae p/o. The experimental infection with CBPV showed important differences after p/o or p/c inoculation in winter bees, while simultaneous infection with CBPV and N. ceranae suggesting a synergistic effect after inoculation. PMID:24056674

  18. Nutrigenomics in honey bees: digital gene expression analysis of pollen's nutritive effects on healthy and varroa-parasitized bees

    PubMed Central

    2011-01-01

    Background Malnutrition is a major factor affecting animal health, resistance to disease and survival. In honey bees (Apis mellifera), pollen, which is the main dietary source of proteins, amino acids and lipids, is essential to adult bee physiological development while reducing their susceptibility to parasites and pathogens. However, the molecular mechanisms underlying pollen's nutritive impact on honey bee health remained to be determined. For that purpose, we investigated the influence of pollen nutrients on the transcriptome of worker bees parasitized by the mite Varroa destructor, known for suppressing immunity and decreasing lifespan. The 4 experimental groups (control bees without a pollen diet, control bees fed with pollen, varroa-parasitized bees without a pollen diet and varroa-parasitized bees fed with pollen) were analyzed by performing a digital gene expression (DGE) analysis on bee abdomens. Results Around 36, 000 unique tags were generated per DGE-tag library, which matched about 8, 000 genes (60% of the genes in the honey bee genome). Comparing the transcriptome of bees fed with pollen and sugar and bees restricted to a sugar diet, we found that pollen activates nutrient-sensing and metabolic pathways. In addition, those nutrients had a positive influence on genes affecting longevity and the production of some antimicrobial peptides. However, varroa parasitism caused the development of viral populations and a decrease in metabolism, specifically by inhibiting protein metabolism essential to bee health. This harmful effect was not reversed by pollen intake. Conclusions The DGE-tag profiling methods used in this study proved to be a powerful means for analyzing transcriptome variation related to nutrient intake in honey bees. Ultimately, with such an approach, applying genomics tools to nutrition research, nutrigenomics promises to offer a better understanding of how nutrition influences body homeostasis and may help reduce the susceptibility of bees

  19. Bees brought to their knees: Microbes affecting honey bee health

    USDA-ARS?s Scientific Manuscript database

    The biology and health of the honey bee, Apis mellifera, has been of interest to human societies since the advent of beekeeping. Descriptive scientific research on pathogens affecting honey bees have been published for nearly a century, but it wasn’t until the recent outbreak of heavy colony losses...

  20. Replication of honey bee-associated RNA viruses across multiple bee species in apple orchards of Georgia, Germany and Kyrgyzstan.

    PubMed

    Radzevičiūtė, Rita; Theodorou, Panagiotis; Husemann, Martin; Japoshvili, George; Kirkitadze, Giorgi; Zhusupbaeva, Aigul; Paxton, Robert J

    2017-06-01

    The essential ecosystem service of pollination is provided largely by insects, which are considered threatened by diverse biotic and abiotic global change pressures. RNA viruses are one such pressure, and have risen in prominence as a major threat for honey bees (Apis mellifera) and global apiculture, as well as a risk factor for other bee species through pathogen spill-over between managed honey bees and sympatric wild pollinator communities. Yet despite their potential role in global bee decline, the prevalence of honey bee-associated RNA viruses in wild bees is poorly known from both geographic and taxonomic perspectives. We screened members of pollinator communities (honey bees, bumble bees and other wild bees belonging to four families) collected from apple orchards in Georgia, Germany and Kyrgyzstan for six common honey bee-associated RNA virus complexes encompassing nine virus targets. The Deformed wing virus complex (DWV genotypes A and B) had the highest prevalence across all localities and host species and was the only virus complex found in wild bee species belonging to all four studied families. Based on amplification of negative-strand viral RNA, we found evidence for viral replication in wild bee species of DWV-A/DWV-B (hosts: Andrena haemorrhoa and several Bombus spp.) and Black queen cell virus (hosts: Anthophora plumipes, several Bombus spp., Osmia bicornis and Xylocopa spp.). Viral amplicon sequences revealed that DWV-A and DWV-B are regionally distinct but identical in two or more bee species at any one site, suggesting virus is shared amongst sympatric bee taxa. This study demonstrates that honey bee associated RNA viruses are geographically and taxonomically widespread, likely infective in wild bee species, and shared across bee taxa. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Pollination of tomatoes by the stingless bee Melipona quadrifasciata and the honey bee Apis mellifera (Hymenoptera, Apidae).

    PubMed

    dos Santos, S A Bispo; Roselino, A C; Hrncir, M; Bego, L R

    2009-06-30

    The pollination effectiveness of the stingless bee Melipona quadrifasciata and the honey bee Apis mellifera was tested in tomato plots. The experiment was conducted in four greenhouses as well as in an external open plot in Ribeirão Preto, SP, Brazil. The tomato plants were exposed to visits by M. quadrifasciata in one greenhouse and to A. mellifera in another; two greenhouses were maintained without bees (controls) and an open field plot was exposed to pollinators in an area where both honey bee and stingless bee colonies are abundant. We counted the number of tomatoes produced in each plot. Two hundred tomatoes from each plot were weighed, their vertical and transversal circumferences were measured, and the seeds were counted. We collected 253 Chrysomelidae, 17 Halictidae, one Paratrigona sp, and one honey bee from the flowers of the tomato plants in the open area. The largest number of fruits (1414 tomatoes), the heaviest and largest tomatoes, and the ones with the most seed were collected from the greenhouse with stingless bees. Fruits cultivated in the greenhouse with honey bees had the same weight and size as those produced in one of the control greenhouses. The stingless bee, M. quadrifasciata, was significantly more efficient than honey bees in pollinating greenhouse tomatoes.

  2. 7 CFR 322.29 - Dead bees.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 5 2012-01-01 2012-01-01 false Dead bees. 322.29 Section 322.29 Agriculture..., DEPARTMENT OF AGRICULTURE BEES, BEEKEEPING BYPRODUCTS, AND BEEKEEPING EQUIPMENT Importation and Transit of Restricted Articles § 322.29 Dead bees. (a) Dead bees imported into or transiting the United States must be...

  3. 7 CFR 322.29 - Dead bees.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 5 2013-01-01 2013-01-01 false Dead bees. 322.29 Section 322.29 Agriculture..., DEPARTMENT OF AGRICULTURE BEES, BEEKEEPING BYPRODUCTS, AND BEEKEEPING EQUIPMENT Importation and Transit of Restricted Articles § 322.29 Dead bees. (a) Dead bees imported into or transiting the United States must be...

  4. 7 CFR 322.29 - Dead bees.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Dead bees. 322.29 Section 322.29 Agriculture..., DEPARTMENT OF AGRICULTURE BEES, BEEKEEPING BYPRODUCTS, AND BEEKEEPING EQUIPMENT Importation and Transit of Restricted Articles § 322.29 Dead bees. (a) Dead bees imported into or transiting the United States must be...

  5. 7 CFR 322.29 - Dead bees.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 5 2011-01-01 2011-01-01 false Dead bees. 322.29 Section 322.29 Agriculture..., DEPARTMENT OF AGRICULTURE BEES, BEEKEEPING BYPRODUCTS, AND BEEKEEPING EQUIPMENT Importation and Transit of Restricted Articles § 322.29 Dead bees. (a) Dead bees imported into or transiting the United States must be...

  6. 7 CFR 322.29 - Dead bees.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 5 2014-01-01 2014-01-01 false Dead bees. 322.29 Section 322.29 Agriculture..., DEPARTMENT OF AGRICULTURE BEES, BEEKEEPING BYPRODUCTS, AND BEEKEEPING EQUIPMENT Importation and Transit of Restricted Articles § 322.29 Dead bees. (a) Dead bees imported into or transiting the United States must be...

  7. Hemichorea after multiple bee stings.

    PubMed

    An, Jin Young; Kim, Ji Seon; Min, Jin Hong; Han, Kyu Hong; Kang, Jun Ho; Lee, Suk Woo; Kim, Hoon; Park, Jung Soo

    2014-02-01

    Bee sting is one of the most commonly encountered insect bites in the world. Despite the common occurrence of local and systemic allergic reactions, there are few reports of ischemic stroke after bee stings. To the best our knowledge, there have been no reports on involuntary hyperkinetic movement disorders after multiple bee stings. We report the case of a 50-year-old man who developed involuntary movements of the left leg 24 hours after multiple bee stings, and the cause was confirmed to be a right temporal infarction on a diffusion magnetic resonance imaging scan. Thus, we concluded that the involuntary movement disorder was caused by right temporal infarction that occurred after multiple bee stings.

  8. Africanized bees extend their distribution in California.

    PubMed

    Lin, Wei; McBroome, Jakob; Rehman, Mahwish; Johnson, Brian R

    2018-01-01

    Africanized honey bees (Apis mellifera) arrived in the western hemisphere in the 1950s and quickly spread north reaching California in the 1990s. These bees are highly defensive and somewhat more difficult to manage for commercial purposes than the European honey bees traditionally kept. The arrival of these bees and their potentially replacing European bees over much of the state is thus of great concern. After a 25 year period of little systematic sampling, a recent small scale study found Africanized honey bees in the Bay Area of California, far north of their last recorded distribution. The purpose of the present study was to expand this study by conducting more intensive sampling of bees from across northern California. We found Africanized honey bees as far north as Napa and Sacramento. We also found Africanized bees in all counties south of these counties. Africanized honey bees were particularly abundant in parts of the central valley and Monterey. This work suggests the northern spread of Africanized honey bees may not have stopped. They may still be moving north at a slow rate, although due to the long gaps in sampling it is currently impossible to tell for certain. Future work should routinely monitor the distribution of these bees to distinguish between these two possibilities.

  9. Reproductive biology of Varroa destructor in Africanized honey bees (Apis mellifera).

    PubMed

    Calderón, R A; van Veen, J W; Sommeijer, M J; Sanchez, L A

    2010-04-01

    Since its first contact with Apis mellifera, the population dynamics of the parasitic mite Varroa destructor varies from one region to another. In many regions of the world, apiculture has come to depend on the use of acaricides, because of the extensive damage caused by varroa to bee colonies. At present, the mite is considered to contribute to the recent decline of honey bee colonies in North America and Europe. Because in tropical climates worker brood rearing and varroa reproduction occurs all year round, it could be expected that here the impact of the parasite will be even more devastating. Yet, this has not been the case in tropical areas of South America. In Brazil, varroa was introduced more than 30 years ago and got established at low levels of infestation, without causing apparent damage to apiculture with Africanized honey bees (AHB). The tolerance of AHB to varroa is apparently attributable, at least in part, to resistance in the bees. The low fertility of this parasite in Africanized worker brood and the grooming and hygienic behavior of the bees are referred as important factors in keeping mite infestation low in the colonies. It has also been suggested that the type of mite influences the level of tolerance in a honey bee population. The Korea haplotype is predominant in unbalanced host-parasite systems, as exist in Europe, whereas in stable systems, as in Brazil, the Japan haplotype used to predominate. However, the patterns of varroa genetic variation have changed in Brazil. All recently sampled mites were of the Korea haplotype, regardless whether the mites had reproduced or not. The fertile mites on AHB in Brazil significantly increased from 56% in the 1980s to 86% in recent years. Nevertheless, despite the increased fertility, no increase in mite infestation rates in the colonies has been detected so far. A comprehensive literature review of varroa reproduction data, focusing on fertility and production of viable female mites, was conducted to

  10. Do linden trees kill bees? Reviewing the causes of bee deaths on silver linden (Tilia tomentosa).

    PubMed

    Koch, Hauke; Stevenson, Philip C

    2017-09-01

    For decades, linden trees (basswoods or lime trees), and particularly silver linden ( Tilia tomentosa ), have been linked to mass bee deaths. This phenomenon is often attributed to the purported occurrence of the carbohydrate mannose, which is toxic to bees, in Tilia nectar. In this review, however, we conclude that from existing literature there is no experimental evidence for toxicity to bees in linden nectar. Bee deaths on Tilia probably result from starvation, owing to insufficient nectar resources late in the tree's flowering period. We recommend ensuring sufficient alternative food sources in cities during late summer to reduce bee deaths on silver linden. Silver linden metabolites such as floral volatiles, pollen chemistry and nectar secondary compounds remain underexplored, particularly their toxic or behavioural effects on bees. Some evidence for the presence of caffeine in linden nectar may mean that linden trees can chemically deceive foraging bees to make sub-optimal foraging decisions, in some cases leading to their starvation. © 2017 The Author(s).

  11. Native and Non-Native Supergeneralist Bee Species Have Different Effects on Plant-Bee Networks

    PubMed Central

    Giannini, Tereza C.; Garibaldi, Lucas A.; Acosta, Andre L.; Silva, Juliana S.; Maia, Kate P.; Saraiva, Antonio M.; Guimarães, Paulo R.; Kleinert, Astrid M. P.

    2015-01-01

    Supergeneralists, defined as species that interact with multiple groups of species in ecological networks, can act as important connectors of otherwise disconnected species subsets. In Brazil, there are two supergeneralist bees: the honeybee Apis mellifera, a non-native species, and Trigona spinipes, a native stingless bee. We compared the role of both species and the effect of geographic and local factors on networks by addressing three questions: 1) Do both species have similar abundance and interaction patterns (degree and strength) in plant-bee networks? 2) Are both species equally influential to the network structure (nestedness, connectance, and plant and bee niche overlap)? 3) How are these species affected by geographic (altitude, temperature, precipitation) and local (natural vs. disturbed habitat) factors? We analyzed 21 plant-bee weighted interaction networks, encompassing most of the main biomes in Brazil. We found no significant difference between both species in abundance, in the number of plant species with which each bee species interacts (degree), and in the sum of their dependencies (strength). Structural equation models revealed the effect of A. mellifera and T. spinipes, respectively, on the interaction network pattern (nestedness) and in the similarity in bee’s interactive partners (bee niche overlap). It is most likely that the recent invasion of A. mellifera resulted in its rapid settlement inside the core of species that retain the largest number of interactions, resulting in a strong influence on nestedness. However, the long-term interaction between native T. spinipes and other bees most likely has a more direct effect on their interactive behavior. Moreover, temperature negatively affected A. mellifera bees, whereas disturbed habitats positively affected T. spinipes. Conversely, precipitation showed no effect. Being positively (T. spinipes) or indifferently (A. mellifera) affected by disturbed habitats makes these species prone to

  12. Chalkbrood disease in honey bees

    USDA-ARS?s Scientific Manuscript database

    Chalkbrood is an invasive mycosis in honey bees (Apis mellifera L.) produced by Ascosphaera apis (Maassen ex Claussen) Olive and Spiltoir (Spiltoir, 1955) that exclusively affects bee brood. Although fatal to individual larvae, the disease does not usually destroy an entire bee colony. However, it c...

  13. Linking evolutionary lineage with parasite and pathogen prevalence in the Iberian honey bee.

    PubMed

    Jara, Laura; Cepero, Almudena; Garrido-Bailón, Encarna; Martín-Hernández, Raquel; Higes, Mariano; De la Rúa, Pilar

    2012-05-01

    The recent decline in honey bee colonies observed in both European countries and worldwide is of great interest and concern, although the underlying causes remain poorly understood. In recent years, growing evidence has implicated parasites and pathogens in this decline of both the vitality and number of honey bee colonies. The Iberian Peninsula provides an interesting environment in which to study the occurrence of pathogens and parasites in the host honey bee populations due to the presence of two evolutionary lineages in A. m. iberiensis (Western European [M] or African [A]). Here, we provide the first evidence linking the population structure of the Iberian honey bee with the prevalence of some of its most important parasites and pathogens: the Varroa destructor mite and the microsporidia Nosema apis and Nosema ceranae. Using data collected in two surveys conducted in 2006 and 2010 in 41 Spanish provinces, the evolutionary lineage and the presence of the three parasitic organisms cited above were analyzed in a total of 228 colonies. In 2006 N. apis was found in a significantly higher proportion of M lineage honey bees than in the A lineage. However, in 2010 this situation had changed significantly due to a higher prevalence of N. ceranae. We observed no significant relationships in either year between the distributions of V. destructor or N. ceranae and the evolutionary lineage present in A. m. iberiensis colonies, but the effects of these organisms on the genetic diversity of the honey bee populations need further research. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Special Issue: Honey Bee Viruses

    PubMed Central

    Gisder, Sebastian; Genersch, Elke

    2015-01-01

    Pollination of flowering plants is an important ecosystem service provided by wild insect pollinators and managed honey bees. Hence, losses and declines of pollinating insect species threaten human food security and are of major concern not only for apiculture or agriculture but for human society in general. Honey bee colony losses and bumblebee declines have attracted intensive research interest over the last decade and although the problem is far from being solved we now know that viruses are among the key players of many of these bee losses and bumblebee declines. With this special issue on bee viruses we, therefore, aimed to collect high quality original papers reflecting the current state of bee virus research. To this end, we focused on newly discovered viruses (Lake Sinai viruses, bee macula-like virus), or a so far neglected virus species (Apis mellifera filamentous virus), and cutting edge technologies (mass spectrometry, RNAi approach) applied in the field. PMID:26702462

  15. Special Issue: Honey Bee Viruses.

    PubMed

    Gisder, Sebastian; Genersch, Elke

    2015-10-01

    Pollination of flowering plants is an important ecosystem service provided by wild insect pollinators and managed honey bees. Hence, losses and declines of pollinating insect species threaten human food security and are of major concern not only for apiculture or agriculture but for human society in general. Honey bee colony losses and bumblebee declines have attracted intensive research interest over the last decade and although the problem is far from being solved we now know that viruses are among the key players of many of these bee losses and bumblebee declines. With this special issue on bee viruses we, therefore, aimed to collect high quality original papers reflecting the current state of bee virus research. To this end, we focused on newly discovered viruses (Lake Sinai viruses, bee macula-like virus), or a so far neglected virus species (Apis mellifera filamentous virus), and cutting edge technologies (mass spectrometry, RNAi approach) applied in the field.

  16. A hybrid artificial bee colony algorithm for numerical function optimization

    NASA Astrophysics Data System (ADS)

    Alqattan, Zakaria N.; Abdullah, Rosni

    2015-02-01

    Artificial Bee Colony (ABC) algorithm is one of the swarm intelligence algorithms; it has been introduced by Karaboga in 2005. It is a meta-heuristic optimization search algorithm inspired from the intelligent foraging behavior of the honey bees in nature. Its unique search process made it as one of the most competitive algorithm with some other search algorithms in the area of optimization, such as Genetic algorithm (GA) and Particle Swarm Optimization (PSO). However, the ABC performance of the local search process and the bee movement or the solution improvement equation still has some weaknesses. The ABC is good in avoiding trapping at the local optimum but it spends its time searching around unpromising random selected solutions. Inspired by the PSO, we propose a Hybrid Particle-movement ABC algorithm called HPABC, which adapts the particle movement process to improve the exploration of the original ABC algorithm. Numerical benchmark functions were used in order to experimentally test the HPABC algorithm. The results illustrate that the HPABC algorithm can outperform the ABC algorithm in most of the experiments (75% better in accuracy and over 3 times faster).

  17. Revisiting the Iberian honey bee (Apis mellifera iberiensis) contact zone: maternal and genome-wide nuclear variations provide support for secondary contact from historical refugia.

    PubMed

    Chávez-Galarza, Julio; Henriques, Dora; Johnston, J Spencer; Carneiro, Miguel; Rufino, José; Patton, John C; Pinto, M Alice

    2015-06-01

    Dissecting diversity patterns of organisms endemic to Iberia has been truly challenging for a variety of taxa, and the Iberian honey bee is no exception. Surveys of genetic variation in the Iberian honey bee are among the most extensive for any honey bee subspecies. From these, differential and complex patterns of diversity have emerged, which have yet to be fully resolved. Here, we used a genome-wide data set of 309 neutrally tested single nucleotide polymorphisms (SNPs), scattered across the 16 honey bee chromosomes, which were genotyped in 711 haploid males. These SNPs were analysed along with an intergenic locus of the mtDNA, to reveal historical patterns of population structure across the entire range of the Iberian honey bee. Overall, patterns of population structure inferred from nuclear loci by multiple clustering approaches and geographic cline analysis were consistent with two major clusters forming a well-defined cline that bisects Iberia along a northeastern-southwestern axis, a pattern that remarkably parallels that of the mtDNA. While a mechanism of primary intergradation or isolation by distance could explain the observed clinal variation, our results are more consistent with an alternative model of secondary contact between divergent populations previously isolated in glacial refugia, as proposed for a growing list of other Iberian taxa. Despite current intense honey bee management, human-mediated processes have seemingly played a minor role in shaping Iberian honey bee genetic structure. This study highlights the complexity of the Iberian honey bee patterns and reinforces the importance of Iberia as a reservoir of Apis mellifera diversity. © 2015 John Wiley & Sons Ltd.

  18. Bt Toxin Cry1Ie Causes No Negative Effects on Survival, Pollen Consumption, or Olfactory Learning in Worker Honey Bees (Hymenoptera: Apidae).

    PubMed

    Dai, Ping-Li; Jia, Hui-Ru; Geng, Li-Li; Diao, Qing-Yun

    2016-04-27

    The honey bee (Apis mellifera L.) is a key nontarget insect in environmental risk assessments of insect-resistant genetically modified crops. In controlled laboratory conditions, we evaluated the potential effects of Cry1Ie toxin on survival, pollen consumption, and olfactory learning of young adult honey bees. We exposed worker bees to syrup containing 20, 200, or 20,000 ng/ml Cry1Ie toxin, and also exposed some bees to 48 ng/ml imidacloprid as a positive control for exposure to a sublethal concentration of a toxic product. Results suggested that Cry1Ie toxin carries no risk to survival, pollen consumption, or learning capabilities of young adult honey bees. However, during oral exposure to the imidacloprid treatments, honey bee learning behavior was affected and bees consumed significantly less pollen than the control and Cry1Ie groups. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Colonies of Bumble Bees (Bombus impatiens) Produce Fewer Workers, Less Bee Biomass, and Have Smaller Mother Queens Following Fungicide Exposure.

    PubMed

    Bernauer, Olivia M; Gaines-Day, Hannah R; Steffan, Shawn A

    2015-06-01

    Bees provide vital pollination services to the majority of flowering plants in both natural and agricultural systems. Unfortunately, both native and managed bee populations are experiencing declines, threatening the persistence of these plants and crops. Agricultural chemicals are one possible culprit contributing to bee declines. Even fungicides, generally considered safe for bees, have been shown to disrupt honey bee development and impair bumble bee behavior. Little is known, however, how fungicides may affect bumble bee colony growth. We conducted a controlled cage study to determine the effects of fungicide exposure on colonies of a native bumble bee species (Bombus impatiens). Colonies of B. impatiens were exposed to flowers treated with field-relevant levels of the fungicide chlorothalonil over the course of one month. Colony success was assessed by the number and biomass of larvae, pupae, and adult bumble bees. Bumble bee colonies exposed to fungicide produced fewer workers, lower total bee biomass, and had lighter mother queens than control colonies. Our results suggest that fungicides negatively affect the colony success of a native bumble bee species and that the use of fungicides during bloom has the potential to severely impact the success of native bumble bee populations foraging in agroecosystems.

  20. Genetically Engineered Yeast Expressing a Lytic Peptide from Bee Venom (Melittin) Kills Symbiotic Protozoa in the Gut of Formosan Subterranean Termites.

    PubMed

    Husseneder, Claudia; Donaldson, Jennifer R; Foil, Lane D

    2016-01-01

    The Formosan subterranean termite, Coptotermes formosanus Shiraki, is a costly invasive urban pest in warm and humid regions around the world. Feeding workers of the Formosan subterranean termite genetically engineered yeast strains that express synthetic protozoacidal lytic peptides has been shown to kill the cellulose digesting termite gut protozoa, which results in death of the termite colony. In this study, we tested if Melittin, a natural lytic peptide from bee venom, could be delivered into the termite gut via genetically engineered yeast and if the expressed Melittin killed termites via lysis of symbiotic protozoa in the gut of termite workers and/or destruction of the gut tissue itself. Melittin expressing yeast did kill protozoa in the termite gut within 56 days of exposure. The expressed Melittin weakened the gut but did not add a synergistic effect to the protozoacidal action by gut necrosis. While Melittin could be applied for termite control via killing the cellulose-digesting protozoa in the termite gut, it is unlikely to be useful as a standalone product to control insects that do not rely on symbiotic protozoa for survival.

  1. Acaricide, Fungicide and Drug Interactions in Honey Bees (Apis mellifera)

    PubMed Central

    Johnson, Reed M.; Dahlgren, Lizette; Siegfried, Blair D.; Ellis, Marion D.

    2013-01-01

    Background Chemical analysis shows that honey bees (Apis mellifera) and hive products contain many pesticides derived from various sources. The most abundant pesticides are acaricides applied by beekeepers to control Varroa destructor. Beekeepers also apply antimicrobial drugs to control bacterial and microsporidial diseases. Fungicides may enter the hive when applied to nearby flowering crops. Acaricides, antimicrobial drugs and fungicides are not highly toxic to bees alone, but in combination there is potential for heightened toxicity due to interactive effects. Methodology/Principal Findings Laboratory bioassays based on mortality rates in adult worker bees demonstrated interactive effects among acaricides, as well as between acaricides and antimicrobial drugs and between acaricides and fungicides. Toxicity of the acaricide tau-fluvalinate increased in combination with other acaricides and most other compounds tested (15 of 17) while amitraz toxicity was mostly unchanged (1 of 15). The sterol biosynthesis inhibiting (SBI) fungicide prochloraz elevated the toxicity of the acaricides tau-fluvalinate, coumaphos and fenpyroximate, likely through inhibition of detoxicative cytochrome P450 monooxygenase activity. Four other SBI fungicides increased the toxicity of tau-fluvalinate in a dose-dependent manner, although possible evidence of P450 induction was observed at the lowest fungicide doses. Non-transitive interactions between some acaricides were observed. Sublethal amitraz pre-treatment increased the toxicity of the three P450-detoxified acaricides, but amitraz toxicity was not changed by sublethal treatment with the same three acaricides. A two-fold change in the toxicity of tau-fluvalinate was observed between years, suggesting a possible change in the genetic composition of the bees tested. Conclusions/Significance Interactions with acaricides in honey bees are similar to drug interactions in other animals in that P450-mediated detoxication appears to play an

  2. Gene selection for cancer classification with the help of bees.

    PubMed

    Moosa, Johra Muhammad; Shakur, Rameen; Kaykobad, Mohammad; Rahman, Mohammad Sohel

    2016-08-10

    Development of biologically relevant models from gene expression data notably, microarray data has become a topic of great interest in the field of bioinformatics and clinical genetics and oncology. Only a small number of gene expression data compared to the total number of genes explored possess a significant correlation with a certain phenotype. Gene selection enables researchers to obtain substantial insight into the genetic nature of the disease and the mechanisms responsible for it. Besides improvement of the performance of cancer classification, it can also cut down the time and cost of medical diagnoses. This study presents a modified Artificial Bee Colony Algorithm (ABC) to select minimum number of genes that are deemed to be significant for cancer along with improvement of predictive accuracy. The search equation of ABC is believed to be good at exploration but poor at exploitation. To overcome this limitation we have modified the ABC algorithm by incorporating the concept of pheromones which is one of the major components of Ant Colony Optimization (ACO) algorithm and a new operation in which successive bees communicate to share their findings. The proposed algorithm is evaluated using a suite of ten publicly available datasets after the parameters are tuned scientifically with one of the datasets. Obtained results are compared to other works that used the same datasets. The performance of the proposed method is proved to be superior. The method presented in this paper can provide subset of genes leading to more accurate classification results while the number of selected genes is smaller. Additionally, the proposed modified Artificial Bee Colony Algorithm could conceivably be applied to problems in other areas as well.

  3. Flowers and Wild Megachilid Bees Share Microbes.

    PubMed

    McFrederick, Quinn S; Thomas, Jason M; Neff, John L; Vuong, Hoang Q; Russell, Kaleigh A; Hale, Amanda R; Mueller, Ulrich G

    2017-01-01

    Transmission pathways have fundamental influence on microbial symbiont persistence and evolution. For example, the core gut microbiome of honey bees is transmitted socially and via hive surfaces, but some non-core bacteria associated with honey bees are also found on flowers, and these bacteria may therefore be transmitted indirectly between bees via flowers. Here, we test whether multiple flower and wild megachilid bee species share microbes, which would suggest that flowers may act as hubs of microbial transmission. We sampled the microbiomes of flowers (either bagged to exclude bees or open to allow bee visitation), adults, and larvae of seven megachilid bee species and their pollen provisions. We found a Lactobacillus operational taxonomic unit (OTU) in all samples but in the highest relative and absolute abundances in adult and larval bee guts and pollen provisions. The presence of the same bacterial types in open and bagged flowers, pollen provisions, and bees supports the hypothesis that flowers act as hubs of transmission of these bacteria between bees. The presence of bee-associated bacteria in flowers that have not been visited by bees suggests that these bacteria may also be transmitted to flowers via plant surfaces, the air, or minute insect vectors such as thrips. Phylogenetic analyses of nearly full-length 16S rRNA gene sequences indicated that the Lactobacillus OTU dominating in flower- and megachilid-associated microbiomes is monophyletic, and we propose the name Lactobacillus micheneri sp. nov. for this bacterium.

  4. Larva-mediated chalkbrood resistance-associated single nucleotide polymorphism markers in the honey bee Apis mellifera.

    PubMed

    Liu, Y; Yan, L; Li, Z; Huang, W-F; Pokhrel, S; Liu, X; Su, S

    2016-06-01

    Chalkbrood is a disease affecting honey bees that seriously impairs brood growth and productivity of diseased colonies. Although honey bees can develop chalkbrood resistance naturally, the details underlying the mechanisms of resistance are not fully understood, and no easy method is currently available for selecting and breeding resistant bees. Finding the genes involved in the development of resistance and identifying single nucleotide polymorphisms (SNPs) that can be used as molecular markers of resistance is therefore a high priority. We conducted genome resequencing to compare resistant (Res) and susceptible (Sus) larvae that were selected following in vitro chalkbrood inoculation. Twelve genomic libraries, including 14.4 Gb of sequence data, were analysed using SNP-finding algorithms. Unique SNPs derived from chromosomes 2 and 11 were analysed in this study. SNPs from resistant individuals were confirmed by PCR and Sanger sequencing using in vitro reared larvae and resistant colonies. We found strong support for an association between the C allele at SNP C2587245T and chalkbrood resistance. SNP C2587245T may be useful as a genetic marker for the selection of chalkbrood resistance and high royal jelly production honey bee lines, thereby helping to minimize the negative effects of chalkbrood on managed honey bees. © 2016 The Royal Entomological Society.

  5. Queens and Workers Contribute Differently to Adaptive Evolution in Bumble Bees and Honey Bees.

    PubMed

    Harpur, Brock A; Dey, Alivia; Albert, Jennifer R; Patel, Sani; Hines, Heather M; Hasselmann, Martin; Packer, Laurence; Zayed, Amro

    2017-09-01

    Eusociality represents a major transition in evolution and is typified by cooperative brood care and reproductive division of labor between generations. In bees, this division of labor allows queens and workers to phenotypically specialize. Worker traits associated with helping are thought to be crucial to the fitness of a eusocial lineage, and recent studies of honey bees (genus Apis) have found that adaptively evolving genes often have worker-biased expression patterns. It is unclear however if worker-biased genes are disproportionately acted on by strong positive selection in all eusocial insects. We undertook a comparative population genomics study of bumble bees (Bombus) and honey bees to quantify natural selection on queen- and worker-biased genes across two levels of social complexity. Despite sharing a common eusocial ancestor, genes, and gene groups with the highest levels of positive selection were often unique within each genus, indicating that life history and the environment, but not sociality per se, drives patterns of adaptive molecular evolution. We uncovered differences in the contribution of queen- and worker-biased genes to adaptive evolution in bumble bees versus honey bees. Unlike honey bees, where worker-biased genes are enriched for signs of adaptive evolution, genes experiencing positive selection in bumble bees were predominately expressed by reproductive foundresses during the initial solitary-founding stage of colonies. Our study suggests that solitary founding is a major selective pressure and that the loss of queen totipotency may cause a change in the architecture of selective pressures upon the social insect genome. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  6. Floral Resource Competition Between Honey Bees and Wild Bees: Is There Clear Evidence and Can We Guide Management and Conservation?

    PubMed

    Wojcik, Victoria A; Morandin, Lora A; Davies Adams, Laurie; Rourke, Kelly E

    2018-06-05

    Supporting managed honey bees by pasturing in natural landscapes has come under review due to concerns that honey bees could negatively impact the survival of wild bees through competition for floral resources. Critique and assessment of the existing body of published literature against our criteria focussing on studies that can support best management resulted in 19 experimental papers. Indirect measures of competition examining foraging patterns and behavior yielded equivocal results. Direct measures of reproduction and growth were investigated in only seven studies, with six indicating negative impacts to wild bees from the presence of managed honey bees. Three of these studies examined fitness impacts to BombusLatreille and all three indicated reduced growth or reduced reproductive output. Because there is a severe lack of literature, yet potential that honey bee presence could negatively impact wild bees, exemplified with bumble bee studies, we advocate for further research into the fitness impacts of competition between managed and wild pollinators. Conservative approaches should be taken with respect to pasturing honey bees on natural lands with sensitive bumble bee populations. Correspondingly, forage opportunities for honey bees in managed, agricultural landscapes, should be increased in an effort to reduce potential pressure and infringement on wild bee populations in natural areas.

  7. Transcriptional regulation of temperature stress response during development in the alfalfa leafcutting bee, Megachile rotundata

    USDA-ARS?s Scientific Manuscript database

    Insects can be significantly affected by temperature induced stress. While evidence of the physiological consequences of temperature stress is growing, very little is known about how insects respond at the genetic level to these stressors. The alfalfa leafcutting bee, Megachile rotundata, an emergin...

  8. The Bee Microbiome: Impact on Bee Health and Model for Evolution and Ecology of Host-Microbe Interactions

    PubMed Central

    Kwong, Waldan K.; McFrederick, Quinn; Anderson, Kirk E.; Barribeau, Seth Michael; Chandler, James Angus; Cornman, R. Scott; Dainat, Jacques; Doublet, Vincent; Emery, Olivier; Evans, Jay D.; Farinelli, Laurent; Flenniken, Michelle L.; Granberg, Fredrik; Grasis, Juris A.; Gauthier, Laurent; Hayer, Juliette; Koch, Hauke; Kocher, Sarah; Martinson, Vincent G.; Moran, Nancy; Munoz-Torres, Monica; Newton, Irene; Paxton, Robert J.; Powell, Eli; Sadd, Ben M.; Schmid-Hempel, Paul; Schmid-Hempel, Regula; Schwarz, Ryan S.; vanEngelsdorp, Dennis

    2016-01-01

    ABSTRACT As pollinators, bees are cornerstones for terrestrial ecosystem stability and key components in agricultural productivity. All animals, including bees, are associated with a diverse community of microbes, commonly referred to as the microbiome. The bee microbiome is likely to be a crucial factor affecting host health. However, with the exception of a few pathogens, the impacts of most members of the bee microbiome on host health are poorly understood. Further, the evolutionary and ecological forces that shape and change the microbiome are unclear. Here, we discuss recent progress in our understanding of the bee microbiome, and we present challenges associated with its investigation. We conclude that global coordination of research efforts is needed to fully understand the complex and highly dynamic nature of the interplay between the bee microbiome, its host, and the environment. High-throughput sequencing technologies are ideal for exploring complex biological systems, including host-microbe interactions. To maximize their value and to improve assessment of the factors affecting bee health, sequence data should be archived, curated, and analyzed in ways that promote the synthesis of different studies. To this end, the BeeBiome consortium aims to develop an online database which would provide reference sequences, archive metadata, and host analytical resources. The goal would be to support applied and fundamental research on bees and their associated microbes and to provide a collaborative framework for sharing primary data from different research programs, thus furthering our understanding of the bee microbiome and its impact on pollinator health. PMID:27118586

  9. The bee microbiome: Impact on bee health and model for evolution and ecology of host-microbe interactions

    USGS Publications Warehouse

    Engel, Philipp; Kwong, Waldan K.; McFrederick, Quinn; Anderson, Kirk E.; Barribeau, Seth Michael; Chandler, James Angus; Cornman, Robert S.; Dainat, Jacques; de Miranda, Joachim R.; Doublet, Vincent; Emery, Olivier; Evans, Jay D.; Farinelli, Laurent; Flenniken, Michelle L.; Granberg, Fredrik; Grasis, Juris A.; Gauthier, Laurent; Hayer, Juliette; Koch, Hauke; Kocher, Sarah; Martinson, Vincent G.; Moran, Nancy; Munoz-Torres, Monica; Newton, Irene; Paxton, Robert J.; Powell, Eli; Sadd, Ben M.; Schmid-Hempel, Paul; Schmid-Hempel, Regula; Song, Se Jin; Schwarz, Ryan S.; vanEngelsdorp, Dennis; Dainat, Benjamin

    2016-01-01

    As pollinators, bees are cornerstones for terrestrial ecosystem stability and key components in agricultural productivity. All animals, including bees, are associated with a diverse community of microbes, commonly referred to as the microbiome. The bee microbiome is likely to be a crucial factor affecting host health. However, with the exception of a few pathogens, the impacts of most members of the bee microbiome on host health are poorly understood. Further, the evolutionary and ecological forces that shape and change the microbiome are unclear. Here, we discuss recent progress in our understanding of the bee microbiome, and we present challenges associated with its investigation. We conclude that global coordination of research efforts is needed to fully understand the complex and highly dynamic nature of the interplay between the bee microbiome, its host, and the environment. High-throughput sequencing technologies are ideal for exploring complex biological systems, including host-microbe interactions. To maximize their value and to improve assessment of the factors affecting bee health, sequence data should be archived, curated, and analyzed in ways that promote the synthesis of different studies. To this end, the BeeBiome consortium aims to develop an online database which would provide reference sequences, archive metadata, and host analytical resources. The goal would be to support applied and fundamental research on bees and their associated microbes and to provide a collaborative framework for sharing primary data from different research programs, thus furthering our understanding of the bee microbiome and its impact on pollinator health.

  10. The Bee Microbiome: Impact on Bee Health and Model for Evolution and Ecology of Host-Microbe Interactions.

    PubMed

    Engel, Philipp; Kwong, Waldan K; McFrederick, Quinn; Anderson, Kirk E; Barribeau, Seth Michael; Chandler, James Angus; Cornman, R Scott; Dainat, Jacques; de Miranda, Joachim R; Doublet, Vincent; Emery, Olivier; Evans, Jay D; Farinelli, Laurent; Flenniken, Michelle L; Granberg, Fredrik; Grasis, Juris A; Gauthier, Laurent; Hayer, Juliette; Koch, Hauke; Kocher, Sarah; Martinson, Vincent G; Moran, Nancy; Munoz-Torres, Monica; Newton, Irene; Paxton, Robert J; Powell, Eli; Sadd, Ben M; Schmid-Hempel, Paul; Schmid-Hempel, Regula; Song, Se Jin; Schwarz, Ryan S; vanEngelsdorp, Dennis; Dainat, Benjamin

    2016-04-26

    As pollinators, bees are cornerstones for terrestrial ecosystem stability and key components in agricultural productivity. All animals, including bees, are associated with a diverse community of microbes, commonly referred to as the microbiome. The bee microbiome is likely to be a crucial factor affecting host health. However, with the exception of a few pathogens, the impacts of most members of the bee microbiome on host health are poorly understood. Further, the evolutionary and ecological forces that shape and change the microbiome are unclear. Here, we discuss recent progress in our understanding of the bee microbiome, and we present challenges associated with its investigation. We conclude that global coordination of research efforts is needed to fully understand the complex and highly dynamic nature of the interplay between the bee microbiome, its host, and the environment. High-throughput sequencing technologies are ideal for exploring complex biological systems, including host-microbe interactions. To maximize their value and to improve assessment of the factors affecting bee health, sequence data should be archived, curated, and analyzed in ways that promote the synthesis of different studies. To this end, the BeeBiome consortium aims to develop an online database which would provide reference sequences, archive metadata, and host analytical resources. The goal would be to support applied and fundamental research on bees and their associated microbes and to provide a collaborative framework for sharing primary data from different research programs, thus furthering our understanding of the bee microbiome and its impact on pollinator health. Copyright © 2016 Engel et al.

  11. Way-finding in displaced clock-shifted bees proves bees use a cognitive map.

    PubMed

    Cheeseman, James F; Millar, Craig D; Greggers, Uwe; Lehmann, Konstantin; Pawley, Matthew D M; Gallistel, Charles R; Warman, Guy R; Menzel, Randolf

    2014-06-17

    Mammals navigate by means of a metric cognitive map. Insects, most notably bees and ants, are also impressive navigators. The question whether they, too, have a metric cognitive map is important to cognitive science and neuroscience. Experimentally captured and displaced bees often depart from the release site in the compass direction they were bent on before their capture, even though this no longer heads them toward their goal. When they discover their error, however, the bees set off more or less directly toward their goal. This ability to orient toward a goal from an arbitrary point in the familiar environment is evidence that they have an integrated metric map of the experienced environment. We report a test of an alternative hypothesis, which is that all the bees have in memory is a collection of snapshots that enable them to recognize different landmarks and, associated with each such snapshot, a sun-compass-referenced home vector derived from dead reckoning done before and after previous visits to the landmark. We show that a large shift in the sun-compass rapidly induced by general anesthesia does not alter the accuracy or speed of the homeward-oriented flight made after the bees discover the error in their initial postrelease flight. This result rules out the sun-referenced home-vector hypothesis, further strengthening the now extensive evidence for a metric cognitive map in bees.

  12. Way-finding in displaced clock-shifted bees proves bees use a cognitive map

    PubMed Central

    Cheeseman, James F.; Millar, Craig D.; Greggers, Uwe; Lehmann, Konstantin; Pawley, Matthew D. M.; Gallistel, Charles R.; Warman, Guy R.; Menzel, Randolf

    2014-01-01

    Mammals navigate by means of a metric cognitive map. Insects, most notably bees and ants, are also impressive navigators. The question whether they, too, have a metric cognitive map is important to cognitive science and neuroscience. Experimentally captured and displaced bees often depart from the release site in the compass direction they were bent on before their capture, even though this no longer heads them toward their goal. When they discover their error, however, the bees set off more or less directly toward their goal. This ability to orient toward a goal from an arbitrary point in the familiar environment is evidence that they have an integrated metric map of the experienced environment. We report a test of an alternative hypothesis, which is that all the bees have in memory is a collection of snapshots that enable them to recognize different landmarks and, associated with each such snapshot, a sun-compass–referenced home vector derived from dead reckoning done before and after previous visits to the landmark. We show that a large shift in the sun-compass rapidly induced by general anesthesia does not alter the accuracy or speed of the homeward-oriented flight made after the bees discover the error in their initial postrelease flight. This result rules out the sun-referenced home-vector hypothesis, further strengthening the now extensive evidence for a metric cognitive map in bees. PMID:24889633

  13. Effect of Stacked Insecticidal Cry Proteins from Maize Pollen on Nurse Bees (Apis mellifera carnica) and Their Gut Bacteria

    PubMed Central

    Härtel, Stephan; Näther, Astrid; Dohrmann, Anja B.; Steffan-Dewenter, Ingolf; Tebbe, Christoph C.

    2013-01-01

    Honey bee pollination is a key ecosystem service to nature and agriculture. However, biosafety research on genetically modified crops rarely considers effects on nurse bees from intact colonies, even though they receive and primarily process the largest amount of pollen. The objective of this study was to analyze the response of nurse bees and their gut bacteria to pollen from Bt maize expressing three different insecticidal Cry proteins (Cry1A.105, Cry2Ab2, and Cry3Bb1). Naturally Cry proteins are produced by bacteria (Bacillus thuringiensis). Colonies of Apis mellifera carnica were kept during anthesis in flight cages on field plots with the Bt maize, two different conventionally bred maize varieties, and without cages, 1-km outside of the experimental maize field to allow ad libitum foraging to mixed pollen sources. During their 10-days life span, the consumption of Bt maize pollen had no effect on their survival rate, body weight and rates of pollen digestion compared to the conventional maize varieties. As indicated by ELISA-quantification of Cry1A.105 and Cry3Bb1, more than 98% of the recombinant proteins were degraded. Bacterial population sizes in the gut were not affected by the genetic modification. Bt-maize, conventional varieties and mixed pollen sources selected for significantly different bacterial communities which were, however, composed of the same dominant members, including Proteobacteria in the midgut and Lactobacillus sp. and Bifidobacterium sp. in the hindgut. Surprisingly, Cry proteins from natural sources, most likely B. thuringiensis, were detected in bees with no exposure to Bt maize. The natural occurrence of Cry proteins and the lack of detectable effects on nurse bees and their gut bacteria give no indication for harmful effects of this Bt maize on nurse honey bees. PMID:23533634

  14. Effect of stacked insecticidal Cry proteins from maize pollen on nurse bees (Apis mellifera carnica) and their gut bacteria.

    PubMed

    Hendriksma, Harmen P; Küting, Meike; Härtel, Stephan; Näther, Astrid; Dohrmann, Anja B; Steffan-Dewenter, Ingolf; Tebbe, Christoph C

    2013-01-01

    Honey bee pollination is a key ecosystem service to nature and agriculture. However, biosafety research on genetically modified crops rarely considers effects on nurse bees from intact colonies, even though they receive and primarily process the largest amount of pollen. The objective of this study was to analyze the response of nurse bees and their gut bacteria to pollen from Bt maize expressing three different insecticidal Cry proteins (Cry1A.105, Cry2Ab2, and Cry3Bb1). Naturally Cry proteins are produced by bacteria (Bacillus thuringiensis). Colonies of Apis mellifera carnica were kept during anthesis in flight cages on field plots with the Bt maize, two different conventionally bred maize varieties, and without cages, 1-km outside of the experimental maize field to allow ad libitum foraging to mixed pollen sources. During their 10-days life span, the consumption of Bt maize pollen had no effect on their survival rate, body weight and rates of pollen digestion compared to the conventional maize varieties. As indicated by ELISA-quantification of Cry1A.105 and Cry3Bb1, more than 98% of the recombinant proteins were degraded. Bacterial population sizes in the gut were not affected by the genetic modification. Bt-maize, conventional varieties and mixed pollen sources selected for significantly different bacterial communities which were, however, composed of the same dominant members, including Proteobacteria in the midgut and Lactobacillus sp. and Bifidobacterium sp. in the hindgut. Surprisingly, Cry proteins from natural sources, most likely B. thuringiensis, were detected in bees with no exposure to Bt maize. The natural occurrence of Cry proteins and the lack of detectable effects on nurse bees and their gut bacteria give no indication for harmful effects of this Bt maize on nurse honey bees.

  15. Polychlorinated biphenyls in honey bees

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morse, R.A.; Culliney, T.W.; Gutenmann, W.H.

    Honey bees (Apis mellifera L.) may traverse a radius of several miles from their hives and contact innumerable surfaces during their collection of nectar, pollen, propolis and water. In the process, they may become contaminated with surface constituents which are indicative of the type of environmental pollution in their particular foraging area. Honey has also been analyzed as a possible indicator of heavy metal pollution. Insecticides used in the vicinity of bee hives have been found in bees and honey. It has been recently reported that appreciable concentrations of polychlorinated biphenyls (PCBs) have been found in honey bees sampled throughoutmore » Connecticut. In the work reported here, an analytical survey was conducted on PCBs in honey bees, honey, propolis and related samples in several states to learn the extent of contamination and possible sources.« less

  16. Linkage map of the honey bee, Apis mellifera, based on RAPD markers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunt, G.J.; Page, R.E. Jr.

    A linkage map was constructed for the honey bee based on the segregation of 365 random amplified polymorphic DNA (RAPD) markers in haploid male progeny of a single female bee. The X locus for sex determination and genes for black body color and malate dehydrogenase were mapped to separate linkage groups. RAPD markers were very efficient for mapping, with an average of about 2.8 loci mapped for each 10-nucleotide primer that was used in polymerase chain reactions. The mean interval size between markers on the map was 9.1 cM. The map covered 3110 cM of linked markers on 26 linkagemore » groups. We estimate the total genome size to be {approximately}3450 cM. The size of the map indicated a very high recombination rate for the honey bee. The relationship of physical to genetic distance was estimated at 52 kb/cM, suggesting that map-based cloning of genes will be feasible for this species. 71 refs., 6 figs., 1 tab.« less

  17. Thrice out of Africa: ancient and recent expansions of the honey bee, Apis mellifera.

    PubMed

    Whitfield, Charles W; Behura, Susanta K; Berlocher, Stewart H; Clark, Andrew G; Johnston, J Spencer; Sheppard, Walter S; Smith, Deborah R; Suarez, Andrew V; Weaver, Daniel; Tsutsui, Neil D

    2006-10-27

    We characterized Apis mellifera in both native and introduced ranges using 1136 single-nucleotide polymorphisms genotyped in 341 individuals. Our results indicate that A. mellifera originated in Africa and expanded into Eurasia at least twice, resulting in populations in eastern and western Europe that are geographically close but genetically distant. A third expansion in the New World has involved the near-replacement of previously introduced "European" honey bees by descendants of more recently introduced A. m. scutellata ("African" or "killer" bees). Our analyses of spatial transects and temporal series in the New World revealed differential replacement of alleles derived from eastern versus western Europe, with admixture evident in all individuals.

  18. From silkworms to bees: Diseases of beneficial insects

    USDA-ARS?s Scientific Manuscript database

    The diseases of the silkworm (Bombyx mori) and managed bees, including the honey bee (Apis mellifera), bumbles bees (Bombus spp.), the alfalfa leafcutting bee (Megachile rotundata), and mason bees (Osmia spp.) are reviewed, with diagnostic descriptions and a summary of control methods for production...

  19. Metatranscriptomic analyses of honey bee colonies.

    PubMed

    Tozkar, Cansu Ö; Kence, Meral; Kence, Aykut; Huang, Qiang; Evans, Jay D

    2015-01-01

    Honey bees face numerous biotic threats from viruses to bacteria, fungi, protists, and mites. Here we describe a thorough analysis of microbes harbored by worker honey bees collected from field colonies in geographically distinct regions of Turkey. Turkey is one of the World's most important centers of apiculture, harboring five subspecies of Apis mellifera L., approximately 20% of the honey bee subspecies in the world. We use deep ILLUMINA-based RNA sequencing to capture RNA species for the honey bee and a sampling of all non-endogenous species carried by bees. After trimming and mapping these reads to the honey bee genome, approximately 10% of the sequences (9-10 million reads per library) remained. These were then mapped to a curated set of public sequences containing ca. Sixty megabase-pairs of sequence representing known microbial species associated with honey bees. Levels of key honey bee pathogens were confirmed using quantitative PCR screens. We contrast microbial matches across different sites in Turkey, showing new country recordings of Lake Sinai virus, two Spiroplasma bacterium species, symbionts Candidatus Schmidhempelia bombi, Frischella perrara, Snodgrassella alvi, Gilliamella apicola, Lactobacillus spp.), neogregarines, and a trypanosome species. By using metagenomic analysis, this study also reveals deep molecular evidence for the presence of bacterial pathogens (Melissococcus plutonius, Paenibacillus larvae), Varroa destructor-1 virus, Sacbrood virus, and fungi. Despite this effort we did not detect KBV, SBPV, Tobacco ringspot virus, VdMLV (Varroa Macula like virus), Acarapis spp., Tropilaeleps spp. and Apocephalus (phorid fly). We discuss possible impacts of management practices and honey bee subspecies on microbial retinues. The described workflow and curated microbial database will be generally useful for microbial surveys of healthy and declining honey bees.

  20. Very low mitochondrial variability in a stingless bee endemic to cerrado.

    PubMed

    Brito, Rute Magalhães; de Oliveira Francisco, Flávio; Françoso, Elaine; Santiago, Leandro Rodrigues; Arias, Maria Cristina

    2013-03-01

    Partamona mulata is a stingless bee species endemic to cerrado, a severely threatened phytogeographical domain. Clearing for pasture without proper soil treatment in the cerrado facilitates the proliferation of termite ground nests, which are the nesting sites for P. mulata. The genetic consequences of these changes in the cerrado environment for bee populations are still understudied. In this work, we analyzed the genetic diversity of 48 colonies of P. mulata collected throughout the species' distribution range by sequencing two mitochondrial genes, cytochrome oxidase I and cytochrome B. A very low polymorphism rate was observed when compared to another Partamona species from the Atlantic forest. Exclusive haplotypes were observed in two of the five areas sampled. The sharing of two haplotypes between collection sites separated by a distance greater than the flight range of queens indicates an ancient distribution for these haplotypes. The low haplotype and nucleotide diversity observed here suggests that P. mulata is either a young species or one that has been through population bottlenecks. Locally predominant and exclusive haplotypes (H2 and H4) may have been derived from local remnants through cerrado deforestation and the expansion of a few colonies with abundant nesting sites.

  1. Landscape heterogeneity predicts gene flow in a widespread polymorphic bumble bee, Bombus bifarius (Hymentoptera: Apidae).

    USDA-ARS?s Scientific Manuscript database

    Bombus bifarius is a widespread bumble bee that occurs in montane regions of western North America. This species has several major color polymorphisms, and shows evidence of genetic structuring among regional populations. We test whether this structure is evidence for discrete gene flow barriers tha...

  2. Honey bee hemocyte profiling by flow cytometry.

    PubMed

    Marringa, William J; Krueger, Michael J; Burritt, Nancy L; Burritt, James B

    2014-01-01

    Multiple stress factors in honey bees are causing loss of bee colonies worldwide. Several infectious agents of bees are believed to contribute to this problem. The mechanisms of honey bee immunity are not completely understood, in part due to limited information about the types and abundances of hemocytes that help bees resist disease. Our study utilized flow cytometry and microscopy to examine populations of hemolymph particulates in honey bees. We found bee hemolymph includes permeabilized cells, plasmatocytes, and acellular objects that resemble microparticles, listed in order of increasing abundance. The permeabilized cells and plasmatocytes showed unexpected differences with respect to properties of the plasma membrane and labeling with annexin V. Both permeabilized cells and plasmatocytes failed to show measurable mitochondrial membrane potential by flow cytometry using the JC-1 probe. Our results suggest hemolymph particulate populations are dynamic, revealing significant differences when comparing individual hive members, and when comparing colonies exposed to diverse conditions. Shifts in hemocyte populations in bees likely represent changing conditions or metabolic differences of colony members. A better understanding of hemocyte profiles may provide insight into physiological responses of honey bees to stress factors, some of which may be related to colony failure.

  3. Honey Bee Hemocyte Profiling by Flow Cytometry

    PubMed Central

    Marringa, William J.; Krueger, Michael J.; Burritt, Nancy L.; Burritt, James B.

    2014-01-01

    Multiple stress factors in honey bees are causing loss of bee colonies worldwide. Several infectious agents of bees are believed to contribute to this problem. The mechanisms of honey bee immunity are not completely understood, in part due to limited information about the types and abundances of hemocytes that help bees resist disease. Our study utilized flow cytometry and microscopy to examine populations of hemolymph particulates in honey bees. We found bee hemolymph includes permeabilized cells, plasmatocytes, and acellular objects that resemble microparticles, listed in order of increasing abundance. The permeabilized cells and plasmatocytes showed unexpected differences with respect to properties of the plasma membrane and labeling with annexin V. Both permeabilized cells and plasmatocytes failed to show measurable mitochondrial membrane potential by flow cytometry using the JC-1 probe. Our results suggest hemolymph particulate populations are dynamic, revealing significant differences when comparing individual hive members, and when comparing colonies exposed to diverse conditions. Shifts in hemocyte populations in bees likely represent changing conditions or metabolic differences of colony members. A better understanding of hemocyte profiles may provide insight into physiological responses of honey bees to stress factors, some of which may be related to colony failure. PMID:25285798

  4. Phenotypic Variation in Fitness Traits of a Managed Solitary Bee, Osmia ribifloris (Hymenoptera: Megachilidae).

    PubMed

    Sampson, B J; Rinehart, T A; Kirker, G T; Stringer, S J; Werle, C T

    2015-12-01

    We investigated fitness in natural populations of a managed solitary bee Osmia ribifloris Cockerell (Hymenoptera: Megachilidae) from sites separated from 400 to 2,700 km. Parental wild bees originated in central Texas (TX), central-northern Utah (UT), and central California (CA). They were then intercrossed and raised inside a mesh enclosure in southern Mississippi (MS). Females from all possible mated pairs of O. ribifloris produced F1 broods with 30-40% female cocoons and outcrossed progeny were 30% heavier. Mitochondrial (COI) genomes of the four populations revealed three distinct clades, a TX-CA clade, a UT clade, and an MS clade, the latter (MS) representing captive progeny of CA and UT bees. Although classified as separate subspecies, TX and CA populations from 30° N to 38° N latitude shared 98% similarity in COI genomes and the greatest brood biomass per nest straw (600- to 700-mg brood). Thus, TX and CA bees show greater adaptation for southern U.S. sites. In contrast, UT-sourced bees were more distantly related to TX and CA bees and also produced ∼50% fewer brood. These results, taken together, confirm that adult O. ribifloris from all trap-nest sites are genetically compatible, but some phenotypic variation exists that could affect this species performance as a commercial blueberry pollinator. Males, their sperm, or perhaps a substance in their sperm helped stabilize our captive bee population by promoting legitimate nesting over nest usurpation. Otherwise, without insemination, 50% fewer females nested (they nested 14 d late) and 20% usurped nests, killing 33-67% of brood in affected nests. Published by Oxford University Press on behalf of Entomological Society of America 2015. This work is written by US Government employees and is in the public domain in the US.

  5. Chemical Ecology of Stingless Bees.

    PubMed

    Leonhardt, Sara Diana

    2017-04-01

    Stingless bees (Hymenoptera, Apidae: Meliponini) represent a highly diverse group of social bees confined to the world's tropics and subtropics. They show a striking diversity of structural and behavioral adaptations and are important pollinators of tropical plants. Despite their diversity and functional importance, their ecology, and especially chemical ecology, has received relatively little attention, particularly compared to their relative the honeybee, Apis mellifera. Here, I review various aspects of the chemical ecology of stingless bees, from communication over resource allocation to defense. I list examples in which functions of specific compounds (or compound groups) have been demonstrated by behavioral experiments, and show that many aspects (e.g., queen-worker interactions, host-parasite interactions, neuronal processing etc.) remain little studied. This review further reveals that the vast majority of studies on the chemical ecology of stingless bees have been conducted in the New World, whereas studies on Old World stingless bees are still comparatively rare. Given the diversity of species, behaviors and, apparently, chemical compounds used, I suggest that stingless bees provide an ideal subject for studying how functional context and the need for species specificity may interact to shape pheromone diversification in social insects.

  6. The Potential Influence of Bumble Bee Visitation on Foraging Behaviors and Assemblages of Honey Bees on Squash Flowers in Highland Agricultural Ecosystems

    PubMed Central

    Xie, Zhenghua; Pan, Dongdong; Teichroew, Jonathan; An, Jiandong

    2016-01-01

    Bee species interactions can benefit plant pollination through synergistic effects and complementary effects, or can be of detriment to plant pollination through competition effects by reducing visitation by effective pollinators. Since specific bee interactions influence the foraging performance of bees on flowers, they also act as drivers to regulate the assemblage of flower visitors. We selected squash (Cucurbita pepo L.) and its pollinators as a model system to study the foraging response of honey bees to the occurrence of bumble bees at two types of sites surrounded by a high amount of natural habitats (≥ 58% of land cover) and a low amount of natural habitats (≤ 12% of land cover) in a highland agricultural ecosystem in China. At the individual level, we measured the elapsed time from the departure of prior pollinator(s) to the arrival of another pollinator, the selection of honey bees for flowers occupied by bumble bees, and the length of time used by honey bees to explore floral resources at the two types of sites. At the community level, we explored the effect of bumble bee visitation on the distribution patterns of honey bees on squash flowers. Conclusively, bumble bee visitation caused an increase in elapsed time before flowers were visited again by a honey bee, a behavioral avoidance by a newly-arriving honey bee to select flowers occupied by bumble bees, and a shortened length of time the honey bee takes to examine and collect floral resources. The number of overall bumble bees on squash flowers was the most important factor explaining the difference in the distribution patterns of honey bees at the community level. Furthermore, decline in the number of overall bumble bees on the squash flowers resulted in an increase in the number of overall honey bees. Therefore, our study suggests that bee interactions provide an opportunity to enhance the resilience of ecosystem pollination services against the decline in pollinator diversity. PMID:26765140

  7. The Potential Influence of Bumble Bee Visitation on Foraging Behaviors and Assemblages of Honey Bees on Squash Flowers in Highland Agricultural Ecosystems.

    PubMed

    Xie, Zhenghua; Pan, Dongdong; Teichroew, Jonathan; An, Jiandong

    2016-01-01

    Bee species interactions can benefit plant pollination through synergistic effects and complementary effects, or can be of detriment to plant pollination through competition effects by reducing visitation by effective pollinators. Since specific bee interactions influence the foraging performance of bees on flowers, they also act as drivers to regulate the assemblage of flower visitors. We selected squash (Cucurbita pepo L.) and its pollinators as a model system to study the foraging response of honey bees to the occurrence of bumble bees at two types of sites surrounded by a high amount of natural habitats (≥ 58% of land cover) and a low amount of natural habitats (≤ 12% of land cover) in a highland agricultural ecosystem in China. At the individual level, we measured the elapsed time from the departure of prior pollinator(s) to the arrival of another pollinator, the selection of honey bees for flowers occupied by bumble bees, and the length of time used by honey bees to explore floral resources at the two types of sites. At the community level, we explored the effect of bumble bee visitation on the distribution patterns of honey bees on squash flowers. Conclusively, bumble bee visitation caused an increase in elapsed time before flowers were visited again by a honey bee, a behavioral avoidance by a newly-arriving honey bee to select flowers occupied by bumble bees, and a shortened length of time the honey bee takes to examine and collect floral resources. The number of overall bumble bees on squash flowers was the most important factor explaining the difference in the distribution patterns of honey bees at the community level. Furthermore, decline in the number of overall bumble bees on the squash flowers resulted in an increase in the number of overall honey bees. Therefore, our study suggests that bee interactions provide an opportunity to enhance the resilience of ecosystem pollination services against the decline in pollinator diversity.

  8. Dynamic microbiome evolution in social bees

    PubMed Central

    Kwong, Waldan K.; Medina, Luis A.; Koch, Hauke; Sing, Kong-Wah; Soh, Eunice Jia Yu; Ascher, John S.; Jaffé, Rodolfo; Moran, Nancy A.

    2017-01-01

    The highly social (eusocial) corbiculate bees, comprising the honey bees, bumble bees, and stingless bees, are ubiquitous insect pollinators that fulfill critical roles in ecosystem services and human agriculture. Here, we conduct wide sampling across the phylogeny of these corbiculate bees and reveal a dynamic evolutionary history behind their microbiota, marked by multiple gains and losses of gut associates, the presence of generalist as well as host-specific strains, and patterns of diversification driven, in part, by host ecology (for example, colony size). Across four continents, we found that different host species have distinct gut communities, largely independent of geography or sympatry. Nonetheless, their microbiota has a shared heritage: The emergence of the eusocial corbiculate bees from solitary ancestors appears to coincide with the acquisition of five core gut bacterial lineages, supporting the hypothesis that host sociality facilitates the development and maintenance of specialized microbiomes. PMID:28435856

  9. Metatranscriptomic analyses of honey bee colonies

    PubMed Central

    Tozkar, Cansu Ö.; Kence, Meral; Kence, Aykut; Huang, Qiang; Evans, Jay D.

    2015-01-01

    Honey bees face numerous biotic threats from viruses to bacteria, fungi, protists, and mites. Here we describe a thorough analysis of microbes harbored by worker honey bees collected from field colonies in geographically distinct regions of Turkey. Turkey is one of the World's most important centers of apiculture, harboring five subspecies of Apis mellifera L., approximately 20% of the honey bee subspecies in the world. We use deep ILLUMINA-based RNA sequencing to capture RNA species for the honey bee and a sampling of all non-endogenous species carried by bees. After trimming and mapping these reads to the honey bee genome, approximately 10% of the sequences (9–10 million reads per library) remained. These were then mapped to a curated set of public sequences containing ca. Sixty megabase-pairs of sequence representing known microbial species associated with honey bees. Levels of key honey bee pathogens were confirmed using quantitative PCR screens. We contrast microbial matches across different sites in Turkey, showing new country recordings of Lake Sinai virus, two Spiroplasma bacterium species, symbionts Candidatus Schmidhempelia bombi, Frischella perrara, Snodgrassella alvi, Gilliamella apicola, Lactobacillus spp.), neogregarines, and a trypanosome species. By using metagenomic analysis, this study also reveals deep molecular evidence for the presence of bacterial pathogens (Melissococcus plutonius, Paenibacillus larvae), Varroa destructor-1 virus, Sacbrood virus, and fungi. Despite this effort we did not detect KBV, SBPV, Tobacco ringspot virus, VdMLV (Varroa Macula like virus), Acarapis spp., Tropilaeleps spp. and Apocephalus (phorid fly). We discuss possible impacts of management practices and honey bee subspecies on microbial retinues. The described workflow and curated microbial database will be generally useful for microbial surveys of healthy and declining honey bees. PMID:25852743

  10. Antiviral Defense Mechanisms in Honey Bees

    PubMed Central

    Brutscher, Laura M.; Daughenbaugh, Katie F.; Flenniken, Michelle L.

    2015-01-01

    Honey bees are significant pollinators of agricultural crops and other important plant species. High annual losses of honey bee colonies in North America and in some parts of Europe have profound ecological and economic implications. Colony losses have been attributed to multiple factors including RNA viruses, thus understanding bee antiviral defense mechanisms may result in the development of strategies that mitigate colony losses. Honey bee antiviral defense mechanisms include RNA-interference, pathogen-associated molecular pattern (PAMP) triggered signal transduction cascades, and reactive oxygen species generation. However, the relative importance of these and other pathways is largely uncharacterized. Herein we review the current understanding of honey bee antiviral defense mechanisms and suggest important avenues for future investigation. PMID:26273564

  11. Migrations of European honey bee lineages into Africa, Asia, and North America during the Oligocene and Miocene

    NASA Astrophysics Data System (ADS)

    Kotthoff, Ulrich; Wappler, Torsten; Engel, Michael

    2013-04-01

    Today honey bees, principally the western honey bee, Apis mellifera, represent a multi-billion dollar agricultural industry. Through the efforts of humans they have become established well outside of their modern native ranges, having been introduced multiple times into the Americas, Australia, New Zealand, New Caledonia, and many areas of Oceania. The native, i.e., non-human influenced, distribution and migration of honey bee species and populations has been a matter of serious and continued debate. Apicultural dogma informs us that the center of origin of honey bees (genus Apis) resides in Asia, with subsequent migration and diversification into Europe and Asia. Recent population genetic studies of the western honey bee, Apis mellifera, slightly modified this received wisdom by suggesting that this species originated in Africa and subsequently reinvaded Eurasia. Research into the historical biogeography of honey bees has ignored entirely the abundant fossil evidence distributed through a variety of Late Paleogene (Oligocene) and Early Neogene (Miocene) deposits, a diversity which is predominantly European in origin, particularly among the most basal species of the genus. We have examined the morphological disparity and affinities of the full living and fossil diversity of honey bees ranging from their earliest origins to the present day. This analysis indicates that honey bees exhibited a greater morphological disparity during the Oligocene and Miocene epochs, a time when the principal lineages were established, and that Apis apparently originated in Europe, spreading from there into Asia, Africa, and North America, with subsequent diversification in the former two regions and extinction in the latter. During the human migrations and colonization honey bees were once again introduced multiple times into the Americas, as well as into Australia and Asia.

  12. Molecular and phylogenetic characterization of honey bee viruses, Nosema microsporidia, protozoan parasites, and parasitic mites in China.

    PubMed

    Yang, Bu; Peng, Guangda; Li, Tianbang; Kadowaki, Tatsuhiko

    2013-02-01

    China has the largest number of managed honey bee colonies, which produce the highest quantity of honey and royal jelly in the world; however, the presence of honey bee pathogens and parasites has never been rigorously identified in Chinese apiaries. We thus conducted a molecular survey of honey bee RNA viruses, Nosema microsporidia, protozoan parasites, and tracheal mites associated with nonnative Apis mellifera ligustica and native Apis cerana cerana colonies in China. We found the presence of black queen cell virus (BQCV), chronic bee paralysis virus (CBPV), deformed wing virus (DWV), Israeli acute paralysis virus (IAPV), and sacbrood virus (SBV), but not that of acute bee paralysis virus (ABPV) or Kashmir bee virus (KBV). DWV was the most prevalent in the tested samples. Phylogenies of Chinese viral isolates demonstrated that genetically heterogeneous populations of BQCV, CBPV, DWV, and A. cerana-infecting SBV, and relatively homogenous populations of IAPV and A. meliifera-infecting new strain of SBV with single origins, are spread in Chinese apiaries. Similar to previous observations in many countries, Nosema ceranae, but not Nosema apis, was prevalent in the tested samples. Crithidia mellificae, but not Apicystis bombi was found in five samples, including one A. c. cerana colony, demonstrating that C. mellificae is capable of infecting multiple honey bee species. Based on kinetoplast-encoded cytochrome b sequences, the C. mellificae isolate from A. c. cerana represents a novel haplotype with 19 nucleotide differences from the Chinese and Japanese isolates from A. m. ligustica. This suggests that A. c. cerana is the native host for this specific haplotype. The tracheal mite, Acarapis woodi, was detected in one A. m. ligustica colony. Our results demonstrate that honey bee RNA viruses, N. ceranae, C. mellificae, and tracheal mites are present in Chinese apiaries, and some might be originated from native Asian honey bees.

  13. Possible complication of bee stings and a review of the cardiac effects of bee stings.

    PubMed

    Gupta, Prabha Nini; Kumar, B Krishna; Velappan, Praveen; Sudheer, M D

    2016-11-01

    We report the case of a patient who, ∼3 weeks after multiple bee stings, developed a prolonged heart block, syncope and cardiac arrest. This required a temporary pacemaker to be implanted, which was later replaced with a permanent pacemaker. An ECG taken following surgery for a fractured humerus 6 years earlier was reportedly normal. The patient had been a rubber tapper who walked ∼1.5 km/day, but after the bee attack he was no longer able to walk or get up from the bed without experiencing syncope. We presume that the bee venom caused these signs, as well as the resulting heart block, which persisted long after the bee sting had subsided. Since his coronary angiogram was normal we believe he had a Kounis type involvement of the cardiovascular system, namely profound coronary spasm that caused complete heart block that did not recover. Another probable reason for the complete heart block could have been that the bees had consumed the pollen of a rhododendron flower, causing 'grayanotoxin' poisoning and severe heart block. The other effects of bee sting are discussed briefly. 2016 BMJ Publishing Group Ltd.

  14. THE BEE AND RADIOACTIVITY (in French)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nordau, C.-G.

    A brief resume is given of research done on the bee using radioisotopes. The labeling of the bee with radioactive gold, the radioresistance of the bee, the structure of the hive, and the food exchanges within the hive are the topics discussed. (J.S.R.)

  15. Bees prefer foods containing neonicotinoid pesticides

    NASA Astrophysics Data System (ADS)

    Kessler, Sébastien C.; Tiedeken, Erin Jo; Simcock, Kerry L.; Derveau, Sophie; Mitchell, Jessica; Softley, Samantha; Stout, Jane C.; Wright, Geraldine A.

    2015-05-01

    The impact of neonicotinoid insecticides on insect pollinators is highly controversial. Sublethal concentrations alter the behaviour of social bees and reduce survival of entire colonies. However, critics argue that the reported negative effects only arise from neonicotinoid concentrations that are greater than those found in the nectar and pollen of pesticide-treated plants. Furthermore, it has been suggested that bees could choose to forage on other available flowers and hence avoid or dilute exposure. Here, using a two-choice feeding assay, we show that the honeybee, Apis mellifera, and the buff-tailed bumblebee, Bombus terrestris, do not avoid nectar-relevant concentrations of three of the most commonly used neonicotinoids, imidacloprid (IMD), thiamethoxam (TMX), and clothianidin (CLO), in food. Moreover, bees of both species prefer to eat more of sucrose solutions laced with IMD or TMX than sucrose alone. Stimulation with IMD, TMX and CLO neither elicited spiking responses from gustatory neurons in the bees' mouthparts, nor inhibited the responses of sucrose-sensitive neurons. Our data indicate that bees cannot taste neonicotinoids and are not repelled by them. Instead, bees preferred solutions containing IMD or TMX, even though the consumption of these pesticides caused them to eat less food overall. This work shows that bees cannot control their exposure to neonicotinoids in food and implies that treating flowering crops with IMD and TMX presents a sizeable hazard to foraging bees.

  16. Bees prefer foods containing neonicotinoid pesticides.

    PubMed

    Kessler, Sébastien; Tiedeken, Erin Jo; Simcock, Kerry L; Derveau, Sophie; Mitchell, Jessica; Softley, Samantha; Stout, Jane C; Wright, Geraldine A

    2015-05-07

    The impact of neonicotinoid insecticides on insect pollinators is highly controversial. Sublethal concentrations alter the behaviour of social bees and reduce survival of entire colonies. However, critics argue that the reported negative effects only arise from neonicotinoid concentrations that are greater than those found in the nectar and pollen of pesticide-treated plants. Furthermore, it has been suggested that bees could choose to forage on other available flowers and hence avoid or dilute exposure. Here, using a two-choice feeding assay, we show that the honeybee, Apis mellifera, and the buff-tailed bumblebee, Bombus terrestris, do not avoid nectar-relevant concentrations of three of the most commonly used neonicotinoids, imidacloprid (IMD), thiamethoxam (TMX), and clothianidin (CLO), in food. Moreover, bees of both species prefer to eat more of sucrose solutions laced with IMD or TMX than sucrose alone. Stimulation with IMD, TMX and CLO neither elicited spiking responses from gustatory neurons in the bees' mouthparts, nor inhibited the responses of sucrose-sensitive neurons. Our data indicate that bees cannot taste neonicotinoids and are not repelled by them. Instead, bees preferred solutions containing IMD or TMX, even though the consumption of these pesticides caused them to eat less food overall. This work shows that bees cannot control their exposure to neonicotinoids in food and implies that treating flowering crops with IMD and TMX presents a sizeable hazard to foraging bees.

  17. Bees as Biosensors: Chemosensory Ability, Honey Bee Monitoring Systems, and Emergent Sensor Technologies Derived from the Pollinator Syndrome

    PubMed Central

    Bromenshenk, Jerry J.; Henderson, Colin B.; Seccomb, Robert A.; Welch, Phillip M.; Debnam, Scott E.; Firth, David R.

    2015-01-01

    This review focuses on critical milestones in the development path for the use of bees, mainly honey bees and bumble bees, as sentinels and biosensors. These keystone species comprise the most abundant pollinators of agro-ecosystems. Pollinating 70%–80% of flowering terrestrial plants, bees and other insects propel the reproduction and survival of plants and themselves, as well as improve the quantity and quality of seeds, nuts, and fruits that feed birds, wildlife, and us. Flowers provide insects with energy, nutrients, and shelter, while pollinators are essential to global ecosystem productivity and stability. A rich and diverse milieu of chemical signals establishes and maintains this intimate partnership. Observations of bee odor search behavior extend back to Aristotle. In the past two decades great strides have been made in methods and instrumentation for the study and exploitation of bee search behavior and for examining intra-organismal chemical communication signals. In particular, bees can be trained to search for and localize sources for a variety of chemicals, which when coupled with emerging tracking and mapping technologies create novel potential for research, as well as bee and crop management. PMID:26529030

  18. Bees as Biosensors: Chemosensory Ability, Honey Bee Monitoring Systems, and Emergent Sensor Technologies Derived from the Pollinator Syndrome.

    PubMed

    Bromenshenk, Jerry J; Henderson, Colin B; Seccomb, Robert A; Welch, Phillip M; Debnam, Scott E; Firth, David R

    2015-10-30

    This review focuses on critical milestones in the development path for the use of bees, mainly honey bees and bumble bees, as sentinels and biosensors. These keystone species comprise the most abundant pollinators of agro-ecosystems. Pollinating 70%-80% of flowering terrestrial plants, bees and other insects propel the reproduction and survival of plants and themselves, as well as improve the quantity and quality of seeds, nuts, and fruits that feed birds, wildlife, and us. Flowers provide insects with energy, nutrients, and shelter, while pollinators are essential to global ecosystem productivity and stability. A rich and diverse milieu of chemical signals establishes and maintains this intimate partnership. Observations of bee odor search behavior extend back to Aristotle. In the past two decades great strides have been made in methods and instrumentation for the study and exploitation of bee search behavior and for examining intra-organismal chemical communication signals. In particular, bees can be trained to search for and localize sources for a variety of chemicals, which when coupled with emerging tracking and mapping technologies create novel potential for research, as well as bee and crop management.

  19. Genes involved in convergent evolution of eusociality in bees

    PubMed Central

    Woodard, S. Hollis; Fischman, Brielle J.; Venkat, Aarti; Hudson, Matt E.; Varala, Kranthi; Cameron, Sydney A.; Clark, Andrew G.; Robinson, Gene E.

    2011-01-01

    Eusociality has arisen independently at least 11 times in insects. Despite this convergence, there are striking differences among eusocial lifestyles, ranging from species living in small colonies with overt conflict over reproduction to species in which colonies contain hundreds of thousands of highly specialized sterile workers produced by one or a few queens. Although the evolution of eusociality has been intensively studied, the genetic changes involved in the evolution of eusociality are relatively unknown. We examined patterns of molecular evolution across three independent origins of eusociality by sequencing transcriptomes of nine socially diverse bee species and combining these data with genome sequence from the honey bee Apis mellifera to generate orthologous sequence alignments for 3,647 genes. We found a shared set of 212 genes with a molecular signature of accelerated evolution across all eusocial lineages studied, as well as unique sets of 173 and 218 genes with a signature of accelerated evolution specific to either highly or primitively eusocial lineages, respectively. These results demonstrate that convergent evolution can involve a mosaic pattern of molecular changes in both shared and lineage-specific sets of genes. Genes involved in signal transduction, gland development, and carbohydrate metabolism are among the most prominent rapidly evolving genes in eusocial lineages. These findings provide a starting point for linking specific genetic changes to the evolution of eusociality. PMID:21482769

  20. Bee species-specific nesting material attracts a generalist parasitoid: implications for co-occurring bees in nest box enhancements.

    PubMed

    Macivor, J Scott; Salehi, Baharak

    2014-08-01

    Artificial nests (e.g., nest boxes) for bees are increasingly being used to contribute to nesting habitat enhancement for bees that use preexisting cavities to provision brood. They usually incorporate additional nesting materials that vary by species. Cavity-nesting bees are susceptible to brood parasitoids that recognize their host(s) using visual and chemical cues. Understanding the range of cues that attract parasitoids to bee nests, including human-made analogues, is important if we wish to control parasitism and increase the potential value of artificial nests as habitat-enhancement strategies. In this study, we investigated the cues associated with the orientation of the generalist brood parasitoid Monodontomerus obscurus Westwood (Hymenoptera: Torymidae) to the nests of a common cavity-nesting resin bee Megachile campanulae (Robertson) (Megachilidae). The parasitoids were reared from previously infested M. campanulae brood cells and placed into choice trials where they were presented with pairs of different nest material cues. Among different materials tested, we found that Mo. obscurus was most attracted to fresh resin collected directly from Pinus strobus trees followed by previously used resin collected from the bee nest. The parasitoid also attacked other bee species in the same nest boxes, including those that do not use resin for nesting. Our findings suggest that M. campanulae could act as a magnet, drawing parasites away from other bee hosts co-occurring in nest boxes, or, as an attractant of Mo. obscurus to nest boxes, increasing attacks on co-occurring host bee species, potentially undermining bee diversity enhancement initiatives.

  1. An integrated portfolio optimisation procedure based on data envelopment analysis, artificial bee colony algorithm and genetic programming

    NASA Astrophysics Data System (ADS)

    Hsu, Chih-Ming

    2014-12-01

    Portfolio optimisation is an important issue in the field of investment/financial decision-making and has received considerable attention from both researchers and practitioners. However, besides portfolio optimisation, a complete investment procedure should also include the selection of profitable investment targets and determine the optimal timing for buying/selling the investment targets. In this study, an integrated procedure using data envelopment analysis (DEA), artificial bee colony (ABC) and genetic programming (GP) is proposed to resolve a portfolio optimisation problem. The proposed procedure is evaluated through a case study on investing in stocks in the semiconductor sub-section of the Taiwan stock market for 4 years. The potential average 6-month return on investment of 9.31% from 1 November 2007 to 31 October 2011 indicates that the proposed procedure can be considered a feasible and effective tool for making outstanding investment plans, and thus making profits in the Taiwan stock market. Moreover, it is a strategy that can help investors to make profits even when the overall stock market suffers a loss.

  2. The challenge of accurately documenting bee species richness in agroecosystems: bee diversity in eastern apple orchards

    PubMed Central

    Russo, Laura; Park, Mia; Gibbs, Jason; Danforth, Bryan

    2015-01-01

    Bees are important pollinators of agricultural crops, and bee diversity has been shown to be closely associated with pollination, a valuable ecosystem service. Higher functional diversity and species richness of bees have been shown to lead to higher crop yield. Bees simultaneously represent a mega-diverse taxon that is extremely challenging to sample thoroughly and an important group to understand because of pollination services. We sampled bees visiting apple blossoms in 28 orchards over 6 years. We used species rarefaction analyses to test for the completeness of sampling and the relationship between species richness and sampling effort, orchard size, and percent agriculture in the surrounding landscape. We performed more than 190 h of sampling, collecting 11,219 specimens representing 104 species. Despite the sampling intensity, we captured <75% of expected species richness at more than half of the sites. For most of these, the variation in bee community composition between years was greater than among sites. Species richness was influenced by percent agriculture, orchard size, and sampling effort, but we found no factors explaining the difference between observed and expected species richness. Competition between honeybees and wild bees did not appear to be a factor, as we found no correlation between honeybee and wild bee abundance. Our study shows that the pollinator fauna of agroecosystems can be diverse and challenging to thoroughly sample. We demonstrate that there is high temporal variation in community composition and that sites vary widely in the sampling effort required to fully describe their diversity. In order to maximize pollination services provided by wild bee species, we must first accurately estimate species richness. For researchers interested in providing this estimate, we recommend multiyear studies and rarefaction analyses to quantify the gap between observed and expected species richness. PMID:26380684

  3. Decline and conservation of bumble bees.

    PubMed

    Goulson, D; Lye, G C; Darvill, B

    2008-01-01

    Declines in bumble bee species in the past 60 years are well documented in Europe, where they are driven primarily by habitat loss and declines in floral abundance and diversity resulting from agricultural intensification. Impacts of habitat degradation and fragmentation are likely to be compounded by the social nature of bumble bees and their largely monogamous breeding system, which renders their effective population size low. Hence, populations are susceptible to stochastic extinction events and inbreeding. In North America, catastrophic declines of some bumble bee species since the 1990s are probably attributable to the accidental introduction of a nonnative parasite from Europe, a result of global trade in domesticated bumble bee colonies used for pollination of greenhouse crops. Given the importance of bumble bees as pollinators of crops and wildflowers, steps must be taken to prevent further declines. Suggested measures include tight regulation of commercial bumble bee use and targeted use of environmentally comparable schemes to enhance floristic diversity in agricultural landscapes.

  4. Mapping sleeping bees within their nest: spatial and temporal analysis of worker honey bee sleep.

    PubMed

    Klein, Barrett Anthony; Stiegler, Martin; Klein, Arno; Tautz, Jürgen

    2014-01-01

    Patterns of behavior within societies have long been visualized and interpreted using maps. Mapping the occurrence of sleep across individuals within a society could offer clues as to functional aspects of sleep. In spite of this, a detailed spatial analysis of sleep has never been conducted on an invertebrate society. We introduce the concept of mapping sleep across an insect society, and provide an empirical example, mapping sleep patterns within colonies of European honey bees (Apis mellifera L.). Honey bees face variables such as temperature and position of resources within their colony's nest that may impact their sleep. We mapped sleep behavior and temperature of worker bees and produced maps of their nest's comb contents as the colony grew and contents changed. By following marked bees, we discovered that individuals slept in many locations, but bees of different worker castes slept in different areas of the nest relative to position of the brood and surrounding temperature. Older worker bees generally slept outside cells, closer to the perimeter of the nest, in colder regions, and away from uncapped brood. Younger worker bees generally slept inside cells and closer to the center of the nest, and spent more time asleep than awake when surrounded by uncapped brood. The average surface temperature of sleeping foragers was lower than the surface temperature of their surroundings, offering a possible indicator of sleep for this caste. We propose mechanisms that could generate caste-dependent sleep patterns and discuss functional significance of these patterns.

  5. Late Onset of Acute Urticaria after Bee Stings.

    PubMed

    Asai, Yuko; Uhara, Hisashi; Miyazaki, Atsushi; Saiki, Minoru; Okuyama, Ryuhei

    2016-01-01

    Here we report the cases of five patients with a late onset of acute urticaria after a bee sting. The ages of the five Japanese patients ranged from 33 to 86 years (median: 61). All patients had no history of an allergic reaction to bee stings. The onset of urticaria was 6-14 days (median: 10) after a bee sting. Although four of the patients did not describe experiencing a bee sting at their presentation, the subsequent examination detected anti-bee-specific IgE antibodies. So, we think a history of a bee sting should thus be part of the medical interview sheet for patients with acute urticaria, and an examination of IgE for bees may help prevent a severe bee-related anaphylactic reaction in the future.

  6. Genetics Home Reference: mucolipidosis type IV

    MedlinePlus

    ... PubMed Vergarajauregui S, Puertollano R. Mucolipidosis type IV: the importance of functional lysosomes for efficient autophagy. Autophagy. 2008 ... Reviewed : August 2013 Published : June 26, 2018 The resources on this site should not be used as a substitute ... Department of Health & Human Services National Institutes of Health National Library of ...

  7. Identification of genes related to high royal jelly production in the honey bee (Apis mellifera) using microarray analysis

    PubMed Central

    Nie, Hongyi; Liu, Xiaoyan; Pan, Jiao; Li, Wenfeng; Li, Zhiguo; Zhang, Shaowu; Chen, Shenglu; Miao, Xiaoqing; Zheng, Nenggan; Su, Songkun

    2017-01-01

    Abstract China is the largest royal jelly producer and exporter in the world, and high royal jelly-yielding strains have been bred in the country for approximately three decades. However, information on the molecular mechanism underlying high royal jelly production is scarce. Here, a cDNA microarray was used to screen and identify differentially expressed genes (DEGs) to obtain an overview on the changes in gene expression levels between high and low royal jelly producing bees. We developed a honey bee gene chip that covered 11,689 genes, and this chip was hybridised with cDNA generated from RNA isolated from heads of nursing bees. A total of 369 DEGs were identified between high and low royal jelly producing bees. Amongst these DEGs, 201 (54.47%) genes were up-regulated, whereas 168 (45.53%) were down-regulated in high royal jelly-yielding bees. Gene ontology (GO) analyses showed that they are mainly involved in four key biological processes, and pathway analyses revealed that they belong to a total of 46 biological pathways. These results provide a genetic basis for further studies on the molecular mechanisms involved in high royal jelly production. PMID:28981563

  8. Identification of genes related to high royal jelly production in the honey bee (Apis mellifera) using microarray analysis.

    PubMed

    Nie, Hongyi; Liu, Xiaoyan; Pan, Jiao; Li, Wenfeng; Li, Zhiguo; Zhang, Shaowu; Chen, Shenglu; Miao, Xiaoqing; Zheng, Nenggan; Su, Songkun

    2017-01-01

    China is the largest royal jelly producer and exporter in the world, and high royal jelly-yielding strains have been bred in the country for approximately three decades. However, information on the molecular mechanism underlying high royal jelly production is scarce. Here, a cDNA microarray was used to screen and identify differentially expressed genes (DEGs) to obtain an overview on the changes in gene expression levels between high and low royal jelly producing bees. We developed a honey bee gene chip that covered 11,689 genes, and this chip was hybridised with cDNA generated from RNA isolated from heads of nursing bees. A total of 369 DEGs were identified between high and low royal jelly producing bees. Amongst these DEGs, 201 (54.47%) genes were up-regulated, whereas 168 (45.53%) were down-regulated in high royal jelly-yielding bees. Gene ontology (GO) analyses showed that they are mainly involved in four key biological processes, and pathway analyses revealed that they belong to a total of 46 biological pathways. These results provide a genetic basis for further studies on the molecular mechanisms involved in high royal jelly production.

  9. The neglected bee trees: European beech forests as a home for feral honey bee colonies

    PubMed Central

    2018-01-01

    It is a common belief that feral honey bee colonies (Apis mellifera L.) were eradicated in Europe through the loss of habitats, domestication by man and spread of pathogens and parasites. Interestingly, no scientific data are available, neither about the past nor the present status of naturally nesting honeybee colonies. We expected near-natural beech (Fagus sylvatica L.) forests to provide enough suitable nest sites to be a home for feral honey bee colonies in Europe. Here, we made a first assessment of their occurrence and density in two German woodland areas based on two methods, the tracing of nest sites based on forager flight routes (beelining technique), and the direct inspection of potential cavity trees. Further, we established experimental swarms at forest edges and decoded dances for nest sites performed by scout bees in order to study how far swarms from beekeeper-managed hives would potentially move into a forest. We found that feral honey bee colonies regularly inhabit tree cavities in near-natural beech forests at densities of at least 0.11–0.14 colonies/km2. Colonies were not confined to the forest edges; they were also living deep inside the forests. We estimated a median distance of 2,600 m from the bee trees to the next apiaries, while scout bees in experimental swarms communicated nest sites in close distances (median: 470 m). We extrapolate that there are several thousand feral honey bee colonies in German woodlands. These have to be taken in account when assessing the role of forest areas in providing pollination services to the surrounding land, and their occurrence has implications for the species’ perception among researchers, beekeepers and conservationists. This study provides a starting point for investigating the life-histories and the ecological interactions of honey bees in temperate European forest environments. PMID:29637025

  10. The neglected bee trees: European beech forests as a home for feral honey bee colonies.

    PubMed

    Kohl, Patrick Laurenz; Rutschmann, Benjamin

    2018-01-01

    It is a common belief that feral honey bee colonies ( Apis mellifera L.) were eradicated in Europe through the loss of habitats, domestication by man and spread of pathogens and parasites. Interestingly, no scientific data are available, neither about the past nor the present status of naturally nesting honeybee colonies. We expected near-natural beech ( Fagus sylvatica L.) forests to provide enough suitable nest sites to be a home for feral honey bee colonies in Europe. Here, we made a first assessment of their occurrence and density in two German woodland areas based on two methods, the tracing of nest sites based on forager flight routes (beelining technique), and the direct inspection of potential cavity trees. Further, we established experimental swarms at forest edges and decoded dances for nest sites performed by scout bees in order to study how far swarms from beekeeper-managed hives would potentially move into a forest. We found that feral honey bee colonies regularly inhabit tree cavities in near-natural beech forests at densities of at least 0.11-0.14 colonies/km 2 . Colonies were not confined to the forest edges; they were also living deep inside the forests. We estimated a median distance of 2,600 m from the bee trees to the next apiaries, while scout bees in experimental swarms communicated nest sites in close distances (median: 470 m). We extrapolate that there are several thousand feral honey bee colonies in German woodlands. These have to be taken in account when assessing the role of forest areas in providing pollination services to the surrounding land, and their occurrence has implications for the species' perception among researchers, beekeepers and conservationists. This study provides a starting point for investigating the life-histories and the ecological interactions of honey bees in temperate European forest environments.

  11. Non-bee insects are important contributors to global crop pollination.

    PubMed

    Rader, Romina; Bartomeus, Ignasi; Garibaldi, Lucas A; Garratt, Michael P D; Howlett, Brad G; Winfree, Rachael; Cunningham, Saul A; Mayfield, Margaret M; Arthur, Anthony D; Andersson, Georg K S; Bommarco, Riccardo; Brittain, Claire; Carvalheiro, Luísa G; Chacoff, Natacha P; Entling, Martin H; Foully, Benjamin; Freitas, Breno M; Gemmill-Herren, Barbara; Ghazoul, Jaboury; Griffin, Sean R; Gross, Caroline L; Herbertsson, Lina; Herzog, Felix; Hipólito, Juliana; Jaggar, Sue; Jauker, Frank; Klein, Alexandra-Maria; Kleijn, David; Krishnan, Smitha; Lemos, Camila Q; Lindström, Sandra A M; Mandelik, Yael; Monteiro, Victor M; Nelson, Warrick; Nilsson, Lovisa; Pattemore, David E; Pereira, Natália de O; Pisanty, Gideon; Potts, Simon G; Reemer, Menno; Rundlöf, Maj; Sheffield, Cory S; Scheper, Jeroen; Schüepp, Christof; Smith, Henrik G; Stanley, Dara A; Stout, Jane C; Szentgyörgyi, Hajnalka; Taki, Hisatomo; Vergara, Carlos H; Viana, Blandina F; Woyciechowski, Michal

    2016-01-05

    Wild and managed bees are well documented as effective pollinators of global crops of economic importance. However, the contributions by pollinators other than bees have been little explored despite their potential to contribute to crop production and stability in the face of environmental change. Non-bee pollinators include flies, beetles, moths, butterflies, wasps, ants, birds, and bats, among others. Here we focus on non-bee insects and synthesize 39 field studies from five continents that directly measured the crop pollination services provided by non-bees, honey bees, and other bees to compare the relative contributions of these taxa. Non-bees performed 25-50% of the total number of flower visits. Although non-bees were less effective pollinators than bees per flower visit, they made more visits; thus these two factors compensated for each other, resulting in pollination services rendered by non-bees that were similar to those provided by bees. In the subset of studies that measured fruit set, fruit set increased with non-bee insect visits independently of bee visitation rates, indicating that non-bee insects provide a unique benefit that is not provided by bees. We also show that non-bee insects are not as reliant as bees on the presence of remnant natural or seminatural habitat in the surrounding landscape. These results strongly suggest that non-bee insect pollinators play a significant role in global crop production and respond differently than bees to landscape structure, probably making their crop pollination services more robust to changes in land use. Non-bee insects provide a valuable service and provide potential insurance against bee population declines.

  12. Non-bee insects are important contributors to global crop pollination

    PubMed Central

    Bartomeus, Ignasi; Garibaldi, Lucas A.; Garratt, Michael P. D.; Howlett, Brad G.; Winfree, Rachael; Cunningham, Saul A.; Mayfield, Margaret M.; Arthur, Anthony D.; Andersson, Georg K. S.; Bommarco, Riccardo; Brittain, Claire; Carvalheiro, Luísa G.; Chacoff, Natacha P.; Entling, Martin H.; Foully, Benjamin; Freitas, Breno M.; Gemmill-Herren, Barbara; Ghazoul, Jaboury; Griffin, Sean R.; Gross, Caroline L.; Herbertsson, Lina; Herzog, Felix; Hipólito, Juliana; Jaggar, Sue; Jauker, Frank; Klein, Alexandra-Maria; Kleijn, David; Krishnan, Smitha; Lemos, Camila Q.; Lindström, Sandra A. M.; Mandelik, Yael; Monteiro, Victor M.; Nelson, Warrick; Nilsson, Lovisa; Pattemore, David E.; de O. Pereira, Natália; Pisanty, Gideon; Potts, Simon G.; Reemer, Menno; Rundlöf, Maj; Sheffield, Cory S.; Scheper, Jeroen; Schüepp, Christof; Smith, Henrik G.; Stanley, Dara A.; Stout, Jane C.; Szentgyörgyi, Hajnalka; Taki, Hisatomo; Vergara, Carlos H.; Viana, Blandina F.; Woyciechowski, Michal

    2016-01-01

    Wild and managed bees are well documented as effective pollinators of global crops of economic importance. However, the contributions by pollinators other than bees have been little explored despite their potential to contribute to crop production and stability in the face of environmental change. Non-bee pollinators include flies, beetles, moths, butterflies, wasps, ants, birds, and bats, among others. Here we focus on non-bee insects and synthesize 39 field studies from five continents that directly measured the crop pollination services provided by non-bees, honey bees, and other bees to compare the relative contributions of these taxa. Non-bees performed 25–50% of the total number of flower visits. Although non-bees were less effective pollinators than bees per flower visit, they made more visits; thus these two factors compensated for each other, resulting in pollination services rendered by non-bees that were similar to those provided by bees. In the subset of studies that measured fruit set, fruit set increased with non-bee insect visits independently of bee visitation rates, indicating that non-bee insects provide a unique benefit that is not provided by bees. We also show that non-bee insects are not as reliant as bees on the presence of remnant natural or seminatural habitat in the surrounding landscape. These results strongly suggest that non-bee insect pollinators play a significant role in global crop production and respond differently than bees to landscape structure, probably making their crop pollination services more robust to changes in land use. Non-bee insects provide a valuable service and provide potential insurance against bee population declines. PMID:26621730

  13. Preventing bee mortality with RNA interference

    USDA-ARS?s Scientific Manuscript database

    We present a real world example of the successful use of an RNAi product for disease control. RNAi increased bee health in the presence of the bee viral pathogen, IAPV. The importance of honey bees to the world economy far surpasses their contribution in terms of honey production; they are responsib...

  14. Bee++: An Object-Oriented, Agent-Based Simulator for Honey Bee Colonies

    PubMed Central

    Betti, Matthew; LeClair, Josh; Wahl, Lindi M.; Zamir, Mair

    2017-01-01

    We present a model and associated simulation package (www.beeplusplus.ca) to capture the natural dynamics of a honey bee colony in a spatially-explicit landscape, with temporally-variable, weather-dependent parameters. The simulation tracks bees of different ages and castes, food stores within the colony, pollen and nectar sources and the spatial position of individual foragers outside the hive. We track explicitly the intake of pesticides in individual bees and their ability to metabolize these toxins, such that the impact of sub-lethal doses of pesticides can be explored. Moreover, pathogen populations (in particular, Nosema apis, Nosema cerenae and Varroa mites) have been included in the model and may be introduced at any time or location. The ability to study interactions among pesticides, climate, biodiversity and pathogens in this predictive framework should prove useful to a wide range of researchers studying honey bee populations. To this end, the simulation package is written in open source, object-oriented code (C++) and can be easily modified by the user. Here, we demonstrate the use of the model by exploring the effects of sub-lethal pesticide exposure on the flight behaviour of foragers. PMID:28287445

  15. Bees' subtle colour preferences: how bees respond to small changes in pigment concentration

    NASA Astrophysics Data System (ADS)

    Papiorek, Sarah; Rohde, Katja; Lunau, Klaus

    2013-07-01

    Variability in flower colour of animal-pollinated plants is common and caused, inter alia, by inter-individual differences in pigment concentrations. If and how pollinators, especially bees, respond to these small differences in pigment concentration is not known, but it is likely that flower colour variability impacts the choice behaviour of all flower visitors that exhibit innate and learned colour preferences. In behavioural experiments, we simulated varying pigment concentrations and studied its impact on the colour choices of bumblebees and honeybees. Individual bees were trained to artificial flowers having a specific concentration of a pigment, i.e. Acridine Orange or Aniline Blue, and then given the simultaneous choice between three test colours including the training colour, one colour of lower and one colour of higher pigment concentration. For each pigment, two set-ups were provided, covering the range of low to middle and the range of middle to high pigment concentrations. Despite the small bee-subjective perceptual contrasts between the tested stimuli and regardless of training towards medium concentrations, bees preferred neither the training stimuli nor the stimuli offering the highest pigment concentration but more often chose those stimuli offering the highest spectral purity and the highest chromatic contrast against the background. Overall, this study suggests that bees choose an intermediate pigment concentration due to its optimal conspicuousness. It is concluded that the spontaneous preferences of bees for flower colours of high spectral purity might exert selective pressure on the evolution of floral colours and of flower pigmentation.

  16. Hygienic behaviour in Brazilian stingless bees.

    PubMed

    Al Toufailia, Hasan; Alves, Denise A; Bento, José M S; Marchini, Luis C; Ratnieks, Francis L W

    2016-11-15

    Social insects have many defence mechanisms against pests and pathogens. One of these is hygienic behaviour, which has been studied in detail in the honey bee, Apis mellifera Hygienic honey bee workers remove dead and diseased larvae and pupae from sealed brood cells, thereby reducing disease transfer within the colony. Stingless bees, Meliponini, also rear broods in sealed cells. We investigated hygienic behaviour in three species of Brazilian stingless bees (Melipona scutellaris, Scaptotrigona depilis, Tetragonisca angustula) in response to freeze-killed brood. All three species had high mean levels of freeze-killed brood removal after 48 h ∼99% in M. scutellaris, 80% in S. depilis and 62% in T. angustula (N=8 colonies per species; three trials per colony). These levels are greater than in unselected honey bee populations, ∼46%. In S. depilis there was also considerable intercolony variation, ranging from 27% to 100% removal after 2 days. Interestingly, in the S. depilis colony with the slowest removal of freeze-killed brood, 15% of the adult bees emerging from their cells had shrivelled wings indicating a disease or disorder, which is as yet unidentified. Although the gross symptoms resembled the effects of deformed wing virus in the honey bee, this virus was not detected in the samples. When brood comb from the diseased colony was introduced to the other S. depilis colonies, there was a significant negative correlation between freeze-killed brood removal and the emergence of deformed worker bees (P=0.001), and a positive correlation with the cleaning out of brood cells (P=0.0008). This shows that the more hygienic colonies were detecting and removing unhealthy brood prior to adult emergence. Our results indicate that hygienic behaviour may play an important role in colony health in stingless bees. The low levels of disease normally seen in stingless bees may be because they have effective mechanisms of disease management, not because they lack diseases

  17. Hygienic behaviour in Brazilian stingless bees

    PubMed Central

    Alves, Denise A.; Bento, José M. S.; Marchini, Luis C.; Ratnieks, Francis L. W.

    2016-01-01

    ABSTRACT Social insects have many defence mechanisms against pests and pathogens. One of these is hygienic behaviour, which has been studied in detail in the honey bee, Apis mellifera. Hygienic honey bee workers remove dead and diseased larvae and pupae from sealed brood cells, thereby reducing disease transfer within the colony. Stingless bees, Meliponini, also rear broods in sealed cells. We investigated hygienic behaviour in three species of Brazilian stingless bees (Melipona scutellaris, Scaptotrigona depilis, Tetragonisca angustula) in response to freeze-killed brood. All three species had high mean levels of freeze-killed brood removal after 48 h ∼99% in M. scutellaris, 80% in S. depilis and 62% in T. angustula (N=8 colonies per species; three trials per colony). These levels are greater than in unselected honey bee populations, ∼46%. In S. depilis there was also considerable intercolony variation, ranging from 27% to 100% removal after 2 days. Interestingly, in the S. depilis colony with the slowest removal of freeze-killed brood, 15% of the adult bees emerging from their cells had shrivelled wings indicating a disease or disorder, which is as yet unidentified. Although the gross symptoms resembled the effects of deformed wing virus in the honey bee, this virus was not detected in the samples. When brood comb from the diseased colony was introduced to the other S. depilis colonies, there was a significant negative correlation between freeze-killed brood removal and the emergence of deformed worker bees (P=0.001), and a positive correlation with the cleaning out of brood cells (P=0.0008). This shows that the more hygienic colonies were detecting and removing unhealthy brood prior to adult emergence. Our results indicate that hygienic behaviour may play an important role in colony health in stingless bees. The low levels of disease normally seen in stingless bees may be because they have effective mechanisms of disease management, not because they lack

  18. Hot spots in the bee hive

    NASA Astrophysics Data System (ADS)

    Bujok, Brigitte; Kleinhenz, Marco; Fuchs, Stefan; Tautz, Jürgen

    2002-06-01

    Honeybee colonies (Apis mellifera) maintain temperatures of 35-36°C in their brood nest because the brood needs high and constant temperature conditions for optimal development. We show that incubation of the brood at the level of individual honeybees is done by worker bees performing a particular and not yet specified behaviour: such bees raise the brood temperature by pressing their warm thoraces firmly onto caps under which the pupae develop. The bees stay motionless in a characteristic posture and have significantly higher thoracic temperatures than bees not assuming this posture in the brood area. The surface of the brood caps against which warm bees had pressed their thorax were up to 3.2°C warmer than the surrounding area, confirming that effective thermal transfer had taken place.

  19. Mapping Sleeping Bees within Their Nest: Spatial and Temporal Analysis of Worker Honey Bee Sleep

    PubMed Central

    Klein, Barrett Anthony; Stiegler, Martin; Klein, Arno; Tautz, Jürgen

    2014-01-01

    Patterns of behavior within societies have long been visualized and interpreted using maps. Mapping the occurrence of sleep across individuals within a society could offer clues as to functional aspects of sleep. In spite of this, a detailed spatial analysis of sleep has never been conducted on an invertebrate society. We introduce the concept of mapping sleep across an insect society, and provide an empirical example, mapping sleep patterns within colonies of European honey bees (Apis mellifera L.). Honey bees face variables such as temperature and position of resources within their colony's nest that may impact their sleep. We mapped sleep behavior and temperature of worker bees and produced maps of their nest's comb contents as the colony grew and contents changed. By following marked bees, we discovered that individuals slept in many locations, but bees of different worker castes slept in different areas of the nest relative to position of the brood and surrounding temperature. Older worker bees generally slept outside cells, closer to the perimeter of the nest, in colder regions, and away from uncapped brood. Younger worker bees generally slept inside cells and closer to the center of the nest, and spent more time asleep than awake when surrounded by uncapped brood. The average surface temperature of sleeping foragers was lower than the surface temperature of their surroundings, offering a possible indicator of sleep for this caste. We propose mechanisms that could generate caste-dependent sleep patterns and discuss functional significance of these patterns. PMID:25029445

  20. Ethanol-Induced Effects on Sting Extension Response and Punishment Learning in the Western Honey Bee (Apis mellifera)

    PubMed Central

    Giannoni-Guzmán, Manuel A.; Giray, Tugrul; Agosto-Rivera, Jose Luis; Stevison, Blake K.; Freeman, Brett; Ricci, Paige; Brown, Erika A.; Abramson, Charles I.

    2014-01-01

    Acute ethanol administration is associated with sedation and analgesia as well as behavioral disinhibition and memory loss but the mechanisms underlying these effects remain to be elucidated. During the past decade, insects have emerged as important model systems to understand the neural and genetic bases of alcohol effects. However, novel assays to assess ethanol's effects on complex behaviors in social or isolated contexts are necessary. Here we used the honey bee as an especially relevant model system since bees are typically exposed to ethanol in nature when collecting standing nectar crop of flowers, and there is recent evidence for independent biological significance of this exposure for social behavior. Bee's inhibitory control of the sting extension response (SER) and a conditioned-place aversion assay were used to study ethanol effects on analgesia, behavioral disinhibition, and associative learning. Our findings indicate that although ethanol, in a dose-dependent manner, increases SER thresholds (analgesic effects), it disrupts the ability of honey bees to inhibit SER and to associate aversive stimuli with their environment. These results suggest that ethanol's effects on analgesia, behavioral disinhibition and associative learning are common across vertebrates and invertebrates. These results add to the use of honey bees as an ethanol model to understand ethanol's effects on complex, socially relevant behaviors. PMID:24988309

  1. Genes versus environment: geography and phylogenetic relationships shape the chemical profiles of stingless bees on a global scale

    PubMed Central

    Leonhardt, Sara D.; Rasmussen, Claus; Schmitt, Thomas

    2013-01-01

    Chemical compounds are highly important in the ecology of animals. In social insects, compounds on the body surface represent a particularly interesting trait, because they comprise different compound classes that are involved in different functions, such as communication, recognition and protection, all of which can be differentially affected by evolutionary processes. Here, we investigate the widely unknown and possibly antagonistic influence of phylogenetic and environmental factors on the composition of the cuticular chemistry of tropical stingless bees. We chose stingless bees because some species are unique in expressing not only self-produced compounds, but also compounds that are taken up from the environment. By relating the cuticular chemistry of 40 bee species from all over the world to their molecular phylogeny and geographical occurrence, we found that distribution patterns of different groups of compounds were differentially affected by genetic relatedness and biogeography. The ability to acquire environmental compounds was, for example, highly correlated with the bees' phylogeny and predominated in evolutionarily derived species. Owing to the presence of environmentally derived compounds, those species further expressed a higher chemical and thus functional diversity. In Old World species, chemical similarity of both environmentally derived and self-produced compounds was particularly high among sympatric species, even when they were less related to each other than to allopatric species, revealing a strong environmental effect even on largely genetically determined compounds. Thus, our findings do not only reveal an unexpectedly strong influence of the environment on the cuticular chemistry of stingless bees, but also demonstrate that even within one morphological trait (an insect's cuticular profile), different components (compound classes) can be differentially affected by different drivers (relatedness and biogeography), depending on the

  2. Vanishing honey bees: Is the dying of adult worker bees a consequence of short telomeres and premature aging?

    PubMed

    Stindl, Reinhard; Stindl, Wolfgang

    2010-10-01

    Einstein is often quoted to have said that without the bee, mankind would have but 4years to live. It is highly unlikely that he made this comment, which was even mentioned in a Lancet article on honey bees. However, the current vanishing of the bees can have serious consequences for human health, because 35% of the human diet is thought to benefit from pollination. Colony collapse disorder (CCD) in honey bees is characterized by the rapid decline of the adult bee population, leaving the brood and the queen poorly or completely unattended, with no dead bodies in or around the hive. A large study found no evidence that the presence or amount of any individual pesticide or infectious agent occurred more frequently or abundantly in CCD-affected colonies. The growing consensus is that honey bees are suffering from comprised immune systems, which allow various infectious pathogens to invade. The question remains, what causes immunosuppression in many colonies of Apis mellifera in North America and Europe? Telomeres are protective DNA structures located at eukaryotic chromosome tips that shorten in the somatic tissues of animals with age. Lifelong tissue regeneration takes place in Apis mellifera, and worker bees have been shown to senesce. In humans, a vast amount of literature has accumulated on exhausted telomere reserves causing impaired tissue regeneration and age-associated diseases, specifically cancer and immunosuppression. Therefore, we propose a new causative mechanism for the vanishing of the bees: critically short telomeres in long-lived winter bees. We term this the telomere premature aging syndrome. Copyright 2010 Elsevier Ltd. All rights reserved.

  3. Recent worldwide expansion of Nosema ceranae (Microsporidia) in Apis mellifera populations inferred from multilocus patterns of genetic variation.

    PubMed

    Gómez-Moracho, T; Bartolomé, C; Bello, X; Martín-Hernández, R; Higes, M; Maside, X

    2015-04-01

    Nosema ceranae has been found infecting Apismellifera colonies with increasing frequency and it now represents a major threat to the health and long-term survival of these honeybees worldwide. However, so far little is known about the population genetics of this parasite. Here, we describe the patterns of genetic variation at three genomic loci in a collection of isolates from all over the world. Our main findings are: (i) the levels of genetic polymorphism (πS≈1%) do not vary significantly across its distribution range, (ii) there is substantial evidence for recombination among haplotypes, (iii) the best part of the observed genetic variance corresponds to differences within bee colonies (up to 88% of the total variance), (iv) parasites collected from Asian honeybees (Apis cerana and Apis florea) display significant differentiation from those obtained from Apismellifera (8-16% of the total variance, p<0.01) and (v) there is a significant excess of low frequency variants over neutral expectations among samples obtained from A. mellifera, but not from Asian honeybees. Overall these results are consistent with a recent colonization and rapid expansion of N. ceranae throughout A. mellifera colonies. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Imidacloprid Alters Foraging and Decreases Bee Avoidance of Predators

    PubMed Central

    Tan, Ken; Chen, Weiwen; Dong, Shihao; Liu, Xiwen; Wang, Yuchong; Nieh, James C.

    2014-01-01

    Concern is growing over the effects of neonicotinoid pesticides, which can impair honey bee cognition. We provide the first demonstration that sublethal concentrations of imidacloprid can harm honey bee decision-making about danger by significantly increasing the probability of a bee visiting a dangerous food source. Apis cerana is a native bee that is an important pollinator of agricultural crops and native plants in Asia. When foraging on nectar containing 40 µg/L (34 ppb) imidacloprid, honey bees (Apis cerana) showed no aversion to a feeder with a hornet predator, and 1.8 fold more bees chose the dangerous feeder as compared to control bees. Control bees exhibited significant predator avoidance. We also give the first evidence that foraging by A. cerana workers can be inhibited by sublethal concentrations of the pesticide, imidacloprid, which is widely used in Asia. Compared to bees collecting uncontaminated nectar, 23% fewer foragers returned to collect the nectar with 40 µg/L imidacloprid. Bees that did return respectively collected 46% and 63% less nectar containing 20 µg/L and 40 µg/L imidacloprid. These results suggest that the effects of neonicotinoids on honey bee decision-making and other advanced cognitive functions should be explored. Moreover, research should extend beyond the classic model, the European honey bee (A. mellifera), to other important bee species. PMID:25025334

  5. What currency do bumble bees maximize?

    PubMed

    Charlton, Nicholas L; Houston, Alasdair I

    2010-08-16

    In modelling bumble bee foraging, net rate of energetic intake has been suggested as the appropriate currency. The foraging behaviour of honey bees is better predicted by using efficiency, the ratio of energetic gain to expenditure, as the currency. We re-analyse several studies of bumble bee foraging and show that efficiency is as good a currency as net rate in terms of predicting behaviour. We suggest that future studies of the foraging of bumble bees should be designed to distinguish between net rate and efficiency maximizing behaviour in an attempt to discover which is the more appropriate currency.

  6. What Currency Do Bumble Bees Maximize?

    PubMed Central

    Charlton, Nicholas L.; Houston, Alasdair I.

    2010-01-01

    In modelling bumble bee foraging, net rate of energetic intake has been suggested as the appropriate currency. The foraging behaviour of honey bees is better predicted by using efficiency, the ratio of energetic gain to expenditure, as the currency. We re-analyse several studies of bumble bee foraging and show that efficiency is as good a currency as net rate in terms of predicting behaviour. We suggest that future studies of the foraging of bumble bees should be designed to distinguish between net rate and efficiency maximizing behaviour in an attempt to discover which is the more appropriate currency. PMID:20808437

  7. Immunology of Bee Venom.

    PubMed

    Elieh Ali Komi, Daniel; Shafaghat, Farzaneh; Zwiener, Ricardo D

    2018-06-01

    Bee venom is a blend of biochemicals ranging from small peptides and enzymes to biogenic amines. It is capable of triggering severe immunologic reactions owing to its allergenic fraction. Venom components are presented to the T cells by antigen-presenting cells within the skin. These Th2 type T cells then release IL-4 and IL-13 which subsequently direct B cells to class switch to production of IgE. Generating venom-specific IgE and crosslinking FcεR1(s) on the surface of mast cells complete the sensitizing stage in allergic individuals who are most likely to experience severe and even fatal allergic reactions after being stung. Specific IgE for bee venom is a double-edged sword as it is a powerful mediator in triggering allergic events but is also applied successfully in diagnosis of the venom allergic patient. The healing capacity of bee venom has been rediscovered under laboratory-controlled conditions using animal models and cell cultures. The potential role of enzymatic fraction of bee venom including phospholipase A2 in the initiation and development of immune responses also has been studied in numerous research settings. Undoubtedly, having insights into immunologic interactions between bee venom components and innate/specific immune cells both locally and systematically will contribute to the development of immunologic strategies in specific and epitope-based immunotherapy especially in individuals with Hymenoptera venom allergy.

  8. Fruit Set and Single Visit Stigma Pollen Deposition by Managed Bumble Bees and Wild Bees in Citrullus lanatus (Cucurbitales: Cucurbitaceae).

    PubMed

    Campbell, Joshua W; Daniels, Jaret C; Ellis, James D

    2018-04-02

    Pollinators provide essential services for watermelon, Citrullus lanatus (Thunb.; Cucurbitales: Cucurbitaceae). Managed bumble bees, Bombus impatiens (Cresson; Hymenoptera: Apidae), have been shown to be a useful watermelon pollinator in some areas. However, the exact contribution bumble bees make to watermelon pollination and how their contribution compares to that of other bees is unclear. We used large cages (5.4 × 2.5 × 2.4 m) to confine bumble bee hives to watermelon plants and compared fruit set in those cages to cages containing watermelons but no pollinators, and to open areas of field next to cages (allows all pollinators). We also collected data on single visit pollen deposition onto watermelon stigmas by managed bumble bees, honey bees, and wild bees. Overall, more fruit formed within the open cages than in cages of the other two treatment groups. B. impatiens and Melissodes spp. deposited the most pollen onto watermelon stigmas per visit, but all bee species observed visiting watermelon flowers were capable of depositing ample pollen to watermelon stigmas. Although B. impatiens did deposit large quantities of pollen to stigmas, they were not common within the field (i.e., outside the cages) as they were readily drawn to flowering plants outside of the watermelon field. Overall, bumble bees can successfully pollinate watermelon, but may be useful in greenhouses or high tunnels where watermelon flowers have no competition from other flowering plants that could draw bumble bees away from watermelon.

  9. Complementary crops and landscape features sustain wild bee communities.

    PubMed

    Martins, Kyle T; Albert, Cécile H; Lechowicz, Martin J; Gonzalez, Andrew

    2018-06-01

    Wild bees, which are important for commercial pollination, depend on floral and nesting resources both at farms and in the surrounding landscape. Mass-flowering crops are only in bloom for a few weeks and unable to support bee populations that persist throughout the year. Farm fields and orchards that flower in succession potentially can extend the availability of floral resources for pollinators. However, it is unclear whether the same bee species or genera will forage from one crop to the next, which bees specialize on particular crops, and to what degree inter-crop visitation patterns will be mediated by landscape context. We therefore studied local- and landscape-level drivers of bee diversity and species turnover in apple orchards, blueberry fields, and raspberry fields that bloom sequentially in southern Quebec, Canada. Despite the presence of high bee species turnover, orchards and small fruit fields complemented each other phenologically by supporting two bee genera essential to their pollination: mining bees (Andrena spp.) and bumble bees (Bombus spp.). A number of bee species specialized on apple, blueberry, or raspberry blossoms, suggesting that all three crops could be used to promote regional bee diversity. Bee diversity (rarefied richness, wild bee abundance) was highest across crops in landscapes containing hedgerows, meadows, and suburban areas that provide ancillary nesting and floral resources throughout the spring and summer. Promoting phenological complementarity in floral resources at the farmstead and landscape scales is essential to sustaining diverse wild bee populations. © 2018 by the Ecological Society of America.

  10. Why does bee health matter? The science surrounding honey bee health concerns and what we can do about it

    USGS Publications Warehouse

    Spivak, Marla S; Browning, Zac; Goblirsch, Mike; Lee, Katie; Otto, Clint R.; Smart, Matthew; Wu-Smart, Judy

    2017-01-01

    A colony of honey bees is an amazing organism when it is healthy; it is a superorganism in many senses of the word. As with any organism, maintaining a state of health requires cohesiveness and interplay among cells and tissues and, in the case of a honey bee colony, the bees themselves. The individual bees that make up a honey bee colony deliver to the superorganism what it needs: pollen and nectar collected from flowering plants that contain nutrients necessary for growth and survival. Honey bees with access to better and more complete nutrition exhibit improved immune system function and behavioral defenses for fighting off effects of pathogens and pesticides (Evans and Spivak 2010; Mao, Schuler, and Berenbaum 2013; Wahl and Ulm 1983). Sadly, as this story is often told in the headlines, the focus is rarely about what it means for a honey bee colony to be healthy and is instead primarily focused on colony survival rates. Bee colonies are chronically exposed to parasitic mites, viruses, diseases, miticides, pesticides, and poor nutrition, which weaken and make innate defenses insufficient at overcoming these combined stressors. Colonies that are chronically weakened can be even more susceptible to infections and levels of pesticide exposure that might otherwise be innocuous, further promoting a downward spiral of health. Sick and weakened bees diminish the colony’s resiliency, ultimately leading to a breakdown in the social structure, production, efficiency, immunity, and reproduction of the colony, and eventual or sudden colony death.

  11. Cage-Fighting Bees: Can Aggressive Competition Increase Pollination Efficacy for an Oligolectic Native Bee?

    USDA-ARS?s Scientific Manuscript database

    Pollination efficacy of the oligolectic bee Ptilothrix bombiformis was measured as the number of pollen grains delivered to virgin Hibiscus stigmas. Such specialized bee foragers are often assumed to be highly efficient pollinators. Intriguingly, however, we discovered females fight over host blooms...

  12. Feedbacks between nutrition and disease in honey bee health.

    PubMed

    Dolezal, Adam G; Toth, Amy L

    2018-04-01

    Declines in honey bee health have been attributed to multiple interacting environmental stressors; among the most important are forage/nutrition deficits and parasites and pathogens. Recent studies suggest poor honey bee nutrition can exacerbate the negative impacts of infectious viral and fungal diseases, and conversely, that common honey bee parasites and pathogens can adversely affect bee nutritional physiology. This sets up the potential for harmful feedbacks between poor nutrition and infectious disease that may contribute to spiraling declines in bee health. We suggest that improving bees' nutritional resilience should be a major goal in combating challenges to bee health; this approach can buffer bees from other environmental stressors such as pathogen infection. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Testing a pollen-parent fecundity distribution model on seed-parent fecundity distributions in bee-pollinated forage legume polycrosses

    USDA-ARS?s Scientific Manuscript database

    Random mating (i.e., panmixis) is a fundamental assumption in quantitative genetics. In outcrossing bee-pollinated perennial forage legume polycrosses, mating is assumed by default to follow theoretical random mating. This assumption informs breeders of expected inbreeding estimates based on polycro...

  14. [Bee mite: Varroa jacobsoni qudemans].

    PubMed

    Ozer, N; Boşgelmez, A

    1983-07-01

    Varroatosis caused by varroa jacobsoni on honeybee, Apis mellifera L., is currently one of the worlds major bee keeping problems. The mite parasites the adult honey bee, as well as its developmental stages, by sucking the insects's haemolymph. Up to date, many chemicals were used against this mite but still there is no chemical which has 100% effect and at the same time bees and their brood demonstrate a good tolerance. The investigations on biology and therapy on Varroa are still going on in many countries.

  15. Recent introduction of an allodapine bee into Fiji: A new model system for understanding biological invasions by pollinators.

    PubMed

    Groom, Scott V C; Tuiwawa, Marika V; Stevens, Mark I; Schwarz, Michael P

    2015-08-01

    Morphology-based studies have suggested a very depauperate bee fauna for islands in the South West Pacific, and recent genetic studies since have indicated an even smaller endemic fauna with many bee species in this region resulting from human-aided dispersal. These introduced species have the potential to both disrupt native pollinator suites as well as augment crop pollination, but for most species the timings of introduction are unknown. We examined the distribution and nesting biology of the long-tongued bee Braunsapis puangensis that was first recorded from Fiji in 2007. This bee has now become widespread in Fiji and both its local abundance and geographical range are likely to increase dramatically. The impacts of this invasion are potentially enormous for agriculture and native ecosystems, but they also provide opportunities for understanding how social insect species adapt to new environments. We outline the major issues associated with this recent invasion and argue that a long-term monitoring study is needed. © 2014 Institute of Zoology, Chinese Academy of Sciences.

  16. Sun compensation by bees.

    PubMed

    Gould, J L

    1980-02-01

    In both their navigation and dance communication, bees are able to compensate for the sun's movement. When foragers are prevented from seeing the sun for 2 hours, they compensate by extrapolation, using the sun's rate of movement when last observed. These and other data suggest a time-averaging processing strategy in honey bee orientation.

  17. Neonicotinoid insecticides in pollen, honey and adult bees in colonies of the European honey bee (Apis mellifera L.) in Egypt.

    PubMed

    Codling, Garry; Naggar, Yahya Al; Giesy, John P; Robertson, Albert J

    2018-03-01

    Honeybee losses have been attributed to multiple stressors and factors including the neonicotinoid insecticides (NIs). Much of the study of hive contamination has been focused upon temperate regions such as Europe, Canada and the United States. This study looks for the first time at honey, pollen and bees collected from across the Nile Delta in Egypt in both the spring and summer planting season of 2013. There is limited information upon the frequency of use of NIs in Egypt but the ratio of positive identification and concentrations of NIs are comparable to other regions. Metabolites of NIs were also monitored but given the low detection frequency, no link between matrices was possible in the study. Using a simple hazard assessment based upon published LD 50 values for individual neonicotinoids upon the foraging and brood workers it was found that there was a potential risk to brood workers if the lowest reported LD 50 was compared to the sum of the maximum NI concentrations. For non-lethal exposure there was significant risk at the worst case to brood bees but actual exposure effects are dependant upon the genetics and conditions of the Egyptian honeybee subspecies that remain to be determined.

  18. Can We Disrupt the Sensing of Honey Bees by the Bee Parasite Varroa destructor?

    PubMed Central

    Eliash, Nurit; Singh, Nitin Kumar; Kamer, Yosef; Pinnelli, Govardhana Reddy; Plettner, Erika; Soroker, Victoria

    2014-01-01

    Background The ectoparasitic mite, Varroa destructor, is considered to be one of the most significant threats to apiculture around the world. Chemical cues are known to play a significant role in the host-finding behavior of Varroa. The mites distinguish between bees from different task groups, and prefer nurses over foragers. We examined the possibility of disrupting the Varroa – honey bee interaction by targeting the mite's olfactory system. In particular, we examined the effect of volatile compounds, ethers of cis 5-(2′-hydroxyethyl) cyclopent-2-en-1-ol or of dihydroquinone, resorcinol or catechol. We tested the effect of these compounds on the Varroa chemosensory organ by electrophysiology and on behavior in a choice bioassay. The electrophysiological studies were conducted on the isolated foreleg. In the behavioral bioassay, the mite's preference between a nurse and a forager bee was evaluated. Principal findings We found that in the presence of some compounds, the response of the Varroa chemosensory organ to honey bee headspace volatiles significantly decreased. This effect was dose dependent and, for some of the compounds, long lasting (>1 min). Furthermore, disruption of the Varroa volatile detection was accompanied by a reversal of the mite's preference from a nurse to a forager bee. Long-term inhibition of the electrophysiological responses of mites to the tested compounds was a good predictor for an alteration in the mite's host preference. Conclusions These data indicate the potential of the selected compounds to disrupt the Varroa - honey bee associations, thus opening new avenues for Varroa control. PMID:25226388

  19. Can we disrupt the sensing of honey bees by the bee parasite Varroa destructor?

    PubMed

    Eliash, Nurit; Singh, Nitin Kumar; Kamer, Yosef; Pinnelli, Govardhana Reddy; Plettner, Erika; Soroker, Victoria

    2014-01-01

    The ectoparasitic mite, Varroa destructor, is considered to be one of the most significant threats to apiculture around the world. Chemical cues are known to play a significant role in the host-finding behavior of Varroa. The mites distinguish between bees from different task groups, and prefer nurses over foragers. We examined the possibility of disrupting the Varroa--honey bee interaction by targeting the mite's olfactory system. In particular, we examined the effect of volatile compounds, ethers of cis 5-(2'-hydroxyethyl) cyclopent-2-en-1-ol or of dihydroquinone, resorcinol or catechol. We tested the effect of these compounds on the Varroa chemosensory organ by electrophysiology and on behavior in a choice bioassay. The electrophysiological studies were conducted on the isolated foreleg. In the behavioral bioassay, the mite's preference between a nurse and a forager bee was evaluated. We found that in the presence of some compounds, the response of the Varroa chemosensory organ to honey bee headspace volatiles significantly decreased. This effect was dose dependent and, for some of the compounds, long lasting (>1 min). Furthermore, disruption of the Varroa volatile detection was accompanied by a reversal of the mite's preference from a nurse to a forager bee. Long-term inhibition of the electrophysiological responses of mites to the tested compounds was a good predictor for an alteration in the mite's host preference. These data indicate the potential of the selected compounds to disrupt the Varroa--honey bee associations, thus opening new avenues for Varroa control.

  20. Magnetic effect on dancing bees

    NASA Technical Reports Server (NTRS)

    Lindauer, M.; Martin, H.

    1972-01-01

    Bee sensitivity to the earth's magnetic field is studied. Data cover sensitivity range and the use of magnetoreception for orientation purposes. Experimental results indicate bee orientation is aided by gravity fields when the magnetic field is compensated.

  1. Sequence and expression pattern of the germ line marker vasa in honey bees and stingless bees

    PubMed Central

    2009-01-01

    Queens and workers of social insects differ in the rates of egg laying. Using genomic information we determined the sequence of vasa, a highly conserved gene specific to the germ line of metazoans, for the honey bee and four stingless bees. The vasa sequence of social bees differed from that of other insects in two motifs. By RT-PCR we confirmed the germ line specificity of Amvasa expression in honey bees. In situ hybridization on ovarioles showed that Amvasa is expressed throughout the germarium, except for the transition zone beneath the terminal filament. A diffuse vasa signal was also seen in terminal filaments suggesting the presence of germ line cells. Oocytes showed elevated levels of Amvasa transcripts in the lower germarium and after follicles became segregated. In previtellogenic follicles, Amvasa transcription was detected in the trophocytes, which appear to supply its mRNA to the growing oocyte. A similar picture was obtained for ovarioles of the stingless bee Melipona quadrifasciata, except that Amvasa expression was higher in the oocytes of previtellogenic follicles. The social bees differ in this respect from Drosophila, the model system for insect oogenesis, suggesting that changes in the sequence and expression pattern of vasa may have occurred during social evolution. PMID:21637523

  2. Studies on Bee Venom and Its Medical Uses

    NASA Astrophysics Data System (ADS)

    Ali, Mahmoud Abdu Al-Samie Mohamed

    2012-07-01

    Use of honey and other bee products in human treatments traced back thousands of years and healing properties are included in many religious texts including the Veda, Bible and Quran. Apitherapy is the use of honey bee products for medical purposes, this include bee venom, raw honey, royal jelly, pollen, propolis, and beeswax. Whereas bee venom therapy is the use of live bee stings (or injectable venom) to treat various diseases such as arthritis, rheumatoid arthritis, multiple sclerosis (MS), lupus, sciatica, low back pain, and tennis elbow to name a few. It refers to any use of venom to assist the body in healing itself. Bee venom contains at least 18 pharmacologically active components including various enzymes, peptides and amines. Sulfur is believed to be the main element in inducing the release of cortisol from the adrenal glands and in protecting the body from infections. Contact with bee venom produces a complex cascade of reactions in the human body. The bee venom is safe for human treatments, the median lethal dose (LD50) for an adult human is 2.8 mg of venom per kg of body weight, i.e. a person weighing 60 kg has a 50% chance of surviving injections totaling 168 mg of bee venom. Assuming each bee injects all its venom and no stings are quickly removed at a maximum of 0.3 mg venom per sting, 560 stings could well be lethal for such a person. For a child weighing 10 kg, as little as 93.33 stings could be fatal. However, most human deaths result from one or few bee stings due to allergic reactions, heart failure or suffocation from swelling around the neck or the mouth. As compare with other human diseases, accidents and other unusual cases, the bee venom is very safe for human treatments.

  3. Identifying bacterial predictors of honey bee health.

    PubMed

    Budge, Giles E; Adams, Ian; Thwaites, Richard; Pietravalle, Stéphane; Drew, Georgia C; Hurst, Gregory D D; Tomkies, Victoria; Boonham, Neil; Brown, Mike

    2016-11-01

    Non-targeted approaches are useful tools to identify new or emerging issues in bee health. Here, we utilise next generation sequencing to highlight bacteria associated with healthy and unhealthy honey bee colonies, and then use targeted methods to screen a wider pool of colonies with known health status. Our results provide the first evidence that bacteria from the genus Arsenophonus are associated with poor health in honey bee colonies. We also discovered Lactobacillus and Leuconostoc spp. were associated with healthier honey bee colonies. Our results highlight the importance of understanding how the wider microbial population relates to honey bee colony health. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  4. Aging and body size in solitary bees

    USDA-ARS?s Scientific Manuscript database

    Solitary bees are important pollinators of crops and non-domestic plants. Osmia lignaria is a native, commercially-reared solitary bee used to maximize pollination in orchard crops. In solitary bees, adult body size is extremely variable depending on the nutritional resources available to the develo...

  5. Response diversity of wild bees to overwintering temperatures.

    PubMed

    Fründ, Jochen; Zieger, Sarah L; Tscharntke, Teja

    2013-12-01

    Biodiversity can provide insurance against environmental change, but only if species differ in their response to environmental conditions (response diversity). Wild bees provide pollination services to wild and crop plants, and response diversity might insure this function against changing climate. To experimentally test the hypothesis that bee species differ in their response to increasing winter temperature, we stored cocoons of nine bee species at different temperatures during the winter (1.5-9.5 °C). Bee species differed significantly in their responses (weight loss, weight at emergence and emergence date). The developmental stage during the winter explained some of these differences. Bee species overwintering as adults generally showed decreased weight and earlier emergence with increasing temperature, whereas bee species overwintering in pre-imaginal stages showed weaker or even opposite responses. This means that winter warming will likely affect some bee species negatively by increasing energy expenditure, while others are less sensitive presumably due to different physiology. Likewise, species phenologies will respond differently to winter warming, potentially affecting plant-pollinator interactions. Responses are not independent of current flight periods: bees active in spring will likely show the strongest phenological advances. Taken together, wild bee diversity provides response diversity to climate change, which may be the basis for an insurance effect.

  6. Bees prefer foods containing neonicotinoid pesticides

    PubMed Central

    Simcock, Kerry L.; Derveau, Sophie; Mitchell, Jessica; Softley, Samantha; Stout, Jane C.; Wright, Geraldine A.

    2015-01-01

    The impact of neonicotinoid insecticides on insect pollinators is highly controversial. Sublethal concentrations alter the behaviour of social bees and reduce survival of entire colonies1-3. However, critics argue that the reported negative effects only arise from neonicotinoid concentrations that are greater than those found in the nectar and pollen of pesticide-treated plants4. Furthermore, it has been suggested that bees could choose to forage on other available flowers and hence avoid or dilute exposure4,5. Here, using a two-choice feeding assay, we show that the honeybee, Apis mellifera, and the buff-tailed bumblebee, Bombus terrestris, do not avoid nectar-relevant concentrations of three of the most commonly-used neonicotinoids, imidacloprid (IMD), thiamethoxam (TMX), and clothianidin (CLO) in food. Moreover, bees of both species prefer to eat more of sucrose solutions laced with IMD or TMX than sucrose alone. Stimulation with IMD, TMX, and CLO neither elicited spiking responses from gustatory neurons in the bees’ mouthparts nor inhibited the responses of sucrose-sensitive neurons. Our data indicate that bees cannot taste neonicotinoids and are not repelled by them. Instead, bees preferred solutions containing IMD or TMX even though the consumption of these pesticides caused them to eat less food overall. This work shows that bees cannot control their exposure to neonicotinoids in food and implies that treating flowering crops with IMD and TMX presents a significant hazard to foraging bees. PMID:25901684

  7. 'Bee hotels' as tools for native pollinator conservation: a premature verdict?

    PubMed

    MacIvor, J Scott; Packer, Laurence

    2015-01-01

    Society is increasingly concerned with declining wild bee populations. Although most bees nest in the ground, considerable effort has centered on installing 'bee hotels'--also known as nest boxes or trap nests--which artificially aggregate nest sites of above ground nesting bees. Campaigns to 'save the bees' often promote these devices despite the absence of data indicating they have a positive effect. From a survey of almost 600 bee hotels set up over a period of three years in Toronto, Canada, introduced bees nested at 32.9% of sites and represented 24.6% of more than 27,000 total bees and wasps recorded (47.1% of all bees recorded). Native bees were parasitized more than introduced bees and females of introduced bee species provisioned nests with significantly more female larva each year. Native wasps were significantly more abundant than both native and introduced bees and occupied almost 3/4 of all bee hotels each year; further, introduced wasps were the only group to significantly increase in relative abundance year over year. More research is needed to elucidate the potential pitfalls and benefits of using bee hotels in the conservation and population dynamics of wild native bees.

  8. ADHD latent class clusters: DSM-IV subtypes and comorbidity

    PubMed Central

    Elia, Josephine; Arcos-Burgos, Mauricio; Bolton, Kelly L.; Ambrosini, Paul J.; Berrettini, Wade; Muenke, Maximilian

    2014-01-01

    ADHD (Attention Deficit Hyperactivity Disorder) has a complex, heterogeneous phenotype only partially captured by Diagnostic and Statistical Manual of Mental Disorders (DSM-IV) criteria. In this report, latent class analyses (LCA) are used to identify ADHD phenotypes using K-SADS-IVR (Schedule for Affective Disorders & Schizophrenia for School Age Children-IV-Revised) symptoms and symptom severity data from a clinical sample of 500 ADHD subjects, ages 6–18, participating in an ADHD genetic study. Results show that LCA identified six separate ADHD clusters, some corresponding to specific DSM-IV subtypes while others included several subtypes. DSM-IV comorbid anxiety and mood disorders were generally similar across all clusters, and subjects without comorbidity did not aggregate within any one cluster. Age and gender composition also varied. These results support findings from population-based LCA studies. The six clusters provide additional homogenous groups that can be used to define ADHD phenotypes in genetic association studies. The limited age ranges aggregating in the different clusters may prove to be a particular advantage in genetic studies where candidate gene expression may vary during developmental phases. DSM-IV comorbid mood and anxiety disorders also do not appear to increase cluster heterogeneity; however, longitudinal studies that cover period of risk are needed to support this finding. PMID:19900717

  9. Iridovirus and microsporidian linked to honey bee colony decline.

    PubMed

    Bromenshenk, Jerry J; Henderson, Colin B; Wick, Charles H; Stanford, Michael F; Zulich, Alan W; Jabbour, Rabih E; Deshpande, Samir V; McCubbin, Patrick E; Seccomb, Robert A; Welch, Phillip M; Williams, Trevor; Firth, David R; Skowronski, Evan; Lehmann, Margaret M; Bilimoria, Shan L; Gress, Joanna; Wanner, Kevin W; Cramer, Robert A

    2010-10-06

    In 2010 Colony Collapse Disorder (CCD), again devastated honey bee colonies in the USA, indicating that the problem is neither diminishing nor has it been resolved. Many CCD investigations, using sensitive genome-based methods, have found small RNA bee viruses and the microsporidia, Nosema apis and N. ceranae in healthy and collapsing colonies alike with no single pathogen firmly linked to honey bee losses. We used Mass spectrometry-based proteomics (MSP) to identify and quantify thousands of proteins from healthy and collapsing bee colonies. MSP revealed two unreported RNA viruses in North American honey bees, Varroa destructor-1 virus and Kakugo virus, and identified an invertebrate iridescent virus (IIV) (Iridoviridae) associated with CCD colonies. Prevalence of IIV significantly discriminated among strong, failing, and collapsed colonies. In addition, bees in failing colonies contained not only IIV, but also Nosema. Co-occurrence of these microbes consistently marked CCD in (1) bees from commercial apiaries sampled across the U.S. in 2006-2007, (2) bees sequentially sampled as the disorder progressed in an observation hive colony in 2008, and (3) bees from a recurrence of CCD in Florida in 2009. The pathogen pairing was not observed in samples from colonies with no history of CCD, namely bees from Australia and a large, non-migratory beekeeping business in Montana. Laboratory cage trials with a strain of IIV type 6 and Nosema ceranae confirmed that co-infection with these two pathogens was more lethal to bees than either pathogen alone. These findings implicate co-infection by IIV and Nosema with honey bee colony decline, giving credence to older research pointing to IIV, interacting with Nosema and mites, as probable cause of bee losses in the USA, Europe, and Asia. We next need to characterize the IIV and Nosema that we detected and develop management practices to reduce honey bee losses.

  10. Wild bees enhance honey bees’ pollination of hybrid sunflower

    PubMed Central

    Greenleaf, Sarah S.; Kremen, Claire

    2006-01-01

    Pollinators are required for producing 15–30% of the human food supply, and farmers rely on managed honey bees throughout the world to provide these services. Yet honey bees are not always the most efficient pollinators of all crops and are declining in various parts of the world. Crop pollination shortages are becoming increasingly common. We found that behavioral interactions between wild and honey bees increase the pollination efficiency of honey bees on hybrid sunflower up to 5-fold, effectively doubling honey bee pollination services on the average field. These indirect contributions caused by interspecific interactions between wild and honey bees were more than five times more important than the contributions wild bees make to sunflower pollination directly. Both proximity to natural habitat and crop planting practices were significantly correlated with pollination services provided directly and indirectly by wild bees. Our results suggest that conserving wild habitat at the landscape scale and altering selected farm management techniques could increase hybrid sunflower production. These findings also demonstrate the economic importance of interspecific interactions for ecosystem services and suggest that protecting wild bee populations can help buffer the human food supply from honey bee shortages. PMID:16940358

  11. The corbiculate bees arose from New World oil-collecting bees: implications for the origin of pollen baskets.

    PubMed

    Martins, Aline C; Melo, Gabriel A R; Renner, Susanne S

    2014-11-01

    The economically most important group of bees is the "corbiculates", or pollen basket bees, some 890 species of honeybees (Apis), bumblebees (Bombus), stingless bees (Meliponini), and orchid bees (Euglossini). Molecular studies have indicated that the corbiculates are closest to the New World genera Centris, with 230 species, and Epicharis, with 35, albeit without resolving the precise relationships. Instead of concave baskets, these bees have hairy hind legs on which they transport pollen mixed with floral oil, collected with setae on the anterior and middle legs. We sampled two-thirds of all Epicharis, a third of all Centris, and representatives of the four lineages of corbiculates for four nuclear gene regions, obtaining a well-supported phylogeny that has the corbiculate bees nested inside the Centris/Epicharis clade. Fossil-calibrated molecular clocks, combined with a biogeographic reconstruction incorporating insights from the fossil record, indicate that the corbiculate clade arose in the New World and diverged from Centris 84 (72-95)mya. The ancestral state preceding corbiculae thus was a hairy hind leg, perhaps adapted for oil transport as in Epicharis and Centris bees. Its replacement by glabrous, concave baskets represents a key innovation, allowing efficient transport of plant resins and large pollen/nectar loads and freeing the corbiculate clade from dependence on oil-offering flowers. The transformation could have involved a novel function of Ubx, the gene known to change hairy into smooth pollen baskets in Apis and Bombus. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Study of the Metatranscriptome of Eight Social and Solitary Wild Bee Species Reveals Novel Viruses and Bee Parasites

    PubMed Central

    Schoonvaere, Karel; Smagghe, Guy; Francis, Frédéric; de Graaf, Dirk C.

    2018-01-01

    Bees are associated with a remarkable diversity of microorganisms, including unicellular parasites, bacteria, fungi, and viruses. The application of next-generation sequencing approaches enables the identification of this rich species composition as well as the discovery of previously unknown associations. Using high-throughput polyadenylated ribonucleic acid (RNA) sequencing, we investigated the metatranscriptome of eight wild bee species (Andrena cineraria, Andrena fulva, Andrena haemorrhoa, Bombus terrestris, Bombus cryptarum, Bombus pascuorum, Osmia bicornis, and Osmia cornuta) sampled from four different localities in Belgium. Across the RNA sequencing libraries, 88–99% of the taxonomically informative reads were of the host transcriptome. Four viruses with homology to insect pathogens were found including two RNA viruses (belonging to the families Iflaviridae and Tymoviridae that harbor already viruses of honey bees), a double stranded DNA virus (family Nudiviridae) and a single stranded DNA virus (family Parvoviridae). In addition, we found genomic sequences of 11 unclassified arthropod viruses (related to negeviruses, sobemoviruses, totiviruses, rhabdoviruses, and mononegaviruses), seven plant pathogenic viruses, and one fungal virus. Interestingly, nege-like viruses appear to be widespread, host-specific, and capable of attaining high copy numbers inside bees. Next to viruses, three novel parasite associations were discovered in wild bees, including Crithidia pragensis and a tubulinosematid and a neogregarine parasite. Yeasts of the genus Metschnikowia were identified in solitary bees. This study gives a glimpse of the microorganisms and viruses associated with social and solitary wild bees and demonstrates that their diversity exceeds by far the subset of species first discovered in honey bees. PMID:29491849

  13. Study of the Metatranscriptome of Eight Social and Solitary Wild Bee Species Reveals Novel Viruses and Bee Parasites.

    PubMed

    Schoonvaere, Karel; Smagghe, Guy; Francis, Frédéric; de Graaf, Dirk C

    2018-01-01

    Bees are associated with a remarkable diversity of microorganisms, including unicellular parasites, bacteria, fungi, and viruses. The application of next-generation sequencing approaches enables the identification of this rich species composition as well as the discovery of previously unknown associations. Using high-throughput polyadenylated ribonucleic acid (RNA) sequencing, we investigated the metatranscriptome of eight wild bee species ( Andrena cineraria, Andrena fulva, Andrena haemorrhoa, Bombus terrestris, Bombus cryptarum, Bombus pascuorum, Osmia bicornis , and Osmia cornuta ) sampled from four different localities in Belgium. Across the RNA sequencing libraries, 88-99% of the taxonomically informative reads were of the host transcriptome. Four viruses with homology to insect pathogens were found including two RNA viruses (belonging to the families Iflaviridae and Tymoviridae that harbor already viruses of honey bees), a double stranded DNA virus (family Nudiviridae ) and a single stranded DNA virus (family Parvoviridae ). In addition, we found genomic sequences of 11 unclassified arthropod viruses (related to negeviruses, sobemoviruses, totiviruses, rhabdoviruses, and mononegaviruses), seven plant pathogenic viruses, and one fungal virus. Interestingly, nege-like viruses appear to be widespread, host-specific, and capable of attaining high copy numbers inside bees. Next to viruses, three novel parasite associations were discovered in wild bees, including Crithidia pragensis and a tubulinosematid and a neogregarine parasite. Yeasts of the genus Metschnikowia were identified in solitary bees. This study gives a glimpse of the microorganisms and viruses associated with social and solitary wild bees and demonstrates that their diversity exceeds by far the subset of species first discovered in honey bees.

  14. One World: Service Bees

    ERIC Educational Resources Information Center

    Thomason, Rhonda

    2009-01-01

    Bees are a vital part of the ecology. People of conscience are a vital part of society. In Nina Frenkel's "One World" poster, the bee is also a metaphor for the role of the individual in a diverse society. This article presents a lesson that uses Frenkel's poster to help early-grades students connect these ideas and explore both the importance of…

  15. Bee venom therapy: Potential mechanisms and therapeutic applications.

    PubMed

    Zhang, Shuai; Liu, Yi; Ye, Yang; Wang, Xue-Rui; Lin, Li-Ting; Xiao, Ling-Yong; Zhou, Ping; Shi, Guang-Xia; Liu, Cun-Zhi

    2018-06-15

    Bee venom is a very complex mixture of natural products extracted from honey bee which contains various pharmaceutical properties such as peptides, enzymes, biologically active amines and nonpeptide components. The use of bee venom into the specific points is so called bee venom therapy, which is widely used as a complementary and alternative therapy for 3000 years. A growing number of evidence has demonstrated the anti-inflammation, the anti-apoptosis, the anti-fibrosis and the anti-arthrosclerosis effects of bee venom therapy. With these pharmaceutical characteristics, bee venom therapy has also been used as the therapeutic method in treating rheumatoid arthritis, amyotrophic lateral sclerosis, Parkinson's disease, Alzheimer's disease, liver fibrosis, atherosclerosis, pain and others. Although widely used, several cases still reported that bee venom therapy might cause some adverse effects, such as local itching or swelling. In this review, we summarize its potential mechanisms, therapeutic applications, and discuss its existing problems. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. RNAi and Antiviral Defense in the Honey Bee.

    PubMed

    Brutscher, Laura M; Flenniken, Michelle L

    2015-01-01

    Honey bees play an important agricultural and ecological role as pollinators of numerous agricultural crops and other plant species. Therefore, investigating the factors associated with high annual losses of honey bee colonies in the US is an important and active area of research. Pathogen incidence and abundance correlate with Colony Collapse Disorder- (CCD-) affected colonies in the US and colony losses in the US and in some European countries. Honey bees are readily infected by single-stranded positive sense RNA viruses. Largely dependent on the host immune response, virus infections can either remain asymptomatic or result in deformities, paralysis, or death of adults or larvae. RNA interference (RNAi) is an important antiviral defense mechanism in insects, including honey bees. Herein, we review the role of RNAi in honey bee antiviral defense and highlight some parallels between insect and mammalian immune systems. A more thorough understanding of the role of pathogens on honey bee health and the immune mechanisms bees utilize to combat infectious agents may lead to the development of strategies that enhance honey bee health and result in the discovery of additional mechanisms of immunity in metazoans.

  17. RNAi and Antiviral Defense in the Honey Bee

    PubMed Central

    Brutscher, Laura M.; Flenniken, Michelle L.

    2015-01-01

    Honey bees play an important agricultural and ecological role as pollinators of numerous agricultural crops and other plant species. Therefore, investigating the factors associated with high annual losses of honey bee colonies in the US is an important and active area of research. Pathogen incidence and abundance correlate with Colony Collapse Disorder- (CCD-) affected colonies in the US and colony losses in the US and in some European countries. Honey bees are readily infected by single-stranded positive sense RNA viruses. Largely dependent on the host immune response, virus infections can either remain asymptomatic or result in deformities, paralysis, or death of adults or larvae. RNA interference (RNAi) is an important antiviral defense mechanism in insects, including honey bees. Herein, we review the role of RNAi in honey bee antiviral defense and highlight some parallels between insect and mammalian immune systems. A more thorough understanding of the role of pathogens on honey bee health and the immune mechanisms bees utilize to combat infectious agents may lead to the development of strategies that enhance honey bee health and result in the discovery of additional mechanisms of immunity in metazoans. PMID:26798663

  18. Acute bee paralysis virus occurs in the Asian honey bee Apis cerana and parasitic mite Tropilaelaps mercedesae.

    PubMed

    Chanpanitkitchote, Pichaya; Chen, Yanping; Evans, Jay D; Li, Wenfeng; Li, Jianghong; Hamilton, Michele; Chantawannakul, Panuwan

    2018-01-01

    Viruses, and especially RNA viruses, constantly change and adapt to new host species and vectors, posing a potential threat of new and reemerging infectious diseases. Honey bee Acute bee paralysis virus (ABPV) and Deformed wing virus (DWV) are two of the most common honey bee viruses found in European honey bees Apis mellifera and have been implicated in worldwide Varroa-associated bee colony losses. Previous studies have shown that DWV has jumped hosts several times in history causing infection in multiple host species. In the present study, we show that DWV infection could be detected in the Asian honey bee, A. cerana, and the parasitic mite Tropilaelaps mercedesae, confirming previous findings that DWV is a multi-host pathogen and supporting the notion that the high prevalence of DWV in honey bee host populations could be attributed to the high adaptability of this virus. Furthermore, our study provides the first evidence that ABPV occurs in both A. cerana and T. mercedesae in northern Thailand. The geographical proximity of host species likely played an important role in the initial exposure and the subsequent cross-species transmission of these viruses. Phylogenetic analyses suggest that ABPV might have moved from T. mercedesae to A. mellifera and to A. cerana while DWV might have moved in the opposite direction from A. cerana to A. mellifera and T. mercedesae. This result may reflect the differences in virus life history and virus-host interactions, warranting further investigation of virus transmission, epidemiology, and impacts of virus infections in the new hosts. The results from this study indicate that viral populations will continue to evolve and likely continue to expand host range, increasing the need for effective surveillance and control of virus infections in honey bee populations. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Detection of chronic bee paralysis virus and acute bee paralysis virus in Uruguayan honeybees.

    PubMed

    Antúnez, Karina; D' Alessandro, Bruno; Corbella, Eduardo; Zunino, Pablo

    2005-09-01

    Chronic bee paralysis virus (CBPV) causes a disease characterized by trembling, flightless, and crawling bees, while Acute bee paralysis virus (ABPV) is commonly detected in apparently healthy colonies, usually associated to Varroa destructor. Both viruses had been detected in most regions of the world, except in South America. In this work, we detected CBPV and ABPV in samples of Uruguayan honeybees by RT-PCR. The detection of both viruses in different provinces and the fact that most of the analyzed samples were infected, suggest that, they are widely spread in the region. This is the first record of the presence of CBPV and ABPV in Uruguay and South America.

  20. Disruption of quercetin metabolism by fungicide affects energy production in honey bees (Apis mellifera).

    PubMed

    Mao, Wenfu; Schuler, Mary A; Berenbaum, May R

    2017-03-07

    Cytochrome P450 monooxygenases (P450) in the honey bee, Apis mellifera , detoxify phytochemicals in honey and pollen. The flavonol quercetin is found ubiquitously and abundantly in pollen and frequently at lower concentrations in honey. Worker jelly consumed during the first 3 d of larval development typically contains flavonols at very low levels, however. RNA-Seq analysis of gene expression in neonates reared for three days on diets with and without quercetin revealed that, in addition to up-regulating multiple detoxifying P450 genes, quercetin is a negative transcriptional regulator of mitochondrion-related nuclear genes and genes encoding subunits of complexes I, III, IV, and V in the oxidative phosphorylation pathway. Thus, a consequence of inefficient metabolism of this phytochemical may be compromised energy production. Several P450s metabolize quercetin in adult workers. Docking in silico of 121 pesticide contaminants of American hives into the active pocket of CYP9Q1, a broadly substrate-specific P450 with high quercetin-metabolizing activity, identified six triazole fungicides, all fungal P450 inhibitors, that dock in the catalytic site. In adults fed combinations of quercetin and the triazole myclobutanil, the expression of five of six mitochondrion-related nuclear genes was down-regulated. Midgut metabolism assays verified that adult bees consuming quercetin with myclobutanil metabolized less quercetin and produced less thoracic ATP, the energy source for flight muscles. Although fungicides lack acute toxicity, they may influence bee health by interfering with quercetin detoxification, thereby compromising mitochondrial regeneration and ATP production. Thus, agricultural use of triazole fungicides may put bees at risk of being unable to extract sufficient energy from their natural food.

  1. Disruption of quercetin metabolism by fungicide affects energy production in honey bees (Apis mellifera)

    PubMed Central

    Mao, Wenfu; Schuler, Mary A.; Berenbaum, May R.

    2017-01-01

    Cytochrome P450 monooxygenases (P450) in the honey bee, Apis mellifera, detoxify phytochemicals in honey and pollen. The flavonol quercetin is found ubiquitously and abundantly in pollen and frequently at lower concentrations in honey. Worker jelly consumed during the first 3 d of larval development typically contains flavonols at very low levels, however. RNA-Seq analysis of gene expression in neonates reared for three days on diets with and without quercetin revealed that, in addition to up-regulating multiple detoxifying P450 genes, quercetin is a negative transcriptional regulator of mitochondrion-related nuclear genes and genes encoding subunits of complexes I, III, IV, and V in the oxidative phosphorylation pathway. Thus, a consequence of inefficient metabolism of this phytochemical may be compromised energy production. Several P450s metabolize quercetin in adult workers. Docking in silico of 121 pesticide contaminants of American hives into the active pocket of CYP9Q1, a broadly substrate-specific P450 with high quercetin-metabolizing activity, identified six triazole fungicides, all fungal P450 inhibitors, that dock in the catalytic site. In adults fed combinations of quercetin and the triazole myclobutanil, the expression of five of six mitochondrion-related nuclear genes was down-regulated. Midgut metabolism assays verified that adult bees consuming quercetin with myclobutanil metabolized less quercetin and produced less thoracic ATP, the energy source for flight muscles. Although fungicides lack acute toxicity, they may influence bee health by interfering with quercetin detoxification, thereby compromising mitochondrial regeneration and ATP production. Thus, agricultural use of triazole fungicides may put bees at risk of being unable to extract sufficient energy from their natural food. PMID:28193870

  2. Seed coating with a neonicotinoid insecticide negatively affects wild bees.

    PubMed

    Rundlöf, Maj; Andersson, Georg K S; Bommarco, Riccardo; Fries, Ingemar; Hederström, Veronica; Herbertsson, Lina; Jonsson, Ove; Klatt, Björn K; Pedersen, Thorsten R; Yourstone, Johanna; Smith, Henrik G

    2015-05-07

    Understanding the effects of neonicotinoid insecticides on bees is vital because of reported declines in bee diversity and distribution and the crucial role bees have as pollinators in ecosystems and agriculture. Neonicotinoids are suspected to pose an unacceptable risk to bees, partly because of their systemic uptake in plants, and the European Union has therefore introduced a moratorium on three neonicotinoids as seed coatings in flowering crops that attract bees. The moratorium has been criticized for being based on weak evidence, particularly because effects have mostly been measured on bees that have been artificially fed neonicotinoids. Thus, the key question is how neonicotinoids influence bees, and wild bees in particular, in real-world agricultural landscapes. Here we show that a commonly used insecticide seed coating in a flowering crop can have serious consequences for wild bees. In a study with replicated and matched landscapes, we found that seed coating with Elado, an insecticide containing a combination of the neonicotinoid clothianidin and the non-systemic pyrethroid β-cyfluthrin, applied to oilseed rape seeds, reduced wild bee density, solitary bee nesting, and bumblebee colony growth and reproduction under field conditions. Hence, such insecticidal use can pose a substantial risk to wild bees in agricultural landscapes, and the contribution of pesticides to the global decline of wild bees may have been underestimated. The lack of a significant response in honeybee colonies suggests that reported pesticide effects on honeybees cannot always be extrapolated to wild bees.

  3. The spread of pathogens through trade in honey bees and their products (including queen bees and semen): overview and recent developments.

    PubMed

    Mutinelli, F

    2011-04-01

    International trade in bees and bee products is a complex issue, affected bytheir different origins and uses. The trade in bees, which poses the main risk for disease dissemination, is very active and not all transactions may be officially registered by the competent authorities. Globally, bee health continues to deteriorate as pathogens, pests, parasites and diseases are spread internationally through legitimate trade, smuggling and well-intentioned but ill-advised bee introductions by professionals. International trade rules strengthen the ability of many countries to protect bee health while trading but also carry obligations. Countries that are Members of the World Trade Organization (WTO) should only restrict imports to protect against identifiable health risks. If imports are safe, trade should be permitted. The trading rules of the WTO have given greater importance to the international standards applicable to bee health, developed by the World Organisation for Animal Health, which aims to prevent the spread of animal diseases while facilitating international trade in animals and animal products.

  4. Gentle Africanized bees on an oceanic island

    PubMed Central

    Rivera-Marchand, Bert; Oskay, Devrim; Giray, Tugrul

    2012-01-01

    Oceanic islands have reduced resources and natural enemies and potentially affect life history traits of arriving organisms. Among the most spectacular invasions in the Western hemisphere is that of the Africanized honeybee. We hypothesized that in the oceanic island Puerto Rico, Africanized bees will exhibit differences from the mainland population such as for defensiveness and other linked traits. We evaluated the extent of Africanization through three typical Africanized traits: wing size, defensive behavior, and resistance to Varroa destructor mites. All sampled colonies were Africanized by maternal descent, with over 65% presence of European alleles at the S-3 nuclear locus. In two assays evaluating defense, Puerto Rican bees showed low defensiveness similar to European bees. In morphology and resistance to mites, Africanized bees from Puerto Rico are similar to other Africanized bees. In behavioral assays on mechanisms of resistance to Varroa, we directly observed that Puerto Rican Africanized bees groomed-off and bit the mites as been observed in other studies. In no other location, Africanized bees have reduced defensiveness while retaining typical traits such as wing size and mite resistance. This mosaic of traits that has resulted during the invasion of an oceanic island has implications for behavior, evolution, and agriculture. PMID:23144660

  5. Honey bees preferentially consume freshly-stored pollen

    USDA-ARS?s Scientific Manuscript database

    Honey bees collect and store pollen in cells in a preserved form known as stored pollen, or beebread. To preserve pollen, bees add nectar and honey to collected pollen to form stored pollen. Bees eat stored pollen from a wide selection of pollen cells that have been stored for different lengths of...

  6. 29 CFR 780.123 - Raising of bees.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 3 2010-07-01 2010-07-01 false Raising of bees. 780.123 Section 780.123 Labor Regulations... Raising of Livestock, Bees, Fur-Bearing Animals, Or Poultry § 780.123 Raising of bees. The term “raising of * * * bees” refers to all of those activities customarily performed in connection with the...

  7. 29 CFR 780.123 - Raising of bees.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 3 2014-07-01 2014-07-01 false Raising of bees. 780.123 Section 780.123 Labor Regulations... Raising of Livestock, Bees, Fur-Bearing Animals, Or Poultry § 780.123 Raising of bees. The term “raising of * * * bees” refers to all of those activities customarily performed in connection with the...

  8. 29 CFR 780.123 - Raising of bees.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 3 2012-07-01 2012-07-01 false Raising of bees. 780.123 Section 780.123 Labor Regulations... Raising of Livestock, Bees, Fur-Bearing Animals, Or Poultry § 780.123 Raising of bees. The term “raising of * * * bees” refers to all of those activities customarily performed in connection with the...

  9. 29 CFR 780.123 - Raising of bees.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 3 2013-07-01 2013-07-01 false Raising of bees. 780.123 Section 780.123 Labor Regulations... Raising of Livestock, Bees, Fur-Bearing Animals, Or Poultry § 780.123 Raising of bees. The term “raising of * * * bees” refers to all of those activities customarily performed in connection with the...

  10. 29 CFR 780.123 - Raising of bees.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 3 2011-07-01 2011-07-01 false Raising of bees. 780.123 Section 780.123 Labor Regulations... Raising of Livestock, Bees, Fur-Bearing Animals, Or Poultry § 780.123 Raising of bees. The term “raising of * * * bees” refers to all of those activities customarily performed in connection with the...

  11. Fungicide contamination reduces beneficial fungi in bee bread based on an area-wide field study in honey bee, Apis mellifera, colonies.

    PubMed

    Yoder, Jay A; Jajack, Andrew J; Rosselot, Andrew E; Smith, Terrance J; Yerke, Mary Clare; Sammataro, Diana

    2013-01-01

    Fermentation by fungi converts stored pollen into bee bread that is fed to honey bee larvae, Apis mellifera, so the diversity of fungi in bee bread may be related to its food value. To explore the relationship between fungicide exposure and bee bread fungi, samples of bee bread collected from bee colonies pollinating orchards from 7 locations over 2 years were analyzed for fungicide residues and fungus composition. There were detectable levels of fungicides from regions that were sprayed before bloom. An organic orchard had the highest quantity and variety of fungicides, likely due to the presence of treated orchards within bees' flight range. Aspergillus, Penicillium, Rhizopus, and Cladosporium (beneficial fungi) were the primary fungal isolates found, regardless of habitat differences. There was some variation in fungal components amongst colonies, even within the same apiary. The variable components were Absidia, Alternaria, Aureobasidium, Bipolaris, Fusarium, Geotrichum, Mucor, Nigrospora, Paecilomyces, Scopulariopsis, and Trichoderma. The number of fungal isolates was reduced as an effect of fungicide contamination. Aspergillus abundance was particularly affected by increased fungicide levels, as indicated by Simpson's diversity index. Bee bread showing fungicide contamination originated from colonies, many of which showed chalkbrood symptoms.

  12. The Architecture of the Pollen Hoarding Syndrome in Honey Bees: Implications for Understanding Social Evolution, Behavioral Syndromes, and Selective Breeding.

    PubMed

    Rueppell, Olav

    2014-05-01

    Social evolution has influenced every aspect of contemporary honey bee biology, but the details are difficult to reconstruct. The reproductive ground plan hypothesis of social evolution proposes that central regulators of the gonotropic cycle of solitary insects have been coopted to coordinate social complexity in honey bees, such as the division of labor among workers. The predicted trait associations between reproductive physiology and social behavior have been identified in the context of the pollen hoarding syndrome, a larger suite of interrelated traits. The genetic architecture of this syndrome is characterized by a partially overlapping genetic architecture with several consistent, pleiotropic QTL. Despite these central QTL and an integrated hormonal regulation, separate aspects of the pollen hoarding syndrome may evolve independently due to peripheral QTL and additionally segregating genetic variance. The characterization of the pollen hoarding syndrome has also demonstrated that this syndrome involves many non-behavioral traits, which may be the case for numerous "behavioral" syndromes. Furthermore, the genetic architecture of the pollen hoarding syndrome has implications for breeding programs for improving honey health and other desirable traits: If these traits are comparable to the pollen hoarding syndrome, consistent pleiotropic QTL will enable marker assisted selection, while sufficient additional genetic variation may permit the dissociation of trade-offs for efficient multiple trait selection.

  13. Biological and therapeutic properties of bee pollen: a review.

    PubMed

    Denisow, Bożena; Denisow-Pietrzyk, Marta

    2016-10-01

    Natural products, including bee products, are particularly appreciated by consumers and are used for therapeutic purposes as alternative drugs. However, it is not known whether treatments with bee products are safe and how to minimise the health risks of such products. Among others, bee pollen is a natural honeybee product promoted as a valuable source of nourishing substances and energy. The health-enhancing value of bee pollen is expected due to the wide range of secondary plant metabolites (tocopherol, niacin, thiamine, biotin and folic acid, polyphenols, carotenoid pigments, phytosterols), besides enzymes and co-enzymes, contained in bee pollen. The promising reports on the antioxidant, anti-inflammatory, anticariogenic antibacterial, antifungicidal, hepatoprotective, anti-atherosclerotic, immune enhancing potential require long-term and large cohort clinical studies. The main difficulty in the application of bee pollen in modern phytomedicine is related to the wide species-specific variation in its composition. Therefore, the variations may differently contribute to bee-pollen properties and biological activity and thus in therapeutic effects. In principle, we can unequivocally recommend bee pollen as a valuable dietary supplement. Although the bee-pollen components have potential bioactive and therapeutic properties, extensive research is required before bee pollen can be used in therapy. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  14. Learning context modulates aversive taste strength in honey bees.

    PubMed

    de Brito Sanchez, Maria Gabriela; Serre, Marion; Avarguès-Weber, Aurore; Dyer, Adrian G; Giurfa, Martin

    2015-03-01

    The capacity of honey bees (Apis mellifera) to detect bitter substances is controversial because they ingest without reluctance different kinds of bitter solutions in the laboratory, whereas free-flying bees avoid them in visual discrimination tasks. Here, we asked whether the gustatory perception of bees changes with the behavioral context so that tastes that are less effective as negative reinforcements in a given context become more effective in a different context. We trained bees to discriminate an odorant paired with 1 mol l(-1) sucrose solution from another odorant paired with either distilled water, 3 mol l(-1) NaCl or 60 mmol l(-1) quinine. Training was either Pavlovian [olfactory conditioning of the proboscis extension reflex (PER) in harnessed bees], or mainly operant (olfactory conditioning of free-walking bees in a Y-maze). PER-trained and maze-trained bees were subsequently tested both in their original context and in the alternative context. Whereas PER-trained bees transferred their choice to the Y-maze situation, Y-maze-trained bees did not respond with a PER to odors when subsequently harnessed. In both conditioning protocols, NaCl and distilled water were the strongest and the weakest aversive reinforcement, respectively. A significant variation was found for quinine, which had an intermediate aversive effect in PER conditioning but a more powerful effect in the Y-maze, similar to that of NaCl. These results thus show that the aversive strength of quinine varies with the learning context, and reveal the plasticity of the bee's gustatory system. We discuss the experimental constraints of both learning contexts and focus on stress as a key modulator of taste in the honey bee. Further explorations of bee taste are proposed to understand the physiology of taste modulation in bees. © 2015. Published by The Company of Biologists Ltd.

  15. Application of a modified selection index for honey bees (Hymenoptera: Apidae).

    PubMed

    van Engelsdorp, D; Otis, G W

    2000-12-01

    Nine different genetic families of honey bees (Apis mellifera L.) were compared using summed z-scores (phenotypic values) and a modified selection index (Imod). Imod values incorporated both the phenotypic scores of the different traits and the economic weightings of these traits, as determined by a survey of commercial Ontario beekeepers. Largely because of the high weight all beekeepers place on honey production, a distinct difference between line rankings based on phenotypic scores and Imod scores was apparent, thereby emphasizing the need to properly weight the traits being evaluated to select bee stocks most valuable for beekeepers. Furthermore, when beekeepers who made >10% of their income from queen and nucleus colony sales assigned relative values to the traits used in the Imod calculations, the results differed from those based on weightings assigned by honey producers. Our results underscore the difficulties the North American beekeeping industry must overcome to devise effective methods of evaluating colonies for breeding purposes.

  16. Pulsed mass recruitment by a stingless bee, Trigona hyalinata.

    PubMed

    Nieh, James C; Contrera, Felipe A L; Nogueira-Neto, Paulo

    2003-10-22

    Research on bee communication has focused on the ability of the highly social bees, stingless bees (Hymenoptera, Apidae, Meliponini) and honeybees (Apidae, Apini), to communicate food location to nest-mates. Honeybees can communicate food location through the famous waggle dance. Stingless bees are closely related to honeybees and communicate food location through a variety of different mechanisms, many of which are poorly understood. We show that a stingless bee, Trigona hyalinata, uses a pulsed mass-recruitment system that is highly focused in time and space. Foragers produced an ephemeral, polarized, odour trail consisting of mandibular gland secretions. Surprisingly, the odour trail extended only a short distance away from the food source, instead of providing a complete trail between the nest and the food source (as has been described for other stingless bees). This abbreviated trail may represent an intermediate strategy between full-trail marking, found in some stingless bees, and odour marking of the food alone, found in stingless bees and honeybees.

  17. Pulsed mass recruitment by a stingless bee, Trigona hyalinata.

    PubMed Central

    Nieh, James C; Contrera, Felipe A L; Nogueira-Neto, Paulo

    2003-01-01

    Research on bee communication has focused on the ability of the highly social bees, stingless bees (Hymenoptera, Apidae, Meliponini) and honeybees (Apidae, Apini), to communicate food location to nest-mates. Honeybees can communicate food location through the famous waggle dance. Stingless bees are closely related to honeybees and communicate food location through a variety of different mechanisms, many of which are poorly understood. We show that a stingless bee, Trigona hyalinata, uses a pulsed mass-recruitment system that is highly focused in time and space. Foragers produced an ephemeral, polarized, odour trail consisting of mandibular gland secretions. Surprisingly, the odour trail extended only a short distance away from the food source, instead of providing a complete trail between the nest and the food source (as has been described for other stingless bees). This abbreviated trail may represent an intermediate strategy between full-trail marking, found in some stingless bees, and odour marking of the food alone, found in stingless bees and honeybees. PMID:14561284

  18. Toward an Upgraded Honey Bee (Apis mellifera L.) Genome Annotation Using Proteogenomics.

    PubMed

    McAfee, Alison; Harpur, Brock A; Michaud, Sarah; Beavis, Ronald C; Kent, Clement F; Zayed, Amro; Foster, Leonard J

    2016-02-05

    The honey bee is a key pollinator in agricultural operations as well as a model organism for studying the genetics and evolution of social behavior. The Apis mellifera genome has been sequenced and annotated twice over, enabling proteomics and functional genomics methods for probing relevant aspects of their biology. One troubling trend that emerged from proteomic analyses is that honey bee peptide samples consistently result in lower peptide identification rates compared with other organisms. This suggests that the genome annotation can be improved, or atypical biological processes are interfering with the mass spectrometry workflow. First, we tested whether high levels of polymorphisms could explain some of the missed identifications by searching spectra against the reference proteome (OGSv3.2) versus a customized proteome of a single honey bee, but our results indicate that this contribution was minor. Likewise, error-tolerant peptide searches lead us to eliminate unexpected post-translational modifications as a major factor in missed identifications. We then used a proteogenomic approach with ~1500 raw files to search for missing genes and new exons, to revive discarded annotations and to identify over 2000 new coding regions. These results will contribute to a more comprehensive genome annotation and facilitate continued research on this important insect.

  19. Iridovirus and Microsporidian Linked to Honey Bee Colony Decline

    PubMed Central

    Bromenshenk, Jerry J.; Henderson, Colin B.; Wick, Charles H.; Stanford, Michael F.; Zulich, Alan W.; Jabbour, Rabih E.; Deshpande, Samir V.; McCubbin, Patrick E.; Seccomb, Robert A.; Welch, Phillip M.; Williams, Trevor; Firth, David R.; Skowronski, Evan; Lehmann, Margaret M.; Bilimoria, Shan L.; Gress, Joanna; Wanner, Kevin W.; Cramer, Robert A.

    2010-01-01

    Background In 2010 Colony Collapse Disorder (CCD), again devastated honey bee colonies in the USA, indicating that the problem is neither diminishing nor has it been resolved. Many CCD investigations, using sensitive genome-based methods, have found small RNA bee viruses and the microsporidia, Nosema apis and N. ceranae in healthy and collapsing colonies alike with no single pathogen firmly linked to honey bee losses. Methodology/Principal Findings We used Mass spectrometry-based proteomics (MSP) to identify and quantify thousands of proteins from healthy and collapsing bee colonies. MSP revealed two unreported RNA viruses in North American honey bees, Varroa destructor-1 virus and Kakugo virus, and identified an invertebrate iridescent virus (IIV) (Iridoviridae) associated with CCD colonies. Prevalence of IIV significantly discriminated among strong, failing, and collapsed colonies. In addition, bees in failing colonies contained not only IIV, but also Nosema. Co-occurrence of these microbes consistently marked CCD in (1) bees from commercial apiaries sampled across the U.S. in 2006–2007, (2) bees sequentially sampled as the disorder progressed in an observation hive colony in 2008, and (3) bees from a recurrence of CCD in Florida in 2009. The pathogen pairing was not observed in samples from colonies with no history of CCD, namely bees from Australia and a large, non-migratory beekeeping business in Montana. Laboratory cage trials with a strain of IIV type 6 and Nosema ceranae confirmed that co-infection with these two pathogens was more lethal to bees than either pathogen alone. Conclusions/Significance These findings implicate co-infection by IIV and Nosema with honey bee colony decline, giving credence to older research pointing to IIV, interacting with Nosema and mites, as probable cause of bee losses in the USA, Europe, and Asia. We next need to characterize the IIV and Nosema that we detected and develop management practices to reduce honey bee losses

  20. Crop-emptying rate and the design of pesticide risk assessment schemes in the honey bee and wild bees (Hymenoptera: Apidae).

    PubMed

    Fournier, Alice; Rollin, Orianne; Le Féon, Violette; Decourtye, Axel; Henry, Mickaël

    2014-02-01

    Recent scientific literature and reports from official sanitary agencies have pointed out the deficiency of current pesticide risk assessment processes regarding sublethal effects on pollinators. Sublethal effects include troubles in learning performance, orientation skills, or mobility, with possible contribution to substantial dysfunction at population scale. However, the study of sublethal effects is currently limited by considerable knowledge gaps, particularly for the numerous pollinators other than the honey bee Apis mellifera L.--the traditional model for pesticide risk assessment in pollinators. Here, we propose to use the crop-emptying time as a rule of thumb to guide the design of oral exposure experiments in the honey bee and wild bees. The administration of contaminated sucrose solutions is typically followed by a fasting time lapse to allow complete assimilation before the behavioral tests. The fasting duration should at least encompass the crop-emptying time, because no absorption takes place in the crop. We assessed crop-emptying rate in fasted bees and how it relates 1) with sucrose solution concentration in the honey bee and 2) with body mass in wild bees. Fasting duration required for complete crop emptying in honey bees fed 20 microl of a 50% sucrose solution was nearly 2 h. Actual fasting durations are usually shorter in toxicological studies, suggesting incomplete crop emptying, and therefore partial assimilation of experimental solutions that could imply underestimation of sublethal effects. We also found faster crop-emptying rates in large wild bees compared with smaller wild bees, and suggest operative rules to adapt sublethal assessment schemes accordingly.

  1. An outbreak of post-partum breast abscesses in Mumbai, India caused by ST22-MRSA-IV: genetic characteristics and epidemiological implications

    PubMed Central

    MANOHARAN, A.; ZHANG, L.; POOJARY, A.; BHANDARKAR, L.; KOPPIKAR, G.; ROBINSON, D. A.

    2012-01-01

    SUMMARY A cluster of methicillin-resistant Staphylococcus aureus (MRSA) breast abscesses in women who had given birth at a hospital in Mumbai, India was investigated retrospectively. Nineteen of twenty cases were caused by a single clone: pvl-positive, spa type 648 (Ridom t852), ccrB:dru subtype 3:0, ST22-MRSA-IV. Despite the presence of pvl and SCCmec type IV, which are common genetic markers among community-associated MRSA, this outbreak was caused by a healthcare-associated, community-onset MRSA that was common in the hospital environment. Thus, infection control practices may have an important role in limiting the spread of this virulent clone. PMID:22475374

  2. Genetic sex determination and extinction.

    PubMed

    Hedrick, Philip W; Gadau, Jürgen; Page, Robert E

    2006-02-01

    Genetic factors can affect the probability of extinction either by increasing the effect of detrimental variants or by decreasing the potential for future adaptive responses. In a recent paper, Zayed and Packer demonstrate that low variation at a specific locus, the complementary sex determination (csd) locus in Hymenoptera (ants, bees and wasps), can result in a sharply increased probability of extinction. Their findings illustrate situations in which there is a feedback process between decreased genetic variation at the csd locus owing to genetic drift and decreased population growth, resulting in an extreme type of extinction vortex for these ecologically important organisms.

  3. Genetic markers as instrumental variables.

    PubMed

    von Hinke, Stephanie; Davey Smith, George; Lawlor, Debbie A; Propper, Carol; Windmeijer, Frank

    2016-01-01

    The use of genetic markers as instrumental variables (IV) is receiving increasing attention from economists, statisticians, epidemiologists and social scientists. Although IV is commonly used in economics, the appropriate conditions for the use of genetic variants as instruments have not been well defined. The increasing availability of biomedical data, however, makes understanding of these conditions crucial to the successful use of genotypes as instruments. We combine the econometric IV literature with that from genetic epidemiology, and discuss the biological conditions and IV assumptions within the statistical potential outcomes framework. We review this in the context of two illustrative applications. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  4. Pollination value of male bees: the specialist bee Peponapis pruinosa (Apidae) at summer squash (Cucurbita pepo).

    PubMed

    Cane, James H; Sampson, Blair J; Miller, Stephanie A

    2011-06-01

    Male bees can be abundant at flowers, particularly floral hosts of those bee species whose females are taxonomic pollen specialists (oligolecty). Contributions of male bees to host pollination are rarely studied directly despite their prevalence in a number of pollination guilds, including those of some crop plants. In this study, males of the oligolectic bee, Peponapis pruinosa Say, were shown to be effective pollinators of summer squash, Cucurbita pepo L. Seven sequential visits from male P. pruinosa maximized squash fruit set and growth. This number of male visits accumulated during the first hour of their foraging and mate searching at flowers soon after sunrise. Pollination efficacy of male P. pruinosa and their abundances at squash flowers were sufficient to account for most summer squash production at our study sites, and by extrapolation, to two-thirds of all 87 North American farms and market gardens growing squashes that were surveyed for pollinators by collaborators in the Squash Pollinators of the Americas Survey. We posit that the substantial pollination value of male Peponapis bees is a consequence of their species' oligolecty, their mate seeking strategy, and some extreme traits of Cucurbita flowers (massive rewards, flower size, phenology).

  5. Pollution monitoring of puget sound with honey bees.

    PubMed

    Bromenshenk, J J; Carlson, S R; Simpson, J C; Thomas, J M

    1985-02-08

    To show that honey bees are effective biological monitors of environmental contaminants over large geographic areas, beekeepers of Puget Sound, Washington, collected pollen and bees for chemical analysis. From these data, kriging maps of arsenic, cadmium, and fluoride were generated. Results, based on actual concentrations of contaminants in bee tissues, show that the greatest concentrations of contaminants occur close to Commencement Bay and that honey bees are effective as large-scale monitors.

  6. Local bumble bee decline linked to recovery of honey bees, drought effects on floral resources.

    PubMed

    Thomson, Diane M

    2016-10-01

    Time series of abundances are critical for understanding how abiotic factors and species interactions affect population dynamics, but are rarely linked with experiments and also scarce for bee pollinators. This gap is important given concerns about declines in some bee species. I monitored honey bee (Apis mellifera) and bumble bee (Bombus spp.) foragers in coastal California from 1999, when feral A. mellifera populations were low due to Varroa destructor, until 2014. Apis mellifera increased substantially, except between 2006 and 2011, coinciding with declines in managed populations. Increases in A. mellifera strongly correlated with declines in Bombus and reduced diet overlap between them, suggesting resource competition consistent with past experimental results. Lower Bombus numbers also correlated with diminished floral resources. Declines in floral abundances were associated with drought and reduced spring rainfall. These results illustrate how competition with an introduced species may interact with climate to drive local decline of native pollinators. © 2016 John Wiley & Sons Ltd/CNRS.

  7. Microbial Communities of Three Sympatric Australian Stingless Bee Species

    PubMed Central

    Leonhardt, Sara D.; Kaltenpoth, Martin

    2014-01-01

    Bacterial symbionts of insects have received increasing attention due to their prominent role in nutrient acquisition and defense. In social bees, symbiotic bacteria can maintain colony homeostasis and fitness, and the loss or alteration of the bacterial community may be associated with the ongoing bee decline observed worldwide. However, analyses of microbiota associated with bees have been largely confined to the social honeybees (Apis mellifera) and bumblebees (Bombus spec.), revealing – among other taxa – host-specific lactic acid bacteria (LAB, genus Lactobacillus) that are not found in solitary bees. Here, we characterized the microbiota of three Australian stingless bee species (Apidae: Meliponini) of two phylogenetically distant genera (Tetragonula and Austroplebeia). Besides common plant bacteria, we find LAB in all three species, showing that LAB are shared by honeybees, bumblebees and stingless bees across geographical regions. However, while LAB of the honeybee-associated Firm4–5 clusters were present in Tetragonula, they were lacking in Austroplebeia. Instead, we found a novel clade of likely host-specific LAB in all three Australian stingless bee species which forms a sister clade to a large cluster of Halictidae-associated lactobacilli. Our findings indicate both a phylogenetic and geographical signal of host-specific LAB in stingless bees and highlight stingless bees as an interesting group to investigate the evolutionary history of the bee-LAB association. PMID:25148082

  8. Microbial communities of three sympatric Australian stingless bee species.

    PubMed

    Leonhardt, Sara D; Kaltenpoth, Martin

    2014-01-01

    Bacterial symbionts of insects have received increasing attention due to their prominent role in nutrient acquisition and defense. In social bees, symbiotic bacteria can maintain colony homeostasis and fitness, and the loss or alteration of the bacterial community may be associated with the ongoing bee decline observed worldwide. However, analyses of microbiota associated with bees have been largely confined to the social honeybees (Apis mellifera) and bumblebees (Bombus spec.), revealing--among other taxa--host-specific lactic acid bacteria (LAB, genus Lactobacillus) that are not found in solitary bees. Here, we characterized the microbiota of three Australian stingless bee species (Apidae: Meliponini) of two phylogenetically distant genera (Tetragonula and Austroplebeia). Besides common plant bacteria, we find LAB in all three species, showing that LAB are shared by honeybees, bumblebees and stingless bees across geographical regions. However, while LAB of the honeybee-associated Firm4-5 clusters were present in Tetragonula, they were lacking in Austroplebeia. Instead, we found a novel clade of likely host-specific LAB in all three Australian stingless bee species which forms a sister clade to a large cluster of Halictidae-associated lactobacilli. Our findings indicate both a phylogenetic and geographical signal of host-specific LAB in stingless bees and highlight stingless bees as an interesting group to investigate the evolutionary history of the bee-LAB association.

  9. Allee effects and colony collapse disorder in honey bees

    USDA-ARS?s Scientific Manuscript database

    We propose a mathematical model to quantify the hypothesis that a major ultimate cause of Colony Collapse Disorder (CCD) in honey bees is the presence of an Allee effect in the growth dynamics of honey bee colonies. In the model, both recruitment of adult bees as well as mortality of adult bees have...

  10. Tropilaelaps mite: an emerging threat to European honey bee.

    PubMed

    Chantawannakul, Panuwan; Ramsey, Samuel; vanEngelsdorp, Dennis; Khongphinitbunjong, Kitiphong; Phokasem, Patcharin

    2018-04-01

    The risk of transmission of honey bee parasites has increased substantially as a result of trade globalization and technical developments in transportation efficacy. Great concern over honey bee decline has accelerated research on newly emerging bee pests and parasites. These organisms are likely to emerge from Asia as it is the only region where all 10 honey bee species co-occur. Varroa destructor, an ectoparasitic mite, is a classic example of a pest that has shifted from A. cerana, a cavity nesting Asian honey bee to A. mellifera, the European honey bee. In this review, we will describe the potential risks to global apiculture of the global expansion of Tropilaelaps mercedesae, originally a parasite of the open-air nesting Asian giant honey bee, compared to the impact of V. destructor. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. A depauperate immune repertoire precedes evolution of sociality in bees.

    PubMed

    Barribeau, Seth M; Sadd, Ben M; du Plessis, Louis; Brown, Mark J F; Buechel, Severine D; Cappelle, Kaat; Carolan, James C; Christiaens, Olivier; Colgan, Thomas J; Erler, Silvio; Evans, Jay; Helbing, Sophie; Karaus, Elke; Lattorff, H Michael G; Marxer, Monika; Meeus, Ivan; Näpflin, Kathrin; Niu, Jinzhi; Schmid-Hempel, Regula; Smagghe, Guy; Waterhouse, Robert M; Yu, Na; Zdobnov, Evgeny M; Schmid-Hempel, Paul

    2015-04-24

    Sociality has many rewards, but can also be dangerous, as high population density and low genetic diversity, common in social insects, is ideal for parasite transmission. Despite this risk, honeybees and other sequenced social insects have far fewer canonical immune genes relative to solitary insects. Social protection from infection, including behavioral responses, may explain this depauperate immune repertoire. Here, based on full genome sequences, we describe the immune repertoire of two ecologically and commercially important bumblebee species that diverged approximately 18 million years ago, the North American Bombus impatiens and European Bombus terrestris. We find that the immune systems of these bumblebees, two species of honeybee, and a solitary leafcutting bee, are strikingly similar. Transcriptional assays confirm the expression of many of these genes in an immunological context and more strongly in young queens than males, affirming Bateman's principle of greater investment in female immunity. We find evidence of positive selection in genes encoding antiviral responses, components of the Toll and JAK/STAT pathways, and serine protease inhibitors in both social and solitary bees. Finally, we detect many genes across pathways that differ in selection between bumblebees and honeybees, or between the social and solitary clades. The similarity in immune complement across a gradient of sociality suggests that a reduced immune repertoire predates the evolution of sociality in bees. The differences in selection on immune genes likely reflect divergent pressures exerted by parasites across social contexts.

  12. A Whole Day of Bees? Buzz Off!

    ERIC Educational Resources Information Center

    Church, David

    2017-01-01

    In March 2016, the school that the author teaches at held its annual science day and the theme was "bees." Each class was given a different question relating to bees to investigate. The children in the authors' year 2 class (ages 6-7) were challenged to investigate the life cycle of a bee. The whole day was focused around the life cycle…

  13. Flight of the bumble bee: Buzzes predict pollination services.

    PubMed

    Miller-Struttmann, Nicole E; Heise, David; Schul, Johannes; Geib, Jennifer C; Galen, Candace

    2017-01-01

    Multiple interacting factors drive recent declines in wild and managed bees, threatening their pollination services. Widespread and intensive monitoring could lead to more effective management of wild and managed bees. However, tracking their dynamic populations is costly. We tested the effectiveness of an inexpensive, noninvasive and passive acoustic survey technique for monitoring bumble bee behavior and pollination services. First, we assessed the relationship between the first harmonic of the flight buzz (characteristic frequency) and pollinator functional traits that influence pollination success using flight cage experiments and a literature search. We analyzed passive acoustic survey data from three locations on Pennsylvania Mountain, Colorado to estimate bumble bee activity. We developed an algorithm based on Computational Auditory Scene Analysis that identified and quantified the number of buzzes recorded in each location. We then compared visual and acoustic estimates of bumble bee activity. Using pollinator exclusion experiments, we tested the power of buzz density to predict pollination services at the landscape scale for two bumble bee pollinated alpine forbs (Trifolium dasyphyllum and T. parryi). We found that the characteristic frequency was correlated with traits known to affect pollination efficacy, explaining 30-52% of variation in body size and tongue length. Buzz density was highly correlated with visual estimates of bumble bee density (r = 0.97), indicating that acoustic signals are predictive of bumble bee activity. Buzz density predicted seed set in two alpine forbs when bumble bees were permitted access to the flowers, but not when they were excluded from visiting. Our results indicate that acoustic signatures of flight can be deciphered to monitor bee activity and pollination services to bumble bee pollinated plants. We propose that applications of this technique could assist scientists and farmers in rapidly detecting and responding to bee

  14. Flight of the bumble bee: Buzzes predict pollination services

    PubMed Central

    Heise, David; Schul, Johannes; Geib, Jennifer C.; Galen, Candace

    2017-01-01

    Multiple interacting factors drive recent declines in wild and managed bees, threatening their pollination services. Widespread and intensive monitoring could lead to more effective management of wild and managed bees. However, tracking their dynamic populations is costly. We tested the effectiveness of an inexpensive, noninvasive and passive acoustic survey technique for monitoring bumble bee behavior and pollination services. First, we assessed the relationship between the first harmonic of the flight buzz (characteristic frequency) and pollinator functional traits that influence pollination success using flight cage experiments and a literature search. We analyzed passive acoustic survey data from three locations on Pennsylvania Mountain, Colorado to estimate bumble bee activity. We developed an algorithm based on Computational Auditory Scene Analysis that identified and quantified the number of buzzes recorded in each location. We then compared visual and acoustic estimates of bumble bee activity. Using pollinator exclusion experiments, we tested the power of buzz density to predict pollination services at the landscape scale for two bumble bee pollinated alpine forbs (Trifolium dasyphyllum and T. parryi). We found that the characteristic frequency was correlated with traits known to affect pollination efficacy, explaining 30–52% of variation in body size and tongue length. Buzz density was highly correlated with visual estimates of bumble bee density (r = 0.97), indicating that acoustic signals are predictive of bumble bee activity. Buzz density predicted seed set in two alpine forbs when bumble bees were permitted access to the flowers, but not when they were excluded from visiting. Our results indicate that acoustic signatures of flight can be deciphered to monitor bee activity and pollination services to bumble bee pollinated plants. We propose that applications of this technique could assist scientists and farmers in rapidly detecting and responding to

  15. Methyl farnesoate epoxidase (mfe) gene expression and juvenile hormone titers in the life cycle of a highly eusocial stingless bee, Melipona scutellaris.

    PubMed

    Cardoso-Júnior, Carlos Antônio Mendes; Silva, Renato Pereira; Borges, Naiara Araújo; de Carvalho, Washington João; Walter, S Leal; Simões, Zilá Luz Paulino; Bitondi, Marcia Maria Gentile; Ueira Vieira, Carlos; Bonetti, Ana Maria; Hartfelder, Klaus

    2017-08-01

    In social insects, juvenile hormone (JH) has acquired novel functions related to caste determination and division of labor among workers, and this is best evidenced in the honey bee. In contrast to honey bees, stingless bees are a much more diverse group of highly eusocial bees, and the genus Melipona has long called special attention due to a proposed genetic mechanism of caste determination. Here, we examined methyl farnesoate epoxidase (mfe) gene expression, encoding an enzyme relevant for the final step in JH biosynthesis, and measured the hemolymph JH titers for all life cycle stages of Melipona scutellaris queens and workers. We confirmed that mfe is exclusively expressed in the corpora allata. The JH titer is high in the second larval instar, drops in the third, and rises again as the larvae enter metamorphosis. During the pupal stage, mfe expression is initialy elevated, but then gradually drops to low levels before adult emergence. No variation was, however, seen in the JH titer. In adult virgin queens, mfe expression and the JH titer are significantly elevated, possibly associated with their reproductive potential. For workers we found that JH titers are lower in foragers than in nurse bees, while mfe expression did not differ. Stingless bees are, thus, distinct from honey bee workers, suggesting that they have maintained the ancestral gonadotropic function for JH. Hence, the physiological circuitries underlying a highly eusocial life style may be variable, even within a monophyletic clade such as the corbiculate bees. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. The Status of Honey Bee Health in Italy: Results from the Nationwide Bee Monitoring Network

    PubMed Central

    Bortolotti, Laura; Granato, Anna; Laurenson, Lynn; Roberts, Katherine; Gallina, Albino; Silvester, Nicholas; Medrzycki, Piotr; Renzi, Teresa; Sgolastra, Fabio; Lodesani, Marco

    2016-01-01

    In Italy a nation-wide monitoring network was established in 2009 in response to significant honey bee colony mortality reported during 2008. The network comprised of approximately 100 apiaries located across Italy. Colonies were sampled four times per year, in order to assess the health status and to collect samples for pathogen, chemical and pollen analyses. The prevalence of Nosema ceranae ranged, on average, from 47–69% in 2009 and from 30–60% in 2010, with strong seasonal variation. Virus prevalence was higher in 2010 than in 2009. The most widespread viruses were BQCV, DWV and SBV. The most frequent pesticides in all hive contents were organophosphates and pyrethroids such as coumaphos and tau-fluvalinate. Beeswax was the most frequently contaminated hive product, with 40% of samples positive and 13% having multiple residues, while 27% of bee-bread and 12% of honey bee samples were contaminated. Colony losses in 2009/10 were on average 19%, with no major differences between regions of Italy. In 2009, the presence of DWV in autumn was positively correlated with colony losses. Similarly, hive mortality was higher in BQCV infected colonies in the first and second visits of the year. In 2010, colony losses were significantly related to the presence of pesticides in honey bees during the second sampling period. Honey bee exposure to poisons in spring could have a negative impact at the colony level, contributing to increase colony mortality during the beekeeping season. In both 2009 and 2010, colony mortality rates were positively related to the percentage of agricultural land surrounding apiaries, supporting the importance of land use for honey bee health. PMID:27182604

  17. The Status of Honey Bee Health in Italy: Results from the Nationwide Bee Monitoring Network.

    PubMed

    Porrini, Claudio; Mutinelli, Franco; Bortolotti, Laura; Granato, Anna; Laurenson, Lynn; Roberts, Katherine; Gallina, Albino; Silvester, Nicholas; Medrzycki, Piotr; Renzi, Teresa; Sgolastra, Fabio; Lodesani, Marco

    2016-01-01

    In Italy a nation-wide monitoring network was established in 2009 in response to significant honey bee colony mortality reported during 2008. The network comprised of approximately 100 apiaries located across Italy. Colonies were sampled four times per year, in order to assess the health status and to collect samples for pathogen, chemical and pollen analyses. The prevalence of Nosema ceranae ranged, on average, from 47-69% in 2009 and from 30-60% in 2010, with strong seasonal variation. Virus prevalence was higher in 2010 than in 2009. The most widespread viruses were BQCV, DWV and SBV. The most frequent pesticides in all hive contents were organophosphates and pyrethroids such as coumaphos and tau-fluvalinate. Beeswax was the most frequently contaminated hive product, with 40% of samples positive and 13% having multiple residues, while 27% of bee-bread and 12% of honey bee samples were contaminated. Colony losses in 2009/10 were on average 19%, with no major differences between regions of Italy. In 2009, the presence of DWV in autumn was positively correlated with colony losses. Similarly, hive mortality was higher in BQCV infected colonies in the first and second visits of the year. In 2010, colony losses were significantly related to the presence of pesticides in honey bees during the second sampling period. Honey bee exposure to poisons in spring could have a negative impact at the colony level, contributing to increase colony mortality during the beekeeping season. In both 2009 and 2010, colony mortality rates were positively related to the percentage of agricultural land surrounding apiaries, supporting the importance of land use for honey bee health.

  18. Pollution monitoring of Puget Sound with honey bees

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bromenshenk, J.J.; Carlson, S.R.; Simpson, J.C.

    To show that honey bees are effective biological monitors of environmental contaminants over large geographic areas, beekeepers of Puget Sound, Washington, collected pollen and bees for chemical analysis. From these data, kriging maps of arsenic, cadmium, and fluoride were generated. Results, based on actual concentrations of contaminants in bee tissues, show that the greatest concentrations of contaminants occur close to Commencement Bay and that honey bees are effective as large-scale monitors. 27 references, 2 figures.

  19. Parasite infection accelerates age polyethism in young honey bees

    PubMed Central

    Lecocq, Antoine; Jensen, Annette Bruun; Kryger, Per; Nieh, James C.

    2016-01-01

    Honey bees (Apis mellifera) are important pollinators and their health is threatened worldwide by persistent exposure to a wide range of factors including pesticides, poor nutrition, and pathogens. Nosema ceranae is a ubiquitous microsporidian associated with high colony mortality. We used lab micro-colonies of honey bees and video analyses to track the effects of N. ceranae infection and exposure on a range of individual and social behaviours in young adult bees. We provide detailed data showing that N. ceranae infection significantly accelerated the age polyethism of young bees, causing them to exhibit behaviours typical of older bees. Bees with high N. ceranae spore counts had significantly increased walking rates and decreased attraction to queen mandibular pheromone. Infected bees also exhibited higher rates of trophallaxis (food exchange), potentially reflecting parasite manipulation to increase colony infection. However, reduction in queen contacts could help bees limit the spread of infection. Such accelerated age polyethism may provide a form of behavioural immunity, particularly if it is elicited by a wide variety of pathogens. PMID:26912310

  20. Parasite infection accelerates age polyethism in young honey bees.

    PubMed

    Lecocq, Antoine; Jensen, Annette Bruun; Kryger, Per; Nieh, James C

    2016-02-25

    Honey bees (Apis mellifera) are important pollinators and their health is threatened worldwide by persistent exposure to a wide range of factors including pesticides, poor nutrition, and pathogens. Nosema ceranae is a ubiquitous microsporidian associated with high colony mortality. We used lab micro-colonies of honey bees and video analyses to track the effects of N. ceranae infection and exposure on a range of individual and social behaviours in young adult bees. We provide detailed data showing that N. ceranae infection significantly accelerated the age polyethism of young bees, causing them to exhibit behaviours typical of older bees. Bees with high N. ceranae spore counts had significantly increased walking rates and decreased attraction to queen mandibular pheromone. Infected bees also exhibited higher rates of trophallaxis (food exchange), potentially reflecting parasite manipulation to increase colony infection. However, reduction in queen contacts could help bees limit the spread of infection. Such accelerated age polyethism may provide a form of behavioural immunity, particularly if it is elicited by a wide variety of pathogens.

  1. Beneficial microorganisms for honey bees: problems and progresses.

    PubMed

    Alberoni, Daniele; Gaggìa, Francesca; Baffoni, Loredana; Di Gioia, Diana

    2016-11-01

    Nowadays, honey bees are stressed by a number of biotic and abiotic factors which may compromise to some extent the pollination service and the hive productivity. The EU ban of antibiotics as therapeutic agents against bee pathogens has stimulated the search for natural alternatives. The increasing knowledge on the composition and functions of the bee gut microbiota and the link between a balanced gut microbiota and health status have encouraged the research on the use of gut microorganisms to improve bee health. Somehow, we are assisting to the transfer of the "probiotic concept" into the bee science. In this review, we examine the role of the honey bee gut microbiota in bee health and critically describe the available applications of beneficial microorganisms as pest control agents and health support. Most of the strains, mainly belonging to the genera Lactobacillus, Bifidobacterium and Bacillus, are isolated from honey bee crop or gut, but some applications involve environmental strains or formulation for animal and human consumption. Overall, the obtained results show the favourable effect of applied microbial strains on bee health and productivity, in particular if strains of bee origin are used. However, it is actually not yet possible to conclude whether this strategy will ever work. In particular, many aspects regarding the overall setup of the experiments, the dose, the timing and the duration of the treatment need to be optimized, also considering the microbiological safety of the hive products (i.e. pollen and honey). In addition, a deep investigation about the effect on host immunity and physiology is envisaged. Lastly, the final users of the formulations, i.e. beekeepers, should be taken into account for the achievement of high-quality, cost-effective and easy-to-use products.

  2. Responses of Euglossine Bees (Hymenoptera, Apidae, Euglossina) to an Edge-Forest Gradient in a Large Tabuleiro Forest Remnant in Eastern Brazil.

    PubMed

    Coswosk, J A; Ferreira, R A; Soares, E D G; Faria, L R R

    2018-08-01

    Euglossine fauna of a large remnant of Brazilian Atlantic forest in eastern Brazil (Reserva Natural Vale) was assessed along an edge-forest gradient towards the interior of the fragment. To test the hypotheses that the structure of assemblages of orchid bees varies along this gradient, the following predictions were evaluated: (i) species richness is positively related to distance from the forest edge, (ii) species diversity is positively related to distance from the edge, (iii) the relative abundance of species associated with forest edge and/or open areas is inversely related to the distance from edge, and (iv) relative abundance of forest-related species is positively related to distance from the edge. A total of 2264 bees of 25 species was assessed at five distances from the edge: 0 m (the edge itself), 100 m, 500 m, 1000 m and 1500 m. Data suggested the existence of an edge-interior gradient for euglossine bees regarding species diversity and composition (considering the relative abundance of edge and forest-related species as a proxy for species composition) but not species richness.

  3. Genomic correlates of recombination rate and its variability across eight recombination maps in the western honey bee (Apis mellifera L.).

    PubMed

    Ross, Caitlin R; DeFelice, Dominick S; Hunt, Greg J; Ihle, Kate E; Amdam, Gro V; Rueppell, Olav

    2015-02-21

    Meiotic recombination has traditionally been explained based on the structural requirement to stabilize homologous chromosome pairs to ensure their proper meiotic segregation. Competing hypotheses seek to explain the emerging findings of significant heterogeneity in recombination rates within and between genomes, but intraspecific comparisons of genome-wide recombination patterns are rare. The honey bee (Apis mellifera) exhibits the highest rate of genomic recombination among multicellular animals with about five cross-over events per chromatid. Here, we present a comparative analysis of recombination rates across eight genetic linkage maps of the honey bee genome to investigate which genomic sequence features are correlated with recombination rate and with its variation across the eight data sets, ranging in average marker spacing ranging from 1 Mbp to 120 kbp. Overall, we found that GC content explained best the variation in local recombination rate along chromosomes at the analyzed 100 kbp scale. In contrast, variation among the different maps was correlated to the abundance of microsatellites and several specific tri- and tetra-nucleotides. The combined evidence from eight medium-scale recombination maps of the honey bee genome suggests that recombination rate variation in this highly recombining genome might be due to the DNA configuration instead of distinct sequence motifs. However, more fine-scale analyses are needed. The empirical basis of eight differing genetic maps allowed for robust conclusions about the correlates of the local recombination rates and enabled the study of the relation between DNA features and variability in local recombination rates, which is particularly relevant in the honey bee genome with its exceptionally high recombination rate.

  4. Medicinal and cosmetic uses of Bee's Honey - A review.

    PubMed

    Ediriweera, E R H S S; Premarathna, N Y S

    2012-04-01

    Bee's honey is one of the most valued and appreciated natural substances known to mankind since ancient times. There are many types of bee's honey mentioned in Ayurveda. Their effects differ and 'Makshika' is considered medicinally the best. According to modern scientific view, the best bee's honey is made by Apis mellifera (Family: Apidae). In Sri Lanka, the predominant honey-maker bee is Apis cerana. The aim of this survey is to emphasize the importance of bee's honey and its multitude of medicinal, cosmetic and general values. Synonyms, details of formation, constitution, properties, and method of extraction and the usages of bee's honey are gathered from text books, traditional and Ayurvedic physicians of Western and Southern provinces, villagers of 'Kalahe' in Galle district of Sri Lanka and from few search engines. Fresh bee's honey is used in treatment of eye diseases, throat infections, bronchial asthma, tuberculosis, hiccups, thirst, dizziness, fatigue, hepatitis, worm infestation, constipation, piles, eczema, healing of wounds, ulcers and used as a nutritious, easily digestible food for weak people. It promotes semen, mental health and used in cosmetic purposes. Old bee's honey is used to treat vomiting, diarrhea, rheumatoid arthritis, obesity, diabetes mellitus and in preserving meat and fruits. Highly popular in cosmetic treatment, bee's honey is used in preparing facial washes, skin moisturizers, hair conditioners and in treatment of pimples. Bee's honey could be considered as one of the finest products of nature that has a wide range of beneficial uses.

  5. Thi Qar Bee Farm Thi Qar, Iraq

    DTIC Science & Technology

    2010-04-01

    vegetation and fields where bees once gathered pollen and beekeepers face hardships from droughts and lack of financial assistance. 1...of equipment, and provided training to the bee farmers. General topography of the area was flat with vacant or agricultural land extending for a...OFFICE OF THE SPECIAL INSPECTOR GENERAL FOR IRAQ RECONSTRUCTION THI QAR BEE FARM THI QAR, IRAQ SIGIR PA--09--188

  6. Impacts of Austrian Climate Variability on Honey Bee Mortality

    NASA Astrophysics Data System (ADS)

    Switanek, Matt; Brodschneider, Robert; Crailsheim, Karl; Truhetz, Heimo

    2015-04-01

    Global food production, as it is today, is not possible without pollinators such as the honey bee. It is therefore alarming that honey bee populations across the world have seen increased mortality rates in the last few decades. The challenges facing the honey bee calls into question the future of our food supply. Beside various infectious diseases, Varroa destructor is one of the main culprits leading to increased rates of honey bee mortality. Varroa destructor is a parasitic mite which strongly depends on honey bee brood for reproduction and can wipe out entire colonies. However, climate variability may also importantly influence honey bee breeding cycles and bee mortality rates. Persistent weather events affects vegetation and hence foraging possibilities for honey bees. This study first defines critical statistical relationships between key climate indicators (e.g., precipitation and temperature) and bee mortality rates across Austria, using 6 consecutive years of data. Next, these leading indicators, as they vary in space and time, are used to build a statistical model to predict bee mortality rates and the respective number of colonies affected. Using leave-one-out cross validation, the model reduces the Root Mean Square Error (RMSE) by 21% with respect to predictions made with the mean mortality rate and the number of colonies. Furthermore, a Monte Carlo test is used to establish that the model's predictions are statistically significant at the 99.9% confidence level. These results highlight the influence of climate variables on honey bee populations, although variability in climate, by itself, cannot fully explain colony losses. This study was funded by the Austrian project 'Zukunft Biene'.

  7. Genetic diversity promotes homeostasis in insect colonies.

    PubMed

    Oldroyd, Benjamin P; Fewell, Jennifer H

    2007-08-01

    Although most insect colonies are headed by a singly mated queen, some ant, wasp and bee taxa have evolved high levels of multiple mating or 'polyandry'. We argue here that a contributing factor towards the evolution of polyandry is that the resulting genetic diversity within colonies provides them with a system of genetically based task specialization, enabling them to respond resiliently to environmental perturbation. An alternate view is that genetic contributions to task specialization are a side effect of multiple mating, which evolved through other causes, and that genetically based task specialization now makes little or no contribution to colony fitness.

  8. Measurements of Chlorpyrifos Levels in Forager Bees and Comparison with Levels that Disrupt Honey Bee Odor-Mediated Learning Under Laboratory Conditions.

    PubMed

    Urlacher, Elodie; Monchanin, Coline; Rivière, Coraline; Richard, Freddie-Jeanne; Lombardi, Christie; Michelsen-Heath, Sue; Hageman, Kimberly J; Mercer, Alison R

    2016-02-01

    Chlorpyrifos is an organophosphate pesticide used around the world to protect food crops against insects and mites. Despite guidelines for chlorpyrifos usage, including precautions to protect beneficial insects, such as honeybees from spray drift, this pesticide has been detected in bees in various countries, indicating that exposure still occurs. Here, we examined chlorpyrifos levels in bees collected from 17 locations in Otago, New Zealand, and compared doses of this pesticide that cause sub-lethal effects on learning performance under laboratory conditions with amounts of chlorpyrifos detected in the bees in the field. The pesticide was detected at 17 % of the sites sampled and in 12 % of the colonies examined. Amounts detected ranged from 35 to 286 pg.bee(-1), far below the LD50 of ~100 ng.bee(-1). We detected no adverse effect of chlorpyrifos on aversive learning, but the formation and retrieval of appetitive olfactory memories was severely affected. Chlorpyrifos fed to bees in amounts several orders of magnitude lower than the LD50, and also lower than levels detected in bees, was found to slow appetitive learning and reduce the specificity of memory recall. As learning and memory play a central role in the behavioral ecology and communication of foraging bees, chlorpyrifos, even in sublethal doses, may threaten the success and survival of this important insect pollinator.

  9. Functionality of Varroa-resistant honey bees (Hymenoptera: Apidae) when used in migratory beekeeping for crop pollination.

    PubMed

    Danka, Robert G; De Guzman, Lilia I; Rinderer, Thomas E; Sylvester, H Allen; Wagener, Christine M; Bourgeois, A Lelania; Harris, Jeffrey W; Villa, José D

    2012-04-01

    Two types of honey bees, Apis mellifera L. (Hymenoptera: Apidae), bred for resistance to Varroa destructor Anderson & Trueman were evaluated for performance when used in migratory crop pollination. Colonies of Russian honey bees (RHB) and outcrossed bees with Varroa-sensitive hygiene (VSH) were managed without miticide treatments and compared with colonies of Italian honey bees that served as controls. Control colonies were managed as groups which either were treated twice each year against V. destructor (CT) or kept untreated (CU). Totals of 240 and 247 colonies were established initially for trials in 2008 and 2009, respectively. RHB and VSH colonies generally had adult and brood populations similar to those of the standard CT group regarding pollination requirements. For pollination of almonds [Prunus dulcis (Mill.) D.A.Webb] in February, percentages of colonies meeting the required six or more frames of adult bees were 57% (VSH), 56% (CT), 39% (RHB), and 34% (CU). RHB are known to have small colonies in early spring, but this can be overcome with appropriate feeding. For later pollination requirements in May to July, 94-100% of colonies in the four groups met pollination size requirements for apples (Malus domestica Borkh.), cranberries (Vaccinium macrocarpon Aiton), and lowbush blueberries (Vaccinium angustifolium Aiton). Infestations with V. destructor usually were lowest in CT colonies and tended to be lower in VSH colonies than in RHB and CU colonies. This study demonstrates that bees with the VSH trait and pure RHB offer alternatives for beekeepers to use for commercial crop pollination while reducing reliance on miticides. The high frequency of queen loss (only approximately one fourth of original queens survived each year) suggests that frequent requeening is necessary to maintain desired genetics.

  10. Efficiency of local Indonesia honey bees (Apis cerana L.) and stingless bee (Trigona iridipennis) on tomato (Lycopersicon esculentum Mill.) pollination.

    PubMed

    Putra, Ramadhani Eka; Kinasih, Ida

    2014-01-01

    Tomato (Lycopersicon esculentum Mill.) is considered as one of major agricultural commodity of Indonesia farming. However, monthly production is unstable due to lack of pollination services. Common pollinator agent of tomatoes is bumblebees which is unsuitable for tropical climate of Indonesia and the possibility of alteration of local wild plant interaction with their pollinator. Indonesia is rich with wild bees and some of the species already domesticated for years with prospect as pollinating agent for tomatoes. This research aimed to assess the efficiency of local honey bee (Apis cerana L.) and stingless bee (Trigona iridipennis), as pollinator of tomato. During this research, total visitation rate and total numbers of pollinated flowers by honey bee and stingless bee were compared between them with bagged flowers as control. Total fruit production, average weight and size also measured in order to correlated pollination efficiency with quantity and quality of fruit produced. Result of this research showed that A. cerana has slightly higher rate of visitation (p>0.05) and significantly shorter handling time (p < 0.05) than T. iridipennis due to their larger colony demand and low reward provide by tomato flowers. However, honey bee pollinated tomato flowers more efficient pollinator than stingless bee (80.3 and 70.2% efficiency, respectively; p < 0.05) even though the average weight and size of tomatoes were similar (p>0.05). Based on the results, it is concluded that the use of Apis cerana and Trigona spp., for pollinating tomatoes in tropical climates could be an alternative to the use of non-native Apis mellifera and bumblebees (Bombus spp.). However, more researches are needed to evaluate the cost/benefit on large-scale farming and greenhouse pollination using both bees against other bee species and pollination methods.

  11. Social molecular pathways and the evolution of bee societies

    PubMed Central

    Bloch, Guy; Grozinger, Christina M.

    2011-01-01

    Bees provide an excellent model with which to study the neuronal and molecular modifications associated with the evolution of sociality because relatively closely related species differ profoundly in social behaviour, from solitary to highly social. The recent development of powerful genomic tools and resources has set the stage for studying the social behaviour of bees in molecular terms. We review ‘ground plan’ and ‘genetic toolkit’ models which hypothesize that discrete pathways or sets of genes that regulate fundamental behavioural and physiological processes in solitary species have been co-opted to regulate complex social behaviours in social species. We further develop these models and propose that these conserved pathways and genes may be incorporated into ‘social pathways’, which consist of relatively independent modules involved in social signal detection, integration and processing within the nervous and endocrine systems, and subsequent behavioural outputs. Modifications within modules or in their connections result in the evolution of novel behavioural patterns. We describe how the evolution of pheromonal regulation of social pathways may lead to the expression of behaviour under new social contexts, and review plasticity in circadian rhythms as an example for a social pathway with a modular structure. PMID:21690132

  12. Parallel inputs to memory in bee colour vision.

    PubMed

    Horridge, Adrian

    2016-03-01

    In the 19(th) century, it was found that attraction of bees to light was controlled by light intensity irrespective of colour, and a few critical entomologists inferred that vision of bees foraging on flowers was unlike human colour vision. Therefore, quite justly, Professor Carl von Hess concluded in his book on the Comparative Physiology of Vision (1912) that bees do not distinguish colours in the way that humans enjoy. Immediately, Karl von Frisch, an assistant in the Zoology Department of the same University of Münich, set to work to show that indeed bees have colour vision like humans, thereby initiating a new research tradition, and setting off a decade of controversy that ended only at the death of Hess in 1923. Until 1939, several researchers continued the tradition of trying to untangle the mechanism of bee vision by repeatedly testing trained bees, but made little progress, partly because von Frisch and his legacy dominated the scene. The theory of trichromatic colour vision further developed after three types of receptors sensitive to green, blue, and ultraviolet (UV), were demonstrated in 1964 in the bee. Then, until the end of the century, all data was interpreted in terms of trichromatic colour space. Anomalies were nothing new, but eventually after 1996 they led to the discovery that bees have a previously unknown type of colour vision based on a monochromatic measure and distribution of blue and measures of modulation in green and blue receptor pathways. Meanwhile, in the 20(th) century, search for a suitable rationalization, and explorations of sterile culs-de-sac had filled the literature of bee colour vision, but were based on the wrong theory.

  13. Pesticide Residues and Bees – A Risk Assessment

    PubMed Central

    Sanchez-Bayo, Francisco; Goka, Koichi

    2014-01-01

    Bees are essential pollinators of many plants in natural ecosystems and agricultural crops alike. In recent years the decline and disappearance of bee species in the wild and the collapse of honey bee colonies have concerned ecologists and apiculturalists, who search for causes and solutions to this problem. Whilst biological factors such as viral diseases, mite and parasite infections are undoubtedly involved, it is also evident that pesticides applied to agricultural crops have a negative impact on bees. Most risk assessments have focused on direct acute exposure of bees to agrochemicals from spray drift. However, the large number of pesticide residues found in pollen and honey demand a thorough evaluation of all residual compounds so as to identify those of highest risk to bees. Using data from recent residue surveys and toxicity of pesticides to honey and bumble bees, a comprehensive evaluation of risks under current exposure conditions is presented here. Standard risk assessments are complemented with new approaches that take into account time-cumulative effects over time, especially with dietary exposures. Whilst overall risks appear to be low, our analysis indicates that residues of pyrethroid and neonicotinoid insecticides pose the highest risk by contact exposure of bees with contaminated pollen. However, the synergism of ergosterol inhibiting fungicides with those two classes of insecticides results in much higher risks in spite of the low prevalence of their combined residues. Risks by ingestion of contaminated pollen and honey are of some concern for systemic insecticides, particularly imidacloprid and thiamethoxam, chlorpyrifos and the mixtures of cyhalothrin and ergosterol inhibiting fungicides. More attention should be paid to specific residue mixtures that may result in synergistic toxicity to bees. PMID:24718419

  14. Genetic and Morphometric Evidence for the Conspecific Status of the Bumble Bees, Bombus melanopygus and Bombus edwardsii

    PubMed Central

    Owen, Robin E.; Whidden, Troy L.; Plowright, R.C.

    2010-01-01

    The taxonomic status of closely related bumble bee species is often unclear. The relationship between the two nominate taxa, Bombus melanopygus Nylander (Hymenoptera: Apidae) and Bombus edwardsii Cresson (Hymenoptera: Apidae), was investigated using genetic (enzyme electrophoretic) and morphometric analyses. The taxa differ in the color of the abdominal terga two and three, being ferruginous in B. melanopygus and black in B. edwardsii. B. edwardsii occurs throughout California, while B. melanopygus extends north through Oregon, to Alaska and Canada. They are sympatric only in southern Oregon and northern California. The taxonomic status of these taxa was questioned when Owen and Plowright (1980) reared colonies from queens collected in the area of sympatry, and discovered that pile coloration was due to a single, biallelic Mendelian gene, with the red (R) allele dominant to the black (r). Here it is shown that all the taxa, whether from California, Oregon, or Alberta, have the same electrophoretic profile and cannot be reliably distinguished by wing morphometrics. This strongly supports the conclusion that B. melanopygus and B. edwardsii are conspecific and should be synonymized under the name B. melanopygus. Hence, there is a gene frequency cline running from north to south, where the red allele is completely replaced by the black allele over a distance of about 600 km. PMID:20874396

  15. How Does Pollen Chemistry Impact Development and Feeding Behaviour of Polylectic Bees?

    PubMed Central

    Rasmont, Pierre; Lognay, Georges; Wathelet, Bernard; Wattiez, Ruddy; Michez, Denis

    2014-01-01

    Larvae and imagos of bees rely exclusively on floral rewards as a food source but host-plant range can vary greatly among bee species. While oligolectic species forage on pollen from a single family of host plants, polylectic bees, such as bumblebees, collect pollen from many families of plants. These polylectic species contend with interspecific variability in essential nutrients of their host-plants but we have only a limited understanding of the way in which chemicals and chemical combinations influence bee development and feeding behaviour. In this paper, we investigated five different pollen diets (Calluna vulgaris, Cistus sp., Cytisus scoparius, Salix caprea and Sorbus aucuparia) to determine how their chemical content affected bumblebee colony development and pollen/syrup collection. Three compounds were used to characterise pollen content: polypeptides, amino acids and sterols. Several parameters were used to determine the impact of diet on micro-colonies: (i) Number and weight of larvae (total and mean weight of larvae), (ii) weight of pollen collected, (iii) pollen efficacy (total weight of larvae divided by weight of the pollen collected) and (iv) syrup collection. Our results show that pollen collection is similar regardless of chemical variation in pollen diet while syrup collection is variable. Micro-colonies fed on S. aucuparia and C. scoparius pollen produced larger larvae (i.e. better mates and winter survivors) and fed less on nectar compared to the other diets. Pollen from both of these species contains 24-methylenecholesterol and high concentrations of polypeptides/total amino acids. This pollen nutritional “theme” seems therefore to promote worker reproduction in B. terrestris micro-colonies and could be linked to high fitness for queenright colonies. As workers are able to selectively forage on pollen of high chemical quality, plants may be evolutionarily selected for their pollen content, which might attract and increase the degree of

  16. Bee Mite ID - an online resource on identification of mites associated with bees of the World

    USDA-ARS?s Scientific Manuscript database

    Parasitic mites are known to be a factor in recent declines in bee pollinator populations. In particular, Varroa destructor, an introduced parasite and disease vector, has decimated colonies of the western honey bee, one of the most important agricultural pollinators in the world. Further, global tr...

  17. Modelling food and population dynamics in honey bee colonies.

    PubMed

    Khoury, David S; Barron, Andrew B; Myerscough, Mary R

    2013-01-01

    Honey bees (Apis mellifera) are increasingly in demand as pollinators for various key agricultural food crops, but globally honey bee populations are in decline, and honey bee colony failure rates have increased. This scenario highlights a need to understand the conditions in which colonies flourish and in which colonies fail. To aid this investigation we present a compartment model of bee population dynamics to explore how food availability and bee death rates interact to determine colony growth and development. Our model uses simple differential equations to represent the transitions of eggs laid by the queen to brood, then hive bees and finally forager bees, and the process of social inhibition that regulates the rate at which hive bees begin to forage. We assume that food availability can influence both the number of brood successfully reared to adulthood and the rate at which bees transition from hive duties to foraging. The model predicts complex interactions between food availability and forager death rates in shaping colony fate. Low death rates and high food availability results in stable bee populations at equilibrium (with population size strongly determined by forager death rate) but consistently increasing food reserves. At higher death rates food stores in a colony settle at a finite equilibrium reflecting the balance of food collection and food use. When forager death rates exceed a critical threshold the colony fails but residual food remains. Our model presents a simple mathematical framework for exploring the interactions of food and forager mortality on colony fate, and provides the mathematical basis for more involved simulation models of hive performance.

  18. Bee Hotels’ as Tools for Native Pollinator Conservation: A Premature Verdict?

    PubMed Central

    MacIvor, J. Scott; Packer, Laurence

    2015-01-01

    Society is increasingly concerned with declining wild bee populations. Although most bees nest in the ground, considerable effort has centered on installing ‘bee hotels’—also known as nest boxes or trap nests—which artificially aggregate nest sites of above ground nesting bees. Campaigns to ‘save the bees’ often promote these devices despite the absence of data indicating they have a positive effect. From a survey of almost 600 bee hotels set up over a period of three years in Toronto, Canada, introduced bees nested at 32.9% of sites and represented 24.6% of more than 27,000 total bees and wasps recorded (47.1% of all bees recorded). Native bees were parasitized more than introduced bees and females of introduced bee species provisioned nests with significantly more female larva each year. Native wasps were significantly more abundant than both native and introduced bees and occupied almost 3/4 of all bee hotels each year; further, introduced wasps were the only group to significantly increase in relative abundance year over year. More research is needed to elucidate the potential pitfalls and benefits of using bee hotels in the conservation and population dynamics of wild native bees. PMID:25785609

  19. Hybrid artificial bee colony algorithm for parameter optimization of five-parameter bidirectional reflectance distribution function model.

    PubMed

    Wang, Qianqian; Zhao, Jing; Gong, Yong; Hao, Qun; Peng, Zhong

    2017-11-20

    A hybrid artificial bee colony (ABC) algorithm inspired by the best-so-far solution and bacterial chemotaxis was introduced to optimize the parameters of the five-parameter bidirectional reflectance distribution function (BRDF) model. To verify the performance of the hybrid ABC algorithm, we measured BRDF of three kinds of samples and simulated the undetermined parameters of the five-parameter BRDF model using the hybrid ABC algorithm and the genetic algorithm, respectively. The experimental results demonstrate that the hybrid ABC algorithm outperforms the genetic algorithm in convergence speed, accuracy, and time efficiency under the same conditions.

  20. Gardening and landscaping practices for nesting native bees

    USDA-ARS?s Scientific Manuscript database

    Bees have two primary needs in life: pollen and nectar to feed themselves and their offspring, and a suitable place to nest. Guidance is increasingly available about garden flowers to plant for native bees. We know far less about accommodating the nesting needs of our native bees, but there are cer...

  1. The Thinker versus a Quilting Bee: Contrasting Images.

    ERIC Educational Resources Information Center

    Thayer-Bacon, Barbara J.

    1999-01-01

    Offers the image of the quilting bee as a contrasting representation of critical thinking (or constructive thinking), comparing the two images, discussing a quilting bee representation of knowledge construction in terms of the tools used by quilters (knowers), and summarizing the transformation of critical thinking theory that a quilting bee image…

  2. Chem I Supplement: Bee Sting: The Chemistry of an Insect Venom.

    ERIC Educational Resources Information Center

    O'Connor, Rod; Peck, Larry

    1980-01-01

    Considers various aspects of bee stings including the physical mechanism of the venom apparatus in the bee, categorization of physiological responses of nonprotected individuals to bee sting, chemical composition of bee venom and the mechanisms of venom action, and areas of interest in the synthesis of bee venom. (CS)

  3. Bee Venom Phospholipase A2: Yesterday's Enemy Becomes Today's Friend.

    PubMed

    Lee, Gihyun; Bae, Hyunsu

    2016-02-22

    Bee venom therapy has been used to treat immune-related diseases such as arthritis for a long time. Recently, it has revealed that group III secretory phospholipase A2 from bee venom (bee venom group III sPLA2) has in vitro and in vivo immunomodulatory effects. A growing number of reports have demonstrated the therapeutic effects of bee venom group III sPLA2. Notably, new experimental data have shown protective immune responses of bee venom group III sPLA2 against a wide range of diseases including asthma, Parkinson's disease, and drug-induced organ inflammation. It is critical to evaluate the beneficial and adverse effects of bee venom group III sPLA2 because this enzyme is known to be the major allergen of bee venom that can cause anaphylactic shock. For many decades, efforts have been made to avoid its adverse effects. At high concentrations, exposure to bee venom group III sPLA2 can result in damage to cellular membranes and necrotic cell death. In this review, we summarized the current knowledge about the therapeutic effects of bee venom group III sPLA2 on several immunological diseases and described the detailed mechanisms of bee venom group III sPLA2 in regulating various immune responses and physiopathological changes.

  4. The sound and the fury--bees hiss when expecting danger.

    PubMed

    Wehmann, Henja-Niniane; Gustav, David; Kirkerud, Nicholas H; Galizia, C Giovanni

    2015-01-01

    Honey bees are important model systems for the investigation of learning and memory and for a better understanding of the neuronal basics of brain function. Honey bees also possess a rich repertoire of tones and sounds, from queen piping and quacking to worker hissing and buzzing. In this study, we tested whether the worker bees' sounds can be used as a measure of learning. We therefore conditioned honey bees aversively to odours in a walking arena and recorded both their sound production and their movement. Bees were presented with two odours, one of which was paired with an electric shock. Initially, the bees did not produce any sound upon odour presentation, but responded to the electric shock with a strong hissing response. After learning, many bees hissed at the presentation of the learned odour, while fewer bees hissed upon presentation of another odour. We also found that hissing and movement away from the conditioned odour are independent behaviours that can co-occur but do not necessarily do so. Our data suggest that hissing can be used as a readout for learning after olfactory conditioning, but that there are large individual differences between bees concerning their hissing reaction. The basis for this variability and the possible ecological relevance of the bees' hissing remain to be investigated.

  5. The Architecture of the Pollen Hoarding Syndrome in Honey Bees: Implications for Understanding Social Evolution, Behavioral Syndromes, and Selective Breeding

    PubMed Central

    Rueppell, Olav

    2014-01-01

    Social evolution has influenced every aspect of contemporary honey bee biology, but the details are difficult to reconstruct. The reproductive ground plan hypothesis of social evolution proposes that central regulators of the gonotropic cycle of solitary insects have been coopted to coordinate social complexity in honey bees, such as the division of labor among workers. The predicted trait associations between reproductive physiology and social behavior have been identified in the context of the pollen hoarding syndrome, a larger suite of interrelated traits. The genetic architecture of this syndrome is characterized by a partially overlapping genetic architecture with several consistent, pleiotropic QTL. Despite these central QTL and an integrated hormonal regulation, separate aspects of the pollen hoarding syndrome may evolve independently due to peripheral QTL and additionally segregating genetic variance. The characterization of the pollen hoarding syndrome has also demonstrated that this syndrome involves many non-behavioral traits, which may be the case for numerous “behavioral” syndromes. Furthermore, the genetic architecture of the pollen hoarding syndrome has implications for breeding programs for improving honey health and other desirable traits: If these traits are comparable to the pollen hoarding syndrome, consistent pleiotropic QTL will enable marker assisted selection, while sufficient additional genetic variation may permit the dissociation of trade-offs for efficient multiple trait selection. PMID:25506100

  6. Host-Parasite Interactions and Purifying Selection in a Microsporidian Parasite of Honey Bees

    PubMed Central

    Huang, Qiang; Chen, Yan Ping; Wang, Rui Wu; Cheng, Shang; Evans, Jay D.

    2016-01-01

    To clarify the mechanisms of Nosema ceranae parasitism, we deep-sequenced both honey bee host and parasite mRNAs throughout a complete 6-day infection cycle. By time-series analysis, 1122 parasite genes were significantly differently expressed during the reproduction cycle, clustering into 4 expression patterns. We found reactive mitochondrial oxygen species modulator 1 of the host to be significantly down regulated during the entire infection period. Our data support the hypothesis that apoptosis of honey bee cells was suppressed during infection. We further analyzed genome-wide genetic diversity of this parasite by comparing samples collected from the same site in 2007 and 2013. The number of SNP positions per gene and the proportion of non-synonymous substitutions per gene were significantly reduced over this time period, suggesting purifying selection on the parasite genome and supporting the hypothesis that a subset of N. ceranae strains might be dominating infection. PMID:26840596

  7. Host-Parasite Interactions and Purifying Selection in a Microsporidian Parasite of Honey Bees.

    PubMed

    Huang, Qiang; Chen, Yan Ping; Wang, Rui Wu; Cheng, Shang; Evans, Jay D

    2016-01-01

    To clarify the mechanisms of Nosema ceranae parasitism, we deep-sequenced both honey bee host and parasite mRNAs throughout a complete 6-day infection cycle. By time-series analysis, 1122 parasite genes were significantly differently expressed during the reproduction cycle, clustering into 4 expression patterns. We found reactive mitochondrial oxygen species modulator 1 of the host to be significantly down regulated during the entire infection period. Our data support the hypothesis that apoptosis of honey bee cells was suppressed during infection. We further analyzed genome-wide genetic diversity of this parasite by comparing samples collected from the same site in 2007 and 2013. The number of SNP positions per gene and the proportion of non-synonymous substitutions per gene were significantly reduced over this time period, suggesting purifying selection on the parasite genome and supporting the hypothesis that a subset of N. ceranae strains might be dominating infection.

  8. Propolis Counteracts Some Threats to Honey Bee Health.

    PubMed

    Simone-Finstrom, Michael; Borba, Renata S; Wilson, Michael; Spivak, Marla

    2017-04-29

    Honey bees ( Apis mellifera ) are constantly dealing with threats from pathogens, pests, pesticides and poor nutrition. It is critically important to understand how honey bees' natural immune responses (individual immunity) and collective behavioral defenses (social immunity) can improve bee health and productivity. One form of social immunity in honey bee colonies is the collection of antimicrobial plant resins and their use in the nest architecture as propolis. We review research on the constitutive benefits of propolis on the honey bee immune system, and its known therapeutic, colony-level effects against the pathogens Paenibacillus larvae and Ascosphaera apis . We also review the limited research on the effects of propolis against other pathogens, parasites and pests ( Nosema , viruses, Varroa destructor , and hive beetles) and how propolis may enhance bee products such as royal jelly and honey. Although propolis may be a source of pesticide contamination, it also has the potential to be a detoxifying agent or primer of detoxification pathways, as well as increasing bee longevity via antioxidant-related pathways. Throughout this paper, we discuss opportunities for future research goals and present ways in which the beekeeping community can promote propolis use in standard colonies, as one way to improve and maintain colony health and resiliency.

  9. Absence of Leishmaniinae and Nosematidae in stingless bees

    PubMed Central

    Nunes-Silva, Patrícia; Piot, Niels; Meeus, Ivan; Blochtein, Betina; Smagghe, Guy

    2016-01-01

    Bee pollination is an indispensable component of global food production and plays a crucial role in sustainable agriculture. The worldwide decline of bee populations, including wild pollinators, poses a threat to this system. However, most studies to date are situated in temperate regions where Apini and Bombini are very abundant pollinators. Tropical and subtropical regions where stingless bees (Apidae: Meliponini) are generally very common, are often overlooked. These bees also face pressure due to deforestation and agricultural intensification as well as the growing use and spread of exotic pollinators as Apis mellifera and Bombus species. The loss or decline of this important bee tribe would have a large impact on their provided ecosystem services, in both wild and agricultural landscapes. The importance of pollinator diseases, which can contribute to decline, has not been investigated so far in this bee tribe. Here we report on the first large pathogen screening of Meliponini species in southern Brazil. Remarkably we observed that there was an absence of Leishmaniinae and Nosematidae, and a very low occurrence of Apicystis bombi. Our data on disease prevalence in both understudied areas and species, can greatly improve our knowledge on the distribution of pathogens among bee species. PMID:27586080

  10. Creating and Evaluating Artificial Domiciles for Bumble Bees

    ERIC Educational Resources Information Center

    Golick, Douglas A.; Ellis, Marion D.; Beecham, Brady

    2006-01-01

    Bumble bees are valuable pollinators of native and cultivated flora. Despite our knowledge of bumble bee nest site selection, most efforts to attract bumble bees to artificial domiciles have been met with limited success. Creating and evaluating artificial domiciles provides students an opportunity to investigate a real problem. In this lesson,…

  11. Disentangling urban habitat and matrix effects on wild bee species.

    PubMed

    Fischer, Leonie K; Eichfeld, Julia; Kowarik, Ingo; Buchholz, Sascha

    2016-01-01

    In face of a dramatic decline of wild bee species in many rural landscapes, potential conservation functions of urban areas gain importance. Yet effects of urbanization on pollinators, and in particular on wild bees, remain ambiguous and not comprehensively understood. This is especially true for amenity grassland and extensively managed wastelands within large-scale residential housing areas. Using Berlin as a study region, we aimed to investigate (a) if these greenspaces are accepted by wild bee assemblages as foraging habitats; (b) how assemblage structure of bees and individual bee species are affected by different habitat (e.g., management, flower density) and urban matrix variables (e.g., isolation, urbanization); and (c) to what extent grassland restoration can promote bees in urban environments. In summer 2012, we collected 62 bee species belonging to more than 20% of the taxa known for Berlin. Urbanization significantly affected species composition of bees; 18 species were affiliated to different levels of urbanization. Most bee species were not affected by any of the environmental variables tested, and urbanization had a negative effect only for one bee species. Further, we determined that restoration of diverse grasslands positively affected bee species richnesss in urban environments. We conclude that differently structured and managed greenspaces in large-scale housing areas can provide additional foraging habitats and refuges for pollinators. This supports approaches towards a biodiversity friendly management within urban regions and may be of particular importance given that anthropogenic pressure is increasing in many rural landscapes.

  12. Video Tracking Protocol to Screen Deterrent Chemistries for Honey Bees.

    PubMed

    Larson, Nicholas R; Anderson, Troy D

    2017-06-12

    The European honey bee, Apis mellifera L., is an economically and agriculturally important pollinator that generates billions of dollars annually. Honey bee colony numbers have been declining in the United States and many European countries since 1947. A number of factors play a role in this decline, including the unintentional exposure of honey bees to pesticides. The development of new methods and regulations are warranted to reduce pesticide exposures to these pollinators. One approach is the use of repellent chemistries that deter honey bees from a recently pesticide-treated crop. Here, we describe a protocol to discern the deterrence of honey bees exposed to select repellent chemistries. Honey bee foragers are collected and starved overnight in an incubator 15 h prior to testing. Individual honey bees are placed into Petri dishes that have either a sugar-agarose cube (control treatment) or sugar-agarose-compound cube (repellent treatment) placed into the middle of the dish. The Petri dish serves as the arena that is placed under a camera in a light box to record the honey bee locomotor activities using video tracking software. A total of 8 control and 8 repellent treatments were analyzed for a 10 min period with each treatment was duplicated with new honey bees. Here, we demonstrate that honey bees are deterred from the sugar-agarose cubes with a compound treatment whereas honey bees are attracted to the sugar-agarose cubes without an added compound.

  13. Floral abundance, richness, and spatial distribution drive urban garden bee communities.

    PubMed

    Plascencia, M; Philpott, S M

    2017-10-01

    In urban landscapes, gardens provide refuges for bee diversity, but conservation potential may depend on local and landscape features. Foraging and population persistence of bee species, as well as overall pollinator community structure, may be supported by the abundance, richness, and spatial distribution of floral resources. Floral resources strongly differ in urban gardens. Using hand netting and pan traps to survey bees, we examined whether abundance, richness, and spatial distribution of floral resources, as well as ground cover and garden landscape surroundings influence bee abundance, species richness, and diversity on the central coast of California. Differences in floral abundance and spatial distribution, as well as urban cover in the landscape, predicted different bee community variables. Abundance of all bees and of honeybees (Apis mellifera) was lower in sites with more urban land cover surrounding the gardens. Honeybee abundance was higher in sites with patchy floral resources, whereas bee species richness and bee diversity was higher in sites with more clustered floral resources. Surprisingly, bee species richness and bee diversity was lower in sites with very high floral abundance, possibly due to interactions with honeybees. Other studies have documented the importance of floral abundance and landscape surroundings for bees in urban gardens, but this study is the first to document that the spatial arrangement of flowers strongly predicts bee abundance and richness. Based on these findings, it is likely that garden managers may promote bee conservation by managing for floral connectivity and abundance within these ubiquitous urban habitats.

  14. Management of Corneal Bee Sting Injuries.

    PubMed

    Rai, Ruju R; Gonzalez-Gonzalez, Luis A; Papakostas, Thanos D; Siracuse-Lee, Donna; Dunphy, Robert; Fanciullo, Lisa; Cakiner-Egilmez, Tulay; Daly, Mary K

    2017-01-01

    To review the management of keratitis after corneal bee stings and to report a case of deep stromal corneal infiltrate secondary to a retained bee stinger managed conservatively in a patient who presented three days after unsanitary manipulation of the stinger apparatus. Case report and review of literature. A 57-year-old male beekeeper was evaluated for pain, blurry vision, and photosensitivity after a corneal bee sting. Of note, the venom sac had been removed with dirty tweezers three days prior to his visit. On exam, a focal infiltrate with diffuse edema was seen surrounding a retained bee stinger in the peripheral cornea. Trace cells in the anterior chamber were also noted. Based on a high suspicion for infectious keratitis, a conservative treatment strategy was elected. Administration of broad-spectrum topical antibiotics with concomitant abstention of corticosteroids led to rapid resolution of the symptoms. Over 16 months of follow-up, the stinger has remained in situ without migration and the patient has maintained 20/20 visual acuity without complications. There is debate on the preferred method for the management of corneal injury secondary to bee stings, especially when it is associated with a retained stinger. We herein present our findings in our appraisal of reported cases. In the aftermath of an ocular bee sting, close surveillance for inflammation and infection is essential. Individual manifestations of these injuries vary in timing, type, and severity; therefore, the accessibility of the stinger and the evolving clinical picture should guide therapeutic decisions.

  15. Safety with Wasps and Bees.

    ERIC Educational Resources Information Center

    Hackett, Erla

    This guide is designed to provide elementary school teachers with safe learning activities concerning bees and wasps. The following topics are included: (1) the importance of a positive teacher attitude towards bees and wasps; (2) special problems posed by paper wasps; (3) what to do when a child is bothered by a wasp; (4) what to do if a wasp…

  16. Recent Honey Bee Colony Declines

    DTIC Science & Technology

    2007-03-26

    neonicotinoids, which contain the active ingredient imidacloprid , and similar other chemicals, such as clothianidin and thiamethoxam. Honey bees are...navigational and foraging abilities of honey bees.23 Concerns about imidacloprid , as CRS-9 24 Northwest Coalition for Alternatives to Pesticides... Imidacloprid , Fact Sheet,” Journal of Pesticide Reform, Spring 2001, at [http://www.moraybeekeepers.co.uk/imiacloprid]; Apiculteurs de France, “Composite

  17. Swimming of the Honey Bees

    NASA Astrophysics Data System (ADS)

    Roh, Chris; Gharib, Morteza

    2016-11-01

    When the weather gets hot, nursing honey bees nudge foragers to collect water for thermoregulation of their hive. While on their mission to collect water, foragers sometimes get trapped on the water surface, forced to interact with a different fluid environment. In this study, we present the survival strategy of the honey bees at the air-water interface. A high-speed videography and shadowgraph were used to record the honey bees swimming. A unique thrust mechanism through rapid vibration of their wings at 60 to 150 Hz was observed. This material is based upon work supported by the National Science Foundation under Grant No. CBET-1511414; additional support by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1144469.

  18. Reception and learning of electric fields in bees.

    PubMed

    Greggers, Uwe; Koch, Gesche; Schmidt, Viola; Dürr, Aron; Floriou-Servou, Amalia; Piepenbrock, David; Göpfert, Martin C; Menzel, Randolf

    2013-05-22

    Honeybees, like other insects, accumulate electric charge in flight, and when their body parts are moved or rubbed together. We report that bees emit constant and modulated electric fields when flying, landing, walking and during the waggle dance. The electric fields emitted by dancing bees consist of low- and high-frequency components. Both components induce passive antennal movements in stationary bees according to Coulomb's law. Bees learn both the constant and the modulated electric field components in the context of appetitive proboscis extension response conditioning. Using this paradigm, we identify mechanoreceptors in both joints of the antennae as sensors. Other mechanoreceptors on the bee body are potentially involved but are less sensitive. Using laser vibrometry, we show that the electrically charged flagellum is moved by constant and modulated electric fields and more strongly so if sound and electric fields interact. Recordings from axons of the Johnston organ document its sensitivity to electric field stimuli. Our analyses identify electric fields emanating from the surface charge of bees as stimuli for mechanoreceptors, and as biologically relevant stimuli, which may play a role in social communication.

  19. Next generation sequencing of Apis mellifera syriaca identifies genes for Varroa resistance and beneficial bee keeping traits.

    PubMed

    Haddad, Nizar; Mahmud Batainh, Ahmed; Suleiman Migdadi, Osama; Saini, Deepti; Krishnamurthy, Venkatesh; Parameswaran, Sriram; Alhamuri, Zaid

    2016-08-01

    Apis mellifera syriaca exhibits a high degree of tolerance to pests and pathogens including varroa mites. This native honey bee subspecies of Jordan expresses behavioral adaptations to high temperature and dry seasons typical of the region. However, persistent honey bee imports of commercial breeder lines are endangering local honey bee population. This study reports the use of next-generation sequencing (NGS) technology to study the A. m. syriaca genome and to identify genetic factors possibly contributing toward mite resistance and other favorable traits. We obtained a total of 46.2 million raw reads by applying the NGS to sequence A. m. syriaca and used extensive bioinformatics approach to identify several candidate genes for Varroa mite resistance, behavioral and immune responses characteristic for these bees. As a part of characterizing the functional regulation of molecular genetic pathway, we have mapped the pathway genes potentially involved using information from Drosophila melanogaster and present possible functional changes implicated in responses to Varroa destructor mite infestation toward this. We performed in-depth functional annotation methods to identify ∼600 candidates that are relevant, genes involved in pathways such as microbial recognition and phagocytosis, peptidoglycan recognition protein family, Gram negative binding protein family, phagocytosis receptors, serpins, Toll signaling pathway, Imd pathway, Tnf, JAK-STAT and MAPK pathway, heamatopioesis and cellular response pathways, antiviral, RNAi pathway, stress factors, etc. were selected. Finally, we have cataloged function-specific polymorphisms between A. mellifera and A. m. syriaca that could give better understanding of varroa mite resistance mechanisms and assist in breeding. We have identified immune related embryonic development (Cactus, Relish, dorsal, Ank2, baz), Varroa hygiene (NorpA2, Zasp, LanA, gasp, impl3) and Varroa resistance (Pug, pcmt, elk, elf3-s10, Dscam2, Dhc64C, gro

  20. Physiology and biochemistry of honey bees

    USDA-ARS?s Scientific Manuscript database

    Despite their tremendous economic importance, honey bees are not a typical model system for studying general questions of insect physiology. This is primarily due to the fact that honey bees live in complex social settings which impact their physiological and biochemical characteristics. Not surpris...

  1. Meeting wild bees' needs on rangelands

    USDA-ARS?s Scientific Manuscript database

    Some arid rangeland regions, notably those with warm dry climates of the temperate zones, host great diversities of native bees, primarily non-social species among which are many floral specialists. Rangeland bee faunas are threatened indirectly by invasive exotic weeds wherever these displace nat...

  2. Development of a species-diagnostic marker and its application for population genetics studies of the stingless bee Trigona collina in Thailand.

    PubMed

    Theeraapisakkun, M; Klinbunga, S; Sittipraneed, S

    2010-05-18

    A molecular maker for authenticating species origin of the stingless bee (Trigona collina) was developed. Initially, amplified fragment length polymorphism analysis was made of 11 stingless bee species using 64 primer combinations. A 316-bp band found only in T. collina was cloned and sequenced. A primer pair (CUTc1-F/R) was designed and tested for species-specificity in 15 stingless bee species (239 nests). The expected 259-bp fragment was consistently amplified in all T. collina individuals (134/134 nests, 100%). Cross-species amplification was observed in T. pagdeni (43/51 nests; 84.3%), but not in other species. SSCP analysis of CUTc1 unambiguously differentiated T. collina from T. pagdeni. CUTc1 generated three genotypes in Thai T. collina (134 nests). An AA (259/259 bp) genotype was found in all stingless bees from the north (21 nests) and northeast (32 nests), and 23/28 nests from the Central region, whereas a BB (253/253 bp) genotype was observed in most samples from peninsular Thailand (42/53 nests). Heterozygotes exhibiting the AB (253/259 bp) genotype were observed in 5 of 28 nests from Prachuap Khiri Khan located slightly above the Kra ecotone and 11 of 53 nests originated further south of the Kra ecotone. Genotype distribution patterns of CUTc1 clearly indicated intraspecific population differentiation of Thai T. collina.

  3. Transcriptional responses in honey bee larvae infected with chalkbrood fungus

    USDA-ARS?s Scientific Manuscript database

    Diseases and other stress factors working synergistically weaken honey bee health and may play a major role in the losses of bee populations in recent years. Among a large number of bee diseases, chalkbrood has been on the rise. We present here the experimental identification of honey bee genes that...

  4. Honey Bee Infecting Lake Sinai Viruses.

    PubMed

    Daughenbaugh, Katie F; Martin, Madison; Brutscher, Laura M; Cavigli, Ian; Garcia, Emma; Lavin, Matt; Flenniken, Michelle L

    2015-06-23

    Honey bees are critical pollinators of important agricultural crops. Recently, high annual losses of honey bee colonies have prompted further investigation of honey bee infecting viruses. To better characterize the recently discovered and very prevalent Lake Sinai virus (LSV) group, we sequenced currently circulating LSVs, performed phylogenetic analysis, and obtained images of LSV2. Sequence analysis resulted in extension of the LSV1 and LSV2 genomes, the first detection of LSV4 in the US, and the discovery of LSV6 and LSV7. We detected LSV1 and LSV2 in the Varroa destructor mite, and determined that a large proportion of LSV2 is found in the honey bee gut, suggesting that vector-mediated, food-associated, and/or fecal-oral routes may be important for LSV dissemination. Pathogen-specific quantitative PCR data, obtained from samples collected during a small-scale monitoring project, revealed that LSV2, LSV1, Black queen cell virus (BQCV), and Nosema ceranae were more abundant in weak colonies than strong colonies within this sample cohort. Together, these results enhance our current understanding of LSVs and illustrate the importance of future studies aimed at investigating the role of LSVs and other pathogens on honey bee health at both the individual and colony levels.

  5. Honey Bee Infecting Lake Sinai Viruses

    PubMed Central

    Daughenbaugh, Katie F.; Martin, Madison; Brutscher, Laura M.; Cavigli, Ian; Garcia, Emma; Lavin, Matt; Flenniken, Michelle L.

    2015-01-01

    Honey bees are critical pollinators of important agricultural crops. Recently, high annual losses of honey bee colonies have prompted further investigation of honey bee infecting viruses. To better characterize the recently discovered and very prevalent Lake Sinai virus (LSV) group, we sequenced currently circulating LSVs, performed phylogenetic analysis, and obtained images of LSV2. Sequence analysis resulted in extension of the LSV1 and LSV2 genomes, the first detection of LSV4 in the US, and the discovery of LSV6 and LSV7. We detected LSV1 and LSV2 in the Varroa destructor mite, and determined that a large proportion of LSV2 is found in the honey bee gut, suggesting that vector-mediated, food-associated, and/or fecal-oral routes may be important for LSV dissemination. Pathogen-specific quantitative PCR data, obtained from samples collected during a small-scale monitoring project, revealed that LSV2, LSV1, Black queen cell virus (BQCV), and Nosema ceranae were more abundant in weak colonies than strong colonies within this sample cohort. Together, these results enhance our current understanding of LSVs and illustrate the importance of future studies aimed at investigating the role of LSVs and other pathogens on honey bee health at both the individual and colony levels. PMID:26110586

  6. Social apoptosis in honey bee superorganisms

    PubMed Central

    Page, Paul; Lin, Zheguang; Buawangpong, Ninat; Zheng, Huoqing; Hu, Fuliang; Neumann, Peter; Chantawannakul, Panuwan; Dietemann, Vincent

    2016-01-01

    Eusocial insect colonies form superorganisms, in which nestmates cooperate and use social immunity to combat parasites. However, social immunity may fail in case of emerging diseases. This is the case for the ectoparasitic mite Varroa destructor, which switched hosts from the Eastern honeybee, Apis cerana, to the Western honey bee, Apis mellifera, and currently is the greatest threat to A. mellifera apiculture globally. Here, we show that immature workers of the mite’s original host, A. cerana, are more susceptible to V. destructor infestations than those of its new host, thereby enabling more efficient social immunity and contributing to colony survival. This counterintuitive result shows that susceptible individuals can foster superorganism survival, offering empirical support to theoretical arguments about the adaptive value of worker suicide in social insects. Altruistic suicide of immature bees constitutes a social analogue of apoptosis, as it prevents the spread of infections by sacrificing parts of the whole organism, and unveils a novel form of transgenerational social immunity in honey bees. Taking into account the key role of susceptible immature bees in social immunity will improve breeding efforts to mitigate the unsustainably high colony losses of Western honey bees due to V. destructor infestations worldwide. PMID:27264643

  7. Crop domestication facilitated rapid geographical expansion of a specialist pollinator, the squash bee Peponapis pruinosa

    PubMed Central

    Cane, James H.; Minckley, Robert L.; Danforth, Bryan N.

    2016-01-01

    Squash was first domesticated in Mexico and is now found throughout North America (NA) along with Peponapis pruinosa, a pollen specialist bee species of the squash genus Cucurbita. The origin and spread of squash cultivation is well-studied archaeologically and phylogenetically; however, no study has documented how cultivation of this or any other crop has influenced species in mutualistic interactions. We used molecular markers to reconstruct the demographic range expansion and colonization routes of P. pruinosa from its native range into temperate NA. Populations east of the Rocky Mountains expanded from the wild host plant's range in Mexico and were established by a series of founder events. Eastern North America was most likely colonized from squash bee populations in the present-day continental Midwest USA and not from routes that followed the Gulf and Atlantic coasts from Mexico. Populations of P. pruinosa west of the Rockies spread north from the warm deserts much more recently, showing two genetically differentiated populations with no admixture: one in California and the other one in eastern Great Basin. These bees have repeatedly endured severe bottlenecks as they colonized NA, following human spread of their Cucurbita pollen hosts during the Holocene. PMID:27335417

  8. Summertime blues: August foraging leaves honey bees empty-handed.

    PubMed

    Couvillon, Margaret J; Fensome, Katherine A; Quah, Shaun Kl; Schürch, Roger

    2014-01-01

    A successful honey bee forager tells her nestmates the location of good nectar and pollen with the waggle dance, a symbolic language that communicates a distance and direction. Because bees are adept at scouting out profitable forage and are very sensitive to energetic reward, we can use the distance that bees communicate via waggle dances as a proxy for forage availability, where the further the bees fly, the less forage can be found locally. Previously we demonstrated that bees fly furthest in the summer compared with spring or autumn to bring back forage that is not necessarily of better quality. Here we show that August is also the month when significantly more foragers return with empty crops (P = 7.63e-06). This provides additional support that summer may represent a seasonal foraging challenge for honey bees.

  9. Validation of genetic markers associated with chalkbrood resistance

    USDA-ARS?s Scientific Manuscript database

    Chalkbrood is one of the major fungal diseases of honey bee brood. Systemic mycoses caused by the fungus, Ascosphaera apis, may significantly reduce brood population, and consequently, colony strength and productivity. Developing genetic marker(s) associated with the enhanced brood survival will be ...

  10. Nutritional status influences socially regulated foraging ontogeny in honey bees.

    PubMed

    Toth, Amy L; Kantarovich, Sara; Meisel, Adam F; Robinson, Gene E

    2005-12-01

    In many social insects, including honey bees, worker energy reserve levels are correlated with task performance in the colony. Honey bee nest workers have abundant stored lipid and protein while foragers are depleted of these reserves; this depletion precedes the shift from nest work to foraging. The first objective of this study was to test the hypothesis that lipid depletion has a causal effect on the age at onset of foraging in honey bees (Apis mellifera L.). We found that bees treated with a fatty acid synthesis inhibitor (TOFA) were more likely to forage precociously. The second objective of this study was to determine whether there is a relationship between social interactions, nutritional state and behavioral maturation. Since older bees are known to inhibit the development of young bees into foragers, we asked whether this effect is mediated nutritionally via the passage of food from old to young bees. We found that bees reared in social isolation have low lipid stores, but social inhibition occurs in colonies in the field, whether young bees are starved or fed. These results indicate that although social interactions affect the nutritional status of young bees, social and nutritional factors act independently to influence age at onset of foraging. Our findings suggest that mechanisms linking internal nutritional physiology to foraging in solitary insects have been co-opted to regulate altruistic foraging in a social context.

  11. Support for the reproductive ground plan hypothesis of social evolution and major QTL for ovary traits of Africanized worker honey bees (Apis mellifera L.)

    PubMed Central

    2011-01-01

    Background The reproductive ground plan hypothesis of social evolution suggests that reproductive controls of a solitary ancestor have been co-opted during social evolution, facilitating the division of labor among social insect workers. Despite substantial empirical support, the generality of this hypothesis is not universally accepted. Thus, we investigated the prediction of particular genes with pleiotropic effects on ovarian traits and social behavior in worker honey bees as a stringent test of the reproductive ground plan hypothesis. We complemented these tests with a comprehensive genome scan for additional quantitative trait loci (QTL) to gain a better understanding of the genetic architecture of the ovary size of honey bee workers, a morphological trait that is significant for understanding social insect caste evolution and general insect biology. Results Back-crossing hybrid European x Africanized honey bee queens to the Africanized parent colony generated two study populations with extraordinarily large worker ovaries. Despite the transgressive ovary phenotypes, several previously mapped QTL for social foraging behavior demonstrated ovary size effects, confirming the prediction of pleiotropic genetic effects on reproductive traits and social behavior. One major QTL for ovary size was detected in each backcross, along with several smaller effects and two QTL for ovary asymmetry. One of the main ovary size QTL coincided with a major QTL for ovary activation, explaining 3/4 of the phenotypic variance, although no simple positive correlation between ovary size and activation was observed. Conclusions Our results provide strong support for the reproductive ground plan hypothesis of evolution in study populations that are independent of the genetic stocks that originally led to the formulation of this hypothesis. As predicted, worker ovary size is genetically linked to multiple correlated traits of the complex division of labor in worker honey bees, known as

  12. A review of ecosystem service benefits from wild bees across social contexts.

    PubMed

    Matias, Denise Margaret S; Leventon, Julia; Rau, Anna-Lena; Borgemeister, Christian; von Wehrden, Henrik

    2017-05-01

    In order to understand the role of wild bees in both social and ecological systems, we conducted a quantitative and qualitative review of publications dealing with wild bees and the benefits they provide in social contexts. We classified publications according to several attributes such as services and benefits derived from wild bees, types of bee-human interactions, recipients of direct benefits, social contexts where wild bees are found, and sources of changes to the bee-human system. We found that most of the services and benefits from wild bees are related to food, medicine, and pollination. We also found that wild bees directly provide benefits to communities to a greater extent than individuals. In the social contexts where they are found, wild bees occupy a central role. Several drivers of change affect bee-human systems, ranging from environmental to political drivers. These are the areas where we recommend making interventions for conserving the bee-human system.

  13. Disentangling urban habitat and matrix effects on wild bee species

    PubMed Central

    2016-01-01

    In face of a dramatic decline of wild bee species in many rural landscapes, potential conservation functions of urban areas gain importance. Yet effects of urbanization on pollinators, and in particular on wild bees, remain ambiguous and not comprehensively understood. This is especially true for amenity grassland and extensively managed wastelands within large-scale residential housing areas. Using Berlin as a study region, we aimed to investigate (a) if these greenspaces are accepted by wild bee assemblages as foraging habitats; (b) how assemblage structure of bees and individual bee species are affected by different habitat (e.g., management, flower density) and urban matrix variables (e.g., isolation, urbanization); and (c) to what extent grassland restoration can promote bees in urban environments. In summer 2012, we collected 62 bee species belonging to more than 20% of the taxa known for Berlin. Urbanization significantly affected species composition of bees; 18 species were affiliated to different levels of urbanization. Most bee species were not affected by any of the environmental variables tested, and urbanization had a negative effect only for one bee species. Further, we determined that restoration of diverse grasslands positively affected bee species richnesss in urban environments. We conclude that differently structured and managed greenspaces in large-scale housing areas can provide additional foraging habitats and refuges for pollinators. This supports approaches towards a biodiversity friendly management within urban regions and may be of particular importance given that anthropogenic pressure is increasing in many rural landscapes. PMID:27917318

  14. Metatranscriptomic analyses of honey bee colonies

    USDA-ARS?s Scientific Manuscript database

    Honey bees face numerous biotic threats from viruses to bacteria, fungi, protists, and mites. Here we describe a thorough analysis of microbes harbored by worker honey bees collected from field colonies in geographically distinct regions of Turkey. Turkey is one of the World’s most important centers...

  15. Entomology: A Bee Farming a Fungus.

    PubMed

    Oldroyd, Benjamin P; Aanen, Duur K

    2015-11-16

    Farming is done not only by humans, but also by some ant, beetle and termite species. With the discovery of a stingless bee farming a fungus that provides benefits to its larvae, bees can be added to this list. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Octopamine influences honey bee foraging preference.

    PubMed

    Giray, Tugrul; Galindo-Cardona, Alberto; Oskay, Devrim

    2007-07-01

    Colony condition and differences in individual preferences influence forage type collected by bees. Physiological bases for the changing preferences of individual foragers are just beginning to be examined. Recently, for honey bees octopamine is shown to influence age at onset of foraging and probability of dance for rewards. However, octopamine has not been causally linked with foraging preference in the field. We tested the hypothesis that changes in octopamine may alter forage type (preference hypothesis). We treated identified foragers orally with octopamine or its immediate precursor, tyramine, or sucrose syrup (control). Octopamine-treated foragers switched type of material collected; control bees did not. Tyramine group results were not different from the control group. In addition, sugar concentrations of nectar collected by foragers after octopamine treatment were lower than before treatment, indicating change in preference. In contrast, before and after nectar concentrations for bees in the control group were similar. These results, taken together, support the preference hypothesis.

  17. Genome-wide analysis of signatures of selection in populations of African honey bees (Apis mellifera) using new web-based tools.

    PubMed

    Fuller, Zachary L; Niño, Elina L; Patch, Harland M; Bedoya-Reina, Oscar C; Baumgarten, Tracey; Muli, Elliud; Mumoki, Fiona; Ratan, Aakrosh; McGraw, John; Frazier, Maryann; Masiga, Daniel; Schuster, Stephen; Grozinger, Christina M; Miller, Webb

    2015-07-10

    With the development of inexpensive, high-throughput sequencing technologies, it has become feasible to examine questions related to population genetics and molecular evolution of non-model species in their ecological contexts on a genome-wide scale. Here, we employed a newly developed suite of integrated, web-based programs to examine population dynamics and signatures of selection across the genome using several well-established tests, including F ST, pN/pS, and McDonald-Kreitman. We applied these techniques to study populations of honey bees (Apis mellifera) in East Africa. In Kenya, there are several described A. mellifera subspecies, which are thought to be localized to distinct ecological regions. We performed whole genome sequencing of 11 worker honey bees from apiaries distributed throughout Kenya and identified 3.6 million putative single-nucleotide polymorphisms. The dense coverage allowed us to apply several computational procedures to study population structure and the evolutionary relationships among the populations, and to detect signs of adaptive evolution across the genome. While there is considerable gene flow among the sampled populations, there are clear distinctions between populations from the northern desert region and those from the temperate, savannah region. We identified several genes showing population genetic patterns consistent with positive selection within African bee populations, and between these populations and European A. mellifera or Asian Apis florea. These results lay the groundwork for future studies of adaptive ecological evolution in honey bees, and demonstrate the use of new, freely available web-based tools and workflows ( http://usegalaxy.org/r/kenyanbee ) that can be applied to any model system with genomic information.

  18. The Potential of Bee-Generated Carbon Dioxide for Control of Varroa Mite (Mesostigmata: Varroidae) in Indoor Overwintering Honey bee (Hymenoptera: Apidae) Colonies.

    PubMed

    Bahreini, Rassol; Currie, Robert W

    2015-10-01

    The objective of this study was to manipulate ventilation rate to characterize interactions between stocks of honey bees (Apis mellifera L.) and ventilation setting on varroa mite (Varroa destructor Anderson and Trueman) mortality in honey bee colonies kept indoors over winter. The first experiment used colonies established from stock selected locally for wintering performance under exposure to varroa (n = 6) and unselected bees (n = 6) to assess mite and bee mortality and levels of carbon dioxide (CO2) and oxygen (O2) in the bee cluster when kept under a simulated winter condition at 5°C. The second experiment, used colonies from selected bees (n = 10) and unselected bees (n = 12) that were exposed to either standard ventilation (14.4 liter/min per hive) or restricted ventilation (0.24 liter/min per hive, in a Plexiglas ventilation chamber) during a 16-d treatment period to assess the influence of restricted air flow on winter mortality rates of varroa mites and honey bees. Experiment 2 was repeated in early, mid-, and late winter. The first experiment showed that under unrestricted ventilation with CO2 concentrations averaging <2% there was no correlation between CO2 and varroa mite mortality when colonies were placed under low temperature. CO2 was negatively correlated with O2 in the bee cluster in both experiments. When ventilation was restricted, mean CO2 level (3.82 ± 0.31%, range 0.43-8.44%) increased by 200% relative to standard ventilation (1.29 ± 0.31%; range 0.09-5.26%) within the 16-d treatment period. The overall mite mortality rates and the reduction in mean abundance of varroa mite over time was greater under restricted ventilation (37 ± 4.2%) than under standard ventilation (23 ± 4.2%) but not affected by stock of bees during the treatment period. Selected bees showed overall greater mite mortality relative to unselected bees in both experiments. Restricting ventilation increased mite mortality, but did not

  19. The habitat disruption induces immune-suppression and oxidative stress in honey bees

    PubMed Central

    Morimoto, Tomomi; Kojima, Yuriko; Toki, Taku; Komeda, Yayoi; Yoshiyama, Mikio; Kimura, Kiyoshi; Nirasawa, Keijiro; Kadowaki, Tatsuhiko

    2011-01-01

    The honey bee is a major insect used for pollination of many commercial crops worldwide. Although the use of honey bees for pollination can disrupt the habitat, the effects on their physiology have never been determined. Recently, honey bee colonies have often collapsed when introduced in greenhouses for pollination in Japan. Thus, suppressing colony collapses and maintaining the number of worker bees in the colonies is essential for successful long-term pollination in greenhouses and recycling of honey bee colonies. To understand the physiological states of honey bees used for long-term pollination in greenhouses, we characterized their gene expression profiles by microarray. We found that the greenhouse environment changes the gene expression profiles and induces immune-suppression and oxidative stress in honey bees. In fact, the increase of the number of Nosema microsporidia and protein carbonyl content was observed in honey bees during pollination in greenhouses. Thus, honey bee colonies are likely to collapse during pollination in greenhouses when heavily infested with pathogens. Degradation of honey bee habitat by changing the outside environment of the colony, during pollination services for example, imposes negative impacts on honey bees. Thus, worldwide use of honey bees for crop pollination in general could be one of reasons for the decline of managed honey bee colonies. PMID:22393496

  20. Vegetation Management and Host Density Influence Bee-Parasite Interactions in Urban Gardens.

    PubMed

    Cohen, Hamutahl; Quistberg, Robyn D; Philpott, Stacy M

    2017-12-08

    Apocephalus borealis phorid flies, a parasitoid of bumble bees and yellow jacket wasps in North America, was recently reported as a novel parasitoid of the honey bee Apis mellifera Linnaeus (Hymenoptera: Apidae). Little is known about the ecology of this interaction, including phorid fecundity on bee hosts, whether phorid-bee parasitism is density dependent, and which local habitat and landscape features may correlate with changes in parasitism rates for either bumble or honey bees. We examined the impact of local and landscape drivers and host abundance on phorid parasitism of A. mellifera and the bumble bee Bombus vosnesenskii Radoszkowski (Hymenoptera: Apidae). We worked in 19 urban gardens along the North-Central Coast of California, where phorid parasitism of honey bees was first reported in 2012. We collected and incubated bees for phorid emergence, and surveyed local vegetation, ground cover, and floral characteristics as well as land cover types surrounding gardens. We found that phorid parasitism was higher on bumble bees than on honey bees, and phorids produced nearly twice as many pupae on individual bumble bee hosts than on honey bee hosts. Parasitism of both bumble and honey bees increased with abundance of honey bees in a site. Differences in landscape surroundings did not correlate with parasitism, but local factors related to bee resource provisioning (e.g., tree and shrub abundance) positively correlated with increased parasitism. This research thus helps to document and describe conditions that may have facilitated phorid fly host shift to honey bees and further elucidate how resource provisioning in urban gardens influences bee-parasite interactions. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Magnetic Sensing through the Abdomen of the Honey bee.

    PubMed

    Liang, Chao-Hung; Chuang, Cheng-Long; Jiang, Joe-Air; Yang, En-Cheng

    2016-03-23

    Honey bees have the ability to detect the Earth's magnetic field, and the suspected magnetoreceptors are the iron granules in the abdomens of the bees. To identify the sensing route of honey bee magnetoreception, we conducted a classical conditioning experiment in which the responses of the proboscis extension reflex (PER) were monitored. Honey bees were successfully trained to associate the magnetic stimulus with a sucrose reward after two days of training. When the neural connection of the ventral nerve cord (VNC) between the abdomen and the thorax was cut, the honey bees no longer associated the magnetic stimulus with the sucrose reward but still responded to an olfactory PER task. The neural responses elicited in response to the change of magnetic field were also recorded at the VNC. Our results suggest that the honey bee is a new model animal for the investigation of magnetite-based magnetoreception.

  2. The formulation makes the honey bee poison.

    PubMed

    Mullin, Christopher A; Chen, Jing; Fine, Julia D; Frazier, Maryann T; Frazier, James L

    2015-05-01

    Dr. Fumio Matsumura's legacy embraced a passion for exploring environmental impacts of agrochemicals on non-target species such as bees. Why most formulations are more toxic to bees than respective active ingredients and how pesticides interact to cause pollinator decline cannot be answered without understanding the prevailing environmental chemical background to which bees are exposed. Modern pesticide formulations and seed treatments, particularly when multiple active ingredients are blended, require proprietary adjuvants and inert ingredients to achieve high efficacy for targeted pests. Although we have found over 130 different pesticides and metabolites in beehive samples, no individual pesticide or amount correlates with recent bee declines. Recently we have shown that honey bees are sensitive to organosilicone surfactants, nonylphenol polyethoxylates and the solvent N-methyl-2-pyrrolidone (NMP), widespread co-formulants used in agrochemicals and frequent pollutants within the beehive. Effects include learning impairment for adult bees and chronic toxicity in larval feeding bioassays. Multi-billion pounds of formulation ingredients like NMP are used and released into US environments. These synthetic organic chemicals are generally recognized as safe, have no mandated tolerances, and residues remain largely unmonitored. In contrast to finding about 70% of the pesticide active ingredients searched for in our pesticide analysis of beehive samples, we have found 100% of the other formulation ingredients targeted for analysis. These 'inerts' overwhelm the chemical burden from active pesticide, drug and personal care ingredients with which they are formulated. Honey bees serve as an optimal terrestrial bioindicator to determine if 'the formulation and not just the dose makes the poison'. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Bee Species Diversity Enhances Productivity and Stability in a Perennial Crop

    PubMed Central

    Rogers, Shelley R.; Tarpy, David R.; Burrack, Hannah J.

    2014-01-01

    Wild bees provide important pollination services to agroecoystems, but the mechanisms which underlie their contribution to ecosystem functioning—and, therefore, their importance in maintaining and enhancing these services—remain unclear. We evaluated several mechanisms through which wild bees contribute to crop productivity, the stability of pollinator visitation, and the efficiency of individual pollinators in a highly bee-pollination dependent plant, highbush blueberry. We surveyed the bee community (through transect sampling and pan trapping) and measured pollination of both open- and singly-visited flowers. We found that the abundance of managed honey bees, Apis mellifera, and wild-bee richness were equally important in describing resulting open pollination. Wild-bee richness was a better predictor of pollination than wild-bee abundance. We also found evidence suggesting pollinator visitation (and subsequent pollination) are stabilized through the differential response of bee taxa to weather (i.e., response diversity). Variation in the individual visit efficiency of A. mellifera and the southeastern blueberry bee, Habropoda laboriosa, a wild specialist, was not associated with changes in the pollinator community. Our findings add to a growing literature that diverse pollinator communities provide more stable and productive ecosystem services. PMID:24817218

  4. Bee species diversity enhances productivity and stability in a perennial crop.

    PubMed

    Rogers, Shelley R; Tarpy, David R; Burrack, Hannah J

    2014-01-01

    Wild bees provide important pollination services to agroecoystems, but the mechanisms which underlie their contribution to ecosystem functioning--and, therefore, their importance in maintaining and enhancing these services-remain unclear. We evaluated several mechanisms through which wild bees contribute to crop productivity, the stability of pollinator visitation, and the efficiency of individual pollinators in a highly bee-pollination dependent plant, highbush blueberry. We surveyed the bee community (through transect sampling and pan trapping) and measured pollination of both open- and singly-visited flowers. We found that the abundance of managed honey bees, Apis mellifera, and wild-bee richness were equally important in describing resulting open pollination. Wild-bee richness was a better predictor of pollination than wild-bee abundance. We also found evidence suggesting pollinator visitation (and subsequent pollination) are stabilized through the differential response of bee taxa to weather (i.e., response diversity). Variation in the individual visit efficiency of A. mellifera and the southeastern blueberry bee, Habropoda laboriosa, a wild specialist, was not associated with changes in the pollinator community. Our findings add to a growing literature that diverse pollinator communities provide more stable and productive ecosystem services.

  5. Managing honey bees (Hymenoptera: Apidae) for greenhouse tomato pollination.

    PubMed

    Sabara, Holly A; Winston, Mark L

    2003-06-01

    Although commercially reared colonies of bumble bees (Bombus sp.) are the primary pollinator world-wide for greenhouse tomatoes (Lycopersicon esculentum Mill.) previous research indicates that honey bees (Apis mellifera L.) might be a feasible alternative or supplement to bumble bee pollination. However, management methods for honey bee greenhouse tomato pollination scarcely have been explored. We 1) tested the effect of initial amounts of brood on colony population size and flight activity in screened greenhouses during the winter, and 2) compared foraging from colonies with brood used within screened and unscreened greenhouses during the summer. Brood rearing was maintained at low levels in both brood and no-brood colonies after 21 d during the winter, and emerging honey bees from both treatments had significantly lower weights than bees from outdoor colonies. Honey bee flight activity throughout the day and over the 21 d in the greenhouse was not influenced by initial brood level. In our summer experiment, brood production in screened greenhouses neared zero after 21 d but higher levels of brood were reared in unscreened greenhouses with access to outside forage. Flower visitation measured throughout the day and over the 21 d the colonies were in the greenhouse was not influenced by screening treatment. An economic analysis indicated that managing honey bees for greenhouse tomato pollination would be financially viable for both beekeepers and growers. We conclude that honey bees can be successfully managed for greenhouse tomato pollination in both screened and unscreened greenhouses if the foraging force is maintained by replacing colonies every 3 wk.

  6. Diversity and human perceptions of bees (Hymenoptera: Apoidea) in Southeast Asian megacities.

    PubMed

    Sing, Kong-Wah; Wang, Wen-Zhi; Wan, Tao; Lee, Ping-Shin; Li, Zong-Xu; Chen, Xing; Wang, Yun-Yu; Wilson, John-James

    2016-10-01

    Urbanization requires the conversion of natural land cover to cover with human-constructed elements and is considered a major threat to biodiversity. Bee populations, globally, are under threat; however, the effect of rapid urban expansion in Southeast Asia on bee diversity has not been investigated. Given the pressing issues of bee conservation and urbanization in Southeast Asia, coupled with complex factors surrounding human-bee coexistence, we investigated bee diversity and human perceptions of bees in four megacities. We sampled bees and conducted questionnaires at three different site types in each megacity: a botanical garden, central business district, and peripheral suburban areas. Overall, the mean species richness and abundance of bees were significantly higher in peripheral suburban areas than central business districts; however, there were no significant differences in the mean species richness and abundance between botanical gardens and peripheral suburban areas or botanical gardens and central business districts. Urban residents were unlikely to have seen bees but agreed that bees have a right to exist in their natural environment. Residents who did notice and interact with bees, even though being stung, were more likely to have positive opinions towards the presence of bees in cities.

  7. Selection and breeding of honey bees for higher or lower collection of avocado nectar.

    PubMed

    Afik, Ohad; Dag, Arnon; Yeselson, Yelena; Schaffer, Arthur; Shafir, Sharoni

    2010-04-01

    Intensive activity of honey bees, Apis mellifera L., is essential for high fruit set in avocado, Persea americana Mill., orchards, but even when hives are located inside the orchard, many bees still search for alternative blooms. We tested for a possible genetic component for a preference of avocado bloom relative to competing bloom. The honey from each hive was extracted at the end of the avocado bloom and the concentration of perseitol, a carbohydrate that is unique to avocado, was analyzed as a measure for avocado foraging. During the first year, five bee strains were compared in three different sites in Israel. Significant differences were found between strains in honey perseitol concentrations, suggesting differences in their efficiency as avocado pollinators, although these differences were site dependent. At two sites, colonies with the highest and lowest perseitol concentrations were selected as parental "high" and "low" lines. Queens were raised from the selected colonies and were instrumentally inseminated by drones from other colonies of this line. During the second and third years, colonies with inseminated queens were introduced to the avocado orchards, together with the selected colonies still surviving from the previous year. Colonies of the high line had greater perseitol concentrations than those of the low line. Selected colonies that survived from the previous year performed consistently vis-à-vis perseitol concentration, in the second year of testing. Heritability value of 0.22 was estimated based on regression of offspring on midparent. The results reveal a heritable component for willingness of honey bees to collect avocado nectar.

  8. Genomic exploitation of genetic variation for crop improvement

    USDA-ARS?s Scientific Manuscript database

    Crop plants produce food, fiber, and fuel that are essential to human civilization and mainstays of economic prosperity. Our society continues to cultivate and improve the crop plants for better quality and productivity with sustainable environments. The process of crop genetic improvement has bee...

  9. High-resolution linkage analyses to identify genes that influence Varroa sensitive hygiene behavior in honey bees.

    PubMed

    Tsuruda, Jennifer M; Harris, Jeffrey W; Bourgeois, Lanie; Danka, Robert G; Hunt, Greg J

    2012-01-01

    Varroa mites (V. destructor) are a major threat to honey bees (Apis melilfera) and beekeeping worldwide and likely lead to colony decline if colonies are not treated. Most treatments involve chemical control of the mites; however, Varroa has evolved resistance to many of these miticides, leaving beekeepers with a limited number of alternatives. A non-chemical control method is highly desirable for numerous reasons including lack of chemical residues and decreased likelihood of resistance. Varroa sensitive hygiene behavior is one of two behaviors identified that are most important for controlling the growth of Varroa populations in bee hives. To identify genes influencing this trait, a study was conducted to map quantitative trait loci (QTL). Individual workers of a backcross family were observed and evaluated for their VSH behavior in a mite-infested observation hive. Bees that uncapped or removed pupae were identified. The genotypes for 1,340 informative single nucleotide polymorphisms were used to construct a high-resolution genetic map and interval mapping was used to analyze the association of the genotypes with the performance of Varroa sensitive hygiene. We identified one major QTL on chromosome 9 (LOD score = 3.21) and a suggestive QTL on chromosome 1 (LOD = 1.95). The QTL confidence interval on chromosome 9 contains the gene 'no receptor potential A' and a dopamine receptor. 'No receptor potential A' is involved in vision and olfaction in Drosophila, and dopamine signaling has been previously shown to be required for aversive olfactory learning in honey bees, which is probably necessary for identifying mites within brood cells. Further studies on these candidate genes may allow for breeding bees with this trait using marker-assisted selection.

  10. [The "language" of bees and its utilization in agriculture. 1946].

    PubMed

    von Frisch, K

    1994-04-15

    If honey-bees find a feeding place, after return they report the discovery by dancing. The species of flowers from which they are coming is indicated by means of the flower-scent adhering to their bodies, and also by the scent of nectar brought into the hive within the honey-stomach. By a long flight the scent adhering to the outer surface is diminished. But the scent within the honey-stomach is still the same. Therefore the scent of nectar (that is the specific flower-scent absorbed by nectar) is especially important if the feeding place is far away from the hive. Bees dance only in case there is plenty of food. Then the informed bees fly out and look for the flowers having the scent indicated by the dancing bees. In this way the number of visiting bees increases, and the nectar becomes scarce. Then honey collecting is still continued, but there is no more dancing in the bee-hive and the number of bees does not increase, so that there always is the correct relation between the amount of nectar and the number of collecting bees. If the feeding place is at a distance of some hundred meters there are many bees seeking for food at that distance but only a few seeking near the hive. By using an observation-hive the matter could be cleared up. Bees collecting at a feeding place nearer than 50 to 100 m make round-dances (Fig. 4, p. 400). Bees coming from a feeding place more distant make tail-wagging dances (Fig. 5, p. 400).(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Nosema ceranae in age cohorts of the western honey bee (Apis mellifera).

    PubMed

    Smart, Matthew D; Sheppard, Walter S

    2012-01-01

    Nosemaceranae intensity (mean spores per bee) and prevalence (proportion of bees infected in a sample) were analyzed in honey bees of known ages. Sealed brood combs from five colonies were removed, emerging bees were marked with paint, released back into their colonies of origin, and collected as recently emerged (0-3 days old), as house bees (8-11 days old), and as foragers (22-25 days old). Fifty bees from each of the five colonies were processed individually at each collection date for the intensity and prevalence of N. ceranae infection. Using PCR and specific primers to differentiate Nosema species, N. ceranae was found to be the only species present during the experiment. At each collection age (recent emergence, house, forager) an additional sample from the inner hive cover (background bees=BG) of each colony was collected to compare the N. ceranae results of this sampling method, commonly used for Nosema spore quantification, to the samples comprised of marked bees of known ages. No recently emerged bees exhibited infection with N. ceranae. One house bee out of the 250 individuals analyzed (prevalence=0.4%) tested positive for N. ceranae, at an infection level of 3.35×10(6) spores. Infection levels were not statistically different between the recently emerged (mean=0 spores/bee) and house bees (mean=1.34×10(4) spores/bee) (P=0.99). Foragers exhibited the highest prevalence (8.3%) and infection intensity (mean=2.38×10(6) spores/bee), with a range of 0-8.72×10(7) spores in individual bees. The average infection level across all foragers was significantly higher than that of recently emerged bees (P=0.01) and house bees (P=0.01). Finally, the prevalence of Nosema in infected bees was found to be positively correlated with the infection intensity in the sample. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. How bees distinguish colors

    PubMed Central

    Horridge, Adrian

    2015-01-01

    Behind each facet of the compound eye, bees have photoreceptors for ultraviolet, green, and blue wavelengths that are excited by sunlight reflected from the surrounding panorama. In experiments that excluded ultraviolet, bees learned to distinguish between black, gray, white, and various colors. To distinguish two targets of differing color, bees detected, learned, and later recognized the strongest preferred inputs, irrespective of which target displayed them. First preference was the position and measure of blue reflected from white or colored areas. They also learned the positions and a measure of the green receptor modulation at vertical edges that displayed the strongest green contrast. Modulation is the receptor response to contrast and was summed over the length of a contrasting vertical edge. This also gave them a measure of angular width between outer vertical edges. Third preference was position and a measure of blue modulation. When they returned for more reward, bees recognized the familiar coincidence of these inputs at that place. They cared nothing for colors, layout of patterns, or direction of contrast, even at black/white edges. The mechanism is a new kind of color vision in which a large-field tonic blue input must coincide in time with small-field phasic modulations caused by scanning vertical edges displaying green or blue contrast. This is the kind of system to expect in medium-lowly vision, as found in insects; the next steps are fresh looks at old observations and quantitative models. PMID:28539792

  13. Stingless bees (Scaptotrigona pectoralis) learn foreign trail pheromones and use them to find food.

    PubMed

    Reichle, Christian; Aguilar, Ingrid; Ayasse, Manfred; Jarau, Stefan

    2011-03-01

    Foragers of several species of stingless bees (Hymenoptera, Apidae and Meliponini) deposit pheromone marks in the vegetation to guide nestmates to new food sources. These pheromones are produced in the labial glands and are nest and species specific. Thus, an important question is how recruited foragers recognize their nestmates' pheromone in the field. We tested whether naïve workers learn a specific trail pheromone composition while being recruited by nestmates inside the hive in the species Scaptotrigona pectoralis. We installed artificial scent trails branching off from trails deposited by recruiting foragers and registered whether newly recruited bees follow these trails. The artificial trails were baited with trail pheromones of workers collected from foreign S. pectoralis colonies. When the same foreign trail pheromone was presented inside the experimental hives while recruitment took place a significant higher number of bees followed the artificial trails than in experiments without intranidal presentation. Our results demonstrate that recruits of S. pectoralis can learn the composition of specific trail pheromone bouquets inside the nest and subsequently follow this pheromone in the field. We, therefore, suggest that trail pheromone recognition in S. pectoralis is based on a flexible learning process rather than being a genetically fixed behaviour.

  14. Reception and learning of electric fields in bees

    PubMed Central

    Greggers, Uwe; Koch, Gesche; Schmidt, Viola; Dürr, Aron; Floriou-Servou, Amalia; Piepenbrock, David; Göpfert, Martin C.; Menzel, Randolf

    2013-01-01

    Honeybees, like other insects, accumulate electric charge in flight, and when their body parts are moved or rubbed together. We report that bees emit constant and modulated electric fields when flying, landing, walking and during the waggle dance. The electric fields emitted by dancing bees consist of low- and high-frequency components. Both components induce passive antennal movements in stationary bees according to Coulomb's law. Bees learn both the constant and the modulated electric field components in the context of appetitive proboscis extension response conditioning. Using this paradigm, we identify mechanoreceptors in both joints of the antennae as sensors. Other mechanoreceptors on the bee body are potentially involved but are less sensitive. Using laser vibrometry, we show that the electrically charged flagellum is moved by constant and modulated electric fields and more strongly so if sound and electric fields interact. Recordings from axons of the Johnston organ document its sensitivity to electric field stimuli. Our analyses identify electric fields emanating from the surface charge of bees as stimuli for mechanoreceptors, and as biologically relevant stimuli, which may play a role in social communication. PMID:23536603

  15. Hemolymph proteome changes during worker brood development match the biological divergences between western honey bees (Apis mellifera) and eastern honey bees (Apis cerana).

    PubMed

    Feng, Mao; Ramadan, Haitham; Han, Bin; Fang, Yu; Li, Jianke

    2014-07-05

    Hemolymph plays key roles in honey bee molecule transport, immune defense, and in monitoring the physiological condition. There is a lack of knowledge regarding how the proteome achieves these biological missions for both the western and eastern honey bees (Apis mellifera and Apis cerana). A time-resolved proteome was compared using two-dimensional electrophoresis-based proteomics to reveal the mechanistic differences by analysis of hemolymph proteome changes between the worker bees of two bee species during the larval to pupal stages. The brood body weight of Apis mellifera was significantly heavier than that of Apis cerana at each developmental stage. Significantly, different protein expression patterns and metabolic pathways were observed in 74 proteins (166 spots) that were differentially abundant between the two bee species. The function of hemolymph in energy storage, odor communication, and antioxidation is of equal importance for the western and eastern bees, indicated by the enhanced expression of different protein species. However, stronger expression of protein folding, cytoskeletal and developmental proteins, and more highly activated energy producing pathways in western bees suggests that the different bee species have developed unique strategies to match their specific physiology using hemolymph to deliver nutrients and in immune defense. Our disparate findings constitute a proof-of-concept of molecular details that the ecologically shaped different physiological conditions of different bee species match with the hemolymph proteome during the brood stage. This also provides a starting point for future research on the specific hemolymph proteins or pathways related to the differential phenotypes or physiology.

  16. Interspecific geographic distribution and variation of the pathogens Nosema bombi and Crithidia species in United States bumble bee populations.

    PubMed

    Cordes, Nils; Huang, Wei-Fone; Strange, James P; Cameron, Sydney A; Griswold, Terry L; Lozier, Jeffrey D; Solter, Leellen F

    2012-02-01

    Several bumble bee (Bombus) species in North America have undergone range reductions and rapid declines in relative abundance. Pathogens have been suggested as causal factors, however, baseline data on pathogen distributions in a large number of bumble bee species have not been available to test this hypothesis. In a nationwide survey of the US, nearly 10,000 specimens of 36 bumble bee species collected at 284 sites were evaluated for the presence and prevalence of two known Bombus pathogens, the microsporidium Nosema bombi and trypanosomes in the genus Crithidia. Prevalence of Crithidia was ≤10% for all host species examined but was recorded from 21% of surveyed sites. Crithidia was isolated from 15 of the 36 Bombus species screened, and were most commonly recovered from Bombus bifarius, Bombus bimaculatus, Bombus impatiens and Bombus mixtus. Nosema bombi was isolated from 22 of the 36 US Bombus species collected. Only one species with more than 50 sampled bees, Bombus appositus, was free of the pathogen; whereas, prevalence was highest in Bombus occidentalis and Bombus pensylvanicus, two species that are reportedly undergoing population declines in North America. A variant of a tetranucleotide repeat in the internal transcribed spacer (ITS) of the N. bombi rRNA gene, thus far not reported from European isolates, was isolated from ten US Bombus hosts, appearing in varying ratios in different host species. Given the genetic similarity of the rRNA gene of N. bombi sampled in Europe and North America to date, the presence of a unique isolate in US bumble could reveal one or more native North American strains and indicate that N. bombi is enzootic across the Holarctic Region, exhibiting some genetic isolation. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Multiyear survey targeting disease incidence in US honey bees

    USDA-ARS?s Scientific Manuscript database

    The US National Honey Bee Disease Survey sampled colony pests and diseases from 2009 to 2014. We verified the absence of Tropilaelaps spp., the Asian honey bee (Apis cerana), and slow bee paralysis virus. Endemic health threats were quantified, including Varroa destructor, Nosema spp., and eight hon...

  18. A common neonicotinoid pesticide, thiamethoxam, impairs honey bee flight ability.

    PubMed

    Tosi, Simone; Burgio, Giovanni; Nieh, James C

    2017-04-26

    Pesticides can pose environmental risks, and a common neonicotinoid pesticide, thiamethoxam, decreases homing success in honey bees. Neonicotinoids can alter bee navigation, but we present the first evidence that neonicotinoid exposure alone can impair the physical ability of bees to fly. We tested the effects of acute or chronic exposure to thiamethoxam on the flight ability of foragers in flight mills. Within 1 h of consuming a single sublethal dose (1.34 ng/bee), foragers showed excitation and significantly increased flight duration (+78%) and distance (+72%). Chronic exposure significantly decreased flight duration (-54%), distance (-56%), and average velocity (-7%) after either one or two days of continuous exposure that resulted in bees ingesting field-relevant thiamethoxam doses of 1.96-2.90 ng/bee/day. These results provide the first demonstration that acute or chronic exposure to a neonicotinoid alone can significantly alter bee flight. Such exposure may impair foraging and homing, which are vital to normal colony function and ecosystem services.

  19. Genetic variability in five populations of Partamona helleri (Hymenoptera, Apidae) from Minas Gerais State, Brazil

    PubMed Central

    2010-01-01

    Partamona is a Neotropical genus of stingless bees that comprises 33 species distributed from Mexico to southern Brazil. These bees are well-adapted to anthropic environments and build their nests in several substrates. In this study, 66 colonies of Partamona helleri from five localities in the Brazilian state of Minas Gerais (São Miguel do Anta, Teixeiras, Porto Firme, Viçosa and Rio Vermelho) were analyzed using nine microsatellite loci in order to assess their genetic variability. Low levels of observed (Ho = 0.099-0.137) and expected (H e = 0.128-0.145) heterozygosity were encountered and revealed discrete genetic differentiation among the populations (F ST = 0.025). AMOVA further showed that most of the total genetic variation (94.24%) in P. helleri was explained by the variability within local populations. PMID:21637591

  20. Consumption of bee pollen affects rat ovarian functions.

    PubMed

    Kolesarova, A; Bakova, Z; Capcarova, M; Galik, B; Juracek, M; Simko, M; Toman, R; Sirotkin, A V

    2013-12-01

    The aim of this study was to examine possible effects of bee pollen added to the feed mixture (FM) on rat ovarian functions (secretion activity and apoptosis). We evaluated the bee pollen effect on the release of insulin-like growth factor I (IGF-I) and steroid hormones (progesterone and estradiol), as well as on the expression of markers of apoptosis (Bcl-2, Bax and caspase-3) in rat ovarian fragments. Female rats (n = 15) were fed during 90 days by FM without or with rape seed bee pollen in dose either 3 kg/1000 kg FM or 5 kg/1000 kg FM. Fragments of ovaries isolated from rats of each group (totally 72 pieces) were incubated for 24 h. Hormonal secretion into the culture medium was detected by RIA. The markers of apoptosis were evaluated by Western blotting. It was observed that IGF-I release by rat ovarian fragments was significantly (p < 0.05) decreased; on the other hand, progesterone and estradiol secretion was increased after bee pollen treatment at dose 5 kg/1000 kg FM but not at 3 kg/1000 FM. Accumulation of Bcl-2 was increased by bee pollen added at 3 kg/1000 kg FM, but not at higher dose. Accumulation of Bax was increased in ovaries of rats fed by bee pollen at doses either 3 or 5 kg/1000 kg FM, whilst accumulation of caspase-3 increased after feeding with bee pollen at dose 5 kg/1000 kg FM, but not at 3 kg/1000 kg FM. Our results contribute to new insights regarding the effect of bee pollen on both secretion activity (release of growth factor IGF-I and steroid hormones progesterone and estradiol) and apoptosis (anti- and pro-apoptotic markers Bcl-2, Bax and caspase-3). Bee pollen is shown to be a potent regulator of rat ovarian functions. © 2012 Blackwell Verlag GmbH.

  1. Behavioural evidence of colour vision in free flying stingless bees.

    PubMed

    Spaethe, J; Streinzer, M; Eckert, J; May, S; Dyer, A G

    2014-06-01

    Colour vision was first demonstrated with behavioural experiments in honeybees 100 years ago. Since that time a wealth of quality physiological data has shown a highly conserved set of trichromatic colour receptors in most bee species. Despite the subsequent wealth of behavioural research on honeybees and bumblebees, there currently is a relative dearth of data on stingless bees, which are the largest tribe of the eusocial bees comprising of more than 600 species. In our first experiment we tested Trigona cf. fuscipennis, a stingless bee species from Costa Rica in a field setting using the von Frisch method and show functional colour vision. In a second experiment with these bees, we use a simultaneous colour discrimination test designed for honeybees to enable a comparative analysis of relative colour discrimination. In a third experiment, we test in laboratory conditions Tetragonula carbonaria, an Australian stingless bee species using a similar simultaneous colour discrimination test. Both stingless bee species show relatively poorer colour discrimination compared to honeybees and bumblebees; and we discuss the value of being able to use these behavioural methods to efficiently extend our current knowledge of colour vision and discrimination in different bee species.

  2. Wing shape of four new bee fossils (Hymenoptera: Anthophila) provides insights to bee evolution.

    PubMed

    Dehon, Manuel; Michez, Denis; Nel, André; Engel, Michael S; De Meulemeester, Thibaut

    2014-01-01

    Bees (Anthophila) are one of the major groups of angiosperm-pollinating insects and accordingly are widely studied in both basic and applied research, for which it is essential to have a clear understanding of their phylogeny, and evolutionary history. Direct evidence of bee evolutionary history has been hindered by a dearth of available fossils needed to determine the timing and tempo of their diversification, as well as episodes of extinction. Here we describe four new compression fossils of bees from three different deposits (Miocene of la Cerdanya, Spain; Oligocene of Céreste, France; and Eocene of the Green River Formation, U.S.A.). We assess the similarity of the forewing shape of the new fossils with extant and fossil taxa using geometric morphometrics analyses. Predictive discriminant analyses show that three fossils share similar forewing shapes with the Apidae [one of uncertain tribal placement and perhaps near Euglossini, one definitive bumble bee (Bombini), and one digger bee (Anthophorini)], while one fossil is more similar to the Andrenidae. The corbiculate fossils are described as Euglossopteryx biesmeijeri De Meulemeester, Michez, & Engel, gen. nov. sp. nov. (type species of Euglossopteryx Dehon & Engel, n. gen.) and Bombus cerdanyensis Dehon, De Meulemeester, & Engel, sp. nov. They provide new information on the distribution and timing of particular corbiculate groups, most notably the extension into North America of possible Eocene-Oligocene cooling-induced extinctions. Protohabropoda pauli De Meulemeester & Michez, gen. nov. sp. nov. (type species of Protohabropoda Dehon & Engel, n. gen.) reinforces previous hypotheses of anthophorine evolution in terms of ecological shifts by the Oligocene from tropical to mesic or xeric habitats. Lastly, a new fossil of the Andreninae, Andrena antoinei Michez & De Meulemeester, sp. nov., further documents the presence of the today widespread genus Andrena Fabricius in the Late Oligocene of France.

  3. Wing Shape of Four New Bee Fossils (Hymenoptera: Anthophila) Provides Insights to Bee Evolution

    PubMed Central

    Dehon, Manuel; Michez, Denis; Nel, André; Engel, Michael S.; De Meulemeester, Thibaut

    2014-01-01

    Bees (Anthophila) are one of the major groups of angiosperm-pollinating insects and accordingly are widely studied in both basic and applied research, for which it is essential to have a clear understanding of their phylogeny, and evolutionary history. Direct evidence of bee evolutionary history has been hindered by a dearth of available fossils needed to determine the timing and tempo of their diversification, as well as episodes of extinction. Here we describe four new compression fossils of bees from three different deposits (Miocene of la Cerdanya, Spain; Oligocene of Céreste, France; and Eocene of the Green River Formation, U.S.A.). We assess the similarity of the forewing shape of the new fossils with extant and fossil taxa using geometric morphometrics analyses. Predictive discriminant analyses show that three fossils share similar forewing shapes with the Apidae [one of uncertain tribal placement and perhaps near Euglossini, one definitive bumble bee (Bombini), and one digger bee (Anthophorini)], while one fossil is more similar to the Andrenidae. The corbiculate fossils are described as Euglossopteryx biesmeijeri De Meulemeester, Michez, & Engel, gen. nov. sp. nov. (type species of Euglossopteryx Dehon & Engel, n. gen.) and Bombus cerdanyensis Dehon, De Meulemeester, & Engel, sp. nov. They provide new information on the distribution and timing of particular corbiculate groups, most notably the extension into North America of possible Eocene-Oligocene cooling-induced extinctions. Protohabropoda pauli De Meulemeester & Michez, gen. nov. sp. nov. (type species of Protohabropoda Dehon & Engel, n. gen.) reinforces previous hypotheses of anthophorine evolution in terms of ecological shifts by the Oligocene from tropical to mesic or xeric habitats. Lastly, a new fossil of the Andreninae, Andrena antoinei Michez & De Meulemeester, sp. nov., further documents the presence of the today widespread genus Andrena Fabricius in the Late Oligocene of France. PMID

  4. Varroa-Virus Interaction in Collapsing Honey Bee Colonies

    PubMed Central

    Francis, Roy M.; Nielsen, Steen L.; Kryger, Per

    2013-01-01

    Varroa mites and viruses are the currently the high-profile suspects in collapsing bee colonies. Therefore, seasonal variation in varroa load and viruses (Acute-Kashmir-Israeli complex (AKI) and Deformed Wing Virus (DWV)) were monitored in a year-long study. We investigated the viral titres in honey bees and varroa mites from 23 colonies (15 apiaries) under three treatment conditions: Organic acids (11 colonies), pyrethroid (9 colonies) and untreated (3 colonies). Approximately 200 bees were sampled every month from April 2011 to October 2011, and April 2012. The 200 bees were split to 10 subsamples of 20 bees and analysed separately, which allows us to determine the prevalence of virus-infected bees. The treatment efficacy was often low for both treatments. In colonies where varroa treatment reduced the mite load, colonies overwintered successfully, allowing the mites and viruses to be carried over with the bees into the next season. In general, AKI and DWV titres did not show any notable response to the treatment and steadily increased over the season from April to October. In the untreated control group, titres increased most dramatically. Viral copies were correlated to number of varroa mites. Most colonies that collapsed over the winter had significantly higher AKI and DWV titres in October compared to survivors. Only treated colonies survived the winter. We discuss our results in relation to the varroa-virus model developed by Stephen Martin. PMID:23526946

  5. Nosema ceranae escapes fumagillin control in honey bees.

    PubMed

    Huang, Wei-Fone; Solter, Leellen F; Yau, Peter M; Imai, Brian S

    2013-03-01

    Fumagillin is the only antibiotic approved for control of nosema disease in honey bees and has been extensively used in United States apiculture for more than 50 years for control of Nosema apis. It is toxic to mammals and must be applied seasonally and with caution to avoid residues in honey. Fumagillin degrades or is diluted in hives over the foraging season, exposing bees and the microsporidia to declining concentrations of the drug. We showed that spore production by Nosema ceranae, an emerging microsporidian pathogen in honey bees, increased in response to declining fumagillin concentrations, up to 100% higher than that of infected bees that have not been exposed to fumagillin. N. apis spore production was also higher, although not significantly so. Fumagillin inhibits the enzyme methionine aminopeptidase2 (MetAP2) in eukaryotic cells and interferes with protein modifications necessary for normal cell function. We sequenced the MetAP2 gene for apid Nosema species and determined that, although susceptibility to fumagillin differs among species, there are no apparent differences in fumagillin binding sites. Protein assays of uninfected bees showed that fumagillin altered structural and metabolic proteins in honey bee midgut tissues at concentrations that do not suppress microsporidia reproduction. The microsporidia, particularly N. ceranae, are apparently released from the suppressive effects of fumagillin at concentrations that continue to impact honey bee physiology. The current application protocol for fumagillin may exacerbate N. ceranae infection rather than suppress it.

  6. Parasite pressures on feral honey bees (Apis mellifera sp.).

    PubMed

    Thompson, Catherine E; Biesmeijer, Jacobus C; Allnutt, Theodore R; Pietravalle, Stéphane; Budge, Giles E

    2014-01-01

    Feral honey bee populations have been reported to be in decline due to the spread of Varroa destructor, an ectoparasitic mite that when left uncontrolled leads to virus build-up and colony death. While pests and diseases are known causes of large-scale managed honey bee colony losses, no studies to date have considered the wider pathogen burden in feral colonies, primarily due to the difficulty in locating and sampling colonies, which often nest in inaccessible locations such as church spires and tree tops. In addition, little is known about the provenance of feral colonies and whether they represent a reservoir of Varroa tolerant material that could be used in apiculture. Samples of forager bees were collected from paired feral and managed honey bee colonies and screened for the presence of ten honey bee pathogens and pests using qPCR. Prevalence and quantity was similar between the two groups for the majority of pathogens, however feral honey bees contained a significantly higher level of deformed wing virus than managed honey bee colonies. An assessment of the honey bee race was completed for each colony using three measures of wing venation. There were no apparent differences in wing morphometry between feral and managed colonies, suggesting feral colonies could simply be escapees from the managed population. Interestingly, managed honey bee colonies not treated for Varroa showed similar, potentially lethal levels of deformed wing virus to that of feral colonies. The potential for such findings to explain the large fall in the feral population and the wider context of the importance of feral colonies as potential pathogen reservoirs is discussed.

  7. Parasite Pressures on Feral Honey Bees (Apis mellifera sp.)

    PubMed Central

    Thompson, Catherine E.; Biesmeijer, Jacobus C.; Allnutt, Theodore R.; Pietravalle, Stéphane; Budge, Giles E.

    2014-01-01

    Feral honey bee populations have been reported to be in decline due to the spread of Varroa destructor, an ectoparasitic mite that when left uncontrolled leads to virus build-up and colony death. While pests and diseases are known causes of large-scale managed honey bee colony losses, no studies to date have considered the wider pathogen burden in feral colonies, primarily due to the difficulty in locating and sampling colonies, which often nest in inaccessible locations such as church spires and tree tops. In addition, little is known about the provenance of feral colonies and whether they represent a reservoir of Varroa tolerant material that could be used in apiculture. Samples of forager bees were collected from paired feral and managed honey bee colonies and screened for the presence of ten honey bee pathogens and pests using qPCR. Prevalence and quantity was similar between the two groups for the majority of pathogens, however feral honey bees contained a significantly higher level of deformed wing virus than managed honey bee colonies. An assessment of the honey bee race was completed for each colony using three measures of wing venation. There were no apparent differences in wing morphometry between feral and managed colonies, suggesting feral colonies could simply be escapees from the managed population. Interestingly, managed honey bee colonies not treated for Varroa showed similar, potentially lethal levels of deformed wing virus to that of feral colonies. The potential for such findings to explain the large fall in the feral population and the wider context of the importance of feral colonies as potential pathogen reservoirs is discussed. PMID:25126840

  8. Studies of learned helplessness in honey bees (Apis mellifera ligustica).

    PubMed

    Dinges, Christopher W; Varnon, Christopher A; Cota, Lisa D; Slykerman, Stephen; Abramson, Charles I

    2017-04-01

    The current study reports 2 experiments investigating learned helplessness in the honey bee (Apis mellifera ligustica). In Experiment 1, we used a traditional escape method but found the bees' activity levels too high to observe changes due to treatment conditions. The bees were not able to learn in this traditional escape procedure; thus, such procedures may be inappropriate to study learned helplessness in honey bees. In Experiment 2, we used an alternative punishment, or passive avoidance, method to investigate learned helplessness. Using a master and yoked design where bees were trained as either master or yoked and tested as either master or yoked, we found that prior training with unavoidable and inescapable shock in the yoked condition interfered with avoidance and escape behavior in the later master condition. Unlike control bees, learned helplessness bees failed to restrict their movement to the safe compartment following inescapable shock. Unlike learned helplessness studies in other animals, no decrease in general activity was observed. Furthermore, we did not observe a "freezing" response to inescapable aversive stimuli-a phenomenon, thus far, consistently observed in learned helplessness tests with other species. The bees, instead, continued to move back and forth between compartments despite punishment in the incorrect compartment. These findings suggest that, although traditional escape methods may not be suitable, honey bees display learned helplessness in passive avoidance procedures. Thus, regardless of behavioral differences from other species, honey bees can be a unique invertebrate model organism for the study of learned helplessness. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  9. Linking magnetite in the abdomen of honey bees to a magnetoreceptive function

    PubMed Central

    Lambinet, Veronika; Hayden, Michael E.; Reigl, Katharina; Gomis, Surath

    2017-01-01

    Previous studies of magnetoreception in honey bees, Apis mellifera, focused on the identification of magnetic material, its formation, the location of the receptor and potential underlying sensory mechanisms, but never directly linked magnetic material to a magnetoreceptive function. In our study, we demonstrate that ferromagnetic material consistent with magnetite plays an integral role in the bees' magnetoreceptor. Subjecting lyophilized and pelletized bee tagmata to analyses by a superconducting quantum interference device generated a distinct hysteresis loop for the abdomen but not for the thorax or the head of bees, indicating the presence of ferromagnetic material in the bee abdomen. Magnetic remanence of abdomen pellets produced from bees that were, or were not, exposed to the 2.2-kOe field of a magnet while alive differed, indicating that magnet exposure altered the magnetization of this magnetite in live bees. In behavioural two-choice field experiments, bees briefly exposed to the same magnet, but not sham-treated control bees, failed to sense a custom-generated magnetic anomaly, indicating that magnet exposure had rendered the bees' magnetoreceptor dysfunctional. Our data support the conclusion that honey bees possess a magnetite-based magnetoreceptor located in the abdomen. PMID:28330921

  10. Linking magnetite in the abdomen of honey bees to a magnetoreceptive function.

    PubMed

    Lambinet, Veronika; Hayden, Michael E; Reigl, Katharina; Gomis, Surath; Gries, Gerhard

    2017-03-29

    Previous studies of magnetoreception in honey bees, Apis mellifera , focused on the identification of magnetic material, its formation, the location of the receptor and potential underlying sensory mechanisms, but never directly linked magnetic material to a magnetoreceptive function. In our study, we demonstrate that ferromagnetic material consistent with magnetite plays an integral role in the bees' magnetoreceptor. Subjecting lyophilized and pelletized bee tagmata to analyses by a superconducting quantum interference device generated a distinct hysteresis loop for the abdomen but not for the thorax or the head of bees, indicating the presence of ferromagnetic material in the bee abdomen. Magnetic remanence of abdomen pellets produced from bees that were, or were not, exposed to the 2.2-kOe field of a magnet while alive differed, indicating that magnet exposure altered the magnetization of this magnetite in live bees. In behavioural two-choice field experiments, bees briefly exposed to the same magnet, but not sham-treated control bees, failed to sense a custom-generated magnetic anomaly, indicating that magnet exposure had rendered the bees' magnetoreceptor dysfunctional. Our data support the conclusion that honey bees possess a magnetite-based magnetoreceptor located in the abdomen. © 2017 The Authors.

  11. Predator-prey coevolution: Australian native bees avoid their spider predators.

    PubMed

    Heiling, A M; Herberstein, M E

    2004-05-07

    Australian crab spiders Thomisus spectabilis manipulate visual flower signals to lure introduced Apis mellifera. We gave Australian native bees, Austroplebia australis, the choice between two white daisies, Chrysanthemum frutescens, one of them occupied by a crab spider. The colour contrast between flowers and spiders affected the behaviour of native bees. Native bees approached spider-occupied flowers more frequently. However, native bees avoided flowers occupied by spiders and landed on vacant flowers more frequently. In contrast to honeybees that did not coevolve with T. spectabilis, Australian native bees show an anti-predatory response to avoid flowers occupied by this predator.

  12. Predator-prey coevolution: Australian native bees avoid their spider predators.

    PubMed Central

    Heiling, A M; Herberstein, M E

    2004-01-01

    Australian crab spiders Thomisus spectabilis manipulate visual flower signals to lure introduced Apis mellifera. We gave Australian native bees, Austroplebia australis, the choice between two white daisies, Chrysanthemum frutescens, one of them occupied by a crab spider. The colour contrast between flowers and spiders affected the behaviour of native bees. Native bees approached spider-occupied flowers more frequently. However, native bees avoided flowers occupied by spiders and landed on vacant flowers more frequently. In contrast to honeybees that did not coevolve with T. spectabilis, Australian native bees show an anti-predatory response to avoid flowers occupied by this predator. PMID:15252982

  13. Flower diversity and bee reproduction in an arid ecosystem.

    PubMed

    Dorado, Jimena; Vázquez, Diego P

    2016-01-01

    Diverse flower communities are more stable in floral resource production along the flowering season, but the question about how the diversity and stability of resources affect pollinator reproduction remains open. High plant diversity could favor short foraging trips, which in turn would enhance bee fitness. In addition to plant diversity, greater temporal stability of floral resources in diverse communities could favor pollinator fitness because such communities are likely to occupy the phenological space more broadly, increasing floral availability for pollinators throughout the season. In addition, this potential effect of flower diversity on bee reproduction could be stronger for generalist pollinators because they can use a broader floral spectrum. Based on above arguments we predicted that pollinator reproduction would be positively correlated to flower diversity, and to temporal stability in flower production, and that this relationship would be stronger for the most generalized pollinator species. Using structural equation models, we evaluated the effect of these variables and other ecological factors on three estimates of bee reproduction (average number of brood cells per nest per site, total number of brood cells per site, and total number of nests per site), and whether such effects were modulated by bee generalization on floral resources. Contrary to our expectations, flower diversity had no effect on bee reproduction, stability in flower production had a weakly negative effect on one of the bee reproductive variables, and the strength of the fitness-diversity relationship was unrelated to bee generalization. In contrast, elevation had a negative effect on bee reproduction, despite the narrow elevation range encompassed by our sites. Flower diversity did not affect the reproduction of the solitary bees studied here. This result could stem from the context dependence of the diversity-stability relationship, given that elevation had a positive effect on

  14. Flower diversity and bee reproduction in an arid ecosystem

    PubMed Central

    Vázquez, Diego P.

    2016-01-01

    Background: Diverse flower communities are more stable in floral resource production along the flowering season, but the question about how the diversity and stability of resources affect pollinator reproduction remains open. High plant diversity could favor short foraging trips, which in turn would enhance bee fitness. In addition to plant diversity, greater temporal stability of floral resources in diverse communities could favor pollinator fitness because such communities are likely to occupy the phenological space more broadly, increasing floral availability for pollinators throughout the season. In addition, this potential effect of flower diversity on bee reproduction could be stronger for generalist pollinators because they can use a broader floral spectrum. Based on above arguments we predicted that pollinator reproduction would be positively correlated to flower diversity, and to temporal stability in flower production, and that this relationship would be stronger for the most generalized pollinator species. Materials and Methods: Using structural equation models, we evaluated the effect of these variables and other ecological factors on three estimates of bee reproduction (average number of brood cells per nest per site, total number of brood cells per site, and total number of nests per site), and whether such effects were modulated by bee generalization on floral resources. Results: Contrary to our expectations, flower diversity had no effect on bee reproduction, stability in flower production had a weakly negative effect on one of the bee reproductive variables, and the strength of the fitness-diversity relationship was unrelated to bee generalization. In contrast, elevation had a negative effect on bee reproduction, despite the narrow elevation range encompassed by our sites. Discussion: Flower diversity did not affect the reproduction of the solitary bees studied here. This result could stem from the context dependence of the diversity

  15. Bee communities along a prairie restoration chronosequence: similar abundance and diversity, distinct composition.

    PubMed

    Tonietto, Rebecca K; Ascher, John S; Larkin, Daniel J

    2017-04-01

    Recognition of the importance of bee conservation has grown in response to declines of managed honey bees and some wild bee species. Habitat loss has been implicated as a leading cause of declines, suggesting that ecological restoration is likely to play an increasing role in bee conservation efforts. In the midwestern United States, restoration of tallgrass prairie has traditionally targeted plant community objectives without explicit consideration for bees. However, restoration of prairie vegetation is likely to provide ancillary benefits to bees through increased foraging and nesting resources. We investigated community assembly of bees across a chronosequence of restored eastern tallgrass prairies and compared patterns to those in control and reference habitats (old fields and prairie remnants, respectively). We collected bees for 3 yr and measured diversity and abundance of in-bloom flowering plants, vegetation structure, ground cover, and surrounding land use as predictors of bee abundance and bee taxonomic and functional diversity. We found that site-level variables, but not site type or restoration age, were significant predictors of bee abundance (bloom diversity, P = 0.004; bare ground cover, P = 0.02) and bee diversity (bloom diversity, P = 0.01). There were significant correlations between overall composition of bee and blooming plant communities (Mantel test, P = 0.002), and both plant and bee assemblages in restorations were intermediate between those of old fields and remnant prairies. Restorations exhibited high bee beta diversity, i.e., restored sites' bee assemblages were taxonomically and functionally differentiated from each other. This pattern was strong in younger restorations (<20 yr old), but absent from older restorations (>20 yr), suggesting restored prairie bee communities become more similar to one another and more similar to remnant prairie bee communities over time with the arrival of more species and functional groups of

  16. Social regulation of ageing by young workers in the honey bee, Apis mellifera.

    PubMed

    Eyer, Michael; Dainat, Benjamin; Neumann, Peter; Dietemann, Vincent

    2017-01-01

    Organisms' lifespans are modulated by both genetic and environmental factors. The lifespan of eusocial insects is determined by features of the division of labor, which itself is influenced by social regulatory mechanisms. In the honey bee, Apis mellifera, the presence of brood and of old workers carrying out foraging tasks are important social drivers of ageing, but the influence of young adult workers is unknown, as it has not been experimentally teased apart from that of brood. In this study, we test the role of young workers in the ageing of their nestmates. We measured the impact of different social contexts characterized by the absence of brood and/or young adults on the lifespan of worker nestmates in field colonies. To acquire insight into the physiological processes occurring under these contexts, we analyzed the expression of genes known to affect honey bee ageing. The data showed that young workers significantly reduced the lifespan of nestmate workers, similar to the effect of brood on its own. Differential expression of vitellogenin, major royal jelly protein-1, and methylase transferase, but not methyl farneosate epoxidase genes suggests that young workers and brood influence ageing of adult nestmate workers via different physiological pathways. We identify young workers as an essential part of the social regulation of ageing in honey bee colonies. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Bee cups: Single-use cages for honey bee experiments

    USDA-ARS?s Scientific Manuscript database

    Honey bees face challenges ranging from poor nutrition to exposure to parasites, pathogens, and environmental chemicals. These challenges drain colony resources and have been tied to both subtle and extreme colony declines, including the enigmatic Colony Collapse Disorder (CCD). Understanding how ...

  18. The Plight of the Honey Bee

    ERIC Educational Resources Information Center

    Hockridge, Emma

    2010-01-01

    The decline of colonies of honey bees across the world is threatening local plant biodiversity and human food supplies. Neonicotinoid pesticides have been implicated as a major cause of the problem and are banned or suspended in several countries. Other factors could also be lowering the resistance of bees to opportunist infections by, for…

  19. Exploration and design of smart home circuit based on ZigBee

    NASA Astrophysics Data System (ADS)

    Luo, Huirong

    2018-05-01

    To apply ZigBee technique in smart home circuit design, in the hardware design link of ZigBee node, TI Company's ZigBee wireless communication chip CC2530 was used to complete the design of ZigBee RF module circuit and peripheral circuit. In addition, the function demand and the overall scheme of the intelligent system based on smart home furnishing were proposed. Finally, the smart home system was built by combining ZigBee network and intelligent gateway. The function realization, reliability and power consumption of ZigBee network were tested. The results showed that ZigBee technology was applied to smart home system, making it have some advantages in terms of flexibility, scalability, power consumption and indoor aesthetics. To sum up, the system has high application value.

  20. Conserving genetic diversity in the honeybee: comments on Harpur et al. (2012).

    PubMed

    De la Rúa, Pilar; Jaffé, Rodolfo; Muñoz, Irene; Serrano, José; Moritz, Robin F A; Kraus, F Bernhard

    2013-06-01

    The article by Harpur et al. (2012) 'Management increases genetic diversity of honey bees via admixture' concludes that '…honey bees do not suffer from reduced genetic diversity caused by management and, consequently, that reduced genetic diversity is probably not contributing to declines of managed Apis mellifera populations'. In the light of current honeybee and beekeeping declines and their consequences for honeybee conservation and the pollination services they provide, we would like to express our concern about the conclusions drawn from the results of Harpur et al. (2012). While many honeybee management practices do not imply admixture, we are convinced that the large-scale genetic homogenization of admixed populations could drive the loss of valuable local adaptations. We also point out that the authors did not account for the extensive gene flow that occurs between managed and wild/feral honeybee populations and raise concerns about the data set used. Finally, we caution against underestimating the importance of genetic diversity for honeybee colonies and highlight the importance of promoting the use of endemic honeybee subspecies in apiculture. © 2013 John Wiley & Sons Ltd.

  1. Bees of the Azores: an annotated checklist (Apidae, Hymenoptera).

    PubMed

    Weissmann, Julie A; Picanço, Ana; Borges, Paulo A V; Schaefer, Hanno

    2017-01-01

    We report 18 species of wild bees plus the domesticated honeybee from the Azores, which adds nine species to earlier lists. One species, Hylaeus azorae , seems to be a single island endemic, and three species are possibly native ( Colletes eous , Halictus villosulus , and Hylaeus pictipes ). All the remaining bee species are most likely accidental introductions that arrived after human colonization of the archipelago in the 15 th century. Bee diversity in the Azores is similar to bee diversity of Madeira and Cape Verde but nearly ten times lower than it is in the Canary Islands.

  2. African bees to control African elephants

    NASA Astrophysics Data System (ADS)

    Vollrath, Fritz; Douglas-Hamilton, Iain

    2002-11-01

    Numbers of elephants have declined in Africa and Asia over the past 30 years while numbers of humans have increased, both substantially. Friction between these two keystone species is reaching levels which are worryingly high from an ecological as well as a political viewpoint. Ways and means must be found to keep the two apart, at least in areas sensitive to each species' survival. The aggressive African bee might be one such method. Here we demonstrate that African bees deter elephants from damaging the vegetation and trees which house their hives. We argue that bees can be employed profitably to protect not only selected trees, but also selected areas, from elephant damage.

  3. African bees to control African elephants.

    PubMed

    Vollrath, Fritz; Douglas-Hamilton, Iain

    2002-11-01

    Numbers of elephants have declined in Africa and Asia over the past 30 years while numbers of humans have increased, both substantially. Friction between these two keystone species is reaching levels which are worryingly high from an ecological as well as a political viewpoint. Ways and means must be found to keep the two apart, at least in areas sensitive to each species' survival. The aggressive African bee might be one such method. Here we demonstrate that African bees deter elephants from damaging the vegetation and trees which house their hives. We argue that bees can be employed profitably to protect not only selected trees, but also selected areas, from elephant damage.

  4. IRS and TOR nutrient-signaling pathways act via juvenile hormone to influence honey bee caste fate

    PubMed Central

    Mutti, Navdeep S.; Dolezal, Adam G.; Wolschin, Florian; Mutti, Jasdeep S.; Gill, Kulvinder S.; Amdam, Gro V.

    2011-01-01

    SUMMARY Regardless of genetic makeup, a female honey bee becomes a queen or worker depending on the food she receives as a larva. For decades, it has been known that nutrition and juvenile hormone (JH) signaling determine the caste fate of the individual bee. However, it is still largely unclear how these factors are connected. To address this question, we suppressed nutrient sensing by RNA interference (RNAi)-mediated gene knockdown of IRS (insulin receptor substrate) and TOR (target of rapamycin) in larvae reared on queen diet. The treatments affected several layers of organismal organization that could play a role in the response to differential nutrition between castes. These include transcript profiles, proteomic patterns, lipid levels, DNA methylation response and morphological features. Most importantly, gene knockdown abolished a JH peak that signals queen development and resulted in a worker phenotype. Application of JH rescued the queen phenotype in either knockdown, which demonstrates that the larval response to JH remains intact and can drive normal developmental plasticity even when IRS or TOR transcript levels are reduced. We discuss our results in the context of other recent findings on honey bee caste and development and propose that IRS is an alternative substrate for the Egfr (epidermal growth factor receptor) in honey bees. Overall, our study describes how the interplay of nutritional and hormonal signals affects many levels of organismal organization to build different phenotypes from identical genotypes. PMID:22071189

  5. IRS and TOR nutrient-signaling pathways act via juvenile hormone to influence honey bee caste fate.

    PubMed

    Mutti, Navdeep S; Dolezal, Adam G; Wolschin, Florian; Mutti, Jasdeep S; Gill, Kulvinder S; Amdam, Gro V

    2011-12-01

    Regardless of genetic makeup, a female honey bee becomes a queen or worker depending on the food she receives as a larva. For decades, it has been known that nutrition and juvenile hormone (JH) signaling determine the caste fate of the individual bee. However, it is still largely unclear how these factors are connected. To address this question, we suppressed nutrient sensing by RNA interference (RNAi)-mediated gene knockdown of IRS (insulin receptor substrate) and TOR (target of rapamycin) in larvae reared on queen diet. The treatments affected several layers of organismal organization that could play a role in the response to differential nutrition between castes. These include transcript profiles, proteomic patterns, lipid levels, DNA methylation response and morphological features. Most importantly, gene knockdown abolished a JH peak that signals queen development and resulted in a worker phenotype. Application of JH rescued the queen phenotype in either knockdown, which demonstrates that the larval response to JH remains intact and can drive normal developmental plasticity even when IRS or TOR transcript levels are reduced. We discuss our results in the context of other recent findings on honey bee caste and development and propose that IRS is an alternative substrate for the Egfr (epidermal growth factor receptor) in honey bees. Overall, our study describes how the interplay of nutritional and hormonal signals affects many levels of organismal organization to build different phenotypes from identical genotypes.

  6. A New Threat to Honey Bees, the Parasitic Phorid Fly Apocephalus borealis

    PubMed Central

    Core, Andrew; Runckel, Charles; Ivers, Jonathan; Quock, Christopher; Siapno, Travis; DeNault, Seraphina; Brown, Brian; DeRisi, Joseph; Smith, Christopher D.; Hafernik, John

    2012-01-01

    Honey bee colonies are subject to numerous pathogens and parasites. Interaction among multiple pathogens and parasites is the proposed cause for Colony Collapse Disorder (CCD), a syndrome characterized by worker bees abandoning their hive. Here we provide the first documentation that the phorid fly Apocephalus borealis, previously known to parasitize bumble bees, also infects and eventually kills honey bees and may pose an emerging threat to North American apiculture. Parasitized honey bees show hive abandonment behavior, leaving their hives at night and dying shortly thereafter. On average, seven days later up to 13 phorid larvae emerge from each dead bee and pupate away from the bee. Using DNA barcoding, we confirmed that phorids that emerged from honey bees and bumble bees were the same species. Microarray analyses of honey bees from infected hives revealed that these bees are often infected with deformed wing virus and Nosema ceranae. Larvae and adult phorids also tested positive for these pathogens, implicating the fly as a potential vector or reservoir of these honey bee pathogens. Phorid parasitism may affect hive viability since 77% of sites sampled in the San Francisco Bay Area were infected by the fly and microarray analyses detected phorids in commercial hives in South Dakota and California's Central Valley. Understanding details of phorid infection may shed light on similar hive abandonment behaviors seen in CCD. PMID:22235317

  7. Propolis Counteracts Some Threats to Honey Bee Health

    PubMed Central

    Simone-Finstrom, Michael; Borba, Renata S.; Wilson, Michael; Spivak, Marla

    2017-01-01

    Honey bees (Apis mellifera) are constantly dealing with threats from pathogens, pests, pesticides and poor nutrition. It is critically important to understand how honey bees’ natural immune responses (individual immunity) and collective behavioral defenses (social immunity) can improve bee health and productivity. One form of social immunity in honey bee colonies is the collection of antimicrobial plant resins and their use in the nest architecture as propolis. We review research on the constitutive benefits of propolis on the honey bee immune system, and its known therapeutic, colony-level effects against the pathogens Paenibacillus larvae and Ascosphaera apis. We also review the limited research on the effects of propolis against other pathogens, parasites and pests (Nosema, viruses, Varroa destructor, and hive beetles) and how propolis may enhance bee products such as royal jelly and honey. Although propolis may be a source of pesticide contamination, it also has the potential to be a detoxifying agent or primer of detoxification pathways, as well as increasing bee longevity via antioxidant-related pathways. Throughout this paper, we discuss opportunities for future research goals and present ways in which the beekeeping community can promote propolis use in standard colonies, as one way to improve and maintain colony health and resiliency. PMID:28468244

  8. Chalkbrood Transmission in the Alfalfa Leafcutting Bee: The Impact of Disinfecting Bee Cocoons in Loose Cell Management Systems

    USDA-ARS?s Scientific Manuscript database

    A good understanding of pathogen transmission in a host population should illuminate methods for disease prevention and control. A case in point for this is the alfalfa leafcutting bee (Megachile rotundata), a solitary bee which is used extensively for pollination of alfalfa grown for seed. Propaga...

  9. Hypereosinophilia, neurologic, and gastrointestinal symptoms after bee-pollen ingestion.

    PubMed

    Lin, F L; Vaughan, T R; Vandewalker, M L; Weber, R W

    1989-04-01

    A patient developed hypereosinophilia (13,440 cells per cubic millimeter) 6 weeks after beginning the ingestion of bee pollen. Symptoms included generalized malaise, headache, nausea, abdominal pain diarrhea, generalized pruritus, and decreased memory. Evaluation revealed no other known cause for the patient's hypereosinophilia, which resolved after bee-pollen ingestion was stopped. The product contained a mixture of entomophilous and anemophilous pollens to which the patient was skin test positive. An open challenge with the bee pollen later reproduced the presenting symptoms with a concomitant rise of the eosinophil count from 207 to 890 cells per cubic millimeter. The patient has since remained well avoiding bee pollen. This study strongly suggests that hypereosinophilia with attendant pathophysiologic disturbances may be an adverse reaction to bee-pollen ingestion in atopic individuals.

  10. Urbanization Increases Pathogen Pressure on Feral and Managed Honey Bees.

    PubMed

    Youngsteadt, Elsa; Appler, R Holden; López-Uribe, Margarita M; Tarpy, David R; Frank, Steven D

    2015-01-01

    Given the role of infectious disease in global pollinator decline, there is a need to understand factors that shape pathogen susceptibility and transmission in bees. Here we ask how urbanization affects the immune response and pathogen load of feral and managed colonies of honey bees (Apis mellifera Linnaeus), the predominant economically important pollinator worldwide. Using quantitative real-time PCR, we measured expression of 4 immune genes and relative abundance of 10 honey bee pathogens. We also measured worker survival in a laboratory bioassay. We found that pathogen pressure on honey bees increased with urbanization and management, and the probability of worker survival declined 3-fold along our urbanization gradient. The effect of management on pathogens appears to be mediated by immunity, with feral bees expressing immune genes at nearly twice the levels of managed bees following an immune challenge. The effect of urbanization, however, was not linked with immunity; instead, urbanization may favor viability and transmission of some disease agents. Feral colonies, with lower disease burdens and stronger immune responses, may illuminate ways to improve honey bee management. The previously unexamined effects of urbanization on honey-bee disease are concerning, suggesting that urban areas may favor problematic diseases of pollinators.

  11. Urbanization Increases Pathogen Pressure on Feral and Managed Honey Bees

    PubMed Central

    López-Uribe, Margarita M.; Tarpy, David R.; Frank, Steven D.

    2015-01-01

    Given the role of infectious disease in global pollinator decline, there is a need to understand factors that shape pathogen susceptibility and transmission in bees. Here we ask how urbanization affects the immune response and pathogen load of feral and managed colonies of honey bees (Apis mellifera Linnaeus), the predominant economically important pollinator worldwide. Using quantitative real-time PCR, we measured expression of 4 immune genes and relative abundance of 10 honey bee pathogens. We also measured worker survival in a laboratory bioassay. We found that pathogen pressure on honey bees increased with urbanization and management, and the probability of worker survival declined 3-fold along our urbanization gradient. The effect of management on pathogens appears to be mediated by immunity, with feral bees expressing immune genes at nearly twice the levels of managed bees following an immune challenge. The effect of urbanization, however, was not linked with immunity; instead, urbanization may favor viability and transmission of some disease agents. Feral colonies, with lower disease burdens and stronger immune responses, may illuminate ways to improve honey bee management. The previously unexamined effects of urbanization on honey-bee disease are concerning, suggesting that urban areas may favor problematic diseases of pollinators. PMID:26536606

  12. Detection of Spiroplasma melliferum in honey bee colonies in the US.

    PubMed

    Zheng, Huo-Qing; Chen, Yan Ping

    2014-06-01

    Spiroplasma infections in honey bees have been reported in Europe and Asia quite recently, due to intensive studies on the epidemiology of honey bee diseases. The situation in the US is less well analyzed. Here, we examined the honey bee colonies in Beltsville, MD, where Spiroplasmamelliferum was originally reported and found S. melliferum infection in honey bees. Our data showed high variation of S. melliferum infection in honey bees with a peak prevalence in May during the course of one-year study period. The colony prevalence increased from 5% in February to 68% in May and then decreased to 25% in June and 22% in July. Despite that pathogenicity of spiroplasmas in honey bee colonies remains to be determined, our results indicated that spiroplasma infections need to be included for the consideration of the impacts on honey bee health. Published by Elsevier Inc.

  13. Visual summation in night-flying sweat bees: a theoretical study.

    PubMed

    Theobald, Jamie Carroll; Greiner, Birgit; Wcislo, William T; Warrant, Eric J

    2006-07-01

    Bees are predominantly diurnal; only a few groups fly at night. An evolutionary limitation that bees must overcome to inhabit dim environments is their eye type: bees possess apposition compound eyes, which are poorly suited to vision in dim light. Here, we theoretically examine how nocturnal bees Megalopta genalis fly at light levels usually reserved for insects bearing more sensitive superposition eyes. We find that neural summation should greatly increase M. genalis's visual reliability. Predicted spatial summation closely matches the morphology of laminal neurons believed to mediate such summation. Improved reliability costs acuity, but dark adapted bees already suffer optical blurring, and summation further degrades vision only slightly.

  14. Patch dynamics of a foraging assemblage of bees.

    PubMed

    Wright, David Hamilton

    1985-03-01

    The composition and dynamics of foraging assemblages of bees were examined from the standpoint of species-level arrival and departure processes in patches of flowers. Experiments with bees visiting 4 different species of flowers in subalpine meadows in Colorado gave the following results: 1) In enriched patches the rates of departure of bees were reduced, resulting in increases in both the number of bees per species and the average number of species present. 2) The reduction in bee departure rates from enriched patches was due to mechanical factors-increased flower handling time, and to behavioral factors-an increase in the number of flowers visited per inflorescence and in the number of inflorescences visited per patch. Bees foraging in enriched patches could collect nectar 30-45% faster than those foraging in control patches. 3) The quantitative changes in foraging assemblages due to enrichment, in terms of means and variances of species population sizes, fraction of time a species was present in a patch, and in mean and variance of the number of species present, were in reasonable agreement with predictions drawn from queuing theory and studies in island biogeography. 4) Experiments performed with 2 species of flowers with different corolla tube lengths demonstrated that manipulation of resources of differing availability had unequal effects on particular subsets of the larger foraging community. The arrival-departure process of bees on flowers and the immigration-extinction process of species on islands are contrasted, and the value of the stochastic, species-level approach to community composition is briefly discussed.

  15. Testing pollen of single and stacked insect-resistant Bt-maize on in vitro reared honey bee larvae.

    PubMed

    Hendriksma, Harmen P; Härtel, Stephan; Steffan-Dewenter, Ingolf

    2011-01-01

    The ecologically and economic important honey bee (Apis mellifera) is a key non-target arthropod species in environmental risk assessment (ERA) of genetically modified (GM) crops. Honey bee larvae are directly exposed to transgenic products by the consumption of GM pollen. But most ERA studies only consider responses of adult bees, although Bt-proteins primarily affect the larval phases of target organisms. We adopted an in vitro larvae rearing system, to assess lethal and sublethal effects of Bt-pollen consumption in a standardized eco-toxicological bioassay. The effects of pollen from two Bt-maize cultivars, one expressing a single and the other a total of three Bt-proteins, on the survival and prepupae weight of honey bee larvae were analyzed. The control treatments included pollen from three non-transgenic maize varieties and of Heliconia rostrata. Three days old larvae were fed the realistic exposure dose of 2 mg pollen within the semi-artificial diet. The larvae were monitored over 120 h, until the prepupal stage, where larvae terminate feeding and growing. Neither single nor stacked Bt-maize pollen showed an adverse effect on larval survival and the prepupal weight. In contrast, feeding of H. rostrata pollen caused significant toxic effects. The results of this study indicate that pollen of the tested Bt-varieties does not harm the development of in vitro reared A. mellifera larvae. To sustain the ecosystem service of pollination, Bt-impact on A. mellifera should always be a crucial part of regulatory biosafety assessments. We suggest that our approach of feeding GM pollen on in vitro reared honey bee larvae is well suited of becoming a standard bioassay in regulatory risk assessments schemes of GM crops.

  16. Population structuring of the ubiquitous stingless bee Tetragonisca angustula in southern Brazil as revealed by microsatellite and mitochondrial markers.

    PubMed

    Francisco, Flávio O; Santiago, Leandro R; Mizusawa, Yuri M; Oldroyd, Benjamin P; Arias, Maria C

    2017-10-01

    Tetragonisca angustula is one of the most widespread stingless bees in the Neotropics. This species swarms frequently and is extremely successful in urban environments. In addition, it is one of the most popular stingless bee species for beekeeping in Latin America, so nest transportation and trading is common. Nest transportation can change the genetic structure of the host population, reducing inbreeding and increasing homogenization. Here, we evaluate the genetic structure of 17 geographic populations of T. angustula in southern Brazil to quantify the level of genetic differentiation between populations. Analyses were conducted on partially sequenced mitochondrial genes and 11 microsatellite loci of 1002 workers from 457 sites distributed on the mainland and on 3 islands. Our results show that T. angustula populations are highly differentiated as demonstrated by mitochondrial DNA (mtDNA) and microsatellite markers. Of 73 haplotypes, 67 were population-specific. MtDNA diversity was low in 9 populations but microsatellite diversity was moderate to high in all populations. Microsatellite data suggest 10 genetic clusters and low level of gene flow throughout the studied area. However, physical barriers, such as rivers and mountain ranges, or the presence or absence of forest appear to be unrelated to population clusters. Factors such as low dispersal, different ecological conditions, and isolation by distance are most likely shaping the population structure of this species. Thus far, nest transportation has not influenced the general population structure in the studied area. However, due to the genetic structure we found, we recommend that nest transportation should only occur within and between populations that are genetically similar. © 2016 Institute of Zoology, Chinese Academy of Sciences.

  17. Economic Risk of Bee Pollination in Maine Wild Blueberry, Vaccinium angustifolium.

    PubMed

    Asare, Eric; Hoshide, Aaron K; Drummond, Francis A; Criner, George K; Chen, Xuan

    2017-10-01

    Recent pollinator declines highlight the importance of evaluating economic risk of agricultural systems heavily dependent on rented honey bees or native pollinators. Our study analyzed variability of native bees and honey bees, and the risks these pose to profitability of Maine's wild blueberry industry. We used cross-sectional data from organic, low-, medium-, and high-input wild blueberry producers in 1993, 1997-1998, 2005-2007, and from 2011 to 2015 (n = 162 fields). Data included native and honey bee densities (count/m2/min) and honey bee stocking densities (hives/ha). Blueberry fruit set, yield, and honey bee hive stocking density models were estimated. Fruit set is impacted about 1.6 times more by native bees than honey bees on a per bee basis. Fruit set significantly explained blueberry yield. Honey bee stocking density in fields predicted honey bee foraging densities. These three models were used in enterprise budgets for all four systems from on-farm surveys of 23 conventional and 12 organic producers (2012-2013). These budgets formed the basis of Monte Carlo simulations of production and profit. Stochastic dominance of net farm income (NFI) cumulative distribution functions revealed that if organic yields are high enough (2,345 kg/ha), organic systems are economically preferable to conventional systems. However, if organic yields are lower (724 kg/ha), it is riskier with higher variability of crop yield and NFI. Although medium-input systems are stochastically dominant with lower NFI variability compared with other conventional systems, the high-input system breaks even with the low-input system if honey bee hive rental prices triple in the future. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America.

  18. The colony environment modulates sleep in honey bee workers.

    PubMed

    Eban-Rothschild, Ada; Bloch, Guy

    2015-02-01

    One of the most important and evolutionarily conserved roles of sleep is the processing and consolidation of information acquired during wakefulness. In both insects and mammals, environmental and social stimuli can modify sleep physiology and behavior, yet relatively little is known about the specifics of the wake experiences and their relative contribution to experience-dependent modulation of sleep. Honey bees provide an excellent model system in this regard because their behavioral repertoire is well characterized and the environment they experience during the day can be manipulated while keeping an ecologically and sociobiologically relevant context. We examined whether social experience modulates sleep in honey bees, and evaluated the relative contribution of different social signals. We exposed newly emerged bees to different components of their natural social environment and then monitored their sleep behavior in individual cages in a constant lab environment. We found that rich waking experience modulates subsequent sleep. Bees that experienced the colony environment for 1 or 2 days slept more than same-age sister bees that were caged individually or in small groups in the lab. Furthermore, bees placed in mesh-enclosures in the colony, that prevented direct contact with nestmates, slept similarly to bees freely moving in the colony. These results suggest that social signals that do not require direct or close distance interactions between bees are sufficiently rich to encompass almost the entire effect of the colony on sleep. Our findings provide a remarkable example of social experience-dependent modulation of an essential biological process. © 2015. Published by The Company of Biologists Ltd.

  19. Pathogen webs in collapsing honey bee colonies.

    PubMed

    Cornman, R Scott; Tarpy, David R; Chen, Yanping; Jeffreys, Lacey; Lopez, Dawn; Pettis, Jeffery S; vanEngelsdorp, Dennis; Evans, Jay D

    2012-01-01

    Recent losses in honey bee colonies are unusual in their severity, geographical distribution, and, in some cases, failure to present recognized characteristics of known disease. Domesticated honey bees face numerous pests and pathogens, tempting hypotheses that colony collapses arise from exposure to new or resurgent pathogens. Here we explore the incidence and abundance of currently known honey bee pathogens in colonies suffering from Colony Collapse Disorder (CCD), otherwise weak colonies, and strong colonies from across the United States. Although pathogen identities differed between the eastern and western United States, there was a greater incidence and abundance of pathogens in CCD colonies. Pathogen loads were highly covariant in CCD but not control hives, suggesting that CCD colonies rapidly become susceptible to a diverse set of pathogens, or that co-infections can act synergistically to produce the rapid depletion of workers that characterizes the disorder. We also tested workers from a CCD-free apiary to confirm that significant positive correlations among pathogen loads can develop at the level of individual bees and not merely as a secondary effect of CCD. This observation and other recent data highlight pathogen interactions as important components of bee disease. Finally, we used deep RNA sequencing to further characterize microbial diversity in CCD and non-CCD hives. We identified novel strains of the recently described Lake Sinai viruses (LSV) and found evidence of a shift in gut bacterial composition that may be a biomarker of CCD. The results are discussed with respect to host-parasite interactions and other environmental stressors of honey bees.

  20. Pathogen Webs in Collapsing Honey Bee Colonies

    PubMed Central

    Cornman, R. Scott; Tarpy, David R.; Chen, Yanping; Jeffreys, Lacey; Lopez, Dawn; Pettis, Jeffery S.; vanEngelsdorp, Dennis; Evans, Jay D.

    2012-01-01

    Recent losses in honey bee colonies are unusual in their severity, geographical distribution, and, in some cases, failure to present recognized characteristics of known disease. Domesticated honey bees face numerous pests and pathogens, tempting hypotheses that colony collapses arise from exposure to new or resurgent pathogens. Here we explore the incidence and abundance of currently known honey bee pathogens in colonies suffering from Colony Collapse Disorder (CCD), otherwise weak colonies, and strong colonies from across the United States. Although pathogen identities differed between the eastern and western United States, there was a greater incidence and abundance of pathogens in CCD colonies. Pathogen loads were highly covariant in CCD but not control hives, suggesting that CCD colonies rapidly become susceptible to a diverse set of pathogens, or that co-infections can act synergistically to produce the rapid depletion of workers that characterizes the disorder. We also tested workers from a CCD-free apiary to confirm that significant positive correlations among pathogen loads can develop at the level of individual bees and not merely as a secondary effect of CCD. This observation and other recent data highlight pathogen interactions as important components of bee disease. Finally, we used deep RNA sequencing to further characterize microbial diversity in CCD and non-CCD hives. We identified novel strains of the recently described Lake Sinai viruses (LSV) and found evidence of a shift in gut bacterial composition that may be a biomarker of CCD. The results are discussed with respect to host-parasite interactions and other environmental stressors of honey bees. PMID:22927991