Science.gov

Sample records for beet sugar industry

  1. Sugar Beet, Energy Beet, and Industrial Beet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugar beet (Beta vulgaris) is a temperate root crop grown primarily as a source of sucrose for human diets. Breeding has focused on sucrose yield, which is simply the product of total root yield times the proportion of sucrose in the harvested roots, minus loss of sucrose in molasses due to impuriti...

  2. Sugar Beet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugar beet (Beta vulgaris L.) is a significant industrial crop of the temperate zone, the worldwide production of which exceeded 240 million tons in 2000. Worldwide, sugar from sugar beet provides about a third of all sugar consumed. Used as a sweetener in foods, beverages and pharmaceuticals, sug...

  3. Sugar Beet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    World-wide demand for sugar approaches 140Mt each year, and is supplied by only two plants, once of which is the sugar beet (Beta vulgaris, L.). A team of international researchers were assembled by the editor to review the body of literature on sugar beet production and assemble it into an accessi...

  4. Energy use reduction potential in the beet sugar industry

    SciTech Connect

    Barron, T.S.; Cleary, M.

    1985-01-01

    Process energy use data are presented for most of the forty operating beet sugar factories in the United States. Sixty percent of the processing capacity is in states that actively pursue cogeneration projects. Most of the present factories cogenerate steam and electricity for their own use. Fossil fuel boilers and low- to medium-pressure steam turbines are used exclusively for this purpose. Three alternative cogeneration technologies are evaluated, with economic feasibility found to depend on the price at which excess electricity can be sold.

  5. Energy use reduction potential in the beet sugar industry

    SciTech Connect

    Barron, T.S.; Heist, J.A.

    1984-01-01

    Process energy use data are presented for most of the forty operating beet sugar factories in the United States. Sixty percent of the processing capacity is in states that actively pursue cogeneration projects. Most of the present factories cogenerate steam and electricity for their own use. Fossil fuel boilers and low- to medium-pressure steam turbines are used exclusively for this purpose. Three alternative cogeneration technologies are evaluated, with economic feasibility found to depend on the price at which excess electricity can be sold.

  6. Sugar Beet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    World sugar production is around 160 Mt yearly with a per capita consumption of about 23 kg. Total utilization is increasing approximately 1.4% annually thanks to the improved standard of living in densely populated countries like China and India. About one-quarter of world production is extracted f...

  7. Plastid transformation in sugar beet: Beta vulgaris.

    PubMed

    De Marchis, Francesca; Bellucci, Michele

    2014-01-01

    Chloroplast biotechnology has assumed great importance in the past 20 years and, thanks to the numerous advantages as compared to conventional transgenic technologies, has been applied in an increasing number of plant species but still very much limited. Hence, it is of utmost importance to extend the range of species in which plastid transformation can be applied. Sugar beet (Beta vulgaris L.) is an important industrial crop of the temperate zone in which chloroplast DNA is not transmitted trough pollen. Transformation of the sugar beet genome is performed in several research laboratories; conversely sugar beet plastome genetic transformation is far away from being considered a routine technique. We describe here a method to obtain transplastomic sugar beet plants trough biolistic transformation. The availability of sugar beet transplastomic plants should avoid the risk of gene flow between these cultivated genetic modified sugar beet plants and the wild-type plants or relative wild species. PMID:24599867

  8. Assessment of change in soil water content properties irrigated with industrial sugar beet wastewater.

    PubMed

    Tabatabaei, Sayyed Hassan; Najafi, Payam; Amini, Hussein

    2007-05-15

    In this research the effect of industrial sugar beet wastewater has been assessed on the soil water content properties in summer 2005. The evaluated parameters were the soil water content points such as Saturation Percent (SP), Field Capacity (FC), Permanent Wilting Point (PWP), gravitational water and Total Available Water (TAW). The pilot design was fully randomized with three replications and three treatments. The three treatments were: 1-normal water, 2-industrial sugar beet wastewater (50%) and normal water (50%) and 3-sugar beet wastewater (100%). The experiments have been carried out in the field, in 21 columns with the diameter 110 mm and the height of 400 mm. The soil was irrigated using surface irrigation method for 12 events with a constant volume and period. Based on the result, the SP, FC and PWP initial value were 46.5, 35 and 15%, respectively for all the treatments. At the end of the period, the values changed to 47, 36.6 and 17.5% for T2. They are also increased significantly to 48.5, 37 and 18.7% for T3 at the end of the period. The increasing of soil Organic Matter (OM) during the period is expected to be the main factor for this change. The result shows that although the FC and PWP parameters are increased during the period but TAW decreased significantly from the 20 to 18.5%. The other effects of wastewater on soil and leached water quality should be evaluated too. PMID:19086512

  9. Sugar beet traditional breeding.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With rapidly changing agricultural practices, target environments, and biotic and abiotic stresses, plant breeders face the task of continually selecting plants with desirable traits with the goal to assemble advantageous combinations of genes in new varieties. Sugar beet has been selectively bred s...

  10. Technical and economic assessments of storage techniques for long-term retention of industrial-beet sugar for non-food industrial fermentations

    NASA Astrophysics Data System (ADS)

    Vargas-Ramirez, Juan Manuel

    Industrial beets may compete against corn grain as an important source of sugars for non-food industrial fermentations. However, dependable and energy-efficient systems for beet sugar storage and processing are necessary to help establish industrial beets as a viable sugar feedstock. Therefore, technical and economic aspects of beet sugar storage and processing were evaluated. First, sugar retention was evaluated in whole beets treated externally with either one of two antimicrobials or a senescence inhibitor and stored for 36 wk at different temperature and atmosphere combinations. Although surface treatment did not improve sugar retention, full retention was enabled by beet dehydration caused by ambient air at 25 °C and with a relative humidity of 37%. This insight led to the evaluation of sugar retention in ground-beet tissue ensiled for 8 wk at different combinations of acidic pH, moisture content (MC), and sugar:solids. Some combinations of pH ≤ 4.0 and MC ≤ 67.5% enabled retentions of at least 90%. Yeast fermentability was also evaluated in non-purified beet juice acidified to enable long-term storage and partially neutralized before fermentation. None of the salts synthesized through juice acidification and partial neutralization inhibited yeast fermentation at the levels evaluated in that work. Conversely, yeast fermentation rates significantly improved in the presence of ammonium salts, which appeared to compensate for nitrogen deficiencies. Capital and operating costs for production and storage of concentrated beet juice for an ethanol plant with a production capacity of 76 x 106 L y-1 were estimated on a dry-sugar basis as U.S. ¢34.0 kg-1 and ¢2.2 kg-1, respectively. Storage and processing techniques evaluated thus far prove that industrial beets are a technically-feasible sugar feedstock for ethanol production.

  11. Sugar beet (Beta vulgaris L.).

    PubMed

    Kagami, Hiroyo; Kurata, Masayuki; Matsuhira, Hiroaki; Taguchi, Kazunori; Mikami, Tetsuo; Tamagake, Hideto; Kubo, Tomohiko

    2015-01-01

    Creating transgenic plants is invaluable for the genetic analysis of sugar beet and will be increasingly important as sugar beet genomic technologies progress. A protocol for Agrobacterium-mediated transformation of sugar beet is described in this chapter. Our protocol is optimized for a sugar beet genotype that performs exceptionally well in tissue culture, including the steps of dedifferentiation, callus proliferation, and regeneration. Because of the infrequent occurrence of such a genotype in sugar beet populations, our protocol includes an in vitro propagation method for germplasm preservation. The starting materials for transgenic experiments are aseptic shoots grown from surface-sterilized seed balls. Callus is induced from leaf explants and subsequently infected with Agrobacterium. Plantlets are regenerated from transgenic callus and vernalized for flowering, if necessary. The efficiency of transformation was quite high; in our laboratory, the culture of only ten leaf explants, on average, generated one transgenic plant. PMID:25300853

  12. Immobilized Sclerotinia sclerotiorum invertase to produce invert sugar syrup from industrial beet molasses by-product.

    PubMed

    Mouelhi, Refka; Abidi, Ferid; Galai, Said; Marzouki, M Nejib

    2014-03-01

    The fungus Sclerotinia sclerotiorum produces invertase activity during cultivation on many agroindustrial residues. The molasses induced invertase was purified by DEAE-cellulose chromatography. The molecular mass of the purified enzyme was estimated at 48 kDa. Optimal temperature was determined at 60 °C and thermal stability up to 65 °C. The enzyme was stable between pH 2.0 and 8.0; optimum pH was about 5.5. Apparent K(m) and V(max) for sucrose were estimated to be respectively 5.8 mM and 0.11 μmol/min. The invertase was activated by β-mercaptoethanol. Free enzyme exhibited 80 % of its original activity after two month's storage at 4 °C and 50 % after 1 week at 25 °C. In order to investigate an industrial application, the enzyme was immobilized on alginate and examined for invert sugar production by molasses hydrolysis in a continuous bioreactor. The yield of immobilized invertase was about 78 % and the activity yield was 59 %. Interestingly the immobilized enzyme hydrolyzed beet molasses consuming nearly all sucrose. It retained all of its initial activity after being used for 4 cycles and about 65 % at the sixth cycle. Regarding productivity; 20 g/l of molasses by-product gave the best invert sugar production 46.21 g/day/100 g substrate related to optimal sucrose conversion of 41.6 %. PMID:24142426

  13. Production of ethyl alcohol from sugar beets

    SciTech Connect

    Larsen, D.H.; Doney, D.L.; Orien, H.A.

    1981-01-01

    Various methods of processing sugar beets prior to fermentation of EtOH were compared. Water slurries of whole beets, expressed juice, and industrially produced diffusion juice were fermented readily by Saccharomyces cerevisiae without the addition of nutrient supplements. Yields of alcohol in both the slurries and juices were 43-47%. Heating the slurries or juices to boiling for 1 min often increased the yield of alcohol and the vigor of the fermentation; however, some yields of greater than 46% were obtained in unheated expressed juice. Difficulty in processing slurries of homogenized or ground whole beets, together with the restriction on the concentration of sugar in the slurry imposed by dilution with water, would probably favor some method of separating the beet tissues from the juice prior to fermentation in an industrial process. Alcohol yields of 4 cultivars varying in sugar content ranged from 38.4 to 46.0% of sugar and 18.0 to 26.1 gallon of alcohol per ton of fresh beets.

  14. Successful application of dextranase in sugar beet factories

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dextranases are sometimes applied to hydrolyze dextran polysaccharide in sugar manufacture when bacterial deterioration of sugar beet has occurred. Unfortunately, dextranases only have a small market and low volume sales compared to many other industrial enzymes. Consequently, research and develop...

  15. Beet sugar refining applications: Hydrate freeze separation program: Final report

    SciTech Connect

    Not Available

    1988-03-01

    The beet sugar segment is the most energy intensive of the food products industry, consuming some 40 trillion Btu per year of primary fuel (the equivalent of over 13.5 million barrels a year of oil). It takes about 6700 Btu to refine 1 pound of sugar from beets. Changing factory operations to use freeze crystallization as outlined in this report and demonstrated in this program, the energy use in the industry can be reduced by about 40%. A project to accomplish full scale changes in a factory is projected to have a simple payback of just over 3 years. The sugar industry now loses about 15% of the sugar extracted from the beet. This sugar is lost in the molasses, the concentrated impurities that are extracted with sugar from the beet. One proposed use of this process described in this report is to recover a fraction of this sugar that is now lost. 28 figs., 18 tabs.

  16. OMICS Technologies and Applications in Sugar Beet

    PubMed Central

    Zhang, Yongxue; Nan, Jingdong; Yu, Bing

    2016-01-01

    Sugar beet is a species of the Chenopodiaceae family. It is an important sugar crop that supplies approximately 35% of the sugar in the world. Sugar beet M14 line is a unique germplasm that contains genetic materials from Beta vulgaris L. and Beta corolliflora Zoss. And exhibits tolerance to salt stress. In this review, we have summarized OMICS technologies and applications in sugar beet including M14 for identification of novel genes, proteins related to biotic and abiotic stresses, apomixes and metabolites related to energy and food. An OMICS overview for the discovery of novel genes, proteins and metabolites in sugar beet has helped us understand the complex mechanisms underlying many processes such as apomixes, tolerance to biotic and abiotic stresses. The knowledge gained is valuable for improving the tolerance of sugar beet and other crops to biotic and abiotic stresses as well as for enhancing the yield of sugar beet for energy and food production. PMID:27446130

  17. OMICS Technologies and Applications in Sugar Beet.

    PubMed

    Zhang, Yongxue; Nan, Jingdong; Yu, Bing

    2016-01-01

    Sugar beet is a species of the Chenopodiaceae family. It is an important sugar crop that supplies approximately 35% of the sugar in the world. Sugar beet M14 line is a unique germplasm that contains genetic materials from Beta vulgaris L. and Beta corolliflora Zoss. And exhibits tolerance to salt stress. In this review, we have summarized OMICS technologies and applications in sugar beet including M14 for identification of novel genes, proteins related to biotic and abiotic stresses, apomixes and metabolites related to energy and food. An OMICS overview for the discovery of novel genes, proteins and metabolites in sugar beet has helped us understand the complex mechanisms underlying many processes such as apomixes, tolerance to biotic and abiotic stresses. The knowledge gained is valuable for improving the tolerance of sugar beet and other crops to biotic and abiotic stresses as well as for enhancing the yield of sugar beet for energy and food production. PMID:27446130

  18. SUGAR BEET QUALITY IMPROVEMENT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    More than one third of the sucrose (sugar) consumed by humans is obtained from sugarbeet (Beta vulgaris L.). Sucrose extraction begins with the production of a dark opaque juice from strips of sugarbeet. This juice is purified with lime and carbon dioxide, thickened by evaporation, and crystallize...

  19. Evaluation of fungicide and biological treatments for control of fungal storage rots in sugar beet, 2014

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Preventing sucrose losses in storage is important to the economic viability of the sugar beet industry. In an effort to establish additional measures for reducing sucrose losses in storage, ten fungicide and/or biological treatments were evaluated on sugar beet roots in a commercial sugar beet stor...

  20. Precision Drilling Of Sugar Beet

    NASA Astrophysics Data System (ADS)

    Kalina, Jaroslav

    1983-03-01

    The paper describes the features of the precision drilling of sugar beet, methods of measurements, mathematical relations, procedure and results. The use of a high-speed camera and of a computer with an investigation of the drilling mechanisms enabled to achieve the shortening of the procedure by one half, an accurate assessment of the principles of drilling mechanisms without implication of other influences arising in field tests and the availability of more data for decision making. The result of the experiments was a considerably simpler assessment of the principles of drill mechanisms.

  1. Sugar Beet (Beta vulgaris L. ssp. vulgaris)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugar beet is widely grown, however high profitability requires proper land selection and management. This chapter describes the characteristics of sugar beet and reviews its land and soil management, including cultivation techniques, crop rotation, soil tillage, planting and seedbed preparation, di...

  2. 29 CFR 780.815 - Basic conditions of exemption; second part, processing of sugar beets, sugar-beet molasses...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... sugar beets, sugar-beet molasses, sugarcane, or maple sap. 780.815 Section 780.815 Labor Regulations... Cotton and Processing of Sugar Beets, Sugar-Beet Molasses, Sugarcane, or Maple Sap into Sugar or Syrup... molasses, sugarcane, or maple sap. Under the second part of section 13(b)(15) of the Act, the...

  3. 29 CFR 780.815 - Basic conditions of exemption; second part, processing of sugar beets, sugar-beet molasses...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... sugar beets, sugar-beet molasses, sugarcane, or maple sap. 780.815 Section 780.815 Labor Regulations... Cotton and Processing of Sugar Beets, Sugar-Beet Molasses, Sugarcane, or Maple Sap into Sugar or Syrup... molasses, sugarcane, or maple sap. Under the second part of section 13(b)(15) of the Act, the...

  4. 29 CFR 780.815 - Basic conditions of exemption; second part, processing of sugar beets, sugar-beet molasses...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... sugar beets, sugar-beet molasses, sugarcane, or maple sap. 780.815 Section 780.815 Labor Regulations... Cotton and Processing of Sugar Beets, Sugar-Beet Molasses, Sugarcane, or Maple Sap into Sugar or Syrup... molasses, sugarcane, or maple sap. Under the second part of section 13(b)(15) of the Act, the...

  5. 29 CFR 780.815 - Basic conditions of exemption; second part, processing of sugar beets, sugar-beet molasses...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... sugar beets, sugar-beet molasses, sugarcane, or maple sap. 780.815 Section 780.815 Labor Regulations... Cotton and Processing of Sugar Beets, Sugar-Beet Molasses, Sugarcane, or Maple Sap into Sugar or Syrup... molasses, sugarcane, or maple sap. Under the second part of section 13(b)(15) of the Act, the...

  6. 29 CFR 780.815 - Basic conditions of exemption; second part, processing of sugar beets, sugar-beet molasses...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... sugar beets, sugar-beet molasses, sugarcane, or maple sap. 780.815 Section 780.815 Labor Regulations... Cotton and Processing of Sugar Beets, Sugar-Beet Molasses, Sugarcane, or Maple Sap into Sugar or Syrup... molasses, sugarcane, or maple sap. Under the second part of section 13(b)(15) of the Act, the...

  7. 21 CFR 172.585 - Sugar beet extract flavor base.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sugar beet extract flavor base. 172.585 Section... Related Substances § 172.585 Sugar beet extract flavor base. Sugar beet extract flavor base may be safely used in food in accordance with the provisions of this section. (a) Sugar beet extract flavor base...

  8. Postharvest Rhizopus rot on sugar beet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rhizopus species have been reported as a minor post-harvest rot on sugar beet, particularly under temperatures above 5 deg C. In 2010, Rhizopus was isolated from beets collected from Michigan storage piles in February at a low frequency. However, recent evidence from Michigan has found a high incide...

  9. Variability in Phoma species affecting sugar beet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phoma betae can cause damage to sugar beet (Beta vulgaris) at multiple growth stages. It has historically been an important seedling disease, but this is largely managed by ensuring clean seed for planting. The pathogen also can cause a root rot, a leaf spot, and rotting of beets during storage. In ...

  10. 7 CFR 1435.304 - Beet and cane sugar allotments.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Beet and cane sugar allotments. 1435.304 Section 1435... For Sugar § 1435.304 Beet and cane sugar allotments. (a) The allotment for beet sugar will be 54.35 percent of the overall allotment quantity. (b) The allotment for cane sugar will be 45.65 percent of...

  11. 7 CFR 1435.304 - Beet and cane sugar allotments.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 10 2011-01-01 2011-01-01 false Beet and cane sugar allotments. 1435.304 Section 1435..., DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS SUGAR PROGRAM Flexible Marketing Allotments For Sugar § 1435.304 Beet and cane sugar allotments. (a) The allotment for beet sugar will be...

  12. 7 CFR 1435.304 - Beet and cane sugar allotments.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 10 2014-01-01 2014-01-01 false Beet and cane sugar allotments. 1435.304 Section 1435..., DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS SUGAR PROGRAM Flexible Marketing Allotments For Sugar § 1435.304 Beet and cane sugar allotments. (a) The allotment for beet sugar will be...

  13. 7 CFR 1435.304 - Beet and cane sugar allotments.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 10 2013-01-01 2013-01-01 false Beet and cane sugar allotments. 1435.304 Section 1435..., DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS SUGAR PROGRAM Flexible Marketing Allotments For Sugar § 1435.304 Beet and cane sugar allotments. (a) The allotment for beet sugar will be...

  14. 7 CFR 1435.304 - Beet and cane sugar allotments.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 10 2012-01-01 2012-01-01 false Beet and cane sugar allotments. 1435.304 Section 1435..., DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS SUGAR PROGRAM Flexible Marketing Allotments For Sugar § 1435.304 Beet and cane sugar allotments. (a) The allotment for beet sugar will be...

  15. Microbial community structural analysis of an expanded granular sludge bed (EGSB) reactor for beet sugar industrial wastewater (BSIW) treatment.

    PubMed

    Ambuchi, John Justo; Liu, Junfeng; Wang, Haiman; Shan, Lili; Zhou, Xiangtong; Mohammed, Mohammed O A; Feng, Yujie

    2016-05-01

    A looming global energy crisis has directly increased biomethanation processes using anaerobic digestion technology. However, much knowledge on the microbial community structure, their distribution within the digester and related functions remains extremely scanty and unavailable in some cases, yet very valuable in the improvement of the anaerobic bioprocesses. Using pyrosequencing technique based on Miseq PE 3000, microbial community population profiles were determined in an operated mesophilic expanded granular sludge bed (EGSB) reactor treating beet sugar industrial wastewater (BSIW) in the laboratory scale. Further, the distribution of the organisms in the lower, middle and upper sections within the reactor was examined. To our knowledge, this kind of analysis of the microbial community in a reactor treating BSIW is the first of its kind. A total of 44,204 non-chimeric reads with average length beyond 450 bp were yielded. Both bacterial and archaeal communities were identified with archaea predominance (60 %) observed in the middle section. Bayesian classifier yielded 164 families with only 0.73 % sequences which could not be classified to any taxa at family level. The overall phylum predominance in the reactor showed Firmicutes, Euryarchaeota, Chloroflexi, Proteobacteria and Bacteroidetes in the descending order. Our results clearly demonstrate a highly diverse microbial community population of an anaerobic reactor treating BSIW, with distinct distribution levels within the reactor. PMID:26795960

  16. Analysis of sucrose from sugar beet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sucrose is a disaccharide composed of the monosaccharides glucose and fructose. Sucrose is a product of photosynthesis and is a key carbohydrate resource for growth and metabolism in many organisms. Economic sources of sucrose include sugar cane and sugar beet, where fresh weight sucrose concentrati...

  17. Registration of sugar beet doubled haploid line KDH13 with resistance to beet curly top

    Technology Transfer Automated Retrieval System (TEKTRAN)

    KDH13 is a sugar beet (Beta vulgaris L. ssp vulgaris) doubled haploid line (PI 663862) released as a genetic stock by USDA-ARS in cooperation with the Beet Sugar Development Foundation, Denver, CO. KDH13 is resistant to beet curly top (BCT) caused by Beet curly top virus which is transmitted by the ...

  18. Utilization of pectin extracted sugar beet pulp for composite application

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugar beet pulp (SBP) is the residue left after beet sugar extraction. SBP contains ~25% pectin and is an important source for pectin. However, sugar beet pectin does not have good gel-forming properties and complete extraction of pectin is not typically performed due to the low quality of the galac...

  19. Effect of fungicides on sugar beet yield and quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    More than half of the US sugar beet, Beta vulgaris, crop is produced in North Dakota and Minnesota . The objective of this research was to determine the effect of fungicides on sugar beet yield and quality in the absence of disease. Sugar beet was planted at Prosper, North Dakota in 2005, 2006 and...

  20. 21 CFR 172.585 - Sugar beet extract flavor base.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sugar beet extract flavor base. 172.585 Section... HUMAN CONSUMPTION Flavoring Agents and Related Substances § 172.585 Sugar beet extract flavor base. Sugar beet extract flavor base may be safely used in food in accordance with the provisions of...

  1. 21 CFR 172.585 - Sugar beet extract flavor base.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sugar beet extract flavor base. 172.585 Section... HUMAN CONSUMPTION Flavoring Agents and Related Substances § 172.585 Sugar beet extract flavor base. Sugar beet extract flavor base may be safely used in food in accordance with the provisions of...

  2. 21 CFR 172.585 - Sugar beet extract flavor base.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sugar beet extract flavor base. 172.585 Section... HUMAN CONSUMPTION Flavoring Agents and Related Substances § 172.585 Sugar beet extract flavor base. Sugar beet extract flavor base may be safely used in food in accordance with the provisions of...

  3. 21 CFR 172.585 - Sugar beet extract flavor base.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sugar beet extract flavor base. 172.585 Section 172... CONSUMPTION Flavoring Agents and Related Substances § 172.585 Sugar beet extract flavor base. Sugar beet extract flavor base may be safely used in food in accordance with the provisions of this section....

  4. 7 CFR 457.109 - Sugar Beet Crop Insurance Provisions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Sugar Beet Crop Insurance Provisions. 457.109 Section... CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.109 Sugar Beet Crop Insurance Provisions. The Sugar Beet Crop Insurance Provisions for the 1998 and succeeding crop years in countries...

  5. 7 CFR 457.109 - Sugar Beet Crop Insurance Provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Sugar Beet Crop Insurance Provisions. 457.109 Section... CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.109 Sugar Beet Crop Insurance Provisions. The Sugar Beet Crop Insurance Provisions for the 1998 and succeeding crop years in countries...

  6. 7 CFR 457.109 - Sugar Beet Crop Insurance Provisions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Sugar Beet Crop Insurance Provisions. 457.109 Section... CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.109 Sugar Beet Crop Insurance Provisions. The Sugar Beet Crop Insurance Provisions for the 1998 and succeeding crop years in countries...

  7. 7 CFR 457.109 - Sugar Beet Crop Insurance Provisions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Sugar Beet Crop Insurance Provisions. 457.109 Section... CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.109 Sugar Beet Crop Insurance Provisions. The Sugar Beet Crop Insurance Provisions for the 1998 and succeeding crop years in countries...

  8. 7 CFR 457.109 - Sugar Beet Crop Insurance Provisions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 6 2011-01-01 2011-01-01 false Sugar Beet Crop Insurance Provisions. 457.109 Section... CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.109 Sugar Beet Crop Insurance Provisions. The Sugar Beet Crop Insurance Provisions for the 1998 and succeeding crop years in countries...

  9. Fusarium stalk blight and rot in sugar beet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium stalk blight of sugar beet can cause reductions or complete loss of seed production. The causal agent is Fusarium oxysporum. In addition, Fusarium solani has been demonstrated to cause a rot of sugar beet seed stalk, and other species have been reported associated with sugar beet fruit, but...

  10. Developments in beet and cane sugar extraction

    SciTech Connect

    Iverson, C.; Schwartzberg, H.G.

    1984-01-01

    This paper reviews the various types of extractors used in the extraction of sugar from beet and sugar cane. The types of extractors described are as follows:- Countercurrent Screw - Conveyor Extractors, (Tower Extractors, Slope Extractors), Countercurrent Drag Chain Extractors, Multistage Cross-Flow Extractors, Trommel Extractors, Multistage Scroll Extractors, Diffustion Batteries. Reduced capital costs and power expenditures and slightly higher cane sugar yields can be obtained by combined milking and diffusion extraction as opposed to multi-stage milling. The mechanical reliability of the machinery is emphasized and special attention is given to extraction procedures. Nowadays the trend in beet and cane sugar extraction is toward the use of larger and larger units which helps minimize labor and capital costs per unit of product.

  11. Rhizoctonia seedling disease on sugar beet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rhizoctonia seedling damping-off can cause losses in sugar beet as well as providing inoculum for later root rot. The disease is caused by Rhizoctonia solani. The pathogen has several subgroups, anastomosis groups (AG), of which AG-4 has historically been associated with damping-off, while AG-2-2 is...

  12. Extraction and characterization of sugar beet polysaccharides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugar Beet Pulp (SBP), contains 65 to 80% (dry weight) of potentially valuable polysaccharides. We separated SBP into three fractions. The first fraction, extracted under acid conditions, was labeled pectin, the second was comprised of two sub fractions solubilized under alkaline conditions and wa...

  13. 21 CFR 173.320 - Chemicals for controlling microorganisms in cane-sugar and beet-sugar mills.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...-sugar and beet-sugar mills. 173.320 Section 173.320 Food and Drugs FOOD AND DRUG ADMINISTRATION...-sugar and beet-sugar mills. Agents for controlling microorganisms in cane-sugar and beet-sugar mills may... microorganisms in cane-sugar and/or beet-sugar mills as specified in paragraph (b) of this section. (b) They...

  14. Fungal secretomes enhance sugar beet pulp hydrolysis

    PubMed Central

    Kracher, Daniel; Oros, Damir; Yao, Wanying; Preims, Marita; Rezic, Iva; Haltrich, Dietmar; Rezic, Tonci; Ludwig, Roland

    2014-01-01

    The recalcitrance of lignocellulose makes enzymatic hydrolysis of plant biomass for the production of second generation biofuels a major challenge. This work investigates an efficient and economic approach for the enzymatic hydrolysis of sugar beet pulp (SBP), which is a difficult to degrade, hemicellulose-rich by-product of the table sugar industry. Three fungal strains were grown on different substrates and the production of various extracellular hydrolytic and oxidative enzymes involved in pectin, hemicellulose, and cellulose breakdown were monitored. In a second step, the ability of the culture supernatants to hydrolyze thermally pretreated SBP was tested in batch experiments. The supernatant of Sclerotium rolfsii, a soil-borne facultative plant pathogen, was found to have the highest hydrolytic activity on SBP and was selected for further hydrolyzation experiments. A low enzyme load of 0.2 mg g–1 protein from the culture supernatant was sufficient to hydrolyze a large fraction of the pectin and hemicelluloses present in SBP. The addition of Trichoderma reesei cellulase (1–17.5 mg g–1 SBP) resulted in almost complete hydrolyzation of cellulose. It was found that the combination of pectinolytic, hemicellulolytic, and cellulolytic activities works synergistically on the complex SBP composite, and a combination of these hydrolytic enzymes is required to achieve a high degree of enzymatic SBP hydrolysis with a low enzyme load. PMID:24677771

  15. Fungal secretomes enhance sugar beet pulp hydrolysis.

    PubMed

    Kracher, Daniel; Oros, Damir; Yao, Wanying; Preims, Marita; Rezic, Iva; Haltrich, Dietmar; Rezic, Tonci; Ludwig, Roland

    2014-04-01

    The recalcitrance of lignocellulose makes enzymatic hydrolysis of plant biomass for the production of second generation biofuels a major challenge. This work investigates an efficient and economic approach for the enzymatic hydrolysis of sugar beet pulp (SBP), which is a difficult to degrade, hemicellulose-rich by-product of the table sugar industry. Three fungal strains were grown on different substrates and the production of various extracellular hydrolytic and oxidative enzymes involved in pectin, hemicellulose, and cellulose breakdown were monitored. In a second step, the ability of the culture supernatants to hydrolyze thermally pretreated SBP was tested in batch experiments. The supernatant of Sclerotium rolfsii, a soil-borne facultative plant pathogen, was found to have the highest hydrolytic activity on SBP and was selected for further hydrolyzation experiments. A low enzyme load of 0.2 mg g(-1) protein from the culture supernatant was sufficient to hydrolyze a large fraction of the pectin and hemicelluloses present in SBP. The addition of Trichoderma reesei cellulase (1-17.5 mg g(-1) SBP) resulted in almost complete hydrolyzation of cellulose. It was found that the combination of pectinolytic, hemicellulolytic, and cellulolytic activities works synergistically on the complex SBP composite, and a combination of these hydrolytic enzymes is required to achieve a high degree of enzymatic SBP hydrolysis with a low enzyme load. PMID:24677771

  16. Relationship of beet curly top foliar ratings to sugar beet yield

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugar beet varieties were evaluated for disease resistance to Beet severe curly top virus (BSCTV) and closely related virus species to establish if disease ratings made in inoculated nurseries correlated with disease ratings and yield in sugar beet crops exposed to natural disease outbreaks. Cultiv...

  17. Sugar beet storability and the influence of beet necrotic yellow vein virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rhizomania in sugar beets caused by Beet necrotic yellow vein virus (BNYVV) and storage losses are serious problems in sugar beet production. Storage issues associated with outdoor piles may be exacerbated by disease problems such as rhizomania. To investigate the influence of BNYVV on storability...

  18. Exopolysaccharide-Producing Bacteria from Sugar Beets

    PubMed Central

    Tallgren, Antti H.; Airaksinen, Ulla; von Weissenberg, Robert; Ojamo, Heikki; Kuusisto, Juhani; Leisola, Matti

    1999-01-01

    Six hundred microorganisms were isolated from sugar beets collected from different parts of Finland to study their slime production. A total of 170 of them produced exopolysaccharides, of which 35% were heteropolysaccharides. The yield of heteropolysaccharides from sucrose was lower than that of dextrans. Five isolates, which were chosen for closer study, were identified as Leuconostoc mesenteroides (two species), Rahnella aquatilis (two species), and Enterobacter amnigenus. PMID:9925632

  19. Discrimination of genetically modified sugar beets based on terahertz spectroscopy.

    PubMed

    Chen, Tao; Li, Zhi; Yin, Xianhua; Hu, Fangrong; Hu, Cong

    2016-01-15

    The objective of this paper was to apply terahertz (THz) spectroscopy combined with chemometrics techniques for discrimination of genetically modified (GM) and non-GM sugar beets. In this paper, the THz spectra of 84 sugar beet samples (36 GM sugar beets and 48 non-GM ones) were obtained by using terahertz time-domain spectroscopy (THz-TDS) system in the frequency range from 0.2 to 1.2 THz. Three chemometrics methods, principal component analysis (PCA), discriminant analysis (DA) and discriminant partial least squares (DPLS), were employed to classify sugar beet samples into two groups: genetically modified organisms (GMOs) and non-GMOs. The DPLS method yielded the best classification result, and the percentages of successful classification for GM and non-GM sugar beets were both 100%. Results of the present study demonstrate the usefulness of THz spectroscopy together with chemometrics methods as a powerful tool to distinguish GM and non-GM sugar beets. PMID:26436847

  20. Discrimination of genetically modified sugar beets based on terahertz spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Tao; Li, Zhi; Yin, Xianhua; Hu, Fangrong; Hu, Cong

    2016-01-01

    The objective of this paper was to apply terahertz (THz) spectroscopy combined with chemometrics techniques for discrimination of genetically modified (GM) and non-GM sugar beets. In this paper, the THz spectra of 84 sugar beet samples (36 GM sugar beets and 48 non-GM ones) were obtained by using terahertz time-domain spectroscopy (THz-TDS) system in the frequency range from 0.2 to 1.2 THz. Three chemometrics methods, principal component analysis (PCA), discriminant analysis (DA) and discriminant partial least squares (DPLS), were employed to classify sugar beet samples into two groups: genetically modified organisms (GMOs) and non-GMOs. The DPLS method yielded the best classification result, and the percentages of successful classification for GM and non-GM sugar beets were both 100%. Results of the present study demonstrate the usefulness of THz spectroscopy together with chemometrics methods as a powerful tool to distinguish GM and non-GM sugar beets.

  1. Brief History of Cercospora Leaf Spot of Sugar Beet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugar beet (Beta vulgaris L.) is most likely native to western and southern Asia and is believed to have arrived in Europe via the Mediterranean countries through Egypt. The cultivation of sugar beet as an alternate source of sugar is attributed Andreas Siegmund Marggraf in the 1740s. Subsequent pro...

  2. Sensory differences between product matrices made with beet and cane sugar sources.

    PubMed

    Urbanus, Brittany L; Schmidt, Shelly J; Lee, Soo-Yeun

    2014-11-01

    Although beet and cane sugar sources have nearly identical chemical compositions, the sugars differ in their volatile profiles, thermal behaviors, and minor chemical components. Scientific evidence characterizing the impact of these differences on product quality is lacking. The objective of this research was to determine whether panelists could identify a sensory difference between product matrices made with beet and cane sugar sources. Sixty-two panelists used the R-index by ranking method to discern whether there was a difference between 2 brands of beet and 2 brands of cane sugars in regard to their aroma and flavor, along with a difference in pavlova, simple syrup, sugar cookies, pudding, whipped cream, and iced tea made with beet and cane sugars. R-index values and Friedman's rank sum tests showed differences (P < 0.05) between beet and cane sugars in regard to their aroma and flavor. Significant differences between the sugar sources were also identified when incorporated into the pavlova and simple syrup. No difference was observed in the sugar cookies, pudding, whipped cream, and iced tea. Possible explanations for the lack of difference in these products include: (1) masking of beet and cane sensory differences by the flavor and complexity of the product matrix, (2) the relatively small quantity of sugar in these products, and (3) variation within these products being more influential than the sugar source. The findings from this research are relevant to sugar manufacturers and the food industry as a whole, because it identifies differences between beet and cane sugars and product matrices in which beet and cane sugars are not directly interchangeable. PMID:25308166

  3. Beet curly top resistance in USDA-ARS Kimberly sugar beet germplasm, 2013

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Curly top caused by Beet curly top virus is a widespread disease problem vectored by the beet leafhopper in semiarid sugar beet production areas. Host resistance is the primary defense against this problem, but resistance in commercial cultivars is only low to intermediate. In order to identify no...

  4. Feasibility of converting a sugar beet plant to fuel ethanol production

    SciTech Connect

    Hammaker, G S; Pfost, H B; David, M L; Marino, M L

    1981-04-01

    This study was performed to assess the feasibility of producing fuel ethanol from sugar beets. Sugar beets are a major agricultural crop in the area and the beet sugar industry is a major employer. There have been some indications that increasing competition from imported sugar and fructose sugar produced from corn may lead to lower average sugar prices than have prevailed in the past. Fuel ethanol might provide an attractive alternative market for beets and ethanol production would continue to provide an industrial base for labor. Ethanol production from beets would utilize much of the same field and plant equipment as is now used for sugar. It is logical to examine the modification of an existing sugar plant from producing sugar to ethanol. The decision was made to use Great Western Sugar Company's plant at Mitchell as the example plant. This plant was selected primarily on the basis of its independence from other plants and the availability of relatively nearby beet acreage. The potential feedstocks assessed included sugar beets, corn, hybrid beets, and potatoes. Markets were assessed for ethanol and fermentation by-products saleability. Investment and operating costs were determined for each prospective plant. Plants were evaluated using a discounted cash flow technique to obtain data on full production costs. Environmental, health, safety, and socio-economic aspects of potential facilities were examined. Three consulting engineering firms and 3 engineering-construction firms are considered capable of providing the desired turn-key engineering design and construction services. It was concluded that the project is technically feasible. (DMC)

  5. Fusarium Wilt and Yellows of Sugar Beet and Dry Bean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Central High Plains (Colorado, Nebraska and Wyoming) is among the largest producer of dry edible beans and sugar beets in the United States. Sugar beet is an important cash crop in northeastern Colorado with approximately 30,000 acres planted and 944,000 tons harvested in 2012. Approximately 250...

  6. Rhizoctonia seedling damping-off in sugar beet in Michigan

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rhizoctonia solani is an important seedling pathogen of sugar beet, causing damping-off following seedling emergence. Anastomosis group (AG)-4 has been the primary seedling pathogen reported on sugar beet, however, recent screening has found high incidence of infection by AG-2-2. Isolations of R. so...

  7. Root rot in sugar beet piles at harvest

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugar beet root rots are not only a concern because of reduced yields, but can also be associated with losses in storage. Our primary sugar beet root rot disease problem in the Amalgamated production area is Rhizoctonia root rot. However, this rot frequently only penetrates a short distance past t...

  8. Effect of NaCl on Germination of Sugar Beet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugar beet is a salt tolerant crop, but is most vulnerable to salinity during germination. The goal of this research is to examine the response to salinity on the germination of sugar beet, ultimately to provide germplasm that has an agronomic use in saline soils around the world. Expanding the char...

  9. Genetic Variability Among Isolates of Fusarium oxysporum from Sugar Beet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium Yellows, caused by the fungus Fusarium oxysporum f. sp. betae (FOB), can lead to significant yield losses for sugar beet growers. This fungus is variable in pathogenicity, morphology, host range, and symptoms; and, it is not a well characterized pathogen on sugar beet. From 1998 – 2003, 8...

  10. Long-term Survival of Cryopreserved Sugar Beet Pollen

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hecker and coworkers demonstrated that sugar beet (Beta vulgaris, L.) pollen could be stored in liquid nitrogen vapor phase (-160°C) (LN) for 1 yr and remained viable. In this study we demonstrate that similar pollen, stored for 17 years in LN was able to successfully pollinate sugar beet and prod...

  11. Postharvest Storage Losses Associated with Rhizomania in Sugar Beet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    During storage of sugar beet, respiration and rots consume sucrose and produce invert sugar. Diseases that occur in the field can affect the magnitude of these losses. This research examines the storage of roots with rhizomania (caused by Beet necrotic yellow vein virus) and the effectiveness of rh...

  12. Depth at which Rhizoctonia solani causes infection fo sugar beet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rhizoctonia solani (Kuhn) is the causal agent of Rhizoctonia root rot of sugar beet (Beta vulgaris L.). Typically, Rhizoctonia root rot symptoms appear to be initiated on the plant at the soil line. Recently, sugar beet plants were observed with Rhizoctonia root rot infections close to the root ti...

  13. Ethylene Formation in Sugar Beet Leaves

    PubMed Central

    Elstner, Erich F.; Konze, Jörg R.; Selman, Bruce R.; Stoffer, Claus

    1976-01-01

    Ethylene production by sugar beet (Beta vulgaris L.) leaf discs is inhibited by white (or red, >610 nm) light or by wounding. In contrast, in wounded leaf discs, ethylene production is stimulated by light. The effect of light on wounded leaf discs has been studied by using an in vitro system which mimics the loss of compartmentation in the wounded leaf. Chlorophyll-free extracts from sugar beet leaves stimulate the production of the superoxide free radical ion (as a prerequisite for ethylene formation) by illuminated chloroplast lamellae. The substance from the crude leaf extracts which is active in stimulating the production of the superoxide free radical ion has been identified as 3-hydroxytyramine (dopamine). Exogenous dopamine between 5 μm and 100 μm stimulates ethylene formation by illuminated chloroplast lamellae from methional. It also stimulates the production of the superoxide free radical ion, the formation of which apparently involves both a lamellar phenoloxidase and photosynthetic electron transport as a 1-electron donor, and is cyanide-sensitive. PMID:16659639

  14. Land application of sugar beet by-products: effects on nitrogen mineralization and crop yields.

    PubMed

    Kumar, Kuldip; Rosen, Carl J; Gupta, Satish C; McNearney, Matthew

    2009-01-01

    Land application of food processing wastes has become an acceptable practice because of the nutrient value of the wastes and potential cost savings in their disposal. Spoiled beets and pulp are among the main by-products generated by the sugar beet (Beta vulgaris L.) processing industry. Farmers commonly land apply these by-products at rates >224 Mg ha(-1) on a fresh weight basis. However, information on nutrient release in soils treated with these by-products and their subsequent impacts on crop yield is lacking. Field studies were conducted to determine the effects of sugar beet by-product application on N release and crop yields over two growing seasons. Treatments in the first year were two rates (224 and 448 Mg ha(-1) fresh weight) of pulp and spoiled beets and a nonfertilized control. In the second year after by-product application, the control treatment was fertilized with N fertilizer and an additional treatment was added as a nonfertilized control in buffer areas. Wheat (Triticum aestivum L.) was grown in the year of by-product application and sugar beet in the subsequent year. By-product treatments caused a significant reduction in wheat grain yield compared with the control. This was due to a decline in N availability as a result of immobilization. Based on microplots receiving 15N labeled beets, wheat took up <1% of spoiled beet-N (approximately 4.7 kg ha(-1)) during the year of by-product application. In the second cropping year, sugar beet root yields were significantly higher in the fertilized control and by-product treatments than the nonfertilized control. The lack of significant difference in sugar beet yield between the fertilized control and by-product treatments was likely due to the greater availability of N in the second year. Labeled 15N data also showed that the sugar beet crop recovered a 17% of sugar beet-N, an equivalent of 86 kg N ha(-1), during the second cropping year. There was no difference in sugar beet root yield, N uptake, or

  15. 21 CFR 173.320 - Chemicals for controlling microorganisms in cane-sugar and beet-sugar mills.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...-sugar and beet-sugar mills. 173.320 Section 173.320 Food and Drugs FOOD AND DRUG ADMINISTRATION... controlling microorganisms in cane-sugar and beet-sugar mills. Agents for controlling microorganisms in cane-sugar and beet-sugar mills may be safely used in accordance with the following conditions: (a) They...

  16. 21 CFR 173.320 - Chemicals for controlling microorganisms in cane-sugar and beet-sugar mills.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...-sugar and beet-sugar mills. 173.320 Section 173.320 Food and Drugs FOOD AND DRUG ADMINISTRATION... controlling microorganisms in cane-sugar and beet-sugar mills. Agents for controlling microorganisms in cane-sugar and beet-sugar mills may be safely used in accordance with the following conditions: (a) They...

  17. Integrated hydrolyzation and fermentation of sugar beet pulp to bioethanol.

    PubMed

    Rezić, Tonči; Oros, Damir; Marković, Iva; Kracher, Daniel; Ludwig, Roland; Santek, Božidar

    2013-09-28

    Sugar beet pulp is an abundant industrial waste material that holds a great potential for bioethanol production owing to its high content of cellulose, hemicelluloses, and pectin. Its structural and chemical robustness limits the yield of fermentable sugars obtained by hydrolyzation and represents the main bottleneck for bioethanol production. Physical (ultrasound and thermal) pretreatment methods were tested and combined with enzymatic hydrolysis by cellulase and pectinase to evaluate the most efficient strategy. The optimized hydrolysis process was combined with a fermentation step using a Saccharomyces cerevisiae strain for ethanol production in a single-tank bioreactor. Optimal sugar beet pulp conversion was achieved at a concentration of 60 g/l (39% of dry weight) and a bioreactor stirrer speed of 960 rpm. The maximum ethanol yield was 0.1 g ethanol/g of dry weight (0.25 g ethanol/g total sugar content), the efficiency of ethanol production was 49%, and the productivity of the bioprocess was 0.29 g/l·h, respectively. PMID:23851274

  18. Beta vulgaris L. serine proteinase inhibitor gene expression correlates to insect pest resistance in sugar beet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Analyzing genes that can be used for improving sugar beet resistance to the sugar beet root maggot (SBRM, Tetanops myopaeformis Roder), one of the most destructive insect pests of sugar beet in North America, was a major goal in our investigation. We report on the expression patterns of a sugar beet...

  19. 75 FR 60715 - Domestic Sugar Program-FY 2010 and FY 2011 Cane Sugar and Beet Sugar Marketing Allotments and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-01

    ... 2010 (FY 2010) State sugar marketing allotments and company allocations to sugarcane and sugar beet... State sugar marketing allotments and company allocations to sugarcane and sugar beet processors, which... sugarcane processors according to the statute and the regulations in 7 CFR part 1435 and made...

  20. MALDI-TOF/TOF analysis of sugar beet pectin-protein complex

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pectin is a complex heteropolysaccharide found in the cell walls of terrestrial plants. Among its properties, emulsification is of interest in industrial applications for food products. Pectin extracted from sugar beet (Beta vulgaries) pulp, a sub-product of the sugar extraction process, shows exc...

  1. Biogas from sugar beet press pulp as substitute of fossil fuel in sugar beet factories.

    PubMed

    Brooks, L; Parravicini, V; Svardal, K; Kroiss, H; Prendl, L

    2008-01-01

    Sugar beet press pulp (SBP) accumulates as a by-product in sugar factories and it is generally silaged or dried to be used as animal food. Rising energy prices and the opening of the European Union sugar market has put pressure on the manufacturers to find alternatives for energy supply. The aim of this project was to develop a technology in the treatment of SBP that would lead to savings in energy consumption and would provide a more competitive sugar production from sugar beets. These goals were met by the anaerobic digestion of SBP for biogas production. Lab-scale experiments confirmed the suitability of SBP as substrate for anaerobic bacteria. Pilot-scale experiments focused on process optimization and procedures for a quick start up and operational control. Both single-stage and two-stage process configurations showed similar removal efficiency. A stable biogas production could be achieved in single-stage at a maximum volumetric loading rate of 10 kgCSB/(m(3) x d). Degradation efficiency was 75% for VS and 72% for COD. Average specific gas production reached 530 NL/kgCOD(SBP) or 610 NL/kgVS(SBP). (CH(4): 50 to 53%). The first large-scale biogas plant was put into operation during the sugar processing period 2007 at a Hungarian sugar factory. Digesting approximately 50% of the SBP (800 t/d, 22%TS), the biogas produced could substitute about 40% of the natural gas required for the thermal energy supply within the sugar processing. PMID:18957765

  2. Preliming of sugar beet cossettes to reduce energy in sugar beet processing. Final technical report, August 1, 1978-January 31, 1981

    SciTech Connect

    Randall, J.M.

    1981-06-30

    In the United States, the beet sugar industry is the most intensive user of energy, per unit value of product shipped. Approximately 2.6 x 10/sup 6/ Btu of energy are required per ton of beets processed. The increasing cost and scarcity of energy has made the industry very receptive to process changes which can reduce energy requirements for sugar production. A two-year project was undertaken to determine the feasibility of liming fresh sugar beet cossettes, prior to extraction, as a means of reducing energy consumption. Fresh Ca(OH)/sub 2/ was added to cossettes for 10 min prior to introduction into the diffuser (extractor). It was found that up to 3.5 x 10/sup 5/ Btu/ton of beets sliced could be saved in pulp drying and 0.45 x 10/sup 5/ Btu/ton could be saved in production of lime (13.5% and 1.7%, respectively, of current overall energy requirements of the beet-sugar process). Quality of raw juice from the diffuser was much better with limed cossettes than with control cossettes. Experimental thin juice was slightly higher in lime salts and lower in quality than controls. Liming of cossettes by dipping in a slurry of 2.6% Ca(OH)/sub 2/ gave better results than mixing of cossettes with dry Ca(OH)/sub 2/ and would be much easier to implement in an existing plant.

  3. Whole Genome Sequencing of Sugar Beet and Transcriptional Profiling of Beet Curly Top Resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The genome of the sugar beet (Beta vulgaris subsp. vulgaris) doubled haploid line (KDH13) has been sequenced using Illumina HiSeq2000 next generation sequencing platform. This line (PI663862) was released by USDA-ARS as a genetic stock resistant to beet curly top. Sequencing of a standard paired end...

  4. Structural confirmation of oligosaccharides newly isolated from sugar beet molasses

    PubMed Central

    2012-01-01

    Background Sugar beet molasses is a viscous by-product of the processing of sugar beets into sugar. The molasses is known to contain sucrose and raffinose, a typical trisaccharide, with a well-established structure. Although sugar beet molasses contains various other oligosaccharides as well, the structures of those oligosaccharides have not been examined in detail. The purpose of this study was isolation and structural confirmation of these other oligosaccharides found in sugar beet molasses. Results Four oligosaccharides were newly isolated from sugar beet molasses using high-performance liquid chromatography (HPLC) and carbon-Celite column chromatography. Structural confirmation of the saccharides was provided by methylation analysis, matrix-assisted laser desorption/ionaization time of flight mass spectrometry (MALDI-TOF-MS), and nuclear magnetic resonance (NMR) measurements. Conclusion The following oligosaccharides were identified in sugar beet molasses: β-D-galactopyranosyl-(1- > 6)-β-D-fructofuranosyl-(2 <-> 1)-α-D-glucopyranoside (named β-planteose), α-D-galactopyranosyl-(1- > 1)-β-D-fructofuranosyl-(2 <-> 1)-α-D-glucopyranoside (named1-planteose), α-D-glucopyranosyl-(1- > 6)-α-D-glucopyranosyl-(1 <-> 2)-β-D-fructofuranoside (theanderose), and β-D-glucopyranosyl-(1- > 3)-α-D-glucopyranosyl-(1 <-> 2)-β-D-fructofuranoside (laminaribiofructose). 1-planteose and laminaribiofructose were isolated from natural sources for the first time. PMID:22925105

  5. Commercial sugar beet cultivars evaluated for rhizomania resistance and storability in Idaho, 2015

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rhizomania caused by Beet necrotic yellow vein virus (BNYVV) and storage losses are serious sugar beet production problems. To identify sugar beet cultivars with resistance to BNYVV and evaluate storability, 28 commercial cultivars were screened by growing them in a sugar beet field infested with B...

  6. Experimental sugar beet cultivars evaluated for rhizomania resistance and storability in Idaho, 2014

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rhizomania caused by Beet necrotic yellow vein virus (BNYVV) and storage losses are serious sugar beet production problems. To identify sugar beet cultivars with resistance to BNYVV and evaluate storability, 30 experimental cultivars were screened by growing them in a sugar beet field infested with...

  7. Kimberly sugar beet germplasm evaluated for rhizomania and storage rot resistance in Idaho, 2015

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rhizomania caused by Beet necrotic yellow vein virus (BNYVV) and storage losses are serious sugar beet production problems. To identify sugar beet germplasm lines with resistance to BNYVV and storage rots, 11germplasm lines from the USDA-ARS Kimberly sugar beet program were screened. The lines wer...

  8. Experimental sugar beet cultivars evaluated for rhizomania resistance and storability in Idaho, 2015

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rhizomania caused by Beet necrotic yellow vein virus (BNYVV) and storage losses are serious sugar beet production problems. To identify sugar beet cultivars with resistance to BNYVV and evaluate storability, 32 commercial cultivars were screened by growing them in a sugar beet field infested with B...

  9. Commercial sugar beet cultivars evaluated for rhizomania resistance and storability in Idaho, 2014

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rhizomania caused by Beet necrotic yellow vein virus (BNYVV) and storage losses are serious sugar beet production problems. To identify sugar beet cultivars with resistance to BNYVV and evaluate storability, 33 commercial cultivars were screened by growing them in a sugar beet field infested with B...

  10. 29 CFR 516.18 - Employees employed in certain tobacco, cotton, sugar cane or sugar beet services, who are...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 3 2010-07-01 2010-07-01 false Employees employed in certain tobacco, cotton, sugar cane....18 Employees employed in certain tobacco, cotton, sugar cane or sugar beet services, who are... cigar leaf tobacco, cotton, cottonseed, cotton ginning, sugar cane, sugar processing or sugar beets...

  11. Investigation of Copper Sorption by Sugar Beet Processing Lime Waste

    EPA Science Inventory

    In the western United States, sugar beet processing for sugar recovery generates a lime-based waste product (~250,000 Mg yr-1) that has little liming value in the region’s calcareous soils. This area has recently experienced an increase in dairy production, with dairi...

  12. Structural confirmation of novel oligosaccharides isolated from sugar beet molasses.

    PubMed

    Abe, Tatsuya; Kikuchi, Hiroto; Aritsuka, Tsutomu; Takata, Yusuke; Fukushi, Eri; Fukushi, Yukiharu; Kawabata, Jun; Ueno, Keiji; Onodera, Shuichi; Shiomi, Norio

    2016-07-01

    Eleven oligosaccharides were isolated from sugar beet molasses using carbon-Celite column chromatography and HPLC. The constituent sugars and linkage positions were determined using methylation analysis, MALDI-TOF-MS, and NMR measurements. The configurations of isolated oligosaccharides were confirmed based on detailed NMR analysis. Based on our results, three of the 11 oligosaccharides were novel. PMID:26920296

  13. Investigation of copper sorption by sugar beet processing lime waste

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the western US, sugar beet processing for sugar recovery generates a lime-based waste product (~250,000 megagrams/yr) that has little liming value in the region’s calcareous soils. This area has recently experienced an increase in dairy production, with dairies utilizing copper-based hoof baths ...

  14. Relationship Between Subsoil Nitrogen Availability and Sugar Beet Processing Quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The aim of this study was to verify the possibility that undetected amounts of available nitrogen in the deep soil could explain the often observed lowering of sugar content and processing quality during the harvest of sugar beet (Beta vulgaris L. ssp. vulgaris). In 29 field trials carried out on al...

  15. Control of curly top in sugar beet with seed and foliar insecticides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Curly top in sugar beet is a serious widespread problem that is caused by Beet curly top virus and other closely species and vectored by the beet leafhopper. In order to find a means of reducing curly top in sugar beet, 15 combinations of insecticide seed (Poncho, Poncho Beta, and Poncho Votivo) an...

  16. 21 CFR 173.320 - Chemicals for controlling microorganisms in cane-sugar and beet-sugar mills.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... controlling microorganisms in cane-sugar and beet-sugar mills. Agents for controlling microorganisms in cane... used in the control of microorganisms in cane-sugar and/or beet-sugar mills as specified in paragraph...) Combination for cane-sugar mills: Parts per million Disodium cyanodithioimidocarbonate 2.5 Ethylenediamine...

  17. Evaluation of sugar beet germplasm and plant introductions response to rhizomania and storability in Idaho, 2008

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The sugar beet industry requires that all cultivars must posse’s high level of genetic resistance to rhizomania. The objectives of this research were to identify germplasm and accessions that carry novel resistance genes so as to be utilized in the breeding program. Sixteen accessions and checks we...

  18. Cross pathogenicity and vegetative compatibility of Fusarium oxysporum isolated from sugar beet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium oxysporum f. sp. betae, which causes Fusarium yellows in sugar beet, can be highly variable in virulence and morphology, with further diversity derived due to the wide geographic distribution of sugar beet production. Little is known about factors that determine pathogenicity to sugar beet...

  19. Characterization of Protein Changes Associated with Sugar Beet (Beta vulgaris) Resistance and Susceptibility to Fusarium oxysporum.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium oxysporum is serious threat to sugar beet production worldwide. Although certain sugar beet lines appear to have resistance against F. oxysporum, little is understood about the basis for that resistance. Examination of F. oxysporum-induced changes in the sugar beet proteome has the poten...

  20. First report of sugar beet cyst nematode, Heterodera schachtii, in North Dakota

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugar beet (Beta vulgaris L.) and canola (Brassica napus L.) are major cops in North Dakota with sugar beet production primarily in the eastern part of the state in the Red River Valley and canola production along the northern half of the state from east to west. Both crops are hosts of sugar beet ...

  1. Ft. Collins Sugar Beet Germplasm Evaluated for Resistance to Rhizomania and Storability in Idaho, 2010

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugar beet germplasm and commercial check cultivars were evaluated in a sprinkler-irrigated sugar beet field near Kimberly, ID where sugar beet was grown in 2009. The field trial relied on natural inoculum for rhizomania development. The seed was treated with clothianidin (2.1 oz a.i. per 100,000 ...

  2. Variability in Fusarium oxysporum from sugar beets in the United States – Final Report

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium yellows can cause significant reduction in root yield, sucrose percentage and juice purity in affected sugar beets. Research in our laboratory and others on variability in Fusarium oxysporum associated with sugar beets demonstrated that isolates that are pathogenic on sugar beet can be hig...

  3. Structural and Financial Characteristics of U.S. Sugar Beet Farms. Agricultural Economic Report Number 584.

    ERIC Educational Resources Information Center

    Clauson, Annette L.; Hoff, Frederic L.

    This report analyzes production and financial characteristics of sugar beet producers in seven regions. Section 1 examines the structural characteristics of U.S. sugar beet producers. Sugar beet production; land use, tenure, irrigation, and livestock enterprises are considered. Section 2 discusses production costs, including cost estimates,…

  4. Interaction between weed and disease management methods in sugar beet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previous work with an experimental glyphosate-resistant sugar beet variety indicated host resistance to Rhizoctonia crown and root rot could be compromised when plants were exposed to glyphosate. In order to improve disease management recommendations, work was initiated to investigate the interactio...

  5. Seedling diseases of sugar beet – diversity and host interactions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seedling diseases cause loss of plant stand due to pre- and post-emergence damping-off and weakened plants due to root or hypocotyl infection. Several pathogens cause seedling disease of sugar beet, including Rhizoctonia solani, Aphanomyces cochlioides, Pythium species, and Fusarium species. Differe...

  6. Reducing sucrose loss in sugar beet storage with fungicides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Root rots in sugar beet storage can lead to multi-million dollar losses because of reduced sucrose recovery. Thus, studies were conducted to establish better chemical control options and a better understanding of the fungi involved in the rot complex. A water check and three fungicides (Mertect, Pro...

  7. Seedling damping-off in sugar beet in Michigan

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A number of pathogens can cause early season stand loss in sugar beet. In an ongoing survey, the most commonly identified damping-off pathogens were Rhizoctonia solani, Aphanomyces cochlioides, and Fusarium species. Pythium and Phoma also were isolated every year, but never as the sole or most commo...

  8. The 'C869' sugar beet genome: a draft assembly

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugar beet 'C869' is a diploid, self-fertile, public germplasm release used extensively as the seed parent of recombinant inbred lines designed to genetically dissect agronomic, disease, domestication, and other traits. From the original release, three additional generations of inbreeding were done,...

  9. Adsorption of sugar beet herbicides to Finnish soils.

    PubMed

    Autio, Sari; Siimes, Katri; Laitinen, Pirkko; Rämö, Sari; Oinonen, Seija; Eronen, Liisa

    2004-04-01

    Three sugar beet herbicides, ethofumesate, phenmedipham and metamitron, are currently used on conventional sugar beet cultivation, while new varieties of herbicide resistant (HR) sugar beet, tolerant of glyphosate or glufosinate-ammonium, are under field testing in Finland. Little knowledge has so far been available on the adsorption of these herbicides to Finnish soils. The adsorption of these five herbicides was studied using the batch equilibrium method in 21 soil samples collected from different depths. Soil properties like organic carbon content, texture, pH and partly the phosphorus and oxide content of the soils were tested against the adsorption coefficients of the herbicides. In general, the herbicides studied could be arranged according to their adsorption coefficients as follows: glyphosate>phenmedipham>ethofumesate approximately glufosinate-ammonium>metamitron, metamitron meaning the highest risk of leaching. None of the measured soil parameters could alone explain the adsorption mechanism of these five herbicides. The results can be used in model assessments of risk for leaching to ground water resulting from weed control of sugar beet in Finland. PMID:14761694

  10. Cultivar selection for bacterial root rot in sugar beet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacterial root rot of sugar beet caused by Leuconostoc mesenteroides subsp. dextranicum is a disease problem recently described in the United States, which has frequently been found in association with Rhizoctonia root rot. To reduce the impact of bacterial root rot on sucrose loss in the field, st...

  11. Cultivar Selection for Sugar Beet Root Rot Resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fungal and bacterial root rots in sugar beet caused by Rhizoctonia solani (Rs) and Leuconostoc mesenteroides subsp. dextranicum (Lm) can lead to root yield losses greater than 50%. To reduce the impact of these root rots on sucrose loss in the field, storage, and factories, studies were conducted t...

  12. Precision fertilization of Wyoming sugar beets: A case study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field Studies were conducted on a farm in northwest Wyoming to compare variable-rate fertilization (VRF) with uniform-rate fertilization (URF) of sugar beets. Results from this study failed to show an economic advantage from VRF compared to URF, implying producers should be very cautious to adopt VR...

  13. 29 CFR 516.18 - Employees employed in certain tobacco, cotton, sugar cane or sugar beet services, who are...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 3 2014-07-01 2014-07-01 false Employees employed in certain tobacco, cotton, sugar cane or sugar beet services, who are partially exempt from overtime pay requirements pursuant to section 7....18 Employees employed in certain tobacco, cotton, sugar cane or sugar beet services, who...

  14. 29 CFR 516.18 - Employees employed in certain tobacco, cotton, sugar cane or sugar beet services, who are...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 3 2013-07-01 2013-07-01 false Employees employed in certain tobacco, cotton, sugar cane or sugar beet services, who are partially exempt from overtime pay requirements pursuant to section 7....18 Employees employed in certain tobacco, cotton, sugar cane or sugar beet services, who...

  15. 29 CFR 516.18 - Employees employed in certain tobacco, cotton, sugar cane or sugar beet services, who are...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 3 2012-07-01 2012-07-01 false Employees employed in certain tobacco, cotton, sugar cane or sugar beet services, who are partially exempt from overtime pay requirements pursuant to section 7....18 Employees employed in certain tobacco, cotton, sugar cane or sugar beet services, who...

  16. 29 CFR 516.18 - Employees employed in certain tobacco, cotton, sugar cane or sugar beet services, who are...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 3 2011-07-01 2011-07-01 false Employees employed in certain tobacco, cotton, sugar cane or sugar beet services, who are partially exempt from overtime pay requirements pursuant to section 7....18 Employees employed in certain tobacco, cotton, sugar cane or sugar beet services, who...

  17. Influence of harvest timing, fungicides, and Beet Necrotic Yellow Vein Virus on sugar beet storage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Root rots in sugar beet storage can lead to million dollar losses because of reduced sucrose recovery. Thus, studies were conducted to establish better chemical control options and a better understanding of the fungi involved in the rot complex. A water check and three fungicides (Mertect, Propuls...

  18. Epigenomics and bolting tolerance in sugar beet genotypes

    PubMed Central

    Hébrard, Claire; Peterson, Daniel G.; Willems, Glenda; Delaunay, Alain; Jesson, Béline; Lefèbvre, Marc; Barnes, Steve; Maury, Stéphane

    2016-01-01

    In sugar beet (Beta vulgaris altissima), bolting tolerance is an essential agronomic trait reflecting the bolting response of genotypes after vernalization. Genes involved in induction of sugar beet bolting have now been identified, and evidence suggests that epigenetic factors are involved in their control. Indeed, the time course and amplitude of DNA methylation variations in the shoot apical meristem have been shown to be critical in inducing sugar beet bolting, and a few functional targets of DNA methylation during vernalization have been identified. However, molecular mechanisms controlling bolting tolerance levels among genotypes are still poorly understood. Here, gene expression and DNA methylation profiles were compared in shoot apical meristems of three bolting-resistant and three bolting-sensitive genotypes after vernalization. Using Cot fractionation followed by 454 sequencing of the isolated low-copy DNA, 6231 contigs were obtained that were used along with public sugar beet DNA sequences to design custom Agilent microarrays for expression (56k) and methylation (244k) analyses. A total of 169 differentially expressed genes and 111 differentially methylated regions were identified between resistant and sensitive vernalized genotypes. Fourteen sequences were both differentially expressed and differentially methylated, with a negative correlation between their methylation and expression levels. Genes involved in cold perception, phytohormone signalling, and flowering induction were over-represented and collectively represent an integrative gene network from environmental perception to bolting induction. Altogether, the data suggest that the genotype-dependent control of DNA methylation and expression of an integrative gene network participate in bolting tolerance in sugar beet, opening up perspectives for crop improvement. PMID:26463996

  19. Epigenomics and bolting tolerance in sugar beet genotypes.

    PubMed

    Hébrard, Claire; Peterson, Daniel G; Willems, Glenda; Delaunay, Alain; Jesson, Béline; Lefèbvre, Marc; Barnes, Steve; Maury, Stéphane

    2016-01-01

    In sugar beet (Beta vulgaris altissima), bolting tolerance is an essential agronomic trait reflecting the bolting response of genotypes after vernalization. Genes involved in induction of sugar beet bolting have now been identified, and evidence suggests that epigenetic factors are involved in their control. Indeed, the time course and amplitude of DNA methylation variations in the shoot apical meristem have been shown to be critical in inducing sugar beet bolting, and a few functional targets of DNA methylation during vernalization have been identified. However, molecular mechanisms controlling bolting tolerance levels among genotypes are still poorly understood. Here, gene expression and DNA methylation profiles were compared in shoot apical meristems of three bolting-resistant and three bolting-sensitive genotypes after vernalization. Using Cot fractionation followed by 454 sequencing of the isolated low-copy DNA, 6231 contigs were obtained that were used along with public sugar beet DNA sequences to design custom Agilent microarrays for expression (56k) and methylation (244k) analyses. A total of 169 differentially expressed genes and 111 differentially methylated regions were identified between resistant and sensitive vernalized genotypes. Fourteen sequences were both differentially expressed and differentially methylated, with a negative correlation between their methylation and expression levels. Genes involved in cold perception, phytohormone signalling, and flowering induction were over-represented and collectively represent an integrative gene network from environmental perception to bolting induction. Altogether, the data suggest that the genotype-dependent control of DNA methylation and expression of an integrative gene network participate in bolting tolerance in sugar beet, opening up perspectives for crop improvement. PMID:26463996

  20. Energy reduction in beet sugar processing by cossette liming

    SciTech Connect

    Randall, J.M.; Camirand, W.M.; Neumann, H.J.

    1981-01-01

    Under appropriate conditions of temperature and fresh Ca(OH)/sub 2/ application, demethylation occurs in the pectin in the cell walls of sugar beet cossettes, allowing Ca/sup 2 +/ to precipitate the pectin as calcium pectate. The calcium pectate will not degrade and pass into solution during subsequent hot extraction of sugar from the cossettes. This retention of pectin in the pulp was shown by 10 to 20% increases in solids weight in the pulp for a number of processing conditions. The toughened pulp produced by retention of calcium pectate allowed easier mechanical dewatering of the pulp which could save considerably on the heat normally required to dry the pulp for cattle feed. Beyond data reported in this paper, there are qualitative indications that the sugar juice extracted from limed cossettes is purer than standard juice, for pectin and colloidal materials remain in the pulp. Thus, much less purification of the juice with lime would be necessary than is required in standard beet-sugar processing, and the current 2% CaO used for purification may be cut almost in half. This represents another energy saving, for production of CaO at the factory is a major consumer of energy. These, along with other possible energy savings resulting from cossette liming (such as less water used for extraction, cold extraction, ion exchange of the purer juice), could produce an overall saving up to 20% of the energy currently used in beet-sugar processing. Some of these possibilities will be further investigated.

  1. Ft. Collins sugar beet germplasm evaluated for rhizomania and storage rot resistance in Idaho, 2015

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fifty-seven sugar beet (Beta vulgaris L.) lines from the USDA-ARS Ft. Collins sugar beet program and four check cultivars were screened for resistance to Beet necrotic yellow vein virus (BNYVV), the causal agent of rhizomania, and storage rot. The rhizomania evaluation was conducted at the USDA-ARS...

  2. Broadening the Genetic Base of Sugar Beet: Introgression from Wild Relatives.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugar beet is, perhaps, the first to be developed at a time when modern genetic principles were becoming understood. It was developed in the late 1700s from white fodder beet; therefore, the genetic base of sugar beet has been thought to be narrower than many open-pollinated crops.. The wild sea b...

  3. Interaction of Rhizoctonia solani and Rhizopus stolonifer Causing Root Rot of Sugar Beet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In recent years, growers in Michigan and other sugar beet production areas of the United States have reported increasing incidence of root rot with little or no crown or foliar symptoms in sugar beet with Rhizoctonia crown and root rot. In addition, Rhizoctonia-resistant beets have been reported wit...

  4. 40 CFR 409.10 - Applicability; description of the beet sugar processing subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... sugar processing subcategory. 409.10 Section 409.10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Beet Sugar Processing Subcategory § 409.10 Applicability; description of the beet sugar processing subcategory....

  5. 40 CFR 409.10 - Applicability; description of the beet sugar processing subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... sugar processing subcategory. 409.10 Section 409.10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Beet Sugar Processing Subcategory § 409.10 Applicability; description of the beet sugar processing subcategory....

  6. 40 CFR 409.10 - Applicability; description of the beet sugar processing subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... sugar processing subcategory. 409.10 Section 409.10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Beet Sugar Processing Subcategory § 409.10 Applicability; description of the beet sugar processing subcategory....

  7. 40 CFR 409.10 - Applicability; description of the beet sugar processing subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... sugar processing subcategory. 409.10 Section 409.10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Beet Sugar Processing Subcategory § 409.10 Applicability; description of the beet sugar processing subcategory....

  8. 40 CFR 409.10 - Applicability; description of the beet sugar processing subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... sugar processing subcategory. 409.10 Section 409.10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Beet Sugar Processing Subcategory § 409.10 Applicability; description of the beet sugar processing subcategory....

  9. Modeling sugar content of farmer-managed sugar beets (Beta vulgaris L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We measured or estimated leaf and root physical and chemical traits of spatio-temporally heterogeneous field-grown sugar beet throughout its ontogeny during three growing seasons. The objective was to quantify the impact of temporal changes in these traits on root sugar content [S(R); g 100g**-1 roo...

  10. Sugar cane and sugar beet molasses, antioxidant-rich alternatives to refined sugar.

    PubMed

    Valli, Veronica; Gómez-Caravaca, Ana María; Di Nunzio, Mattia; Danesi, Francesca; Caboni, Maria Fiorenza; Bordoni, Alessandra

    2012-12-26

    Molasses, the main byproduct of sugar production, is a well-known source of antioxidants. In this study sugar cane molasses (SCM) and sugar beet molasses (SBM) were investigated for their phenolic profile and in vitro antioxidant capacity and for their protective effect in human HepG2 cells submitted to oxidative stress. According to its higher phenolic concentration and antioxidant capacity in vitro, SCM exhibited an effective protection in cells, comparable to or even greater than that of α-tocopherol. Data herein reported emphasize the potential health effects of molasses and the possibility of using byproducts for their antioxidant activity. This is particularly important for consumers in developing countries, as it highlights the importance of consuming a low-price, yet very nutritious, commodity. PMID:23190112

  11. Treatment of beet sugar wastewater by UAFB bioprocess.

    PubMed

    Farhadian, Mehrdad; Borghei, Mehdi; Umrania, Valentina V

    2007-11-01

    The aim of this work was to study the treatment of strong beet sugar wastewater by an upflow anaerobic fixed bed (UAFB) at pilot plant scale. Three fixed bed bioreactors (each 60 L) were filled with standard industrial packing, inoculated with anaerobic culture (chicken manure, cow manure, anaerobic sludge digested from domestic wastewater) and operated at 32-34 degrees C with 20 h hydraulic retention time (HRT) and influent COD ranging between 2000-8000 mg/L. Under these conditions the maximum efficiency of organic content reduction in the reactor ranged from 75% to 93%. The reactor filled with standard pall rings made of polypropylene with an effective surface area of 206 m(2)/m(3) performed best in comparison to the reactor filled with cut polyethylene pipe 134 m(2)/m(3) and reactor filled with PVC packing (50 m(2)/m(3)). There was 2-7% decrease in efficiency with PE while it was 10-16% in case of PVC when compared to standard pall rings. The study provided a very good basis for comparing the effect of packing in reduction efficiency of the system. PMID:17391955

  12. Foam formation in biogas plants caused by anaerobic digestion of sugar beet.

    PubMed

    Moeller, Lucie; Lehnig, Marcus; Schenk, Joachim; Zehnsdorf, Andreas

    2015-02-01

    The use of sugar beet in anaerobic digestion (AD) during biogas production can lead to process upsets such as excessive foaming in fermenters. In the present study, foam formation in sugar beet-fed digestates was studied in foaming tests. The increasing disintegration grade of sugar beet was observed to have a promoting effect on foaming in the digestate but did not affect the biogas yield. Chemical analysis of foam and digestate from sugar beet silage AD showed high concentrations of pectin, other carbohydrates and N-containing substances in the foam. Both pectin and sucrose showed little foaming in AD. Nevertheless, sucrose and calcium chloride had a promoting effect on foaming for pectin AD. Salts of divalent ions also enhanced the foam intensity in the case of sugar beet silage AD, whereas ammonium chloride and urea had a lessening effect on sugar beet-based foaming. PMID:25446785

  13. Verticillium dahliae Causes Wilt on Sugar Beet Following Potato in Eastern North Dakota

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wilt is a serious disease on sugar beet that decreases content and purity of sugar, but does not significantly decrease root yield. The disease is typically reported as caused by the microorganism Verticillium albo-atrum. The disease has not been previously reported on sugar beet in the Red River ...

  14. Management of curly top in sugar beet with seed and foliar insecticides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Curly top in sugar beet can result in severe yield losses and is caused by Beet severe curly top virus (BSCTV) and other closely related Curtovirus spp. which are vectored by the beet leafhopper. Neonicotinoid seed treatments (Cruiser, NipsIt, and Poncho) have been shown to be an effective suppleme...

  15. Estrogenicity of sugar beet by-products used as animal feeds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A veterinarian observed a reduction in embryo transfer success rates on beef and dairy farms in Minnesota, which were both feeding sugar beet by-products. Beet tailings and pelleted post-extraction beet pulp, associated with the affected farms were analyzed for estrogenicity by E-Screen (proliferati...

  16. Defective DNAs of beet curly top virus from long-term survivor sugar beet plants.

    PubMed

    Bach, Judith; Jeske, Holger

    2014-04-01

    Long-term surviving sugar beet plants were investigated after beet curly top virus infection to characterize defective (D) viral DNAs as potential symptom attenuators. Twenty or 14 months after inoculation, 20 D-DNAs were cloned and sequenced. In contrast to known D-DNAs, they exhibited a large range of sizes. Deletions were present in most open reading frames except ORF C4, which encodes a pathogenicity factor. Direct repeats and inverted sequences were observed. Interestingly, the bidirectional terminator of transcription was retained in all D-DNAs. A model is presented to explain the deletion sites and sizes with reference to the viral minichromosome structure, and symptom attenuation by D-DNAs is discussed in relation to RNA interference. PMID:24530983

  17. Study of the production of ethanol from sugar beets for use as a motor fuel. Final report, February 1, 1980-April 30, 1981

    SciTech Connect

    Baird, H W

    1981-04-27

    This study was performed to assess the feasibility of producing fuel ethanol from sugar beets. Sugar beets are a major agricultural crop in the area and the beet sugar industry is a major employer. There have been some indications that increasing competition from imported sugar and fructose sugar produced from corn may lead to lower average sugar prices than have prevailed in the past. Fuel ethanol might provide an attractive alternative market for beets and ethanol production would continue to provide an industrial base for labor. Ethanol production from beets would utilize much of the same field and plant equipment as is now used for sugar. It is logical to examine the modification of an existing sugar plant from producing sugar to ethanol. The decision was made to use Great Western Sugar Company's plant at Mitchell as the example plant. This plant was selected primarily on the basis of its independence from other plants and the availability of relatively nearby beet acreage. The potential feedstocks assessed included sugar beets, corn, hybrid beets, and potatoes. Markets were assessed for ethanol and fermentation by-products saleability. Investment and operating costs were determined for each prospective plant. Plants were evaluated using a discounted cash flow technique to obtain data on full production costs. Environmental, health, safety, and socio-economic aspects of potential facilities were examined. Three consulting engineering firms and 3 engineering-construction firms are considered capable of providing the desired turn-key engineering design and construction services. It was concluded that the project is technically feasible. (DMC)

  18. Sugar beet production as influenced by water stress

    SciTech Connect

    Flack, T.E.

    1981-01-01

    Irrigation water supplies are becoming expensive and scarce in the western United States. As a water management tool, production functions indicating relationships between crop yields and evapotranspiration have been utilized. Models have been developed using this information. Transferability of these models is dependent upon understanding the moisture extraction characteristics for a given crop under a given set of climatic and soil conditions. Therefore, a wide range of water stress conditions must be produced. The objective of our research was to generate production function data for sugar beets (Beta vulgaris) as influenced by drought stress under irrigation.

  19. Transgene escape in sugar beet production fields: data from six years farm scale monitoring.

    PubMed

    Darmency, Henri; Vigouroux, Yves; Gestat De Garambé, Thierry; Richard-Molard, Marc; Muchembled, Claude

    2007-01-01

    Concerns have been raised in Europe about the efficiency, sustainability, and environmental impact of the first genetically modified crops. The committees and regulators in charge of approving procedures have encouraged a field trial approach for safety assessment studies under current agronomic conditions. We describe the gene flow from sugar beet (Beta vulgaris L.) in a multi-year and multi-crop monitoring study on farmers' fields at two locations that has been carried out since 1995. We analyzed two sugar beet lines that have been genetically transformed for herbicide resistance. One sugar beet has resistance to glufosinate and the other to glyphosate. Large differences among lines, years and locations were observed. These differences provided a broad range of situations to estimate the risks. Sugar beet bolters produced the majority (86%) of the herbicide-resistant seeds harvested in the field. Direct pollen flow from sugar beet bolters to weed beets that were growing within the same field as well as in a neighboring field that was left fallow accounted for only 0.4% of the resistant seeds released over the years and locations. Descendants of the hybrids between the sugar beet and the weed beet produced the remaining 13.6% of resistant seeds. Herbicide-resistant seeds from the progeny of the weed beet were recorded up to 112 m away from the closest transgenic pollen donor. Indications were observed of non-randomness of the weed beet producing resistant progeny. We also analyzed pollen flow to male-sterile bait plants located within and outside of the sugar beet field. Herbicide-resistant pollen flow was recorded up to 277 m, and fitted with an inverse power regression. Using sugar beet varieties with no, or very low, sensitivity to bolting and destroying bolters are two necessary measures that could delay gene flow. PMID:18001686

  20. Multilocus analysis using putative fungal effectors to describe a population of Fusarium oxysporum from Sugar Beet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugar beet (Beta vulgaris L.) Fusarium yellows is caused by Fusarium oxysporum f. sp. betae and leads to significant reductions in root yield, sucrose percentage, juice purity, and storage for sugar beet producers. F. oxysporum f. sp. betae can be highly variable and many F. oxysporum isolated from...

  1. INFLUENCE OF GLYPHOSATE ON RHIZOCTONIA AND FUSARIUM ROOT ROT IN SUGAR BEET.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study tests the effect of glyphosate application on disease severity of glyphosate resistant sugar beet and examines whether the increase in disease in fungal- or plant-mediated. In greenhouse studies of glyphosate resistant sugar beet, increased disease severity was observed following glyphosa...

  2. Verticillium wilt in transgenic sugar beet cultivars in Cassia County, ID, 2006

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Twenty-three transgenic (resistant to glyphosate) and six commercial sugar beet cultivars were evaluated for their susceptibility to Verticillium dahliae in Heyburn, ID during the 2006 growing season. The cultivars were planted in a commercial sugar beet field and exposed to natural levels of V. da...

  3. Temperature, Moisture, and Fungicide Effects in Managing Rhizoctonia Root and Crown Rot of Sugar Beet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rhizoctonia solani AG-2-2 is the causal agent of Rhizoctonia root and crown rot in sugar beet. To assess the capacity at which other anastomosis groups (AGs) are able to infect sugar beet, 15 AGs and subgroups were tested for pathogenicity on resistant (FC708 CMS) and susceptible (Monohikari) seedl...

  4. Response of sugar beet (Beta vulgaris) recombinant inbred lines to post-harvest rot fungi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugar beet (Beta vulgaris) is commonly stored in outdoor piles prior to processing for food and animal feed. During this storage period the crop is subject to multiple post-harvest rots. Resistance to three post harvest rots was identified in two sugar beet germplasm in the 1970s, but there has been...

  5. Pathogenicity, vegetative compatibility, and genetic diversity in verticillium dahliae from sugar beet and historical strains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Verticillium wilt of sugar beet is a disease problem that has received very little attention in the literature, but has been reported to reduce sucrose production and purity. To improve our understanding of Verticillium wilt, a survey of sugar beet plants with wilt symptoms (leaves with yellow or n...

  6. Detection of sucrose content of sugar beet by visible/near-infrared spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sucrose content is the most important quality parameter in the production and processing of sugar beet. This paper reports on the application of visible/near-infrared (Vis-NIR) spectroscopy for measurement of the sucrose content of sugar beet. Two portable spectrometers, covering the spectral region...

  7. Sugar Beet Resistance to Rhizoctonia Root and Crown Rot: Where does it fit in?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In sugar beet (Beta vulgaris L.), Rhizoctonia root- or crown-rot is caused by Rhizoctonia solani (AG-2-2). Seedling damping-off in sugar beet is caused by R. solani of both anastomosis groups, AG-2-2 and AG-4. Rhizoctonia solani subgroup AG-2-2 IV had been considered to be the primary cause of Rhi...

  8. Comparison of sugar beet responses at different ages to isolates of Fusarium oxysporum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium oxysporum has been reported to cause several diseases of sugar beet, including seedling damping-off, a mature plant wilt (Fusarium yellows), a mature plant root rot, and seed stalk blight. Recent work in our lab and others has shown a great deal of diversity in F. oxysporum from sugar beet....

  9. Insect resistance to sugar beet pests mediated by a Beta vulgaris proteinase inhibitor transgene

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We transformed sugar beet (Beta vulgaris) hairy roots and Nicotiana benthamiana plants with a Beta vulgaris root gene (BvSTI) that codes for a serine proteinase inhibitor. BvSTI is a root gene cloned from the F1016 breeding line that has moderate levels of resistance to the sugar beet root maggot ...

  10. Molecular technology for developing durable resistance to the sugar beet root maggot (Tetanops myopaeformis)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugar beet root maggot (SBRM), Tetanops myopaeformis von Röder, is a major economic insect pest of sugar beet in North America. While several moderately resistant breeding lines have recently been registered, they do not offer complete control. A significant amount of knowledge about how plants pr...

  11. Sugar Beet Germination: Phenotypic Selection and Molecular Profiling to Identify Genes Involved in Abiotic Stress Response

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Emergence and stand establish are critical concerns of sugar beet growers worldwide and abiotic stresses potentially limit the types of varieties that can be grown productively. This project seeks to develop information that will be useful in selecting and breeding sugar beet for enhanced emergence...

  12. Response of sugar beet recombinant inbred lines to post-harvest rot fungi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugar beet is commonly stored in outdoor piles prior to processing. During this storage period the crop is subject to multiple post-harvest rots. Resistance to three post harvest rots was identified in two sugar beet germplasm in the 1970s, but there has been little work done on host resistance to p...

  13. Rhizoctonia belly rot in cucumber fruit using Rhizoctonia solani isolated from sugar beet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cucumbers are grown in rotation with sugar beets in some areas in Michigan but their interaction with important diseases affecting sugar beets is not well known. Cucumbers are known to be primarily susceptible to Rhizoctonia solani AG-4, but little is known about their susceptibility to AG 2-2 isola...

  14. Bacteria and yeast associated with sugar beet root rot at harvest in the Intermountain West

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An undescribed bacterial-like root rot has been observed in sugar beets at harvest time in the Intermountain West. This root rot was observed during surveys of recently harvested sugar beets in 2004 and 2005. Microorganisms recovered from 287 roots fell into the following groups: lactic acid bacte...

  15. Transgenic sugar beet cultivars evaluated for resistance to bacterial root rot in Idaho, 2007

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacterial root rot caused by Leuconostoc mesenteroides subsp. dextranicum is an important problem in sugar beets because of issues it causes in the field, storage, and factories. Thirty-three transgenic (roundup ready) sugar beet cultivars were grown in a commercial irrigated field. Four roots fro...

  16. The Journal of Sugar Beet Research of the ASSBT; A Clearing House for the Exchange of Ideas

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In 1935, 1936, and 1937, between 37 to 140 sugarbeet researchers met informally as the “Sugar Beet Round Table” to discuss the needs of the industry. At the 1937 meeting, which included California participants for the first time, the formation of a more structured national organization was proposed...

  17. Land application of sugar beet by-products: effects on runoff and percolating water quality.

    PubMed

    Kumar, Kuldip; Rosen, Carl J; Gupta, Satish C; McNearney, Matthew

    2009-01-01

    Water quality concerns, including greater potential for nutrient transport to surface waters resulting in eutrophication and nutrient leaching to ground water, exist when agricultural or food processing industry wastes and by-products are land applied. Plot- and field-scale studies were conducted to evaluate the effects of sugar beet by-products on NO3-N and P losses and biochemical oxygen demand (BOD) in runoff and NO3-N concentrations in percolating waters. In the runoff plot study, treatments in the first year included two rates (224 and 448 Mg ha(-1) fresh weight) of pulp and spoiled beets and a nonfertilized control. In the second year, no by-products were applied on the treated plots, the control treatment was fertilized with N fertilizer, and an additional treatment was added as a nonfertilized control in buffer areas. Wheat (Triticum aestivum L.) was grown in the year of by-product application and sugar beet (Beta vulgaris L.) in the following year. In the percolation field study, the treatments were the control, pulp (224 Mg ha(-)(1)), and spoiled beets (224 Mg ha(-1)). Results from the runoff plot showed that both by-products caused immobilization of soil inorganic N and thus reduced NO3-N losses in runoff and soil waters during the first growing season. There was some risk of NO3-N exceeding the drinking water limit of 10 mg L(-1), especially between the period of wheat harvest and soil freezing in fall when pulp was applied at 448 Mg ha(-1). The field-scale study showed that by-product application at 224 Mg ha(-1) did not result in increased ground water NO3-N concentrations. Application of spoiled beets at both rates caused significantly higher BODs in runoff in the first year of application. The concentrations of total and soluble reactive P (SRP) were also higher from both rates of spoiled beet application and from the higher application rate of pulp during the 2-yr study period. These high BODs and total P and SRP concentrations in runoff waters

  18. Construction and characterization of a sugar beet (Beta vulgaris) fosmid library.

    PubMed

    Lange, Cornelia; Holtgräwe, Daniela; Schulz, Britta; Weisshaar, Bernd; Himmelbauer, Heinz

    2008-11-01

    A sugar beet (Beta vulgaris) fosmid library from the doubled haploid accession KWS2320 encompassing 115 200 independent clones was constructed and characterized. The average insert size of the fosmid library was determined by pulsed field gel electrophoresis to be 39 kbp on average, thus representing 5.9-fold coverage of the sugar beet genome (758 Mbp). PCR screening of plate pools with primer pairs against nine sugar beet genes supported the insert size estimation. BLAST searches with 2951 fosmid end-sequences originating from 1510 clones (1536 clones attempted) revealed little contamination with organellar DNA (2.1% chloroplast DNA, 0.3% mitochondrial DNA). The sugar beet fosmid library will be integrated in the presently ongoing efforts to determine the sequence of the sugar beet genome. Fosmids will be publicly available in the format of plate pools and individual clones. PMID:18956027

  19. Research solutions in a non-model system: developing tools to understand Sugar Beet-Fusarium Oxysporum interactions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium yellows of sugar beet (Beta vulgaris), caused by Fusarium oxysporum f. sp. betae (Fob), is a problem for sugar beet production throughout the United States and Europe. Little is known about how Fob infects sugar beet roots to elicit disease symptoms. Additionally, a high rate of non-patho...

  20. First evidence of a binucleate Rhizoctonia as the causal agent of dry rot canker of sugar beet in Nebraska, USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugar beet (Beta vulgaris L.) is the primary source of domestic sucrose in the United States. In 2011, a sugar beet field in Morrill County NE was noted with wilting and yellowing symptoms suggestive of Rhizoctonia root and crown rot (RCRR), an important disease of sugar beet caused by Rhizoctonia s...

  1. 76 FR 62339 - Domestic Sugar Program-2011-Crop Cane Sugar and Beet Sugar Marketing Allotments and Company...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-07

    ... marketing allotments and company allocations to sugarcane and sugar beet processors, which apply to all...) among the sugarcane processors. CCC determined that it was not necessary to establish farm level... sector was not expected to fill its allotment and therefore, there was no need to limit sugarcane...

  2. The physical and genomic organization of microsatellites in sugar beet.

    PubMed

    Schmidt, T; Heslop-Harrison, J S

    1996-08-01

    Microsatellites, tandem arrays of short (2-5 bp) nucleotide motifs, are present in high numbers in most eukaryotic genomes. We have characterized the physical distribution of microsatellites on chromosomes of sugar beet (Beta vulgaris L.). Each microsatellite sequence shows a characteristic genomic distribution and motif-dependent dispersion, with site-specific amplification on one to seven pairs of centromeres or intercalary chromosomal regions and weaker, dispersed hybridization along chromosomes. Exclusion of some microsatellites from 18S-5.8S-25S rRNA gene sites, centromeres, and intercalary sites was observed. In-gel and in situ hybridization patterns are correlated, with highly repeated restriction fragments indicating major centromeric sites of microsatellite arrays. The results have implications for genome evolution and the suitability of particular microsatellite markers for genetic mapping and genome analysis. PMID:8710945

  3. Resistance to curly top of sugar beet in germplasm developed at USDA-ARS Ft. Collins, 2013

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seventy-one sugar beet (Beta vulgaris L.) lines from the USDA-ARS Ft. Collins sugar beet program and three control lines were screened for resistance to Beet curly top virus (BCTV) in 2013. Commercial cultivars ‘Monohikari’ (susceptible), ‘HM PM90’ (resistant) and Betaseed line Beta G6040 (resista...

  4. Length of efficacy for control of curly top in sugar beet with seed foliar insecticides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Curly top in sugar beet caused by Beet curly top virus (BCTV) is an important yield limiting disease that can be reduced via neonicotinoid and pyrethroid insecticides. However the length of efficacy of these insecticides is poorly understood, so a series of field experiments was conducted with the ...

  5. Predict compositions and mechanical properties of sugar beet using hyperspectral scattering

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sucrose, soluble solids, and moisture content and mechanical properties are important quality/property attributes of sugar beet. In this study, hyperspectral scattering images for the spectral region of 500-1,000 nm were acquired from 398 beet slices, from which relative mean spectra were calculated...

  6. Identification of a SNP marker associated with WB242 nematode resistance in sugar beet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The beet-cyst nematode (Heterodera schachtii Schmidt) is one of the major diseases of sugar beet. The identification of molecular markers associated to the nematode resistance would be helpful for developing resistant varieties. The aim of this study was the identification of SNP (Single Nucleotide ...

  7. Storage rot in sugar beet: variable response over time and with different host germplasm

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugar beet (Beta vulgaris) is commonly stored in outdoor piles prior to processing for food and animal feed. While in storage the crop is subject to multiple post-harvest rots. In the Michigan growing region, little loss due to storage rots is observed until beets have been in storage for several mo...

  8. The genome of the recently domesticated crop plant sugar beet (Beta vulgaris).

    PubMed

    Dohm, Juliane C; Minoche, André E; Holtgräwe, Daniela; Capella-Gutiérrez, Salvador; Zakrzewski, Falk; Tafer, Hakim; Rupp, Oliver; Sörensen, Thomas Rosleff; Stracke, Ralf; Reinhardt, Richard; Goesmann, Alexander; Kraft, Thomas; Schulz, Britta; Stadler, Peter F; Schmidt, Thomas; Gabaldón, Toni; Lehrach, Hans; Weisshaar, Bernd; Himmelbauer, Heinz

    2014-01-23

    Sugar beet (Beta vulgaris ssp. vulgaris) is an important crop of temperate climates which provides nearly 30% of the world's annual sugar production and is a source for bioethanol and animal feed. The species belongs to the order of Caryophylalles, is diploid with 2n = 18 chromosomes, has an estimated genome size of 714-758 megabases and shares an ancient genome triplication with other eudicot plants. Leafy beets have been cultivated since Roman times, but sugar beet is one of the most recently domesticated crops. It arose in the late eighteenth century when lines accumulating sugar in the storage root were selected from crosses made with chard and fodder beet. Here we present a reference genome sequence for sugar beet as the first non-rosid, non-asterid eudicot genome, advancing comparative genomics and phylogenetic reconstructions. The genome sequence comprises 567 megabases, of which 85% could be assigned to chromosomes. The assembly covers a large proportion of the repetitive sequence content that was estimated to be 63%. We predicted 27,421 protein-coding genes supported by transcript data and annotated them on the basis of sequence homology. Phylogenetic analyses provided evidence for the separation of Caryophyllales before the split of asterids and rosids, and revealed lineage-specific gene family expansions and losses. We sequenced spinach (Spinacia oleracea), another Caryophyllales species, and validated features that separate this clade from rosids and asterids. Intraspecific genomic variation was analysed based on the genome sequences of sea beet (Beta vulgaris ssp. maritima; progenitor of all beet crops) and four additional sugar beet accessions. We identified seven million variant positions in the reference genome, and also large regions of low variability, indicating artificial selection. The sugar beet genome sequence enables the identification of genes affecting agronomically relevant traits, supports molecular breeding and maximizes the plant

  9. Yield potential of spring-harvested sugar beet depends on autumn planting time

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugar crops grown for biofuel production provide a source of simple sugars that can readily be made into advanced biofuels. In the mild climate of the southeastern USA, sugar beet can be grown as a winter crop, providing growers with an alternative crop. Experiments evaluated autumn planting dates...

  10. Analysis of Mannitol, as Tracer of Bacterial Infections in Cane and Beet Sugar Factories

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mannitol, formed mainly by Leuconostoc mesenteroides bacteria, is a sensitive marker of sugarcane and sugarbeet deterioration that can predict multiple processing problems. The delivery of consignments of deteriorated sugarcane or sugar beets to factories can detrimentally affect multiple process un...

  11. Analysis of Mannitol, as Tracer of Bacterial Infections in Cane and Beet Sugar Factories

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mannitol, formed mainly by Leuconostoc mesenteroides bacteria, is a sensitive marker of sugarcane and sugarbeet deterioration that can predict multiple processing problems. The delivery of consignments of deteriorated sugarcane or sugar beets to factories can detrimentally affect multiple process u...

  12. Phloem unloading in developing leaves of sugar beet

    SciTech Connect

    Schmalstig, J.G.

    1985-01-01

    Physiological and transport data support a symplastic pathway for phloem unloading in developing leaves of sugar beet (Beta vulgaris L. Klein E, multigerm). The sulfhydryl inhibitor parachloromercuribenzene sulfonic acid (PCMBS) inhibited uptake of (/sup 14/C)-sucrose added to the free space of developing leaves, but did not affect import of (/sup 14/C)-sucrose during steady-state /sup 14/CO/sub 2/ labeling of a source leaf. The passively-transported xenobiotic sugar, (/sup 14/C)-L-glucose did not readily enter mesophyll cells when supplied through the cut end of the petiole of a sink leaf as determined by whole leaf autoradiography. In contrast, (/sup 14/C)-L-glucose translocated through the phloem from a mature leaf, rapidly entered mesophyll cells, and was evenly distributed between mesophyll and veins. Autoradiographs of developing leaves following a pulse of /sup 14/CO/sub 2/ to a source leaf revealed rapid passage of phloem translocated into progressively higher order veins as the leaf developed. Entry into V order veins occurred during the last stage of import through the phloem. Import into developing leaves was inhibited by glyphosate (N-phosphomethylglycine), a herbicide which inhibits the aromatic amino acid pathway and hence protein synthesis. Glyphosate also stopped net starch accumulation in sprayed mature leaves, but did not affect export of carbon from treated leaves during the time period that import into developed leaves was inhibited.

  13. [EFFECT OF MYCOPLASMA INFECTION TO FATTY ACID COMPOSITION OF CALLUS CULTURE SUGAR BEET].

    PubMed

    Panchenko, L P; Korobkova, K S; Ostapchuk, A N

    2015-01-01

    It was studied the effect of Acholeplasma laidlawii var. granulum str. 118 to fatty acid composition of sugar beet calluses. It was established that acting of acholeplasma results to changes in the quantitative content of the individual fatty acids and in the qualitative composition of fatty acids in the lipids of calluses. The changing of the fatty acid composition of calluses lipids of sugar beet infected by A. laidlawii vargranulum str. 118 is observed as nonspecific response to biotic stress. PMID:26829840

  14. Modified sugar beet pectin induces apoptosis of colon cancer cells via an interaction with the neutral sugar side-chains.

    PubMed

    Maxwell, Ellen G; Colquhoun, Ian J; Chau, Hoa K; Hotchkiss, Arland T; Waldron, Keith W; Morris, Victor J; Belshaw, Nigel J

    2016-01-20

    Pectins extracted from a variety of sources and modified with heat and/or pH have previously been shown to exhibit activity towards several cancer cell lines. However, the structural basis for the anti-cancer activity of modified pectin requires clarification. Sugar beet and citrus pectin extracts have been compared. Pectin extracted from sugar beet pulp only weakly affected the viability of colon cancer cells. Alkali treatment increased the anti-cancer effect of sugar beet pectin via an induction of apoptosis. Alkali treatment decreased the degree of esterification (DE) and increased the ratio of rhamnogalacturonan I (RGI) to homogalacturonan. Low DE per se did not play a significant role in the anti-cancer activity. However, the enzymatic removal of galactose and, to a lesser extent, arabinose from the pectin decreased the effect on cancer cells indicating that the neutral sugar-containing RGI regions are important for pectin bioactivity. PMID:26572430

  15. Metagenomic Analysis of the Bacterial Community Associated with the Taproot of Sugar Beet

    PubMed Central

    Tsurumaru, Hirohito; Okubo, Takashi; Okazaki, Kazuyuki; Hashimoto, Megumi; Kakizaki, Kaori; Hanzawa, Eiko; Takahashi, Hiroyuki; Asanome, Noriyuki; Tanaka, Fukuyo; Sekiyama, Yasuyo; Ikeda, Seishi; Minamisawa, Kiwamu

    2015-01-01

    We analyzed a metagenome of the bacterial community associated with the taproot of sugar beet (Beta vulgaris L.) in order to investigate the genes involved in plant growth-promoting traits (PGPTs), namely 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, indole acetic acid (IAA), N2 fixation, phosphate solubilization, pyrroloquinoline quinone, siderophores, and plant disease suppression as well as methanol, sucrose, and betaine utilization. The most frequently detected gene among the PGPT categories encoded β-1,3-glucanase (18 per 105 reads), which plays a role in the suppression of plant diseases. Genes involved in phosphate solubilization (e.g., for quinoprotein glucose dehydrogenase), methanol utilization (e.g., for methanol dehydrogenase), siderophore production (e.g. isochorismate pyruvate lyase), and ACC deaminase were also abundant. These results suggested that such PGPTs are crucially involved in supporting the growth of sugar beet. In contrast, genes for IAA production (iaaM and ipdC) were less abundant (~1 per 105 reads). N2 fixation genes (nifHDK) were not detected; bacterial N2 -fixing activity was not observed in the 15N2 -feeding experiment. An analysis of nitrogen metabolism suggested that the sugar beet microbiome mainly utilized ammonium and nitroalkane as nitrogen sources. Thus, N2 fixation and IAA production did not appear to contribute to sugar beet growth. Taxonomic assignment of this metagenome revealed the high abundance of Mesorhizobium, Bradyrhizobium, and Streptomyces, suggesting that these genera have ecologically important roles in the taproot of sugar beet. Bradyrhizobium-assigned reads in particular were found in almost all categories of dominant PGPTs with high abundance. The present study revealed the characteristic functional genes in the taproot-associated microbiome of sugar beet, and suggest the opportunity to select sugar beet growth-promoting bacteria. PMID:25740621

  16. Investigation of the use of aerobic granules for the treatment of sugar beet processing wastewater.

    PubMed

    Kocaturk, Irem; Erguder, Tuba Hande

    2015-01-01

    The treatment of sugar beet processing wastewater in aerobic granular sequencing batch reactor (SBR) was examined in terms of chemical oxygen demand (COD) and nitrogen removal efficiency. The effect of sugar beet processing wastewater of high solid content, namely 2255 ± 250 mg/L total suspended solids (TSS), on granular sludge was also investigated. Aerobic granular SBR initially operated with the effluent of anaerobic digester treating sugar beet processing wastewater (Part I) achieved average removal efficiencies of 71 ± 30% total COD (tCOD), 90 ± 3% total ammonifiable nitrogen (TAN), 76 ± 24% soluble COD (sCOD) and 29 ± 4% of TSS. SBR was further operated with sugar beet processing wastewater (Part II), where the tCOD, TAN, sCOD and TSS removal efficiencies were 65 ± 5%, 61 ± 4%, 87 ± 1% and 58 ± 10%, respectively. This study indicated the applicability of aerobic granular SBRs for the treatment of both sugar beet processing wastewater and anaerobically digested processing wastewater. For higher solids removal, further treatment such as a sedimentation tank is required following the aerobic granular systems treating solid-rich wastewaters such as sugar beet processing wastewater. It was also revealed that the application of raw sugar beet processing wastewater slightly changed the aerobic granular sludge properties such as size, structure, colour, settleability and extracellular polymeric substance content, without any drastic and negative effect on treatment performance. PMID:25851439

  17. Metagenomic analysis of the bacterial community associated with the taproot of sugar beet.

    PubMed

    Tsurumaru, Hirohito; Okubo, Takashi; Okazaki, Kazuyuki; Hashimoto, Megumi; Kakizaki, Kaori; Hanzawa, Eiko; Takahashi, Hiroyuki; Asanome, Noriyuki; Tanaka, Fukuyo; Sekiyama, Yasuyo; Ikeda, Seishi; Minamisawa, Kiwamu

    2015-01-01

    We analyzed a metagenome of the bacterial community associated with the taproot of sugar beet (Beta vulgaris L.) in order to investigate the genes involved in plant growth-promoting traits (PGPTs), namely 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, indole acetic acid (IAA), N2 fixation, phosphate solubilization, pyrroloquinoline quinone, siderophores, and plant disease suppression as well as methanol, sucrose, and betaine utilization. The most frequently detected gene among the PGPT categories encoded β-1,3-glucanase (18 per 10(5) reads), which plays a role in the suppression of plant diseases. Genes involved in phosphate solubilization (e.g., for quinoprotein glucose dehydrogenase), methanol utilization (e.g., for methanol dehydrogenase), siderophore production (e.g. isochorismate pyruvate lyase), and ACC deaminase were also abundant. These results suggested that such PGPTs are crucially involved in supporting the growth of sugar beet. In contrast, genes for IAA production (iaaM and ipdC) were less abundant (~1 per 10(5) reads). N2 fixation genes (nifHDK) were not detected; bacterial N2 -fixing activity was not observed in the (15)N2 -feeding experiment. An analysis of nitrogen metabolism suggested that the sugar beet microbiome mainly utilized ammonium and nitroalkane as nitrogen sources. Thus, N2 fixation and IAA production did not appear to contribute to sugar beet growth. Taxonomic assignment of this metagenome revealed the high abundance of Mesorhizobium, Bradyrhizobium, and Streptomyces, suggesting that these genera have ecologically important roles in the taproot of sugar beet. Bradyrhizobium-assigned reads in particular were found in almost all categories of dominant PGPTs with high abundance. The present study revealed the characteristic functional genes in the taproot-associated microbiome of sugar beet, and suggest the opportunity to select sugar beet growth-promoting bacteria. PMID:25740621

  18. Differential Sugar Beet gene expression during the defense response to challenge by Cercospora beticola

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cercospora leaf spot (CLS) caused by the fungus Cercospora beticola Sacc. (Saccardo, 1867) (C. beticola) is a widespread foliar disease of sugar beet that causes reduced sugar and root yield. It can become a problem in many production areas in the U.S. and world-wide. The study of host resistance ...

  19. Preparation and properties of water and glycerol-plasticized sugar beet pulp plastics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugar beet pulp (SBP), the residue from sugar extraction, was compounded and turned into thermoplastic composite materials. The compounding was performed using a common twin screw compounding extruder and water and glycerol were used as plasticizers. The plasticization of SBP utilized the water-solu...

  20. Sugar Beets, Segregation, and Schools: Mexican Americans in a Northern Colorado Community, 1920-1960.

    ERIC Educational Resources Information Center

    Donato, Ruben

    2003-01-01

    What was unique about the Mexican American experience in Fort Collins (Colorado) was the extent to which the Great Western Sugar Company colonized Mexican workers. They lived in Mexican colonies, separate neighborhoods, or remote locations on sugar beet farms. In public schools, Mexican Americans were perceived as intellectually inferior and were…

  1. Sugar Beet (Beta vulgaris L) as a Biofuel Feedstock in the United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugar beet is a biennial plant, which produces an enlarged root and hypocotyl in the first year, in which it stores sucrose that provides energy used to flower in the next season. Technically, conversion of sugar to ethanol is a simple process requiring only yeast fermentation. A 2006 USDA study c...

  2. Differential sugar beet gene expression during the defense response to challenge by Cercospora beticola

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cercospora leaf spot (CLS), caused by the fungus Cercospora beticola Sacc., is a widespread foliar disease of sugar beet that causes reduced sugar and root yield. It can become a problem in many production areas in the U.S. and world-wide. The study of host resistance is important for the understa...

  3. Effect of Plant Age and Transplanting Damage on Sugar Beets infected by Heterodera schachtii

    PubMed Central

    Olthof, Th. H. A.

    1983-01-01

    Sugar beet (Beta vulgaris L. cv. Monogerm C.S.F. 1971) seeds sown into Vineland fine sandy loam, infested with 15,500 H. schachtii juveniles/pot, showed little growth during an 11-week test in the greenhouse. Seedlings transplanted at 2, 4, and 6 weeks of age had 32, 30, and 31% less top weight and 71, 68, and 59% less root weight, respectively, compared to controls grown in nematode-free soil. Nematode reproduction in both direct-seeded and transplanted sugar beets was limited and related to root weight. Shoot/root ratios were increased by the nematodes in all nematode-infected beets compared to those grown in soil without nematodes. In contrast to seeding or transplanting sugar beets into nematode-infested Vineland fine sandy loam, an inoculation of Beverly fine sandy loam supporting 0 (seeds), 2-, 4-, and 6-week-old sugar beet seedlings with 7,400 juveniles/pot, followed by 11 weeks of growth in the growth-room, resulted in top weight losses of only 13, 3, 18, and 15% and losses in root weight of 44, 38, 36, and 38%, respectively. Nematode reproduction was high and all shoot/root ratios were increased by the nematode compared to the noninoculated controls. These experiments have shown that sugar beets sown into nematode-infested soil are damaged much more heavily by H. schachtii juveniles than seeds inoculated with the nematode immediately following sowing. Results indicate that an increase in tolerance of sugar beets to attack by H. schachtii does not occur beyond the first 2 weeks of growth and that transplanting damage lowers the tolerance of seedlings to nematode attack. PMID:19295846

  4. Milled industrial beet color kinetics and total soluble solid contents by image analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Industrial beets are an emerging feedstock for biofuel and bioproducts industry in the US. Milling of industrial beets is the primary step in front end processing (FEP) for ethanol production. Milled beets undergo multiple pressings with water addition during raw beet juice extraction, and extracted...

  5. Challenges to grow oilseed rape Brassica napus in sugar beet rotations.

    PubMed

    Stefanovska, T; Pidlisnyuk, V

    2009-01-01

    The study was carried out in 1989-1991 and repeated in 2003-2006 to compare life cycle and dynamics of Heterodera schachtii Schm. on sugar beet, oilseed rape, fodder radish and to work out recommendations on how to decrease the risk of yield reduction while it grows in sugar-beet rotations. Research was carried out in plot experiment in natural conditions. Nematode community on rape, fodder radish and sugar beet was analyzed. Data of nematode community showed that composition of nematode species was very similar. Heterodera shachtii were dominated species with rape and sugar beet. All tested Brassica crops are susceptible to H. schachtii. However there is significant difference in population dynamics. The highest total number of brown cysts, eggs and juveniles of all ages was observed in winter rape. H.schachtii developed two generations on sugar beet and one generation on mustard. The voluntary seed germination after harvest contributes to increasing H. schachtii population. Therefore it is necessary to destroy oilseed rape voluntary chemically or physically. This operation should be done in about 2-4 weeks. The exact time can be calculated using the temperature- based model. Growing regular fodder radish and mustard as the trap crops can significantly reduce population of H. schachtii. The time of sowing is not earlier than August 20th. While estimating the time of destruction of trap crops it should be taken into consideration that H. schachtii can complete life cycle without foliage. PMID:20222620

  6. Taproot promoters cause tissue specific gene expression within the storage root of sugar beet.

    PubMed

    Oltmanns, Heiko; Kloos, Dorothee U; Briess, Waltraud; Pflugmacher, Maike; Stahl, Dietmar J; Hehl, Reinhard

    2006-08-01

    The storage root (taproot) of sugar beet (Beta vulgaris L.) originates from hypocotyl and primary root and contains many different tissues such as central xylem, primary and secondary cambium, secondary xylem and phloem, and parenchyma. It was the aim of this work to characterize the promoters of three taproot-expressed genes with respect to their tissue specificity. To investigate this, promoters for the genes Tlp, His1-r, and Mll were cloned from sugar beet, linked to reporter genes and transformed into sugar beet and tobacco. Reporter gene expression analysis in transgenic sugar beet plants revealed that all three promoters are active in the storage root. Expression in storage root tissues is either restricted to the vascular zone (Tlp, His1-r) or is observed in the whole organ (Mll). The Mll gene is highly organ specific throughout different developmental stages of the sugar beet. In tobacco, the Tlp and Mll promoters drive reporter gene expression preferentially in hypocotyl and roots. The properties of the Mll promoter may be advantageous for the modification of sucrose metabolism in storage roots. PMID:16482437

  7. Susceptibility of Five Sugar Beet Cultivars to the Black Bean Aphid, Aphis fabae Scopoli (Hemiptera: Aphididae).

    PubMed

    Golizadeh, A; Abedi, Z; Borzoui, E; Golikhajeh, N; Jafary, M

    2016-08-01

    The black bean aphid, Aphis fabae Scopoli (Hemiptera: Aphididae), is one of the important pests of sugar beet. The relative impact of resistance, including antibiosis and antixenosis of five sugar beet cultivars (Doroti, Perimer, Pershia, Rozier and 006) on A. fabae was studied under laboratory conditions using clip cages. The antibiosis test was based on life table parameters. Significant differences on developmental time, mean number of nymphs/aphid/day, fecundity, and adult longevity of A. fabae were found across tested sugar beet cultivars. In addition, there were significant differences among the sugar beet cultivars for population growth parameters such as the intrinsic rate of natural increase (r m ), net reproductive rate (R 0), finite rate of increase (λ), doubling time (DT), and mean generation time (T) of A. fabae. The highest and lowest (r m ) values were observed on Pershia (0.449 nymphs/female/day) and Perimer (0.358 nymphs/female/day), respectively. No significant differences were found for the preference of the black bean aphid, and antixenosis had no effect on resistance against this aphid. As a result, our findings showed that the Pershia cultivar was a relatively susceptible host plant. Two cultivars (Perimer and Rozier) were relatively resistant to A. fabae, which could prove useful in the development of IPM programs for this aphid in sugar beet fields. PMID:26927334

  8. Cold-inhibited phloem translocation in sugar beet

    SciTech Connect

    Grusak, M.A.

    1985-01-01

    Experimental studies were undertaken on a simplified single source leaf-single sink leaf, or single source leaf-double sink leaf sugar beet system to investigate the responsive nature of the long-distance phloem translocation system to localized cooling perturbations on the source leaf petiole. Experiments were performed by using a steady state (/sup 14/C)-labelling system for the source leaf, and translocation into the sink leaf (leaves) was monitored with a Geiger-Mueller system. A specially designed Peltier apparatus enabled cooling of the source petiole to 1/sup 0/C (or other desired temperatures) at various positions on the petiole, over different lengths, and at different rates of cooling. Initial experiment were designed to test the predictions of a mathematical recovery model of translocation inhibited by cold. The results did not support the mathematical model, but did suggest that vascular anastomoses may be involved in the recovery response. Selective petiolar incision/excision experiments showed that anastomoses were capable of re-establishing translocation following a disruption of flow. Studies with two monitored sink levels suggested that the inhibition to slow-coolings was not due to reduced translocation through the cooled source petiole region, but rather, was due to a repartitioning of flow among the terminal sinks (sink leaves and hypocotyl/crown region above the heat-girdled root). This repartitioning occurred via a redirection of flow through the vascular connections in the crown region of the plant, and appeared to be promoted by rapid, physical signals originating from the cooled region of the petiole.

  9. Characterization of a population of Fusarium oxysporum, from sugar beet, using the population structure of putative pathogenicity genes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    WEBB, KIMBERLY M.*, PAUL COVEY, BRETT KUWITZKY, AND MIA HANSON, USDA-ARS, Sugar Beet Research Unit, 1701 Centre Ave., Fort Collins, CO 80526. Characterization of a population of Fusarium oxysporum, from sugar beet, using the population structure of putative pathogenicity genes. Fusarium oxysp...

  10. Varying Response of Sugar Beet Lines to Different Fusarium Oxysporum F. sp. Betae Isolates from the United States.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nine isolates of Fusarium oxysporum f.sp. betae, the cause of Fusarium yellows of sugar beet, were tested for their interaction with different sugar beet lines. In addition, two of these isolates were tested in the presence or absence of the sugarbeet cyst nematode, Heterodera schachtii. Differen...

  11. Potassium Uptake Efficiency and Dynamics in the Rhizosphere of Maize, Wheat, and Sugar Beet Evaluated with a Mechanistic Model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant species differ in nutrient uptake efficiency. With a pot experiment, we evaluated potassium (K) uptake efficiency of maize (Zea mays L.), wheat (Triticum aestivum L.), and sugar beet (Beta vulgaris L.) grown on a low-K soil. Sugar beet and wheat maintained higher shoot K concentrations, indica...

  12. Identification of Sugar Beet Germplasm EL51 as a Source of Resistance to Post-Emergence Rhizoctonia Damping-Off

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The basidiomycete Rhizoctonia solani is a major agent of seedling stand declines in Michigan sugar beet production. Disease progress, starting from 2-week-old sugar beet seedlings, was scored daily over the following ca. two weeks in a controlled environment, using two AG-2-2 isolates and two AG-4 i...

  13. Development of a field inoculation method to screen for sugar beet seedling resistance to Fusarium oxysporum f. sp. beta

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium yellows is an important disease in many sugar beet production areas throughout the U.S. and yield losses can be devastating. Also seedling damping off caused by Fusarium can result in serious damage to the sugar beet stand establishment. This can lead to a severe loss in yield. The object...

  14. Metabolome profiling to understand the defense response to sugar beet (Beta vulgaris) to Rhizoctonia solani AG 2-2 IIIB

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rhizoctonia crown and root rot, caused by Rhizoctonia solani Kühn AG 2-2 IIIB, is an important disease of sugar beet (Beta vulgaris L.). The molecular processes that mediate sugar beet resistance to R. solani are largely unknown and identifying the metabolites associated with R. solani infection ma...

  15. Effect of subsoiling on the yield of sugar beet under conditions of rhizomania infection.

    PubMed

    Németh, L; Kuroli, G

    2002-01-01

    The rhizomania is known in Hungary since 1982. The causal agent, Beet necrotic yellow vein benyvirus (BNYVV) is transmitted by a soil-borne fungus Polymyxa betae Keskin. A field experiment was done under rhizomania infested and non-infested conditions to compare the yield parameters of five tolerant and four sensitive sugar beet hybrids. Tolerant varieties produced higher root yield under rhizomania infected conditions. The root yields of the sensitive varieties were similar to the tolerant ones on the uninfested field, but the root mass of some tolerant varieties exceeded the production of the former group. Subsoiling was carried out in two strips of a heavily infested field, while conventional soil cultivation was done on the other parts. There was not any other difference in the cultivation of the treated and control areas. Sugar beet root samples were collected at the time of harvesting from the subsoiled and control plots. Beet necrotic yellow vein virus (BNYVV) infection was tested by means of ELISA. Virus content, yield and yield parameters of samples were compared. There were no significant differences in virus infection between sugar beet roots derived from subsoiled and untreated plots. Ratio of BNYVV infected plants was about 90% in both areas. However, yield and yield parameters showed remarkable difference. Root yield of treated plots, calculated from average individual root weight and 80,000 plant/ha plant density exceeded by 140% the yield of control. Sugar content was 2.6% higher and the harmful non-sugar content was lower on the subsoiled plots. Owing to the favourable chemical and technological value of beet the white sugar content was approximately three-times higher on the treated area. PMID:12701439

  16. Modified sugar beet pectin induces apoptosis of colon cancer cells via interaction with the neutral sugar side-chains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pectins extracted from a variety of sources and modified with heat and/or pH have previously been shown to exhibit activity towards several cancer cell lines. However, the structural basis for the anti-cancer activity of modified pectin requires clarification. Sugar beet and citrus pectin extracts h...

  17. Recent advances in functional genomics for sugar beet (Beta vulgaris L.) improvement: progress in determining the role of BvSTI in pest resistance in roots

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To gain knowledge of root resistance mechanisms in sugar beet, Beta vulgaris L., our laboratory has been studying the interaction of sugar beet with its most devastating insect pest, the sugar beet root maggot (SBRM; Tetanops myopaeformis Roder). Damage from SBRM infestations is a serious problem a...

  18. The characterization of sugar beet pectin using the EcoSEC® GPC system coupled to multi-angle light scattering, quasi-elastic light scattering, and differential viscometry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The need to increase the use of low valued co-products derived from the processing of sugar beets has prompted the investigation of the structure of the pectin extracted from sugar beet pulp. The characterization of sugar beet pectin is essential as it has the potential to be used in the production ...

  19. Environmental conditions that contribute to development and severity of Sugar Beet Fusarium Yellows caused by Fusarium oxysporum f. sp. betae: temperature

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium yellows in sugar beet, caused by Fusarium oxysporum f. sp. betae, continues to cause significant problems to sugar beet production by causing considerable reductions in root yield, sucrose percentage, and juice purity in affected sugar beets. Environment plays a critical role in pathogen i...

  20. Evaluation of the fermentation of high gravity thick sugar beet juice worts for efficient bioethanol production

    PubMed Central

    2013-01-01

    Background Sugar beet and intermediates of sugar beet processing are considered to be very attractive feedstock for ethanol production due to their content of fermentable sugars. In particular, the processing of the intermediates into ethanol is considerably facilitated because it does not require pretreatment or enzymatic treatment in contrast to production from starch raw materials. Moreover, the advantage of thick juice is high solid substance and saccharose content which eliminates problems with the storability of this feedstock. Results The objective of this study were to investigate bioethanol production from thick juice worts and the effects of their concentration, the type of mineral supplement, as well as the dose of yeast inoculum on fermentation dynamics and ethanol yield. The obtained results show that to ensure efficient ethanolic fermentation of high gravity thick juice worts, one needs to use a yeast strain with high ethanol tolerance and a large amount of inoculum. The highest ethanol yield (94.9 ± 2.8% of the theoretical yield) and sugars intake of 96.5 ± 2.9% were obtained after the fermentation of wort with an extract content of 250 g/kg supplemented with diammonium hydrogen phosphate (0.3 g/L of wort) and inoculated with 2 g of Ethanol Red dry yeast per L of wort. An increase in extract content in the fermentation medium from 250 g/L to 280 g/kg resulted in decreased efficiency of the process. Also the distillates originating from worts with an extract content of 250 g/kg were characterized by lower acetaldehyde concentration than those obtained from worts with an extract content of 280 g/kg. Conclusions Under the favorable conditions determined in our experiments, 38.9 ± 1.2 L of 100% (v/v) ethyl alcohol can be produced from 100 kg of thick juice. The obtained results show that the selection of process conditions and the yeast for the fermentation of worts with a higher sugar content can improve the economic performance of the

  1. Differences between the rhizosphere microbiome of Beta vulgaris ssp. maritima—ancestor of all beet crops—and modern sugar beets

    PubMed Central

    Zachow, Christin; Müller, Henry; Tilcher, Ralf; Berg, Gabriele

    2014-01-01

    The structure and function of the plant microbiome is driven by plant species and prevailing environmental conditions. Effectuated by breeding efforts, modern crops diverge genetically and phenotypically from their wild relatives but little is known about consequences for the associated microbiota. Therefore, we studied bacterial rhizosphere communities associated with the wild beet B. vulgaris ssp. maritima grown in their natural habitat soil from coastal drift lines (CS) and modern sugar beets (Beta vulgaris ssp. vulgaris) cultivated in CS and potting soil (PS) under greenhouse conditions. Analysis of 16S rRNA gene fingerprints and pyrosequencing-based amplicon libraries revealed plant genotype- and soil-specific microbiomes. Wild beet plants harbor distinct operational taxonomic units (OTUs) and a more diverse bacterial community than the domesticated sugar beet plants. Although the rhizospheres of both plant genotypes were dominated by Proteobacteria and Planctomycetes, 37.5% of dominant OTUs were additionally detected in the wild beet rhizosphere. Analysis of the cultivable fraction confirmed these plant genotype-specific differences at functional level. The proportion of isolates displayed in vitro activity against phytopathogens was lower for wild beet (≤45.8%) than for sugar beet (≤57.5%). Conversely, active isolates from the wild beet exhibited stronger ability to cope with abiotic stresses. From all samples, active isolates of Stenotrophomonas rhizophila were frequently identified. In addition, soil type-specific impacts on the composition of bacterial communities were found: Acidobacteria, Chloroflexi, and Planctomycetes were only detected in plants cultivated in CS; whereas Bacteroidetes and Proteobacteria dominated in PS. Overall, in comparison to modern sugar beets, wild beets were associated with taxonomically and functionally distinct microbiomes. PMID:25206350

  2. Differences between the rhizosphere microbiome of Beta vulgaris ssp. maritima-ancestor of all beet crops-and modern sugar beets.

    PubMed

    Zachow, Christin; Müller, Henry; Tilcher, Ralf; Berg, Gabriele

    2014-01-01

    The structure and function of the plant microbiome is driven by plant species and prevailing environmental conditions. Effectuated by breeding efforts, modern crops diverge genetically and phenotypically from their wild relatives but little is known about consequences for the associated microbiota. Therefore, we studied bacterial rhizosphere communities associated with the wild beet B. vulgaris ssp. maritima grown in their natural habitat soil from coastal drift lines (CS) and modern sugar beets (Beta vulgaris ssp. vulgaris) cultivated in CS and potting soil (PS) under greenhouse conditions. Analysis of 16S rRNA gene fingerprints and pyrosequencing-based amplicon libraries revealed plant genotype- and soil-specific microbiomes. Wild beet plants harbor distinct operational taxonomic units (OTUs) and a more diverse bacterial community than the domesticated sugar beet plants. Although the rhizospheres of both plant genotypes were dominated by Proteobacteria and Planctomycetes, 37.5% of dominant OTUs were additionally detected in the wild beet rhizosphere. Analysis of the cultivable fraction confirmed these plant genotype-specific differences at functional level. The proportion of isolates displayed in vitro activity against phytopathogens was lower for wild beet (≤45.8%) than for sugar beet (≤57.5%). Conversely, active isolates from the wild beet exhibited stronger ability to cope with abiotic stresses. From all samples, active isolates of Stenotrophomonas rhizophila were frequently identified. In addition, soil type-specific impacts on the composition of bacterial communities were found: Acidobacteria, Chloroflexi, and Planctomycetes were only detected in plants cultivated in CS; whereas Bacteroidetes and Proteobacteria dominated in PS. Overall, in comparison to modern sugar beets, wild beets were associated with taxonomically and functionally distinct microbiomes. PMID:25206350

  3. [Characteristics of virus double-stranded RNA, isolated from microscopic fungi parasitizing on sugar beet].

    PubMed

    Mel'nychuk, M D; Spyrydonov, V H; Oleksiienko, I P

    2005-01-01

    We have carried out comparative studies of double-stranded RNA (dsRNA) of viral nature isolated from sugar beet leaves and from mycelium of microscopic fungi using different methods such as PAAG electrophoresis and by polymerase chain reaction (PCR). It was shown that the fragments of dsRNA from sugar beet leaves and from mycelium microscopic fungi had the identical electrophoretic pattern and the same size (1.8 and 2.0 kbp). Using PCR technique it was shown, that isolated dsRNA have a common template for amplification. Electron microscopy of PCR-positive mycelium allows us to detect the virus particles of the spherical form with diameter 30-40 nm. The obtained data confirm our previous suppositions, concerning the belonging of isolated dsRNAs (size 1.8 and 2.0 kbp) to new mycovirus targeted a microscopic fungus, instead of beet cryptic viruses. PMID:16250236

  4. Impact of presowing laser irradiation of seeds on sugar beet properties

    NASA Astrophysics Data System (ADS)

    Sacała, E.; Demczuk, A.; Grzyś, E.; Prośba-Białczyk, U.; Szajsner, H.

    2012-07-01

    The aim of the experiment was to establish the influence of biostimulation on the sugar beet seeds. The seeds came from the specialized breeding program energ'hill or were irradiated by the laser in two doses. The impact of the biostimulation was analyzed by determining the nitrate reductase activity and the nitrate, chlorophyll and carotenoids contents in leaves, as well as, the dry matter and sugar concentration in mature roots. The field experiment was established for two sugar beet cultivars. Biostimulation by irradiation and a special seed breeding program energ'hill had a positive influence on some examined parameters (particularly on nitrate reductase activity in Ruveta and in numerous cases on photosynthetic pigments in both cultivars). Regarding the dry matter accumulation and sugar concentration this impact was more favourable for Tiziana than for Ruveta cultivar.

  5. PAFC fed by biogas produced by the anaerobic fermentation of the waste waters of a beet-sugar refinery

    SciTech Connect

    Ascoli, A.; Elias, G.; Bigoni, L.; Giachero, R.

    1996-10-01

    Beet-washing waters of a beet-sugar refinery carry a high COD (Chemical Oxygen Demand), and their conditioning to meet legal constraints before disposal considerably contributes to the operation costs of the refinery. Their fermentation in an anaerobic digestor could instead produce readily disposable non-polluting waters, fertilizers and biogas, useful to feed a phosphoric acid fuel cell (PAFC) heat and power generator system. A real refinery case is considered in this work, where the electrical characteristics V = V(I) of a laboratory PAFC stack, fueled with a dry simulated reforming gas (having the same H{sub 2} and CO{sub 2} content as the biogas obtainable by the above said anaerobic digestion), are determined. The encouraging results show that a possible market niche for fuel cells, in the food-industry waste partial recovery and residual disposal, deserves attention.

  6. Rhizomania Resistance in the Tandem Sugar Beet Variety

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rhizomania, caused by beet necrotic yellow vein virus (BNYVV), is a major disease of sugarbeets world-wide. The ‘Holly’ resistance gene (Rz1) confers strong resistance to several BNYVV isolates and has been incorporated into most major sugarbeet breeding lines. However, the threat presented by resis...

  7. Rhizomania resistance in the Tandem® sugar beet variety.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rhizomania, caused by beet necrotic yellow vein virus (BNYVV), is a major disease of sugarbeets world-wide. The ‘Holly’ resistance gene (Rz1) confers strong resistance to several BNYVV isolates and has been incorporated into most major sugarbeet breeding lines. However, the threat presented by resis...

  8. Cross Pathogenicity of Fusarium oxysporum f. sp. betae on Sugar Beet and Common Bean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium wilt, also known as Fusarium yellows, is caused by the fungus Fusarium oxysporum. Fusarium oxysporum is a vascular pathogen with a broad host range including common bean (Phaseolus vulgaris L.) and sugar beet (Beta vulgaris L.) with formae speciales (f. sp.) defined by the ability to cause ...

  9. Alternative splicing of the maize Ac transposase transcript in transgenic sugar beet (Beta vulgaris L.)

    PubMed Central

    Lisson, Ralph; Hellert, Jan; Ringleb, Malte; Machens, Fabian; Kraus, Josef

    2010-01-01

    The maize Activator/Dissociation (Ac/Ds) transposable element system was introduced into sugar beet. The autonomous Ac and non-autonomous Ds element excise from the T-DNA vector and integrate at novel positions in the sugar beet genome. Ac and Ds excisions generate footprints in the donor T-DNA that support the hairpin model for transposon excision. Two complete integration events into genomic sugar beet DNA were obtained by IPCR. Integration of Ac leads to an eight bp duplication, while integration of Ds in a homologue of a sugar beet flowering locus gene did not induce a duplication. The molecular structure of the target site indicates Ds integration into a double strand break. Analyses of transposase transcription using RT–PCR revealed low amounts of alternatively spliced mRNAs. The fourth intron of the transposase was found to be partially misspliced. Four different splice products were identified. In addition, the second and third exon were found to harbour two and three novel introns, respectively. These utilize each the same splice donor but several alternative splice acceptor sites. Using the SplicePredictor online tool, one of the two introns within exon two is predicted to be efficiently spliced in maize. Most interestingly, splicing of this intron together with the four major introns of Ac would generate a transposase that lacks the DNA binding domain and two of its three nuclear localization signals, but still harbours the dimerization domain. PMID:20512402

  10. Alternative splicing of the maize Ac transposase transcript in transgenic sugar beet (Beta vulgaris L.).

    PubMed

    Lisson, Ralph; Hellert, Jan; Ringleb, Malte; Machens, Fabian; Kraus, Josef; Hehl, Reinhard

    2010-09-01

    The maize Activator/Dissociation (Ac/Ds) transposable element system was introduced into sugar beet. The autonomous Ac and non-autonomous Ds element excise from the T-DNA vector and integrate at novel positions in the sugar beet genome. Ac and Ds excisions generate footprints in the donor T-DNA that support the hairpin model for transposon excision. Two complete integration events into genomic sugar beet DNA were obtained by IPCR. Integration of Ac leads to an eight bp duplication, while integration of Ds in a homologue of a sugar beet flowering locus gene did not induce a duplication. The molecular structure of the target site indicates Ds integration into a double strand break. Analyses of transposase transcription using RT-PCR revealed low amounts of alternatively spliced mRNAs. The fourth intron of the transposase was found to be partially misspliced. Four different splice products were identified. In addition, the second and third exon were found to harbour two and three novel introns, respectively. These utilize each the same splice donor but several alternative splice acceptor sites. Using the SplicePredictor online tool, one of the two introns within exon two is predicted to be efficiently spliced in maize. Most interestingly, splicing of this intron together with the four major introns of Ac would generate a transposase that lacks the DNA binding domain and two of its three nuclear localization signals, but still harbours the dimerization domain. PMID:20512402

  11. EVALUATION OF FULL-SCALE SUGAR BEET TRANSPORT WATER SOLIDS DEWATERING SYSTEM

    EPA Science Inventory

    The objectives of this study were to evaluate a full-scale vacuum filtration system for dewatering solids removed from the transport water in an operating beet sugar plant in terms of operational reliability and efficiency, economics, and ultimate disposal of the dewatered solids...

  12. Influence of Rhizoctonia-Bacterial root rot complex on storability of sugar beet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The root rot complex, caused by Rhizoctonia solani and Leuconostoc mesenteroides, can lead to yield loss in the field but may also lead to problems with sucrose loss in storage. Thus, studies were conducted to investigate if placing sugar beet roots suffering from root rot together with healthy roo...

  13. Antioxidant and Physicochemical Properties of Hydrogen Peroxide-Treated Sugar Beet Dietary Fibre.

    PubMed

    Mišan, Aleksandra; Sakač, Marijana; Medić, Đorđe; Tadić, Vanja; Marković, Goran; Gyura, Julliana; Pagano, Ester; Izzo, Angelo A; Borrelli, Francesca; Šarić, Bojana; Milovanović, Ivan; Milić, Nataša

    2016-05-01

    The aim of the present work was to examine if hydrogen peroxide treatment of sugar beet fibre that aimed at improving its physicochemical properties would impair its antioxidant potential. Three different sugar beet fibres were obtained from sugar beet - non-treated fibre (NTF) from sugar beet cossettes extracted with sulphurous acid, treated fibre (TF) from NTF treated with hydrogen peroxide in alkaline solution and commercially available Fibrex(®) . The antioxidant activity of extractable and non-extractable fibre fractions in ethanol/water mixture (80:20, v/v) of three fibre samples was estimated. Non-extractable fractions obtained after alkaline treatment of investigated fibres were much higher in phenolic compounds and possessed higher antioxidant potential than extractable fractions. Ferulic acid was proven to be the dominant phenolic acid. Regarding both extractable and non-extractable fractions, Fibrex(®) had the highest antioxidant activity in chemical tests, while NTF was superior in comparison with TF. Based on the results of Caco-2 cells-based test, all non-extractable fractions possessed potential for reactive oxygen species inhibition. Regarding the extractable fractions, only the TF manifested this effect.Copyright © 2016 John Wiley & Sons, Ltd. PMID:26929014

  14. Physico-chemical characterization of a cellulosic fraction from sugar beet pulp

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The residue of sugar beet pulp from which pectin and alkaline soluble polysaccharides have been removed by microwave assisted extraction (MAE) or conventional heat was treated with sodium monochloroacetate under alkaline pH to convert the residual cellulose present to carboxy methyl cellulose (CMC)....

  15. Leuconostoc spp. associated with root rot in sugar beet and their interaction with rhizoctonia solani

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rhizoctonia root and crown is an important disease problem in sugar beet caused by Rhizoctonia solani and also shown to be associated with Leuconostoc. Since, the initial Leuconostoc studies were conducted with only a few isolates and the relationship of Leuconostoc with R. solani is poorly underst...

  16. CFP Positive Progeny from Genetic Crosses of Elite Germplasm with a Transgenic Sugar Beet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Resistance to Cercospora leaf spot disease, a serious problem for sugar beet production in most growing regions, has historically not been very amenable to genetic improvement by traditional means since only moderate resistance occurs naturally and it is multigenic with low heritability. Therefore, ...

  17. High-throughput RAD-SNP genotyping for characterization of sugar beet genotypes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High-throughput SNP genotyping provides a rapid way of developing resourceful set of markers for delineating the genetic architecture and for effective species discrimination. In the presented research, we demonstrate a set of 192 SNPs for effective genotyping in sugar beet using high-throughput mar...

  18. Nucleotide Sequence Analyses of a Sugar Beet Genomic NPR1-class Disease Resistance Gene

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Disease resistance in Arabidopsis thaliana is centrally controlled by the NPR1 gene that modulates multiple disease response pathways. A homolog of NPR1 was isolated from Beta vulgaris as a first step in deducing the potentially similarly important role of this gene for sugar beet disease resistanc...

  19. Fractionation of sugar beet pulp by introducing ion-exchange groups

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugar beet pulp (SBP) was chemically modified with the goal to utilize this method for the preparation of water-soluble polysaccharides. Yields of the trimethylammoniumhydroxypropylated (TMAHP) polysaccharide fractions prepared under vacuum in absence of NaOH or KOH, as well as their molar masses, w...

  20. Physico-chemical characterization of alkaline soluble polysaccharides from sugar beet pulp

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have studied the global structure of microwave-assisted alkaline soluble polysaccharides (ASP) isolated from fresh sugar beet pulp. The objective was to minimize the disassembly and possibly the degradation of these polysaccharides during extraction. Prior to ASP microwave assisted-extraction (...

  1. Global structure of microwave-assisted flash extracted sugar beet pectin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have studied the global structure of microwave assisted, flash extracted pectins isolated from fresh sugar beet pulp. The objective was to minimize the disassembly and possibly the degradation of pectin molecules during extraction. We have characterized these pectins by HPSEC with light scatter...

  2. Aphanomyces effects on carbohydrate impurities and sucrose extractability in postharvest sugar beet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugar beet roots with rot caused by Aphanomyces cochlioides often are incorporated into storage piles even though effects of disease on processing properties are unknown. Roots with Aphanomyces root rot were harvested from six fields over 2 years. For each field, roots with similar disease symptom...

  3. Biodegradable composites from polyester and sugar beet pulp with antimicrobial coating for food packaging

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Totally biodegradable, double-layered antimicrobial composite Sheets were introduced for food packaging. The substrate layers of the sheets were prepared from poly (lactic acid) (PLA) and sugar beet pulp (SBP) or poly (butylene adipate-co-terephthalate (PBAT) and SBP by a twin-screw extruder. The ac...

  4. Seedling vigor and stand establishment: transcriptome profiling of sugar beet under temperature stress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In Michigan, an average of 60% of sugar beet seeds germinate and survive to harvest under field conditions, and planting occurs in early spring when soil temperatures approach 55 deg F (~12 deg C). Large temperature deviations above or below that may induce heat or cold stress that may be lead to a ...

  5. Functional differentiation of the sugar beet root system as indicator of developmental phase change

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Developmental phase transition in the plant root system has not been well characterized. In this study we compared the dynamics of sucrose accumulation with gene expression changes analyzed with cDNA-AFLP in the tap root system of sugar beet (Beta vulgaris L.) during the first nine weeks after emerg...

  6. The America Society of Sugar Beet Technologist, advancing sugarbeet research for 75 years

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The American Society of Sugar Beet Technologists (ASSBT) was created 75 years ago when a group of researchers that had been meeting informally as the Sugarbeet Roundtable adopted the constitution and by-laws that provided the basis for an organization that continues to foster the exchange of ideas a...

  7. Virus induced gene silencing of a gene repressing flowering in sugar beet.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Exposure to a prolonged cold period during winter is necessary for flowering in the next spring in many biennial plants - a process termed vernalization. We have described BvFL1, a vernalization gene in sugar beet (Beta vulgaris), which is a repressor of flowering that is downregulated in response ...

  8. Physico-chemical characterization of protein associated polysaccharides extracted from sugar beet pulp

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugar Beet Pulp (SBP), contains 67 to 80% (dry weight) of potentially valuable polysaccharides. We have solubilized and separated polysaccharides from SBP into three fractions with steam assisted flash extraction (SAFE) employed to solubilize the first and second fractions. Pectin, the first fract...

  9. Optimisation of ultrasonic-assisted extraction of phenolic compounds, antioxidants, and anthocyanins from sugar beet molasses.

    PubMed

    Chen, Mingshun; Zhao, Yi; Yu, Shujuan

    2015-04-01

    Response surface methodology was used to optimise experimental conditions for ultrasonic-assisted extraction (UAE) of functional components from sugar beet molasses. The central composite design (CCD) was used for the optimisation of extraction parameters in terms of total phenolic contents, antioxidant activities and anthocyanins. Result suggested the optimal conditions obtained by RSM for UAE from sugar beet molasses were as follows: HCl concentration 1.55-1.72 mol/L, ethanol concentration 57-63% (v/v), extraction temperature 41-48 °C, and extraction time 66-73 min. In the optimal conditions, the experimental total phenolic contents were 17.36 mg GAE/100mL, antioxidant activity was 16.66 mg TE/g, and total anthocyanins were 31.81 mg/100g of the sugar beet molasses extract, which were well matched the predicted values. Teen compounds, i.e. gallic acid, vanillin, hydroxybenzoic acid, syringic acid, cyanidin-3-O-rutinoside, cyanidin-3-O-glucoside, catechin, delphinidin-3-O-rutinoside, delphinidin-3-O-glucuronide and ferulic acid were determined by HPLC-DAD-MS/MS in sugar beet molasses. PMID:25442590

  10. Stalk rot of sugar beet caused by Fusarium solani on the Pacific coast.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium stalk blight can cause loss of seed production in sugar beet. The only known causal agent is Fusarium oxysporum f.sp. betae. In 2006, plants that had been grown as stecklings in Oregon and planted in the greenhouse in California for seed production showed symptoms of stalk blight. In add...

  11. Polysaccharides isolated from sugar beet pulp by quaternization under acidic conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugar beet pulp was extracted and chemically modified under acidic conditions using glycidyltrimethylammonium chloride in the presence of trifuoroacetic (TFA), HCl or H3PO4. The goal was to find out how the type of acid used and quaternization could affect the yield of soluble polysaccharide, its mo...

  12. Biochar derived from anaerobically digested sugar beet tailings: characterization and phosphate removal potential.

    PubMed

    Yao, Ying; Gao, Bin; Inyang, Mandu; Zimmerman, Andrew R; Cao, Xinde; Pullammanappallil, Pratap; Yang, Liuyan

    2011-05-01

    Two biochars were produced from anaerobically digested and undigested sugar beet tailings through slow-pyrolysis at 600°C. The digested sugar beet tailing biochar (DSTC) and raw sugar beet tailing biochar (STC) yields were around 45.5% and 36.3% of initial dry weight, respectively. Compared to STC, DSTC had similar pH and surface functional groups, but higher surface area, and its surface was less negatively charged. SEM-EDS and XRD analyses showed that colloidal and nano-sized periclase (MgO) was presented on the surface of DSTC. Laboratory adsorption experiments were conducted to assess the phosphate removal ability of the two biochars, an activated carbon (AC), and three Fe-modified biochar/AC adsorbents. The DSTC showed the highest phosphate removal ability with a removal rate around 73%. Our results suggest that anaerobically digested sugar beet tailings can be used as feedstock materials to produce high quality biochars, which could be used as adsorbents to reclaim phosphate. PMID:21450461

  13. Experimental Sugar Beet Cultivars Evaluated for Resistance Bacterial Root Rot in Idaho, 2008

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacterial root rot of sugar beet caused by Leuconostoc mesenteroides subsp. dextranicum is a disease problem recently described in the United States. To ameliorate the impact of bacterial root rot on sucrose loss in the field, storage piles, and factories, a study was conducted to identify resistan...

  14. Sugar beet pulp and poly(lactic acid) composites using methylene diphenyl diisocyanate as coupling agent

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Composites from sugar beet pulp (SBP) and poly(lactic acid) (PLA) were extruded in the presence of polymeric methylene diphenyl diisocyanate (pMDI). SBP particles were evenly distributed within the PLA matrix phase as revealed by confocal fluorescence microscopic analysis. The resultant composites w...

  15. The measurement of mannitol in sugar beet factories to monitor deterioration and processing problems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugar beet deterioration can still be a major technological constraint in processing. The major (but not sole) contributor to deterioration in many countries, particularly when warm and humid conditions prevail, is infection by hetero-fermentative Leuconostoc mesenteroides lactic acid bacteria. In...

  16. Commercial Sugar Beet Cultivars Evaluated for Resistance to Bacterial Root Rot in Idaho, 2008

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacterial root rot of sugar beet caused by Leuconostoc mesenteroides subsp. dextranicum is a disease problem recently described in the United States. To ameliorate the impact of bacterial root rot on sucrose loss in the field, storage piles, and factories, a study was conducted to identify resistan...

  17. The American Society of Sugar Beet Technologists advancing sugarbeet research for 75 years

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The American Society of Sugar Beet Technologists (ASSBT) was created 75 years ago when a group of researchers that had been meeting informally as the Sugarbeet Roundtable adopted the constitution and by-laws that provided the basis for an organization that continues to foster the exchange of ideas a...

  18. First report of the stubby root nematode Paratrichodorus allius on sugar beet in Minnesota

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stubby root nematodes (Paratrichodorus and Trichodorus) are migratory ectoparasites that feed on roots, transmit tobraviruses, and cause significant crop loss. In June 2015, three soil samples from a sugar beet field near Felton (Clay County), MN were submitted to the Nematology Laboratory at North ...

  19. A Colletotrichum sp. causing root rot in sugar beet (Beta vulgaris)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In fall of 2014 sugar beets were observed in a field in Washington State with shallow, dark, firm lesions on the surface. When examined under magnification, minute black “dots” were observed on the surface of the lesions. Isolations were made from the lesions and a Colletotrichum species was consist...

  20. Leuconostoc spp. Associated with Root Rot in Sugar Beet and Their Interaction with Rhizoctonia solani.

    PubMed

    Strausbaugh, Carl A

    2016-05-01

    Rhizoctonia root and crown rot is an important disease problem in sugar beet caused by Rhizoctonia solani and also shown to be associated with Leuconostoc spp. Initial Leuconostoc studies were conducted with only a few isolates and the relationship of Leuconostoc with R. solani is poorly understood; therefore, a more thorough investigation was conducted. In total, 203 Leuconostoc isolates were collected from recently harvested sugar beet roots in southern Idaho and southeastern Oregon during 2010 and 2012: 88 and 85% Leuconostoc mesenteroides, 6 and 15% L. pseudomesenteroides, 2 and 0% L. kimchi, and 4 and 0% unrecognized Leuconostoc spp., respectively. Based on 16S ribosomal RNA sequencing, haplotype 11 (L. mesenteroides isolates) comprised 68 to 70% of the isolates in both years. In pathogenicity field studies with commercial sugar beet 'B-7', all Leuconostoc isolates caused more rot (P < 0.0001; α = 0.05) when combined with R. solani than when inoculated alone in both years. Also, 46 of the 52 combination treatments over the 2 years had significantly more rot (P < 0.0001; α = 0.05) than the fungal check. The data support the conclusion that a synergistic interaction leads to more rot when both Leuconostoc spp. and R. solani are present in sugar beet roots. PMID:26735061

  1. Determination of sucrose content in sugar beet by portable visible and near-infrared spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The feasibility of visible and near-infrared spectroscopy for measurement of the sucrose content of sugar beet was investigated with two portable spectrometers that cover the spectral regions of 400-1,100 nm and 900-1,600 nm, respectively. Spectra in interactance mode were collected first from 398 i...

  2. Assessment of strobilurin resistance in Cercospora beticola in on sugar beet in Michigan and Nebraska, USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cercospora leaf spot (CLS) caused by Cercospora beticola Sacc. is the most important foliar disease of sugar beet (Beta vulgaris) worldwide. CLS is controlled mainly with fungicides, including strobilurins (FRAC group 11). Resistance to strobilurins in C. beticola was first identified in 2011 from s...

  3. USE OF GREEN MANURE CROPS AND SUGAR BEET VARIETIES TO CONTROL HETERODERA BETAE.

    PubMed

    Raaijmakers, E

    2014-01-01

    Although it is less studied than the white beet cyst nematode (Heterodera schachtii), the yellow beet cyst nematode (H. betae) has been found in many countries in Europe. For example in The Netherlands, France and Spain. H. betae causes yield losses on sandy soils. A high infestation can result in loss of complete plants. In The Netherlands, this nematode is especially found in the south eastern and north eastern part, where it occurs on 18% and 5% of the fields, respectively. From a project of the Dutch Sugar beet Research Institute IRS (SUSY) on factors explaining differences in sugar yield, this nematode was one of the most important factors reducing sugar yields on sandy soils. Until 2008, the only way to control H. betae was by reducing the number of host crops in the crop rotation. Host crops are crops belonging to the families of Cruciferae, Chenopodiaceae, Polygonaceae, Caryophyllaceae and Leguminosea. In order to find more control measures, research was done to investigate the host status of different green manure crops and the resistance and tolerance of different sugar beet varieties to H. betae. White mustard (Sinapis alba) and oil seed radish (Raphanus sativus spp. oleiferus) varieties resistant to H. schachtii were investigated for their resistance against H. betae. A climate room trial and a field trial with white mustard and oil seed radish were conducted in 2007 and 2008, respectively. Results show that H. betae could multiply on susceptible white mustard and susceptible oil seed radish, but not on the H. schachtii resistant varieties. In climate room trials in 2009, 2010 and 2011 and field trials in 2010, 2011 and 2012, the effect of different sugar beet varieties on the multiplication of H. betae and the effect of H. betae on yield at different infestation levels was investigated. Sugar beet varieties with resistance genes to H. schachtii (from Beta procumbens or B. maritima) were selected. Varieties with resistance genes from these sources were

  4. Economic feasibility of the sugar beet-to-ethylene value chain.

    PubMed

    Althoff, Jeroen; Biesheuvel, Kees; De Kok, Ad; Pelt, Henk; Ruitenbeek, Matthijs; Spork, Ger; Tange, Jan; Wevers, Ronald

    2013-09-01

    As part of a long-term strategy toward renewable feedstock, a feasibility study into options for the production of bioethylene by integrating the sugar beet-to-ethanol-to-ethylene value chain. Seven business cases were studied and tested for actual economic feasibility of alternative sugar-to-ethanol-to-ethylene routes in comparison to fossil-fuel alternatives. An elaborate model was developed to assess the relevant operational and financial aspects of each business case. The calculations indicate that bioethylene from sugar beet is not commercially viable under current market conditions. In light of expected global energy and feedstock prices it is also reasonable to expect that this will not change in the near future. To consider biorenewable sources as starting material, they need to be low in cost (compared to sugar beets) and also require less capital and energy-intensive methods for the conversion to chemicals. In general, European sugar prices will be too high for many chemical applications. Future efforts for in sugar-to-chemicals routes should, therefore, focus on integrated process routes and process intensification and/or on products that contain a significant part of the original carbohydrate backbone. PMID:24039080

  5. Effect of Environment and Sugar Beet Genotype on Root Rot Development and Pathogen Profile During Storage.

    PubMed

    Liebe, Sebastian; Varrelmann, Mark

    2016-01-01

    Storage rots represent an economically important factor impairing the storability of sugar beet by increasing sucrose losses and invert sugar content. Understanding the development of disease management strategies, knowledge about major storage pathogens, and factors influencing their occurrence is crucial. In comprehensive storage trials conducted under controlled conditions, the effects of environment and genotype on rot development and associated quality changes were investigated. Prevalent species involved in rot development were identified by a newly developed microarray. The strongest effect on rot development was assigned to environment factors followed by genotypic effects. Despite large variation in rot severity (sample range 0 to 84%), the spectrum of microorganisms colonizing sugar beet remained fairly constant across all treatments with dominant species belonging to the fungal genera Botrytis, Fusarium, and Penicillium. The intensity of microbial tissue necrotization was strongly correlated with sucrose losses (R² = 0.79 to 0.91) and invert sugar accumulation (R² = 0.91 to 0.95). A storage rot resistance bioassay was developed that could successfully reproduce the genotype ranking observed in storage trials. Quantification of fungal biomass indicates that genetic resistance is based on a quantitative mechanism. Further work is required to understand the large environmental influence on rot development in sugar beet. PMID:26474333

  6. A sugar beet chlorophyll a/b binding protein promoter void of G-box like elements confers strong and leaf specific reporter gene expression in transgenic sugar beet

    PubMed Central

    Stahl, Dietmar J; Kloos, Dorothee U; Hehl, Reinhard

    2004-01-01

    Background Modification of leaf traits in sugar beet requires a strong leaf specific promoter. With such a promoter, expression in taproots can be avoided which may otherwise take away available energy resources for sugar accumulation. Results Suppression Subtractive Hybridization (SSH) was utilized to generate an enriched and equalized cDNA library for leaf expressed genes from sugar beet. Fourteen cDNA fragments corresponding to thirteen different genes were isolated. Northern blot analysis indicates the desired tissue specificity of these genes. The promoters for two chlorophyll a/b binding protein genes (Bvcab11 and Bvcab12) were isolated, linked to reporter genes, and transformed into sugar beet using promoter reporter gene fusions. Transient and transgenic analysis indicate that both promoters direct leaf specific gene expression. A bioinformatic analysis revealed that the Bvcab11 promoter is void of G-box like regulatory elements with a palindromic ACGT core sequence. The data indicate that the presence of a G-box element is not a prerequisite for leaf specific and light induced gene expression in sugar beet. Conclusions This work shows that SSH can be successfully employed for the identification and subsequent isolation of tissue specific sugar beet promoters. These promoters are shown to drive strong leaf specific gene expression in transgenic sugar beet. The application of these promoters for expressing resistance improving genes against foliar diseases is discussed. PMID:15579211

  7. Sugar beet breeding lines evaluated for resistance to Rhizoctonia crown and root rot in Fort Collins, CO, 2015

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thirty-nine beet sugar beet breeding lines (Beta vulgaris subsp. vulgaris) from the USDA-Agricultural Research Service breeding program at Fort Collins, CO, were screened for resistance to Rhizoctonia crown and root rot (Rcrr) at the Colorado State University ARDEC facility in Fort Collins, CO. The...

  8. Identification of saponins from sugar beet (Beta vulgaris) by low and high-resolution HPLC-MS/MS.

    PubMed

    Mikołajczyk-Bator, Katarzyna; Błaszczyk, Alfred; Czyżniejewski, Mariusz; Kachlicki, Piotr

    2016-09-01

    We profiled triterpene saponins from the roots of sugar beet Beta vulgaris L. cultivars Huzar and Boryna using reversed-phase liquid chromatography combined with negative-ion electrospray ionization quadrupole mass spectrometry. We tentatively identified 26 triterpene saponins, including 17 that had not been detected previously in this plant species and 7 saponins that were tentatively identified as new compounds. All observed compounds were glycosides of five different aglycones, of which gypsogenin and norhederagenin are reported for the first time in sugar beet. Thirteen of the saponins detected in sugar beet roots were substituted with dioxolane-type (4 saponins) or acetal-type (9 saponins) dicarboxylic acids. Among the 26 detected saponins, we identified 2 groups of isomers distinguished using high-resolution mass measurements that were detected only in the Huzar cultivar of sugar beet. PMID:27423042

  9. Genome-wide distribution of genetic diversity and linkage disequilibrium in elite sugar beet germplasm

    PubMed Central

    2011-01-01

    Background Characterization of population structure and genetic diversity of germplasm is essential for the efficient organization and utilization of breeding material. The objectives of this study were to (i) explore the patterns of population structure in the pollen parent heterotic pool using different methods, (ii) investigate the genome-wide distribution of genetic diversity, and (iii) assess the extent and genome-wide distribution of linkage disequilibrium (LD) in elite sugar beet germplasm. Results A total of 264 and 238 inbred lines from the yield type and sugar type inbreds of the pollen parent heterotic gene pools, respectively, which had been genotyped with 328 SNP markers, were used in this study. Two distinct subgroups were detected based on different statistical methods within the elite sugar beet germplasm set, which was in accordance with its breeding history. MCLUST based on principal components, principal coordinates, or lapvectors had high correspondence with the germplasm type information as well as the assignment by STRUCTURE, which indicated that these methods might be alternatives to STRUCTURE for population structure analysis. Gene diversity and modified Roger's distance between the examined germplasm types varied considerably across the genome, which might be due to artificial selection. This observation indicates that population genetic approaches could be used to identify candidate genes for the traits under selection. Due to the fact that r2 >0.8 is required to detect marker-phenotype association explaining less than 1% of the phenotypic variance, our observation of a low proportion of SNP loci pairs showing such levels of LD suggests that the number of markers has to be dramatically increased for powerful genome-wide association mapping. Conclusions We provided a genome-wide distribution map of genetic diversity and linkage disequilibrium for the elite sugar beet germplasm, which is useful for the application of genome-wide association

  10. Biosynthesis, translocation, and accumulation of betaine in sugar beet and its progenitors in relation to salinity.

    PubMed

    Hanson, A D; Wyse, R

    1982-10-01

    Like other halophytic chenopods, sugar beet (Beta vulgaris L.) can accumulate high betaine levels in shoots and roots. N,N,N-trimethylglycine impedes sucrose crystallization and so lowers beet quality. The objective of this research was to examine the genetic variability and physiological significance of betaine accumulation in sugar beet and its relatives. Three cultivated genotypes of B. vulgaris and two genotypes of the wild progenitor B. maritima L. were grown with and without gradual salinization (final NaCl concentration = 150 millimolar). At 6 weeks old, all five genotypes had moderately high betaine levels in shoots and roots when unsalinized (averages for all genotypes: shoots = 108 micromoles per gram dry weight; roots = 99 micromoles per gram dry weight). Salinization raised betaine levels of shoots and roots 2- to 3-fold, but did not greatly depress shoot or root growth. The genotype WB-167-an annual B. maritima type-always had approximately 40% lower betaine levels in roots than the other four genotypes, although the betaine levels in the shoots were not atypically low.THE SITE AND PATHWAY OF BETAINE SYNTHESIS WERE INVESTIGATED IN YOUNG, SALINIZED SUGAR BEET PLANTS BY: (a) supplying 1 micromole [(14)C]ethanolamine to young leaf blades or to the taproot sink of intact plants; (b) supplying tracer [(14)C]formate to discs of leaf, hypocotyl, and taproot tissues in darkness. Conversion of both (14)C precursors to betaine was active only in leaf tissue. Very little (14)C appeared in the phospholipid phosphatidylcholine before betaine was heavily labeled; this was in marked contrast to the labeling patterns in salinized barley. Phosphorylcholine was a prominent early (14)C metabolite of both [(14)C]ethanolamine and [(14)C]formate in all tissues of sugar beet. Betaine translocation was examined in young plants of sugar beet and WB-167 by applying tracer [methyl-(14)C]betaine to a young expanded leaf and determining the distribution of (14)C after 3 days. In