Science.gov

Sample records for beetles phyllotreta spp

  1. Susceptibility of brassicaceous plants to feeding by flea beetles, Phyllotreta spp. (Coleoptera: Chrysomelidae).

    PubMed

    Soroka, Juliana; Grenkow, Larry

    2013-12-01

    Crucifer-feeding flea beetles, Phyllotreta spp., are chronic insect pests in Canadian prairie canola production. Multiple laboratory and field feeding bioassays were conducted to determine the susceptibility of a wide range of crucifer species, cultivars, and accessions to feeding by flea beetles with the goal of discovering sources of resistant germplasm. In 62 bioassays of 218 entries, no consistent decreased feeding by flea beetles was seen on any entries of Brassica carinata A. Braun, Brassica juncea (L.) Czern., Brassica napus L., or Brassica rapa L. There was reduced feeding on condiment mustard Sinapis alba L. lines but not on canola-quality lines with reduced amounts of glucosinolates, which were fed on at levels equal to B. napus. Analyses of glucosinolate content found decreased quantities of hydroxybenzyl and butyl glucosinolates in preferred canola-quality S. alba lines and increased levels of hydroxybutenyl glucosinolates compared with levels in condiment S. alba lines. Eruca sativa Mill. was an excellent flea beetle host; Camelina sativa (L.) Crantz lines experienced little feeding. Lines of Crambe abyssinica Hochst. ex R. E. Fries and Crambe hispanica L. had reduced feeding levels compared with Brassica entries, but Crambe glabrata DC did not. The results indicate possible sources of resistance to Phyllotreta flea beetles, while highlighting the complicated roles that glucosinolates may play in Phyllotreta host preference. PMID:24498758

  2. Male-specific sesquiterpenes from Phyllotreta flea beetles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Flea beetles in several genera are known to possess male-specific sesquiterpenes, at least some of which serve as aggregation pheromones that attract both sexes. In continuing research on the chemical ecology of Phyllotreta flea beetles, six new male-specific sesquiterpenes were identified, one fro...

  3. Genetic Differentiation between Resistance Phenotypes in the Phytophagous Flea Beetle, Phyllotreta nemorum

    PubMed Central

    de Jong, Peter W.; Breuker, Casper J.; de Vos, Helene; Vermeer, Kim M.C.A; Oku, Keiko; Verbaarschot, Patrick; Nielsen, Jens Kvist; Brakefield, Paul M.

    2009-01-01

    The flea beetle Phyllotreta nemorum L. (Coleoptera: Chrysomelidae) is genetically polymorphic for resistance against the defences of one of its host plants, Barbarea vulgaris R.Br. (Brassicales: Brassicaceae). Whereas resistant flea beetles are able to use B. vulgaris as well as other cruciferous plants as food, non-resistant beetles cannot survive on B. vulgaris. This limitation to host plant use of non-resistant beetles could potentially lead to asymmetric gene flow and some degree of genetic isolation between the different resistance-genotypes. Therefore, we studied the extent of genetic differentiation at neutral allozyme loci between samples of flea beetles that were collected at different locations and first tested for resistance phenotype. Since earlier work has shown a weak, but significant, effect of geographical distance between the samples on their genetic differentiation, in the present study variation at the neutral allozyme loci in P. nemorum was partitioned between geographical distance and resistance-phenotype. Both sources independently contributed statistically significantly to population differentiation. Thus, there appears to be a limitation to genetic exchange between the resistant and non-resistant flea beetles when corrections are made for their geographic differentiation. This is consistent with the presence of some degree of host race formation in this flea beetle. PMID:20053124

  4. Phyllotreta striolata flea beetles use host plant defense compounds to create their own glucosinolate-myrosinase system.

    PubMed

    Beran, Franziska; Pauchet, Yannick; Kunert, Grit; Reichelt, Michael; Wielsch, Natalie; Vogel, Heiko; Reinecke, Andreas; Svatoš, Aleš; Mewis, Inga; Schmid, Daniela; Ramasamy, Srinivasan; Ulrichs, Christian; Hansson, Bill S; Gershenzon, Jonathan; Heckel, David G

    2014-05-20

    The ability of a specialized herbivore to overcome the chemical defense of a particular plant taxon not only makes it accessible as a food source but may also provide metabolites to be exploited for communication or chemical defense. Phyllotreta flea beetles are adapted to crucifer plants (Brassicales) that are defended by the glucosinolate-myrosinase system, the so-called "mustard-oil bomb." Tissue damage caused by insect feeding brings glucosinolates into contact with the plant enzyme myrosinase, which hydrolyzes them to form toxic compounds, such as isothiocyanates. However, we previously observed that Phyllotreta striolata beetles themselves produce volatile glucosinolate hydrolysis products. Here, we show that P. striolata adults selectively accumulate glucosinolates from their food plants to up to 1.75% of their body weight and express their own myrosinase. By combining proteomics and transcriptomics, a gene responsible for myrosinase activity in P. striolata was identified. The major substrates of the heterologously expressed myrosinase were aliphatic glucosinolates, which were hydrolyzed with at least fourfold higher efficiency than aromatic and indolic glucosinolates, and β-O-glucosides. The identified beetle myrosinase belongs to the glycoside hydrolase family 1 and has up to 76% sequence similarity to other β-glucosidases. Phylogenetic analyses suggest species-specific diversification of this gene family in insects and an independent evolution of the beetle myrosinase from other insect β-glucosidases. PMID:24799680

  5. Similarities in pheromonal communication of flea beetles Phyllotreta cruciferae Goeze and Ph. vittula Redtenbacher (Coleoptera, Chrysomelidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Remarkable similarities have been found in the pheromonal communication of Phyllotreta vittula Redtenbacher and of Ph. cruciferae Goeze (European population) (Coleoptera, Chrysomelidae). In previous European field tests with Ph. cruciferae, only the major male-produced sesquiterpene identified from ...

  6. Differential Expression Analysis of Chemoreception Genes in the Striped Flea Beetle Phyllotreta striolata Using a Transcriptomic Approach

    PubMed Central

    Wu, Zhongzhen; Bin, Shuying; He, Hualiang; Wang, Zhengbing; Li, Mei; Lin, Jintian

    2016-01-01

    Olfactory transduction is a process by which olfactory sensory neurons (OSNs) transform odor information into neuronal electrical signals. This process begins with the binding of odor molecules to receptor proteins on olfactory receptor neuron (ORN) dendrites. The major molecular components involved in olfaction include odorant-binding proteins (OBPs), chemosensory proteins (CSPs), odorant receptors (ORs), gustatory receptors (GRs), ionotropic receptors (IRs), sensory neuron membrane proteins (SNMPs) and odorant-degrading enzymes (ODEs). More importantly, as potential molecular targets, chemosensory proteins are used to identify novel attractants or repellants for environmental-friendly pest management. In this study we analyzed the transcriptome of the flea beetle, Phyllotreta striolata (Coleoptera, Chrysomelidae), a serious pest of Brassicaceae crops, to better understand the molecular mechanisms of olfactory recognition in this pest. The analysis of transcriptomes from the antennae and terminal abdomens of specimens of both sexes identified transcripts from several key molecular components of chemoreception including 73 ORs, 36 GRs, 49 IRs, 2 SNMPs, 32 OBPs, 8 CSPs, and four candidate odorant degrading enzymes (ODEs): 143 cytochrome P450s (CYPs), 68 esterases (ESTs), 27 glutathione S-transferases (GSTs) and 8 UDP-glycosyltransferases (UGTs). Bioinformatic analyses indicated that a large number of chemosensory genes were up-regulated in the antennae. This was consistent with a potential role in olfaction. To validate the differential abundance analyses, the expression of 19 genes encoding various ORs, CSPs, and OBPs was assessed via qRT-PCR between non-chemosensory tissue and antennae. Consistent with the bioinformatic analyses, transcripts for all of the genes in the qRT-PCR subset were elevated in antennae. These findings provide the first insights into the molecular basis of chemoreception in the striped flea beetle. PMID:27064483

  7. Differential Expression Analysis of Chemoreception Genes in the Striped Flea Beetle Phyllotreta striolata Using a Transcriptomic Approach.

    PubMed

    Wu, Zhongzhen; Bin, Shuying; He, Hualiang; Wang, Zhengbing; Li, Mei; Lin, Jintian

    2016-01-01

    Olfactory transduction is a process by which olfactory sensory neurons (OSNs) transform odor information into neuronal electrical signals. This process begins with the binding of odor molecules to receptor proteins on olfactory receptor neuron (ORN) dendrites. The major molecular components involved in olfaction include odorant-binding proteins (OBPs), chemosensory proteins (CSPs), odorant receptors (ORs), gustatory receptors (GRs), ionotropic receptors (IRs), sensory neuron membrane proteins (SNMPs) and odorant-degrading enzymes (ODEs). More importantly, as potential molecular targets, chemosensory proteins are used to identify novel attractants or repellants for environmental-friendly pest management. In this study we analyzed the transcriptome of the flea beetle, Phyllotreta striolata (Coleoptera, Chrysomelidae), a serious pest of Brassicaceae crops, to better understand the molecular mechanisms of olfactory recognition in this pest. The analysis of transcriptomes from the antennae and terminal abdomens of specimens of both sexes identified transcripts from several key molecular components of chemoreception including 73 ORs, 36 GRs, 49 IRs, 2 SNMPs, 32 OBPs, 8 CSPs, and four candidate odorant degrading enzymes (ODEs): 143 cytochrome P450s (CYPs), 68 esterases (ESTs), 27 glutathione S-transferases (GSTs) and 8 UDP-glycosyltransferases (UGTs). Bioinformatic analyses indicated that a large number of chemosensory genes were up-regulated in the antennae. This was consistent with a potential role in olfaction. To validate the differential abundance analyses, the expression of 19 genes encoding various ORs, CSPs, and OBPs was assessed via qRT-PCR between non-chemosensory tissue and antennae. Consistent with the bioinformatic analyses, transcripts for all of the genes in the qRT-PCR subset were elevated in antennae. These findings provide the first insights into the molecular basis of chemoreception in the striped flea beetle. PMID:27064483

  8. A culture method for darkling beetles, Blapstinus spp. (Coleoptera: Tenebrionidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Darkling beetles, Blapstinus spp., have become a serious pest of Cucurbitaceae crops, especially in California. A culture method was sought to provide large numbers (> 500) of adult beetles of known age and sex that could be used for laboratory testing when needed. A method previously developed for ...

  9. Biological control of saltcedar (Tamarix spp.) by saltcedar leaf beetles (Diorhabda spp.): effects on small mammals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The spread of introduced saltcedar (Tamarix spp.) throughout many riparian systems across the western United States motivated the introduction of biological control agents that are specific to saltcedar, saltcedar leaf beetles (Diorhabda carinulata, D. elongata; Chrysomelidae). I monitored small mam...

  10. A Culture Method for Darkling Beetles, Blapstinus spp. (Coleoptera:Tenebrionidae).

    PubMed

    Zilkowski, Bruce W; Cossé, Allard A

    2015-06-01

    Darkling beetles, Blapstinus spp., have become a serious pest of Cucurbitaceae crops, especially in California. A culture method was sought to provide large numbers (>500) of adult beetles of known age and sex that could be used for laboratory testing when needed. A method previously developed for Alphitobius diaperinus (Panzer) using a diet of ground chick feed, with apple slices as a moisture source, was modified for use with Blapstinus spp. and then compared with the same method substituting apple slices with zucchini as the moisture source. Rearing boxes set up with apple slices produced significantly more pupae and adults than boxes containing zucchini slices. However, using either zucchini or apples as a moisture source yielded over the target of 500 adults per rearing box. A previous method designed to sex A. diaperinus based on the presence (♀) or absence (♂) of second valvifers in the pupal stage also proved to be effective for sexing the Blapstinus spp. PMID:26470223

  11. Ecophysiological Responses of Salt Cedar (Tamarix spp. L.) to the Northern Tamarisk Beetle (Diorhabda carinulata Desbrochers) In A Controlled Environment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The leaf beetle, Diorhabda elongata Brulle, was released in several western states as a biocontrol agent to suppress Tamarix spp. L. which has invaded riparian ecosystems; however, effects of leaf beetle herbivory on Tamarix physiology are largely undocumented and may have ecosystem ramifications. H...

  12. Diapause in the leaf beetle Diorhabda elongata (Coleoptera: Chrysomelidae), a biological control agent for tamarisk (Tamarix spp.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The tamarisk leaf beetle Diorhabda elongata Brulle deserticola Chen was collected in Northwestern China and has been released in the Western U.S. to control tamarisk (Tamarix spp.). Characteristics of diapause and reproductive development in D. elongata were examined to improve management as a bioc...

  13. Multigene phylogenies and morphological characterization of five new Ophiostoma spp. associated with spruce-infesting bark beetles in China.

    PubMed

    Yin, Mingliang; Wingfield, Michael J; Zhou, Xudong; de Beer, Z Wilhelm

    2016-04-01

    Ophiostoma spp. (Ophiostomatales, Ascomycota) are well-known fungi associated with bark beetles (Coleoptera: Scolytinae). Some of these are serious tree pathogens, while the majority is blue-stain agents of timber. In recent years, various bark beetle species have been attacking spruce forests in Qinghai province, China, causing significant damage. A preliminary survey was done to explore the diversity of the ophiostomatoid fungal associates of these beetles. The aims of the present study were to identify and characterize new Ophiostoma spp. associated with spruce-infesting bark beetles in Qinghai Province, and to resolve phylogenetic relationships of Ophiostoma spp. related to the Chinese isolates, using multigene phylogenetic analyses. Results obtained from four gene regions (ribosomal internal transcribed spacer regions, β-tubulin, calmodulin, translation elongation factor-1α) revealed five new Ophiostoma spp. from Qinghai. These included O. nitidus sp. nov., O. micans sp. nov., and O. qinghaiense sp. nov. in a newly defined O. piceae complex. The other two new species, O. poligraphi sp. nov. and O. shangrilae sp. nov., grouped in the O. brunneo-ciliatum complex. Based on DNA sequence and morphological comparisons, we also show that O. arduennense and O. torulosum are synonyms of O. distortum, while O. setosum is a synonym of O. cupulatum. PMID:27020148

  14. Effects of Biopesticides on Foliar Diseases and Japanese Beetle (Popillia japonica) Adults in Roses (Rosa spp.), Oakleaf Hydrangea (Hydrangea quercifolia), and Crapemyrtle (Lagerstroemia indica)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study evaluated efficacy of biopesticides for reducing foliar diseases and feeding damage from Japanese beetle adults on hybrid T rose (Rosa spp.), oakleaf hydrangea (Hydrangea quercifolia), and crapemyrtle (Lagerstroemia indica). The materials tested included household soaps with Triclosan act...

  15. Unikaryon phyllotretae sp. n. (Protista, Microspora), a new microsporidian pathogen of Phyllotreta undulata (Coleoptera; Chrysomelidae).

    PubMed

    Yaman, Mustafa; Radek, Renate; Weiser, Jaroslav; Toguebaye, Bhen Sikina

    2010-01-01

    The microsporidium Unikaryon phyllotretae sp. n., a new pathogen of Phyllotreta undulata, is described based on light microscopic and ultrastructural characteristics. Microscopic examination of parasitized individuals revealed two types of spores. The majority of the spores were of the first type, which are oval and measured 2.74+/-0.17 x 1.93+/-0.17 microm when fresh. Fresh spores of the second type (very rare) are elongated and measured 4.39+/-0.18 x 1.61+/-0.20 microm. All life stages have single nuclei. Sporogony ends with uninucleate single sporoblasts and spores. The spores were only observed in Malpighian tubules. The isofilar polar filament of the parasite has six to eight coils, and a well-developed polaroplast was of the lamellated type, with closely packed anterior lamellae and loosely packed posterior lamellae. PMID:19767185

  16. Sustainable management tactics for control of Phyllotreta cruciferae (Coleoptera: Chrysomelidae) on canola in Montana.

    PubMed

    Reddy, Gadi V P; Tangtrakulwanich, Khanobporn; Miller, John H; Ophus, Victoria L; Prewett, Julie

    2014-04-01

    The crucifer flea beetle, Phyllotreta cruciferae (Goeze) (Coleoptera: Chrysomelidae), has recently emerged as a serious pest of canola (Brassica napus L.) in Montana. The adult beetles feed on canola leaves, causing many small holes that stunt growth and reduce yield. In 2013, damage to canola seedlings was high (approximately 80%) in many parts of Montana, evidence that when flea beetles emerge in large numbers, they can quickly destroy a young canola crop. In the current study, the effectiveness of several biopesticides was evaluated and compared with two insecticides (deltamethrin and bifenthrin) commonly used as foliar sprays as well as seed treatment with an imidacloprid insecticide for the control of P. cruciferae under field conditions in 2013. The biopesticides used included an entomopathogenic nematode (Steinernema carpocapsae), two entomopathogenic fungi (Beauveria bassiana and Metarhizium brunneum), neem, and petroleum spray oils. The control agents were delivered in combination or alone in a single or repeated applications at different times. The plant-derived compound neem (azadirachtin), petroleum spray oil, and fatty acids (M-Pede) only showed moderate effect, although they significantly reduced leaf injuries caused by P. cruciferae and resulted in higher canola yield than the untreated control. Combined use of B. bassiana and M. brunneum in two repeated applications and bifenthrin in five applications were most effective in reducing feeding injuries and improving yield levels at both trial locations. This indicates that entomopathogenic fungi are effective against P. cruciferae, and may serve as alternatives to conventional insecticides or seed treatments in managing this pest. PMID:24772547

  17. Biological Control of Saltcedar (Tamarix spp.) in South Texas with the Saltcedar Leaf Beetle, Diorhabda elongata, and Effects on Athel (T.aphylla).

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biological control of saltcedar (Tamarix spp.) has involved releases of exotic saltcedar leaf beetles, Diorhabda elongata Brullé sensu lato, in the western U.S. Adults in field cages feed, oviposit, and produce larvae on athel (Tamarix aphylla), an evergreen tree used in the southwestern U.S. and n...

  18. Identification of Defense Compounds in Barbarea vulgaris against the Herbivore Phyllotreta nemorum by an Ecometabolomic Approach1[W

    PubMed Central

    Kuzina, Vera; Ekstrøm, Claus Thorn; Andersen, Sven Bode; Nielsen, Jens Kvist; Olsen, Carl Erik; Bak, Søren

    2009-01-01

    Winter cress (Barbarea vulgaris) is resistant to a range of insect species. Some B. vulgaris genotypes are resistant, whereas others are susceptible, to herbivory by flea beetle larvae (Phyllotreta nemorum). Metabolites involved in resistance to herbivory by flea beetles were identified using an ecometabolomic approach. An F2 population representing the whole range from full susceptibility to full resistance to flea beetle larvae was generated by a cross between a susceptible and a resistant B. vulgaris plant. This F2 offspring was evaluated with a bioassay measuring the ability of susceptible flea beetle larvae to survive on each plant. Metabolites that correlated negatively with larvae survival were identified through correlation, cluster, and principal component analyses. Two main clusters of metabolites that correlate negatively with larvae survival were identified. Principal component analysis grouped resistant and susceptible plants as well as correlated metabolites. Known saponins, such as hederagenin cellobioside and oleanolic acid cellobioside, as well as two other saponins correlated significantly with plant resistance. This study shows the potential of metabolomics to identify bioactive compounds involved in plant defense. PMID:19819983

  19. Open field host selection and behavior by tamarisk beetles (Diorhabda spp.)(Coleoptera: Chrysomelidae) in biological control of exotic saltcedars (Tamarix spp.) and risks to non-target athel (T. aphylla) and native Frankenia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biological control of exotic, invasive saltcedars (Tamarix spp.) in the western USA involves releases of exotic saltcedar leaf beetles, Diorhabda elongata Brullé sensu lato. Adults in cages alight, feed and oviposit on athel (Tamarix aphylla), an evergreen cold-intolerant tree used for shade and as...

  20. Biology, ecology, and management of Xylosandrus spp. ambrosia beetles (Coleoptera: Curculionidae: Scolytinae) in ornamental tree nurseries

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Xylosandrus germanus (Blandford) and Xylosandrus crassiusculus (Motschulsky) (Coleoptera: Curculionidae: Scolytinae) are two of the most damaging non-native ambrosia beetle pests in ornamental tree nurseries. Adult females tunnel into the stems and branches of host trees to create galleries with bro...

  1. Tamarisk beetle (Diorhabda spp.) in the Colorado River basin: Synthesis of an expert panel forum

    USGS Publications Warehouse

    Bloodworth, Benjamin R.; Shafroth, Patrick B.; Sher, Anna A.; Manners, Rebecca B.; Bean, Daniel W.; Johnson, Matthew J.; Hinojosa-Huerta, Osvel

    2016-01-01

    In January 2015, the Tamarisk Coalition convened a panel of experts to discuss and present information on probable ecological trajectories in the face of widespread beetle presence and to consider opportunities for restoration and management of riparian systems in the Colorado River Basin (CRB). An in-depth description of the panel discussion follows. 

  2. Efficacy of Entomopathogenic Nematodes and Sprayable Polymer Gel Against Crucifer Flea Beetle (Coleoptera: Chrysomelidae) on Canola.

    PubMed

    Antwi, Frank B; Reddy, Gadi V P

    2016-08-01

    The crucifer flea beetle, Phyllotreta cruciferae (Goeze), is a key pest of canola (Brassica napus L.) in the northern Great Plains of North America. The efficacies of entomopathogenic nematodes (Steinernema spp. and Heterorhabditis spp.), a sprayable polymer gel, and a combination of both were assessed on canola for flea beetle management. Plots were treated soon after colonization by adult flea beetles, when canola was in the cotyledon to one-leaf stage. Ten plants along a 3.6-m section of row were selected and rated at pre-treatment and 7 and 14 d post treatment using the damage-rating scheme advanced by the European Plant Protection Organization, where 1 = 0%, 2 = 2%, 3 = 5%, 4 = 10%, and 5 = 25% leaf area injury. Under moderate flea beetle feeding pressure (1-3.3% leaf area damaged), seeds treated with Gaucho 600 (Bayer CropScience LP Raleigh, NC) (imidacloprid) produced the highest yield (843.2 kg/ha). Meanwhile, Barricade (Barricade International, Inc. Hobe Sound, FL) (polymer gel; 1%) + Scanmask (BioLogic Company Inc, Willow Hill, PA) (Steinernema feltiae) resulted in the highest yields: 1020.8 kg/ha under high (2.0-5.3% leaf area damaged), and 670.2 kg/ha at extremely high (4.3-8.6 % leaf area damaged) feeding pressure. Our results suggest that Barricade (1%) + Scanmask (S. feltiae) can serve as an alternative to the conventional chemical seed treatment. Moreover, Scanmask (S. feltiae) can be used to complement the effects of seed treatment after its protection has run out. PMID:27329629

  3. Tamarisk (Tamarix spp.) water fluxes before, during and after episodic defoliation by the saltcedar leaf beetle

    USGS Publications Warehouse

    Hultine, K.R.; Nagler, P.L.; Dennison, P.E.; Bush, S.E.; Ehleringer, J.R.

    2009-01-01

    Tamarisk (Tamarix) species are among the most successful and economically costly plant invaders in the western United States, in part due to its potential to remove large amounts of water from shallow aquifers. Accordingly, local, state and federal agencies have released a new biological control - the saltcedar leaf beetle (Diorhabda elongata) along many watersheds in the western United States to reduce the spread of tamarisk. The beetle defoliates tamarisk for much of the growing season resulting in potentially large seasonal declines in productivity, fitness, and water loss from tamarisk stands. We measured sap flux density (Js) using heat dissipation sensors to investigate water use patterns of tamarisk before, during and after a single, six week beetle-induced defoliation event in southeastern, Utah, USA. Granier-style probes were installed on 20 dominant trees from May through September 2008, a period that covers almost the entire growing season. As the beetle emerged from dormancy in mid-June, daytime and nighttime Js measurably increased for approximately two weeks before declining to less than 20% of predicted values (predicted by modeling Js with atmospheric vapor pressure deficit in May and June before defoliation). Tamarisk trees in mid-August produced new leaves and Js returned to pre-defoliation levels. Total Js, summed over the duration of the study was 13% lower than predicted values. These data suggest that defoliation results in only small changes in seasonal water loss from tamarisk stands. Current research is focusing on long-term ecohydrological impacts of tamarisk defoliation over multiple growing seasons.

  4. Ophiostoma spp. associated with pine- and spruce-infesting bark beetles in Finland and Russia.

    PubMed

    Linnakoski, R; de Beer, Z W; Ahtiainen, J; Sidorov, E; Niemelä, P; Pappinen, A; Wingfield, M J

    2010-12-01

    The timber and pulp industries of Finland rely heavily on importations from Russia as source of raw timber. These imports raise the risk of accidentally importing forest pests and pathogens, especially bark beetles and their associated fungi, into Finland. Although ophiostomatoid fungi have previously been reported from Finland and Russia, the risks of accidentally moving these fungi has prompted a first survey to compare the diversity of conifer-infesting bark beetles and associated fungi from boreal forests on both sides of the Finnish-Russian border. The aim of the present study was to identify and characterise Ophiostoma species isolated in association with 11 bark beetle species infesting Pinus sylvestris and Picea abies during this survey in the eastern parts of Finland and neighbouring Russia. Fungal isolates were grouped based on morphology and representatives of each morphological group were subjected to DNA sequence comparisons of the internal transcribed spaced region (ITS1, 5.8S, ITS2) and β-tubulin gene region. A total of 15 species of Ophiostoma were identified, including seven known species, five new species, and three species for which the identity remains uncertain. In the O. piceae-complex we identified O. canum, O. floccosum, O. karelicum and O. rachisporum sp. nov., and related to these, some isolates belonging to the European clade of O. minus in the O. minus-complex. Ophiostoma bicolor and O. fuscum sp. nov. were identified in the O. ips-complex, while O. ainoae, O. brunneo-ciliatum, O. tapionis sp. nov. and O. pallidulum sp. nov. were shown to group close to, but not in a strict monophyletic lineage with species of the O. ips-complex. Together with a single O. abietinum-like isolate, the only species that grouped close to the Sporothrix schenckii- O. stenoceras complex, was O. saponiodorum sp. nov. PMID:21339968

  5. Climatic, Edaphic Factors and Cropping History Help Predict Click Beetle (Coleoptera: Elateridae) (Agriotes spp.) Abundance

    PubMed Central

    Kozina, A.; Lemic, D.; Bazok, R.; Mikac, K. M.; Mclean, C. M.; Ivezić, M.; Igrc Barčić, J.

    2015-01-01

    It is assumed that the abundance of Agriotes wireworms (Coleoptera: Elateridae) is affected by agro-ecological factors such as climatic and edaphic factors and the crop/previous crop grown at the sites investigated. The aim of this study, conducted in three different geographic counties in Croatia from 2007 to 2009, was to determine the factors that influence the abundance of adult click beetle of the species Agriotes brevis Cand., Agriotes lineatus (L.), Agriotes obscurus (L.), Agriotes sputator (L.), and Agriotes ustulatus Schall. The mean annual air temperature, total rainfall, percentage of coarse and fine sand, coarse and fine silt and clay, the soil pH, and humus were investigated as potential factors that may influence abundance. Adult click beetle emergence was monitored using sex pheromone traps (YATLORf and VARb3). Exploratory data analysis was preformed via regression tree models and regional differences in Agriotes species’ abundance were predicted based on the agro-ecological factors measured. It was found that the best overall predictor of A. brevis abundance was the previous crop grown. Conversely, the best predictor of A. lineatus abundance was the current crop being grown and the percentage of humus. The best predictor of A. obscurus abundance was soil pH in KCl. The best predictor of A. sputator abundance was rainfall. Finally, the best predictors of A. ustulatus abundance were soil pH in KCl and humus. These results may be useful in regional pest control programs or for predicting future outbreaks of these species. PMID:26175463

  6. Synergistic interactions between leaf beetle herbivory and fire enhance tamarisk (Tamarix spp.) mortality

    USGS Publications Warehouse

    Drus, Gail M.; Dudley, Tom L.; Antonio, Carla M.; Even, Thomas J.; Brooks, Matt L.; Matchett, J.R.

    2014-01-01

    The combined effects of herbivory and fire on plant mortality were investigated using prescribed burns of tamarisk (Tamarix ramosissima Lebed) exposed to herbivory by the saltcedar leaf beetle (Chrysomelidae: Diorhabda carinulata Desbrocher). Tamarix stands in the Humboldt Sink (NV, USA) were divided into three treatments: summer burn (August 2006), fall burn (October 2006) and control (unburned), and litter depth was manipulated to vary fire intensity within burn seasons. A gradient of existing herbivory impact was described with three plant condition metrics prior to fire: reduced proportions of green canopy, percent root crown starch sampled at the height of the growing season (August 2006), and percent root crown starch measured during dormancy (December 2006). August root crown starch concentration and proportion green canopy were strongly correlated, although the proportion green canopy predicted mortality better than August root crown starch. December root crown starch concentration was more depleted in unburned trees and in trees burned during the summer than in fall burn trees. Mortality in summer burned trees was higher than fall burned trees due to higher fire intensity, but December root crown starch available for resprouting in the spring was also lower in summer burned trees. The greatest mortality was observed in trees with the lowest December root crown starch concentration which were exposed to high fire intensity. Disproportionate changes in the slope and curvature of prediction traces as fire intensity and December starch reach reciprocal maximum and minimum levels indicate that beetle herbivory and fire intensity are synergistic.

  7. Mortality of Blapstinus spp. beetles exposed to various formulations of entomopathogenic fungi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Adult Blapstinus spp. (Coleoptera: Tenebrionidae) damage melon crops by feeding on the rind at the melon/ground interface and are difficult to control with conventional insecticides. Because entomopathogenic fungi are known to infect a wide range of insect pests, we evaluated experimental treatment...

  8. Corn volatiles as attractants for northern and western corn rootworm beetles (Coleoptera: Chrysomelidae:Diabrotica spp.).

    PubMed

    Hammack, L

    1996-07-01

    Synthetic corn volatiles and selected analogs were tested in commercial corn fields for attractiveness to feral northern (NCR,Diabrotica barberi) and western corn rootworm beetles (WCR,D. virgifera virgifera). Two new attractants, geranylacetone and α-terpineol, were identified among corn terpenes and compared at four stages in crop development with the phenylpropanoid standards cinnamyl alcohol and 4-methoxy-cinnamaldehyde, with each component at 30 mg/trap. Dose-response relationships (0.1-100 mg/trap) and efficacy of two-component blends (30 mg/component) were also examined. More beetles were captured on traps baited with (+)- than (-)-α-terpineol, but the difference was statistically significant only for WCR. Captures with geranylacetone or (+)-α-terpineol were directly proportional to the logarithm of the attractant dose. WCR females were attracted to as little as 0.1 mg of either compound. WCR males required ≥ 1.0 mg of (+)-α-terpineol and were not attracted to geranylacetone at any dose. NCR required ≥0.3 mg of either attractant and showed less marked response differences between the sexes than did WCR. Geranylacetone and cinnamyl alcohol were equally effective attractants, whereas (+)-α-terpineol was significantly less attractive to WCR but more attractive to NCR than was 4-methoxycinnamaldehyde. Corn terpenes and phenylpropanoid standards produced similar seasonal response patterns in that captures tended to rise in each case as the season progressed, except during silking when no compound was attractive. Mixing corn terpenes or phenylpropanoid standards synergized responses of WCR females, but (+)-α-terpineol suppressed attraction of NCR females to geranylacetone. PMID:24226082

  9. Dosage response mortality of Japanese beetle, masked chafer, and June beetle (Coleoptera: Scarabaeidae) adults when exposed to experimental and commercially available granules containing Metarhizium brunneum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Adult beetles of three different white grub species, Japanese beetle, Popillia japonica, June beetle, Phyllophaga spp., and masked chafer, Cyclocephala spp. were exposed to experimental and commercially available granules containing Metarhizium brunneum (Petch) strain F52, to determine susceptibilit...

  10. Rapid dispersal of saltcedar (Tamarix spp.) biocontrol beetles (Diorhabda carinulata) on a desert river detected by phenocams, MODIS imagery and ground observations

    USGS Publications Warehouse

    Nagler, Pamela L.; Pearlstein, Susanna; Glenn, Edward P.; Brown, Tim B.; Bateman, Heather L.; Bean, Dan W.; Hultine, Kevin R.

    2013-01-01

    We measured the rate of dispersal of saltcedar leaf beetles (Diorhabda carinulata), a defoliating insect released on western rivers to control saltcedar shrubs (Tamarix spp.), on a 63 km reach of the Virgin River, U.S. Dispersal was measured by satellite imagery, ground surveys and phenocams. Pixels from the Moderate Resolution Imaging Spectrometer (MODIS) sensors on the Terra satellite showed a sharp drop in NDVI in midsummer followed by recovery, correlated with defoliation events as revealed in networked digital camera images and ground surveys. Ground surveys and MODIS imagery showed that beetle damage progressed downstream at a rate of about 25 km yr−1 in 2010 and 2011, producing a 50% reduction in saltcedar leaf area index and evapotranspiration by 2012, as estimated by algorithms based on MODIS Enhanced Vegetation Index values and local meteorological data for Mesquite, Nevada. This reduction is the equivalent of 10.4% of mean annual river flows on this river reach. Our results confirm other observations that saltcedar beetles are dispersing much faster than originally predicted in pre-release biological assessments, presenting new challenges and opportunities for land, water and wildlife managers on western rivers. Despite relatively coarse resolution (250 m) and gridding artifacts, single MODIS pixels can be useful in tracking the effects of defoliating insects in riparian corridors.

  11. Susceptibility of Persea spp. and other Lauraceae to attack by redbay ambrosia beetle, Xyleborus glabratus (Coleoptera: Curculionidae: Scolytinae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Redbay ambrosia beetle (RAB), Xyleborus glabratus Eichhoff (Coleoptera: Curculionidae: Scolytinae), a native of Asia, was first discovered in the U.S. near Savannah, Georgia in 2002. RAB is an effective vector of Raffaelea lauricola T.C. Harr., Fraedrich & Aghayeva that causes laurel wilt (LW), a l...

  12. Sap flux-scaled transpiration by tamarisk (Tamarix spp.) before, during and after episodic defoliation by the saltcedar leaf beetle (Diorhabda carinulata)

    USGS Publications Warehouse

    Hultine, K.R.; Nagler, P.L.; Morino, K.; Bush, S.E.; Burtch, K.G.; Dennison, P.E.; Glenn, E.P.; Ehleringer, J.R.

    2010-01-01

    The release of the saltcedar beetle (Diorhabda carinulata) has resulted in the periodic defoliation of tamarisk (Tamarix spp.) along more than 1000 river km in the upper Colorado River Basin and is expected to spread along many other river reaches throughout the upper basin, and possibly into the lower Colorado River Basin. Identifying the impacts of these release programs on tamarisk water use and subsequent water cycling in arid riparian systems are largely unknown, due in part to the difficulty of measuring water fluxes in these systems. We used lab-calibrated, modified heat-dissipation sap flux sensors to monitor tamarisk water use (n=20 trees) before, during and after defoliation by the saltcedar leaf beetle during the 2008 and 2009 growing seasons (May-October) in southeastern Utah. We incorporated a simple model that related mean stem sap flux density (Js) with atmospheric vapor pressure deficit (vpd) before the onset of defoliation in 2008. The model was used to calculate differences between predicted Js and Js measured throughout the two growing seasons. Episodic defoliation resulted in a 16% reduction in mean annual rates of Js in both 2008 and 2009, with decreases occurring only during the periods in which the trees were defoliated (about 6-8 weeks per growing season). In other words, rates of Js rebounded to values predicted by the model when the trees produced new leaves after defoliation. Sap flux data were scaled to stand water use by constructing a tamarisk-specific allometric equation to relate conducting sapwood area to stem diameter, and by measuring the size distribution of stems within the stand. Total water use in both years was 0.224m, representing a reduction of about 0.04myr-1. Results showed that repeated defoliation/refoliation cycles did not result in a progressive decrease in either leaf production or water use over the duration of the study. This investigation improves ground-based estimates of tamarisk water use, and will support

  13. Temporal dynamics of leafy spurge (Euphorbia esula) and two species of flea beetles (Aphthona spp.) used as biological control agents

    USGS Publications Warehouse

    Larson, D.L.; Grace, J.B.

    2004-01-01

    The goal of this study was to evaluate the biological control program of leafy spurge (Euphorbia esula) in a large natural area, Theodore Roosevelt National Park, western North Dakota, USA. Aphthona lacertosa and Aphthona nigriscutis have been released at more than 1800 points in the 18,600-ha South Unit of the park beginning in 1989; most releases have occurred since 1994. We established permanent vegetation plots throughout the infested area of the park and determined stem counts and biomass of leafy spurge and abundance of the two flea beetle species at these plots each year from 1999 to 2001. Both biomass and stem counts declined over the 3 years of the study. Both species of flea beetle are well established within the park and have expanded into areas where they were not released. A. nigriscutis was more abundant than A. lacertosa in the grassland areas we surveyed, but in all other habitats abundances were similar. Using structural equation models, only A. lacertosa could be shown to have a significant effect on counts of mature stems of leafy spurge. A. nigriscutis numbers were positively correlated with stem counts of mature stems. Previous year's stem counts had the greatest influence on change in stem counts over each 2-year time step examined with structural equation models.

  14. Temporal dynamics of leafy spurge (Euphorbia esula) and two species of flea beetle (Aphthona spp.) used as biological control agents

    USGS Publications Warehouse

    Larson, D.L.; Grace, J.B.

    2004-01-01

    The goal of this study was to evaluate the biological control program of leafy spurge {Euphorbia esula) in a large natural area, Theodore Roosevelt National Park, western North Dakota, USA. Aphthona lacertosa and Aphthona nigriscutis have been released at more than 1800 points in the 18,600-ha South Unit of the park beginning in 1989; most releases have occurred since 1994. We established permanent vegetation plots throughout the infested area of the park and determined stem counts and biomass of leafy spurge and abundance of the two flea beetle species at these plots each year from 1999 to 2001. Both biomass and stem counts declined over the 3 years of the study. Both species of flea beetle are well established within the park and have expanded into areas where they were not released. A. nigriscutis was more abundant than A. lacertosa in the grassland areas we surveyed but in all other habitats abundances were similar. Using structural equation models, only A. lacertosa could be shown to have a significant effect on counts of mature stems of leafy spurge. A. nigriscutis numbers were positively correlated with stem counts of mature stems. Previous year's stem counts had the greatest influence on change in stem counts over each 2-year time step examined with structural equation models.

  15. A satellite model of Southwestern Willow Flycatcher (Empidonax traillii extimus) breeding habitat and a simulation of potential effects of tamarisk leaf beetles (Diorhabda spp.), southwestern United States

    USGS Publications Warehouse

    Hatten, James R.

    2016-01-01

    The study described in this report represents the first time that a satellite model has been used to identify potential Southwestern Willow Flycatcher (Empidonax traillii extimus) (hereinafter referred to as “flycatcher”) breeding habitat rangewide for 2013–15. Fifty-seven Landsat scenes were required to map the entire range of the flycatcher, encompassing parts of six States and more than 1 billion 30-meter pixels. Predicted flycatcher habitat was summarized in a hierarchical fashion from largest to smallest: regionwide, State, U.S. Fish and Wildlife Service (FWS) management unit, 7.5-minute quadrangle, and critical-habitat reach. The term “predicted habitat” is used throughout this report to distinguish areas the satellite model predicts as suitable flycatcher habitat from what may actually exist on the ground. A rangewide accuracy assessment was done with 758 territories collected in 2014, and change detection was done with yearly habitat maps to identify how and where habitat changed over time. Additionally, effects of tamarisk leaf beetles (Diorhabda spp.) on flycatcher habitat were summarized for the lower Virgin River from 2010 to 2015, and simulations of how tamarisk leaf beetles may affect flycatcher habitat in the lower Colorado and upper Gila Rivers were done for 2015. Model results indicated that the largest areas of predicted flycatcher habitat at elevations below 1,524 meters were in New Mexico and Arizona, areas followed in descending order by California, Texas, Nevada, Utah, and Colorado. By FWS management unit, the largest area of flycatcher habitat during all 3 years were the Middle Rio Grande (New Mexico), followed by the Upper Gila (Arizona and New Mexico) and Middle Gila/San Pedro (Arizona) management units. The area of predicted flycatcher habitat varied considerably in 7.5-minute quadrangles, ranging from 0 to1,398 hectares (ha). Averaged across 3 years, the top three producing quadrangles were Paraje Well (New Mexico), San Marcial

  16. Ground measured evapotranspiration scaled to stand level using MODIS and Landsat sensors to study Tamarix spp.response to repeated defoliation by the Tamarix leaf beetle at two sites

    NASA Astrophysics Data System (ADS)

    Pearlstein, S.; Nagler, P. L.; Glenn, E. P.; Hultine, K. R.

    2012-12-01

    The Dolores River in Southern Utah and the Virgin River in Southern Nevada are ecosystems under pressure from increased groundwater withdrawal due to growing populations and introduced riparian species. We studied the impact of the biocontrol Tamarix leaf beetles (Dirohabda carinulata and D. elongata) on the introduced riparian species, Tamarix spp., phenology and water use over multiple cycles of annual defoliation. Heat balance sap flow measurements, leaf area index (LAI), well data, allometry and satellite imagery from Landsat Thematic Mapper 5 and EOS-1 Moderate Resolution Imaging Spectrometer (MODIS) sensors were used to assess the distribution of beetle defoliation and its effect on evapotranspiration (ET). Study objectives for the Virgin River were to measure pre-beetle arrival ET, while the Dolores River site has had defoliation since 2004 and is a site of long-term beetle effect monitoring. This study focuses on measurements conducted over two seasons, 2010 and 2011. At the Dolores River site, results from 2010 were inconclusive due to sensor malfunctions but plant ET by sap flow in 2011 averaged 1.02 mm/m^2 leaf area/day before beetle arrival, dropping to an average of 0.75 mm/m^2 leaf area/day after beetle arrival. Stand level estimations from May - December, 2010 by MODIS were about 0.63 mm/ day, results from Landsat were 0.51 mm/day in June and 0.78 in August. For January -September, 2011, MODIS values were about 0.6 mm/day, and Landsat was 0.57 mm/day in June and 0.62 mm/day in August. These values are lower than previously reported ET values for this site meaning that repeated defoliation does diminish stand level water use. The Virgin River site showed plant ET from sap flow averaged about 3.9-4 mm/m^2 leaf area/day from mid-May - September, 2010. In 2011, ET from sap flow averaged 3.83 mm/m^2 leaf area/day during June - July, but dropped to 3.73 mm/ m^2 leaf area/day after beetle arrival in August. The slight drop in plant ET is not significant

  17. Monitoring impacts of Tamarix leaf beetles (Diorhabda elongata) on the leaf phenology and water use of Tamarix spp. using ground and remote sensing methods

    NASA Astrophysics Data System (ADS)

    Nagler, P. L.; Brown, T.; Hultine, K. R.; van Riper, C.; Bean, D. A.; Murray, R.; Pearlstein, S.; Glenn, E. P.

    2010-12-01

    Tamarix leaf beetles (Diorhabda elongata) have been released in several locations on western U.S. rivers to control the introduced shrub, Tamarix ramosissima and related species. As they are expanding widely throughout the region, information is needed on their impact on Tamarix leaf phenology and water use over multiple cycles of annual defoliation. We used networked digital cameras (phenocams) and ground surveys to monitor the defoliation process from 2008-2010 at multiple sites on the Dolores River, and MODIS satellite imagery from 2000 to 2009 to monitor leaf phenology and evapotranspiration (ET) at beetle release sites on the Dolores, Lower Colorado, Carson, Walker and Bighorn Rivers. Enhanced Vegetation Index (EVI) values for selected MODIS pixels were used to estimate green foliage density before and after beetle releases at each site. EVI values were transformed into estimates of ET using an empirical algorithm relating ET to EVI and potential ET (ETo) at each site. Phenocam and ground observations show that beetle damage is temporary, and plants regenerate new leaves following an eight week defoliation period in summer. The original biocontrol model predicted that Tamarix mortality would reach 75-85% over several years of defoliation due to progressive weakening of the shrubs each year, but over the early stages of leaf beetle-Tamarix interactions studied here (3-8 years), our preliminary findings show actual reductions in EVI and ET of only 13-15% across sites due to the relatively brief period of defoliation and because not all plants at a site were defoliated. Also, baseline ET rates varied across sites but averaged only 329 mm yr-1 (23% of ETo), constraining the possibilities for water salvage through biocontrol of Tamarix. The spatial and temperol resolution of MODIS imagery were too coarse to capture the details of the defoliation process, and high-resolution imagery or expanded phenocam networks are needed for future monitoring programs.

  18. Incidence of Male-Killing Rickettsia spp. (α-Proteobacteria) in the Ten-Spot Ladybird Beetle Adalia decempunctata L. (Coleoptera: Coccinellidae)

    PubMed Central

    von der Schulenburg, J. Hinrich Graf; Habig, Michael; Sloggett, John J.; Webberley, K. Mary; Bertrand, Dominique; Hurst, Gregory D. D.; Majerus, Michael E. N.

    2001-01-01

    The diversity of endosymbiotic bacteria that kill male host offspring during embryogenesis and their frequencies in certain groups of host taxa suggest that the evolution of male killing and the subsequent spread of male-killing symbionts are primarily determined by host life history characteristics. We studied the 10-spot ladybird beetle, Adalia decempunctata L. (Coleoptera: Coccinellidae), in which male killing has not been recorded previously, to test this hypothesis, and we also assessed the evolution of the male killer identified by DNA sequence analysis. Our results show that A. decempunctata harbors male-killing Rickettsia (α-proteobacteria). Male-killing bacteria belonging to the genus Rickettsia have previously been reported only for the congeneric two-spot ladybird beetle, Adalia bipunctata L. Phylogenetic analysis of Rickettsia DNA sequences isolated from different populations of the two host species revealed a single origin of male killing in the genus Rickettsia. The data also indicated possible horizontal transfer of symbionts between host species. In addition, A. bipunctata is known to bear at least four different male-killing symbionts in its geographic range two of which coexist in the two locations from which A. decempunctata specimens were obtained for the present study. Since only a single male-killing taxon was found in A. decempunctata, we assume that the two closely related ladybird beetle species must differ in the number and/or geographic distribution of male killers. We discuss the importance of these findings to our understanding of the evolution and dynamics of symbiotic associations between male-killing bacteria and their insect hosts. PMID:11133455

  19. Inundative Release of Aphthona spp. Flea Beetles (Coleoptera: Chrysomelidae) as a Biological “Herbicide” on Leafy Spurge (Euphorbia esula L.) in Riparian Areas.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Inundative releases of beneficial insects are frequently used to suppress pest insects, but not commonly attempted as a method of weed biological control because of the difficulty in obtaining the required large numbers of insects. The successful establishment of a complex of Aphthona spp. flea beet...

  20. Novel family of terpene synthases evolved from trans-isoprenyl diphosphate synthases in a flea beetle

    PubMed Central

    Beran, Franziska; Rahfeld, Peter; Luck, Katrin; Nagel, Raimund; Vogel, Heiko; Wielsch, Natalie; Irmisch, Sandra; Ramasamy, Srinivasan; Gershenzon, Jonathan; Heckel, David G.; Köllner, Tobias G.

    2016-01-01

    Sesquiterpenes play important roles in insect communication, for example as pheromones. However, no sesquiterpene synthases, the enzymes involved in construction of the basic carbon skeleton, have been identified in insects to date. We investigated the biosynthesis of the sesquiterpene (6R,7S)-himachala-9,11-diene in the crucifer flea beetle Phyllotreta striolata, a compound previously identified as a male-produced aggregation pheromone in several Phyllotreta species. A (6R,7S)-himachala-9,11-diene–producing sesquiterpene synthase activity was detected in crude beetle protein extracts, but only when (Z,E)-farnesyl diphosphate [(Z,E)-FPP] was offered as a substrate. No sequences resembling sesquiterpene synthases from plants, fungi, or bacteria were found in the P. striolata transcriptome, but we identified nine divergent putative trans-isoprenyl diphosphate synthase (trans-IDS) transcripts. Four of these putative trans-IDSs exhibited terpene synthase (TPS) activity when heterologously expressed. Recombinant PsTPS1 converted (Z,E)-FPP to (6R,7S)-himachala-9,11-diene and other sesquiterpenes observed in beetle extracts. RNAi-mediated knockdown of PsTPS1 mRNA in P. striolata males led to reduced emission of aggregation pheromone, confirming a significant role of PsTPS1 in pheromone biosynthesis. Two expressed enzymes showed genuine IDS activity, with PsIDS1 synthesizing (E,E)-FPP, whereas PsIDS3 produced neryl diphosphate, (Z,Z)-FPP, and (Z,E)-FPP. In a phylogenetic analysis, the PsTPS enzymes and PsIDS3 were clearly separated from a clade of known coleopteran trans-IDS enzymes including PsIDS1 and PsIDS2. However, the exon–intron structures of IDS and TPS genes in P. striolata are conserved, suggesting that this TPS gene family evolved from trans-IDS ancestors. PMID:26936952

  1. Novel family of terpene synthases evolved from trans-isoprenyl diphosphate synthases in a flea beetle.

    PubMed

    Beran, Franziska; Rahfeld, Peter; Luck, Katrin; Nagel, Raimund; Vogel, Heiko; Wielsch, Natalie; Irmisch, Sandra; Ramasamy, Srinivasan; Gershenzon, Jonathan; Heckel, David G; Köllner, Tobias G

    2016-03-15

    Sesquiterpenes play important roles in insect communication, for example as pheromones. However, no sesquiterpene synthases, the enzymes involved in construction of the basic carbon skeleton, have been identified in insects to date. We investigated the biosynthesis of the sesquiterpene (6R,7S)-himachala-9,11-diene in the crucifer flea beetle Phyllotreta striolata, a compound previously identified as a male-produced aggregation pheromone in several Phyllotreta species. A (6R,7S)-himachala-9,11-diene-producing sesquiterpene synthase activity was detected in crude beetle protein extracts, but only when (Z,E)-farnesyl diphosphate [(Z,E)-FPP] was offered as a substrate. No sequences resembling sesquiterpene synthases from plants, fungi, or bacteria were found in the P. striolata transcriptome, but we identified nine divergent putative trans-isoprenyl diphosphate synthase (trans-IDS) transcripts. Four of these putative trans-IDSs exhibited terpene synthase (TPS) activity when heterologously expressed. Recombinant PsTPS1 converted (Z,E)-FPP to (6R,7S)-himachala-9,11-diene and other sesquiterpenes observed in beetle extracts. RNAi-mediated knockdown of PsTPS1 mRNA in P. striolata males led to reduced emission of aggregation pheromone, confirming a significant role of PsTPS1 in pheromone biosynthesis. Two expressed enzymes showed genuine IDS activity, with PsIDS1 synthesizing (E,E)-FPP, whereas PsIDS3 produced neryl diphosphate, (Z,Z)-FPP, and (Z,E)-FPP. In a phylogenetic analysis, the PsTPS enzymes and PsIDS3 were clearly separated from a clade of known coleopteran trans-IDS enzymes including PsIDS1 and PsIDS2. However, the exon-intron structures of IDS and TPS genes in P. striolata are conserved, suggesting that this TPS gene family evolved from trans-IDS ancestors. PMID:26936952

  2. Structure of Phoretic Mite Assemblages Across Subcortical Beetle Species at a Regional Scale.

    PubMed

    Pfammatter, Jesse A; Coyle, David R; Gandhi, Kamal J K; Hernandez, Natalie; Hofstetter, Richard W; Moser, John C; Raffa, Kenneth F

    2016-02-01

    Mites associated with subcortical beetles feed and reproduce within habitats transformed by tree-killing herbivores. Mites lack the ability to independently disperse among these habitats, and thus have evolved characteristics that facilitate using insects as transport between resources. Studies on associations between mites and beetles have historically been beetle-centric, where an assemblage of mite species is characterized on a single beetle species. However, available evidence suggests there may be substantial overlap among mite species on various species of beetles utilizing similar host trees. We assessed the mite communities of multiple beetle species attracted to baited funnel traps in Pinus stands in southern Wisconsin, northern Arizona, and northern Georgia to better characterize mite dispersal and the formation of mite-beetle phoretic associations at multiple scales. We identified approximately 21 mite species totaling 10,575 individuals on 36 beetle species totaling 983 beetles. Of the mites collected, 97% were represented by eight species. Many species of mites were common across beetle species, likely owing to these beetles' common association with trees in the genus Pinus. Most mite species were found on at least three beetle species. Histiostoma spp., Iponemus confusus Lindquist, Histiogaster arborsignis Woodring and Trichouropoda australis Hirschmann were each found on at least seven species of beetles. While beetles had largely similar mite membership, the abundances of individual mite species were highly variable among beetle species within each sampling region. Phoretic mite communities also varied within beetle species between regions, notably for Ips pini (Say) and Ips grandicollis (Eichhoff). PMID:26496952

  3. Effect of fungal colonization of wheat grains with Fusarium spp. on food choice, weight gain and mortality of meal beetle larvae (Tenebrio molitor).

    PubMed

    Guo, Zhiqing; Döll, Katharina; Dastjerdi, Raana; Karlovsky, Petr; Dehne, Heinz-Wilhelm; Altincicek, Boran

    2014-01-01

    Species of Fusarium have significant agro-economical and human health-related impact by infecting diverse crop plants and synthesizing diverse mycotoxins. Here, we investigated interactions of grain-feeding Tenebrio molitor larvae with four grain-colonizing Fusarium species on wheat kernels. Since numerous metabolites produced by Fusarium spp. are toxic to insects, we tested the hypothesis that the insect senses and avoids Fusarium-colonized grains. We found that only kernels colonized with F. avenaceum or Beauveria bassiana (an insect-pathogenic fungal control) were avoided by the larvae as expected. Kernels colonized with F. proliferatum, F. poae or F. culmorum attracted T. molitor larvae significantly more than control kernels. The avoidance/preference correlated with larval feeding behaviors and weight gain. Interestingly, larvae that had consumed F. proliferatum- or F. poae-colonized kernels had similar survival rates as control. Larvae fed on F. culmorum-, F. avenaceum- or B. bassiana-colonized kernels had elevated mortality rates. HPLC analyses confirmed the following mycotoxins produced by the fungal strains on the kernels: fumonisins, enniatins and beauvericin by F. proliferatum, enniatins and beauvericin by F. poae, enniatins by F. avenaceum, and deoxynivalenol and zearalenone by F. culmorum. Our results indicate that T. molitor larvae have the ability to sense potential survival threats of kernels colonized with F. avenaceum or B. bassiana, but not with F. culmorum. Volatiles potentially along with gustatory cues produced by these fungi may represent survival threat signals for the larvae resulting in their avoidance. Although F. proliferatum or F. poae produced fumonisins, enniatins and beauvericin during kernel colonization, the larvae were able to use those kernels as diet without exhibiting increased mortality. Consumption of F. avenaceum-colonized kernels, however, increased larval mortality; these kernels had higher enniatin levels than F

  4. Evaluation of Organic Pest Management Treatments for Bean Leaf Beetle in Soybean in Iowa

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many organic soybean producers face the challenge of bean leaf beetle (Ceratoma trifurcata), which harbors bean mottle pod virus and opens infection sites for Fusarium spp., Cercospora kikuchii, and Phomopsis spp., which cause discoloration in soybeans. Stained soybean seed is less acceptable for fo...

  5. Longevity of Pheromone and Co-attractant Lures Used in Attract-and-Kill Stations for Control of Carpophilus Beetles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field longevity of synthetic lures for Carpophilus spp. beetles was evaluated by trapping studies in Australia, accompanied by chemical analyses. Carpophilus beetles are serious pests of ripening fruits, and an attract-and-kill method has been developed for their control. Traps are baited with two...

  6. Draft Genome Sequence of Raffaelea quercivora JCM 11526, a Japanese Oak Wilt Pathogen Associated with the Platypodid Beetle, Platypus quercivorus

    PubMed Central

    Manabe, Ri-ichiroh; Ohkuma, Moriya; Endoh, Rikiya

    2016-01-01

    The Japanese oak wilt pathogen Raffaelea quercivora and the platypodid beetle, Platypus quercivorus, cause serious mass mortality of Quercus spp. in Japan. Here, we present the first draft genome sequence of R. quercivora JCM 11526 to increase our understanding of the mechanism of pathogenicity and symbiosis with the ambrosia beetle. PMID:27469944

  7. Draft Genome Sequence of Raffaelea quercivora JCM 11526, a Japanese Oak Wilt Pathogen Associated with the Platypodid Beetle, Platypus quercivorus.

    PubMed

    Masuya, Hayato; Manabe, Ri-Ichiroh; Ohkuma, Moriya; Endoh, Rikiya

    2016-01-01

    The Japanese oak wilt pathogen Raffaelea quercivora and the platypodid beetle, Platypus quercivorus, cause serious mass mortality of Quercus spp. in Japan. Here, we present the first draft genome sequence of R. quercivora JCM 11526 to increase our understanding of the mechanism of pathogenicity and symbiosis with the ambrosia beetle. PMID:27469944

  8. Ambrosia beetle fungiculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ambrosia beetle fungiculture, as evidenced by the 11 independent origins and 3,500 species of ambrosia beetles, represents one of the most ecologically and evolutionarily successful symbioses. This presentation focuses on the discovery of a clade within the filamentous fungus Fusarium that is associ...

  9. Carabid Beetles as Parasitoids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The parasitoid habit is uncommon in beetles; only 11 beetle families include parasitoid species. Three tribes of 76 in the Carabidae are known to have species in which larvae are pupal ectoparasitoids: Brachinini, Peleciini, and Lebiini. The first larval instar is the free-living, host-finding stage...

  10. Tamarisk biocontrol using tamarisk beetles: Potential consequences for riparian birds in the southwestern United States

    USGS Publications Warehouse

    Paxton, Eben H.; Theimer, Tad C.; Sogge, Mark K.

    2011-01-01

    The tamarisk beetle (Diorhabda spp.), a non-native biocontrol agent, has been introduced to eradicate tamarisk (Tamarix spp.), a genus of non-native tree that has become a dominant component of riparian woodlands in the southwestern United States. Tamarisk beetles have the potential to spread widely and defoliate large expanses of tamarisk habitat, but the effects of such a widespread loss of riparian vegetation on birds remains unknown. We reviewed literature on the effects of other defoliating insects on birds to investigate the potential for tamarisk beetles to affect birds positively or negatively by changing food abundance and vegetation structure. We then combined data on the temporal patterns of tamarisk defoliation by beetles with nest productivity of a well-studied riparian obligate, the Southwestern Willow Flycatcher (Empidonax traillii extimus), to simulate the potential demographic consequences of beetle defoliation on breeding riparian birds in both the short and long term. Our results highlight that the effects of tamarisk biocontrol on birds will likely vary by species and population, depending upon its sensitivity to seasonal defoliation by beetles and net loss of riparian habitat due to tamarisk mortality. Species with restricted distributions that include areas dominated by tamarisk may be negatively affected both in the short and long term. The rate of regeneration and/or restoration of native cottonwoods (Populus spp.) and willows (Salix spp.) relative to the rate of tamarisk loss will be critical in determining the long-term effect of this large-scale ecological experiment.

  11. Tamarisk biocontrol using tamarisk beetles: Potential consequences for riparian birds in the southwestern United States

    USGS Publications Warehouse

    Paxton, E.H.; Theimer, T.C.; Sogge, M.K.

    2011-01-01

    The tamarisk beetle (Diorhabda spp.), a non-native biocontrol agent, has been introduced to eradicate tamarisk (Tamarix spp.), a genus of non-native tree that has become a dominant component of riparian woodlands in the southwestern United States. Tamarisk beetles have the potential to spread widely and defoliate large expanses of tamarisk habitat, but the effects of such a widespread loss of riparian vegetation on birds remains unknown. We reviewed literature on the effects of other defoliating insects on birds to investigate the potential for tamarisk beetles to affect birds positively or negatively by changing food abundance and vegetation structure. We then combined data on the temporal patterns of tamarisk defoliation by beetles with nest productivity of a wellstudied riparian obligate, the Southwestern Willow Flycatcher (Empidonax traillii extimus), to simulate the potential demographic consequences of beetle defoliation on breeding riparian birds in both the short and long term. Our results highlight that the effects of tamarisk biocontrol on birds will likely vary by species and population, depending upon its sensitivity to seasonal defoliation by beetles and net loss of riparian habitat due to tamarisk mortality. Species with restricted distributions that include areas dominated by tamarisk may be negatively affected both in the short and long term. The rate of regeneration and/or restoration of native cottonwoods (Populus spp.) and willows (Salix spp.) relative to the rate of tamarisk loss will be critical in determining the long-term effect of this large-scale ecological experiment. ?? The Cooper Ornithological Society 2011.

  12. Brilliant Whiteness in Ultrathin Beetle Scales

    NASA Astrophysics Data System (ADS)

    Vukusic, Pete; Hallam, Benny; Noyes, Joe

    2007-01-01

    The colored appearances of animals are controlled by pigmentation, highly periodic ultrastructure, or a combination of both. Whiteness, however, is less common and is generated by neither of these, because it requires scattering processes appropriate for all visible wavelengths. We report whiteness resulting from a three-dimensional photonic solid in the scales of Cyphochilus spp. beetles. Their scales are characterized by their exceptional whiteness, their perceived brightness, and their optical brilliance, but they are only 5 micrometers thick. This thickness is at least two orders of magnitude thinner than common synthetic systems designed for equivalent-quality whiteness.

  13. Brilliant whiteness in ultrathin beetle scales.

    PubMed

    Vukusic, Pete; Hallam, Benny; Noyes, Joe

    2007-01-19

    The colored appearances of animals are controlled by pigmentation, highly periodic ultrastructure, or a combination of both. Whiteness, however, is less common and is generated by neither of these, because it requires scattering processes appropriate for all visible wavelengths. We report whiteness resulting from a three-dimensional photonic solid in the scales of Cyphochilus spp. beetles. Their scales are characterized by their exceptional whiteness, their perceived brightness, and their optical brilliance, but they are only 5 micrometers thick. This thickness is at least two orders of magnitude thinner than common synthetic systems designed for equivalent-quality whiteness. PMID:17234940

  14. Lady beetles of South Dakota

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lady beetles are one of the most familiar groups of beneficial insects. Farmers and gardeners appreciate them for devouring insect pests. Both adult lady beetles and caterpillar-like juveniles eat pests. Lady beetles are recognizable by their red and orange colors that contrast with black spots and...

  15. Molecular genetic and hybridization studies of Diorhabda spp. released for biological control of tamarix

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The tamarisk beetle Diorhabda spp. (Coleoptera: Chrysomelidae) native to Asia and the Mediterranean Basin, is an effective biocontrol agent for use against tamarisk (Tamarix spp.) an invasive shrub in western North America. The genus Diorhabda was recently revised, using morphological characters, i...

  16. Long-term dynamics of leafy spurge (Euphorbia esula) and its biocontrol agent, flea beetles in the genus Aphthona

    USGS Publications Warehouse

    Larson, D.L.; Grace, J.B.; Larson, J.L.

    2008-01-01

    Three flea beetle species (Aphthona spp.), first introduced into North America in 1988, have come to be regarded as effective biological control organisms for leafy spurge (Euphorbia esula). The black flea beetles (Aphthona lacertosa and A. czwalinae) in particular have been shown to cause reductions in leafy spurge stem counts in the northern Great Plains, while the brown flea beetle (A. nigriscutis) has persisted and spread, but has not been found to be as effective at controlling leafy spurge. The ability of black flea beetles to control leafy spurge in any given year, however, has been found to vary. To better understand the long-term effects of flea beetle herbivory on leafy spurge, we monitored stem counts of leafy spurge and numbers of black and brown flea beetles at three sites on two National Wildlife Refuges in east-central North Dakota, USA, from 1998 to 2006. Brown flea beetle numbers were observed to be negligible on these sites. Over the 9 years of the study, black flea beetles were seen to spread over the three study sites and leafy spurge stem counts declined substantially on two of the three sites. Even at low densities of spurge, black flea beetle populations persisted, a necessary prerequisite for long-term control. We used structural equation models (SEM) to assess the yearly effects of black flea beetles, soil texture, and refuge site on leafy spurge stem counts over this time period. We then used equations developed from the SEM analysis to explore flea beetle-leafy spurge dynamics over time, after controlling for soil texture and refuge. Yearly effect strength of black flea beetles on leafy spurge was found to be modest, largely owing to substantial spatial variability in control. However, simulation results based on prediction coefficients revealed leafy spurge to be highly responsive to increases in flea beetle populations on average.

  17. Waves and Water Beetles

    ERIC Educational Resources Information Center

    Tucker, Vance A.

    1971-01-01

    Capillary and gravity water waves are related to the position, wavelength, and velocity of an object in flowing water. Water patterns are presented for ships and the whirling beetle with an explanation of how the design affects the objects velocity and the observed water wavelengths. (DS)

  18. Small Hive Beetles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Small hive beetles (SHB) have become serious pests of honey bees, especially in the southeastern region of the United States. Both adults and larvae cause serious feeding damages and their fecal matters contaminate harvestable honey. At present, Coumaphos (used as an in-hive treatment) and Gardstar ...

  19. Beetles, Biofuel, and Coffee

    SciTech Connect

    Ceja-Navarro, Javier

    2015-05-06

    Berkeley Lab scientist Javier Ceja-Navarro discusses his research on the microbial populations found the guts of insects, specifically the coffee berry borer, which may lead to better pest management and the passalid beetle, which could lead to improved biofuel production.

  20. Pine Beetle Detection

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Earth Systems Science Office scientists worked with officials in St. Tammany Parish, La., to detect and battle pine beetle infestation in Fontainebleu State Park. The scientists used a new method of detecting plant stress by using special lenses and modified sensors to detect a change in light levels given off by the plant before the stress is visible to the naked eye.

  1. Colorado potato beetle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Colorado potato beetle (CPB) shifted to the potato crop from native solanaceous weeds in the American West in 1859, and has been a serious pest ever since. CPB is a highly fecund leaf-feeder on potato and eggplant, and often tomatoes, with one to several generations per year. It is the most importa...

  2. Seasonal adaptations to day length in ecotypes of Diorhabda spp. (Coleoptera: Chrysomelidae) inform selection of agents against saltcedars (Tamarix spp.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    1. Seasonal adaptations to day length often limit the effective range of biocontrol insects. The leaf beetle Diorhabda carinulata was introduced into North America from Fukang, China (latitude 44°N) for the biocontrol of saltcedars (Tamarix spp.), but failed to establish below 38° latitude because o...

  3. [CCA of water beetles' distribution and environmental factors in lentic samples of north Changbai Mountain].

    PubMed

    We, Yulian; Ji, Lanzhu; Wang, Miao; Zhao, Min

    2002-01-01

    The relationship between 28 species water beetles in 12 lentic samples and environmental factors of North Chang-bai Mountain was studied by Cononical Correspondence Analysis (CCA). The results showed that degree of underwater humus and altitude are the major factors correlated with beetles distribution, and the correlation coefficients of environmental factors and axes of CCA were 0.8371 and 0.7206 respectively, while water temperature and plant density also had certain effects. Under the influence of environmental factors, the water beetles' populations were different in different habitat. Coelambus impressopunctatus, Colymbetes magnus, Helophorus browni, Haliplus spp. distributed in deep water pool. Water temperature was not important for those beetles. Ilybius sp. and Limnebius glabriventris correlated with altitude and humus. PMID:11962329

  4. Classical Biological Control of Emerald Ash Borer and Asian Longhorned Beetle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The emerald ash borer, Agrilus planipennis Fairmaire, and Asian longhorned beetle, Anoplophora glabripennis (Motschulsky), are both invasive plant pests recently introduced to North America from the Far East. The emerald ash borer (EAB) is an oligophagous buprestid on Fraxinus spp., whereas the Asi...

  5. Non-native ambrosia beetles as opportunistic exploiters of living but weakened trees

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Exotic Xylosandrus spp. ambrosia beetles have been associated with sudden and extensive attacks on trees after their introduction into new ecosystems, but factors driving their host selection are poorly understood and critical for developing management tactics. The overall goal of this study was to ...

  6. Risk to native Uroleucon aphids (Hemiptera: Aphididae) from non-native lady beetles (Coleoptera: Coccinellidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aphids in the genus Uroleucon Mordvilko (Hemiptera: Aphididae) are native herbivores that feed on goldenrod (Solidago spp.) and other Asteraceae in North America. The aphids are potential prey for a wide variety of natural enemies, including native and non-native species of lady beetles (Coleoptera...

  7. White Spruce Regeneration Following a Major Spruce Beetle Outbreak in Forests on the Kenai Peninsula, Alaska

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Between 1987 and 2000, a spruce beetle (Dendroctonus rufipennis) epidemic infested 1.19 million hectares of spruce (Picea spp.) forests in Alaska, killing most of the large diameter trees. We evaluated whether these forests would recover to their pre-outbreak density, and determined the site conditi...

  8. Long-term dynamics of leafy spurge (Euphorbia esula) and its biocontrol agent, flea beetles in the genus Aphthona

    USGS Publications Warehouse

    Larson, Diane L.; Grace, James B.; Larson, Jennifer L.

    2008-01-01

    Three flea beetle species (Aphthona spp.), first introduced into North America in 1988, have come to be regarded as effective biological control organisms for leafy spurge (Euphorbia esula). The black flea beetles (Aphthona lacertosa and A. czwalinae) in particular have been shown to cause reductions in leafy spurge stem counts in the northern Great Plains, while the brown flea beetle (A. nigriscutis) has persisted and spread, but has not been found to be as effective at controlling leafy spurge. The ability of black flea beetles to control leafy spurge in any given year, however, has been found to vary. To better understand the long-term effects of flea beetle herbivory on leafy spurge, we monitored stem counts of leafy spurge and numbers of black and brown flea beetles at three sites on two National Wildlife Refuges in east-central North Dakota, USA, from 1998 to 2006. Brown flea beetle numbers were observed to be negligible on these sites. Over the 9 years of the study, black flea beetles were seen to spread over the three study sites and leafy spurge stem counts declined substantially on two of the three sites. Even at low densities of spurge, black flea beetle populations persisted, a necessary prerequisite for long-term control. We used structural equation models (SEM) to assess the yearly effects of black flea beetles, soil texture, and refuge site on leafy spurge stem counts over this time period. We then used equations developed from the SEM analysis to explore flea beetle–leafy spurge dynamics over time, after controlling for soil texture and refuge. Yearly effect strength of black flea beetles on leafy spurge was found to be modest, largely owing to substantial spatial variability in control. However, simulation results based on prediction coefficients revealed leafy spurge to be highly responsive to increases in flea beetle populations on average.

  9. Volatile Hydrocarbon Pheromones from Beetles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter reviews literature about hydrocarbons from beetles that serve as long-range pheromones. The most thoroughly studied beetles that use volatile hydrocarbon pheromones belong to the family Nitidulidae in the genera Carpophilus and Colopterus. Published pheromone research deals with behav...

  10. Cronobacter spp.

    PubMed

    Blackwood, Brian P; Hunter, Catherine J

    2016-04-01

    The Cronobacter group of pathogens, associated with severe and potentially life-threatening diseases, until recently were classified as a single species, Enterobacter sakazakii. The group was reclassified in 2007 into the genus Cronobacter as a member of the Enterobacteriaceae. This chapter outlines the history behind the epidemiology, analyzes how our understanding of these bacteria has evolved, and highlights the clinical significance the Cronobacter spp. have for neonatal and elderly patient populations and treatment of the associated infections. PMID:27227295

  11. Lack of establishment of the Mediterranean tamarisk beetle Diorhabda elongata (Coleoptera: Chrysomelidae) on athel (Tamarix aphylla) (Tamaricaceae) in south Texas

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Adult Mediterranean tamarisk beetles, Diorhabda elongata (Brullé), a defoliator of exotic saltcedar (Tamarix spp.), were released into four field cages containing small saltcedar trees or closely-related exotic athel trees (Tamarix aphylla (L.). Karsten) and onto uncaged beneficial mature athel tree...

  12. Beetle wings are inflatable origami

    NASA Astrophysics Data System (ADS)

    Chen, Rui; Ren, Jing; Ge, Siqin; Hu, David

    2015-11-01

    Beetles keep their wings folded and protected under a hard shell. In times of danger, they must unfold them rapidly in order for them to fly to escape. Moreover, they must do so across a range of body mass, from 1 mg to 10 grams. How can they unfold their wings so quickly? We use high-speed videography to record wing unfolding times, which we relate to the geometry of the network of blood vessels in the wing. Larger beetles have longer unfolding times. Modeling of the flow of blood through the veins successfully accounts for the wing unfolding speed of large beetles. However, smaller beetles have anomalously short unfolding times, suggesting they have lower blood viscosity or higher driving pressure. The use of hydraulics to unfold complex objects may have implications in the design of micro-flying air vehicles.

  13. Host preference between saltcedar (Tamarix spp.) and native non-target Frankenia spp. within the Diorhabda elongata species complex (Coleoptera: Chrysomelidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Since its release in 2001 for the biological control of saltcedar (Tamarix spp., Tamaricaceae), the leaf beetle Diorhabda elongata (Brullé) from China, has become successfully established in many locations in the western United States. However, it failed to establish in the southern and western por...

  14. Charles Darwin, beetles and phylogenetics.

    PubMed

    Beutel, Rolf G; Friedrich, Frank; Leschen, Richard A B

    2009-11-01

    Here, we review Charles Darwin's relation to beetles and developments in coleopteran systematics in the last two centuries. Darwin was an enthusiastic beetle collector. He used beetles to illustrate different evolutionary phenomena in his major works, and astonishingly, an entire sub-chapter is dedicated to beetles in "The Descent of Man". During his voyage on the Beagle, Darwin was impressed by the high diversity of beetles in the tropics, and he remarked that, to his surprise, the majority of species were small and inconspicuous. However, despite his obvious interest in the group, he did not get involved in beetle taxonomy, and his theoretical work had little immediate impact on beetle classification. The development of taxonomy and classification in the late nineteenth and earlier twentieth century was mainly characterised by the exploration of new character systems (e.g. larval features and wing venation). In the mid-twentieth century, Hennig's new methodology to group lineages by derived characters revolutionised systematics of Coleoptera and other organisms. As envisioned by Darwin and Ernst Haeckel, the new Hennigian approach enabled systematists to establish classifications truly reflecting evolution. Roy A. Crowson and Howard E. Hinton, who both made tremendous contributions to coleopterology, had an ambivalent attitude towards the Hennigian ideas. The Mickoleit school combined detailed anatomical work with a classical Hennigian character evaluation, with stepwise tree building, comparatively few characters and a priori polarity assessment without explicit use of the outgroup comparison method. The rise of cladistic methods in the 1970s had a strong impact on beetle systematics. Cladistic computer programs facilitated parsimony analyses of large data matrices, mostly morphological characters not requiring detailed anatomical investigations. Molecular studies on beetle phylogeny started in the 1990s with modest taxon sampling and limited DNA data. This has

  15. Charles Darwin, beetles and phylogenetics

    NASA Astrophysics Data System (ADS)

    Beutel, Rolf G.; Friedrich, Frank; Leschen, Richard A. B.

    2009-11-01

    Here, we review Charles Darwin’s relation to beetles and developments in coleopteran systematics in the last two centuries. Darwin was an enthusiastic beetle collector. He used beetles to illustrate different evolutionary phenomena in his major works, and astonishingly, an entire sub-chapter is dedicated to beetles in “The Descent of Man”. During his voyage on the Beagle, Darwin was impressed by the high diversity of beetles in the tropics, and he remarked that, to his surprise, the majority of species were small and inconspicuous. However, despite his obvious interest in the group, he did not get involved in beetle taxonomy, and his theoretical work had little immediate impact on beetle classification. The development of taxonomy and classification in the late nineteenth and earlier twentieth century was mainly characterised by the exploration of new character systems (e.g. larval features and wing venation). In the mid-twentieth century, Hennig’s new methodology to group lineages by derived characters revolutionised systematics of Coleoptera and other organisms. As envisioned by Darwin and Ernst Haeckel, the new Hennigian approach enabled systematists to establish classifications truly reflecting evolution. Roy A. Crowson and Howard E. Hinton, who both made tremendous contributions to coleopterology, had an ambivalent attitude towards the Hennigian ideas. The Mickoleit school combined detailed anatomical work with a classical Hennigian character evaluation, with stepwise tree building, comparatively few characters and a priori polarity assessment without explicit use of the outgroup comparison method. The rise of cladistic methods in the 1970s had a strong impact on beetle systematics. Cladistic computer programs facilitated parsimony analyses of large data matrices, mostly morphological characters not requiring detailed anatomical investigations. Molecular studies on beetle phylogeny started in the 1990s with modest taxon sampling and limited DNA data

  16. Ambrosiella roeperi sp. nov. is the mycangial symbiont of the granulate ambrosia beetle, Xylosandrus crassiusculus.

    PubMed

    Harrington, Thomas C; McNew, Douglas; Mayers, Chase; Fraedrich, Stephen W; Reed, Sharon E

    2014-01-01

    Isolations from the granulate ambrosia beetle, Xylosandrus crassiusculus (Coleoptera: Curculionidae: Scolytinae: Xyleborini), collected in Georgia, South Carolina, Missouri and Ohio, yielded an undescribed species of Ambrosiella in thousands of colony-forming units (CFU) per individual female. Partial sequences of ITS and 28S rDNA regions distinguished this species from other Ambrosiella spp., which are asexual symbionts of ambrosia beetles and closely related to Ceratocystis spp. Ambrosiella roeperi sp. nov. produces sporodochia of branching conidiophores with disarticulating swollen cells, and the branches are terminated by thick-walled aleurioconidia, similar to the conidiophores and aleurioconidia of A. xylebori, which is the mycangial symbiont of a related ambrosia beetle, X. compactus. Microscopic examinations found homogeneous masses of arthrospore-like cells growing in the mycangium of X. crassiusculus, without evidence of other microbial growth. Using fungal-specific primers, only the ITS rDNA region of A. roeperi was amplified and sequenced from DNA extractions of mycangial contents, suggesting that it is the primary or only mycangial symbiont of this beetle in USA. PMID:24895423

  17. A dynamical model for bark beetle outbreaks.

    PubMed

    Křivan, Vlastimil; Lewis, Mark; Bentz, Barbara J; Bewick, Sharon; Lenhart, Suzanne M; Liebhold, Andrew

    2016-10-21

    Tree-killing bark beetles are major disturbance agents affecting coniferous forest ecosystems. The role of environmental conditions on driving beetle outbreaks is becoming increasingly important as global climatic change alters environmental factors, such as drought stress, that, in turn, govern tree resistance. Furthermore, dynamics between beetles and trees are highly nonlinear, due to complex aggregation behaviors exhibited by beetles attacking trees. Models have a role to play in helping unravel the effects of variable tree resistance and beetle aggregation on bark beetle outbreaks. In this article we develop a new mathematical model for bark beetle outbreaks using an analogy with epidemiological models. Because the model operates on several distinct time scales, singular perturbation methods are used to simplify the model. The result is a dynamical system that tracks populations of uninfested and infested trees. A limiting case of the model is a discontinuous function of state variables, leading to solutions in the Filippov sense. The model assumes an extensive seed-bank so that tree recruitment is possible even if trees go extinct. Two scenarios are considered for immigration of new beetles. The first is a single tree stand with beetles immigrating from outside while the second considers two forest stands with beetle dispersal between them. For the seed-bank driven recruitment rate, when beetle immigration is low, the forest stand recovers to a beetle-free state. At high beetle immigration rates beetle populations approach an endemic equilibrium state. At intermediate immigration rates, the model predicts bistability as the forest can be in either of the two equilibrium states: a healthy forest, or a forest with an endemic beetle population. The model bistability leads to hysteresis. Interactions between two stands show how a less resistant stand of trees may provide an initial toe-hold for the invasion, which later leads to a regional beetle outbreak in the

  18. Beetle Kill Wall at NREL

    ScienceCinema

    None

    2013-05-29

    When it comes to designing an interior decorative feature for one of the most energy efficient office buildings in the world, very few would consider bringing in a beetle to do the job. But thats what happened at the U.S. Department of Energy's (DOE) Research Support Facility (RSF) located on the National Renewable Energy Laboratory (NREL) campus.In June, the RSF will become home to more than 800 workers from DOE and NREL and building visitors will be greeted with a soaring, two-story high wall entirely covered with wood harvested from the bark beetle infestation that has killed millions of pine trees in the Western U.S. But, the use of beetle kill wood is just one example of the resources being leveraged to make the RSF a model for sustainability and one more step toward NRELs goal to be a net zero energy campus.

  19. Beetle Kill Wall at NREL

    SciTech Connect

    2010-01-01

    When it comes to designing an interior decorative feature for one of the most energy efficient office buildings in the world, very few would consider bringing in a beetle to do the job. But thats what happened at the U.S. Department of Energy's (DOE) Research Support Facility (RSF) located on the National Renewable Energy Laboratory (NREL) campus.In June, the RSF will become home to more than 800 workers from DOE and NREL and building visitors will be greeted with a soaring, two-story high wall entirely covered with wood harvested from the bark beetle infestation that has killed millions of pine trees in the Western U.S. But, the use of beetle kill wood is just one example of the resources being leveraged to make the RSF a model for sustainability and one more step toward NRELs goal to be a net zero energy campus.

  20. Raising Beetles in a Classroom.

    ERIC Educational Resources Information Center

    Hackett, Erla

    This guide is designed to provide elementary school teachers with a harmless, inexpensive, clean, odorless, and easy-to-care-for insect-rearing project for the classroom. The following topics are included: (1) instructions for the care and feeding of the beetle larvae; (2) student activities for observing larval characteristics and behavior…

  1. Indirect effects of emerald ash borer-induced ash mortality and canopy gap formation on epigaeic beetles.

    PubMed

    Gandhi, Kamal J K; Smith, Annemarie; Hartzler, Diane M; Herms, Daniel A

    2014-06-01

    Exotic herbivorous insects have drastically and irreversibly altered forest structure and composition of North American forests. For example, emerald ash borer (Agrilus planipennis Fairmaire) from Asia has caused wide-scale mortality of ash trees (Fraxinus spp.) in eastern United States and Canada. We studied the effects of forest changes resulting from emerald ash borer invasion on epigaeic or ground beetles (Coleoptera: Carabidae) along a gradient of ash dieback and gap sizes in southeastern Michigan. Ground beetles were sampled in hydric, mesic, and xeric habitats in which black (Fraxinus nigra Marshall), green (Fraxinus pennsylvanica Marshall), and white (Fraxinus americana L.) ash were the most common species, respectively. During 2006-2007, we trapped 2,545 adult ground beetles comprising 52 species. There was a negative correlation between percent ash tree mortality in 2006 and catches of all beetles. Catches of Agonum melanarium Dejean (in 2006) and Pterostichus mutus (Say) (in 2006-2007) were negatively correlated with tree mortality and gap size, respectively. However, catches of Pterostichus corvinus Dejean were positively correlated with gap size in 2006. As ash mortality and average gap size increased from 2006 to 2007, catches of all beetles as well as P. mutus and Pterostichus stygicus (Say) increased (1.3-3.9 times), while species diversity decreased, especially in mesic and xeric stands. Cluster analysis revealed that beetle assemblages in hydric and mesic stand diverged (25 and 40%, respectively) in their composition from 2006 to 2007, and that hydric stands had the most unique beetle assemblages. Overall, epigaeic beetle assemblages were altered in ash stands impacted by emerald ash borer; however, these impacts may dissipate as canopy gaps close. PMID:24690169

  2. Oedemerid blister beetle dermatosis: a review.

    PubMed

    Nicholls, D S; Christmas, T I; Greig, D E

    1990-05-01

    Blister beetle dermatosis is a distinctive vesiculobullous eruption that occurs after contact with three major groups of beetles (Order: Coleoptera). It is caused by a vesicant chemical contained in the body fluids of the beetles. The smallest and least known family is the Oedemeridae. Although there are few references in the medical literature, blister beetle dermatosis caused by oedemerids may be more common and widespread than currently recognized. The best known family is the Meloidae with numerous species worldwide causing blistering. The vesicant chemical in both Oedemeridae and Meloidae is cantharidin. The third group of blister beetles includes species of the genus Paederus (Family: Staphylinidae). The clinicopathologic picture differs because this genus contains a different vesicant agent, pederin. The clinicopathologic features of oedemerid blister beetle dermatosis are described. The world medical and relevant entomologic literature is reviewed. PMID:2189910

  3. Pheromone production in bark beetles.

    PubMed

    Blomquist, Gary J; Figueroa-Teran, Rubi; Aw, Mory; Song, Minmin; Gorzalski, Andrew; Abbott, Nicole L; Chang, Eric; Tittiger, Claus

    2010-10-01

    The first aggregation pheromone components from bark beetles were identified in 1966 as a mixture of ipsdienol, ipsenol and verbenol. Since then, a number of additional components have been identified as both aggregation and anti-aggregation pheromones, with many of them being monoterpenoids or derived from monoterpenoids. The structural similarity between the major pheromone components of bark beetles and the monoterpenes found in the host trees, along with the association of monoterpenoid production with plant tissue, led to the paradigm that most if not all bark beetle pheromone components were derived from host tree precursors, often with a simple hydroxylation producing the pheromone. In the 1990 s there was a paradigm shift as evidence for de novo biosynthesis of pheromone components began to accumulate, and it is now recognized that most bark beetle monoterpenoid aggregation pheromone components are biosynthesized de novo. The bark beetle aggregation pheromones are released from the frass, which is consistent with the isoprenoid aggregation pheromones, including ipsdienol, ipsenol and frontalin, being produced in midgut tissue. It appears that exo-brevocomin is produced de novo in fat body tissue, and that verbenol, verbenone and verbenene are produced from dietary α-pinene in fat body tissue. Combined biochemical, molecular and functional genomics studies in Ips pini yielded the discovery and characterization of the enzymes that convert mevalonate pathway intermediates to pheromone components, including a novel bifunctional geranyl diphosphate synthase/myrcene synthase, a cytochrome P450 that hydroxylates myrcene to ipsdienol, and an oxidoreductase that interconverts ipsdienol and ipsdienone to achieve the appropriate stereochemistry of ipsdienol for pheromonal activity. Furthermore, the regulation of these genes and their corresponding enzymes proved complex and diverse in different species. Mevalonate pathway genes in pheromone producing male I. pini

  4. Patterns in ground beetle (Coleoptera: Carabidae) assemblages along an urbanisation gradient in Denmark

    NASA Astrophysics Data System (ADS)

    Elek, Zoltán; Lövei, Gábor L.

    2007-07-01

    The responses of ground beetles to an urbanisation gradient (forest-suburban area-urban park) were studied in and near Sorø, South Zealand, Denmark, during April-October 2004. The average number of species per trap did not differ significantly among the three urbanisation stages. The average number of forest species was significantly higher in the forest area (6.2 species/trap) than in either the suburban (4.12 spp/trap) or the urban (3.7 spp/trap) areas. Both the number of open-habitat species (1.8 spp/trap), and the generalist species (2.3 spp/trap) were highest in the urban area. The number of predaceous species was highest in the forest area (8.1 spp/trap), while the number of omnivorous species was highest in the urban area (0.9 spp/trap). Multivariate statistical procedures (NMDS, Sorensen similarity index) also confirmed that species composition changed remarkably along the forest-suburban-urban gradient. The highest number of species (S = 37) was found at the urban area, deviating from trends at other northern hemisphere sites (Canada, Finland) where the overall species richness was highest at the forest habitats. Urban green areas, including forest patches contribute to the quality of urban life and thus should be conserved. Apart from their recreational value, which is widely appreciated and enjoyed by human inhabitants, such green urban spaces provide seemingly adequate habitat for numerous species of ground beetles found in less developed forest areas some distance from the city core.

  5. Effect of Tillage and Planting Date on Seasonal Abundance and Diversity of Predacious Ground Beetles in Cotton

    PubMed Central

    Shrestha, R. B.; Parajulee, M. N.

    2010-01-01

    A 2-year field study was conducted in the southern High Plains region of Texas to evaluate the effect of tillage system and cotton planting date window on seasonal abundance and activity patterns of predacious ground beetles. The experiment was deployed in a split-plot randomized block design with tillage as the main-plot factor and planting date as the subplot factor. There were two levels for each factor. The two tillage systems were conservation tillage (30% or more of the soil surface is covered with crop residue) and conventional tillage. The two cotton planting date window treatments were early May (normal planting) and early June (late planting). Five prevailing predacious ground beetles, Cicindela sexguttata F., Calosoma scrutator Drees, Pasimachus spp., Pterostichus spp., and Megacephala Carolina L. (Coleoptera: Carabidae), were monitored using pitfall traps at 2-week intervals from June 2002 to October 2003. The highest total number of ground beetles (6/trap) was observed on 9 July 2003. Cicindela sexguttata was the dominant ground dwelling predacious beetle among the five species. A significant difference between the two tillage systems was observed in the abundances of Pterostichus spp. and C. sexguttata. In 2002. significantly more Pterostichus spp. were recorded from conventional plots (0.27/trap) than were recorded from conservation tillage plots (0.05/trap). Significantly more C. sexguttata were recorded in 2003 from conservation plots (3.77/trap) than were recorded from conventional tillage plots (1.04/trap). There was a significant interaction between year and tillage treatments. However, there was no significant difference in the abundances of M. Carolina and Pasimachus spp. between the two tillage practices in either of the two years. M. Carolina numbers were significantly higher in late-planted cotton compared with those observed in normal-planted cotton. However, planting date window had no significant influence on the activity patterns of the

  6. Dusky sap beetles (Coleoptera: Nitidulidae) and other kernel damaging insects in Bt and non-Bt sweet corn in Illinois.

    PubMed

    Dowd, P F

    2000-12-01

    Bt and non-Bt sweet corn hybrids (Rogers 'Empire' Bt and non-Bt, respectively) were compared for distribution of kernel damaging insect pests in central Illinois in 1998 and 1999. The occurrence and damage by caterpillars [primarily Helicoverpa zea (Boddie)] were reduced by at least 80% in each year for the Bt compared with the non-Bt hybrid. However, the incidence of sap beetle adults (primarily Carpophilus lugubris Murray) was higher, and larvae, lower for the Bt versus non-Bt in 1999. The incidence of ears with more than five kernels damaged by sap beetles was higher for the Bt compared with non-Bt hybrid in 1998 (13.8 versus 5.5%), but nearly equivalent in 1999 (15.3 versus 15.1%, respectively). Distribution of predators on plants (primarily Coccinelidae) and harvested ears (primarily Orius spp.) were not significantly different on Bt versus non-Bt hybrids. Ears with husks flush with the ear tip or with ear tips exposed had significantly higher sap beetle damage for both hybrids, and the Bt hybrids had significantly higher incidence of exposed ear tips in both years. Sap beetle numbers determined by scouting were often proportional to numbers of beetles captured in baited traps, increasing and decreasing at about the same time. However, values determined with traps were typically less variable than when scouted, and time of sampling was typically four times more rapid for each trap than for each 10 plant scout sample when measured in 1999. PMID:11142303

  7. Mountain Pine Beetles Use Volatile Cues to Locate Host Limber Pine and Avoid Non-Host Great Basin Bristlecone Pine

    PubMed Central

    Gray, Curtis A.; Runyon, Justin B.; Jenkins, Michael J.; Giunta, Andrew D.

    2015-01-01

    The tree-killing mountain pine beetle (Dendroctonus ponderosae Hopkins) is an important disturbance agent of western North American forests and recent outbreaks have affected tens of millions of hectares of trees. Most western North American pines (Pinus spp.) are hosts and are successfully attacked by mountain pine beetles whereas a handful of pine species are not suitable hosts and are rarely attacked. How pioneering females locate host trees is not well understood, with prevailing theory involving random landings and/or visual cues. Here we show that female mountain pine beetles orient toward volatile organic compounds (VOCs) from host limber pine (Pinus flexilis James) and away from VOCs of non-host Great Basin bristlecone pine (Pinus longaeva Bailey) in a Y-tube olfactometer. When presented with VOCs of both trees, females overwhelmingly choose limber pine over Great Basin bristlecone pine. Analysis of VOCs collected from co-occurring limber and Great Basin bristlecone pine trees revealed only a few quantitative differences. Noticeable differences included the monoterpenes 3-carene and D-limonene which were produced in greater amounts by host limber pine. We found no evidence that 3-carene is important for beetles when selecting trees, it was not attractive alone and its addition to Great Basin bristlecone pine VOCs did not alter female selection. However, addition of D-limonene to Great Basin bristlecone pine VOCs disrupted the ability of beetles to distinguish between tree species. When presented alone, D-limonene did not affect behavior, suggesting that the response is mediated by multiple compounds. A better understanding of host selection by mountain pine beetles could improve strategies for managing this important forest insect. Moreover, elucidating how Great Basin bristlecone pine escapes attack by mountain pine beetles could provide insight into mechanisms underlying the incredible longevity of this tree species. PMID:26332317

  8. Ground beetle (Coleoptera: Carabidae) feeding ecology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The article reviews some general and applied aspects of the feeding ecology of carabid beetles. General aspects included feeding preferences, prey searching, prey capture, and digestion. Applied aspects included evidence of impact, such as predation of aphids, leafhoppers, flies, beetles and moths...

  9. Standard methods for small hive beetle research

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Small hive beetles, Aethina tumida, are parasites and scavengers of honey bee and other social bee colonies native to sub-Saharan Africa, where they are a minor pest only. In contrast, the beetles can be harmful parasites of European honey bee subspecies. Very rapidly after A. tumida established pop...

  10. Book review: Methods for catching beetles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Beetles are the most speciose animal group and found in virtually all habitats on Earth. Methods for Catching Beetles is a comprehensive general sourcebook about where and how to collect members of this diverse group. The book makes a compelling case in its Introduction about the value of scientif...

  11. Acoustic characteristics of rhinoceros beetle stridulations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stridulation behavior has been reported for adults and larvae of many dynastids. This report describes acoustic recordings and analyses of stridulations by larvae of two Southeastern Asia rhinoceros beetle species and by adults of the coconut rhinoceros beetle. The behavioral context of the strid...

  12. Ground beetle (Coleoptera: Carabidae) feeding ecology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This article reviews some general and applied aspects of the feeding ecology of carabid beetles. General aspects included feeding preferences, prey searching, prey capture, and digestion. Applied aspects included evidence of impact, such as predation of aphids, leafhoppers, flies, beetles and moth...

  13. Anemomenotatic orientation in beetles and scorpions

    NASA Technical Reports Server (NTRS)

    Linsenmair, K. E.

    1972-01-01

    Orientation, by beetles and scorpions, according to wind direction and force are analyzed. Major efforts were made to determine: (1) which physical qualities of the air current influence anemomenotaxis, (2) which physiological mechanism is responsible for such orientation, (3) which sense organs do beetles and scorpions use to perceive wind directions, and (4) what the biological significance of anemomenotaxis in the beetle and scorpion is. Experimental results show that the trichobothria in scorpions perceives wind direction; in the beetle it is perceived by sense organs excited by pendicellus-flagellum joint movements. A compensation mechanism is suggested as the basis for anemomenotactic orientation. It was also suggested that the biological significance of anemomenotaxis in scorpions is space orientation; while in beetles it was found to be part of the appetitive behavior used to search for olfactory sign stimuli.

  14. Early Cretaceous angiosperms and beetle evolution

    PubMed Central

    Wang, Bo; Zhang, Haichun; Jarzembowski, Edmund A.

    2013-01-01

    The Coleoptera (beetles) constitute almost one–fourth of all known life-forms on earth. They are also among the most important pollinators of flowering plants, especially basal angiosperms. Beetle fossils are abundant, almost spanning the entire Early Cretaceous, and thus provide important clues to explore the co-evolutionary processes between beetles and angiosperms. We review the fossil record of some Early Cretaceous polyphagan beetles including Tenebrionoidea, Scarabaeoidea, Curculionoidea, and Chrysomeloidea. Both the fossil record and molecular analyses reveal that these four groups had already diversified during or before the Early Cretaceous, clearly before the initial rise of angiosperms to widespread floristic dominance. These four beetle groups are important pollinators of basal angiosperms today, suggesting that their ecological association with angiosperms probably formed as early as in the Early Cretaceous. With the description of additional well-preserved fossils and improvements in phylogenetic analyses, our knowledge of Mesozoic beetle–angiosperm mutualisms will greatly increase during the near future. PMID:24062759

  15. Functional morphology of the copulatory organs of a reed beetle and a shining leaf beetle (Coleoptera: Chrysomelidae: Donaciinae, Criocerinae) using X-ray micro-computed tomography *

    PubMed Central

    Schmitt, Michael; Uhl, Gabriele

    2015-01-01

    Abstract For more than 100 years it has been known that the sclerotised median lobe of beetles harbours a membranous structure (the "internal sac" or "endophallus") which is everted during copula inside the female genital tract. In order to explore the functional role of this structure and those associated with it, we cryofixed copulating pairs of Donacia semicuprea and Lilioceris lilii and studied the relative position of the elements of the copulatory apparatus of males and females by micro-computer-tomography. We found that the everted endophallus fills the lumen of the bursa copulatrix completely. Our data suggest that in Lilioceris lilii the tip of the sclerotised distal part of the ejaculatory duct, the flagellum, is positioned exactly over the opening of the spermathecal duct inside the bursa copulatrix. The mouth of the bursa copulatrix in Donacia semicuprea is armed with a strong muscle ring, and the whole wall of the bursa is covered externally with a layer of muscle fibres. These morphological differences correspond with differences in mating behaviour: In reed beetles (Donaciinae), females seemingly can control mating to a higher degree than in lily beetles (Lilioceris spp.). PMID:26798321

  16. A quarter of a century succession of epigaeic beetle assemblages in remnant habitats in an urbanized matrix (Coleoptera, Carabidae)

    PubMed Central

    Gandhi, Kamal J.K.; Epstein, Marc E.; Koehle, Jessica J.; Purrington, Foster F.

    2011-01-01

    Abstract We studied the long-term (23–24 years) species turnover and succession of epigaeic beetle assemblages (Coleoptera: Carabidae, incl. Cicindelinae) in three remnant habitats [cottonwood (Populus spp.) and oak (Quercus spp.) stands, and old fields] that are embedded within highly urbanized areas in central Minnesota. A total of 9,710 beetle individuals belonging to 98 species were caught in three sampling years: 1980, 1981 and 2005 in pitfall traps in identical locations within each habitat. Results indicate that there were 2–3 times greater trap catches in 2005 than in 1980 (cottonwood and oak stands, and old fields) and 1.4–1.7 times greater species diversity of beetles in 2005 than in the 1980-1981 suggesting increased habitat association by beetles over time. Although there were no significant differences in catches between 2005 and 1981 (only cottonwood stands and old fields), there was a trend where more beetles were caught in 2005. At the species-level, 10 times more of an open-habitat carabid species, Cyclotrachelus sodalis sodalis LeConte, was caught in 2005 than in 1980. However, trap catches of five other abundant carabid species [Pterostichus novus Straneo, Platynus decentis (Say), Platynus mutus (Say), Calathus gregarius (Say), and Poecilus lucublandus lucublandus (Say)] did not change indicating population stability of some beetle species. These remnant habitats were increasingly colonized by exotic carabid species as Carabus granulatus granulatus Linneaus, Clivina fossor (Linneaus) and Platynus melanarius (Illiger), that were trapped for the first time in 2005. Species composition of epigaeic beetles was quite distinct in 2005 from 1980 with 39 species reported for the first time in 2005, indicating a high turnover of assemblages. At the habitat-level, greatest species diversity was in cottonwood stands and lowest was in old fields, and all habitat types in 2005 diverged from those in 1980s, but not cottonwood stands in 1981. As our

  17. Nesting ecology of boreal forest birds following a massive outbreak of spruce beetles

    USGS Publications Warehouse

    Matsuoka, S.M.; Handel, C.M.

    2007-01-01

    We studied breeding dark-eyed juncos (Junco hyemalis), yellow-rumped warblers (Dendroica coronata), and spruce-nesting birds from 1997 to 1998 among forests with different levels of spruce (Picea spp.) mortality following an outbreak of spruce beetles (Dendroctonus rufipennis) in Alaska, USA. We identified species using live and beetle-killed spruce for nest sites and monitored nests to determine how the outbreak influenced avian habitat selection and reproduction. We tested predictions that 1) nesting success of ground-nesting juncos would increase with spruce mortality due to proliferation of understory vegetation available to conceal nests from predators, 2) nesting success of canopy-nesting warblers would decrease with spruce mortality due to fewer live spruce in which to conceal nests, and 3) both species would alter nest-site selection in response to disturbance. Juncos did not benefit from changes in understory vegetation; nesting success in highly disturbed stands (46%) was comparable to that in undisturbed habitats throughout their range. In stands with low spruce mortality, nesting success of juncos was low (5%) and corresponded with high densities of red squirrels (Tamiasciurus hudsonicus). Yellow-rumped warblers nested exclusively in spruce, but success did not vary with spruce mortality. As disturbance increased, nesting warblers switched from selecting forest patches with high densities of live white spruce (Picea glauca) to patches with beetle-killed spruce. Warblers also placed nests in large-diameter live or beetle-killed spruce, depending on which was more abundant in the stand, with no differences in nesting success. Five of the 12 other species of spruce-nesting birds also used beetle-killed spruce as nest sites. Because beetle-killed spruce can remain standing for >50 years, even highly disturbed stands provide an important breeding resource for boreal forest birds. We recommend that boreal forest managers preserve uncut blocks of infested

  18. Approaches to engineer stability of beetle luciferases

    PubMed Central

    Koksharov, Mikhail I.; Ugarova, Natalia N.

    2012-01-01

    Luciferase enzymes from fireflies and other beetles have many important applications in molecular biology, biotechnology, analytical chemistry and several other areas. Many novel beetle luciferases with promising properties have been reported in the recent years. However, actual and potential applications of wild-type beetle luciferases are often limited by insufficient stability or decrease in activity of the enzyme at the conditions of a particular assay. Various examples of genetic engineering of the enhanced beetle luciferases have been reported that successfully solve or alleviate many of these limitations. This mini-review summarizes the recent advances in development of mutant luciferases with improved stability and activity characteristics. It discusses the common limitations of wild-type luciferases in different applications and presents the efficient approaches that can be used to address these problems. PMID:24688645

  19. Cucurbitacins as kairomones for diabroticite beetles

    PubMed Central

    Metcalf, Robert L.; Metcalf, Robert A.; Rhodes, A. M.

    1980-01-01

    The characteristic bitter substances of the Cucurbitaceae act as kairomones for a large group of diabroticite beetles (Chrysomelidae, Galerucinae, Luperini), promoting host selection and compulsive feeding behavior. These beetles (e.g., Diabrotica undecimpunctata howardi) respond to as little as 1 ng of cucurbitacin (Cuc) B on thin-layer plates by arrest and compulsive feeding. Six species of diabroticite beetles were about 10 times more responsive to Cuc B than to Cuc E and less responsive to Cuc D, I, and L. Chloroform extracts of 18 species of Cucurbita were developed on thin-layer chromatograms and exposed to diabroticite beetles. The feeding patterns showed pronounced beetle responses to three general Cuc distribution patterns: Cuc B and D as in Cucurbita andreana and C. ecuadorensis; Cuc E and I as in C. okeechobeensis and C. martinezii; and Cuc E glycoside in C. texana. All the diabroticites responded in exactly the same feeding patterns. The results demonstrate a coevolutionary association between the Cucurbitaceae and the Luperini, during which the intensely bitter and toxic Cucs that arose to repel herbivores and protect the plants from attack became specific kairomone feeding stimulants for the beetles. PMID:16592849

  20. Cucurbitacins as kairomones for diabroticite beetles.

    PubMed

    Metcalf, R L; Metcalf, R A; Rhodes, A M

    1980-07-01

    The characteristic bitter substances of the Cucurbitaceae act as kairomones for a large group of diabroticite beetles (Chrysomelidae, Galerucinae, Luperini), promoting host selection and compulsive feeding behavior. These beetles (e.g., Diabrotica undecimpunctata howardi) respond to as little as 1 ng of cucurbitacin (Cuc) B on thin-layer plates by arrest and compulsive feeding. Six species of diabroticite beetles were about 10 times more responsive to Cuc B than to Cuc E and less responsive to Cuc D, I, and L. Chloroform extracts of 18 species of Cucurbita were developed on thin-layer chromatograms and exposed to diabroticite beetles. The feeding patterns showed pronounced beetle responses to three general Cuc distribution patterns: Cuc B and D as in Cucurbita andreana and C. ecuadorensis; Cuc E and I as in C. okeechobeensis and C. martinezii; and Cuc E glycoside in C. texana. All the diabroticites responded in exactly the same feeding patterns. The results demonstrate a coevolutionary association between the Cucurbitaceae and the Luperini, during which the intensely bitter and toxic Cucs that arose to repel herbivores and protect the plants from attack became specific kairomone feeding stimulants for the beetles. PMID:16592849

  1. Symbiont diversification in ambrosia beetles: Diversity of fungi associated with exotic scolytine beetles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In virtually every forest habitat, ambrosia beetles (Coleoptera: Curculionidae: Scolytinae, Platypodinae) plant and maintain symbiotic fungus gardens inside dead or dying wood. Some introduced ambrosia beetles aggressively attack live trees and can damage tree crops, lumber, and native woody plant t...

  2. Fossil mesostigmatid mites (Mesostigmata: Gamasina, Microgyniina, Uropodina), associated with longhorn beetles (Coleoptera: Cerambycidae) in Baltic amber

    NASA Astrophysics Data System (ADS)

    Dunlop, Jason A.; Kontschán, Jenő; Zwanzig, Michael

    2013-04-01

    Fossil mesostigmatid mites are extremely rare. Inclusions assignable to the tortoise mites (Mesostigmata, Uropodina) are described here for the first time from Eocene (ca. 44-49 Ma) Baltic amber. This is the oldest record of Uropodina and documents the first unequivocal amber examples potentially assignable to the extant genus Uroobovella Berlese, 1903 (Uropodoidea: Urodinychidae). Further mites in the same amber pieces are tentatively assigned to Microgynioidea (Microgyniina) and Ascidae (Gamasina), both potentially representing the oldest records of their respective superfamily and family groups. This new material also preserves behavioural ecology in the form of phoretic deutonymphs attached to their carriers via a characteristic anal pedicel. These deutonymphs in amber are intimately associated with longhorn beetles (Coleoptera: Cerambycidae), probably belonging to the extinct species Nothorhina granulicollis Zang, 1905. Modern uropodines have been recorded phoretic on species belonging to several beetle families, including records of living Uroobovella spp. occurring on longhorn beetles. Through these amber inclusions, a uropodine-cerambycid association can now be dated back to at least the Eocene.

  3. Molecular phylogeny of beetle associated diplogastrid nematodes suggests host switching rather than nematode-beetle coevolution

    PubMed Central

    2009-01-01

    Background Nematodes are putatively the most species-rich animal phylum. They have various life styles and occur in a variety of habitats, ranging from free-living nematodes in aquatic or terrestrial environments to parasites of animals and plants. The rhabditid nematode Caenorhabditis elegans is one of the most important model organisms in modern biology. Pristionchus pacificus of the family of the Diplogastridae has been developed as a satellite model for comparison to C. elegans. The Diplogastridae, a monophyletic clade within the rhabditid nematodes, are frequently associated with beetles. How this beetle-association evolved and whether beetle-nematode coevolution occurred is still elusive. As a prerequisite to answering this question a robust phylogeny of beetle-associated Diplogastridae is needed. Results Sequences for the nuclear small subunit ribosomal RNA and for 12 ribosomal protein encoding nucleotide sequences were collected for 14 diplogastrid taxa yielding a dataset of 5996 bp of concatenated aligned sequences. A molecular phylogeny of beetle-associated diplogastrid nematodes was established by various algorithms. Robust subclades could be demonstrated embedded in a phylogenetic tree topology with short internal branches, indicating rapid ancestral divergences. Comparison of the diplogastrid phylogeny to a comprehensive beetle phylogeny revealed no major congruence and thus no evidence for a long-term coevolution. Conclusion Reconstruction of the phylogenetic history of beetle-associated Diplogastridae yields four distinct subclades, whose deep phylogenetic divergence, as indicated by short internal branch lengths, shows evidence for evolution by successions of ancient rapid radiation events. The stem species of the Diplogastridae existed at the same time period when the major radiations of the beetles occurred. Comparison of nematode and beetle phylogenies provides, however, no evidence for long-term coevolution of diplogastrid nematodes and their

  4. Volatile emissions from the lesser mealworm beetle Alphitobius diaperinus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The lesser mealworm beetle Alphitobius diaperinus (Panzer) is a serious, cosmopolitan pest in poultry production facilities, consuming grain, carrying disease organisms, and causing structural damage in poultry house walls. Pheromones have been described for many economically important beetle speci...

  5. Do Pine Beetles Fan the Flames in Western Forests?

    NASA Video Gallery

    As mountain pine beetles damage whole regions of Western forests, some worry that the dead trees left behind have created a tinderbox ready to burn. But do pine beetles really increase fire risk? I...

  6. Ecological consequences of mountain pine beetle outbreaks for wildlife in western North American forests

    USGS Publications Warehouse

    Saab, Victoria A.; Latif, Quresh S.; Rowland, Mary M.; Johnson, Tracey N.; Chalfoun, Anna D.; Buskirk, Steven W.; Heyward, Joslin E.; Dresser, Matthew A.

    2014-01-01

    Mountain pine beetle (Dendroctonus ponderosae) (MPB) outbreaks are increasingly prevalent in western North America, causing considerable ecological change in pine (Pinus spp.) forests with important implications for wildlife. We reviewed studies examining wildlife responses to MPB outbreaks and postoutbreak salvage logging to inform forest management and guide future research. Our review included 16 studies describing MPB outbreak relationships with 89 bird species and 6 studies describing relationships with 11 mammalian species, but no studies of reptiles or amphibians. We included studies that compared wildlife response metrics temporally (before versus after the outbreak) and spatially (across sites that varied in severity of outbreak) in relation to beetle outbreaks. Outbreaks ranged in size from 20,600 to ≥107 ha and studies occurred 1‐30 years after the peak MPB outbreak, but most studies were conducted over the short-term (i.e., ≤6 years after the peak of MPB-induced tree mortality). Birds were the only taxa studied frequently; however, high variability existed among those studies to allow many inferences, although some patterns were evident. Avian studies concluded that cavity-nesting species responded more favorably to beetle-killed forests than species with open-cup nests, and species nesting in the shrub layer favored outbreak forests compared with ground and open-cup canopy nesters that generally showed mixed relationships. Bark-drilling species as a group clearly demonstrated a positive short-term association with MPB epidemics compared with that of other foraging assemblages. Cavity-nesting birds that do not consume bark beetles (i.e., secondary cavity-nesting species and nonbark-drilling woodpeckers) also exhibited some positive responses to MPB outbreaks, although not as pronounced or consistent as those of bark-drilling woodpeckers. Mammalian responses to MPB outbreaks were mixed. Studies consistently reported negative effects of MPB

  7. Thermal and water relations of desert beetles

    NASA Astrophysics Data System (ADS)

    Cloudsley-Thompson, J.

    2001-11-01

    The physical problems that living organisms have to contend with in hot deserts are primarily extremes of temperature, low humidity, shortage or absence of free water, and the environmental factors that accentuate these - such as strong winds, sand-storms, lack of shade, rocky and impenetrable soils. Climatic factors are particularly important to smaller animals such as arthropods on account of their relatively enormous surface to volume ratios. Nevertheless, beetles (especially Tenebrionidae and, to a lesser extent, Chrysomelidae) are among the most successful animals of the desert, and are often the only ones to be seen abroad during the day. Similar physical problems are experienced by insects in all terrestrial biomes, but they are much enhanced in the desert. Although climatic extremes are often avoided by burrowing habits coupled with circadian and seasonal activity rhythms, as well as reproductive phenology, several species of desert beetle are nevertheless able to withstand thermal extremes that would rapidly cause the death of most other arthropods including insects. The reactions of desert beetles to heat are largely behavioural whilst their responses to water shortage are primarily physiological. The effects of coloration are not discussed. In addition to markedly low rates of transpiration, desert beetles can also withstand a considerable reduction in the water content of their tissues. The study of desert beetles is important because it illustrates many of the solutions evolved by arthropods to the problems engendered, in an extreme form, by life in all terrestrial environments.

  8. Thermal and water relations of desert beetles.

    PubMed

    Cloudsley-Thompson, J L

    2001-11-01

    The physical problems that living organisms have to contend with in hot deserts are primarily extremes of temperature, low humidity, shortage or absence of free water, and the environmental factors that accentuate these--such as strong winds, sand-storms, lack of shade, rocky and impenetrable soils. Climatic factors are particularly important to smaller animals such as arthropods on account of their relatively enormous surface to volume ratios. Nevertheless, beetles (especially Tenebrionidae and, to a lesser extent, Chrysomelidae) are among the most successful animals of the desert, and are often the only ones to be seen abroad during the day. Similar physical problems are experienced by insects in all terrestrial biomes, but they are much enhanced in the desert. Although climatic extremes are often avoided by burrowing habits coupled with circadian and seasonal activity rhythms, as well as reproductive phenology, several species of desert beetle are nevertheless able to withstand thermal extremes that would rapidly cause the death of most other arthropods including insects. The reactions of desert beetles to heat are largely behavioural whilst their responses to water shortage are primarily physiological. The effects of coloration are not discussed. In addition to markedly low rates of transpiration, desert beetles can also withstand a considerable reduction in the water content of their tissues. The study of desert beetles is important because it illustrates many of the solutions evolved by arthropods to the problems engendered, in an extreme form, by life in all terrestrial environments. PMID:11771473

  9. Small hive beetles survive in honeybee prisons by behavioural mimicry

    NASA Astrophysics Data System (ADS)

    Ellis, J. D.; Pirk, C. W. W.; Hepburn, H. R.; Kastberger, G.; Elzen, P. J.

    2002-05-01

    We report the results of a simple experiment to determine whether honeybees feed their small hive beetle nest parasites. Honeybees incarcerate the beetles in cells constructed of plant resins and continually guard them. The longevity of incarcerated beetles greatly exceeds their metabolic reserves. We show that survival of small hive beetles derives from behavioural mimicry by which the beetles induce the bees to feed them trophallactically. Electronic supplementary material to this paper can be obtained by using the Springer LINK server located at htpp://dx.doi.org/10.1007/s00114-002-0326-y.

  10. Small hive beetles survive in honeybee prisons by behavioural mimicry.

    PubMed

    Ellis, J D; Pirk, C W W; Hepburn, H R; Kastberger, G; Elzen, P J

    2002-07-01

    We report the results of a simple experiment to determine whether honeybees feed their small hive beetle nest parasites. Honeybees incarcerate the beetles in cells constructed of plant resins and continually guard them. The longevity of incarcerated beetles greatly exceeds their metabolic reserves. We show that survival of small hive beetles derives from behavioural mimicry by which the beetles induce the bees to feed them trophallactically. Electronic supplementary material to this paper can be obtained by using the Springer LINK server located at htpp://dx.doi.org/10.1007/s00114-002-0326-y. PMID:12216866

  11. Patterns on the iridescent beetle, Chrysina gloriosa

    NASA Astrophysics Data System (ADS)

    Park, Jung Ok; Sharma, Vivek; Crne, Matija; Srinivasarao, Mohan

    2009-03-01

    The brilliant metallic color of a beetle Chrysina gloriosa has been known to occur due to selective reflectance from a cholesteric structure on the exoskeleton. The surface also appears to have hexagonally packed structures. Crystallographic concepts and Voronoi analysis were used to determine the degree of order in different regions of the beetle. Along the hexagons in the Voronoi diagram, many clustered pentagons and heptagons were observed. Due to the surface curvature, the number of pentagons was found to be higher than the number of heptagons. The cells appear yellow in the center surrounded by a green region with a yellow edge. Confocal microscopy was used to image the underlying structure, which was found to consist of concentric arcs on a surface of a shallow cone. The observed structures resemble the defects on a cholesteric phase with a free surface, and provide an interesting explanation of structural color development in beetles, along with inspiration for the design of chiral photonic structures.

  12. Ground beetles of the Ukraine (Coleoptera, Carabidae).

    PubMed

    Putchkov, Alexander

    2011-01-01

    A review of the ground beetles of the Ukrainian fauna is given. Almost 750 species from 117 genera of Carabidae are known to occur in the Ukraine. Approximately 450 species of ground beetles are registered in the Carpathian region. No less than 300 species of ground beetles are found in the forest zone. Approximately 400 species of Carabidae present in the forest-steppe zone are relatively similar in species composition to those in the forest territories. Some 450 species of Carabidae are inhabitants of the steppe zone. Representatives of many other regions of heterogeneous biotopes such as forest, semi desert, intrazonal, etc. can be found in the steppe areas. The fauna of Carabidae (ca. 100 species) of the lowlands of southern Ukraine (sandy biotopes), situated mostly in the Kherson region, is very peculiar. The fauna of the Crimean mountains contains about 300 species. Conservation measures for the Carabidae are discussed. PMID:21738430

  13. Emerging pathogens: Aeromonas spp.

    PubMed

    Merino, S; Rubires, X; Knochel, S; Tomas, J M

    1995-12-01

    Aeromonas spp. are Gram-negative rods of the family Vibrionaceae. They are normal water inhabitants and are part of the regular flora of poiquilotherm and homeotherm animals. They can be isolated from many foodstuffs (green vegetables, raw milk, ice cream, meat and seafood). Mesophilic Aeromonas spp. have been classified following the AeroKey II system (Altwegg et al., 1990; Carnahan et al., 1991). The major human diseases caused by Aeromonas spp. can be classified in two major groups: septicemia (mainly by strains of A. veronii subsp. sobria and A. hydrophila), and gastroenteritis (any mesophilic Aeromonas spp. but principally A. hydrophila and A. veronii). Most epidemiological studies have shown Aeromonas spp. in stools to be more often associated with diarrhea than with the carrier state; an association with the consumption of untreated water was also conspicuous. Acute self-limited diarrhea is more frequent in young children, in older patients chronic enterocolitis may also be observed. Fever, vomiting, and fecal leukocytes or erythrocytes (colitis) may be present (Janda, 1991). The main putative virulence factors are: exotoxins, endotoxin (LPS), presence of S-layers, fimbriae or adhesins and the capacity to form capsules. PMID:8750664

  14. BeetleBase: the model organism database for Tribolium castaneum.

    PubMed

    Wang, Liangjiang; Wang, Suzhi; Li, Yonghua; Paradesi, Martin S R; Brown, Susan J

    2007-01-01

    BeetleBase (http://www.bioinformatics.ksu.edu/BeetleBase/) is an integrated resource for the Tribolium research community. The red flour beetle (Tribolium castaneum) is an important model organism for genetics, developmental biology, toxicology and comparative genomics, the genome of which has recently been sequenced. BeetleBase is constructed to integrate the genomic sequence data with information about genes, mutants, genetic markers, expressed sequence tags and publications. BeetleBase uses the Chado data model and software components developed by the Generic Model Organism Database (GMOD) project. This strategy not only reduces the time required to develop the database query tools but also makes the data structure of BeetleBase compatible with that of other model organism databases. BeetleBase will be useful to the Tribolium research community for genome annotation as well as comparative genomics. PMID:17090595

  15. Dispersal of the spruce beetle, `dendroctonus rufipennis`, and the engraver beetle, `ips perturbatus`, in Alaska. Forest Service research paper

    SciTech Connect

    Werner, R.A.; Holsten, E.H.

    1997-09-01

    Mark-release-recapture experiments were performed with spruce beetles (Dendroctonus rufipennis (Kirby)) and Ips engraver beetles (Ips perturbatus (Eichhoff)) to determine distance and direction of dispersal. The recapture rate of beetles marked with fluorescent powder was extremely low. Most I. perturbatus beetles dispersed up to 30 m from their overwintering sites compared to most D. rufipennis, which dispersed from 90 to 300 m. Ips perturbatus beetles were caught up to 90 m and D. rufipennis up to 600 m from the point of release.

  16. A catalogue of Lithuanian beetles (Insecta, Coleoptera)

    PubMed Central

    Tamutis, Vytautas; Tamutė, Brigita; Ferenca, Romas

    2011-01-01

    Abstract This paper presents the first complete and updated list of all 3597 species of beetles (Insecta: Coleoptera) belonging to 92 familiesfound and published in Lithuania until 2011, with comments also provided on the main systematic and nomenclatural changes since the last monographic treatment in two volumes (Pileckis and Monsevičius 1995, 1997). The introductory section provides a general overview of the main features of the territory of Lithuania, the origins and formation of the beetle fauna and their conservation, the faunistic investigations in Lithuania to date revealing the most important stages of the faunistic research process with reference to the most prominent scientists, an overview of their work, and their contribution to Lithuanian coleopteran faunal research. Species recorded in Lithuania by some authors without reliable evidence and requiring further confirmation with new data are presented in a separate list, consisting of 183 species. For the first time, analysis of errors in works of Lithuanian authors concerning data on coleopteran fauna has been conducted and these errors have been corrected. All available published and Internet sources on beetles found in Lithuania have been considered in the current study. Over 630 literature sources on species composition of beetles, their distribution in Lithuania and neighbouring countries, and taxonomic revisions and changes are reviewed and cited. An alphabetical list of these literature sources is presented. After revision of public beetle collections in Lithuania, the authors propose to remove 43 species from the beetle species list of the country on the grounds, that they have been wrongly identified or published by mistake. For reasons of clarity, 19 previously noted but later excluded species are included in the current checklist with comments. Based on faunal data from neighbouring countries, species expected to occur in Lithuania are matnioned. In total 1390 species are attributed to this

  17. Beetle and plant density as cues initiating dispersal in two species of adult predaceous diving beetles.

    PubMed

    Yee, Donald A; Taylor, Stacy; Vamosi, Steven M

    2009-05-01

    Dispersal can influence population dynamics, species distributions, and community assembly, but few studies have attempted to determine the factors that affect dispersal of insects in natural populations. Consequently, little is known about how proximate factors affect the dispersal behavior of individuals or populations, or how an organism's behavior may change in light of such factors. Adult predaceous diving beetles are active dispersers and are important predators in isolated aquatic habitats. We conducted interrelated studies to determine how several factors affected dispersal in two common pond-inhabiting species in southern Alberta, Canada: Graphoderus occidentalis and Rhantus sericans. Specifically, we (1) experimentally tested the effect of plant and beetle densities on dispersal probabilities in ponds; (2) surveyed ponds and determined the relationships among beetle densities and plant densities and water depth; and (3) conducted laboratory trials to determine how beetle behavior changed in response to variation in plant densities, conspecific densities, food, and water depth. Our field experiment determined that both species exhibited density dependence, with higher beetle densities leading to higher dispersal probabilities. Low plant density also appeared to increase beetle dispersal. Consistent with our experimental results, densities of R. sericans in ponds were significantly related to plant density and varied also with water depth; G. occidentalis densities did not vary with either factor. In the laboratory, behavior varied with plant density only for R. sericans, which swam at low density but were sedentary at high density. Both species responded to depth, with high beetle densities eliciting beetles to spend more time in deeper water. The presence of food caused opposite responses for G. occidentalis between experiments. Behavioral changes in response to patch-level heterogeneity likely influence dispersal in natural populations and are expected

  18. Discordant phylogenies suggest repeated host shifts in the Fusarium-Euwallacea ambrosia beetle mutualism.

    PubMed

    O'Donnell, Kerry; Sink, Stacy; Libeskind-Hadas, Ran; Hulcr, Jiri; Kasson, Matthew T; Ploetz, Randy C; Konkol, Joshua L; Ploetz, Jill N; Carrillo, Daniel; Campbell, Alina; Duncan, Rita E; Liyanage, Pradeepa N H; Eskalen, Akif; Na, Francis; Geiser, David M; Bateman, Craig; Freeman, Stanley; Mendel, Zvi; Sharon, Michal; Aoki, Takayuki; Cossé, Allard A; Rooney, Alejandro P

    2015-09-01

    The mutualism between xyleborine beetles in the genus Euwallacea (Coleoptera: Curculionidae: Scolytinae) and members of the Ambrosia Fusarium Clade (AFC) represents one of 11 known evolutionary origins of fungiculture by ambrosia beetles. Female Euwallacea beetles transport fusarial symbionts in paired mandibular mycangia from their natal gallery to woody hosts where they are cultivated in galleries as a source of food. Native to Asia, several exotic Euwallacea species were introduced into the United States and Israel within the past two decades and they now threaten urban landscapes, forests and avocado production. To assess species limits and to date the evolutionary diversification of the mutualists, we reconstructed the evolutionary histories of key representatives of the Fusarium and Euwallacea clades using maximum parsimony and maximum likelihood methods. Twelve species-level lineages, termed AF 1-12, were identified within the monophyletic AFC and seven among the Fusarium-farming Euwallacea. Bayesian diversification-time estimates placed the origin of the Euwallacea-Fusarium mutualism near the Oligocene-Miocene boundary ∼19-24 Mya. Most Euwallacea spp. appear to be associated with one species of Fusarium, but two species farmed two closely related fusaria. Euwallacea sp. #2 in Miami-Dade County, Florida cultivated Fusarium spp. AF-6 and AF-8 on avocado, and Euwallacea sp. #4 farmed Fusarium ambrosium AF-1 and Fusarium sp. AF-11 on Chinese tea in Sri Lanka. Cophylogenetic analyses indicated that the Euwallacea and Fusarium phylogenies were largely incongruent, apparently due to the beetles switching fusarial symbionts (i.e., host shifts) at least five times during the evolution of this mutualism. Three cospeciation events between Euwallacea and their AFC symbionts were detected, but randomization tests failed to reject the null hypothesis that the putative parallel cladogenesis is a stochastic pattern. Lastly, two collections of Euwallacea sp. #2 from Miami

  19. Systematics of Fusaria associated with Ambrosia beetles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Here, I summarize research efforts directed at characterizing ambrosia beetle-associated fusaria, including the species responsible for avocado wilt in Israel (Mendel et al., Phytoparasitica 2012) and branch dieback in California (Eskalen et al., Pl. Dis. 2012). Our multilocus molecular phylogenetic...

  20. Chirality determines pheromone activity for flour beetles

    NASA Astrophysics Data System (ADS)

    Levinson, H. Z.; Mori, K.

    1983-04-01

    Olfactory perception and orientation behaviour of female and male flour beetles ( Tribolium castaneum, T. confusum) to single stereoisomers of their aggregation pheromone revealed maximal receptor potentials and optimal attraction in response to 4R,8R-(-)-dimethyldecanal, whereas its optical antipode 4S,8S-(+)-dimethyldecanal was found to be inactive in this respect. Female flour beetles of both species were ≈ 103 times less attracted to 4R,8S-(+)- and 4S,8R-(-)-dimethyldecanal than to 4R,8R-(-)-dimethyldecanal, while male flour beetles failed to respond to the R,S-(+)- and S,R-(-)-stereoisomers. Pheromone extracts of prothoracic femora from unmated male flour beetles elicited higher receptor potentials in the antennae of females than in those of males. The results suggest that the aggregation pheromone emitted by male T. castaneum as well as male T. confusum has the stereochemical structure of 4R,8R-(-)-dimethyl-decanal, which acts as sex attractant for the females and as aggregant for the males of both species.

  1. Research on Asian longhorned beetle in Canada

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An established population of the Asian Longhorned Beetle (ALB) (Anoplophora glabripennis) (Motschulsky) was discovered in 2003 in Toronto, Ontario, Canada. Given the enormous risk that ALB posses to the expansive forests of southern Canada and northern U.S. and the urgent need to eradicate ALB, as ...

  2. The fossil record and macroevolutionary history of the beetles.

    PubMed

    Smith, Dena M; Marcot, Jonathan D

    2015-04-22

    Coleoptera (beetles) is the most species-rich metazoan order, with approximately 380 000 species. To understand how they came to be such a diverse group, we compile a database of global fossil beetle occurrences to study their macroevolutionary history. Our database includes 5553 beetle occurrences from 221 fossil localities. Amber and lacustrine deposits preserve most of the beetle diversity and abundance. All four extant suborders are found in the fossil record, with 69% of all beetle families and 63% of extant beetle families preserved. Considerable focus has been placed on beetle diversification overall, however, for much of their evolutionary history it is the clade Polyphaga that is most responsible for their taxonomic richness. Polyphaga had an increase in diversification rate in the Early Cretaceous, but instead of being due to the radiation of the angiosperms, this was probably due to the first occurrences of beetle-bearing amber deposits in the record. Perhaps, most significant is that polyphagan beetles had a family-level extinction rate of zero for most of their evolutionary history, including across the Cretaceous-Palaeogene boundary. Therefore, focusing on the factors that have inhibited beetle extinction, as opposed to solely studying mechanisms that may promote speciation, should be examined as important determinants of their great diversity today. PMID:25788597

  3. The fossil record and macroevolutionary history of the beetles

    PubMed Central

    Smith, Dena M.; Marcot, Jonathan D.

    2015-01-01

    Coleoptera (beetles) is the most species-rich metazoan order, with approximately 380 000 species. To understand how they came to be such a diverse group, we compile a database of global fossil beetle occurrences to study their macroevolutionary history. Our database includes 5553 beetle occurrences from 221 fossil localities. Amber and lacustrine deposits preserve most of the beetle diversity and abundance. All four extant suborders are found in the fossil record, with 69% of all beetle families and 63% of extant beetle families preserved. Considerable focus has been placed on beetle diversification overall, however, for much of their evolutionary history it is the clade Polyphaga that is most responsible for their taxonomic richness. Polyphaga had an increase in diversification rate in the Early Cretaceous, but instead of being due to the radiation of the angiosperms, this was probably due to the first occurrences of beetle-bearing amber deposits in the record. Perhaps, most significant is that polyphagan beetles had a family-level extinction rate of zero for most of their evolutionary history, including across the Cretaceous–Palaeogene boundary. Therefore, focusing on the factors that have inhibited beetle extinction, as opposed to solely studying mechanisms that may promote speciation, should be examined as important determinants of their great diversity today. PMID:25788597

  4. Tiger beetle's pursuit of prey depends on distance

    NASA Astrophysics Data System (ADS)

    Noest, Robert; Wang, Jane

    2015-03-01

    Tiger beetles are fast predators capable of chasing prey under closed-loop visual guidance. We investigated their control system using high-speed digital recordings of beetles chasing a moving prey dummy in a laboratory arena. Analysis reveals that the beetle uses a proportional control law in which the angular position of the prey relative to the beetle's body axis drives the beetle's angular velocity with a delay of about 28 ms. The system gain is shown to depend on the beetle-prey distance in a pattern indicating three hunting phases over the observed distance domain. We show that to explain this behavior the tiger beetle must be capable of visually determining the distance to its target and using that to adapt the gain in its proportional control law. We will end with a discussion on the possible methods for distance detection by the tiger beetle and focus on two of them. Motion parallax, using the natural head sway induced by the walking gait of the tiger beetle, is shown to have insufficient distance range. However elevation in the field of vision, using the angle with respect to the horizon at which a target is observed, has a much larger distance range and is a prime candidate for the mechanism of visual distance detection in the tiger beetle.

  5. Bartonella spp. in Bats, Guatemala.

    PubMed

    Bai, Ying; Kosoy, Michael; Recuenco, Sergio; Alvarez, Danilo; Moran, David; Turmelle, Amy; Ellison, James; Garcia, Daniel L; Estevez, Alejandra; Lindblade, Kim; Rupprecht, Charles

    2011-07-01

    To better understand the role of bats as reservoirs of Bartonella spp., we estimated Bartonella spp. prevalence and genetic diversity in bats in Guatemala during 2009. We found prevalence of 33% and identified 21 genetic variants of 13 phylogroups. Vampire bat-associated Bartonella spp. may cause undiagnosed illnesses in humans. PMID:21762584

  6. Bartonella spp. in Bats, Guatemala

    PubMed Central

    Kosoy, Michael; Recuenco, Sergio; Alvarez, Danilo; Moran, David; Turmelle, Amy; Ellison, James; Garcia, Daniel L.; Estevez, Alejandra; Lindblade, Kim; Rupprecht, Charles

    2011-01-01

    To better understand the role of bats as reservoirs of Bartonella spp., we estimated Bartonella spp. prevalence and genetic diversity in bats in Guatemala during 2009. We found prevalence of 33% and identified 21 genetic variants of 13 phylogroups. Vampire bat–associated Bartonella spp. may cause undiagnosed illnesses in humans. PMID:21762584

  7. Discordant phylogenies suggest repeated host shifts in the Fusarium–Euwallacea ambrosia beetle mutualism

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The mutualism between xyleborine beetles in the genus Euwallacea (Coleoptera: Curculionidae: Scolytinae) and members of the Ambrosia Fusarium Clade (AFC) represents one of 11 known independent evolutionary origins of fungiculture by ambrosia beetles. Female Euwallacea beetles transport fusarial symb...

  8. Floral associations of cyclocephaline scarab beetles.

    PubMed

    Moore, Matthew Robert; Jameson, Mary Liz

    2013-01-01

    The scarab beetle tribe Cyclocephalini (Coleoptera: Scarabaeidae: Dynastinae) is the second largest tribe of rhinoceros beetles, with nearly 500 described species. This diverse group is most closely associated with early diverging angiosperm groups (the family Nymphaeaceae, magnoliid clade, and monocots), where they feed, mate, and receive the benefit of thermal rewards from the host plant. Cyclocephaline floral association data have never been synthesized, and a comprehensive review of this ecological interaction was necessary to promote research by updating nomenclature, identifying inconsistencies in the data, and reporting previously unpublished data. Based on the most specific data, at least 97 cyclocephaline beetle species have been reported from the flowers of 58 plant genera representing 17 families and 15 orders. Thirteen new cyclocephaline floral associations are reported herein. Six cyclocephaline and 25 plant synonyms were reported in the literature and on beetle voucher specimen labels, and these were updated to reflect current nomenclature. The valid names of three unavailable plant host names were identified. We review the cyclocephaline floral associations with respect to inferred relationships of angiosperm orders. Ten genera of cyclocephaline beetles have been recorded from flowers of early diverging angiosperm groups. In contrast, only one genus, Cyclocephala, has been recorded from dicot flowers. Cyclocephaline visitation of dicot flowers is limited to the New World, and it is unknown whether this is evolutionary meaningful or the result of sampling bias and incomplete data. The most important areas for future research include: (1) elucidating the factors that attract cyclocephalines to flowers including floral scent chemistry and thermogenesis, (2) determining whether cyclocephaline dicot visitation is truly limited to the New World, and (3) inferring evolutionary relationships within the Cyclocephalini to rigorously test vicarance hypotheses

  9. Floral Associations of Cyclocephaline Scarab Beetles

    PubMed Central

    Moore, Matthew Robert; Jameson, Mary Liz

    2013-01-01

    The scarab beetle tribe Cyclocephalini (Coleoptera: Scarabaeidae: Dynastinae) is the second largest tribe of rhinoceros beetles, with nearly 500 described species. This diverse group is most closely associated with early diverging angiosperm groups (the family Nymphaeaceae, magnoliid clade, and monocots), where they feed, mate, and receive the benefit of thermal rewards from the host plant. Cyclocephaline floral association data have never been synthesized, and a comprehensive review of this ecological interaction was necessary to promote research by updating nomenclature, identifying inconsistencies in the data, and reporting previously unpublished data. Based on the most specific data, at least 97 cyclocephaline beetle species have been reported from the flowers of 58 plant genera representing 17 families and 15 orders. Thirteen new cyclocephaline floral associations are reported herein. Six cyclocephaline and 25 plant synonyms were reported in the literature and on beetle voucher specimen labels, and these were updated to reflect current nomenclature. The valid names of three unavailable plant host names were identified. We review the cyclocephaline floral associations with respect to inferred relationships of angiosperm orders. Ten genera of cyclocephaline beetles have been recorded from flowers of early diverging angiosperm groups. In contrast, only one genus, Cyclocephala, has been recorded from dicot flowers. Cyclocephaline visitation of dicot flowers is limited to the New World, and it is unknown whether this is evolutionary meaningful or the result of sampling bias and incomplete data. The most important areas for future research include: 1) elucidating the factors that attract cyclocephalines to flowers including floral scent chemistry and thermogenesis, 2) determining whether cyclocephaline dicot visitation is truly limited to the New World, and 3) inferring evolutionary relationships within the Cyclocephalini to rigorously test vicarance hypotheses

  10. Endozoochory by beetles: a novel seed dispersal mechanism

    PubMed Central

    de Vega, Clara; Arista, Montserrat; Ortiz, Pedro L.; Herrera, Carlos M.; Talavera, Salvador

    2011-01-01

    Background and Aims Due in part to biophysical sized-related constraints, insects unlike vertebrates are seldom expected to act as primary seed dispersers via ingestion of fruits and seeds (endozoochory). The Mediterranean parasitic plant Cytinus hypocistis, however, possesses some characteristics that may facilitate endozoochory by beetles. By combining a long-term field study with experimental manipulation, we tested whether C. hypocistis seeds are endozoochorously dispersed by beetles. Methods Field studies were carried out over 4 years on six populations in southern Spain. We recorded the rate of natural fruit consumption by beetles, the extent of beetle movement, beetle behaviour and the relative importance of C. hypocistis fruits in beetle diet. Key Results The tenebrionid beetle Pimelia costata was an important disperser of C. hypocistis seeds, consuming up to 17·5 % of fruits per population. Forty-six per cent of beetles captured in the field consumed C. hypocistis fruits, with up to 31 seeds found in individual beetle frass. An assessment of seeds following passage through the gut of beetles indicated that seeds remained intact and viable and that the proportion of viable seeds from beetle frass was not significantly different from that of seeds collected directly from fruits. Conclusions A novel plant–animal interaction is revealed; endozoochory by beetles may facilitate the dispersal of viable seeds after passage through the gut away from the parent plant to potentially favourable underground sites offering a high probability of germination and establishment success. Such an ecological role has until now been attributed only to vertebrates. Future studies should consider more widely the putative role of fruit and seed ingestion by invertebrates as a dispersal mechanism, particularly for those plant species that possess small seeds. PMID:21303784

  11. The bacterial community of entomophilic nematodes and host beetles.

    PubMed

    Koneru, Sneha L; Salinas, Heilly; Flores, Gilberto E; Hong, Ray L

    2016-05-01

    Insects form the most species-rich lineage of Eukaryotes and each is a potential host for organisms from multiple phyla, including fungi, protozoa, mites, bacteria and nematodes. In particular, beetles are known to be associated with distinct bacterial communities and entomophilic nematodes. While entomopathogenic nematodes require symbiotic bacteria to kill and reproduce inside their insect hosts, the microbial ecology that facilitates other types of nematode-insect associations is largely unknown. To illuminate detailed patterns of the tritrophic beetle-nematode-bacteria relationship, we surveyed the nematode infestation profiles of scarab beetles in the greater Los Angeles area over a five-year period and found distinct nematode infestation patterns for certain beetle hosts. Over a single season, we characterized the bacterial communities of beetles and their associated nematodes using high-throughput sequencing of the 16S rRNA gene. We found significant differences in bacterial community composition among the five prevalent beetle host species, independent of geographical origin. Anaerobes Synergistaceae and sulphate-reducing Desulfovibrionaceae were most abundant in Amblonoxia beetles, while Enterobacteriaceae and Lachnospiraceae were common in Cyclocephala beetles. Unlike entomopathogenic nematodes that carry bacterial symbionts, insect-associated nematodes do not alter the beetles' native bacterial communities, nor do their microbiomes differ according to nematode or beetle host species. The conservation of Diplogastrid nematodes associations with Melolonthinae beetles and sulphate-reducing bacteria suggests a possible link between beetle-bacterial communities and their associated nematodes. Our results establish a starting point towards understanding the dynamic interactions between soil macroinvertebrates and their microbiota in a highly accessible urban environment. PMID:26992100

  12. Cereal crop volatile organic compound induction after mechanical injury, beetle herbivory (Oulema spp.), or fungal infection (Fusarium spp.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Herbivory, mechanical injury or pathogen infestation to vegetative tissues can induce volatile organic compounds (VOCs) production, which can provide defensive functions to injured and uninjured plants. In our studies with ‘McNeal’ wheat, ‘Otana’ oat, and ‘Harrington’ barley, plants that were mechan...

  13. Do mites phoretic on elm bark beetles contribute to the transmission of Dutch elm disease?

    NASA Astrophysics Data System (ADS)

    Moser, John C.; Konrad, Heino; Blomquist, Stacy R.; Kirisits, Thomas

    2010-02-01

    Dutch elm disease (DED) is a destructive vascular wilt disease of elm ( Ulmus) trees caused by the introduced Ascomycete fungus Ophiostoma novo-ulmi. In Europe, this DED pathogen is transmitted by elm bark beetles in the genus Scolytus. These insects carry phoretic mites to new, suitable habitats. The aim of this study was to record and quantify conidia and ascospores of O. novo-ulmi on phoretic mites on the three elm bark beetle species Scolytus multistriatus, Scolytus pygmaeus, and Scolytus scolytus. Spores of O. novo-ulmi were found on four of the ten mite species phoretic on Scolytus spp. These included Elattoma fraxini, Proctolaelaps scolyti, Pseudotarsonemoides eccoptogasteri, and Tarsonemus crassus. All four species had spores attached externally to their body surfaces. However, T. crassus carried most spores within its sporothecae, two paired pocket-like structures adapted for fungal transmission. Individuals of Pr. scolyti also had O. novo-ulmi conidia and ascospores frequently in their digestive system, where they may remain viable. While E. fraxini and P. eccoptogasteri rarely had spores attached to their bodies, large portions of Pr. scolyti and T. crassus carried significant numbers of conidia and/or ascospores of O. novo-ulmi. P. scolyti and T. crassus, which likely are fungivores, may thus contribute to the transmission of O. novo-ulmi, by increasing the spore loads of individual Scolytus beetles during their maturation feeding on twigs of healthy elm trees, enhancing the chance for successful infection with the pathogen. Only S. scolytus, which is the most efficient vector of O. novo-ulmi in Europe, carried high numbers of Pr. scolyti and T. crassus, in contrast to S. multistriatus and S. pygmaeus, which are known as less efficient vectors. The high efficiency of S. scolytus in spreading Dutch elm disease may be partly due to its association with these two mites and the hyperphoretic spores of O. novo-ulmi they carry.

  14. Non-Native Ambrosia Beetles as Opportunistic Exploiters of Living but Weakened Trees

    PubMed Central

    Ranger, Christopher M.; Schultz, Peter B.; Frank, Steven D.; Chong, Juang H.; Reding, Michael E.

    2015-01-01

    Exotic Xylosandrus spp. ambrosia beetles established in non-native habitats have been associated with sudden and extensive attacks on a diverse range of living trees, but factors driving their shift from dying/dead hosts to living and healthy ones are not well understood. We sought to characterize the role of host physiological condition on preference and colonization by two invaders, Xylosandrus germanus and Xylosandrus crassiusculus. When given free-choice under field conditions among flooded and non-flooded deciduous tree species of varying intolerance to flooding, beetles attacked flood-intolerant tree species over more tolerant species within 3 days of initiating flood stress. In particular, flood-intolerant flowering dogwood (Cornus florida) sustained more attacks than flood-tolerant species, including silver maple (Acer saccharinum) and swamp white oak (Quercus bicolor). Ethanol, a key host-derived attractant, was detected at higher concentrations 3 days after initiating flooding within stems of flood intolerant species compared to tolerant and non-flooded species. A positive correlation was also detected between ethanol concentrations in stem tissue and cumulative ambrosia beetle attacks. When adult X. germanus and X. crassiusculus were confined with no-choice to stems of flood-stressed and non-flooded C. florida, more ejected sawdust resulting from tunneling activity was associated with the flood-stressed trees. Furthermore, living foundresses, eggs, larvae, and pupae were only detected within galleries created in stems of flood-stressed trees. Despite a capability to attack diverse tree genera, X. germanus and X. crassiusculus efficiently distinguished among varying host qualities and preferentially targeted trees based on their intolerance of flood stress. Non-flooded trees were not preferred or successfully colonized. This study demonstrates the host-selection strategy exhibited by X. germanus and X. crassiusculus in non-native habitats involves

  15. Allozyme gene diversities in some leaf beetles (Coleoptera: Chrysomelidae).

    PubMed

    Krafsur, E S

    1999-08-01

    Gene diversity at allozyme loci was investigated in the bean leaf beetle, Ceratoma trifurcata Forster; the elm leaf beetle, Xanthogaleruca luteola (Muller); the cottonwood leaf beetle, Chrysomela scripta Fabricus; the western corn rootworm, Diabrotica virgifera virgifera LeConte; the southern corn rootworm, also called the spotted cucumber beetle, D. undecimpunctata howardi Baker; the northern corn rootworm, D. barberi Smith and Lawrence; and the Colorado potato beetle, Leptinotarsa decemlineata (Say). Six of these species are economically important pests of crops and display adaptive traits that may correlate with genetic diversity. Gene diversity H(E) in bean leaf beetles was 17.7 +/- 4.0% among 32 loci. In western corn rootworms, H(E) = 4.8 +/- 2.0% among 36 loci, and in spotted cucumber beetles, H(E) = 11.9 +/- 2.7% among 39 loci. Diversity among 27 loci was 10.5 +/- 4.3% in the Colorado potato beetle. The data were compared with gene diversity estimates from other leaf beetle species in which heterozygosities varied from 0.3 to 21% and no correlation was detected among heterozygosities, geographic ranges, or population densities. Distributions of single-locus heterozygosities were consistent with selective neutrality of alleles. PMID:10624512

  16. An integrative view of sexual selection in Tribolium flour beetles.

    PubMed

    Fedina, Tatyana Y; Lewis, Sara M

    2008-05-01

    's subsequent paternity share. Evidence suggests that Tribolium beetles have several possible post-mating mechanisms that they may use to bias paternity. Male sperm precedence has been extensively studied in Tribolium spp. and the related Tenebrio molitor, and several factors influencing male paternity share among a female's progeny have been identified. These include oviposition time, inter-mating interval, male strain/genotype, the mating regimen of a male's mother, male starvation, and tapeworm infection. Females exert muscular control over sperm storage, although there is no evidence to date that females use this to differentiate among mates. Females could also influence offspring paternity by re-mating with additional males, and T. castaneum females more readily accept spermatophores when they are re-mating with more attractive males. Additional work is needed to examine the possible roles played by both male and female accessory gland products in determining male paternity share. Sexual selection during pre-mating episodes may be reinforced or counteracted by peri- and post-copulatory selection, and antagonistic coevolution between the sexes may be played out across reproductive stages. In Tribolium, males' olfactory attractiveness is positively correlated with both insemination success and paternity share, suggesting consistent selection across different reproductive stages. Similar studies across sequential reproductive stages are needed in other taxa to provide a more integrative view of sexual selection. PMID:18429767

  17. Adhesins of Bartonella spp.

    PubMed

    O'Rourke, Fiona; Schmidgen, Thomas; Kaiser, Patrick O; Linke, Dirk; Kempf, Volkhard A J

    2011-01-01

    Adhesion to host cells represents the first step in the infection process and one of the decisive features in the pathogenicity of Bartonella spp. B. henselae and B. quintana are considered to be the most important human pathogenic species, responsible for cat scratch disease, bacillary angiomatosis, trench fever and other diseases. The ability to cause vasculoproliferative disorders and intraerythrocytic bacteraemia are unique features of the genus Bartonella. Consequently, the interaction with endothelial cells and erythrocytes is a focus in Bartonella research. The genus harbours a variety of trimeric autotransporter adhesins (TAAs) such as the Bartonella adhesin A (BadA) of B. henselae and the variably expressed outer-membrane proteins (Vomps) of B. quintana, which display remarkable variations in length and modular construction. These adhesins mediate many of the biologically-important properties of Bartonella spp. such as adherence to endothelial cells and extracellular matrix proteins and induction of angiogenic gene programming. There is also significant evidence that the laterally acquired Trw-conjugation systems of Bartonella spp. mediate host-specific adherence to erythrocytes. Other potential adhesins are the filamentous haemagglutinins and several outer membrane proteins. The exact molecular functions of these adhesins and their interplay with other pathogenicity factors (e.g., the VirB/D4 type 4 secretion system) need to be analysed in detail to understand how these pathogens adapt to their mammalian hosts. PMID:21557057

  18. Prison construction and guarding behaviour by European honeybees is dependent on inmate small hive beetle density.

    PubMed

    Ellis, J D; Hepburn, H R; Ellis, A M; Elzen, P J

    2003-08-01

    Increasing small hive beetle (Aethina tumida Murray) density changes prison construction and guarding behaviour in European honeybees (Apis mellifera L.). These changes include more guard bees per imprisoned beetle and the construction of more beetle prisons at the higher beetle density. Despite this, the number of beetles per prison (inmate density) did not change. Beetles solicited food more actively at the higher density and at night. In response, guard bees increased their aggressive behaviour towards beetle prisoners but did not feed beetles more at the higher density. Only 5% of all beetles were found among the combs at the low density but this percentage increased five-fold at the higher one. Successful comb infiltration (and thus reproduction) by beetles is a possible explanation for the significant damage beetles cause to European honeybee colonies in the USA. PMID:12955230

  19. Effect of Habitat Size, Quality, and Isolation on Functional Groups of Beetles in Hollow Oaks.

    PubMed

    Pilskog, Hanne Eik; Birkemoe, Tone; Framstad, Erik; Sverdrup-Thygeson, Anne

    2016-01-01

    One of the largest threats to biodiversity is land use change and habitat loss. Hollow oaks (Quercus spp. L.) are well-defined patches that are hotspots for biodiversity and red-listed species, but they are often rare and fragmented in the landscape. We investigated the effect of patch size, habitat quality, and isolation on functional groups and red-listed saproxylic beetles in hollow oaks (n = 40) in Norway. The groups were defined by host tree association, trophic grouping, and red-listed status. Habitat quality, represented by tree form was most important in explaining species richness for most groups. Patch size, represented by circumference and amount of dead branches, was most important in explaining abundance. Isolation, that is single oaks compared with oaks in groups, had a negative effect on the abundance of beetles feeding both on wood and fungi (xylomycethopagous), as well as on species associated with broadleaved trees (oak semi-specialists), but did not affect species richness. This indicates that at this scale and in this landscape, isolated oaks are as species rich and valuable for conservation as other oaks, although some functional groups may be more vulnerable to isolation than others. The red-listed species only responded to patch size, indicating that oaks with large circumference and many dead branches are especially important for red-listed species and for conservation. PMID:26945089

  20. Effect of Habitat Size, Quality, and Isolation on Functional Groups of Beetles in Hollow Oaks

    PubMed Central

    Pilskog, Hanne Eik; Birkemoe, Tone; Framstad, Erik; Sverdrup-Thygeson, Anne

    2016-01-01

    One of the largest threats to biodiversity is land use change and habitat loss. Hollow oaks (Quercus spp. L.) are well-defined patches that are hotspots for biodiversity and red-listed species, but they are often rare and fragmented in the landscape. We investigated the effect of patch size, habitat quality, and isolation on functional groups and red-listed saproxylic beetles in hollow oaks (n = 40) in Norway. The groups were defined by host tree association, trophic grouping, and red-listed status. Habitat quality, represented by tree form was most important in explaining species richness for most groups. Patch size, represented by circumference and amount of dead branches, was most important in explaining abundance. Isolation, that is single oaks compared with oaks in groups, had a negative effect on the abundance of beetles feeding both on wood and fungi (xylomycethopagous), as well as on species associated with broadleaved trees (oak semi-specialists), but did not affect species richness. This indicates that at this scale and in this landscape, isolated oaks are as species rich and valuable for conservation as other oaks, although some functional groups may be more vulnerable to isolation than others. The red-listed species only responded to patch size, indicating that oaks with large circumference and many dead branches are especially important for red-listed species and for conservation. PMID:26945089

  1. Fungal Symbionts of the Spruce Bark Beetle Synthesize the Beetle Aggregation Pheromone 2-Methyl-3-buten-2-ol.

    PubMed

    Zhao, Tao; Axelsson, Karolin; Krokene, Paal; Borg-Karlson, Anna-Karin

    2015-09-01

    Tree-killing bark beetles depend on aggregation pheromones to mass-attack their host trees and overwhelm their resistance. The beetles are always associated with phytopathogenic ophiostomatoid fungi that probably assist in breaking down tree resistance, but little is known about if or how much these fungal symbionts contribute to the beetles' aggregation behavior. In this study, we determined the ability of four major fungal symbionts of the spruce bark beetle Ips typographus to produce beetle aggregation pheromones. The fungi were incubated on Norway spruce Picea abies bark, malt agar, or malt agar amended with 0.5% (13)C glucose. Volatiles present in the headspace of each fungus were analyzed for 7 days after incubation using a SPME autosampler coupled to a GC/MS. Two Grosmannia species (G. penicillata and G. europhioides) produced large amounts of 2-methyl-3-buten-2-ol (MB), the major component in the beetles' aggregation pheromone blend, when growing on spruce bark or malt agar. Grosmannia europhioides also incorporated (13)C glucose into MB, demonstrating that the fungi can synthesize MB de novo using glucose as a carbon source. This is the first clear evidence that fungal symbionts of bark beetles can produce components in the aggregation pheromone blend of their beetle vectors. This provides new insight into the possible ecological roles of fungal symbionts in bark beetle systems and may deepen our understanding of species interactions and coevolution in these important biological systems. PMID:26302987

  2. Lehr's fields of campaniform sensilla in beetles (Coleoptera): functional morphology. III. Modification of elytral mobility or shape in flying beetles.

    PubMed

    Frantsevich, Leonid; Gorb, Stanislav; Radchenko, Vladimir; Gladun, Dmytro

    2015-03-01

    Some flying beetles have peculiar functional properties of their elytra, if compared with the vast majority of beetles. A "typical" beetle covers its pterothorax and the abdomen from above with closed elytra and links closed elytra together along the sutural edges. In the open state during flight, the sutural edges diverge much more than by 90°. Several beetles of unrelated taxa spread wings through lateral incisions on the elytra and turn the elytron during opening about 10-12° (Cetoniini, Scarabaeus, Gymnopleurus) or elevate their elytra without partition (Sisyphus, Tragocerus). The number of campaniform sensilla in their elytral sensory field is diminished in comparison with beetles of closely related taxa lacking that incision. Elytra are very short in rove beetles and in long-horn beetles Necydalini. The abundance of sensilla in brachyelytrous long-horn beetles Necydalini does not decrease in comparison with macroelytrous Cerambycinae. Strong reduction of the sensory field was found in brachyelytrous Staphylinidae. Lastly, there are beetles lacking the linkage of the elytra down the sutural edge (stenoelytry). Effects of stenoelytry were also not uniform: Oedemera and flying Meloidae have the normal amount of sensilla with respect to their body size, whereas the sensory field in the stenoelytrous Eulosia bombyliformis is 5-6 times less than in chafers of the same size but with normally linking broad elytra. PMID:25499796

  3. Water capture by a desert beetle

    NASA Astrophysics Data System (ADS)

    Parker, Andrew R.; Lawrence, Chris R.

    2001-11-01

    Some beetles in the Namib Desert collect drinking water from fog-laden wind on their backs. We show here that these large droplets form by virtue of the insect's bumpy surface, which consists of alternating hydrophobic, wax-coated and hydrophilic, non-waxy regions. The design of this fog-collecting structure can be reproduced cheaply on a commercial scale and may find application in water-trapping tent and building coverings, for example, or in water condensers and engines.

  4. Potential New Associations of North American Parasitoids With the Invasive Asian Longhorned Beetle (Coleoptera: Cerambycidae) for Biological Control.

    PubMed

    Duan, Jian J; Aparicio, Ellen; Tatman, Daria; Smith, Michael T; Luster, Doug G

    2016-04-01

    The Asian longhorned beetle, Anoplophora glabripennis (Motschulsky), is a polyphagous wood-boring insect native to Asia. Since it invaded North America in the 1990s, the beetle has been continuously targeted by quarantines and eradication programs in the United States and Canada. We examined the potential for development of new species-associations between A. glabripennis and hymenopteran parasitoids collected from cerambycids and other wood-boring insects infesting red maple (Acer rubrum L.) trees in the mid-Atlantic region of the United States. Results of our study showed that five groups of braconid parasitoids (Ontsira mellipes Ashmead, Rhoptrocentrus piceus Marsh, Spathius laflammei Provancher, Heterospilus spp., and Atanycolus spp.) successfully attacked early instars of A. glabripennis larvae infesting red maple logs and produced both male and female progenies. One species, O. mellipes, was continuously reared on A. glabripennis larvae inserted inside small red maple sticks for over 50 generations, and produced female-biased progeny (∼6:1 female to male ratio) at each generation. Continuous rearing of O. mellipes on A. glabripennis larvae did not significantly increase the parasitism and mean number of progeny produced per parasitized host. Together, these findings demonstrate that some North American parasitoids may be able to develop new associations with A. glabripennis and thus should be further studied under semifield or field conditions for possible use in biocontrol. PMID:26602779

  5. Loss of flight promotes beetle diversification.

    PubMed

    Ikeda, Hiroshi; Nishikawa, Masaaki; Sota, Teiji

    2012-01-01

    The evolution of flight is a key innovation that may enable the extreme diversification of insects. Nonetheless, many species-rich, winged insect groups contain flightless lineages. The loss of flight may promote allopatric differentiation due to limited dispersal power and may result in a high speciation rate in the flightless lineage. Here we show that loss of flight accelerates allopatric speciation using carrion beetles (Coleoptera: Silphidae). We demonstrate that flightless species retain higher genetic differentiation among populations and comprise a higher number of genetically distinct lineages than flight-capable species, and that the speciation rate with the flightless state is twice that with the flight-capable state. Moreover, a meta-analysis of 51 beetle species from 15 families reveals higher genetic differentiation among populations in flightless compared with flight-capable species. In beetles, which represent almost one-fourth of all described species, repeated evolution of flightlessness may have contributed to their steady diversification since the Mesozoic era. PMID:22337126

  6. Asymmetric hindwing foldings in rove beetles

    PubMed Central

    Saito, Kazuya; Yamamoto, Shuhei; Maruyama, Munetoshi; Okabe, Yoji

    2014-01-01

    Foldable wings of insects are the ultimate deployable structures and have attracted the interest of aerospace engineering scientists as well as entomologists. Rove beetles are known to fold their wings in the most sophisticated ways that have right–left asymmetric patterns. However, the specific folding process and the reason for this asymmetry remain unclear. This study reveals how these asymmetric patterns emerge as a result of the folding process of rove beetles. A high-speed camera was used to reveal the details of the wing-folding movement. The results show that these characteristic asymmetrical patterns emerge as a result of simultaneous folding of overlapped wings. The revealed folding mechanisms can achieve not only highly compact wing storage but also immediate deployment. In addition, the right and left crease patterns are interchangeable, and thus each wing internalizes two crease patterns and can be folded in two different ways. This two-way folding gives freedom of choice for the folding direction to a rove beetle. The use of asymmetric patterns and the capability of two-way folding are unique features not found in artificial structures. These features have great potential to extend the design possibilities for all deployable structures, from space structures to articles of daily use. PMID:25368178

  7. Tenebrio beetles use magnetic inclination compass

    NASA Astrophysics Data System (ADS)

    Vácha, Martin; Drštková, Dana; Půžová, Tereza

    2008-08-01

    Animals that guide directions of their locomotion or their migration routes by the lines of the geomagnetic field use either polarity or inclination compasses to determine the field polarity (the north or south direction). Distinguishing the two compass types is a guideline for estimation of the molecular principle of reception and has been achieved for a number of animal groups, with the exception of insects. A standard diagnostic method to distinguish a compass type is based on reversing the vertical component of the geomagnetic field, which leads to the opposite reactions of animals with two different compass types. In the present study, adults of the mealworm beetle Tenebrio molitor were tested by means of a two-step laboratory test of magnetoreception. Beetles that were initially trained to memorize the magnetic position of the light source preferred, during the subsequent test, this same direction, pursuant geomagnetic cues only. In the following step, the vertical component was reversed between the training and the test. The beetles significantly turned their preferred direction by 180°. Our results brought until then unknown original findings that insects, represented here by the T. molitor species, use—in contrast to another previously researched Arthropod, spiny lobster—the inclination compass.

  8. Asymmetric hindwing foldings in rove beetles.

    PubMed

    Saito, Kazuya; Yamamoto, Shuhei; Maruyama, Munetoshi; Okabe, Yoji

    2014-11-18

    Foldable wings of insects are the ultimate deployable structures and have attracted the interest of aerospace engineering scientists as well as entomologists. Rove beetles are known to fold their wings in the most sophisticated ways that have right-left asymmetric patterns. However, the specific folding process and the reason for this asymmetry remain unclear. This study reveals how these asymmetric patterns emerge as a result of the folding process of rove beetles. A high-speed camera was used to reveal the details of the wing-folding movement. The results show that these characteristic asymmetrical patterns emerge as a result of simultaneous folding of overlapped wings. The revealed folding mechanisms can achieve not only highly compact wing storage but also immediate deployment. In addition, the right and left crease patterns are interchangeable, and thus each wing internalizes two crease patterns and can be folded in two different ways. This two-way folding gives freedom of choice for the folding direction to a rove beetle. The use of asymmetric patterns and the capability of two-way folding are unique features not found in artificial structures. These features have great potential to extend the design possibilities for all deployable structures, from space structures to articles of daily use. PMID:25368178

  9. Nutrition, hormones and life history in burying beetles.

    PubMed

    Trumbo, Stephen T; Robinson, Gene E

    2004-05-01

    Nutrition, hormones and the allocation of physiological resources are intricately related. To investigate these inter-relationships in female burying beetles (Nicrophorus spp.), we examined the effect of diet quality on juvenile hormone (JH) levels and reproduction, and the effect of JH supplementation on reproduction and resistance to starvation. Nicrophorus orbicollis adult females fed a less preferred mealworm larvae diet gained less body mass, had smaller ovaries and had lower titers of JH in their hemolymph than females fed a preferred blowfly diet. When presented a carcass for breeding, females on a less preferred diet oviposited 33% fewer eggs, and eggs were of 18% less mass. Females on the less preferred diet also took longer to begin oviposition as indicated indirectly by the time when their eggs hatched. To investigate the effects of JH, independent of nutrition, JH was topically applied to single and paired females of Nicrophorus tomentosus. When presented a carcass, JH-treated paired females oviposited more eggs (28%-year 1, 44%-year 2) than control females, and also showed a trend toward faster oviposition. JH supplementation had a greater effect on single females. JH treatment increased the proportion of single females attempting reproduction (at least one viable larva), increased the number of eggs (69%-year 1, 123%-year 2), and increased the proportion of females ovipositing early. In separate experiments, treatment with JH or a JH analog negatively affected resistance to starvation in three species. Treatment with JH reduced starvation survival by 10.3% days in N. tomentosus females. Treatment with the JH analog methoprene reduced starvation survival 17.8% in N. orbicollis females and by 18% in Ptomascopus morio females. These results suggest that JH has positive and negative effects on different components of life history. PMID:15121451

  10. Molecular evidence of facultative intraguild predation by Monochamus titillator larvae (Coleoptera: Cerambycidae) on members of the southern pine beetle guild

    NASA Astrophysics Data System (ADS)

    Schoeller, Erich N.; Husseneder, Claudia; Allison, Jeremy D.

    2012-11-01

    The southern pine bark beetle guild (SPBG) is arguably the most destructive group of forest insects in the southeastern USA. This guild contains five species of bark beetles (Coleoptera: Curculionidae: Scolytinae): Dendroctonus frontalis, Dendroctonus terebrans, Ips avulsus, Ips calligraphus, and Ips grandicollis. A diverse community of illicit receivers is attracted to pheromones emitted by the SPBG, including the woodborers Monochamus carolinensis and Monochamus titillator (Coleoptera: Cerambycidae). These woodborers have been traditionally classified as resource competitors; however, laboratory assays suggest that larval M. carolinensis may be facultative intraguild predators of SPBG larvae. This study used polymerase chain reaction (PCR)-based molecular gut content analyses to characterize subcortical interactions between M. titillator and members of the SPBG. The half-lives of SPBG DNA were estimated in the laboratory prior to examining these interactions in the field. A total of 271 field-collected M. titillator larvae were analyzed and 26 (9.6 %) tested positive for DNA of members of the SPBG. Of these larvae, 25 (96.2 %) tested positive for I. grandicollis and one (3.8 %) for I. calligraphus. Failure to detect D. terebrans and D. frontalis was likely due to their absence in the field. I. avulsus was present, but primers developed using adult tissues failed to amplify larval tissue. Results from this study support the hypothesis that larval Monochamus spp. are facultative intraguild predators of bark beetle larvae. Additionally, this study demonstrates the capabilities of PCR in elucidating the interactions of cryptic forest insects and provides a tool to better understand mechanisms driving southern pine beetle guild population fluctuations.

  11. Stabilization of cucurbitacin E-glycoside, a feeding stimulant for diabroticite beetles, extracted from bitter Hawkesbury watermelon

    PubMed Central

    Martin, Phyllis A.W.; Blackburn, Michael; Schroder, Robert F.W.; Matsuo, Koharto; Li, Betty W.

    2002-01-01

    Cucurbitacins are feeding stimulants for diabroticite beetles, including corn rootworms and cucumber beetles, which can be added to a bait containing an insecticide thereby reducing the levels of other insecticide treatments needed to control these pests. One of them, cucurbitacin E-glycoside, is water soluble and easily processed from mutant bitter Hawkesbury watermelons (BHW) that express elevated levels of cucurbitacin. Storage of BHW extract at room temperature resulted in a 92% reduction of cucurbitacin E-glycoside over two months, while refrigeration or freezing resulted in a 60% loss of the active ingredient during this time. The loss of the active ingredient was correlated with an increase in BHW extract pH from 5 to greater than 9. The increase in pH of the BHW extracts at room temperature appeared to be due to the growth of certain bacteria, especially Bacillus spp. In refrigerated extracts, the pH remained relatively constant, and bacterial growth was dominated by bacteria such as Lactobacilli. An alternative to refrigeration is concentration of BHW extract. One means of concentration is spray drying, but the high sugar content of the BHW extract (20mg/ml glucose, 40mg/ml fructose) makes this technique impractical. Fermentation of the BHW extract by the yeast, Saccharomyces boulardii, eliminated the sugars and did not raise the pH nor alter the cucurbitacin E-glycoside content of the extract. Elimination of the sugars by fermentation produced an extract that could be successfully spray dried. BHW extract fermented by S. boulardii produced a higher level of feeding stimulation for spotted cucumber beetles in laboratory choice tests. When applied to cucumbers, there was no difference in control of spotted and striped cucumber beetles between baits of fresh or fermented juices combined with the same insecticide. PMID:15455053

  12. Resistance of sweetpotato genotypes to spotted and banded cucumber beetles.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bioassay techniques were developed for evaluating the resistance of sweetpotato germplasm to larvae and adults of the banded and spotted cucumber beetles. For the adult bioassay, individual beetles were placed on pieces of sweetpotato peel (periderm and cortex with stele removed) that was embedded ...

  13. Simulation model of the red flour beetle in flour mills

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Red flour beetle (Tribolium castaneum) is one of the most common insect pests infesting wheat flour mills. Structural treatments such as methyl bromide, sulfuryl fluoride and heat, are used to control the red flour beetle. The structural treatments do not provide any residual action and, thus, any s...

  14. Formulating entompathogens for control of boring beetles in avocado orchards

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A foam formulation of Beauveria bassiana was adapted to control boring beetles in avocado orchards. The two geographically independent avocado growing areas in the United States are threatened by emerging diseases vectored by boring beetles. In the California growing region, Fusarium dieback is vect...

  15. Observations on the Life History of Small Hive Beetles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    DeGuzman, L.I.& A.M. Frake. Observations on the Life History of Small Hive Beetles - The life history of small hive beetles (SHB) kept in an incubator (34ºC) and at room temperature (24-28ºC) was compared. Six slides of eggs, obtained using the glass slide technique, were placed individually in rear...

  16. Endocrine control of exaggerated traits in rhinoceros beetles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Juvenile hormone (JH) is a key insect growth regulator involved in modulating phenotypically plastic traits in insects such as caste determination in eusocial species, wing polymorphisms in aphids, and mandible size in stag beetle. Male stag beetles have sexually-dimorphic, condition-dependent expre...

  17. Cantharidin Poisoning due to Blister Beetle Ingestion in Children

    PubMed Central

    Al-Binali, Ali M.; Shabana, Medhat; Al-Fifi, Suliman; Dawood, Sami; Shehri, Amer A.; Al-Barki, Ahmed

    2010-01-01

    Cantharidin is an intoxicant found in beetles in the Meloidae (Coleoptera) family. Ingestion may result in haematemesis, impaired level of consciousness, electrolyte disturbance, haematurea and renal impairment. Here, we report two paediatric cases of meloid beetle ingestion resulting in cantharidin poisoning and the clinical presentation of the ensuing intoxication. PMID:21509239

  18. Method for continuously rearing Coccinella lady beetles (Coleoptera: Coccinellidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Coccinella novemnotata L., the ninespotted lady beetle, and Coccinella transversoguttata richardsoni Brown, the transverse lady beetle, are predatory species whose abundance has declined significantly over the last few decades in North America. An ex situ system for continuously rearing these two b...

  19. Transcriptomic Signatures of Ash (Fraxinus spp.) Phloem

    PubMed Central

    Mamidala, Praveen; Bonello, Pierluigi; Herms, Daniel A.; Mittapalli, Omprakash

    2011-01-01

    Background Ash (Fraxinus spp.) is a dominant tree species throughout urban and forested landscapes of North America (NA). The rapid invasion of NA by emerald ash borer (Agrilus planipennis), a wood-boring beetle endemic to Eastern Asia, has resulted in the death of millions of ash trees and threatens billions more. Larvae feed primarily on phloem tissue, which girdles and kills the tree. While NA ash species including black (F. nigra), green (F. pennsylvannica) and white (F. americana) are highly susceptible, the Asian species Manchurian ash (F. mandshurica) is resistant to A. planipennis perhaps due to their co-evolutionary history. Little is known about the molecular genetics of ash. Hence, we undertook a functional genomics approach to identify the repertoire of genes expressed in ash phloem. Methodology and Principal Findings Using 454 pyrosequencing we obtained 58,673 high quality ash sequences from pooled phloem samples of green, white, black, blue and Manchurian ash. Intriguingly, 45% of the deduced proteins were not significantly similar to any sequences in the GenBank non-redundant database. KEGG analysis of the ash sequences revealed a high occurrence of defense related genes. Expression analysis of early regulators potentially involved in plant defense (i.e. transcription factors, calcium dependent protein kinases and a lipoxygenase 3) revealed higher mRNA levels in resistant ash compared to susceptible ash species. Lastly, we predicted a total of 1,272 single nucleotide polymorphisms and 980 microsatellite loci, among which seven microsatellite loci showed polymorphism between different ash species. Conclusions and Significance The current transcriptomic data provide an invaluable resource for understanding the genetic make-up of ash phloem, the target tissue of A. planipennis. These data along with future functional studies could lead to the identification/characterization of defense genes involved in resistance of ash to A. planipennis, and in future

  20. Curcurbita pepo subspecies delineates striped cucumber beetle (Acalymma vittatum) preference

    PubMed Central

    Brzozowski, L; Leckie, B M; Gardner, J; Hoffmann, M P; Mazourek, M

    2016-01-01

    The striped cucumber beetle (Acalymma vittatum (F.)) is a destructive pest of cucurbit crops, and management could be improved by host plant resistance, especially in organic farming systems. However, despite the variation in striped cucumber beetle preference observed within the economically important species, Cucurbita pepo L., plant breeders and entomologists lacked a simple framework to classify and exploit these differences. This study used recent phylogenetic evidence and bioassays to organize striped cucumber beetle preference within C. pepo. Our results indicate preference contrasts between the two agriculturally relevant subspecies: C. pepo subsp. texana and C. pepo subsp. pepo. Plants of C. pepo subsp. pepo were more strongly preferred than C. pepo subsp. texana plants. This structure of beetle preference in C. pepo will allow plant breeders and entomologists to better focus research efforts on host plant non-preference to control striped cucumber beetles. PMID:27347423

  1. Curcurbita pepo subspecies delineates striped cucumber beetle (Acalymma vittatum) preference.

    PubMed

    Brzozowski, L; Leckie, B M; Gardner, J; Hoffmann, M P; Mazourek, M

    2016-01-01

    The striped cucumber beetle (Acalymma vittatum (F.)) is a destructive pest of cucurbit crops, and management could be improved by host plant resistance, especially in organic farming systems. However, despite the variation in striped cucumber beetle preference observed within the economically important species, Cucurbita pepo L., plant breeders and entomologists lacked a simple framework to classify and exploit these differences. This study used recent phylogenetic evidence and bioassays to organize striped cucumber beetle preference within C. pepo. Our results indicate preference contrasts between the two agriculturally relevant subspecies: C. pepo subsp. texana and C. pepo subsp. pepo. Plants of C. pepo subsp. pepo were more strongly preferred than C. pepo subsp. texana plants. This structure of beetle preference in C. pepo will allow plant breeders and entomologists to better focus research efforts on host plant non-preference to control striped cucumber beetles. PMID:27347423

  2. Substrate discrimination in burying beetles, Nicrophorus orbicollis (Coleoptera: Silphidae)

    USGS Publications Warehouse

    Muths, Erin Louise

    1991-01-01

    Burying beetles Nicrophorus orbicollis (Coleoptera: Silphidae) secure and bury small vertebrate carcasses as a food resource for their offspring and themselves. Burial may take place at the point of carcass discovery or at some distance from that site. Burying beetles were tested to determine if they discriminate between different substrates when burying a carcass. Three substrates were presented simultaneously. Substrate one contained soil from typical beetle habitat; substrates two and three contained 2:1 and 5:1 ratios, respectively, of soil and a senescent prairie grass (Panicum virgatum), which added a bulk structural component to the soil. Beetles generally moved and buried the carcass within 24 hours. Results for both paired and individual trials suggest that burying beetles discriminate between substrates, preferring substrates with added bulk over those without.

  3. First isolation of Mycobacterium spp. in Mullus spp. in Turkey

    PubMed Central

    Sevim, P; Ozer, S; Rad, F

    2015-01-01

    Ichthyozoonotic Mycobacterium spp. poses health risks both to fish and humans. In this study, the presence of ichthyozoonotic Mycobacterium spp. was investigated in red mullet (Mullus barbatus barbatus) and surmullet (Mullus surmuletus), widely caught species in the Mediterranean and the Aegean Sea. A total of 208 fish samples, provided from fishermen of Mersin province (Turkey) were studied. Using conventional methods, Mycobacterium spp. was isolated and identified at the genus level by PCR and at the species level by PCR-RFLP. Thirteen Mycobacterium spp. were detected in 13 (6.25%) fish samples. Four mycobacteria were identified as M. genavense, three as M. fortuitum, three as M. scrofulaceum, one as M. marinum, one as M. vaccae and one as M. aurum. No signs of mycobacteriosis were observed in fish samples. Findings of this study can contribute to future studies of onichthyozoonotic Mycobacterium spp. in seafood. PMID:27175166

  4. Clovers (Trifolium spp.).

    PubMed

    Rahimi-Ashtiani, Samira; Sahab, Sareena; Panter, Stephen; Mason, John; Spangenberg, German

    2015-01-01

    Clovers (Trifolium spp.) constitute one of the major forage legumes widely grown for its rich protein content and its major role in maintaining environmental sustainability by improving the soil fertility. Gene technology can assist plant improvement efforts in clovers (Trifolium spp.), aiming to improve forage quality, yield, and adaptation to biotic and abiotic stresses. An efficient and reproducible protocol for Agrobacterium-mediated transformation of a range of Trifolium species, using cotyledonary explants and different selectable marker genes, is described. The protocol is robust and allows for genotype and Agrobacterium strain-independent transformation of clovers. Stable meiotic transmission of transgenes has been demonstrated for selected transgenic clovers carrying single T-DNA inserts recovered from Agrobacterium-mediated transformation. This methodology can also be successfully used for "isogenic transformation" in clovers: the generation of otherwise identical plants with and without the transgene from the two cotyledons of a single seed. Stable transgenes may be used in further functional genomics, develop new traits and profile gene expression using reporters, and facilitate purification of tissue or single cells. PMID:25300844

  5. Defensive Chemistry of Lycid Beetles and of Mimetic Cerambycid Beetles that Feed on Them

    PubMed Central

    Eisner, Thomas; Schroeder, Frank C.; Snyder, Noel; Grant, Jacqualine B.; Aneshansley, Daniel J.; Utterback, David; Meinwald, Jerrold; Eisner, Maria

    2008-01-01

    Summary Beetles of the family Lycidae have long been known to be chemically protected. We present evidence that North American species of the lycid genera Calopteron and Lycus are rejected by thrushes, wolf spiders, and orb-weaving spiders, and that they contain a systemic compound that could account, at least in part, for this unacceptability. This compound, a novel acetylenic acid that we named lycidic acid, proved actively deterrent in feeding tests with wolf spiders and coccinellid beetles. Species of Lycus commonly figure as models of mimetic associations. Among their mimics are species of the cerambycid beetle genus Elytroleptus, remarkable because they prey upon the model lycids. We postulated that by doing so Elytroleptus might incorporate the lycidic acid from their prey for their own defense. However, judging from analytical data, the beetles practice no such sequestration, explaining why they remain relatively palatable (in tests with wolf spiders) even after having fed on lycids. Chemical analyses also showed the lycids to contain pyrazines, such as were already known from other Lycidae, potent odorants that could serve in an aposematic capacity to forestall predatory attacks. PMID:18698369

  6. Negative Feedbacks on Bark Beetle Outbreaks: Widespread and Severe Spruce Beetle Infestation Restricts Subsequent Infestation

    PubMed Central

    Hart, Sarah J.; Veblen, Thomas T.; Mietkiewicz, Nathan; Kulakowski, Dominik

    2015-01-01

    Understanding disturbance interactions and their ecological consequences remains a major challenge for research on the response of forests to a changing climate. When, where, and how one disturbance may alter the severity, extent, or occurrence probability of a subsequent disturbance is encapsulated by the concept of linked disturbances. Here, we evaluated 1) how climate and forest habitat variables, including disturbance history, interact to drive 2000s spruce beetle (Dendroctonus rufipennis) infestation of Engelmann spruce (Picea engelmannii) across the Southern Rocky Mountains; and 2) how previous spruce beetle infestation affects subsequent infestation across the Flat Tops Wilderness in northwestern Colorado, which experienced a severe landscape-scale spruce beetle infestation in the 1940s. We hypothesized that drought and warm temperatures would promote infestation, whereas small diameter and non-host trees, which may reflect past disturbance by spruce beetles, would inhibit infestation. Across the Southern Rocky Mountains, we found that climate and forest structure interacted to drive the 2000s infestation. Within the Flat Tops study area we found that stands infested in the 1940s were composed of higher proportions of small diameter and non-host trees ca. 60 years later. In this area, the 2000s infestation was constrained by a paucity of large diameter host trees (> 23 cm at diameter breast height), not climate. This suggests that there has not been sufficient time for trees to grow large enough to become susceptible to infestation. Concordantly, we found no overlap between areas affected by the 1940s infestation and the current infestation. These results show a severe spruce beetle infestation, which results in the depletion of susceptible hosts, can create a landscape template reducing the potential for future infestations. PMID:26000906

  7. Negative feedbacks on bark beetle outbreaks: widespread and severe spruce beetle infestation restricts subsequent infestation.

    PubMed

    Hart, Sarah J; Veblen, Thomas T; Mietkiewicz, Nathan; Kulakowski, Dominik

    2015-01-01

    Understanding disturbance interactions and their ecological consequences remains a major challenge for research on the response of forests to a changing climate. When, where, and how one disturbance may alter the severity, extent, or occurrence probability of a subsequent disturbance is encapsulated by the concept of linked disturbances. Here, we evaluated 1) how climate and forest habitat variables, including disturbance history, interact to drive 2000s spruce beetle (Dendroctonus rufipennis) infestation of Engelmann spruce (Picea engelmannii) across the Southern Rocky Mountains; and 2) how previous spruce beetle infestation affects subsequent infestation across the Flat Tops Wilderness in northwestern Colorado, which experienced a severe landscape-scale spruce beetle infestation in the 1940s. We hypothesized that drought and warm temperatures would promote infestation, whereas small diameter and non-host trees, which may reflect past disturbance by spruce beetles, would inhibit infestation. Across the Southern Rocky Mountains, we found that climate and forest structure interacted to drive the 2000s infestation. Within the Flat Tops study area we found that stands infested in the 1940s were composed of higher proportions of small diameter and non-host trees ca. 60 years later. In this area, the 2000s infestation was constrained by a paucity of large diameter host trees (> 23 cm at diameter breast height), not climate. This suggests that there has not been sufficient time for trees to grow large enough to become susceptible to infestation. Concordantly, we found no overlap between areas affected by the 1940s infestation and the current infestation. These results show a severe spruce beetle infestation, which results in the depletion of susceptible hosts, can create a landscape template reducing the potential for future infestations. PMID:26000906

  8. Transcriptome and full-length cDNA resources for the mountain pine beetle, Dendroctonus ponderosae Hopkins, a major insect pest of pine forests.

    PubMed

    Keeling, Christopher I; Henderson, Hannah; Li, Maria; Yuen, Mack; Clark, Erin L; Fraser, Jordie D; Huber, Dezene P W; Liao, Nancy Y; Docking, T Roderick; Birol, Inanc; Chan, Simon K; Taylor, Greg A; Palmquist, Diana; Jones, Steven J M; Bohlmann, Joerg

    2012-08-01

    Bark beetles (Coleoptera: Curculionidae: Scolytinae) are major insect pests of many woody plants around the world. The mountain pine beetle (MPB), Dendroctonus ponderosae Hopkins, is a significant historical pest of western North American pine forests. It is currently devastating pine forests in western North America--particularly in British Columbia, Canada--and is beginning to expand its host range eastward into the Canadian boreal forest, which extends to the Atlantic coast of North America. Limited genomic resources are available for this and other bark beetle pests, restricting the use of genomics-based information to help monitor, predict, and manage the spread of these insects. To overcome these limitations, we generated comprehensive transcriptome resources from fourteen full-length enriched cDNA libraries through paired-end Sanger sequencing of 100,000 cDNA clones, and single-end Roche 454 pyrosequencing of three of these cDNA libraries. Hybrid de novo assembly of the 3.4 million sequences resulted in 20,571 isotigs in 14,410 isogroups and 246,848 singletons. In addition, over 2300 non-redundant full-length cDNA clones putatively containing complete open reading frames, including 47 cytochrome P450s, were sequenced fully to high quality. This first large-scale genomics resource for bark beetles provides the relevant sequence information for gene discovery; functional and population genomics; comparative analyses; and for future efforts to annotate the MPB genome. These resources permit the study of this beetle at the molecular level and will inform research in other Dendroctonus spp. and more generally in the Curculionidae and other Coleoptera. PMID:22516182

  9. New species of Ophiostomatales from Scolytinae and Platypodinae beetles in the Cape Floristic Region, including the discovery of the sexual state of Raffaelea.

    PubMed

    Musvuugwa, Tendai; de Beer, Z Wilhelm; Duong, Tuan A; Dreyer, Léanne L; Oberlander, Kenneth C; Roets, Francois

    2015-10-01

    Olea capensis and Rapanea melanophloeos are important canopy trees in South African Afromontane forests. Dying or recently dead individuals of these trees are often infested by Scolytinae and Platypodinae (Curculionidae) beetles. Fungi were isolated from the surfaces of beetles emerging from wood samples and their galleries. Based on micro-morphological and phylogenetic analyses, four fungal species in the Ophiostomatales were isolated. These were Sporothrix pallida and three taxa here newly described as Sporothrix aemulophila sp. nov., Raffaelea vaginata sp. nov. and Raffaelea rapaneae sp. nov. This study represents the first collection of S. pallida, a species known from many environmental samples from across the world, from Scolytinae beetles. S. aemulophila sp. nov. is an associate of the ambrosia beetle Xyleborinus aemulus. R. rapaneae sp. nov. and R. vaginata sp. nov. were associated with a Lanurgus sp. and Platypodinae beetle, respectively, and represent the first Raffaelea spp. reported from the Cape Floristic Region. Of significance is that R. vaginata produced a sexual state analogous with those of Ophiostoma seticolle and O. deltoideosporum that also grouped in our analyses in Raffaelea s. str., to date considered an asexual genus. The morphology of the ossiform ascospores and anamorphs of the three species corresponded and the generic circumscription of Raffaelea is thus emended to accommodate sexual states. The two known species are provided with new combinations, namely Raffaelea seticollis (R.W. Davidson) Z.W. de Beer and T.A. Duong comb. nov. and Raffaelea deltoideospora (Olchow. and J. Reid) Z.W. de Beer and T.A. Duong comb. nov. PMID:26275876

  10. Predatory aquatic beetles, suitable trace elements bioindicators.

    PubMed

    Burghelea, Carmen I; Zaharescu, Dragos G; Hooda, Peter S; Palanca-Soler, Antonio

    2011-05-01

    Predatory aquatic beetles are common colonizers of natural and managed aquatic environments. While as important components of the aquatic food webs they are prone to accumulate trace elements, they have been largely neglected from metal uptake studies. We aim to test the suitability of three dytiscid species, i.e.Hydroglyphus pusillus, Laccophilus minutus and Rhantus suturalis, as trace elements (Al, As, Cd, Co, Cu, Fe, Mn, Mo, Ni, Pb, Se and Zn) bioindicators. The work was carried out in a case area representing rice paddies and control sites (reservoirs) from an arid region known for its land degradation (Monegros, NE Spain). Categorical principal component analysis (CATPCA) was tested as a nonlinear approach to identify significant relationships between metals, species and habitat conditions so as to examine the ability of these species to reflect differences in metal uptake. Except Se and As, the average concentrations of all other elements in the beetles were higher in the rice fields than in the control habitats. The CATPCA determined that H. pusillus had high capacity to accumulate Fe, Ni and Mn regardless of the habitat type, and hence may not be capable of distinguishing habitat conditions with regards to these metals. On the other hand, L. minutus was found less sensitive for Se in non-managed habitats (i.e. reservoirs), while R. suturalis was good in accumulating Al, Mo and Pb in rice fields. The latter seems to be a promising bioindicator of metal enrichment in rice fields. We conclude that predatory aquatic beetles are good candidates for trace elements bioindication in impacted and non-impacted environments and can be used in environmental monitoring studies. CATPCA proved to be a reliable approach to unveil trends in metal accumulation in aquatic invertebrates according to their habitat status. PMID:21468408

  11. Water capture by a desert beetle.

    PubMed

    Parker, A R; Lawrence, C R

    2001-11-01

    Some beetles in the Namib Desert collect drinking water from fog-laden wind on their backs. We show here that these large droplets form by virtue of the insect's bumpy surface, which consists of alternating hydrophobic, wax-coated and hydrophilic, non-waxy regions. The design of this fog-collecting structure can be reproduced cheaply on a commercial scale and may find application in water-trapping tent and building coverings, for example, or in water condensers and engines. PMID:11689930

  12. Phylogeny of world stag beetles (Coleoptera: Lucanidae) reveals a Gondwanan origin of Darwin's stag beetle.

    PubMed

    Kim, Sang Il; Farrell, Brian D

    2015-05-01

    Stag beetles (family Lucanidae Latreille, 1804) are one of the earliest branching lineages of scarab beetles that are characterized by the striking development of the male mandibles. Despite stag beetles' popularity among traditional taxonomists and amateur collectors, there has been almost no study of lucanid relationships and evolution. Entomologists, including Jeannel (1942), have long recognized resemblance between the austral stag beetles of the tribes Chiasognathini, Colophonini, Lamprimini, Pholidotini, Rhyssonotini, and Streptocerini, but this hypothesis of their close relationship across the continents has never been tested. To gain further insight into lucanid phylogeny and biogeography, we reconstructed the first molecular phylogeny of world stag beetles using DNA sequences from mitochondrial 16S rDNA, nuclear 18S and 28S rDNA, and the nuclear protein-coding (NPC) gene wingless for 93 lucanid species representing all extant subfamilies and 24 out of the 27 tribes, together with 14 representative samples of other early branching scarabaeoid families and two staphyliniform beetle families as outgroups. Both Bayesian inference (BI) and maximum likelihood inference (MLI) strongly supported the monophyly of Lucanidae sensu lato that includes Diphyllostomatidae. Within Lucanidae sensu stricto, the subfamilies Lucaninae and Lampriminae appeared monophyletic under both methods of phylogenetic inferences; however, Aesalinae and Syndesinae were found to be polyphyletic. A time-calibrated phylogeny based on five fossil data estimated the origin of crown group Lucanidae as circa 160 million years ago (MYA). Divergence between the Neotropical and Australasian groups of the Chiasognathini was estimated to be circa 47MYA, with the South African Colophonini branching off from the ancient Chiasognathini lineage around 87MYA. Another Gondwanan relationship was recovered between the Australasian Eucarteria and the Neotropical Casignetus, which diverged circa 58MYA. Lastly

  13. Red List of beetles of the Wadden Sea Area

    NASA Astrophysics Data System (ADS)

    Mahler, V.; Suikat, R.; Aßmann, Th.

    1996-10-01

    As no data on beetles in the Wadden Sea area are available from The Netherlands, the trilateral status of threat only refers to the Danish and German part of the Wadden Sea. In this area, in total, 238 species of beetles are threatened in at least one subregion. Of these, 189 species are threatened in the entire area and are therefore placed on the trilateral Red List. 4 species are (probably) extinct in the entire Wadden Sea area. The status of 24 species of beetles is (probably) critical, 46 species are (probably) endangered, the status of 86 species is (probably) vulnerable and of 29 species (probably) susceptible.

  14. "Excess Water" Following Deforestation by Beetle Kill?

    NASA Astrophysics Data System (ADS)

    Hyde, K.; Miller, S. N.; Anderson-Sprecher, R.; Ewers, B. E.; Speckman, H.

    2014-12-01

    Deforestation resulting from tree mortality by insects and disease may reduce transpiration demand and increase available water in mountain environments throughout. We tested this hypothesis using three large catchments (97-407 km2) located in the Snowy Mountains of Wyoming where hydrology is snowmelt dominated. An epidemic of spruce bark beetle and associated tree mortality emerged in 2006 and has since impacted 60 to 80% of basal area of the spruce-fir and mixed conifer forests. A 25-year continuous record (1998-2013) of daily snowfall, temperature, and stream discharge data between 1 April and 30 September of each year were available for each catchment. We used quantile regression and multivariate time series analysis first to control for the effects of temperature and snow water equivalent on the timing and magnitude of discharge and then to test for changes in discharge trends since 2006. We found no compelling evidence of changes in discharge trends associated with the onset of the beetle epidemic independent of snowmelt trends. Several factors could explain this apparent lack of "excess water" following tree mortality by insects and disease. Any increases in water may be scale dependent, a local phenomenon that does not transfer through large catchments. Other vegetation including young cohorts of affected tree species, shrubs, and herbaceous cover may respond robustly to the open canopy and utilize soil water previously consumed by the infected trees.

  15. Atlas of Iberian water beetles (ESACIB database)

    PubMed Central

    Sánchez-Fernández, David; Millán, Andrés; Abellán, Pedro; Picazo, Félix; Carbonell, José A.; Ribera, Ignacio

    2015-01-01

    Abstract The ESACIB (‘EScarabajos ACuáticos IBéricos’) database is provided, including all available distributional data of Iberian and Balearic water beetles from the literature up to 2013, as well as from museum and private collections, PhD theses, and other unpublished sources. The database contains 62,015 records with associated geographic data (10×10 km UTM squares) for 488 species and subspecies of water beetles, 120 of them endemic to the Iberian Peninsula and eight to the Balearic Islands. This database was used for the elaboration of the “Atlas de los Coleópteros Acuáticos de España Peninsular”. In this dataset data of 15 additional species has been added: 11 that occur in the Balearic Islands or mainland Portugal but not in peninsular Spain and an other four with mainly terrestrial habits within the genus Helophorus (for taxonomic coherence). The complete dataset is provided in Darwin Core Archive format. PMID:26448717

  16. Dew condensation on desert beetle skin.

    PubMed

    Guadarrama-Cetina, J; Mongruel, A; Medici, M-G; Baquero, E; Parker, A R; Milimouk-Melnytchuk, I; González-Viñas, W; Beysens, D

    2014-11-01

    Some tenebrionind beetles inhabiting the Namib desert are known for using their body to collect water droplets from wind-blown fogs. We aim to determine whether dew water collection is also possible for desert insects. For this purpose, we investigated the infra-red emissivity, and the wetting and structural properties, of the surface of the elytra of a preserved specimen of Physasterna cribripes (Tenebrionidæ) beetle, where the macro-structure appears as a series of "bumps", with "valleys" between them. Dew formation experiments were carried out in a condensation chamber. The surface properties (infra-red emissivity, wetting properties) were dominated by the wax at the elytra surface and, to a lower extent, its micro-structure. We performed scanning electron microscope on histological sections and determined the infra-red emissivity using a scanning pyrometer. The emissivity measured (0.95±0.07 between 8-14 μm) was close to the black body value. Dew formation occurred on the insect's elytra, which can be explained by these surface properties. From the surface coverage of the condensed drops it was found that dew forms primarily in the valleys between the bumps. The difference in droplet nucleation rate between bumps and valleys can be attributed to the hexagonal microstructure on the surface of the valleys, whereas the surface of the bumps is smooth. The drops can slide when they reach a critical size, and be collected at the insect's mouth. PMID:25403836

  17. Atlas of Iberian water beetles (ESACIB database).

    PubMed

    Sánchez-Fernández, David; Millán, Andrés; Abellán, Pedro; Picazo, Félix; Carbonell, José A; Ribera, Ignacio

    2015-01-01

    The ESACIB ('EScarabajos ACuáticos IBéricos') database is provided, including all available distributional data of Iberian and Balearic water beetles from the literature up to 2013, as well as from museum and private collections, PhD theses, and other unpublished sources. The database contains 62,015 records with associated geographic data (10×10 km UTM squares) for 488 species and subspecies of water beetles, 120 of them endemic to the Iberian Peninsula and eight to the Balearic Islands. This database was used for the elaboration of the "Atlas de los Coleópteros Acuáticos de España Peninsular". In this dataset data of 15 additional species has been added: 11 that occur in the Balearic Islands or mainland Portugal but not in peninsular Spain and an other four with mainly terrestrial habits within the genus Helophorus (for taxonomic coherence). The complete dataset is provided in Darwin Core Archive format. PMID:26448717

  18. Micro-structure and frictional characteristics of beetle?s joint

    NASA Astrophysics Data System (ADS)

    Dai, Zhendong; Gorb, Stanislav N.

    2004-01-01

    Geometric and micro-structure design, tribology properties of beetle joints were experimentally studied, which aimed to enlighten ideas for the joint design of MEMS. The observation by using SEM and microscopy suggested that beetle’s joints consist of a concave surface matched with a convex surface. The heads of the beetles, rubbing with flat glass, were tested in fresh and dried statuses and compared with sapphire ball with flat glass. Frictional coefficient of the joint material on glass was significantly lower than that of the sapphire sphere on glass. The material of the joint cuticle for convex surface is rather stiff (the elastic modulus 4.5 Gpa) and smooth. The surface is hydrophobic (the contact angle of distilled water was 88.3°). It is suggested here that the high stiffness of the joint material and hydrophobicity of the joint surface are parts of the mechanism minimizing friction in insect joints.

  19. Managing invasive populations of Asian longhorned beetle and citrus longhorned beetle: a worldwide perspective.

    PubMed

    Haack, Robert A; Hérard, Franck; Sun, Jianghua; Turgeon, Jean J

    2010-01-01

    The Asian longhorned beetle (ALB), Anoplophora glabripennis (Motschulsky), and citrus longhorned beetle (CLB), Anoplophora chinensis (Forster) (Coleoptera: Cerambycidae), are polyphagous xylophages native to Asia and are capable of killing healthy trees. ALB outbreaks began in China in the 1980s, following major reforestation programs that used ALB-susceptible tree species. No regional CLB outbreaks have been reported in Asia. ALB was first intercepted in international trade in 1992, mostly in wood packaging material; CLB was first intercepted in 1980, mostly in live plants. ALB is now established in North America, and both species are established in Europe. After each infestation was discovered, quarantines and eradication programs were initiated to protect high-risk tree genera such as Acer, Aesculus, Betula, Populus, Salix, and Ulmus. We discuss taxonomy, diagnostics, native range, bionomics, damage, host plants, pest status in their native range, invasion history and management, recent research, and international efforts to prevent new introductions. PMID:19743916

  20. Comparative resistance of Russian and Italian honey bees (Hymenoptera: Apidae) to small hive beetles (Coleoptera: Nitidulidae).

    PubMed

    Frake, Amanda M; De Guzman, Lilia I; Rinderer, Thomas E

    2009-02-01

    To compare resistance to small hive beetles (Coleoptera: Nitidulidae) between Russian and commercial Italian honey bees (Hymenoptera: Apidae), the numbers of invading beetles, their population levels through time and small hive beetle reproduction inside the colonies were monitored. We found that the genotype of queens introduced into nucleus colonies had no immediate effect on small hive beetle invasion. However, the influence of honey bee stock on small hive beetle invasion was pronounced once test bees populated the hives. In colonies deliberately freed from small hive beetle during each observation period, the average number of invading beetles was higher in the Italian colonies (29 +/- 5 beetles) than in the Russian honey bee colonies (16 +/- 3 beetles). A similar trend was observed in colonies that were allowed to be freely colonized by beetles throughout the experimental period (Italian, 11.46 +/- 1.35; Russian, 5.21 +/- 0.66 beetles). A linear regression analysis showed no relationships between the number of beetles in the colonies and adult bee population (r2 = 0.1034, P = 0.297), brood produced (r2 = 0.1488, P = 0.132), or amount of pollen (P = 0.1036, P = 0.295). There were more Italian colonies that supported small hive beetle reproduction than Russian colonies. Regardless of stock, the use of entrance reducers had a significant effect on the average number of small hive beetle (with reducer, 16 +/- 3; without reducer, 27 +/- 5 beetles). However, there was no effect on bee population (with reducer, 13.20 +/- 0.71; without reducer, 14.60 +/- 0.70 frames) or brood production (with reducer, 6.12 +/- 0.30; without reducer, 6.44 +/- 0.34 frames). Overall, Russian honey bees were more resistant to small hive beetle than Italian honey bees as indicated by fewer invading beetles, lower small hive beetle population through time, and lesser reproduction. PMID:19253612

  1. Pheromone Chemistry of the Smaller European Elm Bark Beetle.

    ERIC Educational Resources Information Center

    Beck, Keith

    1978-01-01

    Discusses the aggregation pheromone of the smaller European elm bark beetle, Scolytus multistriatus (Marsham), with emphasis on information that could be used in the classroom as a practical application of organic chemistry. (Author/GA)

  2. The artificial beetle, or a brief manifesto for engineered biomimicry

    NASA Astrophysics Data System (ADS)

    Bartl, Michael H.; Lakhtakia, Akhlesh

    2015-03-01

    The artificial beetle is possibly the Holy Grail for practitioners of engineered biomimicry. An artificial beetle could gather and relay data and images from compromised environments on earth and other planets to decision makers. It could also be used for surveillance of foes and friends alike, and will require ethical foresight and oversight. What would it take to develop an artificial beetle? Several biotemplating techniques can be harnessed for the replication of external structural features of beetle bodies, and thus preserve functionalities such as coloration of the exoskeleton and the hydrophobicity of wings. The body cavity must host a power supply, motors to move the wings for flight, sensors to capture ambient conditions and images, and data transmitters and receivers to communicate with a remote command center. All of these devices must be very small and reliable.

  3. Physiological benefits of nectar-feeding by a predatory beetle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Extrafloral nectar is an important food source for many animals, including predatory lady beetles (Coleoptera: Coccinellidae), although the physiological benefits of nectar consumption are poorly understood for most consumers. Under laboratory conditions, we confined new females of Coleomegilla macu...

  4. Host plant preference in Colorado potato beetle (Coleoptera: Chrysomelidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field and laboratory-choice tests were conducted to better understand host plant preference by the Colorado potato beetle, Leptinotarsa decemlineata Say (Coleoptera: Chrysomelidae), in Virginia. In laboratory olfactometer studies, L. decemlineata preferred potato over both tomato and eggplant foli...

  5. Biologically inspired optics: analog semiconductor model of the beetle exoskeleton

    NASA Astrophysics Data System (ADS)

    Buhl, Kaia; Roth, Zachary; Srinivasan, Pradeep; Rumpf, Raymond; Johnson, Eric

    2008-08-01

    Evolution in nature has produced through adaptation a wide variety of distinctive optical structures in many life forms. For example, pigment differs greatly from the observed color of most beetles because their exoskeletons contain multilayer coatings. The green beetle is disguised in a surrounding leaf by having a comparable reflection spectrum as the leaves. The Manuka and June beetle have a concave structure where light incident at any angle on the concave structures produce matching reflection spectra. In this work, semiconductor processing methods were used to duplicate the structure of the beetle exoskeleton. This was achieved by combining analog lithography with a multilayer deposition process. The artificial exoskeleton, 3D concave multilayer structure, demonstrates a wide field of view with a unique spectral response. Studying and replicating these biologically inspired nanostructures may lead to new knowledge for fabrication and design of new and novel nano-photonic devices, as well as provide valuable insight to how such phenomenon is exploited.

  6. Two Additional Invasive Scarabaeoid Beetles (Coleoptera: Scarabaeidae: Dynastinae) in Hawaii

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two species of dynastine scarab beetles are reported for the first time on the island of Hawaii: the Pasadena masked chafer, Cyclocephala pasadenae (Casey)(Scarabaeidae: Dynastinae: Cyclocephalini) and the Temnorhynchus retusus (Fabricius)(Scarabaeidae: Dynastinae: Pentodontini). The Pasadena mask...

  7. New generic synonyms in the Oriental flea beetles (Coleoptera: Chrysomelidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The following new synonyms are proposed for the genera of flea beetles from Oriental Region: Pseudocrypta Medvedev, 1996 and Sebaethiella Medvedev, 1993 = Acrocrypta Baly, 1862: 457; Bhutajana Scherer, 1979 = Aphthona Chevrolat, 1836; Burmaltica Scherer, 1969 = Aphthonaltica Heikertinger, 1924; Apht...

  8. The Role of Beetle Marks and Flower Colour on Visitation by Monkey Beetles (Hopliini) in the Greater Cape Floral Region, South Africa

    PubMed Central

    Van Kleunen, Mark; Nänni, Ingrid; Donaldson, John S.; Manning, John C.

    2007-01-01

    Background and Aims A deviation from the classical beetle pollination syndrome of dull-coloured flowers with an unpleasant scent is found in the Greater Cape Floral Region of South Africa. Here, monkey beetles (Scarabaeidae) visit brightly coloured, odourless flowers with conspicuous dark spots and centres (beetle marks). The role of flower colour and markings in attracting monkey beetles is still poorly understood. Method Artificial model flowers with different marking patterns were used to test the effect of beetle marks on visitation by monkey beetles. To test whether monkey beetles are conditioned to the colour of the local matrix species, model flowers of different colours were placed in populations of three differently coloured species of Iridaceae. Key Results Among all three matrix species the presence of dark markings of some kind (either centres or spots) increased visitation rates but the different matrix species differed in whether the effect was due to a dark centre or to dark spots. Monkey beetles were not conditioned for the colour of the matrix species: model colour was not significant in the Hesperantha vaginata and in the Romulea monadelpha matrices, whereas yellow model flowers were preferred over orange ones in the orange-flowered Sparaxis elegans matrix. Conclusions This study is the first to demonstrate that beetle marks attract pollinating monkey beetles in the Greater Cape Floral Region. In contrast to plants with the classical beetle pollination syndrome that use floral scent as the most important attractant of pollinating beetles, plants with the monkey beetle pollination syndrome rely on visual signals, and, in some areas at least, monkey beetles favour flowers with dark beetle markings over unmarked flowers. PMID:17951585

  9. Big dung beetles dig deeper: trait-based consequences for faecal parasite transmission.

    PubMed

    Gregory, Nichar; Gómez, Andrés; Oliveira, Trícia Maria F de S; Nichols, Elizabeth

    2015-02-01

    Observational evidence suggests that burial of faeces by dung beetles negatively influences the transmission of directly transmitted gastrointestinal helminths. However, the mechanistic basis for these interactions is poorly characterised, limiting our ability to understand relationships between beetle community composition and helminth transmission. We demonstrate that beetle body size and sex significantly impact tunnel depth, a key variable affecting parasite survival. Additionally, high parasite loads reduce the depth of beetle faeces burial, suggesting that the local prevalence of parasites infecting beetles may impact beetle ecosystem function. Our study represents a first step towards a mechanistic understanding of a potentially epidemiologically relevant ecosystem function. PMID:25496914

  10. Pulpability of beetle-killed spruce. Forest Service research paper

    SciTech Connect

    Scott, G.M.; Bormett, D.W.; Sutherland, N.R.; Abubakr, S.; Lowell, E.

    1996-08-01

    Infestation of the Dendroctonus rufipennis beetle has resulted in large stands of dead and dying timber on the Kenai Peninsula in Alaska. Tests were conducted to evaluate the value of beetle-killed spruce as pulpwood. The results showed that live and dead spruce wood can be pulped effectively. The two least deteriorated classes and the most deteriorated class of logs had similar characteristics when pulped; the remaining class had somewhat poorer pulpability.

  11. Comparing fungal band formulations for Asian longhorned beetle biological control.

    PubMed

    Ugine, Todd A; Jenkins, Nina E; Gardescu, Sana; Hajek, Ann E

    2013-07-01

    Experiments were conducted with the fungal entomopathogen Metarhizium brunneum to determine the feasibility of using agar-based fungal bands versus two new types of oil-formulated fungal bands for Asian longhorned beetle management. We investigated conidial retention and survival on three types of bands attached to trees in New York and Pennsylvania: standard polyester fiber agar-based bands containing fungal cultures, and two types of bands made by soaking either polyester fiber or jute burlap with oil-conidia suspensions. Fungal band formulation did not affect the number or viability of conidia on bands over the 2-month test period, although percentage conidial viability decreased significantly with time for all band types. In a laboratory experiment testing the effect of the three band formulations on conidial acquisition and beetle survival, traditional agar-based fungal bands delivered the most conidia to adult beetles and killed higher percentages of beetles significantly faster (median survival time of 27d) than the two oil-formulated materials (36-37d). We also tested the effect of band formulation on conidial acquisition by adult beetles kept individually in cages with a single band for 24h, and significantly more conidia (3-7times) were acquired by beetles from agar-based bands compared to the two oil formulations. PMID:23628142

  12. Mutualism Between Fire Ants and Mealybugs Reduces Lady Beetle Predation.

    PubMed

    Cheng, Shoujie; Zeng, Ling; Xu, Yijuan

    2015-08-01

    Solenopsis invicta Buren is an important invasive pest that has a negative impact on biodiversity. However, current knowledge regarding the ecological effects of its interaction with honeydew-producing hemipteran insects is inadequate. To partially address this problem, we assessed whether the interaction between the two invasive species S. invicta and Phenacoccus solenopsis Tinsley mediated predation of P. solenopsis by Propylaea japonica Thunbery lady beetles using field investigations and indoor experiments. S. invicta tending significantly reduced predation by the Pr. japonica lady beetle, and this response was more pronounced for lady beetle larvae than for adults. A field investigation showed that the species richness and quantity of lady beetle species in plots with fire ants were much lower than in those without fire ants. In an olfaction bioassay, lady beetles preferred to move toward untended rather than tended mealybugs. Overall, these results suggest that mutualism between S. invicta and P. solenopsis may have a serious impact on predation of P. solenopsis by lady beetles, which could promote growth of P. solenopsis populations. PMID:26470296

  13. Spectral information as an orientation cue in dung beetles.

    PubMed

    El Jundi, Basil; Foster, James J; Byrne, Marcus J; Baird, Emily; Dacke, Marie

    2015-11-01

    During the day, a non-uniform distribution of long and short wavelength light generates a colour gradient across the sky. This gradient could be used as a compass cue, particularly by animals such as dung beetles that rely primarily on celestial cues for orientation. Here, we tested if dung beetles can use spectral cues for orientation by presenting them with monochromatic (green and UV) light spots in an indoor arena. Beetles kept their original bearing when presented with a single light cue, green or UV, or when presented with both light cues set 180° apart. When either the UV or the green light was turned off after the beetles had set their bearing in the presence of both cues, they were still able to maintain their original bearing to the remaining light. However, if the beetles were presented with two identical green light spots set 180° apart, their ability to maintain their original bearing was impaired. In summary, our data show that ball-rolling beetles could potentially use the celestial chromatic gradient as a reference for orientation. PMID:26538537

  14. Comparative genomics of Fructobacillus spp. and Leuconostoc spp. reveals niche-specific evolution of Fructobacillus spp.

    DOE PAGESBeta

    Endo, Akihito; Tanizawa, Yasuhiro; Tanaka, Naoto; Maeno, Shintaro; Kumar, Himanshu; Shiwa, Yuh; Okada, Sanae; Yoshikawa, Hirofumi; Dicks, Leon; Nakagawa, Junichi; et al

    2015-12-29

    In this study, Fructobacillus spp. in fructose-rich niches belong to the family Leuconostocaceae. They were originally classified as Leuconostoc spp., but were later grouped into a novel genus, Fructobacillus , based on their phylogenetic position, morphology and specific biochemical characteristics. The unique characters, so called fructophilic characteristics, had not been reported in the group of lactic acid bacteria, suggesting unique evolution at the genome level. Here we studied four draft genome sequences of Fructobacillus spp. and compared their metabolic properties against those of Leuconostoc spp. As a result, Fructobacillus species possess significantly less protein coding sequences in their small genomes.more » The number of genes was significantly smaller in carbohydrate transport and metabolism. Several other metabolic pathways, including TCA cycle, ubiquinone and other terpenoid-quinone biosynthesis and phosphotransferase systems, were characterized as discriminative pathways between the two genera. The adhE gene for bifunctional acetaldehyde/alcohol dehydrogenase, and genes for subunits of the pyruvate dehydrogenase complex were absent in Fructobacillus spp. The two genera also show different levels of GC contents, which are mainly due to the different GC contents at the third codon position. In conclusion, the present genome characteristics in Fructobacillus spp. suggest reductive evolution that took place to adapt to specific niches.« less

  15. Intraguild Predation and Native Lady Beetle Decline

    PubMed Central

    Gardiner, Mary M.; O'Neal, Matthew E.; Landis, Douglas A.

    2011-01-01

    Coccinellid communities across North America have experienced significant changes in recent decades, with declines in several native species reported. One potential mechanism for these declines is interference competition via intraguild predation; specifically, increased predation of native coccinellid eggs and larvae following the introduction of exotic coccinellids. Our previous studies have shown that agricultural fields in Michigan support a higher diversity and abundance of exotic coccinellids than similar fields in Iowa, and that the landscape surrounding agricultural fields across the north central U.S. influences the abundance and activity of coccinellid species. The goal of this study was to quantify the amount of egg predation experienced by a native coccinellid within Michigan and Iowa soybean fields and explore the influence of local and large-scale landscape structure. Using the native lady beetle Coleomegilla maculata as a model, we found that sentinel egg masses were subject to intense predation within both Michigan and Iowa soybean fields, with 60.7% of egg masses attacked and 43.0% of available eggs consumed within 48 h. In Michigan, the exotic coccinellids Coccinella septempunctata and Harmonia axyridis were the most abundant predators found in soybean fields whereas in Iowa, native species including C. maculata, Hippodamia parenthesis and the soft-winged flower beetle Collops nigriceps dominated the predator community. Predator abundance was greater in soybean fields within diverse landscapes, yet variation in predator numbers did not influence the intensity of egg predation observed. In contrast, the strongest predictor of native coccinellid egg predation was the composition of edge habitats bordering specific fields. Field sites surrounded by semi-natural habitats including forests, restored prairies, old fields, and pasturelands experienced greater egg predation than fields surrounded by other croplands. This study shows that intraguild

  16. Intraguild predation and native lady beetle decline.

    PubMed

    Gardiner, Mary M; O'Neal, Matthew E; Landis, Douglas A

    2011-01-01

    Coccinellid communities across North America have experienced significant changes in recent decades, with declines in several native species reported. One potential mechanism for these declines is interference competition via intraguild predation; specifically, increased predation of native coccinellid eggs and larvae following the introduction of exotic coccinellids. Our previous studies have shown that agricultural fields in Michigan support a higher diversity and abundance of exotic coccinellids than similar fields in Iowa, and that the landscape surrounding agricultural fields across the north central U.S. influences the abundance and activity of coccinellid species. The goal of this study was to quantify the amount of egg predation experienced by a native coccinellid within Michigan and Iowa soybean fields and explore the influence of local and large-scale landscape structure. Using the native lady beetle Coleomegilla maculata as a model, we found that sentinel egg masses were subject to intense predation within both Michigan and Iowa soybean fields, with 60.7% of egg masses attacked and 43.0% of available eggs consumed within 48 h. In Michigan, the exotic coccinellids Coccinella septempunctata and Harmonia axyridis were the most abundant predators found in soybean fields whereas in Iowa, native species including C. maculata, Hippodamia parenthesis and the soft-winged flower beetle Collops nigriceps dominated the predator community. Predator abundance was greater in soybean fields within diverse landscapes, yet variation in predator numbers did not influence the intensity of egg predation observed. In contrast, the strongest predictor of native coccinellid egg predation was the composition of edge habitats bordering specific fields. Field sites surrounded by semi-natural habitats including forests, restored prairies, old fields, and pasturelands experienced greater egg predation than fields surrounded by other croplands. This study shows that intraguild

  17. Detection of tamarisk defoliation by the northern tamarisk beetle based on multitemporal Landsat 5 thematic mapper imagery

    USGS Publications Warehouse

    Meng, Ran; Dennison, Philip E.; Jamison, Levi R.; van Riper, Charles, III; Nager, Pamela; Hultine, Kevin R.; Bean, Dan W.; Dudley, Tom

    2012-01-01

    The spread of tamarisk (Tamarix spp., also known as saltcedar) is a significant ecological disturbance in western North America and has long been targeted for control, leading to the importation of the northern tamarisk beetle (Diorhabda carinulata) as a biological control agent. Following its initial release along the Colorado River near Moab, Utah in 2004, the beetle has successfully established and defoliated tamarisk across much of the upper Colorado River Basin. However, the spatial distribution and seasonal timing of defoliation are complex and difficult to quantify over large areas. To address this challenge, we tested and compared two remote sensing approaches to mapping tamarisk defoliation: Disturbance Index (DI) and a decision tree method called Random Forest (RF). Based on multitemporal Landsat 5 TM imagery for 2006-2010, changes in DI and defoliation probability from RF were calculated to detect tamarisk defoliation along the banks of Green, Colorado, Dolores and San Juan rivers within the Colorado Plateau area. Defoliation mapping accuracy was assessed based on field surveys partitioned into 10 km sections of river and on regions of interest created for continuous riparian vegetation. The DI method detected 3711 ha of defoliated area in 2007, 7350 ha in 2008, 10,457 ha in 2009 and 5898 ha in 2010. The RF method detected much smaller areas of defoliation but proved to have higher accuracy, as demonstrated by accuracy assessment and sensitivity analysis, with 784 ha in 2007, 960 ha in 2008, 934 ha in 2009, and 1008 ha in 2010. Results indicate that remote sensing approaches are likely to be useful for studying spatiotemporal patterns of tamarisk defoliation as the tamarisk leaf beetle spreads throughout the western United States.

  18. Parasitic polymorphism of Coccidioides spp

    PubMed Central

    2014-01-01

    Background Coccidioides spp. is the ethiological agent of coccidioidomycosis, an infection that can be fatal. Its diagnosis is complicated, due to that it shares clinical and histopathological characteristics with other pulmonary mycoses. Coccidioides spp. is a dimorphic fungus and, in its saprobic phase, grows as a mycelium, forming a large amount of arthroconidia. In susceptible persons, arthroconidia induce dimorphic changes into spherules/endospores, a typical parasitic form of Coccidioides spp. In addition, the diversity of mycelial parasitic forms has been observed in clinical specimens; they are scarcely known and produce errors in diagnosis. Methods We presented a retrospective study of images from specimens of smears with 15% potassium hydroxide, cytology, and tissue biopsies of a histopathologic collection from patients with coccidioidomycosis seen at a tertiary-care hospital in Mexico City. Results The parasitic polymorphism of Coccidioides spp. observed in the clinical specimens was as follows: i) spherules/endospores in different maturation stages; ii) pleomorphic cells (septate hyphae, hyphae composed of ovoid and spherical cells, and arthroconidia), and iii) fungal ball formation (mycelia with septate hyphae and arthroconidia). Conclusions The parasitic polymorphism of Coccidioides spp. includes the following: spherules/endospores, arthroconidia, and different forms of mycelia. This knowledge is important for the accurate diagnosis of coccidioidomycosis. In earlier studies, we proposed the integration of this diversity of forms in the Coccidioides spp. parasitic cycle. The microhabitat surrounding the fungus into the host would favor the parasitic polymorphism of this fungus, and this environment may assist in the evolution toward parasitism of Coccidioides spp. PMID:24750998

  19. New records of predaceous diving beetles (Coleoptera:Dytiscidae) in Maine

    USGS Publications Warehouse

    Boobar, L.R.; Gibbs, K.E.; Longcore, J.R.; Perillo, A.M.

    1996-01-01

    Locations, habitat descriptions, and collection dates are listed for new records of 4 genera and 12 species of predaceous diving beetles (Coleoptera: Dytiscidae) in Maine. Previously, 17 genera and 53 species of the aquatic beetle were reported from Maine.

  20. Oviposition by small hive beetles elicits hygienic responses from Cape honeybees.

    PubMed

    Ellis, J D; Richards, C S; Hepburn, H R; Elzen, P J

    2003-11-01

    Two novel behaviours, both adaptations of small hive beetles ( Aethina tumida Murray) and Cape honeybees ( Apis mellifera capensis Esch.), are described. Beetles puncture the sides of empty cells and oviposit under the pupae in adjoining cells. However, bees detect this ruse and remove infested brood (hygienic behaviour), even under such well-disguised conditions. Indeed, bees removed 91% of treatment brood (brood cells with punctured walls caused by beetles) but only 2% of control brood (brood not exposed to beetles). Only 91% of treatment brood actually contained beetle eggs; the data therefore suggest that bees remove only that brood containing beetle eggs and leave uninfected brood alone, even if beetles have accessed (but not oviposited on) the brood. Although this unique oviposition strategy by beetles appears both elusive and adaptive, Cape honeybees are able to detect and remove virtually all of the infested brood. PMID:14610654

  1. How-To-Do-It. A Beetle, a Bur, and the Potato: An Introduction to Ecology.

    ERIC Educational Resources Information Center

    Jantzen, Paul G.

    1983-01-01

    Describes how the interrelation of the potato beetle, the buffalo-bur, and the potato is used as an introduction to ecology. Methods of controlling the beetle and ecological principles illustrated in the interrelationship are discussed. (JN)

  2. Limited transmission of the ectoparasitic fungus Hesperomyces virescens between lady beetles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ectoparasitic fungus Hesperomyces virescens Thaxter (Ascomycota: Laboulbeniales) commonly infects the invasive lady beetle Harmonia axyridis (Pallas) and several other aphidophagous lady beetles in North America and Europe. We tested the hypothesis that bodily contact between adults of differen...

  3. Biology, Behavior, and Management of Ambrosia Beetles Attacking Ornamental Nursery Stock

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ambrosia beetles are being increasingly recognized as significant pests of field-grown ornamental nursery stock. Two species are especially problematic in ornamental nurseries, namely the black stem borer, Xylosandrus germanus, and the granulate ambrosia beetle, Xylosandrus crassiusculus. Ambrosia b...

  4. First record of a Mermithidae (Nematoda) from the meloid beetle Meloe violaceus Marsham, 1802 (Coleoptera: Meloidae).

    PubMed

    Lückmann, Johannes; Poinar, George O

    2003-05-01

    A new record of nematode parasitism of meloid beetles is reported and all earlier records are summarised. Rates of parasitism could be influenced by the toxic compound cantharidin that these beetles possess. PMID:12743809

  5. Infections Caused by Scedosporium spp.

    PubMed Central

    Cortez, Karoll J.; Roilides, Emmanuel; Quiroz-Telles, Flavio; Meletiadis, Joseph; Antachopoulos, Charalampos; Knudsen, Tena; Buchanan, Wendy; Milanovich, Jeffrey; Sutton, Deanna A.; Fothergill, Annette; Rinaldi, Michael G.; Shea, Yvonne R.; Zaoutis, Theoklis; Kottilil, Shyam; Walsh, Thomas J.

    2008-01-01

    Scedosporium spp. are increasingly recognized as causes of resistant life-threatening infections in immunocompromised patients. Scedosporium spp. also cause a wide spectrum of conditions, including mycetoma, saprobic involvement and colonization of the airways, sinopulmonary infections, extrapulmonary localized infections, and disseminated infections. Invasive scedosporium infections are also associated with central nervous infection following near-drowning accidents. The most common sites of infection are the lungs, sinuses, bones, joints, eyes, and brain. Scedosporium apiospermum and Scedosporium prolificans are the two principal medically important species of this genus. Pseudallescheria boydii, the teleomorph of S. apiospermum, is recognized by the presence of cleistothecia. Recent advances in molecular taxonomy have advanced the understanding of the genus Scedosporium and have demonstrated a wider range of species than heretofore recognized. Studies of the pathogenesis of and immune response to Scedosporium spp. underscore the importance of innate host defenses in protection against these organisms. Microbiological diagnosis of Scedosporium spp. currently depends upon culture and morphological characterization. Molecular tools for clinical microbiological detection of Scedosporium spp. are currently investigational. Infections caused by S. apiospermum and P. boydii in patients and animals may respond to antifungal triazoles. By comparison, infections caused by S. prolificans seldom respond to medical therapy alone. Surgery and reversal of immunosuppression may be the only effective therapeutic options for infections caused by S. prolificans. PMID:18202441

  6. Identification of sound-producing hydrophilid beetles in underwater recordings using digital signal processing

    NASA Astrophysics Data System (ADS)

    Rudh, Nissa E.

    For this study, a classification program capable of identifying four hydrophilid beetle species from vocalizations in under water hydrophone recordings was created. Within single-species recordings, classification accuracy ranged from 81-98%. Mathematical features, based on the frequency content of exemplar beetle vocalizations, were used to compare hydrophilid vocalizations with new sound data in Matlab(TM) and classify sounds as a beetle species, beetle distress call, or noise.

  7. Distance and Sex Determine Host Plant Choice by Herbivorous Beetles

    PubMed Central

    Ballhorn, Daniel J.; Kautz, Stefanie; Heil, Martin

    2013-01-01

    Background Plants respond to herbivore damage with the release of volatile organic compounds (VOCs). This indirect defense can cause ecological costs when herbivores themselves use VOCs as cues to localize suitable host plants. Can VOCs reliably indicate food plant quality to herbivores? Methodology We determined the choice behavior of herbivorous beetles (Chrysomelidae: Gynandrobrotica guerreroensis and Cerotoma ruficornis) when facing lima bean plants (Fabaceae: Phaseolus lunatus) with different cyanogenic potential, which is an important constitutive direct defense. Expression of inducible indirect defenses was experimentally manipulated by jasmonic acid treatment at different concentrations. The long-distance responses of male and female beetles to the resulting induced plant volatiles were investigated in olfactometer and free-flight experiments and compared to the short-distance decisions of the same beetles in feeding trials. Conclusion Female beetles of both species were repelled by VOCs released from all induced plants independent of the level of induction. In contrast, male beetles were repelled by strongly induced plants, showed no significant differences in choice behavior towards moderately induced plants, but responded positively to VOCs released from little induced plants. Thus, beetle sex and plant VOCs had a significant effect on host searching behavior. By contrast, feeding behavior of both sexes was strongly determined by the cyanogenic potential of leaves, although females again responded more sensitively than males. Apparently, VOCs mainly provide information to these beetles that are not directly related to food quality. Being induced by herbivory and involved in indirect plant defense, such VOCs might indicate the presence of competitors and predators to herbivores. We conclude that plant quality as a food source and finding a potentially enemy-free space is more important for female than for male insect herbivores, whereas the presence of a

  8. Rain forest provides pollinating beetles for atemoya crops.

    PubMed

    Blanche, Rosalind; Cunningham, Saul A

    2005-08-01

    Small beetles, usually species of Nitidulidae, are the natural pollinators of atemoya (Annona squamosa L. x A. cherimola Mill. hybrids; custard apple) flowers but commercial atemoya growers often need to carry out labor-intensive hand pollination to produce enough high-quality fruit. Because Australian rain forest has plant species in the same family as atemoya (Annonaceae) and because many rain forest plants are beetle pollinated, we set out to discover whether tropical rain forest in far north Queensland harbors beetles that could provide this ecosystem service for atemoya crops. Orchards were chosen along a gradient of increasing distance from tropical rain forest (0.1-24 km). We sampled 100 flowers from each of nine atemoya orchards and determined the identity and abundance of insects within each flower. To assess the amount of pollination due to insects, we bagged six flowers per tree and left another six flowers per tree accessible to insects on 10 trees at an orchard near rain forest. Results indicated that atemoya orchards < or = 0.5 km from rain forest were predominantly visited by five previously unrecognized native beetle pollinators that are likely to originate in tropical rain forest. These native beetles occurred reliably enough in crops near rain forest to have a positive effect on the quantity of fruit produced but their contribution was not great enough to satisfy commercial production needs. Management changes, aimed at increasing native beetle abundance in crops, are required before these beetles could eliminate the need for growers to hand pollinate atemoya flowers. Appreciation of the value of this resource is necessary if we are to develop landscapes that both conserve native biodiversity and support agricultural production. PMID:16156571

  9. Endocrine Control of Exaggerated Trait Growth in Rhinoceros Beetles.

    PubMed

    Zinna, R; Gotoh, H; Brent, C S; Dolezal, A; Kraus, A; Niimi, T; Emlen, D; Lavine, L C

    2016-08-01

    Juvenile hormone (JH) is a key insect growth regulator frequently involved in modulating phenotypically plastic traits such as caste determination in eusocial species, wing polymorphisms in aphids, and mandible size in stag beetles. The jaw morphology of stag beetles is sexually-dimorphic and condition-dependent; males have larger jaws than females and those developing under optimum conditions are larger in overall body size and have disproportionately larger jaws than males raised under poor conditions. We have previously shown that large males have higher JH titers than small males during development, and ectopic application of fenoxycarb (JH analog) to small males can induce mandibular growth similar to that of larger males. What remains unknown is whether JH regulates condition-dependent trait growth in other insects with extreme sexually selected structures. In this study, we tested the hypothesis that JH mediates the condition-dependent expression of the elaborate horns of the Asian rhinoceros beetle, Trypoxylus dichotomus. The sexually dimorphic head horn of this beetle is sensitive to nutritional state during larval development. Like stag beetles, male rhinoceros beetles receiving copious food produce disproportionately large horns for their body size compared with males under restricted diets. We show that JH titers are correlated with body size during the late feeding and early prepupal periods, but this correlation disappears by the late prepupal period, the period of maximum horn growth. While ectopic application of fenoxycarb during the third larval instar significantly delayed pupation, it had no effect on adult horn size relative to body size. Fenoxycarb application to late prepupae also had at most a marginal effect on relative horn size. We discuss our results in context of other endocrine signals of condition-dependent trait exaggeration and suggest that different beetle lineages may have co-opted different physiological signaling mechanisms to

  10. Bartonella spp. in bats, Kenya.

    PubMed

    Kosoy, Michael; Bai, Ying; Lynch, Tarah; Kuzmin, Ivan V; Niezgoda, Michael; Franka, Richard; Agwanda, Bernard; Breiman, Robert F; Rupprecht, Charles E

    2010-12-01

    We report the presence and diversity of Bartonella spp. in bats of 13 insectivorous and frugivorous species collected from various locations across Kenya. Bartonella isolates were obtained from 23 Eidolon helvum, 22 Rousettus aegyptiacus, 4 Coleura afra, 7 Triaenops persicus, 1 Hipposideros commersoni, and 49 Miniopterus spp. bats. Sequence analysis of the citrate synthase gene from the obtained isolates showed a wide assortment of Bartonella strains. Phylogenetically, isolates clustered in specific host bat species. All isolates from R. aegyptiacus, C. afra, and T. persicus bats clustered in separate monophyletic groups. In contrast, E. helvum and Miniopterus spp. bats harbored strains that clustered in several groups. Further investigation is needed to determine whether these agents are responsible for human illnesses in the region. PMID:21122216

  11. A FREEZE-DRIED DIET TO TEST BACTERIAL PATHOGENS OF COLORADO POTATO BEETLE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Colorado potato beetle is an important pest on potato, eggplant and tomato. Because Colorado potato beetles develop resistance to insecticides quickly, new methods are needed for control. Bacillus thuringiensis is the only bacteria to successfully control Colorado potato beetle. Until recently, ...

  12. 7 CFR 301.48-6 - Movement of live Japanese beetles.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 5 2011-01-01 2011-01-01 false Movement of live Japanese beetles. 301.48-6 Section... INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Japanese Beetle Quarantine and Regulations § 301.48-6 Movement of live Japanese beetles. Regulations requiring a permit for and...

  13. Salmonella recovery from broilers and litter following gavage with Salmonella colonized darkling beetles and larvae.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transmission of Salmonella to broiler chicks with Salmonella colonized darkling beetles or larvae was evaluated by sampling litter and ceca during growout. In two trials, 1 or 2 day-of-hatch broiler chicks (in a pen of 40) were gavaged with either 4 darkling beetles, 4 beetle larvae, or 0.1 mL pept...

  14. 7 CFR 301.48-6 - Movement of live Japanese beetles.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Movement of live Japanese beetles. 301.48-6 Section... INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Japanese Beetle Quarantine and Regulations § 301.48-6 Movement of live Japanese beetles. Regulations requiring a permit for and...

  15. Direction of interaction between mountain pine beetle (Dendroctonus ponderosae) and resource-sharing wood-boring beetles depends on plant parasite infection.

    PubMed

    Klutsch, Jennifer G; Najar, Ahmed; Cale, Jonathan A; Erbilgin, Nadir

    2016-09-01

    Plant pathogens can have cascading consequences on insect herbivores, though whether they alter competition among resource-sharing insect herbivores is unknown. We experimentally tested whether the infection of a plant pathogen, the parasitic plant dwarf mistletoe (Arceuthobium americanum), on jack pine (Pinus banksiana) altered the competitive interactions among two groups of beetles sharing the same resources: wood-boring beetles (Coleoptera: Cerambycidae) and the invasive mountain pine beetle (Dendroctonus ponderosae) (Coleoptera: Curculionidae). We were particularly interested in identifying potential mechanisms governing the direction of interactions (from competition to facilitation) between the two beetle groups. At the lowest and highest disease severity, wood-boring beetles increased their consumption rate relative to feeding levels at moderate severity. The performance (brood production and feeding) of mountain pine beetle was negatively associated with wood-boring beetle feeding and disease severity when they were reared separately. However, when both wood-boring beetles and high severity of plant pathogen infection occurred together, mountain pine beetle escaped from competition and improved its performance (increased brood production and feeding). Species-specific responses to changes in tree defense compounds and quality of resources (available phloem) were likely mechanisms driving this change of interactions between the two beetle groups. This is the first study demonstrating that a parasitic plant can be an important force in mediating competition among resource-sharing subcortical insect herbivores. PMID:26820567

  16. Defense by foot adhesion in a beetle (Hemisphaerota cyanea)

    PubMed Central

    Eisner, Thomas; Aneshansley, Daniel J.

    2000-01-01

    The beetle Hemisphaerota cyanea (Chrysomelidae; Cassidinae) responds to disturbance by activating a tarsal adhesion mechanism by which it secures a hold on the substrate. Its tarsi are oversized and collectively bear some 60,000 adhesive bristles, each with two terminal pads. While walking, the beetle commits but a small fraction of the bristles to contact with the substrate. But when assaulted, it presses its tarsi flatly down, thereby touching ground with all or nearly all of the bristles. Once so adhered, it can withstand pulling forces of up to 0.8 g (≈60 times its body mass) for 2 min, and of higher magnitudes, up to >3 g, for shorter periods. Adhesion is secured by a liquid, most probably an oil. By adhering, the beetle is able to thwart attacking ants, given that it is able to cling more persistently than the ant persists in its assault. One predator, the reduviid Arilus cristatus, is able to feed on the beetle, possibly because by injecting venom it prevents the beetle from maintaining its tarsal hold. PMID:10841556

  17. Dung beetles use the Milky Way for orientation.

    PubMed

    Dacke, Marie; Baird, Emily; Byrne, Marcus; Scholtz, Clarke H; Warrant, Eric J

    2013-02-18

    When the moon is absent from the night sky, stars remain as celestial visual cues. Nonetheless, only birds, seals, and humans are known to use stars for orientation. African ball-rolling dung beetles exploit the sun, the moon, and the celestial polarization pattern to move along straight paths, away from the intense competition at the dung pile. Even on clear moonless nights, many beetles still manage to orientate along straight paths. This led us to hypothesize that dung beetles exploit the starry sky for orientation, a feat that has, to our knowledge, never been demonstrated in an insect. Here, we show that dung beetles transport their dung balls along straight paths under a starlit sky but lose this ability under overcast conditions. In a planetarium, the beetles orientate equally well when rolling under a full starlit sky as when only the Milky Way is present. The use of this bidirectional celestial cue for orientation has been proposed for vertebrates, spiders, and insects, but never proven. This finding represents the first convincing demonstration for the use of the starry sky for orientation in insects and provides the first documented use of the Milky Way for orientation in the animal kingdom. PMID:23352694

  18. DNA Barcoding of Japanese Click Beetles (Coleoptera, Elateridae)

    PubMed Central

    Oba, Yuichi; Ôhira, Hitoo; Murase, Yukio; Moriyama, Akihiko; Kumazawa, Yoshinori

    2015-01-01

    Click beetles (Coleoptera: Elateridae) represent one of the largest groups of beetle insects. Some click beetles in larval form, known as wireworms, are destructive agricultural pests. Morphological identification of click beetles is generally difficult and requires taxonomic expertise. This study reports on the DNA barcoding of Japanese click beetles to enable their rapid and accurate identification. We collected and assembled 762 cytochrome oxidase subunit I barcode sequences from 275 species, which cover approximately 75% of the common species found on the Japanese main island, Honshu. This barcode library also contains 20 out of the 21 potential pest species recorded in Japan. Our analysis shows that most morphologically identified species form distinct phylogenetic clusters separated from each other by large molecular distances. This supports the general usefulness of the DNA barcoding approach for quick and reliable identification of Japanese elaterid species for environmental impact assessment, agricultural pest control, and biodiversity analysis. On the other hand, the taxonomic boundary in dozens of species did not agree with the boundary of barcode index numbers (a criterion for sequence-based species delimitation). These findings urge taxonomic reinvestigation of these mismatched taxa. PMID:25636000

  19. Building a Beetle: How Larval Environment Leads to Adult Performance in a Horned Beetle

    PubMed Central

    Reaney, Leeann T.; Knell, Robert J.

    2015-01-01

    The link between the expression of the signals used by male animals in contests with the traits which determine success in those contests is poorly understood. This is particularly true in holometabolous insects such as horned beetles where signal expression is determined during metamorphosis and is fixed during adulthood, whereas performance is influenced by post-eclosion feeding. We used path analysis to investigate the relationships between larval and adult nutrition, horn and body size and fitness-related traits such as strength and testes mass in the horned beetle Euoniticellus intermedius. In males weight gain post-eclosion had a central role in determining both testes mass and strength. Weight gain was unaffected by adult nutrition but was strongly correlated with by horn length, itself determined by larval resource availability, indicating strong indirect effects of larval nutrition on the adult beetle’s ability to assimilate food and grow tissues. Female strength was predicted by a simple path diagram where strength was determined by eclosion weight, itself determined by larval nutrition: weight gain post-eclosion was not a predictor of strength in this sex. Based on earlier findings we discuss the insulin-like signalling pathway as a possible mechanism by which larval nutrition could affect adult weight gain and thence traits such as strength. PMID:26244874

  20. The original colours of fossil beetles

    PubMed Central

    McNamara, Maria E.; Briggs, Derek E. G.; Orr, Patrick J.; Noh, Heeso; Cao, Hui

    2012-01-01

    Structural colours, the most intense, reflective and pure colours in nature, are generated when light is scattered by complex nanostructures. Metallic structural colours are widespread among modern insects and can be preserved in their fossil counterparts, but it is unclear whether the colours have been altered during fossilization, and whether the absence of colours is always real. To resolve these issues, we investigated fossil beetles from five Cenozoic biotas. Metallic colours in these specimens are generated by an epicuticular multi-layer reflector; the fidelity of its preservation correlates with that of other key cuticular ultrastructures. Where these other ultrastructures are well preserved in non-metallic fossil specimens, we can infer that the original cuticle lacked a multi-layer reflector; its absence in the fossil is not a preservational artefact. Reconstructions of the original colours of the fossils based on the structure of the multi-layer reflector show that the preserved colours are offset systematically to longer wavelengths; this probably reflects alteration of the refractive index of the epicuticle during fossilization. These findings will allow the former presence, and original hue, of metallic structural colours to be identified in diverse fossil insects, thus providing critical evidence of the evolution of structural colour in this group. PMID:21957131

  1. Structural color in beetles of South America

    NASA Astrophysics Data System (ADS)

    Luna, Ana E.; Skigin, Diana C.; Inchaussandague, Marina E.; Roig Alsina, Arturo

    2010-08-01

    Photonic microstructures in nature, specifically in endemic species of Coleoptera from Argentina and the south of Chile have been identified, analyzed and modeled. These natural systems produce partial photonic bandgaps (PBGs) as a result of the high periodicity of the microstructures found in some parts of their bodies. With the aid of scanning (SEM) and transmission (TEM) electron microscopy we have identified that the elytron (modified forewing of a beetle that encases the thin hind wings used in flight) of these insects shows a periodic structure which originates diffractive phenomena resulting in extraordinary physical effects such as iridescent or metallic colors. We measured the reflectance spectrum and obtained the chromaticity diagrams of the samples with an Ocean Optics 4000 spectrophotometer. The geometrical parameters of the structure were obtained by processing the SEM images with the ImageJ software, to introduce them in our electromagnetic model. In all cases, a satisfactory agreement between the measurements and the numerical results was obtained. This permits us to explain the mechanism of color production in those specimens. The study of structural colors in the natural world can inspire the development of artificial devices with particular applications in technology, such as intelligent sensors and new kinds of filters.

  2. Hold your breath beetle-Mites!

    PubMed

    Gudowska, Agnieszka; Drobniak, Szymon M; Schramm, Bartosz W; Labecka, Anna Maria; Kozlowski, Jan; Bauchinger, Ulf

    2016-01-01

    Respiratory gas exchange in insects occurs via a branching tracheal system. The entrances to the air-filled tracheae are the spiracles, which are gate-like structures in the exoskeleton. The open or closed state of spiracles defines the three possible gas exchange patterns of insects. In resting insects, spiracles may open and close over time in a repeatable fashion that results in a discontinuous gas exchange (DGE) pattern characterized by periods of zero organism-to-environment gas exchange. Several adaptive hypotheses have been proposed to explain why insects engage in DGE, but none have attracted overwhelming support. We provide support for a previously untested hypothesis that posits that DGE minimizes the risk of infestation of the tracheal system by mites and other agents. Here, we analyze the respiratory patterns of 15 species of ground beetle (Carabidae), of which more than 40% of individuals harbored external mites. Compared with mite-free individuals, infested one's engaged significantly more often in DGE. Mite-free individuals predominantly employed a cyclic or continuous gas exchange pattern, which did not include complete spiracle closure. Complete spiracle closure may prevent parasites from invading, clogging, or transferring pathogens to the tracheal system or from foraging on tissue not protected by thick chitinous layers. PMID:26689423

  3. Can rove beetles (Staphylinidae) be excluded in studies focusing on saproxylic beetles in central European beech forests?

    PubMed

    Parmain, G; Bouget, C; Müller, J; Horak, J; Gossner, M M; Lachat, T; Isacsson, G

    2015-02-01

    Monitoring saproxylic beetle diversity, though challenging, can help identifying relevant conservation sites or key drivers of forest biodiversity, and assessing the impact of forestry practices on biodiversity. Unfortunately, monitoring species assemblages is costly, mainly due to the time spent on identification. Excluding families which are rich in specimens and species but are difficult to identify is a frequent procedure used in ecological entomology to reduce the identification cost. The Staphylinidae (rove beetle) family is both one of the most frequently excluded and one of the most species-rich saproxylic beetle families. Using a large-scale beetle and environmental dataset from 238 beech stands across Europe, we evaluated the effects of staphylinid exclusion on results in ecological forest studies. Simplified staphylinid-excluded assemblages were found to be relevant surrogates for whole assemblages. The species richness and composition of saproxylic beetle assemblages both with and without staphylinids responded congruently to landscape, climatic and stand gradients, even when the assemblages included a high proportion of staphylinid species. At both local and regional scales, the species richness as well as the species composition of staphylinid-included and staphylinid-excluded assemblages were highly positively correlated. Ranking of sites according to their biodiversity level, which either included or excluded Staphylinidae in species richness, also gave congruent results. From our results, species assemblages omitting staphylinids can be taken as efficient surrogates for complete assemblages in large scale biodiversity monitoring studies. PMID:25434278

  4. The alternative Pharaoh approach: stingless bees mummify beetle parasites alive

    NASA Astrophysics Data System (ADS)

    Greco, Mark K.; Hoffmann, Dorothee; Dollin, Anne; Duncan, Michael; Spooner-Hart, Robert; Neumann, Peter

    2010-03-01

    Workers from social insect colonies use different defence strategies to combat invaders. Nevertheless, some parasitic species are able to bypass colony defences. In particular, some beetle nest invaders cannot be killed or removed by workers of social bees, thus creating the need for alternative social defence strategies to ensure colony survival. Here we show, using diagnostic radioentomology, that stingless bee workers ( Trigona carbonaria) immediately mummify invading adult small hive beetles ( Aethina tumida) alive by coating them with a mixture of resin, wax and mud, thereby preventing severe damage to the colony. In sharp contrast to the responses of honeybee and bumblebee colonies, the rapid live mummification strategy of T. carbonaria effectively prevents beetle advancements and removes their ability to reproduce. The convergent evolution of mummification in stingless bees and encapsulation in honeybees is another striking example of co-evolution between insect societies and their parasites.

  5. The alternative Pharaoh approach: stingless bees mummify beetle parasites alive.

    PubMed

    Greco, Mark K; Hoffmann, Dorothee; Dollin, Anne; Duncan, Michael; Spooner-Hart, Robert; Neumann, Peter

    2010-03-01

    Workers from social insect colonies use different defence strategies to combat invaders. Nevertheless, some parasitic species are able to bypass colony defences. In particular, some beetle nest invaders cannot be killed or removed by workers of social bees, thus creating the need for alternative social defence strategies to ensure colony survival. Here we show, using diagnostic radioentomology, that stingless bee workers (Trigona carbonaria) immediately mummify invading adult small hive beetles (Aethina tumida) alive by coating them with a mixture of resin, wax and mud, thereby preventing severe damage to the colony. In sharp contrast to the responses of honeybee and bumblebee colonies, the rapid live mummification strategy of T. carbonaria effectively prevents beetle advancements and removes their ability to reproduce. The convergent evolution of mummification in stingless bees and encapsulation in honeybees is another striking example of co-evolution between insect societies and their parasites. PMID:19997899

  6. Optimal foraging for specific nutrients in predatory beetles

    PubMed Central

    Jensen, Kim; Mayntz, David; Toft, Søren; Clissold, Fiona J.; Hunt, John; Raubenheimer, David; Simpson, Stephen J.

    2012-01-01

    Evolutionary theory predicts that animals should forage to maximize their fitness, which in predators is traditionally assumed equivalent to maximizing energy intake rather than balancing the intake of specific nutrients. We restricted female predatory ground beetles (Anchomenus dorsalis) to one of a range of diets varying in lipid and protein content, and showed that total egg production peaked at a target intake of both nutrients. Other beetles given a choice to feed from two diets differing only in protein and lipid composition selectively ingested nutrient combinations at this target intake. When restricted to nutritionally imbalanced diets, beetles balanced the over- and under-ingestion of lipid and protein around a nutrient composition that maximized egg production under those constrained circumstances. Selective foraging for specific nutrients in this predator thus maximizes its reproductive performance. Our findings have implications for predator foraging behaviour and in the structuring of ecological communities. PMID:22237910

  7. Drivers of extinction: the case of Azorean beetles.

    PubMed

    Terzopoulou, Sofia; Rigal, François; Whittaker, Robert J; Borges, Paulo A V; Triantis, Kostas A

    2015-06-01

    Oceanic islands host a disproportionately high fraction of endangered or recently extinct endemic species. We report on species extinctions among endemic Azorean beetles following 97% habitat loss since AD 1440. We infer extinctions from historical and contemporary records and examine the influence of three predictors: geographical range, habitat specialization and body size. Of 55 endemic beetle species investigated (out of 63), seven can be considered extinct. Single-island endemics (SIEs) were more prone to extinction than multi-island endemics. Within SIEs restricted to native habitat, larger species were more extinction-prone. We thus show a hierarchical path to extinction in Azorean beetles: species with small geographical range face extinction first, with the larger bodied ones being the most threatened. Our study provides a clear warning of the impact of habitat loss on island endemic biotas. PMID:26063753

  8. Susceptibility of the Adult Japanese Beetle, Popillia japonica to Entomopathogenic Nematodes

    PubMed Central

    Morris, E. Erin; Grewal, Parwinder S.

    2011-01-01

    To build upon prior research demonstrating the potential of entomopathogenic nematode dissemination by infected adult Japanese beetle, Popillia japonica, we evaluated susceptibility of the adult beetles to 20 strains of Steinernema and Heterorhabditis under laboratory conditions. The nematodes were applied at a rate of 10,000 infective juveniles per 10 adult beetles in 148 mL plastic cups containing autoclaved sand and sassafras leaves as a source of food for the beetles. All strains infected the beetles and caused 55% to 95% mortality. The most virulent strains that caused 50% beetle mortality in less than 5 days included a strain of H. georgiana (D61), three strains of Steinernema sp. (R54, R45, and FC48), and two strains of S. carpocapsae (All and D60). The ability of two strains of Steinernema sp. (R45 and R54) and two strains of Heterorhabditis bacteriophora (D98 and GPS11) to infect and reproduce in the beetle was further examined to assess the potential of infected beetles to disseminate nematodes upon their death. All four strains infected and killed the beetles, but only Steinernema strains reproduced in the cadavers. We conclude that both Heterorhabditis and Steinernema strains are able to cause mortality to adult Japanese beetle, but Steinernema strains may be effectively disseminated due to their reproduction in the beetle. PMID:23431080

  9. Susceptibility of the Adult Japanese Beetle, Popillia japonica to Entomopathogenic Nematodes.

    PubMed

    Morris, E Erin; Grewal, Parwinder S

    2011-09-01

    To build upon prior research demonstrating the potential of entomopathogenic nematode dissemination by infected adult Japanese beetle, Popillia japonica, we evaluated susceptibility of the adult beetles to 20 strains of Steinernema and Heterorhabditis under laboratory conditions. The nematodes were applied at a rate of 10,000 infective juveniles per 10 adult beetles in 148 mL plastic cups containing autoclaved sand and sassafras leaves as a source of food for the beetles. All strains infected the beetles and caused 55% to 95% mortality. The most virulent strains that caused 50% beetle mortality in less than 5 days included a strain of H. georgiana (D61), three strains of Steinernema sp. (R54, R45, and FC48), and two strains of S. carpocapsae (All and D60). The ability of two strains of Steinernema sp. (R45 and R54) and two strains of Heterorhabditis bacteriophora (D98 and GPS11) to infect and reproduce in the beetle was further examined to assess the potential of infected beetles to disseminate nematodes upon their death. All four strains infected and killed the beetles, but only Steinernema strains reproduced in the cadavers. We conclude that both Heterorhabditis and Steinernema strains are able to cause mortality to adult Japanese beetle, but Steinernema strains may be effectively disseminated due to their reproduction in the beetle. PMID:23431080

  10. Patterns of functional enzyme activity in fungus farming ambrosia beetles

    PubMed Central

    2012-01-01

    Introduction In wood-dwelling fungus-farming weevils, the so-called ambrosia beetles (Curculionidae: Scolytinae and Platypodinae), wood in the excavated tunnels is used as a medium for cultivating fungi by the combined action of digging larvae (which create more space for the fungi to grow) and of adults sowing and pruning the fungus. The beetles are obligately dependent on the fungus that provides essential vitamins, amino acids and sterols. However, to what extent microbial enzymes support fungus farming in ambrosia beetles is unknown. Here we measure (i) 13 plant cell-wall degrading enzymes in the fungus garden microbial consortium of the ambrosia beetle Xyleborinus saxesenii, including its primary fungal symbionts, in three compartments of laboratory maintained nests, at different time points after gallery foundation and (ii) four specific enzymes that may be either insect or microbially derived in X. saxesenii adult and larval individuals. Results We discovered that the activity of cellulases in ambrosia fungus gardens is relatively small compared to the activities of other cellulolytic enzymes. Enzyme activity in all compartments of the garden was mainly directed towards hemicellulose carbohydrates such as xylan, glucomannan and callose. Hemicellulolytic enzyme activity within the brood chamber increased with gallery age, whereas irrespective of the age of the gallery, the highest overall enzyme activity were detected in the gallery dump material expelled by the beetles. Interestingly endo-β-1,3(4)-glucanase activity capable of callose degradation was identified in whole-body extracts of both larvae and adult X. saxesenii, whereas endo-β-1,4-xylanase activity was exclusively detected in larvae. Conclusion Similar to closely related fungi associated with bark beetles in phloem, the microbial symbionts of ambrosia beetles hardly degrade cellulose. Instead, their enzyme activity is directed mainly towards comparatively more easily accessible hemicellulose

  11. Differences in the Structure of the Gut Bacteria Communities in Development Stages of the Chinese White Pine Beetle (Dendroctonus armandi)

    PubMed Central

    Hu, Xia; Wang, Chunyan; Chen, Hui; Ma, Junning

    2013-01-01

    The Chinese white pine beetle Dendroctonus armandi Tsai and Li, is arguably the most destructive forest insect in the Qinling Mountains in Northern China. Little is known about the structure of the bacterial communities associated with D. armandi even though this wood-boring insect plays important roles in ecosystem and biological invasion processes that result in huge economic losses in pine forests. The aim of this study was to investigate the composition of the bacterial communities present in the guts of D. armandi at different developmental stages using a culture-independent method involving PCR-denaturing gradient gel electrophoresis (DGGE). Analysis of PCR-amplified 16S rRNA gene fragments of bacteria from the guts of larvae, pupae, and male and female adults revealed bacterial communities of low complexity that differed according to the developmental stage. Citrobacter spp. and Pantoea spp. predominated in larvae and adults, whereas Methylobacterium was the dominant genus at the pupal stage. The main difference between the guts of male and female adults was the greater dominance of Citrobacter in females. Previous studies suggest that the bacterial community associated with D. armandi guts may influence insect development. The data obtained in this study regarding the phylogenetic relationships and the community structure of intestinal bacteria at different developmental stages of the D. armandi life cycle contribute to our understanding of D. armandi and could aid the development of new pest control strategies. PMID:24145750

  12. Absence of antibodies to Rickettsia spp., Bartonella spp., Ehrlichia spp. and Coxiella burnetii in Tahiti, French Polynesia

    PubMed Central

    2014-01-01

    Abtract Background In the Pacific islands countries and territories, very little is known about the incidence of infectious diseases due to zoonotic pathogens. To our knowledge, human infections due to Rickettsia spp., Coxiella burnetii, Ehrlichia spp. and Bartonella spp. have never been reported in French Polynesia; and infections due to C. burnetti have been reported worldwide except in New Zealand. To evaluate the prevalence of this disease, we conducted a serosurvey among French Polynesian blood donors. Methods The presence of immunoglobulin G antibodies against R. felis, R. typhi, R. conorii, C. burnetii, B. henselae, B. quintana, and E. chaffeensis was evaluated by indirect immunofluorescence assay in sera from 472 French Polynesian blood donors collected from 2011 to 2013. In addition, 178 ticks and 36 cat fleas collected in French Polynesia were also collected and tested by polymerase chain reaction to detect Rickettsia spp., B. henselae and Ehrlichia spp. Results None of the blood donors had antibodies at a significant level against Rickettsia spp., Coxiella burnetii, Ehrlichia spp. and Bartonella spp. All tested ticks and cat fleas were PCR-negative for Rickettsia spp., B. henselae, and Ehrlichia spp. Conclusion We cannot conclude that these pathogens are absent in French Polynesia but, if present, their prevalence is probably very low. C. burnetii has been reported worldwide except in New Zealand. It may also be absent from French Polynesia. PMID:24885466

  13. Genetic engineering of Geobacillus spp.

    PubMed

    Kananavičiūtė, Rūta; Čitavičius, Donaldas

    2015-04-01

    Members of the genus Geobacillus are thermophiles that are of great biotechnological importance, since they are sources of many thermostable enzymes. Because of their metabolic versatility, geobacilli can be used as whole-cell catalysts in processes such as bioconversion and bioremediation. The effective employment of Geobacillus spp. requires the development of reliable methods for genetic engineering of these bacteria. Currently, genetic manipulation tools and protocols are under rapid development. However, there are several convenient cloning vectors, some of which replicate autonomously, while others are suitable for the genetic modification of chromosomal genes. Gene expression systems are also intensively studied. Combining these tools together with proper techniques for DNA transfer, some Geobacillus strains were shown to be valuable producers of recombinant proteins and industrially important biochemicals, such as ethanol or isobutanol. This review encompasses the progress made in the genetic engineering of Geobacillus spp. and surveys the vectors and transformation methods that are available for this genus. PMID:25659824

  14. The biology of Giardia spp.

    PubMed Central

    Adam, R D

    1991-01-01

    Gardia spp. are flagellated protozoans that parasitize the small intestines of mammals, birds, reptiles, and amphibians. The infectious cysts begin excysting in the acidic environment of the stomach and become trophozoites (the vegetative form). The trophozoites attach to the intestinal mucosa through the suction generated by a ventral disk and cause diarrhea and malabsorption by mechanisms that are not well understood. Giardia spp. have a number of unique features, including a predominantly anaerobic metabolism, complete dependence on salvage of exogenous nucleotides, a limited ability to synthesize and degrade carbohydrates and lipids, and two nuclei that are equal by all criteria that have been tested. The small size and unique sequence of G. lamblia rRNA molecules have led to the proposal that Giardia is the most primitive eukaryotic organism. Three Giardia spp. have been identified by light lamblia, G. muris, and G. agilis, but electron microscopy has allowed further species to be described within the G. lamblia group, some of which have been substantiated by differences in the rDNA. Animal models and human infections have led to the conclusion that intestinal infection is controlled primarily through the humoral immune system (T-cell dependent in the mouse model). A major immunogenic cysteine-rich surface antigen is able to vary in vitro and in vivo in the course of an infection and may provide a means of evading the host immune response or perhaps a means of adapting to different intestinal environments. Images PMID:1779932

  15. Acute toxicity of two lampricides, 3-trifluoromethyl-4-nitrophenol (TFM) and a TFM: 1% niclosamide mixture, to sea lamprey, three species of unionids, haliplid water beetles, and American eel

    USGS Publications Warehouse

    Boogaard, Michael A.; Rivera, Jane E.

    2011-01-01

    We conducted a series of toxicological treatments with 3-trifluoromethyl-4-nitrophenol (TFM) and a TFM:1% 2′,5-dichloro-4′-nitrosalicylanilide (niclosamide) mixture, two compounds used to control larval sea lamprey (Petromyzon marinus) in Great Lakes tributaries, to evaluate the acute toxicity of the lampricides to a number of nontarget species of concern. Treatments were conducted with yellow stage American eel (Anguilla rostrata), adult and larval haliplid water beetles (Haliplus spp.), a surrogate for the endangered Hungerford’s crawling water beetle (Brychius hungerfordi), and adults of three unionid species—giant floater (Pyganadon grandis), fragile papershell (Leptodea fragilis), and pink heelsplitter (Potamilus alatus). Treatments were conducted using a serial dilution system consisting of nine test concentrations and an untreated control with 20% dilution between concentrations. Narcosis was evident among giant floaters exposed to the TFM and the TFM:1% niclosamide mixture and among pink heelsplitters exposed to the TFM:1% niclosamide mixture only but mostly at concentrations greater than 2-fold that required to kill 100% of larval sea lamprey (minimum lethal concentration (MLC)). Tests with the haliplid beetle suggest the risks to the Hungerford’s crawling water beetle associated with TFM applications are minimal. Concentrations over 2-fold the sea lamprey MLC did not kill adult or larval water beetles. Preliminary behavioral observations suggest water beetles may avoid treatment by crawling out of the water. Adult water beetles exposed to TFM at 3-fold the sea lamprey MLC were observed above the water line more often than controls. The lampricide TFM was not acutely toxic to American eel. Mortalities were rare among American eel exposed to TFM concentrations up to 7-fold the observed sea lamprey MLC. Similarly, for the TFM:1% niclosamide mixture, mortalities were rare among American eel exposed to nearly 5-fold the observed sea lamprey MLC

  16. A deficiency of the homeotic complex of the beetle Tribolium

    NASA Technical Reports Server (NTRS)

    Stuart, J. J.; Brown, S. J.; Beeman, R. W.; Denell, R. E.; Spooner, B. S. (Principal Investigator)

    1991-01-01

    In Drosophila, the establishment of regional commitments along most of the anterior/posterior axis of the developing embryo depends on two clusters of homeotic genes: the Antennapedia complex (ANT-C) and the bithorax complex (BX-C). The red flour beetle has a single complex (HOM-C) representing the homologues of the ANT-C and BX-C in juxtaposition. Beetles trans-heterozygous for two particular HOM-C mutations spontaneously generate a large deficiency, presumably by an exchange within the common region of two overlapping inversions. Genetic and molecular results indicate that this deficiency spans at least the interval between the Deformed and abdominal-A homologues. In deficiency homozygous embryos, all gnathal, thoracic and abdominal segments develop antennal appendages, suggesting that a gene(s) has been deleted that acts to distinguish trunk from head. There is no evidence that beetles have a homologue of the segmentation gene fushi tarazu of similar genomic location and function. On the basis of the genetic tractability, convenient genome size and organization of Tribolium, and its relatively long phylogenetic divergence from Drosophila (>300 million years), we have integrated developmental genetic and molecular analyses of the HOM-C. We isolated about 70 mutations in the complex representing at least six complementation groups. The homeotic phenotypes of adults and lethal embryos lead us to believe that these beetle genes are homologous with the Drosophila genes indicated in Fig. 1 (see text).

  17. The Pied Piper: A Parasitic Beetle's Melodies Modulate Ant Behaviours.

    PubMed

    Di Giulio, Andrea; Maurizi, Emanuela; Barbero, Francesca; Sala, Marco; Fattorini, Simone; Balletto, Emilio; Bonelli, Simona

    2015-01-01

    Ants use various communication channels to regulate their social organisation. The main channel that drives almost all the ants' activities and behaviours is the chemical one, but it is long acknowledged that the acoustic channel also plays an important role. However, very little is known regarding exploitation of the acoustical channel by myrmecophile parasites to infiltrate the ant society. Among social parasites, the ant nest beetles (Paussus) are obligate myrmecophiles able to move throughout the colony at will and prey on the ants, surprisingly never eliciting aggression from the colonies. It has been recently postulated that stridulatory organs in Paussus might be evolved as an acoustic mechanism to interact with ants. Here, we survey the role of acoustic signals employed in the Paussus beetle-Pheidole ant system. Ants parasitised by Paussus beetles produce caste-specific stridulations. We found that Paussus can "speak" three different "languages", each similar to sounds produced by different ant castes (workers, soldiers, queen). Playback experiments were used to test how host ants respond to the sounds emitted by Paussus. Our data suggest that, by mimicking the stridulations of the queen, Paussus is able to dupe the workers of its host and to be treated as royalty. This is the first report of acoustic mimicry in a beetle parasite of ants. PMID:26154266

  18. The redbay ambrosia beetle, Xyleborus glabratus: A threat to avocado

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Laurel wilt (LW) is a disease caused by Raffaelea sp., a fungal symbiont associated with the recently-introduced redbay ambrosia beetle (RAB), Xyleborus glabratus. Impact of RAB as a vector of the disease to avocado is a threat to avocado production in the U.S. Since 2006, we have a) tested suscepti...

  19. Faunistics of Tiger Beetles (Coleoptera: Cicindelidae) from Pakistan

    PubMed Central

    Rafi, Muhammad Ather; Jürgen, Wiesner; Matin, Muhammad Abdul; Zia, Ahmed; Sultan, Amir; Naz, Falak

    2010-01-01

    The present biogeographic distribution of tiger beetle fauna is an attempt to register all modern taxa from Pakistan. It includes 55 taxa under 14 genera and 11 subgenera. Three species, Cylindera (Eriodera) albopunctata (Chaudoir 1852), Cicindela viridilabris (Chaudoir 1852) and Neocollyris (Neocollyris) redtenbacheri (Horn 1894) are recorded from Pakistan for the first time. PMID:20874597

  20. PATCH EXPLOITATION BY FEMALE RED FLOUR BEETLES, TRIBOLIUM CASTANEUM

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The red flour beetle, Tribolium castaneum (Herbst) (Coleoptera:Tenebrionidae) has had a long association with human stored food and can be a major pest in anthropogenic structures used for the processing and storage of grain-based products. Anthropogenic structures are fragmented landscapes characte...

  1. Down and Dirty with Dung Beetles: Innovating Teaching and Research

    ERIC Educational Resources Information Center

    Kelk, Joee

    2009-01-01

    A lecturer at the University of Queensland has developed an excellent model to give students an authentic, hands-on experience of ecological research. The first-year university students have been learning about biodiversity as they carry out the task of beetle identification. This partnership gives the students a chance to contribute to an…

  2. Soybean N relations and bean leaf beetle larval feeding damage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was conducted to determine if soil fertilizer nitrogen (N) input treatments would impact the bean leaf beetle (Cerotoma trifurcate Förster) biology. The experiment was conducted in the soybean [Glycine max (L.) Merr.] phase of a long-term corn (Zea mays L.) and soybean rotation study. S...

  3. The genome of the model beetle and pest Tribolium castaneum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tribolium castaneum is a representative of earth’s most numerous eukaryotic order, a powerful model organism for the study of generalized insect development, and also an important pest of stored agricultural products. We describe its genome sequence here. This omnivorous beetle has evolved an abil...

  4. Chemical ecology of the redbay ambrosia beetle (Xyleborus glabratus)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The redbay ambrosia beetle, Xyleborus glabratus, is an exotic wood-boring pest first detected in the U.S. in 2002 near Savannah, Georgia. Females of X. glabratus vector a newly-described fungal pathogen (Raffaelea lauricola) that causes laurel wilt, a lethal disease of trees in the family Lauraceae...

  5. "Sea Turtles" and "Ground Beetles" [Land Turtles] Should Shake Hands

    ERIC Educational Resources Information Center

    Kan, Da

    2004-01-01

    This article talks about those who come back to China after studies abroad, characterized as "sea turtles" and those scholars who have remained in China to arduously pursue their studies, characterized as "ground beetles". " Sea turtles" are those foreign MBAs and Ph.D.s who are objects of praise, admiration and are naturally more eye-catching…

  6. Elytra boost lift, but reduce aerodynamic efficiency in flying beetles

    PubMed Central

    Johansson, L. Christoffer; Engel, Sophia; Baird, Emily; Dacke, Marie; Muijres, Florian T.; Hedenström, Anders

    2012-01-01

    Flying insects typically possess two pairs of wings. In beetles, the front pair has evolved into short, hardened structures, the elytra, which protect the second pair of wings and the abdomen. This allows beetles to exploit habitats that would otherwise cause damage to the wings and body. Many beetles fly with the elytra extended, suggesting that they influence aerodynamic performance, but little is known about their role in flight. Using quantitative measurements of the beetle's wake, we show that the presence of the elytra increases vertical force production by approximately 40 per cent, indicating that they contribute to weight support. The wing-elytra combination creates a complex wake compared with previously studied animal wakes. At mid-downstroke, multiple vortices are visible behind each wing. These include a wingtip and an elytron vortex with the same sense of rotation, a body vortex and an additional vortex of the opposite sense of rotation. This latter vortex reflects a negative interaction between the wing and the elytron, resulting in a single wing span efficiency of approximately 0.77 at mid downstroke. This is lower than that found in birds and bats, suggesting that the extra weight support of the elytra comes at the price of reduced efficiency. PMID:22593097

  7. CUTICULAR HYDROCARBONS OF THE SUNFLOWER BEETLE, ZYGOGRAMMA EXCLAMATIONIS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hydrocarbons were the major lipid class on the cuticular surface of adults, nymphs, and eggs of the sunflower beetle, Zygogramma exclamationis, characterized by gas chromatography-mass spectrometry. Minor amounts of wax ester from 40 to 48 carbon atoms in size were only detected in larvae. The hyd...

  8. Beauveria bassiana Infection of Eggs of Stored-Product Beetles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Beauveria bassiana (Balsamo) Vuillemin was tested under maximum challenge conditions with a dose of estimated dose of 1.1x105 conidia/mm2 for its effects on eggs of four of the major beetle pests of stored grain and grain products. When ambient relative humidity (RH) was 92%, hatch of fungus-treat...

  9. Mating disruption of oriental beetle with sprayable sex pheromone formulation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The feasibility of mating disruption in the oriental beetle (OB), Anomala orientalis, with microencapsulated sprayable formulations of the major component of its sex pheromone, was evaluated in turfgrass. The effect of the applications was measured by monitoring male OB captures in pheromone-baited ...

  10. Cost of flight and the evolution of stag beetle weaponry.

    PubMed

    Goyens, Jana; Van Wassenbergh, Sam; Dirckx, Joris; Aerts, Peter

    2015-05-01

    Male stag beetles have evolved extremely large mandibles in a wide range of extraordinary shapes. These mandibles function as weaponry in pugnacious fights for females. The robust mandibles of Cyclommatus metallifer are as long as their own body and their enlarged head houses massive, hypertrophied musculature. Owing to this disproportional weaponry, trade-offs exist with terrestrial locomotion: running is unstable and approximately 40% more costly. Therefore, flying is most probably essential to cover larger distances towards females and nesting sites. We hypothesized that weight, size and shape of the weaponry will affect flight performance. Our computational fluid dynamics simulations of steady-state models (without membrane wings) reveal that male stag beetles must deliver 26% more mechanical work to fly with their heavy weaponry. This extra work is almost entirely required to carry the additional weight of the massive armature. The size and shape of the mandibles have only negligible influence on flight performance (less than 0.1%). This indicates that the evolution of stag beetle weaponry is constrained by its excessive weight, not by the size or shape of the mandibles and head as such. This most probably paved the way for the wide diversity of extraordinary mandible morphologies that characterize the stag beetle family. PMID:25878126