Science.gov

Sample records for bench-scale filtration testing

  1. Bench-Scale Filtration Testing in Support of the Pretreatment Engineering Platform (PEP)

    SciTech Connect

    Billing, Justin M.; Daniel, Richard C.; Kurath, Dean E.; Peterson, Reid A.

    2009-09-28

    Pacific Northwest National Laboratory (PNNL) has been tasked by Bechtel National Inc. (BNI) on the River Protection Project-Hanford Tank Waste Treatment and Immobilization Plant (RPP-WTP) project to perform research and development activities to resolve technical issues identified for the Pretreatment Facility (PTF). The Pretreatment Engineering Platform (PEP) was designed, constructed and operated as part of a plan to respond to issue M12, “Undemonstrated Leaching Processes.” The PEP is a 1/4.5-scale test platform designed to simulate the WTP pretreatment caustic leaching, oxidative leaching, ultrafiltration solids concentration, and slurry washing processes. The PEP testing program specifies that bench-scale testing is to be performed in support of specific operations, including filtration, caustic leaching, and oxidative leaching.

  2. Bench Scale Saltcake Dissolution Test Report

    SciTech Connect

    BECHTOLD, D.B.; PACQUET, E.A.

    2000-12-06

    A potential scenario for retrieving saltcake from single shell tanks is the ''Rainbird{reg_sign} sprinkler'' method. Water is distributed evenly across the surface of the saltcake and allowed to percolate by gravity through the waste. The salt dissolves in the water, forming a saturated solution. The saturated liquid is removed by a saltwell pump situated near the bottom of the tank. By this method, there is never a large inventory of liquid in the tank that could pose a threat of leakage. There are many variables or factors that can influence the hydrodynamics of this retrieval process. They include saltcake porosity; saltwell pumping rate; salt dissolution chemistry; factors that could promote flow channeling (e.g. tank walls, dry wells, inclusions or discontinuities in the saltcake); method of water distribution; plug formation due to crystal formations or accumulation of insoluble solids. A brief literature search indicates that very little experimental data exist on these aspects of saltcake dissolution (Wiersma 1996, 1997). The tests reported here were planned (Herting, 2000) to provide preliminary data and information for planning future, scaled-up tests of the sprinkler method.

  3. Bench-scale cross flow filtration of Tank S-107 sludge slurries and Tank C-107 supernatant

    SciTech Connect

    Geeting, J.G.H.; Reynolds, B.A.

    1996-10-01

    Hanford tank waste filtration experiments were conducted using a bench-scale cross flow filter on 8 wt%, 1.5 wt%, and 0.05 wt% Tank S- 107 sludge slurries and on Tank C-107 supernatant. For comparison, two simulants each with solids loadings of 8 wt% and 0.05 wt% were also tested. The purpose of the tests was to determine the efficacy of cross flow filtration on slurries of various solids loadings. -In addition, filtrate flux dependency on axial velocity and transmembrane pressure was sought so that conditions for future experiments might be better selected. The data gathered are compared to the simulants and three cross flow filtration models. A two- parameter central composite design which tested. transmembrane pressure from 5 to 40 psig and axial Velocity from 3 to 9 ft/s was used for all feeds. The cross flow filter effectively removed solids from the liquid, as 19 of 20 filtrate samples had particle concentrations below the resolution limit of the photon correlation spectrometer used in the Hanford Radiocolloid Laboratory. Radiochemical analysis indicate that all filtrate samples were below Class A waste classification standards for 9OSr and transuranics.

  4. Continuous bench-scale tests to assess METHOXYCOAL process performance

    SciTech Connect

    Knight, R.A.

    1991-01-01

    Laboratory-scale research conducted at Southern Illinois University at Carbondale (SIUC) has shown that coal pyrolysis in the presence of CH{sub 4} and small quantities of O{sub 2} (the METHOXYCOAL process) can produce high yields of liquids and valuable chemicals compared to conventional pyrolysis. The addition of MgO, coal ash, and clays have been shown to further enhance coal conversion. The goal of this two-year project is to build upon that laboratory research by conducting continuous bench-scale tests at IGT. Tests are being conducted with IBC-101 coal under CH{sub 4}/O{sub 2} blends with and without added coal ash, MgO, and/or clays, at temperatures and pressures up to 1000{degrees}F and 200 psig. These tests will provide data to select preferred operating conditions for chemicals production from high-sulfur Illinois coals.

  5. Measure Twice, Build Once: Bench-Scale Testing to Evaluate Bioretention Media Design

    EPA Science Inventory

    The paper discusses the utility of conducting bench-scale testing on selected bioretention media and media amendments to validate hydrologic properties before installing media and amendments in larger pilot- or full-scale rain garden installations. The bench-scale study conclude...

  6. NOx controlled combustion in a bench scale test facility

    SciTech Connect

    Greul, U.; Ruediger, H.; Spliethoff, H.; Hein, K.R.G.

    1996-12-31

    The Stuttgart University`s investigations of in-furnace DeNOx technologies with regard to their NOx reduction efficiency are carried out using an electrically heated bench-scale test facility to evaluate the effect of different process parameters independently. The DeNOx technologies of air and fuel staging have been demonstrated to be effective control techniques to reduce NOx from stationary sources. For a wide range of brown and hard coals from Europe and Australia, test runs with air-staged combustion have been carried out. For these coals the investigated parameters were temperature (1,000--1,400 C), stoichiometry (1.15--0.55), and residence time (1--6 s) in the fuel rich primary zone. With increasing temperatures and residence times in fuel-rich conditions in air-staged combustion NOx emissions below 300 mg/m{sup 3} can be achieved even with hard coals. For a few brown coals NOx values lower than 100 mg/m{sup 3} are possible. The burnout leads to restrictions in large scale applications with hard coals as primary fuel. For one of the hard coals as primary fuel and different gaseous mixtures as secondary fuel, experiments with fuel-staged combustion were carried out. Taking the same range of temperature and stoichiometry as in air staging, the residence time in the reduction zone was varied between 0.1 and 2 s. The same effect of temperature as in air staging can be seen in fuel-staged combustion. The higher emissions at high temperatures and unstaged combustion are changed in lower emissions at air ratios lower than 0.9 in the reduction zone. The deviation between different gaseous reburn fuels was less than 5% at all investigated temperatures and stoichiometries. The achievable NOx emissions of approx. 200 mg/m{sup 3} do not depend on the primary fuel as in the case of air-staged combustion.

  7. Bench-Scale Testing of the Micronized Magnetite Process

    SciTech Connect

    Edward R. Torak; Peter J. Suardini

    1997-11-01

    A recent emphasis of the Department of Energy's (DOE's), Coal Preparation Program has been the development of high-efficiency technologies that offer near-term, low-cost improvements in the ability of coal preparation plants to address problems associated with coal fines. In 1992, three cost-shared contracts were awarded to industry, under the first High-Efficiency Preparation (HEP I) solicitation. All three projects involved bench-scale testing of various emerging technologies, at the Federal Energy Technology Center*s (FETC*s), Process Research Facility (PRF). The first HEP I project, completed in mid-1993, was conducted by Process Technology, Inc., with the objective of developing a computerized, on-line system for monitoring and controlling the operation of a column flotation circuit. The second HEP I project, completed in mid-1994, was conducted by a team led by Virginia Polytechnic Institute to test the Mozely Multi-Gravity Separator in combination with the Microcel Flotation Column, for improved removal of mineral matter and pyritic sulfur from fine coal. The last HEP I project, of which the findings are contained in this report, was conducted by Custom Coals Corporation to evaluate and advance a micronized-magnetite-based, fine-coal cycloning technology. The micronized-magnetite coal cleaning technology, also know as the Micro-Mag process, is based on widely used conventional dense-medium cyclone applications, in that it utilizes a finely ground magnetite/water suspension as a separating medium for cleaning fine coal, by density, in a cyclone. However, the micronized-magnetite cleaning technology differs from conventional systems in several ways: ! It utilizes significantly finer magnetite (about 5 to 10 micron mean particle size), as compared to normal mean particle sizes of 20 microns. ! It can effectively beneficiate coal particles down to 500M in size, as compared to the most advanced, existing conventional systems that are limited to a particle bottom size of about 28M - 100 M. ! Smaller diameter cyclones, 4 to 10 inches, are used to provide the higher G-force required to separate the finer feed coal. ! Cyclone feed pressures up to 10 times greater than those used in conventional cleaning systems are employed to enhance the separating forces.

  8. Measure Twice, Build Once: Bench-Scale Testing to Evaluate Bioretention Media Design - slides

    EPA Science Inventory

    The oral presentation will be at the EWRI International LID Conference in San Francisco, on April 11-14, 2010. The slides discuss the utility of conducting bench-scale testing on selected bioretention media and media amendments to validate hydrologic properties before installing...

  9. 100 Area soil washing bench-scale test procedures

    SciTech Connect

    Freeman, H.D.; Gerber, M.A.; Mattigod, S.V.; Serne, R.J.

    1993-03-01

    This document describes methodologies and procedures for conducting soil washing treatability tests in accordance with the 100 Area Soil Washing Treatability Test Plan (DOE-RL 1992, Draft A). The objective of this treatability study is to evaluate the use of physical separation systems and chemical extraction methods as a means of separating chemically and radioactively contaminated soil fractions from uncontaminated soil fractions. These data will be primarily used for determining feasibility of the individual unit operations and defining the requirements for a system, or systems, for pilot-scale testing.

  10. Goethite Bench-scale and Large-scale Preparation Tests

    SciTech Connect

    Josephson, Gary B.; Westsik, Joseph H.

    2011-10-23

    The Hanford Waste Treatment and Immobilization Plant (WTP) is the keystone for cleanup of high-level radioactive waste from our nation's nuclear defense program. The WTP will process high-level waste from the Hanford tanks and produce immobilized high-level waste glass for disposal at a national repository, low activity waste (LAW) glass, and liquid effluent from the vitrification off-gas scrubbers. The liquid effluent will be stabilized into a secondary waste form (e.g. grout-like material) and disposed on the Hanford site in the Integrated Disposal Facility (IDF) along with the low-activity waste glass. The major long-term environmental impact at Hanford results from technetium that volatilizes from the WTP melters and finally resides in the secondary waste. Laboratory studies have indicated that pertechnetate ({sup 99}TcO{sub 4}{sup -}) can be reduced and captured into a solid solution of {alpha}-FeOOH, goethite (Um 2010). Goethite is a stable mineral and can significantly retard the release of technetium to the environment from the IDF. The laboratory studies were conducted using reaction times of many days, which is typical of environmental subsurface reactions that were the genesis of this new process. This study was the first step in considering adaptation of the slow laboratory steps to a larger-scale and faster process that could be conducted either within the WTP or within the effluent treatment facility (ETF). Two levels of scale-up tests were conducted (25x and 400x). The largest scale-up produced slurries of Fe-rich precipitates that contained rhenium as a nonradioactive surrogate for {sup 99}Tc. The slurries were used in melter tests at Vitreous State Laboratory (VSL) to determine whether captured rhenium was less volatile in the vitrification process than rhenium in an unmodified feed. A critical step in the technetium immobilization process is to chemically reduce Tc(VII) in the pertechnetate (TcO{sub 4}{sup -}) to Tc(Iv)by reaction with the ferrous ion, Fe{sup 2+}-Fe{sup 2+} is oxidized to Fe{sup 3+} - in the presence of goethite seed particles. Rhenium does not mimic that process; it is not a strong enough reducing agent to duplicate the TcO{sub 4}{sup -}/Fe{sup 2+} redox reactions. Laboratory tests conducted in parallel with these scaled tests identified modifications to the liquid chemistry necessary to reduce ReO{sub 4}{sup -} and capture rhenium in the solids at levels similar to those achieved by Um (2010) for inclusion of Tc into goethite. By implementing these changes, Re was incorporated into Fe-rich solids for testing at VSL. The changes also changed the phase of iron that was in the slurry product: rather than forming goethite ({alpha}-FeOOH), the process produced magnetite (Fe{sub 3}O{sub 4}). Magnetite was considered by Pacific Northwest National Laboratory (PNNL) and VSL to probably be a better product to improve Re retention in the melter because it decomposes at a higher temperature than goethite (1538 C vs. 136 C). The feasibility tests at VSL were conducted using Re-rich magnetite. The tests did not indicate an improved retention of Re in the glass during vitrification, but they did indicate an improved melting rate (+60%), which could have significant impact on HLW processing. It is still to be shown whether the Re is a solid solution in the magnetite as {sup 99}Tc was determined to be in goethite.

  11. The Application of a Genetic Algorithm to Estimate Material Properties for Fire Modeling from Bench-Scale Fire Test Data 

    E-print Network

    Lautenberger, Chris; Rein, Guillermo; Fernandez-Pello, Carlos

    A methodology based on an automated optimization technique that uses a genetic algorithm (GA) is developed to estimate the material properties needed for CFD-based fire growth modeling from bench-scale fire test data. ...

  12. Electrolytic Reduction of Spent Oxide Fuel – Bench-Scale Test Results

    SciTech Connect

    S. D. Herrmann; S. X. Li; M. F. Simpson

    2005-10-01

    A series of tests were performed to demonstrate the electrolytic reduction of spent light water reactor fuel at bench-scale in a hot cell at the Idaho National Laboratory Materials and Fuels Complex (formerly Argonne National Laboratory - West). The process involves the conversion of oxide fuel to metal by electrolytic means, which would then enable subsequent separation and recovery of actinides via existing electrometallurgical technologies, i.e., electrorefining. Four electrolytic reduction runs were performed at bench scale using ~500 ml of molten LiCl -- 1 wt% Li2O electrolyte at 650 ºC. In each run, ~50 g of crushed spent oxide fuel was loaded into a permeable stainless steel basket and immersed into the electrolyte as the cathode. A spiral wound platinum wire was immersed into the electrolyte as the anode. When a controlled electric current was conducted through the anode and cathode, the oxide fuel was reduced to metal in the basket and oxygen gas was evolved at the anode. Salt samples were extracted before and after each electrolytic reduction run and analyzed for fuel and fission product constituents. The fuel baskets following each run were sectioned and sampled, revealing an extent of uranium oxide reduction in excess of 98%.

  13. Optimization of limestone sizing for CFB combustors: Results of pilot plant and bench-scale testing

    SciTech Connect

    Alliston, M.; Edvardsson, C.; Wu, S.; Probst, S.

    1994-12-31

    A grant to study the performance of limestones in a Circulating Fluidized Bed Combustor was obtained in 1991 from the Pennsylvania Energy Development Authority (PEDA) by Tampella Power Corporation (TPC). The overall objective of this PEDA project was to carry out a systematic pilot plant tests at TPC`s pilot plant in Williamsport, Pennsylvania, in systematic order to identify ways of improving sulfur capture and limestone utilization through better control of the size distribution and residence time of the limestone particles in the furnace. It was also an objective to determine if bench scale testing could be of value in predicting CFB sorbent behavior. The pilot plant and bench test results were incorporated into an empirical Correlation which accounts for the size distribution and residence time of solids in CFB boiler.

  14. Bench-scale screening tests for a boiling sodium-potassium alloy solar receiver

    SciTech Connect

    Moreno, J.B.; Moss, T.A.

    1993-06-01

    Bench-scale tests were carried out in support of the design of a second-generation 75-kW{sub t} reflux pool-boiler solar receiver. The receiver will be made from Haynes Alloy 230 and will contain the sodium-potassium alloy NaK-78. The bench-scale tests used quartz-lamp-heated boilers to screen candidate boiling-stabilization materials and methods at temperatures up to 750{degree}C. Candidates that provided stable boiling were tested for hot-restart behavior. Poor stability was obtained with single 1/4-inch diameter patches of powdered metal hot-press-sintered onto the wetted side of the heat-input area. Laser-drilled and electric-discharge-machined cavities in the heated surface also performed poorly. Small additions of xenon, and heated-surface tilt out of the vertical dramatically improved poor boiling stability; additions of helium or oxygen did not. The most stable boiling was obtained when the entire heat-input area was covered by a powdered-metal coating. The effect of heated-area size was assessed for one coating: at low incident fluxes, when even this coating performed poorly, increasing the heated-area size markedly improved boiling stability. Good hot-restart behavior was not observed with any candidate, although results were significantly better with added xenon in a boiler shortened from 3 to 2 feet. In addition to the screening tests, flash-radiography imaging of metal-vapor bubbles during boiling was attempted. Contrary to the Cole-Rohsenow correlation, these bubble-size estimates did not vary with pressure; instead they were constant, consistent with the only other alkali metal measurements, but about 1/2 their size.

  15. Performance study of protective clothing against hot water splashes: from bench scale test to instrumented manikin test.

    PubMed

    Lu, Yehu; Song, Guowen; Wang, Faming

    2015-03-01

    Hot liquid hazards existing in work environments are shown to be a considerable risk for industrial workers. In this study, the predicted protection from fabric was assessed by a modified hot liquid splash tester. In these tests, conditions with and without an air spacer were applied. The protective performance of a garment exposed to hot water spray was investigated by a spray manikin evaluation system. Three-dimensional body scanning technique was used to characterize the air gap size between the protective clothing and the manikin skin. The relationship between bench scale test and manikin test was discussed and the regression model was established to predict the overall percentage of skin burn while wearing protective clothing. The results demonstrated strong correlations between bench scale test and manikin test. Based on these studies, the overall performance of protective clothing against hot water spray can be estimated on the basis of the results of the bench scale hot water splashes test and the information of air gap size entrapped in clothing. The findings provide effective guides for the design and material selection while developing high performance protective clothing. PMID:25349371

  16. Bench-Scale Trace Contaminant Testing of SA9T at Ambient and Reduced Pressure Conditions

    NASA Technical Reports Server (NTRS)

    Broerman, Craig; Sweterlitsch, Jeff

    2011-01-01

    A principal concern for air revitalization technology in a closed loop system is the capability to control carbon dioxide (CO2) and humidity (H2O). An amine based sorbent technology, SA9T, has been evaluated for use in this application and several programs are evaluating it for use in both cabin and space suit applications. While the CO2 and H2O performance of the sorbent has been tested extensively, the question of how trace contaminants impact performance requires further evaluation. This paper presents experimental results of bench-scale SA9T testing that was performed under a variety of test conditions and with several different trace contaminants. Tests were conducted to determine if the capacity of the SA9T media to sufficiently remove CO2 and H2O is compromised after exposure to a fully saturated trace contaminant at ambient conditions. Tests also were conducted to evaluate the performance of SA9T at ambient conditions in a continuous 30-day test with a mixed trace contaminant stream. In addition, testing also evaluated the impact of CO2 and H2O removal performance at suit loop pressures (29.6 KPa/4.3 psia) during cyclic operation with a constant inlet contaminant load.

  17. Synthetic lightweight aggregate from cool water slag: Bench-scale confirmation tests

    SciTech Connect

    Choudhry, V.; Hadley, S.R. )

    1990-05-01

    This report analyzes the potential for production of synthetic lightweight aggregate (SLA) from a Texaco coal gasification solid residue. The objective of the project was to develop a replacement for conventional lightweight aggregates typically derived from expanded clays and shales or natural lightweight aggregates. The sequence of tests performed to develop SLA from slag began with the crushing of samples of slag, followed by either extrusion or pelletization. The level of clay binder required for sufficient aggregate strength was evaluated. Using a tube furnace, expansion characteristics were studied as a function of temperature and residence time. Next, a large batch of SLA was produced in a muffle furnace and used to form concrete test cylinders. The unit weight of the resultant concrete was 105 lb/ft{sup 3}, with a compressive strength of 3100 psi, which meets the requirements specified in ASTM C 330 for lightweight aggregate of a comparable density. When the same sequence of tests was performed using a slag from which the bulk of the char had been removed, the concrete test cylinders showed an improved relationship between strength and density. Based on the results of bench-scale tests and the similarity to conventional LWA production, the conceptual design of an SLA processing plant was formulated. A comparative estimate of operating costs was prepared by analyzing data from plants using clays and shales to produce lightweight aggregates. 24 refs., 15 figs., 17 tabs.

  18. EMERGING TECHNOLOGY REPORT: BENCH-SCALE TESTING OF PHOTOLYSIS, CHEMICAL OXIDATION AND BIODEGRADATION OF PCB CONTAMINATED SOILS AND PHOTOLYSIS OF TCDD CONTAMINATED SOILS

    EPA Science Inventory

    This report presents the results of bench-scale testing on degradation of 2,3,7,8-TCDD using W photolysis, and PCB degradation using UV photolysis, chemical oxidation and biological treatment. Bench-scale tests were conducted to investigate the feasibility of a two-phase detoxifi...

  19. 100 Area soil washing: Bench scale tests on 116-F-4 pluto crib soil

    SciTech Connect

    Field, J.G.

    1994-06-10

    The Pacific Northwest Laboratory conducted a bench-scale treatability study on a pluto crib soil sample from 100 Area of the Hanford Site. The objective of this study was to evaluate the use of physical separation (wet sieving), treatment processes (attrition scrubbing, and autogenous surface grinding), and chemical extraction methods as a means of separating radioactively-contaminated soil fractions from uncontaminated soil fractions. The soil washing treatability study was conducted on a soil sample from the 116-F-4 Pluto Crib that had been dug up as part of an excavation treatability study. Trace element analyses of this soil showed no elevated concentrations above typically uncontaminated soil background levels. Data on the distribution of radionuclide in various size fractions indicated that the soil-washing tests should be focused on the gravel and sand fractions of the 116-F-4 soil. The radionuclide data also showed that {sup 137}Cs was the only contaminant in this soil that exceeded the test performance goal (TPG). Therefore, the effectiveness of subsequent soil-washing tests for 116-F-4 soil was evaluated on the basis of activity attenuation of {sup 137}Cs in the gravel- and sand-size fractions.

  20. Bench-scale reactor tests of low temperature, catalytic gasification of wet industrial wastes

    SciTech Connect

    Elliot, D.C.; Baker, E.G.; Butner, R.S.; Sealock, L.J. Jr. )

    1993-02-01

    Bench-scale reactor tests are under way at Pacific Northwest Laboratory to develop a low temperature, catalytic gasification system. The system, licensed under the trade name Thermochemical Environmental Energy System (TEES[reg sign]), is designed for to a wide variety of feedstocks ranging from dilute organics in water to waste sludges from food processing. The current research program is focused on the use of a continuous feed, tubular reactor. The catalyst is nickel metal on an inert support. Typical results show that feedstocks such as solutions of 2 percent para-cresol or 5 percent and 10 percent lactose in water or cheese whey can be processed to [gt] 99 percent reduction of chemical oxygen demand (COD) at a rate of up to 2 L/hr. The estimated residence lime is less than 5 min at 360C and 3,000 psig, not including 1 to 2 min required in the preheating zone of the reactor. The liquid hourly space velocity has been varied from 1.8 to 2.9 L feedstock/L catalyst/hr depending on the feedstock. The product fuel gas contains 40 percent to 55 percent methane, 35 percent to 50 percent carbon dioxide, and 5 percent to 10 percent hydrogen with as much as 2 percent ethane, but less than 0.1 percent ethylene or carbon monoxide, and small amounts of higher hydrocarbons. The byproduct water stream carries residual organics amounting to less than 500 mg/L COD.

  1. Bench-scale reactor tests of low-temperature, catalytic gasification of wet, industrial wastes

    SciTech Connect

    Elliott, D.C.; Neuenschwander, G.G.; Baker, E.G.; Butner, R.S.; Sealock, L.J.

    1990-04-01

    Bench-scale reactor tests are under way at Pacific Northwest Laboratory to develop a low-temperature, catalytic gasification system. The system, licensed under the trade name Thermochemical Environmental Energy System (TEES{reg sign}), is designed for to a wide variety of feedstocks ranging from dilute organics in water to waste sludges from food processing. The current research program is focused on the use of a continuous-feed, tubular reactor. The catalyst is nickel metal on an inert support. Typical results show that feedstocks such as solutions of 2% para-cresol or 5% and 10% lactose in water or cheese whey can be processed to >99% reduction of chemical oxygen demand (COD) at a rate of up to 2 L/hr. The estimated residence time is less than 5 min at 360{degree}C and 3000 psig, not including 1 to 2 min required in the preheating zone of the reactor. The liquid hourly space velocity has been varied from 1.8 to 2.9 L feedstock/L catalyst/hr depending on the feedstock. The product fuel gas contains 40% to 55% methane, 35% to 50% carbon dioxide, and 5% to 10% hydrogen with as much as 2% ethane, but less than 0.1% ethylene or carbon monoxide, and small amounts of higher hydrocarbons. The byproduct water stream carries residual organics amounting to less than 500 mg/L COD. 9 refs., 1 fig., 4 tabs.

  2. Results of bench-scale plasma system testing in support of the Plasma Hearth Process

    SciTech Connect

    Leatherman, G.L.; Cornelison, C.; Frank, S.

    1996-10-01

    The Plasma Hearth Process (PHP) is a high-temperature process that destroys hazardous organic components and stabilizes the radioactive components and hazardous metals in a leach-resistant vitreous slag waste form. The PHP technology development program is targeted at mixed waste that cannot be easily treated by conventional means. For example, heterogeneous debris, which may contain hazardous organics, toxic metals, and radionuclides, is difficult to characterize and cannot be treated with conventional thermal, chemical, or physical treatment methods. A major advantage of the PHP over other plasma processes is its ability to separate nonradioactive, non-hazardous metals from the non-metallic and radioactive components which are contained in the vitreous slag. The overall PHP program involves the design, fabrication, and operation of test hardware to demonstrate and certify that the PHP concept is viable for DOE waste treatment. The program involves bench-scale testing of PHP equipment in radioactive service, as well as pilot-scale demonstration of the PHP concept using nonradioactive, surrogate test materials. The fate of secondary waste streams is an important consideration for any technology considered for processing mixed waste. The main secondary waste stream generated by the PHP is flyash captured by the fabric- filter baghouse. The PHP concept is that flyash generated by the process can, to a large extent, be treated by processing this secondary waste stream in the PHP. Prior to the work presented in the paper, however, the PHP project has not quantitatively demonstrated the ability to treat PHP generated flyash. A major consideration is the quantity of radionuclides and RCRA-regulated metals in the flyash that can be retained the resultant waste form.

  3. Steam Reforming, 6-in. Bench-Scale Design and Testing Project -- Technical and Functional Requirements Description

    SciTech Connect

    Losinski, Sylvester John; Marshall, Douglas William

    2002-08-01

    Feasibility studies and technology development work are currently being performed on several processes to treat radioactive liquids and solids currently stored at the Idaho Nuclear Technology and Engineering Center (INTEC), located within the Idaho National Engineering and Environmental Laboratory (INEEL). These studies and development work will be used to select a treatment process for treatment of the radioactive liquids and solids to meet treatment milestones of the Settlement Agreement between the Department of Energy and the State of Idaho. One process under consideration for treating the radioactive liquids and solids, specifically Sodium-Bearing Waste (SBW) and tank heel solids, is fluid bed steam reforming (FBSR). To support both feasibility and development studies a bench-scale FBSR is being designed and constructed. This report presents the technical and functional requirements, experimental objectives, process flow sheets, and equipment specifications for the bench-scale FBSR.

  4. SUMMARY PLAN FOR BENCH-SCALE REFORMER AND PRODUCT TESTING TREATABILITY STUDIES USING HANFORD TANK WASTE

    SciTech Connect

    DUNCAN JB

    2010-08-19

    This paper describes the sample selection, sample preparation, environmental, and regulatory considerations for shipment of Hanford radioactive waste samples for treatability studies of the FBSR process at the Savannah River National Laboratory and the Pacific Northwest National Laboratory. The U.S. Department of Energy (DOE) Hanford tank farms contain approximately 57 million gallons of wastes, most of which originated during the reprocessing of spent nuclear fuel to produce plutonium for defense purposes. DOE intends to pre-treat the tank waste to separate the waste into a high level fraction, that will be vitrified and disposed of in a national repository as high-level waste (HLW), and a low-activity waste (LAW) fraction that will be immobilized for on-site disposal at Hanford. The Hanford Waste Treatment and Immobilization Plant (WTP) is the focal point for the treatment of Hanford tank waste. However, the WTP lacks the capacity to process all of the LAW within the regulatory required timeframe. Consequently, a supplemental LAW immobilization process will be required to immobilize the remainder of the LAW. One promising supplemental technology is Fluidized Bed Steam Reforming (FBSR) to produce a sodium-alumino-silicate (NAS) waste form. The NAS waste form is primarily composed of nepheline (NaAlSiO{sub 4}), sodalite (Nas[AlSiO{sub 4}]{sub 6}Cl{sub 2}), and nosean (Na{sub 8}[AlSiO{sub 4}]{sub 6}SO{sub 4}). Semivolatile anions such as pertechnetate (TcO{sub 4}{sup -}) and volatiles such as iodine as iodide (I{sup -}) are expected to be entrapped within the mineral structures, thereby immobilizing them (Janzen 2008). Results from preliminary performance tests using surrogates, suggests that the release of semivolatile radionuclides {sup 99}Tc and volatile {sup 129}I from granular NAS waste form is limited by Nosean solubility. The predicted release of {sup 99}Tc from the NAS waste form at a 100 meters down gradient well from the Integrated Disposal Facility (IDF) was found to be comparable to immobilized low-activity waste glass waste form in the initial supplemental LAW treatment technology risk assessment (Mann 2003). To confirm this hypothesis, DOE is funding a treatability study where three actual Hanford tank waste samples (containing both {sup 99}Tc and {sup 125}I) will be processed in Savannah River National Laboratory's (SRNL) Bench-Scale Reformer (BSR) to form the mineral product, similar to the granular NAS waste form, that will then be subject to a number of waste form qualification tests. In previous tests, SRNL have demonstrated that the BSR product is chemically and physically equivalent to the FBSR product (Janzen 2005). The objective of this paper is to describe the sample selection, sample preparation, and environmental and regulatory considerations for treatability studies of the FBSR process using Hanford tank waste samples at the SNRL. The SNRL will process samples in its BSR. These samples will be decontaminated in the 222-S Laboratory to remove undissolved solids and selected radioisotopes to comply with Department of Transportation (DOT) shipping regulations and to ensure worker safety by limiting radiation exposure to As Low As Reasonably Achievable (ALARA). These decontamination levels will also meet the Nuclear Regulatory Commission's (NRC's) definition of low activity waste (LAW). After the SNRL has processed the tank samples to a granular mineral form, SRNL and Pacific Northwest National Laboratory (PNNL) will conduct waste form testing on both the granular material and monoliths prepared from the granular material. The tests being performed are outlined in Appendix A.

  5. Bench scale testing of micronized magnetite beneficiation. Quarterly technical progress report 3, July--September, 1993

    SciTech Connect

    Anast, K.

    1993-10-29

    This project is aimed at development of a process that, by using ultra fine magnetite suspension, would expand the application of heavy media separation technology to processing fine, {minus}28 mesh coals. These coal fines, produced during coal mining and crushing, are separated in the conventional coal preparation plant and generally impounded in a tailings pond. Development of an economic process for processing these fines into marketable product will expand the utilization of coal for power production in an environmentally acceptable and economically viable way. This process has been successfully researched at PETC but has not been studied on a continuous bench-scale unit, which is a necessary step towards commercial development of this promising technology. The goal of the program is to investigate the technology in a continuous circuit at a reasonable scale to provide a design basis for larger plants and a commercial feasibility data.

  6. Bench scale testing of micronized magnetite beneficiation. Quarterly technical progress report No. 1, April--June 1993

    SciTech Connect

    Anast, K.

    1993-07-23

    This project is aimed at development of a process that, by using ultra fine magnetite suspension, would expand the application of heavy media separation technology to processing fine, {minus}28 mesh coals. These coal fines, produced during coal mining and crushing, are separated in the conventional coal preparation plant and generally impounded in a tailings pond. Development of an economic process for processing these fines into marketable product will expand the utilization of coal for power production in an environmentally acceptable and economically viable way. This process has been successfully researched at PETC but has not been studied on a continuous bench-scale unit, which is a necessary step towards commercial development of this promising technology. The goal of the program is to investigate the technology in a continuous circuit at a reasonable scale to provide a design basis for larger plants and a commercial feasibility data. The project is divided into eight tasks which include design, construction, operation and testing, sample analysis, evaluation, and decommissioning. Coal will be received from three different mines and processed through the bench scale{backslash}e plant. Testing has been split into three phases: (1) Component Testing which will examine each of the major components independently, optimize, and compare performance to lab scale tests, (2) Integrated Testing will provide evaluation of the components operating as an integrated system, and (3) Extended Tests will utilize coal from each of the three mines to determine ash and sulfur removal on each candidate feedstock. Accomplishments for the quarter are presented for following tasks: project and test planning, and engineering and design.

  7. DESTRUCTION OF TETRAPHENYLBORATE IN TANK 48H USING WET AIR OXIDATION BATCH BENCH SCALE AUTOCLAVE TESTING WITH ACTUAL RADIOACTIVE TANK 48H WASTE

    SciTech Connect

    Adu-Wusu, K; Paul Burket, P

    2009-03-31

    Wet Air Oxidation (WAO) is one of the two technologies being considered for the destruction of Tetraphenylborate (TPB) in Tank 48H. Batch bench-scale autoclave testing with radioactive (actual) Tank 48H waste is among the tests required in the WAO Technology Maturation Plan. The goal of the autoclave testing is to validate that the simulant being used for extensive WAO vendor testing adequately represents the Tank 48H waste. The test objective was to demonstrate comparable test results when running simulated waste and real waste under similar test conditions. Specifically: (1) Confirm the TPB destruction efficiency and rate (same reaction times) obtained from comparable simulant tests, (2) Determine the destruction efficiency of other organics including biphenyl, (3) Identify and quantify the reaction byproducts, and (4) Determine off-gas composition. Batch bench-scale stirred autoclave tests were conducted with simulated and actual Tank 48H wastes at SRNL. Experimental conditions were chosen based on continuous-flow pilot-scale simulant testing performed at Siemens Water Technologies Corporation (SWT) in Rothschild, Wisconsin. The following items were demonstrated as a result of this testing. (1) Tetraphenylborate was destroyed to below detection limits during the 1-hour reaction time at 280 C. Destruction efficiency of TPB was > 99.997%. (2) Other organics (TPB associated compounds), except biphenyl, were destroyed to below their respective detection limits. Biphenyl was partially destroyed in the process, mainly due to its propensity to reside in the vapor phase during the WAO reaction. Biphenyl is expected to be removed in the gas phase during the actual process, which is a continuous-flow system. (3) Reaction byproducts, remnants of MST, and the PUREX sludge, were characterized in this work. Radioactive species, such as Pu, Sr-90 and Cs-137 were quantified in the filtrate and slurry samples. Notably, Cs-137, boron and potassium were shown as soluble as a result of the WAO reaction. (4) Off-gas composition was measured in the resulting gas phase from the reaction. Benzene and hydrogen were formed during the reaction, but they were reasonably low in the off-gas at 0.096 and 0.0063 vol% respectively. Considering the consistency in replicating similar test results with simulated waste and Tank 48H waste under similar test conditions, the results confirm the validity of the simulant for other WAO test conditions.

  8. Pilot- and bench-scale testing of faecal indicator bacteria survival in marine beach sand near point sources

    USGS Publications Warehouse

    Mika, K.B.; Imamura, G.; Chang, C.; Conway, V.; Fernandez, G.; Griffith, J.F.; Kampalath, R.A.; Lee, C.M.; Lin, C.-C.; Moreno, R.; Thompson, S.; Whitman, R.L.; Jay, J.A.

    2009-01-01

    Aim: Factors affecting faecal indicator bacteria (FIB) and pathogen survival/persistence in sand remain largely unstudied. This work elucidates how biological and physical factors affect die-off in beach sand following sewage spills. Methods and Results: Solar disinfection with mechanical mixing was pilot-tested as a disinfection procedure after a large sewage spill in Los Angeles. Effects of solar exposure, mechanical mixing, predation and/or competition, season, and moisture were tested at bench scale. First-order decay constants for Escherichia coli ranged between -0??23 and -1??02 per day, and for enterococci between -0??5 and -1??0 per day. Desiccation was a dominant factor for E. coli but not enterococci inactivation. Effects of season were investigated through a comparison of experimental results from winter, spring, and fall. Conclusions: Moisture was the dominant factor controlling E. coli inactivation kinetics. Initial microbial community and sand temperature were also important factors. Mechanical mixing, common in beach grooming, did not consistently reduce bacterial levels. Significance and Impact of the Study: Inactivation rates are mainly dependent on moisture and high sand temperature. Chlorination was an effective disinfection treatment in sand microcosms inoculated with raw influent. ?? 2009 The Society for Applied Microbiology.

  9. Integrated low emissions cleanup system for coal fueled turbines Phase III bench-scale testing and evaluation

    SciTech Connect

    Newby, R.A.; Alvin, M.A.; Bachovchin, D.M.

    1995-08-01

    The United States Department of Energy, Morgantown Energy Research Center (DOE/METC), is sponsoring the development of coal-fired turbine technologies such as Pressurized Fluidized Bed Combustion (PFBC), coal Gasification Combined Cycles (GCC), and Direct Coal-Fired Turbines (DCFT). A major technical development challenge remaining for coal-fired turbine systems is high-temperature gas cleaning to meet environmental emissions standards, as well as to ensure acceptable turbine life. The Westinghouse Electric Corporation, Science & Technology Center, has evaluated an Integrated Low Emissions Cleanup (ILEC) concept that has been configured to meet this technical challenge. This ceramic hot gas filter (HGF), ILEC concept controls particulate emissions, while simultaneously contributing to the control of sulfur and alkali vapor contaminants in high-temperature, high-pressure, fuel gases or combustion gases. This document reports on the results of Phase III of the ILEC evaluation program, the final phase of the program. In Phase III, a bench-scale ILEC facility has been tested to (1) confirm the feasibility of the ILEC concept, and (2) to resolve some major filter cake behavior issues identified in PFBC, HGF applications.

  10. Continuous bench-scale tests to assess METHOXYCOAL process performance. Final technical report, September 1, 1991--August 31, 1992

    SciTech Connect

    Knight, R.A.; Carty, R.H.

    1992-12-31

    Laboratory-scale research conducted at Southern Illinois University at Carbondale (SIUC) has shown that coal pyrolysis in the presence of CH{sub 4}/O{sub 2} in a 97:3 mole ratio (the METHOXYCOAL process) can produce high yields of liquids and valuable chemical feedstocks, particularly phenols, cresols, and xylenols (PCX). The addition of magnesia, coal ash, or clays have been shown to further enhance coal conversion to these chemicals. The goal of this two-year project was to build upon that laboratory research by conducting continuous bench-scale tests at IGT. Tests were conducted with IBC-101 and IBC-105 coals under N{sub 2}, CH{sub 4}, and CH{sub 4}/O{sub 2} blends, with and without mineral additives, at temperatures and pressures up to 1000{degree}F and 200 psig. These tests have provided data valuable to further development efforts on the process. In the first year, fluidized-bed tests were conducted using inert bed diluents (coke and sand) to retard agglomeration. PCX yields of 0.99 wt% maf coal were achieved in CH{sub 4} atmosphere, tripling the yield in N, atmosphere, while overall liquid yields were 18--20 wt% maf in either atmosphere. However, control of caking was difficult in spite of a very high bed dilution ratio of 4.5:1. During the second year, agglomeration was controlled by slurry impregnation of the coal with coal ash, magnesia, or montmorillonite at levels as low as 10 wt%. Thirteen continuous tests were conducted in 2-inch fluidized-bed and moving-bed reactors at test conditions of 900{degree}--1000{degree}F and 120 psig.

  11. Bench-scale testing of novel high-temperature desulfurization sorbents: Final report

    SciTech Connect

    Gangwal, S.K.; Harkins, S.M.; Stogner, J.M.; Woods, M.C.; Rogers, T.N.

    1988-12-01

    Extrudates of regenerable mixed-metal oxide sorbents including zinc ferrite, copper-modified zinc ferrite, zinc titanate, copper aluminate, copper-iron aluminate, and copper manganate were prepared and tested for their potential to remove hydrogen sulfide (H/sub 2/S) from coal gasifier gas in a high-temperature high-pressure (HTHP) fixed-bed reactor. The zinc containing sorbents were found to be more promising than those containing combinations of copper, aluminum, iron, and manganese. Reductions in H/sub 2/S concentration were achieved depending on sorbent, reactor temperature, and steam concentration. The copper-modified zinc ferrite sorbent reduced the H/sub 2/S concentration to less than 1 ppmv at up to 1100/degree/F with 20 volume % steam in the gas. The zinc ferrite sorbent showed no apparent loss in capacity over 15 sulfidation-regeneration cycles but underwent significant strength reduction in a coal-derived gas with 15% or less steam due to soot formation. Zinc titanate exhibited excellent strength and capacity retention at steam levels as low as 5% and temperatures as high as 1350/degree/F. 13 refs., 64 figs., 75 tabs.

  12. BENCH SCALE SALTSTONE PROCESS DEVELOPMENT MIXING STUDY

    SciTech Connect

    Cozzi, A.; Hansen, E.

    2011-08-03

    The Savannah River National Laboratory (SRNL) was requested to develop a bench scale test facility, using a mixer, transfer pump, and transfer line to determine the impact of conveying the grout through the transfer lines to the vault on grout properties. Bench scale testing focused on the effect the transfer line has on the rheological property of the grout as it was processed through the transfer line. Rheological and other physical properties of grout samples were obtained prior to and after pumping through a transfer line. The Bench Scale Mixing Rig (BSMR) consisted of two mixing tanks, grout feed tank, transfer pump and transfer hose. The mixing tanks were used to batch the grout which was then transferred into the grout feed tank. The contents of the feed tank were then pumped through the transfer line (hose) using a progressive cavity pump. The grout flow rate and pump discharge pressure were monitored. Four sampling stations were located along the length of the transfer line at the 5, 105 and 205 feet past the transfer pump and at 305 feet, the discharge of the hose. Scaling between the full scale piping at Saltstone to bench scale testing at SRNL was performed by maintaining the same shear rate and total shear at the wall of the transfer line. The results of scaling down resulted in a shorter transfer line, a lower average velocity, the same transfer time and similar pressure drops. The condition of flow in the bench scale transfer line is laminar. The flow in the full scale pipe is in the transition region, but is more laminar than turbulent. The resulting plug in laminar flow in the bench scale results in a region of no-mixing. Hence mixing, or shearing, at the bench scale should be less than that observed in the full scale, where this plug is non existent due to the turbulent flow. The bench scale tests should be considered to be conservative due to the highly laminar condition of flow that exists. Two BSMR runs were performed. In both cases, wall shearing was shown to reduce the rheological properties of the grout as it was processed through the transfer line. Samples taken at the static feed tank showed that gelling impacted the rheological properties of the grout before it was fed into the pump and transfer line. A comparison of the rheological properties of samples taken at the feed tank and transfer line discharge indicated shearing of the grout was occurring in the transfer line. Bench scale testing of different mixing methods with three different salt solutions showed that method of mixing influences the rheological properties of the grouts. The paddle blade mixing method of the salt solution used for the BMSR testing provided comparable rheological properties of the grout prepared in the BMSR after 14 minutes of processing, B3. The paddle blade mixing method can be used to represent BMSR results and mixing time can be adjusted to represent larger scale mixing.

  13. Development, testing, and demonstration of an optimal fine coal cleaning circuit. Task 5: Evaluation of bench-scale test results and equipment selection for in-plant pilot tests

    SciTech Connect

    1995-12-14

    The overall objective of this research effort is to improve the efficiency of fine coal flotation in preparation plants above that of currently used conventional cells. In addition to evaluating single-stage operation of four selected advanced flotation devices, the project will also evaluate them in two-stage configurations. The project is being implemented in two phases. Phase 1 comprises bench-scale testing of the flotation units, and Phase 2 comprises in-plant, proof-of-concept (POC), pilot-scale testing of selected configurations at the Cyprus Emerald preparation plant. The Task 5 report presents the findings of the Phase 1 bench-scale test results and provides the basis for equipment selection for Phase 2. Four advanced flotation technologies selected for bench-scale testing are: Jameson cell; Outokumpu HG tank cell; packed column; and open column. In addition to testing all four of the cells in single-stage operation, the Jameson and Outokumpu cells were tested as candidate first-stage cells because of their propensity for rapid attachment of coal particles with air bubbles and low capital and operating costs. The column cells were selected as candidate second-stage cells because of their high-efficiency separation of low-ash products from high-ash feed coals. 32 figs., 72 tabs.

  14. Foaming phenomenon in bench-scale anaerobic digesters.

    PubMed

    Siebels, Amanda M; Long, Sharon C

    2013-04-01

    The Madison Metropolitan Sewerage District (The District) in Madison, Wisconsin has been experiencing seasonal foaming in their anaerobic biosolids digesters, which has occurred from mid-November to late June for the past few years. The exact cause(s) of foaming is unknown. Previous research findings are unclear as to whether applications of advanced anaerobic digestion processes reduce the foaming potential of digesters. The object of this study was to investigate how configurations of thermophilic and acid phase-thermophilic anaerobic digestion would affect foaming at the bench-scale level compared to single stage mesophilic digestion for The District. Bench-scale anaerobic digesters were fed with a 4 to 4.5% by dry weight of solids content blend of waste activated sludge (WAS) and primary sludge from The District. Foaming potential was monitored using Alka-Seltzer and aeration foaming tests. The bench-scale acid phase-thermophilic digester had a higher foaming potential than the bench-scale mesophilic digester. These results indicate that higher temperatures increase the foaming potential of the bench-scale anaerobic digesters. The bench-scale acid phase-thermophilic digesters had a greater percent (approximately 5 to 10%) volatile solids destruction and a greater percent (approximately 5 to 10%) total solids destruction when compared to the bench-scale mesophilic digester. Overall, for the full-scale foaming experienced by The District, it appears that adding an acid phase or switching to thermophilic digestion would not alleviate The District's foaming issues. PMID:23697241

  15. CESIUM REMOVAL FROM TANKS 241-AN-103 & 241-SX-105 & 241-AZ-101 & 241AZ-102 COMPOSITE FOR TESTING IN BENCH SCALE STEAM REFORMER

    SciTech Connect

    DUNCAN JB; HUBER HJ

    2011-04-21

    This report documents the preparation of three actual Hanford tank waste samples for shipment to the Savannah River National Laboratory (SRNL). Two of the samples were dissolved saltcakes from tank 241-AN-103 (hereafter AN-103) and tank 241-SX-105 (hereafter SX-105); one sample was a supernate composite from tanks 241-AZ-101 and 241-AZ-102 (hereafter AZ-101/102). The preparation of the samples was executed following the test plans LAB-PLAN-10-00006, Test Plan for the Preparation of Samples from Hanford Tanks 241-SX-105, 241-AN-103, 241-AN-107, and LAB-PLN-l0-00014, Test Plan for the Preparation of a Composite Sample from Hanford Tanks 241-AZ-101 and 241-AZ-102 for Steam Reformer Testing at the Savannah River National Laboratory. All procedural steps were recorded in laboratory notebook HNF-N-274 3. Sample breakdown diagrams for AN-103 and SX-105 are presented in Appendix A. The tank samples were prepared in support of a series of treatability studies of the Fluidized Bed Steam Reforming (FBSR) process using a Bench-Scale Reformer (BSR) at SRNL. Tests with simulants have shown that the FBSR mineralized waste form is comparable to low-activity waste glass with respect to environmental durability (WSRC-STI-2008-00268, Mineralization of Radioactive Wastes by Fluidized Bed Steam Reforming (FBSR): Comparisons to Vitreous Waste Forms and Pertinent Durability Testing). However, a rigorous assessment requires long-term performance data from FBSR product formed from actual Hanford tank waste. Washington River Protection Solutions, LLC (WRPS) has initiated a Waste Form Qualification Program (WP-5.2.1-2010-001, Fluidized Bed Steam Reformer Low-level Waste Form Qualification) to gather the data required to demonstrate that an adequate FBSR mineralized waste form can be produced. The documentation of the selection process of the three tank samples has been separately reported in RPP-48824, Sample Selection Process for Bench-Scale Steam Reforming Treatability Studies Using Hanford Waste Samples.

  16. CESIUM REMOVAL FROM TANKS 241-AN-103 & 241-SX-105 & 241-AZ-101/102 COMPOSITE FOR TESTING IN BENCH SCALE STEAM REFORMER

    SciTech Connect

    DUNCAN JB; HUBER HJ

    2011-06-08

    This report documents the preparation of three actual Hanford tank waste samples for shipment to the Savannah River National Laboratory (SRNL). Two of the samples were dissolved saltcakes from tank 241-AN-103 (hereafter AN-103) and tank 241-SX-105 (hereafter SX-105); one sample was a supernate composite from tanks 241-AZ-101 and 241-AZ-102 (hereafter AZ-101/102). The preparation of the samples was executed following the test plans LAB-PLAN-10-00006, Test Plan for the Preparation of Samples from Hanford Tanks 241-SX-105, 241-AN-103, 241-AN-107, and LAB-PLN-10-00014, Test Plan for the Preparation of a Composite Sample from Hanford Tanks 241-AZ-101 and 241-AZ-102 for Steam Reformer Testing at the Savannah River National Laboratory. All procedural steps were recorded in laboratory notebook HNF-N-274 3. Sample breakdown diagrams for AN-103 and SX-105 are presented in Appendix A. The tank samples were prepared in support of a series of treatability studies of the Fluidized Bed Steam Reforming (FBSR) process using a Bench-Scale Reformer (BSR) at SRNL. Tests with simulants have shown that the FBSR mineralized waste form is comparable to low-activity waste glass with respect to environmental durability (WSRC-STI-2008-00268, Mineralization of Radioactive Wastes by Fluidized Bed Steam Reforming (FBSR): Comparisons to Vitreous Waste Forms and Pertinent Durability Testing). However, a rigorous assessment requires long-term performance data from FB SR product formed from actual Hanford tank waste. Washington River Protection Solutions, LLC (WRPS) has initiated a Waste Form Qualification Program (WP-S.2.1-20 1 0-00 1, Fluidized Bed Steam Reformer Low-level Waste Form Qualification) to gather the data required to demonstrate that an adequate FBSR mineralized waste form can be produced. The documentation of the selection process of the three tank samples has been separately reported in RPP-48824, 'Sample Selection Process for Bench-Scale Steam Reforming Treatability Studies Using Hanford Waste Samples.'

  17. Bench-scale testing of the micronized magnetite process. Fifth quarterly technical progress report, July 1995--September 1995

    SciTech Connect

    1995-10-11

    The major focus of the project, which is scheduled to occur through January 1996, will be to install and test a 500{number_sign}/hr. fine coal-cleaning circuit at DOE`s Process Research Facility (PRF), located at the Pittsburgh Energy Technology Center (PETC). The circuit will utilize an extremely fine, micron-sized magnetite media and small diameter cyclones to make efficient density separations on minus-28-Mesh coal. The main accomplishments of Custom Coals and the project subcontractors, during this period, included: continued purchasing small equipment and supplies for the circuit; procured a 46-ton sample of Lower Kittanning ``B`` Seam coal; completed eight primary integrated tests (PIT {number_sign}1--{number_sign}8) using the Pittsburgh No. 8 seam and the Grade-K and Grade-L magnetites; completed classifying cyclone tests using the Pittsburgh No. 8 and Lower Kittanning seams using a larger (0.5 inch) apex; completed data analysis on the four Grade-K magnetite ``closed-loop`` heavy-media cyclone tests; obtained a finer third grade of magnetite (Grade-M) with a MVD of approximately 3 microns; presented paper on the Micro- Mag project at the Coal Preparation, Utilization and Environmental Control Contractors Conference and a Poster Board Paper on the Micro- Mag Project at the Pittsburgh Coal Conference; and developed a method to modify all 5 Micro-Mag magnetic separators to approximately one third of their present size to better approximate commercial operation.

  18. High-temperature-staged fluidized-bed combustion (HITS), bench scale experimental test program conducted during 1980. Final report

    SciTech Connect

    Anderson, R E; Jassowski, D M; Newton, R A; Rudnicki, M L

    1981-04-01

    An experimental program was conducted to evaluate the process feasibility of the first stage of the HITS two-stage coal combustion system. Tests were run in a small (12-in. ID) fluidized bed facility at the Energy Engineering Laboratory, Aerojet Energy Conversion Company, Sacramento, California. The first stage reactor was run with low (0.70%) and high (4.06%) sulfur coals with ash fusion temperatures of 2450/sup 0/ and 2220/sup 0/F, respectively. Limestone was used to scavenge the sulfur. The produced low-Btu gas was burned in a combustor. Bed temperature and inlet gas percent oxygen were varied in the course of testing. Key results are summarized as follows: the process was stable and readily controllable, and generated a free-flowing char product using coals with low (2220/sup 0/F) and high (2450/sup 0/F) ash fusion temperatures at bed temperatures of at least 1700/sup 0/ and 1800/sup 0/F, respectively; the gaseous product was found to have a total heating value of about 120 Btu/SCF at 1350/sup 0/F, and the practicality of cleaning the hot product gas and delivering it to the combustor was demonstrated; sulfur capture efficiencies above 80% were demonstrated for both low and high sulfur coals with a calcium/sulfur mole ratio of approximately two; gasification rates of about 5,000 SCF/ft/sup 2/-hr were obtained for coal input rates ranging from 40 to 135 lbm/hr, as required to maintain the desired bed temperatures; and the gaseous product yielded combustion temperatures in excess of 3000/sup 0/F when burned with preheated (900/sup 0/F) air. The above test results support the promise of the HITS system to provide a practical means of converting high sulfur coal to a clean gas for industrial applications. Sulfur capture, gas heating value, and gas production rate are all in the range required for an effective system. Planning is underway for additional testing of the system in the 12-in. fluid bed facility, including demonstration of the second stage char burnup reactor.

  19. TEST OF FABRIC FILTRATION MATERIALS

    EPA Science Inventory

    The report describes pilot scale and laboratory tests of U.S. and Polish woven baghouse fabrics. Cotton, polyester, aramid, and glass fabrics were tested using cement, flyash, coal, and talc dusts at loadings of about 10 g/cu m, filtration velocities of 60 and 80 cu m/sq m, and a...

  20. COMPARING RBF WITH BENCH-SCALE CONVENTIONAL TREATMENT FOR PRECURSOR REDUCTION

    EPA Science Inventory

    The reduction of disinfection by-product (DBP) precursors upon riverbank filtration (RBF) at three drinking water utilities in the mid-Western United States was compared with that obtained using a bench-scale conventional treatment train on the corresponding river waters. The riv...

  1. BENCH-SCALE RECOVERY OF LEAD USING AND ELECTRO- MEMBRANE/CHELATION PROCESS

    EPA Science Inventory

    This report presents the results of a bench-scale treatability test to investigate key process parameters influencing an innovative chelation electrodeposition process for recovery of lead from contaminated sons. thylenediamine tetraacetic acid (EDTA) and diethylenetriamine penta...

  2. BENCH-SCALE RECOVERY OF LEAD USING AN ELECTROMEMBRANE/CHELATION PROCESS

    EPA Science Inventory

    This report presents the results of a bench-scale treatability test to investigate key process parameters influencing an innovative chelation electrodeposition process for recovery of lead from contaminated sons. thylenediamine tetraacetic acid (EDTA) and diethylenetriamine penta...

  3. EVALUATION OF A BENCH-SCALE DRY FLUE GAS DESULFURIZATION SYSTEM FOR SCREENING POTENTIAL REAGENTS AND OPERATING CONDITIONS

    EPA Science Inventory

    The paper discusses two series of bench-scale dry flue gas desulfurization (FGD) laboratory tests, the primary objective of which was to evaluate the ability of a bench-scale dry FGD system to screen potential reagents and operating conditions in support of testing at larger pilo...

  4. Filtration Understanding: FY10 Testing Results and Filtration Model Update

    SciTech Connect

    Daniel, Richard C.; Billing, Justin M.; Burns, Carolyn A.; Peterson, Reid A.; Russell, Renee L.; Schonewill, Philip P.; Shimskey, Rick W.

    2011-04-04

    This document completes the requirements of Milestone 2-4, Final Report of FY10 Testing, discussed in the scope of work outlined in the EM31 task plan WP-2.3.6-2010-1. The focus of task WP 2.3.6 is to improve the U.S. Department of Energy’s (DOE’s) understanding of filtration operations for high-level waste (HLW) to improve filtration and cleaning efficiencies, thereby increasing process throughput and reducing the Na demand (through acid neutralization). Developing the cleaning/backpulsing requirements will produce much more efficient operations for both the Hanford Tank Waste Treatment and Immobilization Plant (WTP) and the Savannah River Site (SRS), thereby significantly increasing throughput by limiting cleaning cycles. The scope of this work is to develop the understanding of filter fouling to allow developing this cleaning/backpulsing strategy.

  5. Bench-scale co-processing

    SciTech Connect

    Piasecki, C.A.; Gatsis, J.G.

    1992-02-19

    The objective of this contract is to extend and optimize UOP's single-stage, slurry-catalyzed co-processing scheme. The particular emphasis is one evaluating alternative and disposable slurry-catalyst systems. During the current quarter, Lloydminster vacuum resid was processed without the presence of coal. The objective of this study was to evaluate the manner in which the resid is upgraded at high-severity conditions to help understand the function of the resid during co-processing. This report coves Bench-Scale Runs 30 to 34. In Runs 30 to 34, Lloydminster vacuum resid was processed without the presence of coal using a 0.05 wt % molybdenum-based catalyst at 465{degrees}C.

  6. Bench-Scale Demonstration of Hot-Gas Desulfurization Technology

    SciTech Connect

    Portzer, Jeffrey W.; Gangwal, Santosh K.

    1997-07-01

    Prior to the current project, development of the DSRP was done in a laboratory setting, using synthetic gas mixtures to simulate the regeneration off-gas and coal gas feeds. The objective of the current work is to further the development of zinc titanate fluidized-bed desulfurization (ZTFBD) and the DSRP for hot-gas cleanup by testing with actual coal gas. The objectives of this project are to: (1) Develop and test an integrated, skid-mounted, bench-scale ZTFBD/DSRP reactor system with a slipstream of actual coal gas; (2) Test the bench-scale DSRP over an extended period with a slipstream of actual coal gas to quantify the degradation in performance, if any, caused by the trace contaminants present in coal gas (including heavy metals, chlorides, fluorides, and ammonia); (3) Expose the DSRP catalyst to actual coal gas for extended periods and then test its activity in a laboratory reactor to quantify the degradation in performance, if any, caused by static exposure to the trace contaminants in coal gas; (4) Design and fabricate a six-fold larger-scale DSRP reactor system for future slipstream testing; (5) Further develop the fluidized-bed DSRP to handle high concentrations (up to 14 percent) of SO{sub 2} that are likely to be encountered when pure air is used for regeneration of desulfurization sorbents; and (6) Conduct extended field testing of the 6X DSRP reactor with actual coal gas and high concentrations of SO{sub 2}. The accomplishment of the first three objectives--testing the DSRP with actual coal gas, integration with hot-gas desulfurization, and catalyst exposure testing--was described previously (Portzer and Gangwal, 1994, 1995; Portzer et al., 1996). This paper summarizes the results of previous work and describes the current activities and plans to accomplish the remaining objectives.

  7. Bench-scale study of direct calcination of raffinate waste

    SciTech Connect

    Bundy, R.D.; Alderfer, R.B.

    1987-09-30

    Bench-scale tests of the direct calcination process for Portsmouth were conducted using batch pot calcination of simulated and actual raffinate wastes. These studies included investigation of the evaporation step needed to concentrate the raffinate before calcination. Tests were conducted at calcination temperatures of 600, 700, 1000, and 1200/sup 0/F with two levels of evaporative concentration before calcination at 1000/sup 0/F. Evaporation only tests were also made. Performance of the bench-scale system was excellent. A calcination temperature of 715/sup 0/F indicated that 80 to 100% of the Tc was retained in the calcined solids, while all of the nitrates were decomposed to oxides. With calcination temperatures of greater than or equal to 1000/sup 0/F, part of the Tc escaped from the calcination pot to the scrubber. Below 700/sup 0/F, not all of the nitrates were decomposed to oxides. Most of the U remained in the calcined solids for calcination temperatures of less than or equal to 1000/sup 0/F. The mass of solids remaining after calcination was 4 to 5% of the original raffinate for calcination temperatures from 700 to 1000/sup 0/F. Flow rate through the off-gas treatment system was variable. The water scrubber had a good removal efficiency for nitrate and most metals, but not for uranium. The trapping efficiency of the limestone trap for nitrate was low. Flowsheet studies indicate that enough U would pass through the scrubber and chemical traps to cause an unacceptably high release of radioactivity if the assay of the uranium exceeded 33%. A small HEPA filter after the limestone chemical traps is recommended to reduce U emissions. A flowsheet was developed for a full-scale process for the direct calcination of raffinate waste.

  8. BENCH-SCALE EVALUATION OF CALCIUM SORBENTS FOR ACID GAS EMISSION CONTROL

    EPA Science Inventory

    Calcium sorbents for acid gas emission control were evaluated for effectiveness in removing SO2/HCl and SO2/NO from simulated incinerator and boiler flue gases. All tests were conducted in a bench-scale reactor (fixed-bed) simulating fabric filter conditions in an acid gas remova...

  9. Bench-Scale Evaluation Of Chemically Bonded Phosphate Ceramic Technology To Stabilize Mercury Waste Mixtures

    EPA Science Inventory

    This bench-scale study was conducted to evaluate the stabilization of mercury (Hg) and mercuric chloride-containing surrogate test materials by the chemically bonded phosphate ceramics technology. This study was performed as part of a U.S. EPA program to evaluate treatment and d...

  10. MULTICOMPONENT AEROSOL DYNAMICS OF THE PB-O2 SYSTEM IN A BENCH SCALE FLAME INCINERATOR

    EPA Science Inventory

    A study was carried out to understand the formation and growth of lead particles in a flame incinerator. A bench scale flame incinerator was used to perform controlled experiments with lead acetate as a test compound. A dilution probe in conjunction with real-time aerosol instrum...

  11. Bench-scale Kinetics Study of Mercury Reactions in FGD Liquors

    SciTech Connect

    Gary Blythe; John Currie; David DeBerry

    2008-03-31

    This document is the final report for Cooperative Agreement DE-FC26-04NT42314, 'Kinetics Study of Mercury Reactions in FGD Liquors'. The project was co-funded by the U.S. DOE National Energy Technology Laboratory and EPRI. The objective of the project has been to determine the mechanisms and kinetics of the aqueous reactions of mercury absorbed by wet flue gas desulfurization (FGD) systems, and develop a kinetics model to predict mercury reactions in wet FGD systems. The model may be used to determine optimum wet FGD design and operating conditions to maximize mercury capture in wet FGD systems. Initially, a series of bench-top, liquid-phase reactor tests were conducted and mercury species concentrations were measured by UV/visible light spectroscopy to determine reactant and byproduct concentrations over time. Other measurement methods, such as atomic absorption, were used to measure concentrations of vapor-phase elemental mercury, that cannot be measured by UV/visible light spectroscopy. Next, a series of bench-scale wet FGD simulation tests were conducted. Because of the significant effects of sulfite concentration on mercury re-emission rates, new methods were developed for operating and controlling the bench-scale FGD experiments. Approximately 140 bench-scale wet FGD tests were conducted and several unusual and pertinent effects of process chemistry on mercury re-emissions were identified and characterized. These data have been used to develop an empirically adjusted, theoretically based kinetics model to predict mercury species reactions in wet FGD systems. The model has been verified in tests conducted with the bench-scale wet FGD system, where both gas-phase and liquid-phase mercury concentrations were measured to determine if the model accurately predicts the tendency for mercury re-emissions. This report presents and discusses results from the initial laboratory kinetics measurements, the bench-scale wet FGD tests, and the kinetics modeling efforts.

  12. TESTS OF FABRIC FILTRATION MATERIALS

    EPA Science Inventory

    The report describes laboratory and pilot scale testing of filter fabrics. Tests were made on flat specimens and on bags. Fifteen styles of fabrics (made from cotton, polyester, aramid, or glass) were tested, using cement, coal, or talc dusts. Collection efficiencies and pressure...

  13. 100 Area groundwater biodenitrification bench-scale treatability study procedures

    SciTech Connect

    Peyton, B.M.; Martin, K.R.

    1993-05-01

    This document describes the methodologies and procedures for conducting the bench-scale biodenitrification treatability tests at Pacific Northwest Laboratory{sup a} (PNL). Biodenitrification is the biological conversion of nitrate and nitrite to gaseous nitrogen. The tests will use statistically designed batch studies to determine if biodenitrification can reduce residual nitrate concentrations to 45 mg/L, the current maximum contaminant level (MCL). These tests will be carried out in anaerobic flasks with a carbon source added to demonstrate nitrate removal. At the pilot scale, an incremental amount of additional carbon will be required to remove the small amount of oxygen present in the incoming groundwater. These tests will be conducted under the guidance of Westinghouse Hanford Company (WHC) and the 100-HR-3 Groundwater Treatability Test Plan (DOE/RL-92-73) and the Treatability Study Program Plan (DOE/RL-92-48) using groundwater from 100-HR-3. In addition to the procedures, requirements for safety, quality assurance, reporting, and schedule are given. Appendices include analytical procedures, a Quality Assurance Project Plan, a Health and Safety Plan, and Applicable Material Data Safety Sheets. The procedures contained herein are designed specifically for the 100-HR-3 Groundwater Treatability Test Plan, and while the author believes that the methods described herein are scientifically valid, the procedures should not be construed or mistaken to be generally applicable to any other treatability study.

  14. Surfactant studies for bench-scale operation

    NASA Technical Reports Server (NTRS)

    Hickey, Gregory S.; Sharma, Pramod K.

    1992-01-01

    A phase 2 study was initiated to investigate surfactant-assisted coal liquefaction, with the objective of quantifying the enhancement in liquid yields and product quality. This publication covers the first quarter of work. The major accomplishments were: the refurbishment of the high-pressure, high-temperature reactor autoclave, the completion of four coal liquefaction runs with Pittsburgh #8 coal, two each with and without sodium lignosulfonate surfactant, and the development of an analysis scheme for the product liquid filtrate and filter cake. Initial results at low reactor temperatures show that the addition of the surfactant produces an improvement in conversion yields and an increase in lighter boiling point fractions for the filtrate.

  15. A bench-scale biotreatability methodology to evaluate field bioremediation

    SciTech Connect

    Saberiyan, A.G.; MacPherson, J.R. Jr.; Moore, R.; Pruess, A.J.; Andrilenas, J.S.

    1995-12-31

    A bench-scale biotreatability methodology was designed to assess field bioremediation of petroleum contaminated soil samples. This methodology was performed successfully on soil samples from more than 40 sites. The methodology is composed of two phases, characterization and experimentation. The first phase is physical, chemical, and biological characterization of the contaminated soil sample. This phase determines soil parameters, contaminant type, presence of indigenous contaminant-degrading bacteria, and bacterial population size. The second phase, experimentation, consists of a respirometry test to measure the growth of microbes indirectly (via generation of CO{sub 2}) and the consumption of their food source directly (via contaminant loss). Based on a Monod kinetic analysis, the half-life of a contaminant can be calculated. Abiotic losses are accounted for based on a control test. The contaminant molecular structure is used to generate a stoichiometric equation. The stoichiometric equation yields a theoretical ratio for mg of contaminant degraded per mg of CO{sub 2} produced. Data collected from the respirometry test are compared to theoretical values to evaluate bioremediation feasibility.

  16. Surfactant studies for bench-scale operation

    NASA Technical Reports Server (NTRS)

    Hickey, Gregory S.; Sharma, Pramod K.

    1993-01-01

    A phase 2 study has been initiated to investigate surfactant-assisted coal liquefaction, with the objective of quantifying the enhancement in liquid yields and product quality. This report covers the second quarter of work. The major accomplishments were: completion of coal liquefaction autoclave reactor runs with Illinois number 6 coal at processing temperatures of 300, 325, and 350 C, and pressures of 1800 psig; analysis of the filter cake and the filtrate obtained from the treated slurry in each run; and correlation of the coal conversions and the liquid yield quality to the surfactant concentration. An increase in coal conversions and upgrading of the liquid product quality due to surfactant addition was observed for all runs.

  17. DATA QUALITY OBJECTIVES FOR SELECTING WASTE SAMPLES FOR BENCH-SCALE REFORMER TREATABILITY STUDIES

    SciTech Connect

    BANNING DL

    2011-02-11

    This document describes the data quality objectives to select archived samples located at the 222-S Laboratory for Bench-Scale Reforming testing. The type, quantity, and quality of the data required to select the samples for Fluid Bed Steam Reformer testing are discussed. In order to maximize the efficiency and minimize the time to treat Hanford tank waste in the Waste Treatment and Immobilization Plant, additional treatment processes may be required. One of the potential treatment processes is the fluidized bed steam reformer. A determination of the adequacy of the fluidized bed steam reformer process to treat Hanford tank waste is required. The initial step in determining the adequacy of the fluidized bed steam reformer process is to select archived waste samples from the 222-S Laboratory that will be used in a bench scale tests. Analyses of the selected samples will be required to confirm the samples meet the shipping requirements and for comparison to the bench scale reformer (BSR) test sample selection requirements.

  18. Filtration test of sunflower oil for fuel

    SciTech Connect

    Olson, J.C.; Backer, L.F.

    1983-01-01

    A filtration system was developed to test for particulate matter in 1.6 liter samples of fuel. Four micron, absolute, filter paper was used. Four alkali refined sunflower oils, two of which were also dewaxed, were tested along with 50:50% and 25:75% blends with No. 2-D diesel fuel. The two sunflower oils that were not dewaxed were darker and cloudier than the dewaxed oils and clogged the test filter in less than 10 minutes. Clogging also occurred for the 50:50% and 25:75% blends of these oils at all temperatures and pressures tested. The two dewaxed sunflower oils did not clog the filter in the ten minute tests. The flow rates of the latter two oils and their blends decreased only slightly with time.

  19. Alternative filtration testing program: Pre-evaluation of test results

    SciTech Connect

    Georgeton, G.K.; Poirier, M.R.

    1990-09-28

    Based on results of testing eight solids removal technologies and one pretreatment option, it is recommended that a centrifugal ultrafilter and polymeric ultrafilter undergo further testing as possible alternatives to the Norton Ceramic filters. Deep bed filtration should be considered as a third alternative, if a backwashable cartridge filter is shown to be inefficient in separate testing.

  20. Environmental Technology Verification--Baghouse Filtration Products: GE Energy QG061 Filtration Media (Tested September 2008)

    EPA Science Inventory

    This report reviews the filtration and pressure drop performance of GE Energy's QG061 filtration media. Environmental Technology Verification (ETV) testing of this technology/product was conducted during a series of tests in September 2008. The objective of the ETV Program is to ...

  1. Report on Recommendations for Lab and Bench-Scale Tasks

    E-print Network

    Activities in Support of Accelerating Renewable Energy System Development for Hawai`i INTRODUCTION with the following sub-headings: 1. Relevance and importance to Hawai`i; 2. Relevance to advancement of renewableReport on Recommendations for Lab and Bench-Scale Tasks Prepared for the U.S. Department of Energy

  2. Bench-scale studies with mercury contaminated SRS soil

    SciTech Connect

    Cicero, C.A.

    1995-12-31

    Bench-scale studies with mercury contaminated soil were performed at the SRTC to determine the optimum waste loading obtainable in the glass product without sacrificing durability, leach resistance, and processability. Vitrifying this waste stream also required offgas treatment for the capture of the vaporized mercury. Four soil glasses with slight variations in composition were produced, which were capable of passing the Product Consistency Test (PCT) and the Toxicity Characteristic Leaching Procedure (TCLP). The optimum glass feed composition contained 60 weight percent soil and produced a soda-lime-silica glass when melted at 1,350 C. The glass additives used to produce this glass were 24 weight percent Na{sub 2}CO{sub 3} and 16 weight percent CaCO{sub 3}. Volatilized mercury released during the vitrification process was released to the proposed mercury collection system. The proposed mercury collection system consisted of quartz and silica tubing with a Na{sub 2}S wash bottle followed by a NaOH wash bottle. Once in the system, the volatile mercury would pass through the wash bottle containing Na{sub 2}S, where it would be converted to Hg{sub 2}S, which is a stable form of mercury. However, attempts to capture the volatilized mercury in a Na{sub 2}S solution wash bottle were not as successful as anticipated. Maximum mercury captured was only about 3.24% of the mercury contained in the feed. Mercury capture efforts then shifted to condensing and capturing the volatilized mercury. These attempts were much more successful at capturing the volatile mercury, with a capture efficiency of 34.24% when dry ice was used to pack the condenser. This captured mercury was treated on a mercury specific resin after digestion of the volatilized mercury.

  3. Bench Scale Application of the Hybridized Zero Valent Iron Process for the Removal of Dissolved Silica From Water 

    E-print Network

    Morar, Nilesh Mohan

    2014-11-12

    ^2+. The hZVI system was shown to reduce dissolved silica from 70 mg/L to below 5 mg/L in a pilot scale demonstration for treating flue-gas desulfurization wastewater. In this study bench scale tests were performed using a single stage, continuously...

  4. Fermentation Bench-scale to pilot-scale capabilities for the conversion of biomass to sugars, fuels, and chemicals

    E-print Network

    Fermentation Bench-scale to pilot-scale capabilities for the conversion of biomass to sugars, fuels 40 30 20 10 0 Concentration(g/L) 0 2 4 6 Time (days) Fermentation applications · Enzymatic hydrolysis and fermentation testing - Different enzyme mixtures - Pretreated lignocellulosic feedstocks at low and high solids

  5. Boiling behavior of sodium-potassium alloy in a bench-scale solar receiver

    NASA Astrophysics Data System (ADS)

    Moreno, J. B.; Andraka, C. E.; Moss, T. A.

    During 1989-90, a 75-kW(sub t) sodium reflux pool-boiler solar receiver was successfully demonstrated at Sandia National Laboratories. Significant features of this receiver include the following: (1) boiling sodium as the heat transfer medium, and (2) electric-discharge-machined (EDM) cavities as artificial nucleation sites to stabilize boiling. Since this first demonstration, design of a second-generation pool-boiler receiver that will bring the concept closer to commercialization has begun. For long life, the new receiver uses Haynes Alloy 230. For increased safety factors against film boiling and flooding, it has a refined shape and somewhat larger dimensions. To eliminate the need for trace heating, the receiver will boil the sodium-potassium alloy NaK-78 instead of sodium. To reduce manufacturing costs, it will use one of a number of alternatives to EDM cavities for stabilization of boiling. To control incipient-boiling superheats, especially during hot restarts, it will contain a small amount of inert gas. Before the new receiver design could be finalized, bench-scale tests of some of the proposed changes were necessary. A series of bench-scale pool boilers were built from Haynes Alloy 230 and filled with NaK-78. Various boiling-stabilizer candidates were incorporated into them, including laser-drilled cavities and a number of different sintered-powder-metal coatings. These bench-scale pool boilers have been operated at temperatures up to 750 C, heated by quartz lamps with incident radiant fluxes up to 95 W/sq cm. The effects of various orientations and added gases have been studied. Results of these studies are presented.

  6. Bench-scale development of mild gasification char desulfurization. Technical report, 1 March--31 May 1994

    SciTech Connect

    Knight, R.A.

    1994-09-01

    The goal of this project is to scale up a process, developed under a previous ICCI grant, for desulfurization of mild gasification char by treatment with hydrogen-rich process-derived fuel gas at 650--760 C and 7--15 atm. The char can be converted into a low-sulfur metallurgical form coke. In the prior study, IBC-105 coal with 4.0 wt% sulfur was converted to chars with less than 1.0 wt% sulfur in a laboratory-scale batch reactor. The susceptibility of the char to desulfurization was correlated with physicochemical char properties and mild gasification conditions. Acid pretreatment of the coal prior to mild gasification was also shown to significantly enhance subsequent sulfur removal. In this study, IGT is conducting continuous bench-scale tests in a 1-lb/h fluidized-bed reactor to determine the preferred process conditions and obtain steady-state data necessary for process design and scale-up. The desulfurized chars are to be used to produce low-sulfur form coke, which will be evaluated for density, reactivity, and strength properties relevant to utilization in blast furnaces. This quarter, 2,500 g of mild gasification char was produced from untreated IBC-105 coal in the bench-scale reactor. Half of this char will be subjected to sulfuric acid treatment to enhance subsequent desulfurization. Char-producing runs were also initiated with acid-pretreated coal, which will produce about 1,250 g of char.

  7. Bench-Scale Silicone Process for Low-Cost CO{sub 2} Capture

    SciTech Connect

    Wood, Benjamin; Genovese, Sarah; Perry, Robert; Spiry, Irina; Farnum, Rachael; Sing, Surinder; Wilson, Paul; Buckley, Paul; Acharya, Harish; Chen, Wei; McDermott, John; Vipperia, Ravikumar; Yee, Michael; Steele, Ray; Fresia, Megan; Vogt, Kirk

    2013-12-31

    A bench-scale system was designed and built to test an aminosilicone-based solvent. A model was built of the bench-scale system and this model was scaled up to model the performance of a carbon capture unit, using aminosilicones, for CO{sub 2} capture and sequestration (CCS) for a pulverized coal (PC) boiler at 550 MW. System and economic analysis for the carbon capture unit demonstrates that the aminosilicone solvent has significant advantages relative to a monoethanol amine (MEA)-based system. The CCS energy penalty for MEA is 35.9% and the energy penalty for aminosilicone solvent is 30.4% using a steam temperature of 395 °C (743 °F). If the steam temperature is lowered to 204 °C (400 °F), the energy penalty for the aminosilicone solvent is reduced to 29%. The increase in cost of electricity (COE) over the non-capture case for MEA is ~109% and increase in COE for aminosilicone solvent is ~98 to 103% depending on the solvent cost at a steam temperature of 395 °C (743 °F). If the steam temperature is lowered to 204 °C (400 °F), the increase in COE for the aminosilicone solvent is reduced to ~95-100%.

  8. C-018H LERF filtration test plan. Revision 1

    SciTech Connect

    Moberg, T.P.; King, C.V.

    1994-08-26

    The following outlines the plan to test the polymeric backwash filtration system at the LERF. These tests will determine if the ETF filter design is adequate. If the tests show that the design is adequate, the task will be complete. If the tests show that the technology is inadequate, it may be necessary to perform further tests to qualify other candidate filtration technologies (e.g., polymeric tubular ultrafiltration, centrifugal ultrafiltration). The criteria to determine the success or failure of the backwash filter will be based on the system`s ability to remove the bacteria and inorganic contaminants from the evaporator process condensate. The tests are designed to qualify the design basis of the filtration technology that will be used in the ETF.

  9. BENCH-SCALE STEAM REFORMING OF ACTUAL TANK 48H WASTE

    SciTech Connect

    Burket, P; Gene Daniel, G; Charles Nash, C; Carol Jantzen, C; Michael Williams, M

    2008-09-25

    Fluidized Bed Steam Reforming (FBSR) has been demonstrated to be a viable technology to remove >99% of the organics from Tank 48H simulant, to remove >99% of the nitrate/nitrite from Tank 48H simulant, and to form a solid product that is primarily carbonate based. The technology was demonstrated in October of 2006 in the Engineering Scale Test Demonstration Fluidized Bed Steam Reformer1 (ESTD FBSR) at the Hazen Research Inc. (HRI) facility in Golden, CO. The purpose of the Bench-scale Steam Reformer (BSR) testing was to demonstrate that the same reactions occur and the same product is formed when steam reforming actual radioactive Tank 48H waste. The approach used in the current study was to test the BSR with the same Tank 48H simulant and same Erwin coal as was used at the ESTD FBSR under the same operating conditions. This comparison would allow verification that the same chemical reactions occur in both the BSR and ESTD FBSR. Then, actual radioactive Tank 48H material would be steam reformed in the BSR to verify that the actual tank 48H sample reacts the same way chemically as the simulant Tank 48H material. The conclusions from the BSR study and comparison to the ESTD FBSR are the following: (1) A Bench-scale Steam Reforming (BSR) unit was successfully designed and built that: (a) Emulated the chemistry of the ESTD FBSR Denitration Mineralization Reformer (DMR) and Carbon Reduction Reformer (CRR) known collectively as the dual reformer flowsheet. (b) Measured and controlled the off-gas stream. (c) Processed real (radioactive) Tank 48H waste. (d) Met the standards and specifications for radiological testing in the Savannah River National Laboratory (SRNL) Shielded Cells Facility (SCF). (2) Three runs with radioactive Tank 48H material were performed. (3) The Tetraphenylborate (TPB) was destroyed to > 99% for all radioactive Bench-scale tests. (4) The feed nitrate/nitrite was destroyed to >99% for all radioactive BSR tests the same as the ESTD FBSR. (5) The radioactive Tank 48H DMR product was primarily made up of soluble carbonates. The three most abundant species were thermonatrite, [Na{sub 2}CO{sub 3} {center_dot} H{sub 2}O], sodium carbonate, [Na{sub 2}CO{sub 3}], and trona, [Na{sub 3}H(CO{sub 3}){sub 2} {center_dot} 2H{sub 2}O] the same as the ESTD FBSR. (6) Insoluble solids analyzed by X-Ray Diffraction (XRD) did not detect insoluble carbonate species. However, they still may be present at levels below 2 wt%, the sensitivity of the XRD methodology. Insoluble solids XRD characterization indicated that various Fe/Ni/Cr/Mn phases are present. These crystalline phases are associated with the insoluble sludge components of Tank 48H slurry and impurities in the Erwin coal ash. The percent insoluble solids, which mainly consist of un-burnt coal and coal ash, in the products were 4 to 11 wt% for the radioactive runs. (7) The Fe{sup +2}/Fe{sub total} REDOX measurements ranged from 0.58 to 1 for the three radioactive Bench-scale tests. REDOX measurements > 0.5 showed a reducing atmosphere was maintained in the DMR indicating that pyrolysis was occurring. (8) Greater than 90% of the radioactivity was captured in the product for all three runs. (9) The collective results from the FBSR simulant tests and the BSR simulant tests indicate that the same chemistry occurs in the two reactors. (10) The collective results from the BSR simulant runs and the BSR radioactive waste runs indicates that the same chemistry occurs in the simulant as in the real waste. The FBSR technology has been proven to destroy the organics and nitrates in the Tank 48H waste and form the anticipated solid carbonate phases as expected.

  10. Bench-scale testing of DOE/PETC`s GranuFlow Process for fine coal dewatering and handling. 1: Results using a high-gravity solid-bowl centrifuge

    SciTech Connect

    Wen, W.W.; Killmeyer, R.P.; Lowman, R.H.; Elstrodt, R.

    1995-12-31

    Most advanced fine-coal cleaning processes involve the use of water. Utility companies are concerned not only with the lower Btu content of the resulting wet, cleaned coal, but more importantly with its handleability problems. Solutions to these problems would enhance the utilization of fine-coal cleaning processes in the utility industry. This paper describes testing of the GranuFlow Process, developed and patented by the Pittsburgh Energy Technology Center (PETC) of the US Department of Energy, using a high-gravity solid bowl centrifuge for dewatering and reconstitution of fine-cleaned-coal slurry at 300 lb per hour in PETC`s Coal Preparation Process Research Facility. Fine-cleaned-coal slurry was treated with a bitumen emulsion before dewatering in a high-gravity solid-bowl centrifuge. The treated products appeared to be dry and in a free-flowing granular form, while the untreated products were wet, lumpy, sticky, and difficult to handle. Specifically, test results indicated that the moisture content, handleability, and dust reduction of the dewatered coal product improved as the addition of emulsion increased from 2% to 8%. The improvement in handleability was most visible for the 200 mesh (75 micron) x 0 coal, when compared with 150 mesh (106 micron) x 0, 65 mesh (212 micron) x 0 or 28 mesh (600 micron) x 0 coals. Test results also showed that the moisture content was dramatically reduced (26--37% reduction) for the four different sizes of coals at 6 or 8% emulsion addition. Because of the moisture reduction and the granular form of the product, the freezing problem was also alleviated.

  11. A bench-scale investigation of land treatment of soil contaminated with diesel fuel.

    PubMed

    Taylor, C; Viraraghavan, T

    1999-10-01

    A bench-scale investigation (soil pan testing) was conducted with the objective of studying degradation rates of diesel contaminated soil (2500 and 10,000 ppm by weight of total petroleum hydrocarbons (TPH) to dry weight of soil) under different treatment conditions over a 17 week testing period. The greatest degradation of the diesel contaminated soil was obtained with the addition of nutrients (Co = 10,000 ppm of TPH; k = 0.19 week-1). 'k' for soil not amended with nutrients was 0.07 week-1. The control cell (C0 = 2500 ppm TPH), with sodium azide (to suppress degradation) was compared with an experimental cell of 2500 ppm initial concentration of TPH without nutrient amendment. The control cell exhibited a relatively low uniform degradation (k = 0.08 week-1) of TPH over the duration of the experiment with reasonable first-order kinetic regression statistics. PMID:10520481

  12. Analytical liquid test sample filtration apparatus

    DOEpatents

    Lohnes, B.C.; Turner, T.D.; Klingler, K.M.; Clark, M.L.

    1996-01-09

    A liquid sample filtration apparatus includes: (a) a module retaining filter elements; (b) a filter clamping and fluid injection apparatus positioned relative to the module to engage a filter element thereon, and includes a pair of first and second opposing engageable members to engage a filter element there between; (c) an inlet tube connected to an opposing engageable member; (d) an outlet tube connected to an opposing engageable member; (e) a motor to move the module relative to the filter clamping and injection apparatus to register filter elements on the module to the clamping and injection apparatus; and (f) a motor associated with the filter clamping and injection apparatus to move the opposing engageable members into substantial sealing fluid communication relative to a filter element on the module. An apparatus for engaging opposing ends of a filter element includes: (a) a member having a recess configured to engage one end of a filter element, including a first fluid passage communicating with the recess to pass fluid between the recess and externally of the member; and (b) a second member positioned in opposing juxtaposition relative to the other member, and having a projection sized and shaped to matingly fit within the other member recess, the second member projection including a second recess configured to engage the other end of the filter element, the second member including a second fluid passage communicating with the second recess to pass fluid between the second recess and externally of the second member. 8 figs.

  13. Analytical liquid test sample filtration apparatus

    DOEpatents

    Lohnes, Brent C. (Soda Springs, ID); Turner, Terry D. (Idaho Falls, ID); Klingler, Kerry M. (Idaho Falls, ID); Clark, Michael L. (Menan, ID)

    1996-01-01

    A liquid sample filtration apparatus includes: a) a module retaining filter elements; b) a filter clamping and fluid injection apparatus positioned relative to the module to engage a filter element thereon, and includes a pair of first and second opposing engageable members to sealing engage a filter element therebetween; c) an inlet tube connected to an opposing engageable member; d) an outlet tube connected to an opposing engageable member; e) a motor to move the module relative to the filter clamping and injection apparatus to register filter elements on the module to the clamping and injection apparatus; and f) a motor associated with the filter clamping and injection apparatus to move the opposing engageable members into substantial sealing fluid communication relative to a filter element on the module. An apparatus for engaging opposing ends of a filter element includes: a) a member having a recess configured to engage one end of a filter element, including a first fluid passage communicating with the recess to pass fluid between the recess and externally of the member; and b) a second member positioned in opposing juxtaposition relative to the other member, and having a projection sized and shaped to matingly fit within the other member recess, the second member projection including a second recess configured to engage the other end of the filter element, the second member including a second fluid passage communicating with the second recess to pass fluid between the second recess and externally of the second member.

  14. Final PHP bench-scale report for the DOE-ID/SAIC sole source contract

    SciTech Connect

    1997-04-01

    The Plasma Hearth Process (PHP) Technology Development Project was established to develop, test, and evaluate a new concept for treating mixed waste. The new concept uses direct current (dc) transferred-arc plasma torch technology to process mixed waste into a glass-like end-product. Under the cognizance of the US Department of Energy (DOE) Office of Technology Development (OTD) Mixed Waste Focus Area (MWFA), the technology is being explored for its potential to treat mixed waste. Because it is a mature technology, well-understood and commercially available, it is expected to develop rapidly in this new application. This report summarizes the radioactive bench-scale system activities funded under PHP Sole Source Contract DE-AC07-94ID13266 through the end of the contract.

  15. Bench-Scale Testing of Attrition Resistant Moving Bed Sorbents

    SciTech Connect

    Swisher, J.H.; Gupta, R.P.

    1996-12-31

    Integrated Gasification Combined Cycle (IGCC) systems with cold-gas cleanup have now reached the early stages of commercialization. The foundation for this was successful completion of the Cool Water Coal Gasification Program several years ago. Destec Energy, Inc., a subsidiary of Dow Chemical Company, has a plant in operation in Louisiana, and the 2 Wabash River Plant in Indiana is now starting up. A similar plant based on the Shell gasification technology is operating in the Netherlands. In two new plants now under construction, the Tampa Electric Plant in Florida and the Sierra Pacific Power Plant in Nevada, incorporating hot-gas cleanup technology is desirable. Unfortunately, some nagging problems remain with both sulfur sorbent and particle filter technology that may result in the use of cold-gas, rather than hot-gas, cleanup in these plants. With sulfur sorbents, the main problems are with mechanical property degradation and/or loss of sulfur capacity over many sulfidation-regeneration cycles. The sorbents receiving the most attention are all zinc based. They include various zinc titanate formulations and proprietary materials developed by the U.S. Department of Energy/Morgantown Energy Technology Center (DOE/METC) staff and the Phillips Petroleum Company. The investigators on this project are now completing their third year of effort on a superstrong zinc titanate sorbent. Prior to this year, various formulations were prepared and evaluated for their potential use in fixed- and fluidized-bed hot-gas desulfurization systems. A unique feature, the reason for the high strength, is that the zinc titanate is contained in a matrix of titanium dioxide. Its crush strength is more than 6 times that prior investigators achieved.

  16. Oxygen-controlled Biosurfactant Production in a Bench Scale Bioreactor

    NASA Astrophysics Data System (ADS)

    de Kronemberger, Frederico Araujo; Anna, Lidia Maria Melo Santa; Fernandes, Ana Carolina Loureiro Brito; de Menezes, Reginaldo Ramos; Borges, Cristiano Piacsek; Freire, Denise Maria Guimarães

    Rhamnolipids have been pointed out as promising biosurfactants. The most studied microorganisms for the aerobic production of these molecules are the bacteria of the genus Pseudomonas. The aim of this work was to produce a rhamnolipid-type biosurfactant in a bench-scale bioreactor by one strain of Pseudomonas aeruginosa isolated from oil environments. To study the microorganism growth and production dependency on oxygen, a nondispersive oxygenation device was developed, and a programmable logic controller (PLC) was used to set the dissolved oxygen (DO) concentration. Using the data stored in a computer and the predetermined characteristics of the oxygenation device, it was possible to evaluate the oxygen uptake rate (OUR) and the specific OUR (SOUR) of this microorganism. These rates, obtained for some different DO concentrations, were then compared to the bacterial growth, to the carbon source consumption, and to the rhamnolipid and other virulence factors production. The SOUR presented an initial value of about 60.0 mg02/gdw h. Then, when the exponential growth phase begins, there is a rise in this rate. After that, the SOUR reduces to about 20.0 mg02/gdw h. The carbon source consumption is linear during the whole process.

  17. Bench-scale co-processing economic assessment. Final report

    SciTech Connect

    Gala, H.B.; Marker, T.L.; Miller, E.N.

    1994-11-01

    The UOP Co-Processing scheme is a single-stage slurry catalyzed process in which petroleum vacuum resid and coal are simultaneously upgraded to a high-quality synthetic oil. A highly active dispersed catalyst has been developed which enables the operation of the co-processing unit at relatively moderate and high temperatures and relatively high pressure. Under the current contract, a multi-year research program was undertaken to study the technical and economic feasibility of this technology. All the contractual tasks were completed. Autoclave experiments were carried out to evaluate dispersed vanadium catalysts, molybdenum catalysts, and a less costly UOP-proprietary catalyst preparation technique. Autoclave experiments were also carried out in support of the continuous pilot plant unit operation and to study the effects of the process variables (pressure, temperature, and metal loading on the catalyst). A total of 24 continuous pilot plant runs were made. Research and development efforts during the pilot plant operations were concentrated on addressing the cost effectiveness of the UOP single-stage slurry catalyzed co-processing concept based on UOP experience gained in the previous DOE contract. To this end, effect of catalyst metal concentration was studied and a highly-active Mo-based catalyst was developed. This catalyst enabled successful long-term operation (924 hours) of the continuous bench-scale plant at highly severe operating conditions of 3,000 psig, 465{degree}C temperature, and 2:1 resid-to-MAF (moisture- and ash-free) coal ratio with 0.1 wt % active metal. The metal loading of the catalyst was low enough to consider the catalyst as a disposable slurry catalyst. Also, liquid recycle was incorporated in the pilot plant design to increase the, reactor back mixing and to increase the flow of liquid through the reactor (to introduce turbulence in the reactor) and to represent the design of a commercial-scale reactor.

  18. Design of a bench-scale apparatus for processing carbon black derived from scrap tires 

    E-print Network

    Woodrow, Philip Travis

    1996-01-01

    The focus of this work is to design a bench-scale apparatus, for laboratory applications, that will perform solid processing operations for carbon black obtained through the thermal catalytic depolymerization of scrap tires. These operations...

  19. 77 FR 38857 - Design, Inspection, and Testing Criteria for Air Filtration and Adsorption Units of Normal...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-29

    ... Design, Inspection, and Testing Criteria for Air Filtration and Adsorption Units of Normal Atmosphere... Testing Criteria for Air Filtration and Adsorption Units of Normal Atmosphere Cleanup Systems in Light..., Inspection, and Testing Criteria for Air Filtration and Adsorption Units of Normal Atmosphere Cleanup...

  20. 76 FR 82323 - Design, Inspection, and Testing Criteria for Air Filtration and Adsorption Units

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-30

    ... COMMISSION Design, Inspection, and Testing Criteria for Air Filtration and Adsorption Units AGENCY: Nuclear...-1274, ``Design, Inspection, and Testing Criteria for Air Filtration and Adsorption Units of....'' This guide applies to the design, inspection, and testing of air filtration and iodine adsorption...

  1. Electroosmotic dewatering of dredged sediments: bench-scale investigation.

    PubMed

    Reddy, Krishna R; Urbanek, Adam; Khodadoust, Amid P

    2006-01-01

    The Indiana Harbor (Indiana, USA) has not been dredged since 1972 due to lack of a suitable disposal site for dredged sediment. As a result of this, over a million cubic yards of highly contaminated sediment has accumulated in the harbor. Recently, the United States Army Corps of Engineers (USACE) has selected a site for the confined disposal facility (CDF) and is in the process of designing it. Although dredging can be accomplished rapidly, the disposal in the CDF has to be done slowly to allow adequate time for consolidation to occur. The sediment possesses very high moisture content and very low hydraulic conductivity, which cause consolidation to occur slowly. Consolidation of the sediment is essential in order to achieve adequate shear strength of sediments and also to provide enough air space to accommodate the large amount of sediment that requires disposal. Currently, it has been estimated that if a one 3-foot (0.9-m) thick layer of sediment was disposed of at the CDF annually, it would take approximately 10 years to dispose of all the sediment that is to be dredged from the Indiana Harbor. This study investigated the feasibility of using an electroosmotic dewatering technology to accelerate dewatering and consolidation of sediment, thereby allowing more rapid disposal of sediment into the CDF. Electroosmotic dewatering essentially involves applying a small electric potential across the sediment layer, thereby inducing rapid flow as a result of physico-chemical and electrochemical processes. A series of bench-scale electrokinetic experiments were conducted on actual dredged sediment samples from the Indiana Harbor to investigate dewatering rates caused by gravity alone, dewatering rates caused by gravity and electric potential, and the effects of the addition of polymer flocculants on dewatering of the sediments. The results showed that electroosmotic dewatering under an applied electric potential of 1.0VDC/cm could increase the rate of dewatering and consolidation by an order of magnitude as compared to gravity drainage alone. Amending the sediment with polymers at low concentrations (0.5-1% by dry weight) will enhance this dewatering process; however, the optimal polymer concentration and the cost-effectiveness of using polymers should be investigated further. PMID:16139947

  2. Actinide Recovery Experiments with Bench-Scale Liquid Cadmium Cathode in Fission Product-Laden Molten Salt

    SciTech Connect

    S. X. Li; S. D. Herrmann; R. W. Benedict; K. M. Goff; M. F. Simpson

    2009-02-01

    This article summarizes the observations and analytical results from a series of bench- scale liquid cadmium cathode experiments that recovered transuranic elements together with uranium from a molten electrolyte laden with real fission products. Variable parameters such as the ratio of Pu3+/U3+ in the electrolyte, liquid cadmium cathode voltage, and feed materials were tested in the LCC experiments. Actinide recovery efficiency and Pu/U ratio in the liquid cadmium cathode product under variable conditions are reported in the article. Separation factors for actinides and rare earth elements in the salt/cadmium system are also presented.

  3. Bench scale studies: Ozonation as a potential treatment for waters contaminated with hydrocarbons or dioxins and furans

    SciTech Connect

    Schaal, W.

    1995-09-01

    The objective of the bench scale studies was to examine the destruction efficiency and efficacy of ozone on chemicals of concern (COC`s) commonly found in contaminated ground water and rhenoformer wash water. The ground water used in these tests contained aromatic petroleum hydrocarbons, chlorinated hydrocarbons, and mineral spirits. The rhenoformer wash water used in these tests contained a variety of dioxins (including 2,3,7,8-tetrachlorodibenzo-p-dioxin) and furans. Summaries are presented of the bench scale studies by describing the COCs, methodologies, test reactors, observations, and results. The summaries also detail which applications hold promise with respect to ozonation and which ones do not. Bench test results for the experiments in which aromatic petroleum hydrocarbons, chlorinated hydrocarbons, and mineral spirits where the COCs were relatively successful. Concentrations for the COCs ranging from 300 to 3,400 micrograms per liter ({micro}g/L) were brought below levels specified for storm sewer discharge per the National Priority Discharge Elimination Systems (NPDES) permit requirements. Bench test results for the experiments in which dioxins and furans were the COCs were less promising and revealed that additional processes would have to be used in conjunction with ozonation to bring the concentration of COCs within the targeted ranges. It was realized, however, that the effectiveness and efficacy of ozonation were diminished by the presence of particulates, to which some of the dioxin and furan compounds adhered.

  4. 77 FR 38857 - Design, Inspection, and Testing Criteria for Air Filtration and Adsorption Units of Normal...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-29

    ...Filtration and Adsorption Units of Normal Atmosphere Cleanup Systems in Light-Water- Cooled...Filtration and Adsorption Units of Normal Atmosphere Cleanup Systems in Light-Water- Cooled...inspection, and testing of normal atmosphere cleanup systems for controlling...

  5. Filtration principles and practices

    SciTech Connect

    Matteson, M.J.; Orr, C.

    1986-01-01

    This book provides theoretical and practical data on filtration of gases and liquids. Topics covered include the following: gas filtration theory; liquid filtration theory; filter media; industrial gas filtration; filtration pretreatment; filtration in the chemical process industry; ultrafiltration; filtration in the mineral industry; filtration in heating, ventilating, and air conditioning; cartridge filtration; high-efficiency air filtration; analytical applications of filtration; and filter evaluation and testing.

  6. Investigation of E. coli and Virus Reductions Using Replicate, Bench-Scale Biosand Filter Columns and Two Filter Media.

    PubMed

    Elliott, Mark; Stauber, Christine E; DiGiano, Francis A; de Aceituno, Anna Fabiszewski; Sobsey, Mark D

    2015-09-01

    The biosand filter (BSF) is an intermittently operated, household-scale slow sand filter for which little data are available on the effect of sand composition on treatment performance. Therefore, bench-scale columns were prepared according to the then-current (2006-2007) guidance on BSF design and run in parallel to conduct two microbial challenge experiments of eight-week duration. Triplicate columns were loaded with Accusand silica or crushed granite to compare virus and E. coli reduction performance. Bench-scale experiments provided confirmation that increased schmutzdecke growth, as indicated by decline in filtration rate, is the primary factor causing increased E. coli reductions of up to 5-log10. However, reductions of challenge viruses improved only modestly with increased schmutzdecke growth. Filter media type (Accusand silica vs. crushed granite) did not influence reduction of E. coli bacteria. The granite media without backwashing yielded superior virus reductions when compared to Accusand. However, for columns in which the granite media was first backwashed (to yield a more consistent distribution of grains and remove the finest size fraction), virus reductions were not significantly greater than in columns with Accusand media. It was postulated that a decline in surface area with backwashing decreased the sites and surface area available for virus sorption and/or biofilm growth and thus decreased the extent of virus reduction. Additionally, backwashing caused preferential flow paths and deviation from plug flow; backwashing is not part of standard BSF field preparation and is not recommended for BSF column studies. Overall, virus reductions were modest and did not meet the 5- or 3-log10 World Health Organization performance targets. PMID:26308036

  7. Investigation of E. coli and Virus Reductions Using Replicate, Bench-Scale Biosand Filter Columns and Two Filter Media

    PubMed Central

    Elliott, Mark; Stauber, Christine E.; DiGiano, Francis A.; Fabiszewski de Aceituno, Anna; Sobsey, Mark D.

    2015-01-01

    The biosand filter (BSF) is an intermittently operated, household-scale slow sand filter for which little data are available on the effect of sand composition on treatment performance. Therefore, bench-scale columns were prepared according to the then-current (2006–2007) guidance on BSF design and run in parallel to conduct two microbial challenge experiments of eight-week duration. Triplicate columns were loaded with Accusand silica or crushed granite to compare virus and E. coli reduction performance. Bench-scale experiments provided confirmation that increased schmutzdecke growth, as indicated by decline in filtration rate, is the primary factor causing increased E. coli reductions of up to 5-log10. However, reductions of challenge viruses improved only modestly with increased schmutzdecke growth. Filter media type (Accusand silica vs. crushed granite) did not influence reduction of E. coli bacteria. The granite media without backwashing yielded superior virus reductions when compared to Accusand. However, for columns in which the granite media was first backwashed (to yield a more consistent distribution of grains and remove the finest size fraction), virus reductions were not significantly greater than in columns with Accusand media. It was postulated that a decline in surface area with backwashing decreased the sites and surface area available for virus sorption and/or biofilm growth and thus decreased the extent of virus reduction. Additionally, backwashing caused preferential flow paths and deviation from plug flow; backwashing is not part of standard BSF field preparation and is not recommended for BSF column studies. Overall, virus reductions were modest and did not meet the 5- or 3-log10 World Health Organization performance targets. PMID:26308036

  8. Hydrocarbon degrading microbial communities in bench scale aerobic biobarriers for gasoline contaminated groundwater treatment.

    PubMed

    Daghio, Matteo; Tatangelo, Valeria; Franzetti, Andrea; Gandolfi, Isabella; Papacchini, Maddalena; Careghini, Alessandro; Sezenna, Elena; Saponaro, Sabrina; Bestetti, Giuseppina

    2015-07-01

    BTEX compounds (benzene, toluene, ethylbenzene and xylenes) and methyl tert-butyl ether (MTBE) are some of the main constituents of gasoline and can be accidentally released in the environment. In this work the effect of bioaugmentation on the microbial communities in a bench scale aerobic biobarrier for gasoline contaminated water treatment was studied by 16S rRNA gene sequencing. Catabolic genes (tmoA and xylM) were quantified by qPCR, in order to estimate the biodegradation potential, and the abundance of total bacteria was estimated by the quantification of the number of copies of the 16S rRNA gene. Hydrocarbon concentration was monitored over time and no difference in the removal efficiency for the tested conditions was observed, either with or without the microbial inoculum. In the column without the inoculum the most abundant genera were Acidovorax, Bdellovibrio, Hydrogenophaga, Pseudoxanthomonas and Serpens at the beginning of the column, while at the end of the column Thauera became dominant. In the inoculated test the microbial inoculum, composed by Rhodococcus sp. CE461, Rhodococcus sp. CT451 and Methylibium petroleiphilum LMG 22953, was outcompeted. Quantitative PCR results showed an increasing in xylM copy number, indicating that hydrocarbon degrading bacteria were selected during the treatment, although only a low increase of the total biomass was observed. However, the bioaugmentation did not lead to an increase in the degradative potential of the microbial communities. PMID:25747304

  9. Bench-scale development of mild gasification char desulfurization; [Quarterly] report, September 1--November 30, 1993

    SciTech Connect

    Knight, R.A.

    1994-03-01

    This goal of this project is to scale up a process, developed under a previous ICCI grant, for desulfurization of mild gasification char by treatment with hydrogen-rich process-derived fuel gas at 650{degree}--760{degree}C and 7-15 atm. The char can be converted into a low-sulfur metallurgical form coke. In the prior study, IBC-105 coal with 4.0 wt % sulfur was converted to chars with less than 1.0 wt % sulfur in a laboratory-scale batch reactor. The susceptibility of the char to desulfurization was correlated with physicochemical char properties and mild gasification conditions. Acid pretreatment of the coal prior to mild gasification was also shown to significantly enhance subsequent sulfur removal. In this study, IGT is conducting continuous bench-scale tests in a 1-lb/h fluidized-bed reactor to determine the preferred process conditions and obtain steady-state data necessary for process design and scale-up. The desulfurized chars are to be used to produce low-sulfur form coke, which will be evaluated for density, reactivity, and strength properties relevant to utilization in blast furnaces. During the first quarter, 180 lb (82 kg) of IBC-105 coal was obtained and subjected to crushing, and sizing to prepare 49 lb (22 kg) of material for test operation.

  10. Bench-scale demonstration of hot-gas desulfurization technology. Quarterly report, January 1--March 31, 1998

    SciTech Connect

    1998-12-31

    At the start of the current project, the DSRP (Direct Sulfur Recovery Process) technology was at the bench-scale development stage with a skid-mounted system ready for field testing. The process had been extended to fluidized-bed operation in the Stage 1 reactor. A preliminary economic study for a 100 MW plant in which the two-stage DSRP was compared to conventional processes indicated the economic attractiveness of the DSRP. Through bench-scale development, both fluidized-bed zinc titanate and DSRP technologies have been shown to be technically and economically attractive. The demonstrations prior to the start of this project, however, had only been conducted using simulated (rather than real) coal gas and simulated regeneration off-gas. Thus, the effect of trace contaminants in real coal gases on the sorbent and DSRP catalyst was not known. Also, the zinc titanate desulfurization unit and DSRP had not been demonstrated in an integrated manner. The overall goal of this project is to continue further development of the zinc titanate desulfurization and DSRP technologies by scale-up and field testing (with actual coal gas) of the zinc titanate fluidized-bed reactor system, and the Direct Sulfur Recovery Process.

  11. Bench-scale experimental determination of the thermal diffusivity of crushed tuff

    SciTech Connect

    Ryder, E.E.; Finley, R.E.; George, J.T.; Ho, C.K.; Longenbaugh, R.S.; Connolly, J.R.

    1996-06-01

    A bench-scale experiment was designed and constructed to determine the effective thermal diffusivity of crushed tuff. Crushed tuff particles ranging from 12.5 mm to 37.5 mm (0.5 in. to 1.5 in.) were used to fill a cylindrical volume of 1.58 m{sup 3} at an effective porosity of 0.48. Two iterations of the experiment were completed; the first spanning approximately 502 hours and the second 237 hours. Temperatures near the axial heater reached 700 degrees C, with a significant volume of the test bed exceeding 100 degrees C. Three post-test analysis techniques were used to estimate the thermal diffusivity of the crushed tuff. The first approach used nonlinear parameter estimation linked to a one dimensional radial conduction model to estimate thermal diffusivity from the first 6 hours of test data. The second method used the multiphase TOUGH2 code in conjunction with the first 20 hours of test data not only to estimate the crushed tuffs thermal diffusivity, but also to explore convective behavior within the test bed. Finally, the nonlinear conduction code COYOTE-II was used to determine thermal properties based on 111 hours of cool-down data. The post-test thermal diffusivity estimates of 5.0 x 10-7 m{sup 2}/s to 6.6 x 10-7 m{sup 2}/s were converted to effective thermal conductivities and compared to estimates obtained from published porosity-based relationships. No obvious match between the experimental data and published relationships was found to exist; however, additional data for other particle sizes and porosities are needed.

  12. Bench-scale demonstration of hot-gas desulfurization technology. Quarterly report, July 1 - September 30, 1995

    SciTech Connect

    1995-12-31

    The goal of this project is to continue further development of the zinc titanate desulfurization and Direct Sulfur Recovery (DSRP) technologies by: scaling up the zinc titanate reactor system; developing an integrated skid-mounted zinc titanate desulfurization-DSRP reactor system; testing the integrated system over an extended period with real coal-gas from an operating gasifier to quantify the degradative effect, if any, of the trace contaminants present in coal gas; developing an engineering database suitable for system scaleup; and designing, fabricating and commissioning a larger DSRP reactor system capable of operating on a six-fold greater volume of gas than the DSRP reactor used in the bench-scale field test. This report discusses the field testing of the Zinc Titanate Fluid Bed Desulfurization/DSRP at the Morgantown Energy Technology Center.

  13. DEGRADATION OF POLYNUCLEAR AROMATIC HYDROCARBONS UNDER BENCH-SCALE COMPOST CONDITIONS

    EPA Science Inventory

    The relationship between biomass growth and degradation of polynuclear aromatic hydrocarbons (PAHs) in soil, and subsequent toxicity reduction, was evaluated in 10 in-vessel, bench-scale compost units. Field soil was aquired from the Reilly Tar and Chemical Company Superfund site...

  14. BENCH SCALE EVALUATION OF RESINS AND ACTIVATED CARBONS FOR WATER PURIFICATION

    EPA Science Inventory

    Adsorption isotherms and bench scale column studies were used to compare the performance of five types of commercially available activated carbon and four types of resin for the removal of humic acids, fulvic acids, 2-methylisoborneol (MIB), and chloroform from water. For the ads...

  15. SOLVENT EXTRACTION AND SOIL WASHING TREATMENT OF CONTAMINATED SOILS FROM WOOD PRESERVING SITES: BENCH SCALE STUDIES

    EPA Science Inventory

    Bench-scale solvent extraction and soil washing studies were performed on soil samples obtained from three abandoned wood preserving sites that included in the NPL. The soil samples from these sites were contaminated with high levels of polyaromatic hydrocarbons (PAHs), pentachlo...

  16. Bench-Scale Evaluation of Peracetic Acid and Twin Oxide ™ as Disinfectants in Drinking Water

    EPA Science Inventory

    Chlorine is widely used as an inexpensive and potent disinfectant in the United States for drinking water. However, chlorine has the potential for forming carcinogenic and mutagenic disinfection by-products (DBPs). In this study, bench scale experiments were conducted at the U.S...

  17. Catalytic Products from a Bench-Scale, Simulated Fluidized-Bed Pyrolyzer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biomass (e.g. lignocellulosics and lipids) were catalytically converted under thermochemical conditions to bio-based, fungible industrial chemicals and products. The focus was on high temperature catalytic conversions of feedstocks in a bench-scale reactor designed to replicate a packed- or fluidiz...

  18. BENCH SCALE FIXATION OF SOILS FROM THE TACOMA TAR PITS SUPRFUND SITE

    EPA Science Inventory

    This report documents the results of bench-scale soil fixation study conducted with materials from the Tacoma Tar Pits SuperfundSite. Chemical fixation (also called stabilization/solidification)is a relatively new technique for remediating contaminated soils. It entails both immo...

  19. Pilot tests on the catalytic filtration of dioxins.

    PubMed

    Hung, Pao Chen; Chang, Shu Hao; Lin, Syuan Hong; Buekens, Alfons; Chang, Moo Been

    2014-04-01

    Tests were conducted to study the removal efficiencies (REs) of polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) from flue gas during a test program involving a pilot-scale catalytic filter (CF) module and a full-scale municipal solid waste incinerator (MSWI). The REs attained with the CF on a side stream and a conventional activated carbon (AC) injection and baghouse filtration system in the full-scale MSWI are evaluated via simultaneous sampling and analysis of both gas- and particle-phase PCDD/Fs. Flue gas without AC is supplied to the pilot-scale CF module for evaluating its RE capabilities. The REs achieved with the CF at 180 °C are 96.80 and 99.50%, respectively, for the gas phase and the particulate contained. The gas-phase PCDD/F RE rises significantly at 200 and 220 °C. The air/cloth (A/C) ratio defined as is the gas flow rate (m(3)/min) divided by the filtration area (m(2)) also affects the PCDD/F RE, especially in the gas phase. At 180 °C, a RE of gas-phase PCDD/Fs of 95.94% is attained with the CF at 0.8 m/min, yet it decreases at higher A/C ratios (1 and 1.2 m/min). A significantly lower toxic equivalency (TEQ) concentration (0.71 ng I-TEQ/g) was measured in the filter dust of the CF module compared to that collected by the AC adsorption system (4.18 ng I-TEQ/g), apparently because of the destruction of gas-phase PCDD/Fs by the catalyst. PMID:24617498

  20. BENCH-SCALE DEMONSTRATION OF HOT-GAS DESULFURIZATION TECHNOLOGY

    SciTech Connect

    1998-05-01

    The Direct Sulfur Recovery Process (DSRP) is a one- or two-stage catalytic reduction process for efficiently converting to elemental sulfur up to 98 percent or more of the sulfur dioxide (SO{sub 2}) contained in the regeneration offgas streams produced in advanced integrated gasification combined cycle (IGCC) power systems. The DSRP reacts the regeneration offgas with a small slipstream of coal gas to effect the desired reduction. In this project the DSRP was demonstrated with actual coal gas (as opposed to the simulated laboratory mixtures used in previous studies) in a 75-mm, 1-L size fixed-bed reactor. Integrated with this testing, a US Department of Energy/Research Triangle Institute (DOE/RTI) patented zinc titanate-based fluidizable sorbent formulation was tested in a 75-mm (3-in.) diameter fluidized-bed reactor, and the regeneration offgas from that test was treated with the bench-unit DSRP. The testing was conducted at the DOE Federal Energy Technology Center (FETC)-Morgantown in conjunction with test campaigns of the pilot-scale gasifier there. The test apparatus was housed in a mobile laboratory built in a specially equipped office trailer that facilitated moving the equipment from RTI in North Carolina to the West Virginia test site. A long duration test of the DSRP using actual coal gas and simulated regeneration offgas showed no degradation in efficiency of conversion to elemental sulfur after 160 h of catalyst exposure. An additional exposure (200 h) of that same catalyst charge at the General Electric pilot gasifier showed only a small decline in performance. That problem is believed to have been caused by tar and soot deposits on the catalyst, which were caused by the high tar content of the atypical fixed-bed gasifier gas. A six-fold larger, single-stage skid-mounted DSRP apparatus was fabricated for additional, larger-scale slipstream testing.

  1. Degradation and detoxification of 4-nitrophenol by advanced oxidation technologies and bench-scale constructed wetlands.

    PubMed

    Herrera-Melián, J A; Martín-Rodríguez, A J; Ortega-Méndez, A; Araña, J; Doña-Rodríguez, J M; Pérez-Peña, J

    2012-08-30

    The degradation and detoxification towards the duckweed Lemna minor of 4-nitrophenol (4NP) was studied by means of bench-scale constructed wetlands (CWs), TiO(2)-photocatalysis and Fenton + photoFenton reactions. The main goal of this work was to compare the three treatment techniques to evaluate their possible combination for the efficient, low cost treatment of 4NP effluents. In CWs, adsorption on the substrate of 4NP was found to achieve 34-45%. Low concentrations (up to 100 ppm) of 4NP were successfully treated by CWs in 8-12 h. The microbial degradation of 4NP started after a lag phase which was longer with higher initial concentrations of the pollutant. The greatest degradation rate was found to occur at initial concentrations of 4NP between 60 and 90 ppm. Solar TiO(2)-photocatalysis was faster than the CWs. The greatest removals in terms of mass of 4NP removed after 6 h of irradiation were found to occur at 4NP concentrations of about 200 ppm. Fenton reaction provided complete 4NP degradation up to 500 ppm in only 30 min but TOC was removed by only about 40%. The resulting toxicities were below 20% for initial 4NP concentrations below 300 ppm. It was the Fenton + photoFenton combination (180 min in total) that provided TOC reductions up to 80% and negative L. minor growth inhibition for almost all the 4NP concentrations tested. The combination of solar TiO(2)-photocatalysis (6 h) with CWs (16 h) was able to completely treat and detoxify 4NP effluents with concentrations as high as 200 ppm of the organic. PMID:22525833

  2. Bench-scale arc melter for R&D in thermal treatment of mixed wastes

    SciTech Connect

    Kong, P.C.; Grandy, J.D.; Watkins, A.D.; Eddy, T.L.; Anderson, G.L.

    1993-05-01

    A small dc arc melter was designed and constructed to run bench-scale investigations on various aspects of development for high-temperature (1,500-1,800{degrees}C) processing of simulated transuranic-contaminated waste and soil located at the Radioactive Waste Management Complex (RWMC). Several recent system design and treatment studies have shown that high-temperature melting is the preferred treatment. The small arc melter is needed to establish techniques and procedures (with surrogates) prior to using a similar melter with the transuranic-contaminated wastes in appropriate facilities at the site. This report documents the design and construction, starting and heating procedures, and tests evaluating the melter`s ability to process several waste types stored at the RWMC. It is found that a thin graphite strip provides reliable starting with initial high current capability for partially melting the soil/waste mixture. The heating procedure includes (1) the initial high current-low voltage mode, (2) a low current-high voltage mode that commences after some slag has formed and arcing dominates over the receding graphite conduction path, and (3) a predominantly Joule heating mode during which the current can be increased within the limits to maintain relatively quiescent operation. Several experiments involving the melting of simulated wastes are discussed. Energy balance, slag temperature, and electrode wear measurements are presented. Recommendations for further refinements to enhance its processing capabilities are identified. Future studies anticipated with the arc melter include waste form processing development; dissolution, retention, volatilization, and collection for transuranic and low-level radionuclides, as well as high vapor pressure metals; electrode material development to minimize corrosion and erosion; refractory corrosion and/or skull formation effects; crucible or melter geometry; metal oxidation; and melt reduction/oxidation (redox) conditions.

  3. Bench-Scale Silicone Process for Low-Cost CO{sub 2} Capture

    SciTech Connect

    Fresia, Megan; Vogt, Kirk

    2013-12-31

    GE Global Research is developing technology to remove carbon dioxide (CO{sub 2}) from the flue gas of coal-fired power plants. A mixture of 3-aminopropyl end-capped polydimethylsiloxane (GAP-1m) and triethylene glycol (TEG) is the preferred CO{sub 2} capture solvent. GE Global Research was contracted by the Department of Energy to test a bench-scale continuous CO{sub 2} absorption/desorption system using a GAP-1m/TEG mixture as the solvent. SiVance LLC was sub-contracted to provide the GAP-1m material and conduct an Environmental, Health, and Safety (EH&S) assessment for a 550 MW coal-fired power plant. Five components of the solvent, CAS#2469-55-8 (GAP-0), CAS#106214-84-0 (GAP-1-4), TEG, and methanol and xylene (minor contaminants from the aminosilicone) are included in this assessment. One by-product, GAP-1m/SOX salt, and dodecylbenzenesulfonic acid (DDBSA) were also identified for analysis. All of the solvent components and DDBSA are listed on the EPA’s TSCA Inventory allowing companies to manufacture and use the chemicals commercially. The toxicological effects of each component were defined, and control mechanisms necessary to comply with U.S. EH&S regulations are summarized. An engineering and control system, including environmental abatement, was described for minimizing exposure and release of the chemical components. Proper handling and storage recommendations are made for each chemical to minimize risk to workers and the surrounding community.

  4. Restoration of cadmium-contaminated paddy soils by washing with ferric chloride: Cd extraction mechanism and bench-scale verification.

    PubMed

    Makino, Tomoyuki; Takano, Hiroyuki; Kamiya, Takashi; Itou, Tadashi; Sekiya, Naoki; Inahara, Makoto; Sakurai, Yasuhiro

    2008-01-01

    The ability of FeCl3 to extract Cd from three paddy soils was compared with that of various irons, manganese, and zinc salts to elucidate the extraction mechanism. Manganese, zinc and iron salts (including FeCl3) extracted 4-41%, 8-44% and 24-66% of total Cd, respectively. This difference reflected the pH of the extraction solution, indicating that the primary mechanism of Cd extraction by FeCl3 is proton release coupled with hydroxide generation, as iron hydroxides are insoluble. Washing with FeCl3 led to the formation of Cd-chloride complexes, enhancing Cd extraction from the soils. FeCl3 effectively extracted Cd from all of the three soils compared to HCl that is a conventional washing chemical, when the concentrations of the two washing chemicals were between 15 and 60mM(c) (at above extraction pH 2.4), while the corresponding extraction pH of FeCl3 was slightly higher than HCl. As HCl is the strong acid of complete dissociation, if excess amount of HCl was added to soil, it is possible to give the dissolution of clay minerals in soils. In contrast, proton release from FeCl3 is controlled by the chemical equilibrium of hydroxide formation. While soil fertility properties were affected by a bench-scale soil washing with 45mM(c) FeCl3, adverse effects were not crucial and could be corrected. The bench-scale test confirmed the effectiveness of FeCl3 for removal of soil Cd. The washing had no negative effect on rice yield and lowered the Cd concentration of rice grain and rice straw in a pot experiment. PMID:17919681

  5. Bench-scale studies on gasification of biomass in the presence of catalysts

    SciTech Connect

    Mudge, L.K.; Baker, E.G.; Brown, M.D.; Wilcox, W.A.

    1987-11-01

    This report summarizes the results of bench-scale studies on the development of catalysts for conversion of biomass to specific gas products. The primary objective of these studies was to define operating conditions that allow long lifetimes for secondary catalysts used in biomass gasification. Nickel-based catalysts that were found to be active for conversion of wood to synthesis gases in previous studies were evaluated. These catalysts remained active indefinitely in laboratory studies but lost activity rapidly when evaluated in a process research unit. Bench-scale equipment was designed and installed to resolve the differences between laboratory and PRU results. Primary catalysts (alkali carbonates) were also evaluated for their effectiveness in improving conversion yields from biomass gasification. 21 refs., 27 figs., 19 tabs.

  6. Water Clarity Simulant for K East Basin Filtration Testing

    SciTech Connect

    Schmidt, Andrew J.

    2006-01-20

    This document provides a simulant formulation intended to mimic the behavior of the suspended solids in the K East (KE) Basin fuel storage pool. The simulant will be used to evaluate alternative filtration apparatus to improve Basin water clarity and to possibly replace the existing sandfilter. The simulant was formulated based on the simulant objectives, the key identified parameters important to filtration, the composition and character of the KE Basin suspended sludge particles, and consideration of properties of surrogate materials.

  7. Water Filtration

    ERIC Educational Resources Information Center

    Jacobsen, Erica K.

    2004-01-01

    A water filtration column is devised by students using a two-liter plastic bottle containing gravel, sand, and activated charcoal, to test the filtration potential of the column. Results indicate that the filtration column eliminates many of the contaminating materials, but does not kill bacteria.

  8. Design and fabrication of a glovebox for the Plasma Hearth Process radioactive bench-scale system

    SciTech Connect

    Wahlquist, D.R.

    1996-07-01

    This paper presents some of the design considerations and fabrication techniques for building a glovebox for the Plasma Hearth Process (PHP) radioactive bench-scale system. The PHP radioactive bench-scale system uses a plasma torch to process a variety of radioactive materials into a final vitrified waste form. The processed waste will contain plutonium and trace amounts of other radioactive materials. The glovebox used in this system is located directly below the plasma chamber and is called the Hearth Handling Enclosure (HHE). The HHE is designed to maintain a confinement boundary between the processed waste and the operator. Operations that take place inside the HHE include raising and lowering the hearth using a hydraulic lift table, transporting the hearth within the HHE using an overhead monorail and hoist system, sampling and disassembly of the processed waste and hearth, weighing the hearth, rebuilding a hearth, and sampling HEPA filters. The PHP radioactive bench-scale system is located at the TREAT facility at Argonne National Laboratory-West in Idaho Falls, Idaho.

  9. Screening of phenylpyruvic acid producers and optimization of culture conditions in bench scale bioreactors.

    PubMed

    Coban, Hasan B; Demirci, Ali; Patterson, Paul H; Elias, Ryan J

    2014-11-01

    Alpha keto acids are deaminated forms of amino acids that have received significant attention as feed and food additives in the agriculture and medical industries. To date, their production has been commonly performed at shake-flask scale with low product concentrations. In this study, production of phenylpyruvic acid (PPA), which is the alpha keto acid of phenylalanine was investigated. First, various microorganisms were screened to select the most efficient producer. Thereafter, growth parameters (temperature, pH, and aeration) were optimized in bench scale bioreactors to maximize both PPA and biomass concentration in bench scale bioreactors, using response surface methodology. Among the four different microorganisms evaluated, Proteus vulgaris was the most productive strain for PPA production. Optimum temperature, pH, and aeration conditions were determined as 34.5 °C, 5.12, and 0.5 vvm for PPA production, whereas 36.9 °C, pH 6.87, and 0.96 vvm for the biomass production. Under these optimum conditions, PPA concentration was enhanced to 1,054 mg/L, which was almost three times higher than shake-flask fermentation concentrations. Moreover, P. vulgaris biomass was produced at 3.25 g/L under optimum conditions. Overall, this study demonstrated that optimization of growth parameters improved PPA production in 1-L working volume bench-scale bioreactors compared to previous studies in the literature and was a first step to scale up the production to industrial production. PMID:24861313

  10. Development of an S-Saltcake Simulant Using Crossflow Filtration as a Validation Technique

    SciTech Connect

    Schonewill, Philip P.; Daniel, Richard C.; Russell, Renee L.; Shimskey, Rick W.; Burns, Carolyn A.; Billing, Justin M.; Rapko, Brian M.; Peterson, Reid A.

    2012-11-02

    In the past several years, cross-flow filtration has been studied extensively in a bench-scale system at Pacific Northwest National Laboratory (PNNL) using both actual tank waste from the Hanford site and waste simulants. One challenge when creating a waste simulant is duplicating the filtration behaviour of real waste, in particular when the waste composition is not known with certainty. Using a systematic approach to filtration testing, it has been found that the solid components that dominate the filtration behaviour can be identified. This approach was used to develop a waste simulant for S-Saltcake tank waste. The analysis of filtration data assists in screening solid components when the chemical composition and structure of a metal is not known. This is well-illustrated in this study during the search for the appropriate chromium phase. After the likely components were identified, the solids were combined with a supernate that is representative of the real waste and the filtration performance was verified against real waste data. A secondary benefit of this approach is the construction of a database of filtration performance for various solid species that can be used to quickly develop waste simulants in the future.

  11. Flue gas conditioning for improved particle collection in electrostatic precipitators. Second topical report, Results of bench-scale screening of additives

    SciTech Connect

    Durham, M.D.

    1993-08-13

    ADA Technologies, Inc. (ADA) has completed the bench-scale testing phase of a program to evaluate additives that will improve the collection of fine particles in electrostatic precipitators (ESPs). A bench-scale ESP was installed at the Consolidation Coal Company (CONSOL) combustion research and development facility in Library, PA in order to conduct the evaluation. During a two-week test, four candidate additives were injected into the flue gas ahead of a 100 acfm ESP to determine the effect on fly ash collectability. Two additives were found to reduce the emissions from the ESP. Additives ``C`` and ``D`` performed better than initially anticipated -- reducing emissions initially by 17%. Emissions were reduced by 27% after the ESP was modified by the installation of baffles to minimize sneakage. In addition to the measured improvements in performance, no detrimental effects (i.e., electrode fouling) were observed in the operation of the ESP during the testing. The measures of success identified for the bench-scale phase of the program have been surpassed. Since the additives will affect only non-rapping reentrainment particle losses, it is expected that an even greater improvement in particle collection will be observed in larger-scale ESPs. Therefore, positive results are anticipated during the pilot-scale phase of the program and during a future full-scale demonstration test. A preliminary economic analysis was performed to evaluate the cost of the additive process and to compare its costs against alternative means for reducing emissions from ESPs. The results show that conditioning with additive C at a rate of 0.05% (wt. additive to wt. fly ash) is much less expensive than adding new ESP capacity, and more cost competitive than existing chemical conditioning processes. Preliminary chemical analysis of conditioned fly ash shows that it passes the Toxicity Characteristic Leaching Procedure criteria.

  12. Bench Scale Thin Film Composite Hollow Fiber Membranes for Post-Combustion Carbon Dioxide Capture

    SciTech Connect

    Glaser, Paul; Bhandari, Dhaval; Narang, Kristi; McCloskey, Pat; Singh, Surinder; Ananthasayanam, Balajee; Howson, Paul; Lee, Julia; Wroczynski, Ron; Stewart, Frederick; Orme, Christopher; Klaehn, John; McNally, Joshua; Rownaghi, Ali; Lu, Liu; Koros, William; Goizueta, Roberto; Sethi, Vijay

    2015-04-01

    GE Global Research, Idaho National Laboratory (INL), Georgia Institute of Technology (Georgia Tech), and Western Research Institute (WRI) proposed to develop high performance thin film polymer composite hollow fiber membranes and advanced processes for economical post-combustion carbon dioxide (CO2) capture from pulverized coal flue gas at temperatures typical of existing flue gas cleanup processes. The project sought to develop and then optimize new gas separations membrane systems at the bench scale, including tuning the properties of a novel polyphosphazene polymer in a coating solution and fabricating highly engineered porous hollow fiber supports. The project also sought to define the processes needed to coat the fiber support to manufacture composite hollow fiber membranes with high performance, ultra-thin separation layers. Physical, chemical, and mechanical stability of the materials (individual and composite) towards coal flue gas components was considered via exposure and performance tests. Preliminary design, technoeconomic, and economic feasibility analyses were conducted to evaluate the overall performance and impact of the process on the cost of electricity (COE) for a coal-fired plant including capture technologies. At the onset of the project, Membranes based on coupling a novel selective material polyphosphazene with an engineered hollow fiber support was found to have the potential to capture greater than 90% of the CO2 in flue gas with less than 35% increase in COE, which would achieve the DOE-targeted performance criteria. While lab-scale results for the polyphosphazene materials were very promising, and the material was incorporated into hollow-fiber modules, difficulties were encountered relating to the performance of these membrane systems over time. Performance, as measured by both flux of and selectivity for CO2 over other flue gas constituents was found to deteriorate over time, suggesting a system that was more dynamic than initially hypothesized. These phenomena are believed to be associated with the physical and mechanical properties of the separation material, rather than chemical degradation by flue gas or one of its constituents. Strategies to improve the composite systems via alternate chemistries and processing techniques were only partially successful in creating a more robust system, but the research provided critical insight into the barriers to engineering sophisticated composite systems for gas separation. Promising concepts, including a re-engineering of the separation material with interpenetrating polymer networks were identified which may prove useful to future efforts in this field.

  13. Design and testing of an experiment to measure self-filtration in particulate suspensions

    E-print Network

    Flander, Mattias S. (Mattias Simon)

    2011-01-01

    An experiment for measuring self-filtration in terms of change in volume fraction downstream of a constriction compared to volume fraction upstream of said constriction was designed and tested. The user has the ability to ...

  14. EFRT M12 Issue Resolution: Comparison of PEP and Bench-Scale Oxidative Leaching Results

    SciTech Connect

    Rapko, Brian M.; Brown, Christopher F.; Eslinger, Paul W.; Fountain, Matthew S.; Hausmann, Tom S.; Huckaby, James L.; Hanson, Brady D.; Kurath, Dean E.; Minette, Michael J.

    2009-08-14

    Pacific Northwest National Laboratory (PNNL) has been tasked by Bechtel National Inc. (BNI) on the River Protection Project-Hanford Tank Waste Treatment and Immobilization Plant (RPP-WTP) project to perform research and development activities to resolve technical issues identified for the Pretreatment Facility (PTF). The Pretreatment Engineering Platform (PEP) was designed and constructed and is to be operated as part of a plan to respond to issue M12, “Undemonstrated Leaching Processes.” The PEP is a 1/4.5-scale test platform designed to simulate the WTP pretreatment caustic leaching, oxidative leaching, ultrafiltration solids concentration, and slurry washing processes. The PEP replicates the WTP leaching processes using prototypic equipment and control strategies. The PEP also includes non-prototypic ancillary equipment to support the core processing. Two operating scenarios are currently being evaluated for the ultrafiltration process (UFP) and leaching operations. The first scenario has caustic leaching performed in the UFP-2 ultrafiltration feed vessels (i.e., vessel UFP-VSL-T02A in the PEP; and vessels UFP-VSL-00002A and B in the WTP PTF). The second scenario has caustic leaching conducted in the UFP-1 ultrafiltration feed preparation vessels (i.e., vessels UFP-VSL-T01A and B in the PEP; vessels UFP-VSL-00001A and B in the WTP PTF). In both scenarios, 19-M sodium hydroxide solution (NaOH, caustic) is added to the waste slurry in the vessels to dissolve solid aluminum compounds (e.g., gibbsite, boehmite). Caustic addition is followed by a heating step that uses direct steam injection to accelerate the leaching process. Following the caustic leach, the vessel contents are cooled using vessel cooling jackets and/or external heat exchangers. The main difference between the two scenarios is that for leaching in UFP1, the 19-M NaOH is added to un-concentrated waste slurry (3 to 8 wt% solids), while for leaching in UFP2, the slurry is concentrated to nominally 20 wt% solids using cross-flow ultrafiltration before the addition of caustic. For wastes that have significantly high chromium content, the caustic leaching and slurry dewatering is followed by adding sodium permanganate to UFP-VSL-T02A, and the slurry is subjected to oxidative leaching at nominally ambient temperature. The purpose of the oxidative leaching is to selectively oxidize the poorly alkaline-soluble Cr(III) believed to be the insoluble form in Hanford tank sludge to the much more alkaline-soluble Cr(VI), e.g., chromate. The work described in this report provides the test results that are related to the efficiency of the oxidative leaching process to support process modeling based on tests performed with a Hanford waste simulant. The tests were completed both at the lab-bench scale and in the PEP. The purpose of this report is to summarize the results from both scales that are related to oxidative leaching chemistry to support a scale factor for the submodels to be used in the G2 model, which predicts WTP operating performance. Owing to schedule constraints, the PEP test data to be included in this report are limited to those from Integrated Tests A (T01 A/B caustic leaching) and B (T02A caustic leaching).

  15. A bench-scale assessment for phosphorus release control of sediment by an oxygen-releasing compound (ORC).

    PubMed

    Yang, Jie; Lin, Feng K; Yang, Lei; Hua, Dan Y

    2015-01-01

    The effects of oxygen-releasing compound (ORC) on the control of phosphorus (P) release as well as the spatial and temporal distribution of P fractions in sediment were studied through a bench-scale test. An ORC with an extended oxygen-releasing capacity was prepared. The results of the oxygen-releasing test showed that the ORC provided a prolonged period of oxygen release with a highly effective oxygen content of 60.6% when compared with powdery CaO2. In the bench-scale test, an ORC dose of 180 g·m(-2) provided a higher inhibition efficiency for P release within 50 days. With the application of the ORC, the dissolved oxygen (DO) concentration and redox potential (ORP) of the overlying water were notably improved, and the dissolved total phosphorus (DTP) was maintained below 0.689 mg·L(-1) compared to 2.906 mg·L(-1) without the ORC treatment. According to the P fractions distribution, the summation of all detectable P fractions in each sediment layer exhibited an enhanced accumulation tendency with the application of ORC. Higher phosphorus retention efficiencies were observed in the second and third layers of sediment from days 10 to 20 with the ORC. Phosphorus was trapped mainly in the form of iron bound P (Fe-P) and organically bound P (O-P) in sediment with the ORC, whereas the effects of the ORC on exchangeable P (EX-P), apatite-associated P (A-P) and detrital P (De-P) in the sediment sample were not significant. The microbial activities of the sediment samples demonstrated that both the dehydrogenase activity (DHA) and alkaline phosphatase activity (APA) in the upper sediment layer increased with the ORC treatment, which indicated that the mineralization of P was accelerated and the microbial biomass was increased. As the accumulation of P suppressed the release of P, the sediment exhibited an increased P retention efficiency with the application of the ORC. PMID:25438131

  16. Design of Bench-Scale Silicone Process for Low-Cost CO{sub 2} Capture

    SciTech Connect

    Wood, Benjamin

    2012-06-30

    The major goal of the project is to design and optimize a bench-scale process for novel silicone CO{sub 2}-capture solvents and establish scalability and potential for commercialization of post-combustion capture of CO{sub 2} from coal-fired power plants. This system should be capable of 90% capture efficiency and demonstrate that less than 35% increase in the cost of energy services can be achieved upon scale-up. Experiments were conducted to obtain data required for design of the major unit operations. The bench-scale system design has been completed, including sizing of major unit operations and the development of a detailed Process and Instrument Diagram (P&ID). The system has been designed to be able to operate over a wide range of process conditions so that the effect of various process variables on performance can be determined. To facilitate flexibility in operation, the absorption column has been designed in a modular manner, so that the height of the column can be varied. The desorber has also been designed to allow for a range of residence times, temperatures, and pressures. The system will be fabricated at Techniserv Inc.

  17. In Developping a Bench-Scale Circulating Fluidized Bed Combustor to Burn High Ash Brazilian Coal-Dolomites Mixtures

    NASA Astrophysics Data System (ADS)

    Ramírez Behainne, Jhon Jairo; Hory, Rogério Ishikawa; Goldstein, Leonardo; Bernárdez Pécora, Araí Augusta

    This work considers some of the questions in burning high ash Brazilian coal-dolomite mixtures in a bench-scale circulating fluidized bed combustor (CFBC). Experimental tests were performed with the CE4500 coal from Santa Catarina State, in southern Brazil, with a Sauter mean diameter d p =43 ?m. The coal particles were mixed with dolomite particles of d p = 111 ?m and this fuel mixture was fed into the circulating fluidized reactor, previously loaded with quartz sand particles of d p =353 ?m. This inert material was previously heated by the combustion of liquefied petroleum gas up to the ignition temperature of the fuel mixture. The CFBC unit has a 100mm internal diameter riser, 4.0m high, as well as a 62.8mm internal diameter downcomer. The loop has a cyclone, a sampling valve to collect particles and a 62.8mm internal diameter L-valve to recirculate the particles in the loop. A screw feeder with a rotation control system was used to feed the fuel mixture to the reactor. The operational conditions were monitored by pressure taps and thermocouples installed along the loop. A data acquisition system showed the main operational conditions to control. Experimental tests performed put in evidence the problems found during bed operation, with special attention to the solids feed device, to the L-valve operation, to particle size, solids inventory, fluidized gas velocity, fuel mixture and recirculated solids feeding positions.

  18. Evaluation of the role of heterogeneities on transverse mixing in bench-scale tank experiments by numerical modeling.

    PubMed

    Ballarini, E; Bauer, S; Eberhardt, C; Beyer, C

    2014-01-01

    In this work, numerical modeling is used to evaluate and interpret a series of detailed and well-controlled two-dimensional bench-scale conservative tracer tank experiments performed to investigate transverse mixing in porous media. The porous medium used consists of a fine matrix and a more permeable lens vertically aligned with the tracer source and the flow direction. A sensitivity analysis shows that the tracer distribution after passing the lens is only slightly sensitive to variations in transverse dispersivity, but strongly sensitive to the contrast of hydraulic conductivities. A unique parameter set could be calibrated to closely fit the experimental observations. On the basis of calibrated and validated model, synthetic experiments with different contrasts in hydraulic conductivity and more complex setups were performed and the efficiency of mixing evaluated. Flux-related dilution indices derived from these simulations show that the contrasts in hydraulic conductivity between matrix and high-permeable lenses as well as the spatial configuration of tracer plumes and lenses dominate mixing, rather than the actual pore scale dispersivities. These results indicate that local material distributions, the magnitude of permeability contrasts, and their spatial and scale relation to solute plumes are more important for macro-scale transverse dispersion than the micro-scale dispersivities of individual materials. Local material characterization by thorough site investigation hence is of utmost importance for the evaluation of mixing-influenced or -governed problems in groundwater, such as tracer test evaluation or an assessment of contaminant natural attenuation. PMID:23675977

  19. Filtration and Leach Testing for PUREX Cladding Sludge and REDOX Cladding Sludge Actual Waste Sample Composites

    SciTech Connect

    Shimskey, Rick W.; Billing, Justin M.; Buck, Edgar C.; Casella, Amanda J.; Crum, Jarrod V.; Daniel, Richard C.; Draper, Kathryn E.; Edwards, Matthew K.; Hallen, Richard T.; Kozelisky, Anne E.; MacFarlan, Paul J.; Peterson, Reid A.; Swoboda, Robert G.

    2009-03-02

    A testing program evaluating actual tank waste was developed in response to Task 4 from the M-12 External Flowsheet Review Team (EFRT) issue response plan (Barnes and Voke 2006). The test program was subdivided into logical increments. The bulk water-insoluble solid wastes that are anticipated to be delivered to the Hanford Waste Treatment and Immobilization Plant (WTP) were identified according to type such that the actual waste testing could be targeted to the relevant categories. Under test plan TP RPP WTP 467 (Fiskum et al. 2007), eight broad waste groupings were defined. Samples available from the 222S archive were identified and obtained for testing. Under this test plan, a waste testing program was implemented that included: • Homogenizing the archive samples by group as defined in the test plan. • Characterizing the homogenized sample groups. • Performing parametric leaching testing on each group for compounds of interest. • Performing bench-top filtration/leaching tests in the hot cell for each group to simulate filtration and leaching activities if they occurred in the UFP2 vessel of the WTP Pretreatment Facility. This report focuses on a filtration/leaching test performed using two of the eight waste composite samples. The sample groups examined in this report were the plutonium-uranium extraction (PUREX) cladding waste sludge (Group 3, or CWP) and reduction-oxidation (REDOX) cladding waste sludge (Group 4, or CWR). Both the Group 3 and 4 waste composites were anticipated to be high in gibbsite, thus requiring caustic leaching. WTP RPT 167 (Snow et al. 2008) describes the homogenization, characterization, and parametric leaching activities before benchtop filtration/leaching testing of these two waste groups. Characterization and initial parametric data in that report were used to plan a single filtration/leaching test using a blend of both wastes. The test focused on filtration testing of the waste and caustic leaching for aluminum, in the form of gibbsite, and its impact on filtration. The initial sample was diluted with a liquid simulant to simulate the receiving concentration of retrieved tank waste into the UFP2 vessel (< 10 wt% undissolved solids). Filtration testing was performed on the dilute waste sample and dewatered to a higher solids concentration. Filtration testing was then performed on the concentrated slurry. Afterwards, the slurry was caustic leached to remove aluminum present in the undissolved solid present in the waste. The leach was planned to simulate leaching conditions in the UFP2 vessel. During the leach, slurry supernate samples were collected to measure the dissolution rate of aluminum in the waste. After the slurry cooled down from the elevated leach temperature, the leach liquor was dewatered from the solids. The remaining slurry was rinsed and dewatered with caustic solutions to remove a majority of the dissolved aluminum from the leached slurry. The concentration of sodium hydroxide in the rinse solutions was high enough to maintain the solubility of the aluminum in the dewatered rinse solutions after dilution of the slurry supernate. Filtration tests were performed on the final slurry to compare to filtration performance before and after caustic leaching.

  20. Bench-scale co-processing. Quarterly report No. 11, October 1, 1990--December 31, 1990

    SciTech Connect

    Piasecki, C.A.; Gatsis, J.G.

    1992-02-19

    The objective of this contract is to extend and optimize UOP`s single-stage, slurry-catalyzed co-processing scheme. The particular emphasis is one evaluating alternative and disposable slurry-catalyst systems. During the current quarter, Lloydminster vacuum resid was processed without the presence of coal. The objective of this study was to evaluate the manner in which the resid is upgraded at high-severity conditions to help understand the function of the resid during co-processing. This report coves Bench-Scale Runs 30 to 34. In Runs 30 to 34, Lloydminster vacuum resid was processed without the presence of coal using a 0.05 wt % molybdenum-based catalyst at 465{degrees}C.

  1. Mild gasification technology development process: Task 3, Bench-scale char upgrading study, February 1988--November 1990

    SciTech Connect

    Carty, R.H.; Onischak, M.; Babu, S.P.; Knight, R.A.; Wootten, J.M.; Duthie, R.G.

    1990-12-01

    The overall objective of this program is to develop mild gasification technology and co-product utilization. The objective of Task 3 was to investigate the necessary steps for upgrading the mild gasification char into potential high-market-value solid products. Recommendations of the Task 1 market survey section formed the basis for selecting three value-added solid products from mild gasification char: form coke, smokeless fuel, and activated adsorbent char. The formation and testing for the form coke co-product involved an evaluation of its briquette strength and reactivity. The measured tensile strength and reactivity of the form coke sample briquettes were in the range of commercial coke, and development tests on a larger scale are recommended. The reaction rate of the form coke carbon with carbon dioxide at 1825{degree}F was measured using a standard procedure. A smokeless fuel briquette with limestone added to control sulfur can be made from mild gasification char in a simple manner. Test results have shown that briquettes with limestone have a heating value comparable to other solid fuels and the limestone can retain up to 88% of the sulfur during combustion in a simple bench-scale combustion test, almost all of it as a stable calcium sulfate. Adsorbent chars were prepared with a standard steam activation procedure and tested for a variety of pertinent property and performance values. Such adsorbents may be better suited for use in some areas, such as the adsorption of low-molecular-weight substances, because of the smaller pore sizes measured in the char. 5 refs., 17 figs., 6 tabs.

  2. Characterization, Leaching, and Filtrations Testing of Ferrocyanide Tank sludge (Group 8) Actual Waste Composite

    SciTech Connect

    Fiskum, Sandra K.; Billing, Justin M.; Crum, J. V.; Daniel, Richard C.; Edwards, Matthew K.; Shimskey, Rick W.; Peterson, Reid A.; MacFarlan, Paul J.; Buck, Edgar C.; Draper, Kathryn E.; Kozelisky, Anne E.

    2009-02-28

    This is the final report in a series of eight reports defining characterization, leach, and filtration testing of a wide variety of Hanford tank waste sludges. The information generated from this series is intended to supplement the Waste Treatment and Immobilization Plant (WTP) project understanding of actual waste behaviors associated with tank waste sludge processing through the pretreatment portion of the WTP. The work described in this report presents information on a high-iron waste form, specifically the ferrocyanide tank waste sludge. Iron hydroxide has been shown to pose technical challenges during filtration processing; the ferrocyanide tank waste sludge represented a good source of the high-iron matrix to test the filtration processing.

  3. Filtration and Leach Testing for REDOX Sludge and S-Saltcake Actual Waste Sample Composites

    SciTech Connect

    Shimskey, Rick W.; Billing, Justin M.; Buck, Edgar C.; Daniel, Richard C.; Draper, Kathryn E.; Edwards, Matthew K.; Geeting, John GH; Hallen, Richard T.; Jenson, Evan D.; Kozelisky, Anne E.; MacFarlan, Paul J.; Peterson, Reid A.; Snow, Lanee A.; Swoboda, Robert G.

    2009-02-20

    A testing program evaluating actual tank waste was developed in response to Task 4 from the M-12 External Flowsheet Review Team (EFRT) issue response plan.( ) The test program was subdivided into logical increments. The bulk water-insoluble solid wastes that are anticipated to be delivered to the Waste Treatment and Immobilization Plant (WTP) were identified according to type such that the actual waste testing could be targeted to the relevant categories. Under test plan TP-RPP-WTP-467, eight broad waste groupings were defined. Samples available from the 222S archive were identified and obtained for testing. Under this test plan, a waste-testing program was implemented that included: • Homogenizing the archive samples by group as defined in the test plan • Characterizing the homogenized sample groups • Performing parametric leaching testing on each group for compounds of interest • Performing bench-top filtration/leaching tests in the hot cell for each group to simulate filtration and leaching activities if they occurred in the UFP2 vessel of the WTP Pretreatment Facility. This report focuses on filtration/leaching tests performed on two of the eight waste composite samples and follow-on parametric tests to support aluminum leaching results from those tests.

  4. Bench-Scale Monolith Autothermal Reformer Catalyst Screening Evaluations in a Micro-Reactor With Jet-A Fuel

    NASA Technical Reports Server (NTRS)

    Tomsik, Thomas M.; Yen, Judy C.H.; Budge, John R.

    2006-01-01

    Solid oxide fuel cell systems used in the aerospace or commercial aviation environment require a compact, light-weight and highly durable catalytic fuel processor. The fuel processing method considered here is an autothermal reforming (ATR) step. The ATR converts Jet-A fuel by a reaction with steam and air forming hydrogen (H2) and carbon monoxide (CO) to be used for production of electrical power in the fuel cell. This paper addresses the first phase of an experimental catalyst screening study, looking at the relative effectiveness of several monolith catalyst types when operating with untreated Jet-A fuel. Six monolith catalyst materials were selected for preliminary evaluation and experimental bench-scale screening in a small 0.05 kWe micro-reactor test apparatus. These tests were conducted to assess relative catalyst performance under atmospheric pressure ATR conditions and processing Jet-A fuel at a steam-to-carbon ratio of 3.5, a value higher than anticipated to be run in an optimized system. The average reformer efficiencies for the six catalysts tested ranged from 75 to 83 percent at a constant gas-hourly space velocity of 12,000 hr 1. The corresponding hydrocarbon conversion efficiency varied from 86 to 95 percent during experiments run at reaction temperatures between 750 to 830 C. Based on the results of the short-duration 100 hr tests reported herein, two of the highest performing catalysts were selected for further evaluation in a follow-on 1000 hr life durability study in Phase II.

  5. Mercury Emissions Control in Coal Combustion Systems Using Potassium Iodide: Bench-Scale and Pilot-Scale Studies

    E-print Network

    Li, Ying

    Mercury Emissions Control in Coal Combustion Systems Using Potassium Iodide: Bench-Scale and Pilot Addition of halogens or halides has been reported to promote mercury removal in coal-fired power plants mercury in the gas phase upon introduction of KI, indicating that the oxidation product HgI2 was captured

  6. PILOT-SCALE FIELD TESTS OF HIGH-GRADIENT MAGNETIC FILTRATION

    EPA Science Inventory

    The report gives results of using a 5100 cu m/hr mobile pilot plant to evaluate the effectiveness and economics of applying high-gradient magnetic filtration (HGMF) to particulate emission control. A 4-1/2 month test program was conducted at a Pennsylvania sintering plant to char...

  7. Filterability assessment in membrane bioreactors using an in-situ filtration test cell.

    PubMed

    de la Torre, Teresa; Mottschall, Moritz; Lesjean, Boris; Drews, Anja; Iheanaetu, Andrew; Kraume, Matthias

    2010-01-01

    A new method for the assessment of the filterability in membrane bioreactors was tested for five months in four MBR units in Berlin. The new method BFM (Berlin Filtration Method) for filterability assessment uses a small membrane filtration test cell which can be submerged directly in the biological tanks to determine the filterability of the activated sludge in-situ. The test cell contains an aerated flat-sheet membrane which operates at similar conditions as in the plant. Filterability is expressed in terms of critical flux obtained by performing flux-stepping experiments. The ultimate goal of monitoring the filterability with the device is to detect in real time fouling occurrences due to changes in sludge composition and to adapt accordingly the operating conditions. The usefulness of the device for this purpose was evaluated for five months after monitoring four MBR plants in Berlin with different activated sludge characteristics (MLSS from 5 to 21 g/L, SRT 12-35 d and COD in the supernatant 30-400 mg/L). The first results show a good agreement between the filterability of the sludge with the portable filtration test cell and the filtration performance of the plant. Critical flux values varied between 3 and 30 L/m(2) h during the studied period. Useful information concerning the irreversibility of the fouling was provided by looking at the hysteresis curve of the flux-stepping experiments. PMID:20489253

  8. 77 FR 60481 - Design, Inspection, and Testing Criteria for Air Filtration and Adsorption Units of Post-Accident...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-03

    ... Information DG-1274 was published in the Federal Register on December 30, 2011 (76 FR 82323), for a 60-day... COMMISSION Design, Inspection, and Testing Criteria for Air Filtration and Adsorption Units of Post-Accident..., and Testing Criteria for Air Filtration and Adsorption Units of Post-accident...

  9. Test methods for evaluating the filtration and particulate emission characteristics of vacuum cleaners.

    PubMed

    Willeke, K; Trakumas, S; Grinshpun, S A; Reponen, T; Trunov, M; Friedman, W

    2001-01-01

    The overall filtration efficiency of a vacuum cleaner traditionally has been tested by placing the vacuum cleaner in a test chamber and measuring aerosol concentrations at the chamber inlet and outlet. The chamber test method was refined and validated in this study. However, this chamber test method shows an overall filtration efficiency of close to 100% for most of the industrial vacuum cleaners and for most of the newly developed household vacuum cleaners of midprice range or higher because all these vacuum cleaners have a high-efficiency particulate air (HEPA) or other highly efficient filter installed at the exhaust. A new test method was therefore developed through which the vacuum cleaner was probed in various internal locations so that the collection efficiency of the individual components could be determined. For example, the aerosol concentration upstream of the final HEPA filter can thus be measured, which permits one to estimate the life expectancy of this expensive component. The probed testing method is particularly suitable for field evaluations of vacuum cleaners because it uses compact, battery-operated optical particle size spectrometers with internal data storage. Both chamber and probed tests gave the same results for the aerosol filtration efficiency. The probed testing method, however, also gives information on the performance of the individual components in a vacuum cleaner. It also can be used to determine the dust pickup efficiency and the degree of reaerosolization of particles collected in the vacuum cleaner. PMID:11434437

  10. Gas production and transport during bench-scale electrical resistance heating of water and trichloroethene

    NASA Astrophysics Data System (ADS)

    Hegele, P. R.; Mumford, K. G.

    2014-09-01

    The effective remediation of chlorinated solvent source zones using in situ thermal treatment requires successful capture of gas that is produced. Replicate electrical resistance heating experiments were performed in a thin bench-scale apparatus, where water was boiled and pooled dense non-aqueous phase liquid (DNAPL) trichloroethene (TCE) and water were co-boiled in unconsolidated silica sand. Quantitative light transmission visualization was used to assess gas production and transport mechanisms. In the water boiling experiments, nucleation, growth and coalescence of the gas phase into connected channels were observed at critical gas saturations of Sgc = 0.233 ± 0.017, which allowed for continuous gas transport out of the sand. In experiments containing a colder region above a target heated zone, condensation prevented the formation of steam channels and discrete gas clusters that mobilized into colder regions were trapped soon after discontinuous transport began. In the TCE-water experiments, co-boiling at immiscible fluid interfaces resulted in discontinuous gas transport above the DNAPL pool. Redistribution of DNAPL was also observed above the pool and at the edge of the vapor front that propagated upwards through colder regions. These results suggest that the subsurface should be heated to water boiling temperatures to facilitate gas transport from specific locations of DNAPL to extraction points and reduce the potential for DNAPL redistribution. Decreases in electric current were observed at the onset of gas phase production, which suggests that coupled electrical current and temperature measurements may provide a reliable metric to assess gas phase development.

  11. Dissolved gas exsolution to enhance gas production and transport during bench-scale electrical resistance heating

    NASA Astrophysics Data System (ADS)

    Hegele, P. R.; Mumford, K. G.

    2015-05-01

    Condensation of volatile organic compounds in colder zones can be detrimental to the performance of an in situ thermal treatment application for the remediation of chlorinated solvent source zones. A novel method to increase gas production and limit convective heat loss in more permeable, potentially colder, zones involves the injection and liberation of dissolved gas from solution during heating. Bench-scale electrical resistance heating experiments were performed with a dissolved carbon dioxide and sodium chloride solution to investigate exsolved gas saturations and transport regimes at elevated, but sub-boiling, temperatures. At sub-boiling temperatures, maximum exsolved gas saturations of Sg = 0.12 were attained, and could be sustained when the carbon dioxide solution was injected during heating rather than emplaced prior to heating. This gas saturation was estimated to decrease groundwater relative permeability to krw = 0.64. Discontinuous gas transport was observed above saturations of Sg = 0.07, demonstrating the potential of exsolved CO2 to bridge vertical gas transport through colder zones.

  12. Bench-scale operation of the DETOX wet oxidation process for mixed waste

    SciTech Connect

    Dhooge, P.M.

    1993-03-01

    Waste matrices containing organics, radionuclides, and metals pose difficult problems in waste treatment and disposal when the organic compounds and/or metals are considered to be hazardous. A means of destroying hazardous organic components while safely containing and concentrating metals would be extremely useful in mixed waste volume reduction or conversion to a radioactive-only form. Previous studies have found the DETOX, a patented process utilizing a novel catalytic wet oxidation by iron(III) oxidant, cold have successful application to mixed wastes, and to many other waste types. This paper describes the results of bench scale studies of DETOX applied to the components of liquid mixed wastes, with the goal of establishing parameters for the design of a prototype waste treatment unit. Apparent organic reaction rate orders, and the dependence of apparent reaction rate on the contact area, were measured for vacuum pump oil, scintillation fluids, and trichloroethylene. It was found that reaction rate was proportional to contact area above about 2.% w/w loading of organic. Oxidations in a 4 liter. volume, mixed bench top reactor have given destruction efficiencies of 99.9999+% for common organics. Reaction rates achieved in the mixedbench top reactor were one to two orders of magnitude greater than had been achieved in unmixed reactions; a thoroughly mixed reactor should be capable of oxidizing 10. to 100.+ grams of organic per liter-hour,depending on the nature and concentration of the organic.

  13. Bench-scale operation of the DETOX wet oxidation process for mixed waste

    SciTech Connect

    Dhooge, P.M.

    1993-01-01

    Waste matrices containing organics, radionuclides, and metals pose difficult problems in waste treatment and disposal when the organic compounds and/or metals are considered to be hazardous. A means of destroying hazardous organic components while safely containing and concentrating metals would be extremely useful in mixed waste volume reduction or conversion to a radioactive-only form. Previous studies have found the DETOX, a patented process utilizing a novel catalytic wet oxidation by iron(III) oxidant, cold have successful application to mixed wastes, and to many other waste types. This paper describes the results of bench scale studies of DETOX applied to the components of liquid mixed wastes, with the goal of establishing parameters for the design of a prototype waste treatment unit. Apparent organic reaction rate orders, and the dependence of apparent reaction rate on the contact area, were measured for vacuum pump oil, scintillation fluids, and trichloroethylene. It was found that reaction rate was proportional to contact area above about 2.% w/w loading of organic. Oxidations in a 4 liter. volume, mixed bench top reactor have given destruction efficiencies of 99.9999+% for common organics. Reaction rates achieved in the mixedbench top reactor were one to two orders of magnitude greater than had been achieved in unmixed reactions; a thoroughly mixed reactor should be capable of oxidizing 10. to 100.+ grams of organic per liter-hour,depending on the nature and concentration of the organic.

  14. Bench-Scale Electrochemical System for Generation of CO and Syn-Gas

    SciTech Connect

    Eric J. Dufek; Tedd E. Lister; Michael E. McIlwain

    2011-06-01

    A bench-scale system for the electrochemical reduction of CO2 has been developed which produces CO and H2 (syn-gas) mixtures. The system is equipped with a gas-diffusion electrode which partially alleviates some of the mass-transport issues associated with CO2 delivery to the cathode. The positive effect of temperature was discovered where at 70°C a reduction in cell voltage of 1.57 V (compared to ambient) was observed at 70 mA cm-2. Controlling the flow of CO2 made it possible to maintain set H2:CO ratios with CO accounting for 25-90% of the product and H2 accounting for 10-75%. The cell, after an initial stabilization period of 40 min, displays reproducible, stable behavior. The current cell design brings the current densities for CO2 reduction closer to what is currently achieved in industrial alkaline electrolysis cells. This report discusses the electrolyte, electrode materials and variables which have been found to be significant in the production of CO and syn-gas mixtures.

  15. Bench-Scale Development of a Hot Carbonate Absorption Process with Crystallization-Enabled High-Pressure Stripping for Post-Combustion CO{sub 2} Capture

    SciTech Connect

    Lu, Yongqi; DeVries, Nicholas; Ruhter, David; Manoranjan, Sahu; Ye, Qing; Ye, Xinhuai; Zhang, Shihan; Chen, Scott; Li, Zhiwei; O'Brien, Kevin

    2014-03-31

    A novel Hot Carbonate Absorption Process with Crystallization-Enabled High-Pressure Stripping (Hot-CAP) has been developed by the University of Illinois at Urbana-Champaign and Carbon Capture Scientific, LLC in this three-year, bench-scale project. The Hot-CAP features a concentrated carbonate solution (e.g., K{sub 2}CO{sub 3}) for CO{sub 2} absorption and a bicarbonate slurry (e.g., KHCO{sub 3}) for high-pressure CO{sub 2} stripping to overcome the energy use and other disadvantages associated with the benchmark monoethanolamine (MEA) process. The project was aimed at performing laboratory- and bench-scale experiments to prove its technical feasibility and generate process engineering and scale-up data, and conducting a techno-economic analysis (TEA) to demonstrate its energy use and cost competitiveness over MEA. To meet project goals and objectives, a combination of experimental, modeling, process simulation, and economic analysis studies were applied. Carefully designed and intensive experiments were conducted to measure thermodynamic and reaction engineering data relevant to four major unit operations in the Hot-CAP (i.e., CO{sub 2} absorption, CO{sub 2} stripping, bicarbonate crystallization, and sulfate reclamation). The rate promoters that could accelerate the CO{sub 2} absorption rate into the potassium carbonate/bicarbonate (PCB) solution to a level greater than that into the 5 M MEA solution were identified, and the superior performance of CO{sub 2} absorption into PCB was demonstrated in a bench-scale packed-bed column. Kinetic data on bicarbonate crystallization were developed and applied for crystallizer design and sizing. Parametric testing of high-pressure CO{sub 2} stripping with concentrated bicarbonate-dominant slurries at high temperatures ({>=}140{degrees}C) in a bench-scale stripping column demonstrated lower heat use than with MEA. The feasibility of a modified process for combining SO{sub 2} removal with CO{sub 2} capture was preliminarily demonstrated. In addition to the experimental studies, the technical challenges pertinent to fouling of slurry-handling equipment and the design of the crystallizer and stripper were addressed through consultation with vendors and engineering analyses. A process flow diagram of the Hot-CAP was then developed and a TEA was performed to compare the energy use and cost performance of a nominal 550-MWe subcritical pulverized coal (PC)-fired power plant without CO{sub 2} capture (DOE/NETL Case 9) with the benchmark MEA-based post-combustion CO{sub 2} capture (PCC; DOE/NETL Case 10) and the Hot-CAP-based PCC. The results revealed that the net power produced in the PC + Hot-CAP is 609 MWe, greater than the PC + MEA (550 MWe). The 20-year levelized cost of electricity (LCOE) for the PC + Hot-CAP, including CO{sub 2} transportation and storage, is 120.3 mills/kWh, a 60% increase over the base PC plant without CO{sub 2} capture. The LCOE increase for the Hot-CAP is 29% lower than that for MEA. TEA results demonstrated that the Hot-CAP is energy-efficient and cost-effective compared with the benchmark MEA process.

  16. Bench-scale biofilter for removing ammonia from poultry house exhaust.

    PubMed

    Shah, S B; Basden, T J; Bhumbla, D K

    2003-01-01

    A bench-scale biofilter was evaluated for removing ammonia (NH3) from poultry house exhaust. The biofilter system was equipped with a compost filter to remove NH3 and calcium oxide (CaO) filter to remove carbon dioxide (CO2). Removal of NH3 and CO2 from poultry house exhaust could allow treated air with residual heat to be recirculated back into the poultry house to conserve energy during winter months. Apart from its use as a plant nutrient, NH3 removal from poultry house exhaust could lessen the adverse environmental impacts of NH3 emissions. Ammonia and CO2 were measured daily with gas detector tubes while temperatures in the poultry pen and compost filter were monitored to evaluate the thermal impact of the biofilter on treated air. During the first 37 days of the 54-day study, exhaust air from 33 birds housed in a pen was treated in the biofilter; for the final 17 days, NH3-laden exhaust, obtained by applying urea to the empty pen was treated in the biofilter. The biofilter system provided near-complete attenuation of a maximum short-term NH3 concentration of 73 ppm. During the last 17 days, with a mean influent NH3 concentration of 26 ppm, the biofilter provided 97% attenuation. The CaO filter was effective in attenuating CO2. Compared with a biofilter sized only for NH3 removal, an oversized biofilter would be required to provide supplemental heat to the treated air through exothermic biochemical reactions in the compost. The biofilter could conserve energy in poultry production and capture NH3 for use as plant nutrient. Based on this study, a house for 27,000 broilers would require a compost filter with a volume of approximately 34 m3. PMID:12602826

  17. Gas production and transport during bench-scale electrical resistance heating of water and trichloroethene.

    PubMed

    Hegele, P R; Mumford, K G

    2014-09-01

    The effective remediation of chlorinated solvent source zones using in situ thermal treatment requires successful capture of gas that is produced. Replicate electrical resistance heating experiments were performed in a thin bench-scale apparatus, where water was boiled and pooled dense non-aqueous phase liquid (DNAPL) trichloroethene (TCE) and water were co-boiled in unconsolidated silica sand. Quantitative light transmission visualization was used to assess gas production and transport mechanisms. In the water boiling experiments, nucleation, growth and coalescence of the gas phase into connected channels were observed at critical gas saturations of Sgc=0.233±0.017, which allowed for continuous gas transport out of the sand. In experiments containing a colder region above a target heated zone, condensation prevented the formation of steam channels and discrete gas clusters that mobilized into colder regions were trapped soon after discontinuous transport began. In the TCE-water experiments, co-boiling at immiscible fluid interfaces resulted in discontinuous gas transport above the DNAPL pool. Redistribution of DNAPL was also observed above the pool and at the edge of the vapor front that propagated upwards through colder regions. These results suggest that the subsurface should be heated to water boiling temperatures to facilitate gas transport from specific locations of DNAPL to extraction points and reduce the potential for DNAPL redistribution. Decreases in electric current were observed at the onset of gas phase production, which suggests that coupled electrical current and temperature measurements may provide a reliable metric to assess gas phase development. PMID:25084057

  18. Biotreatment of chlorpyrifos in a bench scale bioreactor using Psychrobacter alimentarius T14.

    PubMed

    Khalid, Saira; Hashmi, Imran

    2016-02-01

    Bacteria tolerant to high pesticide concentration could be used for designing an efficient treatment technology. Bacterial strains T14 was isolated from pesticide-contaminated soil in mineral salt medium (MSM) and identified as Psychrobacter alimentarius T14 using 16S rRNA gene sequence analysis. Bench scale bioreactor was evaluated for biotreatment of high Chlorpyrifos (CP) concentration using P. alimentarius T14. Effect of various parameters on bioreactor performance was examined and optimum removal was observed at optical density (OD600?nm): 0.8; pH: 7.2; CP concentration: 300?mg?L(-1) and hydraulic retention time: 48?h. At optimum conditions, 70.3/79% of CP/chemical oxygen demand (COD) removal was achieved in batch bioreactors. In addition, P. alimentarius T14 achieved 95/91, 62.3/75, 69.8/64% CP/COD removal efficiency with addition of CS (co-substrates), CS1 (yeast extract?+?synthetic wastewater), CS2 (glucose?+?synthetic wastewater) and CS3 (yeast extract), respectively. Addition of CS1 to bioreactor could accelerate CP removal rate up to many cycles with considerable efficiency. However, accumulation of 3, 5, 6-trichloro-2-pyridinol affects reactor performance in cyclic mode. First-order rate constant k1 0.062?h(-1) and t1/2 11.1?h demonstrates fast degradation. Change in concentration of total chlorine and nitrogen could be the result of complete mineralization. Photodegradation of CP in commercial product was more than its pure form. Commercial formulation accelerated photodegradation process; however no effect on biodegradation process was observed. After bio-photodegradation, negligible toxicity for seeds of Triticum aestivum was observed. Study suggests an efficient treatment of wastewater containing CP and its metabolites in batch bioreactors could be achieved using P. alimentarius. PMID:26144866

  19. In-situ Subaqueous Capping of Mercury-Contaminated Sediments in a Fresh-Water Aquatic System, Part I-Bench-Scale Microcosm Study to Assess Methylmercury Production

    EPA Science Inventory

    Bench-scale microcosm experiments were designed to provide a better understanding of the potential for Hg methylation in sediments from an aquatic environment. Experiments were conducted to examine the function of sulfate concentration, lactate concentration, the presence/absenc...

  20. Measure Twice, Build Once: Bench-Scale Testing to Evaluate Bioretention Media Design (Presentation)

    EPA Science Inventory

    Rain garden design manuals and guidelines typically recommend using native soils or engineered media that meet specifications for low content of clay, silt, fine and very fine sands, and organic matter. These characteristics promote stormwater infiltration and sorption of heavy ...

  1. SUMMARY PLAN FOR BENCH-SCALE REFORMER AND PRODUCT TESTING TREATABILITY STUDIES USING HANFORD TANK WASTE

    SciTech Connect

    ROBBINS RA

    2011-02-11

    This paper describes the sample selection, sample preparation, environmental, and regulatory considerations for shipment of Hanford radioactive waste samples for treatability studies of the FBSR process at the Savannah River National Laboratory and the Pacific Northwest National Laboratory.

  2. Engineering development of selective agglomeration: Task 5, Bench- scale process testing

    SciTech Connect

    Not Available

    1991-09-01

    Under the overall objectives of DOE Contract ``Engineering Development of Selective Agglomeration,`` there were a number of specific objectives in the Task 5 program. The prime objectives of Task 5 are highlighted below: (1) Maximize process performance in pyritic sulfur rejection and BTU recovery, (2) Produce a low ash product, (3) Compare the performance of the heavy agglomerant process based on diesel and the light agglomerant process using heptane, (4) Define optimum processing conditions for engineering design, (5) Provide first-level evaluation of product handleability, and (6) Explore and investigate process options/ideas which may enhance process performance and/or product handleability.

  3. Engineering development of selective agglomeration: Task 5, Bench- scale process testing

    SciTech Connect

    Not Available

    1991-09-01

    Under the overall objectives of DOE Contract Engineering Development of Selective Agglomeration,'' there were a number of specific objectives in the Task 5 program. The prime objectives of Task 5 are highlighted below: (1) Maximize process performance in pyritic sulfur rejection and BTU recovery, (2) Produce a low ash product, (3) Compare the performance of the heavy agglomerant process based on diesel and the light agglomerant process using heptane, (4) Define optimum processing conditions for engineering design, (5) Provide first-level evaluation of product handleability, and (6) Explore and investigate process options/ideas which may enhance process performance and/or product handleability.

  4. Bench scale testing - Phase I, Task 4. Topical progress report, September 1994--January 1995

    SciTech Connect

    1995-07-01

    The Department of Energy (DOE) is now faced with the task of meeting decontamination and decommissioning obligations at numerous facilities by the year 2019. Due to the tremendous volume of material involved, innovative decontamination technologies are being sought that can reduce the volumes of contaminated waste materials and secondary wastes requiring disposal. With sufficient decontamination, some of the material from DOE facilities could be released as scrap into the commercial sector for recycle, thereby reducing the volume of radioactive waste requiring disposal. Although recycling may initially prove to be more costly than current disposal practices, rapidly increasing disposal costs are expected to make recycling more and more cost effective. Additionally, recycling is now perceived as the ethical choice in a world where the consequences of replacing resources and throwing away reusable materials are impacting the well-being of the environment.

  5. BENCH-SCALE TESTING OF SORBENT ADDITIVES FOR TRACE METAL CAPTURE AND RETENTION

    EPA Science Inventory

    The suitability of six minerals; silica, diatomaceous earth, kaolin, bauxite, alumina and attapulgite clay, as potential sorbents for the capture and immobilization of trace metals was evaluated. he behavior of five trace metals; arsenic, cadmium, chromium,, lead and nickel was t...

  6. Detection of pathogenic Batrachochytrium dendrobatidis using water filtration, animal and bait testing.

    PubMed

    Wimsatt, Jeffrey; Feldman, Sanford H; Heffron, Meghan; Hammond, Meagan; Ruehling, Margaret P Roth; Grayson, Kristine L; Mitchell, Joseph C

    2014-01-01

    The pathogen Batrachochytrium dendrobatidis (Bd) can be challenging to detect at endangered amphibian reintroduction sites. Pre-release Bd detection can be confounded by imperfect animal sampling and the absence of animals. In Study 1, we used historical Bd-positive sites, to concurrently evaluate water filtrates and mouth bar (tadpoles) or skin swab (caudates) samples for Bd using molecular beacon realtime PCR. In Study 2, during a natural outbreak, we used PCR to detect Bd from zoospore-attracting keratin baits (three avian, three snake species). In Study 1, no captured animals (n=116) exhibited clinical signs, although 10.6% were positive, representing three of seven species sampled. In contrast, 5.4% of water filters (n=56) were Bd-positive. In Study 2, after short incubation times, a single duck down feather tested Bd-positive. In conclusion, Bd was detected in asymptomatic amphibians and water filtrate at two sites, and from water only, at two other sites. With continued refinement, semi-quantitative Bd water filtrate screening could better define zoospore-specific disease risk, allowing better characterization of the free-living phase of the organism's life cycle. Finally, these results suggest wild aquatic birds (e.g., waterfowl) should be systematically explored as a means of Bd spread. Since large numbers of aquatic birds migrate, even low Bd transfer rates could be a significant means for disease dissemination. PMID:25231013

  7. Subscale Validation of the Subsurface Active Filtration of Exhaust (SAFE) Approach to the NTP Ground Testing

    NASA Technical Reports Server (NTRS)

    Marshall, William M.; Borowski, Stanley K.; Bulman, Mel; Joyner, Russell; Martin, Charles R.

    2015-01-01

    Nuclear thermal propulsion (NTP) has been recognized as an enabling technology for missions to Mars and beyond. However, one of the key challenges of developing a nuclear thermal rocket is conducting verification and development tests on the ground. A number of ground test options are presented, with the Sub-surface Active Filtration of Exhaust (SAFE) method identified as a preferred path forward for the NTP program. The SAFE concept utilizes the natural soil characteristics present at the Nevada National Security Site to provide a natural filter for nuclear rocket exhaust during ground testing. A validation method of the SAFE concept is presented, utilizing a non-nuclear sub-scale hydrogen/oxygen rocket seeded with detectible radioisotopes. Additionally, some alternative ground test concepts, based upon the SAFE concept, are presented. Finally, an overview of the ongoing discussions of developing a ground test campaign are presented.

  8. Assessing the fate of organic micropollutants during riverbank filtration utilizing field studies and laboratory test systems

    NASA Astrophysics Data System (ADS)

    Schmidt, C. K.; Lange, F. T.; Sacher, F.; Baus, C.; Brauch, H.-J.

    2003-04-01

    In Germany and other highly populated countries, several waterworks use riverbank filtration as a first step in the treatment of river water for water supplies. Unfortunately, industrial and municipal discharges and the influence of agriculture lead to the pollution of rivers and lakes by a number of organic chemicals. In order to assess the impact of those organic micropollutants on the quality of drinking water, it is necessary to clarify their fate during infiltration and underground passage. The fate of organic micropollutants in a river water-groundwater infiltration system is mainly determined by adsorption mechanisms and biological transformations. One possibility to simulate the microbial degradation of single compounds during riverbank filtration is the use of laboratory test filter systems, that are operated as biological fixed-bed reactors under aerobic conditions. The benefit and meaningfulness of those test filters was evaluated on the basis of selected target compounds by comparing the results derived from test filter experiments with field studies under environmental conditions at the River Rhine. Samples from the river and from groundwater of a well characterized aerobic infiltration pathway were analyzed over a time period of several years for a spectrum of organic micropollutants. Target compounds comprised several contaminants relevant for the aquatic environment, such as complexing agents, aromatic sulfonates, pharmaceuticals (including iodinated X ray contrast media), and MTBE. Furthermore, the behaviour of some target compounds during aerobic riverbank filtration was compared to their fate along a section of an anaerobic (oxygen-depleted) aquifer at the River Ruhr that is characterized by a transition state between sulfate reduction and methane production. While some organic micropollutants showed no major differences, the elimination of others turned out to be clearly dependent on the underlying redox processes in the groundwater. The observations demonstrate, that levels of many organic micropollutants present in natural river waters can be reduced or even eliminated during aerobic and anaerobic bankfiltration. As such, the water quality is improved and subsequent treatment steps, such as granular activated carbon filtration, may be supported and simplified leading to decreased water treatment costs. Test filter experiments are a suitable tool to predict the extent of elimination of emerging organic contaminants during aerobic bankfiltration.

  9. Urban water reuse: microbial pathogens control by direct filtration and ultraviolet disinfection.

    PubMed

    de Lima Isaac, Ricardo; Dos Santos, Luciana Urbano; Tosetto, Mariana S; Franco, Regina Maura Bueno; Guimarães, José Roberto

    2014-09-01

    Physicochemical treatment efficiency for unrestricted urban water reuse was evaluated at a conventional activated-sludge wastewater treatment plant (WWTP). Pilot plant set-up consisted of an alum coagulation step, granular media upflow flocculation and direct downflow dual-media filtration followed by ultraviolet disinfection (dose of 95 mJ cm?²). Optimum aluminum sulfate dosage of 10 mg L?¹ and coagulation pH 7.0 were preset based on bench scale tests. Under WWTP stable operation, water quality met United States Environmental Protection Agency (USEPA) suggested guidelines for unrestricted urban reuse regarding turbidity (mean value 1.3 NTU) and suspended solids (mean value 2.1 mg L?¹). When WWTP overall plant performance dropped from 90 to 80% (although BOD value stayed below 6 mg O? L?¹, suggesting unrestricted reuse), solids breakthrough in filtrate was observed. Microorganism removal rates were: total coliforms 60.0%, Escherichia coli 63.0%, Giardia spp. 81.0%, and helminth eggs 62.5%; thus organisms still remained in filtrate. Ultraviolet (UV) disinfection efficiency was 4.1- and 3.8-log for total coliforms and E. coli, respectively. Considering low UV efficiency obtained for helminths and the survival of protozoa and helminths in the environment, effluent quality presents risk to public health if destined for unrestricted urban reuse. PMID:25252350

  10. Bench-Scale Process for Low-Cost Carbon Dioxide (CO2) Capture Using a Phase-Changing Absorbent

    SciTech Connect

    Westendorf, Tiffany; Caraher, Joel; Chen, Wei; Farnum, Rachael; Perry, Robert; Spiry, Irina; Wilson, Paul; Wood, Benjamin

    2015-03-31

    The objective of this project is to design and build a bench-scale process for a novel phase-changing aminosilicone-based CO2-capture solvent. The project will establish scalability and technical and economic feasibility of using a phase-changing CO2-capture absorbent for post-combustion capture of CO2 from coal-fired power plants with 90% capture efficiency and 95% CO2 purity at a cost of $40/tonne of CO2 captured by 2025 and a cost of <$10/tonne of CO2 captured by 2035. In the first budget period of this project, the bench-scale phase-changing CO2 capture process was designed using data and operating experience generated under a previous project (ARPA-e project DE-AR0000084). Sizing and specification of all major unit operations was completed, including detailed process and instrumentation diagrams. The system was designed to operate over a wide range of operating conditions to allow for exploration of the effect of process variables on CO2 capture performance.

  11. Comparison of adsorption behavior of PCDD/Fs on carbon nanotubes and activated carbons in a bench-scale dioxin generating system.

    PubMed

    Zhou, Xujian; Li, Xiaodong; Xu, Shuaixi; Zhao, Xiyuan; Ni, Mingjiang; Cen, Kefa

    2015-07-01

    Porous carbon-based materials are commonly used to remove various organic and inorganic pollutants from gaseous and liquid effluents and products. In this study, the adsorption of dioxins on both activated carbons and multi-walled carbon nanotube was internally compared, via series of bench scale experiments. A laboratory-scale dioxin generator was applied to generate PCDD/Fs with constant concentration (8.3 ng I-TEQ/Nm(3)). The results confirm that high-chlorinated congeners are more easily adsorbed on both activated carbons and carbon nanotubes than low-chlorinated congeners. Carbon nanotubes also achieved higher adsorption efficiency than activated carbons even though they have smaller BET-surface. Carbon nanotubes reached the total removal efficiency over 86.8 % to be compared with removal efficiencies of only 70.0 and 54.2 % for the two other activated carbons tested. In addition, because of different adsorption mechanisms, the removal efficiencies of carbon nanotubes dropped more slowly with time than was the case for activated carbons. It could be attributed to the abundant mesopores distributed in the surface of carbon nanotubes. They enhanced the pore filled process of dioxin molecules during adsorption. In addition, strong interactions between the two benzene rings of dioxin molecules and the hexagonal arrays of carbon atoms in the surface make carbon nanotubes have bigger adsorption capacity. PMID:25728198

  12. An Inorganic Microsphere Composite for the Selective Removal of 137 Cesium from Acidic Nuclear Waste Solutions 2: Bench-Scale Column Experiments, Modeling, and Preliminary Process Design

    SciTech Connect

    Troy J. Tranter; T. A. Vereschagina; V. Utgikar

    2009-03-01

    A new inorganic ion exchange composite for removing radioactive cesium from acidic waste streams has been developed. The new material consists of ammonium molybdophosphate, (NH4)3P(Mo3O10)4?3H2O (AMP), synthesized within hollow aluminosilicate microspheres (AMP-C), which are produced as a by-product from coal combustion. The selective cesium exchange capacity of this inorganic composite was evaluated in bench-scale column tests using simulated sodium bearing waste solution as a surrogate for the acidic tank waste currently stored at the Idaho National Laboratory (INL). Total cesium loading on the columns at saturation agreed very well with equilibrium values predicted from isotherm experiments performed previously. A numerical algorithm for solving the governing partial differential equations (PDE) for cesium uptake was developed using the intraparticle mass transfer coefficient obtained from previous batch kinetic experiments. Solutions to the governing equations were generated to obtain the cesium concentration at the column effluent as a function of throughput volume using the same conditions as those used for the actual column experiments. The numerical solutions of the PDE fit the column break through data quite well for all the experimental conditions in the study. The model should therefore provide a reliable prediction of column performance at larger scales.

  13. Laboratory tests for simulating attenuation processes of aromatic amines in riverbank filtration

    NASA Astrophysics Data System (ADS)

    Worch, Eckhard; Grischek, Thomas; Börnick, Hilmar; Eppinger, Petra

    2002-09-01

    Based on a two-step laboratory test including biodegradation and adsorption, it is possible to derive a prognosis of the behaviour of organic compounds during riverbank filtration and to prioritise the substances with regard to drinking water quality. It is shown for aromatic amines, used as an example of organics found in River Elbe water, Germany, how the simulation methods provide basic information about rate constants of biological degradation and adsorption equilibrium constants under conditions that are as realistic as possible. Biodegradation of nitroanilines and higher chlorinated anilines is relatively slow and adsorption onto the sandy aquifer material is weak. Accordingly, occurrence of these compounds in the production wells of the waterworks cannot be excluded.

  14. Radioactive Bench-scale Steam Reformer Demonstration of a Monolithic Steam Reformed Mineralized Waste Form for Hanford Waste Treatment Plant Secondary Waste - 12306

    SciTech Connect

    Evans, Brent; Olson, Arlin; Mason, J. Bradley; Ryan, Kevin; Jantzen, Carol; Crawford, Charles

    2012-07-01

    Hanford currently has 212,000 m{sup 3} (56 million gallons) of highly radioactive mixed waste stored in the Hanford tank farm. This waste will be processed to produce both high-level and low-level activity fractions, both of which are to be vitrified. Supplemental treatment options have been under evaluation for treating portions of the low-activity waste, as well as the liquid secondary waste from the low-activity waste vitrification process. One technology under consideration has been the THOR{sup R} fluidized bed steam reforming process offered by THOR Treatment Technologies, LLC (TTT). As a follow-on effort to TTT's 2008 pilot plant FBSR non-radioactive demonstration for treating low-activity waste and waste treatment plant secondary waste, TTT, in conjunction with Savannah River National Laboratory, has completed a bench scale evaluation of this same technology on a chemically adjusted radioactive surrogate of Hanford's waste treatment plant secondary waste stream. This test generated a granular product that was subsequently formed into monoliths, using a geo-polymer as the binding agent, that were subjected to compressibility testing, the Product Consistency Test and other leachability tests, and chemical composition analyses. This testing has demonstrated that the mineralized waste form, produced by co-processing waste with kaolin clay using the TTT process, is as durable as low-activity waste glass. Testing has shown the resulting monolith waste form is durable, leach resistant, and chemically stable, and has the added benefit of capturing and retaining the majority of Tc-99, I-129, and other target species at high levels. (authors)

  15. Simultaneous bench scale production of dissolving grade pulp and valuable hemicelluloses from softwood kraft pulp by ionic liquid extraction.

    PubMed

    Laine, Christiane; Asikainen, Sari; Talja, Riku; Stépán, Agnes; Sixta, Herbert; Harlin, Ali

    2016-01-20

    Ionic liquid extraction of wood pulp has been highlighted as a highly potential new process for dissolving pulp production. Coproduction with a polymeric hemicellulose fraction was demonstrated in bench scale from softwood kraft pulp using extraction with the ionic liquid 1-ethyl-3-methylimidazolium acetate (EMIM OAc) and water. In total, the recovered pulp and hemicellulose fraction together yielded 95.5wt.% of the pulp input. The extracted pulp had a remarkably high purity with an R18-value of 97.8%. The hemicellulose fraction consisted of galactoglucomannan, arabinoxylan and some cellulose and was precipitated from the ionic liquid-water mixture. After hydroxypropylation of the hemicellulose fraction, films were prepared and barrier and strength properties were compared to films from other polysaccharides. Reduced oxygen and water vapor permeation and good strength properties were demonstrated when compared to corresponding films from hydroxypropylated xylan from cold caustic extraction. The films have potential for applications in food packaging and edible films. PMID:26572370

  16. Results of HWVP transuranic process waste treatment laboratory and pilot-scale filtration tests using specially ground zeolite

    SciTech Connect

    Eakin, D.E.

    1996-03-01

    Process waste streams from the Hanford Waste Vitrification Plant (HWVP) may require treatment for cesium, strontium, and transuranic (TRU) element removal in order to meet criteria for incorporation in grout. The approach planned for cesium and strontium removal is ion exchange using a zeolite exchanger followed by filtration. Filtration using a pneumatic hydropulse filter is planned to remove TRU elements which are associated with process solids and to also remove zeolite bearing the cesium and strontium. The solids removed during filtration are recycled to the melter feed system to be incorporated into the HWVP glass product. Fluor Daniel, Inc., the architect-engineering firm for HWVP, recommended a Pneumatic Hydropulse (PHP) filter manufactured by Mott Metallurgical Corporation for use in the HWVP. The primary waste streams considered for application of zeolite contact and filtration are melter off-gas condensate from the submerged bed scrubber (SBS), and equipment decontamination solutions from the Decontamination Waste Treatment Tank (DWTT). Other waste streams could be treated depending on TRU element and radionuclide content. Laboratory and pilot-scale filtration tests were conducted to provide a preliminary assessment of the adequacy of the recommended filter for application to HWVP waste treatment.

  17. BENCH-SCALE EVALUATION OF ALTERNATIVE BIOLOGICAL TREATMENT PROCESSES FOR THE REMEDIATION OF PCP- AND CREOSOTE-CONTAMINATED MATERIALS: SLURRY-PHASE BIOREMEDIATION

    EPA Science Inventory

    Performance data on slurry-phase bioremediation of pentachlorophenol (PCP)- and creosote-contaminated sediment and surface soil were generated at the bench-scale level. queous slurries, containing 0.05% Triton X-100 to facilitate the soil washing process and to help stabilize the...

  18. Strontium-Transuranic Precipitation and Crossflow Filtration of 241-AN-102 Large C

    SciTech Connect

    Nash, C.A.

    2001-05-21

    This work provides an important confirmation of the new strontium/permanganate precipitation process to achieve both acceptable filterability and decontamination for Envelope C (Tanks 241-AN-102 and 241-AN-107) wastes to be treated by the Hanford River Protection Project. As a bench-scale demonstration, a series of seven precipitation batches and crossflow filtration campaigns were performed to remove strontium-90 and transuranics from 16.5 liters of Tank 241-AN-102 ''Large C'' supernatant liquid containing entrained solids.

  19. BAGHOUSE FILTRATION PRODUCTS VERIFICATION TESTING, HOW IT BENEFITS THE BOILER BAGHOUSE OPERATOR

    EPA Science Inventory

    The paper describes the Environmental Technology Verification (ETV) Program for baghouse filtration products developed by the Air Pollution Control Technology Verification Center, one of six Centers under the ETV Program, and discusses how it benefits boiler baghouse operators. A...

  20. Visualization of water flow during filtration using flat filtration materials

    NASA Astrophysics Data System (ADS)

    Bílek, Petr; Šidlof, Petr; Hr?za, Jakub

    2012-04-01

    Filtration materials are very important elements of some industrial appliances. Water filtration is a separation of solid materials from fluid. Solid particles are captured on the frontal area of the filtration textile and only liquid passes through it. It is important to know the filtration process in a detailed way to be able to develop filtration materials. Visualization of filtration process enables a better view of the filtration. This method also enables to determine efficiency and homogeneity of filtration using image analysis. For this purpose, a new waterfiltration measuring setup was proposed and constructed. Filtration material is mounted into the optically transparent place in the setup. Laser sheet is directed into this place as in the case of Particle Image Velocimetry measuring method. Monochrome and sensitive camera records the light scattered by seeding particles in water. The seeding particles passing through the filter serve for measuring filtration efficiency, and also for visualization of filtration process. Filtration setup enables to measure also the pressure drop and a flow. The signals are processed by National Instruments compactDAQ system and UMA software. Microfibrous and nanofibrous filtration materials are tested by this measuring method. In the case of nanofibrous filtration, appropriate size of seeding particles is needed to be used to perform a process of filtration.

  1. Relating feedstock composition to product slate and composition in catalytic cracking: 1. Bench scale experiments with liquid chromatographic fractions from Wilmington, CA, >650{degree}F resid

    SciTech Connect

    Green, J.B.; Zagula, E.J.; Reynolds, J.W.; Wandke, H.H.; Young, L.L.; Chew, H.

    1993-09-01

    The catalytic cracking behavior of compound types in the >650{degree}F resid from a Wilmington, CA, 14.2{degree} API crude was investigated. Liquid Chromatography (LC) was used to separate the resid into eight fractions. These fractions were used as feedstocks for a bench scale fluidized catalytic cracking (FCC) unit. Gasoline was produced almost exclusively from neutral (65 % of whole resid) components. Acidic and basic types were partially converted to coke plus small amounts of C{sub l} and C{sub 2} gases, with the balance primarily carrying over as heavy liquid products. Gasoline composition depended on the type and quantity of polar compounds present in the feed because both acidic and basic compounds inhibited cracking reactions ({beta}-scission, hydrogen transfer, etc.) to varying degrees. In accordance with prior work, basic nitrogen compounds exhibited the largest inhibitory effect on cracking. Their effect is dependent on concentrations up to a limiting value which may correspond to saturation of susceptible catalyst sites. On an equal weight basis, the effect of high boiling (high molecular weight) bases was less than those occurring in the 650--1000{degree}F distillate range. Partitioning of nitrogen present in acidic (e.g. carbazole) forms in the feed into liquid products was greater than for basic nitrogen. Thiophenic forms of sulfur partitioned more into liquid and less into gaseous (H{sub 2}S) products than sulfide-type sulfur. Coke yield was approximately proportional to microcarbon residue test results for all feeds. Ongoing work with additional feedstocks has indicated behavior similar to that of Wilmington. Selected Wilmington liquid products are undergoing detailed analysis in order to determine relationships between feed versus product composition, particularly with respect to acidic and basic types.

  2. EVALUATING BENCH-SCALE NANOFILTRATION STUDIES FOR PREDICTING FULL-SCALE PERFORMANCE

    EPA Science Inventory

    The Information Collection Rule (ICR) requires water utilities of a certain size and water quality to conduct bench or pilot testing of either granular activated carbon or membranes for the control of disinfection byproduct (DBP) precursors. his paper evaluates the effectiveness ...

  3. SCREENING/FLOTATION TREATMENT OF COMBINED SEWER OVERFLOWS. VOLUME I. BENCH SCALE AND PILOT PLANT INVESTIGATIONS

    EPA Science Inventory

    A four-layer sinusoidal sandwich plate structure, reinforced with micro concrete grout next to the skin faces and hydrostatically pressurized with hydraulic fluid internally is subjected to transverse load tests. The plate is simply supported on all four sides, and its stiffness ...

  4. In situ encapsulation bench-scale demonstration report FY-94 (for TTP-ID 142012)

    SciTech Connect

    Weidner, J.R.; Shaw, P.G.

    1995-01-01

    This report describes the test objectives, procedures, and results of the laboratory-scale tests of in situ waste encapsulation of buried waste using a synthetic analogue of natural cement. The products of the reaction FeSO{sub 4} {center_dot} 7H{sub 2}O + Ca(OH){sub 2} = gypsum and iron oxide/hydroxide were examined as a possible waste encapsulation material for application at the Subsurface Disposal Area at the Idaho National Engineering Laboratory. This technique for transuranic waste encapsulation is being pursued by the Buried Waste Integrated Demonstration as a possible candidate containment and stabilization method for geologic time. The data indicate that the iron waste encapsulation materials tested are appropriate choices for the intended purpose. Based on these observations and conclusions, full-scale tests are recommended to determine the performance of the iron waste isolation materials under field conditions and for extended time periods. The viscosity of the reagents indicates that jet grouting is probably an appropriate application method.

  5. Performance of bench-scale membrane bioreactor under real work conditions using pure oxygen: viscosity and oxygen transfer analysis.

    PubMed

    Rodríguez, F A; Martínez-Toledo, M V; González-López, J; Hontoria, E; Poyatos, J M

    2010-09-01

    Pure oxygen to supply the aerobic condition was used in the performance of a bench-scale submerged membrane bioreactor (MBR). The pilot plant was located in the wastewater treatment plant of the city of Granada (Spain) and the experimental work was divided into two stages (Unsteady state and steady state conditions). Operation parameters (MLSS, MLVSS and dissolved oxygen concentration) and physical characteristics (temperature, conductivity, pH, COD and BOD(5)) were daily monitored. The results showed the capacity of the MBR systems to remove organic material under a hydraulic retention time of 18.46 h and sludge retention time of 18.6 days. Therefore, Viscosity of the sludge and alphakLa-factor of the aeration, were determinate in the steady stage condition to understand the behavior of the system when pure oxygen has been used to supply the aerobic conditions of the MBR system showed an alpha-factor of 0.238 when the viscosity of the system was 4.04 Cp. PMID:20148266

  6. Recycling of polyethene and polypropene in a novel bench-scale rotating cone reactor by high-temperature pyrolysis

    SciTech Connect

    Westerhout, R.W.J.; Waanders, J.; Kuipers, J.A.M.; Swaaij, W.P.M. van

    1998-06-01

    The high-temperature pyrolysis of polyethene (PE), polypropene (PP), and mixtures of these polymers was studied in a novel bench-scale rotating cone reactor (RCR). Experiments showed that the effect of the sand or reactor temperature on the product spectrum obtained is large compared to the effect of other parameters (for instance, residence time). In general, it can be concluded that the amount of polymer converted into propene and butene decreases with higher cracking severity (higher temperatures or longer residence times), while the fraction methane increases. About 80 wt% of the polymer is converted into gas at a reactor temperature of 898 K, while 20 wt% is converted into intermediate waxlike compounds or aromatics in the case of PE. The gas yield increases slightly with the reactor and/or sand temperature to 88 wt% at higher temperatures. The total amount of alkenes decreases with increasing cracking intensity, which suggests that the reactor should be operated at the lowest possible temperature. The results indicate that the reactor offers a few significant advantages compared to other reactors (no fluidization gas necessary, good solid-polymer mixing, no cyclones necessary) and a competitive product spectrum. However, significant improvements are still possible to make the reactor concept technically and economically more attractive.

  7. 15N NMR investigation of the reduction and binding of TNT in an aerobic bench scale reactor simulating windrow composting

    USGS Publications Warehouse

    Thorn, K.A.; Pennington, J.C.; Hayes, C.A.

    2002-01-01

    T15NT was added to a soil of low organic carbon content and composted for 20 days in an aerobic bench scale reactor. The finished whole compost and fulvic acid, humic acid, humin, and lignocellulose fractions extracted from the compost were analyzed by solid-state CP/MAS and DP/MAS 15N NMR. 15N NMR spectra provided direct spectroscopic evidence for reduction of TNT followed by covalent binding of the reduced metabolites to organic matter of the composted soil, with the majority of metabolite found in the lignocellulose fraction, by mass also the major fraction of the compost. In general, the types of bonds formed between soil organic matter and reduced TNT amines in controlled laboratory reactions were observed in the spectra of the whole compost and fractions, confirming that during composting TNT is reduced to amines that form covalent bonds with organic matter through aminohydroquinone, aminoquinone, heterocyclic, and imine linkages, among others. Concentrations of imine nitrogens in the compost spectra suggestthat covalent binding bythe diamines 2,4DANT and 2,6DANT is a significant process in the transformation of TNT into bound residues. Liquid-phase 15N NMR spectra of the fulvic acid and humin fractions provided possible evidence for involvement of phenoloxidase enzymes in covalent bond formation.

  8. WASTE SOLIDIFICATION BUILDING BENCH SCALE HIGH ACTIVITY WASTE SIMULANT VARIABILITY STUDY FY2008

    SciTech Connect

    Hansen, E; Timothy Jones, T; Tommy Edwards, T; Alex Cozzi, A

    2009-03-20

    The primary objective of this task was to perform a variability study of the high activity waste (HAW) acidic feed to determine the impact of feed variability on the quality of the final grout and on the mixability of the salt solution into the dry powders. The HAW acidic feeds were processed through the neutralization/pH process, targeting a final pH of 12. These fluids were then blended with the dry materials to make the final waste forms. A secondary objective was to determine if elemental substitution for cost prohibitive or toxic elements in the simulant affects the mixing response, thus providing a more economical simulant for use in full scale tests. Though not an objective, the HAW simulant used in the full scale tests was also tested and compared to the results from this task. A statistically designed test matrix was developed based on the maximum molarity inputs used to make the acidic solutions. The maximum molarity inputs were: 7.39 HNO{sub 3}, 0.11618 gallium, 0.5423 silver, and 1.1032 'other' metals based on their NO{sub 3}{sup -} contribution. Substitution of the elements aluminum for gallium and copper for silver was also considered in this test matrix, resulting in a total of 40 tests. During the NaOH addition, the neutralization/pH adjustment process was controlled to a maximum temperature of 60 C. The neutralized/pH adjusted simulants were blended with Portland cement and zircon flour at a water to cement mass ratio of 0.30. The mass ratio of zircon flour to Portland cement was 1/12. The grout was made using a Hobart N-50 mixer running at low speed for two minutes to incorporate and properly wet the dry solids with liquid and at medium speed for five minutes for mixing. The resulting fresh grout was measured for three consecutive yield stress measurements. The cured grout was measured for set, bleed, and density. Given the conditions of preparing the grout in this task, all of the grouts were visually well mixed prior to preparing the grouts for measurements. All of the cured grouts were measured for bleed and set. All of the cured grouts satisfied the bleed and set requirements, where no bleed water was observed on any of the grout samples after one day and all had set within 3 days of curing. This data indicates, for a well mixed product, bleed and set requirement are satisfied for the range of acidic feeds tested in this task. The yield stress measurements provide both an indication on the mixability of the salt solution with dry materials and an indication of how quickly the grout is starting to form structure. The inability to properly mix these two streams into a well mixed grout product will lead to a non-homogeneous mixture that will impact product quality. Product quality issues could be unmixed regions of dry material and hot spots having high concentrations of americium 241. Mixes that were more difficult to incorporate typically resulted in grouts with higher yield stresses. The mixability from these tests will provide Waste Solidification Building (WSB) an indication of which grouts will be more challenging to mix. The first yield stress measurements were statistically compared to a list of variables, specifically the batched chemicals used to make the acidic solutions. The first yield stress was also compared to the physical properties of the acidic solutions, physical and pH properties of the neutralized/pH adjusted solutions, and chemical and physical properties of the grout.

  9. Filtration: Principles and practices. 2. edition

    SciTech Connect

    Matteson, M.J.; Orr, C.

    1998-12-31

    This new book is the most authoritative and comprehensive guide to essential, state-of-the-art data. It provides the very latest theoretical and practical data on filtration for gas and liquids. The 2nd edition has been revised and updated to include several new chapters which detail filtration in the mineral industry, high-efficiency air filtration, cartridge filters, and ultrafiltration. The contents include: Gas filtration theory; Liquid-filtration theory; Filter media; Industrial gas filtration; Filtration pretreatment; Filtration in the chemical process industry; Ultrafiltration; Filtration in the mineral industry; Filtration in heating, ventilating, and air conditioning; Cartridge filtration; High-efficiency air filtration; Analytical applications of filtration; and Filter evaluation and testing.

  10. Treatability study for the bench-scale solidification of nonincinerable LDR low-level mixed waste

    SciTech Connect

    Gering, K. L.

    1993-01-01

    The focus of this report is the solidification of nonincinerable, land disposal restricted (LDR) low-level mixed waste generated at the Idaho National Engineering Laboratory. Benchscale solidification was performed on samples of this mixed waste, which was done under a Resource Conservation and Recovery Act treatability study. Waste forms included liquids, sludges, and solids, and treatment techniques included the use of conventional Portland cement and sulphur polymer cement (SPC). A total of 113 monoliths were made under the experimental design matrix for this study; 8 of these were blank'' monoliths (contained no waste). Thus, 105 monoliths were used to solidify 21.6 kg of mixed waste; 92 were made with Portland cement systems, and 13 were made with SPC. Recipes for all monoliths are given, and suggested recipes (as based on the minimized leaching of toxic components) are summarized. In most cases, the results presented herein indicate that solidification was successful in immobilizing toxic metals, thereby transforming low-level mixed waste into low-level nonhazardous waste. The ultimate goal of this project is to use appropriate solidification techniques, as described in the literature, to transform low-level mixed waste to low-level nonhazardous waste by satisfying pertinent disposal requirements for this waste. Disposal requirements consider the toxicity characteristic leaching procedure tests, a free liquids test, and radiological analyses. This work is meaningful in that it will provide a basis for the disposal of waste that is currently categorized as LDR low-level mixed waste.

  11. Treatability study for the bench-scale solidification of nonincinerable LDR low-level mixed waste

    SciTech Connect

    Gering, K.L.

    1993-01-01

    The focus of this report is the solidification of nonincinerable, land disposal restricted (LDR) low-level mixed waste generated at the Idaho National Engineering Laboratory. Benchscale solidification was performed on samples of this mixed waste, which was done under a Resource Conservation and Recovery Act treatability study. Waste forms included liquids, sludges, and solids, and treatment techniques included the use of conventional Portland cement and sulphur polymer cement (SPC). A total of 113 monoliths were made under the experimental design matrix for this study; 8 of these were ``blank`` monoliths (contained no waste). Thus, 105 monoliths were used to solidify 21.6 kg of mixed waste; 92 were made with Portland cement systems, and 13 were made with SPC. Recipes for all monoliths are given, and suggested recipes (as based on the minimized leaching of toxic components) are summarized. In most cases, the results presented herein indicate that solidification was successful in immobilizing toxic metals, thereby transforming low-level mixed waste into low-level nonhazardous waste. The ultimate goal of this project is to use appropriate solidification techniques, as described in the literature, to transform low-level mixed waste to low-level nonhazardous waste by satisfying pertinent disposal requirements for this waste. Disposal requirements consider the toxicity characteristic leaching procedure tests, a free liquids test, and radiological analyses. This work is meaningful in that it will provide a basis for the disposal of waste that is currently categorized as LDR low-level mixed waste.

  12. Filtration Fundamentals.

    ERIC Educational Resources Information Center

    Ward, Ken; Hunsaker, Scot

    1997-01-01

    Examines how choice of commercial swimming-pool filtration systems is driven by the project-specific needs of the pools. Also highlighted are definitions of specific terms used when discussing filtration systems. Questions that pool designers can answer to make filtration-system purchasing decisions are listed. (GR)

  13. EFRT M-12 Issue Resolution: Comparison of PEP and Bench-Scale Oxidative Leaching Results

    SciTech Connect

    Rapko, Brian M.; Schonewill, Philip P.; Brown, Christopher F.; Eslinger, Paul W.; Fountain, Matthew S.; Hausmann, Tom S.; Huckaby, James L.; Hanson, Brady D.; Kurath, Dean E.; Minette, Michael J.

    2010-01-01

    Pacific Northwest National Laboratory (PNNL) has been tasked by Bechtel National Inc. (BNI) on the River Protection Project-Hanford Tank Waste Treatment and Immobilization Plant (RPP-WTP) project to perform research and development activities to resolve technical issues identified for the Pretreatment Facility (PTF). The Pretreatment Engineering Platform (PEP) was designed, constructed, and operated as part of a plan to respond to issue M12, “Undemonstrated Leaching Processes” of the External Flowsheet Review Team (EFRT) issue response plan.( ) The PEP is a 1/4.5-scale test platform designed to simulate the WTP pretreatment caustic leaching, oxidative leaching, ultrafiltration solids concentration, and slurry washing processes. The PEP replicates the WTP leaching processes using prototypic equipment and control strategies. The PEP also includes non-prototypic ancillary equipment to support the core processing.

  14. TEST REPORT OF MOBILE SOURCE EMISSIONS CONTROL DEVICES DONALDSON COMPANY INC.SERIES 6000 DISEL OXIDATION CATALYST MUFFLER AND SPIRACLE CLOSED CRANKCASE FILTRATION SYSTEM

    EPA Science Inventory

    This report is on testing of a Donaldson Corp. catalytic muffler and closed crankcase filtration system for diesel trucks. It verified the emissions for these systems using low sufur and ultra low sulfur fuel.

  15. Experimental studies on steam pressure filtration of coal concentrate filter cakes

    SciTech Connect

    Gerl, S.; Stahl, W.

    1995-12-31

    Steam pressure filtration combines mechanical and thermal processes in one filtration device. Steam condensation at the cold layers of the filter cake, build a condensation front, which even removes the capillary water from the porous filter cake. Depending on the choice of parameters it is possible to achieve a very low residual moisture content. The influence of the parameters on the dewatering results was systematically examined on a bench-scale apparatus. This paper explains the physical fundamentals, the influence of the cake dewatering parameters, and one possible method of applying the process to a disk filter device as well.

  16. Bench-scale studies on the simultaneous formation of PCBs and PCDD/Fs from combustion systems.

    PubMed

    Lemieux, P M; Lee, C W; Ryan, J V; Lutes, C C

    2001-01-01

    The presence of endocrine disrupting chemicals (EDCs) in the environment has wide-ranging potential ecological and health impacts on animals and humans. A significant amount of experimental and theoretical work has been performed the examining formation and control of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs), which account for only part of the EDCs being emitted from combustion devices. Generally accepted mechanistic theories for PCDD/F formation propose heterogeneous reactions in the cooler regions of the combustor involving gas-phase organic precursors (such as chlorobenzenes or chlorophenols), a chlorine donor [such as hydrogen chloride (HCl)], and a flyash-bound metallic catalyst (such as copper chloride). There is evidence that some other proposed EDCs, including polychlorinated biphenyls (PCBs), are formed through a similar mechanistic pathway as PCDD/Fs. In addition, there is evidence that certain important steps in the catalytic reaction between the copper catalyst and the organic precursors may suggest a common rate limiting step for the heterogeneous formation of the previously mentioned EDCs. This paper reports on a bench-scale experimental study to characterize a newly built reactor system that was built to: produce levels and distributions of PCDD/F production similar to those achieved by previous researchers; verify similar responses to changes in independent variables; examine the hypothesis that PCB formation rates exhibit trends similar to PCDD/F formation rates as reactor variables are changed; and begin to explore the dependence of PCB formation on temperature and precursor type. The reactor system has been built, and initial reactor characterization studies have been performed. Initial experiments yielded results that support the hypothesis of a similar formation mechanism of PCBs and PCDD/Fs in combustors. Initial experiments uncovered potential deficiencies with the reactor system and the experimental procedures and have suggested corrective action to improve the experimental system. PMID:11280982

  17. Electrical resistivity tomography as a tool for monitoring CO2 injection: Demonstration of leakage detection during bench-scale experiments

    NASA Astrophysics Data System (ADS)

    Breen, S. J.; Carrigan, C. R.; LaBrecque, D. J.; Detwiler, R. L.

    2011-12-01

    Field-scale studies have shown Electrical Resistivity Tomography (ERT) to be an effective tool for imaging resistivity anomalies and monitoring infiltration events in the near subsurface. ERT also shows potential for monitoring CO2 injections, despite deployment challenges in the deep subsurface. We present results from analog bench-scale experiments aimed at evaluating the ability of ERT to quantify the volume and spatial distribution of a gas injected into a brine-saturated porous medium. We injected measured volumes of gas into translucent chambers filled with quartz sand, lined with electrodes, and saturated with a low resistivity salt solution. Between injections, a CCD camera captured high-resolution images, and an ERT data acquisition system scanned the chamber. Using the CCD images, quantitative visualization techniques resulted in high-resolution measurements of the spatial distribution and saturation of the injected gas. Direct comparison to inverted resistivity fields then provided a quantitative measure of the ability of ERT to estimate the total volume of injected gas and its spatial distribution within the chamber. We present results from two experiments designed to represent different injection scenarios: (A) low injection rate and strong capillary barrier, and (B) high injection rate and weaker capillary barrier. Results show that ERT provides good estimates of the shape, size and location of the primary gas plume, but underestimates gas content and does not detect thin pathways of gas from the injection port or within the overlying capillary barrier. However, ERT measurements did detect a change in saturation within the primary plume caused by leakage through the capillary barrier in (B), demonstrating the potential utility of ERT as a leakage-monitoring tool. Repeated ERT scans during our experiments led to degradation in data quality that corresponded with an increase in measured contact resistance. Decreased data quality over time is clearly a concern for ERT implementation as a long-term monitoring strategy and deserves further study to quantify the mechanisms responsible for the loss of data quality.

  18. 40 CFR 265.200 - Waste analysis and trial tests.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...Systems § 265.200 Waste analysis and trial tests. In addition to performing the waste...waste analyses and trial treatment or storage tests (e.g., bench-scale or pilot-plant scale tests); or (b) Obtain written,...

  19. The effects of physical separtation treatment on the removal of uranium from contaminated soils at Fernald: A bench-scale study

    SciTech Connect

    Sadler, K.G.; Krstich, M.A.

    1994-12-31

    A bench-scale treatability study incorporating the use of physical separation techniques and chemical dispersants/extractants was conducted on uranium contaminated soils at the Fernald Environmental Management Project (FEMP) site. The soils contained approximately 497 and 450 milligrams per kilogram (mg/kg) of total uranium, respectively. Geotechnical characterization indicated that 77.4 and 74.6 percent of the soil was in the less that 50 micrometer ({mu}m) size fraction for the ID-A and ID-B soils, respectively. An initial characterization effort indicated that uranium was distributed among all particle size fractions. After each soil was dispersed in water, it was noted that the uranium concentrated in the sand and clay fractions for the ID-A soil (1028 and 1475 mg kg{sup -1}, respectively) and the clay fraction for ID-B soil (2710 mg kg{sup -1}). Four 1 millimolar (mM) sodium reagent solutions (sodium hydroxide, sodium carbonate, sodium bicarbonate, and a sodium citrate-bicarbonate-dithionite mixture) and potable water were evaluated for effectiveness in dispersing each soil into single grain separates and extracting total uranium from each of the resulting particle size fractions. Dilute sodium solutions were more effective than water in dispersing the soil. The use of dispersants, as compared to water, on the less than 2 mm size fraction causes a shift in the distribution of uranium out of the sand fraction and into the silt and clay fractions for ID-A soil and into the clay fraction for the ID-B soil. Attrition scrubbing tests were conducted on the less than 2 mm size fraction for the ID-A and ID-B soils using water and three alkaline extraction solutions, sodium pyrophosphate, sodium carbonate/bicarbonate, and ammonium carbonate/bicarbonate. There was little difference among the chemical extractants on their effectiveness in removing uranium from the greater than 53 {mu}m (sand) or less than 53 {mu}m (silt and clay) soil fraction.

  20. Numerical simulation of competitive aerobic / anaerobic hydrocarbon plume biodegradation in two-dimensional bench scale lab-experiments

    NASA Astrophysics Data System (ADS)

    Beyer, C.; Ballarini, E.; Bauer, R.; Griebler, C.; Bauer, S.

    2011-12-01

    The biodegradation of oxidizable hydrocarbon contaminants in the subsurface requires the presence of compatible microbial communities as well as sufficient amounts of electron acceptors and nutrients. In this context, transverse mixing, driven by dispersion and diffusion, is one of the main mechanisms governing the availability of dissolved electron acceptors at a hydrocarbon plume fringe. Aerobic and anaerobic biodegradation of hydrocarbons limited by transverse mixing has been studied experimentally in 2D bench-scale flow-through tanks, filled with a saturated porous medium. Flow of groundwater through the tanks was induced by pumping water at one side through injection ports, and simultaneously extracting water at the other side of the tank. An ethylbenzene plume was established by injection through the central inlet port. A mixture of unlabeled and fully deuterium-labeled isotopomers was used in order to investigate the spatial distribution of degradation processes via monitoring of compound-specific stable isotope fractionation. In the first phase of the experiment, aerobic biodegradation was studied. For this purpose, the tank was recharged with water containing oxygen as a dissolved electron acceptor and the aerobic strain Pseudomonas putida F1 was inoculated. Later, nitrate was added to the recharge water as an additional electron acceptor and the denitrifying strain Aromatoleum aromaticum EbN1 was amended to study competitive aerobic/anaerobic biodegradation. A numerical reactive transport model of the experiment was set up for a model based interpretation of the observed degradation patterns. In a sensitivity analysis, the influence of the relevant hydrodynamic parameters on the observable distributions of ethylbenzene isotopomers, oxygen and nitrate was studied. Subsequent model calibration allowed for a good agreement with ethylbenzene concentrations measured at the tank outlet ports as well as oxygen concentrations, which were measured at several profiles perpendicular to the flow direction along the plume. Simulated microbial growth was strongest near the central tank inlet, where both, oxygen and ethylbenzene were available at high concentrations, and along the transverse mixing zone at the fringe of the developed ethylbenzene plume. Model based interpretation of the aerobic/anaerobic phase with competitive biodegradation proved to be ambiguous due to uncertainties regarding the actual stoichiometry of the specific denitrification reaction. Also, the simulated isotopic patterns were very sensitive to the assumed initial distribution of the A. aromaticum EbN1 biomass. Ethylbenzene concentrations and isotopic patterns predicted by the numerical model match the measurements quite well for the first half of the aerobic/anaerobic phase. A distinct increase in biodegradation dynamics later on hints at a change in biodegradation dynamics during the course of the experiment.

  1. Destruction of hazardous and mixed wastes using mediated electrochemical oxidation in a Ag(II)HNO3 bench scale system

    SciTech Connect

    Balazs, B.; Chiba, Z.; Hsu, P.; Lewis, P.; Murguia, L.; Adamson, M.

    1997-02-01

    Mediated Electrochemical Oxidation (MEO) is a promising technology for the destruction of organic containing wastes and the remediation of mixed wastes containing transuranic components. The combination of a powerful oxidant and an acid solution allows the conversion of nearly all organics, whether present in hazardous or in mixed waste, to carbon dioxide. Insoluble transuranics are dissolved in this process and may be recovered by separation and precipitation. The oxidant, or mediator, is a multivalent transition metal ion which is cleanly recycled in a number of charge transfer steps in an electrochemical cell. The MEO technique offers several advantages which are inherent in the system. First, the oxidation/dissolution processes are accomplished at near ambient pressures and temperatures (30-70{degrees}C). Second, all waste stream components and oxidation products (with the exception of evolved gases) are contained in an aqueous environment. This electrolyte acts as an accumulator for inorganics which were present in the original waste stream, and the large volume of electrolyte provides a thermal buffer for the energy released during oxidation of the organics. Third, the generation of secondary waste is minimal, as the process needs no additional reagents. Finally, the entire process can be shut down by simply turning off the power, affording a level of control unavailable in some other techniques. Although the oxidation of organics and the dissolution of transuranics by higher valency metal ions has been known for some time, applying the MEO technology to waste treatment is a relatively recent development. Numerous groups, both in the United States and Europe, have made substantial progress in the last decade towards understanding the mechanistic pathways, kinetics, and engineering aspects of the process. At Lawrence Livermore National Laboratory, substantial contributions have been made to this knowledge base in these areas and others. Conceptual design and engineering development have been completed for a pilot plant-scale MEO system, and numerous data have been gathered on the efficacy of the process for a wide variety of anticipated waste components. This presentation will review the data collected at LLNL for a bench scale system based primarily on the use of a Ag(II) mediator in a nitric acid electrolyte; results from several other mediator/acid combinations will be included. Data obtained on the chemical, electrochemical, and engineering aspects will be presented. The topics of organics destruction, transuranic recovery, and some of the ancillary systems will be addressed, and areas requiring further study will be mentioned.

  2. INNOVATIVE EXPERIMENTAL SETUP FOR THE PARALLEL OPERATION OF MULTIPLE BENCH SCALE BIOTRICKLING FILTERS FOR WASTE AIR TREATMENT

    E-print Network

    provides a new and inexpensive tool for comparative studies in biotrickling filtration for air pollution INTRODUCTION The 1990 Clean Air Act Amendments require US industries to reduce their emission of volatile FILTERS FOR WASTE AIR TREATMENT Huub H.J. Cox, Marc A. Deshusses* Department of Chemical and Environmental

  3. Bench-scale biodegradation tests to assess natural attenuation potential of 1,4-dioxane at three sites in California.

    PubMed

    Li, Mengyan; Van Orden, E Tess; DeVries, David J; Xiong, Zhong; Hinchee, Rob; Alvarez, Pedro J

    2015-02-01

    1,4-Dioxane (dioxane) is relatively recalcitrant to biodegradation, and its physicochemical properties preclude effective removal from contaminated groundwater by volatilization or adsorption. Through this microcosm study, we assessed the biodegradation potential of dioxane for three sites in California. Groundwater and sediment samples were collected at various locations at each site, including the presumed source zone, middle and leading edge of the plume. A total of 16 monitoring wells were sampled to prepare the microcosms. Biodegradation of dioxane was observed in 12 of 16 microcosms mimicking natural attenuation within 28 weeks. Rates varied from as high as 3,449 ± 459 µg/L/week in source-zone microcosms to a low of 0.3 ± 0.1 µg/L/week in microcosms with trace level of dioxane (<10 µg/L as initial concentration). The microcosms were spiked with (14)C-labeled dioxane to assess the fate of dioxane. Biological oxidizer-liquid scintillation analysis of bound residue infers that 14C-dioxane was assimilated into cell material only in microcosms exhibiting significant dioxane biodegradation. Mineralization was also observed per (14)CO2 recovery (up to 44% of the amount degraded in 28 weeks of incubation). Degradation and mineralization activity significantly decreased with increasing distance from the contaminant source area (p < 0.05), possibly due to less acclimation. Furthermore, both respiked and repeated microcosms prepared with source-zone samples from Site 1 confirmed relatively rapid dioxane degradation (i.e., 100 % removal by 20 weeks). These results show that indigenous microorganisms capable of degrading dioxane are present at these three sites, and suggest that monitored natural attenuation should be considered as a remedial response. PMID:25280838

  4. Waste acid detoxification and reclamation: Summary of bench-scale tests for FY 1986 and FY 1987

    SciTech Connect

    Stewart, T.L.

    1987-09-01

    Processes to reduce the volume, quantity, and toxicity of metal-bearing waste acid are being demonstrated at Pacific Northwest Laboratory. Two precipitation processes and a distillation process are being developed to minimize waste from fuel fabrication operations, which comprise a series of metal-finishing operations. Waste process acids such as HF-HNO/sub 3/, etch solutions containing Zr as a major metal impurity, and HNO/sub 3/ strip solution containing Cu as a major metal impurity are detoxified and reclaimed by concurrently precipitating heavy metals and regenerating acid for recycle. Acid from a third waste acid stream generated from chemical milling operations will be reclaimed using distillation. This stream comprises HNO/sub 3/ and H/sub 2/SO/sub 4/ containing U as the major metal impurity. Distillation allows NO/sub 3//sup -/ to be displaced by SO/sub 4//sup -2/ in metal salts; free HNO/sub 3/ is then vaporized from the U-bearing sulfate stream. Uranium can be recovered from the sulfate stream in a downstream precipitation step. 10 refs., 15 figs., 13 tabs.

  5. Sampling and Analysis of Asbestos Fibers on Filter Media to Support Exposure Assessment: Bench-Scale Testing

    EPA Science Inventory

    Sampling efficiency is essential in exposure assessments of contaminants in air, as well as other matrices. In the measurement of airborne contaminants, it is critical to collect a sample of air containing representative contaminants in the air of concern, that is, contaminant c...

  6. Removal of uranium from uranium-contaminated soils -- Phase 1: Bench-scale testing. Uranium in Soils Integrated Demonstration

    SciTech Connect

    Francis, C. W.

    1993-09-01

    To address the management of uranium-contaminated soils at Fernald and other DOE sites, the DOE Office of Technology Development formed the Uranium in Soils Integrated Demonstration (USID) program. The USID has five major tasks. These include the development and demonstration of technologies that are able to (1) characterize the uranium in soil, (2) decontaminate or remove uranium from the soil, (3) treat the soil and dispose of any waste, (4) establish performance assessments, and (5) meet necessary state and federal regulations. This report deals with soil decontamination or removal of uranium from contaminated soils. The report was compiled by the USID task group that addresses soil decontamination; includes data from projects under the management of four DOE facilities [Argonne National Laboratory (ANL), Los Alamos National Laboratory (LANL), Oak Ridge National Laboratory (ORNL), and the Savannah River Plant (SRP)]; and consists of four separate reports written by staff at these facilities. The fundamental goal of the soil decontamination task group has been the selective extraction/leaching or removal of uranium from soil faster, cheaper, and safer than current conventional technologies. The objective is to selectively remove uranium from soil without seriously degrading the soil`s physicochemical characteristics or generating waste forms that are difficult to manage and/or dispose of. Emphasis in research was placed more strongly on chemical extraction techniques than physical extraction techniques.

  7. Bench-Scale Synthetic Optimization of 1,2-bis(2-aminophenylthio)ethane (APO-Link) Used in the Production of APO-BMI Resin

    SciTech Connect

    Hilary Wheeler; Crystal Densmore

    2007-07-31

    The diamine reagent 1,2-bis(2-aminophenylthio)ethane is no longer commercially available but still required for the synthesis of the bismaleimide resin, APO-BMI, used in syntactic foams. In this work, we examined the hydrolysis of benzothiazole followed the by reaction with dichloroethane or dibromoethane. We also studied the deprotonation of 2-aminothiophenol followed by the reaction with dibromoethane. We optimized the latter for scale-up by scrutinizing all aspects of the reaction conditions, work-up and recrystallization. On bench-scale, our optimized procedure consistently produced a 75-80% overall yield of finely divided, high purity product (>95%).

  8. Cultivation of Chlorella sp. using raw dairy wastewater for nutrient removal and biodiesel production: Characteristics comparison of indoor bench-scale and outdoor pilot-scale cultures.

    PubMed

    Lu, Weidong; Wang, Zhongming; Wang, Xuewei; Yuan, Zhenhong

    2015-09-01

    The biomass productivity and nutrient removal capacity of simultaneous Chlorella sp. cultivation for biodiesel production and nutrient removal in raw dairy wastewater (RDW) in indoor bench-scale and outdoor pilot-scale photobioreactors were compared. Results from the current work show that maximum biomass productivity in indoor bench-scale cultures can reach 260 mg L(-1) day(-1), compared to that of 110 mg L(-1) day(-1) in outdoor pilot-scale cultures. Maximum chemical oxygen demand (COD), total nitrogen (TN), and total phosphorous (TP) removal rate obtained in indoor conditions was 88.38, 38.34, and 2.03 mg L(-1) day(-1), respectively, this compared to 41.31, 6.58, and 2.74 mg L(-1) day(-1), respectively, for outdoor conditions. Finally, dominant fatty acids determined to be C16/C18 in outdoor pilot-scale cultures indicated great potential for scale up of Chlorella sp. cultivation in RDW for high quality biodiesel production coupling with RDW treatment. PMID:26056780

  9. Experimental investigation of the formaldehyde removal mechanisms in a dynamic botanical filtration system for indoor air purification.

    PubMed

    Wang, Zhiqiang; Pei, Jingjing; Zhang, Jensen S

    2014-09-15

    Botanical filtration has been proved to be effective for indoor gas pollutant removal. To understand the roles of different transport, storage and removal mechanism by a dynamic botanical air filter, a series of experimental investigations were designed and conducted in this paper. Golden Pothos (Epipremnum aureum) plants was selected for test, and its original soil or activated/pebbles root bed was used in different test cases. It was found that flowing air through the root bed with microbes dynamically was essential to obtain meaningful formaldehyde removal efficiency. For static potted plant as normally place in rooms, the clean air delivery rate (CADR), which is often used to quantify the air cleaning ability of portable air cleaners, was only ? 5.1m(3)/h per m(2) bed, while when dynamically with air flow through the bed, the CADR increased to ? 233 m(3)/h per m(2) bed. The calculated CADR due to microbial activity is ? 108 m(3)/h per m(2) bed. Moisture in the root bed also played an important role, both for maintaining a favorable living condition for microbes and for absorbing water-soluble compounds such as formaldehyde. The role of the plant was to introduce and maintain a favorable microbe community which effectively degraded the volatile organic compounds adsorbed or absorbed by the root bed. The presence of the plant increased the removal efficiency by a factor of two based on the results from the bench-scale root bed experiments. PMID:25164387

  10. Filtration by eyelashes

    NASA Astrophysics Data System (ADS)

    Vistarakula, Krishna; Bergin, Mike; Hu, David

    2010-11-01

    Nearly every mammalian and avian eye is rimmed with lashes. We investigate experimentally the ability of lashes to reduce airborne particle deposition in the eye. We hypothesize that there is an optimum eyelash length that maximizes both filtration ability and extent of peripheral vision. This hypothesis is tested using a dual approach. Using preserved heads from 36 species of animals at the American Museum of Natural History, we determine the relationship between eye size and eyelash geometry (length and spacing). We test the filtration efficacy of these geometries by deploying outdoor manikins and measuring particle deposition rate as a function of eyelash length.

  11. ENVIRONMENTAL TECHNOLOGY VERIFICATION (ETV) DRINKING WATER SYSTEMS CENTER TECHNOLOGY SPECIFIC TEST PLAN: REMOVAL OF MICROBIOLOGICL AND PARTICULATE CONTAMINANTS BY MEMBRANE FILTRATION

    EPA Science Inventory

    This document is the Environmental technology Verification (ETV) Technology Specific test Plan (TSTP) for evaluation of water treatment equipment for removal of microbiological and particulate contaminants using membrane filtration. This TSTP is to be used as a guide in the dev...

  12. Subscale Validation of the Subsurface Active Filtration of Exhaust (SAFE) Approach to NTP Ground Testing

    NASA Technical Reports Server (NTRS)

    Marshall, William M.; Borowski, Stanley K.; Bulman, Mel; Joyner, Russell; Martin, Charles R.

    2015-01-01

    Brief History of NTP: Project Rover Began in 1950s by Los Alamos Scientific Labs (now Los Alamos National Labs) and ran until 1970s Tested a series of nuclear reactor engines of varying size at Nevada Test Site (now Nevada National Security Site) Ranged in scale from 111 kN (25 klbf) to 1.1 MN (250 klbf) Included Nuclear Furnace-1 tests Demonstrated the viability and capability of a nuclear rocket engine test program One of Kennedys 4 goals during famous moon speech to Congress Nuclear Engines for Rocket Vehicle Applications (NERVA) Atomic Energy Commission and NASA joint venture started in 1964 Parallel effort to Project Rover was focused on technology demonstration Tested XE engine, a 245-kN (55-klbf) engine to demonstrate startup shutdown sequencing. Hot-hydrogen stream is passed directly through fuel elements potential for radioactive material to be eroded into gaseous fuel flow as identified in previous programs NERVA and Project Rover (1950s-70s) were able to test in open atmosphere similar to conventional rocket engine test stands today Nuclear Furance-1 tests employed a full scrubber system Increased government and environmental regulations prohibit the modern testing in open atmosphere. Since the 1960s, there has been an increasing cessation on open air testing of nuclear material Political and national security concerns further compound the regulatory environment

  13. CENTRIFUGAL MEMBRANE FILTRATION

    SciTech Connect

    Daniel J. Stepan; Bradley G. Stevens; Melanie D. Hetland

    1999-10-01

    The overall project consists of several integrated research phases related to the applicability, continued development, demonstration, and commercialization of the SpinTek centrifugal membrane filtration process. Work performed during this reporting period consisted of Phase 2 evaluation of the SpinTek centrifugal membrane filtration technology and Phase 3, Technology Partnering. During Phase 1 testing conducted at the EERC using the SpinTek ST-IIL unit operating on a surrogate tank waste, a solids cake developed on the membrane surface. The solids cake was observed where linear membrane velocities were less than 17.5 ft/s and reduced the unobstructed membrane surface area up to 25%, reducing overall filtration performance. The primary goal of the Phase 2 research effort was to enhance filtration performance through the development and testing of alternative turbulence promoter designs. The turbulence promoters were designed to generate a shear force across the entire membrane surface sufficient to maintain a self-cleaning membrane capability and improve filtration efficiency and long-term performance. Specific Phase 2 research activities included the following: System modifications to accommodate an 11-in.-diameter, two-disk rotating membrane assembly; Development and fabrication of alternative turbulence promoter designs; Testing and evaluation of the existing and alternative turbulence promoters under selected operating conditions using a statistically designed test matrix; and Data reduction and analysis; The objective of Phase 3 research was to demonstrate the effectiveness of SpinTek's centrifugal membrane filtration as a pretreatment to remove suspended solids from a liquid waste upstream of 3M's WWL cartridge technology for the selective removal of technetium (Tc).

  14. Characterization, Leaching, and Filtration Testing for Tributyl Phosphate (TBP, Group 7) Actual Waste Sample Composites

    SciTech Connect

    Edwards, Matthew K.; Billing, Justin M.; Blanchard, David L.; Buck, Edgar C.; Casella, Amanda J.; Casella, Andrew M.; Crum, J. V.; Daniel, Richard C.; Draper, Kathryn E.; Fiskum, Sandra K.; Jagoda, Lynette K.; Jenson, Evan D.; Kozelisky, Anne E.; MacFarlan, Paul J.; Peterson, Reid A.; Shimskey, Rick W.; Snow, Lanee A.; Swoboda, Robert G.

    2009-03-09

    .A testing program evaluating actual tank waste was developed in response to Task 4 from the M-12 External Flowsheet Review Team (EFRT) issue response plan. The bulk water-insoluble solid wastes that are anticipated to be delivered to the Waste Treatment and Immobilization Plant (WTP) were identified according to type such that the actual waste testing could be targeted to the relevant categories. Eight broad waste groupings were defined. Samples available from the 222S archive were identified and obtained for testing. The actual waste-testing program included homogenizing the samples by group, characterizing the solids and aqueous phases, and performing parametric leaching tests. The tributyl phosphate sludge (TBP, Group 7) is the subject of this report. The Group 7 waste was anticipated to be high in phosphorus as well as aluminum in the form of gibbsite. Both are believed to exist in sufficient quantities in the Group 7 waste to address leaching behavior. Thus, the focus of the Group 7 testing was on the removal of both P and Al. The waste-type definition, archived sample conditions, homogenization activities, characterization (physical, chemical, radioisotope, and crystal habit), and caustic leaching behavior as functions of time, temperature, and hydroxide concentration are discussed in this report. Testing was conducted according to TP-RPP-WTP-467.

  15. Waste water filtration enhancement

    SciTech Connect

    Martin, H.L.

    1989-01-01

    Removal of submicron particles from process solutions and waste water is now economically achievable using a new Tyvek{reg sign} media in conventional filtration equipment. This new product greatly enhances filtration and allows use of the much improved filter aids and polymers which were recently developed. It has reduced operating costs and ensures a clean effluent discharge to the environment. This significant technical development is especially important to those who discharge to a small stream with low 7Q10 flow and must soon routinely pass the Toxicity tests that are being required by many States for NPDES permit renewal. The Savannah River Plant produces special nuclear materials for the US Government. Aluminum forming and metal finishing operations in M-Area, that manufacture fuel and target assemblies for the nuclear reactors, discharge to a waste water treatment facility using BAT hydroxide precipitation and filtration. The new Tyvek{reg sign} media and filter aids have achieved 55% less solids in the filtrate discharged to Tims Branch Creek, 15% less hazardous waste (dry filter cake), 150%-370% more filtration capacity, 74% lower materials purchase cost, 10% lower total M-Area manufacturing cost, and have improved safety. Performance with the improved polymers is now being evaluated.

  16. Degradation of polar organic micropollutants during riverbank filtration: complementary results from spatiotemporal sampling and push-pull tests.

    PubMed

    Huntscha, Sebastian; Rodriguez Velosa, Diana M; Schroth, Martin H; Hollender, Juliane

    2013-10-15

    The fate of polar organic micropollutants (logDOW (pH 7) between -4.2 and +3.5) during riverbank filtration (RBF) at the river Thur was studied using both spatiotemporally resolved sampling and single-well push-pull tests (PPT), followed by LC-MS/MS analysis. The Thur is a dynamic prealpine river with an alluvial sandy-gravel aquifer, which is characterized by short groundwater travel times (a few days) from surface water infiltration to groundwater extraction. The spatiotemporal sampling allowed tracing concentration dynamics in the river and the groundwater and revealed persistence for the drug carbamazepine, while the herbicide MCPA (2-methyl-4-chloro-phenoxyacetic acid) and the drug 4-acetamidoantipyrine were very quickly degraded under the prevalent aerobic conditions. The corrosion inhibitor 1H-benzotriazole was degraded slightly, particularly in a transect influenced by river restoration measures. For the first time in situ first-order degradation rate constants for three pesticides and two pharmaceuticals were determined by PPTs, which confirmed the results of the spatiotemporal sampling. Atenolol was transformed almost completely to atenolol acid. Rate constants of 0.1-1.3 h(-1) for MCPA, 2,4-D, mecoprop, atenolol, and diclofenac, corresponding to half-lives of 0.6-6.3 h, demonstrated the great potential of RBF systems to degrade organic micropollutants and simultaneously the applicability of PPTs for micropollutants in such dynamic systems. PMID:24033151

  17. Test plan for Simulated Saltcake Retrieval Test

    SciTech Connect

    HERTING, D.L.

    2000-07-19

    This document describes the plan for a bench-scale laboratory test to evaluate physical and chemical parameters associated with dissolution of a simulated saltcake waste. Parameters to be measured during the test include water addition rate, liquid drainage rate, visual observations of flow patterns, physical appearance and volume of dissolving saltcake, chemical composition of drained liquid, and polarized light microscopy analysis of solids.

  18. Laboratory Tests on Post-Filtration Precipitation in the WTP Pretreatment Process

    SciTech Connect

    Russell, Renee L.; Peterson, Reid A.; Rinehart, Donald E.; Crum, Jarrod V.

    2009-11-20

    Pacific Northwest National Laboratory (PNNL) has been tasked by Bechtel National Inc. (BNI) on the River Protection Project-Hanford Tank Waste Treatment and Immobilization Plant (RPP-WTP) project to perform research and development activities to resolve technical issues identified for the Pretreatment Facility (PTF). The Pretreatment Engineering Platform (PEP) was designed, constructed, and operated as part of a plan to respond to issue M12, "Undemonstrated Leaching Processes," of the External Flowsheet Review Team (EFRT) issue response plan (Barnes et al. 2006). The PEP is a 1/4.5-scale test platform designed to simulate the WTP pretreatment caustic leaching, oxidative leaching, ultrafiltration solids concentration, and slurry washing processes. The PEP replicates the WTP leaching processes using prototypic equipment and control strategies. A simplified flow diagram of the PEP system is shown in Figure 1.1. Two operating scenarios are currently being evaluated for the ultrafiltration process (UFP) and leaching operations. The first scenario has caustic leaching performed in the UFP-2 ultrafiltration feed vessels (i.e., vessel UFP-VSL-T02A in the PEP; and vessels UFP-VSL-00002A and B in the WTP PTF). The second scenario has caustic leaching conducted in the UFP-1 ultrafiltration feed preparation vessels (i.e., vessels UFP-VSL-T01A and B in the PEP; vessels UFP-VSL-00001A and B in the WTP PTF).

  19. Bench-scale demonstration of biological production of ethanol from coal synthesis gas. Quarterly report, April 1, 1993--June 30, 1993

    SciTech Connect

    Not Available

    1993-09-01

    Three bacteria, Clostridium ljungdahlii and isolates ERI-8 and 0-52, have been utilized in CSTR studies in order to directly compare the performance of the bacteria in continuous culture in converting synthesis gas components to ethanol. C. ljungdahlii is able to produce higher concentrations of ethanol than the other bacteria, largely because medium development with this bacterium has been ongoing for 2--3 years. However, both of the ERI isolates are quite promising for ethanol production and, therefore, will be studied further in the CSTR. A comparison of the energy costs for various ethanol recovery techniques has been made for use in the bench scale system. The techniques considered include direct distillation, extraction with various solvents followed by distillation, air stripping followed by distillation, pervaporation followed by distillation, reverse osmosis and temperature swing extraction. Extraction with a solvent possessing a relatively high distribution coefficient for ethanol and a high separation factor (relative ability to extract ethanol in favor of water), followed by distillation, is the most desirable technology.

  20. Effects of turbulence modelling on prediction of flow characteristics in a bench-scale anaerobic gas-lift digester.

    PubMed

    Coughtrie, A R; Borman, D J; Sleigh, P A

    2013-06-01

    Flow in a gas-lift digester with a central draft-tube was investigated using computational fluid dynamics (CFD) and different turbulence closure models. The k-? Shear-Stress-Transport (SST), Renormalization-Group (RNG) k-?, Linear Reynolds-Stress-Model (RSM) and Transition-SST models were tested for a gas-lift loop reactor under Newtonian flow conditions validated against published experimental work. The results identify that flow predictions within the reactor (where flow is transitional) are particularly sensitive to the turbulence model implemented; the Transition-SST model was found to be the most robust for capturing mixing behaviour and predicting separation reliably. Therefore, Transition-SST is recommended over k-? models for use in comparable mixing problems. A comparison of results obtained using multiphase Euler-Lagrange and singlephase approaches are presented. The results support the validity of the singlephase modelling assumptions in obtaining reliable predictions of the reactor flow. Solver independence of results was verified by comparing two independent finite-volume solvers (Fluent-13.0sp2 and OpenFOAM-2.0.1). PMID:23624047

  1. Indoor Secondary Pollutants from Household Product Emissions inthe Presence of Ozone: A Bench-Scale Chamber Study

    SciTech Connect

    Destaillats, Hugo; Lunden, Melissa M.; Singer, Brett C.; Coleman,Beverly K.; Hodgson, Alfred T.; Weschler, Charles J.; Nazaroff, William W.

    2005-10-01

    Ozone-driven chemistry is a major source of indoor secondary pollutants of health concern. This study investigates secondary air pollutants formed from reactions between constituents of household products and ozone. Gas-phase product emissions were introduced along with ozone at constant rates into a 198-L Teflon-lined reaction chamber. Gas-phase concentrations of reactive terpenoids and oxidation products were measured. Formaldehyde was a predominant oxidation byproduct for the three studied products, with yields under most conditions of 20-30% with respect to ozone consumed. Acetaldehyde, acetone, glycolaldehyde, formic acid and acetic acid were each also detected for two or three of the products. Immediately upon mixing of reactants, a scanning mobility particle sizer detected particle nucleation events that were followed by a significant degree of ultrafine particle growth. The production of secondary gaseous pollutants and particles depended primarily on the ozone level and was influenced by other parameters such as the air-exchange rate. Hydroxyl radical concentrations in the range 0.04-200 x 10{sup 5} molecules cm{sup -3} were measured. OH concentrations were observed to vary strongly with residual ozone level in the chamber, which was in the range 1-25 ppb, as is consistent with expectations from a simplified kinetic model. In a separate test, we exposed the dry residue of two products to ozone in the chamber and observed the formation of gas-phase and particle-phase secondary oxidation products.

  2. Implications of a Multi-well Tracer Test in the Transport of Pathogens at a Riverbank Filtration Experiment Site.

    NASA Astrophysics Data System (ADS)

    Langford, R. P.; Pillai, S.; Schulze-Makuch, D.; Widmer, K.; Abdel-Fattah, A.; Lerhner, T.

    2003-12-01

    This study tracks the transport of bromide and microspheres mimicking pathogens in an arid environment. The study site uses the Rio Grande that experiences significant annual fluctuations in both water quantity and quality. The pumping well is 17 m from the stream bank and the water table was 2 m below the stream surface. The aquifer is medium and fine-grained sand comprising two flow units. Observation wells are screened over 1 or 1.5 m intervals. The average hydraulic conductivity was about 2 x 10-3 m/s based on a test analysis, however, the responses indicated that sediment heterogeneities affected the hydraulic behavior. A 427 hour tracer test using bromide and fluorescent microspheres provides initial results that are relevant to the transport of pathogens through the subsurface under riverbank filtration conditions. Bromide was injected into an observation well at the channel margin. Differently colored fluorescent microspheres (0.25nm, 1?m, 6?m and 10?m) were injected into the stream bottom and into two observation wells. Conclusions from the tracer test are: 1) Both bromide and microspheres continued to be observed throughout the 18 days of the experiment. 2) The bromide recovery in the pumping well and in the deeper observation wells showed early and late peaks with a long tails indicating that the geological medium at the field site behaves like a double-porosity medium allowing the tracer to move relatively quickly through the higher conductivity units while being significantly retarded in the low hydraulic conductivity units. 3) Some wells showed consistently higher concentrations of bromide. 4) The 1? micospheres were abundant in the observation wells and allowed tracing of flowpaths. These showed multiple peaks similar to the bromide results. This indicates highly preferential transport paths in the sediment. 5) Microspheres from the three injection sites had distinctly different transport paths and rates. 6) Both bromide and microspheres appeared in the stream soon after injection, moving apparently against an 2-m head difference. 7) The 6 ? and 10 ? microspheres were observed in low concentrations and were episodically detected in the stream and in two widely spaced observation wells. The significance of these results is that: 1) Inorganic microspheres may mimic the episodic occurrence of microorganisms in wells. 2) Even in this relatively homogeneous aquifer, preferential transport within the aquifer results in highly divergent transport paths and rates. Microspheres from one of the injection sites traveled essentially perpendicular to the expected transport direction. 3) Even small variations in the sand grain size can effectively compartmentalize the aquifer. The next steps of this project will include field studies to observe the migration and persistence of selected organisms (E.coli, enterococci, coliphages, cysts, oocysts and enteroviruses) in the pumping well and observation wells under different pumping rates. Continued combined chemical sampling along with the microbial sampling will document the whether changes in water chemistry alter the behavior of the organisms.

  3. Final Report: Pilot-Scale X-Flow Filtration Test - Env C Plus Entrained Solids Plus Sr/TRU

    SciTech Connect

    Duignan, M.R.

    2000-07-27

    This report discusses the results of the operation of a cross-flow filter in a pilot-scale experimental facility that was designed, built, and run by the Experimental Thermal Fluids Laboratory of the Savannah River Technology Center of the Westinghouse Savannah River Company. This filtration technology was evaluated for its inclusion in the pretreatment section of the nuclear waste stabilization plant being designed by BNFL, Inc. The plant will be built at the U.S. Department of Energy's Hanford Site as part of the River Protection Project.

  4. Split renal function testing using Tc-99m DTPA. A rapid technique for determining differential glomerular filtration

    SciTech Connect

    Gates, G.F.

    1983-09-01

    The fractional renal uptake of intravenously administered Tc-99m DTPA, within 2 to 3 minutes following radiotracer arrival in the kidneys, is proportional to the glomerular filtration rate (GFR). Thus it is possible to determine total, as well as individual kidney, GFR by a radionuclide technique which needs only six minutes of patient time and requires neither blood nor urine samples. The radionuclide computed GFR correlates extremely well with 24-hour creatinine clearance determinations, and is highly reproducible. This method has been used in nearly 500 split renal function determinations and has provided valuable, accurate information.

  5. Analysis of a Multi-Well Tracer Test at a Bank Filtration Site in an Arid Environment of El Paso, Texas

    NASA Astrophysics Data System (ADS)

    Abdel-Fattah, A. N.; Langford, R.; Schulze-Makuch, D.; Sheng, Z.

    2005-12-01

    River bank filtered water is an important component of the drinking water production in many areas of the world. In riverbank filtration, the removal of pathogens is an important task for the production of good quality drinking water. The hydrogeological factors and spatial changes in the water's microbiology during the transport from the river to the aquifer have important implications on the quality of the produced water. The goal of this study was to investigate riverbank infiltration effectiveness in arid environments such as that of El Paso, Texas. The hydrostratigraphic units and hydrogeologic conditions were characterized with lithologic samples obtained from all boreholes collected during the construction of twelve observation wells and one production well in the site, which were constructed near the artificial stream to provide geologic and hydrologic information. The shallow aquifer is composed of three unites: high hydraulic conductivity layers on the top and bottom, and low conductivity layer in the middle. In this study advective transport of microspheres was compared with a conservative tracer such as bromide. Bromide was injected into an observation well at the channel margin. Simultaneously, 1, 6 and 10 micron-diameter fluorescent microspheres equivalent to Giardia, Cryptosporidium, and bacteria sizes were injected into the stream bottom and two observation wells to assess the suitability of microspheres as abiotic analogs in future investigations involving the physical aspects of bacteria and protozoa transport behavior. The 17.8 day-tracer test provided valuable results that are relevant to the transport of pathogens through the subsurface under riverbank filtration conditions. The 1 micron-size microspheres were abundant in the pumping and observation wells and showed multiple peaks similar to the bromide results. Microspheres from the three injection sites had distinctly different transport paths and rates. The 6 and 10 micron-size microspheres were observed in low to almost zero concentrations. The very low detection of larger sized microspheres indicates a potential attenuation of Cryptosporidium and Giardia-size microspheres under riverbank filtration conditions.

  6. In-situ subaqueous capping of mercury-contaminated sediments in a fresh-water aquatic system, Part I—Bench-scale microcosm study to assess methylmercury production

    SciTech Connect

    Randall, Paul M.; Fimmen, Ryan; Lal, Vivek; Darlington, Ramona

    2013-08-15

    Bench-scale microcosm experiments were designed to provide a better understanding of the potential for Hg methylation in sediments from an aquatic environment. Experiments were conducted to examine the function of sulfate concentration, lactate concentration, the presence/absence of an aqueous inorganic Hg spike, and the presence/absence of inoculums of Desulfovibrio desulfuricans, a strain of sulfate-reducing bacteria (SRB) commonly found in the natural sediments of aquatic environments. Incubations were analyzed for both the rate and extent of (methylmercury) MeHg production. Methylation rates were estimated by analyzing MeHg and Hg after 2, 7, 14, 28, and 42 days. The production of metabolic byproducts, including dissolved gases as a proxy for metabolic utilization of carbon substrate, was also monitored. In all treatments amended with lactate, sulfate, Hg, and SRB, MeHg was produced (37 ng/g-sediment dry weight) after only 48 h of incubation and reached a maximum sediment concentration of 127 ng/g-sediment dry weight after the 42 day incubation period. Aqueous phase production of MeHg was observed to be 10 ng/L after 2 day, reaching a maximum observed concentration of 32.8 ng/L after 14 days, and declining to 10.8 ng/L at the end of the incubation period (42 day). The results of this study further demonstrates that, in the presence of an organic carbon substrate, sulfate, and the appropriate consortia of microorganisms, sedimentary Hg will be transformed into MeHg through bacterial metabolism. Further, this study provided the basis for evaluation of an in-situ subaqueous capping strategy that may limit (or potentially enhance) MeHg production. -- Highlights: • Hg methylation by SRB is limited by the depletion of sulfate and carbon. • Hg methylation is sensitive to competition by methanogens for carbon substrate. • In high lactate environment, all lactate was utilized in the microcosms within seven days. • In the absence of adequate metabolic fuel, MeHg levels decreased on the time scale of days to weeks. • Capping materials should sequester MeHg produced and not contribute to the production of MeHg.

  7. RIVERBANK FILTRATION EFFECTIVENESS IN AN ARID ENVIRONMENT

    EPA Science Inventory

    This experiment is a field test of bank filtration at a site where water level and salinity vary on an annual basis, as they do in many arid and semi-arid streams. No other studies of bank filtration have been performed in this kind of setting. Along the border with Mexico, shall...

  8. Mechanisms of pressure filtration of liquid aluminum alloys

    NASA Astrophysics Data System (ADS)

    Cao, X.

    2006-12-01

    The Prefil Footprinter, a portable pressure filtration instrument, is usually used to detect the quality of liquid aluminum alloys. However, no investigations have ever been done to calculate the cake resistance to date. Based on the identification and classification of flow behavior using the first derivative method for filtrate mass vs filtration time curves, conventional filtration equations are successfully employed to understand the filtration behaviors. From the analyses of the variations of cake resistance with filtration time, the filtration mechanisms are discussed in detail over the different filtration stages. During the steady stage, either incompressible or compressible cake mode is the main mechanism. At the initial and terminal transient stages, however, deep-bed filtration, complete straining, and solidification clogging may appear. Solid inclusions in liquid metal have significant influence on the cake structures and properties. Some important issues related to the heterogeneity of filter media and test methodology are highlighted in this work.

  9. 40 CFR 265.402 - Waste analysis and trial tests.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Waste analysis and trial tests. 265... DISPOSAL FACILITIES Chemical, Physical, and Biological Treatment § 265.402 Waste analysis and trial tests... analyses and trial treatment tests (e.g., bench scale or pilot plant scale tests); or (ii) Obtain...

  10. EFFECT OF PARAMETERS OF FILTRATION ON DUST CLEANING FABRICS

    EPA Science Inventory

    The report summarizes 4 years of laboratory and large-scale tests on the dust filtration process and the basic filtration parameters that determine performance. Physical parameters describing fabric and dust cake structure were defined and three basic dust filtration mechanisms w...

  11. Rotary filtration system

    DOEpatents

    Herman, David T. (Aiken, SC); Maxwell, David N. (Aiken, SC)

    2011-04-19

    A rotary filtration apparatus for filtering a feed fluid into permeate is provided. The rotary filtration apparatus includes a container that has a feed fluid inlet. A shaft is at least partially disposed in the container and has a passageway for the transport of permeate. A disk stack made of a plurality of filtration disks is mounted onto the shaft so that rotation of the shaft causes rotation of the filtration disks. The filtration disks may be made of steel components and may be welded together. The shaft may penetrate a filtering section of the container at a single location. The rotary filtration apparatus may also incorporate a bellows seal to prevent leakage along the shaft, and an around the shaft union rotary joint to allow for removal of permeate. Various components of the rotary filtration apparatus may be removed as a single assembly.

  12. Bench-scale testing of on-line control of column flotation using a novel analyzer. Revised final report, [October 1992--October 1993]: Volume 1

    SciTech Connect

    Not Available

    1993-10-27

    The main advantage of the project is that it allowed PTI to gain knowledge and experience about the proper approach, methods and hardware required to properly optimize and control column flotation performance. Many operational problems were incurred during the project, some of that PTI was able to solve during the project and other that must be overcome as the technology is further developed and commercialized. The key operating problems experienced with the KEN-FLOTE{sup TM} Column that must be further researched and overcome include: (1)The low concentrate solids content which limited the throughput capacity of the column, due to high froth washing requirements. The low concentrate solids content also lead to difficulty obtaining accurate On-Line Monitor measurements, due to the poor measurement sensitivity obtained with low solids content samples (particularly less than 5.0 wt %). (2) The higher-than-anticipated reagent dosages that undoubtedly contributed to the low solids content listed above, and also caused foaming problems within PTI`s On-Line Monitor. A defoaming reagent addition (Nalco 7810) was required to provide consistent sample size and reproducible On-Line Monitor counts for the concentrate samples collected within the circuit. PTI and UK`s CAER staff will continue to research alternative column design, particularly alternative air bubble generation and air distribution systems, to try to maximize column concentrate solids content while reducing reagent dosage requirements. In addition to the KEN-FLOTE{sup TM} Column operation there were also a number of hardware problems with PTI`s On-Line Quality Monitor that must be remedied for future commercial installations.

  13. TASK TECHNICAL AND QUALITY ASSURANCE PLAN FOR OUT-OF-TANK DESTRUCTION OF TETRAPHENYLBORATE VIA WET AIR OXIDATION TECHNOLOGY: PHASE I - BENCH SCALE TESTS

    SciTech Connect

    Adu-Wusu, K

    2006-03-31

    Tank 48H return to service is critical to the processing of high level waste (HLW) at Savannah River Site (SRS). Liquid Waste Disposition (LWD) management has the goal of returning Tank 48H to routine service by January 2010 or as soon as practical. Tank 48H currently holds legacy material containing organic tetraphenylborate (TPB) compounds from the operation of the In-Tank Precipitation process. This material is not compatible with the waste treatment facilities at SRS and must be removed or undergo treatment to destroy the organic compounds before the tank can be returned to Tank Farm service. Tank 48H currently contains {approx}240,000 gallons of alkaline slurry with about 2 wt % potassium and cesium tetraphenylborate (KTPB and CsTPB). The main radioactive component in Tank 48H is {sup 137}Cs. The waste also contains {approx}0.15 wt % Monosodium Titanate (MST) which has adsorbed {sup 90}Sr, U, and Pu isotopes. A System Engineering Evaluation of technologies/ideas for the treatment of TPB identified Wet Air Oxidation (WAO) as a leading alternative technology to the baseline aggregation approach. Over 75 technologies/ideas were evaluated overall. Forty-one technologies/ideas passed the initial screening evaluation. The 41 technologies/ideas were then combined to 16 complete solutions for the disposition of TPB and evaluated in detail. Wet Air Oxidation (WAO) is an aqueous phase process in which soluble or suspended waste components are oxidized using molecular oxygen contained in air. The process operates at elevated temperatures and pressures ranging from 150 to 320 C and 7 to 210 atmospheres, respectively. The products of the reaction are CO{sub 2}, H{sub 2}O, and low molecular weight oxygenated organics (e.g. acetate, oxalate). The basic flow scheme for a typical WAO system is as follows. The waste solution or slurry is pumped through a high-pressure feed pump. An air stream containing sufficient oxygen to meet the oxygen requirements of the waste stream is injected into the pressurized waste stream, and the air/liquid mixture is preheated to the required reactor inlet temperature. The reactor provides sufficient retention time to allow the oxidation to approach the desired level of organic decomposition. Typical reaction time is about 30-120 minutes. Heat exchangers are routinely employed to recover energy contained in the reactor effluent to preheat the waste feed/air entering the reactor. Auxiliary energy, usually steam, is necessary for startup and can provide trim heat if required. Since the oxidation reactions are exothermic, sufficient energy may be released in the reactor to allow the WAO system to operate without any additional heat input. After cooling, the oxidized reactor effluent passes through a pressure control valve where the pressure is reduced. A separator downstream of the pressure control valve allows the depressurized and cooled vapor to separate from the liquid. Typical industrial WAO applications have a feed flow rate of 1 to 220 gallons per minute (gpm) per train, with a chemical oxygen demand (COD) from 10,000 to 150,000 mg/L (higher CODs with dilution). Note that catalysts, such as homogeneous copper and iron, their heterogeneous counterparts, or precious metals can be used to enhance the effectiveness (i.e., to lower temperature, pressure, and residence time as well as increase oxidation efficiencies) of the WAO reaction if deemed necessary.

  14. 40 CFR 265.225 - Waste analysis and trial tests.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Waste analysis and trial tests. 265... DISPOSAL FACILITIES Surface Impoundments § 265.225 Waste analysis and trial tests. (a) In addition to the... the different process: (i) Conduct waste analyses and trial treatment tests (e.g., bench scale...

  15. ENVIRONMENTAL TECHNOLOGY VERIFICATION, TEST REPORT OF CONTROL OF BIOAEROSOLS IN HVAC SYSTEMS, FILTRATION GROUP, AEROSTAR FP-98 MINIPLEAT V-BLANK FILTER

    EPA Science Inventory

    The Environmental Technology Verification report discusses the technology and performance of the AeroStar FP-98 Minipleat V-Bank Filter air filter for dust and bioaerosol filtration manufactured by Filtration Group. The pressure drop across the filter was 137 Pa clean and 348 Pa ...

  16. ENVIRONMENTAL TECHNOLOGY VERIFICATION, TEST REPORT OF CONTROL OF BIOAEROSOLS IN HVAC SYSTEMS, FILTRATION GROUP, AEROSTAR "C-SERIES" POLYESTER PANEL FILTER

    EPA Science Inventory

    The Environmental Technology Verification report discusses the technology and performance of the AeroStar "C-Series" Polyester Panel Filter air filter for dust and bioaerosol filtration manufactured by Filtration Group. The pressure drop across the filter was 126 Pa clean and 267...

  17. Filtration properties of nonwovens.

    PubMed

    Gador, W; Jankowska, E

    1999-01-01

    This paper presents the results and conclusions from experimental investigations concerning filtration properties of nonwovens. The needled nonwovens were made from polyester fibres (PTE) with average fibre diameter 12 micrometres and polypropylene fibres (PP) with average fibre diameter 32 micrometres. Nonwovens were produced out of each of those fibres or out of a mixture of polyester and polypropylene fibres. This paper also presents investigations of nonwoven fabric made of polypropylene fibres (PP) with average fibre diameter 2.6 micrometres, which was formed according to melt-blown technology. Oil mist, as challenge aerosol, was used to evaluate the performance of filter media at various aerosol velocities. The average oil mist test aerosol particle diameter was 0.3 micrometre. Filter penetration was measured at oil mist concentration 0.24 g/m(3). PMID:10602654

  18. COMPARATIVE EVALUATION OF R3f GARNET BEAD FILTRATION AND MULTIMEDIA FILTRATION SYSTEMS; FINAL REPORT

    EPA Science Inventory

    This report summarizes the results of tests conducted to date at the EPA T&E Facility on the R3f filtration system utilizing fine beads (such as garnet beads or glass beads) and a conventional multimedia filtration system. Both systems have been designed and built by Enprotec, a...

  19. 8. OBLIQUE INTERIOR VIEW OF FILTRATION ROOM IN FILTRATION PLANT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. OBLIQUE INTERIOR VIEW OF FILTRATION ROOM IN FILTRATION PLANT (#1773), LOOKING SOUTHWEST, SHOWING MEZZANINE WITH FILTER TANKS AT REAR - Presidio Water Treatment Plant, Filtration Plant, East of Lobos Creek at Baker Beach, San Francisco, San Francisco County, CA

  20. Synthesis, characterization, and testing of carbon nanofibers for coalescence filtration of oil from compressed air and adsorption of chloroform from air

    NASA Astrophysics Data System (ADS)

    Nemmara, Harihara Narayanan Venkatasubramaniam

    Carbon nanofibers typically have diameters ranging from 100 nanometers to a few microns. Because of their smaller diameter, nanofibers provide a larger surface area for the same mass as larger diameter fibers. The primary purpose of this research is two-fold. The first is to test the effectiveness of carbon nanofibers for coalescence filtration of oil from compressed air streams. Theory predicts the particle capture efficiency to improve by using small diameter fibers. It was however observed that the effectiveness of capture depends on the surface properties of the nanofibers added to the glass fiber media. An attractive force between the small (0.3 to 0.8 micron sized) particles and nanofibers is required to overcome the suspected aerodynamic slip effects that cause particles to slip past the nanofibers and penetrate the media. The other purpose of the work is to activate the carbon nanofibers to increase their internal surface area and test their adsorption capacities of chloroform from air, in comparison with a larger diameter activated carbon fiber (ACF). By making maximum use of the available surface area, the economics of the process could be considerably reduced. This work supports theory that the effectiveness factor for molecular access to the surface area is higher in case of nanofibers. This has not been experimentally proved earlier as nanofibers are a relatively novel material. The carbon nanofibers activated to 1100°C have good adsorption capacities under certain conditions.

  1. WATER FILTRATION AT DULUTH

    EPA Science Inventory

    After partial completion of the Lakewood Filtration Plant at Duluth, studies were begun with funding provided by the demonstration grant. Research covered a variety of topics and was done with a 10 gpm pilot plant located at the filtration plant, with the full scale plant operati...

  2. HOW DO I RUN A PROPER JAR TEST PROCEDURE?

    EPA Science Inventory

    The jar test has been and is ah important drinking water treatment plant design, process control, and research tool. n the drinking water field, the jar test is described as a "bench-scale" simulation of full-scale coagulation/flocculation/ sedimentation water treatment processes...

  3. Magnetic-seeding filtration

    SciTech Connect

    Ying, T.Y.; Chin, C.J.; Lu, S.C.; Yiacoumi, S.

    1997-10-01

    Magnetic-seeding filtration consists of two steps: heterogeneous particle flocculation of magnetic and nonmagnetic particles in a stirred tank and high-gradient magnetic filtration (HGMF). The effects of various parameters affecting magnetic-seeding filtration (HGMF). The effects of various parameters affecting magnetic seeding filtration are theoretically and experimentally investigated. A trajectory model that includes hydrodynamic resistance, van der Waals, and electrostatic forces is developed to calculate the flocculation frequency in a turbulent-shear regime. Fractal dimension is introduced to simulate the open structure of aggregates. A magnetic-filtration model that consists of trajectory analysis, a particle build-up model, a breakthrough model, and a bivariate population-balance model is developed to predict the breakthrough curve of magnetic-seeding filtration. A good agreement between modeling results and experimental data is obtained. The results show that the model developed in this study can be used to predict the performance of magnetic-seeding filtration without using empirical coefficients or fitting parameters. 35 refs., 7 figs., 1 tab.

  4. Overview of membrane filtration

    SciTech Connect

    Khatib, Z.

    1986-03-01

    An overview of the process of membrane filtration and its uses is presented. Typical applications include: water treatment and chemical filtration in the printed circuit industry; gas separation and purification, primarily removal of CO/sub 2/, H/sub 2/S and water from fuel gas produced by anaerobic digestion of sewage, or flared gas from landfills, oil fields and coal mines; microfiltration of corrosive fluids; removal of bacteria; separation of oil/water mixtures; filtration of injection fluids used in secondary and tertiary methods of enhanced recovery of oil from wells.

  5. Achieving optimum filtration performance.

    PubMed

    Aurand, C; Jones, R

    2003-06-01

    Medical device and equipment manufacturers are faced with a plethora of choices in filter media. All filtration companies have specialists who are experienced in the correct selection of filter media and filter configuration to achieve the optimum filtration performance and results. Device and equipment manufacturers can find a true consultant who will be able to recommend the best material and configuration to do the job. PMID:12852117

  6. Water Filtration Products

    NASA Technical Reports Server (NTRS)

    1986-01-01

    American Water Corporation manufactures water filtration products which incorporate technology originally developed for manned space operations. The formula involves granular activated charcoal and other ingredients, and removes substances by catalytic reactions, mechanical filtration, and absorption. Details are proprietary. A NASA literature search contributed to development of the compound. The technology is being extended to a deodorizing compound called Biofresh which traps gas and moisture inside the unit. Further applications are anticipated.

  7. Water sample filtration unit

    USGS Publications Warehouse

    Skougstad, M.W.; Scarbro, G.F., Jr.

    1968-01-01

    A readily portable, all plastic, pressure filtration unit is described which greatly facilitates rapid micropore membrane field filtration of up to several liters of water with a minimum risk of inorganic chemical alteration or contamination of the sample. The unit accommodates standard 10.2-cm. (4-inch) diameter filters. The storage and carrying case serves as a convenient filter stand for both field and laboratory use.

  8. Development of BEACON technology. Topical report: tandem reactor testing of hydrogen catalyst

    SciTech Connect

    Not Available

    1984-06-01

    The BEACON process involves the catalytic deposition of a highly reactive form of carbon from a gas stream which contains carbon monoxide. The carbon-depleted gas is combusted with air to produce power, and the carbon is reacted with steam to produce methane or hydrogen. Both the methane production and hydrogen production processes from low Btu gases have been developed successfully through bench-scale under a Cooperative Agreement between the US Department of Energy and TRW, Inc. Bench-scale development of the methane process was completed during the second quarter of 1983. Also catalyst selection testing (screening tests) for hydrogen manufacturing was completed at the same time and the results reported in a Topical Report dated October 1983. This document summarizes the data generated at bench-scale on the production of hydrogen from low Btu gas. Bench-scale development of the BEACON hydrogen process was concluded with the completion of Task 3. The objective of Task 3 was to qualify through bench-scale a BEACON-type catalyst for the production of hydrogen from low Btu gases. Catalyst No. 11, a modified SNG BEACON catalyst which proved highly selective to hydrogen production during laboratory scale screening tests was subjected to a total of 265 hours of steady state operation at three pressures (50, 75 and 100 psig) in the fluidized bed Tandem Reactor apparatus (bench-scale). The catalyst met all the requirements of stability and selectivity cited above. Carbon deposition and carbon steaming to hydrogen took place at near equilibrium yields, methane suppression was greater than 80% at all pressures, and there was no significant build-up of inactive carbon residue on the catalyst. 19 figs., 5 tabs.

  9. Filtration of a Hanford AN-104 Sample

    SciTech Connect

    POIRIER, MICHAEL

    2004-04-19

    The Savannah River Technology Center (SRTC) conducted ultrafiltration tests with samples from the Hanford Site's 241-AN-104 tank. The test objectives were to measure filter flux during dewatering and the removal of soluble species during washing. The filtration tests were conducted with the Cells Unit Filter (CUF) currently installed in Cell 16 of the SRTC High Activity Caves. Following filtration, personnel performed inhibited water washing to remove soluble species. Because of the limited volume of concentrated slurry, the washing was performed with a volumetric flask rather than a crossflow filter. Following the washing, personnel chemically cleaned the filter with 1 M nitric acid and periodically measured the clean water flux.

  10. Filtration of A Hanford AN-104 Sample

    SciTech Connect

    Poirier, MichaelR

    2004-03-01

    The Savannah River Technology Center (SRTC) conducted ultrafiltration tests with samples from the Hanford Site's AN-104 tank. The test objectives were to measure filter flux during dewatering and the removal of soluble species during washing. The filtration tests were conducted with the Cells Unit Filter (CUF) currently installed in Cell 16 of the SRTC High Activity Caves. Following filtration, personnel performed inhibited water washing to remove soluble species. Because of the limited volume of concentrated slurry, the washing was performed with a volumetric flask rather than a crossflow filter.Following the washing, personnel chemically cleaned the filter with 1 M nitric acid and periodically measured the clean water flux.

  11. FILTRATION PARAMETERS FOR DUST CLEANING FABRICS

    EPA Science Inventory

    The report describes laboratory and pilot scale testing of bag filter fabrics. Filtration performance data and mathematical modeling parameters are given for four Polish fabrics tested with cement dust, coal dust, flyash, and talc. Conclusions include: (1) The process of clean ai...

  12. TOXICITY BIOASSAY AND ELUATE HEAVY METALS ANALYSIS RESULTS OF THE BENCH SCALE STABILIZATION STUDY OF SOILS FROM THE UNITED CHROME SUPERFUND NFL SITE CORVALLIS, OREGON

    EPA Science Inventory

    In support of Environmental Protection Agency Region 10 and their United Chrome studies the staff at Environmental Research Laboratory-Corvallis performed toxicity bioassays and selected chemical analyses. Direct toxicity tests (i.e. using soil as the medium) and indirect toxicit...

  13. 40 CFR 141.719 - Additional filtration toolbox components.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...equation: LRV = LOG10 (Cf )?LOG10 (Cp ) Where: LRV = log removal value...measured during the challenge test; and Cp = the filtrate concentration measured...detected in the filtrate, then the term Cp must be set equal to the detection...

  14. 40 CFR 141.719 - Additional filtration toolbox components.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...equation: LRV = LOG10 (Cf )?LOG10 (Cp ) Where: LRV = log removal value...measured during the challenge test; and Cp = the filtrate concentration measured...detected in the filtrate, then the term Cp must be set equal to the detection...

  15. 40 CFR 141.719 - Additional filtration toolbox components.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...equation: LRV = LOG10 (Cf )?LOG10 (Cp ) Where: LRV = log removal value...measured during the challenge test; and Cp = the filtrate concentration measured...detected in the filtrate, then the term Cp must be set equal to the detection...

  16. 40 CFR 141.719 - Additional filtration toolbox components.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...equation: LRV = LOG10 (Cf )?LOG10 (Cp ) Where: LRV = log removal value...measured during the challenge test; and Cp = the filtrate concentration measured...detected in the filtrate, then the term Cp must be set equal to the detection...

  17. 40 CFR 141.719 - Additional filtration toolbox components.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...equation: LRV = LOG10 (Cf )?LOG10 (Cp ) Where: LRV = log removal value...measured during the challenge test; and Cp = the filtrate concentration measured...detected in the filtrate, then the term Cp must be set equal to the detection...

  18. Investigation of in situ and ex situ catalytic pyrolysis of miscanthus × giganteus using a PyGC-MS microsystem and comparison with a bench-scale spouted-bed reactor.

    PubMed

    Gamliel, David P; Du, Shoucheng; Bollas, George M; Valla, Julia A

    2015-09-01

    The objective of the present work is to explore the particularities of a micro-scale experimental apparatus with regards to the study of catalytic fast pyrolysis (CFP) of biomass. In situ and ex situ CFP of miscanthus × giganteus were performed with ZSM-5 catalyst. Higher permanent gas yields and higher selectivity to aromatics in the bio-oil were observed from ex situ CFP, but higher bio-oil yields were recorded during in situ CFP. Solid yields were comparable across both configurations. The results from in situ and ex situ PyGC were also compared with the product yields and selectivities obtained using a bench-scale, spouted-bed reactor. The bio-oil composition and overall product distribution for the PyGC ex situ configuration more closely resembled that of the spouted-bed reactor. The coke/char from in situ CFP in the PyGC was very similar in nature to that obtained from the spouted-bed reactor. PMID:25997007

  19. Validation Testing of the Nitric Acid Dissolution Step Within the K Basin Sludge Pretreatment Process

    SciTech Connect

    AJ Schmidt; CH Delegard; KL Silvers; PR Bredt; CD Carlson; EW Hoppe; JC Hayes; DE Rinehart; SR Gano; BM Thornton

    1999-03-24

    The work described in this report involved comprehensive bench-scale testing of nitric acid (HNO{sub 3}) dissolution of actual sludge materials from the Hanford K East (KE) Basin to confirm the baseline chemical pretreatment process. In addition, process monitoring and material balance information was collected to support the development and refinement of process flow diagrams. The testing was performed by Pacific Northwest National Laboratory (PNNL)for the US Department of Energy's Office of Spent Fuel Stabilization (EM-67) and Numatec Hanford Corporation (NHC) to assist in the development of the K Basin Sludge Pretreatment Process. The baseline chemical pretreatment process for K Basin sludge is nitric acid dissolution of all particulate material passing a 1/4-in. screen. The acid-insoluble fraction (residual solids) will be stabilized (possibly by chemical leaching/rinsing and grouting), packaged, and transferred to the Hanford Environmental Restoration Disposal Facility (ERDF). The liquid fraction is to be diluted with depleted uranium for uranium criticality safety and iron nitrate for plutonium criticality safety, and neutralized with sodium hydroxide. The liquid fraction and associated precipitates are to be stored in the Hanford Tank Waste Remediation Systems (TWRS) pending vitrification. It is expected that most of the polychlorinated biphenyls (PCBs), associated with some K Basin sludges, will remain with the residual solids for ultimate disposal to ERDF. Filtration and precipitation during the neutralization step will further remove trace quantities of PCBs within the liquid fraction. The purpose of the work discussed in this report was to examine the dissolution behavior of actual KE Basin sludge materials at baseline flowsheet conditions and validate the.dissolution process step through bench-scale testing. The progress of the dissolution was evaluated by measuring the solution electrical conductivity and concentrations of key species in the dissolver solutions as a function of reaction (dissolution) time, by analyzing offgas generation rate and composition, and by analyzing intermittent and final acid-insoluble solids at the end of the dissolution. The testing was conducted in a system designed to assess parameters that can influence sludge dissolution and provide information that can be used to determine operating conditions for the actual system.

  20. RADIOACTIVE DEMONSTRATION OF FINAL MINERALIZED WASTE FORMS FOR HANFORD WASTE TREATMENT PLANT SECONDARY WASTE BY FLUIDIZED BED STEAM REFORMING USING THE BENCH SCALE REFORMER PLATFORM

    SciTech Connect

    Crawford, C.; Burket, P.; Cozzi, A.; Daniel, W.; Jantzen, C.; Missimer, D.

    2012-02-02

    The U.S. Department of Energy's Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. In addition, the WTP LAW vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as {sup 137}Cs, {sup 129}I, {sup 99}Tc, Cl, F, and SO{sub 4} that volatilize at the vitrification temperature of 1150 C in the absence of a continuous cold cap (that could minimize volatilization). The current waste disposal path for the WTP-SW is to process it through the Effluent Treatment Facility (ETF). Fluidized Bed Steam Reforming (FBSR) is being considered for immobilization of the ETF concentrate that would be generated by processing the WTP-SW. The focus of this current report is the WTP-SW. FBSR offers a moderate temperature (700-750 C) continuous method by which WTP-SW wastes can be processed irrespective of whether they contain organics, nitrates, sulfates/sulfides, chlorides, fluorides, volatile radionuclides or other aqueous components. The FBSR technology can process these wastes into a crystalline ceramic (mineral) waste form. The mineral waste form that is produced by co-processing waste with kaolin clay in an FBSR process has been shown to be as durable as LAW glass. Monolithing of the granular FBSR product is being investigated to prevent dispersion during transport or burial/storage, but is not necessary for performance. A Benchscale Steam Reformer (BSR) was designed and constructed at the SRNL to treat actual radioactive wastes to confirm the findings of the non-radioactive FBSR pilot scale tests and to qualify the waste form for applications at Hanford. BSR testing with WTP SW waste surrogates and associated analytical analyses and tests of granular products (GP) and monoliths began in the Fall of 2009, and then was continued from the Fall of 2010 through the Spring of 2011. Radioactive testing commenced in 2010 with a demonstration of Hanford's WTP-SW where Savannah River Site (SRS) High Level Waste (HLW) secondary waste from the Defense Waste Processing Facility (DWPF) was shimmed with a mixture of {sup 125/129}I and {sup 99}Tc to chemically resemble WTP-SW. Prior to these radioactive feed tests, non-radioactive simulants were also processed. Ninety six grams of radioactive granular product were made for testing and comparison to the non-radioactive pilot scale tests. The same mineral phases were found in the radioactive and non-radioactive testing.

  1. Water Treatment Technology - Filtration.

    ERIC Educational Resources Information Center

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on filtration provides instructional materials for six competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: purposes of sedimentation basins and flocculation…

  2. Quantifying oil filtration effects on bearing life

    NASA Technical Reports Server (NTRS)

    Needelman, William M.; Zaretsky, Erwin V.

    1991-01-01

    Rolling-element bearing life is influenced by the number, size, and material properties of particles entering the Hertzian contact of the rolling element and raceway. In general, rolling-element bearing life increases with increasing level of oil filtration. Based upon test results, two equations are presented which allow for the adjustment of bearing L(sub 10) or catalog life based upon oil filter rating. It is recommended that where no oil filtration is used catalog life be reduced by 50 percent.

  3. Vacuum distillation/vapor filtration water recovery

    NASA Technical Reports Server (NTRS)

    Honegger, R. J.; Neveril, R. B.; Remus, G. A.

    1974-01-01

    The development and evaluation of a vacuum distillation/vapor filtration (VD/VF) water recovery system are considered. As a functional model, the system converts urine and condensates waste water from six men to potable water on a steady-state basis. The system is designed for 180-day operating durations and for function on the ground, on zero-g aircraft, and in orbit. Preparatory tasks are summarized for conducting low gravity tests of a vacuum distillation/vapor filtration system for recovering water from urine.

  4. Contamination control through filtration of microorganisms

    NASA Technical Reports Server (NTRS)

    Stabekis, P. D.; Lyle, R. G.

    1972-01-01

    A description is given of the various kinds of gas and liquid filters used in decontamination and sterilization procedures. Also discussed are filtration mechanisms, characteristics of filter materials, and the factors affecting filter performance. Summaries are included for filter testing and evaluation techniques and the possible application of the filters to spacecraft sterilization.

  5. Effect of saw dust on borate removal from groundwater in bench-scale simulation of permeable reactive barriers including magnesium oxide.

    PubMed

    Sasaki, K; Takamori, H; Moriyama, S; Yoshizaka, H; Hirajima, T

    2011-01-30

    Effective immobilization of boron in groundwater is a major challenge. Permeable reactive barrier (PRB) column tests for removal of borate have been investigated using MgO agglomerates as the primary reactive material over 40 weeks. Additionally, saw dust was also blended with MgO agglomerates to facilitate for borate removal in this system. Boron accumulation was more than 1.6 times greater in the presence of saw dust, although MgO alone performed well. Increased boron accumulation in the presence of saw dust was primarily due to higher porosity of the PRB column, decreasing the impact of secondary Mg(OH)(2) passivating layers and leaving more reactive sites on MgO agglomerates. In addition, Mg(2+) ions released from MgO agglomerates are complexed with carboxylic acids leached from saw dusts. This sequestration prevents the formation of bulky Mg(OH)(2) which is an ineffective sorbent for borate and covers the surfaces and passivating reactive sites on the MgO agglomerates. The morphologies of Mg(OH)(2) precipitated in the PRB column were also significantly affected by the presence of saw dust, with crystallization of needle-like particles of Mg(OH)(2) was prevented by Mg(2+) ions-organic ligand complexation. PMID:21075515

  6. Industrial Membrane Filtration and Short-bed Fractal Separation Systems for Separating Monomers from Heterogeneous Plant Material

    SciTech Connect

    Kearney, M; Kochergin, V; Hess, R; Foust, T; Herbst, R; Mann, N

    2005-03-31

    Large-scale displacement of petroleum will come from low-cost cellulosic feedstocks such as straw and corn stover crop residues. This project has taken a step toward making this projection a reality by reducing capital and energy costs, the two largest cost factors associated with converting cellulosic biomass to chemicals and fuels. The technology exists for using acid or enzyme hydrolysis processes to convert biomass feedstock (i.e., waste cellulose such as straw, corn stover, and wood) into their base monomeric sugar building blocks, which can, in turn, be processed into chemicals and fuels using a number of innovative fermentation technologies. However, while these processes are technically possible, practical and economic barriers make these processes only marginally feasible or not feasible at all. These barriers are due in part to the complexity and large fixed and recurring capital costs of unit operations including filtration, chromatographic separation, and ion exchange. This project was designed to help remove these barriers by developing and implementing new purification and separation technologies that will reduce the capital costs of the purification and chromatographic separation units by 50% to 70%. The technologies fundamental to these improvements are: (a) highly efficient clarification and purification systems that use screening and membrane filtration to eliminate suspended solids and colloidal material from feed streams and (b) fractal technology based chromatographic separation and ion exchange systems that can substitute for conventional systems but at much smaller size and cost. A non-hazardous ''raw sugar beet juice'' stream (75 to 100 gal/min) was used for prototype testing of these technologies. This raw beet juice stream from the Amalgamated Sugar LLC plant in Twin Falls, Idaho contained abrasive materials and membrane foulants. Its characteristics were representative of an industrial-scale heterogeneous plant extract/hydrolysis stream, and therefore was an ideal model system for developing new separation equipment. Subsequent testing used both synthetic acid hydrolysate and corn stover derived weak acid hydrolysate (NREL produced). A two-phased approach was used for the research and development described in this project. The first level of study involved testing the new concepts at the bench level. The bench-scale evaluations provided fundamental understanding of the processes, building and testing small prototype systems, and determining the efficiency of the novel processes. The second level of study, macro-level, required building larger systems that directly simulated industrial operations and provided validation of performance to minimize financial risk during commercialization. The project goals and scope included: (1) Development of low-capital alternatives to conventional crop-based purification/separation processes; and (2) Development of each process to the point that transition to commercial operation is low risk. The project reporting period was January 2001 to December 2004. This included a one year extension of the project (without additional funding).

  7. Liquid filtration simulation

    SciTech Connect

    Corey, I.; Bergman, W.

    1996-06-01

    We have a developed a computer code that simulates 3-D filtration of suspended particles in fluids in realistic filter structures. This code, being the most advanced filtration simulation package developed to date, provides LLNL and DOE with new capabilities to address problems in cleaning liquid wastes, medical fluid cleaning, and recycling liquids. The code is an integrated system of commercially available and LLNL-developed software; the most critical are the computational fluid dynamics (CFD) solver and the particle transport program. For the CFD solver, we used a commercial package based on Navier-Stokes equations and a LLNL-developed package based on Boltzman-lattice gas equations. For the particle transport program, we developed a cod based on the 3-D Langevin equation of motion and the DLVO theory of electrical interactions. A number of additional supporting packages were purchased or developed to integrate the simulation tasks and to provide visualization output.

  8. Effect of hot vapor filtration on the characterization of bio-oil from rice husks with fast pyrolysis in a fluidized-bed reactor.

    PubMed

    Chen, Tianju; Wu, Ceng; Liu, Ronghou; Fei, Wenting; Liu, Shiyu

    2011-05-01

    To produce high quality bio-oil from biomass using fast pyrolysis, rice husks were pyrolyzed in a 1-5 kg/h bench-scale fluidized-bed reactor. The effect of hot vapor filtration (HVF) was investigated to filter the solid particles and bio-char. The results showed that the total bio-oil yield decreased from 41.7% to 39.5% by weight and the bio-oil had a higher water content, higher pH, and lower alkali metal content when using HVF. One hundred and twelve different chemical compounds were detected by gas chromatography-mass spectrometry (GC-MS). The molecular weight of the chemical compounds from the condenser and the EP when the cyclone was coupled with HVF in the separation system decreased compared with those from the condenser and EP when only cyclone was used. PMID:21376572

  9. THOR Bench-Scale Steam Reforming Demonstration

    SciTech Connect

    Marshall, D.W.; Soelberg, N.R.; Shaber, K.M.

    2003-05-21

    The Idaho Nuclear Technology and Engineering Center (INTEC) was home to nuclear fuel reprocessing activities for decades at the Idaho National Engineering and Environmental Laboratory. As a result of the reprocessing activities, INTEC has accumulated approximately one million gallons of acidic, radioactive, sodium-bearing waste (SBW). The purpose of this demonstration was to investigate a reforming technology, offered by THORsm Treatment Technologies, LLC, for treatment of SBW into a ''road ready'' waste form that would meet the waste acceptance criteria for the Waste Isolation Pilot Plant (WIPP). A non-radioactive simulated SBW was used based on the known composition of waste tank WM-180 at INTEC. Rhenium was included as a non-radioactive surrogate for technetium. Data was collected to determine the nature and characteristics of the product, the operability of the technology, the composition of the off-gases, and the fate of key radionuclides (cesium and technetium) and volatile mercury compounds. The product contained a low fraction of elemental carbon residues in the cyclone and filter vessel catches. Mercury was quantitatively stripped from the product but cesium, rhenium (Tc surrogate), and the heavy metals were retained. Nitrates were not detected in the product and NOx destruction exceeded 98%. The demonstration was successful.

  10. THOR Bench-Scale Steam Reforming Demonstration

    SciTech Connect

    D. W. Marshall; N. R. Soelberg; K. M. Shaber

    2003-05-01

    The Idaho Nuclear Technology and Engineering Center (INTEC) was home to nuclear fuel reprocessing activities for decades at the Idaho National Engineering and Environmental Laboratory. As a result of the reprocessing activities, INTEC has accumulated approximately one million gallons of acidic, radioactive, sodium-bearing waste (SBW). The purpose of this demonstration was to investigate a reforming technology, offered by THORsm Treatment Technologies, LLC, for treatment of SBW into a "road ready" waste form that would meet the waste acceptance criteria for the Waste Isolation Pilot Plant (WIPP). A non-radioactive simulated SBW was used based on the known composition of waste tank WM-180 at INTEC. Rhenium was included as a non-radioactive surrogate for technetium. Data was collected to determine the nature and characteristics of the product, the operability of the technology, the composition of the off-gases, and the fate of key radionuclides (cesium and technetium) and volatile mercury compounds. The product contained a low fraction of elemental carbon residues in the cyclone and filter vessel catches. Mercury was quantitatively stripped from the product but cesium, rhenium (Tc surrogate), and the heavy metals were retained. Nitrates were not detected in the product and NOx destruction exceeded 98%. The demonstration was successful.

  11. TWR Bench-Scale Steam Reforming Demonstration

    SciTech Connect

    Marshall, D.W.; Soelberg, N.R.

    2003-05-21

    The Idaho Nuclear Technology and Engineering Center (INTEC) was home to nuclear fuel reprocessing activities for decades at the Idaho National Engineering and Environmental Laboratory. As a result of the reprocessing activities, INTEC has accumulated approximately one million gallons of acidic, radioactive, sodium-bearing waste (SBW). The purpose of this demonstration was to investigate a reforming technology, offered by ThermoChem Waste Remediation, LLC, (TWR) for treatment of SBW into a ''road ready'' waste form that would meet the waste acceptance criteria for the Waste Isolation Pilot Plant (WIPP). TWR is the licensee of Manufacturing Technology Conservation International (MTCI) steam-reforming technology in the field of radioactive waste treatment. A non-radioactive simulated SBW was used based on the known composition of waste tank WM-180 at INTEC. Rhenium was included as a non-radioactive surrogate for technetium. Data was collected to determine the nature and characteristics of the product, the operability of the technology, the composition of the off-gases, and the fate of key radionuclides (cesium and technetium) and volatile mercury compounds. The product contained a low fraction of elemental carbon residues in the cyclone and filter vessel catches. Mercury was quantitatively stripped from the product but cesium, rhenium (Tc surrogate), and the heavy metals were retained. Nitrate residues were about 400 ppm in the product and NOx destruction exceeded 86%. The demonstration was successful.

  12. TWR Bench-Scale Steam Reforming Demonstration

    SciTech Connect

    D. W. Marshall; N. R. Soelberg

    2003-05-01

    The Idaho Nuclear Technology and Engineering Center (INTEC) was home to nuclear fuel reprocessing activities for decades at the Idaho National Engineering and Environmental Laboratory. As a result of the reprocessing activities, INTEC has accumulated approximately one million gallons of acidic, radioactive, sodium-bearing waste (SBW). The purpose of this demonstration was to investigate a reforming technology, offered by ThermoChem Waste Remediation, LLC, (TWR) for treatment of SBW into a "road ready" waste form that would meet the waste acceptance criteria for the Waste Isolation Pilot Plant (WIPP). TWR is the licensee of Manufacturing Technology Conservation International (MTCI) steam-reforming technology in the field of radioactive waste treatment. A non-radioactive simulated SBW was used based on the known composition of waste tank WM-180 at INTEC. Rhenium was included as a non-radioactive surrogate for technetium. Data was collected to determine the nature and characteristics of the product, the operability of the technology, the composition of the off-gases, and the fate of key radionuclides (cesium and technetium) and volatile mercury compounds. The product contained a low fraction of elemental carbon residues in the cyclone and filter vessel catches. Mercury was quantitatively stripped from the product but cesium, rhenium (Tc surrogate), and the heavy metals were retained. Nitrate residues were about 400 ppm in the product and NOx destruction exceeded 86%. The demonstration was successful.

  13. Bench-scale synthesis of nanoscale materials

    NASA Technical Reports Server (NTRS)

    Buehler, M. F.; Darab, J. G.; Matson, D. W.; Linehan, J. C.

    1994-01-01

    A novel flow-through hydrothermal method used to synthesize nanoscale powders is introduced by Pacific Northwest Laboratory. The process, Rapid Thermal Decomposition of precursors in Solution (RTDS), uniquely combines high-pressure and high-temperature conditions to rapidly form nanoscale particles. The RTDS process was initially demonstrated on a laboratory scale and was subsequently scaled up to accommodate production rates attractive to industry. The process is able to produce a wide variety of metal oxides and oxyhydroxides. The powders are characterized by scanning and transmission electron microscopic methods, surface-area measurements, and x-ray diffraction. Typical crystallite sizes are less than 20 nanometers, with BET surface areas ranging from 100 to 400 sq m/g. A description of the RTDS process is presented along with powder characterization results. In addition, data on the sintering of nanoscale ZrO2 produced by RTDS are included.

  14. MINIPILOT SOLAR SYSTEM: DESIGN/OPERATION OF SYSTEM AND RESULTS OF NON-SOLAR TESTING AT MRI

    EPA Science Inventory

    Prior to this project, MRI had carried out work for the Environmental Protection Agency (EPA) on the conceptual design of a solar system for solid waste disposal and a follow-on project to study the feasibility of bench-scale testing of desorption of organics from soil with destr...

  15. Test procedures and instructions for Hanford tank waste supernatant cesium removal

    SciTech Connect

    Hendrickson, D.W., Westinghouse Hanford

    1996-05-31

    This document provides specific test procedures and instructions to implement the test plan for the preparation and conduct of a cesium removal test using Hanford Double-Shell Slurry Feed supernatant liquor from tank 251-AW-101 in a bench-scale column.Cesium sorbents to be tested include resorcinol-formaldehyde resin and crystalline silicotitanate. The test plan for which this provides instructions is WHC-SD-RE-TP-022, Hanford Tank Waste Supernatant Cesium Removal Test Plan.

  16. Test procedures and instructions for Hanford complexant concentrate supernatant cesium removal using CST

    SciTech Connect

    Hendrickson, D.W.

    1997-01-08

    This document provides specific test procedures and instructions to implement the test plan for the preparation and conduct of a cesium removal test, using Hanford Complexant Concentrate supernatant liquor from tank 241-AN-107, in a bench-scale column. The cesium sorbent to be tested is crystalline silicotitanate. The test plan for which this provides instructions is WHC-SD-RE-TP-023, Hanford Complexant Concentrate Supernatant Cesium Removal Test Plan.

  17. Tests of US rock salt for long-term stability of CAES reservoirs

    SciTech Connect

    Gehle, R.M.; Thoms, R.L.

    1986-01-01

    This is a report on laboratory tests to assess the effects of compressed air energy storage (CAES) on rock salt within the US. The project included a conventional laboratory test phase, with triaxial test machines, and a bench-scale test phase performed in salt mines in southern Louisiana. Limited numerical modeling also was performed to serve as a guide in selecting test layouts and for interpreting test data.

  18. Characterization of Filtration Scale-Up Performance

    SciTech Connect

    Daniel, Richard C.; Billing, Justin M.; Luna, Maria L.; Cantrell, Kirk J.; Peterson, Reid A.; Bonebrake, Michael L.; Shimskey, Rick W.; Jagoda, Lynette K.

    2009-03-09

    The scale-up performance of sintered stainless steel crossflow filter elements planned for use at the Pretreatment Engineering Platform (PEP) and at the Waste Treatment and Immobilization Plant (WTP) were characterized in partial fulfillment (see Table S.1) of the requirements of Test Plan TP RPP WTP 509. This test report details the results of experimental activities related only to filter scale-up characterization. These tests were performed under the Simulant Testing Program supporting Phase 1 of the demonstration of the pretreatment leaching processes at PEP. Pacific Northwest National Laboratory (PNNL) conducted the tests discussed herein for Bechtel National, Inc. (BNI) to address the data needs of Test Specification 24590-WTP-TSP-RT-07-004. Scale-up characterization tests employ high-level waste (HLW) simulants developed under the Test Plan TP-RPP-WTP-469. The experimental activities outlined in TP-RPP-WTP-509 examined specific processes from two broad areas of simulant behavior: 1) leaching performance of the boehmite simulant as a function of suspending phase chemistry and 2) filtration performance of the blended simulant with respect to filter scale-up and fouling. With regard to leaching behavior, the effect of anions on the kinetics of boehmite leaching was examined. Two experiments were conducted: 1) one examined the effect of the aluminate anion on the rate of boehmite dissolution and 2) another determined the effect of secondary anions typical of Hanford tank wastes on the rate of boehmite dissolution. Both experiments provide insight into how compositional variations in the suspending phase impact the effectiveness of the leaching processes. In addition, the aluminate anion studies provide information on the consequences of gibbsite in waste. The latter derives from the expected fast dissolution of gibbsite relative to boehmite. This test report concerns only results of the filtration performance with respect to scale-up. Test results for boehmite dissolution kinetics and filter fouling are reported elsewhere (see Table S.1). The primary goal of scale-up testing was to examine how filter length influenced permeate flux rates. To accomplish this, the existing cells unit filter system, which employs a 2-ft-long, 0.5-in. (inner) diameter sintered stainless steel filter element, was redesigned to accommodate an 8-ft. sintered stainless steel filter element of the same diameter. Testing was then performed to evaluate the filtration performance of waste simulant slurries. Scale-up testing consisted of two separate series of filtration tests: 1) scale-up axial velocity (AV)/transmembrane pressure (TMP) matrix tests and 2) scale-up temperature tests. The AV/TMP matrix tests examined filtration performance of two different waste simulant slurries in the 8-ft. cells unit filter system. Waste simulant slurry formulations for the 8-ft. scale-up test was selected to match simulant slurries for which filtration performance had been characterized on the 2-ft CUF. For the scale-up temperature tests, the filtration performance at three test temperatures (i.e., 25°C, 40°C, and 60°C) was determined to evaluate if filter flux versus temperature correlations developed using the 2-ft filters were also valid for the 8-ft filters.

  19. Dynamic optical filtration

    NASA Technical Reports Server (NTRS)

    Chretien, Jean-Loup (Inventor); Lu, Edward T. (Inventor)

    2005-01-01

    A dynamic optical filtration system and method effectively blocks bright light sources without impairing view of the remainder of the scene. A sensor measures light intensity and position so that selected cells of a shading matrix may interrupt the view of the bright light source by a receptor. A beamsplitter may be used so that the sensor may be located away from the receptor. The shading matrix may also be replaced by a digital micromirror device, which selectively sends image data to the receptor.

  20. Dynamic Optical Filtration

    NASA Technical Reports Server (NTRS)

    Chretien, Jean-Loup (Inventor); Lu, Edward T. (Inventor)

    2005-01-01

    A dynamic optical filtration system and method effectively blocks bright light sources without impairing view of the remainder of the scene. A sensor measures light intensity and position so that selected cells of a shading matrix may interrupt the view of the bright light source by a receptor. A beamsplitter may be used so that the sensor may be located away from the receptor. The shading matrix may also be replaced by a digital micromirror device, which selectively sends image data to the receptor.

  1. MICROBIOLOGY AND DRINKING WATER FILTRATION

    EPA Science Inventory

    Concerns about waterborne viruses and protozoan cysts developed in the third quarter of the twentieth century, and filtration research for microorganism control in the 1960's through 1980's has reflected these concerns. The chapter briefly reviews historical filtration research f...

  2. A PERSPECTIVE OF RIVERBANK FILTRATION

    EPA Science Inventory

    Riverbank filtration is a process in which pumping of wells located along riverbanks induce a portion of the river water to flow toward the pumping wells. The process has many similarities to the slow sand filtration process. River water contaminants are attenuated due to a combi...

  3. PILOT PLANT EXPLORATION OF SLOW RATE FILTRATION

    EPA Science Inventory

    Alternatives to conventional coagulation water filtration plants (those that utilize coagulation, flocculation, sedimentation and filtration) may be appropriate for some small water utilities. One such alternative is slow rate filtration. This paper describes pilot plant studies ...

  4. 40 CFR 141.173 - Filtration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...NATIONAL PRIMARY DRINKING WATER REGULATIONS Enhanced Filtration and Disinfection-Systems...People § 141.173 Filtration. A public water system subject to...or diatomaceous earth filtration. A public water system may use a...

  5. 40 CFR 141.73 - Filtration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...NATIONAL PRIMARY DRINKING WATER REGULATIONS Filtration and Disinfection § 141.73 Filtration. A public water system that uses a surface...1). (d) Other filtration technologies. A public water system may use a...

  6. 40 CFR 141.173 - Filtration.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...NATIONAL PRIMARY DRINKING WATER REGULATIONS Enhanced Filtration and Disinfection-Systems...People § 141.173 Filtration. A public water system subject to...or diatomaceous earth filtration. A public water system may use a...

  7. 40 CFR 141.73 - Filtration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...NATIONAL PRIMARY DRINKING WATER REGULATIONS Filtration and Disinfection § 141.73 Filtration. A public water system that uses a surface...1). (d) Other filtration technologies. A public water system may use a...

  8. 40 CFR 141.173 - Filtration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...NATIONAL PRIMARY DRINKING WATER REGULATIONS Enhanced Filtration and Disinfection-Systems...People § 141.173 Filtration. A public water system subject to...or diatomaceous earth filtration. A public water system may use a...

  9. 40 CFR 141.73 - Filtration.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...NATIONAL PRIMARY DRINKING WATER REGULATIONS Filtration and Disinfection § 141.73 Filtration. A public water system that uses a surface...1). (d) Other filtration technologies. A public water system may use a...

  10. 40 CFR 141.173 - Filtration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...NATIONAL PRIMARY DRINKING WATER REGULATIONS Enhanced Filtration and Disinfection-Systems...People § 141.173 Filtration. A public water system subject to...or diatomaceous earth filtration. A public water system may use a...

  11. 40 CFR 141.73 - Filtration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...NATIONAL PRIMARY DRINKING WATER REGULATIONS Filtration and Disinfection § 141.73 Filtration. A public water system that uses a surface...1). (d) Other filtration technologies. A public water system may use a...

  12. 40 CFR 141.173 - Filtration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...2010-07-01 2010-07-01 false Filtration. 141.173 Section 141...DRINKING WATER REGULATIONS Enhanced Filtration and Disinfection-Systems Serving...or More People § 141.173 Filtration. A public water...

  13. 40 CFR 141.73 - Filtration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...2010-07-01 2010-07-01 false Filtration. 141.73 Section 141.73 Protection...NATIONAL PRIMARY DRINKING WATER REGULATIONS Filtration and Disinfection § 141.73 Filtration. A public water system that...

  14. CENTRIFUGAL MEMBRANE FILTRATION

    SciTech Connect

    William A. Greene; Patricia A. Kirk; Richard Hayes; Joshua Riley

    2005-10-28

    SpinTek Membrane Systems, Inc., the developer of a centrifugal membrane filtration technology, has engineered and developed a system for use within the U.S. Department of Energy (DOE) Environmental Management (EM) Program. The technology uses supported microporous membranes rotating at high rpm, under pressure, to separate suspended and colloidal solids from liquid streams, yielding a solids-free permeate stream and a highly concentrated solids stream. This is a crosscutting technology that falls under the Efficient Separations and Processing Crosscutting Program, with potential application to tank wastes, contaminated groundwater, landfill leachate, and secondary liquid waste streams from other remediation processes, including decontamination and decommissioning systems. SpinTek II High Shear Rotary Membrane Filtration System is a unique compact crossflow membrane system that has large, demonstrable advantages in performance and cost compared to currently available systems: (1) High fluid shear prevents membrane fouling even with very high solids content; hazardous and radioactive components can be concentrated to the consistency of a pasty slurry without fouling. (2) Induced turbulence and shear across the membrane increases membrane flux by a factor of ten over existing systems and allows operation on fluids not otherwise treatable. (3) Innovative ceramic membrane and mechanical sealing technology eliminates compatibility problems with aggressive DOE waste streams. (4) System design allows rapid, simple disassembly for inspection or complete decontamination. (5) Produces colloidal- and suspended-solids-free filtrate without the addition of chemicals. The first phase of this project (PRDA maturity stage 5) completed the physical scale-up of the SpinTek unit and verified successful scale-up with surrogate materials. Given successful scale-up and DOE concurrence, the second phase of this project (PRDA maturity stage 6) will provide for the installation and operation of the full-scale two-stage SpinTek unit for treatment of a DOE waste-stream at the Los Alamos National Laboratory. This technology has very broad application across the DOE system. Nineteen DOE technical needs areas (Appendix C) have been identified. Following successful full-scale demonstration for treatment of DOE wastes, this innovative technology will be rapidly deployed on a wide range of waste and process streams throughout the DOE system.

  15. Measuring of filtration efficiency of nonwoven textiles in volume from scattered light by seeding particles

    NASA Astrophysics Data System (ADS)

    Bilek, P.; Sidlof, P.

    2013-04-01

    This paper deals with the method which calculates a filtration efficiency of nonwoven textiles from scattered light intensity by seeding particles. Thefiltration efficiency is commonly measured by particle counters. Samples of liquid or gas are taken during a test in front of and behind a filtration material. The concentration of particles is measured and the filtration efficiency is calculated. The filtration efficiency does not have to be uniform in itswhole surface. The uniformity of filtration is another indicator of a quality of filtration materials. Measurements described in this article were performed on a water filtration setup which enables optical access to the place where the filtration material is mounted. Pictures of illuminated seeding particles are made by a laser sheet and a camera. Visualisation of the filtration process enables measuring of the efficiency of separation versus time and also versus two-dimensional position in case of use of a traverse mechanism. The filtration textiles were tested by 1 ?m seeding particles. Mean value of light intensity and number of bright pixels in evaluative areas during image analysis were obtained. On the basis of these data, the filtration efficiency iscalculated. The best image analysis method was chosen.

  16. Characterization and modification of particulate properties to enhance filtration performance

    SciTech Connect

    Snyder, T.R.; Vann Bush, P.; Robinson, M.S.

    1990-06-01

    The specific objectives of this project are to characterize the particulate properties that determine the filtration performance of fabric filters, and to investigate methods for modifying these particulate properties to enhance filtration performance. Inherent in these objectives is the development of an experimental approach that will lead to full-scale implementation of beneficial conditioning processes identified during the project. The general approach has included a large number of laboratory evaluations to be followed by optional field tests of a new successful conditioning processes performed on a sidestream device. This project was divided into five tasks. The schedule followed for these tasks is shown in Figure 4. Tasks 2 and 3 each focus on one of the two complementary parts of the project. Task 2 Parametric Tests of Ashes and Fabrics, evaluates the degree to which ash properties and fabric design determine filtration performance. Task 3 Survey of Methods to Modify the Particle Filtration Properties, provides a literature review and laboratory study of techniques to modify ash properties. The results of these two tasks were used in Task 4 Proof-of-Concept Tests of Methods to Modify Particle Filtration Properties to demonstrate the effects on filtration performance of modifying ash properties. The findings of all the tasks are summarized in this Final Report. 13 refs.

  17. 3D Air Filtration Modeling for Nanofiber Based Filters in the Ultrafine Particle Size Range

    NASA Astrophysics Data System (ADS)

    Sambaer, Wannes; Zatloukal, Martin; Kimmer, Dusan

    2011-07-01

    In this work, novel 3D filtration model for nanofiber based filters has been proposed and tested. For the model validation purposes, filtration efficiency characteristics of two different polyurethane nanofiber based structures (prepared by the electrospinning process) were determined experimentally in the ultrafine particle size range (20-400 nm). It has been found that the proposed model is able to reasonably predict the measured filtration efficiency curves for both tested samples.

  18. 40 CFR 141.719 - Additional filtration toolbox components.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... using the following equation: LRV = LOG10(Cf)?LOG10(Cp) Where: LRV = log removal value demonstrated during challenge testing; Cf = the feed concentration measured during the challenge test; and Cp = the... filtrate, then the term Cp must be set equal to the detection limit. (8) Each filter tested must...

  19. 40 CFR 141.719 - Additional filtration toolbox components.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... using the following equation: LRV = LOG10(Cf)?LOG10(Cp) Where: LRV = log removal value demonstrated during challenge testing; Cf = the feed concentration measured during the challenge test; and Cp = the... filtrate, then the term Cp must be set equal to the detection limit. (8) Each filter tested must...

  20. 40 CFR 141.719 - Additional filtration toolbox components.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... using the following equation: LRV = LOG10(Cf)?LOG10(Cp) Where: LRV = log removal value demonstrated during challenge testing; Cf = the feed concentration measured during the challenge test; and Cp = the... filtrate, then the term Cp must be set equal to the detection limit. (8) Each filter tested must...

  1. 40 CFR 141.719 - Additional filtration toolbox components.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... using the following equation: LRV = LOG10(Cf)?LOG10(Cp) Where: LRV = log removal value demonstrated during challenge testing; Cf = the feed concentration measured during the challenge test; and Cp = the... filtrate, then the term Cp must be set equal to the detection limit. (8) Each filter tested must...

  2. 40 CFR 141.719 - Additional filtration toolbox components.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... using the following equation: LRV = LOG10(Cf)?LOG10(Cp) Where: LRV = log removal value demonstrated during challenge testing; Cf = the feed concentration measured during the challenge test; and Cp = the... filtrate, then the term Cp must be set equal to the detection limit. (8) Each filter tested must...

  3. In-plant testing of microbubble column flotation

    SciTech Connect

    Yoon, R.H.; Luttrell, G.H.; Adel, G.T.; Mankosa, M.J.

    1991-07-31

    Microbubble column flotation (MCF) was developed at the Virginia Center for Coal and Minerals Processing (VCCMP) for the selective recovery of fine particles. Bench-scale test work conducted at VCCMP, largely under the sponsorship of the U.S. Department of Energy (DOE), showed that the technology worked well for both coal and mineral applications. For the technology to be commercially successful, however, a full-scale demonstration of the MCF technology was deemed necessary. This report summarizes the results of work performed under the DOE project entitled In-plant Testing of Microbubble Column Flotation.'' The objectives of this research and development effort were to duplicate the bench-scale performance of the MCF process in a full-scale unit, to verify the scale-up procedure developed in an earlier project, and to demonstrate the applicability of the MCF technology to the coal industry.

  4. In-plant testing of microbubble column flotation. Final report

    SciTech Connect

    Yoon, R.H.; Luttrell, G.H.; Adel, G.T.; Mankosa, M.J.

    1991-07-31

    Microbubble column flotation (MCF) was developed at the Virginia Center for Coal and Minerals Processing (VCCMP) for the selective recovery of fine particles. Bench-scale test work conducted at VCCMP, largely under the sponsorship of the U.S. Department of Energy (DOE), showed that the technology worked well for both coal and mineral applications. For the technology to be commercially successful, however, a full-scale demonstration of the MCF technology was deemed necessary. This report summarizes the results of work performed under the DOE project entitled ``In-plant Testing of Microbubble Column Flotation.`` The objectives of this research and development effort were to duplicate the bench-scale performance of the MCF process in a full-scale unit, to verify the scale-up procedure developed in an earlier project, and to demonstrate the applicability of the MCF technology to the coal industry.

  5. Repeatability of the Petrifilm HEC test and agreement with a hydrophobic grid membrane filtration method for the enumeration of Escherichia coli O157:H7 on beef carcasses.

    PubMed

    Power, C A; McEwen, S A; Johnson, R P; Shoukri, M M; Rahn, K; Griffiths, M W; De Grandis, S A

    1998-04-01

    The Petrifilm HEC test (3M Canada Inc., London, Ontario), a quantitative microbiological test for Escherichia coli O157:H7, was evaluated for its performance as a beef-carcass monitoring test. Test repeatability and agreement and agreement with an E. coli O157:H7 detection method using a hydrophobic grid membrane filter (HGMF) overlaid onto cefixime-tellurite-sorbitol MacConkey agar (CT-SMAC) followed by a latex agglutination test for the O157 antigen were determined by using pure cultures of E. coli O157:H7, beef samples experimentally contaminated with bovine feces containing E. coli O157:H7, and naturally contaminated beef carcasses of unknown E. coli O157:H7 status from a local abattoir. The Petrifilm HEC test showed excellent repeatability and excellent agreement with the HGMF-CT-SMAC method when test samples were obtained from pure cultures and experimentally contaminated meat. All 125 naturally contaminated beef carcasses surveyed were negative for E. coli O157:H7 with both microbial methods. The Petrifilm HEC test, however, demonstrated a significantly lower proportion of cross-reactive organisms (false-positive reactions) than the HGMF-CT-SMAC method. Given the performance of this test coupled with its ease of use and compact size, it shows considerable promise for carcass testing where abattoir laboratory facilities are limited and as a substitute for more complex laboratory testing methods used in established laboratories. PMID:9709201

  6. Nanofiber filter media for air filtration

    NASA Astrophysics Data System (ADS)

    Raghavan, Bharath Kumar

    Nanofibers have higher capture efficiencies in comparison to microfibers in the submicron particle size range of 100-500 nm because of small fiber diameter and increased surface area of the fibers. Pressure drop across the filter increases tremendously with decrease in fiber diameter in the continuum flow regime. Nanofibers with fiber diameter less than 300 nm are in the slip flow regime as a consequence of which steep increase in pressure drop is considerably reduced due to slip effect. The outlet or inlet gases have broad range of particle size distribution varying from few micrometers to nanometers. The economic benefits include capture of a wide range of particle sizes in the gas streams using compact filters composed of nanofibers and microfibers. Electrospinning technique was used to successfully fabricate polymeric and ceramic nanofibers. The nanofibers were long, continuous, and flexible with diameters in the range of 200--300 nm. Nanofibers were added to the filter medium either by mixing microfibers and nanofibers or by directly electrospinning nanofibers as thin layer on the surface of the microfiber filter medium. Experimental results showed that either by mixing Nylon 6 nanofibers with B glass fibers or by electrospinning Nylon 6 nanofibers as a thin layer on the surface of the microfiber medium in the surface area ratio of 1 which is 0.06 g of nanofibers for 2 g of microfibers performed better than microfiber filter media in air filtration tests. This improved performance is consistent with numerical modeling. The particle loading on a microfibrous filter were studied for air filtration tests. The experimental and modeling results showed that both pressure drop and capture efficiency increased with loading time. Nanofiber filter media has potential applications in many filtration applications and one of them being hot gas filtration. Ceramic nanofibers made of alumina and titania nanofibers can withstand in the range of 1000°C. Ceramic nanofibers filter media were fabricated by mixing alumina microfibers (SAFFIL) and alumina nanofibers. The appropriate binders were tested for ceramic filter media. The ceramic filter media were tested for aerosol filtration.

  7. 40 CFR 141.73 - Filtration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Filtration. 141.73 Section 141.73... PRIMARY DRINKING WATER REGULATIONS Filtration and Disinfection § 141.73 Filtration. A public water system..., and does not meet all of the criteria in § 141.71 (a) and (b) for avoiding filtration, must...

  8. Efficiency of bacterial filtration in various commercial air filters for hospital air conditioning.

    PubMed

    Furuhashi, M

    1978-09-01

    Filtration efficiency of high-efficiency particulate air (HEPA) filters is said to be over 99.97% of removal rate against the mist of thermogenerating-type of dioctyl phthalate with average particles diameter of 0.3 micrometer, as tested by the U.S. Military Standard 282 (1956). Filtration of bacterial aerosols through commercial air filters was tested to examine the efficiency of bacterial filtration with eight kinds of air filters. Percentage of bacterial filtration efficiency (% BFE) of three kinds of HEPA filters showed 100% BFE, while NBS-95 and NBS-85 showed over 99% BFE. BFE of NBS-75 air filter was 91.75%. PMID:359187

  9. Health Benefits of Particle Filtration

    SciTech Connect

    Fisk, William J.

    2013-10-01

    The evidence of health benefits of particle filtration in homes and commercial buildings is reviewed. Prior reviews of papers published before 2000 are summarized. The results of 16 more recent intervention studies are compiled and analyzed. Also, reviewed are four studies that modeled health benefits of using filtration to reduce indoor exposures to particles from outdoors. Prior reviews generally concluded that particle filtration is, at best, a source of small improvements in allergy and asthma health effects; however, many early studies had weak designs. A majority of recent intervention studies employed strong designs and more of these studies report statistically significant improvements in health symptoms or objective health outcomes, particularly for subjects with allergies or asthma. The percent age improvement in health outcomes is typically modest, for example, 7percent to 25percent. Delivery of filtered air to the breathing zone of sleeping allergic or asthmatic persons may be more consistently effective in improving health than room air filtration. Notable are two studies that report statistically significant improvements, with filtration, in markers that predict future adverse coronary events. From modeling, the largest potential benefits of indoor particle filtration may be reductions in morbidity and mortality from reducing indoor exposures to particles from outdoor air.

  10. Health Benefits of Particle Filtration

    SciTech Connect

    Fisk, William J.

    2013-10-01

    The evidence of health benefits of particle filtration in homes and commercial buildings is reviewed. Prior reviews of papers published before 2000 are summarized. The results of 16 more recent intervention studies are compiled and analyzed. Also reviewed are four studies that modeled health benefits of using filtration to reduce indoor exposures to particles from outdoors. Prior reviews generally concluded that particle filtration is, at best, a source of small improvements in allergy and asthma health effects; however, many early studies had weak designs. A majority of recent intervention studies employed strong designs and more of these studies report statistically significant improvements in health symptoms or objective health outcomes, particularly for subjects with allergies or asthma. The percentage improvement in health outcomes is typically modest, e.g., 7percent to 25percent. Delivery of filtered air to the breathing zone of sleeping allergic or asthmatic persons may be more consistently effective in improving health than room air filtration. Notable are two studies that report statistically significant improvements, with filtration, in markers that predict future adverse coronary events. From modeling, the largest potential benefits of indoor particle filtration may be reductions in morbidity and mortality from reducing indoor exposures to particles from outdoor air.

  11. Study of water quality improvements during riverbank filtration at three midwestern United States drinking water utilities

    NASA Astrophysics Data System (ADS)

    Weiss, W.; Bouwer, E.; Ball, W.; O'Melia, C.; Lechevallier, M.; Arora, H.; Aboytes, R.; Speth, T.

    2003-04-01

    Riverbank filtration (RBF) is a process during which surface water is subjected to subsurface flow prior to extraction from wells. During infiltration and soil passage, surface water is subjected to a combination of physical, chemical, and biological processes such as filtration, dilution, sorption, and biodegradation that can significantly improve the raw water quality (Tufenkji et al, 2002; Kuehn and Mueller, 2000; Kivimaki et al, 1998; Stuyfzand, 1998). Transport through alluvial aquifers is associated with a number of water quality benefits, including removal of microbes, pesticides, total and dissolved organic carbon (TOC and DOC), nitrate, and other contaminants (Hiscock and Grischek, 2002; Tufenkji et al., 2002; Ray et al, 2002; Kuehn and Mueller, 2000; Doussan et al, 1997; Cosovic et al, 1996; Juttner, 1995; Miettinen et al, 1994). In comparison to most groundwater sources, alluvial aquifers that are hydraulically connected to rivers are typically easier to exploit (shallow) and more highly productive for drinking water supplies (Doussan et al, 1997). Increased applications of RBF are anticipated as drinking water utilities strive to meet increasingly stringent drinking water regulations, especially with regard to the provision of multiple barriers for protection against microbial pathogens, and with regard to tighter regulations for disinfection by-products (DBPs), such as trihalomethanes (THMs) and haloacetic acids (HAAs). In the above context, research was conducted to document the water quality benefits during RBF at three major river sources in the mid-western United States, specifically with regard to DBP precursor organic matter and microbial pathogens. Specific objectives were to: 1. Evaluate the merits of RBF for removing/controlling DBP precursors and certain other drinking water contaminants (e.g. microorganisms). 2. Evaluate whether RBF can improve finished drinking water quality by removing and/or altering natural organic matter (NOM) in a manner that is not otherwise accomplished through conventional processes of drinking water treatment (e.g. coagulation, flocculation, sedimentation). 3. Evaluate changes in the character of NOM upon ground passage from the river to the wells. The experimental approach entailed monitoring the performance of three different RBF systems along the Ohio, Wabash, and Missouri Rivers in the Midwestern United States and involved a cooperative effort between the American Water Works Company, Inc. and Johns Hopkins University. Samples of the river source waters and the bank-filtered well waters were analyzed for a range of water quality parameters including TOC, DOC, UV-absorbance at 254-nm (UV-254), biodegradable dissolved organic carbon (BDOC), biologically assimilable organic carbon (AOC), inorganic species, DBP formation potential, and microorganisms. In the second year of the project, river waters were subjected to a bench-scale conventional treatment train consisting of coagulation, flocculation, sedimentation, glass-fiber filtration, and ozonation. The treated river waters were compared with the bank-filtered waters in terms of TOC, DOC, UV-254, and DBP formation potential. In the third and fourth years of the project, NOM from the river and well waters was characterized using the XAD-8 resin adsorption fractionation method (Leenheer, 1981; Thurman &Malcolm, 1981). XAD-8 adsorbing (hydrophobic) and non-adsorbing (hydrophilic) fractions of the river and well waters were compared with respect to DOC, UV-254, and DBP formation potential to determine whether RBF alters the character of the source water NOM upon ground passage and if so, which fractions are preferentially removed. The results demonstrate the effectiveness of RBF at removing the organic precursors to potentially carcinogenic DBPs. When compared to a bench-scale conventional treatment train optimized for turbidity removal, RBF performed as well as the treatment at one of the sites and significantly better than the treatment at the other two sites in terms of removal of organic carbon and DBP precursor ma

  12. Granular filtration in a fluidized bed

    SciTech Connect

    Mei, J.S.; Yue, P.C.; Halow, J.S.

    1995-12-01

    Successful development of advanced coal-fired power conversion systems often require reliable and efficient cleanup devices which can remove particulate and gaseous pollutants from high-temperature high-pressure gas streams. A novel filtration concept for particulate cleanup has been developed at the Morgantown Energy Technology Center (METC) of the U.S. Department of Energy. The filtration system consists of a fine metal screen filter immersed in a fluidized bed of granular material. As the gas stream passes through the fluidized bed, a layer of the bed granular material is entrained and deposited at the screen surface. This material provides a natural granular filter to separate fine particles from the gas stream passing through the bed. Since the filtering media is the granular material supplied by the fluidized bed, the filter is not subjected to blinding like candle filters. Because only the inflowing gas, not fine particle cohesive forces, maintains the granular layer at the screen surface, once the thickness and permeability of the granular layer is stabilized, it remains unchanged as long as the in-flowing gas flow rate remains constant. The weight of the particles and the turbulent nature of the fluidized bed limits the thickness of the granular layer on the filter leading to a self-cleaning attribute of the filter. This paper presents work since then on a continuous filtration system. The continuous filtration testing system consisted of a filter, a two-dimensional fluidized-bed, a continuous powder feeder, a laser-based in-line particle counting, sizing, and velocimeter (PCSV), and a continuous solids feeding/bed material withdrawal system. The two-dimensional, transparent fluidized-bed allowed clear observation of the general fluidized state of the granular material and the conditions under which fines are captured by the granular layer.

  13. Characterization, Leaching, and Filtration Testing for Bismuth Phosphate Sludge (Group 1) and Bismuth Phosphate Saltcake (Group 2) Actual Waste Sample Composites

    SciTech Connect

    Lumetta, Gregg J.; Buck, Edgar C.; Daniel, Richard C.; Draper, Kathryn; Edwards, Matthew K.; Fiskum, Sandra K.; Hallen, Richard T.; Jagoda, Lynette K.; Jenson, Evan D.; Kozelisky, Anne E.; MacFarlan, Paul J.; Peterson, Reid A.; Shimskey, Rick W.; Sinkov, Sergey I.; Snow, Lanee A.

    2009-02-19

    A testing program evaluating actual tank waste was developed in response to Task 4 from the M-12 External Flowsheet Review Team (EFRT) issue response plan.() The test program was subdivided into logical increments. The bulk water-insoluble solid wastes that are anticipated to be delivered to the Waste Treatment and Immobilization Plant (WTP) were identified according to type such that the actual waste testing could be targeted to the relevant categories. Eight broad waste groupings were defined. Samples available from the 222S archive were identified and obtained for testing. The actual waste-testing program included homogenizing the samples by group, characterizing the solids and aqueous phases, and performing parametric leaching tests. Two of the eight defined groups—bismuth phosphate sludge (Group 1) and bismuth phosphate saltcake (Group 2)—are the subjects of this report. The Group 1 waste was anticipated to be high in phosphorus and was implicitly assumed to be present as BiPO4 (however, results presented here indicate that the phosphate in Group 1 is actually present as amorphous iron(III) phosphate). The Group 2 waste was also anticipated to be high in phosphorus, but because of the relatively low bismuth content and higher aluminum content, it was anticipated that the Group 2 waste would contain a mixture of gibbsite, sodium phosphate, and aluminum phosphate. Thus, the focus of the Group 1 testing was on determining the behavior of P removal during caustic leaching, and the focus of the Group 2 testing was on the removal of both P and Al. The waste-type definition, archived sample conditions, homogenization activities, characterization (physical, chemical, radioisotope, and crystal habit), and caustic leaching behavior as functions of time, temperature, and hydroxide concentration are discussed in this report. Testing was conducted according to TP-RPP-WTP-467.

  14. Wind Turbine Gearbox Oil Filtration and Condition Monitoring

    SciTech Connect

    Sheng, Shuangwen

    2015-10-25

    This is an invited presentation for a pre-conference workshop, titled advances and opportunities in lubrication: wind turbine, at the 2015 Society of Tribologists and Lubrication Engineers (STLE) Tribology Frontiers Conference held in Denver, CO. It gives a brief overview of wind turbine gearbox oil filtration and condition monitoring by highlighting typical industry practices and challenges. The presentation starts with an introduction by covering recent growth of global wind industry, reliability challenges, benefits of oil filtration and condition monitoring, and financial incentives to conduct wind operation and maintenance research, which includes gearbox oil filtration and condition monitoring work presented herein. Then, the presentation moves on to oil filtration by stressing the benefits of filtration, discussing typical main- and offline-loop practices, highlighting important factors considered when specifying a filtration system, and illustrating real-world application challenges through a cold-start example. In the next section on oil condition monitoring, a discussion on oil sample analysis, oil debris monitoring, oil cleanliness measurements and filter analysis is given based on testing results mostly obtained by and at NREL, and by pointing out a few challenges with oil sample analysis. The presentation concludes with a brief touch on future research and development (R and D) opportunities. It is hoping that the information presented can inform the STLE community to start or redirect their R and D work to help the wind industry advance.

  15. A New Test Method for Material Flammability Assessment in Microgravity and Extraterrestrial Environments

    NASA Technical Reports Server (NTRS)

    Olson, S. L.; Beeson, H. D.; Haas, J. P.; Baas, J. S.

    2004-01-01

    The objective of this research is to modify the well-instrumented standard cone configuration to provide a reproducible bench-scale test environment that simulates the buoyant or ventilation flow that would be generated by or around a burning surface in a spacecraft or extraterrestrial gravity level. We will then develop a standard test method with pass-fail criteria for future use in spacecraft materials flammability screening. (For example, dripping of molten material will be an automatic fail.)

  16. Removal of pathogens using riverbank filtration

    NASA Astrophysics Data System (ADS)

    Cote, M. M.; Emelko, M. B.; Thomson, N. R.

    2003-04-01

    Although more than hundred years old, in situ or Riverbank Filtration (RBF) has undergone a renewed interest in North America because of its potential as a surface water pre-treatment tool for removal of pathogenic microorganisms. A new RBF research field site has been constructed along the banks of the Grand River in Kitchener, Ontario, Canada to assess factors influencing pathogen removal in the subsurface. Implementation of RBF and appropriate design of subsequent treatment (UV, chlorination, etc.) processes requires successful quantification of in situ removals of Cryptosporidium parvum or a reliable surrogate parameter. C.~parvum is often present in surface water at low indigenous concentrations and can be difficult to detect in well effluents. Since releases of inactivated C.~parvum at concentrations high enough for detection in well effluents are cost prohibitive, other approaches for demonstrating effective in situ filtration of C.~parvum must be considered; these include the use of other microbial species or microspheres as indicators of C.~parvum transport in the environment. Spores of Bacillus subtilis may be considered reasonable indicators of C.~parvum removal by in situ filtration because of their size (˜1 ?m in diameter), spherical shape, relatively high indigenous concentration is many surface waters, and relative ease of enumeration. Based on conventional particle filtration theory and assuming equivalent chemical interactions for all particle sizes, a 1 ?m B.~subtilis spore will be removed less readily than a larger C. parvum oocyst (4-6 ?m) in an ideal granular filter. Preliminary full-scale data obtained from a high rate RBF production well near the new RBF test site demonstrated greater than 1 log removal of B.~subtilis spores. This observed spore removal is higher than that prescribed by the proposed U.S. Long Term 2 Enhanced Surface Water Treatment Rule for C.~parvum. To further investigate the removal relationship between C.~parvum, Giardia lamblia and proposed surrogates such as B.~subtilis, detailed characterization of site hydrogeology, geochemistry, and water quality (MPA, particles, TOC, ionic strength) are underway. Particle counts are being measured in the bank filtrate to compare particle breakthrough with breakthrough of B.~subtilis spores. Particle counting has been suggested by some regulatory bodies as a real-time measure of in situ filtration performance; however, particle counting is a limited tool for assessing the efficacy of pathogen removal by in situ filtration because it is incapable of identifying discrete particles and can fail to detect microorganisms with refraction indexes close to that of water. Preliminary B.~subtilis removal data from the full scale RBF well and preliminary site characterization, particle count, and B.~subtilis removal data from the RBF test site are presented.

  17. Demand Controlled Filtration in an Industrial Cleanroom

    SciTech Connect

    Faulkner, David; DiBartolomeo, Dennis; Wang, Duo

    2007-09-01

    In an industrial cleanroom, significant energy savings were realized by implementing two types of demand controlled filtration (DCF) strategies, one based on particle counts and one on occupancy. With each strategy the speed of the recirculation fan filter units was reduced to save energy. When the control was based on particle counts, the energy use was 60% of the baseline configuration of continuous fan operation. With simple occupancy sensors, the energy usage was 63% of the baseline configuration. During the testing of DCF, no complaints were registered by the operator of the cleanroom concerning processes and products being affected by the DCF implementation.

  18. Filtration: An investment in IAQ

    SciTech Connect

    Burroughs, H.E.B.

    1997-08-01

    Air filtration is a forgotten component in the resiliency engineering equation. This under-utilized asset is becoming more understandable and user-friendly, bringing about giant strides in application technology in commercial buildings for IAQ resiliency. Filtration and air cleaning are highly developed and well-established technologies in industrial and specialized application areas. These include a variety of clean room applications as well as a wide array of highly sophisticated industrial needs for varying degrees and types of cleansed air sources. Application areas include pharmaceutical, health care, process control, and electronic protection, to name a few. Yet filtration generally remains an under-utilized technology in the field of indoor environmental quality in commercial buildings. Although source control is clearly the preferred technique for controlling air contaminants, air cleaning can provide a spectrum of valuable and cost-effective tactics to achieve and maintain an acceptable indoor environment.

  19. Filtration of ultrafine metallic particles in industry.

    PubMed

    Bémer, D; Morele, Y; Régnier, R

    2015-09-01

    Thermal metal spraying, metal cutting and arc welding processes generate large quantities of ultrafine particles that cause the irreversible clogging of industrial filters. The aim of the study performed was to identify the causes of the clogging of cartridge filters and investigate other paths for cleaning them. This study required the development of a test bench capable of reproducing a thermal spraying process to test the performances of different filtration techniques. This test instrument first, permitted the precise characterization of the aerosol generated by the process and, second, defined the clogging and cleaning conditions for filters. Several parameters were tested: the type of filter, online and off-line cleaning, pre-coating, cleaning by jets of high-speed compressed air via a probe. PMID:25759204

  20. The impact of flow surges on rapid gravity filtration.

    PubMed

    Han, Shejiao; Fitzpatrick, Caroline S B; Wetherill, Andrew

    2009-03-01

    In drinking water treatment flow fluctuations or surges can occur at the filtration stage. Pilot plant tests were carried out to investigate the impact of flow surges on filter performance in this study. Moreover a filtration model was applied to analyse the impact of flow surges on filter performance and predict the experimental data obtained from pilot plant tests. Experimental results showed that flow surges caused an increase in effluent particle concentration and head loss. Theoretical analysis in this study showed that the impact of a flow surge became more significant as the filtration run approaches the particle breakthrough stage. The model was also used to fit the data from one water treatment plant. The comparison demonstrated a good agreement. PMID:19095278

  1. Filtrates and Residues: Gel Filtration--An Innovative Separation Technique.

    ERIC Educational Resources Information Center

    Blumenfeld, Fred; Gardner, James

    1985-01-01

    Gel filtration is a form of liquid chromatography that separates molecules primarily on the basis of their size. Advantages of using this technique, theoretical aspects, and experiments (including procedures used) are discussed. Several questions for students to answer (with answers) are also provided. (JN)

  2. Integrated pore blockage-cake filtration model for crossflow filtration

    SciTech Connect

    Daniel, Richard C.; Billing, Justin M.; Russell, Renee L.; Shimskey, Rick W.; Smith, Harry D.; Peterson, Reid A.

    2011-07-01

    Crossflow filtration is to be a key process in the treatment and disposal of approximately 60,000 metric tons of high-level radioactive waste stored at the Hanford Site in Richland, Washington. Pacific Northwest National Laboratory is assessing filter performance with waste simulant materials that mimic the chemical and physical properties of Hanford tank waste. Prior simulant studies indicated that waste filtration performance may be limited by pore and cake fouling. To limit the shutdown of waste treatment operations, the pre-treatment facility plans to recover filter flux losses from cake formation and filter fouling by frequently backpulsing the filter elements. The objective of the current paper is to develop a simple model of flux decline resulting from cake and pore fouling and potential flux recovery through backpulsing of the filters for Hanford waste filtration operations. To this end, a model capable of characterizing the decline in waste-simulant filter flux as a function of both irreversible pore blockage and reversible cake formation is proposed. This model is used to characterize the filtration behavior of Hanford waste simulants in both continuous and backpulsed operations. The model is then used to infer the optimal backpulse frequency under specific operating conditions.

  3. Continuous Processing of Active Pharmaceutical Ingredients Suspensions via Dynamic Cross-Flow Filtration.

    PubMed

    Gursch, Johannes; Hohl, Roland; Toschkoff, Gregor; Dujmovic, Diana; Brozio, Jörg; Krumme, Markus; Rasenack, Norbert; Khinast, Johannes

    2015-10-01

    Over the last years, continuous manufacturing has created significant interest in the pharmaceutical industry. Continuous filtration at low flow rates and high solid loadings poses, however, a significant challenge. A commercially available, continuously operating, dynamic cross-flow filtration device (CFF) is tested and characterized. It is shown that the CFF is a highly suitable technology for continuous filtration. For all tested model active pharmaceutical ingredients, a material-specific strictly linear relationship between feed and permeate rate is identified. Moreover, for each tested substance, a constant concentration factor is reached. A one-parameter model based on a linear equation is suitable to fully describe the CFF filtration performance. This rather unexpected finding and the concentration polarization layer buildup is analyzed and a basic model to describe the observed filtration behavior is developed. PMID:26147786

  4. MICROBIOLOGICAL REMOVAL BY FILTRATION PROCESSES

    EPA Science Inventory

    Filtration ws originally used to remove contaminants that affect the appearance, odor, and taste of drinking water. Later it was demonstrated that bacteria in drinking water were causative agents of disease. Water treatment technology improved with the addition of disinfection, c...

  5. Improving IAQ Via Air Filtration.

    ERIC Educational Resources Information Center

    Monk, Brian

    1999-01-01

    Provides tips on using air filtration to control indoor air quality in educational facilities, including dedicated spaces with unique air quality conditions such as in libraries, museums and archival storage areas, kitchens and dining areas, and laboratories. The control of particulate contaminants, gaseous contaminants, and moisture buildup are…

  6. Filtration combustion: Smoldering and SHS

    NASA Technical Reports Server (NTRS)

    Matkowsky, Bernard J.

    1995-01-01

    Smolder waves and SHS (self-propagating high-temperature synthesis) waves are both examples of combustion waves propagating in porous media. When delivery of reactants through the pores to the reaction site is an important aspect of the process, it is referred to as filtration combustion. The two types of filtration combustion have a similar mathematical formulation, describing the ignition, propagation and extinction of combustion waves in porous media. The goal in each case, however, is different. In smoldering the desired goal is to prevent propagation, whereas in SHS the goal is to insure propagation of the combustion wave, leading to the synthesis of desired products. In addition, the scales in the two areas of application may well differ. For example, smoldering generally occurs at a relatively low temperature and with a smaller propagation velocity than SHS filtration combustion waves. Nevertheless, the two areas of application have much in common, so that mechanisms learned about in one application can be used to advantage in the other. In this paper we discuss recent results in the areas of filtration combustion.

  7. Health benefits of particle filtration

    EPA Science Inventory

    This product was developed under an interagency agreement between the U.S. EPA and the U.S. Department of Energy - Lawrence Berkeley National Laboratory (LBNL). The evidence of health benefits of particle filtration in homes and commercial buildings is reviewed. Prior reviews o...

  8. ELECTROSTATIC STIMULATION OF FABRIC FILTRATION

    EPA Science Inventory

    The paper gives results of an investigation of the concept of electrostatic stimulation of fabric filtration (ESFF) at pilot scale. The pilot unit consisted of a conventional baghouse in parallel with an ESFF baghouse, allowing direct comparison. Reported results are for pulse-cl...

  9. Ceramic Foam For Molten metal Filtration

    NASA Astrophysics Data System (ADS)

    Gauckler, L. J.; Waeber, M. M.; Conti, C.; Jacob-Duliere, M.

    1985-09-01

    In this study, ceramic foam filters were used for the inductrial filtration of aluminum. Results are compared with laboratory experiments which are in good agreement with trajectory analyses of deep bed filtration for the early stage of filtration. The correlations between structural characteristics of the filter media, filtration parameters and filter efficiency are given. In addition, the most important parameters for the industrial use of filters are discussed.

  10. STORM INLET FILTRATION DEVICE

    EPA Science Inventory

    Five field tests were conducted to evaluate the effectiveness of the Storm and Groundwater Enhancement Systems (SAGES) device for removing contaminants from stormwater. The SAGES device is a three-stage filtering system that could be used as a best management practices (BMP) retr...

  11. Filtration method characterizes dispersive properties of shales

    SciTech Connect

    Wilcox, R.; Corbett, G.; Fisk, J.

    1984-09-01

    Fluid interaction with shales is a complicated subject that can be best explained by fundamental concepts of aggregation-dispersion. The Capillary Suction Time (CST) device, which has been described in previous publications, measures a fundamental filtration property that assesses polymer solid aggregation. Recent development work has resulted in an improved understanding of the cst value and its relationship to aggregation-dispersion of shales. Thus, a brief background section on colloid repulsion, attraction, and the net interaction curve is given before discussion of data. To illustrate visually the dependence of the cst value on the state of aggregation-dispersion or deflocculation, cst values and SEM micrographs of shale slurries reacted with potassium chloride and a flocculating polymer are compared. Results indicate that only hydrating clays and polymers contribute significantly to the cst while nonswelling particles represent only a minor fraction of the cst. Correlation of cst values of slurries to rheological and hydration properties is used to obtain a relative measure of shale bonding characteristics and swelling potential. Reactions of two diverse shales with KCl polymer solutions were monitored by measuring the slurry cst as a function of increasing shear. The reaction profiles are compared to long-term disintegration of cuttings in the hot-rolling test. Results indicate that cuttings stabilization of the two diverse shales occurs by different mechanisms. Ultimately, these fast, simple filtration tests can be used at the well site to characterize and solve shale problems that have been difficult to isolate.

  12. Low Cost Ceramics:Low Cost Ceramics: Applications in Water FiltrationApplications in Water Filtration

    E-print Network

    Petta, Jason

    Low Cost Ceramics:Low Cost Ceramics: Applications in Water FiltrationApplications in Water (Mech. Engineering) #12;OutlineOutline I. Water FiltrationI. Water Filtration MotivationMechanical Properties Thermal PropertiesThermal Properties ResultsResults #12;Part IPart I Water FiltrationWater

  13. Catalytic fabric filtration for simultaneous NO[sub x] and particulate control

    SciTech Connect

    Weber, G.F.; Ness, S.R.; Laudal, D.L.; Dunham, G.

    1993-02-01

    The EERC approach to meeting the program objective involves the development of a catalytic fabric filter for simultaneous NO[sub x] and particulate control. The idea of applying either permanent or throwaway catalysts to a high-temperature fabric filter for NO[sub x] control is not new. However, advances at OCF have shown that a high-activity catalyst can be applied to a high-temperature woven glass cloth resulting in a fabric filter material that can operate at temperatures higher than the maximum operating temperatures of commercially available, coated glass fabric. The NO[sub x] is removed by catalytic reduction with ammonia to form nitrogen and water. The catalyst employed at this time is vanadium/titanium, but the exact catalyst composition and the unique method of applying the catalyst to high-temperature glass fabric are the property of OCF. Other catalyst options are being evaluated by OCF in order to improve catalyst performance and minimize catalyst cost. Bench-scale experimental results to date have shown that over 90% NO[sub x] removal can be achieved, the catalyst/fabric has promising self-abrasion characteristics, and the potential exists for substantially reduced cost when compared with conventional SCR/fabric filtration technology. However, development of the technology requires further evaluation of air-to-cloth ratio, ammonia slip, SO[sub 2] oxidation to SO[sub 3], temperature cycling, catalyst-coated fabric preparation, fuel impacts, fabric cleaning (reverse-gas versus pulse-jet), catalyst life (poisoning and resistance to erosion), and filter performance/life (particulate control, differential pressure, and durability).

  14. WATER FILTRATION FOR ASBESTOS FIBER REMOVAL

    EPA Science Inventory

    This report presents a comprehensive review of data on removal of asbestos fibers by granular media filtration and diatomaceous earth filtration. It summarizes data obtained in pilot plant studies at Duluth and Seattle, in research program carried out at Duluth's Lakewood filtrat...

  15. 40 CFR 141.173 - Filtration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Filtration. 141.173 Section 141.173... PRIMARY DRINKING WATER REGULATIONS Enhanced Filtration and Disinfection-Systems Serving 10,000 or More People § 141.173 Filtration. A public water system subject to the requirements of this subpart that...

  16. Emulsions for interfacial filtration.

    SciTech Connect

    Grillet, Anne Mary; Bourdon, Christopher Jay; Souza, Caroline Ann; Welk, Margaret Ellen; Hartenberger, Joel David; Brooks, Carlton, F.

    2006-11-01

    We have investigated a novel emulsion interfacial filter that is applicable for a wide range of materials, from nano-particles to cells and bacteria. This technology uses the interface between the two immiscible phases as the active surface area for adsorption of targeted materials. We showed that emulsion interfaces can effectively collect and trap materials from aqueous solution. We tested two aqueous systems, a bovine serum albumin (BSA) solution and coal bed methane produced water (CBMPW). Using a pendant drop technique to monitor the interfacial tension, we demonstrated that materials in both samples were adsorbed to the liquid-liquid interface, and did not readily desorb. A prototype system was built to test the emulsion interfacial filter concept. For the BSA system, a protein assay showed a progressive decrease in the residual BSA concentration as the sample was processed. Based on the initial prototype operation, we propose an improved system design.

  17. Dissemination, resuspension, and filtration of carbon fibers. [aircraft fires

    NASA Technical Reports Server (NTRS)

    Elber, W.

    1980-01-01

    Carbon fiber transport was studied using mathematical models established for other pollution problems. It was demonstrated that resuspension is not a major factor contributing to the risk. Filtration and fragmentation tests revealed that fiber fragmentation shifts the fiber spectrum to shorter mean lengths in high velocity air handling systems.

  18. QUANTITATIVE EVALUATION OF HEPA FILTRATION UNITS AT ASBESTOS ABATEMENT SITES

    EPA Science Inventory

    A study was conducted to determine-the filtering efficiencies of 31 high efficiency particulate air (HEPA) filtration units in use at asbestos-abatement projects. article-removal efficiencies for these units ranged from 90.53 to > 99.99 percent. ineteen (61%) of the units tested ...

  19. Gravimelt Process development. Final report

    SciTech Connect

    Not Available

    1983-06-01

    This final report contains the results of a bench-scale program to continue the development of the TRW proprietary Gravimelt Process for chemically cleaning coal. This project consisted of two major efforts, a laboratory study aimed at identifying parameters which would influence the operation of a bench unit for desulfurization and demineralization of coal and the design, construction and operation of two types of continuous plug-flow type bench-scale fused caustic leachers. This present bench scale project has demonstrated modes for the continuous operation of fused caustic leaching of coal at coal throughputs of 1 to 5 pounds per hour. The remaining process unit operations of leach solutions regeneration and coal washing and filtration should be tested at bench scale together with fused caustic leaching of coal to demonstrate the complete Gravimelt Process. 22 figures, 11 tables.

  20. Investigation of Microgranular Adsorptive Filtration System

    NASA Astrophysics Data System (ADS)

    Cai, Zhenxiao

    Over the past few decades, enormous advances have been made in the application of low-pressure membrane filtration to both drinking water and wastewater treatment. Nevertheless, the full potential of this technology has not been reached, due primarily to limitations imposed by membrane fouling. In drinking water treatment, much of the fouling is caused by soluble and particulate natural organic matter (NOM). Efforts to overcome the problem have focused on removal of NOM from the feed solution, usually by addition of conventional coagulants like alum and ferric chloride (FeCl3) or adsorbents like powdered activated carbon (PAC). While coagulants and adsorbents can remove a portion of the NOM, their performance with respect to fouling control has been inconsistent, often reducing fouling but sometimes having no effect or even exacerbating fouling. This research investigated microgranular adsorptive filtration (muGAF), a process that combines three existing technologies---granular media filtration, packed bed adsorption, and membrane filtration---in a novel way to reduce membrane fouling while simultaneously removing NOM from water. In this technology, a thin layer of micron-sized adsorbent particles is deposited on the membrane prior to delivering the feed to the system. The research reported here represents the first systematic study of muGAF, and the results demonstrate the promising potential of this process. A new, aluminum-oxide-based adsorbent---heated aluminum oxide particles (HAOPs)---was synthesized and shown to be very effective for NOM removal as well as fouling reduction in muGAF systems. muGAF has also been demonstrated to work well with powdered activated carbon (PAC) as the adsorbent, but not as well as when HAOPs are used; the process has also been successful when used with several different membrane types and configurations. Experiments using a wide range of operational parameters and several analytical tools lead to the conclusion that the fouling in muGAF systems can occur both on the membrane surface and in the cake layer. Fouling caused by soluble NOM, like polysaccharides, occurs mostly on the membrane surface, and increasing the adsorbent surface loading (i.e., the thickness of the layer) can mitigate fouling by such molecules. By contrast, fouling by colloids and particulate matter occurs mostly on the surface or upstream portion of the pre-deposited adsorbent layer. Use of smaller adsorbent particles improves the capture of these contaminants but also exacerbates such fouling. Lastly, preliminary tests demonstrate that muGAF is also effective at reducing fouling caused by NOM in seawater, and that combining multiple adsorbents in muGAF is a potential approach to optimize overall system performance.

  1. Experimental study of the effect of polyanionic cellulose on process of filtrate loss of low-solids drilling fluid

    NASA Astrophysics Data System (ADS)

    yang, P.

    2013-12-01

    Experimental study of the effect of polyanionic cellulose on process of filtrate loss of low-solids drilling fluid Ping Yang 1,2, Min-hui Wu2, Xue-wen Zhu2, Tao Deng2, Xue-qing Sun2 1. Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Tongji University, Shanghai 200092,China 2. Department of Geotechnical Engineering,Tongji University,Shanghai 200092,China Abstract The process of filtrate loss of low-solids drilling fluid was tested by changing the polyanionic cellulose content in low-solids drilling fluid. The effect of polyanionic cellulose on process of filtrate loss of low-solids drilling fluid was analyzed. The test results showed that when time of filtration is same, the volume of filtrate loss decreases linearly with increasing polyanionic cellulose content. When polyanionic cellulose content is same, the rate of filtrate loss decreases nonlinearly with increasing time and the rate of filtrate loss will reach a stable value.The volume of filtrate loss in 7 to 8 minutes can reaches half of the total volume of filtrate loss. At the same time, the rate of filtrate loss of drilling fluid decreases nonlinearly with increasing viscosity.When the apparent viscosity is between 3.5~4.15 MPa.s, decrease speed of rate of filtrate loss of drilling fluid is quick. The results are helpful for characteristics evaluation of filtrate loss of drilling fluid and control of filtrate loss. Keyword Polyanionic Cellulose,Drilling Fluid,Process of Filtrate Loss Acknowledgments This investigation was supported by the National Natural Science Foundation of China (projects No. 41002093 and 41072205); the Fundamental Research Funds for the Central Universities; the Shanghai Leading Academic Discipline Project (project No. B308), Tongji University; and the Program for Young Excellent Talents, Tongji University. The authors are extremely grateful for the financial support from these five organizations.

  2. Removal of particle-associated bacteriophages by dual-media filtration at different filter cycle stages and impacts on subsequent UV disinfection.

    PubMed

    Templeton, Michael R; Andrews, Robert C; Hofmann, Ron

    2007-06-01

    This bench-scale study investigated the passage of particle-associated bacteriophage through a dual-media (anthracite-sand) filter over a complete filter cycle and the effect on subsequent ultraviolet (UV) disinfection. Two model viruses, bacteriophages MS2 and T4, were considered. The water matrix was de-chlorinated tap water with either kaolin or Aldrich humic acid (AHA) added and coagulated with alum to form floc before filtration. The turbidity of the influent flocculated water was 6.4+/-1.5 NTU. Influent and filter effluent turbidity and particle counts were measured as well as headloss across the filter media. Filter effluent samples were collected for phage enumeration during three filter cycle stages: (i) filter ripening; (ii) stable operation; and (iii) end of filter cycle. Stable filter operation was defined according to a filter effluent turbidity goal of <0.3 NTU. Influent and filter effluent samples were subsequently exposed to UV light (254 nm) at 40 mJ/cm(2) using a low pressure UV collimated beam. The study found statistically significant differences (alpha=0.05) in the quantity of particle-associated phage present in the filter effluent during the three stages of filtration. There was reduced UV disinfection efficiency due to the presence of particle-associated phage in the filter effluent in trials with bacteriophage MS2 and humic acid floc. Unfiltered influent water samples also resulted in reduced UV inactivation of phage relative to particle-free control conditions for both phages. Trends in filter effluent turbidity corresponded with breakthrough of particle-associated phage in the filter effluent. The results therefore suggest that maintenance of optimum filtration conditions upstream of UV disinfection is a critical barrier to particle-associated viruses. PMID:17433406

  3. Design of a small-scale continuous linear motion pharmaceutical filtration module

    E-print Network

    Wong, Katherine Wing-Shan

    2010-01-01

    A new small-scale continuous linear motion pharmaceutical filtration prototype was designed, fabricated, and tested. The goal of this unit is to filter an Active Pharmaceutical Ingredient (API) from a mixture of API ...

  4. Zebra mussel control with backwash filtration

    SciTech Connect

    Dardeau, E.A. Jr.; Bivens, T.

    1995-12-31

    Zebra Mussels (Dreissena polymorpha) were found in North American waters in 1988 at Lake St. Clair, Michigan, when a ship from a European freshwater port released its ballast water. These organisms quickly spread from the Great Lakes to many midwestern, eastern, and southern streams and lakes. As macrofoulers, they quickly colonize new areas on many natural and artificial substrates. Zebra mussels clog intakes, piping, and screens. Power production facilities that withdraw large quantities of raw water to generate electricity and cool critical components are especially vulnerable. Many control strategies have been proposed and tested; however, not all of them are environmentally acceptable. The US Army Corps of Engineers, under the auspices of the Nonindigenous Aquatic Nuisance Prevention and Control Act of 1990, has initiated a research program to control zebra mussels at public facilities. One test being conducted under this research program is a cooperative effort between the Corps` Nashville District, the Corps` Waterways Experiment Station, and several other agencies. The test involves the design and test of a backwash filtration system for a hydropower project in the Cumberland River Basin. The preliminary design, based on lessons learned from associated tests, is discussed. In addition, recommendations for future use are presented.

  5. Side Stream Filtration for Cooling Towers

    SciTech Connect

    2012-10-20

    This technology evaluation assesses side stream filtration options for cooling towers, with an objective to assess key attributes that optimize energy and water savings along with providing information on specific technology and implementation options. This information can be used to assist Federal sites to determine which options may be most appropriate for their applications. This evaluation provides an overview of the characterization of side stream filtration technology, describes typical applications, and details specific types of filtration technology.

  6. Water Filtration Using Plant Xylem

    PubMed Central

    Chambers, Valerie; Venkatesh, Varsha; Karnik, Rohit

    2014-01-01

    Effective point-of-use devices for providing safe drinking water are urgently needed to reduce the global burden of waterborne disease. Here we show that plant xylem from the sapwood of coniferous trees – a readily available, inexpensive, biodegradable, and disposable material – can remove bacteria from water by simple pressure-driven filtration. Approximately 3 cm3 of sapwood can filter water at the rate of several liters per day, sufficient to meet the clean drinking water needs of one person. The results demonstrate the potential of plant xylem to address the need for pathogen-free drinking water in developing countries and resource-limited settings. PMID:24587134

  7. Water filtration using plant xylem.

    PubMed

    Boutilier, Michael S H; Lee, Jongho; Chambers, Valerie; Venkatesh, Varsha; Karnik, Rohit

    2014-01-01

    Effective point-of-use devices for providing safe drinking water are urgently needed to reduce the global burden of waterborne disease. Here we show that plant xylem from the sapwood of coniferous trees--a readily available, inexpensive, biodegradable, and disposable material--can remove bacteria from water by simple pressure-driven filtration. Approximately 3 cm(3) of sapwood can filter water at the rate of several liters per day, sufficient to meet the clean drinking water needs of one person. The results demonstrate the potential of plant xylem to address the need for pathogen-free drinking water in developing countries and resource-limited settings. PMID:24587134

  8. Water Filtration Using Plant Xylem

    E-print Network

    Lee, Jongho; Chambers, Valerie; Venkatesh, Varsha; Karnik, Rohit

    2013-01-01

    Effective point-of-use devices for providing safe drinking water are urgently needed to reduce the global burden of waterborne disease. Here we show that plant xylem from the sapwood of coniferous trees - a readily available, inexpensive, biodegradable, and disposable material - can remove bacteria from water by simple pressure-driven filtration. Approximately 3 cm3 of sapwood can filter water at the rate of several liters per day, sufficient to meet the clean drinking water needs of one person. The results demonstrate the potential of plant xylem to address the need for pathogen-free drinking water in developing countries and resource-limited settings.

  9. Sioux City Riverbank Filtration Study

    NASA Astrophysics Data System (ADS)

    Mach, R.; Condon, J.; Johnson, J.

    2003-04-01

    The City of Sioux City (City) obtains a large percentage of their drinking water supply from both a horizontal collector well system and vertical wells located adjacent to the Missouri River. These wells are set in either the Missouri Alluvium or the Dakota Sandstone aquifer. Several of the collector well laterals extend out beneath the Missouri River, with the laterals being over twenty feet below the river channel bottom. Due to concerns regarding ground water under direct surface water influence, the Iowa Department of Natural Resources (IDNR) required the City to expand their water treatment process to deal with potential surface water contaminant issues. With the extensive cost of these plant upgrades, the City and Olsson Associates (OA) approached the IDNR requesting approval for assessing the degree of natural riverbank filtration for water treatment. If this natural process could be ascertained, the level of treatment from the plant could be reduced. The objective of this study was to quantify the degree of surface water (i.e. Missouri River) filtration due to the underlying Missouri River sediments. Several series of microscopic particulate analysis where conducted, along with tracking of turbidity, temperature, bacteria and a full scale particle count study. Six particle sizes from six sampling points were assessed over a nine-month period that spanned summer, fall and spring weather periods. The project was set up in two phases and utilized industry accepted statistical analyses to identify particle data trends. The first phase consisted of twice daily sample collection from the Missouri River and the collector well system for a one-month period. Statistical analysis of the data indicated reducing the sampling frequency and sampling locations would yield justifiable data while significantly reducing sampling and analysis costs. The IDNR approved this modification, and phase II included sampling and analysis under this reduced plant for an eight-month period. Final statistical analyses of the nine months of data indicate up to a four-log particle reduction occurs through river bank filtration. Consequently, Missouri River sediments within the City's well field are very effective in water filtration. This information was submitted to the IDNR for review and approval. Subsequently, the IDNR approved 4.0 log removal for Giardia and 3.5 log removal for Cryptosporidium through the riverbank and treatment plant. The City and IDNR have agreed on subrogate parameters for monitoring purposes.

  10. The effect of combination electrospun and meltblown filtration materials on their filtration efficiency

    NASA Astrophysics Data System (ADS)

    Kimmer, Dusan; Vincent, Ivo; Sambaer, Wannes; Zatloukal, Martin; Ondracek, Jakub

    2015-04-01

    Filtration materials prepared by combination of electrospun nanofibers and meltblown microfibers (both fixed on polypropylene spunbond supports) were characterized from the point of view of their filtration efficiency in ultrafine particles separation. Compared are electrospun and meltblown structures and their combinations characterized by means of digital image analysis properly. Layer of electrospun nanofibers in MB air filtration materials can ensure improvement of filtration efficiencies for ultrafine particles separation.

  11. Test procedures and instructions for single shell tank saltcake cesium removal with crystalline silicotitanate

    SciTech Connect

    Duncan, J.B.

    1997-01-07

    This document provides specific test procedures and instructions to implement the test plan for the preparation and conduct of a cesium removal test, using Hanford Single Shell Tank Saltcake from tanks 24 t -BY- I 10, 24 1 -U- 108, 24 1 -U- 109, 24 1 -A- I 0 1, and 24 t - S-102, in a bench-scale column. The cesium sorbent to be tested is crystalline siticotitanate. The test plan for which this provides instructions is WHC-SD-RE-TP-024, Hanford Single Shell Tank Saltcake Cesium Removal Test Plan.

  12. Recirculating Air Filtration Significantly Reduces Exposure to Airborne Nanoparticles

    PubMed Central

    Pui, David Y.H.; Qi, Chaolong; Stanley, Nick; Oberdörster, Günter; Maynard, Andrew

    2008-01-01

    Background Airborne nanoparticles from vehicle emissions have been associated with adverse effects in people with pulmonary and cardiovascular disease, and toxicologic studies have shown that nanoparticles can be more hazardous than their larger-scale counterparts. Recirculating air filtration in automobiles and houses may provide a low-cost solution to reducing exposures in many cases, thus reducing possible health risks. Objectives We investigated the effectiveness of recirculating air filtration on reducing exposure to incidental and intentionally produced airborne nanoparticles under two scenarios while driving in traffic, and while generating nanomaterials using gas-phase synthesis. Methods We tested the recirculating air filtration in two commercial vehicles when driving in traffic, as well as in a nonventilation room with a nanoparticle generator, simulating a nanomaterial production facility. We also measured the time-resolved aerosol size distribution during the in-car recirculation to investigate how recirculating air filtration affects particles of different sizes. We developed a recirculation model to describe the aerosol concentration change during recirculation. Results The use of inexpensive, low-efficiency filters in recirculation systems is shown to reduce nanoparticle concentrations to below levels found in a typical office within 3 min while driving through heavy traffic, and within 20 min in a simulated nanomaterial production facility. Conclusions Development and application of this technology could lead to significant reductions in airborne nanoparticle exposure, reducing possible risks to health and providing solutions for generating nanomaterials safely. PMID:18629306

  13. Loading and filtration characteristics of filtering facepieces.

    PubMed

    Chen, C C; Lehtimäki, M; Willeke, K

    1993-02-01

    Most filtering facepieces used today are made of electret material (material with significant electrical charges on the filter fibers). Because of the addition of this electrical removal force, the filtration efficiency can be significantly increased without increasing the air pressure drop inside the respirator; pressure drop is closely related to physiological load. However, the removal by electrical forces is reduced in time, as aerosols deposit on the filter fibers. We have studied the contribution of this electrical removal and its change in time as a function of aerosol loading. To prove the change in aerosol penetration is due to the reduction of electrical force, the electrical charges were removed from new facepieces by the application of appropriate chemicals. The dust-mist filtering facepieces tested have similar fiber diameters and packing densities, as determined by scanning electron microscopy and pressure drop data. At a face velocity of 10 cm/s (corresponding to 100 L/min through a complete filtering facepiece) and an aerosol size of 0.16 microns, electrical force removal accounts for 69% of the total filtration for the respirator found to have the best filter quality but only 25% for the respirator (from a different manufacturer) found to have the worst filter quality. Our experimental data show that the removal efficiency of these facepieces is reduced in time by as much as this amount. However, under normal wear conditions, the total aerosol particle load is not as high as shown and the filtering facepieces are likely to be discarded before the fiber charges (i.e., the electrostatic attractions) are significantly diminished. PMID:8452097

  14. POC-scale testing of a dry triboelectrostatic separator for fine coal cleaning

    SciTech Connect

    R.-H. Yoon; G.H. Luttrell; A.D. Walters

    1999-10-01

    During the past quarter, the installation, testing and shakedown phases of commissioning the TES unit were completed (Tasks 4, 5.1 and 5.2). A representative from Carpco Inc. was on site to provide training in the operation of the test unit and assist with the initial test runs. Problems have been encountered with the recycle conveyor generating dust that neutralizes the particle charge. Testing has continued by batch feeding the unit while the recycle conveying problem is being solved. Good separations have been achieved while operating in this mode. Comparison tests have also been carried out using a bench-scale triboelectrostatic separator in parallel with the POC Carpco unit.

  15. EFFECTIVE FILTRATION METHODS FOR SMALL WATER SUPPLIES

    EPA Science Inventory

    A 2-year study was conducted of various simple water filtration systems potentially appropriate for high-quality surface waters serving small systems. A slow sand filter without coagulant and a direct, rapid filter with coagulant were operated in parallel. Direct filtration with ...

  16. Metal Addition to Enhanced Biological Filtration Performance

    E-print Network

    : haemolytic uremic syndrome #12;· Problems Caused by Arsenic - damage the human nervous system - is a known #12;-Winthrop (ME) Slow Sand Filtration water treatement plant -Philadelphia (PA) Rapid Sand Filtration water treatement plant Sands were sieved using sieves of 0,6 mm and 0,85 mm opening Filter Sand

  17. Design considerations for effective oil field filtration

    SciTech Connect

    Glaze, H.; Echols, J.B.

    1989-06-01

    Oil field filtration has special problems that relate to the nature of drilling and completing oil and gas wells. The use of clear brines is the root of many of these special problems. For example, within well-defined limits, there are virtually endless combinations of drilling mud constituents and mud weights. Mud weight dictates the completion fluid weight, and residual mud inside the production casing contaminates the completion fluid. As completion fluid weight increases, viscosity (Newtonian) and ionic strength of the completion brine increases. Filtration applications may be generally classified as follows: Wellsite, for completions and workovers, or stimulation; and Injection, for disposal or secondary recovery. This article focuses on wellsite filtration of completion and workover fluids. Effective filtration begins with a total system concept. Although frequently treated as such, filtration is not an isolated event during completion operations. Considerations for effective filtration include a system approach in which filtration is only a part. The system within which filtration occurs and must be considered consists of the following: Location and rig, Completion procedure, Drilling fluid, Completion fluid, Filter sizing and selection, and Quality control.

  18. RADIOACTIVE DEMONSTRATION OF FINAL MINERALIZED WASTE FORMS FOR HANFORD WASTE TREATMENT PLANT SECONDARY WASTE (WTP-SW) BY FLUIDIZED BED STEAM REFORMING (FBSR) USING THE BENCH SCALE REFORMER PLATFORM

    SciTech Connect

    Crawford, C.; Burket, P.; Cozzi, A.; Daniel, G.; Jantzen, C.; Missimer, D.

    2014-08-21

    The U.S. Department of Energy’s Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford’s tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. In addition, the WTP LAW vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as {sup 137}Cs, {sup 129}I, {sup 99}Tc, Cl, F, and SO{sub 4} that volatilize at the vitrification temperature of 1150°C in the absence of a continuous cold cap (that could minimize volatilization). The current waste disposal path for the WTP-SW is to process it through the Effluent Treatment Facility (ETF). Fluidized Bed Steam Reforming (FBSR) is being considered for immobilization of the ETF concentrate that would be generated by processing the WTP-SW. The focus of this current report is the WTP-SW. FBSR offers a moderate temperature (700-750°C) continuous method by which WTP-SW wastes can be processed irrespective of whether they contain organics, nitrates, sulfates/sulfides, chlorides, fluorides, volatile radionuclides or other aqueous components. The FBSR technology can process these wastes into a crystalline ceramic (mineral) waste form. The mineral waste form that is produced by co-processing waste with kaolin clay in an FBSR process has been shown to be as durable as LAW glass. Monolithing of the granular FBSR product is being investigated to prevent dispersion during transport or burial/storage, but is not necessary for performance. A Benchscale Steam Reformer (BSR) was designed and constructed at the SRNL to treat actual radioactive wastes to confirm the findings of the non-radioactive FBSR pilot scale tests and to qualify the waste form for applications at Hanford. BSR testing with WTP SW waste surrogates and associated analytical analyses and tests of granular products (GP) and monoliths began in the Fall of 2009, and then was continued from the Fall of 2010 through the Spring of 2011. Radioactive testing commenced in 2010 with a demonstration of Hanford’s WTP-SW where Savannah River Site (SRS) High Level Waste (HLW) secondary waste from the Defense Waste Processing Facility (DWPF) was shimmed with a mixture of {sup 125/129}I and {sup 99}Tc to chemically resemble WTP-SW. Prior to these radioactive feed tests, non-radioactive simulants were also processed. Ninety six grams of radioactive granular product were made for testing and comparison to the non-radioactive pilot scale tests. The same mineral phases were found in the radioactive and non-radioactive testing. The granular products (both simulant and radioactive) were tested and a subset of the granular material (both simulant and radioactive) were stabilized in a geopolymer matrix. Extensive testing and characterization of the granular and monolith material were made including the following: ? ASTM C1285 (Product Consistency Test) testing of granular and monolith; ? ASTM C1308 accelerated leach testing of the radioactive monolith; ? ASTM C192 compression testing of monoliths; and ? EPA Method 1311 Toxicity Characteristic Leaching Procedure (TCLP) testing. The significant findings of the testing completed on simulant and radioactive WTP-SW are given below: ? Data indicates {sup 99}Tc, Re, Cs, and I

  19. 11. View of east entry to central corridor of filtration ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. View of east entry to central corridor of filtration bed building. - Lake Whitney Water Filtration Plant, Filtration Plant, South side of Armory Street between Edgehill Road & Whitney Avenue, Hamden, New Haven County, CT

  20. 7. View east of southeast corner of filtration bed building. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. View east of southeast corner of filtration bed building. Laboratory building is at center left of photograph. - Lake Whitney Water Filtration Plant, Filtration Plant, South side of Armory Street between Edgehill Road & Whitney Avenue, Hamden, New Haven County, CT

  1. 32. Piping under central corridor of filtration bed building. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    32. Piping under central corridor of filtration bed building. - Lake Whitney Water Filtration Plant, Filtration Plant, South side of Armory Street between Edgehill Road & Whitney Avenue, Hamden, New Haven County, CT

  2. 8. Detail view of southwest corner of filtration bed building. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Detail view of southwest corner of filtration bed building. - Lake Whitney Water Filtration Plant, Filtration Plant, South side of Armory Street between Edgehill Road & Whitney Avenue, Hamden, New Haven County, CT

  3. 4. View south of rear of filtration bed building. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. View south of rear of filtration bed building. - Lake Whitney Water Filtration Plant, Filtration Plant, South side of Armory Street between Edgehill Road & Whitney Avenue, Hamden, New Haven County, CT

  4. PILOT-PLANT STUDIES OF SLOW-RATE FILTRATION

    EPA Science Inventory

    Alternatives to conventional coagulation water filtration plants (those that utilize coagulation, flocculation, sedimentation and filtration) may be appropriate for some small water utilities. One such alternative is slow rate filtration. This paper describes pilot plant studies ...

  5. 12. View west of access bridge to top of filtration ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. View west of access bridge to top of filtration bed building. - Lake Whitney Water Filtration Plant, Filtration Plant, South side of Armory Street between Edgehill Road & Whitney Avenue, Hamden, New Haven County, CT

  6. 1. Perspective view southwest of filtration bed with earth mounded ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Perspective view southwest of filtration bed with earth mounded over facility. Armory Street appears in the foreground. - Lake Whitney Water Filtration Plant, Filtration Plant, South side of Armory Street between Edgehill Road & Whitney Avenue, Hamden, New Haven County, CT

  7. 13. View of west entrance to central corridor of filtration ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. View of west entrance to central corridor of filtration bed building. - Lake Whitney Water Filtration Plant, Filtration Plant, South side of Armory Street between Edgehill Road & Whitney Avenue, Hamden, New Haven County, CT

  8. 14. View of damage to southeast corner of filtration building. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. View of damage to southeast corner of filtration building. Note construction of concrete over brick. - Lake Whitney Water Filtration Plant, Filtration Plant, South side of Armory Street between Edgehill Road & Whitney Avenue, Hamden, New Haven County, CT

  9. 31. Piping under central corridor of filtration bed building. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    31. Piping under central corridor of filtration bed building. - Lake Whitney Water Filtration Plant, Filtration Plant, South side of Armory Street between Edgehill Road & Whitney Avenue, Hamden, New Haven County, CT

  10. 40 CFR 141.71 - Criteria for avoiding filtration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...NATIONAL PRIMARY DRINKING WATER REGULATIONS Filtration and Disinfection ...Criteria for avoiding filtration. A public water system that uses a...C)(iii), that filtration is required. A public water system that uses...

  11. 40 CFR 141.71 - Criteria for avoiding filtration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...NATIONAL PRIMARY DRINKING WATER REGULATIONS Filtration and Disinfection ...Criteria for avoiding filtration. A public water system that uses a...C)(iii), that filtration is required. A public water system that uses...

  12. 40 CFR 141.71 - Criteria for avoiding filtration.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...NATIONAL PRIMARY DRINKING WATER REGULATIONS Filtration and Disinfection ...Criteria for avoiding filtration. A public water system that uses a...C)(iii), that filtration is required. A public water system that uses...

  13. 40 CFR 141.174 - Filtration sampling requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...2010-07-01 2010-07-01 false Filtration sampling requirements. 141...DRINKING WATER REGULATIONS Enhanced Filtration and Disinfection-Systems Serving...or More People § 141.174 Filtration sampling requirements....

  14. 40 CFR 141.171 - Criteria for avoiding filtration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...2010-07-01 false Criteria for avoiding filtration. 141.171 Section 141.171 ...DRINKING WATER REGULATIONS Enhanced Filtration and Disinfection-Systems Serving 10... § 141.171 Criteria for avoiding filtration. In addition to the...

  15. 40 CFR 141.71 - Criteria for avoiding filtration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...2010-07-01 false Criteria for avoiding filtration. 141.71 Section 141.71 ...PRIMARY DRINKING WATER REGULATIONS Filtration and Disinfection § 141.71 Criteria for avoiding filtration. A public water system...

  16. SUPERFUND TREATABILITY CLEARINGHOUSE: BENGART AND MEMEL (BENCH-SCALE), GULFPORT (BENCH AND PILOT-SCALE), MONTANA POLE (BENCH-SCALE), AND WESTERN PROCESSING (BENCH-SCALE) TREATABILITY STUDIES

    EPA Science Inventory

    This document presents summary data on the results of various treatability studies (bench and pilot scale), conducted at three different sites where soils were contaminated with dioxins or PCBs. The synopsis is meant to show rough performance levels under a variety of differen...

  17. Filtration effects on ball bearing life and condition in a contaminated lubricant

    NASA Technical Reports Server (NTRS)

    Loewenthal, S. H.; Moyer, D. W.

    1978-01-01

    Ball bearings were fatigue tested with a noncontaminated MIL-L-23699 lubricant and with a contaminated MIL-L-23699 lubricant under four levels of filtration. The test filters had absolute particle removal ratings of 3, 30, 49, and 105 microns. Aircraft turbine engine contaminants were injected into the filter's supply line at a constant rate of 125 milligrams per bearing hour. Bearing life and running track condition generally improved with finer filtration. The experimental lives of 3- and 30-micron filter bearings were statistically equivalent, approaching those obtained with the noncontaminated lubricant bearings. Compared to these bearings, the lives of the 49-micron bearings were statistically lower. The 105-micron bearings experienced gross wear. The degree of surface distress, weight loss, and probable failure mode were dependent on filtration level, with finer filtration being clearly beneficial.

  18. Filtration effects on ball bearing life and condition in a contaminated lubricant

    NASA Technical Reports Server (NTRS)

    Loewenthal, S. H.; Moyer, D. W.

    1978-01-01

    Ball bearings were fatigue tested with a noncontaminated lubricant and with a contaminated lubricant under four levels of filtration. The test filters had absolute particle removal ratings of 3, 30, 49, and 105 microns. Aircraft turbine engine contaminants were injected into the filter's supply line at a constant rate of 125 milligrams per bearing hour. Bearing life and running track condition generally improved with finer filtration. The experimental lives of 3 and 30 micron filter bearings were statistically equivalent, approaching those obtained with the noncontaminated lubricant bearings. Compared to these bearings, the lives of the 49 micron bearings were statistically lower. The 105 micron bearings experienced gross wear. The degree of surface distress, weight loss, and probable failure mode were dependent on filtration level, with finer filtration being clearly beneficial.

  19. Particle filtration in consolidated granular systems

    NASA Astrophysics Data System (ADS)

    Schwartz, Lawrence M.; Wilkinson, David J.; Bolsterli, Mark; Hammond, Paul

    1993-03-01

    Grain-packing algorithms are used to model the mechanical trapping of dilute suspensions of particles by consolidated granular media. We study the distribution of filtrate particles, the formation of a damage zone (internal filter cake), and the transport properties of the host-filter-cake composite. At the early stages of filtration, our simulations suggest simple relationships between the structure of the internal filter cake and the characteristics of the underlying host matrix. These relationships are then used to describe the dynamics of the filtration process. Depending on the grain size and porosity of the host matrix, calculated filtration rates may either be greater than (spurt loss) or less than (due to internal clogging) those predicted by standard surface-filtration models.

  20. A Brief Review of Filtration Studies for Waste Treatment at the Hanford Site

    SciTech Connect

    Daniel, Richard C.; Schonewill, Philip P.; Shimskey, Rick W.; Peterson, Reid A.

    2010-12-01

    This document completes the requirements of Milestone 1-2, PNNL Draft Literature Review, discussed in the scope of work outlined in the EM-31 Support Project task plan WP-2.3.6-2010-1. The focus of task WP 2.3.6 is to improve the U.S. Department of Energy’s (DOE’s) understanding of filtration operations for high-level waste (HLW) to enhance filtration and cleaning efficiencies, thereby increasing process throughput and reducing the sodium demand (through acid neutralization). Developing the processes for fulfilling the cleaning/backpulsing requirements will result in more efficient operations for both the Hanford Tank Waste Treatment and Immobilization Plant (WTP) and the Savannah River Site (SRS), thereby increasing throughput by limiting cleaning cycles. The purpose of this document is to summarize Pacific Northwest National Laboratory’s (PNNL’s) literature review of historical filtration testing at the laboratory and of testing found in peer-reviewed journals. Eventually, the contents of this document will be merged with a literature review by SRS to produce a summary report for DOE of the results of previous filtration testing at the laboratories and the types of testing that still need to be completed to address the questions about improved filtration performance at WTP and SRS. To this end, this report presents 1) a review of the current state of crossflow filtration knowledge available in the peer-reviewed literature, 2) a detailed review of PNNL-related filtration studies specific to the Hanford site, and 3) an overview of current waste filtration models developed by PNNL and suggested avenues for future model development.

  1. Space shuttle maneuvering engine reusable thrust chamber program. Task 11: Stability analyses and acoustic model testing data dump

    NASA Technical Reports Server (NTRS)

    Oberg, C. L.

    1974-01-01

    The combustion stability characteristics of engines applicable to the Space Shuttle Orbit Maneuvering System and the adequacy of acoustic cavities as a means of assuring stability in these engines were investigated. The study comprised full-scale stability rating tests, bench-scale acoustic model tests and analysis. Two series of stability rating tests were made. Acoustic model tests were made to determine the resonance characteristics and effects of acoustic cavities. Analytical studies were done to aid design of the cavity configurations to be tested and, also, to aid evaluation of the effectiveness of acoustic cavities from available test results.

  2. Development of a centrifugal downhold separator with in-situ recycle of produced water (initial tests with 34.1 API gravity crude)

    SciTech Connect

    Walker, J.F.; Jubin, R.T.; Robinson, S.M.

    1998-11-01

    Oak Ridge National Laboratory (ORNL) is currently developing a Centrifugal Downhole Separator (CDHS) which will extend the application of remotely operated separations equipment developed for the nuclear industry to in-well recovery of oil with in-situ recycle of the produced water. These units have been successfully used for surface treatment of produced water and wastewater generated during environmental clean-up operations. Performance data has shown that centrifugal units are capable of separating stable emulsions into ``single-phase`` streams with generally less than 1% cross-phase contamination. Initial testing will be conducted with a bench-scale separator to determine the separation efficiency of various crude oils and to provide information necessary to scale up the separator. Information from the bench-scale unit will be used in the design of a larger prototype, which will have a much larger height/diameter ratio and will incorporate some of the components necessary for down-hole operations. The prototype separator will be operated in the lab to verify scale-up parameters and separation efficiencies, as well as to provide information necessary to design a full-scale system. The full-scale system will be fabricated, installed in the field, and operated to demonstrate the technology. This paper discusses the initial testing of the bench-scale separator with a crude oil having an API gravity of 34.06{degrees}.

  3. Evaluation of hyperbaric filtration for fine coal dewatering. Final report

    SciTech Connect

    Parekh, B.K.; Hogg, R.; Fonseca, A.

    1996-08-15

    The main objectives of the project were to investigate the fundamental aspects of particle-liquid interaction in fine coal dewatering, to conduct laboratory and pilot plant studies on the applicability of hyperbaric filter systems and to develop process conditions for dewatering of fine clean coal to less than 20% moisture. The program consisted of three phases, namely Phase 1 -- Model Development, Phase 2 -- Laboratory Studies, Phase 3 -- Pilot Plant Testing. The Pennsylvania State University led efforts in Phase 1, the University of Kentucky in Phase 2, and CONSOL Inc. in Phase 3 of the program. All three organizations were involved in all the three phases of the program. The Pennsylvania State University developed a theoretical model for hyperbaric filtration systems, whereas the University of Kentucky conducted experimental studies to investigate fundamental aspects of particle-liquid interaction and application of high pressure filter in fine coal dewatering. The optimum filtration conditions identified in Phase 1 and 2 were tested in two of the CONSOL Inc. coal preparation plants using an Andritz Ruthner portable hyperbaric filtration unit.

  4. Optimization of Ultrafilter Feed Conditions Using Classical Filtration Models

    SciTech Connect

    Geeting, John GH; Hallen, Richard T.; Peterson, Reid A.

    2005-11-15

    Two classical models were evaluated to assess their applicability to test data obtained from filtration of a High Level Waste Sludge sample from the Hanford tank farms. One model was then selected for use in evaluation of the optimal feed conditions for maximizing filter throughput for the proposed Waste Treatment Plant at the Hanford site. This analysis indicates that an optimal feed composition does exists, but that this optimal composition is different depending upon the product (permeate or retentate) that is to be maximized. A basic premise of the design for the WTP had been that evaporation of the feed to 5 M Na (or higher if possible) was required to achieve optimum throughput. However, these results indicate that optimum throughput from a filtration perspective is achieved at lower sodium molarities (either 3.22 M for maximum LAW throughput or 4.33 M for maximum HLW throughput).

  5. Effect of filtration on rolling-element-bearing life in contaminated lubricant environment

    NASA Technical Reports Server (NTRS)

    Loewenthal, S. H.; Moyer, D. W.; Sherlock, J. J.

    1978-01-01

    Fatigue tests were conducted on groups of 65 millimeter-bore ball bearings under four levels of filtration with and without a contaminated MIL-L-23699 lubricant. The baseline series used noncontaminated oil with 49 micron absolute filtration. In the remaining tests contaminants of the composition found in aircraft engine filters were injected into the filter's supply line at a constant rate of 125 milligrams per bearing-hour. The test filters had absolute particle removal ratings of 3, 30, 49, and 105 microns (0.45, 10, 30, and 70 microns nominal), respectively. Bearings were tested at 15,000 rpm under 4580 newtons radial load. Bearing life and running tract condition generally improved with finer filtration. The 3 and 30 micron filter bearings in a contaminated lubricant had statistically equivalent lives, approaching those from the baseline tests. The experimental lives of 49 micron bearings were approximately half the baseline bearing's lives. Bearings tested with the 105 micron filter experienced wear failures. The degree of surface distress, weight loss, and probable failure mode were found to be dependent on filtration level, with finer filtration being clearly beneficial.

  6. Enzymatic hydrolysis of cellulose: evaluation of cellulase culture filtrates under use conditions

    SciTech Connect

    Mandels, M.; Medeiros, J.E.; Andreotti, R.E.; Bissett, F.H.

    1981-09-01

    Culture filtrates from three mutant strains of Trichoderma reesei grown on lactose and on cellulose were compared under use conditions on four cellulose substrates. Cellulose culture filtrates contained five to six times as much cellulase as lactose culture filtrates. Unconcentrated cellulose culture filtrates produced up to 10% sugar solutions from 15% cellulose in 24 h. Specific activity in enzyme assays and efficiency in saccharification tests were low for enzymes from all the mutants. Over a wide range the percent saccharification of a substrate in a given time was directly proportional to the logarithm of the ratio of initial concentrations of enzyme and substrate. As a result of this, dilute enzyme is more efficient than concentrated enzyme.

  7. Enzymatic hydrolysis of cellulose: evaluation of cellulase culture filtrates under use conditions

    SciTech Connect

    Mandels, M.; Medeiros, J.E.; Andreotti, R.E.; Bissett, F.H.

    1981-09-01

    Culture filtrates from three mutant strains of Trichoderma reesei grown on lactose and on cellulose were compared under use conditions on four cellulose substrates. Cellulose culture filtrates contained five to six times as much cellulase as lactose culture filtrates. Unconcentrated cellulose culture filtrates produced up to 10% sugar solutions from 15% cellulose in 24 hours. Specific activity in enzyme assays and efficiency in saccharification tests were low for enzymes from all the mutants. Over a wide range the percent saccharification of a substrate in a given time was directly proportional to the logarithm of the ratio of initial concentrations of enzyme and substrate. As a result of this, dilute enzyme is more efficient than concentrated enzyme, but if high sugar concentrations are desired, very large quantities of enzyme are required. Since the slopes of these plots varied, the relative activity of cellulase on different substrates may be affected by enzyme concentration. (Refs. 28).

  8. Evaluation of membrane filtration system using The “Pore Diffusion” for eliminating viruses

    PubMed Central

    HASHIMOTO-GOTOH, Akira; MATSUKI, Takahiro; MIYAZAWA, Takayuki

    2015-01-01

    Here, we report a first study of virus removal by a novel membrane filtration system, named the “Pore Diffusion”. The “Pore Diffusion” manipulated the direction of circulating flow from vertical to parallel to the membrane, thereby achieved to alter the trans-membrane pressure as low as possible. We compared the viral activity between before and after filtration by both infectivity assay and real-time reverse transcription-PCR. Among 4 “Pore Diffusion” modules tested, the big module with average pore size of 80 nm showed the highest log reduction value of viral activity. Our study shows the possibility of “The Pore Diffusion” to filtrate viruses from bioproducts without increasing the trans-membrane pressure, so that the filtration process can be carried out effectively and economically. PMID:25715959

  9. Antimicrobial nanoparticle-coated electrostatic air filter with high filtration efficiency and low pressure drop.

    PubMed

    Sim, Kyoung Mi; Park, Hyun-Seol; Bae, Gwi-Nam; Jung, Jae Hee

    2015-11-15

    In this study, we demonstrated an antimicrobial nanoparticle-coated electrostatic (ES) air filter. Antimicrobial natural-product Sophora flavescens nanoparticles were produced using an aerosol process, and were continuously deposited onto the surface of air filter media. For the electrostatic activation of the filter medium, a corona discharge electrification system was used before and after antimicrobial treatment of the filter. In the antimicrobial treatment process, the deposition efficiency of S. flavescens nanoparticles on the ES filter was ~12% higher than that on the pristine (Non-ES) filter. In the evaluation of filtration performance using test particles (a nanosized KCl aerosol and submicron-sized Staphylococcus epidermidis bioaerosol), the ES filter showed better filtration efficiency than the Non-ES filter. However, antimicrobial treatment with S. flavescens nanoparticles affected the filtration efficiency of the filter differently depending on the size of the test particles. While the filtration efficiency of the KCl nanoparticles was reduced on the ES filter after the antimicrobial treatment, the filtration efficiency was improved after the recharging process. In summary, we prepared an antimicrobial ES air filter with >99% antimicrobial activity, ~92.5% filtration efficiency (for a 300-nm KCl aerosol), and a ~0.8 mmAq pressure drop (at 13 cm/s). This study provides valuable information for the development of a hybrid air purification system that can serve various functions and be used in an indoor environment. PMID:26172593

  10. Filtrating forms of soil bacteria

    NASA Astrophysics Data System (ADS)

    Van'kova, A. A.; Ivanov, P. I.; Emtsev, V. T.

    2013-03-01

    Filtrating (ultramicroscopic) forms (FF) of bacteria were studied in a soddy-podzolic soil and the root zone of alfalfa plants as part of populations of the most widespread physiological groups of soil bacteria. FF were obtained by filtering soil solutions through membrane filters with a pore diameter of 0.22 ?m. It was established that the greater part of the bacteria in the soil and in the root zone of the plants has an ultramicroscopic size: the average diameter of the cells is 0.3 ?m, and their length is 0.6 ?m, which is significantly less than the cell size of banal bacteria. The number of FF varies within a wide range depending on the physicochemical conditions of the habitat. The FF number's dynamics in the soil is of a seasonal nature; i.e., the number of bacteria found increases in the summer and fall and decreases in the winter-spring period. In the rhizosphere of the alfalfa, over the vegetation period, the number of FF and their fraction in the total mass of the bacteria increase. A reverse tendency is observed in the rhizoplane. The morphological particularities (identified by an electron microscopy) and the nature of the FF indicate their physiological activity.

  11. Cerebrospinal fluid filtration in amyotrophic lateral sclerosis.

    PubMed

    Finsterer, J; Mamoli, B

    1999-09-01

    By means of a randomized, controlled and open study the authors wanted to find out if cerebrospinal (CSF)-filtration was of substantial benefit to patients with sporadic amyotrophic lateral sclerosis (SALS). Five SALS patients, aged 51-75 years, being treated with riluzole underwent CSF-filtration daily over five days (group A). Five other SALS patients, aged 52-70 years, were treated only with riluzole (group B). Although all five patients in the first group reported a subjective benefit following CSF- filtration, the Norris score, the Frenchay score, the vital capacity, the ulnar nerve F-wave persistence and the peak-ratio of the brachial biceps and anterior tibial muscles did not change significantly after five days of therapy, either in group A or in group B. In conclusion, filtration of 200-250 ml CSF daily, over five days, does not seem to have a substantial therapeutic effect in patients with SALS. PMID:10457394

  12. Filtration of submicrometer particles by pelagic tunicates

    E-print Network

    Sutherland, Kelly R.

    Salps are common in oceanic waters and have higher per-individual filtration rates than any other zooplankton filter feeder. Although salps are centimeters in length, feeding via particle capture occurs on a fine, mucous ...

  13. Linear Thermodynamics of Rodlike DNA Filtration

    E-print Network

    Li, Zirui

    Linear thermodynamics transportation theory is employed to study filtration of rodlike DNA molecules. Using the repeated nanoarray consisting of alternate deep and shallow regions, it is demonstrated that the complex ...

  14. MICROBIAL PATHOGEN REMOVAL DURING BANK FILTRATION

    EPA Science Inventory

    Our incomplete understanding of processes and properties affecting pathogenic microbe transport during riverbank filtration is currently limiting our ability to predict the effectiveness of this water treatment option. We propose a series of fundamental experiments designed to...

  15. Thermophilic Biotrickling Filtration of Ethanol Vapors

    E-print Network

    Thermophilic Biotrickling Filtration of Ethanol Vapors H U U B H . J . C O X , T H O M A S S E X of ethanol vapors in biotrickling filters for air pollution control was investigated. Two reactors were

  16. ADVANCED FILTRATION OF PULP MILL WASTES

    EPA Science Inventory

    Laboratory and pilot plants studies of reverse osmosis (hyperfiltration) and ultrafiltration of pulp mill wastes were performed by International Paper Company and Oak Ridge National Laboratory (subcontractor). Decker filtrates were treated with dynamically formed reverse osmosis ...

  17. Thermal depolymerization of plastics - PDU testing. Task 15. Topical report

    SciTech Connect

    1996-01-01

    The process development unit (PDU) test program is part of an ongoing effort at the Energy & Environmental Research Center (EERC) to expand the base of knowledge for the thermal depolymerization of plastics process. This phase of the development effort, initiated after successful completion of a bench-scale program, has concentrated on maximizing liquid yield. The purposes of the PDU program were (1) to demonstrate the process on a commercially scalable unit, (2) to produce quantities of product that could be used to initiate discussions with potential end users, and (3) to gather engineering and yield data. Experimentation consisted of eleven test points on the PDU and seven on the continuous fluid-bed reactor (CFBR) bench-scale unit. Initial PDU tests (PO35-PO39) were carried out using a base blend, which consists of 60% high-density polyethylene (HDPE), 20% polypropylene (PP), and 20% polystyrene (PS) virgin resin pellets. Test PO39 used base blend with 5% polyvinyl chloride (PVC). The base blend decomposed to produce a flowable liquid, with liquid yields ranging from 33% to 45%. The next series of tests, PO40-PO44, used a postconsumer plastics feed. This material did not decompose as readily as the base blend and formed a very waxy, heavy liquid, with {open_quotes}liquid{close_quotes} yields ranging from 18% to 63% (low liquid yields are the result of using excess air in the natural gas burner in some tests in an attempt to increase gas residence time).

  18. 6. Detail view northeast of rear of filtration bed building. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. Detail view northeast of rear of filtration bed building. Note monitor roof with clerestory windows over central corridor between filtration beds at center right of photograph. Laboratory building is at center right of photograph. - Lake Whitney Water Filtration Plant, Filtration Plant, South side of Armory Street between Edgehill Road & Whitney Avenue, Hamden, New Haven County, CT

  19. 10. View west of east entry to filtration beds. Note ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. View west of east entry to filtration beds. Note monitor roof and clerestory windows over central corridor. Laboratory building is sited over the center of the filtration bed building at extreme left center of photograph. - Lake Whitney Water Filtration Plant, Filtration Plant, South side of Armory Street between Edgehill Road & Whitney Avenue, Hamden, New Haven County, CT

  20. 5. View northeast of rear of filtration bed building. Note ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. View northeast of rear of filtration bed building. Note monitor roof with clerestory windows over central corridor between filtration beds at center right of photograph. Laboratory building is at extreme center right of photograph. - Lake Whitney Water Filtration Plant, Filtration Plant, South side of Armory Street between Edgehill Road & Whitney Avenue, Hamden, New Haven County, CT

  1. Coal filtration process and dewatering aids therefore

    SciTech Connect

    Keys, R.O.

    1990-01-09

    This patent describes an improvement in a method for dewatering an aqueous slurry of solid coal particulates wherein the aqueous slurry contains between about 10 and 60 percent of solid coal particulates and a dewatering aid is added to the slurry followed by vacuum filtration thereof to produce a filter cake of the coal particulates. The improvement for lowering the water content of the filter cake comprises adding to the slurry prior to filtration an effective amount of a dewatering aid selected.

  2. Simultaneous hot desulfurization and improved filtration

    SciTech Connect

    Eggerstedt, P.M.; Zievers, J.F.; Patel, P.C.; Zievers, E.C., Industrial Fiber & Pump Mfg. Co.

    1998-01-01

    Coal reserves in the United States as well as abroad will remain unusable until technology is developed to meet both Clean Air Act mandates and New Source Performance Standards (NSPS) for particulate, SO{sub 2}, and NO{sub x}, emissions effectively and economically. Recent breakthroughs in particulate control, specifically ceramic filtration technology, have shown that NSPS limits on particulates can be achieved at high process temperatures, thereby minimizing thermal losses and system complexity. While both calcium based and regenerable metal oxide sorbents are currently utilized for sulfur mitigation, problems such as sintering, temperature limitations, physical attrition, and cost have limited their success. This research suggests the use of waste metal oxide materials for the removal of sulfur in hot gas streams as an alternative to either traditional calcium based sorbents, or regenerable metal oxide sorbents. When classified to a desired particle size and injected into a high temperature coal utilization process, such a `once-through` sorbent can effectively remove sulfur and simultaneously increase the permeability of dust collected at a downstream ceramic filter station in a highly cost effective manner. Several waste metal oxides, including the oxides of iron, tin, and zinc, have been evaluated both individually and in combination to assess their capacity for sulfur capture in both oxidizing and reducing atmospheres. Additionally, inert materials such as silica sand as well as more traditional materials such as dolomite and limestone, were evaluated as sorbents under identical test conditions to serve as reference data.

  3. GPS Data Filtration Method for Drive Cycle Analysis Applications

    SciTech Connect

    Duran, A.; Earleywine, M.

    2013-02-01

    When employing GPS data acquisition systems to capture vehicle drive-cycle information, a number of errors often appear in the raw data samples, such as sudden signal loss, extraneous or outlying data points, speed drifting, and signal white noise, all of which limit the quality of field data for use in downstream applications. Unaddressed, these errors significantly impact the reliability of source data and limit the effectiveness of traditional drive-cycle analysis approaches and vehicle simulation software. Without reliable speed and time information, the validity of derived metrics for drive cycles, such as acceleration, power, and distance, become questionable. This study explores some of the common sources of error present in raw onboard GPS data and presents a detailed filtering process designed to correct for these issues. Test data from both light and medium/heavy duty applications are examined to illustrate the effectiveness of the proposed filtration process across the range of vehicle vocations. Graphical comparisons of raw and filtered cycles are presented, and statistical analyses are performed to determine the effects of the proposed filtration process on raw data. Finally, an evaluation of the overall benefits of data filtration on raw GPS data and present potential areas for continued research is presented.

  4. Removal of benzocaine from water by filtration with activated carbon

    USGS Publications Warehouse

    Howe, G.E.; Bills, T.D.; Marking, L.L.

    1990-01-01

    Benzocaine is a promising candidate for registration with the U.S. Food and Drug Administration for use as an anesthetic in fish culture, management, and research. A method for the removal of benzocaine from hatchery effluents could speed registration of this drug by eliminating requirements for data on its residues, tolerances, detoxification, and environmental hazards. Carbon filtration effectively removes many organic compounds from water. This study tested the effectiveness of three types of activated carbon for removing benzocaine from water by column filtration under controlled laboratory conditions. An adsorptive capacity was calculated for each type of activated carbon. Filtrasorb 400 (12 x 40 mesh; U.S. standard sieve series) showed the greatest capacity for benzocaine adsorption (76.12 mg benzocaine/g carbon); Filtrasorb 300 (8 x 30 mesh) ranked next (31.93 mg/g); and Filtrasorb 816 (8 x 16 mesh) absorbed the least (1.0 mg/g). Increased adsorptive capacity was associated with smaller carbon particle size; however, smaller particle size also impeded column flow. Carbon filtration is a practical means for removing benzocaine from treated water.

  5. ELECTROSTATIC EFFECTS IN FABRIC FILTRATION: VOLUME II. TRIBOELECTRIC MEASUREMENTS AND BAG PERFORMANCE (ANNOTATED DATA)

    EPA Science Inventory

    The report describes the construction and application of a bench-scale, single-bag, experimental filter. It also describes several complementary evaluation procedures and their data. Especially significant are the methods for, and results of, electrical determinations that are no...

  6. Letter report on PCT/Monolith glass ceramic corrosion tests

    SciTech Connect

    Crawford, Charles L.

    2015-09-24

    The Savannah River National Laboratory (SRNL) is collaborating with personnel from Pacific Northwest National Laboratory (PNNL) to study advanced waste form glass ceramics for immobilization of waste from Used Nuclear Fuel (UNF) separations processes. The glass ceramic waste forms take advantage of both crystalline and glassy phases where ‘troublesome’ elements (e.g., low solubility in glass or very long-lived) partition to highly durable ceramic phases with the remainder of elements residing in the glassy phase. The ceramic phases are tailored to create certain minerals or unique crystalline structures that can host the radionuclides by binding them in their specific crystalline network while not adversely impacting the residual glass network (Crum et al., 2011). Glass ceramics have been demonstrated using a scaled melter test performed in a pilot scale (1/4 scale) cold crucible induction melter (CCIM) (Crum et al., 2014; Maio et al., 2015). This report summarizes recent results from both Phase I and Phase II bench scale tests involving crucible fabrication and corrosion testing of glass ceramics using the Product Consistency Test (PCT). Preliminary results from both Phase I and Phase II bench scale tests involving statistically designed matrices have previously been reported (Crawford, 2013; Crawford, 2014).

  7. Task 9- Centrifugal Membrane Filtration. Semiannual report, November 1, 1996--March 31, 1997

    SciTech Connect

    Stephan, Daniel J.; Grafsgaard, Michael E.

    1997-12-31

    The overall project consists of several integrated research phases related to the applicability, continued development, demonstration, and commercialization of the SpinTek centrifugal membrane filtration process. This phase of work is a continuation of the Phase 1 evaluation of the SpinTek centrifugal membrane filtration technology. During Phase 1 testing conducted at the EERC using the SpinTek ST-IIL unit operating on a surrogate tank waste, a solids cake developed on the membrane surface. Solids cake development was observed where linear membrane velocities were less than 17.5 feet per second and resulted in a reduction of unobstructed membrane surface area of up to 25%, reducing overall filtration performance. The primary goal of the Phase 2 research effort is to enhance filtration performance through the development and testing of alternative designs of the turbulence promoters to generate a shear force across the entire membrane surface that is sufficient to maintain a self-cleaning membrane capability and improve filtration efficiency and long term performance. Specific Phase 2 research activities include the following: System modifications to accommodate an 11-inch-diameter, two-disk rotating membrane assembly. Development and fabrication of alternative designs to the existing turbulence promoters. *Testing and evaluation of the existing and alternative turbulence promoters under selected operating conditions using a statistically designed test matrix Data reduction and analysis.

  8. BENCH SCALE STUDIES OF LIMESTONE INJECTION FOR SO2 CONTROL

    EPA Science Inventory

    The report gives results of experiments in a boiler simulator furnace, indicating that the parameters of major importance to SO2 capture are thermal environment, calcium/sulfur ratio, and sorbent composition. Thermal environment (local temperature) had a strong effect on the util...

  9. Modified IRC bench-scale arc melter for waste processing

    SciTech Connect

    Eddy, T.L.; Sears, J.W.; Grandy, J.D.; Kong, P.C.; Watkins, A.D.

    1994-03-01

    This report describes the INEL Research Center (IRC) arc melter facility and its recent modifications. The arc melter can now be used to study volatilization of toxic and high vapor pressure metals and the effects of reducing and oxidizing (redox) states in the melt. The modifications include adding an auger feeder, a gas flow control and monitoring system, an offgas sampling and exhaust system, and a baghouse filter system, as well as improving the electrode drive, slag sampling system, temperature measurement and video monitoring and recording methods, and oxidation lance. In addition to the volatilization and redox studies, the arc melter facility has been used to produce a variety of glass/ceramic waste forms for property evaluation. Waste forms can be produced on a daily basis. Some of the melts performed are described to illustrate the melter`s operating characteristics.

  10. BENCH-SCALE DEMONSTRATION OF HOT-GAS DESULFURIZATION TECHNOLOGY

    SciTech Connect

    Unknown

    1999-07-01

    The U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL), is sponsoring research in advanced methods for controlling contaminants in hot coal gasifier gas (coal-derived fuel-gas) streams of integrated gasification combined-cycle (IGCC) power systems. The hot gas cleanup work seeks to eliminate the need for expensive heat recovery equipment, reduce efficiency losses due to quenching, and minimize wastewater treatment costs. Hot-gas desulfurization research has focused on regenerable mixed-metal oxide sorbents that can reduce the sulfur in coal-derived fuel-gas to less than 20 ppmv and can be regenerated in a cyclic manner with air for multicycle operation. Zinc titanate (Zn{sub 2}TiO{sub 4} or ZnTiO{sub 3}), formed by a solid-state reaction of zinc oxide (ZnO) and titanium dioxide (TiO{sub 2}), is currently one of the leading sorbents. Overall chemical reactions with Zn{sub 2}TiO{sub 4} during the desulfurization (sulfidation)-regeneration cycle are shown. The sulfidation/regeneration cycle can be carried out in a fixed-bed, moving-bed, or fluidized-bed reactor configuration. The fluidized-bed reactor configuration is most attractive because of several potential advantages including faster kinetics and the ability to handle the highly exothermic regeneration to produce a regeneration offgas containing a constant concentration of SO{sub 2}.

  11. BENCH-SCALE DEMONSTRATION OF HOT-GAS DESULFURIZATION TECHNOLOGY

    SciTech Connect

    Unknown

    2000-09-01

    The U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL), is sponsoring research in advanced methods for controlling contaminants in hot coal gasifier gas (coal-derived fuel-gas) streams of integrated gasification combined-cycle (IGCC) power systems. The hot gas cleanup work seeks to eliminate the need for expensive heat recovery equipment, reduce efficiency losses due to quenching, and minimize wastewater treatment costs. Hot-gas desulfurization research has focused on regenerable mixed-metal oxide sorbents that can reduce the sulfur in coal-derived fuel-gas to less than 20 ppmv and can be regenerated in a cyclic manner with air for multicycle operation. Zinc titanate (Zn{sub 2}TiO{sub 4} or ZnTiO{sub 3}), formed by a solid-state reaction of zinc oxide (ZnO) and titanium dioxide (TiO{sub 2}), is currently one of the leading sorbents. Overall chemical reactions with Zn{sub 2}TiO{sub 4} during the desulfurization (sulfidation)-regeneration cycle are shown. The sulfidation/regeneration cycle can be carried out in a fixed-bed, moving-bed, or fluidized-bed reactor configuration. The fluidized-bed reactor configuration is most attractive because of several potential advantages including faster kinetics and the ability to handle the highly exothermic regeneration to produce a regeneration offgas containing a constant concentration of SO{sub 2}.

  12. BENCH-SCALE DEMONSTRATION OF HOT-GAS DESULFURIZATION TECHNOLOGY

    SciTech Connect

    Unknown

    1999-10-01

    The U.S. Department of Energy (DOE), Federal Energy Technology Center (FETC), is sponsoring research in advanced methods for controlling contaminants in hot coal gasifier gas (coal-derived fuel-gas) streams of integrated gasification combined-cycle (IGCC) power systems. The hot gas cleanup work seeks to eliminate the need for expensive heat recovery equipment, reduce efficiency losses due to quenching, and minimize wastewater treatment costs. Hot-gas desulfurization research has focused on regenerable mixed-metal oxide sorbents that can reduce the sulfur in coal-derived fuel-gas to less than 20 ppmv and can be regenerated in a cyclic manner with air for multicycle operation. Zinc titanate (Zn{sub 2} TiO{sub 4} or ZnTiO{sub 3}), formed by a solid-state reaction of zinc oxide (ZnO) and titanium dioxide (TiO{sub 2}), is currently one of the leading sorbents. Overall chemical reactions with Zn{sub 2} TiO{sub 4} during the desulfurization (sulfidation)-regeneration cycle are shown below: Sulfidation: Zn{sub 2} TiO{sub 4} + 2H{sub 2}S {yields} 2ZnS + TiO{sub 2} + 2H{sub 2}O; Regeneration: 2ZnS + TiO{sub 2} + 3O{sub 2} {yields} Zn{sub 2} TiO{sub 4} + 2SO{sub 2} The sulfidation/regeneration cycle can be carried out in a fixed-bed, moving-bed, or fluidized-bed reactor configuration. The fluidized-bed reactor configuration is most attractive because of several potential advantages including faster kinetics and the ability to handle the highly exothermic regeneration to produce a regeneration offgas containing a constant concentration of SO{sub 2}.

  13. BENCH SCALE DEVELOPMENT OF MEYERS PROCESS FOR COAL DESULFURIZATION

    EPA Science Inventory

    The report gives results of coal desulfurization experiments to determine the feasibility and advantages of combining gravity separation of coal with chemical desulfurization. The investigations led to the definition of the Gravichem Process, a combination physical/chemical coal ...

  14. Development and validation of a low cost blood filtration element separating plasma from undiluted whole blood

    PubMed Central

    Homsy, Alexandra; van der Wal, Peter D.; Doll, Werner; Schaller, Roland; Korsatko, Stefan; Ratzer, Maria; Ellmerer, Martin; Pieber, Thomas R.; Nicol, Andreas; de Rooij, Nico F.

    2012-01-01

    Clinical point of care testing often needs plasma instead of whole blood. As centrifugation is labor intensive and not always accessible, filtration is a more appropriate separation technique. The complexity of whole blood is such that there is still no commercially available filtration system capable of separating small sample volumes (10-100??l) at the point of care. The microfluidics research in blood filtration is very active but to date nobody has validated a low cost device that simultaneously filtrates small samples of whole blood and reproducibly recovers clinically relevant biomarkers, and all this in a limited amount of time with undiluted raw samples. In this paper, we show first that plasma filtration from undiluted whole blood is feasible and reproducible in a low-cost microfluidic device. This novel microfluidic blood filtration element (BFE) extracts 12??l of plasma from 100??l of whole blood in less than 10?min. Then, we demonstrate that our device is valid for clinical studies by measuring the adsorption of interleukins through our system. This adsorption is reproducible for interleukins IL6, IL8, and IL10 but not for TNF?. Hence, our BFE is valid for clinical diagnostics with simple calibration prior to performing any measurement. PMID:22662072

  15. CROSSFLOW FILTRATION: EM-31, WP-2.3.6

    SciTech Connect

    Duignan, M.; Nash, C.; Poirier, M.

    2011-02-01

    In the interest of accelerating waste treatment processing, the DOE has funded studies to better understand filtration with the goal of improving filter fluxes in existing crossflow equipment. The Savannah River National Laboratory (SRNL) performed some of those studies, with a focus on start-up techniques, filter cake development, the application of filter aids (cake forming solid precoats), and body feeds (flux enhancing polymers). This paper discusses the progress of those filter studies. Crossflow filtration is a key process step in many operating and planned waste treatment facilities to separate undissolved solids from supernate solutions. This separation technology generally has the advantage of self-cleaning through the action of wall shear stress created by the flow of waste slurry through the filter tubes. However, the ability of filter wall self-cleaning depends on the slurry being filtered. Many of the alkaline radioactive wastes are extremely challenging to filtration, e.g., those containing compounds of aluminum and iron, which have particles whose size and morphology reduce permeability. Unfortunately, low filter flux can be a bottleneck in waste processing facilities such as the Savannah River Integrated Salt Disposition Process and the Hanford Waste Treatment Plant. Any improvement to the filtration rate would lead directly to increased throughput of the entire process. To date increased rates are generally realized by either increasing the crossflow filter feed flow rate, limited by pump capacity, or by increasing filter surface area, limited by space and increasing the required pump load. SRNL set up both dead-end and crossflow filter tests to better understand filter performance based on filter media structure, flow conditions, filter cleaning, and several different types of filter aids and body feeds. Using non-radioactive simulated wastes, both chemically and physically similar to the actual radioactive wastes, the authors performed several tests to evaluate methods to improve filter performance. With the proper use of filter flow conditions and filter enhancers, filter flow rates can be increased over rates currently realized today. Experiments that use non-radioactive simulants for actual waste always carry the inherent risk of not eliciting prototypic results; however, they will assist in focusing the scope needed to minimize radioactive testing and thus maximize safety. To that end this investigation has determined: (1) Waste simulant SB6 was found to be more challenging to filtration than a SRS Tank 8F simulant; (2) Higher solids concentration presents a greater challenge to filtration; (3) Filter cake is something that should be properly developed in initial filter operation; (4) Backpulsing is not necessary to maintain a good filter flux with salt wastes; (5) Scouring a filter without cleaning will lead to improved filter performance; (6) The presence of a filter cake can improve the solids separation by an order of magnitude as determined by turbidity; (7) A well developed cake with periodic scouring may allow a good filter flux to be maintained for long periods of time; and (8) Filtrate flux decline is reversible when the concentration of the filtering slurry drops and the filter is scoured.

  16. FRACTIONAL AEROSOL FILTRATION EFFICIENCY OF IN-DUCT VENTILATION AIR CLEANERS

    EPA Science Inventory

    The filtration efficiency of ventilation air cleaners is highly particle-size dependent over the 0.01 to 3 ?m diameter size range. Current standardized test methods, which determine only overall efficiencies for ambient aerosol or other test aerosols, provide data of limited util...

  17. Slipstream testing of the Direct Sulfur Recovery Process

    SciTech Connect

    Gangwal, S.K.; Portzer, J.W.; Howe, G.B.; Chen, D.H.; McMillian, M.H.

    1994-10-01

    The objective of this work is to continue further development of the zinc titanate fluidized-bed desulfurization (ZTFBD) and the Direct Sulfur Recovery Process (DSRP) technologies for hot gas cleanup in integrated gasification combined cycle (IGCC) power generating systems. There are three main goals of this project: development of an integrated, skid-mounted, bench-scale ZTFBD/DSRP reactor system; testing the integrated system over an extended period with a slipstream of coal gas from an operating gasifier to quantify the degradation in performance, if any, caused by the trace contaminants present in coal gas (including heavy metals, chlorides, fluorides, and ammonia); and design, fabrication, and commissioning of a larger, pilot-plant scale DSRP reactor system capable of operating on a six-fold volume of gas greater than the reactors used in the bench-scale field tests. The results so far on the first phase are limited to design and construction of the test apparatus. This report describes DSRP technology and equipment that will be used to test it.

  18. Dynamic filtration of invert-emulsion muds

    SciTech Connect

    Jiao, D.; Sharma, M.M. )

    1993-09-01

    Dynamic-filtration experiments conducted on oil-based muds show that the dynamic-filtration rate is much higher than API filtration rates. The use of water-wet solids results in very poor-quality external mudcakes and high fluid-loss rates. Better external mudcakes are formed by mixing equal parts organophilic clay and mud. Filtration-loss-control additives (asphalt mineral pitches) do not reduce the equilibrium filtration rate, but do reduce spurt loss and limit solids invasion. In brine-saturated rocks, the invasion rate for oil-based muds is significantly smaller than for water-based muds because capillary pressure prevents the oil phase from entering the core in oil-based muds. Oil-based mudcakes are softer and more shear-sensitive than water-based mudcakes. Scanning electron microscope (SEM) photomicrographs indicate that oil-based mudcakes consist of individual water droplets coated with clay particles. This cake structure gives rise to the low permeability and shear sensitivity of oil-based muds.

  19. Tailoring wall permeabilities for enhanced filtration

    NASA Astrophysics Data System (ADS)

    Herterich, J. G.; Vella, D.; Field, R. W.; Hankins, N. P.; Griffiths, I. M.

    2015-05-01

    The build-up of contaminants at the wall of cross-flow membrane filtration systems can be detrimental to the operation of such systems because of, amongst other things, the osmotic backflow it may induce. In this paper, we propose a strategy to avoid the negative effects of backflow due to osmosis by using 2D channels bounded by walls with a combination of permeable and impermeable segments. We show that preventing flow through the final portion of the channel can increase the efficiency of filtration and we determine the optimal fraction occupied by the permeable wall that maximizes efficiency. Our analysis uses a combination of numerical techniques and asymptotic analysis in the limit of low wall permeabilities. Finally, we consider how the energy cost of filtration depends on the Péclet number and show that the energy cost per unit of filtered water may be minimized by appropriately choosing both the Péclet number and the permeable-region fraction.

  20. The Perspective of Riverbank Filtration in China

    NASA Astrophysics Data System (ADS)

    Li, J.; Teng, Y.; Zhai, Y.; Zuo, R.

    2014-12-01

    Sustainable drinking water supply can affect the health of people, and the surrounding ecosystems. According to statistics of the monitoring program of drinking water sources in 309 at or above prefecture level of China in 2013, the major pollutants index were total phosphorus, ammonia and manganese in surface drinking water sources, respectively, iron, ammonia and manganese in groundwater drinking water sources, respectively. More than 150 drinking water emergency environmental accidents happened since 2006, 52 of these accidents led to the disruption of water supply in waterworks, and a population of over ten million were affected. It indicated that there is a potential risk for people's health by the use of river water directly and it is necessary to require alternative techniques such as riverbank filtration for improving the drinking water quality. Riverbank filtration is an inexpensive natural process, not only smoothing out normal pollutant concentration found in surface water but also significantly reducing the risk from such emergency events as chemical spill into the river. Riverbank filtration technique has been used in many countries more than 100 years, including China. In China, in 1950s, the bank infiltration technique was first applied in northeast of China. Extensive bank infiltration application was conducted in 1980s, and more than 300 drinking water sources utilities bank infiltration established mainly near the Songhua River Basin, the Yellow River Basin, Haihe River Basin. However, the comparative lack of application and researches on riverbank filtration have formed critical scientific data gap in China. As the performance of riverbank filtration technique depend on not only the design and setting such as well type, pumping rate, but also the local hydrogeology and environmental properties. We recommend more riverbank filtration project and studies to be conducted to collect related significant environmental geology data in China. Additionally, the experience has demonstrated a number of water quality improvements associated with riverbank filtration. It is important to stress that the fate and behavior of emerging organic contaminants during riverbank filtration should be taken into special consideration.

  1. Equivariant Poincaré series of filtrations and topology

    NASA Astrophysics Data System (ADS)

    Campillo, Antonio; Delgado, Félix; Gusein-Zade, Sabir M.

    2014-04-01

    Earlier, for an action of a finite group G on a germ of an analytic variety, an equivariant G-Poincaré series of a multi-index filtration in the ring of germs of functions on the variety was defined as an element of the Grothendieck ring of G-sets with an additional structure. We discuss to which extent the G-Poincaré series of a filtration defined by a set of curve or divisorial valuations on the ring of germs of analytic functions in two variables determines the (equivariant) topology of the curve or of the set of divisors.

  2. Testing and verification of granular-bed filters for the removal of particulate and alkalies. Fifth quarterly project report, October 1-December 31, 1981

    SciTech Connect

    Lippert, T.E.

    1982-03-01

    The Westinghouse Electric Corporation with Ducon, Inc. and Burns and Roe, Inc. are conducting a test and evaluation program of a Granular Bed Filter (GBF) for gas cleaning applications in pressurized-fluidized bed combustion processes. This work is funded by DOE PRDA for Exploratory Research, Development, Testing and Evaluation of Systems or Devices for Hot Gas Clean-up. This report describes the status of the testing of the subpilot scale GBF unit and test results and analysis from the bench scale alkali gettering work.

  3. Evaluation of Flocculation and Filtration Procedures Applied to WSRC Sludge: A Report from B. Yarar, Colorado School of Mines

    SciTech Connect

    Poirier, M.R.

    2001-06-04

    This report, addresses fundamentals of flocculation processes shedding light on why WSRC researchers have not been able to report the discovery of a successful flocculant and acceptable filtration rates. It also underscores the importance of applying an optimized flocculation-testing regime, which has not been adopted by these researchers. The final part of the report proposes a research scheme which should lead to a successful choice of flocculants, filtration aids (surfactants) and a filtration regime, as well recommendations for work that should be carried out to make up for the deficiencies of the limited WSRC work where a better performance should be the outcome.

  4. On-sun test results from second-generation and advanced-concepts alkali-metal pool-boiler receivers

    SciTech Connect

    Moreno, J.B.; Andraka, C.E.; Moss, T.A.; Cordeiro, P.G.; Dudley, V.E.; Rawlinson, K.S.

    1994-05-01

    Two 75-kW{sub t} alkali-metal pool-boiler solar receivers have been successfully tested at Sandia National Laboratories` National Solar Thermal Test Facility. The first one, Sandia`s `` second-generation pool-boiler receiver,`` was designed to address commercialization issues identified during post-test assessment of Sandia`s first-generation pool-boiler receiver. It was constructed from Haynes alloy 230 and contained the alkali-metal alloy NaK-78. The absorber`s wetted side had a brazed-on powder-metal coating to stabilize boiling. This receiver was evaluated for boiling stability, hot- and warm-restart behavior, and thermal efficiency. Boiling was stable under all conditions. All of the hot restarts were successful. Mild transient hot spots observed during some hot restarts were eliminated by the addition of 1/3 torr of xenon to the vapor space. All of the warm restarts were also successful. The heat-transfer crisis that damaged the first receiver did not recur. Thermal efficiency was 92.3% at 750{degrees}C with 69.6 kW{sub t} solar input. The second receiver tested, Sandia`s ``advanced-concepts receiver,`` was a replica of the first-generation receiver except that the cavities, which were electric-discharge-machined in the absorber for boiling stability, were eliminated. This step was motivated by bench-scale test results that showed that boiling stability improved with increased heated-surface area, tilt of the heated surface from vertical, and added xenon. The bench-scale results suggested that stable boiling might be possible without heated-surface modification in a 75-kW{sub t} receiver. Boiling in the advanced-concepts receiver with 1/3 torr of xenon added has been stable under all conditions, confirming the bench-scale tests.

  5. 40 CFR 141.174 - Filtration sampling requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED...NATIONAL PRIMARY DRINKING WATER REGULATIONS Enhanced Filtration and Disinfection-Systems...requirements for systems using filtration treatment. In addition...141.74, a public water system subject...

  6. 40 CFR 141.174 - Filtration sampling requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED...NATIONAL PRIMARY DRINKING WATER REGULATIONS Enhanced Filtration and Disinfection-Systems...requirements for systems using filtration treatment. In addition...141.74, a public water system subject...

  7. 40 CFR 141.171 - Criteria for avoiding filtration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED...NATIONAL PRIMARY DRINKING WATER REGULATIONS Enhanced Filtration and Disinfection-Systems...Criteria for avoiding filtration. In addition to...141.71, a public water system subject...

  8. 40 CFR 141.171 - Criteria for avoiding filtration.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED...NATIONAL PRIMARY DRINKING WATER REGULATIONS Enhanced Filtration and Disinfection-Systems...Criteria for avoiding filtration. In addition to...141.71, a public water system subject...

  9. 40 CFR 141.174 - Filtration sampling requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED...NATIONAL PRIMARY DRINKING WATER REGULATIONS Enhanced Filtration and Disinfection-Systems...requirements for systems using filtration treatment. In addition...141.74, a public water system subject...

  10. 40 CFR 141.171 - Criteria for avoiding filtration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED...NATIONAL PRIMARY DRINKING WATER REGULATIONS Enhanced Filtration and Disinfection-Systems...Criteria for avoiding filtration. In addition to...141.71, a public water system subject...

  11. 40 CFR 141.174 - Filtration sampling requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED...NATIONAL PRIMARY DRINKING WATER REGULATIONS Enhanced Filtration and Disinfection-Systems...requirements for systems using filtration treatment. In addition...141.74, a public water system subject...

  12. 40 CFR 141.171 - Criteria for avoiding filtration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED...NATIONAL PRIMARY DRINKING WATER REGULATIONS Enhanced Filtration and Disinfection-Systems...Criteria for avoiding filtration. In addition to...141.71, a public water system subject...

  13. 11. DETAIL VIEW OF FILTER TANK IN FILTRATION PLANT (#1773), ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. DETAIL VIEW OF FILTER TANK IN FILTRATION PLANT (#1773), LOOKING NORTHWEST - Presidio Water Treatment Plant, Filtration Plant, East of Lobos Creek at Baker Beach, San Francisco, San Francisco County, CA

  14. 9. VIEW OF UPPER LEVEL OF FILTRATION ROOM SHOWING TANKS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. VIEW OF UPPER LEVEL OF FILTRATION ROOM SHOWING TANKS AND CONTROL VALVES, LOOKING NORTH - Presidio Water Treatment Plant, Filtration Plant, East of Lobos Creek at Baker Beach, San Francisco, San Francisco County, CA

  15. 3. INTERIOR OF THE WATER FILTRATION PLANT SHOWING REMAINS OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. INTERIOR OF THE WATER FILTRATION PLANT SHOWING REMAINS OF THE FILTRATION APPARATUS. - Tower Hill No. 2 Mine, Approximately 0.47 mile Southwest of intersection of Stone Church Road & Township Route 561, Hibbs, Fayette County, PA

  16. Filtration of nano-particles by a gas-solid fluidized bed.

    PubMed

    Liu, Kuang-Yu; Wey, Ming-Yen

    2007-08-17

    The filtration of 80 nm SiO2 and Al(2)O(3) particles in a gas stream using fluidized beds was studied. Silica sand and activated carbon (A.C.) were adopted as bed materials to filtrate 80 nm SiO2 and Al(2)O(3) particles. The collected particles were elutriated from the fluidized bed, so the filtration was a dynamic process and the variations of the removal efficiency with time were studied. Experimental results showed that the filtrations of 80 nm SiO2 and Al(2)O(3) particles with a bed material of silica sand were not dynamic processes but the filtration by A.C. was. The removal efficiencies for SiO2 and Al(2)O(3) particles using silica sand as bed material were held steady and found to be equal, between 86 and 93%. A.C. is considered to be more efficient than silica sand because it has a high specific surface area. However, the experimental data yield conflicting results. The removal efficiency of Al(2)O(3) particles fell from 92% initially to 80% at the end of test-a little lower than that obtained by filtration using silica sand. A higher voidage of A.C. than silica sand weakens the removal of nanoparticles since the diffusion mechanism dominates. The removal efficiency of SiO2 by A.C. decayed from 83 to 40% with time passed. The huge differences between the filtration efficiency of SiO2 and that of Al(2)O(3) particles by A.C. was associated with the extensive segregation of SiO2 and A.C. particles, which caused more SiO2 particles to move to the top of the bed, where they were elutriated. The weak inter-particle force for SiO2 decreased the removal efficiency also. PMID:17303329

  17. SCREENING TESTS FOR IMPROVED METHANE CRACKING MATERIALS

    SciTech Connect

    Klein, J; Jeffrey Holder, J

    2007-07-16

    Bench scale (1 to 6 gram) methane cracking tests have been performed on a variety of pure elements, some alloys, and SAES{reg_sign} commercial getters St 101, St 198, St 707, St 737, and St 909 to determine methane cracking performance (MCP) of 5% methane in a helium carrier at 700 C, 101.3 kPa (760 torr) with a 10 sccm feed. The MCP was almost absent from some materials tested while others showed varying degrees of MCP. Re, Cr, V, Gd, and Mo powders had good MCP, but limited capacities. Nickel supported on kieselguhr (Ni/k), a Zr-Ni alloy, and the SAES{reg_sign} getters had good MCP in a helium carrier. The MCP of these same materials was suppressed in a hydrogen carrier stream and the MCP of the Zr-based materials was reduced by nitride formation when tested with a nitrogen carrier gas.

  18. Screening tests for improved methane cracking materials

    SciTech Connect

    Klein, J. E.; Hoelder, J. S.

    2008-07-15

    Bench scale (1 to 6 gram) methane cracking tests have been performed on a variety of pure elements, some alloys, and SAES{sup R} commercial getters St 101, St 198, St 707, St 737, and St 909 to determine methane cracking performance (MCP) of 5% methane in a helium carrier at 700 deg.C, 101.3 kPa (760 torr) with a 10 seem feed. The MCP was almost absent from some materials tested while others showed varying degrees of MCP. Re, Cr, V, Gd, and Mo powders had good MCP, but limited capacities. Nickel supported on kieselguhr (Ni/k), a Zr-Ni alloy, and the SAESr getters had good MCP in a helium carrier. The MCP of these same materials was suppressed in a hydrogen carrier stream and the MCP of the Zr-based materials was reduced by nitride formation when tested with a nitrogen carrier gas. (authors)

  19. DEMONSTRATION BULLETIN: MEMBRANE FILTRATION - SBP TECHNOLOGIES, INC.

    EPA Science Inventory

    SBP Technologies Inc. (SBP) has developed a membrane-based separation technology that can reduce the volume of contaminated groundwater requiring treatment. The SBP Filtration Unit consists of porous, sintered, stainless steel tubes arranged in a shell-and-tube module configurati...

  20. Calculation of filtration from canals and irrigators

    NASA Astrophysics Data System (ADS)

    Bereslavskii, É. N.

    2012-07-01

    Some schemes of the steady plane filtration from canals and irrigators through a soil layer underlain by a pressure highly permeable water-bearing horizon or an impermeable base in the presence of the ground capillary and evaporation from the free surface of the underground water were considered. The filtration water flows in these schemes were investigated by solving the mixed multiparametric boundary-value problems of the theory of analytical functions with the use of the Polubarinova-Kochina method. On the basis of the models proposed, algorithms have been developed for calculating the sizes of the saturation zone and the rate of the filtration water flow in a canal and an irrigator with account for the ground capillary, the evaporation from the free surface of the underground water, the water depth in the canal, and the upthrust formed by the water in the underlying well-permeable horizon or the water on the impermeable base. The results of calculations carried out for schemes with identical filtration parameters were compared depending on the shape of the bed of the water source (a canal or an irrigator) and on the type of the soil-layer base (a well-permeable waterbearing horizon or a confining layer).

  1. DRINKING WATER TREATMENT USING SLOW SAND FILTRATION

    EPA Science Inventory

    Recent re-interest in slow sand filtration was brought about by the needs for small communities to install treatment technologies that are effective, less costly, and easier to operate and maintain than the more sophisticated rapid sand filters. These simpler technologies for sma...

  2. ELECTROSTATIC STIMULATION OF FABRIC FILTRATION - AN UPDATE

    EPA Science Inventory

    The paper gives results of an investigation of the concept of electrostatic stimulation of fabric filtration (ESFF) on a slipstream of a pulverized-coal-fired boiler using reverse-air-cleaned woven fiberglass filter bags. Operation was demonstrated using ESFF at a glass-to-cloth ...

  3. INTRODUCTION Chronic kidney disease impairs glomerular filtration

    E-print Network

    Thompson, Paul

    INTRODUCTION Chronic kidney disease impairs glomerular filtration rate (GFR) which is detected as elevated serum levels of kidney biomarkers such as creatinine and cystatin C. Prior studies have related poor kidney function to cognitive decline and generalized brain atrophy. However, so far, there have

  4. Plasma discharge self-cleaning filtration system

    DOEpatents

    Cho, Young I.; Fridman, Alexander; Gutsol, Alexander F.; Yang, Yong

    2014-07-22

    The present invention is directed to a novel method for cleaning a filter surface using a plasma discharge self-cleaning filtration system. The method involves utilizing plasma discharges to induce short electric pulses of nanoseconds duration at high voltages. These electrical pulses generate strong Shockwaves that disintegrate and dislodge particulate matter located on the surface of the filter.

  5. Design parameters for rotating cylindrical filtration

    NASA Technical Reports Server (NTRS)

    Schwille, John A.; Mitra, Deepanjan; Lueptow, Richard M.

    2002-01-01

    Rotating cylindrical filtration displays significantly reduced plugging of filter pores and build-up of a cake layer, but the number and range of parameters that can be adjusted complicates the design of these devices. Twelve individual parameters were investigated experimentally by measuring the build-up of particles on the rotating cylindrical filter after a fixed time of operation. The build-up of particles on the filter depends on the rotational speed, the radial filtrate flow, the particle size and the gap width. Other parameters, such as suspension concentration and total flow rate are less important. Of the four mechanisms present in rotating filters to reduce pore plugging and cake build-up, axial shear, rotational shear, centrifugal sedimentation and vortical motion, the evidence suggests rotational shear is the dominant mechanism, although the other mechanisms still play minor roles. The ratio of the shear force acting parallel to the filter surface on a particle to the Stokes drag acting normal to the filter surface on the particle due to the difference between particle motion and filtrate flow can be used as a non-dimensional parameter that predicts the degree of particle build-up on the filter surface for a wide variety of filtration conditions. c2002 Elsevier Science B.V. All rights reserved.

  6. Gel Filtration Chromatography: A Laboratory Experiment.

    ERIC Educational Resources Information Center

    Hurlbut, Jeffrey A.; Schonbeck, Niels D.

    1984-01-01

    Describes a rapid, visual demonstration of protein separation by gel filtration chromatography. The procedure separates two highly colored proteins of different molecular weights on a Sephadex G-75 in 45 minutes. This time includes packing the column as well. Background information, reagents needed, procedures used, and results obtained are…

  7. ADVANCED ELECTROSTATIC ENHANCEMENT OF FABRIC FILTRATION

    EPA Science Inventory

    The paper discusses laboratory and pilot plant studies of a modification of the U.S. EPA's Electrically Stimulated Fabric Filtration (ESFF) method in which corona voltage on a center-wire electrode replaces the subcorona electrodes at the bag surface. The electric field which aff...

  8. Solute partitioning and filtration by extracellular matrices.

    PubMed

    Fissell, William H; Hofmann, Christina L; Ferrell, Nicholas; Schnell, Lisa; Dubnisheva, Anna; Zydney, Andrew L; Yurchenco, Peter D; Roy, Shuvo

    2009-10-01

    The physiology of glomerular filtration remains mechanistically obscure despite its importance in disease. The correspondence between proteinuria and foot process effacement suggests podocytes as the locus of the filtration barrier. If so, retained macromolecules ought to accumulate at the filtration barrier, an effect called concentration polarization. Literature data indicate macromolecule concentrations decrease from subendothelial to subepithelial glomerular basement membrane (GBM), as would be expected if the GBM were itself the filter. The objective of this study was to obtain insights into the possible role of the GBM in protein retention by performing fundamental experimental and theoretical studies on the properties of three model gels. Solute partitioning and filtration through thin gels of a commercially available laminin-rich extracellular matrix, Matrigel, were measured using a polydisperse polysaccharide tracer molecule, Ficoll 70. Solute partitioning into laminin gels and lens basement membrane (LBM) were measured using Ficoll 70. A novel model of a laminin gel was numerically simulated, as well as a mixed structure-random-fiber model for LBM. Experimental partitioning was predicted by numerical simulations. Sieving coefficients through thin gels of Matrigel were size dependent and strongly flux dependent. The observed flux dependence arose from compression of the gel in response to the applied pressure. Gel compression may alter solute partitioning into extracellular matrix at physiologic pressures present in the glomerular capillary. This suggests a physical mechanism coupling podocyte structure to permeability characteristics of the GBM. PMID:19587146

  9. The weight filtration for real algebraic varieties

    E-print Network

    McCrory, Clint

    2008-01-01

    Using the work of Guillen and Navarro Aznar we associate to each real algebraic variety a filtered chain complex, the weight complex, which is well-defined up to filtered quasi-isomorphism, and which induces on Borel-Moore homology with Z/2 coefficients an analog of the weight filtration for complex algebraic varieties.

  10. Catalytic fabric filtration for simultaneous NO{sub x} and particulate control. Quarterly technical progress report, July 1--September 30, 1993

    SciTech Connect

    Weber, G.F.; Ness, S.R.; Schelkoph, G.L.

    1993-11-01

    The EERC approach to meeting the program objective involves the development of a CFF for simultaneous NO{sub x} and particulate control. The idea of applying either a permanent or throwaway catalyst to a high-temperature fabric filter for NO{sub x} control is not new. However, advances at OCF have shown that a high-activity catalyst can be applied to a high-temperature woven glass cloth, resulting in a fabric filter material that can operate at temperatures higher than commercially available, coated glass fabric. The NO{sub x} is removed by catalytic reduction with ammonia to form nitrogen and water. The catalyst employed at this time is vanadium-titanium, but the exact catalyst composition and the unique method of applying the catalyst to high-temperature glass fabric are the property of OCF. Other catalyst options are being evaluated by OCF in order to improve catalyst performance and minimize catalyst cost. Bench-scale experimental results have shown that over 90% NO{sub x} removal can be achieved, that the catalyst-fabric has promising self-abrasion characteristics, and that the potential exists for substantially reduced cost compared to conventional SCR and fabric filtration technologies. However, development of the technology required further evaluation of air-to-cloth ratio effects, ammonia slip, SO{sub 2} oxidation to SO{sub 3}, temperature cycling, catalyst-coated fabric preparation, fuel impacts, fabric cleaning (reverse-gas versus pulse-jet), catalyst life (poisoning and resistance to erosion), and filter performance/life (particulate control, differential pressure, and durability).

  11. Catalytic fabric filtration for simultaneous NO{sub x} and particulate control. Quarterly technical progress report, October 1--December 31, 1993

    SciTech Connect

    Weber, G.F.; Ness, S.R.; Schelkoph, G.L.

    1994-01-01

    The EERC approach to meeting the program objective involves the development of a CFF for simultaneous NO. and particulate control. The idea of applying either a permanent or throwaway catalyst to a high-temperature fabric filter for NO. control is not new (1--4). However, advances at OCF have shown that a high-activity catalyst can be applied to a high-temperature woven glass cloth, resulting in a fabric filter material that can operate at temperatures higher than commercially available, coated glass fabric. The NO. is removed by catalytic reduction with ammonia to form nitrogen and water. The catalyst employed at this time is vanadium-titanium, but the exact catalyst composition and the unique method of applying the catalyst to high-temperature glass fabric are the property of OCF (5). Other catalyst options are being evaluated by OCF in order to improve catalyst performance and minimize catalyst cost. Bench-scale experimental results have shown that over 90% NO. removal can be achieved, that the catalyst-coated fabric has promising self-abrasion characteristics, and that the potential exists for substantially reduced cost compared to conventional SCR and fabric filtration technologies (6,7). However, development of the technology required further evaluation of air-to-cloth ratio effects, ammonia slip, SO{sub 2} oxidation to SO{sub 3}, temperature cycling, catalyst-coated fabric preparation, fuel impacts, fabric cleaning (reverse-gas versus pulse-jet), catalyst life (poisoning and resistance to erosion), and filter performance/life (particulate control, differential pressure, and durability).

  12. Catalytic fabric filtration for simultaneous NO{sub x} and particulate control. Quarterly technical progress report, April 1--June 30, 1993

    SciTech Connect

    Weber, G.F.; Ness, S.R.; Laudal, D.L.; Dunham, G.E.

    1993-08-01

    The University of North Dakota Energy & Environmental Research Center (EERC), Owens-Corning Fiberglas Corporation (OCF), and Raytheon Engineers & Constructors (RE&C), are conducting research to develop a catalytic fabric filter (CFF) for simultaneous NO{sub x} and particulate control. Advances at OCF have shown that a high-activity catalyst can be applied to a high-temperature woven glass cloth resulting in a fabric filter material that can operate at temperatures higher than commercially available, coated glass fabric. The NO{sub x} is removed by catalytic reduction with ammonia to form nitrogen and water. The catalyst employed at this time is vanadium/titanium, but the exact catalyst composition and the unique method of applying the catalyst to high-temperature glass fabric are the property of OCF. Other catalyst options are being evaluated by OCF in order to improve catalyst performance and minimize catalyst cost. Bench-scale experimental results have shown that over 90% NO{sub x} removal can be achieved, that the catalyst/fabric has promising self-abrasion characteristics, and that the potential exists for substantially reduced cost compared to conventional SCR/fabric filtration technology. However, development of the technology requires further evaluation of air-to-cloth ratio effects, ammonia slip, SO{sub 2} oxidation to SO{sub 3}, temperature cycling, catalyst-coated fabric preparation, fuel impacts, fabric cleaning (reverse-gas versus pulse-jet), catalyst life (poisoning and resistance to erosion), and filter performance/life (particulate control, differential pressure, and durability).

  13. Catalytic fabric filtration for simultaneous NO{sub x} and particulate control. Quarterly technical progress report, October 1--December 31, 1992

    SciTech Connect

    Weber, G.F.; Ness, S.R.; Laudal, D.L.; Dunham, G.

    1993-02-01

    The EERC approach to meeting the program objective involves the development of a catalytic fabric filter for simultaneous NO{sub x} and particulate control. The idea of applying either permanent or throwaway catalysts to a high-temperature fabric filter for NO{sub x} control is not new. However, advances at OCF have shown that a high-activity catalyst can be applied to a high-temperature woven glass cloth resulting in a fabric filter material that can operate at temperatures higher than the maximum operating temperatures of commercially available, coated glass fabric. The NO{sub x} is removed by catalytic reduction with ammonia to form nitrogen and water. The catalyst employed at this time is vanadium/titanium, but the exact catalyst composition and the unique method of applying the catalyst to high-temperature glass fabric are the property of OCF. Other catalyst options are being evaluated by OCF in order to improve catalyst performance and minimize catalyst cost. Bench-scale experimental results to date have shown that over 90% NO{sub x} removal can be achieved, the catalyst/fabric has promising self-abrasion characteristics, and the potential exists for substantially reduced cost when compared with conventional SCR/fabric filtration technology. However, development of the technology requires further evaluation of air-to-cloth ratio, ammonia slip, SO{sub 2} oxidation to SO{sub 3}, temperature cycling, catalyst-coated fabric preparation, fuel impacts, fabric cleaning (reverse-gas versus pulse-jet), catalyst life (poisoning and resistance to erosion), and filter performance/life (particulate control, differential pressure, and durability).

  14. 20. View of sand filtration bed. Wheelbarrow was used to ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. View of sand filtration bed. Wheelbarrow was used to remove schmutzdeck (top, dirty sand layer containing particulate contamination, dead microorganisms and debris) for cleaning and or disposal. - Lake Whitney Water Filtration Plant, Filtration Plant, South side of Armory Street between Edgehill Road & Whitney Avenue, Hamden, New Haven County, CT

  15. 16. View west from center of central corridor between filtration ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. View west from center of central corridor between filtration beds which are located to the left and right of the photograph. - Lake Whitney Water Filtration Plant, Filtration Plant, South side of Armory Street between Edgehill Road & Whitney Avenue, Hamden, New Haven County, CT

  16. 2. View east of filtration bed building. Access bridge to ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. View east of filtration bed building. Access bridge to earth covering over reinforced concrete roof is at center right of photograph. - Lake Whitney Water Filtration Plant, Filtration Plant, South side of Armory Street between Edgehill Road & Whitney Avenue, Hamden, New Haven County, CT

  17. 22. Float located adjacent to entry stair in filtration bed. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. Float located adjacent to entry stair in filtration bed. The float actuates a valve that maintains water level over the bed. - Lake Whitney Water Filtration Plant, Filtration Plant, South side of Armory Street between Edgehill Road & Whitney Avenue, Hamden, New Haven County, CT

  18. 3. View southeast of northwest corner of filtration bed. Laboratory ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. View southeast of northwest corner of filtration bed. Laboratory building is at center right of photograph. East rock appears directly behind the laboratory building. - Lake Whitney Water Filtration Plant, Filtration Plant, South side of Armory Street between Edgehill Road & Whitney Avenue, Hamden, New Haven County, CT

  19. 15. View west of central corridor between filtration beds which ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. View west of central corridor between filtration beds which are located to the left and right of the photograph. - Lake Whitney Water Filtration Plant, Filtration Plant, South side of Armory Street between Edgehill Road & Whitney Avenue, Hamden, New Haven County, CT

  20. 30. Valves under central corridor of filtration bed building. Main ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    30. Valves under central corridor of filtration bed building. Main flood valves is at left and crossover valve is a right. - Lake Whitney Water Filtration Plant, Filtration Plant, South side of Armory Street between Edgehill Road & Whitney Avenue, Hamden, New Haven County, CT

  1. 21. Overflow pipe in filtration bed. Located at each corner ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. Overflow pipe in filtration bed. Located at each corner of the bed, the pipes drain off any excess water and maintain a limit on water depth. - Lake Whitney Water Filtration Plant, Filtration Plant, South side of Armory Street between Edgehill Road & Whitney Avenue, Hamden, New Haven County, CT

  2. Integration of membrane filtration and photoelectrocatalysis using a TiO2/carbon/Al2O3 membrane for enhanced water treatment.

    PubMed

    Wang, Guanlong; Chen, Shuo; Yu, Hongtao; Quan, Xie

    2015-12-15

    Coupling membrane filtration with photocatalysis provides multifunction involving filtration and photocatalytic degradation for removing pollutants from water, but the performance of photocatalytic membrane is limited due to the quick recombination of photogenerated electron-holes in photocatalytic layer. Herein, a TiO2/carbon/Al2O3 membrane was designed and constructed through sequentially depositing graphitic carbon layer with good electro-conductivity and TiO2 nanoparticles layer with photocatalytic activity on Al2O3 membrane support. When light irradiated on the membrane with a voltage supply, the photogenerated electrons could be drained from photocatalytic layer and separated with holes efficiently, thus endowing the membrane with photoelectrocatalytic function. Membrane performance tests indicated that the photoelectrocatalytic membrane filtration (PECM) showed improved removal of natural organic matters (NOMs) and permeate flux with increasing voltage supply. For PECM process at 1.0V, its NOMs removal was 1.2 or 1.7 times higher than that of filtration with UV irradiation or filtration alone, and its stable permeate flux was 1.3 or 3 times higher than that of filtration with UV irradiation or filtration alone. Moreover, the PECM process exhibited special advantage in removing organic chemicals (e.g., Rhodamine B), which displayed 1.3 or 3 times higher removal than that of filtration with UV irradiation or filtration alone. PMID:26073518

  3. Field assessment of enclosed cab filtration system performance using particle counting measurements.

    PubMed

    Organiscak, John A; Cecala, Andrew B; Noll, James D

    2013-01-01

    Enclosed cab filtration systems are typically used on mobile mining equipment to reduce miners' exposure to airborne dust generated during mining operations. The National Institute for Occupational Safety and Health (NIOSH) Office of Mine Safety and Health Research (OMSHR) has recently worked with a mining equipment manufacturer to examine a new cab filtration system design for underground industrial minerals equipment. This cab filtration system uses a combination of three particulate filters to reduce equipment operators' exposure to dust and diesel particulates present in underground industrial mineral mines. NIOSH initially examined this cab filtration system using a two-instrument particle counting method at the equipment company's manufacturing shop facility to assess several alternative filters. This cab filtration system design was further studied on several pieces of equipment during a two- to seven-month period at two underground limestone mines. The two-instrument particle counting method was used outside the underground mine at the end of the production shifts to regularly test the cabs' long-term protection factor performance with particulates present in the ambient air. This particle counting method showed that three of the four cabs achieved protection factors greater than 1,000 during the field studies. The fourth cab did not perform at this level because it had a damaged filter in the system. The particle counting measurements of submicron particles present in the ambient air were shown to be a timely and useful quantification method in assessing cab performance during these field studies. PMID:23915268

  4. Field Assessment of Enclosed Cab Filtration System Performance Using Particle Counting Measurements

    PubMed Central

    Organiscak, John A.; Cecala, Andrew B.; Noll, James D.

    2015-01-01

    Enclosed cab filtration systems are typically used on mobile mining equipment to reduce miners’ exposure to airborne dust generated during mining operations. The National Institute for Occupational Safety and Health (NIOSH) Office of Mine Safety and Health Research (OMSHR) has recently worked with a mining equipment manufacturer to examine a new cab filtration system design for underground industrial minerals equipment. This cab filtration system uses a combination of three particulate filters to reduce equipment operators’ exposure to dust and diesel particulates present in underground industrial mineral mines. NIOSH initially examined this cab filtration system using a two-instrument particle counting method at the equipment company’s manufacturing shop facility to assess several alternative filters. This cab filtration system design was further studied on several pieces of equipment during a two- to seven-month period at two underground limestone mines. The two-instrument particle counting method was used outside the underground mine at the end of the production shifts to regularly test the cabs’ long-term protection factor performance with particulates present in the ambient air. This particle counting method showed that three of the four cabs achieved protection factors greater than 1,000 during the field studies. The fourth cab did not perform at this level because it had a damaged filter in the system. The particle counting measurements of submicron particles present in the ambient air were shown to be a timely and useful quantification method in assessing cab performance during these field studies. PMID:23915268

  5. Filtration of bioaerosols using a granular metallic filter with micrometer-sized collectors

    SciTech Connect

    Damit, Brian E; Bischoff, Brian L; Phelps, Tommy Joe; Wu, Dr. Chang-Yu; Cheng, Mengdawn

    2014-01-01

    Several experimental studies with granular bed filters composed of micrometer-sized spherical or sintered metallic granules have demonstrated their use in aerosol filtration. However, the effectiveness of these metallic membrane filters against bioaerosols has not been established. In this work, the filtration efficiency and filter quality of these filters against airborne B. subtilis endospore and MS2 virus were determined as a function of face velocity and loading time. In experiments, a physical removal efficiency greater than 99.9% and a viable removal efficiency of greater than 5-log were observed for both bacterial spore and viral aerosols. A lower face velocity produced both higher collection efficiency and filter quality for virus but was not statistically significant for spore filtration. Although the filter had high filtration efficiency of the test bioaerosols, the filter's high pressure drop resulted in a low filter quality (0.25-0.75 kPa- 1). Overall, filters with micrometer-sized collectors capture bioaerosols effectively but their applications in aerosol filtration may be limited by their high pressure drop.

  6. Determination of filtration properties of rocks in transient regime under high pressures and temperatures.

    NASA Astrophysics Data System (ADS)

    Fialko, A.

    2001-12-01

    We present laboratory techniques for the determination of filtration properties of rocks in closed volumes under high PT-conditions, and for non-steady state filtration. We have obtained a fundamental solution for 1-D diffusion equation subject to non-classical boundary conditions. Based on this solution, we describe methods of determination of the coefficients of hydraulic diffusivity and permeability for the filtration of a compressible fluid in a porous medium. The boundary conditions considered are represented by a linear combination of partial derivatives of pressure at the inlet and outlet of the experimental vessel with respect to space and time. The coefficient of hydraulic diffusivity is determined using the method of successive approximations. For large volumes of the experimental vessels (much greater than the sample size, which is typical for experiments under high PT conditions), the pressure profile relatively quickly becomes linear in space, but exponentially decaying in time. We derive explicit expressions for calculating the rock permeability coefficient in this pseudo-stationary regime. We consider the effects of temperature, stress state, pore pressure, and geochemical conditions on the filtration properties of rocks in deep (several km) deposits of oil and gas in Dniepr-Donets Depression (Ukraine). The use of experimental techniques for the determination of filtration properties of rocks under non-stationary conditions considerably expands the capabilities of laboratory testing of rocks, and is especially useful for predictions of changes in the transport properties of rocks at great depths.

  7. ELECTROSTATIC AUGMENTATION OF FABRIC FILTRATION: REVERSE-AIR PILOT UNIT EXPERIENCE

    EPA Science Inventory

    The report describes the use of a pilot unit (consisting of two baghouses in a parallel-flow arrangement on a slipstream from an industrial pulverized-coal boiler house) to test electrostatically augmented fabric filtration (ESFF) in a reverse-air cleaning mode. ESFF is character...

  8. EPA FABRIC FILTRATION STUDIES: 1. PERFORMANCE OF NON-WOVEN NYLON FILTER BAGS

    EPA Science Inventory

    The purpose of these investigations was to evaluate the potential of various new fabrics as baghouse filters and to obtain data for their use, by the fabric filtration community. The testing consisted of simulating a baghouse operation in a carefully controlled laboratory setting...

  9. ENVIRONMENTAL TECHNOLOGY VERIFICATION PROGRAM: Stormwater Source Area Treatment Device - Arkal Pressurized Stormwater Filtration System

    EPA Science Inventory

    Performance verification testing of the Arkal Pressurized Stormwater Filtration System was conducted under EPA's Environmental Technology Verification Program on a 5.5-acre parking lot and grounds of St. Mary's Hospital in Milwaukee, Wisconsin. The system consists of a water sto...

  10. REMOVAL OF ARSENIC IN DRINKING WATER: ARS CFU-50 APC ELECTROFLOCCULATION AND FILTRATION WATER TREATMENT SYSTEM

    EPA Science Inventory

    ETV testing of the ARS CFU-50 APC Electroflocculation and Filtration Water Treatment System (ARS CFU-50 APC) for arsenic removal was conducted at the Town of Bernalillo Well #3 site from April 18 through May 2, 2006. The source water was chlorinated groundwater from two supply w...

  11. EPA RESEARCH IN FABRIC FILTRATION: ANNUAL REPORT ON IERL-RTP INHOUSE PROGRAM

    EPA Science Inventory

    The report summarizes EPA's inhouse research program in fabric filtration, involving investigations into the basic mechanisms of dust/fabric interaction in order to develop improved understanding of the process. Evaluation of new fabrics in laboratory tests that can be extrapolat...

  12. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT--BAGHOUSE FILTRATION PRODUCTS, W.L. GORE ASSOC., INC.

    EPA Science Inventory

    The U.S. Environmental Protection Agency Air Pollution Control Technology (APCT) Verification Center evaluates the performance of baghouse filtration products used primarily to control PM2.5 emissions. This verification statement summarizes the test results for W.L. Gore & Assoc....

  13. Air-pollution control using particle filtration. (Latest citations from the NTIS data base). Published Search

    SciTech Connect

    Not Available

    1992-05-01

    The bibliography contains citations concerning the use of particle filtration techniques and equipment in air pollution control operations. Fabric, membrane, and granular bed filters are among the devices considered. Equipment descriptions and performance evaluations of specific test installations are discussed. Citations pertaining exclusively to electrostatic precipitators are excluded. (Contains a minimum of 232 citations and includes a subject term index and title list.)

  14. Air pollution control using particle filtration. (Latest citations from the NTIS Bibliographic database). Published Search

    SciTech Connect

    Not Available

    1993-09-01

    The bibliography contains citations concerning the use of particle filtration techniques and equipment in air pollution control operations. Fabric, membrane, and granular bed filters are among the devices considered. Equipment descriptions and performance evaluations of specific test installations are discussed. Citations pertaining to electrostatic precipitators are covered in a separate bibliography. (Contains 250 citations and includes a subject term index and title list.)

  15. Filtration Combustion in Smoldering and SHS

    NASA Technical Reports Server (NTRS)

    Matkowsky, Bernard

    1999-01-01

    Smolder waves and SHS (self-propagating high-temperature synthesis) waves are both examples of filtration combustion waves propagating in porous media. Smoldering combustion is important for the study of fire safety. Smoldering itself can cause damage, its products are toxic and it can also lead to the more dangerous gas phase combustion which corresponds to faster propagation at higher temperatures. In SHS, a porous solid sample, consisting of a finely ground powder mixture of reactants, is ignited at one end. A high temperature thermal wave, having a frontal structure, then propagates through the sample converting reactants to products. The SHS technology appears to enjoy a number of advantages over the conventional technology, in which the sample is placed in a furnace and "baked" until it is "well done". The advantages include shorter synthesis times, greater economy, in that the internal energy of the reactions is employed rather than the costly external energy of the furnace, purer products, simpler equipment and no intrinsic limitation on the size of the sample to be synthesized, as exists in the conventional technology. When delivery of reactants through the pores to the reaction site is an important aspect of the combustion process, it is referred to as filtration combustion. The two types of filtration combustion have a similar mathematical formulation, describing the ignition, propagation and extinction of combustion waves in porous media. The goal in each case, however, is different. In smoldering the desired goal is to prevent propagation, whereas in SHS the goal is to insure propagation of the combustion wave, leading to the synthesis of desired products. In addition, the scales in the two areas of application differ. Smoldering generally occurs at lower temperatures and propagation velocities than in SHS. Nevertheless, the two applications have much in common, so that what is learned in one application can be used to advantage in the other. We have considered a number of problems involving filtration combustion. Here we describe two such studies: (A) fingering instabilities in filtration combustion, (B) rapid filtration combustion waves driven by convection.

  16. Building, Testing, and Post Test Analysis of Durability Heat Pipe No.6

    SciTech Connect

    MOSS, TIMOTHY A.

    2002-03-01

    The Solar Thermal Program at Sandia supports work developing dish/Stirling systems to convert solar energy into electricity. Heat pipe technology is ideal for transferring the energy of concentrated sunlight from the parabolic dish concentrators to the Stirling engine heat tubes. Heat pipes can absorb the solar energy at non-uniform flux distributions and release this energy to the Stirling engine heater tubes at a very uniform flux distribution thus decoupling the design of the engine heater head from the solar absorber. The most important part of a heat pipe is the wick, which transports the sodium over the heated surface area. Bench scale heat pipes were designed and built to more economically, both in time and money, test different wicks and cleaning procedures. This report covers the building, testing, and post-test analysis of the sixth in a series of bench scale heat pipes. Durability heat pipe No.6 was built and tested to determine the effects of a high temperature bakeout, 950 C, on wick corrosion during long-term operation. Previous tests showed high levels of corrosion with low temperature bakeouts (650-700 C). Durability heat pipe No.5 had a high temperature bakeout and reflux cleaning and showed low levels of wick corrosion after long-term operation. After testing durability heat pipe No.6 for 5,003 hours at an operating temperature of 750 C, it showed low levels of wick corrosion. This test shows a high temperature bakeout alone will significantly reduce wick corrosion without the need for costly and time consuming reflux cleaning.

  17. The cell biology of renal filtration

    PubMed Central

    Quaggin, Susan E.

    2015-01-01

    The function of the kidney, filtering blood and concentrating metabolic waste into urine, takes place in an intricate and functionally elegant structure called the renal glomerulus. Normal glomerular function retains circulating cells and valuable macromolecular components of plasma in blood, resulting in urine with just trace amounts of proteins. Endothelial cells of glomerular capillaries, the podocytes wrapped around them, and the fused extracellular matrix these cells form altogether comprise the glomerular filtration barrier, a dynamic and highly selective filter that sieves on the basis of molecular size and electrical charge. Current understanding of the structural organization and the cellular and molecular basis of renal filtration draws from studies of human glomerular diseases and animal models of glomerular dysfunction. PMID:25918223

  18. Cellular proliferation after experimental glaucoma filtration surgery

    SciTech Connect

    Jampel, H.D.; McGuigan, L.J.; Dunkelberger, G.R.; L'Hernault, N.L.; Quigley, H.A.

    1988-01-01

    We used light microscopic autoradiography to determine the time course of cellular incorporation of tritiated thymidine (a correlate of cell division) following glaucoma filtration surgery in seven eyes of four cynomolgus monkeys with experimental glaucoma. Incorporation of tritiated thymidine was detected as early as 24 hours postoperatively. Peak incorporation occurred five days postoperatively and had returned to baseline levels by day 11. Cells incorporating tritiated thymidine included keratocytes, episcleral cells, corneal and capillary endothelial cells, and conjunctival and corneal epithelial cells. Transmission electron microscopy was correlated with the autoradiographic results to demonstrate that fibroblasts were dividing on the corneoscleral margin. These findings have potential clinical implications for the use of antiproliferative agents after filtration surgery.

  19. Ultrasonic filtration of industrial chemical solutions

    NASA Technical Reports Server (NTRS)

    Cosma, T.

    1974-01-01

    The practical results obtained as a result of filtering industrial chemical solutions under continuous flow conditions with the aid of an ultrasonic filter are presented. The main part of the assembly consists of an ultrasonic generator with an output power of about 400 W and the filtration assembly, in which there is a magnetostrictive amplifier constructed for 20.5 kHz. In addition to ensuring a continuous flow of filtered solution, ultrasonic filters can be replaced or cleaned at intervals of time that are 8-10 times greater than in the case of mechanical filters. They yield considerably better results as far as the size of the filtered particles is concerned. The parameters on which filtration quality depends are also presented.

  20. Optimal filtration of the atmospheric parameters profiles

    NASA Technical Reports Server (NTRS)

    Zuev, V. E.; Glazov, G. N.; Igonin, G. M.

    1986-01-01

    The idea of optimal Marcovian filtration of fluctuating profiles from lidar signals is developed but as applied to a double-frequency sounding which allows the use of large cross sections of elastic scattering and correct separation of the contributions due to aerosol and Rayleigh scatterings from the total lidar return. The filtration efficiency is shown under different conditions of sounding using a computer model. The accuracy of restituted profiles (temperature, pressure, density) is determined by the elements of a posteriori matrix K. The results obtained allow the determination of the lidar power required for providing the necessary accuracy of restitution of the atmospheric parameter profiles at chosen wavelengths of sounding in the ultraviolet and visible range.

  1. Evaluation of a Combined Cyclone and Gas Filtration System for Particulate Removal in the Gasification Process

    SciTech Connect

    Rizzo, Jeffrey J.

    2010-04-30

    The Wabash gasification facility, owned and operated by sgSolutions LLC, is one of the largest single train solid fuel gasification facilities in the world capable of transforming 2,000 tons per day of petroleum coke or 2,600 tons per day of bituminous coal into synthetic gas for electrical power generation. The Wabash plant utilizes Phillips66 proprietary E-Gas (TM) Gasification Process to convert solid fuels such as petroleum coke or coal into synthetic gas that is fed to a combined cycle combustion turbine power generation facility. During plant startup in 1995, reliability issues were realized in the gas filtration portion of the gasification process. To address these issues, a slipstream test unit was constructed at the Wabash facility to test various filter designs, materials and process conditions for potential reliability improvement. The char filtration slipstream unit provided a way of testing new materials, maintenance procedures, and process changes without the risk of stopping commercial production in the facility. It also greatly reduced maintenance expenditures associated with full scale testing in the commercial plant. This char filtration slipstream unit was installed with assistance from the United States Department of Energy (built under DOE Contract No. DE-FC26-97FT34158) and began initial testing in November of 1997. It has proven to be extremely beneficial in the advancement of the E-Gas (TM) char removal technology by accurately predicting filter behavior and potential failure mechanisms that would occur in the commercial process. After completing four (4) years of testing various filter types and configurations on numerous gasification feed stocks, a decision was made to investigate the economic and reliability effects of using a particulate removal gas cyclone upstream of the current gas filtration unit. A paper study had indicated that there was a real potential to lower both installed capital and operating costs by implementing a char cyclonefiltration hybrid unit in the E-Gas (TM) gasification process. These reductions would help to keep the E-Gas (TM) technology competitive among other coal-fired power generation technologies. The Wabash combined cyclone and gas filtration slipstream test program was developed to provide design information, equipment specification and process control parameters of a hybrid cyclone and candle filter particulate removal system in the E-Gas (TM) gasification process that would provide the optimum performance and reliability for future commercial use. The test program objectives were as follows: 1. Evaluate the use of various cyclone materials of construction; 2. Establish the optimal cyclone efficiency that provides stable long term gas filter operation; 3. Determine the particle size distribution of the char separated by both the cyclone and candle filters. This will provide insight into cyclone efficiency and potential future plant design; 4. Determine the optimum filter media size requirements for the cyclone-filtration hybrid unit; 5. Determine the appropriate char transfer rates for both the cyclone and filtration portions of the hybrid unit; 6. Develop operating procedures for the cyclone-filtration hybrid unit; and, 7. Compare the installed capital cost of a scaled-up commercial cyclone-filtration hybrid unit to the current gas filtration design without a cyclone unit, such as currently exists at the Wabash facility.

  2. Sludge thickening performance of mesh filtration process.

    PubMed

    Park, M S; Kiso, Y; Jung, Y J; Simase, M; Wang, W H; Kitao, T; Min, K S

    2004-01-01

    Small-scale wastewater treatment facilities play an important role in improving the aquatic environment in many countries. Although sludge treatment is essential for overall wastewater treatment, it is difficult for small-scale facilities to use mechanical equipment or other facilities. As the first step of the sludge treatment, it is important to develop a convenient sludge thickening process for small-scale facilities. In this work, we examined the sludge thickening performance of a mesh filtration system: the mesh opening sizes of 100-500 microm, and the sludge (3,000-9,000 mg-SS/L) was obtained from a domestic wastewater treatment facility. The filtration was carried out only under the hydraulic pressure between the water level and the effluent port connected to the mesh filter module. The sludge reduction rates were in the range of 85-95% for 6-7 h; the initial filtration rate was very high, but the rate decreased with a decrease in hydraulic pressure due to the reduction of the water level in the vessel. In addition, the effluents (passed through the mesh) contained very low SS and could be directly discharged into the environment. PMID:15566195

  3. Integration and testing of hot desulfurization and entrained-flow gasification for power generation systems

    SciTech Connect

    Robin, A.M.; Kassman, J.S.; Leininger, T.F.; Wolfenbarger, J.K.; Wu, C.M.; Yang, P.P.

    1991-09-01

    This second Topical Report describes the work that was completed between January 1, 1989 and December 31, 1990 in a Cooperative Agreement between Texaco and the US Department of Energy that began on September 30, 1987. During the period that is covered in this report, the development and optimization of in-situ and external desulfurization processes were pursued. The research effort included bench scale testing, PDU scoping tests, process economic studies and advanced instrument testing. Two bench scale studies were performed at the Research Triangle Institute with zinc titanate sorbent to obtain data on its cycle life, sulfur capacity, durability and the effect of chlorides. These studies quantify sulfur capture during simulated air and oxygen-blown gasification for two zinc titanate formulations. Eight PDU runs for a total of 20 days of operation were conducted to evaluate the performance of candidate sorbents for both in-situ and external desulfurization. A total of 47 tests were completed with oxygen and air-blown gasification. Candidate sorbents included iron oxide for in-situ desulfurization and calcium based and mixed metal oxides for external desulfurization. Gasifier performance and sorbent sulfur capture are compared for both air-blown and oxygen-blown operation.

  4. Filtration Combustion in Smoldering and SHS

    NASA Technical Reports Server (NTRS)

    Matkowsky, Bernard J.

    2001-01-01

    Smolder waves and SHS (self-propagating high-temperature synthesis) waves are both examples of filtration combustion waves propagating in porous media. Smoldering combustion is important for the study of fire safety. Smoldering itself can cause damage, its products are toxic and it can also lead to the more dangerous gas phase combustion which corresponds to faster propagation at higher temperatures. In SHS , a porous solid sample, consisting of a finely ground powder mixture of reactants, is ignited at one end. A high temperature thermal wave, having a frontal structure, then propagates through the sample converting reactants to products. The SHS technology appears to enjoy a number of advantages over the conventional technology, in which the sample is placed in a furnace and "baked" until it is "well done". The advantages include shorter synthesis times, greater economy, in that the internal energy of the reactions is employed rather than the costly external energy of the furnace, purer products, simpler equipment and no intrinsic limitation on the size of the sample to be synthesized as exists in the conventional technology. When delivery of reactants through the pores to the reaction site is an important aspect of the combustion process, it is referred to as filtration combustion. The two types of filtration combustion have a similar mathematical formulation, describing the ignition, propagation and extinction of combustion waves in porous media. The goal in each case, however, is different. In smoldering the desired goal is to prevent propagation, whereas in SHS the goal is to ensure propagation of the combustion wave, leading to the synthesis of desired products. In addition, the scales in the two areas of application differ. Smoldering generally occurs at lower temperatures and propagation velocities than in SHS nevertheless, the two applications have much in common so that what is learned fit make application can be used to advantage in the other. In porous media, melting often occurs ahead of the propagating combustion wave. In certain cases there is so much melting that the porous solid structure is destroyed, e.g., by melting and a suspension arises, consisting of a liquid bath containing solid particles and/or gas bubbles. The resulting combustion wave is referred to as a liquid flame. We have considered a number of problems involving filtration combustion. Here, we describe four such studies: (A) rapid buoyant filtration combustion waves; (B) diffusion driven combustion waves; (C) rapidly propagating liquid flames in gravitational fields; and (D) gas-phase influence on liquid flames in gravitational fields.

  5. Environmental Technology Verification, Baghouse Filtration Products TTG Inc., TG800 Filtration Media (Tested August 2012)

    EPA Science Inventory

    Baghouses are air pollution control devices used to control particulate emissions from stationary sources and are among the technologies evaluated by the APCT Center. Baghouses and their accompanying filter media have long been one of the leading particulate control techniques fo...

  6. Environmental Technology Verification; Baghouse Filtration Products TTG Inc., TG100 Filtration Media (Tested August 2012)

    EPA Science Inventory

    Baghouses are air pollution control devices used to control particulate emissions from stationary sources and are among the technologies evaluated by the APCT Center. Baghouses and their accompanying filter media have long been one of the leading particulate control techniques fo...

  7. Environmental Technology Verification Report -- Baghouse filtration products, GE Energy QG061 filtration media ( tested May 2007)

    EPA Science Inventory

    EPA has created the Environmental Technology Verification Program to facilitate the deployment of innovative or improved environmental technologies through performance verification and dissemination of information. The Air Pollution Control Technology Verification Center, a cente...

  8. Measurement and characterization of filtration efficiencies for prefilter materials used in aerosol filtration

    SciTech Connect

    Sciortino, J. )

    1991-01-01

    In applications where the filtration of large quantities of mixed (liquid and solid) aerosols is desired, a multistage filtration system is often employed. This system consists of a prefilter, a High Efficiency Particulate Air (HEPA) filter, and any number of specialized filters particular to the filtration application. The prefilter removes liquids and any large particles from the air stream, keeping them from prematurely loading the HEPA filter downstream. The HEPA filter eliminates 99.97% of all particulates in the aerosol. The specialized filters downstream of the HEPA filter can be used to remove organic volatiles or other vapors. While the properties of HEPA filters have been extensively investigated, literature characterizing the prefilter is scarce. The purpose of this report is to characterize the efficiency of the prefilter as a function of particle size, nature of the particle (solid or liquid), and the gas flow rate across the face of the prefilter. 1 ref., 4 figs.

  9. Development of an Indexing Media Filtration System for Long Duration Space Missions

    NASA Technical Reports Server (NTRS)

    Agui, Juan H.; Vijayakumar, R.

    2013-01-01

    The effective maintenance of air quality aboard spacecraft cabins will be vital to future human exploration missions. A key component will be the air cleaning filtration system which will need to remove a broad size range of particles derived from multiple biological and material sources. In addition, during surface missions any extraterrestrial planetary dust, including dust generated by near-by ISRU equipment, which is tracked into the habitat will also need to be managed by the filtration system inside the pressurized habitat compartments. An indexing media filter system is being developed to meet the demand for long-duration missions that will result in dramatic increases in filter service life and loading capacity, and will require minimal crew involvement. The filtration system consists of three stages: an inertial impactor stage, an indexing media stage, and a high-efficiency filter stage, packaged in a stacked modular cartridge configuration. Each stage will target a specific range of particle sizes that optimize the filtration and regeneration performance of the system. An 1/8th scale and full-scale prototype of the filter system have been fabricated and have been tested in the laboratory and reduced gravity environments that simulate conditions on spacecrafts, landers and habitats. Results from recent laboratory and reduce-gravity flight tests data will be presented. The features of the new filter system may also benefit other closed systems, such as submarines, and remote location terrestrial installations where servicing and replacement of filter units is not practical.

  10. Development of an Indexing Media Filtration System for Long Duration Space Missions

    NASA Technical Reports Server (NTRS)

    Agui, Juan H.; Vijayakumar, R.

    2013-01-01

    The effective maintenance of air quality aboard spacecraft cabins will be vital to future human exploration missions. A key component will be the air cleaning filtration system which will need to remove a broad size range of particles including skin flakes, hair and clothing fibers, other biological matter, and particulate matter derived from material and equipment wear. In addition, during surface missions any extraterrestrial planetary dust, including dust generated by near-by ISRU equipment, which is tracked into the habitat will also need to be managed by the filtration system inside the pressurized habitat compartments. An indexing media filter system is being developed to meet the demand for long-duration missions that will result in dramatic increases in filter service life and loading capacity, and will require minimal crew involvement. These features may also benefit other closed systems, such as submarines, and remote location terrestrial installations where servicing and replacement of filter units is not practical. The filtration system consists of three stages: an inertial impactor stage, an indexing media stage, and a high-efficiency filter stage, packaged in a stacked modular cartridge configuration. Each stage will target a specific range of particle sizes that optimize the filtration and regeneration performance of the system. An 1/8th scale and full-scale prototype of the filter system have been fabricated and have been tested in the laboratory and reduced gravity environments that simulate conditions on spacecrafts, landers and habitats. Results from recent laboratory and reducegravity flight tests data will be presented.

  11. Experimental Test Plan for Grouting H-3 Calcine

    SciTech Connect

    Alan K. Herbst

    2006-01-01

    Approximately 4400 cubic meters of solid high-level waste called calcine are stored at the Idaho Nuclear Technology and Engineering Center. Under the Idaho Cleanup Project, dual disposal paths are being investigated. The first path includes calcine retrieval, package "as-is", and ship to the Monitored Geological Repository (MGR). The second path involves treatment of the calcine with such methods as vitrification or grouting. This test plan outlines the hot bench scale tests to grout actual calcine and verify that the waste form properties meet the waste acceptance criteria. This is a necessary sequential step in the process of qualifying a new waste form for repository acceptance. The archive H-3 calcine samples at the Contaminated Equipment Maintenance Building attached to New Waste Calcining Facility will be used in these tests at the Remote Analytical Laboratory. The tests are scheduled for the second quarter of fiscal year 2007.

  12. Development of pressurized coal partial combustor -- Pilot scale (25t/d-coal) test results

    SciTech Connect

    Suda, Masamitsu; Harada, Eiichi; Setoguchi, Kazuhide; Hara, Masahiro

    1999-07-01

    The integrated gasification combined cycle (IGCC), an environment-friendly power generation system of high thermal efficiency, is being developed via various approaches around the world. Kawasaki Heavy Industries Ltd. has conducted R and D on a Coal Partial Combustor (hereinafter referred to as CPC) as a gasifier since 1984, jointly with the Center for Coal Utilization, Japan. Since 1994, Chubu Electric Power Co., Inc. and Electric Power Development Co, Ltd have been cooperating. Through this activity, a structure of the CPC has been established, and these influences of operating parameters on performance have been clarified. The purpose of the present study is to apply this developed CPC techniques to a Pressurized CPC (hereinafter referred to as PCPC) as a gasifier for the IGCC system. For the present study, the authors conducted systematic experiments on the air-blown process with a two stage dry feed system, using a 7 t/d-coal bench scale test facility and a 25 t/d-coal pilot scale plant, clarified the influence of coal feed ratio, of oxygen enrichment, and of coal types on coal gasification performance. This paper describes conceptual structure of the PCPC, the test results of a 7 t/d-coal bench scale test facility, and 25 t/d-coal pilot plant.

  13. Comparison of fluid filtration and bacterial leakage techniques for evaluation of microleakage in endodontics

    PubMed Central

    Moradi, Saeed; Lomee, Mahdi; Gharechahi, Maryam

    2015-01-01

    Background: Apical leakage assessment is a way to compare the efficiency of a filling material to seal the apical region of the tooth. Many microleakage testing techniques have been introduced through the years, but there has been no agreement as to which technique gives the most accurate results. The aim of this study was to compare the accuracy of fluid filtration and bacterial leakage techniques in the assessment of the apical sealing ability of mineral trioxide aggregate (MTA) and calcium enriched mixture (CEM). Materials and Methods: A sample of 34 extracted single-rooted human teeth were selected and prepared. The samples were divided in to 2 experimental groups. The apical 3 mm of each root was resected at 90° to its long axis and root end preparation was done with ultrasonic tips to a depth of 3 mm and filled with MTA and CEM, respectively. Assessment of apical sealing ability was done with fluid filtration technique and bacterial leakage technique along 90 days with Enterococcus faecalis bacteria. Mann-Whitney U-test and Chi-square test were used to analyze the data using SPSS (SPSS Inc., Chicago, IL, USA). P less than 0.05 was considered as significant. Results: There was no significant difference in apical sealing ability between MTA and CEM in bacterial leakage and fluid filtration techniques. Samples which had bacterial leakage showed higher leakage values by fluid filtration technique. Conclusion: Both techniques showed same results and there was no significant difference between fluid filtration and bacterial leakage techniques in assessment of apical microleakage. PMID:25878674

  14. Electromagnetically Modified Filtration of Aluminum Melts—Part I: Electromagnetic Theory and 30 PPI Ceramic Foam Filter Experimental Results

    NASA Astrophysics Data System (ADS)

    Kennedy, Mark William; Akhtar, Shahid; Bakken, Jon Arne; Aune, Ragnhild E.

    2013-06-01

    In the present work, laboratory-scale continuous filtration tests of liquid A356 aluminum alloy have been performed. The tests were conducted using standard 30 PPI (pores per inch) ceramic foam filters combined with magnetic flux densities (~0.1 and 0.2 T), produced using two different induction coils operated at 50 Hz AC. A reference filtration test was also carried out under gravity conditions, i.e., without an applied magnetic field. The obtained results clearly prove that the magnetic field has a significant affect on the distribution of SiC particles. The influence of the electromagnetic Lorentz forces and induced bulk metal flow on the obtained filtration efficiencies and on the wetting behavior of the filter media by liquid aluminum is discussed. The magnitudes of the Lorentz forces produced by the induction coils are quantified based on analytical and COMSOL 4.2® finite element modeling.

  15. ALTERNATE HIGH EFFICIENCY PARTICULATE AIR (HEPA) FILTRATION SYSTEM

    SciTech Connect

    Bruce Bishop; Robert Goldsmith; Karsten Nielsen; Phillip Paquette

    2002-08-16

    In Phase IIA of this project, CeraMem has further developed and scaled up ceramic HEPA filters that are appropriate for use on filtration of vent gas from HLW tanks at DOE sites around the country. This work included procuring recrystallized SiC monoliths, developing membrane and cement materials, and defining a manufacturing process for the production of prototype full sizes HEPA filters. CeraMem has demonstrated that prototype full size filters can be manufactured by producing 9 full size filters that passed DOP aerosol testing at the Oak Ridge Filter Test Facility. One of these filters was supplied to the Savannah River Technical Center (SRTC) for process tests using simulated HLW tank waste. SRTC has reported that the filter was regenerable (with some increase in pressure drop) and that the filter retained its HEPA retention capability. CeraMem has also developed a Regenerable HEPA Filter System (RHFS) design and acceptance test plan that was reviewed by DOE personnel. The design and acceptance test plan form the basis of the system proposal for follow-on work in Phase IIB of this project.

  16. Effects of ultra-clean and centrifugal filtration on rolling-element bearing life

    NASA Technical Reports Server (NTRS)

    Loewenthal, S. H.; Moyer, D. W.; Needelman, W. M.

    1981-01-01

    Fatigue tests were conducted on groups of 65-mm bore diameter deep-groove ball bearings in a MIL-L-23699 lubricant under two levels of filtration to determine the upper limit in bearing life under the strictest possible lubricant cleanliness conditions. Bearing fatigue lives, surface distress and weight loss were compared to previous bearing fatigue tests in contaminated and noncontaminated oil filters having absolute removal ratings of 3, 30, 49, and 105 microns, with lubricant and sump temperatures maintained at 347 K. Ultra clean lubrication was found to produce bearing fatigue lives that were approximately twice that obtained in previous tests with contaminated oil using 3 micron absolute filtration. It was also observed that the centrifugal oil filter has the same effectiveness as a 30 micron absolute filter in preventing surface damage.

  17. pH-Dependent retention changes during membrane filtration of aluminum-coagulated solutions and the effect of precentrifugation.

    PubMed

    Bérubé, Denis; Dorea, Caetano

    2013-03-19

    During jar tests on alum-based drinking water treatment, dissolved Al determinations on solutions coagulated at pH ? 6.5 were not reproducible. These determinations were performed by inductively coupled plasma mass spectrometry after syringe filtration (0.45 ?m polyethersulfone membrane). In order to better define these anomalies, the filtrates were collected in sequential fractions of 7.5 mL. At coagulation pHs of 6.5 and 7.0, retention changes were demonstrated by large filtrate concentration reductions at all temperatures tested (0.1, 5.0, and 17.0 °C). In all cases, the concentrations converged to levels <50 ?g/L within the fourth sequential fraction. In comparison, no retention change was observed for jar tests conducted at the same temperatures but in the low range of the minimum solubility domain, at pHs 5.5 and 6.0. The retention changes were also eliminated by precentrifugation (7000 g for 45 min; pH 6.5-7.2). At weaker precentrifugation conditions, as well as by varying membrane surface area or membrane fouling, the filtrate concentrations behaved according to a barrier buildup at the membrane-solution interface by unsettled flocculation residuals. The influence of flocculation time and temperature emphasized the importance of reaction rates, which could be enhanced at the interface by concentration polarization effects. These phenomena have implications on analytical protocols and on filtration in full-scale treatment. PMID:23413878

  18. 40 CFR 141.174 - Filtration sampling requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... or direct filtration must conduct continuous monitoring of turbidity for each individual filter using... the manufacturer. Systems must record the results of individual filter monitoring every 15 minutes....

  19. Simulation on combined rapid gravity filtration and backwash models.

    PubMed

    Han, S J; Fitzpatrick, C S B; Wetherill, A

    2009-01-01

    Combined rapid gravity filtration and backwash models have been applied to simulate filtration and backwash cycles. The simulated results from the backwash model suggest that an optimum air flow rate exists to maximise particle removal efficiency in the backwash operation for a certain backwash system. The simulation of combined rapid gravity filtration and backwash models suggests that the filter should not be completely cleaned up in the backwash and a certain amount of particles retained on filter grains after backwash can be beneficial for subsequent filtration runs. This is consistent with the experimental results in the literature. PMID:19542649

  20. Simulation of combined rapid gravity filtration and backwash models.

    PubMed

    Han, S J; Fitzpatrick, C S B; Wetherill, A

    2009-01-01

    Combined rapid gravity filtration and backwash models are applied to simulate filtration and backwash cycles. The simulated results from the backwash model suggest that air flow rate can be optimised to maximise particle removal efficiency in the backwash for a particular system. The simulation of combined rapid gravity filtration and backwash models suggests that efficient backwash operation is essential for maintaining the life time of a filter. However, the filter is not advised to be completely cleaned up in the backwash and the particles retained on filter grains after the backwash can be beneficial for subsequent filtration runs. PMID:19717925

  1. Effects of Ultra-Clean and centrifugal filtration on rolling-element bearing life

    NASA Technical Reports Server (NTRS)

    Loewenthal, S. H.; Moyer, D. W.; Needelman, W. M.

    1981-01-01

    Fatigue tests were conducted on groups of 65-millimeter bore diameter deep-groove ball bearings in a MIL-L-23699 lubricant under two levels of filtration. In one test series, the oil cleanliness was maintained at an exceptionally high level (better than a class "000" per NAS 1638) with a 3 micron absolute barrier filter. These tests were intended to determine the "upper limit" in bearing life under the strictest possible lubricant cleanliness conditions. In the tests using a centrifugal oil filter, contaminants of the type found in aircraft engine filters were injected into the filters' supply line at 125 milligrams per bearing-hour. "Ultra-clean" lubrication produced bearing fatigue lives that were approximately twice that obtained in previous tests with contaminated oil using 3 micron absolute filtration and approximately three times that obtained with 49 micron filtration. It was also observed that the centrifugal oil filter had approximately the same effectiveness as a 30 micron absolute filter in preventing bearing surface damage.

  2. Comparison of Garnet Bead Media Filtration and Multimedia Filtration for Turbidity and Microbial Pathogen Removal

    EPA Science Inventory

    U.S. Environmental Protection Agency’s (EPA’s) National Risk Management Research Laboratory (NRMRL) in Cincinnati, Ohio is evaluating drinking water filtration systems to determine their capability to meet the requirements of the Long-Term 2 Enhanced Surface Water Treatment Rule ...

  3. Flux Enhancement in Crossflow Membrane Filtration: Fouling and It's Minimization by Flow Reversal

    SciTech Connect

    Shamsuddin Ilias

    2005-08-04

    Fouling problems are perhaps the single most important reason for relatively slow acceptance of ultrafiltration in many areas of chemical and biological processing. To overcome the losses in permeate flux associated with concentration polarization and fouling in cross flow membrane filtration, we investigated the concept of flow reversal as a method to enhance membrane flux in ultrafiltration. Conceptually, flow reversal prevents the formation of stable hydrodynamic and concentration boundary layers at or near the membrane surface. Further more, periodic reversal of the flow direction of the feed stream at the membrane surface results in prevention and mitigation of membrane fouling. Consequently, these advantages are expected to enhance membrane flux significantly. A crossflow membrane filtration unit was designed and built to test the concept of periodic flow reversal for flux enhancement. The essential elements of the system include a crossflow hollow fiber membrane module integrated with a two-way valve to direct the feed flow directions. The two-way valve is controlled by a controller-timer for periodic reversal of flow of feed stream. Another important feature of the system is that with changing feed flow direction, the permeate flow direction is also changed to maintain countercurrent feed and permeate flows for enhanced mass transfer driving force (concentration difference). Three feed solutions (Bovine serum albumin (BSA), apple juice and citrus fruit pectin) were studied in crossflow membrane filtration. These solutes are well-known in membrane filtration for their fouling and concentration polarization potentials. Laboratory-scale tests on a hollow-fiber ultrafiltration membrane module using each of the feed solutes show that under flow reversal conditions, the permeate flux is significantly enhanced when compared with the conventional unidirectional flow. The flux enhancement is dramatic (by an order of magnitude) with increased feed concentration and operating transmembrane pressure. Thus, flow reversal technology seems an attractive alternative to mitigate fouling problem in crossflow membrane filtration.

  4. Performance of N95 respirators: filtration efficiency for airborne microbial and inert particles.

    PubMed

    Qian, Y; Willeke, K; Grinshpun, S A; Donnelly, J; Coffey, C C

    1998-02-01

    In 1995 the National Institute for Occupational Safety and Health issued new regulations for nonpowered particulate respirators (42 CFR Part 84). A new filter certification system also was created. Among the new particulate respirators that have entered the market, the N95 respirator is the most commonly used in industrial and health care environments. The filtration efficiencies of unloaded N95 particulate respirators have been compared with those of dust/mist (DM) and dust/fume/mist (DFM) respirators certified under the former regulations (30 CFR Part 11). Through laboratory tests with NaCl certification aerosols and measurements with particle-size spectrometers, N95 respirators were found to have higher filtration efficiencies than DM and DFM respirators and noncertified surgical masks. N95 respirators made by different companies were found to have different filtration efficiencies for the most penetrating particle size (0.1 to 0.3 micron), but all were at least 95% efficient at that size for NaCl particles. Above the most penetrating particle size the filtration efficiency increases with size; it reaches approximately 99.5% or higher at about 0.75 micron. Tests with bacteria of size and shape similar to Mycobacterium tuberculosis also showed filtration efficiencies of 99.5% or higher. Experimental data were used to calculate the aerosol mass concentrations inside the respirator when worn in representative work environments. The penetrated mass fractions, in the absence of face leakage, ranged from 0.02% for large particle distributions to 1.8% for submicrometer-size welding fumes. Thus, N95 respirators provide excellent protection against airborne particles when there is a good face seal. PMID:9487666

  5. Investigation of the influence of the zeta-potential on the filtration rate in the presence of collectors

    NASA Technical Reports Server (NTRS)

    Provirnina, E. V.; Barbin, M. B.

    1984-01-01

    The value of the zeta-potential does not have an explicit effect, which is expressed by a simple math correlation, on filtration rate when a solution of the tested collector is filtered through a cake prepared under standard conditions from the examined particulate material. The zeta-potential measurements and filtration tests were carried out on silica and galena with solutions contg. a cationic container ANP and Et xanthane, resp. at PH = 6.5, varying concentration of the agent (0-2500 g/ton), and under a vacuum of 100 to 600 mm Hg.

  6. Hydrous iron oxide modified diatomite as an active filtration medium for phosphate capture.

    PubMed

    Wang, Zhe; Lin, Yan; Wu, Deyi; Kong, Hainan

    2016-02-01

    A simple method to functionalize diatomite with hydrous iron oxide was attempted and its performance as a new active filtration material to remove and recover phosphate from water was investigated under varying solution conditions. The Langmuir phosphate adsorption capacity increased from 0.6 mgP/g for raw diatomite to 4.89, 14.71, 25.02 mgP/g for hydrous iron oxide modified diatomite (HIOMD), depending on the amount of iron loaded. Loading of hydrous iron oxide caused the increase in true and bulk density and a decline in filtration rate, but to a lesser extent. It was shown that the HIOMD product with suitable iron content could retain a good filtration performance with a greatly increased adsorption capacity for phosphate. The phosphate adsorption increased by decreasing pH and by increasing ionic strength at high pH levels. The adsorption process was interpreted by ligand exchange. Coexisting oxyanions of sulfate, nitrate, citrate, carbonate, silicate and humic acid showed different effects on phosphate fixation but it was presumed that their influence at their concentrations and pH levels commonly encountered in effluent or natural waters was limited, i.e., HIOMD had a reasonably good selectivity. Results in repeated adsorption, desorption and regeneration experiment showed that the adsorbed phosphate could be recovered and the material could be reused after regeneration. The column test showed that HIOMD could be potentially utilized as an adsorption filtration medium for phosphate removal and recovery from water. PMID:26476050

  7. Use of colloid filtration theory in modeling movement of bacteria through a contaminated sandy aquifer

    USGS Publications Warehouse

    Harvey, R.W.; Garabedian, S.P.

    1991-01-01

    ??? A filtration model commonly used to describe removal of colloids during packed-bed filtration in water treatment applications was modified for describing downgradient transport of bacteria in sandy, aquifer sediments. The modified model was applied to the results of a small-scale (7 m), natural-gradient tracer test and to observations of an indigenous bacterial population moving downgradient within a plume of organically contaminated groundwater in Cape Cod, MA. The model reasonably accounted for concentration histories of labeled bacteria appearing at samplers downgradient from the injection well in the tracer experiment and for the observed 0.25-??m increase in average cell length for an unlabeled, indigenous bacterial population, 0.6 km downgradient from the source of the plume. Several uncertainties were apparent in applying filtration theory to problems involving transport of bacteria in groundwater. However, adsorption (attachment) appeared to be a major control of the extent of bacterial movement downgradient, which could be described, in part, by filtration theory. Estimates of the collision efficiency factor, which represents the physicochemical factors that determine adsorption of the bacteria onto the grain surfaces, ranged from 5.4 ?? 10-3 to 9.7 ?? 10-3.

  8. Granular media filtration: old process, new thoughts.

    PubMed

    Lawler, D F; Nason, J A

    2006-01-01

    The design of granular media filters has evolved over many years so that modern filters have larger media sizes and higher filtration velocities than in earlier times. The fundamental understanding of filtration has also improved over time, with current models that account reasonably for all characteristics of the media, the suspension and the filter operation. The methodology for design, however, has not kept pace with these improvements; current designs are based on pilot plants, past experience, or a simple guideline (the ratio of the bed depth to media grain size). We propose that design should be based universally on a characteristic removal length, with the provision of a bed depth that is some multiple of that characteristic length. This characteristic removal length is calculated using the most recent (and most complete) fundamental model and is based on the particle size with the minimum removal efficiency in a filter. The multiple of the characteristic length that yields the required bed depth has been calibrated to existing, successful filters. PMID:16752758

  9. Hollow fiber membranes for advanced life support systems. [permeable capillaries for medical filtration

    NASA Technical Reports Server (NTRS)

    Roebelen, G. J., Jr.; Lysaght, M. J.

    1977-01-01

    This paper describes an investigation of the practicability of utilizing hollow fiber membranes in vehicular and portable life support system applications. A preliminary screening of potential advanced life support applications resulted in the selection of five applications for feasibility study and testing. As a result of the feasibility study and testing, three applications, heat rejection, deaeration, and bacteria filtration, were chosen for breadboard development testing. Breadboard hardware has been manufactured and tested, and the physical properties of the three hollow fiber membrane assemblies applicable to use aboard future spacecraft have been characterized.

  10. Application of the flexible fiber filter module (3FM) filter to sea water filtration.

    PubMed

    Jeanmaire, J-P; Suty, H; Marteil, P; Breant, P; Pedenaud, P

    2007-01-01

    The new 3FM filter (Flexible Fiber Filter Module), implementing very fine nylon fibers as filtration media was tested at pilot scale for the first time on sea water. The objective was to improve the quality of raw sea water to produce water for injection into offshore wells for extraction purposes on oil-bearing fields. Particles larger than 5 microm must be removed from the water of injection to avoid clogging at the point of injection into the porous rock. The purpose of the tests carried out over several months at Palavas Les Flots (France) was to specify the optimal operating conditions of the 3FM filter. Various coagulants and combinations of reagents were tested at velocities ranging between 50 and 200 m(3)/m(2)/h (ground filtration velocity). On raw sea water of about 1 NTU turbidity and at velocities of 100 m(3)/m(2)/h, the filtered water contained about 300 particles per mL larger than 1 microm, and less than 15 particles larger than 5 microm per mL. The filter runs range from one hour to few hours, variable according to the raw water turbidity, the reagent dosing rate and the filtration velocity. Backwashes, a succession of air scours at high air flow rates combined with water phases, the total duration of which did not exceed 1 minute, were shown to be efficient during the three months testing period. 3FM filter performance was promising for many other possible applications. PMID:18048989

  11. Characterization of filtration and regeneration behavior of rigid ceramic filters and particle properties at high temperatures

    SciTech Connect

    Pilz, T.

    1995-12-31

    For power generation with combined cycles or production of so called advanced materials by vapor phase synthesis particle separation at high temperatures is of crucial importance. There, systems working with rigid ceramic barrier filters are either of thermodynamical benefit to the process or essential for producing materials with certain properties. A hot gas filter test rig has been installed to investigate the influence of different parameters e.g. temperature, dust properties, filter media and filtration and regeneration conditions into particle separation at high temperatures. These tests were conducted both with commonly used filter candles and with filter discs made out of the same material. The filter disc is mounted at one side of the test rig. That is why both filters face the same raw gas conditions. The filter disc is flown through by a cross flow arrangement. This bases upon the conviction that for comparison of filtration characteristics of candles with filter discs or other model filters the structure of the dust cakes have to be equal. This way of conducting investigations into the influence of the above mentioned parameters on dust separation at high temperatures follows the new standard VDI 3926. There, test procedures for the characterization of filter media at ambient conditions are prescribed. The paper mainly focuses then on the influence of particle properties (e.g. stickiness etc.) upon the filtration and regeneration behavior of fly ashes with rigid ceramic filters.

  12. On calculation of filtration flows from sprayers of irrigation systems

    NASA Astrophysics Data System (ADS)

    Bereslavskii, É. N.

    2012-05-01

    In the hydrodynamic formulation, consideration is given to plane steady filtration in a homogeneous isotropic ground from sprayers through a soil layer underlain by a highly permeable pressure water-bearing formation in the presence of the ground capillarity and evaporation from the free surface. Filtration is studied by formulating a mixed multiparametric boundary-value problem of the theory of analytical functions, which is solved using the Polubarinova-Kochina method and procedures of conformal mapping of the regions of special kind that are characteristic of underground-hydromechanics problems. On the basis of the model proposed, an algorithm of computation of capillary water spread and filtration flow rate was developed in situations where in the water filtration from sprayers, account is taken of the ground capillarity, evaporation from the free surface, and of the upthrust from the side of the underlying well-permeable formation. With the aid of the exact analytical dependences obtained and of numerical calculations, a hydrodynamic analysis is performed for the structure and characteristic features of the modeled process, and for the influence of all physical parameters of the scheme on the filtration characteristics. Consideration is given to the limiting and particular cases associated with the absence of separate factors characterizing the modeled process, such as the ground capillarity, evaporation from the free surface, and the upthrust from the side of the underlying water-bearing highly permeable layer. Calculated results for filtration from canals with identical filtration characteristics and similar filtration schemes are compared.

  13. Household scale slow sand filtration in the Dominican Republic

    E-print Network

    Donison, Kori S. (Kori Shay), 1981-

    2004-01-01

    Slow sand filtration is a method of water treatment that has been used for hundreds of years. In the past two decades, there has been resurgence in interest in slow sand filtration, particularly as a low-cost, household-scale ...

  14. PARTICULATE CONTROL HIGHLIGHTS: RESEARCH ON FABRIC FILTRATION TECHNOLOGY

    EPA Science Inventory

    The report highlights significant developments in fabric filtration technology. It reviews results of several field and laboratory studies performed over the last 10 years, by or under the sponsorship of the EPA, so that the reader may be better able to assess filtration equipmen...

  15. Water Modeling of Steel Flow, Air Entrainment and Filtration

    E-print Network

    Beckermann, Christoph

    Water Modeling of Steel Flow, Air Entrainment and Filtration Christoph Beckermann Associate Beckermann, C., "Water Modeling of Steel Flow, Air Entrainment and Filtration," in Proceedings of the 46th, 1992. #12;Abstract This paper presents an analysis of water modeling of steel pouring to study (1) air

  16. Purification of contaminated water by filtration through porous glass

    NASA Technical Reports Server (NTRS)

    Wydeven, T.; Leban, M. I.

    1972-01-01

    Method for purifying water that is contaminated with mineral salts and soluble organic compounds is described. Method consists of high pressure filtration of contaminated water through stabilized porous glass membranes. Procedure for conducting filtration is described. Types of materials by percentage amounts removed from the water are identified.

  17. RIVERBANK FILTRATION: FATE OF DBP PRECURSORS AND SELECTED MICROORGANISMS

    EPA Science Inventory

    The fate of disinfection by-product (DBP) precursors and selected microorganisms during riverbank filtration (RBF) was monitored at three different mid-Western drinking water utilities. At all three sites, filtration (RBF) was monitored at three different mid-Western drinking wa...

  18. STORMWATER TREATMENT AT CRITICAL AREAS: EVALUATION OF FILTRATION MEDIA

    EPA Science Inventory

    Past research has identified urban runoff as a major contributor to the degradation of urban streams and rivers. Filtration, especially "slow" filtration, is of interest for stormwater runoff treatment because filters will work on intermittent flows without significant loss of ca...

  19. PHENOMENOLOGICAL MODEL OF FILTRATION PROCESSES: 1. CAKE FORMATION AND EXPRESSION

    E-print Network

    ;ltration processes. 1. Introduction Filtration is a process widely used in industry, especially in medicinePHENOMENOLOGICAL MODEL OF FILTRATION PROCESSES: 1. CAKE FORMATION AND EXPRESSION R. B  URGER A;#3 that are utilized to #12;lter the several materials in these industries is very large. For example, vacuum

  20. SLOW SAND FILTRATION FOR DRINKING WATER TREATMENT: U.S. EXPERIENCE

    EPA Science Inventory

    Alternatives to conventional water filtration plants (those using coagulation, flocculation, sedimentation, and rapid filtration) may be appropriate for some small water utilities. One such alternative is slow sand filtration. The U.S. Environmental Protection Agency has recently...