Sample records for bending moments

  1. Moment distributions around holes in symmetric composite laminates subjected to bending moments

    NASA Technical Reports Server (NTRS)

    Prasad, C. B.; Shuart, M. J.

    1989-01-01

    An analytical investigation of the effects of holes on the moment distribution of symmetric composite laminates subjected to bending moments is described. A general, closed-form solution for the moment distribution of an infinite anisotropic plate is derived, and this solution is used to determine stress distributions both on the hole boundary and throughout the plate. Results are presented for several composite laminates that have holes and are subjected to either pure bending or cylindrical bending. Laminates with a circular hole or with an elliptical hole are studied. Laminate moment distributions are discussed, and ply stresses are described.

  2. Estimation of blade airloads from rotor blade bending moments

    NASA Technical Reports Server (NTRS)

    Bousman, William G.

    1987-01-01

    A method is developed to estimate the blade normal airloads by using measured flap bending moments; that is, the rotor blade is used as a force balance. The blade's rotation is calculated in vacuum modes and the airloads are then expressed as an algebraic sum of the mode shapes, modal amplitudes, mass distribution, and frequency properties. The modal amplitudes are identified from the blade bending moments using the Strain Pattern Analysis Method. The application of the method is examined using simulated flap bending moment data that have been calculated for measured airloads for a full-scale rotor in a wind tunnel. The estimated airloads are compared with the wind tunnel measurements. The effects of the number of measurements, the number of modes, and errors in the measurements and the blade properties are examined, and the method is shown to be robust.

  3. Characteristics of pedicle screw loading. Effect of sagittal insertion angle on intrapedicular bending moments.

    PubMed

    Youssef, J A; McKinley, T O; Yerby, S A; McLain, R F

    1999-06-01

    A bending analysis of pedicle screws inserted into vertebral body analogues. Intravertebral and intrapedicular pedicle screw bending moments were studied as a function of sagittal insertion angle. To determine how the pedicle screw bending moment is affected by changes in the insertion angle. There is a significant incidence of failure when pedicle screws are used to instrument unstable spinal segments. Extrinsic factors that affect screw bending failure have been poorly characterized. Previous work has demonstrated that intrapedicular pedicle screw bending moments are significantly affected by the sagittal location and depth of pedicle screw placement. Pedicle screw transducers were inserted in analogue vertebrae at one of three orientations: 7 degrees cephalad (toward the superior endplate), 7 degrees caudal (toward the inferior endplate), or parallel to the superior endplate (control). An axial load was applied to the superior endplate of the vertebra, and screw bending moments were recorded directly from the transducers. Screws angled 7 degrees cephalad developed significantly greater mean intrapedicular bending moments compared with screws inserted caudal or control screws. There was no significant difference in bending moments realized within the vertebral body for the three screw positions. Angulating pedicle screws toward the superior endplate increased bending moments within the pedicle. If attention to optimal screw insertion technique can reduce bending moments and potential for screw failure without increasing morbidity, surgical risk, or operative time, then proper insertion technique takes on new importance.

  4. Validation of an improved method to calculate the orientation and magnitude of pedicle screw bending moments.

    PubMed

    Freeman, Andrew L; Fahim, Mina S; Bechtold, Joan E

    2012-10-01

    Previous methods of pedicle screw strain measurement have utilized complex, time consuming methods of strain gauge application, experience high failure rates, do not effectively measure resultant bending moments, and cannot predict moment orientation. The purpose of this biomechanical study was to validate an improved method of quantifying pedicle screw bending moment orientation and magnitude. Pedicle screws were instrumented to measure biplanar screw bending moments by positioning four strain gauges on flat, machined surfaces below the screw head. Screws were calibrated to measure bending moments by hanging certified weights a known distance from the strain gauges. Loads were applied in 30 deg increments at 12 different angles while recording data from two independent strain channels. The data were then analyzed to calculate the predicted orientation and magnitude of the resultant bending moment. Finally, flexibility tests were performed on a cadaveric motion segment implanted with the instrumented screws to demonstrate the implementation of this technique. The difference between the applied and calculated orientation of the bending moments averaged (±standard error of the mean (SEM)) 0.3 ± 0.1 deg across the four screws for all rotations and loading conditions. The calculated resultant bending moments deviated from the actual magnitudes by an average of 0.00 ± 0.00 Nm for all loading conditions. During cadaveric testing, the bending moment orientations were medial/lateral in flexion-extension, variable in lateral bending, and diagonal in axial torsion. The technique developed in this study provides an accurate method of calculating the orientation and magnitude of screw bending moments and can be utilized with any pedicle screw fixation system.

  5. Elasticity and critical bending moment of model colloidal aggregates.

    PubMed

    Pantina, John P; Furst, Eric M

    2005-04-08

    The bending mechanics of singly bonded colloidal aggregates are measured using laser tweezers. We find that the colloidal bonds are capable of supporting significant torques, providing a direct measurement of the tangential interactions between particles. A critical bending moment marks the limit of linear bending elasticity, past which small-scale rearrangements occur. These mechanical properties underlie the rheology and dynamics of colloidal gels formed by diffusion-limited cluster aggregation, and give critical insight into the contact interactions between Brownian particles.

  6. Sagittal plane bending moments acting on the lower leg during running.

    PubMed

    Haris Phuah, Affendi; Schache, Anthony G; Crossley, Kay M; Wrigley, Tim V; Creaby, Mark W

    2010-02-01

    Sagittal bending moments acting on the lower leg during running may play a role in tibial stress fracture development. The purpose of this study was to evaluate these moments at nine equidistant points along the length of the lower leg (10% point-90% point) during running. Kinematic and ground reaction force data were collected for 20 male runners, who each performed 10 running trials. Inverse dynamics and musculoskeletal modelling techniques were used to estimate sagittal bending moments due to reaction forces and muscle contraction. The muscle moment was typically positive during stance, except at the most proximal location (10% point) on the lower leg. The reaction moment was predominantly negative throughout stance and greater in magnitude than the muscle moment. Hence, the net sagittal bending moment acting on the lower leg was principally negative (indicating tensile loads on the posterior tibia). Peak moments typically occurred around mid-stance, and were greater in magnitude at the distal, compared with proximal, lower leg. For example, the peak reaction moment at the most distal point was -9.61+ or - 2.07%Bw.Ht., and -2.73 + or - 1.18%Bw.Ht. at the most proximal point. These data suggest that tensile loads on the posterior tibia are likely to be higher toward the distal end of the bone. This finding may explain the higher incidence of stress fracture in the distal aspect of the tibia, observed by some authors. Stress fracture susceptibility will also be influenced by bone strength and this should also be accounted for in future studies. Copyright 2009 Elsevier B.V. All rights reserved.

  7. Numerical simulation of the wave-induced non-linear bending moment of ships

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia, J.; Wang, Z.; Gu, X.

    1995-12-31

    Ships traveling in moderate or rough seas may experience non-linear bending moments due to flare effect and slamming loads. The numerical simulation of the total wave-induced bending moment contributed from both the wave frequency component induced by wave forces and the high frequency whipping component induced by slamming actions is very important in predicting the responses and ensuring the safety of the ship in rough seas. The time simulation is also useful for the reliability analysis of ship girder strength. The present paper discusses four different methods of the numerical simulation of wave-induced non-linear vertical bending moment of ships recentlymore » developed in CSSRC, including the hydroelastic integral-differential method (HID), the hydroelastic differential analysis method (HDA), the combined seakeeping and structural forced vibration method (CSFV), and the modified CSFV method (MCSFV). Numerical predictions are compared with the experimental results obtained from the elastic ship model test of S-175 container ship in regular and irregular waves presented by Watanabe Ueno and Sawada (1989).« less

  8. Elastic properties of graphene: A pseudo-beam model with modified internal bending moment and its application

    NASA Astrophysics Data System (ADS)

    Xia, Z. M.; Wang, C. G.; Tan, H. F.

    2018-04-01

    A pseudo-beam model with modified internal bending moment is presented to predict elastic properties of graphene, including the Young's modulus and Poisson's ratio. In order to overcome a drawback in existing molecular structural mechanics models, which only account for pure bending (constant bending moment), the presented model accounts for linear bending moments deduced from the balance equations. Based on this pseudo-beam model, an analytical prediction is accomplished to predict the Young's modulus and Poisson's ratio of graphene based on the equation of the strain energies by using Castigliano second theorem. Then, the elastic properties of graphene are calculated compared with results available in literature, which verifies the feasibility of the pseudo-beam model. Finally, the pseudo-beam model is utilized to study the twisting wrinkling characteristics of annular graphene. Due to modifications of the internal bending moment, the wrinkling behaviors of graphene sheet are predicted accurately. The obtained results show that the pseudo-beam model has a good ability to predict the elastic properties of graphene accurately, especially the out-of-plane deformation behavior.

  9. Bending moments of zirconia and titanium implant abutments supporting all-ceramic crowns after aging.

    PubMed

    Mühlemann, Sven; Truninger, Thomas C; Stawarczyk, Bogna; Hämmerle, Christoph H F; Sailer, Irena

    2014-01-01

    To test the fracture load and fracture patterns of zirconia abutments restored with all-ceramic crowns after fatigue loading, exhibiting internal and external implant-abutment connections as compared to restored and internally fixed titanium abutments. A master abutment was used for the customization of 5 groups of zirconia abutments to a similar shape (test). The groups differed according to their implant-abutment connections: one-piece internal connection (BL; Straumann Bonelevel), two-piece internal connection (RS; Nobel Biocare ReplaceSelect), external connection (B; Branemark MkIII), two-piece internal connection (SP, Straumann StandardPlus) and one-piece internal connection (A; Astra Tech AB OsseoSpeed). Titanium abutments with internal implant-abutment connection (T; Straumann Bonelevel) served as control group. In each group, 12 abutments were fabricated, mounted to the respective implants and restored with glass-ceramic crowns. All samples were embedded in acrylic holders (ISO-Norm 14801). After aging by means of thermocycling in a chewing simulator, static load was applied until failure (ISO-Norm 14801). Fracture load was analyzed by calculating the bending moments. Values of all groups were compared with one-way ANOVA followed by Scheffé post hoc test (P-value<0.05). Failure mode was analyzed descriptively. The mean bending moments were 464.9 ± 106.6 N cm (BL), 581.8 ± 172.8 N cm (RS), 556.7 ± 128.4 N cm (B), 605.4 ± 54.7 N cm (SP), 216.4 ± 90.0 N cm (A) and 1042.0 ± 86.8 N cm (T). No difference of mean bending moments was found between groups BL, RS, B and SP. Test group A exhibited significantly lower mean bending moment than the other test groups. Control group T had significantly higher bending moments than all test groups. Failure due to fracture of the abutment and/or crown occurred in the test groups. In groups BL and A, fractures were located in the internal part of the connection, whereas in groups RS and SP, a partial

  10. Injury tolerance and moment response of the knee joint to combined valgus bending and shear loading.

    PubMed

    Bose, Dipan; Bhalla, Kavi S; Untaroiu, Costin D; Ivarsson, B Johan; Crandall, Jeff R; Hurwitz, Shepard

    2008-06-01

    Valgus bending and shearing of the knee have been identified as primary mechanisms of injuries in a lateral loading environment applicable to pedestrian-car collisions. Previous studies have reported on the structural response of the knee joint to pure valgus bending and lateral shearing, as well as the estimated injury thresholds for the knee bending angle and shear displacement based on experimental tests. However, epidemiological studies indicate that most knee injuries are due to the combined effects of bending and shear loading. Therefore, characterization of knee stiffness for combined loading and the associated injury tolerances is necessary for developing vehicle countermeasures to mitigate pedestrian injuries. Isolated knee joint specimens (n=40) from postmortem human subjects were tested in valgus bending at a loading rate representative of a pedestrian-car impact. The effect of lateral shear force combined with the bending moment on the stiffness response and the injury tolerances of the knee was concurrently evaluated. In addition to the knee moment-angle response, the bending angle and shear displacement corresponding to the first instance of primary ligament failure were determined in each test. The failure displacements were subsequently used to estimate an injury threshold function based on a simplified analytical model of the knee. The validity of the determined injury threshold function was subsequently verified using a finite element model. Post-test necropsy of the knees indicated medial collateral ligament injury consistent with the clinical injuries observed in pedestrian victims. The moment-angle response in valgus bending was determined at quasistatic and dynamic loading rates and compared to previously published test data. The peak bending moment values scaled to an average adult male showed no significant change with variation in the superimposed shear load. An injury threshold function for the knee in terms of bending angle and shear

  11. Effects of wing flexibility and variable air lift upon wing bending moment during landing impacts of a small seaplane

    NASA Technical Reports Server (NTRS)

    Merten, Kenneth F; Beck, Edgar B

    1951-01-01

    A smooth-water-landing investigation was conducted with a small seaplane to obtain experimental wing-bending-moment time histories together with time histories of the various parameters necessary for the prediction of wing bending moments during hydrodynamic forcing functions. The experimental results were compared with calculated results which include inertia-load effects and the effects of air-load variation during impact. The responses of the fundamental mode were calculated with the use of the measured hydrodynamic forcing functions. From these responses, the wing bending moments due to the hydrodynamic load were calculated according to the procedure given in R.M. No. 2221. The comparison of the time histories of the experimental and calculated wing bending moments showed good agreement both in phase relationship of the oscillations and in numerical values.

  12. Combined Effects of Gravity, Bending Moment, Bearing Clearance, and Input Torque on Wind Turbine Planetary Gear Load Sharing: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Y.; Keller, J.; LaCava, W.

    2012-09-01

    This computational work investigates planetary gear load sharing of three-mount suspension wind turbine gearboxes. A three dimensional multibody dynamic model is established, including gravity, bending moments, fluctuating mesh stiffness, nonlinear tooth contact, and bearing clearance. A flexible main shaft, planetary carrier, housing, and gear shafts are modeled using reduced degrees-of-freedom through modal compensation. This drivetrain model is validated against the experimental data of Gearbox Reliability Collaborative for gearbox internal loads. Planet load sharing is a combined effect of gravity, bending moment, bearing clearance, and input torque. Influences of each of these parameters and their combined effects on the resulting planetmore » load sharing are investigated. Bending moments and gravity induce fundamental excitations in the rotating carrier frame, which can increase gearbox internal loads and disturb load sharing. Clearance in carrier bearings reduces the bearing load carrying capacity and thus the bending moment from the rotor can be transmitted into gear meshes. With bearing clearance, the bending moment can cause tooth micropitting and can induce planet bearing fatigue, leading to reduced gearbox life. Planet bearings are susceptible to skidding at low input torque.« less

  13. Moment arms of the human neck muscles in flexion, bending and rotation.

    PubMed

    Ackland, David C; Merritt, Jonathan S; Pandy, Marcus G

    2011-02-03

    There is a paucity of data available for the moment arms of the muscles of the human neck. The objective of the present study was to measure the moment arms of the major cervical spine muscles in vitro. Experiments were performed on five fresh-frozen human head-neck specimens using a custom-designed robotic spine testing apparatus. The testing apparatus replicated flexion-extension, lateral bending and axial rotation of each individual intervertebral joint in the cervical spine while all other joints were kept immobile. The tendon excursion method was used to measure the moment arms of 30 muscle sub-regions involving 13 major muscles of the neck about all three axes of rotation of each joint for the neutral position of the cervical spine. Significant differences in the moment arm were observed across sub-regions of individual muscles and across the intervertebral joints spanned by each muscle (p<0.05). Overall, muscle moment arms were larger in flexion-extension and lateral bending than in axial rotation, and most muscles had prominent moment arms in at least 2 out of the 3 joint motions investigated. This study emphasizes the importance of detailed representation of a muscle's architecture in prediction of its torque capacity about the individual joints of the cervical spine. The dataset produced may be useful in developing and validating computational models of the human neck. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Wind-Tunnel Investigation of the Effect of Angle of Attack and Flapping-Hinge Offset on Periodic Bending Moments and Flapping of a Small Rotor

    NASA Technical Reports Server (NTRS)

    McCarty, John Locke; Brooks, George W.; Maglieri, Domenic J.

    1959-01-01

    A two-blade rotor having a diameter of 4 feet and a solidity of 0.037 was tested in the Langley 300-MPH 7- by 10-foot tunnel to obtain information on the effect of certain rotor variables on the blade periodic bending moments and flapping angles during the various stages of transformation between the helicopter and autogiro configuration. Variables studied included collective pitch angle, flapping-hinge offset, rotor angle of attack, and tip-speed ratio. The results show that the blade periodic bending moments generally increase with tip-speed ratio up into the transition region, diminish over a certain range of tip-speed ratio, and increase again at higher tip-speed ratios. Above the transition region, the bending moments increase with collective pitch angle and rotor angle of attack. The absence of a flapping hinge results in a significant amplification of the periodic bending moments, the magnitudes of which increase with tip-speed ratio. When the flapping hinge is used, an increase in flapping-hinge offset results in reduced period bending moments. The aforementioned trends exhibited by the bending moments for changes in the variables are essentially duplicated by the periodic flapping motions. The existence of substantial amounts of blade stall increased both the periodic bending moments and the flapping angles. Harmonic analysis of the bending moments shows significant contributions of the higher harmonics, particularly in the transition region.

  15. Multi-planar bending properties of lumbar intervertebral joints following cyclic bending.

    PubMed

    Chow, Daniel H K; Luk, Keith D K; Holmes, Andrew D; Li, Xing-Fei; Tam, Steven C W

    2004-02-01

    To assess the changes in the multi-planar bending properties of intervertebral joints following cyclic bending along different directions. An in vitro biomechanical study using porcine lumbar motion segments. Repeated bending has been suggested as part of the etiology of gradual prolapse of the intervertebral disc, but the multi-planar changes in bending properties following cyclic loading have not been examined in detail. Porcine lumbar motion segments were subject to 1500 cycles of bending along directions of 0 degrees (flexion), 30 degrees, 60 degrees, or 90 degrees (right lateral bending). The multi-planar bending moments and hysteresis energies were recorded before loading and after various cycle numbers. Repeated bending at 30 degrees and 60 degrees resulted in greater decreases in mean bending moment and hysteresis energy than bending at 0 degrees or 90 degrees. No significant differences were seen between loading groups for the change in bending moment along the anterior testing directions, but significant differences were observed in the posterior and lateral testing directions, with bending at 30 degrees causing a significantly greater decrease in bending moment in the postero-lateral directions. The change in mechanical properties of porcine intervertebral joints due to cyclic bending depend on the direction of loading and the direction in which the properties are measured. Loading at 30 degrees provokes the most marked changes in bending moment and hysteresis energy.

  16. An Analytical Calculation of Frictional and Bending Moments at the Head-Neck Interface of Hip Joint Implants during Different Physiological Activities.

    PubMed

    Farhoudi, Hamidreza; Oskouei, Reza H; Pasha Zanoosi, Ali A; Jones, Claire F; Taylor, Mark

    2016-12-05

    This study predicts the frictional moments at the head-cup interface and frictional torques and bending moments acting on the head-neck interface of a modular total hip replacement across a range of activities of daily living. The predicted moment and torque profiles are based on the kinematics of four patients and the implant characteristics of a metal-on-metal implant. Depending on the body weight and type of activity, the moments and torques had significant variations in both magnitude and direction over the activity cycles. For the nine investigated activities, the maximum magnitude of the frictional moment ranged from 2.6 to 7.1 Nm. The maximum magnitude of the torque acting on the head-neck interface ranged from 2.3 to 5.7 Nm. The bending moment acting on the head-neck interface varied from 7 to 21.6 Nm. One-leg-standing had the widest range of frictional torque on the head-neck interface (11 Nm) while normal walking had the smallest range (6.1 Nm). The widest range, together with the maximum magnitude of torque, bending moment, and frictional moment, occurred during one-leg-standing of the lightest patient. Most of the simulated activities resulted in frictional torques that were near the previously reported oxide layer depassivation threshold torque. The predicted bending moments were also found at a level believed to contribute to the oxide layer depassivation. The calculated magnitudes and directions of the moments, applied directly to the head-neck taper junction, provide realistic mechanical loading data for in vitro and computational studies on the mechanical behaviour and multi-axial fretting at the head-neck interface.

  17. An Analytical Calculation of Frictional and Bending Moments at the Head-Neck Interface of Hip Joint Implants during Different Physiological Activities

    PubMed Central

    Farhoudi, Hamidreza; Oskouei, Reza H.; Pasha Zanoosi, Ali A.; Jones, Claire F.; Taylor, Mark

    2016-01-01

    This study predicts the frictional moments at the head-cup interface and frictional torques and bending moments acting on the head-neck interface of a modular total hip replacement across a range of activities of daily living. The predicted moment and torque profiles are based on the kinematics of four patients and the implant characteristics of a metal-on-metal implant. Depending on the body weight and type of activity, the moments and torques had significant variations in both magnitude and direction over the activity cycles. For the nine investigated activities, the maximum magnitude of the frictional moment ranged from 2.6 to 7.1 Nm. The maximum magnitude of the torque acting on the head-neck interface ranged from 2.3 to 5.7 Nm. The bending moment acting on the head-neck interface varied from 7 to 21.6 Nm. One-leg-standing had the widest range of frictional torque on the head-neck interface (11 Nm) while normal walking had the smallest range (6.1 Nm). The widest range, together with the maximum magnitude of torque, bending moment, and frictional moment, occurred during one-leg-standing of the lightest patient. Most of the simulated activities resulted in frictional torques that were near the previously reported oxide layer depassivation threshold torque. The predicted bending moments were also found at a level believed to contribute to the oxide layer depassivation. The calculated magnitudes and directions of the moments, applied directly to the head-neck taper junction, provide realistic mechanical loading data for in vitro and computational studies on the mechanical behaviour and multi-axial fretting at the head-neck interface. PMID:28774104

  18. Failure mode and bending moment of canine pancarpal arthrodesis constructs stabilized with two different implant systems.

    PubMed

    Wininger, Fred A; Kapatkin, Amy S; Radin, Alex; Shofer, Frances S; Smith, Gail K

    2007-12-01

    To compare failure mode and bending moment of a canine pancarpal arthrodesis construct using either a 2.7 mm/3.5 mm hybrid dynamic compression plate (HDCP) or a 3.5 mm dynamic compression plate (DCP). Paired in vitro biomechanical testing of canine pancarpal arthrodesis constructs stabilized with either a 2.7/3.5 HDCP or 3.5 DCP. Paired cadaveric canine antebrachii (n=5). Pancarpal arthrodesis constructs were loaded to failure (point of maximum load) in 4-point bending using a materials-testing machine. Using this point of failure, bending moments were calculated from system variables for each construct and the 2 plating systems compared using a paired t-test. To examine the relationship between metacarpal diameter and screw diameter failure loads, linear regression was used and Pearson' correlation coefficient was calculated. Significance was set at P<.05. HDCP failed at higher loads than DCP for 9 of 10 constructs. The absolute difference in failure rates between the 2 plates was 0.552+/-0.182 N m, P=.0144 (95% confidence interval: -0.58 to 1.68). This is an 8.1% mean difference in bending strength. There was a significant linear correlation r=0.74 (P-slope=.014) and 0.8 (P-slope=.006) between metacarpal diameter and failure loads for the HDCP and 3.5 DCP, respectively. There was a small but significant difference between bending moment at failure between 2.7/3.5 HDCP and 3.5 DCP constructs; however, the difference may not be clinically evident in all patients. The 2.7/3.5 HDCP has physical and mechanical properties making it a more desirable plate for pancarpal arthrodesis.

  19. Improving Bending Moment Measurements on Wind Turbine Blades

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Post, Nathan L.

    Full-scale fatigue testing of wind turbine blades is conducted using resonance test techniques where the blade plus additional masses is excited at its first resonance frequency to achieve the target loading amplitude. Because there is not a direct relationship between the force applied by an actuator and the bending moment, the blade is instrumented with strain gauges that are calibrated under static loading conditions to determine the sensitivity or relationship between strain and applied moment. Then, during dynamic loading the applied moment is calculated using the strain response of the structure. A similar procedure is also used in the fieldmore » to measure in-service loads on turbine blades. Because wind turbine blades are complex twisted structures and the deflections are large, there is often significant cross-talk coupling in the sensitivity of strain gauges placed on the structure. Recent work has shown that a sensitivity matrix with nonzero cross terms must be employed to find constant results when a blade is subjected to both flap and lead-lag loading. However, even under controlled laboratory conditions, potential for errors of 3 percent or more in the measured moment exist when using the typical cross-talk matrix approach due to neglecting the influence of large deformations and torsion. This is particularly critical when considering a biaxial load as would be applied on the turbine or during a biaxial fatigue test. This presentation describes these results demonstrating errors made when performing current loads measurement practices on wind turbine blades in the lab and evaluating potential improvements using enhanced cross-talk matrix approaches and calibration procedures.« less

  20. Effect of wing bend on the experimental force and moment characteristics of an oblique wing

    NASA Technical Reports Server (NTRS)

    Hopkins, E. J.; Nelson, E. R.

    1976-01-01

    Static longitudinal and lateral/directional force and moment characteristics are presented for an elliptical oblique wing mounted on top of a Sears-Haack body of revolution. The wing had an aspect ratio of 6 (based on the unswept span) and was tested at various sweep angles relative to the body axis ranging from 0 to 60 deg. In an attempt to create more symmetrical spanwise wing stalling characteristics, both wing panels were bent upward to produce washout on the trailing wing panel and washing on the leading wing panel. Small fluorescent tufts were attached to the wing surface to indicate the stall progression on the wing. The tests were conducted throughout a Mach number range from 0.6 to 1.4 at a constant unit Reynolds number of 8.2 x 10 per meter. The test results indicate that upward bending of the wing panels had only a small effect on the linearity of the moment curves and would require an impractical wing-pivot location at low lift to eliminate the rolling moment resulting from this bending.

  1. The spanwise distribution of lift for minimum induced drag of wings having a given lift and a given bending moment

    NASA Technical Reports Server (NTRS)

    Jones, R. T.

    1950-01-01

    The problem of the minimum induced drag of wings having a given lift and a given span is extended to include cases in which the bending moment to be supported by the wing is also given. The theory is limited to lifting surfaces traveling at subsonic speeds. It is found that the required shape of the downwash distribution can be obtained in an elementary way which is applicable to a variety of such problems. Expressions for the minimum drag and the corresponding spanwise load distributions are also given for the case in which the lift and the bending moment about the wing root are fixed while the span is allowed to vary. The results show a 15-percent reduction of the induced drag with a 15-percent increase in span as compared with results for an elliptically loaded wing having the same total lift and bending moment.

  2. Critical bending moment of four implant-abutment interface designs.

    PubMed

    Lee, Frank K; Tan, Keson B; Nicholls, Jack I

    2010-01-01

    Critical bending moment (CBM), defined as the bending moment at which the external nonaxial load applied overcomes screw joint preload and causes loss of contact between the mating surfaces of the implant screw joint components, was measured for four different implants and their single-tooth replacement abutments. CBM at the implant-abutment screw joint for four implant-abutment test groups was measured in vitro at 80%, 100%, and 120% of the manufacturers' recommended torque levels. Regular-platform implants with their corresponding single-tooth abutments were used. Microstrain was measured while known loads were applied to the abutment at known distances from the implant-abutment interface. Strain instrumentation was used to record the strain data dynamically to determine the point of gap opening. All torque applications and strain measurements were repeated five times for the five samples in each group. For the Branemark/CeraOne assemblies, the mean CBMs were 72.14 Ncm, 102.21 Ncm, and 119.13 Ncm, respectively, at 80%, 100%, and 120% of the manufacturer's recommended torque. For the Replace/Easy assemblies, mean CBMs were 86.20 Ncm, 109.92 Ncm, and 120.93 Ncm; for the Biomet 3i/STA assemblies, they were 67.97 Ncm, 83.14 Ncm, and 91.81 Ncm; and for the Lifecore/COC assemblies, they were 58.32 Ncm, 76.79 Ncm, and 78.93 Ncm. Two-way analysis of variance revealed significant effects for the test groups and torque levels. Subsequent tests confirmed that significant differences existed between test groups and torque levels. The results appear to confirm the primary role of the compressive preload imparted by the abutment screw in maintaining screw joint integrity. CBM was found to differ among implant systems and torque levels. Torque levels recommended by the manufacturer should be followed to ensure screw joint integrity.

  3. Reversal bending fatigue testing

    DOEpatents

    Wang, Jy-An John; Wang, Hong; Tan, Ting

    2014-10-21

    Embodiments for apparatuses for testing reversal bending fatigue in an elongated beam are disclosed. Embodiments are configured to be coupled to first and second end portions of the beam and to apply a bending moment to the beam and create a pure bending condition in an intermediate portion of the beam. Embodiments are further configured to cyclically alternate the direction of the bending moment applied to the beam such that the intermediate portion of the beam cyclically bends in opposite directions in a pure bending condition.

  4. Repetitive lifting tasks fatigue the back muscles and increase the bending moment acting on the lumbar spine.

    PubMed

    Dolan, P; Adams, M A

    1998-08-01

    During manual handling, the back muscles protect the spine from excessive flexion, but in doing so impose a high compressive force on it. Epidemiological links between back pain and repetitive lifting suggest that fatigued muscles may adversely affect the balance between bending and compression. Fifteen volunteers lifted and lowered a 10 kg weight from floor to waist height 100 times. Throughout this task, the bending moment acting on the osteoligamentous lumbar spine was estimated from continuous measurements of lumbar flexion, obtained using the 3-Space Isotrak. Spinal compression was estimated from the electromyographic (EMG) activity of the erector spinae muscles, recorded from skin-surface electrodes at the levels of T10 and L3. EMG signals were calibrated against force when subjects pulled up on a load cell, and correction factors were applied to account for changes in muscle length and contraction velocity. Fatigue in the erector spinae muscles was quantified by comparing the frequency content of their EMG signal during static contractions performed before, and immediately after, the 100 lifts. Results showed that peak lumbar flexion increased during the 100 lifts from 83.3 +/- 14.8% to 90.4 +/- 14.3%, resulting in a 36% increase in estimated peak bending moment acting on the lumbar spine (P = 0.008). Peak spinal compression fell by 11% (p = 0.007). The median frequency of the EMG signal at L3 decreased by 5.5% following the 100 lifts (p = 0.042) confirming that the erector spinae were fatigued, but measures of fatigue showed no significant correlation with increased bending. We conclude that repetitive lifting induces measurable fatigue in the erector spinae muscles, and substantially increases the bending moment acting on the lumbar spine.

  5. New method for evaluation of bendability based on three-point-bending and the evolution of the cross-section moment

    NASA Astrophysics Data System (ADS)

    Troive, L.

    2017-09-01

    Friction-free 3-point bending has become a common test-method since the VDA 238-100 plate-bending test [1] was introduced. According to this test the criterion for failure is when the force suddenly drops. It was found by the author that the evolution of the cross-section moment is a more preferable measure regarding the real material response instead of the force. Beneficially, the cross-section moment gets more or less a constant maximum steady-state level when the cross-section becomes fully plastified. An expression for the moment M is presented that fulfils the criteria for energy of conservation at bending. Also an expression calculating the unit-free moment, M/Me, i.e. current moment to elastic-moment ratio, is demonstrated specifically proposed for detection of failures. The mathematical expressions are simple making it easy to transpose measured force F and stroke position S to the corresponding cross-section moment M. From that point of view it’s even possible to implement, e.g. into a conventional measurement system software, studying the cross-section moment in real-time during a test. It’s even possible to calculate other parameters such as flow-stress and shape of curvature at every stage. It has been tested on different thicknesses and grades within the range from 1.0 to 10 mm with very good results. In this paper the present model is applied on a 6.1 mm hot-rolled high strength steel from the same batch at three different conditions, i.e. directly quenched, quenched and tempered, and a third variant quench and tempered with levelling. It will be shown that very small differences in material-response can be predicted by this method.

  6. Evaluation of Several Approximate Methods for Calculating the Symmetrical Bending-Moment Response of Flexible Airplanes to Isotropic Atmospheric Turbulence

    NASA Technical Reports Server (NTRS)

    Bennett, Floyd V.; Yntema, Robert T.

    1959-01-01

    Several approximate procedures for calculating the bending-moment response of flexible airplanes to continuous isotropic turbulence are presented and evaluated. The modal methods (the mode-displacement and force-summation methods) and a matrix method (segmented-wing method) are considered. These approximate procedures are applied to a simplified airplane for which an exact solution to the equation of motion can be obtained. The simplified airplane consists of a uniform beam with a concentrated fuselage mass at the center. Airplane motions are limited to vertical rigid-body translation and symmetrical wing bending deflections. Output power spectra of wing bending moments based on the exact transfer-function solutions are used as a basis for the evaluation of the approximate methods. It is shown that the force-summation and the matrix methods give satisfactory accuracy and that the mode-displacement method gives unsatisfactory accuracy.

  7. Flight Investigation of Effects of Selected Operating Conditions on the Bending and Torsional Moments Encountered by a Helicopter Rotor Blade

    NASA Technical Reports Server (NTRS)

    Ludi, LeRoy H.

    1961-01-01

    Flight tests have been conducted with a single-rotor helicopter to determine the effects of partial-power descents with forward speed, high-speed level turns, pull-outs from autorotation, and high-forward-speed high-rotor-speed autorotation on the flapwise bending and torsional moments of the rotor blade. One blade of the helicopter was equipped at 14 percent and 40 percent of the blade radius with strain gages calibrated to measure moments rather than stresses. The results indicate that the maximum moments encountered in partial-power descents with forward speed tend to be generally reduced from the maximum moments encountered during partid-power descents at zero forward speed. High-speed level turns and pull-outs from auto-rotation caused retreating-blade stall which produced torsional moments (values up to 2,400 inch-pounds). at the 14-percent-radius station that were as large as those encountered during the previous investigations of retreating-blade stall (values up t o 2,500 inch-pounds). High-forward- speed high-rotor-speed autorotation produced flapwise bending moments (values up to 7,200 inch-pounds) at the 40-percent-radius station which were as large as the flapwise bending moments (values up to 7,800 inch-pounds) a t the 14-percent-radius station encountered during partial - power vertical descents. The results of the present investigation (tip-speed ratios up to 0.325 and an unaccelerated level-flight mean lift coefficient of about 0.6), in combination with the related results of at zero forward speed produce the largest rotor-blade vibratory moments. However, inasmuch as these large moments occur only during 1 percent of the cycles and 88 percent of the cycles are at moment values less than 70 percent of these maximum values in partial-power descents, other conditions, such as high-speed flight where the large moments are combined with large percentages of time spent,must not be neglected in any rotor-blade service-life assessment.

  8. Examination of a lumbar spine biomechanical model for assessing axial compression, shear, and bending moment using selected Olympic lifts.

    PubMed

    Eltoukhy, Moataz; Travascio, Francesco; Asfour, Shihab; Elmasry, Shady; Heredia-Vargas, Hector; Signorile, Joseph

    2016-09-01

    Loading during concurrent bending and compression associated with deadlift, hang clean and hang snatch lifts carries the potential for injury to the intervertebral discs, muscles and ligaments. This study examined the capacity of a newly developed spinal model to compute shear and compressive forces, and bending moments in lumbar spine for each lift. Five male subjects participated in the study. The spine was modeled as a chain of rigid bodies (vertebrae) connected via the intervertebral discs. Each vertebral reference frame was centered in the center of mass of the vertebral body, and its principal directions were axial, anterior-posterior, and medial-lateral. The results demonstrated the capacity of this spinal model to assess forces and bending moments at and about the lumbar vertebrae by showing the variations among these variables with different lifting techniques. These results show the model's potential as a diagnostic tool.

  9. Estimation of blade airloads from rotor blade bending moments

    NASA Technical Reports Server (NTRS)

    Bousman, William G.

    1987-01-01

    This paper presents a method for the estimation of blade airloads, based on the measurements of flap bending moments. In this procedure, the blade rotation in vacuum modes is calculated, and the airloads are expressed as an algebraic sum of the mode shapes, modal amplitudes, mass distribution, and frequency properties. The method was validated by comparing the calculated airload distribution with the original wind tunnel measurements which were made using ten modes and twenty measurement stations. Good agreement between the predicted and the measured airloads was found up to 0.90 R, but the agreement degraded towards the blade tip. The method is shown to be quite robust to the type of experimental problems that could be expected to occur in the testing of full-scale and model-scale rotors.

  10. The effect of frictional torque and bending moment on corrosion at the taper interface : an in vitro study.

    PubMed

    Panagiotidou, A; Meswania, J; Osman, K; Bolland, B; Latham, J; Skinner, J; Haddad, F S; Hart, A; Blunn, G

    2015-04-01

    The aim of this study was to assess the effect of frictional torque and bending moment on fretting corrosion at the taper interface of a modular femoral component and to investigate whether different combinations of material also had an effect. The combinations we examined were 1) cobalt-chromium (CoCr) heads on CoCr stems 2) CoCr heads on titanium alloy (Ti) stems and 3) ceramic heads on CoCr stems. In test 1 increasing torque was imposed by offsetting the stem in the anteroposterior plane in increments of 0 mm, 4 mm, 6 mm and 8 mm when the torque generated was equivalent to 0 Nm, 9 Nm, 14 Nm and 18 Nm. In test 2 we investigated the effect of increasing the bending moment by offsetting the application of axial load from the midline in the mediolateral plane. Increments of offset equivalent to head + 0 mm, head + 7 mm and head + 14 mm were used. Significantly higher currents and amplitudes were seen with increasing torque for all combinations of material. However, Ti stems showed the highest corrosion currents. Increased bending moments associated with using larger offset heads produced more corrosion: Ti stems generally performed worse than CoCr stems. Using ceramic heads did not prevent corrosion, but reduced it significantly in all loading configurations. ©2015 The British Editorial Society of Bone & Joint Surgery.

  11. Analytic description of the frictionally engaged in-plane bending process incremental swivel bending (ISB)

    NASA Astrophysics Data System (ADS)

    Frohn, Peter; Engel, Bernd; Groth, Sebastian

    2018-05-01

    Kinematic forming processes shape geometries by the process parameters to achieve a more universal process utilizations regarding geometric configurations. The kinematic forming process Incremental Swivel Bending (ISB) bends sheet metal strips or profiles in plane. The sequence for bending an arc increment is composed of the steps clamping, bending, force release and feed. The bending moment is frictionally engaged by two clamping units in a laterally adjustable bending pivot. A minimum clamping force hindering the material from slipping through the clamping units is a crucial criterion to achieve a well-defined incremental arc. Therefore, an analytic description of a singular bent increment is developed in this paper. The bending moment is calculated by the uniaxial stress distribution over the profiles' width depending on the bending pivot's position. By a Coulomb' based friction model, necessary clamping force is described in dependence of friction, offset, dimensions of the clamping tools and strip thickness as well as material parameters. Boundaries for the uniaxial stress calculation are given in dependence of friction, tools' dimensions and strip thickness. The results indicate that changing the bending pivot to an eccentric position significantly affects the process' bending moment and, hence, clamping force, which is given in dependence of yield stress and hardening exponent. FE simulations validate the model with satisfactory accordance.

  12. Nonlinear Deformation and Stability of a Noncircular Cylindrical Shell Under Combined Loading with Bending and Twisting Moments

    NASA Astrophysics Data System (ADS)

    Belov, V. K.; Zheleznov, L. P.; Ognyanova, T. S.

    2018-03-01

    A previously developed technique is used to solve problems of strength and stability of discretely reinforced noncircular cylindrical shells made of a composite material with allowance for the moments and nonlinearity of their subcritical stress-strain state. Stability of a reinforced bay of the aircraft fuselage made of a composite material under combined loading with bending and twisting moments is studied. The effects of straining nonlinearity, stiffness of longitudinal ribs, and shell thickness on the critical loads that induce shell buckling are analyzed.

  13. A new insole measurement system to detect bending and torsional moments at the human foot during footwear condition: a technical report.

    PubMed

    Stief, Thomas; Peikenkamp, Klaus

    2015-01-01

    Stress occurring at the feet while wearing footwear is often determined using pressure measurement systems. However, other forms of stress, such as bending, torsional and shear loadings, cannot be detected in shoes during day-to-day activities. Nevertheless, the detection of these types of stresses would be helpful for understanding the mechanical aspects of various kinds of hard and soft tissue injuries. Therefore, we describe the development of a new measuring device that allows the reliable determination of bending and torsional load at the foot in shoes. The system consists of a measuring insole and an analogue device with Bluetooth interface. The specific shape of the insole base layer, the positions of the strain gauges, and the interconnections between them have all been selected in such a way so as to isolate bending and torsional moment detections in the medial and lateral metatarsal region. The system was calibrated using a classical two-point test procedure. A single case study was executed to evaluate the new device for practical use. This application consisted of one subject wearing neutral shoes walking on a treadmill. The calibration results (coefficients of determination R(2) > 0.999) show that bending and torsional load can be reliably detected using the measurement system presented. In the single case study, alternating bending and torsional load can be detected during walking, and the shape of the detected bending moments can be confirmed by the measurements of Arndt et al. (J Biomech 35:621-8, 2002). Despite some limitations, the presented device allows for the reliable determination of bending and torsional stresses at the foot in shoes.

  14. Flight Investigation of Effects of Transition, Landing Approaches, Partial-Power Vertical Descents, and Droop-Stop Pounding on the Bending and Torsional Moments Encountered by a Helicopter Rotor Blade

    NASA Technical Reports Server (NTRS)

    Ludi, LeRoy H.

    1959-01-01

    Flight tests have been conducted with a single-rotor helicopter, one blade of which was equipped at 14 percent and 40 percent of the blade radius with strain gages calibrated to measure moments rather than stresses, to determine the effects of transition, landing approaches, and partial-power vertical descents on the rotor-blade bending and torsional moments. In addition, ground tests were conducted to determine the effects of static droop-stop pounding on the rotor-blade moments. The results indicate that partial-power vertical descents and landing approaches produce rotor-blade moments that are higher than the moments encountered in any other flight condition investigated to date with this equipment. Decelerating through the transition region in level flight was found to result in higher vibratory moments than accelerating through this region. Deliberately induced static droop-stop pounding produced flapwise bending moments at the 14-percent-radius station which were as high as the moments experienced in landing approaches and partial-power vertical descents.

  15. Comparison of Measured Flapwise Structural Bending Moments on a Teetering Rotor Blade With Results Calculated From the Measured Pressure Distribution

    NASA Technical Reports Server (NTRS)

    Mayo, Alton P.

    1959-01-01

    Flapwise bending moments were calculated for a teetering rotor blade using a reasonably rapid theoretical method in which airloads obtained from wind-tunnel tests were employed. The calculated moments agreed reasonably well with those measured with strain gages under the same test conditions. The range of the tests included one hovering and two forward-flight conditions. The rotor speed for the test was very near blade resonance, and difficult-to-calculate resonance effects apparently were responsible for the largest differences between the calculated and measured harmonic components of blade bending moments. These differences, moreover, were largely nullified when the harmonic components were combined to give a comparison of the calculated and measured blade total- moment time histories. The degree of agreement shown is therefore considered adequate to warrant the use of the theoretical method in establishing and applying methods of prediction of rotor-blade fatigue loads. At the same time, the validity of the experimental methods of obtaining both airload and blade stress measurement is also indicated to be adequate for use in establishing improved methods for prediction of rotor-blade fatigue loads during the design stage. The blade stiffnesses and natural frequencies were measured and found to be in close agreement with calculated values; however, for a condition of blade resonance the use of the experimental stiffness values resulted in better agreement between calculated and measured blade stresses.

  16. Charts for Determining Preliminary Values of Span-load, Shear, Bending-moment, and Accumulated-torque Distributions of Swept Wings of Various Taper Ratios

    NASA Technical Reports Server (NTRS)

    Wollner, Bertram C

    1948-01-01

    Contains charts for use in determining preliminary values of the spanwise-load, shear, bending-moment, and accumulated-torque distributions of swept wings. The charts are based on strip theory and include four aerodynamic-load distributions, two section-moment distributions, and two inertia-load distributions. The taper ratios considered cover the range from 1.0 to 0 and the results are applicable to any angle of sweep.

  17. LOADS: a computer program for determining the shear, bending moment and axial loads for fuselage type structures

    NASA Technical Reports Server (NTRS)

    Nolte, W. E.

    1976-01-01

    LOADS determines rigid body vehicle shears, bending moments and axial loads on a space vehicle due to aerodynamic loads and propellant inertial loads. An example hand calculation is presented and was used to check LOADS. A brief description of the program and the equations used are presented. LOADS is operational on the Univac 1110, occupies 10505 core and typically takes less than one(1) second of CAU time to execute.

  18. Yielding in colloidal gels due to nonlinear microstructure bending mechanics.

    PubMed

    Furst, Eric M; Pantina, John P

    2007-05-01

    We report measurements of the nonlinear micromechanics of strongly flocculated model colloidal aggregates. Linear aggregates directly assembled using laser tweezers are subjected to bending loads until a critical bending moment is reached, which is identified by a stictionlike rearrangement of a single colloidal bond. This nanoscale phenomenon provides a quantitative basis for understanding the macroscopic shear yield stresses of strongly flocculated polystyrene latex gels, based on the maximum bending moment exceeding the critical moment of the constituent colloidal bonds of the gel microstructure. These mechanics are consistent with the local bending moment overcoming the static friction force between neighboring adhesive particles. This results in a direct relationship between the rheology of these gels and the boundary friction between Brownian particles.

  19. Comparison of wing-span averaging effects on lift, rolling moment, and bending moment for two span load distributions and for two turbulence representations

    NASA Technical Reports Server (NTRS)

    Lichtenstein, J. H.

    1978-01-01

    An analytical method of computing the averaging effect of wing-span size on the loading of a wing induced by random turbulence was adapted for use on a digital electronic computer. The turbulence input was assumed to have a Dryden power spectral density. The computations were made for lift, rolling moment, and bending moment for two span load distributions, rectangular and elliptic. Data are presented to show the wing-span averaging effect for wing-span ratios encompassing current airplane sizes. The rectangular wing-span loading showed a slightly greater averaging effect than did the elliptic loading. In the frequency range most bothersome to airplane passengers, the wing-span averaging effect can reduce the normal lift load, and thus the acceleration, by about 7 percent for a typical medium-sized transport. Some calculations were made to evaluate the effect of using a Von Karman turbulence representation. These results showed that using the Von Karman representation generally resulted in a span averaging effect about 3 percent larger.

  20. Failure of the lumbar pedicles under bending loading - biomed 2010.

    PubMed

    Arregui-Dalmases, Carlos; Ash, Joseph H; Del Pozo, Eduardo; Kerrigan, Jason R; Crandall, Jeff

    2010-01-01

    The purpose of this study was to investigate the magnitude of bending moment that results in fracture of the pedicles when lumbar vertebrae are loaded in four-point bending. Nine human second lumbar vertebrae (L2) were harvested from donors aged 59-75 years. The specimens were potted and then subjected to quasi-static sagittal-plane four-point bending, which allowed for a constant bending moment applied over a 3.8 cm span centered on the vertebral pedicles until fracture. The failure bending moment calculated for the pedicles varied widely (30.7 +/- 12.3 Nm) and was poorly correlated with subject age (y = -0.91x + 91.5, R(2) = -0.27). With increasing displacement, the bending moment applied to the pedicles increased, first linearly, followed by a non-linear portion, prior to specimen fracture. In general, the specimens failed at the interface of the pedicles and vertebral bodies, but failures were observed elsewhere as well. These data provide sufficient response and boundary condition information for finite element modeling and model validation.

  1. Reducing stem bending increases the height growth of tall pines.

    PubMed

    Meng, Shawn X; Lieffers, Victor J; Reid, Douglas E B; Rudnicki, Mark; Silins, Uldis; Jin, Ming

    2006-01-01

    The hypothesis was tested that upper limits to height growth in trees are the result of the increasing bending moment of trees as they grow in height. The increasing bending moment of tall trees demands increased radial growth at the expense of height growth to maintain mechanical stability. In this study, the bending moment of large lodgepole pine (Pinus contorta Dougl. Ex Loud. var. latifolia Engelm.) was reduced by tethering trees at 10 m height to counter the wind load. Average bending moment of tethered trees was reduced to 38% of control trees. Six years of tethering resulted in a 40% increase in height growth relative to the period before tethering. By contrast, control trees showed decreased height growth in the period after tethering treatment. Average radial growth along the bole, relative to height growth, was reduced in tethered trees. This strongly suggests that mechanical constraints play a crucial role in limiting the height growth of tall trees. Analysis of bending moment and basal area increment at both 10 m and 1.3 m showed that the amount of wood added to the stem was closely related to the bending moment produced at these heights, in both control and tethered trees. The tethering treatment also resulted in an increase in the proportion of latewood at the tethering height, relative to 1.3 m height. For untethered control trees, the ratio of bending stresses at 10 m versus 1.3 m height was close to 1 in both 1998 and 2003, suggesting a uniform stress distribution along the outer surface of the bole.

  2. Calculation of Wing Bending Moments and Tail Loads Resulting from the Jettison of Wing Tips During a Symmetrical Pull-Up

    NASA Technical Reports Server (NTRS)

    Boshar, John

    1947-01-01

    A preliminary analytical investigation was made to determine the feasibility of the basic idea of controlled failure points as safety valves for the primary airplane structure. The present analysis considers the possibilities of the breakable wing tip which, in failing as a weak link, would relieve the bending moments on the wing structure. The analysis was carried out by computing the time histories of the wing and stabilizer angle of attack in a 10g pull-up for an XF8F airplane with tips fixed and comparing the results with those for the same maneuver, that is, elevator motion but with tips jettisoned at 8g. The calculations indicate that the increased stability accompanying the loss of the wing tips reduces the bending moment an additional amount above that which would be expected from the initial loss in lift and the inboard shift in load. The vortex shed when the tips are lost may induce a transient load requiring that the tail be made stronger than otherwise.

  3. The multidirectional bending properties of the human lumbar intervertebral disc.

    PubMed

    Spenciner, David; Greene, David; Paiva, James; Palumbo, Mark; Crisco, Joseph

    2006-01-01

    While the biomechanical properties of the isolated intervertebral disc have been well studied in the three principal anatomic directions of flexion/extension, axial rotation, and lateral bending, there is little data on the properties in the more functional directions that are combinations of these principal anatomic directions. To determine the bending flexibility, range of motion (ROM), and neutral zone (NZ) of the human lumbar disc in multiple directions and to determine if the values about the combined moment axes can be predicted from the values about principal moment axes. Three-dimensional biomechanical analysis of the elastic bending properties of human lumbar discs about principal and combined moment axes. Pure, unconstrained moments were applied about multiple axes. The bending properties (flexibility, ROM, and NZ) of isolated lumbar discs (n=4 for L2/L3 and n=3 for L4/L5) were determined in the six principal directions and in 20 combined directions. The experimental values were compared with those predicted from the linear combination of the six principal moment axes. The maximum and minimum values of the biomechanical properties were found at the principal moment axes. Among combined moment axes, ROM and NZ (but not flexibility) values were predicted from the principal moment axis values. The principal moment axes coincide with the primary mechanical axes of the intervertebral disc and demonstrate significant differences in direction for values of flexibility, ROM, and NZ. Not all combined moment axis values can be predicted from principal moment axis values.

  4. Osteochondral microdamage from valgus bending of the human knee.

    PubMed

    Meyer, Eric G; Villwock, Mark R; Haut, Roger C

    2009-08-01

    Valgus bending of the knee is promoted as an anterior cruciate ligament injury mechanism and is associated with a characteristic "footprint" of bone bruising. The hypothesis of this study was that during ligamentous failure caused by valgus bending of the knee, high tibiofemoral contact pressures induce acute osteochondral microdamage. Four knee pairs were loaded in valgus bending until gross injury with or without a tibiofemoral compression pre-load. The peak valgus moment and resultant motions of the knee joint were recorded. Pressure sensitive film documented the magnitude and location of tibiofemoral contact. Cartilage fissures were documented on the tibial plateau, and microcracks in subchondral bone were documented from micro-computed tomography scans. Injuries were to the anterior cruciate ligament in three knees and the medial collateral ligament in seven knees. The mean (standard deviation) peak bending moment at failure was 107 (64)Nm. Valgus bending produced regions of contact on the lateral tibial plateau with average maximum pressures of approximately 30 (8)MPa. Cartilage fissures and subchondral bone microcracks were observed in these regions of high contact pressure. Combined valgus bending and tibiofemoral compression produce slightly higher contact pressures, but do not alter the gross injury pattern from isolated valgus bending experiments. Athletes who sustain a severe valgus knee bending moment, may be at risk of acute osteochondral damage especially if the loading mechanism occurs with a significant tibiofemoral compression component.

  5. Controlled impact demonstration airframe bending bridges

    NASA Technical Reports Server (NTRS)

    Soltis, S. J.

    1986-01-01

    The calibration of the KRASH and DYCAST models for transport aircraft is discussed. The FAA uses computer analysis techniques to predict the response of controlled impact demonstration (CID) during impact. The moment bridges can provide a direct correlation between the predictive loads or moments that the models will predict and what was experienced during the actual impact. Another goal is to examine structural failure mechanisms and correlate with analytical predictions. The bending bridges did achieve their goals and objectives. The data traces do provide some insight with respect to airframe loads and structural response. They demonstrate quite clearly what's happening to the airframe. A direct quantification of metal airframe loads was measured by the moment bridges. The measured moments can be correlated with the KRASH and DYCAST computer models. The bending bridge data support airframe failure mechanisms analysis and provide residual airframe strength estimation. It did not appear as if any of the bending bridges on the airframe exceeded limit loads. (The observed airframe fracture was due to the fuselage encounter with the tomahawk which tore out the keel beam.) The airframe bridges can be used to estimate the impact conditions and those estimates are correlating with some of the other data measurements. Structural response, frequency and structural damping are readily measured by the moment bridges.

  6. Creative wire bending--the force system from step and V bends.

    PubMed

    Burstone, C J; Koenig, H A

    1988-01-01

    The force system produced by wires with steps and V bends was studied analytically by means of a small deflection mathematic analysis. Characteristic force relationships were found in both the step and the V bend. Step bands centrally placed between adjacent brackets produce unidirectional couples that are equal in magnitude. Along with these couples, vertical or horizontal forces are produced depending upon the plane of activation. Mesiodistal placement of step bends is not critical because very little alteration in force system occurs if a step is centered or positioned off center. V bends, on the other hand, are very sensitive to the positioning mesiodistally of the apex of the V. If the apex of the V bend is placed on center, equal and opposite couples are produced. As the V-bend apex is moved off center, predictable combinations of moments and forces are created. A method for determination of the relative force system is described that allows for simple interpretation and prediction of the force system from a V bend. The clinical applications of these data and a rational basis for wire bending are presented based on the producing of a desired force system.

  7. Strength tests of thin-walled elliptic duralumin cylinders in pure bending and in combined pure bending and torsion

    NASA Technical Reports Server (NTRS)

    Lundquist, Eugene E; Stowell, Elbridge Z

    1942-01-01

    An analysis is presented of the results of tests made by the Massachusetts Institute of Technology and by the National Advisory Committee for Aeronautics on an investigation of the strength of thin-walled circular and elliptic cylinders in pure bending and in combined torsion and bending. In each of the loading conditions, the bending moments were applied in the plane of the major axis of the ellipse.

  8. On the bending properties of porcine mitral, tricuspid, aortic, and pulmonary valve leaflets.

    PubMed

    Brazile, Bryn; Wang, Bo; Wang, Guangjun; Bertucci, Robbin; Prabhu, Raj; Patnaik, Sourav S; Butler, J Ryan; Claude, Andrew; Brinkman-Ferguson, Erin; Williams, Lakiesha N; Liao, Jun

    2015-01-01

    The atrioventricular valve leaflets (mitral and tricuspid) are different from the semilunar valve leaflets (aortic and pulmonary) in layered structure, ultrastructural constitution and organization, and leaflet thickness. These differences warrant a comparative look at the bending properties of the four types of leaflets. We found that the moment-curvature relationships in atrioventricular valves were stiffer than in semilunar valves, and the moment-curvature relationships of the left-side valve leaflets were stiffer than their morphological analog of the right side. These trends were supported by the moment-curvature curves and the flexural rigidity analysis (EI value decreased from mitral, tricuspid, aortic, to pulmonary leaflets). However, after taking away the geometric effect (moment of inertia I), the instantaneous effective bending modulus E showed a reversed trend. The overall trend of flexural rigidity (EI: mitral > tricuspid > aortic > pulmonary) might be correlated with the thickness variations among the four types of leaflets (thickness: mitral > tricuspid > aortic > pulmonary). The overall trend of the instantaneous effective bending modulus (E: mitral < tricuspid < aortic < pulmonary) might be correlated to the layered fibrous ultrastructures of the four types of leaflets, of which the fibers in mitral and tricuspid leaflets were less aligned, and the fibers in aortic and pulmonary leaflets were highly aligned. We also found that, for all types of leaflets, moment-curvature relationships are stiffer in against-curvature (AC) bending than in with-curvature bending (WC), which implies that leaflets tend to flex toward their natural curvature and comply with blood flow. Lastly, we observed that the leaflets were stiffer in circumferential bending compared with radial bending, likely reflecting the physiological motion of the leaflets, i.e., more bending moment and movement were experienced in radial direction than circumferential direction.

  9. Subsonic and transonic hinge moment and wing bending/torsion characteristics of .015 scale space shuttle models 49-0 and 67-TS in the Rockwell International trisonic wind tunnel (IA70), volume 1

    NASA Technical Reports Server (NTRS)

    Hughes, M. T.; Mennell, R. C.

    1974-01-01

    Experimental aerodynamic investigations were conducted on an 0.015-scale representation of the integrated space shuttle launch vehicle in the trisonic wind tunnel. The primary test objective was to obtain subsonic and transonic elevon and bodyflap hinge moments and wing bending-torsion moments in the presence of the launch vehicle. Wing pressures were also recorded for the upper and lower right wing surfaces at two spanwise stations. The hinge moment, wing bending/torsion moments and wing pressure data were recorded over an angle-of-attack (alpha) range from -8 deg to +8 deg, and angle-of-sideslip (beta) range from -8 deg to +8 deg and at Mach numbers of 0.90, 1.12, 1.24 and 1.50. Tests were also conducted to determine the effects of the orbiter rear attach cross beam and the forward attach wedge and strut diameter. The orbiter alone was tested at 0.90 and 1.24 Mach number only.

  10. A theory for the fracture of thin plates subjected to bending and twisting moments

    NASA Technical Reports Server (NTRS)

    Hui, C. Y.; Zehnder, Alan T.

    1993-01-01

    Stress fields near the tip of a through crack in an elastic plate under bending and twisting moments are reviewed assuming both Kirchhoff and Reissner plate theories. The crack tip displacement and rotation fields based on the Reissner theory are calculated. These results are used to calculate the J-integral (energy release rate) for both Kirchhoff and Reissner plate theories. Invoking Simmonds and Duva's (1981) result that the value of the J-integral based on either theory is the same for thin plates, a universal relationship between the Kirchhoff theory stress intensity factors and the Reissner theory stress intensity factors is obtained for thin plates. Calculation of Kirchhoff theory stress intensity factors from finite elements based on energy release rate is illustrated. It is proposed that, for thin plates, fracture toughness and crack growth rates be correlated with the Kirchhoff theory stress intensity factors.

  11. S1 screw bending moment with posterior spinal instrumentation across the lumbosacral junction after unilateral iliac crest harvest.

    PubMed

    Alegre, G M; Gupta, M C; Bay, B K; Smith, T S; Laubach, J E

    2001-09-15

    A biomechanical study comparing fixation across the lumbosacral junction. To determine which long posterior construct across the lumbosacral junction produces the least bending moment on the S1 screw when only one ilium is available for fixation. Recent in vitro studies have demonstrated the benefit of anterior support and fixation into the ilium when instrumenting a long posterior construct across the lumbosacral junction. Four L2-sacrum constructs were tested on six synthetic models of the lumbar spine and pelvis simulating that the right ilium had been harvested. Construct 1: L2-S1 bilateral screws. Construct 2: L2-S1 + left iliac bolt. Construct 3: L2-S1 + left iliac bolt + right S2 screw. Construct 4: L2-S1 + bilateral S2 screws. The four constructs were then retested with an anterior L5-S1 strut. A flexion-extension moment was applied across each construct, and the moment at the left and right S1 pedicle screw was measured with internal strain gauges. Iliac bolt fixation was found to significantly decrease the flexion-extension moment on the ipsilateral S1 screw by 70% and the contralateral screw by 26%. An anterior L5-S1 strut significantly decreased the S1 screw flexion-extension moment by 33%. Anterior support at L5-S1 provided no statistical decrease in the flexion-extension moment when bilateral posterior fixation beyond S1 was present with either a unilateral iliac bolt and contralateral S2 screw, or bilateral S2 screws. There is a significant decrease in the flexion-extension moment on the S1 screw when extending long posterior constructs to either the ilium or S2 sacral screw. There is no biomechanical advantage of the iliac bolt over the S2 screw in decreasing the moment on the S1 screw in flexion and extension. Adding anterior support to long posterior constructs significantly decreases the moment on the S1 screw. Adding distal posterior fixation to either the ilium or S2 decreases the moment on S1 screws more than adding anterior support. Further

  12. Ovalization of Tubes Under Bending and Compression

    NASA Technical Reports Server (NTRS)

    Demer, L J; Kavanaugh, E S

    1944-01-01

    An empirical equation has been developed that gives the approximate amount of ovalization for tubes under bending loads. Tests were made on tubes in the d/t range from 6 to 14, the latter d/t ratio being in the normal landing gear range. Within the range of the series of tests conducted, the increase in ovalization due to a compression load in combination with a bending load was very small. The bending load, being the principal factor in producing the ovalization, is a rather complex function of the bending moment, d/t ratio, cantilever length, and distance between opposite bearing faces. (author)

  13. Locomotor variation and bending regimes of capuchin limb bones.

    PubMed

    Demes, Brigitte; Carlson, Kristian J

    2009-08-01

    Primates are very versatile in their modes of progression, yet laboratory studies typically capture only a small segment of this variation. In vivo bone strain studies in particular have been commonly constrained to linear locomotion on flat substrates, conveying the potentially biased impression of stereotypic long bone loading patterns. We here present substrate reaction forces (SRF) and limb postures for capuchin monkeys moving on a flat substrate ("terrestrial"), on an elevated pole ("arboreal"), and performing turns. The angle between the SRF vector and longitudinal axes of the forearm or leg is taken as a proxy for the bending moment experienced by these limb segments. In both frontal and sagittal planes, SRF vectors and distal limb segments are not aligned, but form discrepant angles; that is, forces act on lever arms and exert bending moments. The positions of the SRF vectors suggest bending around oblique axes of these limb segments. Overall, the leg is exposed to greater moments than the forearm. Simulated arboreal locomotion and turns introduce variation in the discrepancy angles, thus confirming that expanding the range of locomotor behaviors studied will reveal variation in long bone loading patterns that is likely characteristic of natural locomotor repertoires. "Arboreal" locomotion, even on a linear noncompliant branch, is characterized by greater variability of force directions and discrepancy angles than "terrestrial" locomotion (significant for the forearm only), partially confirming the notion that life in trees is associated with greater variation in long bone loading. Directional changes broaden the range of external bending moments even further.

  14. Bone strength in pure bending: bearing of geometric and material properties.

    PubMed

    Winter, Werner

    2008-01-01

    Osteoporosis is characterized by decreasing of bone mass and bone strength with advanced age. For characterization of material properties of dense and cellular bone the volumetric bone mineral density (vBMD) is one of the most important contributing factors to bone strength. Often bending tests of whole bone are used to get information about the state of osteoporosis. In a first step, different types of cellular structures are considered to characterize vBMD and its influence to elastic and plastic material properties. Afterwards, the classical theory of plastic bending is used to describe the non-linear moment-curvature relation of a whole bone. For bending of whole bone with sandwich structure an effective second moment of area can be defined. The shape factor as a pure geometrical value is considered to define bone strength. This factor is discussed for a bone with circular cross section and different thickness of cortical bone. The deduced relations and the decrease of material properties are used to demonstrate the influence of osteoporosis to bone bending strength. It can be shown that the elastic and plastic material properties of bone are related to a relative bone mineral density. Starting from an elastic-plastic bone behavior with an constant yield stress the non-linear moment-curvature relation in bending is related to yielding of the fibres in the cross section. The ultimate moment is characterized by a shape factor depending on the geometry of the cross section and on the change of cortical thickness.

  15. The relationship between EMG activity and extensor moment generation in the erector spinae muscles during bending and lifting activities.

    PubMed

    Dolan, P; Adams, M A

    1993-01-01

    The relationship between EMG activity and extensor moment generation in the erector spinae muscles was investigated under isometric and concentric conditions. The full-wave rectified and averaged EMG signal was recorded from skin-surface electrodes located over the belly of the erector spinae at the levels of T10 and L3, and compared with measurements of extensor moment. The effects of muscle length and contraction velocity were studied by measuring the overall curvature (theta) and rate of change of curvature (d theta/dt) of the lumbar spine in the sagittal plane, using the '3-Space Isotrak' system. Isometric contractions were investigated with the subjects pulling up on a load cell attached to the floor. Hand height was varied to produce different amounts of lumbar flexion, as indicated by changes in lumbar curvature. The extensor moment was found to be linearly related to EMG activity, and the 'gradient' and 'intercept' of the relationship were themselves dependent upon the lumbar curvature at the time of testing. Concentric contractions were investigated with the subjects extending from a seated toe-touching position, at various speeds, while the torque exerted on the arm of a Cybex dynamometer was continuously measured. Under these conditions the EMG signal (E) was higher than the isometric signal (E0) associated with the same torque. E and E0 were related as follows: E0 = E/(1 + A d theta/dt), where A = 0.0014 exp (0.045P) and P = percentage lumbar flexion. This equation was used to correct the EMG data for the effect of contraction velocity. The corrected data were then used, in conjunction with the results of the isometric calibrations, to calculate the extensor moment generated by the erector spinae muscles during bending and lifting activities. The extensor moment can itself be used to calculate the compressive force acting on the lumbar spine.

  16. Bending elasticity of macromolecules: analytic predictions from the wormlike chain model.

    PubMed

    Polley, Anirban; Samuel, Joseph; Sinha, Supurna

    2013-01-01

    We present a study of the bend angle distribution of semiflexible polymers of short and intermediate lengths within the wormlike chain model. This enables us to calculate the elastic response of a stiff molecule to a bending moment. Our results go beyond the Hookean regime and explore the nonlinear elastic behavior of a single molecule. We present analytical formulas for the bend angle distribution and for the moment-angle relation. Our analytical study is compared against numerical Monte Carlo simulations. The functional forms derived here can be applied to fluorescence microscopic studies on actin and DNA. Our results are relevant to recent studies of "kinks" and cyclization in short and intermediate length DNA strands.

  17. A piezoelectric bone-conduction bending hearing actuator.

    PubMed

    Adamson, R B A; Bance, M; Brown, J A

    2010-10-01

    A prototype of a novel bone-conduction hearing actuator based on a piezoelectric bending actuator is presented. The device lies flat against the skull which would allow it to form the basis of a subcutaneous bone-anchored hearing aid. The actuator excites bending in bone through a local bending moment rather than the application of a point force as with conventional bone-anchored hearing aids. Through measurements of the cochlear velocity created by the actuator in embalmed human heads, the device is shown to exhibit high efficiency, making it a possible alternative to present-day electromagnetic bone-vibration actuators.

  18. Characterization of the bending stiffness of large space structure joints

    NASA Technical Reports Server (NTRS)

    Wu, K. Chauncey

    1989-01-01

    A technique for estimating the bending stiffness of large space structure joints is developed and demonstrated for an erectable joint concept. Experimental load-deflection data from a three-point bending test was used as input to solve a closed-form expression for the joint bending stiffness which was derived from linear beam theory. Potential error sources in both the experimental and analytical procedures are identified and discussed. The bending stiffness of a mechanically preloaded erectable joint is studied at three applied moments and seven joint orientations. Using this technique, the joint bending stiffness was bounded between 6 and 17 percent of the bending stiffness of the graphite/epoxy strut member.

  19. Modeling bicortical screws under a cantilever bending load.

    PubMed

    James, Thomas P; Andrade, Brendan A

    2013-12-01

    Cyclic loading of surgical plating constructs can precipitate bone screw failure. As the frictional contact between the plate and the bone is lost, cantilever bending loads are transferred from the plate to the head of the screw, which over time causes fatigue fracture from cyclic bending. In this research, analytical models using beam mechanics theory were developed to describe the elastic deflection of a bicortical screw under a statically applied load. Four analytical models were developed to simulate the various restraint conditions applicable to bicortical support of the screw. In three of the models, the cortical bone near the tip of the screw was simulated by classical beam constraints (1) simply supported, (2) cantilever, and (3) split distributed load. In the final analytical model, the cortices were treated as an elastic foundation, whereby the response of the constraint was proportional to screw deflection. To test the predictive ability of the new analytical models, 3.5 mm cortical bone screws were tested in a synthetic bone substitute. A novel instrument was developed to measure the bending deflection of screws under radial loads (225 N, 445 N, and 670 N) applied by a surrogate surgical plate at the head of the screw. Of the four cases considered, the analytical model utilizing an elastic foundation most accurately predicted deflection at the screw head, with an average difference of 19% between the measured and predicted results. Determination of the bending moments from the elastic foundation model revealed that a maximum moment of 2.3 N m occurred near the middle of the cortical wall closest to the plate. The location of the maximum bending moment along the screw axis was consistent with the fracture location commonly observed in clinical practice.

  20. Moment-rotation responses of the human lumbosacral spinal column.

    PubMed

    Guan, Yabo; Yoganandan, Narayan; Moore, Jason; Pintar, Frank A; Zhang, Jiangyue; Maiman, Dennis J; Laud, Purushottam

    2007-01-01

    The objective of this study was to test the hypothesis that the human lumbosacral joint behaves differently from L1-L5 joints and provides primary moment-rotation responses under pure moment flexion and extension and left and right lateral bending on a level-by-level basis. In addition, range of motion (ROM) and stiffness data were extracted from the moment-rotation responses. Ten T12-S1 column specimens with ages ranging from 27 to 68 years (mean: 50.6+/-13.2) were tested at a load level of 4.0 N m. Nonlinear flexion and extension and left and right lateral bending moment-rotation responses at each spinal level are reported in the form of a logarithmic function. The mean ROM was the greatest at the L5-S1 level under flexion (7.37+/-3.69 degrees) and extension (4.62+/-2.56 degrees) and at the L3-L4 level under lateral bending (4.04+/-1.11 degrees). The mean ROM was the least at the L1-L2 level under flexion (2.42+/-0.90 degrees), L2-L3 level under extension (1.58+/-0.63 degrees), and L1-L2 level under lateral bending (2.50+/-0.75 degrees). The present study proved the hypothesis that L5-S1 motions are significantly greater than L1-L5 motions under flexion and extension loadings, but the hypothesis was found to be untrue under the lateral bending mode. These experimental data are useful in the improved validation of FE models, which will increase the confidence of stress analysis and other modeling applications.

  1. Estimating 3D L5/S1 moments and ground reaction forces during trunk bending using a full-body ambulatory inertial motion capture system.

    PubMed

    Faber, G S; Chang, C C; Kingma, I; Dennerlein, J T; van Dieën, J H

    2016-04-11

    Inertial motion capture (IMC) systems have become increasingly popular for ambulatory movement analysis. However, few studies have attempted to use these measurement techniques to estimate kinetic variables, such as joint moments and ground reaction forces (GRFs). Therefore, we investigated the performance of a full-body ambulatory IMC system in estimating 3D L5/S1 moments and GRFs during symmetric, asymmetric and fast trunk bending, performed by nine male participants. Using an ambulatory IMC system (Xsens/MVN), L5/S1 moments were estimated based on the upper-body segment kinematics using a top-down inverse dynamics analysis, and GRFs were estimated based on full-body segment accelerations. As a reference, a laboratory measurement system was utilized: GRFs were measured with Kistler force plates (FPs), and L5/S1 moments were calculated using a bottom-up inverse dynamics model based on FP data and lower-body kinematics measured with an optical motion capture system (OMC). Correspondence between the OMC+FP and IMC systems was quantified by calculating root-mean-square errors (RMSerrors) of moment/force time series and the interclass correlation (ICC) of the absolute peak moments/forces. Averaged over subjects, L5/S1 moment RMSerrors remained below 10Nm (about 5% of the peak extension moment) and 3D GRF RMSerrors remained below 20N (about 2% of the peak vertical force). ICCs were high for the peak L5/S1 extension moment (0.971) and vertical GRF (0.998). Due to lower amplitudes, smaller ICCs were found for the peak asymmetric L5/S1 moments (0.690-0.781) and horizontal GRFs (0.559-0.948). In conclusion, close correspondence was found between the ambulatory IMC-based and laboratory-based estimates of back load. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Characterization of Human Rib Biomechanical Responses due to Three-Point Bending.

    PubMed

    Kalra, Anil; Saif, Tal; Shen, Ming; Jin, Xin; Zhu, Feng; Begeman, Paul; Yang, King H; Millis, Scott

    2015-11-01

    In the elderly population, rib fracture is one of the most common injuries sustained in motor vehicle crashes. The current study was conducted to predict the biomechanical fracture responses of ribs with respect to age, gender, height, weight and percentage of ash content. Three-point bending experiments were conducted on 278 isolated rib samples extracted from 82 cadaver specimens (53 males and 29 females between the ages of 21 and 87 years) for 6th and 7th levels of ribs. Statistical analyses were carried out to identify differences based on age and gender. It was found that, in comparison to males, females had significantly lower values for maximum bending moments, slopes of bending moment-angle curves, and average cortical-bone thickness (p<0.05). Samples of ribs taken from elderly specimens failed at lower values of fracture moments than those from younger specimens, and had lower slopes of bending moment-angle curves, both in males and females (p<0.05). The generalized estimated equations were developed to predict the values of biomechanical response and average cortical thickness based on age, gender, height and weight of individual specimens. Results from the current study illustrate that biomechanical responses and rib cortical thicknesses are functions of age, gender, height and weight. However, the current study is limited to a quasi-static loading scheme, which is different from real crash conditions. Hence, rib-material properties, which are dependent on strain rate, and are needed for wholebody finite element models representing different populations, still require more research.

  3. Curvature versus v-bends in a group B titanium T-loop spring.

    PubMed

    Martins, Renato Parsekian; Buschang, Peter H; Viecilli, Rodrigo; dos Santos-Pinto, Ary

    2008-05-01

    To compare the system of forces acting on curvature and preactivated V-bends in titanium T-loop springs (TTLSs) made of 0.017- x 0.025-inch TMA (titanium molibdenium alloy) wire. Pictures of TTLSs preactivated by curvature and V-bends were inserted in the LOOP software program to design both TTLSs. Symmetry was assured using the program. Both TTLSs used the same amount (length) of wire and had the same angulation between their anterior and posterior extremities when passive. The loops were activated 7 mm, and forces and moments were registered after each 0.5 mm of deactivation. The brackets were at the same height, separated by 23 mm and angulated 0 degrees . The preactivated curvature TTLS delivered horizontal forces ranging from 34 gF to 456 gF, while the TTLS preactivated by V-bends delivered forces ranging from 54 gF to 517 gF. The forces decreased more (30 gF vs 33 gF) with every 0.5 mm of activation on the preactivated V-bend TTLS than on the preactivated curvature TTLS. Vertical forces were low and clinically insignificant for both TTLSs. The moment to force (MF) ratios were systematically higher on the preactivated curvature than on the preactivated V-bend TTLS (from 5.8 mm to 38.8 mm vs 4.7 mm to 28.3 mm). Although both loops show symmetrical moments in their anterior and posterior extremities and can be used for group B anchorage, the curvature preactivated TTLS delivers lower horizontal forces and higher MF ratios than the acute preactivated V-bend TTLS.

  4. Repeated unit cell (RUC) approach for pure bending analysis of coronary stents.

    PubMed

    Ju, Feng; Xia, Zihui; Zhou, Chuwei

    2008-08-01

    Flexibility is one of the key properties of coronary stents. The objective of this paper is to characterize the bending behaviour of stents through finite element analysis with repeated unit cell (RUC) models. General periodic boundary conditions for the RUC under the pure bending condition are formulated. It is found that the proposed RUC approach can provide accurate numerical results of bending behaviour of stents with much less computational costs. Bending stiffness, post-yield bending behaviour and the relationship between moment and bending curvature are investigated for Palmaz-Schatz stents and stents with the V- and S-shaped links. It is found that the effect of link geometry on the bending behaviour of stent is significant. The behaviour of stents subjected to cyclic bending is also investigated.

  5. Effect of train carbody's parameters on vertical bending stiffness performance

    NASA Astrophysics Data System (ADS)

    Yang, Guangwu; Wang, Changke; Xiang, Futeng; Xiao, Shoune

    2016-10-01

    Finite element analysis(FEA) and modal test are main methods to give the first-order vertical bending vibration frequency of train carbody at present, but they are inefficiency and waste plenty of time. Based on Timoshenko beam theory, the bending deformation, moment of inertia and shear deformation are considered. Carbody is divided into some parts with the same length, and it's stiffness is calculated with series principle, it's cross section area, moment of inertia and shear shape coefficient is equivalent by segment length, and the fimal corrected first-order vertical bending vibration frequency analytical formula is deduced. There are 6 simple carbodies and 1 real carbody as examples to test the formula, all analysis frequencies are very close to their FEA frequencies, and especially for the real carbody, the error between analysis and experiment frequency is 0.75%. Based on the analytic formula, sensitivity analysis of the real carbody's design parameters is done, and some main parameters are found. The series principle of carbody stiffness is introduced into Timoshenko beam theory to deduce a formula, which can estimate the first-order vertical bending vibration frequency of carbody quickly without traditional FEA method and provide a reference to design engineers.

  6. Bending and Torsion Load Alleviator With Automatic Reset

    NASA Technical Reports Server (NTRS)

    delaFuente, Horacio M. (Inventor); Eubanks, Michael C. (Inventor); Dao, Anthony X. (Inventor)

    1996-01-01

    A force transmitting load alleviator apparatus and method are provided for rotatably and pivotally driving a member to be protected against overload torsional and bending (moment) forces. The load alleviator includes at least one bias spring to resiliently bias cam followers and cam surfaces together and to maintain them in locked engagement unless a predetermined load is exceeded whereupon a center housing is pivotal or rotational with respect to a crown assembly. This pivotal and rotational movement results in frictional dissipation of the overload force by an energy dissipator. The energy dissipator can be provided to dissipate substantially more energy from the overload force than from the bias force that automatically resets the center housing and crown assembly to the normally fixed centered alignment. The torsional and bending (moment) overload levels can designed independently of each other.

  7. Backed Bending Actuator

    NASA Technical Reports Server (NTRS)

    Costen, Robert C.; Su, Ji

    2004-01-01

    Bending actuators of a proposed type would partly resemble ordinary bending actuators, but would include simple additional components that would render them capable of exerting large forces at small displacements. Like an ordinary bending actuator, an actuator according to the proposal would include a thin rectangular strip that would comprise two bonded layers (possibly made of electroactive polymers with surface electrodes) and would be clamped at one end in the manner of a cantilever beam. Unlike an ordinary bending actuator, the proposed device would include a rigid flat backplate that would support part of the bending strip against backward displacement; because of this feature, the proposed device is called a backed bending actuator. When an ordinary bending actuator is inactive, the strip typically lies flat, the tip displacement is zero, and the force exerted by the tip is zero. During activation, the tip exerts a transverse force and undergoes a bending displacement that results from the expansion or contraction of one or more of the bonded layers. The tip force of an ordinary bending actuator is inversely proportional to its length; hence, a long actuator tends to be weak. The figure depicts an ordinary bending actuator and the corresponding backed bending actuator. The bending, the tip displacement (d(sub t)), and the tip force (F) exerted by the ordinary bending actuator are well approximated by the conventional equations for the loading and deflection of a cantilever beam subject to a bending moment which, in this case, is applied by the differential expansion or contraction of the bonded layers. The bending, displacement, and tip force of the backed bending actuator are calculated similarly, except that it is necessary to account for the fact that the force F(sub b) that resists the displacement of the tip could be sufficient to push part of the strip against the backplate; in such a condition, the cantilever beam would be effectively shortened

  8. Optimised in vitro applicable loads for the simulation of lateral bending in the lumbar spine.

    PubMed

    Dreischarf, Marcel; Rohlmann, Antonius; Bergmann, Georg; Zander, Thomas

    2012-07-01

    In in vitro studies of the lumbar spine simplified loading modes (compressive follower force, pure moment) are usually employed to simulate the standard load cases flexion-extension, axial rotation and lateral bending of the upper body. However, the magnitudes of these loads vary widely in the literature. Thus the results of current studies may lead to unrealistic values and are hardly comparable. It is still unknown which load magnitudes lead to a realistic simulation of maximum lateral bending. A validated finite element model of the lumbar spine was used in an optimisation study to determine which magnitudes of the compressive follower force and bending moment deliver results that fit best with averaged in vivo data. The best agreement with averaged in vivo measured data was found for a compressive follower force of 700 N and a lateral bending moment of 7.8 Nm. These results show that loading modes that differ strongly from the optimised one may not realistically simulate maximum lateral bending. The simplified but in vitro applicable loading cannot perfectly mimic the in vivo situation. However, the optimised magnitudes are those which agree best with averaged in vivo measured data. Its consequent application would lead to a better comparability of different investigations. Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.

  9. Total Longitudinal Moment Calculation and Reliability Analysis of Yacht Structures

    NASA Astrophysics Data System (ADS)

    Zhi, Wenzheng; Lin, Shaofen

    In order to check the reliability of the yacht in FRP (Fiber Reinforce Plastic) materials, in this paper, the vertical force and the calculation method of the overall longitudinal bending moment on yacht was analyzed. Specially, this paper focuses on the impact of speed on the still water bending moment on yacht. Then considering the mechanical properties of the cap type stiffeners in composite materials, the ultimate bearing capacity of the yacht has been worked out, finally the reliability of the yacht was calculated with using response surface methodology. The result can be used in yacht design and yacht driving.

  10. Longitudinal-bending mode micromotor using multilayer piezoelectric actuator.

    PubMed

    Yao, K; Koc, B; Uchino, K

    2001-07-01

    Longitudinal-bending mode ultrasonic motors with a diameter of 3 mm were fabricated using stacked multilayer piezoelectric actuators, which were self-developed from hard lead zirconate titanate (PZT) ceramic. A bending vibration was converted from a longitudinal vibration with a longitudinal-bending coupler. The motors could be bidirectionally operated by changing driving frequency. Their starting and braking torque were analyzed based on the transient velocity response. With a load of moment of inertia 2.5 x 10(-7) kgm2, the motor showed a maximum starting torque of 127.5 microNm. The braking torque proved to be a constant independent on the motor's driving conditions and was roughly equivalent to the maximum starting torque achievable with our micromotors.

  11. Level-dependent coronal and axial moment-rotation corridors of degeneration-free cervical spines in lateral flexion.

    PubMed

    Yoganandan, Narayan; Pintar, Frank A; Stemper, Brian D; Wolfla, Christopher E; Shender, Barry S; Paskoff, Glenn

    2007-05-01

    Aging, trauma, or degeneration can affect intervertebral kinematics. While in vivo studies can determine motions, moments are not easily quantified. Previous in vitro studies on the cervical spine have largely used specimens from older individuals with varying levels of degeneration and have shown that moment-rotation responses under lateral bending do not vary significantly by spinal level. The objective of the present in vitro biomechanical study was, therefore, to determine the coronal and axial moment-rotation responses of degeneration-free, normal, intact human cadaveric cervicothoracic spinal columns under the lateral bending mode. Nine human cadaveric cervical columns from C2 to T1 were fixed at both ends. The donors had ranged from twenty-three to forty-four years old (mean, thirty-four years) at the time of death. Retroreflective targets were inserted into each vertebra to obtain rotational kinematics in the coronal and axial planes. The specimens were subjected to pure lateral bending moment with use of established techniques. The range-of-motion and neutral zone metrics for the coronal and axial rotation components were determined at each level of the spinal column and were evaluated statistically. Statistical analysis indicated that the two metrics were level-dependent (p < 0.05). Coronal motions were significantly greater (p < 0.05) than axial motions. Moment-rotation responses were nonlinear for both coronal and axial rotation components under lateral bending moments. Each segmental curve for both rotation components was well represented by a logarithmic function (R(2) > 0.95). Range-of-motion metrics compared favorably with those of in vivo investigations. Coronal and axial motions of degeneration-free cervical spinal columns under lateral bending showed substantially different level-dependent responses. The presentation of moment-rotation corridors for both metrics forms a normative dataset for the degeneration-free cervical spines.

  12. Bending moment evaluation of a long specimen using a radial speckle pattern interferometer in combination with relaxation methods

    NASA Astrophysics Data System (ADS)

    Pacheco, Anderson; Fontana, Filipe; Viotti, Matias R.; Veiga, Celso L. N.; Lothhammer, Lívia R.; Albertazzi G., Armando, Jr.

    2015-08-01

    The authors developed an achromatic speckle pattern interferometer able to measure in-plane displacements in polar coordinates. It has been used to measure combined stresses resulting from the superposition of mechanical loading and residual stresses. Relaxation methods have been applied to produce on the surface of the specimen a displacement field that can be used to determine the amount of combined stresses. Two relaxation methods are explored in this work: blind hole-drilling and indentation. The first one results from a blind hole drilled with a high-speed drilling unit in the area of interest. The measured displacement data is fitted in an appropriate model to quantify the stress level using an indirect approach based on a set of finite element coefficients. The second approach uses indentation, where a hard spherical tip is firmly pressed against the surface to be measured with a predetermined indentation load. A plastic flow occurs around the indentation mark producing a radial in-plane displacement field that is related to the amount of combined stresses. Also in this case, displacements are measured by the radial interferometer and used to determine the stresses by least square fitting it to a displacement field determined by calibration. Both approaches are used to quantify the amount of bending stresses and moment in eight sections of a 12 m long 200 mm diameter steel pipe submitted to a known transverse loading. Reference values of bending stresses are also determined by strain gauges. The comparison between the four results is discussed in the paper.

  13. Turbulent flow computation in a circular U-Bend

    NASA Astrophysics Data System (ADS)

    Miloud, Abdelkrim; Aounallah, Mohammed; Belkadi, Mustapha; Adjlout, Lahouari; Imine, Omar; Imine, Bachir

    2014-03-01

    Turbulent flows through a circular 180° curved bend with a curvature ratio of 3.375, defined as the the bend mean radius to pipe diameter is investigated numerically for a Reynolds number of 4.45×104. The computation is performed for a U-Bend with full long pipes at the entrance and at the exit. The commercial ANSYS FLUENT is used to solve the steady Reynolds-Averaged Navier-Stokes (RANS) equations. The performances of standard k-ɛ and the second moment closure RSM models are evaluated by comparing their numerical results against experimental data and testing their capabilities to capture the formation and extend this turbulence driven vortex. It is found that the secondary flows occur in the cross-stream half-plane of such configurations and primarily induced by high anisotropy of the cross-stream turbulent normal stresses near the outer bend.

  14. Force system evaluation of symmetrical beta-titanium T-loop springs preactivated by curvature and concentrated bends.

    PubMed

    Caldas, Sergei Godeiro Fernandes Rabelo; Martins, Renato Parsekian; Galvão, Marília Regalado; Vieira, Camilla Ivini Viana; Martins, Lídia Parsekian

    2011-08-01

    The objective of this research was to compare the effect of preactivation on the force system of beta-titanium T-loop springs (TLSs). Twenty TLSs with dimensions of 6 × 10 mm, of 0.017 × 0.025-in beta-titanium alloy, were randomly divided into 2 groups according to their preactivation. By using a moment transducer coupled to a digital extensometer indicator adapted to a testing machine, the amounts of horizontal force and moment produced were recorded at every 0.5 mm of deactivation from 5 mm of the initial activation in an interbracket distance of 23 mm. The moment-to-force ratio, the "neutral position" and the load-deflection ratio were also calculated. TLSs preactivated by curvature delivered horizontal forces significantly lower than those preactivated by concentrated bends. No differences were found in relation to the moments produced throughout the deactivation of both groups. The moment-to-force ratios were systematically higher on the TLSs preactivated by curvature than those preactivated by concentrated bends, except on 5 mm of activation. Significant differences were found in the load-deflection rates and "neutral position." The TLSs preactivated by curvature delivered lower horizontal forces and higher moment-to-force and load-deflection ratios than did those preactivated by concentrated bends. Copyright © 2011 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  15. Femur-bending properties as influenced by gravity. I - Ultimate load and moment for 3-G rats

    NASA Technical Reports Server (NTRS)

    Wunder, C. C.; Welch, R. C.; Glade, R.; Fleming, B. P.; Cook, K. M.

    1977-01-01

    Fresh experimental bones can withstand greater bending forces and moments after 1.0 to 2.5 weeks of 3-G exposure. This appears more attributable to a 50% greater strength of bone material than to effects upon size or shape, and is most measurable for animals of 5 to 8 weeks of age. Experimental bone material seems to grow to its mature level at a younger age rather then there being so marked an effect upon the mature level itself. We simulated 3.1 G by chronic centrifugation of 66 albino rats and compared them to 63 1-G controls. Extrapolation of the simplest mathematical description of the present results to weaker, zero-G bones could be tested by a total of 60 space-based control and experimental animals. A flight of only 15 animals would be necessary for comparison to ground-based control animals. This is consistent with reports of bone demineralization during space-flight. In light of the differences in bone histology, however, extrapolation of these results to humans would be premature and, if at all applicable, are most likely to be so for children rather than adults.

  16. Effects of cutouts on the behavior of symmetric composite laminates subjected to bending and twisting loads

    NASA Technical Reports Server (NTRS)

    Prasad, C. B.; Shuart, M. J.; Bains, N. J.; Rouse, M.

    1993-01-01

    Composite structures are used for a wide variety of aerospace applications. Practical structures contain cutouts and these structures are subjected to in-plane and out-of-plane loading conditions. Structurally efficient designs for composite structures require a thorough understanding of the effects of cutouts on the response of composite plates subjected to inplane or out-of-plane loadings. Most investigations of the behavior of composite plates with cutouts have considered in-plane loadings only. Out-of-plane loadings suchas bending or twisting have received very limited attention. The response of homogeneous plates (e.g., isotropic or orthotropic plates) subjected to bending or twisting moments has been studied analytically. These analyses are for infinite plates and neglect finite-plate effects. Recently, analytical and experimental studies were conducted to determine the effects of cutouts on the response of laminated composite plates subjected to bending moments. No analytical or experimental results are currently available for the effects of cutouts on the response of composite laminates subjected to twisting moments.

  17. Passive lumbar tissue loading during trunk bending at three speeds: An in vivo study.

    PubMed

    Ning, Xiaopeng; Nussbaum, Maury A

    2015-08-01

    Low back disorders are closely related with the magnitude of mechanical loading on human spine. However, spinal loading contributed by the lumbar passive tissues is still not well understood. In this study, the effect of motion speed on lumbar passive moment output was investigated. In addition, the increase of lumbar passive moment during trunk bending was modeled. Twelve volunteers performed trunk-bending motions at three different speeds. Trunk kinematics and muscle activities were collected and used to estimate instantaneous spinal loading and the corresponding lumbar passive moment. The lumbar passive moments at different ranges of trunk motion were compared at different speed levels and the relationship between lumbar passive moment lumbar flexion was modeled. A non-linear, two-stage pattern of increase in lumbar passive moment was evident during trunk flexion. However, the effect of motion speed was not significant on lumbar passive moments or any of the model parameters. As reported previously, distinct lumbar ligaments may begin to generate tension at differing extents of trunk flexion, and this could be the cause of the observed two-stage increasing pattern of lumbar passive moment. The current results also suggest that changes in tissue strain rate may not have a significant impact on the total passive moment output at the relatively slow trunk motions examined here. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Plasmon-enhanced optical bending and heating on V-shaped deformation of gold nanorod

    NASA Astrophysics Data System (ADS)

    Liaw, Jiunn-Woei; Huang, Cheng-Wei; Huang, Mao-Chang; Kuo, Mao-Kuen

    2018-01-01

    The plasmon-enhanced optical bending and heating on the V-shaped deformation of a straight gold nanorod (GNR), irradiated by a linear polarized light at the longitudinal surface plasmon resonance, are studied theoretically to explain the finding in previous experiment. Multiple multipole method is employed to calculate the optical load and heating numerically, and an elastic beam model is used to analyze the bending moment and stress in the GNR theoretically. According to our analysis, we think, first, the plasmonic heating softens the GNR to reduce the yield strength of gold, and the non-uniform optical load induces a maximum bending moment at the middle cross section of a freestanding GNR. Then an irreversible breakpoint of the plastic hinge at the middle of GNR is developed to form a V-shaped GNR. The photothermal deformation of V-shaped GNR involving multidisciplinary interplay is worth for further investigation.

  19. Moment measurements in dynamic and quasi-static spine segment testing using eccentric compression are susceptible to artifacts based on loading configuration.

    PubMed

    Van Toen, Carolyn; Carter, Jarrod W; Oxland, Thomas R; Cripton, Peter A

    2014-12-01

    The tolerance of the spine to bending moments, used for evaluation of injury prevention devices, is often determined through eccentric axial compression experiments using segments of the cadaver spine. Preliminary experiments in our laboratory demonstrated that eccentric axial compression resulted in "unexpected" (artifact) moments. The aim of this study was to evaluate the static and dynamic effects of test configuration on bending moments during eccentric axial compression typical in cadaver spine segment testing. Specific objectives were to create dynamic equilibrium equations for the loads measured inferior to the specimen, experimentally verify these equations, and compare moment responses from various test configurations using synthetic (rubber) and human cadaver specimens. The equilibrium equations were verified by performing quasi-static (5 mm/s) and dynamic experiments (0.4 m/s) on a rubber specimen and comparing calculated shear forces and bending moments to those measured using a six-axis load cell. Moment responses were compared for hinge joint, linear slider and hinge joint, and roller joint configurations tested at quasi-static and dynamic rates. Calculated shear force and bending moment curves had similar shapes to those measured. Calculated values in the first local minima differed from those measured by 3% and 15%, respectively, in the dynamic test, and these occurred within 1.5 ms of those measured. In the rubber specimen experiments, for the hinge joint (translation constrained), quasi-static and dynamic posterior eccentric compression resulted in flexion (unexpected) moments. For the slider and hinge joints and the roller joints (translation unconstrained), extension ("expected") moments were measured quasi-statically and initial flexion (unexpected) moments were measured dynamically. In the cadaver experiments with roller joints, anterior and posterior eccentricities resulted in extension moments, which were unexpected and expected, for those

  20. Collapse of Composite Cylinders in Bending

    NASA Technical Reports Server (NTRS)

    Fuchs, Hannes P.; Starnes, James H., Jr.; Hyer, Michael W.

    1998-01-01

    This paper summarizes the results of a numerical and experimental study of the collapse behavior of small-scale graphite-epoxy cylindrical shells subjected to overall bending loads, and in one case, an initial internal pressure. Shells with quasi-isotropic and orthotropic inplane stiffness properties are studied. Numerical results from geometrically nonlinear finite element analyses and results from experiments using a specially-built apparatus indicate that extensive stable postbuckling responses occur. Orthotropy influences the buckling values and the extent to which the bending moment decreases after buckling. Material damage is observed to initiate in the vicinity of the nodal lines of the postbuckled deflection patterns. Numerical results indicate that the magnitudes of the shear stress resultants are greatest in these nodal regions. Failure of the internally pressurized cylinder is catastrophic.

  1. A theoretical study on pure bending of hexagonal close-packed metal sheet

    NASA Astrophysics Data System (ADS)

    Mehrabi, Hamed; Yang, Chunhui

    2018-05-01

    Hexagonal close-packed (HCP) metals have quite different mechanical behaviours in comparison to conventional cubic metals such as steels and aluminum alloys [1, 2]. They exhibit a significant tension-compression asymmetry in initial yielding and subsequent plastic hardening. The reason for this unique behaviour can be attributed to their limited symmetric crystal structure, which leads to twining deformation [3-5]. This unique behaviour strongly influences sheet metal forming of such metals, especially for roll forming, in which the bending is dominant. Hence, it is crucial to represent constitutive relations of HCP metals for accurate estimation of bending moment-curvature behaviours. In this paper, an analytical model for asymmetric elastoplastic pure bending with an application of Cazacu-Barlat asymmetric yield function [6] is presented. This yield function considers the asymmetrical tension-compression behaviour of HCP metals by using second and third invariants of the stress deviator tensor and a specified constant, which can be expressed in terms of uniaxial yield stresses in tension and compression. As a case study, the analytical model is applied to predict the moment-curvature behaviours of AZ31B magnesium alloy sheets under uniaxial loading condition. Furthermore, the analytical model is implemented as a user-defined material through the UMAT interface in Abaqus [7, 8] for conducting pure bending simulations. The results show that the analytical model can reasonably capture the asymmetric tension-compression behaviour of the magnesium alloy. The predicted moment-curvature behaviour has good agreement with the experimental results. Furthermore, numerical results show a better accuracy by the application of the Cazacu-Barlat yield function than those using the von-Mises yield function, which are more conservative than analytical results.

  2. Critical bending moment of implant-abutment screw joint interfaces: effect of torque levels and implant diameter.

    PubMed

    Tan, Ban Fui; Tan, Keson B; Nicholls, Jack I

    2004-01-01

    Critical bending moment (CBM), the moment at which the external nonaxial load applied overcomes screw joint preload and causes loss of contact between the mating surfaces of the implant screw joint components, was measured with 2 types of implants and 2 types of abutments. Using 4 test groups of 5 implant-abutment pairs, CBM at the implant-abutment screw joint was measured at 25%, 50%, 75%, and 100% of the manufacturer's recommended torque levels. Regular Platform (RP) Nobel Biocare implants (3.75 mm diameter), Wide Platform (WP) Nobel Biocare implants (5.0 mm diameter), CeraOne abutments, and Multiunit abutments were used. Microstrain was measured as loads were applied to the abutment at various distances from the implant-abutment interface. Strain instrumentation logged the strain data dynamically to determine the point of gap opening. All torque applications and strain measurements were repeated 5 times. For the CeraOne-RP group, the mean CBMs were 17.09 Ncm, 35.35 Ncm, 45.63 Ncm, and 62.64 Ncm at 25%, 50%, 75%, and 100% of the recommended torque level, respectively. For the CeraOne-WP group, mean CBMs were 28.29 Ncm, 62.97 Ncm, 92.20 Ncm, and 127.41 Ncm; for the Multiunit-RP group, 16.08 Ncm, 21.55 Ncm, 34.12 Ncm, and 39.46 Ncm; and for the Multiunit-WP group, 15.90 Ncm, 32.86 Ncm, 43.29 Ncm, and 61.55 Ncm at the 4 different torque levels. Two-way analysis of variance (ANOVA) (P < .001) revealed significant effects for the test groups (F = 2738.2) and torque levels (F = 2969.0). The methodology developed in this study allows confirmation of the gap opening of the screw joint for the test groups and determination of CBM at different torque levels. CBM was found to differ among abutment systems, implant diameters, and torque levels. The torque levels recommended by the manufacturer should followed to ensure screw joint integrity.

  3. Simplified method for the transverse bending analysis of twin celled concrete box girder bridges

    NASA Astrophysics Data System (ADS)

    Chithra, J.; Nagarajan, Praveen; S, Sajith A.

    2018-03-01

    Box girder bridges are one of the best options for bridges with span more than 25 m. For the study of these bridges, three-dimensional finite element analysis is the best suited method. However, performing three-dimensional analysis for routine design is difficult as well as time consuming. Also, software used for the three-dimensional analysis are very expensive. Hence designers resort to simplified analysis for predicting longitudinal and transverse bending moments. Among the many analytical methods used to find the transverse bending moments, SFA is the simplest and widely used in design offices. Results from simplified frame analysis can be used for the preliminary analysis of the concrete box girder bridges.From the review of literatures, it is found that majority of the work done using SFA is restricted to the analysis of single cell box girder bridges. Not much work has been done on the analysis multi-cell concrete box girder bridges. In this present study, a double cell concrete box girder bridge is chosen. The bridge is modelled using three- dimensional finite element software and the results are then compared with the simplified frame analysis. The study mainly focuses on establishing correction factors for transverse bending moment values obtained from SFA.

  4. Determination of mechanical stiffness of bone by pQCT measurements: correlation with non-destructive mechanical four-point bending test data.

    PubMed

    Martin, Daniel E; Severns, Anne E; Kabo, J M J Michael

    2004-08-01

    Mechanical tests of bone provide valuable information about material and structural properties important for understanding bone pathology in both clinical and research settings, but no previous studies have produced applicable non-invasive, quantitative estimates of bending stiffness. The goal of this study was to evaluate the effectiveness of using peripheral quantitative computed tomography (pQCT) data to accurately compute the bending stiffness of bone. Normal rabbit humeri (N=8) were scanned at their mid-diaphyses using pQCT. The average bone mineral densities and the cross-sectional moments of inertia were computed from the pQCT cross-sections. Bending stiffness was determined as a function of the elastic modulus of compact bone (based on the local bone mineral density), cross-sectional moment of inertia, and simulated quasistatic strain rate. The actual bending stiffness of the bones was determined using four-point bending tests. Comparison of the bending stiffness estimated from the pQCT data and the mechanical bending stiffness revealed excellent correlation (R2=0.96). The bending stiffness from the pQCT data was on average 103% of that obtained from the four-point bending tests. The results indicate that pQCT data can be used to accurately determine the bending stiffness of normal bone. Possible applications include temporal quantification of fracture healing and risk management of osteoporosis or other bone pathologies.

  5. Bending analysis of a general cross-ply laminate using 3D elasticity solution and layerwise theory

    NASA Astrophysics Data System (ADS)

    Yazdani Sarvestani, H.; Naghashpour, A.; Heidari-Rarani, M.

    2015-12-01

    In this study, the analytical solution of interlaminar stresses near the free edges of a general (symmetric and unsymmetric layups) cross-ply composite laminate subjected to pure bending loading is presented based on Reddy's layerwise theory (LWT) for the first time. First, the reduced form of displacement field is obtained for a general cross-ply composite laminate subjected to a bending moment by elasticity theory. Then, first-order shear deformation theory of plates and LWT is utilized to determine the global and local deformation parameters appearing in the displacement fields, respectively. One of the main advantages of the developed solution based on the LWT is exact prediction of interlaminar stresses at the boundary layer regions. To show the accuracy of this solution, three-dimensional elasticity bending problem of a laminated composite is solved for special set of boundary conditions as well. Finally, LWT results are presented for edge-effect problems of several symmetric and unsymmetric cross-ply laminates under the bending moment. The obtained results indicate high stress gradients of interlaminar stresses near the edges of laminates.

  6. The tolerance of the femoral shaft in combined axial compression and bending loading.

    PubMed

    Ivarsson, B Johan; Genovese, Daniel; Crandall, Jeff R; Bolton, James R; Untaroiu, Costin D; Bose, Dipan

    2009-11-01

    The likelihood of a front seat occupant sustaining a femoral shaft fracture in a frontal crash has traditionally been assessed by an injury criterion relying solely on the axial force in the femur. However, recently published analyses of real world data indicate that femoral shaft fracture occurs at axial loads levels below those found experimentally. One hypothesis attempting to explain this discrepancy suggests that femoral shaft fracture tends to occur as a result of combined axial compression and applied bending. The current study aims to evaluate this hypothesis by investigating how these two loading components interact. Femoral shafts harvested from human cadavers were loaded to failure in axial compression, sagittal plane bending, and combined axial compression and sagittal plane bending. All specimens subjected to bending and combined loading fractured midshaft, whereas the specimens loaded in axial compression demonstrated a variety of failure locations including midshaft and distal end. The interaction between the recorded levels of applied moment and axial compression force at fracture were evaluated using two different analysis methods: fitting of an analytical model to the experimental data and multiple regression analysis. The two analysis methods yielded very similar relationships between applied moment and axial compression force at midshaft fracture. The results indicate that posteroanterior bending reduces the tolerance of the femoral shaft to axial compression and that that this type of combined loading therefore may contribute to the high prevalence of femoral shaft fracture in frontal crashes.

  7. Lithospheric bending at subduction zones based on depth soundings and satellite gravity

    NASA Technical Reports Server (NTRS)

    Levitt, Daniel A.; Sandwell, David T.

    1995-01-01

    A global study of trench flexure was performed by simultaneously modeling 117 bathymetric profiles (original depth soundings) and satellite-derived gravity profiles. A thin, elastic plate flexure model was fit to each bathymetry/gravity profile by minimization of the L(sub 1) norm. The six model parameters were regional depth, regional gravity, trench axis location, flexural wavelength, flexural amplitude, and lithospheric density. A regional tilt parameter was not required after correcting for age-related trend using a new high-resolution age map. Estimates of the density parameter confirm that most outer rises are uncompensated. We find that flexural wavelength is not an accurate estimate of plate thickness because of the high curvatures observed at a majority of trenches. As in previous studies, we find that the gravity data favor a longer-wavelength flexure than the bathymetry data. A joint topography-gravity modeling scheme and fit criteria are used to limit acceptable parameter values to models for which topography and gravity yield consistent results. Even after the elastic thicknesses are converted to mechanical thicknesses using the yield strength envelope model, residual scatter obscures the systematic increase of mechanical thickness with age; perhaps this reflects the combination of uncertainties inherent in estimating flexural wavelength, such as extreme inelastic bending and accumulated thermoelastic stress. The bending moment needed to support the trench and outer rise topography increases by a factor of 10 as lithospheric age increases from 20 to 150 Ma; this reflects the increase in saturation bending moment that the lithosphere can maintain. Using a stiff, dry-olivine rheology, we find that the lithosphere of the GDH1 thermal model (Stein and Stein, 1992) is too hot and thin to maintain the observed bending moments. Moreover, the regional depth seaward of the oldest trenches (approximately 150 Ma) exceeds the GDH1 model depths by about 400 m.

  8. Ankle-foot orthosis bending axis influences running mechanics.

    PubMed

    Russell Esposito, Elizabeth; Ranz, Ellyn C; Schmidtbauer, Kelly A; Neptune, Richard R; Wilken, Jason M

    2017-07-01

    Passive-dynamic ankle-foot orthoses (AFOs) are commonly prescribed to improve locomotion for people with lower limb musculoskeletal weakness. The clinical prescription and design process are typically qualitative and based on observational assessment and experience. Prior work examining the effect of AFO design characteristics generally excludes higher impact activities such as running, providing clinicians and researchers limited information to guide the development of objective prescription guidelines. The proximal location of the bending axis may directly influence energy storage and return and resulting running mechanics. The purpose of this study was to determine if the location of an AFO's bending axis influences running mechanics. Marker and force data were recorded as 12 participants with lower extremity weakness ran overground while wearing a passive-dynamic AFO with posterior struts manufactured with central (middle) and off-centered (high and low) bending axes. Lower extremity joint angles, moments, powers, and ground reaction forces were calculated and compared between limbs and across bending axis conditions. Bending axis produced relatively small but significant changes. Ankle range of motion increased as the bending axis shifted distally (p<0.003). Peak ankle power absorption was greater in the low axis than high (p=0.013), and peak power generation was greater in the low condition than middle or high conditions (p<0.009). Half of the participants preferred the middle bending axis, four preferred low and two preferred high. Overall, if greater ankle range of motion is tolerated, a low bending axis provides power and propulsive benefits during running, although individual preference and physical ability should also be considered. Published by Elsevier B.V.

  9. The interactive bending wrinkling behaviour of inflated beams

    PubMed Central

    Liu, Y. P.; Tan, H. F.; Wadee, M. K.

    2016-01-01

    A model is proposed based on a Fourier series method to analyse the interactive bending wrinkling behaviour of inflated beams. The whole wrinkling evolution is tracked and divided into three stages by identifying the bifurcations of the equilibrium path. The critical wrinkling and failure moments of the inflated beam can then be predicted. The global–local interactive buckling pattern is elucidated by the proposed theoretical model and also verified by non-contact experimental tests. The effects of geometric parameters, internal pressure and boundary conditions on the buckling of inflated beams are investigated finally. The results reveal that the interactive buckling characteristics of an inflated beam under bending are more sensitive to the dimensions of the structure and boundary conditions. We find that for beams which are simply supported at both ends or clamped and simply supported, boundary conditions may prevent the wrinkling formation. The results provide significant support for our understanding of the bending wrinkling behaviour of inflated beams. PMID:27713665

  10. Lateral and posterior dynamic bending of the mid-shaft femur: fracture risk curves for the adult population.

    PubMed

    Kennedy, Eric A; Hurst, William J; Stitzel, Joel D; Cormier, Joseph M; Hansen, Gail A; Smith, Eric P; Duma, Stefan M

    2004-11-01

    The purpose of this study was to develop injury risk functions for dynamic bending of the human femur in the lateral-to-medial and posterior-to-anterior loading directions. A total of 45 experiments were performed on human cadaver femurs using a dynamic three-point drop test setup. An impactor of 9.8 kg was dropped from 2.2 m for an impact velocity of 5 m/s. Five-axis load cells measured the impactor and support loads, while an in situ strain gage measured the failure strain and subsequent strain rate. All 45 tests resulted in mid-shaft femur fractures with comminuted wedge and oblique fractures as the most common fracture patterns. In the lateral-to-medial bending tests the reaction loads were 4180 +/- 764 N, and the impactor loads were 4780 +/- 792 N. In the posterior-to-anterior bending tests the reaction loads were 3780 +/- 930 N, and the impactor loads were 4310 +/- 1040 N. The difference between the sum of the reaction forces and the applied load is due to inertial effects. The reaction loads were used to estimate the mid-shaft bending moments at failure since there was insufficient data to include the inertial effects in the calculations. The resulting moments are conservative estimates (lower bounds) of the mid-shaft bending moments at failure and are appropriate for use in the assessment of knee restraints and pedestrian impacts with ATD measurements. Regression analysis was used to identify significant parameters, and parametric survival analysis was used to estimate risk functions. Femur cross-sectional area, area moment of inertia (I), maximum distance to the neutral axis (c), I/c, occupant gender, and occupant mass are shown to be significant predictors of fracture tolerance, while no significant difference is shown for loading direction, bone mineral density, leg aspect and age. Risk functions are presented for femur cross-sectional area and I/c as they offer the highest correlation to peak bending moment. The risk function that utilizes the most

  11. Evaluation of a reduced section modulus model for determining effects of incising on bending strength and stiffness of structural lumber

    Treesearch

    Roland Hernandez; Jerrold E. Winandy

    2005-01-01

    A quantitative model is presented for evaluating the effects of incising on the bending strength and stiffness of structural dimension lumber. This model is based on the premise that bending strength and stiffness are reduced when lumber is incised, and the extent of this reduction is related to the reduction in moment of inertia of the bending members. Measurements of...

  12. Changes of lumbar posture and tissue loading during static trunk bending.

    PubMed

    Alessa, Faisal; Ning, Xiaopeng

    2018-02-01

    Static trunk bending is an occupational risk factor for lower back pain (LBP). When assessing relative short duration trunk bending tasks, existing studies mostly assumed unchanged spine biomechanical responses during task performance. The purpose of the current study was to assess the biomechanical changes of lumbar spine during the performance of relatively short duration, sustained trunk bending tasks. Fifteen participants performed 40-s static trunk bending tasks in two different trunk angles (30° or 60°) with two different hand load levels (0 or 6.8 kg). Results of the current study revealed significantly increased lumbar flexion and lumbar passive moment during the 40 s of trunk bending. Significantly reduced lumbar and abdominal muscle activities were also observed in most conditions. These findings suggest that, during the performance of short duration, static trunk bending tasks, a shift of loading from lumbar active tissues to passive tissues occurs naturally. This mechanism is beneficial in reducing the accumulation of lumbar muscle fatigue; however, lumbar passive tissue creep could be introduced due to prolonged or repetitive exposure. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Bending strength of delaminated aerospace composites.

    PubMed

    Kinawy, Moustafa; Butler, Richard; Hunt, Giles W

    2012-04-28

    Buckling-driven delamination is considered among the most critical failure modes in composite laminates. This paper examines the propagation of delaminations in a beam under pure bending. A pre-developed analytical model to predict the critical buckling moment of a thin sub-laminate is extended to account for propagation prediction, using mixed-mode fracture analysis. Fractography analysis is performed to distinguish between mode I and mode II contributions to the final failure of specimens. Comparison between experimental results and analysis shows agreement to within 5 per cent in static propagation moment for two different materials. It is concluded that static fracture is almost entirely driven by mode II effects. This result was unexpected because it arises from a buckling mode that opens the delamination. For this reason, and because of the excellent repeatability of the experiments, the method of testing may be a promising means of establishing the critical value of mode II fracture toughness, G(IIC), of the material. Fatigue testing on similar samples showed that buckled delamination resulted in a fatigue threshold that was over 80 per cent lower than the static propagation moment. Such an outcome highlights the significance of predicting snap-buckling moment and subsequent propagation for design purposes.

  14. Bending and Force Recovery in Polymer Films and Microgel Formation

    NASA Astrophysics Data System (ADS)

    Elder, Theresa Marie

    To determine correlation between geometry and material three different model films: polymethylsiloxane (PDMS), polystyrene (PS), and polycarbonate (PC), were singly bent and doubly bent (forming D-cones). Bends were chosen as they are fundamental in larger complex geometries such as origami and crumples. Bending was carried out between two plates taking force and displacement measurements. Processing of data using moment equations yielded values for bending moduli for studied films that were close to accepted values. Force recovery showed logarithmic trends for PDMS and stretched exponential trends for PS and PC. In a separate experiment a triblock copolymer of polystyrene-polyacrylic acid-polystyrene was subjected to different good and bad solvent mixing with any resulting particle morphology examined. Particles formed more uniformly with high water concentration, particles formed with high toluene concentration and agitation yielded three separate morphologies.

  15. Force system generated by elastic archwires with vertical V bends: a three-dimensional analysis.

    PubMed

    Upadhyay, Madhur; Shah, Raja; Peterson, Donald; Asaki, Takafumi; Yadav, Sumit; Agarwal, Sachin

    2017-04-01

    Our previous understanding of V-bend mechanics is primarily from two-dimensional (2D) analysis of archwire bracket interactions in the second order. These analyses do not take into consideration the three-dimensional (3D) nature of orthodontic appliances involving the third order. To quantify the force system generated in a 3D two bracket set up involving the molar and incisors with vertical V-bends. Maxillary molar and incisor brackets were arranged in a dental arch form and attached to load cells capable of measuring forces and moments in all three planes (x, y, and z) of space. Symmetrical V-bends (right and left sides) were placed at 11 different locations along rectangular beta-titanium archwires of various sizes at an angle of 150degrees. Each wire was evaluated for the 11 bend positions. Specifically, the vertical forces (Fz) and anterio-posterior moments (Mx) were analysed. Descriptive statistics were used to interpret the results. With increasing archwire size, Fz and Mx increased at the two brackets (P < 0.05). The vertical forces were linear and symmetric in nature, increasing in magnitude as the bends moved closer to either bracket. The Mx curves were asymmetric and non-linear displaying higher magnitudes for molar bracket. As the bends were moved closer to either bracket a distinct flattening of the incisor Mx curve was noted, implying no change in its magnitude. This article provides critical information on V-bend mechanics involving second order and third order archwire-bracket interactions. A model for determining this force system is described that might allow for easier translation to actual clinical practice. © The Author 2016. Published by Oxford University Press on behalf of the European Orthodontic Society. All rights reserved. For permissions, please email: journals.permissions@oup.com

  16. Forearm fracture bending risk functin for the 50th percentile male.

    PubMed

    Santago, Anthony C; Cormier, Joseph M; Duma, Stefan M; Yoganandan, Narayan; Pintar, Frank A

    2008-01-01

    The increase in upper extremity injuries in automobile collisions, because of the widespread implantation of airbags, has lead to a better understanding of forearm injury criteria. Risk functions for upper extremity injury that can be used in instrumented upper extremities would be useful. This paper presents a risk function for forearm injury for the 50th percentile male based on bending fracture moment data gathered from previous studies. The data was scaled using two scaling factors, one for orientation and one for mass, and the Weibull survival analysis model was then used to develop the risk function. It was determined that a 25% risk of injury corresponds to an 82 Nm bending load, a 50% risk of injury corresponds to a 100 Nm bending load, and a 75% risk of injury corresponds to a 117 Nm bending load. It is believed the risk function can be used with an instrumented upper extremity during vehicle testing.

  17. Humerus fracture bending risk function for the 50th percentile male.

    PubMed

    Santago, Anthony C; Cormier, Joseph M; Duma, Stefan M

    2008-01-01

    The increase in upper extremity injuries in automobile collisions, because of the widespread implantation of airbags, has lead to an increased focus in humerus injury criteria. Risk functions for upper extremity injury that can be used in instrumented upper extremities would be useful. This paper presents a risk function for humerus injury for the 50th percentile male based on bending fracture moment data gathered from previous studies. The data was scaled using two scaling factors, one for mass and one for rate, and the Weibull survival analysis model was then used to develop the risk function. It was determined that a 25% risk of injury corresponds to a 214 Nm bending load, a 50% risk of injury corresponds to a 257 Nm bending load, and a 75% risk of injury corresponds to a 296 Nm bending load. It is believed the risk function can be used with an instrumented upper extremity during vehicle testing.

  18. The biomechanics of human ribs: material and structural properties from dynamic tension and bending tests.

    PubMed

    Kemper, Andrew R; McNally, Craig; Pullins, Clayton A; Freeman, Laura J; Duma, Stefan M; Rouhana, Stephen M

    2007-10-01

    The purpose of this study was to quantify both the tensile material properties and structural response of human ribs in order to determine which variables contribute to regional variation in the strength of human ribs. This was done by performing 94 matched tests on human rib specimens; 46 tension coupon tests, 48 three-point bending tests. Contralateral matched specimens were dissected from anterior and lateral regions of ribs 4 through 7 of six male fresh frozen post mortem human subjects ranging from 42 to 81 years of age. Tension coupons were taken from one side of the thorax, while three-point bending specimens were taken from the opposite side as the tension coupons at corresponding anatomical locations. The results of the tension coupon testing showed that there were no significant differences with respect to region or rib level: ultimate stress (p=0.90; p=0.53), ultimate strain (p=0.49; p=0.86), or modulus (p=0.72; p=0.81). In contrast, lateral three-point bending specimens were found to have a significantly higher peak bending moment (p<0.01), peak strain (p=0.03), modulus (p=0.05), and stiffness (p<0.01) than anterior specimens. The lateral three-point bending specimens also had a significantly larger area moment of inertia (p<0.01), larger distance to the neutral axis (p<0.01), smaller ratio of distance to the neutral axis to area moment of inertia (p<0.01), larger cortical bone area (p<0.01), and larger radius of gyration (p<0.01) than the anterior specimens. In addition, the peak moment (Ant p=0.20; Lat p=0.02), peak strain (Ant p=0.05; Lat p=0.15), and stiffness (Ant p<0.01; Lat p<0.01) were found to vary significantly with respect to rib level. Similar to anatomical region, the changes in the structural response with respect to rib level were also accompanied by significant changes in geometry. For anterior specimens, distance to the neutral axis (p<0.01), ratio of the distance to the neutral axis to area moment of inertia (p=0.02) and radius of

  19. Role of stag beetle jaw bending and torsion in grip on rivals.

    PubMed

    Goyens, Jana; Dirckx, Joris; Piessen, Maxim; Aerts, Peter

    2016-01-01

    In aggressive battles, the extremely large male stag beetle jaws have to withstand strongly elevated bite forces. We found several adaptations of the male Cyclommatus metallifer jaw morphology for enhanced robustness that conspecific females lack. As a result, males improve their grip on opponents and they maintain their safety factor (5.2-7.2) at the same level as that of females (6.8), despite their strongly elevated bite muscle force (3.9 times stronger). Males have a higher second moment of area and torsion constant than females, owing to an enhanced cross-sectional area and shape. These parameters also increase faster with increasing bending moment towards the jaw base in males than in females. Male jaws are more bending resistant against the bite reaction force than against perpendicular forces (which remain lower in battles). Because of the triangular cross section of the male jaw base, it twists more easily than it bends. This torsional flexibility creates a safety system against overload that, at the same time, secures a firm grip on rivals. We found no structural mechanical function of the large teeth halfway along the male jaws. Therefore, it appears that the main purpose of these teeth is a further improvement of grip on rivals. © 2016 The Author(s).

  20. Role of stag beetle jaw bending and torsion in grip on rivals

    PubMed Central

    Goyens, Jana; Dirckx, Joris; Piessen, Maxim; Aerts, Peter

    2016-01-01

    In aggressive battles, the extremely large male stag beetle jaws have to withstand strongly elevated bite forces. We found several adaptations of the male Cyclommatus metallifer jaw morphology for enhanced robustness that conspecific females lack. As a result, males improve their grip on opponents and they maintain their safety factor (5.2–7.2) at the same level as that of females (6.8), despite their strongly elevated bite muscle force (3.9 times stronger). Males have a higher second moment of area and torsion constant than females, owing to an enhanced cross-sectional area and shape. These parameters also increase faster with increasing bending moment towards the jaw base in males than in females. Male jaws are more bending resistant against the bite reaction force than against perpendicular forces (which remain lower in battles). Because of the triangular cross section of the male jaw base, it twists more easily than it bends. This torsional flexibility creates a safety system against overload that, at the same time, secures a firm grip on rivals. We found no structural mechanical function of the large teeth halfway along the male jaws. Therefore, it appears that the main purpose of these teeth is a further improvement of grip on rivals. PMID:26763329

  1. Sudden bending of a cracked laminate

    NASA Technical Reports Server (NTRS)

    Sih, G. C.; Chen, E. P.

    1981-01-01

    The intensification of stresses near a through crack in the laminate that suddenly undergoes bending is investigated. A dynamic plate theory is developed which includes the effects of material inhomogeneity in the thickness direction and realistic crack edge stress singularity and distribution. Numerical examples indicate that (1) the crack moment intensity tends to decrease as the crack length to laminate thickness is increased, and (2) the average load intensity transmitted to a through crack can be reduced by making the inner layers to be stiffer than the outer layers.

  2. Fractography of human intact long bone by bending.

    PubMed

    Kimura, T; Ogawa, K; Kamiya, M

    1977-05-27

    Human intact tibiae were tested using the static bending method to learn about the relationship between the fracture surface and the failure mode. The bending test was applied to test pieces and to whole bones. The fracture surface was observed by scanning electron microscopy. The bone fracture is closely related to the architecture of the bone substance, especially to the direction of the Haversian canals and the lamellae. The failure mode and the sequence of the break line of the bone can be found out by the observation on the fracture surface. Hardly any crushing effects caused by the compressive force is seen. The mechanical properties of the fractured bone can be estimated to some extend by considering the direction of the break line and the failure mode. The strength calculated by the simple beam formula for elastic materials can not be obtained directly because of the plastic deformation of the bone. The results of the tensile test may be applied to the fracture using the static bending moment.

  3. Influence of Distributed Dead Loads on Vehicle Position for Maximum Moment in Simply Supported Bridges

    NASA Astrophysics Data System (ADS)

    Gupta, Tanmay; Kumar, Manoj

    2017-06-01

    Usually, the design moments in the simply supported bridges are obtained as the sum of moments due to dead loads and live load where the live load moments are calculated using the rolling load concept neglecting the effect of dead loads. For the simply supported bridges, uniformly distributed dead load produces maximum moment at mid-span while the absolute maximum bending moment due to multi-axel vehicles occur under a wheel which usually do not lie at mid-span. Since, the location of absolute maximum bending moment due to multi-axel vehicle do not coincide with the location of maximum moment due to dead loads occurring at mid-span, the design moment may not be obtained by simply superimposing the effect of dead load and live load. Moreover, in case of Class-A and Class-70R wheeled vehicular live loads, which consists of several axels, the number of axels to be considered over the bridge of given span and their location is tedious to find out and needs several trials. The aim of the present study is to find the number of wheels for Class-A and Class-70R wheeled vehicles and their precise location to produce absolute maximum moment in the bridge considering the effect of dead loads and impact factor. Finally, in order to enable the designers, the design moments due to Class-70R wheeled and Class-A loading have been presented in tabular form for the spans from 10 to 50 m.

  4. A closed form large deformation solution of plate bending with surface effects.

    PubMed

    Liu, Tianshu; Jagota, Anand; Hui, Chung-Yuen

    2017-01-04

    We study the effect of surface stress on the pure bending of a finite thickness plate under large deformation. The surface is assumed to be isotropic and its stress consists of a part that can be interpreted as a residual stress and a part that stiffens as the surface increases its area. Our results show that residual surface stress and surface stiffness can both increase the overall bending stiffness but through different mechanisms. For sufficiently large residual surface tension, we discover a new type of instability - the bending moment reaches a maximum at a critical curvature. Effects of surface stress on different stress components in the bulk of the plate are discussed and the possibility of self-bending due to asymmetry of the surface properties is also explored. The results of our calculations provide insights into surface stress effects in the large deformation regime and can be used as a test for implementation of finite element methods for surface elasticity.

  5. Computer simulation of flagellar movement VIII: coordination of dynein by local curvature control can generate helical bending waves.

    PubMed

    Brokaw, Charles J

    2002-10-01

    Computer simulations have been carried out with a model flagellum that can bend in three dimensions. A pattern of dynein activation in which regions of dynein activity propagate along each doublet, with a phase shift of approximately 1/9 wavelength between adjacent doublets, will produce a helical bending wave. This pattern can be termed "doublet metachronism." The simulations show that doublet metachronism can arise spontaneously in a model axoneme in which activation of dyneins is controlled locally by the curvature of each outer doublet microtubule. In this model, dyneins operate both as sensors of curvature and as motors. Doublet metachronism and the chirality of the resulting helical bending pattern are regulated by the angular difference between the direction of the moment and sliding produced by dyneins on a doublet and the direction of the controlling curvature for that doublet. A flagellum that is generating a helical bending wave experiences twisting moments when it moves against external viscous resistance. At high viscosities, helical bending will be significantly modified by twist unless the twist resistance is greater than previously estimated. Spontaneous doublet metachronism must be modified or overridden in order for a flagellum to generate the planar bending waves that are required for efficient propulsion of spermatozoa. Planar bending can be achieved with the three-dimensional flagellar model by appropriate specification of the direction of the controlling curvature for each doublet. However, experimental observations indicate that this "hard-wired" solution is not appropriate for real flagella. Copyright 2002 Wiley-Liss, Inc.

  6. A numerical simulation of tooth movement by wire bending.

    PubMed

    Kojima, Yukio; Fukui, Hisao

    2006-10-01

    In orthodontic treatment, wires are bent and attached to teeth to move them via elastic recovery. To predict how a tooth will move, the initial force system produced from the wire is calculated. However, the initial force system changes as the tooth moves and may not be used to predict the final tooth position. The purpose of this study was to develop a comprehensive mechanical, 3-dimensional, numerical model for predicting tooth movement. Tooth movements produced by wire bending were simulated numerically. The teeth moved as a result of bone remodeling, which occurs in proportion to stress in the periodontal ligament. With an off-center bend, a tooth near the bending position was subjected to a large moment and tipped more noticeably than the other teeth. Also, a tooth far from the bending position moved slightly in the mesial or the distal direction. With the center V-bend, when the second molar was added as an anchor tooth, the tipping angle and the intrusion of the canine increased, and movement of the first molar was prevented. When a wire with an inverse curve of Spee was placed in the mandibular arch, the calculated tendency of vertical tooth movements was the same as the measured result. In these tooth movements, the initial force system changed as the teeth moved. Tooth movement was influenced by the size of the root surface area. Tooth movements produced by wire bending could be estimated. It was difficult to predict final tooth positions from the initial force system.

  7. Investigating the mechanical response of paediatric bone under bending and torsion using finite element analysis.

    PubMed

    Altai, Zainab; Viceconti, Marco; Offiah, Amaka C; Li, Xinshan

    2018-03-10

    Fractures of bone account 25% of all paediatric injuries (Cooper et al. in J Bone Miner Res 19:1976-1981, 2004. https://doi.org/10.1359/JBMR.040902 ). These can be broadly categorised into accidental or inflicted injuries. The current clinical approach to distinguish between these two is based on the clinician's judgment, which can be subjective. Furthermore, there is a lack of studies on paediatric bone to provide evidence-based information on bone strength, mainly due to the difficulties of obtaining paediatric bone samples. There is a need to investigate the behaviour of children's bones under external loading. Such data will critically enhance our understanding of injury tolerance of paediatric bones under various loading conditions, related to injuries, such as bending and torsional loads. The aim of this study is therefore to investigate the response of paediatric femora under two types of loading conditions, bending and torsion, using a CT-based finite element approach, and to determine a relationship between bone strength and age/body mass of the child. Thirty post-mortem CT scans of children aged between 0 and 3 years old were used in this study. Two different boundary conditions were defined to represent four-point bending and pure torsional loads. The principal strain criterion was used to estimate the failure moment for both loading conditions. The results showed that failure moment of the bone increases with the age and mass of the child. The predicted failure moment for bending, external and internal torsions were 0.8-27.9, 1.0-31.4 and 1.0-30.7 Nm, respectively. To the authors' knowledge, this is the first report on infant bone strength in relation to age/mass using models developed from modern medical images. This technology may in future help advance the design of child, car restrain system, and more accurate computer models of children.

  8. Phototropic bending of non-elongating and radially growing woody stems results from asymmetrical xylem formation.

    PubMed

    Matsuzaki, Jun; Masumori, Masaya; Tange, Takeshi

    2007-05-01

    Active phototropic bending of non-elongating and radially growing portion of stems (woody stems) has not been previously documented, whereas negative gravitropic bending is well known. We found phototropic bending in woody stems and searched for the underlying mechanism. We inclined 1-year-old Quercus crispula Blume seedlings and unilaterally illuminated them from a horizontal direction perpendicular to ('normal' illumination) or parallel to ('parallel' illumination) the inclination azimuth. With normal illumination, active phototropic bending and xylem formation could be evaluated separately from the negative gravitropic response and vertical deflection resulting from the weight of the seedlings. One-year-old stems with normal illumination bent significantly, with asymmetrical xylem formation towards the illuminated upper surface and side of the stem, whereas those with parallel illumination showed non-significant lateral bending, with asymmetrical xylem formation only on the upper side. A mechanical model was built on the assumption that a bending moment resulted from the asymmetrical xylem formation during phototropic bending of the woody stems. The model fitted the relationship between the observed spatial distributions of the xylem and the observed lateral bending, and thus supported the hypothesis that phototropic bending of woody stems results from asymmetrical xylem formation, as such occurs during gravitropism.

  9. Solving the Problem of Bending of Multiply Connected Plates with Elastic Inclusions

    NASA Astrophysics Data System (ADS)

    Kaloerov, S. A.; Koshkin, A. A.

    2017-11-01

    This paper describes a method for determining the strain state of a thin anisotropic plate with elastic arbitrarily arranged elliptical inclusions. Complex potentials are used to reduce the problem to determining functions of generalized complex variables, which, in turn, comes down to an overdetermined system of linear algebraic equations, solved by singular expansions. This paper presents the results of numerical calculations that helped establish the influence of rigidity of elastic inclusions, distances between inclusions, and their geometric characteristics on the bending moments occurring in the plate. It is found that the specific properties of distribution of moments near the apexes of linear elastic inclusions, characterized by moment intensity coefficients, occur only in the case of sufficiently rigid and elastic inclusions.

  10. Research on relation between bending stress and characteristic frequency of H-shaped beam by free vibration deflection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoshida, Tsutomu; Watanabe, Takeshi

    2014-05-27

    In order to investigate a relation between a bending stress and a characteristic frequency of a beam, 4-point loading which had constant moment region was conducted to a beam with H shape configuration experimentally and numerically. H-shaped beam has many characteristic deformation modes. Axial tensile stress in the beam made its characteristic frequency higher, and compressive stress lower. In the experiment, some characteristic frequencies got higher by a bending stress, and the others stayed in a small frequency fluctuation. The distinction is anticipated as a capability to measure a bending stress of a beam by its characteristic frequencies.

  11. Strength of the cervical spine in compression and bending.

    PubMed

    Przybyla, Andrzej S; Skrzypiec, Daniel; Pollintine, Phillip; Dolan, Patricia; Adams, Michael A

    2007-07-01

    Cadaveric motion segment experiment. To compare the strength in bending and compression of the human cervical spine and to investigate which structures resist bending the most. The strength of the cervical spine when subjected to physiologically reasonable complex loading is unknown, as is the role of individual structures in resisting bending. A total of 22 human cervical motion segments, 64 to 89 years of age, were subjected to complex loading in bending and compression. Resistance to flexion and to extension was measured in consecutive tests. Sagittal-plane movements were recorded at 50 Hz using an optical two-dimensional "MacReflex" system. Experiments were repeated 1) after surgical removal of the spinous process, 2) after removal of both apophyseal joints, and 3) after the disc-vertebral body unit had been compressed to failure. Results were analyzed using t tests, analysis of variance, and linear regression. Results were compared with published data for the lumbar spine. The elastic limit in flexion was reached at 8.5 degrees (SD, 1.7 degrees ) with a bending moment of 6.7 Nm (SD, 1.7 Nm). In extension, values were 9.5 degrees (SD, 1.6 degrees ) and 8.4 Nm (3.5 Nm), respectively. Spinous processes (and associated ligaments) provided 48% (SD, 17%) of the resistance to flexion. Apophyseal joints provided 47% (SD, 16%) of the resistance to extension. In compression, the disc-vertebral body units reached the elastic limit at 1.23 kN (SD, 0.46 Nm) and their ultimate compressive strength was 2.40 kN (SD, 0.96 kN). Strength was greater in male specimens, depended on spinal level and tended to decrease with age. The cervical spine has approximately 20% of the bending strength of the lumbar spine but 45% of its compressive strength. This suggests that the neck is relatively vulnerable in bending.

  12. Experimental Study on Surrogate Nuclear Fuel Rods under Reversed Cyclic Bending

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hong; Wang, Jy-An John

    The mechanical behavior of spent nuclear fuel (SNF) rods under reversed cyclic bending or bending fatigue must be understood to evaluate their vibration integrity in a transportation environment. This is especially important for high-burnup fuels (>45 GWd/MTU), which have the potential for increased structural damage. It has been demonstrated that the bending fatigue of SNF rods can be effectively studied using surrogate rods. In this investigation, surrogate rods made of stainless steel (SS) 304 cladding and aluminum oxide pellets were tested under load or moment control at a variety of amplitude levels at 5 Hz using the Cyclic Integrated Reversible-Bendingmore » Fatigue Tester developed at Oak Ridge National Laboratory. The behavior of the rods was further characterized using flexural rigidity and hysteresis data, and fractography was performed on the failed rods. The proposed surrogate rods captured many of the characteristics of deformation and failure mode observed in SNF, including the linear-to-nonlinear deformation transition and large residual curvature in static tests, PPI and PCMI failure mechanisms, and large variation in the initial structural condition. Rod degradation was measured and characterized by measuring the flexural rigidity; the degradation of the rigidity depended on both the moment amplitude applied and the initial structural condition of the rods. It was also shown that a cracking initiation site can be located on the internal surface or the external surface of cladding. Finally, fatigue damage to the bending rods can be described in terms of flexural rigidity, and the fatigue life of rods can be predicted once damage model parameters are properly evaluated. The developed experimental approach, test protocol, and analysis method can be used to study the vibration integrity of SNF rods in the future.« less

  13. Piezoelectric line moment actuator for active radiation control from light-weight structures

    NASA Astrophysics Data System (ADS)

    Jandak, Vojtech; Svec, Petr; Jiricek, Ondrej; Brothanek, Marek

    2017-11-01

    This article outlines the design of a piezoelectric line moment actuator used for active structural acoustic control. Actuators produce a dynamic bending moment that appears in the controlled structure resulting from the inertial forces when the attached piezoelectric stripe actuators start to oscillate. The article provides a detailed theoretical analysis necessary for the practical realization of these actuators, including considerations concerning their placement, a crucial factor in the overall system performance. Approximate formulas describing the dependency of the moment amplitude on the frequency and the required electric voltage are derived. Recommendations applicable for the system's design based on both theoretical and empirical results are provided.

  14. Metacarpal geometry changes during Thoroughbred race training are compatible with sagittal-plane cantilever bending.

    PubMed

    Merritt, J S; Davies, H M S

    2010-11-01

    Bending of the equine metacarpal bones during locomotion is poorly understood. Cantilever bending, in particular, may influence the loading of the metacarpal bones and surrounding structures in unique ways. We hypothesised that increased amounts of sagittal-plane cantilever bending may govern changes to the shape of the metacarpal bones of Thoroughbred racehorses during training. We hypothesised that this type of bending would require a linear change to occur in the combined second moment of area of the bones for sagittal-plane bending (I) during race training. Six Thoroughbred racehorses were used, who had all completed at least 4 years of race training at a commercial stable. The approximate change in I that had occurred during race training was computed from radiographic measurements at the start and end of training using a simple model of bone shape. A significant (P < 0.001), approximately linear pattern of change in I was observed in each horse, with the maximum change occurring proximally and the minimum change occurring distally. The pattern of change in I was compatible with the hypothesis that sagittal-plane cantilever bending governed changes to the shape of the metacarpal bones during race training. © 2010 EVJ Ltd.

  15. Comparative structural neck responses of the THOR-NT, Hybrid III, and human in combined tension-bending and pure bending.

    PubMed

    Dibb, Alan T; Nightingale, Roger W; Chancey, V Carol; Fronheiser, Lucy E; Tran, Laura; Ottaviano, Danielle; Meyers, Barry S

    2006-11-01

    This study evaluated the biofidelity of both the Hybrid III and the THOR-NT anthropomorphic test device (ATD) necks in quasistatic tension-bending and pure-bending by comparing the responses of both the ATDs with results from validated computational models of the living human neck. This model was developed using post-mortem human surrogate (PMHS) osteoligamentous response corridors with effective musculature added (Chancey, 2005). Each ATD was tested using a variety of end-conditions to create the tension-bending loads. The results were compared using absolute difference, RMS difference, and normalized difference metrics. The THOR-NT was tested both with and without muscle cables. The THOR-NT was also tested with and without the central safety cable to test the effect of the cable on the behavior of the ATD. The Hybrid III was stiffer than the model for all tension-bending end conditions. Quantitative measurement of the differences in response showed more close agreement between the THOR-NT and the model than the Hybrid III and the model. By contrast, no systematic differences were observed in the head kinematics. The muscle cables significantly stiffened the THOR-NT by effectively reducing the laxity from the occipital condyle (OC) joint. The cables also shielded the OC upper neck load cell from a significant portion of the applied loads. The center safety significantly stiffened the response and decreased the fidelity, particularly in modes of loading in which tensile forces were large and bending moments small. This study compares ATD responses to computational models in which the models include PMHS response corridors while correcting for problems associated with cadaveric muscle. While controversial and requiring considerable diligence, these kinds of approaches show promise in assessing ATD biofidelity.

  16. Three-point bending and acoustic emission study of adult rat femora after immobilization and free remobilization.

    PubMed

    Trebacz, Hanna; Zdunek, Artur

    2006-01-01

    The experiment concerned effects of immobilization and remobilization on mechanical properties of femoral shaft. Twenty-four weeks old male rats were used: two groups (I3 and I3R4) with the right hindlimb immobilized for 3 weeks by taping, and one control (C). In I3R4 immobilization was followed by 4 weeks of free remobilization. Mechanical properties in three-point bending, mass, geometry, and mineralization of bone tissue were measured post mortem in both femora in I3 and I3R4 and in right femora in control. Acoustic emission signals (AE) were recorded during the bending test. The right femora in I3, I3R4 and C did not differ significantly in size, mass and mineralization (ANOVA). The differences were significant considering mechanical parameters and AE signals. In I3 yield bending moment and stiffness were lower (p=0.013 and 0.025) and deflection was larger (p=0.030) than in C. In I3R4 maximum bending moment, yield moment, stiffness and work to failure were lower than in C (p=0.013, 0.009, 0.032, and 0.005). Paired t-test showed that remobilization resulted in worsening of properties of right femora. Side-to-side differences in I3R4 were more pronounced than in I3. Moreover, AE signals from the right femora were more numerous and burst type than from the left. The results demonstrate that strength of bone decreases during the first period of free remobilization. The decrease is accompanied by a significant decrease of bone toughness. The AE data support the hypothesis that immobilization-related degradation of bone mechanical properties is associated with increasing brittleness of cortical bone tissue.

  17. The influence of passive-dynamic ankle-foot orthosis bending axis location on gait performance in individuals with lower-limb impairments.

    PubMed

    Ranz, Ellyn C; Russell Esposito, Elizabeth; Wilken, Jason M; Neptune, Richard R

    2016-08-01

    Passive-dynamic ankle-foot orthoses are commonly prescribed to augment impaired ankle muscle function, however their design and prescription are largely qualitative. One design includes a footplate and cuff, and flexible strut connecting the two. During gait, deflection occurs along the strut, with the greatest deflection at a central bending axis. The vertical location of the axis can affect lower extremity biomechanics. The goal of this study was to investigate the influence of bending axis location on gait performance. For thirteen participants with unilateral ankle muscle weakness, an additive manufacturing framework was used to fabricate passive-dynamic ankle-foot orthosis struts with central and off-center bending axes. Participants walked overground while electromyographic, kinetic and kinematic data were collected for three different bending axes: proximal (high), central (middle) and distal (low), and the participants indicated their order of bending axis preference after testing. Gait measures and preference effect sizes were examined during six regions of the gait cycle. A few differences between bending axes were observed: in the first double-leg support peak plantarflexion angle, peak dorsiflexion moment and positive hip work, in the early single-leg support peak knee extension moment and positive ankle and knee work, and in the late single-leg support gastrocnemius activity and vertical ground reaction force impulse. In addition, preference was strongly related to various gait measures. Despite the observed statistical differences, altering bending axis location did not produce large and consistent changes in gait performance. Thus, individual preference and comfort may be more important factors guiding prescription. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Pure moment testing for spinal biomechanics applications: fixed versus 3D floating ring cable-driven test designs.

    PubMed

    Tang, Jessica A; Scheer, Justin K; Ames, Christopher P; Buckley, Jenni M

    2012-02-23

    Pure moment testing has become a standard protocol for in vitro assessment of the effect of surgical techniques or devices on the bending rigidity of the spine. Of the methods used for pure moment testing, cable-driven set-ups are popular due to their low requirements and simple design. Fixed loading rings are traditionally used in conjunction with these cable-driven systems. However, the accuracy and validity of the loading conditions applied with fixed ring designs have raised some concern, and discrepancies have been found between intended and prescribed loading conditions for flexion-extension. This study extends this prior work to include lateral bending and axial torsion, and compares this fixed ring design with a novel "3D floating ring" design. A complete battery of multi-axial bending tests was conducted with both rings in multiple different configurations using an artificial lumbar spine. Applied moments were monitored and recorded by a multi-axial load cell at the base of the specimen. Results indicate that the fixed ring design deviates as much as 77% from intended moments and induces non-trivial shear forces (up to 18 N) when loaded to a non-destructive maximum of 4.5 Nm. The novel 3D floating ring design largely corrects the inherent errors in the fixed ring design by allowing additional directions of unconstrained motion and producing uniform loading conditions along the length of the specimen. In light of the results, it is suggested that the 3D floating ring set-up be used for future pure moment spine biomechanics applications using a cable-driven apparatus. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Contact pressure in the facet joint during sagittal bending of the cadaveric cervical spine.

    PubMed

    Jaumard, Nicolas V; Bauman, Joel A; Weisshaar, Christine L; Guarino, Benjamin B; Welch, William C; Winkelstein, Beth A

    2011-07-01

    The facet joint contributes to the normal biomechanical function of the spine by transmitting loads and limiting motions via articular contact. However, little is known about the contact pressure response for this joint. Such information can provide a quantitative measure of the facet joint's local environment. The objective of this study was to measure facet pressure during physiologic bending in the cervical spine, using a joint capsule-sparing technique. Flexion and extension bending moments were applied to six human cadaveric cervical spines. Global motions (C2-T1) were defined using infra-red cameras to track markers on each vertebra. Contact pressure in the C5-C6 facet was also measured using a tip-mounted pressure transducer inserted into the joint space through a hole in the postero-inferior region of the C5 lateral mass. Facet contact pressure increased by 67.6 ± 26.9 kPa under a 2.4 Nm extension moment and decreased by 10.3 ± 9.7 kPa under a 2.7 Nm flexion moment. The mean rotation of the overall cervical specimen motion segments was 9.6 ± 0.8° and was 1.6 ± 0.7° for the C5-C6 joint, respectively, for extension. The change in pressure during extension was linearly related to both the change in moment (51.4 ± 42.6 kPa/Nm) and the change in C5-C6 angle (18.0 ± 108.9 kPa/deg). Contact pressure in the inferior region of the cervical facet joint increases during extension as the articular surfaces come in contact, and decreases in flexion as the joint opens, similar to reports in the lumbar spine despite the difference in facet orientation in those spinal regions. Joint contact pressure is linearly related to both sagittal moment and spinal rotation. Cartilage degeneration and the presence of meniscoids may account for the variation in the pressure profiles measured during physiologic sagittal bending. This study shows that cervical facet contact pressure can be directly measured with minimal disruption to the joint and is the first to provide local

  20. The Strength of Thin-wall Cylinders of D Cross Section in Combined Pure Bending and Torsion

    NASA Technical Reports Server (NTRS)

    Sherwood, A W

    1943-01-01

    The results of tests of 56 cylinders of D cross section conducted in the Aeronautical Laboratory of the University of Maryland are presented in this report. These cylinders were subjected to pure bending and torsional moments of varying proportions to give the strength under combined loading conditions. The average buckling stress of these cylinders has been related to that of circumscribing circular cylinders for conditions of pure torsion and pure bending and the equation of the interaction curve has been determined for conditions of combined loading.

  1. Bend-Twist Coupled Carbon-Fiber Laminate Beams: Fundamental Behavior and Applications

    NASA Astrophysics Data System (ADS)

    Babuska, Pavel

    Material-induced bend-twist coupling in laminated composite beams has seen applications in engineered structures for decades, ranging from airplane wings to turbine blades. Symmetric, unbalanced, carbon fiber laminates which exhibit bend-twist coupling can be difficult to characterize and exhibit unintuitive deformation states which may pose challenges to the engineer. In this thesis, bend-twist coupled beams are investigated comprehensively, by experimentation, numerical modeling, and analytical methods. Beams of varying fiber angle and amount of coupling were manufactured and physically tested in both linear and nonlinear static and dynamic settings. Analytical mass and stiffness matrices were derived for the development of a beam element to use in the stiffness matrix analysis method. Additionally, an ABAQUS finite element model was used in conjunction with the analytical methods to predict and further characterize the behavior of the beams. The three regimes, experimental, analytical, and numerical, represent a full-field characterization of bend-twist coupling in composite beams. A notable application of bend-twist coupled composites is for passively adaptive turbine blades whereby the deformation coupling can be built into the blade structure to simultaneously bend and twist, thus pitching the blade into or away from the fluid flow, changing the blade angle of attack. Passive pitch adaptation has been implemented successfully in wind turbine blades, however, for marine turbine blades, the technology is still in the development phase. Bend-twist coupling has been shown numerically to be beneficial to the tidal turbine performance, however little validation has been conducted in the experimental regime. In this thesis, passively adaptive experiment scale tidal turbine blades were designed, analyzed, manufactured, and physically tested, validating the foundational numerical work. It was shown that blade forces and root moments as well as turbine thrust and power

  2. Bending testing and characterization of surrogate nuclear fuel rods made of Zircaloy-4 cladding and aluminum oxide pellets

    NASA Astrophysics Data System (ADS)

    Wang, Hong; Wang, Jy-An John

    2016-10-01

    Behavior of surrogate nuclear fuel rods made of Zircaloy-4 (Zry-4) cladding with alumina pellets under reversed cyclic bending was studied. Tests were performed under load or moment control at 5 Hz. The surrogate rods fractured under moment amplitudes greater than 10.16 Nm with fatigue lives between 2.4 × 103 and 2.2 × 106 cycles. Fatigue response of Zry-4 cladding was characterized by using flexural rigidity. Degradation of flexural rigidity was shown to depend on the moment and the prefatigue condition of specimens. Pellet-to-pellet interface (PPI), pellet-to-cladding interface (PCI), and pellet condition affect surrogate rod failure. Both debonding of PPI/PCI and pellet fracturing contribute to surrogate rod bending fatigue. The effect of sensor spacing on curvature measurement using three-point deflections was studied; the method based on effective gauge length is effective in sensor spacing correction. The database developed and the understanding gained in this study can serve as input to analysis of SNF (spent nuclear fuel) vibration integrity.

  3. Bending testing and characterization of surrogate nuclear fuel rods made of Zircaloy-4 cladding and aluminum oxide pellets

    DOE PAGES

    Wang, Hong; Wang, Jy-An John

    2016-07-20

    We studied behavior of surrogate nuclear fuel rods made of Zircaloy-4 (Zry-4) cladding with alumina pellets under reversed cyclic bending. Tests were performed under load or moment control at 5 Hz, and an empirical correlation was established between rod fatigue life and amplitude of the applied moment. Fatigue response of Zry-4 cladding was further characterized by using flexural rigidity. Degradation of flexural rigidity was shown to depend on the moment applied and the prefatigue condition of specimens. Pellet-to-pellet interface (PPI), pellet-to-cladding interface (PCI), and pellet condition all affect surrogate rod failure. Bonding/debonding of PPI/PCI and pellet fracturing contribute to surrogatemore » rod bending fatigue. Also, the effect of sensor spacing on curvature measurement using three-point deflections was studied; the method based on effective specimen gauge length is effective in sensor spacing correction. Finally, we developed the database and gained understanding in this study such that it will serve as input to analysis of SNF vibration integrity.« less

  4. Advantages of statistical analysis of giant vesicle flickering for bending elasticity measurements.

    PubMed

    Méléard, P; Pott, T; Bouvrais, H; Ipsen, J H

    2011-10-01

    We show how to greatly improve precision when determining bending elasticity of giant unilamellar vesicles. Taking advantage of the well-known quasi-spherical model of liposome flickering, we analyze the full probability distributions of the configurational fluctuations instead of limiting the analysis to the second moment measurements only as usually done in previously published works. This leads to objective criteria to reject vesicles that do not behave according to the model. As a result, the confidence in the bending elasticity determination of individual vesicles that fit the model is improved and, consequently, the reproducibility of this measurement for a given membrane system. This approach uncovers new possibilities for bending elasticity studies like detection of minute influences by solutes in the buffer or into the membrane. In the same way, we are now able to detect the inhomogeneous behavior of giant vesicle systems such as the hazardous production of peroxide in bilayers containing fluorescent dyes. © EDP Sciences / Società Italiana di Fisica / Springer-Verlag 2011

  5. Principal Effects of Axial Load on Moment-Distribution Analysis of Rigid Structures

    NASA Technical Reports Server (NTRS)

    James, Benjamin Wylie

    1935-01-01

    This thesis presents the method of moment distribution modified to include the effect of axial load upon the bending moments. This modification makes it possible to analyze accurately complex structures, such as rigid fuselage trusses, that heretofore had to be analyzed by approximate formulas and empirical rules. The method is simple enough to be practicable even for complex structures, and it gives a means of analysis for continuous beams that is simpler than the extended three-moment equation now in common use. When the effect of axial load is included, it is found that the basic principles of moment distribution remain unchanged, the only difference being that the factors used, instead of being constants for a given member, become functions of the axial load. Formulas have been developed for these factors, and curves plotted so that their applications requires no more work than moment distribution without axial load. Simple problems have been included to illustrate the use of the curves.

  6. Fabrication of a high-precision spherical micromirror by bending a silicon plate with a metal pad.

    PubMed

    Wu, Tong; Hane, Kazuhiro

    2011-09-20

    We demonstrate here the fabrication of a smooth mirror surface by bending a thin silicon plate. A spherical surface is achieved by the bending moment generated in the circumference of the micromirror. Both convex and concave spherical micromirrors are realized through the anodic bonding of silicon and Pyrex glass. Since the mirror surface is originated from the polished silicon surface and no additional etching is introduced for manufacturing, the surface roughness is thus limited to the polishing error. This novel approach opens possibilities for fabricating a smooth surface for micromirror and microlens applications.

  7. Pure moment testing for spinal biomechanics applications: Fixed versus sliding ring cable-driven test designs.

    PubMed

    Eguizabal, Johnny; Tufaga, Michael; Scheer, Justin K; Ames, Christopher; Lotz, Jeffrey C; Buckley, Jenni M

    2010-05-07

    In vitro multi-axial bending testing using pure moment loading conditions has become the standard in evaluating the effects of different types of surgical intervention on spinal kinematics. Simple, cable-driven experimental set-ups have been widely adopted because they require little infrastructure. Traditionally, "fixed ring" cable-driven experimental designs have been used; however, there have been concerns with the validity of this set-up in applying pure moment loading. This study involved directly comparing the loading state induced by a traditional "fixed ring" apparatus versus a novel "sliding ring" approach. Flexion-extension bending was performed on an artificial spine model and a single cadaveric test specimen, and the applied loading conditions to the specimen were measured with an in-line multiaxial load cell. The results showed that the fixed ring system applies flexion-extension moments that are 50-60% less than the intended values. This design also imposes non-trivial anterior-posterior shear forces, and non-uniform loading conditions were induced along the length of the specimen. The results of this study indicate that fixed ring systems have the potential to deviate from a pure moment loading state and that our novel sliding ring modification corrects this error in the original test design. This suggests that the proposed sliding ring design should be used for future in vitro spine biomechanics studies involving a cable-driven pure moment apparatus. Copyright 2010 Elsevier Ltd. All rights reserved.

  8. Statistical mechanics of ribbons under bending and twisting torques.

    PubMed

    Sinha, Supurna; Samuel, Joseph

    2013-11-20

    We present an analytical study of ribbons subjected to an external torque. We first describe the elastic response of a ribbon within a purely mechanical framework. We then study the role of thermal fluctuations in modifying its elastic response. We predict the moment-angle relation of bent and twisted ribbons. Such a study is expected to shed light on the role of twist in DNA looping and on bending elasticity of twisted graphene ribbons. Our quantitative predictions can be tested against future single molecule experiments.

  9. Numerical procedures for the calculation of the stresses in monocoques III : calculation of the bending moments in fuselage frames

    NASA Technical Reports Server (NTRS)

    Hoff, N J; Libby, Paul A; Klein, Bertran

    1946-01-01

    This report deals with the calculation of the bending moments in and the distortions of fuselage rings upon which known concentrated and distributed loads are acting. In the procedure suggested, the ring is divided into a number of beams each having a constant radius of curvature. The forces and moments caused in the end sections of the beams by individual unit displacements of the end sections are listed in a table designated as the operations table in conformity with Southwell's nomenclature. The operations table and the external loads are equivalent to a set of linear equations. For their solution the following three procedures are presented: 1) Southwell's method of systematic relaxations. This is a step-by-step approximation procedure guided by the physical interpretation of the changes in the values of the unknown. 2) The growing unit procedure in which the individual beams are combined successively into beams of increasing length until finally the entire ring becomes a single beam. In each step of the procedure a set of not more than three simultaneous linear equations is solved. 3) Solution of the entire set of simultaneous equations by the methods of the matrix calculus. In order to demonstrate the manner in which the calculations may be carried out, the following numerical examples are worked out: 1) Curved beam with both its end sections rigidly fixed. The load is a concentrated force. 2) Egg-shape ring with symmetric concentrated loads. 3) Circular ring with antisymmetric concentrated loads and shear flow (torsion of the fuselage). 4) Same with V-braces incorporated in the ring. 5) Egg-shape ring with antisymmetric concentrated loads and shear flow (torsion of the fuselage). 6) Same with V-braces incorporated in the ring. The results of these calculations are checked, whenever possible, by calculations carried out according to known methods of analysis. The agreement is found to be good. The amount of work necessary for the solution of ring problems by

  10. The Lateral Stability of Equal-flanged Aluminum-alloy I-beams Subjected to Pure Bending

    NASA Technical Reports Server (NTRS)

    Dumont, C; Hill, H N

    1940-01-01

    Equal-flange beams of a special extruded I-section of 27ST aluminum alloy were tested in pure bending. Complete end fixity was not attained. Loading was continued until a definite maximum value had been reached. Tensile tests were made on specimens cut from the flanges and the web of each beam. Compressive stress-strain characteristics were determined by pack compression tests on specimens cut from the flanges. Values computed from an equation previously suggested by one of the authors for the critical stress at which such beams become unstable were found to be in good agreement with values computed from experimentally determined critically bending moments.

  11. Fuzzy analysis of serviceability limit state of slender steel beam under bending

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kala, Zdeněk; Valeš, Jan

    In the present paper, deformations of a beam under equal end moments solved with influence of lateral buckling are studied. It has been found by numerical studies that the lateral deflection of slender beam under major axis bending can be relatively high.The acceptability of high values of lateral deflections within the framework of serviceability limit state is discussed. In the next part of the paper, the limit value of maximum deflection was introduced as a fuzzy number. The fuzzy analysis of the maximum moment which causes the maximum deflection was carried out. The slendernesses of beams for which the serviceabilitymore » limit state is the limiting state for design were identified.« less

  12. Finding line of action of the force exerted on erect spine based on lateral bending test in personalization of scoliotic spine models.

    PubMed

    Jalalian, Athena; Tay, Francis Eng Hock; Arastehfar, Soheil; Gibson, Ian; Liu, Gabriel

    2017-04-01

    In multi-body models of scoliotic spine, personalization of mechanical properties of joints significantly improves reconstruction of the spine shape. In personalization methods based on lateral bending test, simulation of bending positions is an essential step. To simulate, a force is exerted on the spine model in the erect position. The line of action of the force affects the moment of the force about the joints and thus, if not correctly identified, causes over/underestimation of mechanical properties. Therefore, we aimed to identify the line of action, which has got little attention in previous studies. An in-depth analysis was performed on the scoliotic spine movement from the erect to four spine positions in the frontal plane by using pre-operative X-rays of 18 adolescent idiopathic scoliosis (AIS) patients. To study the movement, the spine curvature was considered as a 2D chain of micro-scale motion segments (MMSs) comprising rigid links and 1-degree-of-freedom (DOF) rotary joints. It was found that two MMSs representing the inflection points of the erect spine had almost no rotation (0.0028° ± 0.0021°) in the movement. The small rotation can be justified by weak moment of the force about these MMSs due to very small moment arm. Therefore, in the frontal plane, the line of action of the force to simulate the left/right bending position was defined as the line that passes through these MMSs in the left/right bending position. Through personalization of a 3D spine model for our patients, we demonstrated that our line of action could result in good estimates of the spine shape in the bending positions and other positions not included in the personalization, supporting our proposed line of action.

  13. Ethnic Differences in Bending Stiffness of the Ulna and Tibia

    NASA Technical Reports Server (NTRS)

    Arnaud, S. B.; Liang, M. T. C.; Bassin, S.; Braun, W.; Dutto, D.; Plesums, K.; Huvnh, H. T.; Cooper, D.; Wong, N.

    2004-01-01

    There is considerable information about the variations in bone mass associated with different opportunity to compare a mechanical property of bone in young college women of Caucasian, Hispanic and Asian descent who gave informed consent to participate in an exercise study. The subjects were sedentary, in good health, eumenorrheic, non-smokers and had body mass indices (BMI) less than 30. Measurements acquired were body weight, kg, and height, cm, calcaneal and wrist bone density, g/square cm (PIXI, Lunar GE) and bending stiffness (EI, Nm(exp 2)) in the ulna and tibia. E1 was determined non-invasively with an instrument called the Mechanical Response Tissue Analyzer (MRTA) that delivers a vibratory stimulus to the center of the ulna or tibia and analyzes the response curve based on the equation E1 = k(sub b) L(exp 3)/48 where k, is lateral bending stiffness, L is the length of the bone, E is Young's modulus of elasticity and I, the bending moment of inertia. The error of the test (CV) based on measurements of an aluminum rod with a known E1 was 4.8%, of calcaneal BMD, 0.54%, and of wrist bone density, 3.45%.

  14. Effects of general principles of person transfer techniques on low back joint extension moment.

    PubMed

    Katsuhira, Junji; Yamasaki, Syun; Yamamoto, Sumiko; Maruyama, Hitoshi

    2010-01-01

    The purpose of this study was to examine the effects of general principles of person transfer techniques specifically on the low back joint extension moment. These effects were examined by the following measurable quantitative parameters: 1) trunk bending angle, 2) knee flexion angle, 3) distance between the centers of gravity (COGs) of the caregiver and patient, representing the distance between the caregiver and patient, and 4) the vertical component of the ground reaction force representing the amount of the weight-bearing load on the caregiver's low back during transfers with and without assistive devices. Twenty students each took the role of caregiver, and one healthy adult simulated a patient. The participants performed three different transfer tasks: without any assistive device, with the patient wearing a low back belt, and with the caregiver using a transfer board. We found that the distance between the COGs and the vertical component of the ground reaction force, but not the trunk bending and knee flexion angles, were the variables that affected the low back joint extension moment. Our results suggest that the general principle of decreasing the distance between COGs is most effective for decreasing the low back joint extension moment during transfers under all conditions.

  15. Three-point bending of honeycomb sandwich beams with facesheet perforations

    NASA Astrophysics Data System (ADS)

    Su, Pengbo; Han, Bin; Zhao, Zhongnan; Zhang, Qiancheng; Lu, Tian Jian

    2017-12-01

    A novel square honeycomb-cored sandwich beam with perforated bottom facesheet is investigated under three-point bending, both analytically and numerically. Perforated square holes in the bottom facesheet are characterized by the area ratio of the hole to intact facesheet (perforation ratio). While for large-scale engineering applications like the decks of cargo vehicles and transportation ships, the perforations are needed to facilitate the fabrication process (e.g., laser welding) as well as service maintenance, it is demonstrated that these perforations, when properly designed, can also enhance the resistance of the sandwich to bending. For illustration, fair comparisons among competing sandwich designs having different perforation ratios but equal mass is achieved by systematically thickening the core webs. Further, the perforated sandwich beam is designed with a relatively thick facesheet to avoid local indention failure so that it mainly fails in two competing modes: (1) bending failure, i.e., yielding of beam cross-section and buckling of top facesheet caused by bending moment; (2) shear failure, i.e., yielding and buckling of core webs due to shear forcing. The sensitivity of the failure loads to the ratio of core height to beam span is also discussed for varying perforation ratios. As the perforation ratio is increased, the load of shear failure increases due to thickening core webs, while that of bending failure decreases due to the weakening bottom facesheet. Design of a sandwich beam with optimal perforation ratio is realized when the two failure loads are equal, leading to significantly enhanced failure load (up to 60% increase) relative to that of a non-perforated sandwich beam with equal mass.

  16. Analysis and experiments for composite laminates with holes and subjected to 4-point bending

    NASA Technical Reports Server (NTRS)

    Shuart, M. J.; Prasad, C. B.

    1990-01-01

    Analytical and experimental results are presented for composite laminates with a hole and subjected to four-point bending. A finite-plate analysis is used to predict moment and strain distributions for six-layer quasi-isotropic laminates and transverse-ply laminates. Experimental data are compared with the analytical results. Experimental and analytical strain results show good agreement for the quasi-isotropic laminates. Failure of the two types of composite laminates is described, and failure strain results are presented as a function of normalized hole diameter. The failure results suggest that the initial failure mechanism for laminates subjected to four-point bending are similar to the initial failure mechanisms for corresponding laminates subjected to uniaxial inplane loadings.

  17. In-flight total forces, moments and static aeroelastic characteristics of an oblique-wing research airplane

    NASA Technical Reports Server (NTRS)

    Curry, R. E.; Sim, A. G.

    1984-01-01

    A low-speed flight investigation has provided total force and moment coefficients and aeroelastic effects for the AD-1 oblique-wing research airplane. The results were interpreted and compared with predictions that were based on wind tunnel data. An assessment has been made of the aeroelastic wing bending design criteria. Lateral-directional trim requirements caused by asymmetry were determined. At angles of attack near stall, flow visualization indicated viscous flow separation and spanwise vortex flow. These effects were also apparent in the force and moment data.

  18. Sequence-dependent modelling of local DNA bending phenomena: curvature prediction and vibrational analysis.

    PubMed

    Vlahovicek, K; Munteanu, M G; Pongor, S

    1999-01-01

    Bending is a local conformational micropolymorphism of DNA in which the original B-DNA structure is only distorted but not extensively modified. Bending can be predicted by simple static geometry models as well as by a recently developed elastic model that incorporate sequence dependent anisotropic bendability (SDAB). The SDAB model qualitatively explains phenomena including affinity of protein binding, kinking, as well as sequence-dependent vibrational properties of DNA. The vibrational properties of DNA segments can be studied by finite element analysis of a model subjected to an initial bending moment. The frequency spectrum is obtained by applying Fourier analysis to the displacement values in the time domain. This analysis shows that the spectrum of the bending vibrations quite sensitively depends on the sequence, for example the spectrum of a curved sequence is characteristically different from the spectrum of straight sequence motifs of identical basepair composition. Curvature distributions are genome-specific, and pronounced differences are found between protein-coding and regulatory regions, respectively, that is, sites of extreme curvature and/or bendability are less frequent in protein-coding regions. A WWW server is set up for the prediction of curvature and generation of 3D models from DNA sequences (http:@www.icgeb.trieste.it/dna).

  19. Verification of pure moment testing in a multi-degree of freedom spine testing apparatus.

    PubMed

    Fuller, Amy M; Chui, Jennifer M; Cook, Daniel J; Yeager, Matthew S; Gladowski, David A; Cheng, Boyle C

    2012-01-01

    Pure moment testing is a common method used in cadaveric spine testing. The fundamental basis for the widespread acceptance of applying a pure moment is uniform loading along the column of the spine. To our knowledge, this protocol has not been experimentally verified on a multi-degree of freedom testing apparatus. Given its ubiquitous use in spine biomechanics laboratories, confirmation of this comparative cadaveric test protocol is paramount. Group A specimens (n =13) were used to test the pure moment protocol, by use of 3 constructs that changed the number of involved vertebrae, orientation, and rigidity of the spine construct. Group B specimens (n = 6) were used to determine whether potting orientation, testing order, or degradation affected the range of motion (ROM) by use of 8 constructs. Each group was subjected to 3 cycles of flexion-extension, lateral bending, and axial torsion. The data from the third cycle were used to calculate the ROM for each method. Group A testing resulted in significant differences in ROM across the 3 constructs for lateral bending and axial torsion (P < .02) and trended toward a difference for flexion-extension (P = .055). Group B testing showed an increase in ROM across 8 constructs (P < .04) but no significant difference due to the orientation change. The increased ROM across constructs observed in both groups indicates that the cause is likely the testing order or degradation of the specimens, with orientation having no observed effect. The data do not invalidate pure moment testing, and its use should persist.

  20. Enhancement in Elastic Bending Rigidity of Polymer Loaded Reverse Microemulsions.

    PubMed

    Geethu, P M; Yadav, Indresh; Aswal, Vinod K; Satapathy, Dillip K

    2017-11-14

    Elastic bending rigidity of the surfactant shell is a crucial parameter which determines the phase behavior and stability of microemulsion droplets. For water-in-oil reverse microemulsions stabilized by AOT (sodium 1,4-bis(2-ethylhexoxy)-1,4-dioxobutane-2-sulfonate) surfactant, the elastic bending rigidity is close to thermal energy at room temperature (k B T) and can be modified by the presence of hydrophilic polymers. Here, we explore the influence of two polymers polyethylene glycol (PEG) and polyvinylpyrrolidone (PVP), both having nearly same size (radius of gyration, R g ) but different dipole moment, on elastic bending rigidity of water-AOT-n-decane reverse microemulsions via estimating the percolation temperatures (T P ) and droplet radii using dielectric relaxation spectroscopy (DRS) and small-angle neutron scattering (SANS) techniques. Notably, an increase in T P is observed on introducing PEG and PVP polymers and is attributed to the adsorption of polymer chains onto the surfactant monolayer. The stability of the droplet phase of microemulsion after the incorporation of PEG and PVP polymers is confirmed by contrast matching SANS experiments. An enhancement in elastic bending rigidity of AOT surfactant shell amounting to ∼46% is observed upon incorporation of PVP into the droplet core, whereas for PEG addition, a smaller increase of about 17% is recorded. We conjecture that the considerable increase in elastic bending rigidity of the surfactant monolayer upon introducing PVP is because of the strong ion-dipole interaction between anionic AOT and dipoles present along the PVP polymer chains. Scaling exponents extracted from the temperature dependent electrical conductivity measurements and the frequency dependent scaling of conductivity at percolation indicate the dynamic nature of percolation for both pure and polymer loaded reverse microemulsions. The decrease in activation energy of percolation upon incorporating PEG and PVP polymer molecules also

  1. The gearing function of running shoe longitudinal bending stiffness.

    PubMed

    Willwacher, Steffen; König, Manuel; Braunstein, Björn; Goldmann, Jan-Peter; Brüggemann, Gert-Peter

    2014-07-01

    The purpose of the present study was to investigate whether altered longitudinal bending stiffness (LBS) levels of the midsole of a running shoe lead to a systematic change in lower extremity joint lever arms of the ground reaction force (GRF). Joint moments and GRF lever arms in the sagittal plane were determined from 19 male subjects running at 3.5 m/s using inverse dynamics procedures. LBS was manipulated using carbon fiber insoles of 1.9 mm and 3.2 mm thickness. Increasing LBS led to a significant shift of joint lever arms to a more anterior position. Effects were more pronounced at distal joints. Ankle joint moments were not significantly increased in the presence of higher GRF lever arms when averaged over all subjects. Still, two individual strategies (1: increase ankle joint moments while keeping push-off times almost constant, 2: decrease ankle joint moments and increase push-off times) could be identified in response to increased ankle joint lever arms that might reflect individual differences between subjects with respect to strength capacities or anthropometric characteristics. The results of the present study indicate that LBS systematically influences GRF lever arms of lower extremity joints during the push-off phase in running. Further, individual responses to altered LBS levels could be identified that could aid in finding optimum LBS values for a given individual. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. An analysis of thermal stress and gas bending effects on vibrations of compressor rotor stages. [blade torsional rigidity

    NASA Technical Reports Server (NTRS)

    Chen, L.-T.; Dugundji, J.

    1979-01-01

    A preliminary study conducted by Kerrebrock et al. (1976) has shown that the torsional rigidity of untwisted thin blades of a transonic compressor can be reduced significantly by transient thermal stresses. The aerodynamic loads have various effects on blade vibration. One effect is that gas bending loads may result in a bending-torsion coupling which may change the characteristics of the torsion and bending vibration of the blade. For a general study of transient-temperature distribution within a rotor stage, a finite-element heat-conduction analysis was developed. The blade and shroud are divided into annular elements. With a temperature distribution obtained from the heat-conduction analysis and a prescribed gas bending load distribution along the blade span, the static deformation and moment distributions of the blade can be solved iteratively using the finite-element method. The reduction of the torsional rigidity of pretwisted blades caused by the thermal stress effect is then computed. The dynamic behavior of the blade is studied by a modified Galerkin's method.

  3. [Odontoid bending stiffness after anterior fixation with a single lag screw: biomechanical study].

    PubMed

    Buchvald, P; Čapek, L; Barsa, P

    2015-01-01

    PURPOSE OF THE STUDY The aim of the experiment was to compare the bending stiffness of an intact odontoid process with bending stiffness after its simulated type II fracture was fixed with a single lag screw. The experiment was done with a desire to answer the question of whether a single osteosynthetic screw is sufficient for good fixation of a type II odontoid fracture. MATERIAL AND METHODS The C2 vertebrae of six cadavers were used. With simultaneous measurement of odontoid bending stiffness, the occurrence of a fracture (type IIA, Grauer's modification of the Anderson- D'Alonzo classification) was simulated using action exerted by a tearing machine in the direction perpendicular to the odontoid axis. Each odontoid fracture was subsequently treated by direct osteosynthesis with a single lag screw inserted in the axial direction by a standard surgical procedure in order to provide conditions similar to those achieved by routine surgical management. The treated odontoid process was subsequently subjected to the same tearing machine loading as applied to it at the start of the experiment. The bending stiffness measured was then compared with that found before the fracture occurred. The results were statistically evaluated by the t-test for paired samples at the level of significance α = 0.05. RESULTS The average value of bending stiffness for odontoid processes of intact vertebrae at the moment of fracture occurrence was 318.3 N/mm. After single axial lag screw fixation of the fracture, the average bending stiffness for the odontoid processes treated was 331.3 N/mm. DISCUSSION Higher values of bending stiffness after screw fixation were found in all specimens and, in comparison with the values recorded before simulated fractures, the increase was statistically significant. CONCLUSIONS The results of our measurements suggest that the single lag screw fixation of a type IIA odontoid fracture will provide better stability for the fracture fragment-C2 body complex on

  4. In vivo assessment of forearm bone mass and ulnar bending stiffness in healthy men

    NASA Technical Reports Server (NTRS)

    Myburgh, K. H.; Zhou, L. J.; Steele, C. R.; Arnaud, S.; Marcus, R.

    1992-01-01

    The cross-sectional bending stiffness EI of the ulna was measured in vivo by mechanical resistance tissue analysis (MRTA) in 90 men aged 19-89 years. MRTA measures the impedance response of low-frequency vibrations to determine EI, which is a reflection of elastic modulus E and moment of inertia I for the whole ulna. EI was compared to conventional estimates of bone mineral content (BMC), bone width (BW), and BMC/BW, which were all measured by single-photon absorptiometry. Results obtained from the nondominant ulna indicate that BW increases (r = 0.27, p = 0.01) and ulnar BMC/BW decreases (r = -0.31, p < or = 0.005) with age. Neither BMC nor EI declined with age. The single best predictor of EI was BW (r2 = 0.47, p = 0.0001), and further small but significant contributions were made by BMC (r2 = 0.53, p = 0.0001) and grip strength (r2 = 0.55, p = 0.0001). These results suggest that the resistance of older men to forearm fracture is related to age-associated changes in the moment of inertia achieved by redistributing bone mineral farther from the bending axis. We conclude that the in vivo assessment of bone geometry offers important insights to the comprehensive evaluation of bone strength.

  5. Controlled Bending of a Thin Mirror to Regain Figure after Warping due to Edge-Cutting

    NASA Astrophysics Data System (ADS)

    Humphries, C. M.

    1990-03-01

    A thin circular Cer-Vit mirror, diameter 1.3 m, that had been polished flat was cut along 10 edges to form a 12-sided pseudo-elliptical plate. As a result of the edge-cutting, the mirror distorted and an experiment that investigated the effect of reverse stressing to counteract the distortion is described and analysed. The configuration adopted for stressing the mirror when installed as a driven coudé flat in the UK Infrared Telescope is also described. The reverse stressing results can be understood in terms of thin plate theory for pure bending and, in general, if the distortion is toroidal (including the case of a sphere) an orthogonal pair of bending moments can be chosen that will remove the undesired curvatures.

  6. The nonlinear bending response of thin-walled laminated composite cylinders

    NASA Technical Reports Server (NTRS)

    Fuchs, Hannes P.; Hyer, Michael W.

    1992-01-01

    The geometrically nonlinear Donnell shell theory is applied to the problem of stable bending of thin-walled circular cylinders. Responses are computed for cylinders with a radius-to-thickness ratio of 50 and length-to-radius ratios of 1 and 5. Four laminated composite cylinders and an aluminum cylinder are considered. Critical moment estimates are presented for short cylinders for which compression-type buckling behavior is important, and for very long cylinders for which the cross-section flattening, i.e., Brazier effect, is important. A finite element analysis is used to estimate the critical end rotation in addition to establishing the range of validity of the prebuckling analysis. The radial displacement response shows that the character of the boundary layer is significantly influenced by the geometric nonlinearities. Application of a first ply failure analysis using the maximum stress criterion suggests that in nearly all instances material failure occurs before buckling. Failure of the composite cylinders can be attributed to fiber breakage. Striking similarities are seen between the prebuckling displacements of the bending problem and axial compression problem for short cylinders.

  7. Torsion and Antero-Posterior Bending in the In Vivo Human Tibia Loading Regimes during Walking and Running

    PubMed Central

    Yang, Peng-Fei; Sanno, Maximilian; Ganse, Bergita; Koy, Timmo; Brüggemann, Gert-Peter; Müller, Lars Peter; Rittweger, Jörn

    2014-01-01

    Bending, in addition to compression, is recognized to be a common loading pattern in long bones in animals. However, due to the technical difficulty of measuring bone deformation in humans, our current understanding of bone loading patterns in humans is very limited. In the present study, we hypothesized that bending and torsion are important loading regimes in the human tibia. In vivo tibia segment deformation in humans was assessed during walking and running utilizing a novel optical approach. Results suggest that the proximal tibia primarily bends to the posterior (bending angle: 0.15°–1.30°) and medial aspect (bending angle: 0.38°–0.90°) and that it twists externally (torsion angle: 0.67°–1.66°) in relation to the distal tibia during the stance phase of overground walking at a speed between 2.5 and 6.1 km/h. Peak posterior bending and peak torsion occurred during the first and second half of stance phase, respectively. The peak-to-peak antero-posterior (AP) bending angles increased linearly with vertical ground reaction force and speed. Similarly, peak-to-peak torsion angles increased with the vertical free moment in four of the five test subjects and with the speed in three of the test subjects. There was no correlation between peak-to-peak medio-lateral (ML) bending angles and ground reaction force or speed. On the treadmill, peak-to-peak AP bending angles increased with walking and running speed, but peak-to-peak torsion angles and peak-to-peak ML bending angles remained constant during walking. Peak-to-peak AP bending angle during treadmill running was speed-dependent and larger than that observed during walking. In contrast, peak-to-peak tibia torsion angle was smaller during treadmill running than during walking. To conclude, bending and torsion of substantial magnitude were observed in the human tibia during walking and running. A systematic distribution of peak amplitude was found during the first and second parts of the stance phase. PMID

  8. Torsion and antero-posterior bending in the in vivo human tibia loading regimes during walking and running.

    PubMed

    Yang, Peng-Fei; Sanno, Maximilian; Ganse, Bergita; Koy, Timmo; Brüggemann, Gert-Peter; Müller, Lars Peter; Rittweger, Jörn

    2014-01-01

    Bending, in addition to compression, is recognized to be a common loading pattern in long bones in animals. However, due to the technical difficulty of measuring bone deformation in humans, our current understanding of bone loading patterns in humans is very limited. In the present study, we hypothesized that bending and torsion are important loading regimes in the human tibia. In vivo tibia segment deformation in humans was assessed during walking and running utilizing a novel optical approach. Results suggest that the proximal tibia primarily bends to the posterior (bending angle: 0.15°-1.30°) and medial aspect (bending angle: 0.38°-0.90°) and that it twists externally (torsion angle: 0.67°-1.66°) in relation to the distal tibia during the stance phase of overground walking at a speed between 2.5 and 6.1 km/h. Peak posterior bending and peak torsion occurred during the first and second half of stance phase, respectively. The peak-to-peak antero-posterior (AP) bending angles increased linearly with vertical ground reaction force and speed. Similarly, peak-to-peak torsion angles increased with the vertical free moment in four of the five test subjects and with the speed in three of the test subjects. There was no correlation between peak-to-peak medio-lateral (ML) bending angles and ground reaction force or speed. On the treadmill, peak-to-peak AP bending angles increased with walking and running speed, but peak-to-peak torsion angles and peak-to-peak ML bending angles remained constant during walking. Peak-to-peak AP bending angle during treadmill running was speed-dependent and larger than that observed during walking. In contrast, peak-to-peak tibia torsion angle was smaller during treadmill running than during walking. To conclude, bending and torsion of substantial magnitude were observed in the human tibia during walking and running. A systematic distribution of peak amplitude was found during the first and second parts of the stance phase.

  9. Finite element analysis of moment-rotation relationships for human cervical spine.

    PubMed

    Zhang, Qing Hang; Teo, Ee Chon; Ng, Hong Wan; Lee, Vee Sin

    2006-01-01

    A comprehensive, geometrically accurate, nonlinear C0-C7 FE model of head and cervical spine based on the actual geometry of a human cadaver specimen was developed. The motions of each cervical vertebral level under pure moment loading of 1.0 Nm applied incrementally on the skull to simulate the movements of the head and cervical spine under flexion, tension, axial rotation and lateral bending with the inferior surface of the C7 vertebral body fully constrained were analysed. The predicted range of motion (ROM) for each motion segment were computed and compared with published experimental data. The model predicted the nonlinear moment-rotation relationship of human cervical spine. Under the same loading magnitude, the model predicted the largest rotation in extension, followed by flexion and axial rotation, and least ROM in lateral bending. The upper cervical spines are more flexible than the lower cervical levels. The motions of the two uppermost motion segments account for half (or even higher) of the whole cervical spine motion under rotational loadings. The differences in the ROMs among the lower cervical spines (C3-C7) were relatively small. The FE predicted segmental motions effectively reflect the behavior of human cervical spine and were in agreement with the experimental data. The C0-C7 FE model offers potentials for biomedical and injury studies.

  10. Combined tension and bending testing of tapered composite laminates

    NASA Astrophysics Data System (ADS)

    O'Brien, T. Kevin; Murri, Gretchen B.; Hagemeier, Rick; Rogers, Charles

    1994-11-01

    A simple beam element used at Bell Helicopter was incorporated in the Computational Mechanics Testbed (COMET) finite element code at the Langley Research Center (LaRC) to analyze the responce of tappered laminates typical of flexbeams in composite rotor hubs. This beam element incorporated the influence of membrane loads on the flexural response of the tapered laminate configurations modeled and tested in a combined axial tension and bending (ATB) hydraulic load frame designed and built at LaRC. The moments generated from the finite element model were used in a tapered laminated plate theory analysis to estimate axial stresses on the surface of the tapered laminates due to combined bending and tension loads. Surfaces strains were calculated and compared to surface strains measured using strain gages mounted along the laminate length. The strain distributions correlated reasonably well with the analysis. The analysis was then used to examine the surface strain distribution in a non-linear tapered laminate where a similarly good correlation was obtained. Results indicate that simple finite element beam models may be used to identify tapered laminate configurations best suited for simulating the response of a composite flexbeam in a full scale rotor hub.

  11. Passive, achromatic, nearly isochronous bending system

    DOEpatents

    Douglas, David R.; Yunn, Byung C.

    2004-05-18

    A particle beam bending system having a geometry that applies active bending only beyond the chord of the orbit for any momentum component. Using this bending configuration, all momentum components emerge dispersed in position only; all trajectories are parallel by construction. Combining a pair of such bends with reflective symmetry produces a bend cell that is, by construction, achromatic to all orders. By the particular choice of 45.degree. individual bends, a pair of such achromats can be used as the basis of a 180.degree. recirculation arc. Other rational fractions of a full 180.degree. bend serve equally well (e.g., 2 bends/cell.times.90.degree./bend.times.1 cell /arc; 2 bends/cell.times.30.degree./bend.times.3 cells/arc, etc), as do combinations of multiple bending numerologies (e.g., 2 bends/cell.times.22.5.degree./bend.times.2 cells+2 bends/cell.times.45.degree./bend.times.1 cell). By the choice of entry pole face rotation of the first magnet and exit pole face rotation of the second magnet (with a value to be determined from the particular beam stability requirements imposed by the choice of bending angle and beam properties to be used in any particular application), desirable focusing properties can be introduced and beam stability can be insured.

  12. Attainment rate as a surrogate indicator of the intervertebral neutral zone length in lateral bending: an in vitro proof of concept study.

    PubMed

    Breen, Alexander C; Dupac, Mihai; Osborne, Neil

    2015-01-01

    Lumbar segmental instability is often considered to be a cause of chronic low back pain. However, defining its measurement has been largely limited to laboratory studies. These have characterised segmental stability as the intrinsic resistance of spine specimens to initial bending moments by quantifying the dynamic neutral zone. However these measurements have been impossible to obtain in vivo without invasive procedures, preventing the assessment of intervertebral stability in patients. Quantitative fluoroscopy (QF), measures the initial velocity of the attainment of intervertebral rotational motion in patients, which may to some extent be representative of the dynamic neutral zone. This study sought to explore the possible relationship between the dynamic neutral zone and intervertebral rotational attainment rate as measured with (QF) in an in vitro preparation. The purpose was to find out if further work into this concept is worth pursuing. This study used passive recumbent QF in a multi-segmental porcine model. This assessed the intrinsic intervertebral responses to a minimal coronal plane bending moment as measured with a digital force guage. Bending moments about each intervertebral joint were calculated and correlated with the rate at which global motion was attained at each intervertebral segment in the first 10° of global motion where the intervertebral joint was rotating. Unlike previous studies of single segment specimens, a neutral zone was found to exist during lateral bending. The initial attainment rates for left and right lateral flexion were comparable to previously published in vivo values for healthy controls. Substantial and highly significant levels of correlation between initial attainment rate and neutral zone were found for left (Rho = 0.75, P = 0.0002) and combined left-right bending (Rho = 0.72, P = 0.0001) and moderate ones for right alone (Rho = 0.55, P = 0.0012). This study found good correlation between the

  13. Microwave spectrum, structure, dipole moment, and Coriolis coupling of 1,1-difluoroallene

    NASA Technical Reports Server (NTRS)

    Durig, J. R.; Li, Y. S.; Tong, C. C.; Zens, A. P.; Ellis, P. D.

    1974-01-01

    Microwave spectra from 12.4 to 40.0 GHz were recorded for five isotopic species of 1,1-difluoroallene. A-type transitions were observed and R-branch assignments were made for the ground state and two vibrationally excited states. Several structural parameters of the compounds were determined. The dipole moment value obtained from Stark splitting was 2.07 plus or minus 0.03 D. A Coriolis coupling was observed between the two-low-frequency C = C = C bending modes.

  14. Waveguide bends from nanometric silica wires

    NASA Astrophysics Data System (ADS)

    Tong, Limin; Lou, Jingyi; Mazur, Eric

    2005-02-01

    We propose to use bent silica wires with nanometric diameters to guide light as optical waveguide bend. We bend silica wires with scanning tunneling microscope probes under an optical microscope, and wire bends with bending radius smaller than 5 μm are obtained. Light from a He-Ne laser is launched into and guided through the wire bends, measured bending loss of a single bend is on the order of 1 dB. Brief introductions to the optical wave guiding and elastic bending properties of silica wires are also provided. Comparing with waveguide bends based on photonic bandgap structures, the waveguide bends from silica nanometric wires show advantages of simple structure, small overall size, easy fabrication and wide useful spectral range, which make them potentially useful in the miniaturization of photonic devices.

  15. Deterministic switching of a magnetoelastic single-domain nano-ellipse using bending

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, Cheng-Yen; Sepulveda, Abdon; Keller, Scott

    2016-03-21

    In this paper, a fully coupled analytical model between elastodynamics with micromagnetics is used to study the switching energies using voltage induced mechanical bending of a magnetoelastic bit. The bit consists of a single domain magnetoelastic nano-ellipse deposited on a thin film piezoelectric thin film (500 nm) attached to a thick substrate (0.5 mm) with patterned electrodes underneath the nano-dot. A voltage applied to the electrodes produces out of plane deformation with bending moments induced in the magnetoelastic bit modifying the magnetic anisotropy. To minimize the energy, two design stages are used. In the first stage, the geometry and bias field (H{submore » b}) of the bit are optimized to minimize the strain energy required to rotate between two stable states. In the second stage, the bit's geometry is fixed, and the electrode position and control mechanism is optimized. The electrical energy input is about 200 (aJ) which is approximately two orders of magnitude lower than spin transfer torque approaches.« less

  16. Back pain is associated with changes in loading pattern throughout forward and backward bending.

    PubMed

    Shum, Gary L K; Crosbie, Jack; Lee, Raymond Y W

    2010-12-01

    Experimental study to determine the kinetics of the lumbar spine (LS) and hips during forward and backward bending. To investigate the effects of back pain, with and without a positive straight leg raise (SLR) sign, on the loading patterns in the LS and hip during forward and backward bending. Forward and backward bending are important components of many functional activities and are part of routine clinical examination. However, there is a little information about the loading patterns during forward and backward bending in people with back pain with or without a positive SLR sign. Twenty asymptomatic participants, 20 back pain participants, and 20 participants with back pain and a positive SLR sign performed 3 continuous cycles of forward and backward bending. Electromagnetic sensors were attached to body segments to measure their kinematics while 2 nonconductive force plates gathered ground reaction force data. A biomechanical model was used to determine the loading pattern in LS and hips. Although the loading on the LS at the end of the range decreased significantly, the loading at the early and middle ranges of forward bending actually increased significantly in people with back pain, especially in those with positive SLR sign. This suggests that resistance to movement is significantly increased in people with back pain during this movement. This study suggested that it is not sufficient to study the spine at the end of range only, but a complete description of the loading patterns throughout the range is required. Although the maximum range of motion of the spine is reduced in people with back pain, there is a significant increase in the moment acting through the range, particularly in those with a positive SLR sign.

  17. Recent developments in bend-insensitive and ultra-bend-insensitive fibers

    NASA Astrophysics Data System (ADS)

    Boivin, David; de Montmorillon, Louis-Anne; Provost, Lionel; Montaigne, Nelly; Gooijer, Frans; Aldea, Eugen; Jensma, Jaap; Sillard, Pierre

    2010-02-01

    Designed to overcome the limitations in case of extreme bending conditions, Bend- and Ultra-Bend-Insensitive Fibers (BIFs and UBIFs) appear as ideal solutions for use in FTTH networks and in components, pigtails or patch-cords for ever demanding applications such as military or sensing. Recently, however, questions have been raised concerning the Multi-Path-Interference (MPI) levels in these fibers. Indeed, they are potentially subject to interferences between the fundamental mode and the higher-order mode that is also bend resistant. This MPI is generated because of discrete discontinuities such as staples, bends and splices/connections that occur on distance scales that become comparable to the laser coherent length. In this paper, we will demonstrate the high MPI tolerance of all-solid single-trench-assisted BIFs and UBIFs. We will present the first comprehensive study combining theoretical and experimental points of view to quantify the impact of fusion splices on coherent MPI. To be complete, results for mechanical splices will also be reported. Finally, we will show how the single-trench- assisted concept combined with the versatile PCVD process allows to tightly control the distributions of fibers characteristics. Such controls are needed to massively produce BIFs and to meet the more stringent specifications of the UBIFs.

  18. Numerical and experimental investigation of the bending response of thin-walled composite cylinders

    NASA Technical Reports Server (NTRS)

    Fuchs, J. P.; Hyer, M. W.; Starnes, J. H., Jr.

    1993-01-01

    A numerical and experimental investigation of the bending behavior of six eight-ply graphite-epoxy circular cylinders is presented. Bending is induced by applying a known end-rotation to each end of the cylinders, analogous to a beam in bending. The cylinders have a nominal radius of 6 inches, a length-to-radius ratio of 2 and 5, and a radius-to-thickness ratio of approximately 160. A (+/- 45/0/90)S quasi-isotropic layup and two orthotropic layups, (+/- 45/0 sub 2)S and (+/- 45/90 sub 2)S, are studied. A geometrically nonlinear special-purpose analysis, based on Donnell's nonlinear shell equations, is developed to study the prebuckling responses and gain insight into the effects of non-ideal boundary conditions and initial geometric imperfections. A geometrically nonlinear finite element analysis is utilized to compare with the prebuckling solutions of the special-purpose analysis and to study the buckling and post buckling responses of both geometrically perfect and imperfect cylinders. The imperfect cylinder geometries are represented by an analytical approximation of the measured shape imperfections. Extensive experimental data are obtained from quasi-static tests of the cylinders using a test fixture specifically designed for the present investigation. A description of the test fixture is included. The experimental data are compared to predictions for both perfect and imperfect cylinder geometries. Prebuckling results are presented in the form of displacement and strain profiles. Buckling end-rotations, moments, and strains are reported, and predicted mode shapes are presented. Observed and predicted moment vs. end-rotation relations, deflection patterns, and strain profiles are illustrated for the post buckling responses. It is found that a geometrically nonlinear boundary layer behavior characterizes the prebuckling responses. The boundary layer behavior is sensitive to laminate orthotropy, cylinder geometry, initial geometric imperfections, applied end

  19. [2](1,3)Adamantano[2](2,7)pyrenophane: A Hydrocarbon with a Large Dipole Moment.

    PubMed

    Kahl, Paul; Wagner, J Philipp; Balestrieri, Ciro; Becker, Jonathan; Hausmann, Heike; Bodwell, Graham J; Schreiner, Peter R

    2016-08-01

    The fusion of the sp(3) -hybridized parent diamondoid adamantane with the sp(2) -hybridized pyrene results in a hybrid structure with a very large dipole moment which arises from bending the pyrene moiety. Presented herein is the synthesis, study of the electronic and optical properties, as well as the dynamic behavior of this new hydrocarbon. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Delocalization and stretch-bend mixing of the HOH bend in liquid water

    NASA Astrophysics Data System (ADS)

    Carpenter, William B.; Fournier, Joseph A.; Biswas, Rajib; Voth, Gregory A.; Tokmakoff, Andrei

    2017-08-01

    Liquid water's rich sub-picosecond vibrational dynamics arise from the interplay of different high- and low-frequency modes evolving in a strong yet fluctuating hydrogen bond network. Recent studies of the OH stretching excitations of H2O indicate that they are delocalized over several molecules, raising questions about whether the bending vibrations are similarly delocalized. In this paper, we take advantage of an improved 50 fs time-resolution and broadband infrared (IR) spectroscopy to interrogate the 2D IR lineshape and spectral dynamics of the HOH bending vibration of liquid H2O. Indications of strong bend-stretch coupling are observed in early time 2D IR spectra through a broad excited state absorption that extends from 1500 cm-1 to beyond 1900 cm-1, which corresponds to transitions from the bend to the bend overtone and OH stretching band between 3150 and 3550 cm-1. Pump-probe measurements reveal a fast 180 fs vibrational relaxation time, which results in a hot-ground state spectrum that is the same as observed for water IR excitation at any other frequency. The fastest dynamical time scale is 80 fs for the polarization anisotropy decay, providing evidence for the delocalized or excitonic character of the bend. Normal mode analysis conducted on water clusters extracted from molecular dynamics simulations corroborate significant stretch-bend mixing and indicate delocalization of δHOH on 2-7 water molecules.

  1. Force-moment line element method for flexible slender bodies in Stokes flow.

    PubMed

    Jiang, H; Yang, B

    2013-09-01

    The hydrodynamics of flexible slender bodies in Stokes flow is studied by taking into account the fluid-structure interaction through both forces and coupled moments. The fluid subjected to line sources of forces and moments is described by using integral equations. Meanwhile, the flexible slender body is modeled using finite beam elements. The two sides are linked through interfacial continuity conditions. Upon discretization, it results in a higher-order line element method for efficient and accurate solution of slender-body hydrodynamics. Four examples are presented to demonstrate the validity and efficiency of the present method: (a) hydrodynamics of a flexible slender rod subjected to a torque at one end, (b) hydrodynamics of a flexible slender rod subjected to a bending moment at one end, (c) hydrodynamics of a flexible slender rod subjected to a cyclic force, and (d) hydrodynamics of a flexible slender rod with a magnetized head within a rotating magnetic field. Examples (a) and (b) may serve as benchmark solutions and examples (c) and (d) show how planar and spiral waves can be excited in a slender body.

  2. An Investigation of a Vertical Test Method for Large Deformation Bending of High Strain Composite Laminates

    NASA Astrophysics Data System (ADS)

    Herrmann, Kelsey M.

    Research to date indicates that traditional composite material failure analysis methods are not appropriate for thin laminates in flexure. Thin composite structures subjected to large bending deformations often attain significantly higher strain-to-failure than previously anticipated tensile and compression coupon test data and linear material model assumption predict. At NASA Langley Research Center, a new bend test method is being developed for High Strain Composite (HSC) structures. This method provides an adequate approximation of a pure moment, large deformation bend test for thin-ply, high strain composites to analyze the large strain flexure response of the laminates. The objective of this research was to further develop this new test method to measure the true bending stiffness and strain-to-failure of high strain composite materials. Of primary importance is the ability to characterize composite laminates that are of interest for current NASA deployable structures in both materials and layups. Two separate testing campaigns were performed for the development of the testing procedure. Initially six laminates were bend tested in three different fiber orientations. These laminates were some combination of unidirectional intermediate modulus (IM) carbon, high tenacity (HT) carbon plain weave, and astroquartz plain weave composite materials. The second test campaign was performed as a more detailed look into the simplest composite laminates at thicknesses that better represented deployable boom structures. The second campaign tested three basic, thinner laminates, again in three different fiber orientations. All testing was monotonic loading to failure. The thickness of the laminates tested ranged from 0.166mm (campaign 2) to 0.45mm (campaign 1). The measured strains at failure for the unidirectional material were approximately 2.1% and 1.4% at the compression and tension sides, respectively, failing as fiber tensile fracture. Both of these values differ from

  3. A preliminary study of bending stiffness alteration in shape changing nitinol plates for fracture fixation.

    PubMed

    Olender, Gavin; Pfeifer, Ronny; Müller, Christian W; Gösling, Thomas; Barcikowski, Stephan; Hurschler, Christof

    2011-05-01

    Nitinol is a promising biomaterial based on its remarkable shape changing capacity, biocompatibility, and resilient mechanical properties. Until now, very limited applications have been tested for the use of Nitinol plates for fracture fixation in orthopaedics. Newly designed fracture-fixation plates are tested by four-point bending to examine a change in equivalent bending stiffness before and after shape transformation. The goal of stiffness alterable bone plates is to optimize the healing process during osteosynthesis in situ that is customized in time of onset, percent change as well as being performed non-invasively for the patient. The equivalent bending stiffness in plates of varying thicknesses changed before and after shape transformation in the range of 24-73% (p values <0.05 for all tests). Tests on a Nitinol plate of 3.0 mm increased in stiffness from 0.81 to 0.98 Nm² (corresponding standard deviation 0.08 and 0.05) and shared a good correlation to results from numerical calculation. The stiffness of the tested fracture-fixation plates can be altered in a consistent matter that would be predicted by determining the change of the cross-sectional area moment of inertia.

  4. Assessment of spinal flexibility in adolescent idiopathic scoliosis: suspension versus side-bending radiography.

    PubMed

    Lamarre, Marie-Eve; Parent, Stefan; Labelle, Hubert; Aubin, Carl-Eric; Joncas, Julie; Cabral, Anne; Petit, Yvan

    2009-03-15

    Prospective evaluation of a new suspension test to determine curve flexibility in adolescent idiopathic scoliosis (AIS) in comparison with erect side-bending. To verify whether the suspension is a better method than side-bending to estimate curve reducibility and to assess spine flexibility. Spinal flexibility is a decisive biomechanical parameter for the planning of AIS surgery. Side-bending is often referred as the gold standard, but it has a low reproducibility and there is no agreement amongst surgeons about the most advantageous method to use. Even more, every technique evaluates reducibility instead of flexibility since the forces involved in the change in shape of the spine are not considered. Eighteen patients scheduled for AIS surgery were studied. Preoperative radiological evaluation consisted of 4 radiographs: standing posteroanterior, left and right erect side-bending, and suspension. The side-bending and the suspension tests were compared on the basis of the apical vertebrae derotation and the scoliosis curve reduction. Frontal and axial flexibility indices, expressed as the ratio between the moment induced by the body weight and the reduction, were calculated from the suspension data. The average scoliosis curve reduction and apical vertebra derotation were 21 degrees (37%) and 3 degrees (12%), respectively for erect side-bending and 26 degrees (39%) and 7 degrees (28%), respectively for suspension. The erect side-bending test generated a larger curve reduction (P = 0.05) when considering the moderate curves only and the suspension test (P = 0.02) when considering the severe curves. The suspension test produced a larger axial derotation (P = 0.007) when considering all the curves. The average traction force during suspension was 306 N (187 N-377 N). The average estimation for the frontal flexibility index was 1.64 degrees/Nm (0.84-2.82) and 0.51 degrees/Nm (0.01-1.39) for the axial flexibility index. Results of this study demonstrate the feasibility

  5. Bend losses in rectangular culverts.

    DOT National Transportation Integrated Search

    2008-09-01

    This study investigated bend losses for open channel flow in rectangular channels or culverts. Laboratory experiments were performed for sub-critical flow in rectangular channels with abrupt bends. Bend angles of approximately 30, 45, 60, 75 and 90 d...

  6. Bending the law: tidal bending and its effects on ice viscosity and flow

    NASA Astrophysics Data System (ADS)

    Rosier, S.; Gudmundsson, G. H.

    2017-12-01

    Many ice shelves are subject to strong ocean tides and, in order to accommodate this vertical motion, the ice must bend within the grounding zone. This tidal bending generates large stresses within the ice, changing its effective viscosity. For a confined ice shelf, this is particularly relevant because the tidal bending stresses occur along the sidewalls, which play an important role in the overall flow regime of the ice shelf. Hence, tidal bending stresses will affect both the mean and time-varying components of ice shelf flow. GPS measurements reveal strong variations in horizontal ice shelf velocities at a variety of tidal frequencies. We show, using full-Stokes viscoelastic modelling, that inclusion of tidal bending within the model accounts for much of the observed tidal modulation of horizontal ice shelf flow. Furthermore, our model shows that in the absence of a vertical tidal forcing, the mean flow of the ice shelf is reduced considerably.

  7. Bending stiffness of catheters and guide wires.

    PubMed

    Wünsche, P; Werner, C; Bloss, P

    2002-01-01

    An important property of catheters and guide wires to assess their pushability behavior is their bending stiffness. To measure bending stiffness, a new bending module with a new clamping device was developed. This module can easily be mounted in commercially available tensile testing equipment, where bending force and deflection due to the bending force can be measured. To achieve high accuracy for the bending stiffness, the bending distance has to be measured with even higher accuracy by using a laser-scan micrometer. Measurement results of angiographic catheters and guide wires were presented and discussed. The bending stiffness shows a significant dependence on the angle of the test specimen's rotation around its length axis.

  8. Steam-bending properties of southern pine

    Treesearch

    Truett J. Lemoine; Peter Koch

    1971-01-01

    Southern pine wood can be successfully steam-bent if the bending jig incorporates a flexible metal bending strap together with a mechanism to apply a uniform end compression load during the bending operation. With clear, 1/2- and 1-inch-thick southern pine at 17-percent moisture content, highest bending rating where obtained with fast-grown, vertical-grain, low-density...

  9. Prediction of moment-rotation characteristic of top- and seat-angle bolted connection incorporating prying action

    NASA Astrophysics Data System (ADS)

    Ahmed, Ali

    2017-03-01

    Finite element (FE) analyses were performed to explore the prying influence on moment-rotation behaviour and to locate yielding zones of top- and seat-angle connections in author's past research studies. The results of those FE analyses with experimental failure strategies of the connections were used to develop failure mechanisms of top- and seat-angle connections in the present study. Then a formulation was developed based on three simple failure mechanisms considering bending and shear deformations, effects of prying action on the top angle and stiffness of the tension bolts to estimate rationally the ultimate moment M u of the connection, which is a vital parameter of the proposed four-parameter power model. Applicability of the proposed formulation is assessed by comparing moment-rotation ( M- θ r ) curves and ultimate moment capacities with those measured by experiments and estimated by FE analyses and three-parameter power model. This study shows that proposed formulation and Kishi-Chen's method both achieved close approximation driving M- θ r curves of all given connections except a few cases of Kishi-Chen model, and M u estimated by the proposed formulation is more rational than that predicted by Kishi-Chen's method.

  10. 49 CFR 195.212 - Bending of pipe.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Bending of pipe. 195.212 Section 195.212... PIPELINE Construction § 195.212 Bending of pipe. (a) Pipe must not have a wrinkle bend. (b) Each field bend must comply with the following: (1) A bend must not impair the serviceability of the pipe. (2) Each...

  11. 49 CFR 192.313 - Bends and elbows.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Bends and elbows. 192.313 Section 192.313... Lines and Mains § 192.313 Bends and elbows. (a) Each field bend in steel pipe, other than a wrinkle bend made in accordance with § 192.315, must comply with the following: (1) A bend must not impair the...

  12. 49 CFR 192.313 - Bends and elbows.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Bends and elbows. 192.313 Section 192.313... Lines and Mains § 192.313 Bends and elbows. (a) Each field bend in steel pipe, other than a wrinkle bend made in accordance with § 192.315, must comply with the following: (1) A bend must not impair the...

  13. 49 CFR 195.212 - Bending of pipe.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Bending of pipe. 195.212 Section 195.212... PIPELINE Construction § 195.212 Bending of pipe. (a) Pipe must not have a wrinkle bend. (b) Each field bend must comply with the following: (1) A bend must not impair the serviceability of the pipe. (2) Each...

  14. Microhole Tubing Bending Report

    DOE Data Explorer

    Oglesby, Ken

    2012-01-01

    A downhole tubing bending study was made and is reported herein. IT contains a report and 2 excel spreadsheets to calculate tubing bending and to estimate contact points of the tubing to the drilled hole wall (creating a new support point).

  15. An Older, Slower Hawaii-Emperor Bend

    NASA Astrophysics Data System (ADS)

    Sharp, W. D.; Clague, D. A.

    2002-12-01

    The Hawaii-Emperor Bend is widely interpreted to indicate a profound change in the direction of Pacific Plate motion at about 43 Ma. This interpretation rests on the assumption that the Hawaiian hotspot has remained fixed; however, the fixity of the Hawaiian hotspot has long been challenged on the basis of plate-circuit reconstructions and considerations of mantle dynamics. Moreover, paleomagnetists (e.g., Tarduno and Cottrell, 1997) have suggested that prior to formation of the Bend the Hawaiian hotspot moved southward relative to Earth's spin axis at cm-per-year rates--that is, the Bend may primarily record slowing of the hotspot's own motion. If so, the rate of volcanic migration along the chain--which must be the vector sum of hotspot and Pacific Plate motions--should slow at the Bend. Published interpretations of Hawaii-Emperor seamount ages portray a uniform volcanic migration rate of about 8 cm per year through the Bend; however, many of the ages underlying these interpretations are whole-rock K-Ar and Ar-Ar total fusion ages of uncertain reliability. We report 15 new Ar-Ar plateau ages of milligram quantities of selected feldspars and hornblendes from 6 seamounts that bracket the Bend, extending from 1350 km north of the Bend to 225 km east of the Bend. The dated rocks are post-shield, transitional to alkalic basalts and trachytes that--by analogy with Quaternary Hawaiian volcanoes--erupted between 1 and 2 m.y. after passage of the seamount over the leading edge of the hotspot. Accordingly, north of the Bend, from Suiko seamount (age = 61.3 +/-0.5 Ma, 2σ ) to Koko seamount (50.6 +/-0.2 Ma), volcanism apparently migrated at about 10 cm per year during formation of the southern Emperor Chain. Through the Bend, from Koko seamount via Kimmei (47.3 +/-0.4 Ma), Diakakuji (46.7 +/-0.2 Ma), Abbott (41.5 +/-0.3 Ma) and Colahan (38.8 +/-0.2 Ma) seamounts, migration of volcanism slowed to 5.2 +/-0.6 cm per year--qualitatively consistent with hotspot motion that

  16. Improved Method Of Bending Concentric Pipes

    NASA Technical Reports Server (NTRS)

    Schroeder, James E.

    1995-01-01

    Proposed method for bending two concentric pipes simultaneously while maintaining void between them replaces present tedious, messy, and labor-intensive method. Array of rubber tubes inserted in gap between concentric pipes. Tubes then inflated with relatively incompressible liquid to fill gap. Enables bending to be done faster and more cleanly, and amenable to automation of significant portion of bending process on computer numerically controlled (CNC) tube-bending machinery.

  17. Calculations on the forces and moments for an oscillating wing-aileron combination in two-dimensional potential flow at sonic speed

    NASA Technical Reports Server (NTRS)

    Nelson, Herbert C; Berman, Julian H

    1953-01-01

    The linearized theory for compressible unsteady flow is used, as suggested in recent contributions to the subject, to obtain the velocity potential and the lift and moment for a thin harmonically oscillating, two-dimensional wing-aileron combination moving at sonic speed. The velocity potential is derived by considering the sonic case as the limit of the linearized supersonic theory. From the velocity potential explicit expressions for the lift and moment are developed for vertical translation and pitching of the wing and rotation of the aileron. The sonic results are compared and found to be consistent with previously obtained subsonic and supersonic results. Several figures are presented showing the variation of lift and moment with reduced frequency and Mach number and the influence of Mach number on some cases of bending-torsion flutter.

  18. Torsion and bending properties of shape memory and superelastic nickel-titanium rotary instruments.

    PubMed

    Ninan, Elizabeth; Berzins, David W

    2013-01-01

    Recently introduced into the market are shape memory nickel-titanium (NiTi) rotary files. The objective of this study was to investigate the torsion and bending properties of shape memory files (CM Wire, HyFlex CM, and Phoenix Flex) and compare them with conventional (ProFile ISO and K3) and M-Wire (GT Series X and ProFile Vortex) NiTi files. Sizes 20, 30, and 40 (n = 12/size/taper) of 0.02 taper CM Wire, Phoenix Flex, K3, and ProFile ISO and 0.04 taper HyFlex CM, ProFile ISO, GT Series X, and Vortex were tested in torsion and bending per ISO 3630-1 guidelines by using a torsiometer. All data were statistically analyzed by analysis of variance and the Tukey-Kramer test (P = .05) to determine any significant differences between the files. Significant interactions were present among factors of size and file. Variability in maximum torque values was noted among the shape memory files brands, sometimes exhibiting the greatest or least torque depending on brand, size, and taper. In general, the shape memory files showed a high angle of rotation before fracture but were not statistically different from some of the other files. However, the shape memory files were more flexible, as evidenced by significantly lower bending moments (P < .008). Shape memory files show greater flexibility compared with several other NiTi rotary file brands. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  19. Results of an investigation of Reynolds effects on integrated vehicle elevon hinge moments and wing panel loads obtained with 0.010 scale model 72 OTS in the Rockwell trisonic wind tunnel (IA141)

    NASA Technical Reports Server (NTRS)

    Mennell, R. C.

    1976-01-01

    Wind tunnel investigations were conducted on an 0.010-scale representation of the VL70-000140C Integrated Space Shuttle Launch Vehicle. The primary test objective was to obtain Reynolds number effects on orbiter elevon hinge moments and wing bending/torsional moments. Launch vehicle aerodynamic force data were also recorded. The elevon hinge moments, wing bending/torsional moments, and vehicle force data were recorded over an angle of attack range of -6 deg to +6 deg, an angle of sideslip range of -6 deg to +6 deg, at Mach numbers of 0.6, 0.975, 1.05 and 1.25. The Reynolds number was varied from a minimum of 4.5 million/foot to a maximum of 11.5 million/foot. The complete integrated configuration was tested with the orbiter elevons set at 0 deg and deflected to 9 deg on the outboard elevon and 10 deg on the inboard elevon. Testing was conducted in the TWT 19.7% porous transonic test section with the model sting mounted through the orbiter base. All aerodynamic force data were obtained from internal strain gage balance located in the orbiter.

  20. 78 FR 77724 - PPL Bell Bend, LLC; Bell Bend Nuclear Power Plant; Exemption From the Requirement To Submit an...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-24

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 52-039; NRC-2008-0603] PPL Bell Bend, LLC; Bell Bend... October 18, 2013 request from PPL Bell Bend, LLC (PPL). PPL requested an exemption from certain regulatory... Bend, LLC (PPL) submitted to the U.S. Nuclear Regulatory Commission (NRC) a Combined License (COL...

  1. Meshless Local Petrov-Galerkin Method for Bending Problems

    NASA Technical Reports Server (NTRS)

    Phillips, Dawn R.; Raju, Ivatury S.

    2002-01-01

    Recent literature shows extensive research work on meshless or element-free methods as alternatives to the versatile Finite Element Method. One such meshless method is the Meshless Local Petrov-Galerkin (MLPG) method. In this report, the method is developed for bending of beams - C1 problems. A generalized moving least squares (GMLS) interpolation is used to construct the trial functions, and spline and power weight functions are used as the test functions. The method is applied to problems for which exact solutions are available to evaluate its effectiveness. The accuracy of the method is demonstrated for problems with load discontinuities and continuous beam problems. A Petrov-Galerkin implementation of the method is shown to greatly reduce computational time and effort and is thus preferable over the previously developed Galerkin approach. The MLPG method for beam problems yields very accurate deflections and slopes and continuous moment and shear forces without the need for elaborate post-processing techniques.

  2. Bend Faulting at the Edge of a Flat Slab: The 2017 Mw7.1 Puebla-Morelos, Mexico Earthquake

    NASA Astrophysics Data System (ADS)

    Melgar, Diego; Pérez-Campos, Xyoli; Ramirez-Guzman, Leonardo; Spica, Zack; Espíndola, Victor Hugo; Hammond, William C.; Cabral-Cano, Enrique

    2018-03-01

    We present results of a slip model from joint inversion of strong motion and static Global Positioning System data for the Mw7.1 Puebla-Morelos earthquake. We find that the earthquake nucleates at the bottom of the oceanic crust or within the oceanic mantle with most of the moment release occurring within the oceanic mantle. Given its location at the edge of the flat slab, the earthquake is likely the result of bending stresses occurring at the transition from flat slab subduction to steeply dipping subduction. The event strikes obliquely to the slab, we find a good agreement between the seafloor fabric offshore the source region and the strike of the earthquake. We argue that the event likely reactivated a fault first created during seafloor formation. We hypothesize that large bending-related events at the edge of the flat slab are more likely in areas of low misalignment between the seafloor fabric and the slab strike where reactivation of preexisting structures is favored. This hypothesis predicts decreased likelihood of bending-related events northwest of the 2017 source region but also suggests that they should be more likely southeast of the 2017 source region.

  3. Flexible bent rod model with a saturating induced dipole moment to study the electric linear dichroism of DNA fragments

    NASA Astrophysics Data System (ADS)

    Bertolotto, Jorge A.; Umazano, Juan P.

    2016-06-01

    In the present work we make a theoretical study of the steady state electric linear dichroism of DNA fragments in aqueous solution. The here developed theoretical approach considers a flexible bent rod model with a saturating induced dipole moment. The electric polarizability tensor of bent DNA fragments is calculated considering a phenomenological model which theoretical and experimental backgroung is presented here. The model has into account the electric polarizability longitudinal and transversal to the macroion. Molecular flexibility is described using an elastic potential. We consider DNA fragments originally bent with bending fluctuations around an average bending angle. The induced dipole moment is supposed constant once the electric field strength grows up at critical value. To calculate the reduced electric linear dichroism we determine the optical factor considering the basis of the bent DNA perpendicular to the molecular axis. The orientational distribution function has into account the anisotropic electric properties and the molecule flexibility. We applied the present theoretical background to fit electric dichroism experimental data of DNA fragments reported in the bibliography in a wide range of molecular weight and electric field. From these fits, values of DNA physical properties are estimated. We compare and discuss the results here obtained with the theoretical and experimental data presented by other authors. The original contributions of this work are: the inclusion of the transversal electric polarizability saturating with the electric field, the description of the electric properties with an electric polarizability tensor dependant on the bending angle and the use of an arc model originally bent.

  4. 78 FR 4465 - PPL Bell Bend, LLC; Combined License Application for Bell Bend Nuclear Power Plant; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-22

    ... License Application for Bell Bend Nuclear Power Plant; Exemption 1.0 Background PPL Bell Bend, LLC... Regulations (10 CFR), Subpart C of Part 52, ``Licenses, Certifications, and Approvals for Nuclear Power Plants.'' This reactor is to be identified as Bell Bend Nuclear Power Plant (BBNPP), in Salem County...

  5. 76 FR 81992 - PPL Bell Bend, LLC; Combined License Application for Bell Bend Nuclear Power Plant; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-29

    ... License Application for Bell Bend Nuclear Power Plant; Exemption 1.0 Background PPL Bell Bend, LLC... for Nuclear Power Plants.'' This reactor is to be identified as Bell Bend Nuclear Power Plant (BBNPP... based upon the U.S. EPR reference COL (RCOL) application for UniStar's Calvert Cliffs Nuclear Power...

  6. Discovering Gee's Bend Quilts

    ERIC Educational Resources Information Center

    Johnson, Ann

    2008-01-01

    Gee's Bend is a small community near Selma, Alabama where cotton plantations filled the land before the Civil War. After the war, the freed slaves of the plantations worked as tenant farmers and founded an African-American community. In 2002, the women of this community brought international attention and acclaim to Gee's Bend through the art of…

  7. Nonlinear bending models for beams and plates

    PubMed Central

    Antipov, Y. A.

    2014-01-01

    A new nonlinear model for large deflections of a beam is proposed. It comprises the Euler–Bernoulli boundary value problem for the deflection and a nonlinear integral condition. When bending does not alter the beam length, this condition guarantees that the deflected beam has the original length and fixes the horizontal displacement of the free end. The numerical results are in good agreement with the ones provided by the elastica model. Dynamic and two-dimensional generalizations of this nonlinear one-dimensional static model are also discussed. The model problem for an inextensible rectangular Kirchhoff plate, when one side is clamped, the opposite one is subjected to a shear force, and the others are free of moments and forces, is reduced to a singular integral equation with two fixed singularities. The singularities of the unknown function are examined, and a series-form solution is derived by the collocation method in terms of the associated Jacobi polynomials. The procedure requires solving an infinite system of linear algebraic equations for the expansion coefficients subject to the inextensibility condition. PMID:25294960

  8. A transparent bending-insensitive pressure sensor

    NASA Astrophysics Data System (ADS)

    Lee, Sungwon; Reuveny, Amir; Reeder, Jonathan; Lee, Sunghoon; Jin, Hanbit; Liu, Qihan; Yokota, Tomoyuki; Sekitani, Tsuyoshi; Isoyama, Takashi; Abe, Yusuke; Suo, Zhigang; Someya, Takao

    2016-05-01

    Measuring small normal pressures is essential to accurately evaluate external stimuli in curvilinear and dynamic surfaces such as natural tissues. Usually, sensitive and spatially accurate pressure sensors are achieved through conformal contact with the surface; however, this also makes them sensitive to mechanical deformation (bending). Indeed, when a soft object is pressed by another soft object, the normal pressure cannot be measured independently from the mechanical stress. Here, we show a pressure sensor that measures only the normal pressure, even under extreme bending conditions. To reduce the bending sensitivity, we use composite nanofibres of carbon nanotubes and graphene. Our simulations show that these fibres change their relative alignment to accommodate bending deformation, thus reducing the strain in individual fibres. Pressure sensitivity is maintained down to a bending radius of 80 μm. To test the suitability of our sensor for soft robotics and medical applications, we fabricated an integrated sensor matrix that is only 2 μm thick. We show real-time (response time of ∼20 ms), large-area, normal pressure monitoring under different, complex bending conditions.

  9. Influence of mass moment of inertia on normal modes of preloaded solar array mast

    NASA Technical Reports Server (NTRS)

    Armand, Sasan C.; Lin, Paul

    1992-01-01

    Earth-orbiting spacecraft often contain solar arrays or antennas supported by a preloaded mast. Because of weight and cost considerations, the structures supporting the spacecraft appendages are extremely light and flexible; therefore, it is vital to investigate the influence of all physical and structural parameters that may influence the dynamic behavior of the overall structure. The study primarily focuses on the mast for the space station solar arrays, but the formulations and the techniques developed in this study apply to any large and flexible mast in zero gravity. Furthermore, to determine the influence on the circular frequencies, the mass moment of inertia of the mast was incorporated into the governing equation of motion for bending. A finite element technique (MSC/NASTRAN) was used to verify the formulation. Results indicate that when the mast is relatively flexible and long, the mass moment inertia influences the circular frequencies.

  10. 46 CFR 56.80-5 - Bending.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Bending. 56.80-5 Section 56.80-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PIPING SYSTEMS AND APPURTENANCES Bending and Forming § 56.80-5 Bending. Pipe may be bent by any hot or cold method and to any radius which will result...

  11. 46 CFR 56.80-5 - Bending.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Bending. 56.80-5 Section 56.80-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PIPING SYSTEMS AND APPURTENANCES Bending and Forming § 56.80-5 Bending. Pipe may be bent by any hot or cold method and to any radius which will result...

  12. Mechanical characteristics of box-section beam made of sliced-laminated Asian bamboo (Dendrocalamus asper) in bending failure mode under transversal load

    NASA Astrophysics Data System (ADS)

    Karyadi, Susanto, Prijono Bagus

    2017-09-01

    A box-section beam has a larger moment of inertia than solid beam for the same amount of materials, so, it is expected the box-section beams has larger strength and stiffness compared to the solid beam. In other hand, research about the box-section beams, especially from bamboo lamination material, is limited. For the reason the research was done. The research aimed at finding mechanical characteristic of box-section beams made of sliced-laminated Asian bamboo in bending failure mode under transversal load. The results showed that the strength and stiffness of the box-section beams increase according to the increasing moment of inertia. The strength of the box-section beam increase up to ratio between the section height (h) and section width (b) reach 1.50. Larger than the ratio the strength of the beam will decrease. The average of bending stress at the time of beam collapse reached 106.5MPa and the average of flexural of elastic modulus reached 14.504MPa. The serviceability load reached 8.64% of the maximum load. Based on the results it can be concluded that the box-section beams made of sliced-laminated Asian bamboo more efficient in receiving the transversal load compared to the solid beam for the same amount of materials.

  13. An Investigation into the Application of Generalized Differential Quadrature Method to Bending Analysis of Composite Sandwich Plates

    NASA Astrophysics Data System (ADS)

    Ghassemi, Aazam; Yazdani, Mostafa; Hedayati, Mohamad

    2017-12-01

    In this work, based on the First Order Shear Deformation Theory (FSDT), an attempt is made to explore the applicability and accuracy of the Generalized Differential Quadrature Method (GDQM) for bending analysis of composite sandwich plates under static loading. Comparative studies of the bending behavior of composite sandwich plates are made between two types of boundary conditions for different cases. The effects of fiber orientation, ratio of thickness to length of the plate, the ratio of thickness of core to thickness of the face sheet are studied on the transverse displacement and moment resultants. As shown in this study, the role of the core thickness in deformation of these plates can be reversed by the stiffness of the core in comparison with sheets. The obtained graphs give very good results due to optimum design of sandwich plates. In Comparison with existing solutions, fast convergent rates and high accuracy results can be achieved by the GDQ method.

  14. Bending fracture in carbon nanotubes.

    PubMed

    Kuo, Wen-Shyong; Lu, Hsin-Fang

    2008-12-10

    A novel approach was adopted to incur bending fracture in carbon nanotubes (CNTs). Expanded graphite (EG) was made by intercalating and exfoliating natural graphite flakes. The EG was deposited with nickel particles, from which CNTs were grown by chemical vapor deposition. The CNTs were tip-grown, and their roots were fixed on the EG flakes. The EG flakes were compressed, and many CNTs on the surface were fragmented due to the compression-induced bending. Two major modes of the bending fracture were observed: cone-shaped and shear-cut. High-resolution scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to examine the crack growth within the graphene layers. The bending fracture is characterized by two-region crack growth. An opening crack first appears around the outer-tube due to the bending-induced tensile stress. The crack then branches to grow along an inclined direction toward the inner-tube due to the presence of the shear stress in between graphene layers. An inner-tube pullout with inclined side surface is formed. The onset and development of the crack in these two regions are discussed.

  15. The visual discrimination of bending.

    PubMed

    Norman, J Farley; Wiesemann, Elizabeth Y; Norman, Hideko F; Taylor, M Jett; Craft, Warren D

    2007-01-01

    The sensitivity of observers to nonrigid bending was evaluated in two experiments. In both experiments, observers were required to discriminate on any given trial which of two bending rods was more elastic. In experiment 1, both rods bent within the same oriented plane, and bent either in a frontoparallel plane or bent in depth. In experiment 2, the two rods within any given trial bent in different, randomly chosen orientations in depth. The results of both experiments revealed that human observers are sensitive to, and can reliably detect, relatively small differences in bending (the average Weber fraction across experiments 1 and 2 was 9.0%). The performance of the human observers was compared to that of models that based their elasticity judgments upon either static projected curvature or mean and maximal projected speed. Despite the fact that all of the observers reported compelling 3-D perceptions of bending in depth, their judgments were both qualitatively and quantitatively consistent with the performance of the models. This similarity suggests that relatively straightforward information about the elasticity of simple bending objects is available in projected retinal images.

  16. Thermal bending of liquid sheets and jets

    NASA Astrophysics Data System (ADS)

    Brenner, Michael P.; Paruchuri, Srinivas

    2003-11-01

    We present an analytical model for the bending of liquid jets and sheets from temperature gradients, as recently observed by Chwalek et al. [Phys. Fluids 14, L37 (2002)]. The bending arises from a local couple caused by Marangoni forces. The dependence of the bending angle on experimental parameters is presented, in qualitative agreement with reported experiments. The methodology gives a simple framework for understanding the mechanisms for jet and sheet bending.

  17. Moment-to-Moment Emotions during Reading

    ERIC Educational Resources Information Center

    Graesser, Arthur C.; D'Mello, Sidney

    2012-01-01

    Moment-to-moment emotions are affective states that dynamically change during reading and potentially influence comprehension. Researchers have recently identified these emotions and the emotion trajectories in reading, tutoring, and problem solving. The primary learning-centered emotions are boredom, frustration, confusion, flow (engagement),…

  18. Wire and Cable Cold Bending Test

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony

    2010-01-01

    One of the factors in assessing the applicability of wire or cable on the lunar surface is its flexibility under extreme cold conditions. Existing wire specifications did not address their mechanical behavior under cold, cryogenic temperature conditions. Therefore tests were performed to provide this information. To assess this characteristic 35 different insulated wire and cable pieces were cold soaked in liquid nitrogen. The segments were then subjected to bending and the force was recorded. Any failure of the insulation or jacketing was also documented for each sample tested. The bending force tests were performed at room temperature to provide a comparison to the change in force needed to bend the samples due to the low temperature conditions. The results from the bending tests were plotted and showed how various types of insulated wire and cable responded to bending under cold conditions. These results were then used to estimate the torque needed to unroll the wire under these low temperature conditions.

  19. Bending wavefunctions for linear molecules

    NASA Astrophysics Data System (ADS)

    Hirano, Tsuneo; Nagashima, Umpei; Jensen, Per

    2018-01-01

    The bending motion of a linear triatomic molecule has two unique characteristics: the bending mode is doubly degenerate and only positive values of the bending angle, expressed by the bond angle supplement ρ bar , can be observed. The double degeneracy requires the wavefunction to be described as a two-dimensional oscillator. In the present work, we first review the conventional expressions based on two, symmetrically equivalent normal coordinates. Then we discuss an alternative expression for the bending wavefunction in terms of two geometrical coordinates, the bond angle supplement ρ bar (= π - τ ⩾ 0 , where τ is the bond angle) and the rotation angle χ (0 ⩽ χ < 2 π) describing rotation of the molecule around the molecular axis. In this formalism, defined for the (ρ bar , χ) polar-coordinate space with volume element ρ bar d ρ bar dχ , the one-dimensional wavefunction resulted through re-normalization for χ has zero amplitude at ρ bar = 0 , and the ro-vibrational average of the bending angle, i.e., the expectation value 〈 ρ bar 〉 , attains a non-zero, positive value for any ro-vibrational state including the vibrational ground state. This conclusion appears to cause some controversy since much conventional spectroscopic wisdom insists on 〈 ρ bar 〉 having the value zero.

  20. Analysis of fracture in sheet bending and roll forming

    NASA Astrophysics Data System (ADS)

    Deole, Aditya D.; Barnett, Matthew; Weiss, Matthias

    2018-05-01

    The bending limit or minimum bending radius of sheet metal is conventionally measured in a wiping (swing arm) or in a vee bend test and reported as the minimum radius of the tool over which the sheet can be bent without fracture. Frequently the material kinks while bending so that the actual inner bend radius of the sheet metal is smaller than the tool radius giving rise to inaccuracy in these methods. It has been shown in the previous studies that conventional bend test methods may under-estimate formability in bending dominated processes such as roll forming. A new test procedure is proposed here to improve understanding and measurement of fracture in bending and roll forming. In this study, conventional wiping test and vee bend test have been performed on martensitic steel to determine the minimum bend radius. In addition, the vee bend test is performed in an Erichsen sheet metal tester equipped with the GOM Aramis system to enable strain measurement on the outer surface during bending. The strain measurement before the onset of fracture is then used to determine the minimum bend radius. To compare this result with a technological process, a vee channel is roll formed and in-situ strain measurement carried out with the Vialux Autogrid system. The strain distribution at fracture in the roll forming process is compared with that predicted by the conventional bending tests and by the improved process. It is shown that for this forming operation and material, the improved procedure gives a more accurate prediction of fracture.

  1. Four-point bending as a method for quantitatively evaluating spinal arthrodesis in a rat model.

    PubMed

    Robinson, Samuel T; Svet, Mark T; Kanim, Linda A; Metzger, Melodie F

    2015-02-01

    The most common method of evaluating the success (or failure) of rat spinal fusion procedures is manual palpation testing. Whereas manual palpation provides only a subjective binary answer (fused or not fused) regarding the success of a fusion surgery, mechanical testing can provide more quantitative data by assessing variations in strength among treatment groups. We here describe a mechanical testing method to quantitatively assess single-level spinal fusion in a rat model, to improve on the binary and subjective nature of manual palpation as an end point for fusion-related studies. We tested explanted lumbar segments from Sprague-Dawley rat spines after single-level posterolateral fusion procedures at L4-L5. Segments were classified as 'not fused,' 'restricted motion,' or 'fused' by using manual palpation testing. After thorough dissection and potting of the spine, 4-point bending in flexion then was applied to the L4-L5 motion segment, and stiffness was measured as the slope of the moment-displacement curve. Results demonstrated statistically significant differences in stiffness among all groups, which were consistent with preliminary grading according to manual palpation. In addition, the 4-point bending results provided quantitative information regarding the quality of the bony union formed and therefore enabled the comparison of fused specimens. Our results demonstrate that 4-point bending is a simple, reliable, and effective way to describe and compare results among rat spines after fusion surgery.

  2. Permanent bending and alignment of ZnO nanowires.

    PubMed

    Borschel, Christian; Spindler, Susann; Lerose, Damiana; Bochmann, Arne; Christiansen, Silke H; Nietzsche, Sandor; Oertel, Michael; Ronning, Carsten

    2011-05-06

    Ion beams can be used to permanently bend and re-align nanowires after growth. We have irradiated ZnO nanowires with energetic ions, achieving bending and alignment in different directions. Not only the bending of single nanowires is studied in detail, but also the simultaneous alignment of large ensembles of ZnO nanowires. Computer simulations reveal how the bending is initiated by ion beam induced damage. Detailed structural characterization identifies dislocations to relax stresses and make the bending and alignment permanent, even surviving annealing procedures.

  3. L-moments and TL-moments of the generalized lambda distribution

    USGS Publications Warehouse

    Asquith, W.H.

    2007-01-01

    The 4-parameter generalized lambda distribution (GLD) is a flexible distribution capable of mimicking the shapes of many distributions and data samples including those with heavy tails. The method of L-moments and the recently developed method of trimmed L-moments (TL-moments) are attractive techniques for parameter estimation for heavy-tailed distributions for which the L- and TL-moments have been defined. Analytical solutions for the first five L- and TL-moments in terms of GLD parameters are derived. Unfortunately, numerical methods are needed to compute the parameters from the L- or TL-moments. Algorithms are suggested for parameter estimation. Application of the GLD using both L- and TL-moment parameter estimates from example data is demonstrated, and comparison of the L-moment fit of the 4-parameter kappa distribution is made. A small simulation study of the 98th percentile (far-right tail) is conducted for a heavy-tail GLD with high-outlier contamination. The simulations show, with respect to estimation of the 98th-percent quantile, that TL-moments are less biased (more robost) in the presence of high-outlier contamination. However, the robustness comes at the expense of considerably more sampling variability. ?? 2006 Elsevier B.V. All rights reserved.

  4. Local Deplanation Of Double Reinforced Beam Cross Section Under Bending

    NASA Astrophysics Data System (ADS)

    Baltov, Anguel; Yanakieva, Ana

    2015-12-01

    Bending of beams, double reinforced by means of thin composite layers, is considered in the study. Approximate numerical solution is proposed, considering transitional boundary areas, where smooth quadratic transition of the elasticity modulus and deformations take place. Deplanation of the cross section is also accounted for in the areas. Their thickness is found equalizing the total stiffness of the cross section and the layer stiffness. Deplanation of the cross section of the transitional area is determined via the longitudinal deformation in the reinforcing layer, accounting for the equilibrium between the internal and the external moment, generated by the longitudinal stresses in the cross section. A numerical example is given as an illustration demonstrating model's plausibility. The model allows the design and the calculation of recycled concrete beams double reinforced by means of thin layers. The approach is in agreement with modern design of nearly zero energy buildings (NZEB).

  5. Creep relaxation of fuel pin bending and ovalling stresses. [BEND code, OVAL code, MARC-CDC code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, D.P.; Jackson, R.J.

    1981-10-01

    Analytical methods for calculating fuel pin cladding bending and ovalling stresses due to pin bundle-duct mechanical interaction taking into account nonlinear creep are presented. Calculated results are in agreement with finite element results by MARC-CDC program. The methods are used to investigate the effect of creep on the FTR fuel cladding bending and ovalling stresses. It is concluded that the cladding of 316 SS 20 percent CW and reference design has high creep rates in the FTR core region to keep the bending and ovalling stresses to acceptable levels. 6 refs.

  6. 49 CFR 192.315 - Wrinkle bends in steel pipe.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Wrinkle bends in steel pipe. 192.315 Section 192... Transmission Lines and Mains § 192.315 Wrinkle bends in steel pipe. (a) A wrinkle bend may not be made on steel... wrinkle bend on steel pipe must comply with the following: (1) The bend must not have any sharp kinks. (2...

  7. 49 CFR 192.315 - Wrinkle bends in steel pipe.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Wrinkle bends in steel pipe. 192.315 Section 192... Transmission Lines and Mains § 192.315 Wrinkle bends in steel pipe. (a) A wrinkle bend may not be made on steel... wrinkle bend on steel pipe must comply with the following: (1) The bend must not have any sharp kinks. (2...

  8. 49 CFR 192.315 - Wrinkle bends in steel pipe.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Wrinkle bends in steel pipe. 192.315 Section 192... Transmission Lines and Mains § 192.315 Wrinkle bends in steel pipe. (a) A wrinkle bend may not be made on steel... wrinkle bend on steel pipe must comply with the following: (1) The bend must not have any sharp kinks. (2...

  9. 49 CFR 192.315 - Wrinkle bends in steel pipe.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Wrinkle bends in steel pipe. 192.315 Section 192... Transmission Lines and Mains § 192.315 Wrinkle bends in steel pipe. (a) A wrinkle bend may not be made on steel... wrinkle bend on steel pipe must comply with the following: (1) The bend must not have any sharp kinks. (2...

  10. 49 CFR 192.315 - Wrinkle bends in steel pipe.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Wrinkle bends in steel pipe. 192.315 Section 192... Transmission Lines and Mains § 192.315 Wrinkle bends in steel pipe. (a) A wrinkle bend may not be made on steel... wrinkle bend on steel pipe must comply with the following: (1) The bend must not have any sharp kinks. (2...

  11. Flexible DNA bending in HU–DNA cocrystal structures

    PubMed Central

    Swinger, Kerren K.; Lemberg, Kathryn M.; Zhang, Ying; Rice, Phoebe A.

    2003-01-01

    HU and IHF are members of a family of prokaryotic proteins that interact with the DNA minor groove in a sequence-specific (IHF) or non-specific (HU) manner to induce and/or stabilize DNA bending. HU plays architectural roles in replication initiation, transcription regulation and site-specific recombination, and is associated with bacterial nucleoids. Cocrystal structures of Anabaena HU bound to DNA (1P71, 1P78, 1P51) reveal that while underlying proline intercalation and asymmetric charge neutralization mechanisms of DNA bending are similar for IHF and HU, HU stabilizes different DNA bend angles (∼105–140°). The two bend angles within a single HU complex are not coplanar, and the resulting dihedral angle is consistent with negative supercoiling. Comparison of HU–DNA and IHF–DNA structures suggests that sharper bending is correlated with longer DNA binding sites and smaller dihedral angles. An HU-induced bend may be better modeled as a hinge, not a rigid bend. The ability to induce or stabilize varying bend angles is consistent with HU’s role as an architectural cofactor in many different systems that may require differing geometries. PMID:12853489

  12. Informatics Moments

    ERIC Educational Resources Information Center

    Williams, Kate

    2012-01-01

    The informatics moment is the moment when a person seeks help in using some digital technology that is new to him or her. This article examines the informatics moment in people's everyday lives as they sought help at a branch public library. Four types of literacy were involved: basic literacy (reading and writing), computer literacy (use of a…

  13. Assembling Transgender Moments

    ERIC Educational Resources Information Center

    Greteman, Adam J.

    2017-01-01

    In this article, the author seeks to assemble moments--scholarly, popular, and aesthetic--in order to explore the possibilities that emerge as moments collect in education's encounters with the needs, struggles, and possibilities of transgender lives and practices. Assembling moments, the author argues, illustrates the value of "moments"…

  14. Method for uniformly bending conduits

    DOEpatents

    Dekanich, S.J.

    1984-04-27

    The present invention is directed to a method for bending metal tubing through various radii while maintaining uniform cross section of the tubing. The present invention is practical by filling the tubing to a sufficient level with water, freezing the water to ice and bending the ice-filled tubing in a cooled die to the desired radius. The use of the ice as a filler material provides uniform cross-sectional bends of the tubing and upon removal of the ice provides an uncontaminated interior of the tubing which will enable it to be used in its intended application without encountering residual contaminants in the tubing due to the presence of the filler material.

  15. Investigation on bending failure to characterize crashworthiness of 6xxx-series aluminium sheet alloys with bending-tension test procedure

    NASA Astrophysics Data System (ADS)

    Henn, Philipp; Liewald, Mathias; Sindel, Manfred

    2018-05-01

    As lightweight design as well as crash performance are crucial to future car body design, exact material characterisation is important to use materials at their full potential and reach maximum efficiency. Within the scope of this paper, the potential of newly established bending-tension test procedure to characterise material crashworthiness is investigated. In this test setup for the determination of material failure, a buckling-bending test is coupled with a subsequent tensile test. If prior bending load is critical, tensile strength and elongation in the subsequent tensile test are dramatically reduced. The new test procedure therefore offers an applicable definition of failure as the incapacity of energy consumption in subsequent phases of the crash represents failure of a component. In addition to that, the correlation of loading condition with actual crash scenarios (buckling and free bending) is improved compared to three- point bending test. The potential of newly established bending-tension test procedure to characterise material crashworthiness is investigated in this experimental studys on two aluminium sheet alloys. Experimental results are validated with existing ductility characterisation from edge compression test.

  16. Development and modification of a device for three-dimensional measurement of orthodontic force system: The V-bend system re-visited.

    PubMed

    Lai, WeiJen; Midorikawa, Yoshiyuki; Kanno, Zuisei; Takemura, Hiroshi; Suga, Kazuhiro; Soga, Kohei; Ono, Takashi; Uo, Motohiro

    2016-12-01

    We developed a device to evaluate the orthodontic force applied by systems requiring high operability. A life-sized, two-tooth model was designed, and the measurements were performed using a custom-made jointed attachment, referred to as an "action stick", to allow clearance for the oversized six-axis sensors. This tooth-sensor apparatus was accurately calibrated, and the error was limited. Vector analysis and rotating coordinate transformation were required to derive the force and moment at the tooth from the sensor readings. The device was then used to obtain measurements of the force and moment generated by the V-bend system. Our device was effective, providing results that were consistent with those of previous studies. This measurement device can be manufactured with force sensors of any size, and it can also be expanded to models with any number of teeth.

  17. Tuning the Band Bending and Controlling the Surface Reactivity at Polar and Nonpolar Surfaces of ZnO through Phosphonic Acid Binding.

    PubMed

    McNeill, Alexandra R; Hyndman, Adam R; Reeves, Roger J; Downard, Alison J; Allen, Martin W

    2016-11-16

    ZnO is a prime candidate for future use in transparent electronics; however, development of practical materials requires attention to factors including control of its unusual surface band bending and surface reactivity. In this work, we have modified the O-polar (0001̅), Zn-polar (0001), and m-plane (101̅0) surfaces of ZnO with phosphonic acid (PA) derivatives and measured the effect on the surface band bending and surface sensitivity to atmospheric oxygen. Core level and valence band synchrotron X-ray photoemission spectroscopy was used to measure the surface band bending introduced by PA modifiers with substituents of opposite polarity dipole moment: octadecylphosphonic acid (ODPA) and 3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctylphosphonic acid (F 13 OPA). Both PAs act as surface electron donors, increasing the downward band bending and the strength of the two-dimensional surface electron accumulation layer on all of the ZnO surfaces investigated. On the O-polar (0001̅) and m-plane (101̅0) surfaces, the ODPA modifier produced the largest increase in downward band bending relative to the hydroxyl-terminated unmodified surface of 0.55 and 0.35 eV, respectively. On the Zn-polar (0001) face, the F 13 OPA modifier gave the largest increase (by 0.50 eV) producing a total downward band bending of 1.00 eV, representing ∼30% of the ZnO band gap. Ultraviolet (UV) photoinduced surface wettability and photoconductivity measurements demonstrated that the PA modifiers are effective at decreasing the sensitivity of the surface toward atmospheric oxygen. Modification with PA derivatives produced a large increase in the persistence of UV-induced photoconductivity and a large reduction in UV-induced changes in surface wettability.

  18. Bending-Tolerant Anodes for Lithium-Metal Batteries.

    PubMed

    Wang, Aoxuan; Tang, Shan; Kong, Debin; Liu, Shan; Chiou, Kevin; Zhi, Linjie; Huang, Jiaxing; Xia, Yong-Yao; Luo, Jiayan

    2018-01-01

    Bendable energy-storage systems with high energy density are demanded for conformal electronics. Lithium-metal batteries including lithium-sulfur and lithium-oxygen cells have much higher theoretical energy density than lithium-ion batteries. Reckoned as the ideal anode, however, Li has many challenges when directly used, especially its tendency to form dendrite. Under bending conditions, the Li-dendrite growth can be further aggravated due to bending-induced local plastic deformation and Li-filaments pulverization. Here, the Li-metal anodes are made bending tolerant by integrating Li into bendable scaffolds such as reduced graphene oxide (r-GO) films. In the composites, the bending stress is largely dissipated by the scaffolds. The scaffolds have increased available surface for homogeneous Li plating and minimize volume fluctuation of Li electrodes during cycling. Significantly improved cycling performance under bending conditions is achieved. With the bending-tolerant r-GO/Li-metal anode, bendable lithium-sulfur and lithium-oxygen batteries with long cycling stability are realized. A bendable integrated solar cell-battery system charged by light with stable output and a series connected bendable battery pack with higher voltage is also demonstrated. It is anticipated that this bending-tolerant anode can be combined with further electrolytes and cathodes to develop new bendable energy systems. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Design of a mechanism to simulate the quasi-static moment-deflection behaviour of the osteoligamentous structure of the C3-C4 cervical spine segment in the flexion-extension and lateral bending directions.

    PubMed

    Chen, Samuel; Arsenault, Marc; Moglo, Kodjo

    2012-11-01

    The human neck is susceptible to traumatic injuries due to impacts as well as chronic injuries caused by loads such as those attributed to the wearing of heavy headgear. To facilitate the analysis of the loads that cause injuries to the cervical spine, it is possible to replicate the human neck's behaviour with mechanical devices. The goal of this work is to lay the foundation for the eventual development of a novel mechanism used to simulate the behaviour of the cervical spine during laboratory experiments. The research presented herein focuses on the design of a mechanism capable of reproducing the non-linear relationships between moments applied to the C3 vertebra and its corresponding rotations with respect to the C4 vertebra. The geometrical and mechanical properties of the mechanism are optimized based on the ability of the latter to replicate the load-deflection profile of the osteoligamentous structure of the C3-C4 vertebral pair in the flexion-extension and lateral bending directions. The results show that the proposed design concept is capable of faithfully replicating the non-linear behaviour of the motion segment within acceptable tolerances.

  20. 3D hydrophobic moment vectors as a tool to characterize the surface polarity of amphiphilic peptides.

    PubMed

    Reißer, Sabine; Strandberg, Erik; Steinbrecher, Thomas; Ulrich, Anne S

    2014-06-03

    The interaction of membranes with peptides and proteins is largely determined by their amphiphilic character. Hydrophobic moments of helical segments are commonly derived from their two-dimensional helical wheel projections, and the same is true for β-sheets. However, to the best of our knowledge, there exists no method to describe structures in three dimensions or molecules with irregular shape. Here, we define the hydrophobic moment of a molecule as a vector in three dimensions by evaluating the surface distribution of all hydrophilic and lipophilic regions over any given shape. The electrostatic potential on the molecular surface is calculated based on the atomic point charges. The resulting hydrophobic moment vector is specific for the instantaneous conformation, and it takes into account all structural characteristics of the molecule, e.g., partial unfolding, bending, and side-chain torsion angles. Extended all-atom molecular dynamics simulations are then used to calculate the equilibrium hydrophobic moments for two antimicrobial peptides, gramicidin S and PGLa, under different conditions. We show that their effective hydrophobic moment vectors reflect the distribution of polar and nonpolar patches on the molecular surface and the calculated electrostatic surface potential. A comparison of simulations in solution and in lipid membranes shows how the peptides undergo internal conformational rearrangement upon binding to the bilayer surface. A good correlation with solid-state NMR data indicates that the hydrophobic moment vector can be used to predict the membrane binding geometry of peptides. This method is available as a web application on http://www.ibg.kit.edu/HM/. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  1. Discrete microfluidics: Reorganizing droplet arrays at a bend

    NASA Astrophysics Data System (ADS)

    Surenjav, Enkhtuul; Herminghaus, Stephan; Priest, Craig; Seemann, Ralf

    2009-10-01

    Microfluidic manipulation of densely packed droplet arrangements (i.e., gel emulsions) using sharp microchannel bends was studied as a function of bend angle, droplet volume fraction, droplet size, and flow velocity. Emulsion reorganization was found to be specifically dependent on the pathlength that the droplets are forced to travel as they navigate the bend under spatial confinement. We describe how bend-induced droplet displacements might be exploited in complex, droplet-based microfluidics.

  2. Bending properties of a new nickel-titanium alloy with a lower percent by weight of nickel.

    PubMed

    Testarelli, Luca; Plotino, Gianluca; Al-Sudani, Dina; Vincenzi, Valentina; Giansiracusa, Alessio; Grande, Nicola M; Gambarini, Gianluca

    2011-09-01

    The aim of the present study was to evaluate the bending properties of Hyflex instruments, which exhibit a lower percent in weight of nickel (52 Ni %wt) and compare them with other commercially available nickel-titanium (NiTi) rotary instruments. Ten instruments with tip size 25, 0.06 taper of each of the following NiTi rotary instrumentation techniques were selected for the study: Hyflex, EndoSequence, ProFile, Hero, and Flexmasters. All instruments from each group were tested for stiffness by comparing their bending moment when they attained a 45-degree bend. Experimental procedures strictly followed testing methodology described in ISO 3630-1. All data were recorded and subjected to statistical evaluation by using analysis of variance test. Statistical significance was set at P < .05). Statistical analysis of the data revealed that Hyflex files were found to be the most flexible instruments, with a significant difference (P < .05) in comparison with the other instruments. Among the other files, a significant difference has been reported for EndoSequence instruments compared with ProFile, Hero, and FlexMaster (P < .05), whereas no significant differences have been reported among those 3 files (P > .05). Results of the present study have illustrated an increased flexibility of the new NiTi alloy over conventional NiTi alloy, and they highlight the potential of the new manufacturing process. Copyright © 2011 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  3. Electrostatic bending response of a charged helix

    NASA Astrophysics Data System (ADS)

    Zampetaki, A. V.; Stockhofe, J.; Schmelcher, P.

    2018-04-01

    We explore the electrostatic bending response of a chain of charged particles confined on a finite helical filament. We analyze how the energy difference Δ E between the bent and the unbent helical chain scales with the length of the helical segment and the radius of curvature and identify features that are not captured by the standard notion of the bending rigidity, normally used as a measure of bending tendency in the linear response regime. Using Δ E to characterize the bending response of the helical chain we identify two regimes with qualitatively different bending behaviors for the ground state configuration: the regime of small and the regime of large radius-to-pitch ratio, respectively. Within the former regime, Δ E changes smoothly with the variation of the system parameters. Of particular interest are its oscillations with the number of charged particles encountered for commensurate fillings which yield length-dependent oscillations in the preferred bending direction of the helical chain. We show that the origin of these oscillations is the nonuniformity of the charge distribution caused by the long-range character of the Coulomb interactions and the finite length of the helix. In the second regime of large values of the radius-to-pitch ratio, sudden changes in the ground state structure of the charges occur as the system parameters vary, leading to complex and discontinuous variations in the ground state bending response Δ E .

  4. Initial Ares I Bending Filter Design

    NASA Technical Reports Server (NTRS)

    Jang, Jiann-Woei; Bedrossian, Nazareth; Hall, Robert; Norris, H. Lee; Hall, Charles; Jackson, Mark

    2007-01-01

    The Ares-I launch vehicle represents a challenging flex-body structural environment for control system design. Software filtering of the inertial sensor output will be required to ensure control system stability and adequate performance. This paper presents a design methodology employing numerical optimization to develop the Ares-I bending filters. The filter design methodology was based on a numerical constrained optimization approach to maximize stability margins while meeting performance requirements. The resulting bending filter designs achieved stability by adding lag to the first structural frequency and hence phase stabilizing the first Ares-I flex mode. To minimize rigid body performance impacts, a priority was placed via constraints in the optimization algorithm to minimize bandwidth decrease with the addition of the bending filters. The bending filters provided here have been demonstrated to provide a stable first stage control system in both the frequency domain and the MSFC MAVERIC time domain simulation.

  5. Hormonal regulation of gravitropic bending

    NASA Astrophysics Data System (ADS)

    Hu, X.; Cui, D.; Xu, X.; Hu, L.; Cai, W.

    Gravitropic bending is an important subject in the research of plant Recent data support the basics of the Cholodny-Went hypothesis indicating that differential growth in gravitropism is due to redistribution of auxin to the lower sides of gravistimulated roots but little is known regarding the molecular details of such effects So we carried a series of work surround the signals induced by auxin end center We found the endogenous signaling molecules nitric oxide NO and cGMP mediate responses to gravistimulation in primary roots of soybean Glycine max Horizontal orientation of soybean roots caused the accumulation of both NO and cGMP in the primary root tip Fluorescence confocal microcopy revealed that the accumulation of NO was asymmetric with NO concentrating in the lower side of the root Auxin induced NO accumulation in root protoplasts and asymmetric NO accumulation in root tips Gravistimulation NO and auxin also induced the accumulation of cGMP a response inhibited by removal of NO or by inhibitors of guanylyl cyclase compounds that also reduced gravitropic bending Asymmetric NO accumulation and gravitropic bending were both inhibited by an auxin transport inhibitor and the inhibition of bending was overcome by treatment with NO or 8-bromo-cGMP a cell-permeable analog of cGMP These data indicate that auxin-induced NO and cGMP mediate gravitropic curvature in soybean roots From Hu et al Plant Physiol 2005 137 663-670 The asymmetric distribution of auxin plays a fundamental role in plant gravitropic bending

  6. Membrane Bending by Protein Crowding

    NASA Astrophysics Data System (ADS)

    Stachowiak, Jeanne

    2014-03-01

    From endosomes and synaptic vesicles to the cristae of the mitochondria and the annulus of the nuclear pore, highly curved membranes are fundamental to the structure and physiology of living cells. The established view is that specific families of proteins are able to bend membranes by binding to them. For example, inherently curved proteins are thought to impose their structure on the membrane surface, while membrane-binding proteins with hydrophobic motifs are thought to insert into the membrane like wedges, driving curvature. However, computational models have recently revealed that these mechanisms would require specialized membrane-bending proteins to occupy nearly 100% of a curved membrane surface, an improbable physiological situation given the immense density and diversity of membrane-bound proteins, and the low expression levels of these specialized proteins within curved regions of the membrane. How then does curvature arise within the complex and crowded environment of cellular membranes? Our recent work using proteins involved in clathrin-mediated endocytosis, as well as engineered protein-lipid interactions, has suggested a new hypothesis - that lateral pressure generated by collisions between membrane-bound proteins can drive membrane bending. Specifically, by correlating membrane bending with quantitative optical measurements of protein density on synthetic membrane surfaces and simple physical models of collisions among membrane-bound proteins, we have demonstrated that protein-protein steric interactions can drive membrane curvature. These findings suggest that a simple imbalance in the concentration of membrane-bound proteins across a membrane surface can drive a membrane to bend, providing an efficient mechanism by which essentially any protein can contribute to shaping membranes.

  7. Numerical Procedures for the Calculation of the Stresses in Monocoques. 3 - Calculation of the Bending Moments in Fuselage Frames

    DTIC Science & Technology

    1946-04-01

    volved in the preceding calculations. It is well to check the reeulta. A repetition of all the computatlone would be very time consuming ...CONVENTION. ic ic FIG. 7 POSITIVE FORCES AND MOMENTS AT POINT B. ;?; •* * *> • ,, - --;-•••’ •-**-- • •’:•••••,. ~ wKWJgkii& Kfc . sft

  8. Second Moments (planar Moments) and Their Application in Spectroscopy

    NASA Astrophysics Data System (ADS)

    Bohn, Robert K.; Montgomery, John A., Jr.; Michels, H. Harvey; Byrd, Jason N.

    2013-06-01

    Second moments, also called planar moments (P_{ii} = Σ m_{i}^{} x_{i}^{2}), are the spectroscopic parameters used to determine substitution structures (r_{s}) ) by Kraitchman''s method from spectra of a molecule and its isotopologs. They are also useful for discussing other molecular structural properties. Just as bond lengths and angles are considered transferable among similar molecules, second moments of many common groups are also transferable. This paper discusses applications of second moments of methylene/methyl groups, singly or multiply, isopropyl/tert-butyl groups, phenyl groups, per{f}{l}uoro methylene/methyl groups, combinations of any of them, and planarity of molecules, the historically most common application of second moments. The inertial defect is Δ = (I_{c} - I_{a} - I_{b}) or -2P_{cc}. Some authors err by assuming each isotopolog provides three independent rotational constants, but in some cases they are not all independent. J. Kraitchman, Am. J. Phys. {21 (17), 1953.}

  9. A Unified Methodology for Computing Accurate Quaternion Color Moments and Moment Invariants.

    PubMed

    Karakasis, Evangelos G; Papakostas, George A; Koulouriotis, Dimitrios E; Tourassis, Vassilios D

    2014-02-01

    In this paper, a general framework for computing accurate quaternion color moments and their corresponding invariants is proposed. The proposed unified scheme arose by studying the characteristics of different orthogonal polynomials. These polynomials are used as kernels in order to form moments, the invariants of which can easily be derived. The resulted scheme permits the usage of any polynomial-like kernel in a unified and consistent way. The resulted moments and moment invariants demonstrate robustness to noisy conditions and high discriminative power. Additionally, in the case of continuous moments, accurate computations take place to avoid approximation errors. Based on this general methodology, the quaternion Tchebichef, Krawtchouk, Dual Hahn, Legendre, orthogonal Fourier-Mellin, pseudo Zernike and Zernike color moments, and their corresponding invariants are introduced. A selected paradigm presents the reconstruction capability of each moment family, whereas proper classification scenarios evaluate the performance of color moment invariants.

  10. Influence of cross-sectional design and dimension on mechanical behavior of nickel-titanium instruments under torsion and bending: a numerical analysis.

    PubMed

    Zhang, En-Wei; Cheung, Gary S P; Zheng, Yu-Feng

    2010-08-01

    The aim of this study was to examine the influence of the cross-sectional configuration and dimensions (size and taper) on the torsional and bending behavior of nickel-titanium rotary instruments, taking into account the nonlinear mechanical properties of material. Ten cross-sectional configurations, square, triangular, U-type, S-type (large and small), convex-triangle, and 4 proprietary ones (Mani NRT and RT2, Quantec, and Mtwo), were analyzed under torsion or bending by using a 3-dimensional finite element method. The von Mises stresses were correlated with the critical values for various phases of the nickel-titanium material. Different loading conditions led to unequal patterns of stress distribution. Increasing the applied torque or bending angle resulted in a rise in the corresponding stresses in the instrument. Favorable stress distribution without dangerous stress concentration was observed if the material was undergoing superelastic transformation at that applied load. The ultimate strength of the material was not exceeded when the instrument was bent up to a 50-degree curvature. On the other hand, when a torsional moment of greater than 1.0 N*mm was applied, the maximum stresses developed in some designs would exceed the ultimate strength of the material. Little variation in the von Mises stresses was observed for instruments of different nominal sizes and tapers on bending to similar extent. The cross-sectional design has a greater impact than taper or size of the instrument on the stresses developed in the instrument under either torsion or bending. Certain cross-sectional configurations are prone to fracture by excess torsional stresses. Copyright 2010 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  11. Can Thermal Bending Fracture Ice Shelves?

    NASA Astrophysics Data System (ADS)

    MacAyeal, D. R.; Sergienko, O. V.; Banwell, A. F.; Willis, I.; Macdonald, G. J.; Lin, J.

    2017-12-01

    Visco-elastic plates will bend if the temperature on one side is cooled. If the plate is constrained to float, as for sea ice floes, this bending will lead to tensile stresses that can fracture the ice. The hydroacoustic regime below sea ice displays increased fracture-sourced noise when air temperatures above the ice cools with the diurnal cycle. The McMurdo Ice Shelf, Antarctica, also displays a massive increase in seismicity during the cooling phase of the diurnal cycle, and this motivates the question: Can surface cooling (or other forcing with thermal consequences) drive through-thickness fracture leading to iceberg calving? Past study of this question for sea ice gives an upper limit of ice-plate thickness (order meters) for which diurnal-scale thermal bending fracture can occur; but could cooling with longer time scales induce fracture of thicker ice plates? Given the seismic evidence of thermal bending fracture on the McMurdo Ice Shelf, the authors examine this question further.

  12. Stress-anneal-induced magnetic anisotropy in highly textured Fe-Ga and Fe-Al magnetostrictive strips for bending-mode vibrational energy harvesters

    NASA Astrophysics Data System (ADS)

    Park, Jung Jin; Na, Suok-Min; Raghunath, Ganesh; Flatau, Alison B.

    2016-05-01

    Magnetostrictive Fe-Ga and Fe-Al alloys are promising materials for use in bending-mode vibrational energy harvesters. For this study, 50.8 mm × 5.0 mm × 0.5 mm strips of Fe-Ga and Fe-Al were cut from 0.50-mm thick rolled sheet. An atmospheric anneal was used to develop a Goss texture through an abnormal grain growth process. The anneal lead to large (011) grains that covered over 90% of sample surface area. The resulting highly-textured Fe-Ga and Fe-Al strips exhibited saturation magnetostriction values (λsat = λ∥ - λ⊥) of ˜280 ppm and ˜130 ppm, respectively. To maximize 90° rotation of magnetic moments during bending of the strips, we employed compressive stress annealing (SA). Samples were heated to 500°C, and a 100-150 MPa compressive stress was applied while at 500°C for 30 minutes and while being cooled. The effectiveness of the SA on magnetic moment rotation was inferred by comparing post-SA magnetostriction with the maximum possible yield of rotated magnetic moments, which is achieved when λ∥ = λsat and λ⊥ = 0. The uniformity of the SA along the sample length and the impact of the SA on sensing/energy harvesting performance were then assessed by comparing pre- and post-SA bending-stress-induced changes in magnetization at five different locations along the samples. The SA process with a 150 MPa compressive load improved Fe-Ga actuation along the sample length from 170 to 225 ppm (from ˜60% to within ˜80% of λsat). The corresponding sensing/energy harvesting performance improved by as much as a factor of eight in the best sample, however the improvement was not at all uniform along the sample length. The SA process with a 100 MPa compressive load improved Fe-Al actuation along the sample length from 60 to 73 ppm (from ˜46% to ˜56% of λsat, indicating only a marginally effective SA and suggesting the need for modification of the SA protocol. In spite of this, the SA was effective at improving the sensing/energy harvesting

  13. High-sensitivity bend angle measurements using optical fiber gratings.

    PubMed

    Rauf, Abdul; Zhao, Jianlin; Jiang, Biqiang

    2013-07-20

    We present a high-sensitivity and more flexible bend measurement method, which is based on the coupling of core mode to the cladding modes at the bending region in concatenation with optical fiber grating serving as band reflector. The characteristics of a bend sensing arm composed of bending region and optical fiber grating is examined for different configurations including single fiber Bragg grating (FBG), chirped FBG (CFBG), and double FBGs. The bend loss curves for coated, stripped, and etched sections of fiber in the bending region with FBG, CFBG, and double FBG are obtained experimentally. The effect of separation between bending region and optical fiber grating on loss is measured. The loss responses for single FBG and CFBG configurations are compared to discover the effectiveness for practical applications. It is demonstrated that the sensitivity of the double FBG scheme is twice that of the single FBG and CFBG configurations, and hence acts as sensitivity multiplier. The bend loss response for different fiber diameters obtained through etching in 40% hydrofluoric acid, is measured in double FBG scheme that resulted in a significant increase in the sensitivity, and reduction of dead-zone.

  14. Robotic Arm Comprising Two Bending Segments

    NASA Technical Reports Server (NTRS)

    Mehling, Joshua S.; Difler, Myron A.; Ambrose, Robert O.; Chu, Mars W.; Valvo, Michael C.

    2010-01-01

    The figure shows several aspects of an experimental robotic manipulator that includes a housing from which protrudes a tendril- or tentacle-like arm 1 cm thick and 1 m long. The arm consists of two collinear segments, each of which can be bent independently of the other, and the two segments can be bent simultaneously in different planes. The arm can be retracted to a minimum length or extended by any desired amount up to its full length. The arm can also be made to rotate about its own longitudinal axis. Some prior experimental robotic manipulators include single-segment bendable arms. Those arms are thicker and shorter than the present one. The present robotic manipulator serves as a prototype of future manipulators that, by virtue of the slenderness and multiple- bending capability of their arms, are expected to have sufficient dexterity for operation within spaces that would otherwise be inaccessible. Such manipulators could be especially well suited as means of minimally invasive inspection during construction and maintenance activities. Each of the two collinear bending arm segments is further subdivided into a series of collinear extension- and compression-type helical springs joined by threaded links. The extension springs occupy the majority of the length of the arm and engage passively in bending. The compression springs are used for actively controlled bending. Bending is effected by means of pairs of antagonistic tendons in the form of spectra gel spun polymer lines that are attached at specific threaded links and run the entire length of the arm inside the spring helix from the attachment links to motor-driven pulleys inside the housing. Two pairs of tendons, mounted in orthogonal planes that intersect along the longitudinal axis, are used to effect bending of each segment. The tendons for actuating the distal bending segment are in planes offset by an angle of 45 from those of the proximal bending segment: This configuration makes it possible to

  15. Localized states in an arbitrarily bent quantum wire (bend-imitating approach)

    NASA Astrophysics Data System (ADS)

    Vakhnenko, Oleksity O.

    1996-02-01

    The bend-imitating matching technique is proposed to simplify the quantum mechanical treatment of singly and multiply bent 2D quantum wires of constant width, arbitrary bending angles, arbitrary bending radii and arbitrary distances between the bends. The spectrum of one-electron localized states and its dependence on the bending angle and the bending radius in a singly bent wire is explicitly calculated. Doubly bent wires are shown to possess doubly split localized states. The splitting energies as a function of the distance between the bends and the bending angles and bending radii have also been obtained. A similar description of bent 3D quantum wires and bent optical fibers is expected to be possible.

  16. Thermal static bending of deployable interlocked booms

    NASA Technical Reports Server (NTRS)

    Staugaitis, C. L.; Predmore, R. E.

    1973-01-01

    Metal ribbons processed with a heat-forming treatment are enabled to form tubelike structures when deployed from a roll. Deployable booms of this have been utilized for gravity-gradient stabilization on the RAE, ATS, and Nimbus D satellites. An experimental thermal-mechanics test apparatus was developed to measure the thermal static bending and twist of booms up to 3 meters long. The apparatus was calibrated by using the correlation between calculated and observed thermal bending of a seamless tube. Thermal static bending values of 16 interlocked deployable booms were observed to be within a factor of 2.5 of the values calculated from seamless-tube theory. Out-of-Sun-plane thermal bending was caused by complex heat transfer across the interlocked seam. Significant thermal static twisting was not observed.

  17. Age of the Hawaiian-Emperor bend

    USGS Publications Warehouse

    Dalrymple, G.B.; Clague, D.A.

    1976-01-01

    40Ar/39Ar age data on alkalic and tholeiitic basalts from Diakakuji and Kinmei Seamounts in the vicinity of the Hawaiian-Emperor bend indicate that these volcanoes are about 41 and 39 m.y. old, respectively. Combined with previously published age data on Yuryaku and Ko??ko Seamounts, the new data indicate that the best age for the bend is 42.0 ?? 1.4 m.y. Petrochemical data indicate that the volcanic rocks recovered from bend seamounts are indistinguishable from Hawaiian volcanic rocks, strengthening the hypothesis that the Hawaiian-Emperor bend is part of the Hawaiian volcanic chain. 40Ar/39Ar total fusion ages on altered whole-rock basalt samples are consistent with feldspar ages and with 40Ar/39Ar incremental heating data and appear to reflect the crystallization ages of the samples even though conventional K-Ar ages are significantly younger. The cause of this effect is not known but it may be due to low-temperature loss of 39Ar from nonretentive montmorillonite clays that have also lost 40Ar. ?? 1976.

  18. A new orthodontic force system for moment control utilizing the flexibility of common wires: Evaluation of the effect of contractile force and hook length.

    PubMed

    Lai, Wei-Jen; Midorikawa, Yoshiyuki; Kanno, Zuisei; Takemura, Hiroshi; Suga, Kazuhiro; Soga, Kohei; Ono, Takashi; Uo, Motohiro

    2018-01-01

    The application of an appropriate force system is indispensable for successful orthodontic treatments. Second-order moment control is especially important in many clinical situations, so we developed a new force system composed of a straight orthodontic wire and two crimpable hooks of different lengths to produce the second-order moment. The objective of this study was to evaluate this new force system and determine an optimum condition that could be used in clinics. We built a premolar extraction model with two teeth according to the concept of a modified orthodontic simulator. This system was activated by applying contractile force from two hooks that generated second-order moment and force. The experimental device incorporated two sensors, and forces and moments were measured along six axes. We changed the contractile force and hook length to elucidate their effects. Three types of commercial wires were tested. The second-order moment was greater on the longer hook side of the model. Vertical force balanced the difference in moments between the two teeth. Greater contractile force generated a greater second-order moment, which reached a limit of 150 g. Excessive contractile force induced more undesired reactions in the other direction. Longer hooks induced greater moment generation, reaching their limit at 10 mm in length. The system acted similar to an off-center V-bend and can be applied in clinical practice as an unconventional loop design. We suggest that this force system has the potential for second-order moment control in clinical applications. Copyright © 2017. Published by Elsevier B.V.

  19. Flexible top-emitting OLEDs for lighting: bending limits

    NASA Astrophysics Data System (ADS)

    Schwamb, Philipp; Reusch, Thilo C.; Brabec, Christoph J.

    2013-09-01

    Flexible OLED light sources have great appeal due to new design options, being unbreakable and their low weight. Top-emitting OLED device architectures offer the broadest choice of substrate materials including metals which are robust, impermeable to humidity, and good thermal conductors making them promising candidates for flexible OLED device substrates. In this study, we investigate the bending limits of flexible top-emitting OLED lighting devices with transparent metal electrode and thin film encapsulation on a variety of both metal and plastic foils. The samples were subjected to concave and convex bending and inspected by different testing methods for the onset of breakdown for example visible defects and encapsulation failures. The critical failure modes were identified as rupture of the transparent thin metal top electrode and encapsulation for convex bending and buckling of the transparent metal top electrode for concave bending. We investigated influences from substrate material and thickness and top coating thickness. The substrate thickness is found to dominate bending limits as expected by neutral layer modeling. Coating shows strong improvements for all substrates. Bending radii <15mm are achieved for both convex and concave testing without damage to devices including their encapsulation.

  20. Elastic critical moment for bisymmetric steel profiles and its sensitivity by the finite difference method

    NASA Astrophysics Data System (ADS)

    Kamiński, M.; Supeł, Ł.

    2016-02-01

    It is widely known that lateral-torsional buckling of a member under bending and warping restraints of its cross-sections in the steel structures are crucial for estimation of their safety and durability. Although engineering codes for steel and aluminum structures support the designer with the additional analytical expressions depending even on the boundary conditions and internal forces diagrams, one may apply alternatively the traditional Finite Element or Finite Difference Methods (FEM, FDM) to determine the so-called critical moment representing this phenomenon. The principal purpose of this work is to compare three different ways of determination of critical moment, also in the context of structural sensitivity analysis with respect to the structural element length. Sensitivity gradients are determined by the use of both analytical and the central finite difference scheme here and contrasted also for analytical, FEM as well as FDM approaches. Computational study is provided for the entire family of the steel I- and H - beams available for the practitioners in this area, and is a basis for further stochastic reliability analysis as well as durability prediction including possible corrosion progress.

  1. 46 CFR 151.10-20 - Hull construction.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... rests upon a pinnacle at the water surface. The maximum hull and tank bending moment and tank saddle... limits of paragraphs (b)(2) (i), (ii), or (iii) of this section. The maximum tank bending moment and... maximum hull and tank bending moments and tank saddle reactions. (ii) All independent tank barges...

  2. 46 CFR 151.10-20 - Hull construction.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... rests upon a pinnacle at the water surface. The maximum hull and tank bending moment and tank saddle... limits of paragraphs (b)(2) (i), (ii), or (iii) of this section. The maximum tank bending moment and... maximum hull and tank bending moments and tank saddle reactions. (ii) All independent tank barges...

  3. Experimental investigation of springback in air bending process

    NASA Astrophysics Data System (ADS)

    Alhammadi, Aysha; Rafique, Hafsa; Alkaabi, Meera; Abu Qudeiri, Jaber

    2018-03-01

    Bending processes is one of the important processes in sheet metal forming. One of the challenge that faces the air bending process is springback, which happens due to the elastic recovery during unloading stage. An accurate analysis of springback during the bending process is crucial to achieve a required bend angle. This paper will investigate the springback experimentally by changing many parameters such as tested material, die opening, thickness, etc. and finding its effect on the value of springback. Additionally, the paper will investigate the effect of loading time at the end of loading stage on the springback by proposing a multistage bending technique (MBT). In MBT, the loading will stop during loading stage just before the end of this stage and it will restart again shortly after. In this study, three sheet metals with different thickness will be examined, namely stainless steel, aluminium and brass. Artificial neural network (ANN) will be utilized to develop a prediction model to predict springback based on the experimental results.

  4. Compaction managed mirror bend achromat

    DOEpatents

    Douglas, David [Yorktown, VA

    2005-10-18

    A method for controlling the momentum compaction in a beam of charged particles. The method includes a compaction-managed mirror bend achromat (CMMBA) that provides a beamline design that retains the large momentum acceptance of a conventional mirror bend achromat. The CMMBA also provides the ability to tailor the system momentum compaction spectrum as desired for specific applications. The CMMBA enables magnetostatic management of the longitudinal phase space in Energy Recovery Linacs (ERLs) thereby alleviating the need for harmonic linearization of the RF waveform.

  5. Moment inference from tomograms

    USGS Publications Warehouse

    Day-Lewis, F. D.; Chen, Y.; Singha, K.

    2007-01-01

    Time-lapse geophysical tomography can provide valuable qualitative insights into hydrologic transport phenomena associated with aquifer dynamics, tracer experiments, and engineered remediation. Increasingly, tomograms are used to infer the spatial and/or temporal moments of solute plumes; these moments provide quantitative information about transport processes (e.g., advection, dispersion, and rate-limited mass transfer) and controlling parameters (e.g., permeability, dispersivity, and rate coefficients). The reliability of moments calculated from tomograms is, however, poorly understood because classic approaches to image appraisal (e.g., the model resolution matrix) are not directly applicable to moment inference. Here, we present a semi-analytical approach to construct a moment resolution matrix based on (1) the classic model resolution matrix and (2) image reconstruction from orthogonal moments. Numerical results for radar and electrical-resistivity imaging of solute plumes demonstrate that moment values calculated from tomograms depend strongly on plume location within the tomogram, survey geometry, regularization criteria, and measurement error. Copyright 2007 by the American Geophysical Union.

  6. Moment inference from tomograms

    USGS Publications Warehouse

    Day-Lewis, Frederick D.; Chen, Yongping; Singha, Kamini

    2007-01-01

    Time-lapse geophysical tomography can provide valuable qualitative insights into hydrologic transport phenomena associated with aquifer dynamics, tracer experiments, and engineered remediation. Increasingly, tomograms are used to infer the spatial and/or temporal moments of solute plumes; these moments provide quantitative information about transport processes (e.g., advection, dispersion, and rate-limited mass transfer) and controlling parameters (e.g., permeability, dispersivity, and rate coefficients). The reliability of moments calculated from tomograms is, however, poorly understood because classic approaches to image appraisal (e.g., the model resolution matrix) are not directly applicable to moment inference. Here, we present a semi-analytical approach to construct a moment resolution matrix based on (1) the classic model resolution matrix and (2) image reconstruction from orthogonal moments. Numerical results for radar and electrical-resistivity imaging of solute plumes demonstrate that moment values calculated from tomograms depend strongly on plume location within the tomogram, survey geometry, regularization criteria, and measurement error.

  7. Big Bend National Park

    NASA Image and Video Library

    2017-12-08

    Alternately known as a geologist’s paradise and a geologist’s nightmare, Big Bend National Park in southwestern Texas offers a multitude of rock formations. Sparse vegetation makes finding and observing the rocks easy, but they document a complicated geologic history extending back 500 million years. On May 10, 2002, the Enhanced Thematic Mapper Plus on NASA’s Landsat 7 satellite captured this natural-color image of Big Bend National Park. A black line delineates the park perimeter. The arid landscape appears in muted earth tones, some of the darkest hues associated with volcanic structures, especially the Rosillos and Chisos Mountains. Despite its bone-dry appearance, Big Bend National Park is home to some 1,200 plant species, and hosts more kinds of cacti, birds, and bats than any other U.S. national park. Read more: go.nasa.gov/2bzGaZU Credit: NASA/Landsat7 NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  8. Bend-imitating models of abruptly bent electron waveguides

    NASA Astrophysics Data System (ADS)

    Vakhnenko, Oleksiy O.

    2011-07-01

    The fundamentals of bend-imitating approach regarding the one-electron quantum mechanics in abruptly bent ideal electron waveguides are given. In general, the theory allows to model each particular circularlike bend of a continuous quantum wire as some effective multichannel scatterer being pointlike in longitudinal direction. Its scattering ability is determined by the bending angle, mean bending radius, lateral coordinate (or coordinates) in wire cross section, time (or electronic energy), and possibly by the applied magnetic field. In an equivalent formulation, the theory gives rise to rather simple matching rules for the electron wave function and its longitudinal derivative affecting only the straight parts of a wire and thereby permitting to bypass a detailed quantum mechanical consideration of elbow domains. The proposed technique is applicable for the analytical investigation of spectral and transport electronic properties related to the ideal abruptly bent 3D wirelike structures of fixed cross section and is adaptable to the 2D wirelike structures as well as to the wirelike structures subjected to the magnetic field perpendicular to the plane of wire bending. In the framework of bend-imitating approach, the investigation of electron scattering in a singly bent 2D quantum wire and a doubly bent 2D quantum wire with S-like bend has been made and the explicit dependences of transmission and reflection coefficients on geometrical parameters of respective structure as well as on electron energy have been obtained. The total suppression of mixing between the scattering channels of S-like bent quantum wire is predicted.

  9. Femoral loading mechanics in the Virginia opossum, Didelphis virginiana: torsion and mediolateral bending in mammalian locomotion.

    PubMed

    Gosnell, W Casey; Butcher, Michael T; Maie, Takashi; Blob, Richard W

    2011-10-15

    Studies of limb bone loading in terrestrial mammals have typically found anteroposterior bending to be the primary loading regime, with torsion contributing minimally. However, previous studies have focused on large, cursorial eutherian species in which the limbs are held essentially upright. Recent in vivo strain data from the Virginia opossum (Didelphis virginiana), a marsupial that uses a crouched rather than an upright limb posture, have indicated that its femur experiences appreciable torsion during locomotion as well as strong mediolateral bending. The elevated femoral torsion and strong mediolateral bending observed in D. virginiana might result from external forces such as a medial inclination of the ground reaction force (GRF), internal forces deriving from a crouched limb posture, or a combination of these factors. To evaluate the mechanism underlying the loading regime of opossum femora, we filmed D. virginiana running over a force platform, allowing us to measure the magnitude of the GRF and its three-dimensional orientation relative to the limb, facilitating estimates of limb bone stresses. This three-dimensional analysis also allows evaluations of muscular forces, particularly those of hip adductor muscles, in the appropriate anatomical plane to a greater degree than previous two-dimensional analyses. At peak GRF and stress magnitudes, the GRF is oriented nearly vertically, inducing a strong abductor moment at the hip that is countered by adductor muscles on the medial aspect of the femur that place this surface in compression and induce mediolateral bending, corroborating and explaining loading patterns that were identified in strain analyses. The crouched orientation of the femur during stance in opossums also contributes to levels of femoral torsion as high as those seen in many reptilian taxa. Femoral safety factors were as high as those of non-avian reptiles and greater than those of upright, cursorial mammals, primarily because the load

  10. Characterization of bending EAP beams

    NASA Technical Reports Server (NTRS)

    Bao, Xiaoqi; Bar-Cohen, Yoseph; Chang, Zensheu; Sherrit, Stewart

    2004-01-01

    Electroactive polymers are attractive actuation materials because of their large deformation, flexibility, and lightweight. A CCD camera system was constructed to record the curved shapes of bending during the activation of EAP films and image-processing software was developed to digitize the bending curves. A computer program was developed to solve the invese problem of cantilever EAP beams with tip position limiter. using the developed program and acquired curves without tip position limiter as well as the corresponding tip force, the EAP material properties of voltage-strain sensitivity and Young's modulus were determined.

  11. The bending stiffness of shoes is beneficial to running energetics if it does not disturb the natural MTP joint flexion.

    PubMed

    Oh, Keonyoung; Park, Sukyung

    2017-02-28

    A local minimum for running energetics has been reported for a specific bending stiffness, implying that shoe stiffness assists in running propulsion. However, the determinant of the metabolic optimum remains unknown. Highly stiff shoes significantly increase the moment arm of the ground reaction force (GRF) and reduce the leverage effect of joint torque at ground push-off. Inspired by previous findings, we hypothesized that the restriction of the natural metatarsophalangeal (MTP) flexion caused by stiffened shoes and the corresponding joint torque changes may reduce the benefit of shoe bending stiffness to running energetics. We proposed the critical stiffness, k cr , which is defined as the ratio of the MTP joint (MTPJ) torque to the maximal MTPJ flexion angle, as a possible threshold of the elastic benefit of shoe stiffness. 19 subjects participated in a running test while wearing insoles with five different bending stiffness levels. Joint angles, GRFs, and metabolic costs were measured and analyzed as functions of the shoe stiffness. No significant changes were found in the take-off velocity of the center of mass (CoM), but the horizontal ground push-offs were significantly reduced at different shoe stiffness levels, indicating that complementary changes in the lower-limb joint torques were introduced to maintain steady running. Slight increases in the ankle, knee, and hip joint angular impulses were observed at stiffness levels exceeding the critical stiffness, whereas the angular impulse at the MTPJ was significantly reduced. These results indicate that the shoe bending stiffness is beneficial to running energetics if it does not disturb the natural MTPJ flexion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Failure Progress of 3D Reinforced GFRP Laminate during Static Bending, Evaluated by Means of Acoustic Emission and Vibrations Analysis.

    PubMed

    Koziol, Mateusz; Figlus, Tomasz

    2015-12-14

    The work aimed to assess the failure progress in a glass fiber-reinforced polymer laminate with a 3D-woven and (as a comparison) plain-woven reinforcement, during static bending, using acoustic emission signals. The innovative method of the separation of the signal coming from the fiber fracture and the one coming from the matrix fracture with the use of the acoustic event's energy as a criterion was applied. The failure progress during static bending was alternatively analyzed by evaluation of the vibration signal. It gave a possibility to validate the results of the acoustic emission. Acoustic emission, as well as vibration signal analysis proved to be good and effective tools for the registration of failure effects in composite laminates. Vibration analysis is more complicated methodologically, yet it is more precise. The failure progress of the 3D laminate is "safer" and more beneficial than that of the plain-woven laminate. It exhibits less rapid load capacity drops and a higher fiber effort contribution at the moment of the main laminate failure.

  13. Inquiry-Based Science: Turning Teachable Moments into Learnable Moments

    ERIC Educational Resources Information Center

    Haug, Berit S.

    2014-01-01

    This study examines how an inquiry-based approach to teaching and learning creates teachable moments that can foster conceptual understanding in students, and how teachers capitalize upon these moments. Six elementary school teachers were videotaped as they implemented an integrated inquiry-based science and literacy curriculum in their…

  14. Regional variation in the mechanical properties of the vertebral column during lateral bending in Morone saxatilis

    PubMed Central

    Nowroozi, B. N.; Brainerd, E. L.

    2012-01-01

    Unlike mammalian, disc-shaped intervertebral joints (IVJs), the IVJs in fishes are biconid structures, filled with fluid and thought to act as hydrostatic hinge joints during swimming. However, it remains unclear which IVJ structures are dominant in mechanical resistance to forces in fishes, and whether variation in these tissues might impact the function of the vertebral column along its length. Here, we measured the dynamic mechanical behaviour of IVJs from striped bass, Morone saxatilis. During lateral bending, angular stiffness was significantly lower in the caudal and cervical regions, relative to the abdominal region. The neutral zone, defined as the range of motion (ROM) at bending moments less than 0.001 Nm, was longer in the caudal relative to the abdominal IVJs. Hysteresis was 30–40% in all regions, suggesting that IVJs may play a role in energy dissipation during swimming. Cutting the vertical septum had no statistically significant effect, but cutting the encapsulating tissues caused a sharp decline in angular stiffness and a substantial increase in ROM and hysteresis. We conclude that stiffness decreases and ROM increases from cranial to caudal in striped bass, and that the encapsulating tissues play a prominent role in mechanical variation along the length of the vertebral column. PMID:22552920

  15. Regional variation in the mechanical properties of the vertebral column during lateral bending in Morone saxatilis.

    PubMed

    Nowroozi, B N; Brainerd, E L

    2012-10-07

    Unlike mammalian, disc-shaped intervertebral joints (IVJs), the IVJs in fishes are biconid structures, filled with fluid and thought to act as hydrostatic hinge joints during swimming. However, it remains unclear which IVJ structures are dominant in mechanical resistance to forces in fishes, and whether variation in these tissues might impact the function of the vertebral column along its length. Here, we measured the dynamic mechanical behaviour of IVJs from striped bass, Morone saxatilis. During lateral bending, angular stiffness was significantly lower in the caudal and cervical regions, relative to the abdominal region. The neutral zone, defined as the range of motion (ROM) at bending moments less than 0.001 Nm, was longer in the caudal relative to the abdominal IVJs. Hysteresis was 30-40% in all regions, suggesting that IVJs may play a role in energy dissipation during swimming. Cutting the vertical septum had no statistically significant effect, but cutting the encapsulating tissues caused a sharp decline in angular stiffness and a substantial increase in ROM and hysteresis. We conclude that stiffness decreases and ROM increases from cranial to caudal in striped bass, and that the encapsulating tissues play a prominent role in mechanical variation along the length of the vertebral column.

  16. Influence of recreational activity and muscle strength on ulnar bending stiffness in men

    NASA Technical Reports Server (NTRS)

    Myburgh, K. H.; Charette, S.; Zhou, L.; Steele, C. R.; Arnaud, S.; Marcus, R.

    1993-01-01

    Bone bending stiffness (modulus of elasticity [E] x moment of inertia [I]), a measure of bone strength, is related to its mineral content (BMC) and geometry and may be influenced by exercise. We evaluated the relationship of habitual recreational exercise and muscle strength to ulnar EI, width, and BMC in 51 healthy men, 28-61 yr of age. BMC and width were measured by single photon absorptiometry and EI by mechanical resistance tissue analysis. Maximum biceps strength was determined dynamically (1-RM) and grip strength isometrically. Subjects were classified as sedentary (S) (N = 13), moderately (M) (N = 18), or highly active (H) (N = 20) and exercised 0.2 +/- 0.2; 2.2 +/- 1.3; and 6.8 +/- 2.3 h.wk-1 (P < 0.001). H had greater biceps (P < 0.0005) and grip strength (P < 0.05), ulnar BMC (P < 0.05), and ulnar EI (P = 0.01) than M or S, who were similar. Amount of activity correlated with grip and biceps strength (r = 0.47 and 0.49; P < 0.001), but not with bone measurements, whereas muscle strength correlated with both EI and BMC (r = 0.40-0.52, P < 0.005). EI also correlated significantly with both BMC and ulnar width (P < 0.0001). Ulnar width and biceps strength were the only independent predictors of EI (r2 = 0.67, P < 0.0001). We conclude that levels of physical activity sufficient to increase arm strength influence ulnar bending stiffness.

  17. Effect of drought stress on bending stiffness in petioles of Caladium bicolor (Araceae).

    PubMed

    Caliaro, Marco; Schmich, Florian; Speck, Thomas; Speck, Olga

    2013-11-01

    Cell turgor plays an important role in the mechanical stability of herbaceous plants. This study on petioles of Caladium bicolor 'Candyland' analyzes the correlation between flexural rigidity and cell turgor. The results offer new insights into the underlying form-structure-function relationship and the dependency of mechanical properties from water availability. Bending modulus E of petioles is calculated from two-point bending tests, taking into account the tapering mode. The corresponding turgor of parenchyma cells during wilting is investigated by pressure probe tests. Wilting petioles show highly significant lower values of E than petioles with sufficient water supply. These differences are also found when comparing well-watered petioles to drought-stressed petioles having parenchyma turgor values in the same range. These results indicate an additional mechanical system sensitive to drought stress. On the basis of analyses of the contribution of different petiolar tissues toward the axial second moment of area and by using experimentally determined and literature values of E for the different tissues, we were able to (1) recalculate E of the intact petiole and to compare it with experimental data and (2) quantitatively estimate the importance of the different tissues for flexural rigidity and E of the petiole. Our results show that the decrease in flexural rigidity of petioles of Caladium bicolor 'Candyland' during wilting results from (1) a water-loss-induced decrease in mechanical efficiency of collenchyma fibers and (2) turgor loss of parenchyma cells.

  18. BEND3 mediates transcriptional repression and heterochromatin organization

    PubMed Central

    Khan, Abid; Prasanth, Supriya G

    2015-01-01

    Transcription repression plays a central role in gene regulation. Transcription repressors utilize diverse strategies to mediate transcriptional repression. We have recently demonstrated that BEND3 (BANP, E5R and Nac1 domain) protein represses rDNA transcription by stabilizing a NoRC component. We discuss the role of BEND3 as a global regulator of gene expression and propose a model whereby BEND3 associates with chromatin remodeling complexes to modulate gene expression and heterochromatin organization. PMID:26507581

  19. BEND3 mediates transcriptional repression and heterochromatin organization.

    PubMed

    Khan, Abid; Prasanth, Supriya G

    2015-01-01

    Transcription repression plays a central role in gene regulation. Transcription repressors utilize diverse strategies to mediate transcriptional repression. We have recently demonstrated that BEND3 (BANP, E5R and Nac1 domain) protein represses rDNA transcription by stabilizing a NoRC component. We discuss the role of BEND3 as a global regulator of gene expression and propose a model whereby BEND3 associates with chromatin remodeling complexes to modulate gene expression and heterochromatin organization.

  20. Dynamic characteristics of the rotor in a magnetically suspended control moment gyroscope with active magnetic bearing and passive magnetic bearing.

    PubMed

    Tang, Jiqiang; Xiang, Biao; Zhang, Yongbin

    2014-07-01

    For a magnetically suspended control moment gyroscope, stiffness and damping of magnetic bearing will influence modal frequency of a rotor. In this paper the relationship between modal frequency and stiffness and damping has been investigated. The mathematic calculation model of axial passive magnetic bearing (PMB) stiffness is developed. And PID control based on internal model control is introduced into control of radial active magnetic bearing (AMB), considering the radial coupling of axial PMB, a mathematic calculation model of stiffness and damping of radial AMB is established. According to modal analysis, the relationship between modal frequency and modal shapes is achieved. Radial vibration frequency is mainly influenced by stiffness of radial AMB; however, when stiffness increases, radial vibration will disappear and a high frequency bending modal will appear. Stiffness of axial PMB mainly affects the axial vibration mode, which will turn into high-order bending modal. Axial PMB causes bigger influence on torsion modal of the rotor. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  1. Evaluation of spinal instrumentation rod bending characteristics for in-situ contouring.

    PubMed

    Noshchenko, Andriy; Xianfeng, Yao; Armour, Grant Alan; Baldini, Todd; Patel, Vikas V; Ayers, Reed; Burger, Evalina

    2011-07-01

    Bending characteristics were studied in rods used for spinal instrumentation at in-situ contouring conditions. Five groups of five 6 mm diameter rods made from: cobalt alloy (VITALLIUM), titanium-aluminum-vanadium alloy (SDI™), β-titanium alloy (TNTZ), cold worked stainless steel (STIFF), and annealed stainless steel (MALLEABLE) were studied. The bending procedure was similar to that typically applied for in-situ contouring in the operating room and included two bending cycles: first--bending to 21-24° under load with further release of loading for 10 min, and second--bending to 34-37° at the previously bent site and release of load for 10 min. Applied load, bending stiffness, and springback effect were studied. Statistical evaluation included ANOVA, correlation and regression analysis. TNTZ and SDI™ rods showed the highest (p < 0.05) springback at both bending cycles. VITALLIUM and STIFF rods showed mild springback (p < 0.05). The least (p < 0.05) springback was observed in the MALLEABLE rods. Springback significantly correlated with the bend angle under load (p < 0.001). To reach the necessary bend angle after unloading, over bending should be 37-40% of the required angle in TNTZ and SDI™ rods, 27-30% in VITALLIUM and STIFF rods, and around 20% in MALLEABLE rods. Copyright © 2011 Wiley Periodicals, Inc.

  2. Electrostatics of lipid bilayer bending.

    PubMed Central

    Chou, T; Jarić, M V; Siggia, E D

    1997-01-01

    The electrostatic contribution to spontaneous membrane curvature is calculated within Poisson-Boltzmann theory under a variety of assumptions and emphasizing parameters in the physiological range. Asymmetrical surface charges can be fixed with respect to bilayer midplane area or with respect to the lipid-water area, but induce curvatures of opposite signs. Unequal screening layers on the two sides of a vesicle (e.g., multivalent cationic proteins on one side and monovalent salt on the other) also induce bending. For reasonable parameters, tubules formed by electrostatically induced bending can have radii in the 50-100-nm range, often seen in many intracellular organelles. Thus membrane associated proteins may induce curvature and subsequent budding, without themselves being intrinsically curved. Furthermore, we derive the previously unexplored effects of respecting the strict conservation of charge within the interior of a vesicle. The electrostatic component of the bending modulus is small under most of our conditions and is left as an experimental parameter. The large parameter space of conditions is surveyed in an array of graphs. Images FIGURE 1 FIGURE 10 PMID:9129807

  3. New Insights on the Deflection and Internal Forces of a Bending Nanobeam

    NASA Astrophysics Data System (ADS)

    Zhao, De-Min; Liu, Jian-Lin

    2017-08-01

    Nanowires, nanofibers and nanotubes have been widely used as the building blocks in micro/nano-electromechanical systems, energy harvesting or storage devices, and small-scaled measurement equipment. We report that the surface effects of these nanobeams have a great impact on their deflection and internal forces. A simply supported nanobeam is taken as an example. For the displacement and shear force of the nanobeam, its dangerous sections are different from those predicted by the conventional beam theory, but for the bending moment, the dangerous section is the same. Moreover, the values of these three quantities for the nanobeam are all distinct from those calculated from the conventional beam model. These analyses shed new light on the stiffness and strength check of nanobeams, which are beneficial to engineer new-types of nano-materials and nano-devices. Supported by the National Natural Science Foundation of China under Grant Nos 11672334, 11672335 and 11611530541, and the Fundamental Research Funds for the Central Universities under Grant No 15CX08004A.

  4. On CD-AFM bias related to probe bending

    NASA Astrophysics Data System (ADS)

    Ukraintsev, V. A.; Orji, N. G.; Vorburger, T. V.; Dixson, R. G.; Fu, J.; Silver, R. M.

    2012-03-01

    Critical Dimension AFM (CD-AFM) is a widely used reference metrology. To characterize modern semiconductor devices, very small and flexible probes, often 15 nm to 20 nm in diameter, are now frequently used. Several recent publications have reported on uncontrolled and significant probe-to-probe bias variation during linewidth and sidewall angle measurements [1,2]. Results obtained in this work suggest that probe bending can be on the order of several nanometers and thus potentially can explain much of the observed CD-AFM probe-to-probe bias variation. We have developed and experimentally tested one-dimensional (1D) and two-dimensional (2D) models to describe the bending of cylindrical probes. An earlier 1D bending model reported by Watanabe et al. [3] was refined. Contributions from several new phenomena were considered, including: probe misalignment, diameter variation near the carbon nanotube tip (CNT) apex, probe bending before snapping, distributed van der Waals-London force, etc. The methodology for extraction of the Hamaker probe-surface interaction energy from experimental probe bending data was developed. To overcome limitations of the 1D model, a new 2D distributed force (DF) model was developed. Comparison of the new model with the 1D single point force (SPF) model revealed about 27 % difference in probe bending bias between the two. A simple linear relation between biases predicted by the 1D SPF and 2D DF models was found. This finding simplifies use of the advanced 2D DF model of probe bending in various CD-AFM applications. New 2D and three-dimensional (3D) CDAFM data analysis software is needed to take full advantage of the new bias correction modeling capabilities.

  5. Fatigue life prediction in bending from axial fatigue information

    NASA Technical Reports Server (NTRS)

    Manson, S. S.; Muralidharan, U.

    1982-01-01

    Bending fatigue in the low cyclic life range differs from axial fatigue due to the plastic flow which alters the linear stress-strain relation normally used to determine the nominal stresses. An approach is presented to take into account the plastic flow in calculating nominal bending stress (S sub bending) based on true surface stress. These functions are derived in closed form for rectangular and circular cross sections. The nominal bending stress and the axial fatigue stress are plotted as a function of life (N sub S) and these curves are shown for several materials of engineering interest.

  6. 75 FR 13671 - Establishment of Class E Airspace; West Bend, WI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-23

    ...-1149; Airspace Docket No. 09-AGL-33] Establishment of Class E Airspace; West Bend, WI AGENCY: Federal... West Bend, WI to accommodate Area Navigation (RNAV) Standard Instrument Approach Procedures (SIAPs) at West Bend Municipal Airport, West Bend, WI. The FAA is taking this action to enhance the safety and...

  7. Finite element beam flexural properties of cement composites of fiber reinforced PVA

    NASA Astrophysics Data System (ADS)

    Yang, Chengzhi; Pei, Changchun

    2018-05-01

    In this paper, the initial cracking state and the mid span bending moment and deflection of ECC beam under different PVA fiber and fly ash mixing rate are studied by finite element simulation analysis. The results show that the bending moment of the ECC beam increases with the increase of the PVA fiber content, and the deflection decreases. When the ratio of PVA fiber is 1.5%, the middle bending moment is the largest and the deflection is the least. With the increase of fly ash content, the mid span bending moment of ECC beam increases first and then decreases. When the fly ash ratio is 60%, the middle bending moment is the largest and the deflection is the least. Through the study, the formula for calculating the flexural capacity of the cross section suitable for ECC beams is derived.

  8. Active vibration control of structures undergoing bending vibrations

    NASA Technical Reports Server (NTRS)

    Pla, Frederic G. (Inventor); Rajiyah, Harindra (Inventor)

    1995-01-01

    An active vibration control subassembly for a structure (such as a jet engine duct or a washing machine panel) undergoing bending vibrations caused by a source (such as the clothes agitator of the washing machine) independent of the subassembly. A piezoceramic actuator plate is vibratable by an applied electric AC signal. The plate is connected to the structure such that vibrations in the plate induced by the AC signal cause canceling bending vibrations in the structure and such that the plate is compressively pre-stressed along the structure when the structure is free of any bending vibrations. The compressive prestressing increases the amplitude of the canceling bending vibrations before the critical tensile stress level of the plate is reached. Preferably, a positive electric DC bias is also applied to the plate in its poling direction.

  9. Restorying the Self: Bending toward Textual Justice

    ERIC Educational Resources Information Center

    Thomas, Ebony Elizabeth; Stornaiuolo, Amy

    2016-01-01

    In this essay, Ebony Elizabeth Thomas and Amy Stornaiuolo explore new trends in reader response for a digital age, particularly the phenomenon of bending texts using social media. They argue that bending is one form of "restorying," a process by which people reshape narratives to represent a diversity of perspectives and experiences that…

  10. Tool bending in New Caledonian crows.

    PubMed

    Rutz, Christian; Sugasawa, Shoko; van der Wal, Jessica E M; Klump, Barbara C; St Clair, James J H

    2016-08-01

    'Betty' the New Caledonian crow astonished the world when she 'spontaneously' bent straight pieces of garden wire into hooked foraging tools. Recent field experiments have revealed that tool bending is part of the species' natural behavioural repertoire, providing important context for interpreting Betty's iconic wire-bending feat. More generally, this discovery provides a compelling illustration of how natural history observations can inform laboratory-based research into the cognitive capacities of non-human animals.

  11. Bending spring rate investigation of nanopipette for cell injection.

    PubMed

    Shen, Yajing; Zhang, Zhenhai; Fukuda, Toshio

    2015-04-17

    Bending of nanopipette tips during cell penetration is a major cause of cell injection failure. However, the flexural rigidity of nanopipettes is little known due to their irregular structure. In this paper, we report a quantitative method to estimate the flexural rigidity of a nanopipette by investigating its bending spring rate. First nanopipettes with a tip size of 300 nm are fabricated from various glass tubes by laser pulling followed by focused ion beam (FIB) milling. Then the bending spring rate of the nanopipettes is investigated inside a scanning electron microscope (SEM). Finally, a yeast cell penetration test is performed on these nanopipettes, which have different bending spring rates. The results show that nanopipettes with a higher bending spring rate have better cell penetration capability, which confirms that the bending spring rate may well reflect the flexural rigidity of a nanopipette. This method provides a quantitative parameter for characterizing the mechanical property of a nanopipette that can be potentially taken as a standard specification in the future. This general method can also be used to estimate other one-dimensional structures for cell injection, which will greatly benefit basic cell biology research and clinical applications.

  12. Bending spring rate investigation of nanopipette for cell injection

    NASA Astrophysics Data System (ADS)

    Shen, Yajing; Zhang, Zhenhai; Fukuda, Toshio

    2015-04-01

    Bending of nanopipette tips during cell penetration is a major cause of cell injection failure. However, the flexural rigidity of nanopipettes is little known due to their irregular structure. In this paper, we report a quantitative method to estimate the flexural rigidity of a nanopipette by investigating its bending spring rate. First nanopipettes with a tip size of 300 nm are fabricated from various glass tubes by laser pulling followed by focused ion beam (FIB) milling. Then the bending spring rate of the nanopipettes is investigated inside a scanning electron microscope (SEM). Finally, a yeast cell penetration test is performed on these nanopipettes, which have different bending spring rates. The results show that nanopipettes with a higher bending spring rate have better cell penetration capability, which confirms that the bending spring rate may well reflect the flexural rigidity of a nanopipette. This method provides a quantitative parameter for characterizing the mechanical property of a nanopipette that can be potentially taken as a standard specification in the future. This general method can also be used to estimate other one-dimensional structures for cell injection, which will greatly benefit basic cell biology research and clinical applications.

  13. Characterization of plastic deformation in a disk bend test

    NASA Astrophysics Data System (ADS)

    Byun, T. S.; Lee, E. H.; Hunn, J. D.; Farrell, K.; Mansur, L. K.

    2001-04-01

    A disk bend test technique has been developed to study deformation mechanisms as well as mechanical properties. In the disk bend test, a transmission electron microscopy (TEM) disk size specimen of 3 mm diameter ×0.25 mm thick is clamped around its rim in a circular holder and indented with a tungsten carbide ball of 1 mm diameter on its back face. AISI 316LN austenitic stainless steel and 9Cr-2WVTa ferritic/martensitic steel were selected as test materials. A model was developed to determine the average plastic strain and surface plastic strain in the disk bend test. The deformation regimes of the plastic strain versus deflection curves corresponded to those of the load versus deflection curves. The stress state of the disk bend deformation was analyzed for the two test materials and compared with those of other mechanical tests such as uniaxial tensile, compact tension, and ball indentation tests. Slip line features at the deformed surface and the corresponding TEM microstructures were examined for both tensile and disk bend specimens. Differences and similarities in deformation between the disk bend and the tensile tests are described.

  14. Bending of Light in Modified Gravity at Large Distances

    NASA Technical Reports Server (NTRS)

    Sultana, Joseph; Kazanas, Demosthenes

    2012-01-01

    We discuss the bending of light in a recent model for gravity at large distances containing a Rindler type acceleration proposed by Grumiller. We consider the static, spherically symmetric metric with cosmological constant and Rindler-like term 2ar presented in this model, and we use the procedure by Rindler and Ishak. to obtain the bending angle of light in this metric. Earlier work on light bending in this model by Carloni, Grumiller, and Preis, using the method normally employed for asymptotically flat space-times, led to a conflicting result (caused by the Rindler-like term in the metric) of a bending angle that increases with the distance of closest approach r(sub 0) of the light ray from the centrally concentrated spherically symmetric matter distribution. However, when using the alternative approach for light bending in nonasymptotically flat space-times, we show that the linear Rindler-like term produces a small correction to the general relativistic result that is inversely proportional to r(sub 0). This will in turn affect the bounds on Rindler acceleration obtained earlier from light bending and casts doubts on the nature of the linear term 2ar in the metric

  15. Probing the elastic limit of DNA bending

    PubMed Central

    Le, Tung T.; Kim, Harold D.

    2014-01-01

    Sharp bending of double-stranded DNA (dsDNA) plays an essential role in genome structure and function. However, the elastic limit of dsDNA bending remains controversial. Here, we measured the opening rates of small dsDNA loops with contour lengths ranging between 40 and 200 bp using single-molecule Fluorescence Resonance Energy Transfer. The relationship of loop lifetime to loop size revealed a critical transition in bending stress. Above the critical loop size, the loop lifetime changed with loop size in a manner consistent with elastic bending stress, but below it, became less sensitive to loop size, indicative of softened dsDNA. The critical loop size increased from ∼60 bp to ∼100 bp with the addition of 5 mM magnesium. We show that our result is in quantitative agreement with the kinkable worm-like chain model, and furthermore, can reproduce previously reported looping probabilities of dsDNA over the range between 50 and 200 bp. Our findings shed new light on the energetics of sharply bent dsDNA. PMID:25122748

  16. Computing moment to moment BOLD activation for real-time neurofeedback

    PubMed Central

    Hinds, Oliver; Ghosh, Satrajit; Thompson, Todd W.; Yoo, Julie J.; Whitfield-Gabrieli, Susan; Triantafyllou, Christina; Gabrieli, John D.E.

    2013-01-01

    Estimating moment to moment changes in blood oxygenation level dependent (BOLD) activation levels from functional magnetic resonance imaging (fMRI) data has applications for learned regulation of regional activation, brain state monitoring, and brain-machine interfaces. In each of these contexts, accurate estimation of the BOLD signal in as little time as possible is desired. This is a challenging problem due to the low signal-to-noise ratio of fMRI data. Previous methods for real-time fMRI analysis have either sacrificed the ability to compute moment to moment activation changes by averaging several acquisitions into a single activation estimate or have sacrificed accuracy by failing to account for prominent sources of noise in the fMRI signal. Here we present a new method for computing the amount of activation present in a single fMRI acquisition that separates moment to moment changes in the fMRI signal intensity attributable to neural sources from those due to noise, resulting in a feedback signal more reflective of neural activation. This method computes an incremental general linear model fit to the fMRI timeseries, which is used to calculate the expected signal intensity at each new acquisition. The difference between the measured intensity and the expected intensity is scaled by the variance of the estimator in order to transform this residual difference into a statistic. Both synthetic and real data were used to validate this method and compare it to the only other published real-time fMRI method. PMID:20682350

  17. Biomechanical Comparison of Robotically Applied Pure Moment, Ideal Follower Load, and Novel Trunk Weight Loading Protocols on L4-L5 Cadaveric Segments during Flexion-Extension.

    PubMed

    Bennett, Charles R; DiAngelo, Denis J; Kelly, Brian P

    2015-01-01

    Extremely few in-vitro biomechanical studies have incorporated shear loads leaving a gap for investigation, especially when applied in combination with compression and bending under dynamic conditions. The objective of this study was to biomechanically compare sagittal plane application of two standard protocols, pure moment (PM) and follower load (FL), with a novel trunk weight (TW) loading protocol designed to induce shear in combination with compression and dynamic bending in a neutrally potted human cadaveric L4-L5 motion segment unit (MSU) model. A secondary objective and novelty of the current study was the application of all three protocols within the same testing system serving to reduce artifacts due to testing system variability. Six L4-L5 segments were tested in a Cartesian load controlled system in flexion-extension to 8Nm under PM, simulated ideal 400N FL, and vertically oriented 400N TW loading protocols. Comparison metrics used were rotational range of motion (RROM), flexibility, neutral zone (NZ) range of motion, and L4 vertebral body displacements. Significant differences in vertebral body translations were observed with different initial force applications but not with subsequent bending moment application. Significant reductions were observed in combined flexion-extension RROM, in flexibility during extension, and in NZ region flexibility with the TW loading protocol as compared to PM loading. Neutral zone ranges of motion were not different between all protocols. The combined compression and shear forces applied across the spinal joint in the trunk weight protocol may have a small but significantly increased stabilizing effect on segment flexibility and kinematics during sagittal plane flexion and extension.

  18. Biomechanical Comparison of Robotically Applied Pure Moment, Ideal Follower Load, and Novel Trunk Weight Loading Protocols on L4-L5 Cadaveric Segments during Flexion-Extension

    PubMed Central

    Bennett, Charles R.; DiAngelo, Denis J.

    2015-01-01

    Background Extremely few in-vitro biomechanical studies have incorporated shear loads leaving a gap for investigation, especially when applied in combination with compression and bending under dynamic conditions. The objective of this study was to biomechanically compare sagittal plane application of two standard protocols, pure moment (PM) and follower load (FL), with a novel trunk weight (TW) loading protocol designed to induce shear in combination with compression and dynamic bending in a neutrally potted human cadaveric L4-L5 motion segment unit (MSU) model. A secondary objective and novelty of the current study was the application of all three protocols within the same testing system serving to reduce artifacts due to testing system variability. Methods Six L4-L5 segments were tested in a Cartesian load controlled system in flexion-extension to 8Nm under PM, simulated ideal 400N FL, and vertically oriented 400N TW loading protocols. Comparison metrics used were rotational range of motion (RROM), flexibility, neutral zone (NZ) range of motion, and L4 vertebral body displacements. Results Significant differences in vertebral body translations were observed with different initial force applications but not with subsequent bending moment application. Significant reductions were observed in combined flexion-extension RROM, in flexibility during extension, and in NZ region flexibility with the TW loading protocol as compared to PM loading. Neutral zone ranges of motion were not different between all protocols. Conclusions The combined compression and shear forces applied across the spinal joint in the trunk weight protocol may have a small but significantly increased stabilizing effect on segment flexibility and kinematics during sagittal plane flexion and extension. PMID:26273551

  19. Mechanical behavior of three nickel-titanium rotary files: A comparison of numerical simulation with bending and torsion tests.

    PubMed

    de Arruda Santos, Leandro; López, Javier Bayod; de Las Casas, Estevam Barbosa; de Azevedo Bahia, Maria Guiomar; Buono, Vicente Tadeu Lopes

    2014-04-01

    To assess the flexibility and torsional stiffness of three nickel-titanium rotary instruments by finite element analysis and compare the numerical results with the experiment. Mtwo (VDW, Munich, Germany) and RaCe (FKG Dentaire, La-Chaux-de-Fonds, Switzerland) size 25, .06 taper (0.25-mm tip diameter, 0.06% conicity) and PTU F1 (Dentsply Maillefer, Ballaigues, Switzerland) instruments were selected for this study. Experimental tests to assess the flexibility and torsional stiffness of the files were performed according to specification ISO 3630-1. Geometric models for finite element analysis were obtained by micro-CT scanning. Boundary conditions for the numerical analysis were based on the specification ISO 3630-1. A good agreement between the simulation and the experiment moment-displacement curves was found for the three types of instruments studied. RaCe exhibited the highest flexibility and PTU presented the highest torsional stiffness. Maximum values of von Mises stress were found for the PTU F1 file (1185MPa) under bending, whereas the values of von Mises stress for the three instruments were quite similar under torsion. The stress patterns proved to be different in Mtwo under bending, according to the displacement orientation. The favorable agreement found between simulation and experiment for the three types of instruments studied confirmed the potential of the numerical method to assess the mechanical behavior of endodontic instruments. Thus, a methodology is established to predict the failure of the instruments under bending and torsion. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Tool bending in New Caledonian crows

    PubMed Central

    Sugasawa, Shoko; van der Wal, Jessica E. M.; Klump, Barbara C.; St Clair, James J. H.

    2016-01-01

    ‘Betty’ the New Caledonian crow astonished the world when she ‘spontaneously’ bent straight pieces of garden wire into hooked foraging tools. Recent field experiments have revealed that tool bending is part of the species' natural behavioural repertoire, providing important context for interpreting Betty's iconic wire-bending feat. More generally, this discovery provides a compelling illustration of how natural history observations can inform laboratory-based research into the cognitive capacities of non-human animals. PMID:27853622

  1. DNA-bending properties of TF1.

    PubMed

    Schneider, G J; Sayre, M H; Geiduschek, E P

    1991-10-05

    Transcription factor 1 (TF1) is the Bacillus subtilis phage SPO1-encoded member of the family of DNA-binding proteins that includes Escherichia coli HU and integration host factor, IHF. A gel electrophoretic retardation method has been used to show that a TF1 dimer binding to one of its preferred sites in (5-hydroxymethyl)uracil (hmUra)-containing DNA sharply bends the latter. In fact, the DNA-bending properties of TF1 and E. coli IHF are indistinguishable. Substitutions at amino acid 61 in the DNA-binding "arm" of TF1 are known to affect DNA-binding affinity and site selectivity. Experiments described here show that these substitutions also affect DNA bending. The selectivity of TF1 binding is very greatly diminished and the affinity is reduced when hmUra is replaced in DNA by thymine (T). An extension of the gel retardation method that permits an analysis of DNA bending by non-specifically bound TF1 is proposed. Under the assumptions of this analysis, the reduced affinity of TF1 for T-containing DNA is shown to be associated with bending that is still sharp. The analysis of the TF1-DNA interaction has also been extended by hydroxyl radical (.OH) and methylation interference footprinting at two DNA sites. At each of these sites, and on each strand, TF1 strongly protects three segments of DNA from attack by OH. Patches of protected DNA are centered approximately ten base-pairs apart and fall on one side of the B-helix. Methylation in either the major or minor groove in the central ten base-pairs of the two TF1 binding sites quantitatively diminishes, but does not abolish, TF1 binding. We propose that multiple protein contacts allow DNA to wrap around the relatively small TF1 dimer, considerably deforming the DNA B-helix in the process.

  2. Bend sweep angle and Reynolds number effects on hemodynamics of s-shaped arteries.

    PubMed

    Niazmand, H; Rajabi Jaghargh, E

    2010-09-01

    The purpose of this study is to investigate the effects of the Reynolds number and the bend sweep angle on the blood flow patterns of S-shaped bends. The numerical simulations of steady flows in S-shaped bends with sweep angles of 45 degrees , 90 degrees , and 135 degrees are performed at Reynolds numbers of 125, 500, and 960. Hemodynamic characteristics such as secondary flows, vorticity, and axial velocity profiles are analyzed in detail. Flow patterns in S-shaped bends are strongly dependent on both Reynolds number and bend sweep angle, which can be categorized into three groups based on the first bend secondary flow effects on the transverse flow of the second bend. For low Reynolds numbers and any sweep angles, secondary flows in the second bend eliminate the first bend effects in the early sections of the second bend and therefore the axial velocity profile is consistent with the bend curvature, while for high Reynolds numbers depending on the bend sweep angles the secondary vortex pattern of the first bend may persist partially or totally throughout the second bend leading to a four-vortex secondary structure. Moreover, an interesting flow feature observed at the Reynolds number of 960 is that the secondary flow asymmetrical behavior occurred around the second bend exit and along the outflow straight section. This symmetry-breaking phenomenon which has not been reported in the previous studies is shown to be more pronounced in the 90 degrees S-shaped bend as compared to other models considered here. The probability of flow separation as one of the important flow features contributing to the onset and development of arterial wall diseases is also studied. It is observed that the second bend outer wall of gentle bends with sweep angles from 20 degrees to 30 degrees at high enough Reynolds numbers are prone to flow separation.

  3. Comparison of Rotor Structural Loads Calculated using Comprehensive Analysis

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne; Yeo, Hyeonsoo

    2005-01-01

    Blade flap and chord bending and torsion moments are investigated for six rotors operating at transition and high speed: H-34 in flight and wind tunnel, SA 330 (research Puma), SA 349/2, UH-60A full-scale, and BO- 105 model (HART-I). The measured data from flight and wind tunnel tests are compared with calculations obtained using the comprehensive analysis CAMRAD II. The calculations were made using two free wake models: rolled-up and multiple-trailer with consolidation models. At transition speed, there is fair to good agreement for the flap and chord bending moments between the test data and analysis for the H-34, research Puma, and SA 349/2. Torsion moment correlation, in general, is fair to good for all the rotors investigated. Better flap bending and torsion moment correlation is obtained for the UH-60A and BO-105 rotors by using the multiple-trailer with consolidation wake model. In the high speed condition, the analysis shows generally better correlation in magnitude than in phase for the flap bending and torsion moments. However, a significant underprediction of chord bending moment is observed for the research Puma and UH-60A. The poor chord bending moment correlation appears to be caused by the airloads model, not the structural dynamics.

  4. Predicting Robust Learning with the Visual Form of the Moment-by-Moment Learning Curve

    ERIC Educational Resources Information Center

    Baker, Ryan S.; Hershkovitz, Arnon; Rossi, Lisa M.; Goldstein, Adam B.; Gowda, Sujith M.

    2013-01-01

    We present a new method for analyzing a student's learning over time for a specific skill: analysis of the graph of the student's moment-by-moment learning over time. Moment-by-moment learning is calculated using a data-mined model that assesses the probability that a student learned a skill or concept at a specific time during learning (Baker,…

  5. Bending Properties of Nickel Electrodes for Nickel-Hydrogen Batteries

    NASA Technical Reports Server (NTRS)

    Lerch, Brad A.; Wilson, Richard M.; Keller, Dennis; Corner, Ralph

    1995-01-01

    Recent changes in manufacturing have resulted in nickel-hydrogen batteries that fail prematurely by electrical shorting, This failure is believed to be a result of a blistering problem in the nickel electrodes. In this study the bending properties of nickel electrodes are investigated in an attempt to correlate the bending properties of the electrode with its propensity to blister. Nickel electrodes from three different batches of material were tested in both the as-received and impregnated forms. The effects of specimen curvature and position within the electrode on the bending strength were studied, and within-electrode and batch-to-batch variations were addressed. Two color-imaging techniques were employed to differentiate between the phases within the electrodes. These techniques aided in distinguishing the relative amounts of nickel hyroxide surface loading on each electrode, thereby relating surface loading to bend strength. Bend strength was found to increase with the amount of surface loading.

  6. High-Resolution Infrared Spectroscopy and Analysis of the ν_2/ν_4 Bending Dyad and ν_3 Stretching Fundamental of Ruthenium Tetroxide

    NASA Astrophysics Data System (ADS)

    Faye, Mbaye; Reymond-Laruinaz, Sébastien; Vander Auwera, Jean; Boudon, Vincent; Doizi, Denis; Manceron, Laurent

    2017-06-01

    RuO_4 is a heavy tetrahedral molecule which has practical uses for several industrial fields. Due to its chemical toxicity and the radiological impact of its 103 and 106 isotopologues, the possible remote sensing of this compound in the atmosphere has renewed interest in its spectroscopic properties. We investigate here for the first time at high resolution the bending dyad region in the far IR and the line intensities in the ν_3 stretching region. Firstly, new high resolution FTIR spectra of the bending modes region in the far infrared have been recorded at room temperature, using a specially constructed cell and an isotopically pure sample of {}^{102}RuO_4. New assignments and effective Hamiltonian parameter fits for this main isotopologue have been performed, treating the whole ν_2/ν_4 bending mode dyad. We provide precise effective Hamiltonian parameters, including band centers and Coriolis interaction parameters. Secondly, we investigate the line intensities for the strongly infrared active stretching mode ν_3, in the mid infrared window near 10 μm. New high resolution FTIR spectra have also been recorded at room temperature, using the same cell and sample. Using assignments and effective Hamiltonian parameter for {}^{102}RuO_4, line intensities have been retrieved and the dipole moment parameters fitted for the ν_3 fundamental. A frequency and intensity line list is proposed.

  7. Loss reduction in silicon nanophotonic waveguide micro-bends through etch profile improvement

    NASA Astrophysics Data System (ADS)

    Selvaraja, Shankar Kumar; Bogaerts, Wim; Van Thourhout, Dries

    2011-04-01

    Single mode silicon photonic wire waveguides allow low-loss sharp micro-bends, which enables compact photonic devices and circuits. The circuit compactness is achieved at the cost of loss induced by micro-bends, which can seriously affect the device performance. The bend loss strongly depends on the bend radius, polarization, waveguide dimension and profile. In this paper, we present the effect of waveguide profile on the bend loss. We present waveguide profile improvement with optimized etch chemistry and the role of etch chemistry in adapting the etch profile of silicon is investigated. We experimentally demonstrate that by making the waveguide sidewalls vertical, the bend loss can be reduced up to 25% without affecting the propagation loss of the photonic wires. The bend loss of a 2 μm bend has been reduced from 0.039dB/90° bend to 0.028dB/90° bend by changing the sidewall angle from 81° to 90°, respectively. The propagation loss of 2.7 ± 0.1dB/cm and 3 ± 0.09dB/cm was observed for sloped and vertical photonic wires respectively was obtained.

  8. Effect of low-intensity pulsed ultrasound stimulation on gap healing in a rabbit osteotomy model evaluated by quantitative micro-computed tomography-based cross-sectional moment of inertia.

    PubMed

    Tobita, Kenji; Matsumoto, Takuya; Ohashi, Satoru; Bessho, Masahiko; Kaneko, Masako; Ohnishi, Isao

    2012-07-01

    It has been previously demonstrated that low-intensity pulsed ultrasound stimulation (LIPUS) enhances formation of the medullary canal and cortex in a gap-healing model of the tibia in rabbits, shortens the time required for remodeling, and enhances mineralization of the callus. In the current study, the mechanical integrity of these models was confirmed. In order to do this, the cross-sectional moment of inertia (CSMI) obtained from quantitative micro-computed tomography scans was calculated, and a comparison was made with a four-point bending test. This parameter can be analyzed in any direction, and three directions were selected in order to adopt an XYZ coordinate (X and Y for bending; Z for torsion). The present results demonstrated that LIPUS improved earlier restoration of bending stiffness at the healing site. In addition, LIPUS was effective not only in the ultrasound-irradiated plane, but also in the other two planes. CSMI may provide the structural as well as compositional determinants to assess fracture healing and would be very useful to replace the mechanical testing.

  9. Viscoelastic coupling model of the San Andreas fault along the big bend, southern California

    USGS Publications Warehouse

    Savage, J.C.; Lisowski, M.

    1997-01-01

    The big bend segment of the San Andreas fault is the 300-km-long segment in southern California that strikes about N65??W, roughly 25?? counterclockwise from the local tangent to the small circle about the Pacific-North America pole of rotation. The broad distribution of deformation of trilateration networks along this segment implies a locking depth of at least 25 km as interpreted by the conventional model of strain accumulation (continuous slip on the fault below the locking depth at the rate of relative plate motion), whereas the observed seismicity and laboratory data on fault strength suggest that the locking depth should be no greater than 10 to 15 km. The discrepancy is explained by the viscoelastic coupling model which accounts for the viscoelastic response of the lower crust. Thus the broad distribution of deformation observed across the big bend segment can be largely associated with the San Andreas fault itself, not subsidiary faults distributed throughout the region. The Working Group on California Earthquake Probabilities [1995] in using geodetic data to estimate the seismic risk in southern California has assumed that strain accumulated off the San Andreas fault is released by earthquakes located off the San Andreas fault. Thus they count the San Andreas contribution to total seismic moment accumulation more than once, leading to an overestimate of the seismicity for magnitude 6 and greater earthquakes in their Type C zones.

  10. Bending the Curve: Sensitivity to Bending of Curved Paths and Application in Room-Scale VR.

    PubMed

    Langbehn, Eike; Lubos, Paul; Bruder, Gerd; Steinicke, Frank

    2017-04-01

    Redirected walking (RDW) promises to allow near-natural walking in an infinitely large virtual environment (VE) by subtle manipulations of the virtual camera. Previous experiments analyzed the human sensitivity to RDW manipulations by focusing on the worst-case scenario, in which users walk perfectly straight ahead in the VE, whereas they are redirected on a circular path in the real world. The results showed that a physical radius of at least 22 meters is required for undetectable RDW. However, users do not always walk exactly straight in a VE. So far, it has not been investigated how much a physical path can be bent in situations in which users walk a virtual curved path instead of a straight one. Such curved walking paths can be often observed, for example, when users walk on virtual trails, through bent corridors, or when circling around obstacles. In such situations the question is not, whether or not the physical path can be bent, but how much the bending of the physical path may vary from the bending of the virtual path. In this article, we analyze this question and present redirection by means of bending gains that describe the discrepancy between the bending of curved paths in the real and virtual environment. Furthermore, we report the psychophysical experiments in which we analyzed the human sensitivity to these gains. The results reveal encouragingly wider detection thresholds than for straightforward walking. Based on our findings, we discuss the potential of curved walking and present a first approach to leverage bent paths in a way that can provide undetectable RDW manipulations even in room-scale VR.

  11. Design and demonstration of an acoustic right-angle bend.

    PubMed

    Lu, Wenjia; Jia, Han; Bi, Yafeng; Yang, Yuzhen; Yang, Jun

    2017-07-01

    In this paper, a broadband acoustic right-angle bend device in air is designed, fabricated and experimentally characterized. Perforated panels with various hole-sizes are used to construct the bend structure. Both the simulated and experimental results verify that the acoustic beam can be rotated effectively through the acoustic bend in a wide frequency range. This model may have potential applications in some areas such as sound absorption and acoustic detection in elbow pipes.

  12. Evaluation of bending rigidity behaviour of ultrasonic seaming on woven fabrics

    NASA Astrophysics Data System (ADS)

    Şevkan Macit, Ayşe; Tiber, Bahar

    2017-10-01

    In recent years ultrasonic seaming that is shown as an alternative method to conventional seaming has been investigated by many researchers. In our study, bending behaviour of this alternative method is examined by changing various parameters such as fabric type, seam type, roller type and seaming velocity. For this purpose fifteen types of sewn fabrics were tested according to bending rigidity test standard before and after washing processes and results were evaluated through SPSS statistical analyze programme. Consequently, bending length values of the ultrasonically sewn fabrics are found to be higher than the bending length values of conventionally sewn fabrics and the effects of seam type on bending length are seen statistically significant. Also it is observed that bending length values are in relationship with the rest of the parameters excluding roller type.

  13. The use of hazard road signs to improve the perception of severe bends.

    PubMed

    Milleville-Pennel, Isabelle; Jean-Michel, Hoc; Elise, Jolly

    2007-07-01

    Collision analysis indicates that many car accidents occur when negotiating a bend. Excessive speed and steering wheel errors are often given by way of explanation. Nevertheless, the underlying origin of these dramatic errors could be, at least in part, a poor estimation of bend curvature. The aim of this study was to investigate both the assessment of bend curvature by drivers and the impact of symbolic road signs that indicate a hazardous bend on this assessment. Thus, participants first viewed a video recording showing approaching bends of different curvature before being asked to assess the curvature of these bends. This assessment could either be a verbal (symbolic control) estimation of the bend's curvature and risk, or a sensorimotor (subsymbolic control) estimation of the bend's curvature (participants were asked to turn a steering wheel to mimic the position that would be necessary to accurately negotiate the bend). Results show that very severe bends (with a radius of less than 80 m) were actually underestimated. This was associated with an underestimation of risk corresponding to these bends and a poor sensorimotor anticipation of bend curvature. Road signs, which indicate risk significantly improve bend assessment, but this was of no use for sensorimotor anticipation. Thus, other indicators need to be envisaged in order to also improve this level of control.

  14. Magnetic field of longitudinal gradient bend

    NASA Astrophysics Data System (ADS)

    Aiba, Masamitsu; Böge, Michael; Ehrlichman, Michael; Streun, Andreas

    2018-06-01

    The longitudinal gradient bend is an effective method for reducing the natural emittance in light sources. It is, however, not a common element. We have analyzed its magnetic field and derived a set of formulae. Based on the derivation, we discuss how to model the longitudinal gradient bend in accelerator codes that are used for designing electron storage rings. Strengths of multipole components can also be evaluated from the formulae, and we investigate the impact of higher order multipole components in a very low emittance lattice.

  15. Bending energy of buckled edge dislocations

    NASA Astrophysics Data System (ADS)

    Kupferman, Raz

    2017-12-01

    The study of elastic membranes carrying topological defects has a longstanding history, going back at least to the 1950s. When allowed to buckle in three-dimensional space, membranes with defects can totally relieve their in-plane strain, remaining with a bending energy, whose rigidity modulus is small compared to the stretching modulus. In this paper we study membranes with a single edge dislocation. We prove that the minimum bending energy associated with strain-free configurations diverges logarithmically with the size of the system.

  16. COASTAL BEND BAYS & ESTUARIES PROGRAM IMPLEMENTATION REVIEW 2004

    EPA Science Inventory

    The Coastal Bend Bays & Estuaries Program, Inc. (CBBEP) is a nonprofit 501(c)(3)organization. The CBBEP project area encompasses 12 counties coincident with the Coastal Bend Council of Governments and extends from the Land-Cut in the Laguna Madre, through the Corpus Christi Bay s...

  17. Bending strength model for internal spur gear teeth

    NASA Technical Reports Server (NTRS)

    Savage, Michael; Rubadeux, K. L.; Coe, H. H.

    1995-01-01

    Internal spur gear teeth are normally stronger than pinion teeth of the same pitch and face width since external teeth are smaller at the base. However, ring gears which are narrower have an unequal addendum or are made of a material with a lower strength than that of the meshing pinion may be loaded more critically in bending. In this study, a model for the bending strength of an internal gear tooth as a function of the applied load pressure angle is presented which is based on the inscribed Lewis constant strength parabolic beam. The bending model includes a stress concentration factor and an axial compression term which are extensions of the model for an external gear tooth. The geometry of the Lewis factor determination is presented, the iteration to determine the factor is described, and the bending strength J factor is compared to that of an external gear tooth. This strength model will assist optimal design efforts for unequal addendum gears and gears of mixed materials.

  18. Magnetically Assisted Bilayer Composites for Soft Bending Actuators.

    PubMed

    Jang, Sung-Hwan; Na, Seon-Hong; Park, Yong-Lae

    2017-06-12

    This article presents a soft pneumatic bending actuator using a magnetically assisted bilayer composite composed of silicone polymer and ferromagnetic particles. Bilayer composites were fabricated by mixing ferromagnetic particles to a prepolymer state of silicone in a mold and asymmetrically distributed them by applying a strong non-uniform magnetic field to one side of the mold during the curing process. The biased magnetic field induces sedimentation of the ferromagnetic particles toward one side of the structure. The nonhomogeneous distribution of the particles induces bending of the structure when inflated, as a result of asymmetric stiffness of the composite. The bilayer composites were then characterized with a scanning electron microscopy and thermogravimetric analysis. The bending performance and the axial expansion of the actuator were discussed for manipulation applications in soft robotics and bioengineering. The magnetically assisted manufacturing process for the soft bending actuator is a promising technique for various applications in soft robotics.

  19. Magnetically Assisted Bilayer Composites for Soft Bending Actuators

    PubMed Central

    Jang, Sung-Hwan; Na, Seon-Hong; Park, Yong-Lae

    2017-01-01

    This article presents a soft pneumatic bending actuator using a magnetically assisted bilayer composite composed of silicone polymer and ferromagnetic particles. Bilayer composites were fabricated by mixing ferromagnetic particles to a prepolymer state of silicone in a mold and asymmetrically distributed them by applying a strong non-uniform magnetic field to one side of the mold during the curing process. The biased magnetic field induces sedimentation of the ferromagnetic particles toward one side of the structure. The nonhomogeneous distribution of the particles induces bending of the structure when inflated, as a result of asymmetric stiffness of the composite. The bilayer composites were then characterized with a scanning electron microscopy and thermogravimetric analysis. The bending performance and the axial expansion of the actuator were discussed for manipulation applications in soft robotics and bioengineering. The magnetically assisted manufacturing process for the soft bending actuator is a promising technique for various applications in soft robotics. PMID:28773007

  20. The mechanics of gravitropic bending in leafy dicot stems

    NASA Technical Reports Server (NTRS)

    Salisbury, F. B.; Mueller, W. J.; Blotter, P. T.; Harris, C. S.; White, R. G.; Gillespie, L. S.; Sliwinski, J. E.

    1982-01-01

    The mechanism of the gravitropic bending in stems of the cocklebur and castor bean are investigated. The results of these experiments demonstrate the quick stopping of growth and the increased tensions on the upper layer of a horizontal stem. It is suggested that bending apparently occurs as the resistance of the upper surface layers is extended to the inner cells below. A model of stem bending is developed which can explain the asymmetry of the stem-cell response.

  1. Investigation of span-chordwise bending anisotropy of honeybee forewings

    PubMed Central

    Ning, JianGuo; Ma, Yun; Zhang, PengFei

    2017-01-01

    ABSTRACT In this study, the spanwise and chordwise bending stiffness EI of honeybee forewings were measured by a cantilevered bending test. The test results indicate that the spanwise EI of the forewing is two orders of magnitude larger than the chordwise EI. Three structural aspects result in this span-chordwise bending anisotropy: the distribution of resilin patches, the corrugation along the span and the leading edge vein of the venation. It was found that flexion lines formed by resilin patches revealed through fluorescence microscopy promoted the chordwise bending of the forewing during flapping flight. Furthermore, the corrugation of the wing and leading edge veins of the venation, revealed by micro-computed tomography, determines the relatively greater spanwise EI of the forewing. The span-chordwise anisotropy exerts positive structural and aerodynamic influences on the wing. In summary, this study potentially assists researchers in understanding the bending characteristics of insect wings and might be an important reference for the design and manufacture of bio-inspired wings for flapping micro aerial vehicles. PMID:28396486

  2. Bending Boundary Layers in Laminated-Composite Circular Cylindrical Shells

    NASA Technical Reports Server (NTRS)

    Nemeth, Michael P.; Smeltzer, Stanley S., III

    2000-01-01

    A study of the attenuation of bending boundary layers in balanced and unbalanced, symmetrically and unsymmetrically laminated cylindrical shells is presented for nine contemporary material systems. The analysis is based on the linear Sanders-Koiter shell equations and specializations to the Love-Kirchhoff shell equations and Donnell's equations are included. Two nondimensional parameters are identified that characterize the effects of laminate orthotropy and anisotropy on the bending boundary-layer decay length in a very general manner. A substantial number of structural design technology results are presented for a wide range of laminated-composite cylinders. For all laminates considered, the results show that the differences between results obtained with the Sanders-Koiter shell equations, the Love-Kirchhoff shell equations, and Donnell's equations are negligible. The results also show that the effect of anisotropy in the form of coupling between pure bending and twisting has a negligible effect on the size of the bending boundary-layer decay length of the balanced, symmetrically laminated cylinders considered. Moreover, the results show that coupling between the various types of shell anisotropies has a negligible effect on the calculation of the bending boundary-layer decay length in most cases. The results also show that, in some cases, neglecting the shell anisotropy results in underestimating the bending boundary-layer decay length and, in other cases, results in an overestimation.

  3. Preliminary survey of the mayflies (Ephemeroptera) and caddisflies (Trichoptera) of Big Bend Ranch State Park and Big Bend National Park

    PubMed Central

    Baumgardner, David E.; Bowles, David E.

    2005-01-01

    The mayfly (Insecta: Ephemeroptera) and caddisfly (Insecta: Trichoptera) fauna of Big Bend National Park and Big Bend Ranch State Park are reported based upon numerous records. For mayflies, sixteen species representing four families and twelve genera are reported. By comparison, thirty-five species of caddisflies were collected during this study representing seventeen genera and nine families. Although the Rio Grande supports the greatest diversity of mayflies (n=9) and caddisflies (n=14), numerous spring-fed creeks throughout the park also support a wide variety of species. A general lack of data on the distribution and abundance of invertebrates in Big Bend National and State Park is discussed, along with the importance of continuing this type of research. PMID:17119610

  4. Ares-I Bending Filter Design using a Constrained Optimization Approach

    NASA Technical Reports Server (NTRS)

    Hall, Charles; Jang, Jiann-Woei; Hall, Robert; Bedrossian, Nazareth

    2008-01-01

    The Ares-I launch vehicle represents a challenging flex-body structural environment for control system design. Software filtering of the inertial sensor output is required to ensure adequate stable response to guidance commands while minimizing trajectory deviations. This paper presents a design methodology employing numerical optimization to develop the Ares-I bending filters. The design objectives include attitude tracking accuracy and robust stability with respect to rigid body dynamics, propellant slosh, and flex. Under the assumption that the Ares-I time-varying dynamics and control system can be frozen over a short period of time, the bending filters are designed to stabilize all the selected frozen-time launch control systems in the presence of parameter uncertainty. To ensure adequate response to guidance command, step response specifications are introduced as constraints in the optimization problem. Imposing these constrains minimizes performance degradation caused by the addition of the bending filters. The first stage bending filter design achieves stability by adding lag to the first structural frequency to phase stabilize the first flex mode while gain stabilizing the higher modes. The upper stage bending filter design gain stabilizes all the flex bending modes. The bending filter designs provided here have been demonstrated to provide stable first and second stage control systems in both Draper Ares Stability Analysis Tool (ASAT) and the MSFC MAVERIC 6DOF nonlinear time domain simulation.

  5. Compliance measurements of chevron notched four point bend specimen

    NASA Technical Reports Server (NTRS)

    Calomino, Anthony; Bubsey, Raymond; Ghosn, Louis J.

    1994-01-01

    The experimental stress intensity factors for various chevron notched four point bend specimens are presented. The experimental compliance is verified using the analytical solution for a straight through crack four point bend specimen and the boundary integral equation method for one chevron geometry. Excellent agreement is obtained between the experimental and analytical results. In this report, stress intensity factors, loading displacements and crack mouth opening displacements are reported for different crack lengths and different chevron geometries, under four point bend loading condition.

  6. Dyadosphere bending of light

    NASA Astrophysics Data System (ADS)

    De Lorenci, V. A.; Figueiredo, N.; Fliche, H. H.; Novello, M.

    2001-04-01

    In the context of the static and spherically symmetric solution of a charged compact object, we present the expression for the bending of light in the region just outside the event horizon - the dyadosphere - where vacuum polarization effects are taken into account.

  7. Quantitative computed tomography-based predictions of vertebral strength in anterior bending.

    PubMed

    Buckley, Jenni M; Cheng, Liu; Loo, Kenneth; Slyfield, Craig; Xu, Zheng

    2007-04-20

    This study examined the ability of QCT-based structural assessment techniques to predict vertebral strength in anterior bending. The purpose of this study was to compare the abilities of QCT-based bone mineral density (BMD), mechanics of solids models (MOS), e.g., bending rigidity, and finite element analyses (FE) to predict the strength of isolated vertebral bodies under anterior bending boundary conditions. Although the relative performance of QCT-based structural measures is well established for uniform compression, the ability of these techniques to predict vertebral strength under nonuniform loading conditions has not yet been established. Thirty human thoracic vertebrae from 30 donors (T9-T10, 20 female, 10 male; 87 +/- 5 years of age) were QCT scanned and destructively tested in anterior bending using an industrial robot arm. The QCT scans were processed to generate specimen-specific FE models as well as trabecular bone mineral density (tBMD), integral bone mineral density (iBMD), and MOS measures, such as axial and bending rigidities. Vertebral strength in anterior bending was poorly to moderately predicted by QCT-based BMD and MOS measures (R2 = 0.14-0.22). QCT-based FE models were better strength predictors (R2 = 0.34-0.40); however, their predictive performance was not statistically different from MOS bending rigidity (P > 0.05). Our results suggest that the poor clinical performance of noninvasive structural measures may be due to their inability to predict vertebral strength under bending loads. While their performance was not statistically better than MOS bending rigidities, QCT-based FE models were moderate predictors of both compressive and bending loads at failure, suggesting that this technique has the potential for strength prediction under nonuniform loads. The current FE modeling strategy is insufficient, however, and significant modifications must be made to better mimic whole bone elastic and inelastic material behavior.

  8. The evaluation of the neutron dose equivalent in the two-bend maze.

    PubMed

    Tóth, Á Á; Petrović, B; Jovančević, N; Krmar, M; Rutonjski, L; Čudić, O

    2017-04-01

    The purpose of this study was to explore the effect of the second bend of the maze, on the neutron dose equivalent, in the 15MV linear accelerator vault, with two bend maze. These two bends of the maze were covered by 32 points where the neutron dose equivalent was measured. There is one available method for estimation of the neutron dose equivalent at the entrance door of the two bend maze which was tested using the results of the measurements. The results of this study show that the neutron equivalent dose at the door of the two bend maze was reduced almost three orders of magnitude. The measured TVD in the first bend (closer to the inner maze entrance) is about 5m. The measured TVD result is close to the TVD values usually used in the proposed models for estimation of neutron dose equivalent at the entrance door of the single bend maze. The results also determined that the TVD in the second bend (next to the maze entrance door) is significantly lower than the TVD values found in the first maze bend. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  9. Reversible Bending Behaviors of Photomechanical Soft Actuators Based on Graphene Nanocomposites.

    PubMed

    Niu, Dong; Jiang, Weitao; Liu, Hongzhong; Zhao, Tingting; Lei, Biao; Li, Yonghao; Yin, Lei; Shi, Yongsheng; Chen, Bangdao; Lu, Bingheng

    2016-06-06

    Photomechanical nanocomposites embedded with light-absorbing nanoparticles show promising applications in photoresponsive actuations. Near infrared (nIR)-responsive nanocomposites based photomechanical soft actuators can offer lightweight functional and underexploited entry into soft robotics, active optics, drug delivery, etc. A novel graphene-based photomechanical soft actuators, constituted by Polydimethylsiloxane (PDMS)/graphene-nanoplatelets (GNPs) layer (PDMS/GNPs) and pristine PDMS layer, have been constructed. Due to the mismatch of coefficient of thermal expansion of two layers induced by dispersion of GNPs, controllable and reversible bendings response to nIR light irradiation are observed. Interestingly, two different bending behaviors are observed when the nIR light comes from different sides, i.e., a gradual single-step photomechanical bending towards PDMS/GNPs layer when irradiation from PDMS side, while a dual-step bending (finally bending to the PDMS/GNPs side but with an strong and fast backlash at the time of light is on/off) when irradiation from PDMS/GNPs side. The two distinctive photomechanical bending behaviors are investigated in terms of heat transfer and thermal expansion, which reveals that the distinctive bending behaviors can be attributed to the differences in temperature gradients along the thickness when irradiation from different sides. In addition, the versatile photomechanical bending properties will provide alternative way for drug-delivery, soft robotics and microswitches, etc.

  10. Reversible Bending Behaviors of Photomechanical Soft Actuators Based on Graphene Nanocomposites

    PubMed Central

    Niu, Dong; Jiang, Weitao; Liu, Hongzhong; Zhao, Tingting; Lei, Biao; Li, Yonghao; Yin, Lei; Shi, Yongsheng; Chen, Bangdao; Lu, Bingheng

    2016-01-01

    Photomechanical nanocomposites embedded with light-absorbing nanoparticles show promising applications in photoresponsive actuations. Near infrared (nIR)-responsive nanocomposites based photomechanical soft actuators can offer lightweight functional and underexploited entry into soft robotics, active optics, drug delivery, etc. A novel graphene-based photomechanical soft actuators, constituted by Polydimethylsiloxane (PDMS)/graphene-nanoplatelets (GNPs) layer (PDMS/GNPs) and pristine PDMS layer, have been constructed. Due to the mismatch of coefficient of thermal expansion of two layers induced by dispersion of GNPs, controllable and reversible bendings response to nIR light irradiation are observed. Interestingly, two different bending behaviors are observed when the nIR light comes from different sides, i.e., a gradual single-step photomechanical bending towards PDMS/GNPs layer when irradiation from PDMS side, while a dual-step bending (finally bending to the PDMS/GNPs side but with an strong and fast backlash at the time of light is on/off) when irradiation from PDMS/GNPs side. The two distinctive photomechanical bending behaviors are investigated in terms of heat transfer and thermal expansion, which reveals that the distinctive bending behaviors can be attributed to the differences in temperature gradients along the thickness when irradiation from different sides. In addition, the versatile photomechanical bending properties will provide alternative way for drug-delivery, soft robotics and microswitches, etc. PMID:27265380

  11. Bending stiffness and interlayer shear modulus of few-layer graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xiaoming; Yi, Chenglin; Ke, Changhong, E-mail: cke@binghamton.edu

    2015-03-09

    Interlayer shear deformation occurs in the bending of multilayer graphene with unconstrained ends, thus influencing its bending rigidity. Here, we investigate the bending stiffness and interlayer shear modulus of few-layer graphene through examining its self-folding conformation on a flat substrate using atomic force microscopy in conjunction with nonlinear mechanics modeling. The results reveal that the bending stiffness of 2–6 layers graphene follows a square-power relationship with its thickness. The interlayer shear modulus is found to be in the range of 0.36–0.49 GPa. The research findings show that the weak interlayer shear interaction has a substantial stiffening effect for multilayer graphene.

  12. 75 FR 18402 - Amendment of Class E Airspace; North Bend, OR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-12

    ...-0831; Airspace Docket No. 09-ANM-13] Amendment of Class E Airspace; North Bend, OR AGENCY: Federal... at Southwest Oregon Regional Airport, North Bend, OR, to allow aircraft at Sunnyhill Airport to... rulemaking to establish additional controlled airspace at North Bend, OR (74 FR 57616). Interested parties...

  13. 77 FR 5169 - Amendment of Class E Airspace; South Bend, IN

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-02

    ...-0250; Airspace Docket No. 11-AGL-6] Amendment of Class E Airspace; South Bend, IN AGENCY: Federal... South Bend, IN, area. Additional controlled airspace is necessary to accommodate new Area Navigation... South Bend, IN, area, creating additional controlled airspace at Jerry Tyler Memorial Airport (76 FR...

  14. Bending Boundary Layers in Laminated-Composite Circular Cylindrical Shells

    NASA Technical Reports Server (NTRS)

    Nemeth, Michael P.; Smeltzer, Stanley S., III

    2000-01-01

    An analytical, parametric study of the attenuation of bending boundary layers or edge effects in balanced and unbalanced, symmetrically and unsymmetrically laminated thin cylindrical shells is presented for nine contemporary material systems. The analysis is based on the linear Sanders-Koiter shell equations and specializations to the Love-Kirchhoff shell equations and Donnell's equations are included. Two nondimensional parameters are identified that characterize and quantify the effects of laminate orthotropy and laminate anisotropy on the bending boundary-layer decay length in a very general and encompassing manner. A substantial number of structural design technology results are presented for a wide range of laminated-composite cylinders. For all the laminate constructions considered, the results show that the differences between results that were obtained with the Sanders-Koiter shell equations, the Love-Kirchhoff shell equations, and Donnell's equations are negligible. The results also show that the effect of anisotropy in the form of coupling between pure bending and twisting has a negligible effect on the size of the bending boundary-layer decay length of the balanced, symmetrically laminated cylinders considered. Moreover, the results show that coupling between the various types of shell anisotropies has a negligible effect on the calculation of the bending boundary-layer decay length in most cases. The results also show that in some cases neglecting the shell anisotropy results in underestimating the bending boundary-layer decay length and in other cases it results in an overestimation.

  15. 36 CFR 7.41 - Big Bend National Park.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Big Bend National Park. 7.41 Section 7.41 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.41 Big Bend National Park. (a) Fishing; closed waters...

  16. 36 CFR 7.41 - Big Bend National Park.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Big Bend National Park. 7.41 Section 7.41 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.41 Big Bend National Park. (a) Fishing; closed waters...

  17. 36 CFR 7.41 - Big Bend National Park.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Big Bend National Park. 7.41 Section 7.41 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.41 Big Bend National Park. (a) Fishing; closed waters...

  18. 36 CFR 7.41 - Big Bend National Park.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false Big Bend National Park. 7.41 Section 7.41 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.41 Big Bend National Park. (a) Fishing; closed waters...

  19. 36 CFR 7.41 - Big Bend National Park.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Big Bend National Park. 7.41 Section 7.41 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.41 Big Bend National Park. (a) Fishing; closed waters...

  20. 78 FR 13843 - Proposed Amendment of Class E Airspace; Bend, OR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-01

    ...-0026; Airspace Docket No. 13-ANM-3] Proposed Amendment of Class E Airspace; Bend, OR AGENCY: Federal... proposes to modify Class E airspace at Bend, OR to accommodate aircraft departing and arriving under Instrument Flight Rules (IFR) at Bend Municipal Airport. This action would enhance the safety and management...

  1. The effects of bending speed on the lumbo-pelvic kinematics and movement pattern during forward bending in people with and without low back pain.

    PubMed

    Tsang, Sharon M H; Szeto, Grace P Y; Li, Linda M K; Wong, Dim C M; Yip, Millie M P; Lee, Raymond Y W

    2017-04-17

    Impaired lumbo-pelvic movement in people with low back pain during bending task has been reported previously. However, the regional mobility and the pattern of the lumbo-pelvic movement were found to vary across studies. The inconsistency of the findings may partly be related to variations in the speed at which the task was executed. This study examined the effects of bending speeds on the kinematics and the coordination lumbo-pelvic movement during forward bending, and to compare the performance of individuals with and without low back pain. The angular displacement, velocity and acceleration of the lumbo-pelvic movement during the repeated forward bending executed at five selected speeds were acquired using the three dimensional motion tracking system in seventeen males with low back pain and eighteen males who were asymptomatic. The regional kinematics and the degree of coordination of the lumbo-pelvic movement during bending was compared and analysed between two groups. Significantly compromised performance in velocity and acceleration of the lumbar spine and hip joint during bending task at various speed levels was shown in back pain group (p < 0.01). Both groups displayed a high degree of coordination of the lumbo-pelvic displacement during forward bending executed across the five levels of speed examined. Significant between-group difference was revealed in the coordination of the lumbo-pelvic velocity and acceleration (p < 0.01). Asymptomatic group moved with a progressively higher degree of lumbo-pelvic coordination for velocity and acceleration while the back pain group adopted a uniform lumbo-pelvic pattern across all the speed levels examined. The present findings show that bending speed imposes different levels of demand on the kinematics and pattern of the lumbo-pelvic movement. The ability to regulate the lumbo-pelvic movement pattern during the bending task that executed at various speed levels was shown only in pain-free individuals but not

  2. Effects of the racket polar moment of inertia on dominant upper limb joint moments during tennis serve.

    PubMed

    Rogowski, Isabelle; Creveaux, Thomas; Chèze, Laurence; Macé, Pierre; Dumas, Raphaël

    2014-01-01

    This study examined the effect of the polar moment of inertia of a tennis racket on upper limb loading in the serve. Eight amateur competition tennis players performed two sets of 10 serves using two rackets identical in mass, position of center of mass and moments of inertia other than the polar moment of inertia (0.00152 vs 0.00197 kg.m2). An eight-camera motion analysis system collected the 3D trajectories of 16 markers, located on the thorax, upper limbs and racket, from which shoulder, elbow and wrist net joint moments and powers were computed using inverse dynamics. During the cocking phase, increased racket polar moment of inertia was associated with significant increases in the peak shoulder extension and abduction moments, as well the peak elbow extension, valgus and supination moments. During the forward swing phase, peak wrist extension and radial deviation moments significantly increased with polar moment of inertia. During the follow-through phase, the peak shoulder adduction, elbow pronation and wrist external rotation moments displayed a significant inverse relationship with polar moment of inertia. During the forward swing, the magnitudes of negative joint power at the elbow and wrist were significantly larger when players served using the racket with a higher polar moment of inertia. Although a larger polar of inertia allows players to better tolerate off-center impacts, it also appears to place additional loads on the upper extremity when serving and may therefore increase injury risk in tennis players.

  3. Flow Structure and Channel Morphology at a Confluent-Meander Bend

    NASA Astrophysics Data System (ADS)

    Riley, J. D.; Rhoads, B. L.

    2009-12-01

    Flow structure and channel morphology in meander bends have been well documented. Channel curvature subjects flow through a bend to centrifugal acceleration, inducing a counterbalancing pressure-gradient force that initiates secondary circulation. Transverse variations in boundary shear stress and bedload transport parallel cross-stream movement of high velocity flow and determine spatial patterns of erosion along the outer bank and deposition along the inner bank. Laboratory experiments and numerical modeling of confluent-meander bends, a junction planform that develops when a tributary joins a meandering river along the outer bank of a bend, suggest that flow and channel morphology in such bends deviate from typical patterns. The purpose of this study is to examine three-dimensional (3-D) flow structure and channel morphology at a natural confluent-meander bend. Field data were collected in southeastern Illinois where Big Muddy Creek joins the Little Wabash River near a local maximum of curvature along an elongated meander loop. Measurements of 3-D velocity components were obtained with an acoustic Doppler current profiler (ADCP) for two flow events with differing momentum ratios. Channel bathymetry was also resolved from the four-beam depths of the ADCP. Analysis of velocity data reveals a distinct shear layer flanked by dual helical cells within the bend immediately downstream of the confluence. Flow from the tributary confines flow from the main channel along the inner part of the channel cross section, displacing the thalweg inward, limiting the downstream extent of the point bar, protecting the outer bank from erosion and enabling bar-building along this bank. Overall, this pattern of flow and channel morphology is quite different from typical patterns in meander bends, but is consistent with a conceptual model derived from laboratory experiments and numerical modeling.

  4. Neutron electric dipole moment from electric and chromoelectric dipole moments of quarks

    NASA Astrophysics Data System (ADS)

    Pospelov, Maxim; Ritz, Adam

    2001-04-01

    Using QCD sum rules, we calculate the electric dipole moment of the neutron dn induced by all CP violating operators up to dimension five. We find that the chromoelectric dipole moments of quarks d~i, including that of the strange quark, provide significant contributions comparable in magnitude to those induced by the quark electric dipole moments di. When the theta term is removed via the Peccei-Quinn symmetry, the strange quark contribution is also suppressed and dn=(1+/-0.5)\\{0.55e(d~d+0.5d~u)+0.7(dd-0.25du)\\}.

  5. Vibration and Stability of Pretwisted Spinning Thin-Walled Composite Beams Featuring BENDING-BENDING Elastic Coupling

    NASA Astrophysics Data System (ADS)

    SONG, O.; JEONG, N.-H.; LIBRESCU, L.

    2000-10-01

    A number of issues related to the modelling, vibration and stability of anisotropic pretwisted beams rotating at constant angular speed about the longitudinal body-axis fixed in the inertial space are investigated. The analysis is carried out in the framework of a refined theory of thin-walled anisotropic composite beams featuring bending-bending elastic coupling, and encompassing a number of non-classical features such as transverse-shear, anisotropy and pretwist. Special attention is paid to the effect of the spinning speed, pretwist angle, axial compressive load and symmetry/non-symmetry of the beam cross-section on natural frequencies and instability of the structural system. Numerical illustrations highlighting their implication on vibration and stability are displayed and pertinent conclusions are outlined.

  6. Innovative remotely-controlled bending device for thin silicon and germanium crystals

    NASA Astrophysics Data System (ADS)

    De Salvador, D.; Carturan, S.; Mazzolari, A.; Bagli, E.; Bandiera, L.; Durighello, C.; Germogli, G.; Guidi, V.; Klag, P.; Lauth, W.; Maggioni, G.; Romagnoni, M.; Sytov, A.

    2018-04-01

    Steering of negatively charged particle beams below 1 GeV has demonstrated to be possible with thin bent silicon and germanium crystals. A newly designed mechanical holder was used for bending crystals, since it allows a remotely-controlled adjustment of crystal bending and compensation of unwanted torsion. Bent crystals were installed and tested at the MAMI Mainz MIcrotron to achieve steering of 0.855-GeV electrons at different bending radii. We report the description and characterization of the innovative bending device developed at INFN Laboratori Nazionali di Legnaro (LNL).

  7. The implication of DNA bending energy for nucleosome positioning and sliding.

    PubMed

    Liu, Guoqing; Xing, Yongqiang; Zhao, Hongyu; Cai, Lu; Wang, Jianying

    2018-06-11

    Nucleosome not only directly affects cellular processes, such as DNA replication, recombination, and transcription, but also severs as a fundamentally important target of epigenetic modifications. Our previous study indicated that the bending property of DNA is important in nucleosome formation, particularly in predicting the dyad positions of nucleosomes on a DNA segment. Here, we investigated the role of bending energy in nucleosome positioning and sliding in depth to decipher sequence-directed mechanism. The results show that bending energy is a good physical index to predict the free energy in the process of nucleosome reconstitution in vitro. Our data also imply that there are at least 20% of the nucleosomes in budding yeast do not adopt canonical positioning, in which underlying sequences wrapped around histones are structurally symmetric. We also revealed distinct patterns of bending energy profile for distinctly organized chromatin structures, such as well-positioned nucleosomes, fuzzy nucleosomes, and linker regions and discussed nucleosome sliding in terms of bending energy. We proposed that the stability of a nucleosome is positively correlated with the strength of the bending anisotropy of DNA segment, and both accessibility and directionality of nucleosome sliding is likely to be modulated by diverse patterns of DNA bending energy profile.

  8. Effects of the Racket Polar Moment of Inertia on Dominant Upper Limb Joint Moments during Tennis Serve

    PubMed Central

    Rogowski, Isabelle; Creveaux, Thomas; Chèze, Laurence; Macé, Pierre; Dumas, Raphaël

    2014-01-01

    This study examined the effect of the polar moment of inertia of a tennis racket on upper limb loading in the serve. Eight amateur competition tennis players performed two sets of 10 serves using two rackets identical in mass, position of center of mass and moments of inertia other than the polar moment of inertia (0.00152 vs 0.00197 kg.m2). An eight-camera motion analysis system collected the 3D trajectories of 16 markers, located on the thorax, upper limbs and racket, from which shoulder, elbow and wrist net joint moments and powers were computed using inverse dynamics. During the cocking phase, increased racket polar moment of inertia was associated with significant increases in the peak shoulder extension and abduction moments, as well the peak elbow extension, valgus and supination moments. During the forward swing phase, peak wrist extension and radial deviation moments significantly increased with polar moment of inertia. During the follow-through phase, the peak shoulder adduction, elbow pronation and wrist external rotation moments displayed a significant inverse relationship with polar moment of inertia. During the forward swing, the magnitudes of negative joint power at the elbow and wrist were significantly larger when players served using the racket with a higher polar moment of inertia. Although a larger polar of inertia allows players to better tolerate off-center impacts, it also appears to place additional loads on the upper extremity when serving and may therefore increase injury risk in tennis players. PMID:25117871

  9. Effect of ball geometry on endurance limit in bending of drilled balls

    NASA Technical Reports Server (NTRS)

    Munson, H. E.

    1975-01-01

    Four designs of drilled (cylindrically hollow) balls were tested for resistance to bending fatigue. Bending fatigue has been demonstrated to be a limiting factor in previous evaluations of the drilled ball concept. A web reinforced drilled ball was most successful in resisting bending fatigue. Another design of through drilled design, involving a heavier wall than the standard reference ball, also showed significant improvement in resistance to bending fatigue.

  10. Analytical investigation in bending characteristic of twisted stacked-tape cable conductor

    NASA Astrophysics Data System (ADS)

    Takayasu, Makoto; Chiesa, Luisa

    2015-12-01

    An analytical model to evaluate bending strains of a twisted stack-tape cable (TSTC) conductor has been developed. Through a comparison with experimental results obtained for a soldered 32-tape YBCO TSTC conductor, it has been found that a Perfect-Slip Model (PSM) taking into account the slipping between tapes in a stacked-tape cable during bending gives much better estimation of the bending performance compared to a No-Slip Model (NSM). In the PSM case the tapes can slip so that the internal longitudinal axial strain can be released. The longitudinal strains of compression and tension regions along the tape are balanced in one twist-pitch and cancel out evenly in a long cable. Therefore, in a cable the strains due to bending can be minimized. This is an important advantage of a TSTC conductor. The effect of the cable diameter size on the bending strain is also expected to be minor, and all tapes composing a TSTC conductor have the same strain response under bending, therefore the cable critical current can be characterized from a single tape behaviour.

  11. Superelastic tension and bending characteristics of shape memory alloys

    NASA Astrophysics Data System (ADS)

    Bundara, B.; Tokuda, M.; Kuselj, B.; Ule, B.; Tuma, J. V.

    2000-08-01

    The objective of this study was to develop a numerical model of the superelastic behavior of shape memory alloys (SMA) on a macro-scale level. Results from a study on this behavior under tension and pure bending tests are presented and discussed. Two SMA samples were used in the experimental work and subjected to various loading paths in tension and pure bending: a single crystalline CuZnAl alloy and polycrystalline NiTi wire. Bending tests were performed under a pure bending loading condition on a new testing apparatus designed for the specific needs of this study. The experimental part of this study focused mainly on the response of the SMA to the loading paths in a quasi-plastic domain where the deformation mechanism is dominantly governed by the stress-induced martensitic transformation. Experimental results obtained from the NiTi polycrystals by tensile tests indicate that the superelastic SMA exhibits sufficient repeatability useful enough for a modeling task, while similar results obtained from the single crystalline CuZnAl indicate that the same modeling approach is not easily feasible. The facts have been qualitatively verified by the experimental data from pure bending tests, and a further area as study is suggested.

  12. Finite element residual stress analysis of induction heating bended ferritic steel piping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kima, Jong Sung; Kim, Kyoung-Soo; Oh, Young-Jin

    2014-10-06

    Recently, there is a trend to apply the piping bended by induction heating process to nuclear power plants. Residual stress can be generated due to thermo-mechanical mechanism during the induction heating bending process. It is well-known that the residual stress has important effect on crack initiation and growth. The previous studies have focused on the thickness variation. In part, some studies were performed for residual stress evaluation of the austenitic stainless steel piping bended by induction heating. It is difficult to find the residual stresses of the ferritic steel piping bended by the induction heating. The study assessed the residualmore » stresses of induction heating bended ferriticsteel piping via finite element analysis. As a result, it was identified that high residual stresses are generated on local outersurface region of the induction heating bended ferritic piping.« less

  13. Usage of information safety requirements in improving tube bending process

    NASA Astrophysics Data System (ADS)

    Livshitz, I. I.; Kunakov, E.; Lontsikh, P. A.

    2018-05-01

    This article is devoted to an improvement of the technological process's analysis with the information security requirements implementation. The aim of this research is the competition increase analysis in aircraft industry enterprises due to the information technology implementation by the example of the tube bending technological process. The article analyzes tube bending kinds and current technique. In addition, a potential risks analysis in a tube bending technological process is carried out in terms of information security.

  14. Strength measurement of optical fibers by bending

    NASA Astrophysics Data System (ADS)

    Srubshchik, Leonid S.

    1999-01-01

    A two-point bending technique has been used not only to measure the breaking stress of optical fiber but also to predict its static and dynamic fatigue. The present theory of this test is based on elastica theory of rod. However, within the limits of elastica theory the tensile and shear stresses cannot be determined. In this paper we study dynamic and static problems for optical fiber in the two- point bending test on the base of geometrically exact theory in which rod can suffer flexure, extension, and shear. We obtain the governing partial differential equations taking into account the fact that the lateral motion of the fiber is restrained by the presence of flat parallel plates. We develop the computational methods for solving the initial and equilibrium free-boundary nonlinear planar problems. We derive the formulas for predicting of the tensile strength from strength in the bending and calculate one example.

  15. Bending Rigidity of 2D Silica.

    PubMed

    Büchner, C; Eder, S D; Nesse, T; Kuhness, D; Schlexer, P; Pacchioni, G; Manson, J R; Heyde, M; Holst, B; Freund, H-J

    2018-06-01

    A chemically stable bilayers of SiO_{2} (2D silica) is a new, wide band gap 2D material. Up till now graphene has been the only 2D material where the bending rigidity has been measured. Here we present inelastic helium atom scattering data from 2D silica on Ru(0001) and extract the first bending rigidity, κ, measurements for a nonmonoatomic 2D material of definable thickness. We find a value of κ=8.8  eV±0.5  eV which is of the same order of magnitude as theoretical values in the literature for freestanding crystalline 2D silica.

  16. Bending Rigidity of 2D Silica

    NASA Astrophysics Data System (ADS)

    Büchner, C.; Eder, S. D.; Nesse, T.; Kuhness, D.; Schlexer, P.; Pacchioni, G.; Manson, J. R.; Heyde, M.; Holst, B.; Freund, H.-J.

    2018-06-01

    A chemically stable bilayers of SiO2 (2D silica) is a new, wide band gap 2D material. Up till now graphene has been the only 2D material where the bending rigidity has been measured. Here we present inelastic helium atom scattering data from 2D silica on Ru(0001) and extract the first bending rigidity, κ , measurements for a nonmonoatomic 2D material of definable thickness. We find a value of κ =8.8 eV ±0.5 eV which is of the same order of magnitude as theoretical values in the literature for freestanding crystalline 2D silica.

  17. Stiffness and ultimate load of osseointegrated prosthesis fixations in the upper and lower extremity

    PubMed Central

    2013-01-01

    Background Techniques for the skeletal attachment of amputation-prostheses have been developed over recent decades. This type of attachment has only been performed on a small number of patients. It poses various potential advantages compared to conventional treatment with a socket, but is also associated with an increased risk of bone or implant-bone interface fracture in the case of a fall. We therefore investigated the bending stiffness and ultimate bending moment of such devices implanted in human and synthetic bones. Methods Eight human specimens and 16 synthetic models of the proximal femora were implanted with lower extremity prostheses and eight human specimens and six synthetic humeri were implanted with upper extremity prostheses. They were dissected according to typical amputation levels and underwent loading in a material testing machine in a four-point bending setup. Bending stiffness, ultimate bending moment and fracture modes were determined in a load to failure experiment. Additionally, axial pull-out was performed on eight synthetic specimens of the lower extremity. Results Maximum bending moment of the synthetic femora was 160.6±27.5 Nm, the flexural rigidity of the synthetic femora was 189.0±22.6 Nm2. Maximum bending moment of the human femora was 100.4±38.5 Nm, and the flexural rigidity was 137.8±29.4 Nm2. The maximum bending moment of the six synthetic humeri was 104.9±19.0 Nm, and the flexural rigidity was 63.7±3.6 Nm2. For the human humeri the maximum bending moment was 36.7±11.0 Nm, and the flexural rigidity at was 43.7±10.5 Nm2. The maximum pull-out force for the eight synthetic femora was 3571±919 N. Conclusion Significant differences were found between human and synthetic specimens of the lower and upper extremity regarding maximum bending moment, bending displacement and flexural rigidity. The results of this study are relevant with respect to previous finding regarding the load at the interfaces of osseointegrated prosthesis

  18. Stiffness and ultimate load of osseointegrated prosthesis fixations in the upper and lower extremity.

    PubMed

    Welke, Bastian; Hurschler, Christof; Föller, Marie; Schwarze, Michael; Calliess, Tilman

    2013-07-11

    Techniques for the skeletal attachment of amputation-prostheses have been developed over recent decades. This type of attachment has only been performed on a small number of patients. It poses various potential advantages compared to conventional treatment with a socket, but is also associated with an increased risk of bone or implant-bone interface fracture in the case of a fall. We therefore investigated the bending stiffness and ultimate bending moment of such devices implanted in human and synthetic bones. Eight human specimens and 16 synthetic models of the proximal femora were implanted with lower extremity prostheses and eight human specimens and six synthetic humeri were implanted with upper extremity prostheses. They were dissected according to typical amputation levels and underwent loading in a material testing machine in a four-point bending setup. Bending stiffness, ultimate bending moment and fracture modes were determined in a load to failure experiment. Additionally, axial pull-out was performed on eight synthetic specimens of the lower extremity. Maximum bending moment of the synthetic femora was 160.6±27.5 Nm, the flexural rigidity of the synthetic femora was 189.0±22.6 Nm2. Maximum bending moment of the human femora was 100.4±38.5 Nm, and the flexural rigidity was 137.8±29.4 Nm2. The maximum bending moment of the six synthetic humeri was 104.9±19.0 Nm, and the flexural rigidity was 63.7±3.6 Nm2. For the human humeri the maximum bending moment was 36.7±11.0 Nm, and the flexural rigidity at was 43.7±10.5 Nm2. The maximum pull-out force for the eight synthetic femora was 3571±919 N. Significant differences were found between human and synthetic specimens of the lower and upper extremity regarding maximum bending moment, bending displacement and flexural rigidity. The results of this study are relevant with respect to previous finding regarding the load at the interfaces of osseointegrated prosthesis fixation devices and are crucial for the

  19. Moment Tensor Analysis of Shallow Sources

    NASA Astrophysics Data System (ADS)

    Chiang, A.; Dreger, D. S.; Ford, S. R.; Walter, W. R.; Yoo, S. H.

    2015-12-01

    A potential issue for moment tensor inversion of shallow seismic sources is that some moment tensor components have vanishing amplitudes at the free surface, which can result in bias in the moment tensor solution. The effects of the free-surface on the stability of the moment tensor method becomes important as we continue to investigate and improve the capabilities of regional full moment tensor inversion for source-type identification and discrimination. It is important to understand these free surface effects on discriminating shallow explosive sources for nuclear monitoring purposes. It may also be important in natural systems that have shallow seismicity such as volcanoes and geothermal systems. In this study, we apply the moment tensor based discrimination method to the HUMMING ALBATROSS quarry blasts. These shallow chemical explosions at approximately 10 m depth and recorded up to several kilometers distance represent rather severe source-station geometry in terms of vanishing traction issues. We show that the method is capable of recovering a predominantly explosive source mechanism, and the combined waveform and first motion method enables the unique discrimination of these events. Recovering the correct yield using seismic moment estimates from moment tensor inversion remains challenging but we can begin to put error bounds on our moment estimates using the NSS technique.

  20. Wire-bending test as a predictor of preclinical performance by dental students.

    PubMed

    Kao, E C; Ngan, P W; Wilson, S; Kunovich, R

    1990-10-01

    Traditional Dental Aptitude Test and academic grade point average have been shown to be poor predictors of clinical performance by dental students. To refine predictors of psychomotor skills, a wire-bending test was given to 105 freshmen at the beginning of their dental education. Grades from seven restorative preclinical courses in their freshman and sophomore years were compared to scores on wire bending and the three traditional predictors: GPA, academic aptitude, and perceptual aptitude scores. Wire-bending scores correlated significantly with six out of seven preclinical restorative courses. The predictive power for preclinical performance was doubled when wire bending was added to traditional predictors in stepwise multiple regression analysis. Wire-bending scores identified students of low performance. These preliminary results suggest that the wire-bending test shows some potential as a screening test for identifying students who may hae psychomotor difficulties, early in their dental education.

  1. Wormlike Chain Theory and Bending of Short DNA

    NASA Astrophysics Data System (ADS)

    Mazur, Alexey K.

    2007-05-01

    The probability distributions for bending angles in double helical DNA obtained in all-atom molecular dynamics simulations are compared with theoretical predictions. The computed distributions remarkably agree with the wormlike chain theory and qualitatively differ from predictions of the subelastic chain model. The computed data exhibit only small anomalies in the apparent flexibility of short DNA and cannot account for the recently reported AFM data. It is possible that the current atomistic DNA models miss some essential mechanisms of DNA bending on intermediate length scales. Analysis of bent DNA structures reveal, however, that the bending motion is structurally heterogeneous and directionally anisotropic on the length scales where the experimental anomalies were detected. These effects are essential for interpretation of the experimental data and they also can be responsible for the apparent discrepancy.

  2. A Novel Low-Cost, Large Curvature Bend Sensor Based on a Bowden-Cable

    PubMed Central

    Jeong, Useok; Cho, Kyu-Jin

    2016-01-01

    Bend sensors have been developed based on conductive ink, optical fiber, and electronic textiles. Each type has advantages and disadvantages in terms of performance, ease of use, and cost. This study proposes a new and low-cost bend sensor that can measure a wide range of accumulated bend angles with large curvatures. This bend sensor utilizes a Bowden-cable, which consists of a coil sheath and an inner wire. Displacement changes of the Bowden-cable’s inner wire, when the shape of the sheath changes, have been considered to be a position error in previous studies. However, this study takes advantage of this position error to detect the bend angle of the sheath. The bend angle of the sensor can be calculated from the displacement measurement of the sensing wire using a Hall-effect sensor or a potentiometer. Simulations and experiments have shown that the accumulated bend angle of the sensor is linearly related to the sensor signal, with an R-square value up to 0.9969 and a root mean square error of 2% of the full sensing range. The proposed sensor is not affected by a bend curvature of up to 80.0 m−1, unlike previous bend sensors. The proposed sensor is expected to be useful for various applications, including motion capture devices, wearable robots, surgical devices, or generally any device that requires an affordable and low-cost bend sensor. PMID:27347959

  3. In situ transmission electron microscopy of individual carbon nanotetrahedron/ribbon structures in bending

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kohno, Hideo, E-mail: kohno.hideo@kochi-tech.ac.jp; Masuda, Yusuke

    2015-05-11

    When the direction of flattening of a carbon nanotube changes during growth mediated by a metal nanoparticle, a carbon nanotetrahedron is formed in the middle of the carbon nanoribbon. We report the bending properties of the carbon nanotetrahedron/nanoribbon structure using a micro-manipulator system in a transmission electron microscope. In many cases, bending occurs at an edge of the carbon nanotetrahedron. No significant change is observed in the tetrahedron's shape during bending, and the bending is reversible and repeatable. Our results show that the carbon nanotetrahedron/nanoribbon structure has good durability against mechanical bending.

  4. Isotope effect in normal-to-local transition of acetylene bending modes

    DOE PAGES

    Ma, Jianyi; Xu, Dingguo; Guo, Hua; ...

    2012-01-01

    The normal-to-local transition for the bending modes of acetylene is considered a prelude to its isomerization to vinylidene. Here, such a transition in fully deuterated acetylene is investigated using a full-dimensional quantum model. It is found that the local benders emerge at much lower energies and bending quantum numbers than in the hydrogen isotopomer HCCH. This is accompanied by a transition to a second kind of bending mode called counter-rotator, again at lower energies and quantum numbers than in HCCH. These transitions are also investigated using bifurcation analysis of two empirical spectroscopic fitting Hamiltonians for pure bending modes, which helpsmore » to understand the origin of the transitions semiclassically as branchings or bifurcations out of the trans and normal bend modes when the latter become dynamically unstable. The results of the quantum model and the empirical bifurcation analysis are in very good agreement.« less

  5. Enhanced Transmissions Through Three-dimensional Cascade Sharp Waveguide Bends Using C-slit Diaphragms.

    PubMed

    Yang, Rui; Hu, Bowei; Zhang, Aofang; Gao, Dongxing; Wang, Hui; Shi, Ayuan; Lei, Zhenya; Yang, Pei

    2017-03-21

    Transmission properties through sharp rectangular waveguide bends are investigated to determine the cut-off bending angles of the wave propagation. We show that a simple metallic diaphragm at the bending corner with properly devised sub-wavelength defect apertures of C-slits would be readily to turn on the transmissions with scarce reflections of the propagating modes, while preserving the integrity of the transmitting fields soon after the bends. In particularly, our design also demonstrates the capability of eliminating all the unwanted cavity resonant transmissions that exist in the three-dimensional cascade sharp waveguide bends, and solely let the desired signals travel along the whole passage of the waveguide. The present approach, using C-slit diaphragms to support the sharp bending behaviors of the guided waves with greatly enhanced transmissions, would be especially effective in constructing novel waveguides and pave the way for the development of more compact and miniaturized electromagnetic systems that exploit these waveguide bends.

  6. 76 FR 49385 - Proposed Amendment of Class E Airspace; South Bend, IN

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-10

    ...-0250; Airspace Docket No. 11-AGL-6] Proposed Amendment of Class E Airspace; South Bend, IN AGENCY... action proposes to amend Class E airspace in the South Bend, IN area. Additional controlled airspace is... (IFR) operations for SIAPs at the airport. The geographic coordinates for South Bend Regional Airport...

  7. Holey fibers for low bend loss

    NASA Astrophysics Data System (ADS)

    Nakajima, Kazuhide; Saito, Kotaro; Yamada, Yusuke; Kurokawa, Kenji; Shimizu, Tomoya; Fukai, Chisato; Matsui, Takashi

    2013-12-01

    Bending-loss insensitive fiber (BIF) has proved an essential medium for constructing the current fiber to the home (FTTH) network. By contrast, the progress that has been made on holey fiber (HF) technologies provides us with novel possibilities including non-telecom applications. In this paper, we review recent progress on hole-assisted type BIF. A simple design consideration is overviewed. We then describe some of the properties of HAF including its mechanical reliability. Finally, we introduce some applications of HAF including to high power transmission. We show that HAF with a low bending loss has the potential for use in various future optical technologies as well as in the optical communication network.

  8. Effects of repeated bending load at room temperature for composite Nb3Sn wires

    NASA Astrophysics Data System (ADS)

    Awaji, Satoshi; Watanabe, Kazuo; Katagiri, Kazumune

    2003-09-01

    In order to realize a react and wind (R&W) method for Nb3Sn wires, the influences of a bending load at room temperature are investigated. Usually, the superconducting wires undergo bending loads at room temperature repeatedly during winding and insulation processes. We define these bending loads as 'pre-bending' treatments. We applied the pre-bending strain of 0 and 0.5% to the highly strengthened CuNb/(Nb, Ti)3Sn wires, and measured the stress/strain properties and critical currents. The improvements of stress dependence of normalized critical current and the increase of the maximum critical current by the pre-bending treatments were found. The model based on the distribution of the local tensile strain as a bending strain describes the experimental results well without the increase of the maximum critical current. When the pre-bending strain was applied, the calculated results indicate that the mechanical properties are improved due to the local work hardening, and hence the stress dependence of Ic increases.

  9. The relationship of intravascular bubbles to bends at altitude

    NASA Technical Reports Server (NTRS)

    Krutz, R. W.; Dixon, G. A.; Olson, R. M.; Moore, A. A.

    1986-01-01

    In response to recent findings attesting to a correlation between intravehicular bubbling and decompression sickness at intermediate altitudes, an attempt was made to define a minimum pressure for a pressure suit which would obviate the need for prebreathing 100 percent oxygen prior to extravehicular activity (EVA). Fifty-seven male subjects were exposed to altitudes ranging from 16,000 to 30,000 ft in two separate protocols. The first was designed to determine a pressure at which no bends occurred if a crewmember were decompressed from a sea level space station pressure just prior to EVA without prebreathing 100 percent oxygen. The other study was designed to define an altitude and exercise regimen at which bends-susceptible and bends-resistant crewmembers could be separated. It is shown that the close association which exists between severe bubbling and bends at a pressure altitude of 4.3 psia (30,000 ft) decreases as pressure is increased and essentially disappears at pressures less than or equal to 7.8 psia (16,000 ft).

  10. Experimental Evaluation of Beam to Diamond Box Column Connection with Through Plate in Moment Frames

    NASA Astrophysics Data System (ADS)

    Keshavarzi, Farhad; Mirghaderi, Rasoul; Torabian, Shahabeddin; Imanpour, Ali

    2008-07-01

    Moment resisting frames with built up section have very enhanced features due to high bending stiffness and strength characteristics in two principal axes and access to column faces for beam to column easy connections. But due to proper transfer of beam stresses to column faces there were always some specific controvertibly issues that how to make the load transfer through and in plane manner in order to mobilize the forces in column faces. Using diamond column instead of box column provide possibility to mobilize the load transfer mechanism in column faces. This section as a column has considerable benefit such as high plastic to elastic section modulus ratio which is an effective factor for force controlled components. Typical connection has no chance to be applied with diamond column. This paper elucidates the seismic behavior of through-plates moment connections to diamond box columns for use in steel moment resisting frames. This connection has a lot of economical benefits such as no need to horizontal continuity plates and satisfying the weak beam—strong column criteria in the connection region. They might serve as panel zone plates as well. According to high shear demand in panel zone of beam to column joint one should use the doublers plates in order to decrease the shear strength demand in this sensitive part of structure but these plates have no possibility to mobilize the load transfer mechanism in column web and transfer them to column flanges. In this type of connection, column faces have effective role in order to decrease the demands on through plate and they are impressive factors for improving the performance of the connection. Experimental analysis was conducted to elucidate the seismic behavior of this connection. The results of Experimental analysis established the effectiveness of the through plate in mitigating local stress concentrations and forming the plastic hinge zone in the beam away from the beam to column interface. The moment

  11. Contact and Bending Durability Calculation for Spiral-Bevel Gears

    NASA Technical Reports Server (NTRS)

    Vijayakar, Sandeep

    2016-01-01

    The objective of this project is to extend the capabilities of the gear contact analysis solver Calyx, and associated packages Transmission3D, HypoidFaceMilled, HypoidFaceHobbed. A calculation process for the surface durability was implemented using the Dowson-Higginson correlation for fluid film thickness. Comparisons to failure data from NASA's Spiral Bevel Gear Fatigue rig were carried out. A bending fatigue calculation has been implemented that allows the use of the stress-life calculation at each individual fillet point. The gears in the NASA test rig did not exhibit any bending fatigue failure, so the bending fatigue calculations are presented in this report by using significantly lowered strength numbers.

  12. 46 CFR 56.80-15 - Heat treatment of bends and formed components.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Heat treatment of bends and formed components. 56.80-15... PIPING SYSTEMS AND APPURTENANCES Bending and Forming § 56.80-15 Heat treatment of bends and formed... forming requires no subsequent heat treatment. (b) Ferritic alloy steel piping which has been heated for...

  13. 46 CFR 56.80-15 - Heat treatment of bends and formed components.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Heat treatment of bends and formed components. 56.80-15... PIPING SYSTEMS AND APPURTENANCES Bending and Forming § 56.80-15 Heat treatment of bends and formed... forming requires no subsequent heat treatment. (b) Ferritic alloy steel piping which has been heated for...

  14. 46 CFR 56.80-15 - Heat treatment of bends and formed components.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Heat treatment of bends and formed components. 56.80-15... PIPING SYSTEMS AND APPURTENANCES Bending and Forming § 56.80-15 Heat treatment of bends and formed... forming requires no subsequent heat treatment. (b) Ferritic alloy steel piping which has been heated for...

  15. 46 CFR 56.80-15 - Heat treatment of bends and formed components.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Heat treatment of bends and formed components. 56.80-15... PIPING SYSTEMS AND APPURTENANCES Bending and Forming § 56.80-15 Heat treatment of bends and formed... forming requires no subsequent heat treatment. (b) Ferritic alloy steel piping which has been heated for...

  16. 46 CFR 56.80-15 - Heat treatment of bends and formed components.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Heat treatment of bends and formed components. 56.80-15... PIPING SYSTEMS AND APPURTENANCES Bending and Forming § 56.80-15 Heat treatment of bends and formed... forming requires no subsequent heat treatment. (b) Ferritic alloy steel piping which has been heated for...

  17. Measurement of turbulent flow upstream and downstream of a circular pipe bend

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakakibara, Jun; Machida, Nobuteru

    2012-04-15

    We measured velocity distribution in cross sections of a fully developed turbulent pipe flow upstream and downstream of a 90 degree sign bend by synchronizing two sets of a particle image velocimetry (PIV) system. Unsteady undulation of Dean vortices formed downstream from the bend was characterized by the azimuthal position of the stagnation point found on the inner and outer sides of the bend. Linear stochastic estimation was applied to capture the upstream flow field conditioned by the azimuthal location of the stagnation point downstream from the bend. When the inner-side stagnation point stayed below (above) the symmetry plane, themore » conditional streamwise velocity upstream from the bend exhibited high-speed streaks extended in a quasi-streamwise direction on the outer side of the curvature above (below) the symmetry plane.« less

  18. Potential effect of stand structure on belowground allocation

    Treesearch

    Thomas J. Dean

    2001-01-01

    Stand structure affects two key variables that affect biomass allocation to the stem: leaf area and height to the center of the crown. By translating wind forces into bending moment, these variables generate bending stress within a stem. The uniform stress axiom of stem formation can be used to calculate current stem mass for a given bending moment and stem allocation...

  19. Springback Mechanism Analysis and Experiments on Robotic Bending of Rectangular Orthodontic Archwire

    NASA Astrophysics Data System (ADS)

    Jiang, Jin-Gang; Han, Ying-Shuai; Zhang, Yong-De; Liu, Yan-Jv; Wang, Zhao; Liu, Yi

    2017-11-01

    Fixed-appliance technology is the most common and effective malocclusion orthodontic treatment method, and its key step is the bending of orthodontic archwire. The springback of archwire did not consider the movement of the stress-strain-neutral layer. To solve this problem, a springback calculation model for rectangular orthodontic archwire is proposed. A bending springback experiment is conducted using an orthodontic archwire bending springback measurement device. The springback experimental results show that the theoretical calculation results using the proposed model coincide better with the experimental testing results than when movement of the stress-strain-neutral layer was not considered. A bending experiment with rectangular orthodontic archwire is conducted using a robotic orthodontic archwire bending system. The patient expriment result show that the maximum and minimum error ratios of formed orthodontic archwire parameters are 22.46% and 10.23% without considering springback and are decreased to 11.35% and 6.13% using the proposed model. The proposed springback calculation model, which considers the movement of the stress-strain-neutral layer, greatly improves the orthodontic archwire bending precision.

  20. Preliminary analysis of dynamic stall effects on a 91-meter wind turbine rotor

    NASA Technical Reports Server (NTRS)

    Wilson, Robert E.

    1995-01-01

    Analytical investigation of dynamic stall on HAWT (horizontal-axis wind turbines) rotor loads was conducted. Dynamic stall was modeled using the Gormont approach on the MOD-2 rotor, treating the blade as a rigid body teetering about a fixed axis. Blade flapwise bending moments at station 370 were determined with and without dynamic stall for spatial variations in local wind speed due to wind shear and yaw. The predicted mean flapwise bending moments were found to be in good agreement with test results. Results obtained with and without dynamic stall showed no significant difference for the mean flapwise bending moment. The cyclic bending moments calculated with and without dynamic stall effects were substantially the same. None of the calculated cyclic loads reached the level of the cyclic loads measured on the MOD-2 using the Boeing five-minute-average technique.

  1. Behavior of sandwich panels subjected to bending fatigue, axial compression loading and in-plane bending

    NASA Astrophysics Data System (ADS)

    Mathieson, Haley Aaron

    This thesis investigates experimentally and analytically the structural performance of sandwich panels composed of glass fibre reinforced polymer (GFRP) skins and a soft polyurethane foam core, with or without thin GFRP ribs connecting skins. The study includes three main components: (a) out-of-plane bending fatigue, (b) axial compression loading, and (c) in-plane bending of sandwich beams. Fatigue studies included 28 specimens and looked into establishing service life (S-N) curves of sandwich panels without ribs, governed by soft core shear failure and also ribbed panels governed by failure at the rib-skin junction. Additionally, the study compared fatigue life curves of sandwich panels loaded under fully reversed bending conditions (R=-1) with panels cyclically loaded in one direction only (R=0) and established the stiffness degradation characteristics throughout their fatigue life. Mathematical models expressing fatigue life and stiffness degradation curves were calibrated and expanded forms for various loading ratios were developed. Approximate fatigue thresholds of 37% and 23% were determined for non-ribbed panels loaded at R=0 and -1, respectively. Digital imaging techniques showed significant shear contribution significantly (90%) to deflections if no ribs used. Axial loading work included 51 specimens and examined the behavior of panels of various lengths (slenderness ratios), skin thicknesses, and also panels of similar length with various rib configurations. Observed failure modes governing were global buckling, skin wrinkling or skin crushing. In-plane bending involved testing 18 sandwich beams of various shear span-to-depth ratios and skin thicknesses, which failed by skin wrinkling at the compression side. The analytical modeling components of axially loaded panels include; a simple design-oriented analytical failure model and a robust non-linear model capable of predicting the full load-displacement response of axially loaded slender sandwich panels

  2. Stress Corrosion Cracking of Basalt/Epoxy Composites under Bending Loading

    NASA Astrophysics Data System (ADS)

    Shokrieh, Mahmood M.; Memar, Mahdi

    2010-04-01

    The purpose of this research is to study the stress corrosion behavior of basalt/epoxy composites under bending loading and submerged in 5% sulfuric acid corrosive medium. There are limited numbers of research in durability of fiber reinforced polymer composites. Moreover, studies on basalt fibers and its composites are very limited. In this research, mechanical property degradation of basalt/epoxy composites under bending loading and submerged in acidic corrosive medium is investigated. Three states of stress, equal to 30%, 50% and 70% of the ultimate strength of composites, are applied on samples. High stress states are applied to the samples to accelerate the testing procedure. Mechanical properties degradation consists of bending strength, bending modulus of elasticity and fracture energy of samples are examined. Also, a normalized strength degradation model for stress corrosion condition is presented. Finally, microscopic images of broken cross sections of samples are examined.

  3. Pistil and stamen of lily flowers bend upward by light.

    PubMed

    Shimizu, Minobu; Tomita-Yokotani, Kaori; Nakamura, Teruko; Yamashita, Masamichi

    2003-10-01

    Pistil and stamen of lily flowers bend upward. Such tropic response at sensing external stimuli increases the success of pollination in these flowers and improve their adaptability. They do not bend under the dark, but toward light irradiated. From these observation, lily flowers is concluded that they equip phototropic mechanism to sense direction of incident light and control differential elongation of pistil and stamen. Action spectrum of light for this tropism was found similar to those for the phototropism shown in coleoptiles of monocotyledonous plants. Image analysis of pistil and stamen indicates that elongation and bending does not proceed uniformly over those organs. In the case of pistil, elongation starts at its basal part and propagates towards its top after opening of perianth. Steep bending occurs at the basal zone of pistil as long as differential incidence of light is given at its part.

  4. Crack opening area estimates in pressurized through-wall cracked elbows under bending

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franco, C.; Gilles, P.; Pignol, M.

    1997-04-01

    One of the most important aspects in the leak-before-break approach is the estimation of the crack opening area corresponding to potential through-wall cracks at critical locations during plant operation. In order to provide a reasonable lower bound to the leak area under such loading conditions, numerous experimental and numerical programs have been developed in USA, U.K. and FRG and widely discussed in literature. This paper aims to extend these investigations on a class of pipe elbows characteristic of PWR main coolant piping. The paper is divided in three main parts. First, a new simplified estimation scheme for leakage area ismore » described, based on the reference stress method. This approach mainly developed in U.K. and more recently in France provides a convenient way to account for the non-linear behavior of the material. Second, the method is carried out for circumferential through-wall cracks located in PWR elbows subjected to internal pressure. Finite element crack area results are presented and comparisons are made with our predictions. Finally, in the third part, the discussion is extended to elbows under combined pressure and in plane bending moment.« less

  5. Mathematical model of polyethylene pipe bending stress state

    NASA Astrophysics Data System (ADS)

    Serebrennikov, Anatoly; Serebrennikov, Daniil

    2018-03-01

    Introduction of new machines and new technologies of polyethylene pipeline installation is usually based on the polyethylene pipe flexibility. It is necessary that existing bending stresses do not lead to an irreversible polyethylene pipe deformation and to violation of its strength characteristics. Derivation of the mathematical model which allows calculating analytically the bending stress level of polyethylene pipes with consideration of nonlinear characteristics is presented below. All analytical calculations made with the mathematical model are experimentally proved and confirmed.

  6. Vortex breakdown in simple pipe bends

    NASA Astrophysics Data System (ADS)

    Ault, Jesse; Shin, Sangwoo; Stone, Howard

    2016-11-01

    Pipe bends and elbows are one of the most common fluid mechanics elements that exists. However, despite their ubiquity and the extensive amount of research related to these common, simple geometries, unexpected complexities still remain. We show that for a range of geometries and flow conditions, these simple flows experience unexpected fluid dynamical bifurcations resembling the bubble-type vortex breakdown phenomenon. Specifically, we show with simulations and experiments that recirculation zones develop within the bends under certain conditions. As a consequence, fluid and particles can remain trapped within these structures for unexpectedly-long time scales. We also present simple techniques to mitigate this recirculation effect which can potentially have impact across industries ranging from biomedical and chemical processing to food and health sciences.

  7. Effect of confinements: Bending in Paramecium

    NASA Astrophysics Data System (ADS)

    Eddins, Aja; Yang, Sung; Spoon, Corrie; Jung, Sunghwan

    2012-02-01

    Paramecium is a unicellular eukaryote which by coordinated beating of cilia, generates metachronal waves which causes it to execute a helical trajectory. We investigate the swimming parameters of the organism in rectangular PDMS channels and try to quantify its behavior. Surprisingly a swimming Paramecium in certain width of channels executes a bend of its flexible body (and changes its direction of swimming) by generating forces using the cilia. Considering a simple model of beam constrained between two walls, we predict the bent shapes of the organism and the forces it exerts on the walls. Finally we try to explain how bending (by sensing) can occur in channels by conducting experiments in thin film of fluid and drawing analogy to swimming behavior observed in different cases.

  8. Diffraction of Harmonic Flexural Waves in a Cracked Elastic Plate Carrying Electrical Current

    NASA Technical Reports Server (NTRS)

    Ambur, Damodar R.; Hasanyan, Davresh; Librescu, iviu; Qin, Zhanming

    2005-01-01

    The scattering effect of harmonic flexural waves at a through crack in an elastic plate carrying electrical current is investigated. In this context, the Kirchhoffean bending plate theory is extended as to include magnetoelastic interactions. An incident wave giving rise to bending moments symmetric about the longitudinal z-axis of the crack is applied. Fourier transform technique reduces the problem to dual integral equations, which are then cast to a system of two singular integral equations. Efficient numerical computation is implemented to get the bending moment intensity factor for arbitrary frequency of the incident wave and of arbitrary electrical current intensity. The asymptotic behaviour of the bending moment intensity factor is analysed and parametric studies are conducted.

  9. Simulation of non-Newtonian oil-water core annular flow through return bends

    NASA Astrophysics Data System (ADS)

    Jiang, Fan; Wang, Ke; Skote, Martin; Wong, Teck Neng; Duan, Fei

    2018-01-01

    The volume of fluid (VOF) model is used together with the continuum surface force (CSF) model to numerically simulate the non-Newtonian oil-water core annular flow across return bends. A comprehensive study is conducted to generate the profiles of pressure, velocity, volume fraction and wall shear stress for different oil properties, flow directions, and bend geometries. It is revealed that the oil core may adhere to the bend wall under certain operating conditions. Through the analysis of the total pressure gradient and fouling angle, suitable bend geometric parameters are identified for avoiding the risk of fouling.

  10. Bend-resistant large mode area fiber with novel segmented cladding

    NASA Astrophysics Data System (ADS)

    Ma, Shaoshuo; Ning, Tigang; Pei, Li; Li, Jing; Zheng, Jingjing

    2018-01-01

    A novel structure of segment cladding fiber (SCF) with characteristics of bend-resistance and large-mode-area (LMA) is proposed. In this new structure, the high refractive index (RI) core is periodically surrounded by high RI fan-segmented claddings. Numerical investigations show that effective single-mode operation of the proposed fiber with mode field area of 700 μm2 can be achieved when the bending radius is 15 cm. Besides, this fiber is insensitive to the bending orientation at the ranging of [-180°, 180°]. The proposed design shows great potential in high power fiber lasers and amplifiers with compact structure.

  11. A novel TPR–BEN domain interaction mediates PICH–BEND3 association

    PubMed Central

    Pitchai, Ganesha P.; Kaulich, Manuel; Mesa, Pablo; Yao, Qi; Sarlos, Kata; Streicher, Werner W.; Nigg, Erich A.

    2017-01-01

    Abstract PICH is a DNA translocase required for the maintenance of chromosome stability in human cells. Recent data indicate that PICH co-operates with topoisomerase IIα to suppress pathological chromosome missegregation through promoting the resolution of ultra-fine anaphase bridges (UFBs). Here, we identify the BEN domain-containing protein 3 (BEND3) as an interaction partner of PICH in human cells in mitosis. We have purified full length PICH and BEND3 and shown that they exhibit a functional biochemical interaction in vitro. We demonstrate that the PICH–BEND3 interaction occurs via a novel interface between a TPR domain in PICH and a BEN domain in BEND3, and have determined the crystal structure of this TPR–BEN complex at 2.2 Å resolution. Based on the structure, we identified amino acids important for the TPR–BEN domain interaction, and for the functional interaction of the full-length proteins. Our data reveal a proposed new function for BEND3 in association with PICH, and the first example of a specific protein–protein interaction mediated by a BEN domain. PMID:28977671

  12. Global and segmental kinematic changes following sequential resection of posterior osteoligamentous structures in the lumbar spine: An in vitro biomechanical investigation using pure moment testing protocols.

    PubMed

    Chamoli, Uphar; Korkusuz, Mert H; Sabnis, Ashutosh B; Manolescu, Andrei R; Tsafnat, Naomi; Diwan, Ashish D

    2015-11-01

    Lumbar spinal surgeries may compromise the integrity of posterior osteoligamentous structures implicating mechanical stability. Circumstances necessitating a concomitant surgery to achieve restabilisation are not well understood. The main objective of this in vitro study was to quantify global and segmental (index and adjacent levels) kinematic changes in the lumbar spine following sequential resection of the posterior osteoligamentous structures using pure moment testing protocols. Six fresh frozen cadaveric kangaroo lumbar spines (T12-S1) were tested under a bending moment in flexion-extension, bilateral bending, and axial torsion in a 6-degree-of-freedom Kinematic Spine Simulator. Specimens were tested in the following order: intact state (D0), after interspinous and supraspinous ligaments transection between L4 and L5 (D1), further after a total bilateral facetectomy between L4 and L5 (D2). Segmental motions at the cephalad, damaged, and caudal levels were recorded using an infrared-based motion tracking device. Following D1, no significant change in the global range of motion was observed in any of the bending planes. Following D2, a significant increase in the global range of motion from the baseline (D0) was observed in axial torsion (median normalised change +20%). At the damaged level, D2 resulted in a significant increase in the segmental range of motion in flexion-extension (+77%) and axial torsion (+492%). Additionally, a significant decrease in the segmental range of motion in axial torsion (-35%) was observed at the caudal level following D2. These results suggest that a multi-segment lumbar spine acts as a mechanism for transmitting motions, and that a compromised joint may significantly alter motion transfer to adjacent segments. We conclude that the interspinous and supraspinous ligaments play a modest role in restricting global spinal motions within physiologic limits. Following interspinous and supraspinous ligaments transection, a total

  13. Forming and Bending of Metal Foams

    NASA Astrophysics Data System (ADS)

    Nebosky, Paul; Tyszka, Daniel; Niebur, Glen; Schmid, Steven

    2004-06-01

    This study examines the formability of a porous tantalum foam, known as trabecular metal (TM). Used as a bone ingrowth surface on orthopedic implants, TM is desirable due to its combination of high strength, low relative density, and excellent osteoconductive properties. This research aims to develop bend and stretch forming as a cost-effective alternative to net machining and EDM for manufacturing thin parts made of TM. Experimentally, bending about a single axis using a wiping die was studied by observing cracking and measuring springback. It was found that die radius and clearance strongly affect the springback properties of TM, while punch speed, embossings, die radius and clearance all influence cracking. Depending on the various combinations of die radius and clearance, springback factor ranged from .70-.91. To examine the affect of the foam microstructure, bending also was examined numerically using a horizontal hexagonal mesh. As the hexagonal cells were elongated along the sheet length, elastic springback decreased. This can be explained by the earlier onset of plastic hinging occurring at the vertices of the cells. While the numerical results matched the experimental results for the case of zero clearance, differences at higher clearances arose due to an imprecise characterization of the post-yield properties of tantalum. By changing the material properties of the struts, the models can be modified for use with other open-cell metallic foams.

  14. Bending and coupling losses in terahertz wire waveguides.

    PubMed

    Astley, Victoria; Scheiman, Julianna; Mendis, Rajind; Mittleman, Daniel M

    2010-02-15

    We present an experimental study of several common perturbations of wire waveguides for terahertz pulses. Sommerfeld waves retain significant signal strength and bandwidth even with large gaps in the wire, exhibiting more efficient recoupling at higher frequencies. We also describe a detailed study of bending losses. For a given turn angle, we observe an optimum radius of curvature that minimizes the overall propagation loss. These results emphasize the impact of the distortion of the spatial mode on the radiative bend loss.

  15. Studies on the influence of axial bends on ultrasonic guided waves in hollow cylinders (pipes)

    NASA Astrophysics Data System (ADS)

    Verma, Bhupesh; Balasubramaniam, Krishnan; Rajagopal, Prabhu

    2013-01-01

    Ultrasonic guided waves in hollow cylinders (pipes) are today widely applied as rapid screening tools in the inspection of straight pipe segments in oil, power generation and petrochemical processing industries. However, the characteristics of guided wave propagation across features such as bends in the pipe network are complicated, hampering a wider application of the developed techniques. Although a growing number of studies in recent years have considered guided wave propagation across elbows and U-type bends, the topic is still not very well understood for a general bend angle φ, mean bend radius R and pipe thickness b. Here we use 3D Finite Element (FE) simulation to illumine the propagation of fundamental guided pipe modes across bends of several different angles φ. Two different bend radius regimes, R/λ ≈ 1 and 10 (where λ denotes the wavelength of the mode studied) are considered, exemplifying 'sharp' and gradual or 'slow' bends. Different typical pipe thicknesses b within these regimes are also studied. The results confirm the expectation that different bend radius regimes affect the waves differently. Further, while as observed in earlier studies, at moderate bend radii, fundamental modes travel almost unaffected by an elbow (bend angle φ = 90 degrees), we find that as the bend angle is reduced, there is a progressively larger extent of mode-conversion. These trends and results are validated using experiments.

  16. Extension of the method of moments for population balances involving fractional moments and application to a typical agglomeration problem.

    PubMed

    Alexiadis, Alessio; Vanni, Marco; Gardin, Pascal

    2004-08-01

    The method of moment (MOM) is a powerful tool for solving population balance. Nevertheless it cannot be used in every circumstance. Sometimes, in fact, it is not possible to write the governing equations in closed form. Higher moments, for instance, could appear in the evolution of the lower ones. This obstacle has often been resolved by prescribing some functional form for the particle size distribution. Another example is the occurrence of fractional moment, usually connected with the presence of fractal aggregates. For this case we propose a procedure that does not need any assumption on the form of the distribution but it is based on the "moments generating function" (that is the Laplace transform of the distribution). An important result of probability theory is that the kth derivative of the moments generating function represents the kth moment of the original distribution. This result concerns integer moments but, taking in account the Weyl fractional derivative, could be extended to fractional orders. Approximating fractional derivative makes it possible to express the fractional moments in terms of the integer ones and so to use regularly the method of moments.

  17. Simulated Single Tooth Bending of High Temperature Alloys

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert, F.; Burke, Christopher

    2012-01-01

    Future unmanned space missions will require mechanisms to operate at extreme conditions in order to be successful. In some of these mechanisms, very high gear reductions will be needed to permit very small motors to drive other components at low rotational speed with high output torque. Therefore gearing components are required that can meet the mission requirements. In mechanisms such as this, bending fatigue strength capacity of the gears is very important. The bending fatigue capacity of a high temperature, nickel-based alloy, typically used for turbine disks in gas turbine engines and two tool steel materials with high vanadium content, were compared to that of a typical aerospace alloy-AISI 9310. Test specimens were fabricated by electro-discharge machining without post machining processing. Tests were run at 24 and at 490 C. As test temperature increased from 24 to 490 C the bending fatigue strength was reduced by a factor of five.

  18. Computer simulation of flagellar movement. VI. Simple curvature-controlled models are incompletely specified.

    PubMed

    Brokaw, C J

    1985-10-01

    Computer simulation is used to examine a simple flagellar model that will initiate and propagate bending waves in the absence of viscous resistances. The model contains only an elastic bending resistance and an active sliding mechanism that generates reduced active shear moment with increasing sliding velocity. Oscillation results from a distributed control mechanism that reverses the direction of operation of the active sliding mechanism when the curvature reaches critical magnitudes in either direction. Bend propagation by curvature-controlled flagellar models therefore does not require interaction with the viscous resistance of an external fluid. An analytical examination of moment balance during bend propagation by this model yields a solution curve giving values of frequency and wavelength that satisfy the moment balance equation and give uniform bend propagation, suggesting that the model is underdetermined. At 0 viscosity, the boundary condition of 0 shear rate at the basal end of the flagellum during the development of new bends selects the particular solution that is obtained by computer simulations. Therefore, the details of the pattern of bend initiation at the basal end of a flagellum can be of major significance in determining the properties of propagated bending waves in the distal portion of a flagellum. At high values of external viscosity, the model oscillates at frequencies and wavelengths that give approximately integral numbers of waves on the flagellum. These operating points are selected because they facilitate the balance of bending moments at the ends of the model, where the external viscous moment approaches 0. These mode preferences can be overridden by forcing the model to operate at a predetermined frequency. The strong mode preferences shown by curvature-controlled flagellar models, in contrast to the weak or absent mode preferences shown by real flagella, therefore do not demonstrate the inapplicability of the moment-balance approach

  19. Energy harvesting from coupled bending-twisting oscillations in carbon-fibre reinforced polymer laminates

    NASA Astrophysics Data System (ADS)

    Xie, Mengying; Zhang, Yan; Kraśny, Marcin J.; Rhead, Andrew; Bowen, Chris; Arafa, Mustafa

    2018-07-01

    The energy harvesting capability of resonant harvesting structures, such as piezoelectric cantilever beams, can be improved by utilizing coupled oscillations that generate favourable strain mode distributions. In this work, we present the first demonstration of the use of a laminated carbon fibre reinforced polymer to create cantilever beams that undergo coupled bending-twisting oscillations for energy harvesting applications. Piezoelectric layers that operate in bending and shear mode are attached to the bend-twist coupled beam surface at locations of maximum bending and torsional strains in the first mode of vibration to fully exploit the strain distribution along the beam. Modelling of this new bend-twist harvesting system is presented, which compares favourably with experimental results. It is demonstrated that the variety of bend and torsional modes of the harvesters can be utilized to create a harvester that operates over a wider range of frequencies and such multi-modal device architectures provides a unique approach to tune the frequency response of resonant harvesting systems.

  20. How a short double-stranded DNA bends

    NASA Astrophysics Data System (ADS)

    Shin, Jaeoh; Lee, O.-Chul; Sung, Wokyung

    2015-04-01

    A recent experiment using fluorescence microscopy showed that double-stranded DNA fragments shorter than 100 base pairs loop with the probabilities higher by the factor of 102-106 than predicted by the worm-like chain (WLC) model [R. Vafabakhsh and T. Ha, Science 337, 1101(2012)]. Furthermore, the looping probabilities were found to be nearly independent of the loop size. The results signify a breakdown of the WLC model for DNA mechanics which works well on long length scales and calls for fundamental understanding for stressed DNA on shorter length scales. We develop an analytical, statistical mechanical model to investigate what emerges to the short DNA under a tight bending. A bending above a critical level initiates nucleation of a thermally induced bubble, which could be trapped for a long time, in contrast to the bubbles in both free and uniformly bent DNAs, which are either transient or unstable. The trapped bubble is none other than the previously hypothesized kink, which releases the bending energy more easily as the contour length decreases. It leads to tremendous enhancement of the cyclization probabilities, in a reasonable agreement with experiment.

  1. Vacillation, indecision and hesitation in moment-by-moment decoding of monkey motor cortex

    PubMed Central

    Kaufman, Matthew T; Churchland, Mark M; Ryu, Stephen I; Shenoy, Krishna V

    2015-01-01

    When choosing actions, we can act decisively, vacillate, or suffer momentary indecision. Studying how individual decisions unfold requires moment-by-moment readouts of brain state. Here we provide such a view from dorsal premotor and primary motor cortex. Two monkeys performed a novel decision task while we recorded from many neurons simultaneously. We found that a decoder trained using ‘forced choices’ (one target viable) was highly reliable when applied to ‘free choices’. However, during free choices internal events formed three categories. Typically, neural activity was consistent with rapid, unwavering choices. Sometimes, though, we observed presumed ‘changes of mind’: the neural state initially reflected one choice before changing to reflect the final choice. Finally, we observed momentary ‘indecision’: delay forming any clear motor plan. Further, moments of neural indecision accompanied moments of behavioral indecision. Together, these results reveal the rich and diverse set of internal events long suspected to occur during free choice. DOI: http://dx.doi.org/10.7554/eLife.04677.001 PMID:25942352

  2. Calculation of the atomic electric dipole moment of Pb2+ induced by nuclear Schiff moment

    NASA Astrophysics Data System (ADS)

    Ramachandran, S. M.; Latha, K. V. P.; Meenakshisundaram, N.

    2017-07-01

    We report the atomic electric dipole moment induced by the P, T violating interactions in the nuclear/sub-nuclear level, for 207Pb2+ and 207Pb, owing to the recent interest in the ferroelectric crystal PbTiO3 as one of the candidates for investigating macroscopic P, T-odd effects. In this paper, we calculate the atomic electric dipole moments of 207Pb and Pb2+, parametrized in terms of the P, T-odd coupling parameter, the nuclear Schiff moment (NSM), S, in the frame-work of the coupled-perturbed Hartree-Fock theory. We estimate the Schiff moment of Pb2+ using the experimental result of a system, which is electronically similar to the Pb2+ ion. We present the dominant contributions of the electric dipole moment (EDM) matrix elements and the important correlation effects contributing to the atomic EDM of Pb2+. Our results provide the first ever calculated EDM of the Pb2+ ion, and an estimate of its NSM from which the P, T-odd energy shift in a PbTiO3 crystal can be evaluated.

  3. Knee joint moments during high flexion movements: Timing of peak moments and the effect of safety footwear.

    PubMed

    Chong, Helen C; Tennant, Liana M; Kingston, David C; Acker, Stacey M

    2017-03-01

    (1) Characterize knee joint moments and peak knee flexion moment timing during kneeling transitions, with the intent of identifying high-risk postures. (2) Determine whether safety footwear worn by kneeling workers (construction workers, tile setters, masons, roofers) alters high flexion kneeling mechanics. Fifteen males performed high flexion kneeling transitions. Kinetics and kinematics were analyzed for differences in ascent and descent in the lead and trail legs. Mean±standard deviation peak external knee adduction and flexion moments during transitions ranged from 1.01±0.31 to 2.04±0.66% body weight times height (BW∗Ht) and from 3.33 to 12.6% BW∗Ht respectively. The lead leg experienced significantly higher adduction moments compared to the trail leg during descent, when work boots were worn (interaction, p=0.005). There was a main effect of leg (higher lead vs. trail) on the internal rotation moment in both descent (p=0.0119) and ascent (p=0.0129) phases. Peak external knee adduction moments during transitions did not exceed those exhibited during level walking, thus increased knee adduction moment magnitude is likely not a main factor in the development of knee OA in occupational kneelers. Additionally, work boots only significantly increased the adduction moment in the lead leg during descent. In cases where one knee is painful, diseased, or injured, the unaffected knee should be used as the lead leg during asymmetric bilateral kneeling. Peak flexion moments occurred at flexion angles above the maximum flexion angle exhibited during walking (approximately 60°), supporting the theory that the loading of atypical surfaces may aid disease development or progression. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Theoretical Parametric Study of the Relative Advantages of Winglets and Wing-Tip Extensions

    NASA Technical Reports Server (NTRS)

    Heyson, H. H.; Riebe, G. D.; Fulton, C. L.

    1977-01-01

    For identical increases in bending moment, a winglet provides a greater gain in induced efficiency than tip extension. Winglet toe angle allows design trades between efficiency and root moment. A winglet shows the greatest benefit when the wing loads are heavy near the tip. Washout diminishes the benefit of either tip modification, and the gain in induced efficiency becomes a function of lift coefficient; thus, heavy wing loadings obtain the greatest benefit from a winglet, and low-speed performance is enhanced even more than cruise performance. Both induced efficiency and bending moment increase with winglet length and outward cant. The benefit of a winglet relative to a tip extension is greatest for a nearly vertical winglet. Root bending moment is proportional to the minimum weight of bending material required in the wing; thus, it is a valid index of the impact of tip modifications on a new wing design.

  5. View north of tube bending shop in boilermakers department located ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View north of tube bending shop in boilermakers department located in southeast corner of the structural shop building (building 57). The computer controlled tube bender can be programmed to bend boiler tubing to nearly any required configuration - Naval Base Philadelphia-Philadelphia Naval Shipyard, Structure Shop, League Island, Philadelphia, Philadelphia County, PA

  6. Band bending at ferroelectric surfaces and interfaces investigated by x-ray photoelectron spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Apostol, Nicoleta Georgiana, E-mail: nicoleta.apostol@infim.ro

    2014-11-24

    This work reports on the use of X-ray photoelectron spectroscopy to quantify band bending at ferroelectric free surfaces and at their interfaces with metals. Surfaces exhibiting out-of-plane ferroelectric polarization are characterized by a band bending, due to the formation of a dipole layer at the surface, composed by the uncompensated polarization charges (due to ionic displacement) and to the depolarization charge sheet of opposite sign, composed by mobile charge carriers, which migrate near surface, owing to the depolarization electric field. To this surface band bending due to out-of-plane polarization states, metal-semiconductor Schottky barriers must be considered additionally when ferroelectrics aremore » covered by metal layers. It is found that the net band bending is not always an algebraic sum of the two effects discussed above, since sometimes the metal is able to provide additional charge carriers, which are able to fully compensate the surface charge of the ferroelectric, up to the vanishing of the ferroelectric band bending. The two cases which will be discussed in more detail are Au and Cu deposited by molecular beam epitaxy on PbZr{sub 0.2}Ti{sub 0.8}O{sub 3}(001) single crystal thin layers, prepared by pulsed laser deposition. Gold forms unconnected nanoparticles, and their effect on the band bending is the apparition of a Schottky band bending additional to the band bending due to the out-of-plane polarization. Copper, starting with a given thickness, forms continuous metal layers connected to the ground of the system, and provide electrons in sufficient quantity to compensate the band bending due to the out-of-plane polarization.« less

  7. Waveguiding and bending modes in a plasma photonic crystal bandgap device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, B., E-mail: bwang17@stanford.edu; Cappelli, M. A.

    2016-06-15

    Waveguiding and bending modes are investigated in a fully tunable plasma photonic crystal. The plasma device actively controls the propagation of free space electromagnetic waves in the S to X band of the microwave spectrum. An array of discharge plasma tubes form a square crystal lattice exhibiting a well-defined bandgap, with individual active switching of the plasma elements to allow for waveguiding and bending modes to be generated dynamically. We show, through simulations and experiments, the existence of transverse electric (TE) mode waveguiding and bending modes.

  8. On the correct representation of bending and axial deformation in the absolute nodal coordinate formulation with an elastic line approach

    NASA Astrophysics Data System (ADS)

    Gerstmayr, Johannes; Irschik, Hans

    2008-12-01

    In finite element methods that are based on position and slope coordinates, a representation of axial and bending deformation by means of an elastic line approach has become popular. Such beam and plate formulations based on the so-called absolute nodal coordinate formulation have not yet been verified sufficiently enough with respect to analytical results or classical nonlinear rod theories. Examining the existing planar absolute nodal coordinate element, which uses a curvature proportional bending strain expression, it turns out that the deformation does not fully agree with the solution of the geometrically exact theory and, even more serious, the normal force is incorrect. A correction based on the classical ideas of the extensible elastica and geometrically exact theories is applied and a consistent strain energy and bending moment relations are derived. The strain energy of the solid finite element formulation of the absolute nodal coordinate beam is based on the St. Venant-Kirchhoff material: therefore, the strain energy is derived for the latter case and compared to classical nonlinear rod theories. The error in the original absolute nodal coordinate formulation is documented by numerical examples. The numerical example of a large deformation cantilever beam shows that the normal force is incorrect when using the previous approach, while a perfect agreement between the absolute nodal coordinate formulation and the extensible elastica can be gained when applying the proposed modifications. The numerical examples show a very good agreement of reference analytical and numerical solutions with the solutions of the proposed beam formulation for the case of large deformation pre-curved static and dynamic problems, including buckling and eigenvalue analysis. The resulting beam formulation does not employ rotational degrees of freedom and therefore has advantages compared to classical beam elements regarding energy-momentum conservation.

  9. The contribution of transient counterion imbalances to DNA bending fluctuations.

    PubMed

    Manning, Gerald S

    2006-05-01

    A two-sided model for DNA is employed to analyze fluctuations of the spatial distribution of condensed counterions and the effect of these fluctuations on transient bending. We analyze two classes of fluctuations. In the first, the number of condensed counterions on one side of the DNA remains at its average value, while on the other side, counterions are lost to bulk solution or gained from it. The second class of fluctuations is characterized by movement of some counterions from one side of the DNA to the other. The root-mean-square fluctuation for each class is calculated from counterion condensation theory. The amplitude of the root-mean-square fluctuation depends on the ionic strength as well as the length of the segment considered and is of the order 5-10%. Both classes of fluctuation result in transient bends toward the side of greater counterion density. The bending amplitudes are approximately 15% of the total root-mean-square bends associated with the persistence length of DNA. We are thus led to suggest that asymmetric fluctuations of counterion density contribute modestly but significantly toward the aggregate of thermalized solvent fluctuations that cause bending deformations of DNA free in solution. The calculations support the idea that counterions may exert some modulating influence on the fine structure of DNA.

  10. Field emission analysis of band bending in donor/acceptor heterojunction

    NASA Astrophysics Data System (ADS)

    Xing, Yingjie; Li, Shuai; Wang, Guiwei; Zhao, Tianjiao; Zhang, Gengmin

    2016-06-01

    The donor/acceptor heterojunction plays an important role in organic solar cells. An investigation of band bending in the donor/acceptor heterojunction is helpful in analysis of the charge transport behavior and for the improvement of the device performance. In this work, we report an approach for detection of band bending in a donor/acceptor heterojunction that has been prepared on a small and sharp tungsten tip. In situ field emission measurements are performed after the deposition process, and a linear Fowler-Nordheim plot is obtained from the fresh organic film surface. The thickness-dependent work function is then measured in the layer-by-layer deposited heterojunction. Several different types of heterojunction (zinc phthalocyanine (ZnPc)/C60, copper phthalocyanine (CuPc)/3,4,9,10-perylenetetracarboxylic bisbenzimidazole, and CuPc/C60) are fabricated and analyzed. The different charge transfer directions in the heterojunctions are distinguished by field emission measurements. The calculation method used to determine the band bending is then discussed in detail. A triple layer heterojunction (C60/ZnPc/CuPc) is also analyzed using this method. A small amount of band bending is measured in the outer CuPc layer. This method provides an independent reference method for determination of the band bending in an organic heterojunction that will complement photoemission spectroscopy and current-voltage measurement methods.

  11. Incisor crown bending strength correlates with diet and incisor curvature in anthropoid primates.

    PubMed

    Deane, Andrew S

    2015-02-01

    Anthropoid incisors are large relative to the postcanine dentition and function in the preprocessing of food items. Previous analyses of anthropoid incisor allometry and shape demonstrate that incisor morphology is correlated with preferred foods and that more frugivorous anthropoids have larger and more curved incisors. Although the relationship between incisal crown curvature and preferred foods has been well documented in extant and fossil anthropoids, the functional significance of curvature variation has yet to be conclusively established. Given that an increase in crown curvature will increase maximum linear crown dimensions, and bending resistance is a function of linear crown dimensions, it is hypothesized that incisor crown curvature functons to increase incisor crown resistance to bending forces. This study uses beam theory to calculate the mesiodistal and labiolingual bending strengths of the maxillary and mandibular incisors of hominoid and platyrrhine taxa with differing diets and variable degrees of incisal curvature. Results indicate that bending strength correlates with incisal curvature and that frugivores have elevated incisor bending resistance relative to folivores. Maxillary central incisor bending strengths further discriminate platyrrhine and hominoid hard- and soft-object frugivores suggesting this crown is subjected to elevated occlusal loading relative to other incisors. These results are consistent with the hypothesis that incisor crown curvature functions to increase incisor crown resistance to bending forces but does not preclude the possibility that incisor bending strength is a composite function of multiple dentognathic variables including, but not limited to, incisor crown curvature. © 2014 Wiley Periodicals, Inc.

  12. Evaluation of bending modulus of lipid bilayers using undulation and orientation analysis

    NASA Astrophysics Data System (ADS)

    Chaurasia, Adarsh K.; Rukangu, Andrew M.; Philen, Michael K.; Seidel, Gary D.; Freeman, Eric C.

    2018-03-01

    In the current paper, phospholipid bilayers are modeled using coarse-grained molecular dynamics simulations with the MARTINI force field. The extracted molecular trajectories are analyzed using Fourier analysis of the undulations and orientation vectors to establish the differences between the two approaches for evaluating the bending modulus. The current work evaluates and extends the implementation of the Fourier analysis for molecular trajectories using a weighted horizon-based averaging approach. The effect of numerical parameters in the analysis of these trajectories is explored by conducting parametric studies. Computational modeling results are validated against experimentally characterized bending modulus of lipid membranes using a shape fluctuation analysis. The computational framework is then used to estimate the bending moduli for different types of lipids (phosphocholine, phosphoethanolamine, and phosphoglycerol). This work provides greater insight into the numerical aspects of evaluating the bilayer bending modulus, provides validation for the orientation analysis technique, and explores differences in bending moduli based on differences in the lipid nanostructures.

  13. A novel TPR-BEN domain interaction mediates PICH-BEND3 association.

    PubMed

    Pitchai, Ganesha P; Kaulich, Manuel; Bizard, Anna H; Mesa, Pablo; Yao, Qi; Sarlos, Kata; Streicher, Werner W; Nigg, Erich A; Montoya, Guillermo; Hickson, Ian D

    2017-11-02

    PICH is a DNA translocase required for the maintenance of chromosome stability in human cells. Recent data indicate that PICH co-operates with topoisomerase IIα to suppress pathological chromosome missegregation through promoting the resolution of ultra-fine anaphase bridges (UFBs). Here, we identify the BEN domain-containing protein 3 (BEND3) as an interaction partner of PICH in human cells in mitosis. We have purified full length PICH and BEND3 and shown that they exhibit a functional biochemical interaction in vitro. We demonstrate that the PICH-BEND3 interaction occurs via a novel interface between a TPR domain in PICH and a BEN domain in BEND3, and have determined the crystal structure of this TPR-BEN complex at 2.2 Å resolution. Based on the structure, we identified amino acids important for the TPR-BEN domain interaction, and for the functional interaction of the full-length proteins. Our data reveal a proposed new function for BEND3 in association with PICH, and the first example of a specific protein-protein interaction mediated by a BEN domain. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. Single-mode hole-assisted fiber as a bending-loss insensitive fiber

    NASA Astrophysics Data System (ADS)

    Nakajima, Kazuhide; Shimizu, Tomoya; Matsui, Takashi; Fukai, Chisato; Kurashima, Toshio

    2010-12-01

    We investigate the design and characteristics of a single-mode and low bending loss HAF both numerically and experimentally. An air filling fraction S is introduced to enable us to design a HAF with desired characteristics more easily. We show that we can expect to realize a single-mode and low bending loss HAF by considering the S dependence of the bending loss α b and cutoff wavelength λ c as well as their relative index difference Δ dependence. We also show that the mode-field diameter (MFD) and chromatic dispersion characteristics of the single-mode and low bending loss HAF can be tailored by optimizing the distance between the core and the air holes. We also investigate the usefulness of the fabricated HAFs taking the directly modulated transmission and multipath interference (MPI) characteristics into consideration. We show that the designed HAF has sufficient applicability to both analog and digital transmission systems. Our results reveal that the single-mode and low bending loss HAF is beneficial in terms of developing a future fiber to the home (FTTH) network as well as for realizing flexible optical wiring.

  15. Magnifying Lenses with Weak Achromatic Bends for High-Energy Electron Radiography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walstrom, Peter Lowell

    2015-02-27

    This memo briefly describes bremsstrahlung background effects in GeV-range electron radiography systems and the use of weak bending magnets to deflect the image to the side of the forward bremsstrahlung spot to reduce background. The image deflection introduces first-order chromatic image blur due to dispersion. Two approaches to eliminating the dispersion effect to first order by use of magnifying lens with achromatic bends are described. Also, higher-order image blur terms caused by weak bends are also discussed, and shown to be negligibly small in most cases of interest.

  16. Moment Magnitude discussion in Austria

    NASA Astrophysics Data System (ADS)

    Weginger, Stefan; Jia, Yan; Hausmann, Helmut; Lenhardt, Wolfgang

    2017-04-01

    We implemented and tested the Moment Magnitude estimation „dbmw" from the University of Trieste in our Antelope near real-time System. It is used to get a fast Moment Magnitude solutions and Ground Motion Parameter (PGA, PGV, PSA 0.3, PSA 1.0 and PSA 3.0) to calculate Shake and Interactive maps. A Moment Magnitude Catalogue was generated and compared with the Austrian Earthquake Catalogue and all available Magnitude solution of the neighbouring agencies. Relations of Mw to Ml and Ground Motion to Intensity are presented.

  17. Beams on nonlinear elastic foundation

    NASA Astrophysics Data System (ADS)

    Lukkassen, Dag; Meidell, Annette

    2014-12-01

    In order to determination vertical deflections and rail bending moments the Winkler model (1867) is often used. This linear model neglects several conditions. For example, by using experimental results, it has been observed that there is a substantial increase in the maximum rail deflection and rail bending moment when considering the nonlinearity of the track support system. A deeper mathematical analysis of the models is necessary in order to obtain better methods for more accurate numerical solutions in the determination of deflections and rail bending moments. This paper is intended to be a small step in this direction.

  18. Indigenously developed bending strain setup for I-V characterization of superconducting tapes and wires

    NASA Astrophysics Data System (ADS)

    Panchal, Arun; Bano, Anees; Ghate, Mahesh; Raj, Piyush; Pradhan, Subrata

    2017-04-01

    An indigenously developed bending strain setup to examine the effect of pure bending on critical current of superconducting tapes and strands has been presented in this paper. This set up is capable of applying various bending radius in situ at cryogenic temperature with rack and pinion gear mechanism. The bending strain applied on samples can be controlled externally by rotational input which is transferred in the form of bending radius during experiments. The working principle, design and optimization of this set up have been discussed. The performance and validation of this setup has been done on various HTS tapes and copper strands at 77 K in actual experimental facility. Effect of bending radius (15.5 mm - 48 mm) i.e. strains and ramp rate (2 A/s - 8 A/s) is observed on current capability of various HTS Tapes. It is observed that in uniform bending condition, degradation in current carrying capacity BSCCO and Di-BSCCO (˜ 30 %) is more as compare to YBCO (˜ 2.75 %) at 77 K. The effect of pure mechanical strain has been experimentally observed and presented.

  19. Size-dependent bending modulus of nanotubes induced by the imperfect boundary conditions

    PubMed Central

    Zhang, Jin

    2016-01-01

    The size-dependent bending modulus of nanotubes, which was widely observed in most existing three-point bending experiments [e.g., J. Phys. Chem. B 117, 4618–4625 (2013)], has been tacitly assumed to originate from the shear effect. In this paper, taking boron nitride nanotubes as an example, we directly measured the shear effect by molecular dynamics (MD) simulations and found that the shear effect is not the major factor responsible for the observed size-dependent bending modulus of nanotubes. To further explain the size-dependence phenomenon, we abandoned the assumption of perfect boundary conditions (BCs) utilized in the aforementioned experiments and studied the influence of the BCs on the bending modulus of nanotubes based on MD simulations. The results show that the imperfect BCs also make the bending modulus of nanotubes size-dependent. Moreover, the size-dependence phenomenon induced by the imperfect BCs is much more significant than that induced by the shear effect, which suggests that the imperfect BC is a possible physical origin that leads to the strong size-dependence of the bending modulus found in the aforementioned experiments. To capture the physics behind the MD simulation results, a beam model with the general BCs is proposed and found to fit the experimental data very well. PMID:27941866

  20. Separation Control in a Centrifugal Bend Using Plasma Actuators

    NASA Astrophysics Data System (ADS)

    Arthur, Michael; Corke, Thomas

    2011-11-01

    An experiment and CFD simulation are presented to examine the use of plasma actuators to control flow separation in a 2-D channel with a 135° inside-bend that is intended to represent a centrifugal bend in a gas turbine engine. The design inlet conditions are P = 330 psia., T =1100° F, and M = 0 . 24 . For these conditions, the flow separates on the inside radius of the bend. A CFD simulation was used to determine the location of the flow separation, and the conditions (location and voltage) of a plasma actuator that was needed to keep the flow attached. The plasma actuator body force model used in the simulation was updated to include the effect of high-pressure operation. An experiment was used to validate the simulation and to further investigate the effect of inlet pressure and Mach number on the flow separation control. This involved a transient high-pressure blow-down facility. The flow field is documented using an array of static pressure taps in the channel outside-radius side wall, and a rake of total pressure probes at the exit of the bend. The results as well as the pressure effect on the plasma actuators are presented.

  1. Perception and Haptic Rendering of Friction Moments.

    PubMed

    Kawasaki, H; Ohtuka, Y; Koide, S; Mouri, T

    2011-01-01

    This paper considers moments due to friction forces on the human fingertip. A computational technique called the friction moment arc method is presented. The method computes the static and/or dynamic friction moment independent of a friction force calculation. In addition, a new finger holder to display friction moment is presented. This device incorporates a small brushless motor and disk, and connects the human's finger to an interface finger of the five-fingered haptic interface robot HIRO II. Subjects' perception of friction moment while wearing the finger holder, as well as perceptions during object manipulation in a virtual reality environment, were evaluated experimentally.

  2. Mathematical Micro-Identities: Moment-to-Moment Positioning and Learning in a Fourth-Grade Classroom

    ERIC Educational Resources Information Center

    Wood, Marcy B.

    2013-01-01

    Identity is an important tool for understanding students' participation in mathematics lessons. Researchers usually examine identity at a macro-scale: across typical classroom activity and in students' self-reports. However, learning occurs on a micro-scale: in moments during a lesson. To capture identity in these moments, I used positioning…

  3. All-fiber intensity bend sensor based on photonic crystal fiber with asymmetric air-hole structure

    NASA Astrophysics Data System (ADS)

    Budnicki, Dawid; Szostkiewicz, Lukasz; Szymanski, Michal O.; Ostrowski, Lukasz; Holdynski, Zbigniew; Lipinski, Stanislaw; Murawski, Michal; Wojcik, Grzegorz; Makara, Mariusz; Poturaj, Krzysztof; Mergo, Pawel; Napierala, Marek; Nasilowski, Tomasz

    2017-10-01

    Monitoring the geometry of an moving element is a crucial task for example in robotics. The robots equipped with fiber bend sensor integrated in their arms can be a promising solution for medicine, physiotherapy and also for application in computer games. We report an all-fiber intensity bend sensor, which is based on microstructured multicore optical fiber. It allows to perform a measurement of the bending radius as well as the bending orientation. The reported solution has a special airhole structure which makes the sensor only bend-sensitive. Our solution is an intensity based sensor, which measures power transmitted along the fiber, influenced by bend. The sensor is based on a multicore fiber with the special air-hole structure that allows detection of bending orientation in range of 360°. Each core in the multicore fiber is sensitive to bend in specified direction. The principle behind sensor operation is to differentiate the confinement loss of fundamental mode propagating in each core. Thanks to received power differences one can distinguish not only bend direction but also its amplitude. Multicore fiber is designed to utilize most common light sources that operate at 1.55 μm thus ensuring high stability of operation. The sensitivity of the proposed solution is equal 29,4 dB/cm and the accuracy of bend direction for the fiber end point is up to 5 degrees for 15 cm fiber length. Such sensitivity allows to perform end point detection with millimeter precision.

  4. Coordinated Body Bending Improves Performance of a Salamander-like Robot

    NASA Astrophysics Data System (ADS)

    Ozkan Aydin, Yasemin; Chong, Baxi; Gong, Chaohui; Rieser, Jennifer M.; Choset, Howie; Goldman, Daniel I.

    Analyzing body morphology and limb-body coordination in animals that can both swim and walk is important to understand the evolutionary transition from an aquatic to a terrestrial environment. Based on previous salamander experiments (a modern analog to early tetrapods and performed by Hutchinson's group at RVC in the UK) we built a robophysical model of a salamander and tested its performance on yielding granular media (GM) of poppy seeds. Our servo-driven robot (405 g, 38 cm long) has four limbs, a flexible body, and an active tail. Each limb has two servo motors to control up/down and fore/aft positions of limb. A joint in the middle of the body controls horizontal bending. We assessed performance of the robot by changing the body bending limit from 0°to 90°and measured body displacement and power consumption over a few limb cycles at 0°and 10°sandy slope. We fixed the angle of the legs according to body to test the effect of body bending directly. On GM, step length increased from 0 to 9.5 cm at 0° and 0 to 7 cm at 10°slope while the average power consumption increased 50 % . A geometric mechanics model revealed that on level GM body bending was most beneficial when phase offset 180°from leg movements; increasing the maximum body angular bend from 45°to 90° led to step length increases of up to 90 % .

  5. Fiber-optic bending sensor for cochlear implantation

    NASA Astrophysics Data System (ADS)

    Li, Enbang; Yao, Jianquan

    2006-09-01

    Cochlear implantation has been proved as a great success in treating profound sensorineural deafness in both children and adults. Cochlear electrode array implantation is a complex and delicate surgical process. Surgically induced damage to the inner wall of the scala tympani could happen if the insertion angle of the electrode is incorrect and an excessive insertion force is applied to the electrode. This damage could lead to severe degeneration of the remaining neural elements. It is therefore of vital importance to monitor the shape and position of the electrode during the implantation surgery. In this paper, we report a fiber-optic bending sensor which can be integrated with the electrode and used to guide the implantation process. The sensor consists of a piece of optical fiber. The end of the fiber is coated with aluminum layer to form a mirror. Bending the fiber with the electrode introduces loss to the light transmitting in the fiber. By detecting the power of the reflected light, we can detennine the bending happened to the fiber, and consequently measure the curved shape of the electrode. Experimental results show that the proposed fiber sensor is a promising technique to make in-situ monitoring of the shape and position of the electrode during the implantation process.

  6. Experimental and numerical analysis of pre-compressed masonry walls in two-way-bending with second order effects

    NASA Astrophysics Data System (ADS)

    Milani, Gabriele; Olivito, Renato S.; Tralli, Antonio

    2014-10-01

    The buckling behavior of slender unreinforced masonry (URM) walls subjected to axial compression and out-of-plane lateral loads is investigated through a combined experimental and numerical homogenizedapproach. After a preliminary analysis performed on a unit cell meshed by means of elastic FEs and non-linear interfaces, macroscopic moment-curvature diagrams so obtained are implemented at a structural level, discretizing masonry by means of rigid triangular elements and non-linear interfaces. The non-linear incremental response of the structure is accounted for a specific quadratic programming routine. In parallel, a wide experimental campaign is conducted on walls in two way bending, with the double aim of both validating the numerical model and investigating the behavior of walls that may not be reduced to simple cantilevers or simply supported beams. Panels investigated are dry-joint in scale square walls simply supported at the base and on a vertical edge, exhibiting the classical Rondelet's mechanism. The results obtained are compared with those provided by the numerical model.

  7. Photoreceptor-mediated bending towards UV-B in Arabidopsis.

    PubMed

    Vandenbussche, Filip; Tilbrook, Kimberley; Fierro, Ana Carolina; Marchal, Kathleen; Poelman, Dirk; Van Der Straeten, Dominique; Ulm, Roman

    2014-06-01

    Plants reorient their growth towards light to optimize photosynthetic light capture--a process known as phototropism. Phototropins are the photoreceptors essential for phototropic growth towards blue and ultraviolet-A (UV-A) light. Here we detail a phototropic response towards UV-B in etiolated Arabidopsis seedlings. We report that early differential growth is mediated by phototropins but clear phototropic bending to UV-B is maintained in phot1 phot2 double mutants. We further show that this phototropin-independent phototropic response to UV-B requires the UV-B photoreceptor UVR8. Broad UV-B-mediated repression of auxin-responsive genes suggests that UVR8 regulates directional bending by affecting auxin signaling. Kinetic analysis shows that UVR8-dependent directional bending occurs later than the phototropin response. We conclude that plants may use the full short-wavelength spectrum of sunlight to efficiently reorient photosynthetic tissue with incoming light. © The Author 2014. Published by the Molecular Plant Shanghai Editorial Office in association with Oxford University Press on behalf of CSPB and IPPE, SIBS, CAS.

  8. Orbiter Gap Filler Bending Model for Re-entry

    NASA Technical Reports Server (NTRS)

    Campbell, Charles H.

    2007-01-01

    Pressure loads on a protruding gap filler during an Orbiter reentry are investigated to evaluate the likelihood of extraction due to pressure loads, and to ascertain how much bending will be induced by re-entry pressure loads. Oblique shock wave theory is utilized to develop a representation of the pressure loads induced on a gap filler for the ISSHVFW trajectory, representative of a heavy weight ISS return. A free body diagram is utilized to react the forces induced by the pressure forces. Preliminary results developed using these methods demonstrate that pressure loads, alone, are not likely causes of gap filler extraction during reentry. Assessment of the amount a gap filler will bend over is presented. Implications of gap filler bending during re-entry include possible mitigation of early boundary layer transition concerns, uncertainty in ground based measurement of protruding gap fillers from historical Orbiter flight history, and uncertainty in the use of Orbiter gap fillers for boundary layer prediction calibration. Authors will be added to the author list as appropriate.

  9. Theoretical parametric study of the relative advantages of winglets and wing-tip extensions

    NASA Technical Reports Server (NTRS)

    Heyson, H. H.; Riebe, G. D.; Fulton, C. L.

    1977-01-01

    It was found that for identical increases in bending moment, a winglet provides a greater gain in induced efficiency than a tip extension. Winglet toe-in angle allows design trades between efficiency and root moment. A winglet showed the greatest benefit when the wing loads were heavy near the tip. Washout diminished the benefit of either tip modification, and the gain in induced efficiency became a function of lift coefficient; heavy wing loadings obtained the greatest benefit from a winglet, and low speed performance was enhanced even more than cruise performance. Both induced efficiency and bending moment increased with winglet length and outward cant. The benefit of a winglet relative to a tip extension was greatest for a nearly vertical winglet. Root bending moment was proportional to the minimum weight of bending material required in the wing; it is a valid index of the impact of tip modifications on a new wing design.

  10. Multilayer theory for delamination analysis of a composite curved bar subjected to end forces and end moments

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Jackson, Raymond H.

    1989-01-01

    A composite test specimen in the shape of a semicircular curved bar subjected to bending offers an excellent stress field for studying the open-mode delamination behavior of laminated composite materials. This is because the open-mode delamination nucleates at the midspan of the curved bar. The classical anisotropic elasticity theory was used to construct a 'multilayer' theory for the calculations of the stress and deformation fields induced in the multilayered composite semicircular curved bar subjected to end forces and end moments. The radial location and intensity of the open-mode delamination stress were calculated and were compared with the results obtained from the anisotropic continuum theory and from the finite element method. The multilayer theory gave more accurate predictions of the location and the intensity of the open-mode delamination stress than those calculated from the anisotropic continuum theory.

  11. Multilayer theory for delamination analysis of a composite curved bar subjected to end forces and end moments

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Jackson, Raymond H.

    1989-01-01

    A composite test specimen in the shape of a semicircular curved bar subjected to bending offers an excellent stress field for studying the open-mode delamination behavior of laminated composite materials. This is because the open-mode delamination nucleates at the midspan of the curved bar. The classical anisotropic elasticity theory was used to construct a multilayer theory for the calculations of the stress and deformation fields induced in the multilayered composite semicircular curved bar subjected to end forces and end moments. The radial location and intensity of the open-mode delamination stress were calculated and were compared with the results obtained from the anisotropic continuum theory and from the finite element method. The multilayer theory gave more accurate predictions of the location and the intensity of the open-mode delamination stress than those calculated from the anisotropic continuum theory.

  12. Stereotypical reaching movements of the octopus involve both bend propagation and arm elongation.

    PubMed

    Hanassy, S; Botvinnik, A; Flash, T; Hochner, B

    2015-05-13

    The bend propagation involved in the stereotypical reaching movement of the octopus arm has been extensively studied. While these studies have analyzed the kinematics of bend propagation along the arm during its extension, possible length changes have been ignored. Here, the elongation profiles of the reaching movements of Octopus vulgaris were assessed using three-dimensional reconstructions. The analysis revealed that, in addition to bend propagation, arm extension movements involve elongation of the proximal part of the arm, i.e., the section from the base of the arm to the propagating bend. The elongations are quite substantial and highly variable, ranging from an average strain along the arm of -0.12 (i.e. shortening) up to 1.8 at the end of the movement (0.57 ± 0.41, n = 64 movements, four animals). Less variability was discovered in an additional set of experiments on reaching movements (0.64 ± 0.28, n = 30 movements, two animals), where target and octopus positions were kept more stationary. Visual observation and subsequent kinematic analysis suggest that the reaching movements can be broadly segregated into two groups. The first group involves bend propagation beginning at the base of the arm and propagating towards the arm tip. In the second, the bend is formed or present more distally and reaching is achieved mainly by elongation and straightening of the segment proximal to the bend. Only in the second type of movements is elongation significantly positively correlated with the distance of the bend from the target. We suggest that reaching towards a target is generated by a combination of both propagation of a bend along the arm and arm elongation. These two motor primitives may be combined to create a broad spectrum of reaching movements. The dynamical model, which recapitulates the biomechanics of the octopus muscular hydrostatic arm, suggests that achieving the observed elongation requires an extremely low ratio of longitudinal to transverse muscle

  13. A Temperature Sensor Based on a Polymer Optical Fiber Macro-Bend

    PubMed Central

    Moraleda, Alberto Tapetado; García, Carmen Vázquez; Zaballa, Joseba Zubia; Arrue, Jon

    2013-01-01

    The design and development of a plastic optical fiber (POF) macrobend temperature sensor is presented. The sensor has a linear response versus temperature at a fixed bend radius, with a sensitivity of 1.92·10−3 (°C)−1. The sensor system used a dummy fiber-optic sensor for reference purposes having a resolution below 0.3 °C. A comprehensive experimental analysis was carried out to provide insight into the effect of different surrounding media on practical macro-bend POF sensor implementation. Experimental results are successfully compared with bend loss calculations. PMID:24077323

  14. Contact Modelling of Large Radius Air Bending with Geometrically Exact Contact Algorithm

    NASA Astrophysics Data System (ADS)

    Vorkov, V.; Konyukhov, A.; Vandepitte, D.; Duflou, J. R.

    2016-08-01

    Usage of high-strength steels in conventional air bending is restricted due to limited bendability of these metals. Large-radius punches provide a typical approach for decreasing deformations during the bending process. However, as deflection progresses the loading scheme changes gradually. Therefore, modelling of the contact interaction is essential for an accurate description of the loading scheme. In the current contribution, the authors implemented a plane frictional contact element based on the penalty method. The geometrically exact contact algorithm is used for the penetration determination. The implementation is done using the OOFEM - open source finite element solver. In order to verify the simulation results, experiments have been conducted on a bending press brake for 4 mm Weldox 1300 with a punch radius of 30 mm and a die opening of 80 mm. The maximum error for the springback calculation is 0.87° for the bending angle of 144°. The contact interaction is a crucial part of large radius bending simulation and the implementation leads to a reliable solution for the springback angle.

  15. Numerical and experimental study on multi-pass laser bending of AH36 steel strips

    NASA Astrophysics Data System (ADS)

    Fetene, Besufekad N.; Kumar, Vikash; Dixit, Uday S.; Echempati, Raghu

    2018-02-01

    Laser bending is a process of bending of plates, small sized sheets, strips and tubes, in which a moving or stationary laser beam heats the workpiece to achieve the desired curvature due to thermal stresses. Researchers studied the effects of different process parameters related to the laser source, material and workpiece geometry on laser bending of metal sheets. The studies are focused on large sized sheets. The workpiece geometry parameters like sheet thickness, length and width also affect the bend angle considerably. In this work, the effects of width and thickness on multi-pass laser bending of AH36 steel strips were studied experimentally and numerically. Finite element model using ABAQUS® was developed to investigate the size effect on the prediction of the bend angle. Microhardness and flexure tests showed an increase in the flexural strength as well as microhardness in the scanned zone. The microstructures of the bent strips also supported the physical observations.

  16. Earth's magnetic moment during geomagnetic reversals

    NASA Astrophysics Data System (ADS)

    Sokoloff, D. D.

    2017-11-01

    The behavior of the dipole magnetic moment of the geomagnetic field during the reversals is considered. By analogy with the reversals of the magnetic field of the Sun, the scenario is suggested in which during the reversal the mean dipole moment becomes zero, whereas the instantaneous value of the dipole magnetic moment remains nonzero and the corresponding vector rotates from the vicinity of one geographical pole to the other. A thorough discussion concerning the definition of the mean magnetic moment, which is used in this concept, is presented. Since the behavior of the geomagnetic field during the reversal is far from stationary, the ensemble average instead of the time average has to be considered.

  17. Origin of bending in uncoated microcantilever - Surface topography?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lakshmoji, K.; Prabakar, K.; Tripura Sundari, S., E-mail: sundari@igcar.gov.in

    2014-01-27

    We provide direct experimental evidence to show that difference in surface topography on opposite sides of an uncoated microcantilever induces bending, upon exposure to water molecules. Examination on opposite sides of the microcantilever by atomic force microscopy reveals the presence of localized surface features on one side, which renders the induced stress non-uniform. Further, the root mean square inclination angle characterizing the surface topography shows a difference of 73° between the opposite sides. The absence of deflection in another uncoated microcantilever having similar surface topography confirms that in former microcantilever bending is indeed induced by differences in surface topography.

  18. DNA bending-induced phase transition of encapsidated genome in phage λ

    PubMed Central

    Lander, Gabriel C.; Johnson, John E.; Rau, Donald C.; Potter, Clinton S.; Carragher, Bridget; Evilevitch, Alex

    2013-01-01

    The DNA structure in phage capsids is determined by DNA–DNA interactions and bending energy. The effects of repulsive interactions on DNA interaxial distance were previously investigated, but not the effect of DNA bending on its structure in viral capsids. By varying packaged DNA length and through addition of spermine ions, we transform the interaction energy from net repulsive to net attractive. This allowed us to isolate the effect of bending on the resulting DNA structure. We used single particle cryo-electron microscopy reconstruction analysis to determine the interstrand spacing of double-stranded DNA encapsidated in phage λ capsids. The data reveal that stress and packing defects, both resulting from DNA bending in the capsid, are able to induce a long-range phase transition in the encapsidated DNA genome from a hexagonal to a cholesteric packing structure. This structural observation suggests significant changes in genome fluidity as a result of a phase transition affecting the rates of viral DNA ejection and packaging. PMID:23449219

  19. Bend measurement using an etched fiber incorporating a fiber Bragg grating.

    PubMed

    Rauf, Abdul; Zhao, Jianlin; Jiang, Biqiang; Jiang, Yajun; Jiang, Wei

    2013-01-15

    A fiber Bragg grating (FBG) based bend measurement method using an etched fiber is proposed that utilizes the coupling of the core mode to the cladding and radiation modes at the bending region. An etching region of 99 µm diameter that serves as bend sensing head is achieved at 10 mm upstream the FBG through processing in 40% hydrofluoric acid, while the FBG acts as a narrowband reflector to enhance the sensitivity. The power variation curves are obtained for a wide range of bend angles, but the performance is limited due to the presence of the loss peaks. The sensing response is improved by immersing the etching region in a refractive index matching gel. The results are analyzed by using curve fitting formulas and are in good agreement. A large dynamic range of -27° to +27° and sensitivity of 0.43 dBm/deg is achieved, which can be enhanced by reducing the etched diameter.

  20. Bending of an Aspirated Pin During Rigid Bronchoscopy: Safeguards and Pitfalls.

    PubMed

    Elsayed, Abdelrahman A A; Mansour, Albaraa A; Amin, Ahmed A A; Ahmed, Mohsen S M

    2018-04-13

    Pin aspiration is a common problem in Muslim countries, where many women wear veils (hijab). This condition is usually treated using either a rigid or a flexible bronchoscope, and yet occasionally requires surgical approach. Pin bending may be necessary to extract impacted pins during the therapeutic rigid bronchoscopy. Medical records of patients who had pins extracted with a bending technique during the period from January 2012 to December 2016 in 1 institution were analyzed. Information on intraoperative and postoperative complications was collected. Between 2012 and 2016, 315 rigid bronchoscopies were performed for pin extraction; in 38 cases, bending of the pin was required for the extraction because they were in a position that did not allow simple extraction. The procedure was successful in cases and there were no major complications. The extraction of visible, distally located or impacted pins can be safely performed by experienced bronchoscopists using the bending technique. Some safeguards and pitfalls must be noted to ensure maximum safety.

  1. 75 FR 71666 - Bend/Ft. Rock Ranger District; Deschutes National Forest; Deschutes County, OR; West Bend...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-24

    ...; Deschutes County, OR; West Bend Vegetation Management Project EIS AGENCY: Forest Service, USDA. ACTION... management is intended to move the project area towards the HRV which will benefit certain focal species that... firefighter access during a wildfire event. The project area is located in Forest Plan management allocations...

  2. Electron band bending of polar, semipolar and non-polar GaN surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bartoš, I.; Romanyuk, O., E-mail: romanyuk@fzu.cz; Houdkova, J.

    2016-03-14

    The magnitudes of the surface band bending have been determined by X-ray photoelectron spectroscopy for polar, semipolar, and non-polar surfaces of wurtzite GaN crystals. All surfaces have been prepared from crystalline GaN samples grown by the hydride-vapour phase epitaxy and separated from sapphire substrates. The Ga 3d core level peak shifts have been used for band bending determination. Small band bending magnitudes and also relatively small difference between the band bendings of the surfaces with opposite polarity have been found. These results point to the presence of electron surface states of different amounts and types on surfaces of different polaritymore » and confirm the important role of the electron surface states in compensation of the bound surface polarity charges in wurtzite GaN crystals.« less

  3. Effect of bending on the room-temperature tensile strengths of structural ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jenkins, M.G.

    1992-01-01

    Results for nearly fifty, room-temperature tensile tests conducted on two advanced, monolithic silicon nitride ceramics are evaluated for the effects of bending and application of various Weibull statistical analyses. Two specimen gripping systems (straight collet and tapered collet) were evaluated for both success in producing gage section failures and tendency to minimize bending at failure. Specimen fabrication and grinding technique consderations are briefly reviewed and related to their effects on successful tensile tests. Ultimate tensile strengths are related to the bending measured at specimen failure and the effects of the gripping system on bending are discussed. Finally, comparisons are mademore » between the use of censored and uncensored data sample sets for determining the maximum likelihood estimates of the Weibull parameters from the tensile strength distributions.« less

  4. Effect of bending on the room-temperature tensile strengths of structural ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jenkins, M.G.

    1992-07-01

    Results for nearly fifty, room-temperature tensile tests conducted on two advanced, monolithic silicon nitride ceramics are evaluated for the effects of bending and application of various Weibull statistical analyses. Two specimen gripping systems (straight collet and tapered collet) were evaluated for both success in producing gage section failures and tendency to minimize bending at failure. Specimen fabrication and grinding technique consderations are briefly reviewed and related to their effects on successful tensile tests. Ultimate tensile strengths are related to the bending measured at specimen failure and the effects of the gripping system on bending are discussed. Finally, comparisons are mademore » between the use of censored and uncensored data sample sets for determining the maximum likelihood estimates of the Weibull parameters from the tensile strength distributions.« less

  5. A wave-bending structure at Ka-band using 3D-printed metamaterial

    NASA Astrophysics Data System (ADS)

    Wu, Junqiang; Liang, Min; Xin, Hao

    2018-03-01

    Three-dimensional printing technologies enable metamaterials of complex structures with arbitrary inhomogeneity. In this work, a 90° wave-bending structure at the Ka-band (26.5-40 GHz) based on 3D-printed metamaterials is designed, fabricated, and measured. The wave-bending effect is realized through a spatial distribution of varied effective dielectric constants. Based on the effective medium theory, different effective dielectric constants are accomplished by special, 3D-printable unit cells, which allow different ratios of dielectric to air at the unit cell level. In contrast to traditional, metallic-structure-included metamaterial designs, the reported wave-bending structure here is all dielectric and implemented by the polymer-jetting technique, which features rapid, low-cost, and convenient prototyping. Both simulation and experiment results demonstrate the effectiveness of the wave-bending structure.

  6. Angular dependent XPS study of surface band bending on Ga-polar n-GaN

    NASA Astrophysics Data System (ADS)

    Huang, Rong; Liu, Tong; Zhao, Yanfei; Zhu, Yafeng; Huang, Zengli; Li, Fangsen; Liu, Jianping; Zhang, Liqun; Zhang, Shuming; Dingsun, An; Yang, Hui

    2018-05-01

    Surface band bending and composition of Ga-polar n-GaN with different surface treatments were characterized by using angular dependent X-ray photoelectron spectroscopy. Upward surface band bending of varying degree was observed distinctly upon to the treatment methods. Besides the nitrogen vacancies, we found that surface states of oxygen-containing absorbates (O-H component) also contribute to the surface band bending, which lead the Fermi level pined at a level further closer to the conduction band edge on n-GaN surface. The n-GaN surface with lower surface band bending exhibits better linear electrical properties for Ti/GaN Ohmic contacts. Moreover, the density of positively charged surface states could be derived from the values of surface band bending.

  7. Assessment of driver yield rates pre- and post-RRFB installation, Bend, Oregon.

    DOT National Transportation Integrated Search

    2011-12-01

    The Oregon Department of Transportation improved two crosswalks on US 97 (Bend Parkway) near Bend, Oregon by installing Rectangular Rapid Flashing Beacons (RRFB), replacing signs, and enhancing pavement markings. At the location of the intersections ...

  8. Effect of High Impact or Non-impact Loading Activity on Bone Bending Stiffness and Mineral Density

    NASA Technical Reports Server (NTRS)

    Liang, Michael T. C.; Arnnud, Sara B.; Steele, Charles R.; Moreno, Alexjandro

    2003-01-01

    Material properties of conical bone, including mineral density (BMD) and its geometry is closely related to its load-carrying capacity. These two primary components determine the strength of conical bone. High impact loading involving acceleration and deceleration movements used in gymnastics induce higher BMD of the affected bone compared to the non-impact acceleration and deceleration movements used in swimming. Study of these two groups of athletes on bone bending stiffness has not been reported. The purpose of this study was to compare differences in bone bending stiffness and BMD between competitive female synchronized swimmers and female gymnasts. Thirteen world class female synchronized swimmers (SYN) and 8 female gymnasts (GYM), mean age 21 +/- 2.9 yr. were recruited for this study. We used a mechanical response tissue analyzer (Gaitscan, NJ) to calculate EI, where E is Young's modulus of elasticity and I is the cross-sectional moment of inertia. EI was obtained from tissue response to a vibration probe placed directly on the skin of the mid-region of tibia and ulna. BMD of the heel and wrist were measured with a probe densitometer (PIXI, Lunor, WI). The SYN were taller than (p < 0.05) the GYM but weighed the same as the GYM. EI obtained from tibia and ulna of the SYN (291 +/- 159 and 41 +/- 19.4, respectively) were not significantly different from thc GYM (285 +/- 140 and 44 +/- 18.3, respectively). BMD of the heel and wrist in GYM were higher than in SYN (p < 0.001). High impact weight-bearing activities promote similar bone strength but greater BMD response than non-impact activities performed in a buoyant environment.

  9. Exact collisional moments for plasma fluid theories

    NASA Astrophysics Data System (ADS)

    Pfefferlé, D.; Hirvijoki, E.; Lingam, M.

    2017-04-01

    The velocity-space moments of the often troublesome nonlinear Landau collision operator are expressed exactly in terms of multi-index Hermite-polynomial moments of distribution functions. The collisional moments are shown to be generated by derivatives of two well-known functions, namely, the Rosenbluth-MacDonald-Judd-Trubnikov potentials for a Gaussian distribution. The resulting formula has a nonlinear dependency on the relative mean flow of the colliding species normalised to the root-mean-square of the corresponding thermal velocities and a bilinear dependency on densities and higher-order velocity moments of the distribution functions, with no restriction on temperature, flow, or mass ratio of the species. The result can be applied to both the classic transport theory of plasmas that relies on the Chapman-Enskog method, as well as to derive collisional fluid equations that follow Grad's moment approach. As an illustrative example, we provide the collisional ten-moment equations with exact conservation laws for momentum- and energy-transfer rates.

  10. Exact collisional moments for plasma fluid theories

    NASA Astrophysics Data System (ADS)

    Pfefferle, David; Hirvijoki, Eero; Lingam, Manasvi

    2017-10-01

    The velocity-space moments of the often troublesome nonlinear Landau collision operator are expressed exactly in terms of multi-index Hermite-polynomial moments of the distribution functions. The collisional moments are shown to be generated by derivatives of two well-known functions, namely the Rosenbluth-MacDonald-Judd-Trubnikov potentials for a Gaussian distribution. The resulting formula has a nonlinear dependency on the relative mean flow of the colliding species normalised to the root-mean-square of the corresponding thermal velocities, and a bilinear dependency on densities and higher-order velocity moments of the distribution functions, with no restriction on temperature, flow or mass ratio of the species. The result can be applied to both the classic transport theory of plasmas, that relies on the Chapman-Enskog method, as well as to deriving collisional fluid equations that follow Grad's moment approach. As an illustrative example, we provide the collisional ten-moment equations with exact conservation laws for momentum- and energy-transfer rate.

  11. Exact collisional moments for plasma fluid theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pfefferlé, D.; Hirvijoki, E.; Lingam, M.

    The velocity-space moments of the often troublesome nonlinear Landau collision operator are expressed exactly in terms of multi-index Hermite-polynomial moments of distribution functions. The collisional moments are shown to be generated by derivatives of two well-known functions, namely, the Rosenbluth-MacDonald-Judd-Trubnikov potentials for a Gaussian distribution. The resulting formula has a nonlinear dependency on the relative mean flow of the colliding species normalised to the root-mean-square of the corresponding thermal velocities and a bilinear dependency on densities and higher-order velocity moments of the distribution functions, with no restriction on temperature, flow, or mass ratio of the species. The result can bemore » applied to both the classic transport theory of plasmas that relies on the Chapman-Enskog method, as well as to derive collisional fluid equations that follow Grad's moment approach. As an illustrative example, we provide the collisional ten-moment equations with exact conservation laws for momentum-and energy-transfer rates.« less

  12. Exact collisional moments for plasma fluid theories

    DOE PAGES

    Pfefferlé, D.; Hirvijoki, E.; Lingam, M.

    2017-04-01

    The velocity-space moments of the often troublesome nonlinear Landau collision operator are expressed exactly in terms of multi-index Hermite-polynomial moments of distribution functions. The collisional moments are shown to be generated by derivatives of two well-known functions, namely, the Rosenbluth-MacDonald-Judd-Trubnikov potentials for a Gaussian distribution. The resulting formula has a nonlinear dependency on the relative mean flow of the colliding species normalised to the root-mean-square of the corresponding thermal velocities and a bilinear dependency on densities and higher-order velocity moments of the distribution functions, with no restriction on temperature, flow, or mass ratio of the species. The result can bemore » applied to both the classic transport theory of plasmas that relies on the Chapman-Enskog method, as well as to derive collisional fluid equations that follow Grad's moment approach. As an illustrative example, we provide the collisional ten-moment equations with exact conservation laws for momentum-and energy-transfer rates.« less

  13. Solving moment hierarchies for chemical reaction networks

    NASA Astrophysics Data System (ADS)

    Krishnamurthy, Supriya; Smith, Eric

    2017-10-01

    The study of chemical reaction networks (CRN’s) is a very active field. Earlier well-known results (Feinberg 1987 Chem. Enc. Sci. 42 2229, Anderson et al 2010 Bull. Math. Biol. 72 1947) identify a topological quantity called deficiency, for any CRN, which, when exactly equal to zero, leads to a unique factorized steady-state for these networks. No results exist however for the steady states of non-zero-deficiency networks. In this paper, we show how to write the full moment-hierarchy for any non-zero-deficiency CRN obeying mass-action kinetics, in terms of equations for the factorial moments. Using these, we can recursively predict values for lower moments from higher moments, reversing the procedure usually used to solve moment hierarchies. We show, for non-trivial examples, that in this manner we can predict any moment of interest, for CRN’s with non-zero deficiency and non-factorizable steady states.

  14. Piezoelectric Pre-Stressed Bending Mechanism for Impact-Driven Energy Harvester

    NASA Astrophysics Data System (ADS)

    Abdal, A. M.; Leong, K. S.

    2017-06-01

    This paper experimentally demonstrates and evaluates a piezoelectric power generator bending mechanism based on pre-stressed condition whereby the piezoelectric transducer being bended and remained in the stressed condition before applying a force on the piezoelectric bending structure, which increase the stress on the piezoelectric surface and hence increase the generated electrical charges. An impact force is being exerted onto bending the piezoelectric beam and hence generating electrical power across an external resistive load. The proposed bending mechanism prototype has been manufactured by employing 3D printer technology in order to conduct the evaluation. A free fall test has been conducted as the evaluation method with varying force using a series of different masses and different fall heights. A rectangular piezoelectric harvester beam with the size of 32mm in width, 70mm in length, and 0.55mm in thickness is used to demonstrate the experiment. It can be seen from the experiment that the instantaneous peak to peak AC volt output measured at open-circuit is increasing and saturated at about of 70V when an impact force of about 80N is being applied. It is also found that a maximum power of about 53mW is generated at an impact force of 50N when it is connected to an external resistive load of 0.7KΩ. The reported mechanism is a promising candidate in the application of energy harvesting for powering various wireless sensor nodes (WSN) which is the core of Internet of Things (IoT).

  15. Mechanical behavior of a novel non-fusion scoliosis correction device.

    PubMed

    Wessels, M; Hekman, E E G; Verkerke, G J

    2013-11-01

    We developed an innovative non-fusion correction system (XS LATOR) consisting of two individual implants that are extendable and extremely flexible. One implant, the XS LAT, generates a lateral, bending moment and one implant, the XS TOR, generates a torsion moment. Two 'inverse' implants were developed for generating torsion and lateral bending in a porcine model was tested for force delivery. An in vitro experiment was set up to describe the mechanical behavior of both implants. Narrow and wide ('inverse') versions of the XS TOR and XS LAT were mounted on an apparatus that was able to simulate different spinal geometries. The implants were anchored to three artificial vertebrae with integrated 6D force sensors, after which the vertebrae were rotated and translated towards the demanded position. The reaction forces and moments were recorded in all configurations. The maximal (lateral) bending moment, which occurred at the middle vertebra, was determined and, similarly, torque applied at the center of rotation of the middle vertebra was calculated. As expected, the wide and the small versions of the XS TOR generate a torque that increases during the growth of the system. Similarly, the XS LAT generates a bending moment that slightly increases during the growth of the system. The produced moments approximate the theoretically predicted ones. The contribution to the spinal stiffness ranges between 0.01Nm/° and 0.04Nm/° in bending and between 0.03Nm/° and 0.08Nm/° in torsion. The XS TOR and the XS LAT are able to generate a torque and a bending moment that remain (fairly) constant during spinal growth when a shape change due to the generated moment/torque is achieved. The stiffness of the implants is extremely low, being only a fraction of the stiffness of conventional, spinal fusion constructs. Current fusion systems, such as non-segmental spinal constructs generally, have 11 times higher stiffness in torsion and 6 times higher stiffness in lateral bending

  16. Pacific plate motion change caused the Hawaiian-Emperor Bend

    PubMed Central

    Torsvik, Trond H.; Doubrovine, Pavel V.; Steinberger, Bernhard; Gaina, Carmen; Spakman, Wim; Domeier, Mathew

    2017-01-01

    A conspicuous 60° bend of the Hawaiian-Emperor Chain in the north-western Pacific Ocean has variously been interpreted as the result of an abrupt Pacific plate motion change in the Eocene (∼47 Ma), a rapid southward drift of the Hawaiian hotspot before the formation of the bend, or a combination of these two causes. Palaeomagnetic data from the Emperor Seamounts prove ambiguous for constraining the Hawaiian hotspot drift, but mantle flow modelling suggests that the hotspot drifted 4–9° south between 80 and 47 Ma. Here we demonstrate that southward hotspot drift cannot be a sole or dominant mechanism for formation of the Hawaiian-Emperor Bend (HEB). While southward hotspot drift has resulted in more northerly positions of the Emperor Seamounts as they are observed today, formation of the HEB cannot be explained without invoking a prominent change in the direction of Pacific plate motion around 47 Ma. PMID:28580950

  17. Experimental method for determination of bending and torsional rigidities of advanced composite laminates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maeda, Takenori

    1995-11-01

    This paper presents an experimental method for the determination of the bending and torsional rigidities of advanced fiber composite laminates with the aid of laser holographic interferometry. The proposed method consists of a four-point bending test and a resonance test. The bending rigidity ratio (D{sub 12}/D{sub 22}) can be determined from the fringe patterns of the four-point bending test. The bending rigidities (D{sub 11} and D{sub 22}) and the torsional rigidity (D{sub 66}) are calculated from the natural frequencies of cantilever plates of the resonance test. The test specimens are carbon/epoxy cross-ply laminates. The adequacy of the experimental method ismore » confirmed by comparing the measured rigidities with the theoretical values obtained from classical lamination theory (CLT) by using the measured tensile properties. The results show that the present method can be used to evaluate the rigidities of orthotropic laminates with reasonably good accuracy.« less

  18. Composite material bend-twist coupling for wind turbine blade applications

    NASA Astrophysics Data System (ADS)

    Walsh, Justin M.

    Current efforts in wind turbine blade design seek to employ bend-twist coupling of composite materials for passive power control by twisting blades to feather. Past efforts in this area of study have proved to be problematic, especially in formulation of the bend-twist coupling coefficient alpha. Kevlar/epoxy, carbon/epoxy and glass/epoxy specimens were manufactured to study bend-twist coupling, from which numerical and analytical models could be verified. Finite element analysis was implemented to evaluate fiber orientation and material property effects on coupling magnitude. An analytical/empirical model was then derived to describe numerical results and serve as a replacement for the commonly used coupling coefficient alpha. Through the results from numerical and analytical models, a foundation for aeroelastic design of wind turbines blades utilizing biased composite materials is provided.

  19. Demonstration of acoustic waveguiding and tight bending in phononic crystals

    DOE PAGES

    Ghasemi Baboly, M.; Raza, A.; Brady, J.; ...

    2016-10-31

    The systematic design, fabrication, and characterization of an isolated, single-mode, 90° bend phononic crystal (PnC) waveguide are presented. A PnC consisting of a 2D square array of circular air holes in an aluminum substrate is used, and waveguides are created by introducing a line defect in the PnC lattice. A high transmission coefficient is observed (–1 dB) for the straight sections of the waveguide, and an overall 2.3 dB transmission loss is observed (a transmission coefficient of 76%) for the 90° bend. Further optimization of the structure may yield higher transmission efficiencies. Lastly, this manuscript shows the complete design processmore » for an engineered 90° bend PnC waveguide from inception to experimental demonstration.« less

  20. Bending stiffness, torsional stability, and insertion force of cementless femoral stems.

    PubMed

    Incavo, S J; Johnson, C C; Churchill, D L; Beynnon, B D

    2001-04-01

    In cementless total hip arthroplasty, increased femoral stem flexibility and decreased fracture propensity are desirable characteristics. The slotting and tapering of the stem have been introduced to achieve this. These features should not, however, be allowed to interfere with the ability of the distal stem to provide initial mechanical stability, especially under rotation. This study was done to investigate the ability of slotted and tapered stem designs to reduce stiffness and insertion force while still maintaining adequate torsional strength. The torsional strength, maximum insertion force, and insertional work of straight, slotted, and taper stems were measured by inserting each type into rigid polyurethane foam and torque testing to failure. Bending stiffness of each stem design was calculated using numerical methods. When compared to a straight stem, a unislot stem has similar torsional strength, maximum insertional force, and work of insertion. The bending stiffness is decreased by 19% to 82% depending on the bending direction. A trislot design decreased torque strength by 29%, maximal insertion force by 36%, and work by 11%. Bending stiffness was decreased by 74% and was not dependent on bending direction. A 0.5-mm taper decreased torque strength by 11% and insertional work by 14%. No difference was seen in maximum insertional force. We conclude that the design features studied (slots and taper) are effective in decreasing stem stiffness and reducing fracture propensity.

  1. Impact compressive and bending behaviour of rocks accompanied by electromagnetic phenomena.

    PubMed

    Kobayashi, Hidetoshi; Horikawa, Keitaro; Ogawa, Kinya; Watanabe, Keiko

    2014-08-28

    It is well known that electromagnetic phenomena are often observed preceding earthquakes. However, the mechanism by which these electromagnetic waves are generated during the fracture and deformation of rocks has not been fully identified. Therefore, in order to examine the relationship between the electromagnetic phenomena and the mechanical properties of rocks, uniaxial compression and three-point bending tests for two kinds of rocks with different quartz content, granite and gabbro, have been carried out at quasi-static and dynamic rates. Especially, in the bending tests, pre-cracked specimens of granite were also tested. Using a split Hopkinson pressure bar and a ferrite-core antenna in close proximity to the specimens, both the stress-strain (load-displacement) curve and simultaneous electromagnetic wave magnitude were measured. It was found that the dynamic compressive and bending strengths and the stress increase slope of both rocks were higher than those observed in static tests; therefore, there is a strain-rate dependence in their strength and stress increase rate. It was found from the tests using the pre-cracked bending specimens that the intensity of electromagnetic waves measured during crack extension increased almost proportionally to the increase of the maximum stress intensity factor of specimens. This tendency was observed in both the dynamic and quasi-static three-point bending tests for granite. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  2. Design and analysis for a bend-resistant and large-mode-area photonic crystal fiber with hybrid cladding.

    PubMed

    Qin, Yan; Yang, Huajun; Jiang, Ping; Gui, Fengji; Caiyang, Weinan; Cao, Biao

    2018-05-10

    In this paper, an asymmetric large-mode-area photonic crystal fiber (LMA-PCF) with low bending loss at a smaller bending radius is designed. The finite-element method with a perfectly matched layer boundary is used to analyze the performance of the PCF. To achieve LMA-PCF with low bending loss, the air holes with double lattice constants and different sizes at the core are designed. Numerical results show that this structure can achieve low bending loss and LMA with a smaller bending radius at the wavelength of 1.55 μm. The effective mode area of the fundamental mode is larger than 1000  μm 2 when the bending radius is ≥10  cm. The bending loss of the fundamental mode is just 0.0113 dB/m, and the difference between the fundamental and high-order modes of the bending loss is larger than 10 3 when the bending radius is 10 cm. Simulation results show this novel PCF can achieve LMA and have effective single-mode operation when the bending orientation angle ranges in ±110°. This novel photonic crystal has potential application in high-power fiber lasers.

  3. Optimization of an asymmetric thin-walled tube in rotary draw bending process

    NASA Astrophysics Data System (ADS)

    Xue, Xin; Liao, Juan; Vincze, Gabriela; Gracio, Jose J.

    2013-12-01

    The rotary draw bending is one of the advanced thin-walled tube forming processes with high efficiency, low consumption and good flexibility in several industries such as automotive, aerospace and shipping. However it may cause undesirable deformations such as over-thinning and ovalization, which bring the weakening of the strength and difficulties in the assembly process respectively. Accurate modeling and effective optimization design to eliminate or reduce undesirable deformations in tube bending process have been a challenging topic. In this paper, in order to study the deformation behaviors of an asymmetric thin-walled tube in rotary draw bending process, a 3D elastic-plastic finite element model has been built under the ABAQUS environment, and the reliability of the model is validated by comparison with experiment. Then, the deformation mechanism of thin-walled tube in bending process was briefly analysis and the effects of wall thickness ratio, section height width ratio and mandrel extension on wall thinning and ovalization in bending process were investigated by using Response Surface Methodology. Finally, multi-objective optimization method was used to obtain an optimum solution of design variables based on simulation results.

  4. Parameters design of the dielectric elastomer spring-roll bending actuator (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Li, Jinrong; Liu, Liwu; Liu, Yanju; Leng, Jinsong

    2017-04-01

    Dielectric elastomers are novel soft smart material that could deform sustainably when subjected to external electric field. That makes dielectric elastomers promising materials for actuators. In this paper, a spring-roll actuator that would bend when a high voltage is applied was fabricated based on dielectric elastomer. Using such actuators as active parts, the flexible grippers and inchworm-inspired crawling robots were manufactured, which demonstrated some examples of applications in soft robotics. To guide the parameters design of dielectric elastomer based spring-roll bending actuators, the theoretical model of such actuators was established based on thermodynamic theories. The initial deformation and electrical induced bending angle of actuators were formulated. The failure of actuators was also analyzed considering some typical failure modes like electromechanical instability, electrical breakdown, loss of tension and maximum tolerant stretch. Thus the allowable region of actuators was determined. Then the bending angle-voltage relations and failure voltages of actuators with different parameters, including stretches of the dielectric elastomer film, number of active layers, and dimensions of spring, were investigated. The influences of each parameter on the actuator performances were discussed, providing meaningful guidance to the optical design of the spring-roll bending actuators.

  5. Pulsatile turbulent flow through pipe bends at high Dean and Womersley numbers

    NASA Astrophysics Data System (ADS)

    Kalpakli, Athanasia; Örlü, Ramis; Tillmark, Nils; Alfredsson, P. Henrik

    2011-12-01

    Turbulent pulsatile flows through pipe bends are prevalent in internal combustion engine components which consist of bent pipe sections and branching conduits. Nonetheless, most of the studies related to pulsatile flows in pipe bends focus on incompressible, low Womersley and low Dean number flows, primarily because they aim in modeling blood flow, while internal combustion engine related flows have mainly been addressed in terms of integral quantities and consist of single point measurements. The present study aims at bridging the gap between these two fields by means of time-resolved stereoscopic particle image velocimetry measurements in a pipe bend with conditions that are close to those encountered in exhaust manifolds. The time/phase-resolved three-dimensional cross-sectional flow-field 3 pipe diameters downstream the pipe bend is captured and the interplay between different secondary motions throughout a pulse cycle is discussed.

  6. Shear horizontal feature guided ultrasonic waves in plate structures with 90° transverse bends.

    PubMed

    Yu, Xudong; Manogharan, Prabhakaran; Fan, Zheng; Rajagopal, Prabhu

    2016-02-01

    Antisymmetric and symmetric Lamb-type feature guided waves (FGW) have recently been shown to exist in small angle plate bends. This paper reports Semi-Analytical Finite Element (SAFE) method simulations revealing the existence of a new family of Shear Horizontal (SHB) type of FGW mode in 90° bends in plate structures. Mode shapes and velocity dispersion curves are extracted, demonstrating the SH-like nature of a bend-confined mode identified in studies of power flow across the bend. The SHB mode is shown to have reduced attenuation in the higher frequency range, making it an ideal choice for high-resolution inspection of such bends. Further modal studies examine the physical basis for mode confinement, and argue that this is strongly related to FGW phenomena reported earlier, and also linked to the curvature at the bend region. Wedge acoustic waves discussed widely in literature are shown as arising from surface-limiting of the SHB mode at higher frequencies. The results are validated by experiments and supported by 3D Finite Element (FE) simulations. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Influence of fiber bending on wavelength demodulation of fiber-optic Fabry-Perot interferometric sensors.

    PubMed

    Liu, Guigen; Sheng, Qiwen; Hou, Weilin; Han, Ming

    2016-11-14

    In practical applications of fiber optic sensors based on Fabry-Perot interferometers (FPIs), the lead-in optical fiber often experiences dynamic or static bending due to environmental perturbations or limited installation space. Bending introduces wavelength-dependent losses to the sensors, which can cause erroneous readings for sensors based on wavelength demodulation interrogation. Here, we investigate the bending-induced wavelength shift (BIWS) to sensors based on FPIs. Partially explicit expressions of BIWSs for the reflection fringe peaks and valleys have been derived for sensors based on low-finesse FPI. The theoretical model predicts these findings: 1) provided that a fringe peak experiences the same modulation slope by bending losses with a fringe valley, BIWSs for the peak and valley have opposite signs and the BIWS for the valley has a smaller absolute value; 2) BIWS is a linear function of the length of the bending section; 3) a FPI with higher visibility and longer optical path length is more resistant to the influence of bending. Experiments have been carried out and the results agree well with the theoretical predictions.

  8. The Bending Vibrations of the C_3-ISOTOPOLOGUES in the 1.9 Terahertz Region

    NASA Astrophysics Data System (ADS)

    Breier, A.; Büchling, Thomas; Lutter, Volker; Schnierer, Rico; Fuchs, Guido W.; Giesen, Thomas

    2016-06-01

    Short carbon chains are fundamental for the chemistry of stellar and interstellar ambiences. The linear carbon chain molecule C_3 has been found in various interstellar and circumstellar environments, encompassing diffuse interstellar clouds, star forming regions, shells of late type stars, as well as cometary tails. Due to the lack of a permanent dipole moment C_3 can only be detected by electronic transitions in the visible spectral range or by vibrational bands in the mid-and far-infrared region. We performed experiments where C_3 was produced via laser-ablation of a graphite rod with a 3 bar He purge and a subsequent adiabatic expansion into a vaccum resulting in a supersonic jet. We report laboratory measurements of the lowest bending mode transitions of six 13C-isotopologues of the linear C_3 molecule. Fifty-eight transitions have been measured between 1.8-1.9 THz with an accuracy of better than 1 MHz. Molecular parameters have been derived to give accurate line frequency positions of all 13C isotopologues to ease their future interstellar detection. A dedicated observation for singly substituted 13CCC is projected within the SOFIA airborne observatory mission.

  9. Blurred image recognition by legendre moment invariants

    PubMed Central

    Zhang, Hui; Shu, Huazhong; Han, Guo-Niu; Coatrieux, Gouenou; Luo, Limin; Coatrieux, Jean-Louis

    2010-01-01

    Processing blurred images is a key problem in many image applications. Existing methods to obtain blur invariants which are invariant with respect to centrally symmetric blur are based on geometric moments or complex moments. In this paper, we propose a new method to construct a set of blur invariants using the orthogonal Legendre moments. Some important properties of Legendre moments for the blurred image are presented and proved. The performance of the proposed descriptors is evaluated with various point-spread functions and different image noises. The comparison of the present approach with previous methods in terms of pattern recognition accuracy is also provided. The experimental results show that the proposed descriptors are more robust to noise and have better discriminative power than the methods based on geometric or complex moments. PMID:19933003

  10. A general moment expansion method for stochastic kinetic models

    NASA Astrophysics Data System (ADS)

    Ale, Angelique; Kirk, Paul; Stumpf, Michael P. H.

    2013-05-01

    Moment approximation methods are gaining increasing attention for their use in the approximation of the stochastic kinetics of chemical reaction systems. In this paper we derive a general moment expansion method for any type of propensities and which allows expansion up to any number of moments. For some chemical reaction systems, more than two moments are necessary to describe the dynamic properties of the system, which the linear noise approximation is unable to provide. Moreover, also for systems for which the mean does not have a strong dependence on higher order moments, moment approximation methods give information about higher order moments of the underlying probability distribution. We demonstrate the method using a dimerisation reaction, Michaelis-Menten kinetics and a model of an oscillating p53 system. We show that for the dimerisation reaction and Michaelis-Menten enzyme kinetics system higher order moments have limited influence on the estimation of the mean, while for the p53 system, the solution for the mean can require several moments to converge to the average obtained from many stochastic simulations. We also find that agreement between lower order moments does not guarantee that higher moments will agree. Compared to stochastic simulations, our approach is numerically highly efficient at capturing the behaviour of stochastic systems in terms of the average and higher moments, and we provide expressions for the computational cost for different system sizes and orders of approximation. We show how the moment expansion method can be employed to efficiently quantify parameter sensitivity. Finally we investigate the effects of using too few moments on parameter estimation, and provide guidance on how to estimate if the distribution can be accurately approximated using only a few moments.

  11. The novel ethylene-responsive factor CsERF025 affects the development of fruit bending in cucumber.

    PubMed

    Wang, Chunhua; Xin, Ming; Zhou, Xiuyan; Liu, Chunhong; Li, Shengnan; Liu, Dong; Xu, Yuan; Qin, Zhiwei

    2017-11-01

    Overexpression of CsERF025 induces fruit bending by promoting the production of ethylene. Cucumber fruit bending critically affects cucumber quality, but the mechanism that causes fruit bending remains unclear. To better understand this mechanism, we performed transcriptome analyses on tissues from the convex (C1) and concave (C2) sides of bending and straight (S) fruit at 2 days post anthesis (DPA). We identified a total of 281 differentially expressed genes (DEGs) from both the convex and concave sides of bent fruit that showed significantly different expression profiles relative to straight fruits. Of these 281 DEGs, 196 were up-regulated (C1/S_C2/S) and 85 were down-regulated (C1/S_C2/S). Among the 196 up-regulated DEGs, the transcriptional levels of genes related to ethylene biosynthesis and signaling pathways were significantly higher in bending fruit compared with straight fruit. CsERF025 showed the largest difference in expression between bending and straight fruit. CsERF025 is an AP2/ERF gene encoding a protein that localizes to the nucleus. Overexpression of this gene increased the bending rate of cucumber fruits and increased the angle of bending. CsERF025 increased both the expression of ethylene biosynthesis-related genes and the production of ethylene. The application of exogenous 1-aminocyclopropane-l-carboxylic acid (ACC) to straight fruits from control plants promoted fruit bending. Thus, CsERF025 enhances the production of ethylene and thereby promotes fruit bending in cucumber.

  12. Development of Bend Sensor for Catheter Tip

    NASA Astrophysics Data System (ADS)

    Nagano, Yoshitaka; Sano, Akihito; Fujimoto, Hideo

    Recently, a minimally invasive surgery which makes the best use of the catheter has been becoming more popular. In endovascular coil embolization for a cerebral aneurysm, the observation of the catheter's painting phenomenon is very important to execute the appropriate manipulation of the delivery wire and the catheter. In this study, the internal bend sensor which consists of at least two bending enhanced plastic optical fibers was developed in order to measure the curvature of the catheter tip. Consequently, the painting could be more sensitively detected in the neighborhood of the aneurysm. In this paper, the basic characteristics of the developed sensor system are described and its usefulness is confirmed from the comparison of the insertion force of delivery wire and the curvature of catheter tip in the experiment of coil embolization.

  13. Membrane bending: the power of protein imbalance.

    PubMed

    Derganc, Jure; Antonny, Bruno; Copič, Alenka

    2013-11-01

    Many cellular processes require membrane deformation, which is driven by specialized protein machinery and can often be recapitulated using pure lipid bilayers. However, biological membranes contain a large amount of embedded proteins. Recent research suggests that membrane-bound proteins with asymmetric distribution of mass across the bilayer can influence membrane bending in a nonspecific manner due to molecular crowding. This mechanism is physical in nature and arises from collisions between such 'mushroom-shaped' proteins. It can either facilitate or impede the action of protein coats, for example COPII, during vesicle budding. We describe the physics of how molecular crowding can influence membrane bending and discuss the implications for other cellular processes, such as sorting of glycosylphosphatidylinositol-anchored proteins (GPI-APs) and production of intraluminal vesicles. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Energy level alignment and band bending at organic interfaces

    NASA Astrophysics Data System (ADS)

    Seki, Kazuhiko; Oji, Hiroshi; Ito, Eisuke; Hayashi, Naoki; Ouchi, Yukio; Ishii, Hisao

    1999-12-01

    Recent progress in the study of the energy level alignment and band bending at organic interfaces is reviewed, taking the examples mainly from the results of the group of the authors using ultraviolet photoelectron spectroscopy (UPS), metastable atom electron spectroscopy (MAES), and Kelvin probe method (KPM). As for the energy level alignment right at the interface, the formation of an electric dipole layer is observed for most of the organic/metal interfaces, even when no significant chemical interaction is observed. The origin of this dipole layer is examined by accumulating the data of various combinations of organics and metals, and the results indicate combined contribution from (1) charge transfer (CT) between the organic molecule and the metal, and (2) pushback of the electrons spilled out from metal surface, for the case of nonpolar organic molecule physisorbed on metals. Other factors such as chemical interaction and the orientation of polar molecules are also pointed out. As for the band bending, the careful examination of the existence/absence of band bending of purified TPD* molecule deposited on various metals in ultrahigh vacuum (UHV) revealed negligible band bending up to 100 nm thickness, and also the failure of the establishment of Fermi level alignment between organic layer and the metals. The implications of these findings are discussed, in relation to the future prospects of the studies in this field. (*:N,N'- diphenyl-N,N'-(3-methylphenyl)-1,1'-biphenyl-4,4'-diamine).

  15. Water-rich bending faults at the Middle America Trench

    NASA Astrophysics Data System (ADS)

    Naif, Samer; Key, Kerry; Constable, Steven; Evans, Rob L.

    2015-09-01

    The portion of the Central American margin that encompasses Nicaragua is considered to represent an end-member system where multiple lines of evidence point to a substantial flux of subducted fluids. The seafloor spreading fabric of the incoming Cocos plate is oriented parallel to the trench such that flexural bending at the outer rise optimally reactivates a dense network of normal faults that extend several kilometers into the upper mantle. Bending faults are thought to provide fluid pathways that lead to serpentinization of the upper mantle. While geophysical anomalies detected beneath the outer rise have been interpreted as broad crustal and upper mantle hydration, no observational evidence exists to confirm that bending faults behave as fluid pathways. Here we use seafloor electromagnetic data collected across the Middle America Trench (MAT) offshore of Nicaragua to create a comprehensive electrical resistivity image that illuminates the infiltration of seawater along bending faults. We quantify porosity from the resistivity with Archie's law and find that our estimates for the abyssal plain oceanic crust are in good agreement with independent observations. As the Cocos crust traverses the outer rise, the porosity of the dikes and gabbros progressively increase from 2.7% and 0.7% to 4.8% and 1.7%, peaking within 20 km of the trench axis. We conclude that the intrusive crust subducts twice as much pore water as previously thought, significantly raising the flux of fluid to the seismogenic zone and the mantle wedge.

  16. Kerr microscopy studies of the effects of bending stress on galfenola)

    NASA Astrophysics Data System (ADS)

    Raghunath, Ganesh; Marana, Michael; Na, Suok-Min; Flatau, Alison

    2014-05-01

    This work deals with using a magneto-optic Kerr effect (MOKE) microscope to optically analyze the evolution of magnetic domains in a rolled and Goss textured galfenol (Fe81Ga19 + 1.0% NbC) sample when subjected to a bending stress. The initial magnetization state of the cantilevered sample was fixed along its length by a 0.3 T permanent magnet. The magnetic state was monitored with the MOKE microscope as a tip load was applied to bend the sample. The magnetic state of galfenol depends on its magneto-elastic properties. A finite element model that incorporates an energy based formulation of magnetostriction [W. D. Armstrong, J. Magn. Magn. Mater. 263(1-2), 208-218 (2003)] was used to investigate the stresses in the sample and the corresponding change in the magnetic induction as bending occurred. A qualitative comparison with the domain pictures is presented, and the experimental micromagnetic behavior results are shown to correlate well to the macro scale bending stress and magnetization results obtained in the FEM simulations.

  17. Development of a benchmark factor to detect wrinkles in bending parts

    NASA Astrophysics Data System (ADS)

    Engel, Bernd; Zehner, Bernd-Uwe; Mathes, Christian; Kuhnhen, Christopher

    2013-12-01

    The rotary draw bending process finds special use in the bending of parts with small bending radii. Due to the support of the forming zone during the bending process, semi-finished products with small wall thicknesses can be bent. One typical quality characteristic is the emergence of corrugations and wrinkles at the inside arc. Presently, the standard for the evaluation of wrinkles is insufficient. The wrinkles' distribution along the longitudinal axis of the tube results in an average value [1]. An evaluation of the wrinkles is not carried out. Due to the lack of an adequate basis of assessment, coordination problems between customers and suppliers occur. They result from an imprecision caused by the lack of quantitative evaluability of the geometric deviations at the inside arc. The benchmark factor for the inside arc presented in this article is an approach to holistically evaluate the geometric deviations at the inside arc. The classification of geometric deviations is carried out according to the area of the geometric characteristics and the respective flank angles.

  18. Interdisciplinary Invitations: Exploring Gee's Bend Quilts

    ERIC Educational Resources Information Center

    Mitchell, Rebecca; Whitin, Phyllis; Whitin, David

    2012-01-01

    Engaging with the quilts of Gee's Bend offers a rich opportunity for students in grades four through eight to develop appreciation for pattern, rhythm, and innovation while learning about history, entrepreneurship, and political activism. By easily accessing print, film, and Internet resources teachers can include these vibrant quilts and…

  19. Does Increased Coefficient of Friction of Highly Porous Metal Increase Initial Stability at the Acetabular Interface?

    PubMed

    Goldman, Ashton H; Armstrong, Lucas C; Owen, John R; Wayne, Jennifer S; Jiranek, William A

    2016-03-01

    Highly porous metal acetabular components illustrate a decreased rate of aseptic loosening in short-term follow-up compared with previous registry data. This study compared the effect of component surface roughness at the bone-implant interface and the quality of the bone on initial pressfit stability. The null hypothesis is that a standard porous coated acetabular cup would show no difference in initial stability as compared with a highly porous acetabular cup when subjected to a bending moment. Second, would bone mineral density (BMD) be a significant variable under these test conditions. In a cadaveric model, acetabular cup micromotion was measured during a 1-time cantilever bending moment applied to 2 generations of pressfit acetabular components. BMD data were also obtained from the femoral necks available for associated specimen. The mean bending moment at 150 μm was not found to be significantly different for Gription (24.6 ± 14.0 N m) cups vs Porocoat (25 ± 10.2 N m; P > .84). The peak bending moment tolerated by Gription cups (33.9 ± 20.3 N m) was not found to be significantly different from Porocoat (33.5 ± 12.2 N m; P > .92). No correlation between BMD and bending moment at 150 μm of displacement could be identified. The coefficient of friction provided by highly porous metal acetabular shells used in this study did not provide better resistance to migration under bending load when compared with a standard porous coated component. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Bending stresses and bistable behavior in Fe-rich amorphous wire

    NASA Astrophysics Data System (ADS)

    Vázquez, M.; Gómez Polo, C.; Velázquez, J.; Hernando, A.

    1994-05-01

    The aim of this work is to analyze for the first time the changes in magnetic properties of an Fe-rich amorphous wire (Fe77.5Si7.5B15) when it is submitted to bending stresses. Upon a reduction of the radius of curvature, Rc, of the wire (i.e., increasing bending stresses), the main changes in the magnetic properties are summarized as follows: (a) Bistable behavior disappears when reducing Rc below about 11 cm but it is again observed for Rc less than about 2.5 cm. This latter effect is also obtained for short wires (less than around 7 cm) which do not show spontaneous bistability. (b) For the case when bending stresses make bistability disappear, the susceptibility increases more than one order of magnitude with regards to the case of bistable wire, and parallel to the increase of susceptibility, a reduction of remanent magnetization is observed. The disappearance and later occurrence of the bistable behavior with increasing bending stresses are discussed in terms of the tensile and compressive stresses induced when the sample is bent. The possibility of having bistable wires with toroidal symmetry is also discussed owing to its interest for particular applications as pulse generators with reduced size and magnetic switches.

  1. 35 Hz shape memory alloy actuator with bending-twisting mode.

    PubMed

    Song, Sung-Hyuk; Lee, Jang-Yeob; Rodrigue, Hugo; Choi, Ik-Seong; Kang, Yeon June; Ahn, Sung-Hoon

    2016-02-19

    Shape Memory Alloy (SMA) materials are widely used as an actuating source for bending actuators due to their high power density. However, due to the slow actuation speed of SMAs, there are limitations in their range of possible applications. This paper proposes a smart soft composite (SSC) actuator capable of fast bending actuation with large deformations. To increase the actuation speed of SMA actuator, multiple thin SMA wires are used to increase the heat dissipation for faster cooling. The actuation characteristics of the actuator at different frequencies are measured with different actuator lengths and results show that resonance can be used to realize large deformations up to 35 Hz. The actuation characteristics of the actuator can be modified by changing the design of the layered reinforcement structure embedded in the actuator, thus the natural frequency and length of an actuator can be optimized for a specific actuation speed. A model is used to compare with the experimental results of actuators with different layered reinforcement structure designs. Also, a bend-twist coupled motion using an anisotropic layered reinforcement structure at a speed of 10 Hz is also realized. By increasing their range of actuation characteristics, the proposed actuator extends the range of application of SMA bending actuators.

  2. Test Equal Bending by Gravity for Space and Time

    NASA Astrophysics Data System (ADS)

    Sweetser, Douglas

    2009-05-01

    For the simplest problem of gravity - a static, non-rotating, spherically symmetric source - the solution for spacetime bending around the Sun should be evenly split between time and space. That is true to first order in M/R, and confirmed by experiment. At second order, general relativity predicts different amounts of contribution from time and space without a physical justification. I show an exponential metric is consistent with light bending to first order, measurably different at second order. All terms to all orders show equal contributions from space and time. Beautiful minimalism is Nature's way.

  3. Effects of rim thickness on spur gear bending stress

    NASA Technical Reports Server (NTRS)

    Bibel, G. D.; Reddy, S. K.; Savage, M.; Handschuh, R. F.

    1991-01-01

    Thin rim gears find application in high-power, light-weight aircraft transmissions. Bending stresses in thin rim spur gear tooth fillets and root areas differ from the stresses in solid gears due to rim deformations. Rim thickness is a significant design parameter for these gears. To study this parameter, a finite element analysis was conducted on a segment of a thin rim gear. The rim thickness was varied and the location and magnitude of the maximum bending stresses reported. Design limits are discussed and compared with the results of other researchers.

  4. Numerical and analytical investigation of steel beam subjected to four-point bending

    NASA Astrophysics Data System (ADS)

    Farida, F. M.; Surahman, A.; Sofwan, A.

    2018-03-01

    A One type of bending tests is four-point bending test. The aim of this test is to investigate the properties and behavior of materials with structural applications. This study uses numerical and analytical studies. Results from both of these studies help to improve in experimental works. The purpose of this study is to predict steel beam behavior subjected to four-point bending test. This study intension is to analyze flexural beam subjected to four-point bending prior to experimental work. Main results of this research are location of strain gauge and LVDT on steel beam based on numerical study, manual calculation, and analytical study. Analytical study uses linear elasticity theory of solid objects. This study results is position of strain gauge and LVDT. Strain gauge is located between two concentrated loads at the top beam and bottom beam. LVDT is located between two concentrated loads.

  5. Piezoelectric micromotor based on the structure of serial bending arms.

    PubMed

    Tong, Jianhua; Cui, Tianhong; Shao, Peige; Wang, Liding

    2003-09-01

    This paper presents a new piezoelectric micromotor based on the structure of serial bending arms. Serial bending arms are composed of two piezoelectric bimorphs with one end fixed and the other end free, driven by two signals of a biased square wave with a phase difference of pi/2. The free end of a cantilever arm will move along an elliptic orbit so that the cantilever is used to drive a cylinder rotor. The rotor's end surface contacts the free end of the cantilever, resulting in the rotor's rotation. There are six serial bending arms anchored on the base. The driving mechanism of the micromotor is proposed and analyzed. A new micromotor prototype, 5 mm in diameter, has been fabricated and characterized. The maximum rotational speed reaches 325 rpm, and the output torque is about 36.5 microNm.

  6. Differential quadrature method of nonlinear bending of functionally graded beam

    NASA Astrophysics Data System (ADS)

    Gangnian, Xu; Liansheng, Ma; Wang, Youzhi; Quan, Yuan; Weijie, You

    2018-02-01

    Using the third-order shear deflection beam theory (TBT), nonlinear bending of functionally graded (FG) beams composed with various amounts of ceramic and metal is analyzed utilizing the differential quadrature method (DQM). The properties of beam material are supposed to accord with the power law index along to thickness. First, according to the principle of stationary potential energy, the partial differential control formulae of the FG beams subjected to a distributed lateral force are derived. To obtain numerical results of the nonlinear bending, non-dimensional boundary conditions and control formulae are dispersed by applying the DQM. To verify the present solution, several examples are analyzed for nonlinear bending of homogeneous beams with various edges. A minute parametric research is in progress about the effect of the law index, transverse shear deformation, distributed lateral force and boundary conditions.

  7. Uniaxial, Pure Bending, and Column Buckling Experiments on Superelastic NiTi Rods and Tubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watkins, Ryan T.; Reedlunn, Benjamin; Daly, Samantha

    absent under compressive loading. During pure bending, the moment-curvature response of both forms exhibited plateaus and strain localization during forward and reverse transformations. Rod specimens developed localized, high-curvature regions that propagated along the specimen axis and caused shear strain near the high/low curvature interface; whereas, the tube specimens exhibited finger/wedge-like high strain regions over the tensile side of the tube which caused nonlinear strain profiles through the thickness of the specimen that did not propagate. Here, it was therefore found that classical beam theory assumptions did not hold in the presence of phase transformation localization (although, the assumptions did hold on average for the tube). During column buckling, the structures were loaded into the post-buckling regime yet recovered nearly-straight forms upon unloading. Strain localization was observed only for high aspect ratio (slender) tubes, but the mechanical responses were similar to that of rods of the same slenderness ratio. Also, an interesting “unbuckling” phenomenon was discovered in certain low aspect ratio (stout) columns, where late post-buckling straightening was observed despite continuous monotonic loading. Thus, these behaviors are some of the challenging phenomena which must be captured when developing SMA constitutive models and executing structural simulations.« less

  8. Uniaxial, Pure Bending, and Column Buckling Experiments on Superelastic NiTi Rods and Tubes

    DOE PAGES

    Watkins, Ryan T.; Reedlunn, Benjamin; Daly, Samantha; ...

    2018-03-23

    absent under compressive loading. During pure bending, the moment-curvature response of both forms exhibited plateaus and strain localization during forward and reverse transformations. Rod specimens developed localized, high-curvature regions that propagated along the specimen axis and caused shear strain near the high/low curvature interface; whereas, the tube specimens exhibited finger/wedge-like high strain regions over the tensile side of the tube which caused nonlinear strain profiles through the thickness of the specimen that did not propagate. Here, it was therefore found that classical beam theory assumptions did not hold in the presence of phase transformation localization (although, the assumptions did hold on average for the tube). During column buckling, the structures were loaded into the post-buckling regime yet recovered nearly-straight forms upon unloading. Strain localization was observed only for high aspect ratio (slender) tubes, but the mechanical responses were similar to that of rods of the same slenderness ratio. Also, an interesting “unbuckling” phenomenon was discovered in certain low aspect ratio (stout) columns, where late post-buckling straightening was observed despite continuous monotonic loading. Thus, these behaviors are some of the challenging phenomena which must be captured when developing SMA constitutive models and executing structural simulations.« less

  9. Implementation of parallel moment equations in NIMROD

    NASA Astrophysics Data System (ADS)

    Lee, Hankyu Q.; Held, Eric D.; Ji, Jeong-Young

    2017-10-01

    As collisionality is low (the Knudsen number is large) in many plasma applications, kinetic effects become important, particularly in parallel dynamics for magnetized plasmas. Fluid models can capture some kinetic effects when integral parallel closures are adopted. The adiabatic and linear approximations are used in solving general moment equations to obtain the integral closures. In this work, we present an effort to incorporate non-adiabatic (time-dependent) and nonlinear effects into parallel closures. Instead of analytically solving the approximate moment system, we implement exact parallel moment equations in the NIMROD fluid code. The moment code is expected to provide a natural convergence scheme by increasing the number of moments. Work in collaboration with the PSI Center and supported by the U.S. DOE under Grant Nos. DE-SC0014033, DE-SC0016256, and DE-FG02-04ER54746.

  10. Distributed force probe bending model of critical dimension atomic force microscopy bias

    NASA Astrophysics Data System (ADS)

    Ukraintsev, Vladimir A.; Orji, Ndubuisi G.; Vorburger, Theodore V.; Dixson, Ronald G.; Fu, Joseph; Silver, Rick M.

    2013-04-01

    Critical dimension atomic force microscopy (CD-AFM) is a widely used reference metrology technique. To characterize modern semiconductor devices, small and flexible probes, often 15 to 20 nm in diameter, are used. Recent studies have reported uncontrolled and significant probe-to-probe bias variation during linewidth and sidewall angle measurements. To understand the source of these variations, tip-sample interactions between high aspect ratio features and small flexible probes, and their influence on measurement bias, should be carefully studied. Using theoretical and experimental procedures, one-dimensional (1-D) and two-dimensional (2-D) models of cylindrical probe bending relevant to carbon nanotube (CNT) AFM probes were developed and tested. An earlier 1-D bending model was refined, and a new 2-D distributed force (DF) model was developed. Contributions from several factors were considered, including: probe misalignment, CNT tip apex diameter variation, probe bending before snapping, and distributed van der Waals-London force. A method for extracting Hamaker probe-surface interaction energy from experimental probe-bending data was developed. Comparison of the new 2-D model with 1-D single point force (SPF) model revealed a difference of about 28% in probe bending. A simple linear relation between biases predicted by the 1-D SPF and 2-D DF models was found. The results suggest that probe bending can be on the order of several nanometers and can partially explain the observed CD-AFM probe-to-probe variation. New 2-D and three-dimensional CD-AFM data analysis software is needed to take full advantage of the new bias correction modeling capabilities.

  11. Paleomagnetic modeling of seamounts near the Hawaiian Emperor bend

    NASA Astrophysics Data System (ADS)

    Sager, William W.; Lamarche, Amy J.; Kopp, Christian

    2005-08-01

    The Hawaiian-Emperor Seamount chain records the motion of the Pacific Plate relative to the Hawaiian mantle hotspot for ˜80 m.y. A notable feature of the chain is the pronounced bend at its middle. This bend had been widely credited to a change in plate motion, but recent research suggests a change in hotspot motion as an alternative. Existing paleomagnetic data from the Emperor Chain suggest that the hotspot moved south during the Late Cretaceous and Early Tertiary, but reached its current latitude by the age of the bend. Thus, data from area of the bend are important for understanding changes in plume latitude. In this study, we analyze the magnetic anomalies of five seamounts (Annei, Daikakuji-W, Daikakuji- E, Abbott, and Colahan) in the region of the bend. These particular seamounts were chosen because they have been recently surveyed to collect multibeam bathymetry and magnetic data positioned with GPS navigation. Inversions of the magnetic and bathymetric data were performed to determine the mean magnetization of each seamount and from these results, paleomagnetic poles and paleolatitudes were calculated. Three of the five seamounts have reversed magnetic polarities (two are normal) and four contain a small volume of magnetic polarity opposite to the main body, consistent with formation during the Early Cenozoic, a time of geomagnetic field reversals. Although magnetization inhomogene ties can degrade the accuracy of paleomagnetic poles calculated from such models, the seamounts give results consistent with one another and with other Pacific paleomagnetic data of approximately the same age. Seamount paleolatitudes range from 13.7 to 23.7, with an average of 19.4 ± 7.4 (2σ). These values are indistinguishable from the present-day paleolatitude of the Hawaiian hotspot. Together with other paleomagnetic and geologic evidence, these data imply that the Hawaiian hotspot has moved little in latitude during the past ˜45 m.y.

  12. Controlling coupled bending-twisting vibrations of anisotropic composite wing

    NASA Astrophysics Data System (ADS)

    Ryabov, Victor; Yartsev, Boris

    2018-05-01

    The paper discusses the possibility to control coupled bending-twisting vibrations of anisotropic composite wing by means of the monoclinic structures in the reinforcement of the plating. Decomposing the potential straining energy and kinetic energy of natural vibration modes into interacting and non-interacting parts, it became possible to introduce the two coefficients that integrally consider the effect of geometry and reinforcement structure upon the dynamic response parameters of the wing. The first of these coefficients describes the elastic coupling of the natural vibration modes, the second coefficient describes the inertial one. The paper describes the numerical studies showing how the orientation of considerably anisotropic CRP layers in the plating affects natural frequencies, loss factors, coefficients of elastic and inertial coupling for several lower tones of natural bending-twisting vibrations of the wing. Besides, for each vibration mode, partial values of the above mentioned dynamic response parameters were determined by means of the relationships for orthotropic structures where instead of "free" shearing modulus in the reinforcement plant, "pure" shearing modulus is used. Joint analysis of the obtained results has shown that each pair of bending-twisting vibration modes has its orientation angle ranges of the reinforcing layers where the inertial coupling caused by asymmetry of the cross-section profile with respect to the main axes of inertia decreases, down to the complete extinction, due to the generation of the elastic coupling in the plating material. These ranges are characterized by the two main features: 1) the difference in the natural frequencies of the investigated pair of bending-twisting vibration modes is the minimum and 2) natural frequencies of bending-twisting vibrations belong to a stretch restricted by corresponding partial natural frequencies of the investigated pair of vibration modes. This result is of practical importance

  13. Colloid-colloid hydrodynamic interaction around a bend in a quasi-one-dimensional channel.

    PubMed

    Liepold, Christopher; Zarcone, Ryan; Heumann, Tibor; Rice, Stuart A; Lin, Binhua

    2017-07-01

    We report a study of how a bend in a quasi-one-dimensional (q1D) channel containing a colloid suspension at equilibrium that exhibits single-file particle motion affects the hydrodynamic coupling between colloid particles. We observe both structural and dynamical responses as the bend angle becomes more acute. The structural response is an increasing depletion of particles in the vicinity of the bend and an increase in the nearest-neighbor separation in the pair correlation function for particles on opposite sides of the bend. The dynamical response monitored by the change in the self-diffusion [D_{11}(x)] and coupling [D_{12}(x)] terms of the pair diffusion tensor reveals that the pair separation dependence of D_{12} mimics that of the pair correlation function just as in a straight q1D channel. We show that the observed behavior is a consequence of the boundary conditions imposed on the q1D channel: both the single-file motion and the hydrodynamic flow must follow the channel around the bend.

  14. Comparison of Intervertebral ROM in Multi-Level Cadaveric Lumbar Spines Using Distinct Pure Moment Loading Approaches.

    PubMed

    Santoni, Brandon; Cabezas, Andres F; Cook, Daniel J; Yeager, Matthew S; Billys, James B; Whiting, Benjamin; Cheng, Boyle C

    2015-01-01

    Pure-moment loading is the test method of choice for spinal implant evaluation. However, the apparatuses and boundary conditions employed by laboratories in performing spine flexibility testing vary. The purpose of this study was to quantify the differences, if they exist, in intervertebral range of motion (ROM) resulting from different pure-moment loading apparatuses used in two laboratories. Twenty-four (laboratory A) and forty-two (laboratory B) intact L1-S1 specimens were loaded using pure moments (±7.5 Nm) in flexion-extension (FE), lateral bending (LB) and axial torsion (AT). At laboratory A, pure moments were applied using a system of cables, pulleys and suspended weights in 1.5 Nm increments. At laboratory B, specimens were loaded in a pneumatic biaxial test frame mounted with counteracting stepper-motor-driven biaxial gimbals. ROM was obtained in both labs using identical optoelectronic systems and compared. In FE, total L1-L5 ROM was similar, on average, between the two laboratories (lab A: 37.4° ± 9.1°; lab B: 35.0° ± 8.9°, p=0.289). Larger apparent differences, on average, were noted between labs in AT (lab A: 19.4° ± 7.3°; lab B: 15.7° ± 7.1°, p=0.074), and this finding was significant for combined right and left LB (lab A: 45.5° ± 11.4°; lab B: 35.3° ± 8.5°, p < 0.001). To our knowledge, this is the first study comparing ROM of multi-segment lumbar spines between laboratories utilizing different apparatuses. The results of this study show that intervertebral ROM in multi-segment lumbar spine constructs are markedly similar in FE loading. Differences in boundary conditions are likely the source of small and sometimes statistically significant differences between the two techniques in LB and AT ROM. The relative merits of each testing strategy with regard to the physiologic conditions that are to be simulated should be considered in the design of a study including LB and AT modes of loading. An understanding of these differences also

  15. On damping of screw dislocation bending vibrations in dissipative crystal: limiting cases

    NASA Astrophysics Data System (ADS)

    Dezhin, V. V.

    2018-03-01

    The expression for the generalized susceptibility of the dislocation obtained earlier was used. The electronic drag mechanism of dislocations is considered. The study of small dislocation oscillations was limited. The contribution of the attenuation of low-frequency bending screw dislocation vibrations to the overall coefficient of dynamic dislocation drag in the long-wave and short-wave limits is calculated. The damping of short-wave bending screw dislocation vibrations caused by an external action of an arbitrary frequency has been investigated. The contribution of long-wave bending screw dislocation vibrations damping in the total drag coefficient at an arbitrary frequency is found.

  16. Persistent rupture terminations at a restraining bend from slip rates on the eastern Altyn Tagh fault

    NASA Astrophysics Data System (ADS)

    Elliott, A. J.; Oskin, M. E.; Liu-zeng, J.; Shao, Y.-X.

    2018-05-01

    Restraining double-bends along strike-slip faults inhibit or permit throughgoing ruptures depending on bend angle, length, and prior rupture history. Modeling predicts that for mature strike-slip faults in a regional stress regime characterized by simple shear, a restraining bend of >18° and >4 km length impedes propagating rupture. Indeed, natural evidence shows that the most recent rupture(s) of the Xorkoli section (90°-93°E) of the eastern Altyn Tagh fault (ATF) ended at large restraining bends. However, when multiple seismic cycles are considered in numerical dynamic rupture modeling, heterogeneous residual stresses enable some ruptures to propagate further, modulating whether the bends persistently serve as barriers. These models remain to be tested using observations of the cumulative effects of multiple earthquake ruptures. Here we investigate whether a large restraining double-bend on the ATF serves consistently as a barrier to rupture by measuring long-term slip rates around the terminus of its most recent surface rupture at the Aksay bend. Our results show a W-E decline in slip as the SATF enters the bend, as would be predicted from repeated rupture terminations there. Prior work demonstrated no Holocene slip on the central, most misoriented portion of the bend, while 19-79 m offsets suggest that multiple ruptures have occurred on the west side of the bend during the Holocene. Thus we conclude the gradient in the SATF's slip rate results from the repeated termination of earthquake ruptures there. However, a finite slip rate east of the bend represents the transmission of some slip, suggesting that a small fraction of ruptures may fully traverse or jump the double-bend. This agreement between natural observations of slip accumulation and multi-cycle models of fault rupture enables us to translate observed slip rates into insight about the dynamic rupture process of individual earthquakes as they encounter geometric complexities along faults.

  17. Experimental and Numerical Assessment of a New Alternative of RBS Moment Connection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mirghaderi, Rasoul; Imanpour, Ali; Keshavarzi, Farhad

    2008-07-08

    Reduced beam section (RBS) connection has been known as a famous connection for steel moment-resisting seismic frames in high-rise buildings, because of their economical advantages and seismic ductility. In the ordinary RBS connection, often portions of the beam flanges are selectively trimmed in the region adjacent to the beam-to-column connection, and beam section is weakened in the plastic hinge region; section weakening concept in the plastic hinge region of beam cause to reduction of beam plastic section modulus in this region, and force plastic hinge to occur within the reduced section.This paper presents a new alternative of RBS connection thatmore » has been used aforesaid weakening concept in it, with this difference that corrugated steel plate webs instead of beam flange cutting has been used in limited specific length near the column face. Corrugated steel plates because of their accordion effect don't have bending rigidity, then using of these plates in plastic hinge region reduces the beam plastic section modulus and plastic hinge is formed in corrugated region. For investigating the seismic behavior and performance of new RBS moment connection, experimental specimen of new RBS connection were subjected to cyclic load, and finite element analysis were executed. The result of cyclic test and numerical analysis specified that the corrugated webs improved the plastic stability and provided capability of large plastic rotation at the plastic hinge location without any appreciable buckling and brittle fractures in this region. The test observations also showed that the specimens' plastic rotations exceeded 0.04 rad without any local and global buckling. All of the analytical results for proposed connection are generally in good agreement with the test observations.« less

  18. 50-Ma Initiation of Hawaiian-Emperor Bend Records Major Change in Pacific Plate Motion

    NASA Astrophysics Data System (ADS)

    Sharp, Warren D.; Clague, David A.

    2006-09-01

    The Hawaiian-Emperor bend has played a prominent yet controversial role in deciphering past Pacific plate motions and the tempo of plate motion change. New ages for volcanoes of the central and southern Emperor chain define large changes in volcanic migration rate with little associated change in the chain's trend, which suggests that the bend did not form by slowing of the Hawaiian hot spot. Initiation of the bend near Kimmei seamount about 50 million years ago (MA) was coincident with realignment of Pacific spreading centers and early magmatism in western Pacific arcs, consistent with formation of the bend by changed Pacific plate motion.

  19. Flagella bending affects macroscopic properties of bacterial suspensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Potomkin, M.; Tournus, M.; Berlyand, L. V.

    To survive in harsh conditions, motile bacteria swim in complex environments and respond to the surrounding flow. Here, we develop a mathematical model describing how flagella bending affects macroscopic properties of bacterial suspensions. First, we show how the flagella bending contributes to the decrease in the effective viscosity observed in dilute suspension. Our results do not impose tumbling (random reorientation) as was previously done to explain the viscosity reduction. Second, we demonstrate how a bacterium escapes from wall entrapment due to the self-induced buckling of flagella. Our results shed light on the role of flexible bacterial flagella in interactions ofmore » bacteria with shear flow and walls or obstacles.« less

  20. Flexible organic transistors and circuits with extreme bending stability

    NASA Astrophysics Data System (ADS)

    Sekitani, Tsuyoshi; Zschieschang, Ute; Klauk, Hagen; Someya, Takao

    2010-12-01

    Flexible electronic circuits are an essential prerequisite for the development of rollable displays, conformable sensors, biodegradable electronics and other applications with unconventional form factors. The smallest radius into which a circuit can be bent is typically several millimetres, limited by strain-induced damage to the active circuit elements. Bending-induced damage can be avoided by placing the circuit elements on rigid islands connected by stretchable wires, but the presence of rigid areas within the substrate plane limits the bending radius. Here we demonstrate organic transistors and complementary circuits that continue to operate without degradation while being folded into a radius of 100μm. This enormous flexibility and bending stability is enabled by a very thin plastic substrate (12.5μm), an atomically smooth planarization coating and a hybrid encapsulation stack that places the transistors in the neutral strain position. We demonstrate a potential application as a catheter with a sheet of transistors and sensors wrapped around it that enables the spatially resolved measurement of physical or chemical properties inside long, narrow tubes.

  1. Bending strength of shallow glued-laminated beams of a uniform grade

    Treesearch

    Catherine M. Marx; Russell C. Moody

    1981-01-01

    Ninety glued-laminated Douglas-fir or southern pine beams of a uniform grade with 2-, 4-, or 6-laminations were evaluated in static bending tests. No specially graded tension laminations or end joints were used. The purpose of the tests was to determine which of three present design criteria best predict near minimum bending strength values for shallow glued-laminated...

  2. Bending strain engineering in quantum spin hall system for controlling spin currents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Bing; Jin, Kyung-Hwan; Cui, Bin

    Quantum spin Hall system can exhibit exotic spin transport phenomena, mediated by its topological edge states. The concept of bending strain engineering to tune the spin transport properties of a quantum spin Hall system is demonstrated. Here, we show that bending strain can be used to control the spin orientation of counter-propagating edge states of a quantum spin system to generate a non-zero spin current. This physics mechanism can be applied to effectively tune the spin current and pure spin current decoupled from charge current in a quantum spin Hall system by control of its bending curvature. Moreover, the curvedmore » quantum spin Hall system can be achieved by the concept of topological nanomechanical architecture in a controllable way, as demonstrated by the material example of Bi/Cl/Si(111) nanofilm. This concept of bending strain engineering of spins via topological nanomechanical architecture affords a promising route towards the realization of topological nano-mechanospintronics.« less

  3. Bending strain engineering in quantum spin hall system for controlling spin currents

    DOE PAGES

    Huang, Bing; Jin, Kyung-Hwan; Cui, Bin; ...

    2017-06-16

    Quantum spin Hall system can exhibit exotic spin transport phenomena, mediated by its topological edge states. The concept of bending strain engineering to tune the spin transport properties of a quantum spin Hall system is demonstrated. Here, we show that bending strain can be used to control the spin orientation of counter-propagating edge states of a quantum spin system to generate a non-zero spin current. This physics mechanism can be applied to effectively tune the spin current and pure spin current decoupled from charge current in a quantum spin Hall system by control of its bending curvature. Moreover, the curvedmore » quantum spin Hall system can be achieved by the concept of topological nanomechanical architecture in a controllable way, as demonstrated by the material example of Bi/Cl/Si(111) nanofilm. This concept of bending strain engineering of spins via topological nanomechanical architecture affords a promising route towards the realization of topological nano-mechanospintronics.« less

  4. Effect of dexamethasone on mandibular bone biomechanics in rats during the growth phase as assessed by bending test and peripheral quantitative computerized tomography.

    PubMed

    Bozzini, Clarisa; Champin, Graciela; Alippi, Rosa M; Bozzini, Carlos E

    2015-04-01

    Long-term glucocorticoid administration to growing rats induces osteopenia and alterations in the biomechanical behavior of the bone. This study was performed to estimate the effects of dexamethasone (DTX), a synthetic steroid with predominant glucocorticoid activity, on the biomechanical properties of the mandible of rats during the growth phase, as assessed by bending test and peripheral quantitative computed tomographic (pQCT) analysis. The data obtained by the two methods will provide more precise information when analyzed together than separately. Female rats aged 23 d (n=7) received 500μg.kg-1 per day of DXT for 4 weeks. At the end of the treatment period, their body weight and body length were 51.3% and 20.6% lower, respectively, than controls. Hemimandible weight and area (an index of mandibular size) were 27.3% and 9.7% lower, respectively. The right hemimandible of each animal was subjected to a mechanical 3-point bending test. Significant weakening of the bone, as shown by a correlative impairment of strength and stiffness, was observed in experimental rats. Bone density and cross-sectional area were measured by pQCT. Cross-sectional, cortical and trabecular areas were reduced by 20% to 30% in the DTX group, as were other cortical parameters, including the bone density, mineral content and cross-sectional moment of inertia. The "bone strength index" (BSI, the product of the pQCT-assessed xCSMI and vCtBMD) was 56% lower in treated rats, which compares well with the 54% and 52% reduction observed in mandibular strength and stiffness determined through the bending test. Data suggest that the corticosteroid exerts a combined, negative action on bone geometry (mass and architecture) and volumetric bone mineral density of cortical bone, which would express independent effects on both cellular (material quality) and tissue (cross-sectional design) levels of biological organization of the skeleton in the species.

  5. Moments of inertia of relativistic magnetized stars

    NASA Astrophysics Data System (ADS)

    Konno, K.

    2001-06-01

    We consider principal moments of inertia of axisymmetric, magnetically deformed stars in the context of general relativity. The general expression for the moment of inertia with respect to the symmetric axis is obtained. The numerical estimates are derived for several polytropic stellar models. We find that the values of the principal moments of inertia are modified by a factor of 2 at most from Newtonian estimates.

  6. Obstructive parotitis secondary to an acute masseteric bend.

    PubMed

    Reddy, Ryan; White, David R; Gillespie, M Boyd

    2012-01-01

    To investigate 3 cases of chronic parotitis secondary to an acute bend in Stensen's duct caused by an enlargement of the masseteric space. Three female patients presented with symptoms consistent with obstructive parotitis including glandular swelling and tenderness during meals. A 10-year-old patient had unilateral facial swelling with enlargement of the masseter muscle and mandible later diagnosed as fibrous dysplasia. Salivary endoscopy showed an acute bend in Stensen's duct secondary to a mass effect. The patient's parotid swelling resolved following debulking of the mandibular mass and sialendoscopy with irrigation. Two adult patients with bilateral parotid involvement presented with bilateral masseteric hypertrophy and dental wear facets consistent with bruxism. Salivary endoscopy revealed bilateral kinking of Stensen's duct with jaw closure. Both patients improved symptomatically following nightly bite guard use and ultrasound-guided Botox injections of the masseter muscle and parotid. Obstructive parotitis is rarely caused by an acute masseteric bend. Diagnosis of a kinking Stensen's duct is aided with salivary endoscopy and imaging to determine the precipitating pathology. In the case of masseteric hypertrophy, symptomatic improvement can be achieved with Botox-induced atrophy of masseteric hypertrophy or with surgical reduction for associated fibrous dysplasia. Copyright © 2011 S. Karger AG, Basel.

  7. Optimal Recursive Digital Filters for Active Bending Stabilization

    NASA Technical Reports Server (NTRS)

    Orr, Jeb S.

    2013-01-01

    In the design of flight control systems for large flexible boosters, it is common practice to utilize active feedback control of the first lateral structural bending mode so as to suppress transients and reduce gust loading. Typically, active stabilization or phase stabilization is achieved by carefully shaping the loop transfer function in the frequency domain via the use of compensating filters combined with the frequency response characteristics of the nozzle/actuator system. In this paper we present a new approach for parameterizing and determining optimal low-order recursive linear digital filters so as to satisfy phase shaping constraints for bending and sloshing dynamics while simultaneously maximizing attenuation in other frequency bands of interest, e.g. near higher frequency parasitic structural modes. By parameterizing the filter directly in the z-plane with certain restrictions, the search space of candidate filter designs that satisfy the constraints is restricted to stable, minimum phase recursive low-pass filters with well-conditioned coefficients. Combined with optimal output feedback blending from multiple rate gyros, the present approach enables rapid and robust parametrization of autopilot bending filters to attain flight control performance objectives. Numerical results are presented that illustrate the application of the present technique to the development of rate gyro filters for an exploration-class multi-engined space launch vehicle.

  8. Measuring the bending of asymmetric planar EAP structures

    NASA Astrophysics Data System (ADS)

    Weiss, Florian M.; Zhao, Xue; Thalmann, Peter; Deyhle, Hans; Urwyler, Prabitha; Kovacs, Gabor; Müller, Bert

    2013-04-01

    The geometric characterization of low-voltage dielectric electro-active polymer (EAP) structures, comprised of nanometer thickness but areas of square centimeters, for applications such as artificial sphincters requires methods with nanometer precision. Direct optical detection is usually restricted to sub-micrometer resolution because of the wavelength of the light applied. Therefore, we propose to take advantage of the cantilever bending system with optical readout revealing a sub-micrometer resolution at the deflection of the free end. It is demonstrated that this approach allows us to detect bending of rather conventional planar asymmetric, dielectric EAP-structures applying voltages well below 10 V. For this purpose, we built 100 μm-thin silicone films between 50 nm-thin silver layers on a 25 μm-thin polyetheretherketone (PEEK) substrate. The increase of the applied voltage in steps of 50 V until 1 kV resulted in a cantilever bending that exhibits only in restricted ranges the expected square dependence. The mean laser beam displacement on the detector corresponded to 6 nm per volt. The apparatus will therefore become a powerful mean to analyze and thereby improve low-voltage dielectric EAP-structures to realize nanometer-thin layers for stack actuators to be incorporated into artificial sphincter systems for treating severe urinary and fecal incontinence.

  9. Big Bend National Park: Acoustical Monitoring 2010

    DOT National Transportation Integrated Search

    2013-06-01

    During the summer of 2010 (September October 2010), the Volpe Center collected baseline acoustical data at Big Bend National Park (BIBE) at four sites deployed for approximately 30 days each. The baseline data collected during this period will he...

  10. Automatic segmentation of stereoelectroencephalography (SEEG) electrodes post-implantation considering bending.

    PubMed

    Granados, Alejandro; Vakharia, Vejay; Rodionov, Roman; Schweiger, Martin; Vos, Sjoerd B; O'Keeffe, Aidan G; Li, Kuo; Wu, Chengyuan; Miserocchi, Anna; McEvoy, Andrew W; Clarkson, Matthew J; Duncan, John S; Sparks, Rachel; Ourselin, Sébastien

    2018-06-01

    The accurate and automatic localisation of SEEG electrodes is crucial for determining the location of epileptic seizure onset. We propose an algorithm for the automatic segmentation of electrode bolts and contacts that accounts for electrode bending in relation to regional brain anatomy. Co-registered post-implantation CT, pre-implantation MRI, and brain parcellation images are used to create regions of interest to automatically segment bolts and contacts. Contact search strategy is based on the direction of the bolt with distance and angle constraints, in addition to post-processing steps that assign remaining contacts and predict contact position. We measured the accuracy of contact position, bolt angle, and anatomical region at the tip of the electrode in 23 post-SEEG cases comprising two different surgical approaches when placing a guiding stylet close to and far from target point. Local and global bending are computed when modelling electrodes as elastic rods. Our approach executed on average in 36.17 s with a sensitivity of 98.81% and a positive predictive value (PPV) of 95.01%. Compared to manual segmentation, the position of contacts had a mean absolute error of 0.38 mm and the mean bolt angle difference of [Formula: see text] resulted in a mean displacement error of 0.68 mm at the tip of the electrode. Anatomical regions at the tip of the electrode were in strong concordance with those selected manually by neurosurgeons, [Formula: see text], with average distance between regions of 0.82 mm when in disagreement. Our approach performed equally in two surgical approaches regardless of the amount of electrode bending. We present a method robust to electrode bending that can accurately segment contact positions and bolt orientation. The techniques presented in this paper will allow further characterisation of bending within different brain regions.

  11. Theory and algorithms to compute Helfrich bending forces: a review.

    PubMed

    Guckenberger, Achim; Gekle, Stephan

    2017-05-24

    Cell membranes are vital to shield a cell's interior from the environment. At the same time they determine to a large extent the cell's mechanical resistance to external forces. In recent years there has been considerable interest in the accurate computational modeling of such membranes, driven mainly by the amazing variety of shapes that red blood cells and model systems such as vesicles can assume in external flows. Given that the typical height of a membrane is only a few nanometers while the surface of the cell extends over many micrometers, physical modeling approaches mostly consider the interface as a two-dimensional elastic continuum. Here we review recent modeling efforts focusing on one of the computationally most intricate components, namely the membrane's bending resistance. We start with a short background on the most widely used bending model due to Helfrich. While the Helfrich bending energy by itself is an extremely simple model equation, the computation of the resulting forces is far from trivial. At the heart of these difficulties lies the fact that the forces involve second order derivatives of the local surface curvature which by itself is the second derivative of the membrane geometry. We systematically derive and compare the different routes to obtain bending forces from the Helfrich energy, namely the variational approach and the thin-shell theory. While both routes lead to mathematically identical expressions, so-called linear bending models are shown to reproduce only the leading order term while higher orders differ. The main part of the review contains a description of various computational strategies which we classify into three categories: the force, the strong and the weak formulation. We finally give some examples for the application of these strategies in actual simulations.

  12. Exploration of Learning Strategies Associated With Aha Learning Moments.

    PubMed

    Pilcher, Jobeth W

    2016-01-01

    Educators recognize aha moments as powerful aspects of learning. Yet limited research has been performed regarding how to promote these learning moments. This article describes an exploratory study of aha learning moments as experienced and described by participants. Findings showed use of visuals, scenarios, storytelling, Socratic questions, and expert explanation led to aha learning moments. The findings provide guidance regarding the types of learning strategies that can be used to promote aha moments.

  13. Computation of Flow and Heat Transfer in Flow Around a 180 deg Bend.

    DTIC Science & Technology

    1984-04-01

    be required if a more elaborate closure were adopted.[I- 9 Enayet et al [14] in a 900 bend with a radius:diameter ratio of I only 2.8:1 giving a Dean...Figure 9 indicates, however, that a satisfactory numerical simulation is nevertheless obtained. Enayet et al [14] also measured the development of...computations of the 2.P:1 90o bend of Enayet et al [1h] indicate a five-fold variation of local heat transfer coefficient around the bend at 750 . The

  14. Bend compensated large-mode-area fibers: achieving robust single-modedness with transformation optics.

    PubMed

    Fini, John M; Nicholson, Jeffrey W

    2013-08-12

    Fibers with symmetric bend compensated claddings are proposed, and demonstrate performance much better than conventional designs. These fibers can simultaneously achieve complete HOM suppression, negligible bend loss, and mode area >1000 square microns. The robust single-modedness of these fibers offers a path to overcoming mode instability limits on high-power amplifiers and lasers. The proposed designs achieve many of the advantages of our previous (asymmetric) bend compensation strategy in the regime of moderately large area, and are much easier to fabricate and utilize.

  15. Evaluation on Bending Properties of Biomaterial GUM Metal Meshed Plates for Bone Graft Applications

    NASA Astrophysics Data System (ADS)

    Suzuki, Hiromichi; He, Jianmei

    2017-11-01

    There are three bone graft methods for bone defects caused by diseases such as cancer and accident injuries: Autogenous bone grafts, Allografts and Artificial bone grafts. In this study, meshed GUM Metal plates with lower elasticity, high strength and high biocompatibility are introduced to solve the over stiffness & weight problems of ready-used metal implants. Basic mesh shapes are designed and applied to GUM Metal plates using 3D CAD modeling tools. Bending properties of prototype meshed GUM Metal plates are evaluated experimentally and analytically. Meshed plate specimens with 180°, 120° and 60° axis-symmetrical types were fabricated for 3-point bending tests. The pseudo bending elastic moduli of meshed plate specimens obtained from 3-point bending test are ranged from 4.22 GPa to 16.07 GPa, within the elasticity range of natural cortical bones from 2.0 GPa to 30.0 GPa. Analytical approach method is validated by comparison with experimental and analytical results for evaluation on bending property of meshed plates.

  16. Dynamic investigation of DNA bending and wrapping by type II topoisomerases

    NASA Astrophysics Data System (ADS)

    Shao, Qing; Finzi, Laura; Dunlap, David

    2009-11-01

    Type II topoisomerases catalyze DNA decatenation and unwinding which is crucial for cell division, and therefore type II topoisomerases are some of the main targets of anti-cancer drugs. A recent crystal structure shows that, during the catalytic cycle, a yeast type II topoimerase can bend a 10 base pair DNA segment by up to 150 degrees. Bacterial gyrase, another type II topoisomerase, can wrap DNA into a tight 180 degree turn. Bending a stiff polymer like DNA requires considerable energy and could represent the rate limiting step in the catalytic (topological) cycle. Using modified deoxyribonucleotides in PCR reactions, stiffer DNA fragments have been produced and used as substrates for topoisomerase II-mediated relaxation of plectonemes introduced in single molecules using magnetic tweezers. The wrapping ability of gyrase decreases for diamino-purine-substituted DNA in which every base pair has three hydrogen-bonds. The overall rate of relaxation of plectonemes by recombinant human topoisomerase II alpha also decreases. These results reveal the dynamic properties of DNA bending and wrapping by type II topisomerases and suggest that A:T base pair melting is a rate determining step for bending and wrapping.

  17. Finite Element Analysis of High Heat Load Deformation and Mechanical Bending Correction of a Beamline Mirror for the APS Upgrade

    NASA Astrophysics Data System (ADS)

    Goldring, Nicholas

    The impending Advanced Photon Source Upgrade (APS-U) will introduce a hard x-ray source that is set to surpass the current APS in brightness and coherence by two to three orders of magnitude. To achieve this, the storage ring light source will be equipped with a multi-bend achromat (MBA) lattice. In order to fully exploit and preserve the integrity of new beams actualized by upgraded storage ring components, improved beamline optics must also be introduced. The design process of new optics for the APS-U and other fourth generation synchrotrons involves the challenge of accommodating unprecedented heat loads. This dissertation presents an ex-situ analysis of heat load deformation and the subsequent mechanical bending correction of a 400 mm long, grazing-incidence, H2O side-cooled, reflecting mirror subjected to x-ray beams produced by the APS-U undulator source. Bending correction is measured as the smallest rms slope error, sigmarms, that can be resolved over a given length of the heat deformed geometry due to mechanical bending. Values of sigmarms in the <0.1 microrad regime represent a given mirror length over which incident x-ray beams from modern sources can be reflected without significant loss of quality. This study assumes a perfectly flat mirror surface and does not account for finish errors or other contributions to sigmarms beyond the scope of thermal deformation and elastic bending. The methodology of this research includes finite element analysis (FEA) employed conjointly with an analytical solution for mechanical bending deflection by means of an end couple. Additionally, the study will focus on two beam power density profiles predicted by the APS-U which were created using the software SRCalc. The profiles account for a 6 GeV electron beam with second moment widths of 0.058 and 0.011 mm in the x- and y- directions respectively; the electron beam is passed through a 4.8 m long, 28 mm period APS-U undulator which produces the x-ray beam incident at a 3

  18. Efficacy for lung metastasis induced by the allogeneic bEnd3 vaccine in mice.

    PubMed

    Zhao, Jun; Lu, Jing; Zhou, Lurong; Zhao, Jimin; Dong, Ziming

    2018-05-04

    The mouse brain microvascular endothelial cell line bEnd.3 was used to develop a vaccine and its anti-tumor effect on lung metastases was observed in immunized mice. Mouse bEnd.3 cells cultured in-vitro and then fixed with glutaraldehyde was used to immunize mice; mice were challenged with the metastatic cancer cell line U14, and changes in metastatic cancer tissues were observed through hematoxylin and eosin staining. Carboxyfluorescein succinimidyl amino ester (CSFE) and propidium iodide (PI) were used to detect cytotoxic activity of spleen T lymphocytes; the ratio of CD3 + and CD8 + T-cell sub-sets was determined by flow cytometry. Enzyme-linked immunosorbent assay (ELISA), immunocytochemistry and immunoblot were used to examine the specific response of the antisera of immunized mice. The number of metastatic nodules in bEnd.3 and human umbilical vein endothelial cell (HUVEC) vaccine groups was less than NIH3T3 vaccine group and phosphate buffered saline (PBS) control group. The bEnd.3-induced and HUVEC-induced cytotoxic T-lymphocytes (CTLs) showed significant lytic activity against bEnd.3 and HUVEC target cells, while the antisera of mice in bEnd.3 and HUVEC vaccine groups showed specific immune responses to membrane proteins and inhibited target cell proliferation in-vitro. Immunoblot results showed specific bands at 180KD and 220KD in bEnd.3 and at 130 kD and 220 kD in HUVEC lysates. Allogeneic bEnd.3 vaccine induced an active and specific immune response to tumor vascular endothelial cells that resulted in production of antibodies against the proliferation antigens VEGF-R II, integrin, Endog etc. Immunization with this vaccine inhibited lung metastasis of cervical cancer U14 cells and prolonged the survival of these mice.

  19. A finite element evaluation of the moment arm hypothesis for altered vertebral shear failure force.

    PubMed

    Howarth, Samuel J; Karakolis, Thomas; Callaghan, Jack P

    2015-01-01

    The mechanism of vertebral shear failure is likely a bending moment generated about the pars interarticularis by facet contact, and the moment arm length (MAL) between the centroid of facet contact and the location of pars interarticularis failure has been hypothesised to be an influential modulator of shear failure force. To quantitatively evaluate this hypothesis, anterior shear of C3 over C4 was simulated in a finite element model of the porcine C3-C4 vertebral joint with each combination of five compressive force magnitudes (0-60% of estimated compressive failure force) and three postures (flexed, neutral and extended). Bilateral locations of peak stress within C3's pars interarticularis were identified along with the centroids of contact force on the inferior facets. These measurements were used to calculate the MAL of facet contact force. Changes in MAL were also related to shear failure forces measured from similar in vitro tests. Flexed and extended vertebral postures respectively increased and decreased the MAL by 6.6% and 4.8%. The MAL decreased by only 2.6% from the smallest to the largest compressive force. Furthermore, altered MAL explained 70% of the variance in measured shear failure force from comparable in vitro testing with larger MALs being associated with lower shear failure forces. Our results confirmed that the MAL is indeed a significant modulator of vertebral shear failure force. Considering spine flexion is necessary when assessing low-back shear injury potential because of the association between altered facet articulation and lower vertebral shear failure tolerance.

  20. Low-bending loss and single-mode operation in few-mode optical fiber

    NASA Astrophysics Data System (ADS)

    Yin, Ping; Wang, Hua; Chen, Ming-Yang; Wei, Jin; Cai, Zhi-Min; Li, Lu-Ming; Yang, Ji-Hai; Zhu, Yuan-Feng

    2016-10-01

    The technique of eliminating the higher-order modes in a few-mode optical fiber is proposed. The fiber is designed with a group of defect modes in the cladding. The higher-order modes in the fiber can be eliminated by bending the fiber to induce strong coupling between the defect modes and the higher-order modes. Numerical simulation shows the bending losses of the LP01 mode are lower than 1.5×10-4 dB/turn for the wavelength shorter than 1.625 μm. The proposed fiber can be bent multiple turns at small bending radius which are preferable for FTTH related applications.