Bend stresses arising from ion-exchange diffusion in glasses
Babukova, M.V.; Glebov, L.B.; Nikonorov, N.V.; Petrovskii, G.T.
1985-11-01
This paper demonstrates experimental confirmation of the presence of gigastresses arising under ion exchange, for the purpose of providing data relating to the magnitudes of stress greater than 1 GPa in these ion-exchange layers. To determine the stresses, a bend method was used on a specimen under nonuniform load. Small values of bend were determined on an IT-70 inferometer. With larger values of bend the radius of curvature of the surface was determined by measuring the focal distance in the beam of a He-Ne laser reflected from the specimen. Bending is observed in silicate glass subjected to unilateral ion-exchange diffusion of K/sup +/. It is shown that the bending of the specimens is caused by compressive stresses arising in the diffusion layer and having a value of greater than 1.5 GPa. The changes in the refractive index (RI) in the diffusion layer are determined primarily by the photoelastic effect.
The effect of bending on the stresses in adhesive joints
NASA Technical Reports Server (NTRS)
Yuceoglu, U.; Updike, D. P.
1975-01-01
The problem of stress distribution in adhesive joints where two orthotropic plates are bonded through a flexible adhesive layer is analyzed. It is shown that the effect of bending of the adherends on the stresses in the adhesive layer is very significant. The transverse shear deformations of the adherends appear to have little influence on the adhesive layer stresses. The maximum transverse normal stress in the adhesive is shown to be larger than the maximum longitudinal shear stress. The method of solution is applied to several examples of specific joint geometries and material combinations, and is proven to be applicable to other related problems.
Bending stresses due to torsion in cantilever box beams
NASA Technical Reports Server (NTRS)
Kuhn, Paul
1935-01-01
The paper beings with a brief discussion on the origin of the bending stresses in cantilever box beams under torsion. A critical survey of existing theory is followed by a summary of design formulas; this summary is based on the most complete solution published but omits all refinements considered unnecessary at the present state of development. Strain-gage tests made by NACA to obtained some experimental verification of the formulas are described next. Finally, the formulas are applied to a series of box beams previously static-tested by the U.S. Army Air Corps; the results show that the bending stresses due to torsion are responsible to a large extent for the free-edge type of failure frequently experienced in these tests.
Experimental Stress Analysis of Stiffened Cylinders with Cutouts : Pure Bending
NASA Technical Reports Server (NTRS)
Schlechte, Floyd R; Rosecrans, Richard
1954-01-01
Bending tests were made on a cylindrical semimonocoque shell of circular cross section. The cylinder was tested without a cutout and then with a rectangular cutout which was successively enlarged through six sizes varying from 30 degrees to 130 degrees in circumference and from 1 to 2 bays in length. Strain measurements were made with resistance-type wire strain gages near the cutout on the stringers, the skin, and the rings for each size of cutout, and the stresses obtained are presented in tables. (author)
Characterization of Optical Fiber Strength Under Applied Tensile Stress and Bending Stress
P.E. Klingsporn
2011-08-01
Various types of tensile testing and bend radius tests were conducted on silica core/silica cladding optical fiber of different diameters with different protective buffer coatings, fabricated by different fiber manufacturers. The tensile tests were conducted to determine not only the average fiber strengths at failure, but also the distribution in fracture strengths, as well as the influence of buffer coating on fracture strength. The times-to-failure of fiber subjected to constant applied bending stresses of various magnitudes were measured to provide a database from which failure times of 20 years or more, and the corresponding minimum bend radius, could be extrapolated in a statistically meaningful way. The overall study was done to provide an understanding of optical fiber strength in tensile loading and in applied bending stress as related to applications of optical fiber in various potential coizfgurations for weapons and enhanced surveillance campaigns.
Xyloglucan for generating tensile stress to bend tree stem.
Baba, Kei'ichi; Park, Yong Woo; Kaku, Tomomi; Kaida, Rumi; Takeuchi, Miyuki; Yoshida, Masato; Hosoo, Yoshihiro; Ojio, Yasuhisa; Okuyama, Takashi; Taniguchi, Toru; Ohmiya, Yasunori; Kondo, Teiji; Shani, Ziv; Shoseyov, Oded; Awano, Tatsuya; Serada, Satoshi; Norioka, Naoko; Norioka, Shigemi; Hayashi, Takahisa
2009-09-01
In response to environmental variation, angiosperm trees bend their stems by forming tension wood, which consists of a cellulose-rich G (gelatinous)-layer in the walls of fiber cells and generates abnormal tensile stress in the secondary xylem. We produced transgenic poplar plants overexpressing several endoglycanases to reduce each specific polysaccharide in the cell wall, as the secondary xylem consists of primary and secondary wall layers. When placed horizontally, the basal regions of stems of transgenic poplars overexpressing xyloglucanase alone could not bend upward due to low strain in the tension side of the xylem. In the wild-type plants, xyloglucan was found in the inner surface of G-layers during multiple layering. In situ xyloglucan endotransglucosylase (XET) activity showed that the incorporation of whole xyloglucan, potentially for wall tightening, began at the inner surface layers S1 and S2 and was retained throughout G-layer development, while the incorporation of xyloglucan heptasaccharide (XXXG) for wall loosening occurred in the primary wall of the expanding zone. We propose that the xyloglucan network is reinforced by XET to form a further connection between wall-bound and secreted xyloglucans in order to withstand the tensile stress created within the cellulose G-layer microfibrils. PMID:19825666
Kekalo, I. B.; Mogil’nikov, P. S.
2015-06-15
The reversibility of residual bending stresses is revealed in ribbon samples of cobalt- and iron-based amorphous alloys Co{sub 69}Fe{sub 3.7}Cr{sub 3.8}Si{sub 12.5}B{sub 11} and Fe{sub 57}Co{sub 31}Si{sub 2.9}B{sub 9.1}: the ribbons that are free of applied stresses and bent under the action of residual stresses become completely or incompletely straight upon annealing at the initial temperatures. The influence of annealing on the relaxation of bending stresses is studied. Preliminary annealing is found to sharply decrease the relaxation rate of bending stresses, and the initial stage of fast relaxation of these stresses is absent. Complete straightening of preliminarily annealed ribbons is shown to occur at significantly higher temperatures than that of the initial ribbons. Incomplete straightening of the ribbons is explained by the fact that bending stresses relaxation at high annealing temperatures proceeds due to both reversible anelastic deformation and viscous flow, which is a fully irreversible process. Incomplete reversibility is also caused by irreversible processes, such as the release of excess free volume and clustering (detected by small-angle X-ray scattering). The revealed differences in the relaxation processes that occur in the cobalt- and iron-based amorphous alloys are discussed in terms of different atomic diffusion mobilities in these alloys.
Finite element residual stress analysis of induction heating bended ferritic steel piping
Kima, Jong Sung; Kim, Kyoung-Soo; Oh, Young-Jin; Chang, Hyung-Young; Park, Heung-Bae
2014-10-06
Recently, there is a trend to apply the piping bended by induction heating process to nuclear power plants. Residual stress can be generated due to thermo-mechanical mechanism during the induction heating bending process. It is well-known that the residual stress has important effect on crack initiation and growth. The previous studies have focused on the thickness variation. In part, some studies were performed for residual stress evaluation of the austenitic stainless steel piping bended by induction heating. It is difficult to find the residual stresses of the ferritic steel piping bended by the induction heating. The study assessed the residual stresses of induction heating bended ferriticsteel piping via finite element analysis. As a result, it was identified that high residual stresses are generated on local outersurface region of the induction heating bended ferritic piping.
An investigation of the behavior of the clamp-induced bending stresses
NASA Astrophysics Data System (ADS)
Huang, S. N.
1991-12-01
The Fast Flux Test Facility is a demonstration and test facility for the sodium cooled fast breeder reactor. Insulated pipe clamps are used in the heat transport and safety related systems. This investigation determines whether the clamp induced pipe stresses should be classified as primary or secondary stresses. Three finite element models were developed using the ANSYS computer program. Inelastic analyses were performed to investigate the behavior of meridional bending stress and hoop bending stress. The double exponential creep law of 316 stainless steel was used in the creep analysis. Results indicate that pipe bending stresses do not completely relax with time. Therefore, a portion of the meridional bending stress and the hoop bending stress should be classified as primary stress.
The effect of bending on the normalized stress at roots of threaded connectors
Burguete, R.L.; Patterson, E.A. . Dept. of Mechanical and Process Engineering)
1994-08-01
Three-dimensional photoelasticity was used to analyze the effect of bending on the normalized stress at the roots of threaded connectors. Loading was effected by steel cages and a combination of eccentric weights (to provide the bending load) and concentric weights (to provide the axial load). The ratio of the bending stress to the axial stress was determined and various levels of this stress ratio, R[sub o], were tested. The connections were analyzed by taking thin slices in the plane of bending and perpendicular to it. The position of the maximum fringe order at the roots was determined using Mesnager's theorem and the maximum fringe order found by Tardy compensation. The fringe orders were normalized using the nominal axial stress and compared to those in connections without bending, exhibit a lower and broader peak of normalized stress values plotted against the helix length. The normalized stress values are also periodic in relation to the bending plane due to the variation in stress around the longitudinal axis of the bolt. It was found that bending in connectors will affect the normalized stress and that it is possible to determine this effect in a similar way to the method used for axially loaded connections.
Proposal of improvement of debonding bending moment for pre-stressed CFRP bonded steel member
NASA Astrophysics Data System (ADS)
Shimizu, Masaru; Ishikawa, Toshiyuki; Hattori, Atsushi; Kawano, Hirotaka
Recently, some research reports on the application of pre-stressed CFRP plate on steel members have been published. However, the shear and peeling stresses in adhesive at the end of CFRP plates are induced by releasing the pre-tension as well as bending moment. Therefore, in the strengthening of steel members with the pre-stressed CFRP plate, the CFRP plate tends to have debonding in the lower bending moment. In this study, to reduce the shear and peeling stresses in adhesive by releasing the pre-tension of CFRP plates, installation of non pre-stressed regions in CFRP plate was proposed. By installing the non pre-stressed regions in CFRP plate, dividing the locations of higher stresses in adhesive by releasing the pre-tension and bending moment were revealed. Additionally, the design equation of length of non pre-stressed regions was also presented.
Stress Corrosion Cracking of Basalt/Epoxy Composites under Bending Loading
NASA Astrophysics Data System (ADS)
Shokrieh, Mahmood M.; Memar, Mahdi
2010-04-01
The purpose of this research is to study the stress corrosion behavior of basalt/epoxy composites under bending loading and submerged in 5% sulfuric acid corrosive medium. There are limited numbers of research in durability of fiber reinforced polymer composites. Moreover, studies on basalt fibers and its composites are very limited. In this research, mechanical property degradation of basalt/epoxy composites under bending loading and submerged in acidic corrosive medium is investigated. Three states of stress, equal to 30%, 50% and 70% of the ultimate strength of composites, are applied on samples. High stress states are applied to the samples to accelerate the testing procedure. Mechanical properties degradation consists of bending strength, bending modulus of elasticity and fracture energy of samples are examined. Also, a normalized strength degradation model for stress corrosion condition is presented. Finally, microscopic images of broken cross sections of samples are examined.
NASA Astrophysics Data System (ADS)
Qin, W. J.; Dong, C.; Li, X.
2016-03-01
High-cycle bending fatigue is the primary failure mode of crankshafts in engines. Compressive residual stresses are often introduced by induction quenching to improve the fatigue strength of crankshafts. The residual stresses, which are commonly obtained by numerical methods, such as the finite element method (FEM), should be included in fatigue failure analysis to predict the fatigue strength of crankshafts accurately. In this study, the simulation method and theory of quenching process are presented and applied to investigate the residual stresses of a diesel engine crankshaft. The coupling calculation of temperature, microstructure, and stress fields of the crankshaft section is conducted by FEM. Then, the fatigue strength of the crankshaft section is analytically assessed by Susmel and Lazzarin's criterion based on the critical plane approach that superimposes the residual stresses onto the bending stresses. The resonant bending fatigue tests of the crankshaft sections are conducted, and the tests and analytical assessments yield consistent results.
Effects of bending stresses and tube curvature on remote field eddy current signals
Sutherland, J.; Atherton, D.L.
1997-01-01
The effects of bending stresses and tube curvature on remote field eddy current signals were investigated. This technique is a recognized method for the nondestructive evaluation of ferromagnetic tubing, as used in heat exchangers and boiler systems. Different stress states were examined (elastic stress, plastic deformation, and residual stress) and found to give distinctive behavior. Elastic and residual stresses can appear as wall loss, depending on the operating frequency and baseline used for inspection and interpretation.
Comparison of Experimental and Analytical Tooth Bending Stress of Aerospace Spiral Bevel Gears
NASA Technical Reports Server (NTRS)
Handschuh, Robert F.; Bibel, George D.
1999-01-01
An experimental study to investigate the bending stress in aerospace-quality spiral bevel gears was performed. Tests were conducted in the NASA Lewis Spiral Bevel Gear Test Facility. Multiple teeth on the spiral bevel pinion were instrumented with strain gages and tests were conducted from static (slow roll) to 14400 RPM at power levels to 540kW (720 hp). Effects of changing speed and load on the bending stress were measured. Experimental results are compared to those found by three-dimensional finite element analysis.
Stress relaxation and recovery behaviour of composite orthodontic archwires in bending.
Zufall, S W; Kusy, R P
2000-02-01
The viscoelastic behaviour of prototype composite orthodontic archwires was evaluated using a bend stress relaxation test. Archwires having 10 different volume fractions of reinforcement were subjected to constant bending radii in a water bath at 37 degrees C for time periods of up to 90 days. The wires were subsequently released and left unconstrained for the same testing conditions. Creep-induced changes in the unconstrained bending radii of the wires were measured at specific times during both phases (stress relaxation and recovery) of the test. The statistical analysis showed that stress relaxation behaviour was strongly correlated with the archwire reinforcement level. The final relaxation varied, with decreasing reinforcement, from 2 to 8 per cent. Archwire recovery was not correlated with reinforcement level, and revealed a final viscous loss of only 1 per cent. The relaxed elastic moduli in bending of the composite wires were similar to the elastic moduli in bending of several conventional orthodontic archwire materials. Losses that were associated with the viscoelastic behaviour varied with decreasing reinforcement level from 1.2 to 1.7 GPa. Because these modulus losses were minimal, each archwire retained sufficient resilience to be applicable to the early and intermediate stages of orthodontic treatment. PMID:10721240
Laser bending of pre-stressed thin-walled nickel micro-tubes
NASA Astrophysics Data System (ADS)
Che Jamil, M. S.; Imam Fauzi, E. R.; Juinn, C. S.; Sheikh, M. A.
2015-10-01
Laser forming is an innovative technique of producing bending, spatial forming and alignment of both metallic and non-metallic parts by introducing thermal stresses into a work piece with a laser beam. It involves a complex interaction of process parameters to mechanical and thermal characteristics of materials. This paper presents a comprehensive experimental and numerical study of laser bending process of thin-walled micro-tubes. The effect of input parameters, namely laser power, pulse length and pre-stress constraint, on the process and the final product characteristics are investigated. Results of the analysis show that the bending angle of the tube increases considerably when a constraint is imposed at the tube's free end during the heating period. The introduction of compressive pre-stresses (from mechanical bending) in the irradiated region increases the final deformation which varies almost linearly with the amount of pre-stress. Due to high thermal conductivity and thin-walled structure of the tube, the heat dissipates quickly from the irradiated region to its surrounding material. Therefore, a combination of short pulse duration and high power is preferable to generate a higher thermal gradient and induce plastic strain. Design of experiment and regression analysis are implemented to develop an empirical model based on simulation results. Sensitivity analysis is also performed to determine the influence of independent variables on output response. It is evident that initial displacement and pulse length have a stronger positive effect on the output response as compared to laser power.
Yoshida, Tsutomu; Watanabe, Takeshi
2014-05-27
In order to investigate a relation between a bending stress and a characteristic frequency of a beam, 4-point loading which had constant moment region was conducted to a beam with H shape configuration experimentally and numerically. H-shaped beam has many characteristic deformation modes. Axial tensile stress in the beam made its characteristic frequency higher, and compressive stress lower. In the experiment, some characteristic frequencies got higher by a bending stress, and the others stayed in a small frequency fluctuation. The distinction is anticipated as a capability to measure a bending stress of a beam by its characteristic frequencies.
ZERODUR: bending strength data for tensile stress loaded support structures
NASA Astrophysics Data System (ADS)
Bizjak, Tanja; Hartmann, Peter; Westerhoff, Thomas
2012-03-01
In the past ZERODUR® was mainly used for mirror and substrate applications, where mechanical loads were given by its own weight. Nowadays substrates become more sophisticated and subject to higher stresses as consequences of high operational accelerations or vibrations. The integrity of structures such as reticle and wafer stages e.g. must be guaranteed with low failure probability over their full intended life time. Their design requires statistically relevant strength data and information. The usual way determining the design strength employs statistical Weibull distributions obtained from a set of experimental data extrapolating the results to low acceptable failure probability values. However, in many cases this led to allowable stress values too low for the intended application. Moreover, the experimental basis has been found to be too small for reliable calculations. For these reasons measurement series on the strength of ZERODUR® have been performed with different surface conditions employing a standardized ring-on-ring test setup. The numbers of specimens per sample have been extended from about 20 to 100 or even much more. The results for surfaces ground with different diamond grain sizes D151, D64 and D25 as well as for etched surfaces are presented in this paper. Glass ceramics like all glassy materials exhibit some strength reduction when being exposed to loads above a tensile stress threshold over long time periods. The strength change of ZERODUR® with time will be discussed on the basis of known and newly determined stress corrosion data. The results for samples with large numbers of specimens contribute new aspects to the common practice of extrapolation to low failure probability, since they provide evidence for the existence of minimum strength values depending on the structures surface conditions. For ground surfaces the evidence for minimum strength values is quite obvious. For etched surfaces minimum values are to be expected also. However
Kerr microscopy studies of the effects of bending stress on galfenola)
NASA Astrophysics Data System (ADS)
Raghunath, Ganesh; Marana, Michael; Na, Suok-Min; Flatau, Alison
2014-05-01
This work deals with using a magneto-optic Kerr effect (MOKE) microscope to optically analyze the evolution of magnetic domains in a rolled and Goss textured galfenol (Fe81Ga19 + 1.0% NbC) sample when subjected to a bending stress. The initial magnetization state of the cantilevered sample was fixed along its length by a 0.3 T permanent magnet. The magnetic state was monitored with the MOKE microscope as a tip load was applied to bend the sample. The magnetic state of galfenol depends on its magneto-elastic properties. A finite element model that incorporates an energy based formulation of magnetostriction [W. D. Armstrong, J. Magn. Magn. Mater. 263(1-2), 208-218 (2003)] was used to investigate the stresses in the sample and the corresponding change in the magnetic induction as bending occurred. A qualitative comparison with the domain pictures is presented, and the experimental micromagnetic behavior results are shown to correlate well to the macro scale bending stress and magnetization results obtained in the FEM simulations.
Nucleation and Crystallization as Induced by Bending Stress in Lithium Silicate Glass Fibers
NASA Technical Reports Server (NTRS)
Reis, Signo T.; Kim, Cheol W.; Brow, Richard K.; Ray, Chandra S.
2003-01-01
Glass Fibers of Li2O.2SiO2 (LS2) and Li2O.1.6SiO2 (LS1.6) compositions were heated near, but below, the glass transition temperature for different times while subjected to a constant bending stress of about 1.2 GPa. The nucleation density and the crystallization tendency estimated by differential thermal analysis (DTA) of a glass sample in the vicinity of the maximum of the bending stress increased relative to that of stress-free glass fibers. LS2 glass fibers were found more resistant to nucleation and crystallization than the Ls1.6 glass fibers. These results are discussed in regards to shear thinning effects on glass stability.
Stress Intensity Factors of Semi-Circular Bend Specimens with Straight-Through and Chevron Notches
NASA Astrophysics Data System (ADS)
Ayatollahi, M. R.; Mahdavi, E.; Alborzi, M. J.; Obara, Y.
2016-04-01
Semi-circular bend specimen is one of the useful test specimens for determining fracture toughness of rock and geo-materials. Generally, in rock test specimens, initial cracks are produced in two shapes: straight-edge cracks and chevron notches. In this study, the minimum dimensionless stress intensity factors of semi-circular bend specimen (SCB) with straight-through and chevron notches are calculated. First, using finite element analysis, a suitable relation for the dimensionless stress intensity factor of SCB with straight-through crack is presented based on the normalized crack length and half-distance between supports. For evaluating the validity and accuracy of this relation, the obtained results are then compared with numerical and experimental results reported in the literature. Subsequently, by performing some experiments and also finite element analysis of the SCB specimen with chevron notch, the minimum dimensionless stress intensity factor of this specimen is obtained. Using the new equation for the dimensionless stress intensity factor of SCB with straight-through crack and an analytical method, i.e., Bluhm's slice synthesis method, the minimum (critical) dimensionless stress intensity factor of chevron notched semi-circular bend specimens is calculated. Good agreement is observed between the results of two mentioned methods.
NASA Technical Reports Server (NTRS)
Phillips, Edward P.
1997-01-01
An experimental study was conducted to determine the effects of combined bending and membrane cyclic stresses on the fatigue crack growth behavior of aluminum sheet material. The materials used in the tests were 0.040-in.- thick 2024-T3 alclad and 0.090-in.-thick 2024-T3 bare sheet. In the tests, the membrane stresses were applied as a constant amplitude loading at a stress ratio (minimum to maximum stress) of 0.02, and the bending stresses were applied as a constant amplitude deflection in phase with the membrane stresses. Tests were conducted at ratios of bending to membrane stresses (B/M) of 0, 0.75, and 1.50. The general trends of the results were for larger effects of bending for the higher B/M ratios, the lower membrane stresses, and the thicker material. The addition of cyclic bending stresses to a test with cyclic membrane stresses had only a small effect on the growth rates of through-thickness cracks in the thin material, but had a significant effect on the crack growth rates of through-thickness cracks in the thick material. Adding bending stresses to a test had the most effect on the initiation and early growth of cracks and had less effect on the growth of long through-thickness cracks.
Bend stress relaxation and tensile primary creep of a polycrystalline alpha-SiC fiber
NASA Technical Reports Server (NTRS)
Hee Man, Yun; Goldsby, Jon C.; Morscher, Gregory N.
1995-01-01
Understanding the thermomechanical behavior (creep and stress relaxation) of ceramic fibers is of both practical and basic interest. On the practical level, ceramic fibers are the reinforcement for ceramic matrix composites which are being developed for use in high temperature applications. It is important to understand and model the total creep of fibers at low strain levels where creep is predominantly in the primary stage. In addition, there are many applications where the component will only be subjected to thermal strains. Therefore, the stress relaxation of composite consituents in such circumstances will be an important factor in composite design and performance. The objective of this paper is to compare and analyze bend stress relaxation and tensile creep data for alpha-SiC fibers produced by the Carborundum Co. (Niagara Falls, NY). This fiber is of current technical interest and is similar in composition to bulk alpha-SiC which has been studied under compressive creep conditions. The temperature, time, and stress dependences will be discussed for the stress relaxation and creep results. In addition, some creep and relaxation recovery experiments were performed in order to understand the complete viscoelastic behavior, i.e. both recoverable and nonrecoverable creep components of these materials. The data will be presented in order to model the deformation behavior and compare relaxation and/or creep behavior for relatively low deformation strain conditions of practical concern. Where applicable, the tensile creep results will be compared to bend stress relaxation data.
Transient thermal stress analysis and bending behavior of an angle-ply laminated slab
Ootao, Y.; Tanigawa, Y.; Murakami, H. Osaka Prefecture Univ., Sakai California Univ., La Jolla )
1990-01-01
This paper is concerned with a theoretical treatment of thermal stress and bending behavior in a transient state of a multilayered nonisotropic laminated slab. Consideration is given to an infinitely long laminated slab which consists of obliquely directed layers with orthotropic material properties. The thermoelastic problem for the slab under the condition of uniformly distributed heat supply from its one surface is solved in order to obtain the temperature solution and to evaluate the thermal stresses in a transient state. As an example, numerical calculations are carried out for the five-layered angle-ply laminate.
Interpretation of bend strength increase of graphite by the couple-stress theory. [HTGR
Tang, P.Y.
1981-05-01
This paper presents a continued evaluation of the applicability of the couple-stress constitutive theory to graphite. The evaluation is performed by examining four-point bend and uniaxial tensile data of various sized cylindrical and square specimens for three grades of graphites. These data are superficially inconsistent and, usually, at variance with the predictions of classical theories. Nevertheless, this evaluation finds that they can be consistently interpreted by the couple-stress theory. This is compatible with results of an initial evaluation that considered one size of cylindrical specimen for H-451 graphite.
A two-dimensional stress analysis of single lap joints subjected to external bending moments
Sawa, Toshiyuki; Nakano, Katsuyuki; Toratani, Hiroshi
1995-11-01
The stress distribution of single lap adhesive joints subjected to external bending moments are analyzed as a three-body contact problem by using a two-dimensional theory of elasticity. In the analysis, two similar adherends and an adhesive are replaced by finite strips, respectively. In the numerical calculations, the effects of the ratio of Young;s modulus of adherends to that of adhesive and the adhesive thickness on the stress distribution at the interface are examined. As the results, it is seen that the stress singularity causes at the edges of the interfaces and the peel stress at the edges of the interface increases with a decrease of Young`s modulus of the adherends. In addition, photoelastic experiments are carried out. A fairly good agreement is seen between the analytical and the experimental results.
NASA Astrophysics Data System (ADS)
Pedersen, N. L.
2015-06-01
The strength of a gear is typically defined relative to durability (pitting) and load capacity (tooth-breakage). Tooth-breakage is controlled by the root shape and this gear part can be designed because there is no contact between gear pairs here. The shape of gears is generally defined by different standards, with the ISO standard probably being the most common one. Gears are manufactured using two principally different tools: rack tools and gear tools. In this work, the bending stress of involute teeth is minimized by shape optimization made directly on the final gear. This optimized shape is then used to find the cutting tool (the gear envelope) that can create this optimized gear shape. A simple but sufficiently flexible root parameterization is applied and emphasis is put on the importance of separating the shape parameterization from the finite element analysis of stresses. Large improvements in the stress level are found.
Measuring permeability and stress relaxation of young cement paste by beam bending
Vichit-Vadakan, W.; Scherer, George W
2003-12-01
When a saturated rod of a porous material is deflected in three-point bending, two types of time-dependent relaxation processes occur simultaneously: hydrodynamic relaxation, caused by the flow of liquid in the porous body, and viscoelastic (VE) relaxation of the solid network. By measuring the decrease in the force required to sustain a constant deflection, it is possible to obtain the permeability from the hydrodynamic relaxation function, in addition to the VE stress relaxation function of the sample. We report the early-age evolution of permeability, elastic modulus, and stress relaxation function for Type III Portland cement paste with water-cement (w/c) ratios of 0.45, 0.50, and 0.55. The stress relaxation function is shown to preserve its shape during aging; that function is numerically transformed into the creep function.
Yaish, Y. E. Calahorra, Y.; Shtempluck, O.; Kotchetkov, V.
2015-04-28
A non-linear model is introduced describing the force-deflection relation of doubly clamped beams, including initial stress. Several approximations for the exact model are developed and compared, revealing the importance of considering the initial stress during 3-point bending measurements analysis. A novel approximation is found to be better than others, and both the exact model and this approximation are in perfect agreement with finite element simulations. A brief experimental example of silicon nanowires is presented in which the Young's modulus, the initial stress, and the crystallographic growth orientation are extracted by 3-point bending analysis.
NASA Technical Reports Server (NTRS)
Gross, B.; Srawley, J. E.
1983-01-01
The boudary collocation method was used to generate Mode 1 stress intensity and crack mouth displacement coefficients for internally and externally radially cracked ring segments (arc bend specimens) subjected to three point radial loading. Numerical results were obtained for ring segment outer to inner radius ratios (R sub o/ R sub i) ranging from 1.10 to 2.50 and crack length to width ratios (a/W) ranging from 0.1 to 0.8. Stress intensity and crack mouth displacement coefficients were found to depend on the ratios R sub o/R sub i and a/W as well as the included angle between the directions of the reaction forces.
Katoh, Yutai; Snead, Lance Lewis; Hinoki, Tatsuya; Kondo, Sosuke; Kohyama, Akira
2007-01-01
The bend stress relaxation technique was applied for an irradiation creep study of high purity, chemically vapor-deposited beta-phase silicon carbide (CVD SiC) ceramic. A constant bend strain was applied to thin strip samples during neutron irradiation to fluences 0.2-4.2 dpa at various temperatures in the range {approx}400 to {approx}1080 C. Irradiation creep strain at <0.7 dpa exhibited only a weak dependence on irradiation temperature. However, the creep strain dependence on fluence was non-linear due to the early domination of the initial transient creep, and a transition in creep behavior was found between 950 and 1080 C. Steady-state irradiation creep compliances of polycrystalline CVD SiC at doses >0.7 dpa were estimated to be 2.7({+-}2.6) x 10{sup -7} and 1.5({+-}0.8) x 10{sup -6} (MPa dpa){sup -1} at {approx}600 to {approx}950 C and {approx}1080 C, respectively, whereas linear-averaged creep compliances of 1-2 x 10{sup -6} (MPa dpa){sup -1} were obtained for doses of 0.6-0.7 dpa at all temperatures. Monocrystalline 3C SiC samples exhibited significantly smaller transient creep strain and greater subsequent deformation when loaded along <0 1 1> direction.
NASA Technical Reports Server (NTRS)
Dose, A
1941-01-01
The present report describes a device for ascertaining the bending and buckling effect in stress measurements on shell structures accessible from one side only. Beginning with a discussion of the relationship between flexural strain and certain parameters, the respective errors of the test method for great or variable skin curvature within the test range are analyzed and illustrated by specimen example.
NASA Astrophysics Data System (ADS)
Lin, Taiy-In; Hsieh, Chih-Yung; Li, I.-Yin; Leu, Jihperng
2015-04-01
The bending curvature, stresses, and stress relaxation of various multi-layered structures with different adhesive layers pertaining to the polarizer in a thin-film transistor liquid-crystal display (TFT-LCD) have been successfully characterized by using bending beam technique under reliability test. To be more specific, three different types of pressure-sensitive adhesive (hard-, middle-, and soft-type) and various poly(vinyl alcohol) (PVA) stretched directions are devised to examine to key stress contributors and correlations with light leakage. The shrinkage stress in stretched PVA film and stress relaxation ability of pressure-sensitive adhesives (PSA) layers are found to be the key factors determining the stress distribution and out-of-plane displacement of a polarizer stack. For hard-type PSA, its polarizer stack generates the highest bending curvature with maximum out-of-plane displacement but minimum in-plane displacement, leading to anisotropic stress distribution with high stress around the edges. On the other hand, polarizer stack with soft-type PSA yields the maximum in-plane displacement but the minimum out-of-plane displacement, resulting in isotropic stress distribution.
Oni, O O; Capper, M; Soutis, C
1995-02-01
In an attempt to reduce pin loosening, a flanged external fixator pin has been designed and its bending stiffness has been compared with that of a standard pin. The pins were inserted into pilot holes previously drilled into a piece of teak hardwood. Loads of different magnitudes were applied at a fixed moment arm and force-deflection curves were obtained. Thereafter, percentage stiffness increase was calculated for each pilot hole size. The results show that the addition of a collar to the external fixator pin increases its stiffness and its ability to resist bending forces. In a parallel study, the stresses generated at the pin-bone interface by this pin and a standard pin were compared using finite element analysis techniques. The results show that the flange significantly reduced the stresses generated at the pin-bone interface. In addition, stresses were dissipated over a wider area. PMID:7714660
NASA Technical Reports Server (NTRS)
Stowell, Elbridge, Z; Schwartz, Edward B; Houbolt, John C
1945-01-01
A theoretical and experimental investigation has been made of the behavior of a cantilever beam in transverse motion when its root is suddenly brought to rest. Equations are given for determining the stresses, the deflections, and the accelerations that arise in the beam as a result of the impact. The theoretical equations, which have been confirmed experimentally, reveal that, at a given percentage of the distance from root to tip, the bending stresses for a particular mode are independent of the length of the beam, whereas the shear stresses vary inversely with the length.
Florando, J N; Nix, W D
2004-02-12
We have developed a microbeam bending technique for determining elastic-plastic, stress-strain relations for thin metal films on silicon substrates. The method is similar to previous microbeam bending techniques, except that triangular silicon microbeams are used in place of rectangular beams. The triangular beam has the advantage that the entire film on the top surface of the beam is subjected to a uniform state of plane strain as the beam is deflected, unlike the standard rectangular geometry where the bending is concentrated at the support. We present a method of analysis for determining two Ramberg-Osgood parameters for describing the stress-strain relation for the film. These parameters are obtained by fitting the elastic-plastic model to the measured load-displacement data, and utilizing the known elastic properties of both film and substrate. As a part of the analysis we compute the position of the neutral plane for bending, which changes as the film deforms plastically. This knowledge, in turn, allows average stress-strain relations to be determined accurately without forcing the film to closely follow the Ramberg-Osgood law. The method we have developed can be used to determine the elastic-plastic properties of thin metal films on silicon substrates up to strains of about 1%. Utilizing this technique, both yielding and strain hardening of Cu thin films on silicon substrates have been investigated. Copper films with dual crystallographic textures and different grain sizes, as well as others with strong <111> textures have been studied. Three strongly textured <111> films were studied to examine the effect of film thickness on the deformation properties of the film. These films show very high rates of work hardening, and an increase in the yield stress and work hardening rate with decreasing film thickness, consistent with current dislocation models.
NASA Technical Reports Server (NTRS)
Shivakumar, K. N.; Newman, J. C., Jr.
1992-01-01
A three dimensional stress concentration analysis was conducted on straight shank and countersunk (rivet) holes in a large plate subjected to various loading conditions. Three dimensional finite element analysis were performed with 20 node isoparametric elements. The plate material was assumed to be linear elastic and isotropic, with a Poisson ratio of 0.3. Stress concentration along the bore of the hole were computed for several ratios of hole radius to plate thickness (0.1 to 2.5) and ratios of countersink depth to plate thickness (0.25 to 1). The countersink angles were varied from 80 to 100 degrees in some typical cases, but the angle was held constant at 100 degrees for most cases. For straight shank holes, three types of loading were considered: remote tension, remote bending, and wedge loading in the hole. Results for remote tension and wedge loading were used to estimate stress concentration for simulated rivet in pin loading. For countersunk holes only remote tension and bending were considered. Based on the finite element results, stress concentration equations were developed. Whenever possible, the present results were compared with other numerical solutions and experimental results from the literature.
NASA Astrophysics Data System (ADS)
Kuo, Ju-Nan
2012-02-01
In this study, the length and width effects of metal films on the stress-induced bending of a surface micromachined cantilever curved grating are systematically investigated. A characterization of cantilever curved gratings with various lengths and widths was conducted to observe out-of-plane deformation. A finite element model was established to analyze the deformation. Finite element analysis and experimental results indicate that the commonly used beam theory formula for predicting the deformation of surface micromachined cantilever curved gratings is not valid for these devices. Experiments show that the shape of a cantilever curved grating and residual stress have a close relationship. As the length increases, the residual stress of the metal increases, resulting in a larger out-of-plane deformation of the cantilever curved grating. The tip deflection gradually decreases as the length-to-width ratio of the cantilever curved grating increases. A more reliable shape design of metal films on the stress-induced bending of surface micromachined cantilever curved gratings can thus be achieved.
NASA Technical Reports Server (NTRS)
Stowell, Elbridge Z; Schwartz, Edward B; Houbolt, John C
1945-01-01
A theoretical investigation was made of the behavior of a cantilever beam in rotational motion about a transverse axis through the root determining the stresses, the deflections, and the accelerations that occur in the beam as a result of the arrest of motion. The equations for bending and shear stress reveal that, at a given percentage of the distance from root to tip and at a given trip velocity, the bending stresses for a particular mode are independent of the length of the beam and the shear stresses vary inversely with the length. When examined with respect to a given angular velocity instead of a given tip velocity, the equations reveal that the bending stress is proportional to the length of the beam whereas the shear stress is independent of the length. Sufficient experimental verification of the theory has previously been given in connection with another problem of the same type.
NASA Technical Reports Server (NTRS)
Raju, I. S.; Newman, J. C., Jr.
1985-01-01
The purpose of this paper is to present stress-intensity factors for a wide range of nearly semi-elliptical surface cracks in pipes and rods. The configurations were subjected to either remote tension or bending loads. For pipes, the ratio of crack depth to crack length (a/c) ranged from 0.6 to 1; the ratio of crack depth to wall thickness (a/t) ranged from 0.2 to 0.8; and the ratio of internal radius to wall thickness (R/t) ranged from 1 to 10. For rods, the ratio of crack depth to crack length also ranged from 0.6 to 1; and the ratio of crack depth to rod diameter (a/D) ranged from 0.05 to 0.35. These particular crack configurations were chosen to cover the range of crack shapes (a/c) that have been observed in experiments conducted on pipes and rods under tension and bending fatigue loads. The stress-intensity factors were calculated by a three-dimensional finite-element method. The finite-element models employed singularity elements along the crack front and linear-strain elements elsewhere. The models had about 6500 degrees of freedom. The stress-intensity factors were evaluated using a nodal-force method.
NASA Astrophysics Data System (ADS)
Lewis, K.; Buffett, B.; Becker, T.
2008-12-01
We introduce a global mantle convection model employing mantle density anomalies inferred from seismic tomography to determine present day plate motions. Our approach addresses two aspects that are not usually considered in previous work. First, we include forces associated with the bending of subducting plates. The bending forces oppose the plate motion, and may be comparable in magnitude to other important forces at subduction zones, including slab pull. Second, our model incorporates data from the Global CMT Catalog. We use the focal mechanisms of earthquakes associated with subducting slabs to estimate the relative occurrence of compressional and tensional axes in the down-dip direction of subducting slabs. This information is used to infer the state of stress in the subducting slab, which we use to calculate slab pull forces. We investigate regional variations in slab pull by comparing plate motions derived using seismic constraints with those derived using slab pull forces based solely on the age of subducting plates. Furthermore, we constrain the rheology of subducted plates by comparing plate motions predicted with and without bending forces. Although our current model uses only radial variations in mantle viscosity, we include the capability of permitting lateral variations in viscosity by calculating buoyancy and plate-driven flows using Citcom
NASA Astrophysics Data System (ADS)
Fontana, Filipe; Viotti, Matias R.; Albertazzi G., Armando, Jr.
2015-05-01
This paper presents a modular device based on digital speckle pattern interferometry (DSPI) combined with an instrumented indenter. The system is divided in two modules, the interferometric and the indentation module. The former uses a diffractive optical element (DOE) to obtain radial in-plane sensitivity. This module measures the whole shallow displacement field generated by the indentation print on the surface of the material under testing. The latter module is sized suitably with the interferometric module. The indentation module uses a mechanical/hydraulic scheme to provide the system a high loading capability. A piezoelectric loading cell and an inductive transducer are used to simultaneously measure the load applied on the ball indenter and its penetration on the material. For the experimental tests, a bench capable to apply in a specific pipe a very well-known bending moment was used. This bench is mounted with two 12- meters pipes disposed horizontally. A transverse load is applied in the central cross-section of both pipes. The load application is made by a hydraulic actuator and measured with a load cell. Strain-gages are also used in a half-bridge configuration to measure the strain in the 8 cross-sections distributed along the pipe length. Each cross-section was measured by the proposed instrumented indentation system and compared with the strain-gages and load cell measurements. The results obtained show an uncertainty level around 20-30% of the measured bending stress. Good agreement was found between the computed bending stress using the strain-gages, load cell and the proposed method using the instrumented indentation system.
NASA Astrophysics Data System (ADS)
Gou, Xiaofan; Shen, Qiang
2012-05-01
An analysis model of the bending strain dependence of the critical current in multifilamentary Bi2223/Ag composite tapes is presented. To investigate the effect of the mechanical properties of the Bi2223 superconducting filament, the actual part for carrying current, its damage stress and elastic modulus are introduced. The calculated result of the variation of the critical current with the bending strain is well agreed with the experimental one. The further studies find that the mechanical properties of the filament have a remarkable effect on the bending strain dependence of the critical current. Specifically, the larger the damage stress and elastic modulus of the filament are, the higher the critical current is, when the bending strain increases to a larger value beyond the critical one.
Araújo, Marcelo Marotta; Lauria, Andrezza; Mendes, Marcelo Breno Meneses; Claro, Ana Paula Rosifini Alves; Claro, Cristiane Aparecida de Assis; Moreira, Roger William Fernandes
2015-12-01
The aim of this study was to analyze, through Vickers hardness test and photoelasticity analysis, pre-bent areas, manually bent areas, and areas without bends of 10-mm advancement pre-bent titanium plates (Leibinger system). The work was divided into three groups: group I-region without bend, group II-region of 90° manual bend, and group III-region of 90° pre-fabricated bends. All the materials were evaluated through hardness analysis by the Vickers hardness test, stress analysis by residual images obtained in a polariscope, and photoelastic analysis by reflection during the manual bending. The data obtained from the hardness tests were statistically analyzed using ANOVA and Tukey's tests at a significance level of 5 %. The pre-bent plate (group III) showed hardness means statistically significantly higher (P < 0.05) than those of the other groups (I-region without bends, II-90° manually bent region). Through the study of photoelastic reflection, it was possible to identify that the stress gradually increased, reaching a pink color (1.81 δ / λ), as the bending was performed. A general analysis of the results showed that the bent plate region of pre-bent titanium presented the best results. PMID:25944727
Induction of optical vortex in the crystals subjected to bending stresses.
Skab, Ihor; Vasylkiv, Yurij; Vlokh, Rostyslav
2012-08-20
We describe a method for generation of optical vortices that relies on bending of transparent parallelepiped-shaped samples fabricated from either glass or crystalline solid materials. It is shown that the induced singularity of optical indicatrix rotation leads in general to appearance of a mixed screw-edge dislocation of the phase front of outgoing optical beam. At the same time, some specified geometrical parameters of the sample can ensure generation of a purely screw dislocation of the phase front and, as a result, a singly charged canonical optical vortex. PMID:22907006
Effects of chirality and surface stresses on the bending and buckling of chiral nanowires
NASA Astrophysics Data System (ADS)
Wang, Jian-Shan; Shimada, Takahiro; Wang, Gang-Feng; Kitamura, Takayuki
2014-01-01
Due to their superior optical, elastic and electrical properties, chiral nanowires have many applications as sensors, probes, and building blocks of nanoelectromechanical systems. In this paper, we develop a refined Euler-Bernoulli beam model for chiral nanowires with surface effects and material chirality incorporated. This refined model is employed to investigate the bending and buckling of chiral nanowires. It is found that surface effects and material chirality significantly affect the elastic behaviour of chiral nanowires. This study is helpful not only for understanding the size-dependent behaviour of chiral nanowires, but also for characterizing their mechanical properties.
Results of u-bend stress-corrosion-cracking specimen exposures in coal-liquefaction pilot plants
Baylor, V.B.; Keiser, J.R.; Allen, M.D.; Howell, M.; Newsome, J.F.
1982-04-01
Pilot plants with capacities of up to 600 tons/d are currently demonstrating the engineering feasibility of several coal liquefaction processes including Solvent Refined Coal (SRC), Exxon Donor Solvent (EDS), and H-Coal. These plants are the first step toward commercial production of synthetic fuels. Among other factors, development of the technology depends on reliable materials performance. A concern is the application of those austenitic stainless steels necessary for general corrosion resistance, because they are susceptible to stress corrosion cracking. This cracking results from tensile stresses in combination with offensive agents such as polythionic acids, chlorides, and caustics. To screen candidate construction materials for resistance to stress corrosion cracking, we exposed racks of stressed U-bend specimens in welded and as-wrought conditions at four coal liquefaction pilot plants. Results from exposures through June 1980 were described in a previous report for exposures in the SRC plants. This report summarizes the on-site test results from June 1980 through October 1981 for the two SRC pilot plants and the H-Coal and Exxon coal liquefaction pilot plants.
Bending fatigue tests on SiC-Al tapes under alternating stress at room temperature
NASA Technical Reports Server (NTRS)
Herzog, J. A.
1981-01-01
The development of a testing method for fatigue tests on SiC-Al tapes containing a small amount of SiC filaments under alternating stress is reported. The fatigue strength curves resulting for this composite are discussed. They permit an estimate of its behavior under continuous stress and in combination with various other matrices, especially metal matrices.
NASA Astrophysics Data System (ADS)
Hsu, Chang-Hung; Chang, Yeong-Hwa; Lee, Chun-Yao; Yao, Chia-Shiang; He, Yan-Lou; Chu, Huei-Lung; Chang, Chia-Wen; Chan, Wei-Shou
2012-04-01
This paper explores the influence of bending stresses on the magnetic characteristics of three-phase transformers with amorphous cores. Different types of core structures, including C-cores and toroidal cores, and their magnetic properties are compared using VSM and XRD. The losses in the magnetic core of the three-phase transformer are analyzed using the finite element analysis for both design and measurement. In addition, experimental results indicated that amorphous-core transformers with rectangular corners had higher audible noise and vibration intensities. This is because the condensed distribution of magnetic flux lines in the corners of the core may create high magnetic inductions associated with high magnetostriction. Finally, experiments with three-phase amorphous-core transformers were performed to study the effects of magnetism and magnetostriction on their performance in terms of core loss, vibration, and audible noise.
Flow Stress Analysis and Hot Bending of P11 Alloy Steel
NASA Astrophysics Data System (ADS)
Ma, Fu-ye; Jin, Kai; Wang, Hui; Pei, Wen-Jiao; Tang, Xiao-Bin; Tao, Jie; Guo, Xun-Zhong
2016-07-01
Based on the growing application value of the P11 alloy steel in the nuclear power field, its dynamic recrystallization (DRX) behavior was firstly investigated by means of isothermal hot compression experiments, under the conditions of a testing temperature range between 800 and 950 °C, and a strain rate range between 0.01 and 2/s. Furthermore, optical microscopy and transmission electron microscopy were also employed to analyze the effect of the mechanism of the strain rate on DRX. The results indicated that the grain size could be significantly refined with the increase of strain rate. Also, the recrystallized volume fraction was increased and the dislocation density decreased with the decrease of strain rate, for the same strain values. Subsequently, numerical simulations, under the assistance of experimental results on DRX behavior, were successfully used to study the hot push bending process and simultaneously obtain the processing parameters of the actual work-pieces. Finally, some comparative analyses were performed and discussed in parallel with the deformed actual work-pieces. The EBSD results on the deformed P11 alloy steel were emphasized for exploring the forming properties of this alloy steel.
Bass, B.R.; McAfee, W.J.; Williams, P.T.
1999-08-01
Cruciform beam fracture mechanics specimensl have been developed in the Heavy Section Steel Technology (HSST) Program at Oak Ridge National Laboratory (ORNL) to introduce a prototypic, far- field, out-of-plane biaxird bending stress component in the test section that approximates the nonlinear biaxial stresses resulting from pressurized-thernxd-shock or pressure-temperature loading of a nuclear reactor pressure vessel (RPV). Matrices of cruciform beam tests were developed to investigate and quantify the effects of temperature, biaxial loading, and specimen size on fracture initiation toughness of two-dimensional (constant depth), shtdlow, surface flaws. Tests were conducted under biaxial load ratios ranging from uniaxial to equibiaxial. These tests demonstrated that biaxial loading can have a pronounced effect on shallow-flaw fracture toughness in the lower transition temperature region for RPV materials. Two and three- parameter Weibull models have been calibrated using a new scheme (developed at the University of Illinois) that maps toughness data from test specimens with distinctly different levels of crack-tip constraint to a small scale yielding (SSY) Weibull stress space. These models, using the new hydrostatic stress criterion in place of the more commonly used maximum principal stress in the kernel of the OW integral definition, have been shown to correlate the experimentally observed biaxiaI effect in cruciform specimens, thereby providing a scaling mechanism between uniaxial and biaxial loading states.
Evans, Drew R; Craig, Vincent S J
2006-03-23
Cantilever beams, both microscopic and macroscopic, are used as sensors in a great variety of applications. An optical lever system is commonly employed to determine the deflection and thereby the profile of the cantilever under load. The sensitivity of the optical lever must be calibrated, and this is usually achieved by application of a known load or deflection to the free end of the cantilever. When the sensing operation involves a different type of load or a combination of types of loadings, the calibration and the deflection values derived from it become invalid. Here we develop a master equation that permits the true deflection of the cantilever to be obtained simply from the measurement of the apparent deflection for uniformly distributed loadings and end-moment loadings. These loadings are relevant to the uniform adsorption or application of material to the cantilever or the application of a surface stress to the cantilever and should assist experimentalists using the optical lever, such as in the atomic force microscope, to measure cantilever deflections in a great variety of sensing applications. We then apply this treatment to the experimental evaluation of surface stress. Three forms of Stoney's equation that relate the apparent deflection to the surface stress, which is valid for both macroscopic and microscopic experiments, are derived. Analysis of the errors arising from incorrect modeling of the loading conditions of the cantilever currently applied in experiments is also presented. It is shown that the reported literature values for surface stress in microscopic experiments are typically 9% smaller than their true value. For macroscopic experiments, we demonstrate that the added mass of the film or coating generally dominates the measured deflection and must be accounted for accurately if surface stress measurements are to be made. Further, the reported measurements generally use a form of Stoney's equation that is in error, resulting in an
A finite-difference program for stresses in anisotropic, layered plates in bending
NASA Technical Reports Server (NTRS)
Salamon, N. J.
1975-01-01
The interlaminar stresses induced in a layered laminate that is bent into a cylindrical surface are studied. The laminate is modeled as a continuum, and the resulting elasticity equations are solved using the finite difference method. The report sets forth the mathematical framework, presents some preliminary results, and provides a listing and explanation of the computer program. Significant among the results are apparent symmetry relationships that will reduce the numerical size of certain problems and an interlaminar stress behavior having a sharp rise at the free edges.
NASA Astrophysics Data System (ADS)
Fitzenz, D. D.; Miller, S. A.
2004-08-01
Understanding the stress field surrounding and driving active fault systems is an important component of mechanistic seismic hazard assessment. We develop and present results from a time-forward three-dimensional (3-D) model of the San Andreas fault system near its Big Bend in southern California. The model boundary conditions are assessed by comparing model and observed tectonic regimes. The model of earthquake generation along two fault segments is used to target measurable properties (e.g., stress orientations, heat flow) that may allow inferences on the stress state on the faults. It is a quasi-static model, where GPS-constrained tectonic loading drives faults modeled as mostly sealed viscoelastic bodies embedded in an elastic half-space subjected to compaction and shear creep. A transpressive tectonic regime develops southwest of the model bend as a result of the tectonic loading and migrates toward the bend because of fault slip. The strength of the model faults is assessed on the basis of stress orientations, stress drop, and overpressures, showing a departure in the behavior of 3-D finite faults compared to models of 1-D or homogeneous infinite faults. At a smaller scale, stress transfers from fault slip transiently induce significant perturbations in the local stress tensors (where the slip profile is very heterogeneous). These stress rotations disappear when subsequent model earthquakes smooth the slip profile. Maps of maximum absolute shear stress emphasize both that (1) future models should include a more continuous representation of the faults and (2) that hydrostatically pressured intact rock is very difficult to break when no material weakness is considered.
Fitzenz, D.D.; Miller, S.A.
2004-01-01
Understanding the stress field surrounding and driving active fault systems is an important component of mechanistic seismic hazard assessment. We develop and present results from a time-forward three-dimensional (3-D) model of the San Andreas fault system near its Big Bend in southern California. The model boundary conditions are assessed by comparing model and observed tectonic regimes. The model of earthquake generation along two fault segments is used to target measurable properties (e.g., stress orientations, heat flow) that may allow inferences on the stress state on the faults. It is a quasi-static model, where GPS-constrained tectonic loading drives faults modeled as mostly sealed viscoelastic bodies embedded in an elastic half-space subjected to compaction and shear creep. A transpressive tectonic regime develops southwest of the model bend as a result of the tectonic loading and migrates toward the bend because of fault slip. The strength of the model faults is assessed on the basis of stress orientations, stress drop, and overpressures, showing a departure in the behavior of 3-D finite faults compared to models of 1-D or homogeneous infinite faults. At a smaller scale, stress transfers from fault slip transiently induce significant perturbations in the local stress tensors (where the slip profile is very heterogeneous). These stress rotations disappear when subsequent model earthquakes smooth the slip profile. Maps of maximum absolute shear stress emphasize both that (1) future models should include a more continuous representation of the faults and (2) that hydrostatically pressured intact rock is very difficult to break when no material weakness is considered. Copyright 2004 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Zhou, Gang; Lloyd, Peter
2009-07-01
An experimental study has been conducted to design and fabricate smart composite beams embedded with prestrained nitinol wire actuators. The fabrication process developed allowed both quasi-isotropic E-glass/epoxy and carbon/epoxy hosts to be eccentrically embedded with 10 parallel prestrained wires with a purpose-made alignment device and cured successfully in an autoclave. Smart composite beams of three different lengths were made for each type of host. Both single-cycle and multi-cycle thermomechanical bending actuations of these beams in the cantilever set-up were characterised experimentally by applying various levels of electric current to the nitinol wires. The performance characteristics showed that the present fabrication process was repeatable and reliable. While the end deflections of up to 41 mm were easily achieved from smart E-glass/epoxy beams, the limited end deflections were observed from the smart carbon/epoxy beams due primarily to our inability to insulate the nitinol wires. Moreover, it seemed necessary to overheat the prestrained wires to much higher temperatures beyond the complete reverse transformation in order to generate recovery stress.
NASA Technical Reports Server (NTRS)
Kececioglu, D.; Chester, L. B.; Dodge, T. M.
1974-01-01
Results generated by three, unique fatigue reliability research machines which can apply reversed bending loads combined with steady torque are presented. Six-inch long, AISI 4340 steel, grooved specimens with a stress concentration factor of 2.34 and R sub C 35/40 hardness were subjected to various combinations of these loads and cycled to failure. The generated cycles-to-failure and stress-to-failure data are statistically analyzed to develop distributional S-N and Goodman diagrams. Various failure theories are investigated to determine which one represents the data best. The effect of the groove and of the various combined bending-torsion loads on the S-N and Goodman diagrams are determined. Three design applications are presented. The third one illustrates the weight savings that may be achieved by designing for reliability.
NASA Astrophysics Data System (ADS)
Zhen, Wu; Wanji, Chen
2010-04-01
A C0-type global-local higher order theory including interlaminar stress continuity is proposed for the cross-ply laminated composite and sandwich plates in this paper, which is able to a priori satisfy the continuity conditions of transverse shear stresses at interfaces. Moreover, total number of unknowns involved in the model is independent of number of layers. Compared to other higher-order theories satisfying the continuity conditions of transverse shear stresses at interfaces, merit of the proposed model is that the first derivatives of transverse displacement w have been taken out from the in-plane displacement fields, so that the C0 interpolation functions is only required during its finite element implementation. To verify the present model, a C0 three-node triangular element is used for bending analysis of laminated composite and sandwich plates. It ought to be shown that all variables involved in present model are discretized by only using linear interpolation functions within an element. Numerical results show that the C0 plate element based on the present theory may accurately calculate transverse shear stresses without any postprocessing, and the present results agree well with those obtained from the C1-type higher order theory. Compared with the C1 plate bending element, the present finite element is simple, convenient to use and accurate enough.
NASA Astrophysics Data System (ADS)
Kipata, M. L.; Delvaux, D.; Sebagenzi, M. N.; Cailteux, J.; Sintubin, M.
2012-04-01
Between the paroxysm of the Lufilian orogeny at ~ 550 Ma and the late Neogene to Quaternary development of the south-western branch of the East African rift system, the tectonic evolution of the Lufilian Arc and Kundelungu foreland in the Katanga region of the Democratic Republic of Congo remains poorly unknown although it caused important Cu-dominated mineral remobilizations leading to world-class ore deposits. This long period is essentially characterized by brittle tectonic deformations that have been investigated by field studies in open mines spread over the entire arc and foreland. Paleostress tensors were computed for a database of 1450 fault-slip data by interactive stress tensor inversion and data subset separation, and the relative succession of 8 brittle deformation events established. The oldest brittle structures observed are related to the Lufilian brittle compressional climax (stage 1). They have been re-oriented during the orogenic bending that led to the arcuate shape of the belt. Unfolding the stress directions from the first stage allows to reconstruct a consistent NE-SW direction of compression for this stage. Constrictional deformation occurred in the central part of the arc, probably during orogenic bending (Stage 2). After the orogenic bending, a sequence of 3 deformation stages marks the progressive onset of late-orogenic extension: strike-slip deformations (stages 3-4) and late-orogenic arc-parallel extension (stage 5). It is proposed that these 3 stages correspond to orogenic collapse. In early Mesozoic, NW-SE compression was induced by a transpressional inversion, interpreted as induced by far-field stresses generated at the southern active margin of Gondwana (stage 6). Since then, this region was affected by rift-related extension, successively in a NE-SW direction (stage 7, Tanganyika trend) and NW-SE direction (stage 8, Moero trend).
NASA Astrophysics Data System (ADS)
Kekalo, I. B.; Mogil'nikov, P. S.
2015-12-01
An unusual effect of the stresses of bending (toroidal sample diameter D) on the hysteretic magnetic properties ( H c , μ5) of an amorphous Co69Fe3.7Cr3.8Si12B11 alloy with an extremely low magnetostriction (|λ s | ≤ 10-7) is revealed. These properties are measured in a dynamic regime at a magnetic-field frequency f = 0.1-20 kHz. The coercive force of the alloy H c weakly depends on D at low frequencies ( f < 1 kHz), and permeability μ5 ( H = 5 mOe), in contrast, is independent of D at high frequencies and is dependent on D at low frequencies. The samples subjected to high-temperature (390°C) annealing followed by water quenching exhibit "anomalous" dependences: permeability μ5 increases with decreasing toroidal sample radius, i.e., with increasing bending stresses. The detected dependences are related to the fact that magnetization reversal via the displacement of rigid domain walls is predominant at low frequencies and during static measurements and magnetization reversal via the displacement of flexible domain walls is predominant at high frequencies.
NASA Technical Reports Server (NTRS)
Binienda, W. K.; Roberts, G. D.; Papadopoulos, D. S.
1992-01-01
The results of in-plane four-point bend experiments on unidirectionally reinforced composite beams are presented for graphite/epoxy (T300/934) and graphite/polyimide (G30-500/PMR-15) composites. The maximum load and the location of cracks formed during failure were measured for testpieces with fibers oriented at various angles to the beam axis. Since most of the beams failed near one or more of the load points, the strength of the beams was evaluated in terms of a proposed model for the local stress distribution. In this model, an exact solution to the problem of a localized contact force acting on a unidirectionally reinforced half plane is used to describe the local stress field. The stress singularity at the load points is treated in a manner similar to the stress singularity at a crack tip in fracture mechanisms problems. Using this approach, the effect of fiber angle and elastic material properties on the strength of the beam is described in terms of a load intensity factor. For fiber angles less than 45 deg from the beam axis, a single crack is initiated near one of the load points at a critical value of the load intensity factor. The critical load intensity factor decreases with increasing fiber angle. For larger fiber angles, multiple cracks occur at locations both near and away from the load points, and the load intensity factor at failure increases sharply with increasing fiber angle.
NASA Technical Reports Server (NTRS)
Binienda, Wieslaw K.; Roberts, Gary D.; Papadopoulos, Demetrios S.
1992-01-01
The results of in-plane four-point bend experiments on unidirectionally reinforced composite beams are presented for graphite/epoxy (T300/934) and graphite/polyimide (G30-500/PMR-15) composites. The maximum load and the location of cracks formed during failure were measured for testpieces with fibers oriented at various angles to the beam axis. Since most of the beams failed near one or more of the load points, the strength of the beams was evaluated in terms of a proposed model, for the local stress distribution. In this model, an exact solution to the problem of a localized contact force acting on a unidirectionally reinforced half plane is used to describe the local stress field. The stress singularity at the load points is treated in a manner similar to the stress singularity at a crack tip in fracture mechanisms problems. Using this approach, the effect of fiber angle and elastic material properties on the strength of the beam is described in terms of a load intensity factor. For fiber angles less than 45 deg from the beam axis, a single crack is initiated near one of the load points at a critical value of the load intensity factor. The critical load intensity factor decreases with the increasing fiber angle. For larger fiber angles, multiple cracks occur at locations both near and away from the load points, and the load intensity factor at failure increases sharply with increasing fiber angle.
NASA Astrophysics Data System (ADS)
Park, Jung Jin; Na, Suok-Min; Raghunath, Ganesh; Flatau, Alison B.
2016-05-01
Magnetostrictive Fe-Ga and Fe-Al alloys are promising materials for use in bending-mode vibrational energy harvesters. For this study, 50.8 mm × 5.0 mm × 0.5 mm strips of Fe-Ga and Fe-Al were cut from 0.50-mm thick rolled sheet. An atmospheric anneal was used to develop a Goss texture through an abnormal grain growth process. The anneal lead to large (011) grains that covered over 90% of sample surface area. The resulting highly-textured Fe-Ga and Fe-Al strips exhibited saturation magnetostriction values (λsat = λ∥ - λ⊥) of ˜280 ppm and ˜130 ppm, respectively. To maximize 90° rotation of magnetic moments during bending of the strips, we employed compressive stress annealing (SA). Samples were heated to 500°C, and a 100-150 MPa compressive stress was applied while at 500°C for 30 minutes and while being cooled. The effectiveness of the SA on magnetic moment rotation was inferred by comparing post-SA magnetostriction with the maximum possible yield of rotated magnetic moments, which is achieved when λ∥ = λsat and λ⊥ = 0. The uniformity of the SA along the sample length and the impact of the SA on sensing/energy harvesting performance were then assessed by comparing pre- and post-SA bending-stress-induced changes in magnetization at five different locations along the samples. The SA process with a 150 MPa compressive load improved Fe-Ga actuation along the sample length from 170 to 225 ppm (from ˜60% to within ˜80% of λsat). The corresponding sensing/energy harvesting performance improved by as much as a factor of eight in the best sample, however the improvement was not at all uniform along the sample length. The SA process with a 100 MPa compressive load improved Fe-Al actuation along the sample length from 60 to 73 ppm (from ˜46% to ˜56% of λsat, indicating only a marginally effective SA and suggesting the need for modification of the SA protocol. In spite of this, the SA was effective at improving the sensing/energy harvesting
NASA Technical Reports Server (NTRS)
Hoff, N J; Libby, Paul A; Klein, Bertran
1946-01-01
This report deals with the calculation of the bending moments in and the distortions of fuselage rings upon which known concentrated and distributed loads are acting. In the procedure suggested, the ring is divided into a number of beams each having a constant radius of curvature. The forces and moments caused in the end sections of the beams by individual unit displacements of the end sections are listed in a table designated as the operations table in conformity with Southwell's nomenclature. The operations table and the external loads are equivalent to a set of linear equations. For their solution the following three procedures are presented: 1) Southwell's method of systematic relaxations. This is a step-by-step approximation procedure guided by the physical interpretation of the changes in the values of the unknown. 2) The growing unit procedure in which the individual beams are combined successively into beams of increasing length until finally the entire ring becomes a single beam. In each step of the procedure a set of not more than three simultaneous linear equations is solved. 3) Solution of the entire set of simultaneous equations by the methods of the matrix calculus. In order to demonstrate the manner in which the calculations may be carried out, the following numerical examples are worked out: 1) Curved beam with both its end sections rigidly fixed. The load is a concentrated force. 2) Egg-shape ring with symmetric concentrated loads. 3) Circular ring with antisymmetric concentrated loads and shear flow (torsion of the fuselage). 4) Same with V-braces incorporated in the ring. 5) Egg-shape ring with antisymmetric concentrated loads and shear flow (torsion of the fuselage). 6) Same with V-braces incorporated in the ring. The results of these calculations are checked, whenever possible, by calculations carried out according to known methods of analysis. The agreement is found to be good. The amount of work necessary for the solution of ring problems by
Fatigue life prediction in bending from axial fatigue information
NASA Technical Reports Server (NTRS)
Manson, S. S.; Muralidharan, U.
1982-01-01
Bending fatigue in the low cyclic life range differs from axial fatigue due to the plastic flow which alters the linear stress-strain relation normally used to determine the nominal stresses. An approach is presented to take into account the plastic flow in calculating nominal bending stress (S sub bending) based on true surface stress. These functions are derived in closed form for rectangular and circular cross sections. The nominal bending stress and the axial fatigue stress are plotted as a function of life (N sub S) and these curves are shown for several materials of engineering interest.
NASA Technical Reports Server (NTRS)
Hoff, N J; Boley, Bruno A
1946-01-01
Ten 24S-T alclad cylinders of 20-inch diameter, 45- or 58-inch length, and 0.012-inch wall thickness, reinforced with 24S-T aluminum alloy stringers and rings were tested in pure bending. In the middle of the compression side of the cylinders there was a cutout extending over 19 inches in the longitudinal direction, and over an angle of 45 degrees, 90 degrees, or 135 degrees in the circumferential direction. The strain in the stringers and in the sheet covering was measured with metal electric strain gages. The stress distribution in the cylinders deviate considerably from the linear law valid for cylinders without a cutout. The maximum strain measured was about four-thirds of the value calculated from the Mc/I formula when I was taken as the moment of inertia of the cross section of the portion of the cylinder where the cutout was situated. A diagram is presented containing the strain factors defined as the ratios of measured strain to strain calculated with the Mc/I formula. All the 10 cylinders tested failed in general instability. Two symmetric and one antisymmetric pattern of buckling were observed and the buckling load appeared to be independent of the method of manufacture and the length of the cylinder. The buckling load of the cylinders having cutouts extending over 45 degrees, 90 degrees, and 135 degrees was 66, 47, and 31 percent, respectively, of the buckling load of the cylinder without a cutout.
Jacquemoud, C.; Yuritzinn, T.; Marie, S.
2012-07-01
In the framework of the NESC VII European project, a large experimental program has been dedicated to characterize the Warm Pre-Stressing (WPS) effect in different testing configurations. One of the CEA (France) contributions to this project is the realization of five point bending tests on large cruciform specimens considering different WPS loading cycles. The five cruciform specimens, sponsored by EDF (France) and IRSN (France), are made of 18MND5 steel. Two of them have been tested on a same LCF (Load-Cool-Fracture) loading cycle and two others on the same LCTF (Load-Cool-Transient-Fracture) loading cycle. The experimental results presented in this paper give a successful demonstration of the WPS effect in biaxial loading conditions either on a LCF or on a LCTF cycle. During the test interpretations, different models have then been tested and compared in order to evaluate their ability to predict the cleavage fracture in the case of different WPS loading cycles. They all provide very conservative predictions whatever loading cycle is concerned. (authors)
Bending fracture in carbon nanotubes.
Kuo, Wen-Shyong; Lu, Hsin-Fang
2008-12-10
A novel approach was adopted to incur bending fracture in carbon nanotubes (CNTs). Expanded graphite (EG) was made by intercalating and exfoliating natural graphite flakes. The EG was deposited with nickel particles, from which CNTs were grown by chemical vapor deposition. The CNTs were tip-grown, and their roots were fixed on the EG flakes. The EG flakes were compressed, and many CNTs on the surface were fragmented due to the compression-induced bending. Two major modes of the bending fracture were observed: cone-shaped and shear-cut. High-resolution scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to examine the crack growth within the graphene layers. The bending fracture is characterized by two-region crack growth. An opening crack first appears around the outer-tube due to the bending-induced tensile stress. The crack then branches to grow along an inclined direction toward the inner-tube due to the presence of the shear stress in between graphene layers. An inner-tube pullout with inclined side surface is formed. The onset and development of the crack in these two regions are discussed. PMID:21730690
Russew, K.; Hey, P. de; Sietsma, J.; Beukel, A. van den
1997-05-01
The nonisothermal viscous flow behavior of amorphous Fe{sub 40}Ni{sub 40}Si{sub 6}B{sub 14} alloy was studied by direct viscosity measurements in the temperature range between 630 K and 740 K at a heating rate of 20 K/min, and by the relaxation of bend stresses in the low temperature range up to 650 K at heating rates ranging between 0.31 K/min and 20 K/min. It is shown that fully irreversible viscous flow and fully reversible anelastic strain take place during the bend stress relaxation. A distinction between both time dependent strain contributions could be made, providing the possibility for their separate analysis. The irreversible viscous flow contribution of the bend stress relaxation and the viscosity measurements could be adequately described by the free Volume Model with a single set of parameters. The conclusion is drawn that the Free Volume Model remains a useful tool for describing the irreversible relaxation phenomena in glassy metals at temperatures well below the glass transition temperature T{sub g}.
Bend Properties of Sapphire Fibers at Elevated Temperatures. 1; Bend Survivability
NASA Technical Reports Server (NTRS)
Morscher, Gregory N.; Sayir, Haluk
1995-01-01
The effect of temperature on the bend radius that a c-axis-oriented sapphire fiber can withstand was determined for fibers of various diameter. Bend stress rupture tests were performed for times of 1-100 h and temperatures of 300-1700 C. Fibers would survive the bend test undeformed, would fracture or would deform. The bend survival radius was determined to be the radius above which no fibers fractured or deformed for a given time-temperature treatment. It was found that the ability of fibers to withstand curvature decreases substantially with time and increasing temperature and that fibers of smaller diameter (46-83 micron) withstood smaller bend radii than would be expected from just a difference in fiber diameter when compared with the bend results of the fibers of large diameter (144 micron). This was probably due to different flaw populations, causing high temperature bend failure for the tested sapphire fibers of different diameters.
Reversal bending fatigue testing
Wang, Jy-An John; Wang, Hong; Tan, Ting
2014-10-21
Embodiments for apparatuses for testing reversal bending fatigue in an elongated beam are disclosed. Embodiments are configured to be coupled to first and second end portions of the beam and to apply a bending moment to the beam and create a pure bending condition in an intermediate portion of the beam. Embodiments are further configured to cyclically alternate the direction of the bending moment applied to the beam such that the intermediate portion of the beam cyclically bends in opposite directions in a pure bending condition.
Compliance measurements of chevron notched four point bend specimen
NASA Technical Reports Server (NTRS)
Calomino, Anthony; Bubsey, Raymond; Ghosn, Louis J.
1994-01-01
The experimental stress intensity factors for various chevron notched four point bend specimens are presented. The experimental compliance is verified using the analytical solution for a straight through crack four point bend specimen and the boundary integral equation method for one chevron geometry. Excellent agreement is obtained between the experimental and analytical results. In this report, stress intensity factors, loading displacements and crack mouth opening displacements are reported for different crack lengths and different chevron geometries, under four point bend loading condition.
ERIC Educational Resources Information Center
Johnson, Ann
2008-01-01
Gee's Bend is a small community near Selma, Alabama where cotton plantations filled the land before the Civil War. After the war, the freed slaves of the plantations worked as tenant farmers and founded an African-American community. In 2002, the women of this community brought international attention and acclaim to Gee's Bend through the art of…
Microhole Tubing Bending Report
Oglesby, Ken
2012-01-01
A downhole tubing bending study was made and is reported herein. IT contains a report and 2 excel spreadsheets to calculate tubing bending and to estimate contact points of the tubing to the drilled hole wall (creating a new support point).
A transparent bending-insensitive pressure sensor
NASA Astrophysics Data System (ADS)
Lee, Sungwon; Reuveny, Amir; Reeder, Jonathan; Lee, Sunghoon; Jin, Hanbit; Liu, Qihan; Yokota, Tomoyuki; Sekitani, Tsuyoshi; Isoyama, Takashi; Abe, Yusuke; Suo, Zhigang; Someya, Takao
2016-05-01
Measuring small normal pressures is essential to accurately evaluate external stimuli in curvilinear and dynamic surfaces such as natural tissues. Usually, sensitive and spatially accurate pressure sensors are achieved through conformal contact with the surface; however, this also makes them sensitive to mechanical deformation (bending). Indeed, when a soft object is pressed by another soft object, the normal pressure cannot be measured independently from the mechanical stress. Here, we show a pressure sensor that measures only the normal pressure, even under extreme bending conditions. To reduce the bending sensitivity, we use composite nanofibres of carbon nanotubes and graphene. Our simulations show that these fibres change their relative alignment to accommodate bending deformation, thus reducing the strain in individual fibres. Pressure sensitivity is maintained down to a bending radius of 80 μm. To test the suitability of our sensor for soft robotics and medical applications, we fabricated an integrated sensor matrix that is only 2 μm thick. We show real-time (response time of ∼20 ms), large-area, normal pressure monitoring under different, complex bending conditions.
A transparent bending-insensitive pressure sensor.
Lee, Sungwon; Reuveny, Amir; Reeder, Jonathan; Lee, Sunghoon; Jin, Hanbit; Liu, Qihan; Yokota, Tomoyuki; Sekitani, Tsuyoshi; Isoyama, Takashi; Abe, Yusuke; Suo, Zhigang; Someya, Takao
2016-05-01
Measuring small normal pressures is essential to accurately evaluate external stimuli in curvilinear and dynamic surfaces such as natural tissues. Usually, sensitive and spatially accurate pressure sensors are achieved through conformal contact with the surface; however, this also makes them sensitive to mechanical deformation (bending). Indeed, when a soft object is pressed by another soft object, the normal pressure cannot be measured independently from the mechanical stress. Here, we show a pressure sensor that measures only the normal pressure, even under extreme bending conditions. To reduce the bending sensitivity, we use composite nanofibres of carbon nanotubes and graphene. Our simulations show that these fibres change their relative alignment to accommodate bending deformation, thus reducing the strain in individual fibres. Pressure sensitivity is maintained down to a bending radius of 80 μm. To test the suitability of our sensor for soft robotics and medical applications, we fabricated an integrated sensor matrix that is only 2 μm thick. We show real-time (response time of ∼20 ms), large-area, normal pressure monitoring under different, complex bending conditions. PMID:26809055
Peeling, sliding, pulling and bending
NASA Astrophysics Data System (ADS)
Lister, John; Peng, Gunnar
2015-11-01
The peeling of an elastic sheet away from thin layer of viscous fluid is a simply-stated and generic problem, that involves complex interactions between the flow and elastic deformation on a range of length scales. Consider an analogue of capillary spreading, where a blister of injected viscous fluid spreads due to tension in the overlying elastic sheet. Here the tension is coupled to the deformation of the sheet, and thus varies in time and space. A key question is whether or not viscous shear stresses ahead of the blister are sufficient to prevent the sheet sliding inwards and relieving the tension. Our asymptotic analysis reveals a dichotomy between fast and slow spreading, and between two-dimensional and axisymmetric spreading. In combination with bending stresses and gravity, which may dominate parts of the flow but not others, there is a plethora of dynamical regimes.
Dispersion suppressors with bending
Garren, A.
1985-10-01
Dispersion suppressors of two main types are usually used. In one the cell quadrupole focussing structure is the same as in normal cells but some of the dipoles are replaced by drifts. In the other, the quadrupole strengths and/or spacings are different from those of the normal cells, but the bending is about the same as it is in the cells. In SSC designs to date, dispersion suppressors of the former type have been used, consisting of two cells with bending equivalent to one. In this note a suppressor design with normal bending and altered focussing is presented. The advantage of this scheme is that circumference is reduced. The disadvantages are that additional special quadrupoles must be provided (however, they need not be adjustable), and the maximum beta values within them are about 30% higher than the cell maxima.
Bending strain tolerance of MgB2 superconducting wires
NASA Astrophysics Data System (ADS)
Kováč, P.; Hušek, I.; Melišek, T.; Kulich, M.; Kopera, L.
2016-04-01
This work describes the strain tolerance of MgB2 superconductors subjected to variable bending stresses. Bending of MgB2 wire was done at room temperature in different modes: (i) direct bending of straight annealed samples to variable diameters and by (ii) indirect bending by straightening of bent and annealed samples. I c-bending strain characteristics of samples made by in situ PIT and by the internal magnesium diffusion (IMD) process were measured at 4.2 K. The results show a good agreement between the direct and indirect bending mode, which allows easier estimation of limits important for the winding process of MgB2 superconductors with brittle filaments. A comparison of MgB2 wires made by in situ PIT and IMD processes showed improved strain tolerance for IMD due to better grain connectivity the low annealing temperature, which does not appear to reduce the mechanical strength of sheath material.
Right-angle slot waveguide bends with high bending efficiency.
Ma, Changbao; Zhang, Qun; Van Keuren, Edward
2008-09-15
Two right-angle bends for nanoscale slot waveguides with high bending efficiency based on a corner mirror and different resonant cavities are presented, one with a triangular cavity and the other with a square cavity. Through two-dimensional parametric scanning of the position of the mirror and the dimension of the cavity, a maximum bending efficiency calculated using mode overlap integral (MOI) of 94.3% is achieved for the bend with the triangular cavity and 93.1% is achieved for the bend with the square cavity. Although they both have similar bending performance, the position of the mirror is different between the two cases. PMID:18794968
Mechanism of bending electrostriction in thermoplastic polyurethane
NASA Astrophysics Data System (ADS)
Zhou, Y.; Wong, Y. W.; Shin, F. G.
2004-07-01
The mechanism of bending electrostriction in polyurethane films is discussed and elucidated through a numerical calculation. The simulations are carried out on a model in which charge carriers are assumed to be electrons injected from the cathode by the Schottky effect, and the positive charges are immobile. Under a dc field, our simulation results show that the electrons go out of the anode, leaving behind a large quantity of positive charge around the anode. As a result, the electric field near the anode eventually becomes much larger than that near the cathode. The asymmetrical electric field distribution leads to an asymmetrical stress distribution through the electrostriction effect and thus to bending of the polyurethane film under the application of a dc electric field. The results can also explain the gradual change in bending direction after reversing the polarity of the electric field.
Measuring graphene's bending stiffness
NASA Astrophysics Data System (ADS)
Blees, Melina; Barnard, Arthur; Roberts, Samantha; Kevek, Joshua W.; Ruyack, Alexander; Wardini, Jenna; Ong, Peijie; Zaretski, Aliaksandr; Wang, Siping; McEuen, Paul L.
2013-03-01
Graphene's unusual combination of in-plane strength and out-of-plane flexibility makes it promising for mechanical applications. A key value is the bending stiffness, which microscopic theories and measurements of phonon modes in graphite put at κ0 = 1.2 eV.1 However, theories of the effects of thermal fluctuations in 2D membranes predict that the bending stiffness at longer length scales could be orders of magnitude higher.2,3 This macroscopic value has not been measured. Here we present the first direct measurement of monolayer graphene's bending stiffness, made by mechanically lifting graphene off a surface in a liquid and observing both motion induced by thermal fluctuations and the deflection caused by gravity's effect on added weights. These experiments reveal a value κeff = 12 keV at room temperature -- four orders of magnitude higher than κ0. These results closely match theoretical predictions of the effects of thermally-induced fluctuations which effectively thicken the membrane, dramatically increasing its bending stiffness at macroscopic length scales.
Probing the elastic limit of DNA bending
Le, Tung T.; Kim, Harold D.
2014-01-01
Sharp bending of double-stranded DNA (dsDNA) plays an essential role in genome structure and function. However, the elastic limit of dsDNA bending remains controversial. Here, we measured the opening rates of small dsDNA loops with contour lengths ranging between 40 and 200 bp using single-molecule Fluorescence Resonance Energy Transfer. The relationship of loop lifetime to loop size revealed a critical transition in bending stress. Above the critical loop size, the loop lifetime changed with loop size in a manner consistent with elastic bending stress, but below it, became less sensitive to loop size, indicative of softened dsDNA. The critical loop size increased from ∼60 bp to ∼100 bp with the addition of 5 mM magnesium. We show that our result is in quantitative agreement with the kinkable worm-like chain model, and furthermore, can reproduce previously reported looping probabilities of dsDNA over the range between 50 and 200 bp. Our findings shed new light on the energetics of sharply bent dsDNA. PMID:25122748
[Effect of bending on shot peened and polished osteosynthesis plates].
Starker, M; Fröhling, M; Hirsch, T
1991-03-01
Shot peening can increase the fatigue strength of commercially available surgical plates made of 1.4435 alloy by 40% even in a corrosive environment. Our investigations show that residual stresses resulting from shot peening are reduced by additional bending of the plates. In such plates smaller tensile residual stresses were found than after polishing of the plates. Bending of polished plates results in considerable tensile residual stresses. The hardening achieved by shot peening is not reduced by bending. As the fatigue strength of soft materials depends mainly on the hardening and less on the residual stresses, only little influence of the changed residual stresses on the fatigue strength can be expected. Shot peening of surgical implants thus means an improvement in quality. PMID:2054460
Combined bending-torsion fatigue reliability. III
NASA Technical Reports Server (NTRS)
Kececioglu, D.; Chester, L. B.; Nolf, C. F., Jr.
1975-01-01
Results generated by three, unique fatigue reliability research machines which can apply reversed bending loads combined with steady torque are presented. AISI 4340 steel, grooved specimens with a stress concentration factor of 1.42 and 2.34, and Rockwell C hardness of 35/40 were subjected to various combinations of these loads and cycled to failure. The generated cycles-to-failure and stress-to-failure data are statistically analyzed to develop distributional S-N and Goodman diagrams. Various failure theories are investigated to determine which one represents the data best. The effects of the groove, and of the various combined bending-torsion loads, on the S-N and Goodman diagrams are determined. Two design applications are presented which illustrate the direct useability and value of the distributional failure governing strength and cycles-to-failure data in designing for specified levels of reliability and in predicting the reliability of given designs.
Active vibration control of structures undergoing bending vibrations
NASA Technical Reports Server (NTRS)
Pla, Frederic G. (Inventor); Rajiyah, Harindra (Inventor)
1995-01-01
An active vibration control subassembly for a structure (such as a jet engine duct or a washing machine panel) undergoing bending vibrations caused by a source (such as the clothes agitator of the washing machine) independent of the subassembly. A piezoceramic actuator plate is vibratable by an applied electric AC signal. The plate is connected to the structure such that vibrations in the plate induced by the AC signal cause canceling bending vibrations in the structure and such that the plate is compressively pre-stressed along the structure when the structure is free of any bending vibrations. The compressive prestressing increases the amplitude of the canceling bending vibrations before the critical tensile stress level of the plate is reached. Preferably, a positive electric DC bias is also applied to the plate in its poling direction.
Damage Analysis of Rectangular Section Composite Beam under Pure Bending
NASA Astrophysics Data System (ADS)
Liu, Yiping; Xiao, Fan; Liu, Zejia; Tang, Liqun; Fang, Daining
2013-02-01
Laminated composite beams are commonly used in engineering applications involving macro to nano structures. Based on the assumption that plain sections remain plain after deformation, this paper analyzes stress distributions in cross-ply laminated composite beams with rectangular cross-sections, and formulates the basic damage equations through Kachanov's damage definition and Janson's failure criterion. The location of the neutral axis and the ultimate bending moment are obtained for pure bending cases. The effect of the elastic modulus of the two layers on the damage evolution is analyzed; a reasonable damage composite beam model is proposed to predict the ultimate bending moment.
Calibration of combined bending-torsion fatigue reliability data reduction
NASA Technical Reports Server (NTRS)
Kececioglu, D.; Mcconnell, J. B.
1969-01-01
The combined bending-torsion fatigue reliability research machines are described. Three such machines are presently in operation. The calibration of these machines is presented in depth. Fatigue data generated with these machines for SAE 4340 steel grooved specimens subjected to reversed bending and steady torque loading are given. The data reduction procedure is presented. Finally, some comments are made about notch sensitivity and stress concentration as applied to combined fatigue.
Modeling of magnetostrictive Galfenol sensor and validation using four point bending test
Datta, Supratik; Atulasimha, Jayasimha; Flatau, Alison B.
2007-05-01
A magnetomechanical bending model has been developed to predict the magnetic induction, elastic, and magnetostrictive strain and bending stress in a magnetostrictive member subjected simultaneously to bending load and dc magnetic bias field. This model was obtained by coupling Euler-Bernoulli beam theory with an energy-based statistical model. The bending model predictions were within 10% of the experimental results obtained from a uniquely devised four point bending test of Galfenol (nominal composition of 84 at. % Fe and 16 at. % Ga) performed under different magnetic bias fields.
Courant, E.D.; Garren, A.
1985-10-01
The phase shifting trombones considered up to now for SSC application consisted of sets of evenly spaced quadrupoles separated by drift spaces. One such trombone was placed between a dispersion suppressor and a crossing insertion, so that the trombone had zero dispersion. With such trombones, it is possible to change {beta}{sup *} at constant tune, or to change the tunes by several units without altering the cell phase advances in the arcs. An objection to the above type of phase trombone is that it adds to the circumference, since no bending is included. This objection may or may not be valid depending on the potential usefulness of the drift spaces in them. In this note the authors show an alternative trombone design in which dipoles are included between the quadrupoles as in the normal arc cells. Since these trombones have dispersion, they are placed at the ends of the arcs, to be followed in turn by the dispersion suppressors and crossing insertions.
Turbulent flow computation in a circular U-Bend
NASA Astrophysics Data System (ADS)
Miloud, Abdelkrim; Aounallah, Mohammed; Belkadi, Mustapha; Adjlout, Lahouari; Imine, Omar; Imine, Bachir
2014-03-01
Turbulent flows through a circular 180° curved bend with a curvature ratio of 3.375, defined as the the bend mean radius to pipe diameter is investigated numerically for a Reynolds number of 4.45×104. The computation is performed for a U-Bend with full long pipes at the entrance and at the exit. The commercial ANSYS FLUENT is used to solve the steady Reynolds-Averaged Navier-Stokes (RANS) equations. The performances of standard k-ɛ and the second moment closure RSM models are evaluated by comparing their numerical results against experimental data and testing their capabilities to capture the formation and extend this turbulence driven vortex. It is found that the secondary flows occur in the cross-stream half-plane of such configurations and primarily induced by high anisotropy of the cross-stream turbulent normal stresses near the outer bend.
Mixed-Mode-Bending Delamination Apparatus
NASA Technical Reports Server (NTRS)
Crews, John H., Jr.; Reeder, James R.
1991-01-01
Mixed-mode-bending delamination apparatus generates two types of delamination stress simultaneously in specimen from single externally applied point load. In technique, indivial mode I and mode II contributions to delamination in specimen analyzed by use of simple beam-theory equations, eliminating need for time-consuming, difficult numerical analysis. Allows wider range of mode I/mode II ratios than possible with many other methods. Mixed-mode delamination testing of interest in all fields utilizing composite materials, used mostly in aerospace field, but also used in automobiles, lightweight armored military vehicles, boats, and sporting equipment. Useful in general lumber, plywood, and adhesive industries, as well.
Passive, achromatic, nearly isochronous bending system
Douglas, David R.; Yunn, Byung C.
2004-05-18
A particle beam bending system having a geometry that applies active bending only beyond the chord of the orbit for any momentum component. Using this bending configuration, all momentum components emerge dispersed in position only; all trajectories are parallel by construction. Combining a pair of such bends with reflective symmetry produces a bend cell that is, by construction, achromatic to all orders. By the particular choice of 45.degree. individual bends, a pair of such achromats can be used as the basis of a 180.degree. recirculation arc. Other rational fractions of a full 180.degree. bend serve equally well (e.g., 2 bends/cell.times.90.degree./bend.times.1 cell /arc; 2 bends/cell.times.30.degree./bend.times.3 cells/arc, etc), as do combinations of multiple bending numerologies (e.g., 2 bends/cell.times.22.5.degree./bend.times.2 cells+2 bends/cell.times.45.degree./bend.times.1 cell). By the choice of entry pole face rotation of the first magnet and exit pole face rotation of the second magnet (with a value to be determined from the particular beam stability requirements imposed by the choice of bending angle and beam properties to be used in any particular application), desirable focusing properties can be introduced and beam stability can be insured.
Origin of bending in uncoated microcantilever - Surface topography?
Lakshmoji, K.; Prabakar, K.; Tripura Sundari, S. Jayapandian, J.; Tyagi, A. K.; Sundar, C. S.
2014-01-27
We provide direct experimental evidence to show that difference in surface topography on opposite sides of an uncoated microcantilever induces bending, upon exposure to water molecules. Examination on opposite sides of the microcantilever by atomic force microscopy reveals the presence of localized surface features on one side, which renders the induced stress non-uniform. Further, the root mean square inclination angle characterizing the surface topography shows a difference of 73° between the opposite sides. The absence of deflection in another uncoated microcantilever having similar surface topography confirms that in former microcantilever bending is indeed induced by differences in surface topography.
Elastostatic bending of a bimaterial plate with a circular interface
NASA Astrophysics Data System (ADS)
Ogbonna, Nkem
2015-08-01
The elastostatic bending of an arbitrarily loaded bimaterial plate with a circular interface is analysed. It is shown that the deflections in the composite solid are directly related to the deflection in the corresponding homogeneous material by integral and differential operators. It is further shown that, by a simple transformation of elastic constants, the Airy stress function induced in the composite by a stretching singularity can be deduced from the deflection induced by a bending singularity. This result is significant for reduction of mathematical labour and for systematic construction of solutions for more complex structures with circular geometry.
Bending rules for animal propulsion.
Lucas, Kelsey N; Johnson, Nathan; Beaulieu, Wesley T; Cathcart, Eric; Tirrell, Gregory; Colin, Sean P; Gemmell, Brad J; Dabiri, John O; Costello, John H
2014-01-01
Animal propulsors such as wings and fins bend during motion and these bending patterns are believed to contribute to the high efficiency of animal movements compared with those of man-made designs. However, efforts to implement flexible designs have been met with contradictory performance results. Consequently, there is no clear understanding of the role played by propulsor flexibility or, more fundamentally, how flexible propulsors should be designed for optimal performance. Here we demonstrate that during steady-state motion by a wide range of animals, from fruit flies to humpback whales, operating in either air or water, natural propulsors bend in similar ways within a highly predictable range of characteristic motions. By providing empirical design criteria derived from natural propulsors that have convergently arrived at a limited design space, these results provide a new framework from which to understand and design flexible propulsors. PMID:24548870
Method for uniformly bending conduits
Dekanich, S.J.
1984-04-27
The present invention is directed to a method for bending metal tubing through various radii while maintaining uniform cross section of the tubing. The present invention is practical by filling the tubing to a sufficient level with water, freezing the water to ice and bending the ice-filled tubing in a cooled die to the desired radius. The use of the ice as a filler material provides uniform cross-sectional bends of the tubing and upon removal of the ice provides an uncontaminated interior of the tubing which will enable it to be used in its intended application without encountering residual contaminants in the tubing due to the presence of the filler material.
NASA Astrophysics Data System (ADS)
Guo, Y.; Morgan, J.
2006-12-01
Strike slip and transform faults often consist of nonlinear segments, i.e., restraining bends and releasing bends that have significant impacts on stress pattern, strain accumulation, slip rate, and therefore the variation of seismicity along these faults. In order to study the geometrical effects of nonlinear faults on fault frictional and mechanical behavior during fault loading and slip, we simulate the rupture process of faults with bends using the Distinct Element Method (DEM) in 2-dimensions. Breakable elastic bonds were added between adjacent, closely packed circular particles to generate fault blocks. A nonlinear fault surface with a restraining bend and a releasing bend that are symmetrically distributed was defined in the middle of the fault blocks. Deformation was introduced by pulling a spring attached on one of fault zone boundaries at a constant velocity and keeping another boundary fixed, producing compression and contraction along the restraining bend, and tension and dilation along the releasing bend. Significant strain is accommodated adjacent to the restraining bend by formation of secondary faults and slip along them. The slip rates, fault frictional strengths, and rupture processes are affected by multiple parameters, including bond strength, loading velocity, bend angle and amplitude. Among these parameters, bend geometry plays a more important role in determining spatial and temporal distribution of contact slip and failure of our simulated nonlinear faults.
Characterization of bending EAP beams
NASA Technical Reports Server (NTRS)
Bao, Xiaoqi; Bar-Cohen, Yoseph; Chang, Zensheu; Sherrit, Stewart
2004-01-01
Electroactive polymers are attractive actuation materials because of their large deformation, flexibility, and lightweight. A CCD camera system was constructed to record the curved shapes of bending during the activation of EAP films and image-processing software was developed to digitize the bending curves. A computer program was developed to solve the invese problem of cantilever EAP beams with tip position limiter. using the developed program and acquired curves without tip position limiter as well as the corresponding tip force, the EAP material properties of voltage-strain sensitivity and Young's modulus were determined.
Compaction managed mirror bend achromat
Douglas, David
2005-10-18
A method for controlling the momentum compaction in a beam of charged particles. The method includes a compaction-managed mirror bend achromat (CMMBA) that provides a beamline design that retains the large momentum acceptance of a conventional mirror bend achromat. The CMMBA also provides the ability to tailor the system momentum compaction spectrum as desired for specific applications. The CMMBA enables magnetostatic management of the longitudinal phase space in Energy Recovery Linacs (ERLs) thereby alleviating the need for harmonic linearization of the RF waveform.
ZERODUR: bending strength data for etched surfaces
NASA Astrophysics Data System (ADS)
Hartmann, Peter; Leys, Antoine; Carré, Antoine; Kerz, Franca; Westerhoff, Thomas
2014-07-01
In a continuous effort since 2007 a considerable amount of new data and information has been gathered on the bending strength of the extremely low thermal expansion glass ceramic ZERODUR®. By fitting a three parameter Weibull distribution to the data it could be shown that for homogenously ground surfaces minimum breakage stresses exist lying much higher than the previously applied design limits. In order to achieve even higher allowable stress values diamond grain ground surfaces have been acid etched, a procedure widely accepted as strength increasing measure. If surfaces are etched taking off layers with thickness which are comparable to the maximum micro crack depth of the preceding grinding process they also show statistical distributions compatible with a three parameter Weibull distribution. SCHOTT has performed additional measurement series with etch solutions with variable composition testing the applicability of this distribution and the possibility to achieve further increase of the minimum breakage stress. For long term loading applications strength change with time and environmental media are important. The parameter needed for prediction calculations which is combining these influences is the stress corrosion constant. Results from the past differ significantly from each other. On the basis of new investigations better information will be provided for choosing the best value for the given application conditions.
Bending-induced Symmetry Breaking of Lithiation in Germanium Nanowires
Gu, Meng; Yang, Hui; Perea, Daniel E.; Zhang, Jiguang; Zhang, Sulin; Wang, Chong M.
2014-08-01
From signal transduction of living cells to oxidation and corrosion of metals, mechanical stress intimately couples with chemical reactions, regulating these biological and physiochemical processes. The coupled effect is particularly evident in electrochemical lithiation/delithiation cycling of high-capacity electrodes, such as silicon (Si), where on one hand lithiation-generated stress mediates lithiation kinetics, and on the other electrochemical reaction rate regulates stress generation and mechanical failure of the electrodes. Here we report for the first time the evidence on the controlled lithiation in germanium nanowires (GeNWs) through external bending. Contrary to the symmetric core-shell lithiation in free-standing GeNWs, we show bending GeNWs breaks the lithiation symmetry, speeding up lithaition at the tensile side while slowing down at the compressive side of the GeNWs. The bending-induced symmetry breaking of lithiation in GeNWs is further corroborated by chemomechanical modeling. In the light of the coupled effect between lithiation kinetics and mechanical stress in the electrochemical cycling, our findings shed light on strain/stress engineering of durable high-rate electrodes and energy harvesting through mechanical motion.
... sudden negative change, such as losing a job, divorce, or illness Traumatic stress, which happens when you ... stress, so you can avoid more serious health effects. NIH: National Institute of Mental Health
Contact and Bending Durability Calculation for Spiral-Bevel Gears
NASA Technical Reports Server (NTRS)
Vijayakar, Sandeep
2016-01-01
The objective of this project is to extend the capabilities of the gear contact analysis solver Calyx, and associated packages Transmission3D, HypoidFaceMilled, HypoidFaceHobbed. A calculation process for the surface durability was implemented using the Dowson-Higginson correlation for fluid film thickness. Comparisons to failure data from NASA's Spiral Bevel Gear Fatigue rig were carried out. A bending fatigue calculation has been implemented that allows the use of the stress-life calculation at each individual fillet point. The gears in the NASA test rig did not exhibit any bending fatigue failure, so the bending fatigue calculations are presented in this report by using significantly lowered strength numbers.
Modeling of bend effects on fiber Bragg gratings
NASA Astrophysics Data System (ADS)
Cadusch, Peter J.; Thompson, Alexander C.; Stoddart, Paul R.; Wade, Scott A.
2012-02-01
Sensing and telecommunication applications requiring the bending of optical fibers to small diameters are on the increase. Recent work has shown that the centre wavelength of fiber Bragg gratings has a bend dependence the magnitude of which varies with the type of fiber in which the grating is written. In this work the basis of the centre wavelength shift is investigated by modeling the effects of several potential causes for standard and depressed cladding fiber designs. The majority of the expected affects, including bend induced stress and mode field deformation, were found to result in small wavelength shifts in the opposite direction to those observed experimentally. However, a new account of the shift, based on simplistic geometrical optics, does show wavelength changes in the observed direction, of up to -0.15 nm, which is in the range of the experimentally measured shifts.
Bending behavior of lapped plastic ehv cables
Morgan, G H; Muller, A C
1980-01-01
One of the factors delaying the development of lapped polymeric cables has been their reputed poor bending characteristics. Complementary programs were begun at BNL several years ago to mathematically model the bending of synthetic tape cables and to develop novel plastic tapes designed to have moduli more favorable to bending. A series of bend tests was recently completed to evaluate the bending performance of several tapes developed for use in experimental superconducting cables. The program is discussed and the results of the bend tests are summarized.
Hormonal regulation of gravitropic bending
NASA Astrophysics Data System (ADS)
Hu, X.; Cui, D.; Xu, X.; Hu, L.; Cai, W.
Gravitropic bending is an important subject in the research of plant Recent data support the basics of the Cholodny-Went hypothesis indicating that differential growth in gravitropism is due to redistribution of auxin to the lower sides of gravistimulated roots but little is known regarding the molecular details of such effects So we carried a series of work surround the signals induced by auxin end center We found the endogenous signaling molecules nitric oxide NO and cGMP mediate responses to gravistimulation in primary roots of soybean Glycine max Horizontal orientation of soybean roots caused the accumulation of both NO and cGMP in the primary root tip Fluorescence confocal microcopy revealed that the accumulation of NO was asymmetric with NO concentrating in the lower side of the root Auxin induced NO accumulation in root protoplasts and asymmetric NO accumulation in root tips Gravistimulation NO and auxin also induced the accumulation of cGMP a response inhibited by removal of NO or by inhibitors of guanylyl cyclase compounds that also reduced gravitropic bending Asymmetric NO accumulation and gravitropic bending were both inhibited by an auxin transport inhibitor and the inhibition of bending was overcome by treatment with NO or 8-bromo-cGMP a cell-permeable analog of cGMP These data indicate that auxin-induced NO and cGMP mediate gravitropic curvature in soybean roots From Hu et al Plant Physiol 2005 137 663-670 The asymmetric distribution of auxin plays a fundamental role in plant gravitropic bending
Membrane Bending by Protein Crowding
NASA Astrophysics Data System (ADS)
Stachowiak, Jeanne
2014-03-01
From endosomes and synaptic vesicles to the cristae of the mitochondria and the annulus of the nuclear pore, highly curved membranes are fundamental to the structure and physiology of living cells. The established view is that specific families of proteins are able to bend membranes by binding to them. For example, inherently curved proteins are thought to impose their structure on the membrane surface, while membrane-binding proteins with hydrophobic motifs are thought to insert into the membrane like wedges, driving curvature. However, computational models have recently revealed that these mechanisms would require specialized membrane-bending proteins to occupy nearly 100% of a curved membrane surface, an improbable physiological situation given the immense density and diversity of membrane-bound proteins, and the low expression levels of these specialized proteins within curved regions of the membrane. How then does curvature arise within the complex and crowded environment of cellular membranes? Our recent work using proteins involved in clathrin-mediated endocytosis, as well as engineered protein-lipid interactions, has suggested a new hypothesis - that lateral pressure generated by collisions between membrane-bound proteins can drive membrane bending. Specifically, by correlating membrane bending with quantitative optical measurements of protein density on synthetic membrane surfaces and simple physical models of collisions among membrane-bound proteins, we have demonstrated that protein-protein steric interactions can drive membrane curvature. These findings suggest that a simple imbalance in the concentration of membrane-bound proteins across a membrane surface can drive a membrane to bend, providing an efficient mechanism by which essentially any protein can contribute to shaping membranes.
Oda, Nobusuke; Wakabayashi, Noriyuki; Yoneyama, Takayuki; Suzuki, Tetsuya
2009-01-01
The purpose of this study was to assess the effect of bending of dental gold alloy wires on the mechanical characteristics of wrought-wire clasps. We conducted a simulation of large deformation in straight wires by means of non-linear finite element (FE) analysis. A bending force increased the principal tensile stress on the outer surface of the bending corner and the compressive stress on the inner surface of the bending corner to their maximum values. After unloading with springback, a residual tensile stress was produced on the inner surface. A gold alloy wire clasp exhibited a relatively greater flexibility with small permanent deformation after the clasp tip deflection as compared to previously reported data for Co-Cr wires; this suggests that it is suitable for periodontally compromised teeth. Wire clasps are more susceptible to failure as compared to straight wrought wires because of the residual stress produced during the bending process. PMID:19280977
Bending analysis of laminated composite box beams
Tripathy, A.K.; Patel, H.J.; Pang, S.S. . Dept. of Mechanical Engineering)
1994-01-01
Box beams are widely used in weight reduction structures such as aircraft wings. The use of composite box beams further reduces the weight factor for such structures with the same deflection and stress as that of isotropic box beams. The difference in the behavior of composite box beam with different fiber orientation, number of plies, and number of stringers also provides a wide range of designing parameters to achieve the required performance for a given problem. A bending analysis has been carried out for the study of deflections and stresses for box beams of different material (isotropic and laminated composites), size, and number of stringers subjected to different kinds of loading conditions. A finite element model has been developed based on the strain energy principle, and the results are compared with an available commercial code COSMOS/M.'' Experiments using aluminum and scotchply composite laminates were conducted to verify the results. An optimal design for size and number of stiffeners for a given loading condition has been achieved. Investigations have also been carried out to find the effect of transverse shear on the span-wise normal stress.
Static Fatigue of Optical Fibers in Bending
NASA Astrophysics Data System (ADS)
Roberts, D.; Cuellar, E.; Middleman, L.; Zucker, J.
1987-02-01
While delayed fracture, or static fatigue, of optical fibers is well known, it is not well understood, and the prediction of the time to failure under a given set of conditions can be problematic. Unlike short term fracture, which is quite well understood and quantified in terms of the theory of linear elastic fracture mechanics, the long term strength remains empirical. The goal of this study is to determine the design criteria for optical fibers subjected to long term applied mechanical loads. One difficulty in making lifetime predictions, as pointed out by Matthewson (Reference 1) and others, is that predictions made from data taken in tension and in bending do not agree. Another difficulty is the statistical nature of the fracture of glass. In making lifetime predictions it becomes important therefore that one (a) have ample data for statistical analysis and (b) have data for the loading configuration of interest. This is the purpose of our work. Since there is less data available in bending, and since several applications (such as wiring in aircraft and missiles) require bending, the data are taken in that configuration. The most significant finding in our work so far is the very large difference in static fatigue behavior between buffer coatings. Chandan and Kalish (Reference 2) and others have reported static fatigue curves, log (time to failure) versus log (applied stress), which are not linear, but rather bimodal. Our study confirms this result, but so far only for acrylate coated fibers. Silicone coated fibers show unimodal behavior. That is, the log (time to failure) versus log (applied stress) curve is linear, at least on the time scale studied so far. Data for acrylate coated fibers at 80°C in water are linear only for time scales of about one day, where a pronounced "knee" is observed. Data for silicone coated fibers under the same conditions are linear up to at least 6 months. Longer time scale tests and tests on fibers with other buffer materials
Bend ductility of tungsten heavy alloys
Gurwell, W.E.; Garnich, M.R.; Dudder, G.B.; Lavender, C.A.
1992-11-01
A bend ductility test is used to indicate the formability of tungsten heavy alloys sheet. The primary test bends a notchless Charpy impact specimen to a bend angle of approximately 100C. This can be augmented by a bend-completion test. Finite element modeling as well as strain-gaged bend specimens elucidate the strain distribution in the specimen as a function of material thickness and bend angle. The bend ductilities of 70%W, 807.W and 90%W alloys are characterized. As expected, decreasing thickness or tungsten content enhances bend ductility. Oxidation is not detrimental; therefore, controlled atmosphere is not required for cooling. The potentially detrimental effects of mechanical working (e.g., rolling, roller-leveling, grit blasting, and peening) and machining (e.g., cutting and sanding) are illustrated.
Improved Method Of Bending Concentric Pipes
NASA Technical Reports Server (NTRS)
Schroeder, James E.
1995-01-01
Proposed method for bending two concentric pipes simultaneously while maintaining void between them replaces present tedious, messy, and labor-intensive method. Array of rubber tubes inserted in gap between concentric pipes. Tubes then inflated with relatively incompressible liquid to fill gap. Enables bending to be done faster and more cleanly, and amenable to automation of significant portion of bending process on computer numerically controlled (CNC) tube-bending machinery.
NASA Astrophysics Data System (ADS)
Sutherland, H. J.
The load spectrum unposed upon a horizontal-axis wind turbine blade is typically decomposed into two primary bending moments; flap and edgewise bending. The critical fatigue loads (stress cycles) imposed on the blade may not be on one of these axes, especially if die two bending loads are in-phase with one another. To quantify the correlation of these two bending moments and determine the impact of this correlation on off-axis fatigue loads, an extensive data set for a typical wind turbine blade is examined. The results are compared using their respective cycle count matrices. These results illustrate that the harmonic components of die principal bending stresses are correlated, and that the random components are not. The analysis techniques described in the paper provide the turbine designer with a spectral technique for combining primary bending spectra into off-axis fatigue loads.
Flexible thick-film glucose biosensor: influence of mechanical bending on the performance.
Chuang, Min-Chieh; Yang, Yang-Li; Tseng, Ta-Feng; Chou, Tzuyang; Lou, Shyh-Liang; Wang, Joseph
2010-04-15
The influence of the bending-induced mechanical stress of flexible Nafion/GOx/carbon screen-printed electrodes (SPEs) upon the performance of such glucose biosensors has been examined. Surprisingly, such flexible enzyme/polymer-SPEs operate well following a severe bending-induced mechanical stress (including a 180 degrees pinch), and actually display a substantial sensitivity enhancement following their mechanical bending. The bending-induced sensitivity enhancement is observed only for the amperometric detection of the glucose substrate but not for measurements of hydrogen peroxide, catechol or ferrocyanide at coated or bare SPEs. These (and additional) data indicate that the bending effect is associated primarily with changes in the biocatalytic activity. Such sensitivity enhancement is more pronounced at elevated glucose levels, reflecting the bending-induced changes in the biocatalytic reaction. Factors affecting the bending-induced changes in the performance are examined. While our data clearly indicate that flexible enzyme/polymer-SPEs can tolerate a severe mechanical stress and hold promise as wearable glucose biosensors, delivering the sample to the active sensor surface remains the major challenge for such continuous health monitoring. PMID:20188880
Interaction between bending and tension forces in bilayer membranes.
Secomb, T W
1988-01-01
A theoretical analysis is presented of the bending mechanics of a membrane consisting of two tightly-coupled leaflets, each of which shears and bends readily but strongly resists area changes. Structures of this type have been proposed to model biological membranes such as red blood cell membrane. It is shown that when such a membrane is bent, anisotropic components of resultant membrane tension (shear stresses) are induced, even when the tension in each leaflet is isotropic. The induced shear stresses increase as the square of the membrane curvature, and become significant for moderate curvatures (when the radius of curvature is much larger than the distance between the leaflets). This effect has implications for the analysis of shape and deformation of freely suspended and flowing red blood cells. PMID:3224154
Bending Stiffness of Multiwall Sandwich
NASA Technical Reports Server (NTRS)
Blosser, M. L.
1983-01-01
An analytical and experimental study was carried out to understand the extensional and flexural behavior of multiwall sandwich, a metallic insulation composed of alternate layers of flat and dimpled foil. The multiwall sandwich was structurally analyzed by using several simplifying assumptions combined with a finite element analysis. The simplifying assumptions made in this analysis were evaluated by bending and tensile tests. Test results validate the assumption that flat sheets in compression do not significantly contribute to the flexural stiffness of multiwall sandwich for the multiwall geometry tested. However, calculations show that thicker flat sheets may contribute significantly to bending stiffness and cannot be ignored. Results of this analytical approach compare well with test data; both show that the extensional stiffness of the dimpled sheet in he 0 deg direction is about 30 percent of that for a flat sheet, and that in the 45 deg direction, it is about 10 percent. The analytical and experimental multiwall bending stiffness showed good agreement for the particular geometry tested.
Rupture termination at restraining bends: The last great earthquake on the Altyn Tagh Fault
NASA Astrophysics Data System (ADS)
Elliott, Austin J.; Oskin, Michael E.; Liu-Zeng, Jing; Shao, Yanxiu
2015-04-01
Strike-slip rupture propagation falters where changes in fault strike increase Coulomb failure stress. Numerical models of this phenomenon offer predictions of rupture extent based on bend geometry, but have not been verified with field data. To test model predictions of rupture barriers, we examine rupture extent along a section of the sinistral Altyn Tagh Fault punctuated by three major double bends. We measure 3-8 m offsets and map >95 km of continuous scarps that define the most recent surface rupture. We document the eastern terminus of this rupture within the Aksay bend, where an undeformed Pleistocene alluvial fan we mapped and dated overlaps the fault. We conclude, based on this geomorphologic evidence, that multiple Holocene ruptures have stopped in the Aksay bend. Our field data validate model predictions of rupture termination at a >18° restraining bend and support use of geometric parameters to define expected earthquake sizes in seismic hazard models.
Bending strength model for internal spur gear teeth
NASA Technical Reports Server (NTRS)
Savage, Michael; Rubadeux, K. L.; Coe, H. H.
1995-01-01
Internal spur gear teeth are normally stronger than pinion teeth of the same pitch and face width since external teeth are smaller at the base. However, ring gears which are narrower have an unequal addendum or are made of a material with a lower strength than that of the meshing pinion may be loaded more critically in bending. In this study, a model for the bending strength of an internal gear tooth as a function of the applied load pressure angle is presented which is based on the inscribed Lewis constant strength parabolic beam. The bending model includes a stress concentration factor and an axial compression term which are extensions of the model for an external gear tooth. The geometry of the Lewis factor determination is presented, the iteration to determine the factor is described, and the bending strength J factor is compared to that of an external gear tooth. This strength model will assist optimal design efforts for unequal addendum gears and gears of mixed materials.
NASA Astrophysics Data System (ADS)
Khomenko, E.; Martínez Pillet, V.; Solanki, S. K.; del Toro Iniesta, J. C.; Gandorfer, A.; Bonet, J. A.; Domingo, V.; Schmidt, W.; Barthol, P.; Knölker, M.
2010-11-01
Based on IMaX/SUNRISE data, we report on a previously undetected phenomenon in solar granulation. We show that in a very narrow region separating granules and intergranular lanes, the spectral line width of the Fe I 5250.2 Å line becomes extremely small. We offer an explanation of this observation with the help of magneto-convection simulations. These regions with extremely small line widths correspond to the places where the granular flows bend from upflow in granules to downflow in intergranular lanes. We show that the resolution and image stability achieved by IMaX/SUNRISE are important requisites to detect this interesting phenomenon.
Experimental and analytical investigation of a monocoque wing model loaded in bending
NASA Technical Reports Server (NTRS)
Schapitz, E; Feller, H; Koller, H
1939-01-01
Bending tests with transverse loads and with pure bending were undertaken on a double-web monocoque wing model in order to establish the relation between the state of stress and the results from the elementary bending theory. The longitudinal stresses in the stiffeners were measured with tensiometers and the shear stresses in the sheet were calculated from them. The measurements were made at both moderate loads with no buckles in the covering and at loads with which the critical stress in the individual panels was exceeded. For the comparison, the wing skin was considered as stiffened sheet according to the shear panel scheme. In this way, the statistically indeterminate calculation was confirmed by the test results.
Charge-induced reversible bending in nanoporous alumina-aluminum composite
NASA Astrophysics Data System (ADS)
Cheng, Chuan; Ngan, A. H. W.
2013-05-01
Upon electrical charging, reversible bending was found in nanoporous anodic alumina-aluminum foil composites, as directly observed by an optical microscope and detected by in situ nanoindentation. The bending is thought to be the result of charge-induced surface stresses in the nanoporous alumina. The results suggest the possibility of a type of composite foil materials for applications as micro-scale actuators to transform electrical energy into mechanical energy.
How two-dimensional bending can extraordinarily stiffen thin sheets.
Pini, V; Ruz, J J; Kosaka, P M; Malvar, O; Calleja, M; Tamayo, J
2016-01-01
Curved thin sheets are ubiquitously found in nature and manmade structures from macro- to nanoscale. Within the framework of classical thin plate theory, the stiffness of thin sheets is independent of its bending state for small deflections. This assumption, however, goes against intuition. Simple experiments with a cantilever sheet made of paper show that the cantilever stiffness largely increases with small amounts of transversal curvature. We here demonstrate by using simple geometric arguments that thin sheets subject to two-dimensional bending necessarily develop internal stresses. The coupling between the internal stresses and the bending moments can increase the stiffness of the plate by several times. We develop a theory that describes the stiffness of curved thin sheets with simple equations in terms of the longitudinal and transversal curvatures. The theory predicts experimental results with a macroscopic cantilever sheet as well as numerical simulations by the finite element method. The results shed new light on plant and insect wing biomechanics and provide an easy route to engineer micro- and nanomechanical structures based on thin materials with extraordinary stiffness tunability. PMID:27403938
How two-dimensional bending can extraordinarily stiffen thin sheets
Pini, V.; Ruz, J. J.; Kosaka, P. M.; Malvar, O.; Calleja, M.; Tamayo, J.
2016-01-01
Curved thin sheets are ubiquitously found in nature and manmade structures from macro- to nanoscale. Within the framework of classical thin plate theory, the stiffness of thin sheets is independent of its bending state for small deflections. This assumption, however, goes against intuition. Simple experiments with a cantilever sheet made of paper show that the cantilever stiffness largely increases with small amounts of transversal curvature. We here demonstrate by using simple geometric arguments that thin sheets subject to two-dimensional bending necessarily develop internal stresses. The coupling between the internal stresses and the bending moments can increase the stiffness of the plate by several times. We develop a theory that describes the stiffness of curved thin sheets with simple equations in terms of the longitudinal and transversal curvatures. The theory predicts experimental results with a macroscopic cantilever sheet as well as numerical simulations by the finite element method. The results shed new light on plant and insect wing biomechanics and provide an easy route to engineer micro- and nanomechanical structures based on thin materials with extraordinary stiffness tunability. PMID:27403938
How two-dimensional bending can extraordinarily stiffen thin sheets
NASA Astrophysics Data System (ADS)
Pini, V.; Ruz, J. J.; Kosaka, P. M.; Malvar, O.; Calleja, M.; Tamayo, J.
2016-07-01
Curved thin sheets are ubiquitously found in nature and manmade structures from macro- to nanoscale. Within the framework of classical thin plate theory, the stiffness of thin sheets is independent of its bending state for small deflections. This assumption, however, goes against intuition. Simple experiments with a cantilever sheet made of paper show that the cantilever stiffness largely increases with small amounts of transversal curvature. We here demonstrate by using simple geometric arguments that thin sheets subject to two-dimensional bending necessarily develop internal stresses. The coupling between the internal stresses and the bending moments can increase the stiffness of the plate by several times. We develop a theory that describes the stiffness of curved thin sheets with simple equations in terms of the longitudinal and transversal curvatures. The theory predicts experimental results with a macroscopic cantilever sheet as well as numerical simulations by the finite element method. The results shed new light on plant and insect wing biomechanics and provide an easy route to engineer micro- and nanomechanical structures based on thin materials with extraordinary stiffness tunability.
NASA Astrophysics Data System (ADS)
Kuroda, Tsuneo; Katagiri, Kazumune; Shin, Hyung-Seop; Itoh, Kikuo; Kumakura, Hiroaki; Wada, Hitoshi
2005-12-01
The results of two test methods were compared among three laboratories to determine a standard measurement method of critical current (Ic) as a function of bending strain for Ag-sheathed Bi-2223 superconductors. The VAMAS round-robin-test method (RRT) and the bending-rig method developed by Goldacker were used. The Ic degradation started with less bending strain for RRT than for bending-rig. Average irreversible strains (ɛirr) were 0.30% for RRT and 0.37% for bending-rig. Another test identified parameters that affected the results. A modified RRT method, with a current connection between the sample and the electrode, was used to avoid some thermal stresses of the test procedure. The ɛirr values increased to the level of the bending-rig, but the modified RRT Ic degradation rate with bending strain was higher. The stress states during sample bending differed between these methods. The shear stress was examined as a source of the Ic degradation rate differences with strain in terms of the crack propagation and delamination defects of oxide filaments from the Ag sheath.
Tension, compression, and bending of superelastic shape memory alloy tubes
NASA Astrophysics Data System (ADS)
Reedlunn, Benjamin; Churchill, Christopher B.; Nelson, Emily E.; Shaw, John A.; Daly, Samantha H.
2014-02-01
While many uniaxial tension experiments of shape memory alloys (SMAs) have been published in the literature, relatively few experimental studies address their behavior in compression or bending, despite the prevalence of this latter deformation mode in applications. In this study, superelastic NiTi tubes from a single lot of material were characterized in tension, compression, and pure bending, which allowed us to make direct comparisons between the deformation modes for the first time. Custom built fixtures were used to overcome some long-standing experimental difficulties with performing well-controlled loading and accurate measurements during uniaxial compression (avoiding buckling) and large-rotation bending. In all experiments, the isothermal, global, mechanical responses were measured, and stereo digital image correlation (DIC) was used to measure the evolution of the strain fields on the tube's outer surface.As is characteristic of textured NiTi, our tubes exhibited significant tension-compression asymmetry in their uniaxial responses. Stress-induced transformations in tension exhibited flat force plateaus accompanied by strain localization and propagation. No such localization, however, was observed in compression, and the stress "plateaus" during compression always maintained a positive tangent modulus. While our uniaxial results are similar to the observations of previous researchers, the DIC strain measurements provided details of localized strain behavior with more clarity and allowed more quantitative measurements to be made. Consistent with the tension-compression asymmetry, our bending experiments showed a significant shift of the neutral axis towards the compression side. Furthermore, the tube exhibited strain localization on the tension side, but no localization on the compression side during bending. This is a new observation that has not been explored before. Detailed analysis of the strain distribution across the tube diameter revealed that the
Impact compressive and bending behaviour of rocks accompanied by electromagnetic phenomena.
Kobayashi, Hidetoshi; Horikawa, Keitaro; Ogawa, Kinya; Watanabe, Keiko
2014-08-28
It is well known that electromagnetic phenomena are often observed preceding earthquakes. However, the mechanism by which these electromagnetic waves are generated during the fracture and deformation of rocks has not been fully identified. Therefore, in order to examine the relationship between the electromagnetic phenomena and the mechanical properties of rocks, uniaxial compression and three-point bending tests for two kinds of rocks with different quartz content, granite and gabbro, have been carried out at quasi-static and dynamic rates. Especially, in the bending tests, pre-cracked specimens of granite were also tested. Using a split Hopkinson pressure bar and a ferrite-core antenna in close proximity to the specimens, both the stress-strain (load-displacement) curve and simultaneous electromagnetic wave magnitude were measured. It was found that the dynamic compressive and bending strengths and the stress increase slope of both rocks were higher than those observed in static tests; therefore, there is a strain-rate dependence in their strength and stress increase rate. It was found from the tests using the pre-cracked bending specimens that the intensity of electromagnetic waves measured during crack extension increased almost proportionally to the increase of the maximum stress intensity factor of specimens. This tendency was observed in both the dynamic and quasi-static three-point bending tests for granite. PMID:25071241
Internal and edge cracks in a plate of finite width under bending
NASA Technical Reports Server (NTRS)
Boduroglu, H.; Erdogan, F.
1983-01-01
Internal and edge cracks were studied by using Reissner's transverse shear theory. The effect of stress-free boundaries on the stress intensity factors in plates under bending were investigated. Among the results found, particularly interesting are those relating to the limiting cases of the crack geometries. The numerical results are given for a single internal crack, two collinear cracks, and two edge cracks. The effect of Poisson's ratio on the stress intensity factors was studied.
Code of Federal Regulations, 2010 CFR
2010-10-01
....1 of ASME B31.1 (incorporated by reference; see 46 CFR 56.01-2). This shall not prohibit the use of..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PIPING SYSTEMS AND APPURTENANCES Bending and Forming § 56.80-5 Bending. Pipe may be bent by any hot or cold method and to any radius which will...
Chambers, David W
2008-01-01
We all experience stress as a regular, and sometimes damaging and sometimes useful, part of our daily lives. In our normal ups and downs, we have our share of exhaustion, despondency, and outrage--matched with their corresponding positive moods. But burnout and workaholism are different. They are chronic, dysfunctional, self-reinforcing, life-shortening habits. Dentists, nurses, teachers, ministers, social workers, and entertainers are especially susceptible to burnout; not because they are hard-working professionals (they tend to be), but because they are caring perfectionists who share control for the success of what they do with others and perform under the scrutiny of their colleagues (they tend to). Workaholics are also trapped in self-sealing cycles, but the elements are ever-receding visions of control and using constant activity as a barrier against facing reality. This essay explores the symptoms, mechanisms, causes, and successful coping strategies for burnout and workaholism. It also takes a look at the general stress response on the physiological level and at some of the damage American society inflicts on itself. PMID:18846841
Wire and Cable Cold Bending Test
NASA Technical Reports Server (NTRS)
Colozza, Anthony
2010-01-01
One of the factors in assessing the applicability of wire or cable on the lunar surface is its flexibility under extreme cold conditions. Existing wire specifications did not address their mechanical behavior under cold, cryogenic temperature conditions. Therefore tests were performed to provide this information. To assess this characteristic 35 different insulated wire and cable pieces were cold soaked in liquid nitrogen. The segments were then subjected to bending and the force was recorded. Any failure of the insulation or jacketing was also documented for each sample tested. The bending force tests were performed at room temperature to provide a comparison to the change in force needed to bend the samples due to the low temperature conditions. The results from the bending tests were plotted and showed how various types of insulated wire and cable responded to bending under cold conditions. These results were then used to estimate the torque needed to unroll the wire under these low temperature conditions.
Bending of light in conformal Weyl gravity
NASA Astrophysics Data System (ADS)
Sultana, Joseph; Kazanas, Demosthenes
2010-06-01
We reexamine the bending of light issue associated with the metric of the static, spherically symmetric solution of Weyl gravity discovered by Mannheim and Kazanas (1989). To this end we employ the procedure used recently by Rindler and Ishak to obtain the bending angle of light by a centrally concentrated spherically symmetric matter distribution in a Schwarzschild-de Sitter background. In earlier studies the term γr in the metric led to the paradoxical result of a bending angle proportional to the photon impact parameter, when using the usual formalism appropriate to asymptotically flat space-times. However, employing the approach of light bending of Rindler and Ishak we show that the effects of this term are in fact insignificant, with the discrepancy between the two procedures attributed to the definition of the bending angle between the asymptotically flat and nonflat spaces.
Development of a new model for plane strain bending and springback analysis
Zhang, Z.T.; Lee, D.
1995-06-01
A new mathematical model is presented for plane strain bending and springback analysis in sheet metal forming. This model combines effects associated with bending and stretching, considers stress and strain distributions and different thickness variations in the thickness direction, and takes force equilibrium into account. An elastic-plastic material model and Hill`s nonquadratic yield function are incorporated in the model. The model is used to obtain force, bending moment, and springback curvature. A typical two-dimensional draw bending part is divided into five regions along the strip, and the forces and moments acting on each region and the deformation history of each region are examined. Three different methods are applied to the two-dimensional draw bending problems: the first using the new model, the second using the new model but also including a kinematic directional hardening material model to consider the bending and unbending deformation in the wall, and the third using membrane theory plus bending strain. Results from these methods, including those from the recent benchmark program, are compared.
NASA Astrophysics Data System (ADS)
Xia, Xingda; Yang, Bingchu; Zhang, Xiang; Zhou, Conghua
2015-07-01
Bending is usually used to test durability of flexible transparent and conductive films. Due to the large stress incurred by this technique, bending has always been observed to deteriorate conductance of electrodes such as indium tin oxide film. In contrast, we here demonstrate that bending could be used to improve conductance of silver nanowire-based flexible transparent and conductive films. The enhanced conductance is due to improved contact between nanowires, which was favored by the hydrogen bond formed between residential polyvinylpyrrolidone (PVP) on silver nanowire and TiOx nanoparticles pre-coated on the substrate. The enhanced conductance was found to be affected by bending direction; bending towards the substrate not only yielded quicker decrease in sheet resistance, but also showed better film conductance than bending towards the nanowires. Then, with assistance of surface modification of substrate and ultra-long silver nanowires (averaged at 124 μm, maximum at 438 μm), optoelectronic performance of 90.2% (transmittance at 550 nm) and 12.5 Ω sq-1 (sheet resistance) has been achieved by bending. Such performance was better than commercialized flexible ITO films, and even competed with that obtained from thermal annealing at temperature of 200 °C. Moreover, Fourier transfer infrared (FTIR) spectroscopy study showed strong coordination between C=O (heterocyclic ring of PVP) and silver atoms, showing obvious capping behavior of PVP on silver nanowires.
Mechanics of the eukaryotic flagellar axoneme: Evidence for structural distortion during bending.
Lesich, Kathleen A; dePinho, Tania G; Pelle, Dominic W; Lindemann, Charles B
2016-05-01
The sliding doublet mechanism is the established explanation that allows us to understand the process of ciliary and flagellar bending. In this study, we apply the principles of the sliding doublet mechanism to analyze the mechanics of the counterbend phenomenon in sea urchin sperm flagella. When a passive, vanadate-treated, flagellum is forced into a bend with a glass microprobe, the portion of the flagellum distal to the probe exhibits a bend of opposite curvature (counterbend) to the imposed bend. This phenomenon was shown to be caused by the induction of inter-doublet shear and is dependent on the presence of an inter-doublet shear resistance. Here we report that in sea urchin flagella there is systematically less shear induced in the distal flagellum than is predicted by the sliding doublet mechanism, if we follow the assumption that the diameter of the flagellum is uniform. To account for the reduced shear that is observed, the likeliest and most direct interpretation is that the portion of the axoneme that is forced to bend undergoes substantial compression of the axoneme in the bending plane. A compression of 30-50 nm would be sufficient to account for the shear reduction from a bend of 2 radians. A compression of this magnitude would require considerable flexibility in the axoneme structure. This would necessitate that the radial spokes and/or the central pair apparatus are easily compressed by transverse stress. © 2016 Wiley Periodicals, Inc. PMID:27001352
Bio-inspired bending actuator for controlling conical nose shape using piezoelectric patches.
Na, Tae-Won; Jung, Jin-Young; Oh, Ii-Kwon
2014-10-01
In this paper, a bio-inspired bending actuator was designed and fabricated using piezoelectric patches and cantilever-shaped beam for controlling nose shape. The aim of this study is to investigate the use of the bending actuator. PZT and single crystal PMN-PT actuators were used to generate translational strain and shear stress. The piezoelectric patches were attached on the clamped cantilever beam to convert their translational strains to bending motion of the beam. First, finite element analysis was performed to identify and to make an accurate estimate of the feasibility on the bending actuation by applying various voltages and frequencies. Based on the results of the FEM analysis, the experiments were also performed. Static voltages and dynamic voltages with various frequencies were applied to the bending actuators with PZTs and PMN-PTs, and the rotation angles of the nose connected to the top of bending actuators were measured, respectively. As the results, the bending actuator using PMN-PT patches showed better performances in all cases. With the increases of signal frequency and input voltage, the rotation angle also found to be increased. Especially at the frequency of 5 Hz and input voltage of 600 V, the nose generated the maximum rotation angle of 3.15 degree. PMID:25942810
NASA Astrophysics Data System (ADS)
Marnette, Jascha; Rolfe, Bernard; Hodgson, Peter; Weiss, Matthias
2013-12-01
The common grades of steel used in roll forming are: hot rolled, high strength low alloy and recovery annealed cold rolled sheet. These steels are prone to ageing and are often skin passed and/or roller leveled to eliminate ageing as this can lead to problems in forming. Shape defects such as bow, twist and camber can be increased due to a change of the elastic-plastic transition point of the material. In consideration of this effect the knowledge of the material properties in the elastic plastic transition range is necessary if the processes are to be modelled accurately. Previous studies have indicated that residual stresses are not well identified in the standard tensile test, but were shown clearly in a bending test. The elastic plastic transition in bending and the moment curvature characteristic were changed significantly by a light cold rolling reduction. In this work the FEA package Abaqus is used to investigate the effect of residual stresses introduced through skin passing and/or roller leveling on the bending/yielding behaviour of mild steel. Therefore, a skin passing/ roller leveling process is simulated, followed by a subsequent bending test. Residual stress free sheet is compared in bending to just "skin passed", "roller leveled" and a combined "skin passed and roller leveled" strip. Skin passing significantly reduces the bending yield stress due to residual stresses. This has a softening effect on subsequent bending operations. A roller level process prior to roll forming can restore the bending yield stress by reducing the residual stress across the thickness. This has implications for forming aged material.
49 CFR 192.315 - Wrinkle bends in steel pipe.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 3 2011-10-01 2011-10-01 false Wrinkle bends in steel pipe. 192.315 Section 192... Transmission Lines and Mains § 192.315 Wrinkle bends in steel pipe. (a) A wrinkle bend may not be made on steel... wrinkle bend on steel pipe must comply with the following: (1) The bend must not have any sharp kinks....
49 CFR 192.315 - Wrinkle bends in steel pipe.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 3 2012-10-01 2012-10-01 false Wrinkle bends in steel pipe. 192.315 Section 192... Transmission Lines and Mains § 192.315 Wrinkle bends in steel pipe. (a) A wrinkle bend may not be made on steel... wrinkle bend on steel pipe must comply with the following: (1) The bend must not have any sharp kinks....
49 CFR 192.315 - Wrinkle bends in steel pipe.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 3 2014-10-01 2014-10-01 false Wrinkle bends in steel pipe. 192.315 Section 192... Transmission Lines and Mains § 192.315 Wrinkle bends in steel pipe. (a) A wrinkle bend may not be made on steel... wrinkle bend on steel pipe must comply with the following: (1) The bend must not have any sharp kinks....
49 CFR 192.315 - Wrinkle bends in steel pipe.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 3 2010-10-01 2010-10-01 false Wrinkle bends in steel pipe. 192.315 Section 192... Transmission Lines and Mains § 192.315 Wrinkle bends in steel pipe. (a) A wrinkle bend may not be made on steel... wrinkle bend on steel pipe must comply with the following: (1) The bend must not have any sharp kinks....
49 CFR 192.315 - Wrinkle bends in steel pipe.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 3 2013-10-01 2013-10-01 false Wrinkle bends in steel pipe. 192.315 Section 192... Transmission Lines and Mains § 192.315 Wrinkle bends in steel pipe. (a) A wrinkle bend may not be made on steel... wrinkle bend on steel pipe must comply with the following: (1) The bend must not have any sharp kinks....
49 CFR 195.212 - Bending of pipe.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 3 2010-10-01 2010-10-01 false Bending of pipe. 195.212 Section 195.212... PIPELINE Construction § 195.212 Bending of pipe. (a) Pipe must not have a wrinkle bend. (b) Each field bend must comply with the following: (1) A bend must not impair the serviceability of the pipe. (2)...
Gravitropic bending of fruit bodies
NASA Astrophysics Data System (ADS)
Hock, Bertold
Fruit bodies of basidiomycetes exhibit a unique mechanism of gravitropic bending, related to their specific architecture. The gravisensitive region of the stipe directly below the cap coincides with the bending zone. The hyphae of this region are equipped with the ability to generate positional information and translate it into differential growth. A model is introduced with the fundamental characteristics of agent-based modeling as it is applied in robotics and artificial intelligence. The hyphae are equivalent to autonomous decision-making agents on the basis of a simple set of rules. Repetitive interactions between the agents, i.e. the hyphae, permit the correct adjustment of the fruit body independent from its relative position in space. This model is based on the following structural as well as biochemical data derived from the basidiomycete Flammulina velutipes. A statolith-mediated mechanism in each individual hypha of the gravisensitive region accounts for graviperception. Cell nuclei with a density of 1.22 g cm-3 are considered the most likely candidates for gravity-induced sedimentation (statoliths). The number of nuclei in this zone is increased from 2 to up to 10 individual nuclei within each hyphal compartment. The nuclei are suspended in a web of actin filaments anchored in the plasma membrane. Any shift from the vertical position is converted into a change in the gravitational pull exerted on the plasma membrane. This leads to a functional distinction of the upper and lower flanks of each hypha. Each hypha is equipped with the ability to generate and amplify a positional signal perpendicular to the axis of the gravisensitive zone. This signal coordinates different hyphal extension of the upper and lower flank of the stipe: upper flank hyphae grow slower than lower flank hyphae. Hyphal growth requires continued turgor pressure and depends on the expansion of the vacuolar compartment. This vacuolation is conspicuously increased in lower flank
Bending effects of unsymmetric adhesively bonded composite repairs on cracked aluminum panels
NASA Technical Reports Server (NTRS)
Arendt, Cory; Sun, C. T.
1994-01-01
The bending effects of unsymmetrically bonded composite repairs on cracked aluminum panels were quantified using a plate linear finite element model. Stress intensity factors and strain energy release rates were obtained from the model twice, once with out-of-plane displacement suppressed and another time without these restrictions. Several configurations were examined, crack growth stability was identified, and the effect of a debond was considered. The maximum stress intensity factor was also analyzed. Previous work by other authors was found to underpredict the bending effect.
Experimental study on centrifugal concrete-filled steel tubes under bending and torsion.
Jin, Wei-liang; Qu, Chen; Yu, Yi
2003-01-01
A real-size experiment on 11 tubes was done to study the performance of centrifugal concrete-filled steel tubes under bending and torsion. This paper first introduces the relevant operating method, equipment, subjects and processes. The factors that affect deformation and stiffness and the break mechanism under different loading were studied. Experimental stress analysis showed that the values of practical critical stress of steel tubes accorded well with the MISES Yielding Rule. The correlative equation (on the bearing capacity of a structural member under bending and torsion) deduced in this study may provide valuable reference for the design of this structural member. PMID:12958716
Bending Fatigue of Carburized Steel at Very Long Lives
NASA Astrophysics Data System (ADS)
Nelson, D. V.; Long, Z.
2016-01-01
The bending fatigue behavior of two carburized steels is investigated for lives between approximately 105 and 108 cycles. Cracks are observed to start at sub-surface inclusions and develop features on fracture surfaces resembling "fish eyes" in appearance. This type of sub-surface cracking tends to govern fatigue strength at long lives. Previous studies of "fish eye" fatigue in carburized steel have been relatively few and have mainly considered failures originating at depths beneath a carburized case, where compressive residual stresses are minimal and hardness values approach those in the core. This study provides fatigue data for cracks originating within cases at various depths where compressive residual stresses are substantial and hardness is much higher than in the core. Fatigue strength is predicted by a simple model, accounting for the influence of residual stresses and hardness values at the different depths at which cracks started. Predictions of fatigue strength are compared with data generated in this study.
Piao, Jindan; Miyara, Kana; Ebihara, Arata; Nomura, Naoyuki; Hanawa, Takao; Suda, Hideaki
2014-01-01
The effects of cyclic fatigue on bending properties of NiTi endodontic instruments were investigated. Sixteen Profiles(®) were divided into two groups (A, and B). The sequence of cantilever bending test and cyclic fatigue test was alternated repeatedly until file separation occurred. In the cyclic fatigue test, the instrument curvature was 19° in group A and 38° in group B. Fractographic examination was performed to determine fracture patterns. In group A, there were significant differences between the bending load values measured before the cyclic fatigue test and the last cantilever bending test before instrument fracture at each deflection (p<0.05). Fractographic examination showed the specific patterns of cyclic fatigue fracture. The stress required to induce martensitic transformation might be reduced due to the softening behavior caused by the cyclic fatigue under the relaxation condition of the superelasticity range (group A). The SEM images were able to display specific patterns indicating cyclic fatigue fracture. PMID:25087661
Experiments and analyses on undermatched interleaf specimens in bending
Parks, D.M.; Ganti, S.; McClintock, F.A.; Epstein, J.S.; Lloyd, L.R.; Reuter, W.G.
1995-12-31
Model weldment fracture specimens have been fabricated, tested, and analyzed using finite elements. The specimens consist of an interleaf of commercially pure titanium diffusion-bonded to a harder alloy titanium. A deep edge crack is introduced symmetrically into the interleaf, and the specimens are loaded in pure bending. Variation of the thickness (2h) of the soft interleaf layer provides insight into effects of weld geometry in strongly undermatched weldments tested in plane strain bending. Ductile crack growth (beyond blunting) initiated at loads giving J {doteq} 95 kJ/m{sup 2} in all specimens. In the thickest interleaf geometries, stable tearing was obtained, but in the thinnest interleaf (2h {doteq} 3mm), crack initiation resulted in a massive pop-in of 5.4 mm across an initial ligament of 12 mm. Finite element studies show that the thinnest interleaf geometry had slightly higher peak stress triaxiality at the beginning of cracking, and that the highest triaxiality extended over a larger region than in the thicker interleaf specimens loaded to the same initiation J-values. More importantly, the blockage of plastic straining above and below the crack tip in the 3 mm interleaf specimen forced higher values of plastic strain to spread forward into the {+-} 45{degree} sector of highest stress triaxiality directly ahead of the crack tip. The higher strains, in conjunction with the slightly higher stress triaxiality, led to the unstable pop-in initiation.
How a short double-stranded DNA bends
NASA Astrophysics Data System (ADS)
Shin, Jaeoh; Lee, O.-Chul; Sung, Wokyung
2015-04-01
A recent experiment using fluorescence microscopy showed that double-stranded DNA fragments shorter than 100 base pairs loop with the probabilities higher by the factor of 102-106 than predicted by the worm-like chain (WLC) model [R. Vafabakhsh and T. Ha, Science 337, 1101(2012)]. Furthermore, the looping probabilities were found to be nearly independent of the loop size. The results signify a breakdown of the WLC model for DNA mechanics which works well on long length scales and calls for fundamental understanding for stressed DNA on shorter length scales. We develop an analytical, statistical mechanical model to investigate what emerges to the short DNA under a tight bending. A bending above a critical level initiates nucleation of a thermally induced bubble, which could be trapped for a long time, in contrast to the bubbles in both free and uniformly bent DNAs, which are either transient or unstable. The trapped bubble is none other than the previously hypothesized kink, which releases the bending energy more easily as the contour length decreases. It leads to tremendous enhancement of the cyclization probabilities, in a reasonable agreement with experiment.
Moreira, L.P.; Romao, E.C.; Vieira, L.C.A.; Ferron, G.; Sampaio, A.P.
2005-08-05
A simple bend-draw experimental device is employed to analyze the behavior of narrow strips submitted to a nearly cyclic bending deformation mode followed by a steady state drawing. In this bending-drawing experiment, the strip is firstly bent over a central bead and two lateral beads by applying a controlled holding load and then is pulled out of device throughout the bead radii by a drawing load. The apparatus is mounted in a standard tensile test machine where the holding and drawing loads are recorded with an acquisition data system. The specimen is a rectangular strip cut with 320 mm long and 7 mm wide. The longitudinal (1) and width (w) strip plastic strains are determined from two hardness marks 120 mm spaced whereas the corresponding thickness (t) strain is obtained by volume conservation. Previous experiments showed a correlation between the plastic strain ({epsilon}w/{epsilon}t)BD resulting from the bending-drawing and the Lankford R-values obtained from the uniaxial tensile test. However, previous 3D numerical simulations based upon Hill's quadratic and Ferron's yield criteria revealed a better correlation between the ({epsilon}w/{epsilon}t)BD and the stress ratio {sigma}PS/{sigma}({alpha}), where {sigma}PS stands for the plane-strain tension yield stress and {sigma}({alpha}) for the uniaxial yield stress in uniaxial tension along the drawing direction making an angle {alpha} with the rolling direction. In the present work, the behavior of an IF steel sheet is firstly evaluated by means of uniaxial tensile and drawing-bending experiments conducted at every 15 degrees with respect to the rolling direction. Afterwards, the bending-drawing experiment is investigated with the commercial finite element (FE) code ABAQUS/Standard in an attempt to assess the influence of cyclic loadings upon the bending-drawing strain-ratios.
NASA Astrophysics Data System (ADS)
Jin, LiMin; Yao, Yao; Yu, YiMin; Rotich, Gideon; Sun, BaoZhong; Gu, BoHong
2014-03-01
This paper reports the structural effects of three-dimensional (3-D) angle-interlock woven composite (3DAWC) undergoing three-point bending cyclic loading from experimental and finite element analysis (FEA) approaches. In experiment, the fatigue tests were conducted to measure the bending deflection and to observe the damage morphologies. By the FEA approach, a micro-structural unit-cell model of the 3DAWC was established at the yarn level to simulate the fatigue damage. The stress degradation at the loading condition of constant deformation amplitude was calculated to show the degradation of mechanical properties. In addition, the stress distribution, fatigue damage evolution and critical damage regions were also obtained to qualitatively reveal the structural effects and damage mechanisms of the 3DAWC subjected to three-point bending cyclic loading.
Initial Ares I Bending Filter Design
NASA Technical Reports Server (NTRS)
Jang, Jiann-Woei; Bedrossian, Nazareth; Hall, Robert; Norris, H. Lee; Hall, Charles; Jackson, Mark
2007-01-01
The Ares-I launch vehicle represents a challenging flex-body structural environment for control system design. Software filtering of the inertial sensor output will be required to ensure control system stability and adequate performance. This paper presents a design methodology employing numerical optimization to develop the Ares-I bending filters. The filter design methodology was based on a numerical constrained optimization approach to maximize stability margins while meeting performance requirements. The resulting bending filter designs achieved stability by adding lag to the first structural frequency and hence phase stabilizing the first Ares-I flex mode. To minimize rigid body performance impacts, a priority was placed via constraints in the optimization algorithm to minimize bandwidth decrease with the addition of the bending filters. The bending filters provided here have been demonstrated to provide a stable first stage control system in both the frequency domain and the MSFC MAVERIC time domain simulation.
Thermal static bending of deployable interlocked booms
NASA Technical Reports Server (NTRS)
Staugaitis, C. L.; Predmore, R. E.
1973-01-01
Metal ribbons processed with a heat-forming treatment are enabled to form tubelike structures when deployed from a roll. Deployable booms of this have been utilized for gravity-gradient stabilization on the RAE, ATS, and Nimbus D satellites. An experimental thermal-mechanics test apparatus was developed to measure the thermal static bending and twist of booms up to 3 meters long. The apparatus was calibrated by using the correlation between calculated and observed thermal bending of a seamless tube. Thermal static bending values of 16 interlocked deployable booms were observed to be within a factor of 2.5 of the values calculated from seamless-tube theory. Out-of-Sun-plane thermal bending was caused by complex heat transfer across the interlocked seam. Significant thermal static twisting was not observed.
Turbulent flow analysis on bend and downstream of the bend for different curvature ratio
NASA Astrophysics Data System (ADS)
Chowdhury, Rana Roy; Biswas, Suranjan; Alam, Md. Mahbubul; Islam, A. K. M. Sadrul
2016-07-01
A CFD analysis on the bend and downstream of the bend has been carried out for turbulent flow through 90 degree bend pipe with different curvature ratios using standard k-epsilon turbulence model. Numerical results are compared with the existing experimental results, and then a detailed study has been performed to investigate the flow characteristics. For different curvature ratios, the static pressure distributions along inner, outer wall and pressure loss factor with different Reynolds number is analyzed. The obtained results show that pressure distribution and pressure loss factor are dependent for different Reynolds number and curvature ratio throughout the bend. Again, It is observed that the disturbance of the flow due to bend exists for a downstream distance of 50D from the central plane of the bend.
Bending rigidity of composite resin coating clasps.
Ikebe, K; Kibi, M; Ono, T; Nokubi, T
1993-12-01
The purpose of this study is to examine the bending profiles of composite resin coating cast clasps. The cobalt-chromium alloy cast clasps were made using tapered wax pattern. Silane coupling method (Silicoater MD, Kulzer Co.) was used to attach composite resin to metal surface. The breakage and the bending rigidity of composite resin coating clasps were evaluated. Results were as follows: 1) After the repeated bending test to the tips of clasp arm at 10,000 times in 0.25 mm deflection, neither crack on composite resin surface nor separation at resin/metal interface was observed in any specimen. 2) There was no significant difference in the bending rigidity of clasp arms between before and after composite resin coating. From these results, it was demonstrated that the composite resin coating cast clasp was available in clinical cases and coating with composite resin had little influence on the bending rigidity of clasp arms. Therefore, it was suggested that our clasp designing and fabricating system to control the bending rigidity of clasp arms could be applied to composite resin coating clasps. PMID:8935086
Kic size effect study on two high-strength steels using notched bend specimens
NASA Technical Reports Server (NTRS)
Stonesifer, F. R.
1974-01-01
Five methods are used to calculate plane strain fracture toughness (K sub Q) values for bend-specimens of various sizes from two high-strength steels. None of the methods appeared to satisfactorily predict valid stress intensity factor (K sub IC) values from specimens of sizes well below that required by E399 standard tests.
Effects of repetitive bending on the magnetoresistance of a flexible spin-valve
Kwon, J.-H.; Kwak, W.-Y.; Cho, B. K.; Choi, H. Y.; Kim, G. H.
2015-05-07
A positive magnetostrictive single layer (CoFe) and top-pinned spin-valve structure with positive magnetostrictive free (NiFe) and pinned (CoFe) layers were deposited on flexible polyethylene terephthalate film to investigate the changes in the magnetic properties in flexible environments, especially with a repetitive bending process. It was found that the stress, applied by repetitive bending, changes significantly the magnetic anisotropy of both layers in a single and spin-valve structure depending on the direction of applied stress. The changes in magnetic anisotropy were understood in terms of the inverse magnetostriction effect (the Villari effect) and the elastic recovery force from the flexibility of the polymer substrate. Repetitive bending with tensile stress transverse (or parallel) to the magnetic easy axis was found to enhance (or reduce) the magnetic anisotropy and, consequently, the magnetoresistance ratio of a spin-valve. The observed effects of bending stress in this study should be considered for the practical applications of electro-magnetic devices, especially magneto-striction sensor.
Modelling The Bending Test Behaviour Of Carbon Fibre Reinforced SiC By Finite Element Method
NASA Astrophysics Data System (ADS)
Hofmann, S.; Koch, D.; Voggenreiter, H.
2012-07-01
Liquid silicon infiltrated carbon fibre reinforced SiC, has shown to be a high-potential material for thermal protection systems. The tensile and bending behaviour of the ceramic-matrix composite, C/C-SiC, were investigated in varying orientations relative to the 0/90° woven carbon fibres. The ratio of bending to tensile strength was about 1.7 to 2 depending on the loading direction. With the goal to understand this large difference finite element analyses (FEA) of the bending tests were performed. The different stress-strain behaviour of C/C-SiC under tensile and compression load were included in the FEA. Additionally the bending failure of the CMC-material was modelled by Cohesive Zone Elements (CZE) accounting for the directional tensile strength and Work of Fracture (WOF). The WOF was determined by Single Edge Notched Bending (SENB) tests. Comparable results from FEA and bending test were achieved. The presented approach could also be adapted for the design of C/C-SiC-components and structures.
NASA Astrophysics Data System (ADS)
Shin, Hyung-Seop; Gorospe, Alking; Bautista, Zhierwinjay; Dedicatoria, Marlon J.
2016-01-01
The effects of low cyclic loading on the critical current, I c, under uniaxial and transverse loadings, and bending deformations in GdBCO coated conductor (CC) tapes were evaluated. Under monotonic continuous bending deformation, CC tapes exhibit a high tolerance of I c up to the lowest bending diameter of 12 mm using the Goldacker bending test rig. However, when the CC tape was subjected to alternate tension-compression bending, a lower irreversible bending strain limit was measured. This was also observed when cyclic bending was applied to the CC tapes which showed a significant decrease in I c just after 10 cycles of alternate tension-compression bending at 20 mm bending diameter. Such different I c degradation behavior under different bending deformation procedures gave insight into the proper handling of CC tapes from manufacturing, coiling and up to operating conditions. In the case of uniaxial tension, when electromechanical properties of CC tape were evaluated by repeated loading based on a critical stress level obtained under monotonic loading, I c also did not show significant change in its degradation behavior up to the irreversible stress limit. The GdBCO CC tape adopted can allow cyclic loading up to 100 cycles without significant irreversible degradation below the monotonic irreversible limit. In the case of the transverse cyclic test, with regard to the large scattering of data especially in the tensile direction, a different cyclic loading procedure was established. For 10 repeated loadings, the mechanical and electromechanical properties of the GdBCO CC tapes showed similar values within the reversible range under the monotonic loading. I c degraded abruptly indicating that no delamination occurred at the REBCO film during the subcritical cyclic loading. Different fracture morphologies were observed under cyclic loading depicting branch-like patterns of the remaining REBCO layer on the substrate of the CC tape.
Rheology of a Twist-bend Nematic Liquid Crystal
NASA Astrophysics Data System (ADS)
Salili, Seyyed Muhammad; Kim, Chanjoong; Sprunt, Samuel; Gleeson, James; Parri, Owain; Jakli, Antal; Kim Lab Team; Merck Lab Team
2015-03-01
First detailed flow shear alignment studies and rheological measurements in the twist-bend nematic (Ntb) liquid crystalline phase of odd numbered flexible dimer molecules is presented. It is found that the Ntb phase is strongly shear-thinning. At shear stresses below 1 Pa the apparent viscosity of the Ntb phase is 1000 times larger than in the nematic phase. At stresses above 10 Pa the Ntb viscosity drops by two orders of magnitude and the material exhibits Newtonian fluid behavior. The results are consistent with the behavior of a system with pseudo-layer structure with layer spacing determined by the heliconical pitch. From the measurements of dynamic modulus we estimate the compression modulus of the pseudo-layers to be B ~ 2 kPa this value is discussed within the context of a simple theoretical model based upon a coarse-grained elastic free energy. www.jakligroup.com.
Dynamic hysteretic sensing model of bending-mode Galfenol transducer
Cao, Shuying Zheng, Jiaju; Sang, Jie; Zhang, Pengfei; Wang, Bowen; Huang, Wenmei
2015-05-07
A dynamic hysteretic sensing model has been developed to predict the dynamic responses of the magnetic induction, the stress, and the output voltage for a bending-mode Galfenol unimorph transducer subjected simultaneously to acceleration and bias magnetic field. This model is obtained by coupling the hysteretic Armstrong model and the structural dynamic model of the Galfenol unimorph beam. The structural dynamic model of the beam is founded based on the Euler-Bernouli beam theory, the nonlinear constitutive equations, and the Faraday law of electromagnetic induction. Comparisons between the calculated and measured results show the model can describe dynamic nonlinear voltage characteristics of the device, and can predict hysteretic behaviors between the magnetic induction and the stress. Moreover, the model can effectively analyze the effects of the bias magnetic field, the acceleration amplitude, and frequency on the root mean square voltage of the device.
Small bending and stretching of sandwich-type shells
NASA Technical Reports Server (NTRS)
Reissner, Eric
1950-01-01
A theory has been developed for small bending and stretching of sandwich-type shells. This theory is an extension of the known theory of homogeneous thin elastic shells. It was found that two effects are important in the present problem, which are not normally of importance in the theory of curved shells: (1) the effect of transverse shear deformation and (2) the effect of transverse normal stress deformation. The first of these two effects has been known to be of importance in the theory of plates and beams. The second effect was found to occur in a manner which is typical for shells and has no counterpart in flat-plate theory. The general results of this report have been applied to the solution of problems concerning flat plates, circular rings, circular cylindrical shells, and spherical shells. In each case numerical examples have been given, illustrating the magnitude of the effects of transverse shear and normal stress deformation.
Microstructure-Based RVE Approach for Stretch-Bending of Dual-Phase Steels
NASA Astrophysics Data System (ADS)
Huang, Sheng; He, ChunFeng; Zhao, YiXi
2016-03-01
Fracture behavior and micro-failure mechanism in stretch-bending of dual-phase (DP) steels are still unclear. Representative volume elements (RVE) have been proved to be an applicable approach for describing microstructural deformation in order to reveal the micro-failure mechanism. In this paper, 2D RVE models are built. The deformation behavior of DP steels under stretch-bending is investigated by means of RVE models based on the metallographic graphs with particle geometry, distribution, and morphology. Microstructural failure modes under different loading conditions in stretch-bending tests are studied, and different failure mechanisms in stretch-bending are analyzed. The computational results and stress-strain distribution analysis indicate that in the RVE models, the strain mostly occurs in ferrite phase, while martensite phase undertakes most stress without significant strain. The failure is the results of the deformation inhomogeneity between martensite phase and ferrite phase. The various appearance and growth of initial voids are different depending on the bending radius.
Analysis of Basal Plane Bending and Basal Plane Dislocations in 4H-SiC Single Crystals
NASA Astrophysics Data System (ADS)
Ohtani, Noboru; Katsuno, Masakazu; Fujimoto, Tatsuo; Nakabayashi, Masashi; Tsuge, Hiroshi; Yashiro, Hirokatsu; Aigo, Takashi; Hirano, Hosei; Hoshino, Taizo; Ohashi, Wataru
2009-06-01
4H-SiC single crystals were grown by the physical vapor transport (PVT) growth method under different thermoelastic stress conditions, and the degree of basal plane bending in the crystals was characterized by the peak shift measurement of X-ray rocking curves. The results indicate that the degree of basal plane bending largely depends on the magnitude of the thermoelastic stresses imposed on the crystals during PVT growth. Quantitative analysis of basal plane bending revealed that the density of basal plane dislocations (BPDs) estimated from basal plane bending is much smaller than that obtained from defect-selective etching. It was also found that the BPD density is correlated with the threading screw dislocation (TSD) density in PVT-grown SiC crystals. These aspects of BPDs were discussed in terms of the BPD multiplication process triggered by the intersection of BPDs with a forest of TSDs extending along the c-axis.
Kheloufi, Karim; Amara, El Hachemi
2008-09-23
We analyze the deformation induced by focusing a CW high power laser beam on stainless steel plate. A non-linear 3D finite element approach is used to simulate the thermo-elastoplastic deformation, the heat conduction, and stresses. Material properties including density, yield stress, Young modulus, specific heat, and thermal expansion coefficient are considered as temperature-dependent. The effect of heating time on transient temperatures, stresses, strains and bending angles during the process is studied, and the process parameters affecting the bending angles were also investigated.
Autogenic Scour and Channel Widening in Sharp Bends of the River Mahakam
NASA Astrophysics Data System (ADS)
Hoitink, T.; Vermeulen, B.; van Berkum, S.; Hidayat, H.; Labeur, R. J.
2014-12-01
Field evidence of the River Mahakam reveals autogenic scour and channel widening in a series of sharp bends. An integral analysis of a 300 km reach of the river is presented, including a comprehensive survey of the river banks, delineation of the river corridor from radar observations, Large Eddy Simulations of observed flow patterns, and a geometric analysis of planform and depth information. Scour depths strongly exceed what can be expected based on existing understanding of sharp bends, and are highly correlated with curvature. Histograms of the occurrence of erosive, stable, advancing, and bar-type banks as a function of curvature quantify the switch from a mildly curved bend regime to a sharp bend regime. In mild bends, outer banks erode and inner banks advance. In sharp bends the erosion pattern inverts. Outer banks stabilize or advance, while inner banks erode. In sharply curved river bends, bars occur near the outer banks that become less erosive for higher curvatures. Inner banks become more erosive for higher curvatures, but nevertheless accommodate the larger portion of exposed bars. Soil processes may play a crucial role in the formation of sharp bends, which is inferred from iron and manganese concretions observed in the riverbanks, indicating ferric horizons and early stages of the formation of plinthic horizons. Historical topographic maps show the planform activity of the river is low, which may relate to the scours slowing down planimetric development. The occurrence of exceptionally deep scours is attributed to downflow near the scour exceeding 12 cm/s, increasing the bed shear stress. The downflow, in turn, is explained from the cross-sectional area increase, which is shown to be important in generating adverse surface gradients driving flow recirculation in the Large Eddy Simulations. Strong secondary flow distorts the vertical pressure distribution that is no longer hydrostatic. The downflow advects longitudinal momentum, moving the core of the
The effect of skin passing on the material behavior of metal strip in pure bending and tension
NASA Astrophysics Data System (ADS)
Weiss, Matthias; Ryan, Will; Rolfe, Bernard; Yang, Chunhui
2010-06-01
The metal strip used in roll forming has often been preprocessed by (tension or roller) leveling or by skin-pass rolling, and as a consequence, may contain residual stresses. These stresses are not well observed by the tensile test, but could have a significant effect on the bending and springback behavior. With the advent of improved process design techniques for roll forming, including advanced finite element techniques, the need for precise material property data has become important. The major deformation mode of roll forming is that of bending combined with unloading and reverse bending, and hence property data derived from bend tests could be more relevant than that from tensile testing. This work presents a numerical study on the effect of skin passing on the material behavior of stainless steel strip in pure bending and tension. A two dimensional (2-D) numerical model was developed using Abaqus Explicit to analyze the affect of skin passing on the residual stress profile across a section for various working conditions. The deformed meshes and their final stress fields were then imported as pre-defined fields into Abaqus Standard, and the post-skin passing material behavior in pure bending was determined. The results show that a residual stress profile is introduced into the steel strip during skin passing, and that its shape and stress level depend on the overall thickness reduction as well as the number of rolling passes used in the skin passing process. The material behavior in bending and the amount of springback changed significantly depending on the skin pass condition.
NASA Astrophysics Data System (ADS)
Abad, Jorge D.; Garcia, Marcelo H.
2009-02-01
Meandering rivers exhibit complex planform patterns with both upstream and downstream valley oriented meander bends. In order to describe the effects of bend orientation on long-term river evolution, it is of great importance to be able to describe bend orientation (curvature) effects on the hydrodynamics of the flow as a first approximation. Mean flow and turbulence characteristics were investigated experimentally in a periodic, asymmetric, meandering channel herein called "the Kinoshita channel". The channel planform configuration retains high-order harmonic modes. Upstream and downstream valley oriented meander bends can be studied by reversing the flow. A flat, smooth bed (without sediment) condition has been considered to avoid further complexity. Spatial distributions of mean flow (e.g., velocities) and turbulence parameters (Reynolds stresses, turbulent kinetic energy) were observed at several cross sections along the meander wavelength. Measurements show that at the bend apex, the core of maximum velocity is found near the inner bank for both planform orientations. At the same cross section, observations show that when bends are oriented upstream valley, the secondary flow is not as well developed as in the case where bends are oriented downstream valley. Furthermore, for the upstream condition the energy gradient is smaller than that for the downstream condition, suggesting that the friction (i.e., flow resistance) due to curvature is higher for the downstream-skewed condition. Implications about having upstream and downstream bends in the meandering river migration framework are also discussed herein.
Form of developing bends in reactivated sperm flagella.
Goldstein, S F
1976-02-01
1. Dark-field, multiple-exposure photographs of reactivated tritonated sea urchin sperm flagella swimming under a variety of conditions were analysed. 2. The length, radius and subtended angle of bends increased during bend development. The pattern of development was essentially the same under all conditions observed. 3. The angles of the two bends nearest the base tend to increase at the same rate, cancelling one another, so that the development of new bends causes little if any net microtubular sliding. 4. The direction of microtubular sliding within a bend is initially in the same direction as that within the preceding bend, and reverses as the bend develops. PMID:1270988
Sharp bends of phononic crystal surface modes
NASA Astrophysics Data System (ADS)
Cicek, Ahmet; Salman, Aysevil; Adem Kaya, Olgun; Ulug, Bulent
2015-12-01
Sharp bending of surface waves at the interface of a two-dimensional phononic crystal (PnC) of steel cylinders in air and the method of using a diagonally offset cylindrical scatterer are numerically demonstrated by finite-element method simulations. The radii of the diagonally offset scatterer and the cylinder at the PnC corner, along with the distance between them, are treated as optimization parameters in the genetic algorithm optimization of sharp bends. Surface wave transmittance of at most 5% for the unmodified sharp bend is significantly enhanced to approximately 75% as a result of optimization. A series of transmittance peaks whose maxima increase exponentially, as their widths reduce, with increasing frequency is observed for the optimized sharp bend. The transmittance peaks appear at frequencies corresponding to integer plus half-beat periods, depending on the finite surface length. The optimal parameters are such that the cylinder radius at the PnC corner is not significantly modified, whereas a diagonally offset scatterer having a diameter of almost two periods and a shortest distance of about 0.7 periods between them is required for the strongest transmittance peak. Utilization of PnC surface sharp bends as acoustic ring resonators is demonstrated.
Tunable thermoelectric properties in bended graphene nanoribbons
NASA Astrophysics Data System (ADS)
Chang-Ning, Pan; Jun, He; Mao-Fa, Fang
2016-07-01
The ballistic thermoelectric properties in bended graphene nanoribbons (GNRs) are systematically investigated by using atomistic simulation of electron and phonon transport. We find that the electron resonant tunneling effect occurs in the metallic–semiconducting linked ZZ-GNRs (the bended GNRs with zigzag edge leads). The electron-wave quantum interference effect occurs in the metallic–metallic linked AA-GNRs (the bended GNRs with armchair edge leads). These different physical mechanisms lead to the large Seebeck coefficient S and high electron conductance in bended ZZ-GNRs/AA-GNRs. Combined with the reduced lattice thermal conduction, the significant enhancement of the figure of merit ZT is predicted. Moreover, we find that the ZTmax (the maximum peak of ZT) is sensitive to the structural parameters. It can be conveniently tuned by changing the interbend length of bended GNRs. The magnitude of ZT ranges from the 0.15 to 0.72. Geometry-controlled ballistic thermoelectric effect offers an effective way to design thermoelectric devices such as thermocouples based on graphene. Project supported by the National Natural Science Foundation of China (Grant No. 61401153) and the Natural Science Foundation of Hunan Province, China (Grant Nos. 2015JJ2050 and 14JJ3126).
A Novel Circular TE01-Mode Bend
Tantawi, S
2004-04-19
Future Linear Colliders and Accelerators require rf systems and components that are capable of handling hundreds of megawatts power levels at x-band frequencies and higher. Standard rf components that have been in use for a long time such as waveguide bends, directional couplers and hybrids, can not be used because of peak field considerations. Indeed, one has to reinvent most of these components taking into account the constraints imposed by ultra-high-power operation. Here, we present a new design for circular waveguides bends propagating the low-loss TE{sub 01} mode. The bend has smooth walls and low field levels. We present a simple synthesis process for designing such device. The general philosophy of this technique can be applied to other components as well. We describe the detailed design of the bend and compare our design with finite element simulations and experimental data. The bend has very low ohmic losses, and the TE{sub 01} mode is transmitted with virtually perfect mode purity.
Frictionless contact of an elastic punch subject to the normal load and bending moment
NASA Astrophysics Data System (ADS)
Jiang, X.; Shao, G.; Zhu, L.
2016-03-01
A two-dimensional contact problem of a trapezium shaped punch pressed into a frictionless, elastically similar half-plane and subject sequentially to the normal load and bending moment is considered. The model of a tilted flat punch is used to evaluate the pressure distribution and the contact deformation within the contact zone. Comparisons of the results generated by the analytical technique to those computed by the finite element method demonstrate the high level of accuracy attained by both methods. The presented numerical results illustrate the effects of the normal load, bending moment, and internal angles of the punch geometry on the contact stresses.
NASA Astrophysics Data System (ADS)
Kim, Byoung-Joon; Shin, Hae-A.-Seul; Lee, Ji-Hoon; Joo, Young-Chang
2016-06-01
The electrical reliability of a multi-layer metal film on a polymer substrate during cyclic inner bending and outer bending is investigated using a bending fatigue system. The electrical resistance of a Cu film on a polymer substrate during cyclic outer bending increases due to fatigue damage formation, such as cracks and extrusion. Cyclic inner bending also leads to fatigue damage and a similar increase in the electrical resistance. In a sample having a NiCr under-layer, however, the electrical resistance increases significantly during outer bending but not during inner bending mode. Cross-sectional observations reveal that brittle cracking in the hard under-layer results in different fatigue behaviors according to the stress mode. By applying an Al over-layer, the fatigue resistance is improved during both outer bending and inner bending by suppressing fatigue damage formation. The effects of the position, materials, and thickness of the inter-layer on the electrical reliability of a multi-layer sample are also investigated. This study can provide meaningful information for designing a multi-layer structure under various mechanical deformations including tensile and compressive stress.
Photomechanical bending mechanics of polydomain azobenzene liquid crystal polymer network films
Cheng Liang; Torres, Yanira; Oates, William S.; Lee, Kyung Min; McClung, Amber J.; Baur, Jeffery; White, Timothy J.
2012-07-01
Glassy, polydomain azobenzene liquid crystal polymer networks (azo-LCNs) have been synthesized, characterized, and modeled to understand composition dependence on large amplitude, bidirectional bending, and twisting deformation upon irradiation with linearly polarized blue-green (440-514 nm) light. These materials exhibit interesting properties for adaptive structure applications in which the shape of the photoresponsive material can be rapidly reconfigured with light. The basis for the photomechanical output observed in these materials is absorption of actinic light by azobenzene, which upon photoisomerization dictates an internal stress within the local polymer network. The photoinduced evolution of the underlying liquid crystal microstructure is manifested as macroscopic deformation of the glassy polymer film. Accordingly, this work examines the polarization-controlled bidirectional bending of highly concentrated azo-LCN materials and correlates the macroscopic output (observed as bending) to measured blocked stresses upon irradiation with blue-green light of varying polarization. The resulting photomechanical output is highly dependent on the concentration of crosslinked azobenzene mesogens employed in the formulation. Experiments that quantify photomechanical bending and photogenerated stress are compared to a large deformation photomechanical shell model to quantify the effect of polarized light interactions with the material during static and dynamic polarized light induced deformation. The model comparisons illustrate differences in internal photostrain and deformation rates as a function of composition and external mechanical constraints.
NASA Astrophysics Data System (ADS)
Gui, M.; Eybel, R.; Asselin, B.; Monerie-Moulin, F.
2015-03-01
In this work, WC-10Co-4Cr coating was sprayed by high-velocity oxygen fuel (HVOF) process on Almen strip and axial fatigue coupon. Three-point bend test was used to bend Almen strip coating specimens with tensile and compressive stress applied to the coating. Axial fatigue coating specimens were tested at a load stress of 1250 MPa and a stress ratio of R = -1. Process condition of Thermal spraying was found to have an effect on spalling performance of the coating in the fatigue test. The mechanism of cracking and spalling process in the coating was studied in bend and fatigue conditions. Based on deformation difference between the coating and the substrate, the factors, especially coating thickness, to impact the coating spalling behavior in axial fatigue test are discussed. HVOF-sprayed WC-10Co-4Cr coating matches the deformation of base substrate by cracking when tensile stress is applied in bend and fatigue tests because the coating has very limit deformation capability. In axial fatigue test of WC-10Co-4Cr coating specimen, the substrate works in a stress-to-strain manner; however the coating works in a strain-to-stress manner and is stressed due to the substrate deformation.
Robotic Arm Comprising Two Bending Segments
NASA Technical Reports Server (NTRS)
Mehling, Joshua S.; Difler, Myron A.; Ambrose, Robert O.; Chu, Mars W.; Valvo, Michael C.
2010-01-01
The figure shows several aspects of an experimental robotic manipulator that includes a housing from which protrudes a tendril- or tentacle-like arm 1 cm thick and 1 m long. The arm consists of two collinear segments, each of which can be bent independently of the other, and the two segments can be bent simultaneously in different planes. The arm can be retracted to a minimum length or extended by any desired amount up to its full length. The arm can also be made to rotate about its own longitudinal axis. Some prior experimental robotic manipulators include single-segment bendable arms. Those arms are thicker and shorter than the present one. The present robotic manipulator serves as a prototype of future manipulators that, by virtue of the slenderness and multiple- bending capability of their arms, are expected to have sufficient dexterity for operation within spaces that would otherwise be inaccessible. Such manipulators could be especially well suited as means of minimally invasive inspection during construction and maintenance activities. Each of the two collinear bending arm segments is further subdivided into a series of collinear extension- and compression-type helical springs joined by threaded links. The extension springs occupy the majority of the length of the arm and engage passively in bending. The compression springs are used for actively controlled bending. Bending is effected by means of pairs of antagonistic tendons in the form of spectra gel spun polymer lines that are attached at specific threaded links and run the entire length of the arm inside the spring helix from the attachment links to motor-driven pulleys inside the housing. Two pairs of tendons, mounted in orthogonal planes that intersect along the longitudinal axis, are used to effect bending of each segment. The tendons for actuating the distal bending segment are in planes offset by an angle of 45 from those of the proximal bending segment: This configuration makes it possible to
The surface crack problem in an orthotropic plate under bending and tension
NASA Technical Reports Server (NTRS)
Wu, Bing-Hua; Erdogan, F.
1987-01-01
The elasticity problem for an infinite orthotropic flat plate containing a series of through and part through cracks and subjected to bending and tension loads is considered. The problem is formulated by using Reissner's plate bending theory and considering three-dimensional material orthotropy. The Line-spring model developed by Rice and Levy is used to formulate the surface crack problem in which a total of nine material constants were used. The effects of material orthotropy on the stress intensity factors was determined, the interaction between two asymmetrically arranged collinear cracks was investigated, and extensive numerical results regarding the stress intensity factors are provided. The problem is reduced to a system of singular integral equations which is solved by using the Gauss-Chebyshev quadrature formulas. The calculated results show that the material orthotropy does have a significant effect on the stress intensity factor.
The surface crack problem in an orthotropic plate under bending and tension
NASA Technical Reports Server (NTRS)
Wu, B. H.; Erdogan, F.
1986-01-01
The elasticity problem for an infinite orthotropic flat plate containing a series of through and part-through cracks and subjected to bending and tension loads is considered. The problem is formulated by using Reissner's plate bending theory and considering three dimensional materials orthotropy. The Line-spring model developed by Rice and Levy is used to formulate the surface crack problem in which a total of nine material constants has been used. The main purpose of this study is to determine the effect of material orthotropy on the stress intensity factors, to investigate the interaction between two asymmetrically arranged collinear cracks, and to provide extensive numerical results regarding the stress intensity factors. The problem is reduced to a system of singular integral equations which is solved by using the Gauss-Chebyshev quadrature formulas. The calculated results show that the material orthotropy does have a significant effect on the stress intensity factor.
NASA Technical Reports Server (NTRS)
Starbuck, J. Michael; Guerdal, Zafer; Pindera, Marek-Jerzy; Poe, Clarence C.
1990-01-01
Damage states in laminated composites were studied by considering the model problem of a laminated beam subjected to three-point bending. A combination of experimental and theoretical research techniques was used to correlate the experimental results with the analytical stress distributions. The analytical solution procedure was based on the stress formulation approach of the mathematical theory of elasticity. The solution procedure is capable of calculating the ply-level stresses and beam displacements for any laminated beam of finite length using the generalized plane deformation or plane stress state assumption. Prior to conducting the experimental phase, the results from preliminary analyses were examined. Significant effects in the ply-level stress distributions were seen depending on the fiber orientation, aspect ratio, and whether or not a grouped or interspersed stacking sequence was used. The experimental investigation was conducted to determine the different damage modes in laminated three-point bend specimens. The test matrix consisted of three-point bend specimens of 0 deg unidirectional, cross-ply, and quasi-isotropic stacking sequences. The dependence of the damage initiation loads and ultimate failure loads were studied, and their relation to damage susceptibility and damage tolerance of the mean configuration was discussed. Damage modes were identified by visual inspection of the damaged specimens using an optical microscope. The four fundamental damage mechanisms identified were delaminations, matrix cracking, fiber breakage, and crushing. The correlation study between the experimental results and the analytical results were performed for the midspan deflection, indentation, damage modes, and damage susceptibility.
Simulation of thick-walled submarine pipeline collapse under bending and hydrostatic pressure
Al-Sharif, A.M.; Preston, R.
1996-12-31
The problem of submarine pipeline buckling or collapse as a result of bending and external pressure is investigated by numerical modeling using finite element analysis. The model takes into account the initial variability of material properties, the effect of cold-work on the pipe material properties and initial geometric imperfections. It is capable of simulating the nonlinear behavior, and structural instability due to the combined effects of bending and pressure. The solution algorithm and verification against experimental results are presented. In addition, a deterministic model for collapse under combined pressure and bending based on measured stress-strain behavior and pipe geometry is derived. Results from both finite element and deterministic models for different parameter sensitivities are examined.
The first ANDES elements: 9-DOF plate bending triangles
NASA Technical Reports Server (NTRS)
Militello, Carmelo; Felippa, Carlos A.
1991-01-01
New elements are derived to validate and assess the assumed natural deviatoric strain (ANDES) formulation. This is a brand new variant of the assumed natural strain (ANS) formulation of finite elements, which has recently attracted attention as an effective method for constructing high-performance elements for linear and nonlinear analysis. The ANDES formulation is based on an extended parametrized variational principle developed in recent publications. The key concept is that only the deviatoric part of the strains is assumed over the element whereas the mean strain part is discarded in favor of a constant stress assumption. Unlike conventional ANS elements, ANDES elements satisfy the individual element test (a stringent form of the patch test) a priori while retaining the favorable distortion-insensitivity properties of ANS elements. The first application of this formulation is the development of several Kirchhoff plate bending triangular elements with the standard nine degrees of freedom. Linear curvature variations are sampled along the three sides with the corners as gage reading points. These sample values are interpolated over the triangle using three schemes. Two schemes merge back to conventional ANS elements, one being identical to the Discrete Kirchhoff Triangle (DKT), whereas the third one produces two new ANDES elements. Numerical experiments indicate that one of the ANDES element is relatively insensitive to distortion compared to previously derived high-performance plate-bending elements, while retaining accuracy for nondistorted elements.
Composite failure prediction of π-joint structures under bending
NASA Astrophysics Data System (ADS)
Huang, Hong-mei; Yuan, Shen-fang
2012-03-01
In this article, the composite -joint is investigated under bending loads. The "L" preform is the critical component regarding composite -joint failure. The study is presented in the failure detection of a carbon fiber composite -joint structure under bending loads using fiber Bragg grating (FBG) sensor. Firstly, based on the general finite element method (FEM) software, the 3-D finite element (FE) model of composite -joint is established, and the failure process and every lamina failure load of composite -joint are investigated by maximum stress criteria. Then, strain distributions along the length of FBG are extracted, and the reflection spectra of FBG are calculated according to the strain distribution. Finally, to verify the numerical results, a test scheme is performed and the experimental spectra of FBG are recorded. The experimental results indicate that the failure sequence and the corresponding critical loads of failure are consistent with the numerical predictions, and the computational error of failure load is less than 6.4%. Furthermore, it also verifies the feasibility of the damage detection system.
Electrical Bending and Mechanical Buckling Instabilities in Electrospinning Jets
NASA Astrophysics Data System (ADS)
Han, Tao; Reneker, Darrell H.
2007-03-01
The electrospinning jet was a continuous fluid flow ejected from the surface of a fluid when the applied electrical force overcomes the surface tension. The jet moved straight away from the tip and then became unstable and bent into coils. This phenomenon is the electrical bending instability [1]. When the distance between the tip and collector was reduced to less than the maximal straight segment length, the electrical bending instability did not occur. The periodic buckling of a fluid jet incident onto a surface is a striking fluid mechanical instability [2]. When axial compressive stress along the jet reached a sufficient value, it produced the fluid mechanics analogue to the buckling of a slender solid column. In the electrospinning, the buckling instability occurred just above the collector where the jet was compressed as it encountered the collector. The buckling frequencies of these jets are in the range of 10^4 to 10^5 Hz. The buckling lengths of these jets are in the range of 10 to 100μm. *Reneker,D.H.; Yarin, A. L.; Fong, H.; Koombhongse, S., Journal of Applied Physics, 87, 4531, 2000 *Tchavdarov B.; Yarin, A. L.; Radev S., Journal of Fluid Mechanics; 253, 593,1993
Anharmonic effects in the optical and acoustic bending modes of graphene
NASA Astrophysics Data System (ADS)
Ramírez, R.; Chacón, E.; Herrero, C. P.
2016-06-01
The out-of-plane fluctuations of carbon atoms in a graphene sheet have been studied by means of classical molecular dynamic simulations with an empirical force field as a function of temperature. The Fourier analysis of the out-of-plane fluctuations often applied to characterize the acoustic bending mode of graphene is extended to the optical branch, whose polarization vector is perpendicular to the graphene layer. This observable is inaccessible in a continuous elastic model of graphene but it is readily obtained by the atomistic treatment. Our results suggest that the long-wavelength limit of the acoustic out-of-plane fluctuations of a free layer without stress is qualitatively similar to that predicted by a harmonic model under a tensile stress. This conclusion is a consequence of the anharmonicity of both in-plane and out-of-plane vibrational modes of the lattice. The most striking anharmonic effect is the presence of a linear term, ωA=vAk , in the dispersion relation of the acoustic bending band of graphene at long wavelengths (k →0 ). This term implies a strong reduction of the amplitude of out-of-plane oscillations in comparison to a flexural mode with a k2 dependence in the long-wavelength limit. Our simulations show an increase of the sound velocity associated to the bending mode, as well as an increase of its bending constant, κ , as the temperature increases. Moreover, the frequency of the optical bending mode, ωO(Γ ), also increases with the temperature. Our results are in agreement with recent analytical studies of the bending modes of graphene using either perturbation theory or an adiabatic approximation in the framework of continuous layer models.
Bending of skew plates of variable rigidity.
NASA Technical Reports Server (NTRS)
Willems, N.; Mahmood, S. S.
1972-01-01
Description of an analytical procedure for studying the bending of thin skew plates of a thickness varying in one direction, under arbitrary lateral loading. The analysis was programmed for execution on an electronic computer for various conditions and types of loading. The results obtained suggest that the proposed analytical procedure is more accurate than the finite-difference technique used in earlier investigations.
Aerosol deposition in bends with turbulent flow
McFarland, A.R.; Gong, H.; Wente, W.B.
1997-08-01
The losses of aerosol particles in bends were determined numerically for a broad range of design and operational conditions. Experimental data were used to check the validity of the numerical model, where the latter employs a commercially available computational fluid dynamics code for characterizing the fluid flow field and Lagrangian particle tracking technique for characterizing aerosol losses. Physical experiments have been conducted to examine the effect of curvature ratio and distortion of the cross section of bends. If it curvature ratio ({delta} = R/a) is greater than about 4, it has little effect on deposition, which is in contrast with the recommendation given in ANSI N13.1-1969 for a minimum curvature ratio of 10. Also, experimental results show that if the tube cross section is flattened by 25% or less, the flattening also has little effect on deposition. Results of numerical tests have been used to develop a correlation of aerosol penetration through a bend as a function of Stokes number (Stk), curvature ratio ({delta}) and the bend angle ({theta}). 17 refs., 10 figs., 2 tabs.
UV - BIG BEND NATIONAL PARK TX
Brewer 130 is located in Big Bend NP, measuring ultraviolet solar radiation. Irradiance and column ozone are derived from this data. Ultraviolet solar radiation is measured with a Brewer Mark IV, single-monochrometer, spectrophotometer manufactured by SCI-TEC Instruments, Inc. of...
Interdisciplinary Invitations: Exploring Gee's Bend Quilts
ERIC Educational Resources Information Center
Mitchell, Rebecca; Whitin, Phyllis; Whitin, David
2012-01-01
Engaging with the quilts of Gee's Bend offers a rich opportunity for students in grades four through eight to develop appreciation for pattern, rhythm, and innovation while learning about history, entrepreneurship, and political activism. By easily accessing print, film, and Internet resources teachers can include these vibrant quilts and…
Age of the Hawaiian-Emperor bend
Dalrymple, G.B.; Clague, D.A.
1976-01-01
40Ar/39Ar age data on alkalic and tholeiitic basalts from Diakakuji and Kinmei Seamounts in the vicinity of the Hawaiian-Emperor bend indicate that these volcanoes are about 41 and 39 m.y. old, respectively. Combined with previously published age data on Yuryaku and Ko??ko Seamounts, the new data indicate that the best age for the bend is 42.0 ?? 1.4 m.y. Petrochemical data indicate that the volcanic rocks recovered from bend seamounts are indistinguishable from Hawaiian volcanic rocks, strengthening the hypothesis that the Hawaiian-Emperor bend is part of the Hawaiian volcanic chain. 40Ar/39Ar total fusion ages on altered whole-rock basalt samples are consistent with feldspar ages and with 40Ar/39Ar incremental heating data and appear to reflect the crystallization ages of the samples even though conventional K-Ar ages are significantly younger. The cause of this effect is not known but it may be due to low-temperature loss of 39Ar from nonretentive montmorillonite clays that have also lost 40Ar. ?? 1976.
The Hungarian-Americans of South Bend.
ERIC Educational Resources Information Center
Scherer, Darlene; Rasmussen, Karen, Ed.
Developed as part of an ethnic heritage studies program, this historical narrative of Hungarian Americans in South Bend, Indiana, is intended to increase cultural awareness and appreciation. The document is divided into three sections. Section I offers a brief history of Hungary and describes the background of the three emigrant groups; lower…
CFD Application to Flow-Accelerated Corrosion in Feeder Bends
Pietralik, John M.; Smith, Bruce A.W.
2006-07-01
Feeder piping in CANDU{sup R} plants experiences a thinning degradation mechanism called Flow-Accelerated Corrosion (FAC). The piping is made of carbon steel and has high water flow speeds. Although the water chemistry is highly alkaline with room-temperature pH in a range of 10.0-10.5, the piping has FAC rates exceeding 0.1 mm/year in some locations, e.g., in bends. One of the most important parameters affecting the FAC rate is the mass transfer coefficient for convective mass transport of ferrous ions. The ions are created at the pipe wall as a result of corrosion, diffuse through the oxide layer, and are transported from the oxide-layer/water interface to the bulk water by mass transport. Consequently, the local flow characteristics contribute to the highly turbulent convective mass transfer. Plant data and laboratory experiments indicate that the mass transfer step dominates FAC under feeder conditions. In this study, the flow and mass transfer in a feeder bend under operating conditions were simulated using the Fluent{sup TM} computer code. Because the flow speed is very high, with the Reynolds numbers in a range of several millions, and because the geometry is complex, experiments in a 1:1 scale were conducted with the main objective to validate flow simulations. The experiments measured pressure at several key locations and visualized the flow. The flow and mass transfer models were validated using available friction-factor and mass transfer correlations and literature experiments on mass transfer in a bend. The validation showed that the turbulence model that best predicts the experiments is the realizable k-{epsilon} model. Other two-equation turbulence models, as well as one-equation models and Reynolds stress models were tried. The near-wall treatment used the non-equilibrium wall functions. The wall functions were modified for surface roughness when necessary. A comparison of the local mass transfer coefficient with measured FAC rate in plant specimens
Nonlinear bend stiffener analysis using a simple formulation and finite element method
NASA Astrophysics Data System (ADS)
Tong, Dong Jin; Low, Ying Min; Sheehan, John M.
2011-12-01
Flexible marine risers are commonly used in deepwater floating systems. Bend stiffeners are designed to protect flexible risers against excessive bending at the connection with the hull. The structure is usually analyzed as a cantilever beam subjected to an inclined point load. As deflections are large and the bend stiffener material exhibits nonlinear stress-strain characteristics, geometric and material nonlinearities are important considerations. A new approach has been developed to solve this nonlinear problem. Its main advantage is its simplicity; in fact the present method can be easily implemented on a spreadsheet. Finite element analysis using ABAQUS is performed to validate the method. Solid elements are used for the bend stiffener and flexible pipe. To simulate the near inextensibility of flexible risers, a simple and original idea of using truss elements is proposed. Through a set of validation studies, the present method is found to be in a good agreement with the finite element analysis. Further, parametric studies are performed by using both methods to identify the key parameters and phenomena that are most critical in design. The most important finding is that the common practice of neglecting the internal steel sleeve in the bend stiffener analysis is non-conservative and therefore needs to be reassessed.
Internal and edge cracks in a plate of finite width under bending
NASA Technical Reports Server (NTRS)
Boduroglu, H.; Erdogan, F.
1983-01-01
In this paper the title problem is studied by using Reissner's transverse shear theory. The main purpose of the paper is to investigate the effect of stress-free boundaries on the stress intensity factors in plates under bending. Among the results found particularly interesting are those relating to the limiting cases of the crack geometries. The numerical results are given for a single internal crack, two collinear cracks, and two edge cracks. Also studied is the effect of Poisson's ratio on the stress intensity factors.
Local Deplanation Of Double Reinforced Beam Cross Section Under Bending
NASA Astrophysics Data System (ADS)
Baltov, Anguel; Yanakieva, Ana
2015-12-01
Bending of beams, double reinforced by means of thin composite layers, is considered in the study. Approximate numerical solution is proposed, considering transitional boundary areas, where smooth quadratic transition of the elasticity modulus and deformations take place. Deplanation of the cross section is also accounted for in the areas. Their thickness is found equalizing the total stiffness of the cross section and the layer stiffness. Deplanation of the cross section of the transitional area is determined via the longitudinal deformation in the reinforcing layer, accounting for the equilibrium between the internal and the external moment, generated by the longitudinal stresses in the cross section. A numerical example is given as an illustration demonstrating model's plausibility. The model allows the design and the calculation of recycled concrete beams double reinforced by means of thin layers. The approach is in agreement with modern design of nearly zero energy buildings (NZEB).
High-pressure sensor using piezoelectric bending resonators
NASA Astrophysics Data System (ADS)
Bao, Xiaoqi; Sherrit, Stewart; Takano, Nobuyuki
2016-04-01
A novel design of pressure sensor based on piezoelectric bending resonator is described in this paper. The resonator is isolated from and mechanically coupled to the surrounding fluid using a sealed enclosure. The pressure applied to the enclosure induces a compressive stress to the resonator and reduces its resonance frequency. In principle the mechanism allows for achieving large resonance frequency shifts close to 100% of the resonance frequency. A high-pressure sensor based on the mechanism was designed for down-hole pressure monitoring in oil wells. The sensor is potentially remotely-readable via the transmission of an electromagnetic signal down a waveguide formed by the pipes in the oil well. The details of the pressure sensor design and verification by FE analysis and initial test results of a preliminary prototype are presented in this paper.
Homogenization of long fiber reinforced composites including fiber bending effects
NASA Astrophysics Data System (ADS)
Poulios, Konstantinos; Niordson, Christian F.
2016-09-01
This paper presents a homogenization method, which accounts for intrinsic size effects related to the fiber diameter in long fiber reinforced composite materials with two independent constitutive models for the matrix and fiber materials. A new choice of internal kinematic variables allows to maintain the kinematics of the two material phases independent from the assumed constitutive models, so that stress-deformation relationships, can be expressed in the framework of hyper-elasticity and hyper-elastoplasticity for the fiber and the matrix materials respectively. The bending stiffness of the reinforcing fibers is captured by higher order strain terms, resulting in an accurate representation of the micro-mechanical behavior of the composite. Numerical examples show that the accuracy of the proposed model is very close to a non-homogenized finite-element model with an explicit discretization of the matrix and the fibers.
Spring-back of flexible roll forming bending process
NASA Astrophysics Data System (ADS)
Zhang, Y.; Kim, D. H.; Jung, D. W.
2015-12-01
Simulations are now widely used in the field of roll forming because of their convenience. Simulations provide a low cost, secure and fast analysis tool. Flexible roll forming provides the desired shapes with a one time forming process. For roll forming, the velocity of the sheet and friction are important factors to attain an ideal shape. Because it is a complicated process, simulations provide a better understanding of the roll forming process. Simulations were peformed using ABAQUS software linked to elastic-plastic modules which we developed taking into account of interactions between these fields [1]. The application of this method makes it possible to highlight the strain-stress and mechanical behaviour laws and the spring-back. Thus, the flexible roll forming and bending process can bewell described by the simulation software and guide the actual machine.
Bending Fatigue Strength of Austempered Ductile Iron Spur Gears
NASA Astrophysics Data System (ADS)
Yamanaka, Masashi; Tamura, Ryo; Inoue, Katsumi; Narita, Yukihito
This paper deals with an experimental evaluation of bending fatigue strength for austempered ductile iron (ADI) spur gears. The module is 2.5 and the number of teeth is 26 in the test gears. The material of the test gears corresponds to Japan Industrial Standard (JIS) FCAD1100-15. Some gears are processed by one of two types of fine particle bombarding (FPB). The surface roughness is slightly increased by FPB. The obtained strengths are 623 MPa for the as-austempered gears, and 1011 and 1085 MPa for the gears after FPB. The strength is expressed by the fillet stress level, which is calculated by FEM. The strength of a gear with the same dimensions made of carburized SCr420H alloy steel is 1205 MPa, and the strength of the ADI gear is approximately half that of the carburized steel gear. The FPB process has a significant effect on the ADI gear, improving its strength by 62-74%.
Sensitivity analysis of channel-bend hydraulics influenced by vegetation
NASA Astrophysics Data System (ADS)
Bywater-Reyes, S.; Manners, R.; McDonald, R.; Wilcox, A. C.
2015-12-01
Alternating bars influence hydraulics by changing the force balance of channels as part of a morphodynamic feedback loop that dictates channel geometry. Pioneer woody riparian trees recruit on river bars and may steer flow, alter cross-stream and downstream force balances, and ultimately change channel morphology. Quantifying the influence of vegetation on stream hydraulics is difficult, and researchers increasingly rely on two-dimensional hydraulic models. In many cases, channel characteristics (channel drag and lateral eddy viscosity) and vegetation characteristics (density, frontal area, and drag coefficient) are uncertain. This study uses a beta version of FaSTMECH that models vegetation explicitly as a drag force to test the sensitivity of channel-bend hydraulics to riparian vegetation. We use a simplified, scale model of a meandering river with bars and conduct a global sensitivity analysis that ranks the influence of specified channel characteristics (channel drag and lateral eddy viscosity) against vegetation characteristics (density, frontal area, and drag coefficient) on cross-stream hydraulics. The primary influence on cross-stream velocity and shear stress is channel drag (i.e., bed roughness), followed by the near-equal influence of all vegetation parameters and lateral eddy viscosity. To test the implication of the sensitivity indices on bend hydraulics, we hold calibrated channel characteristics constant for a wandering gravel-bed river with bars (Bitterroot River, MT), and vary vegetation parameters on a bar. For a dense vegetation scenario, we find flow to be steered away from the bar, and velocity and shear stress to be reduced within the thalweg. This provides insight into how the morphodynamic evolution of vegetated bars differs from unvegetated bars.
NASA Astrophysics Data System (ADS)
Hanzon, Drew Wyatt
This work consists on the quantification of sheet metal uniaxial stress-strain reversals from pure bending tests. Bending strains to approximately 10% were measured by strain gages and interferometry. Bending-unbending moments and strains were modeled and compared closely to the experimental data. The reverse uniaxial stress-strains curves were determined from the optimal fit of the model. Bauschinger effects were described by the reverse uniaxial response at the elasto-plastic range, between the elastic and the large strain, power fit ranges. Arc and straight line fittings on the lnsigma-lnepsilon scale proved accurate to describe the elasto-plastic behavior. Reverse uniaxial data determined for DP590 and DP780 steels and two Aluminum alloys showed significant Bauschinger effects with distinct features. For the DP steels the magnitudes of the reverse compressive sigma-epsilon curves compared moderately higher, and merging to a power curve with parameters K, n previously defined by tension testing. Bauschinger effects at small reversed strains were less pronounced for the aluminum alloys. However, at higher strains the reverse elasto-plastic response softened considerably, and during the unbending span the magnitudes of the reverse compressive strains remained below the corresponding K, n tensile values. The results showed pure bending as an efficient, simple to use technique to generate sigma-epsilon data for sheet metal at large reverse strains without the complicating restraining hardware required by direct compression methods.
Investigation of Low-Cycle Bending Fatigue of AISI 9310 Steel Spur Gears
NASA Technical Reports Server (NTRS)
Handschuh, Robert F.; Krantz, Timothy L.; Lerch, Bradley A.; Burke, Christopher S.
2007-01-01
An investigation of the low-cycle bending fatigue of spur gears made from AISI 9310 gear steel was completed. Tests were conducted using the single-tooth bending method to achieve crack initiation and propagation. Tests were conducted on spur gears in a fatigue test machine using a dedicated gear test fixture. Test loads were applied at the highest point of single tooth contact. Gear bending stresses for a given testing load were calculated using a linear-elastic finite element model. Test data were accumulated from 1/4 cycle to several thousand cycles depending on the test stress level. The relationship of stress and cycles for crack initiation was found to be semi-logarithmic. The relationship of stress and cycles for crack propagation was found to be linear. For the range of loads investigated, the crack propagation phase is related to the level of load being applied. Very high loads have comparable crack initiation and propagation times whereas lower loads can have a much smaller number of cycles for crack propagation cycles as compared to crack initiation.
Investigation of Low-Cycle Bending Fatigue of AISI 9310 Steel Spur Gears
NASA Technical Reports Server (NTRS)
Handschuh, Robert F.; Krantz, Timothy L.; Lerch, Bradley A.; Burke, Christopher S.
2007-01-01
An investigation of the low-cycle bending fatigue of spur gears made from AISI 9310 gear steel was completed. Tests were conducted using the single-tooth bending method to achieve crack initiation and propagation. Tests were conducted on spur gears in a fatigue test machine using a dedicated gear test fixture. Test loads were applied at the highest point of single tooth contact. Gear bending stresses for a given testing load were calculated using a linear-elastic finite element model. Test data were accumulated from 1/4 cycle to several thousand cycles depending on the test stress level. The relationship of stress and cycles for crack initiation was found to be semilogarithmic. The relationship of stress and cycles for crack propagation was found to be linear. For the range of loads investigated, the crack propagation phase is related to the level of load being applied. Very high loads have comparable crack initiation and propagation times whereas lower loads can have a much smaller number of cycles for crack propagation cycles as compared to crack initiation.
Effect of Solder Joint Length on Fracture Under Bending
NASA Astrophysics Data System (ADS)
Akbari, Saeed; Nourani, Amir; Spelt, Jan K.
2016-01-01
Fracture tests were conducted on copper-solder-copper joints of various lengths using double-cantilever-beam (DCB) specimens under mode I loading conditions. The thickness and length of the solder joints were large enough to neglect any anisotropy associated with the solder microstructure. It was found that the critical strain energy release rate at crack initiation, G ci, was insensitive to the length of the solder joint; however, for joints shorter than a characteristic length which was a function of the thickness and the mechanical properties of the solder layer and the substrates, the fracture load increased with increasing solder joint length. A sandwich model was developed for the analysis of the stress and strain in solder joints, taking into account the influence of both the bending deformation and the shear deformation of the substrates on the solder joint stresses. Consistent with the experimental results, it was found that solder joints longer than the characteristic length have a maximum peel stress that remains unchanged with joint length, causing the joint strength to become independent of the joint length. A closed-form analytical solution was developed for the characteristic length of DCB specimens under mode I loading. The experimental results were in good agreement with the analytical model and with finite element results. The generality of the G ci failure criterion was demonstrated by comparing the experimental results and the fracture load predictions of mode I DCB solder joints with different lengths.
Torsion and transverse bending of cantilever plates
NASA Technical Reports Server (NTRS)
Reissner, Eric; Stein, Manuel
1951-01-01
The problem of combined bending and torsion of cantilever plates of variable thickness, such as might be considered for solid thin high-speed airplane or missile wings, is considered in this paper. The deflections of the plate are assumed to vary linearly across the chord; minimization of the potential energy by means of the calculus of variations then leads to two ordinary linear differential equations for the bending deflections and the twist of the plate. Because the cantilever is analyzed as a plate rather than as a beam, the effect of constraint against axial warping in torsion is inherently included. The application of this method to specific problems involving static deflection, vibration, and buckling of cantilever plates is presented. In the static-deflection problems, taper and sweep are considered.
Fracture of surface cracks loaded in bending
Chao, Y.J.; Reuter, W.G.
1997-12-31
Theoretical background of the constraint effect in brittle fracture of solids is reviewed. Fracture test data from D6-aC, a high strength steel, using three-point-bend (SE(B)) specimens and surface cracked plate (SC(B)) specimens under bending are presented. It is shown that the SE(B) data has an elevated fracture toughness for increasing a/W, i.e., a crack geometry with a larger T/K corresponds to a higher K{sub c} which is consistent with the theoretical prediction. The fundamental fracture properties, i.e., the critical strain and the critical distance, determined from the SE(B) test data are then applied to the interpretation and prediction of the SC(B) test data. Reasonable agreement is achieved for the crack growth initiation site and the load.
Effect of confinements: Bending in Paramecium
NASA Astrophysics Data System (ADS)
Eddins, Aja; Yang, Sung; Spoon, Corrie; Jung, Sunghwan
2012-02-01
Paramecium is a unicellular eukaryote which by coordinated beating of cilia, generates metachronal waves which causes it to execute a helical trajectory. We investigate the swimming parameters of the organism in rectangular PDMS channels and try to quantify its behavior. Surprisingly a swimming Paramecium in certain width of channels executes a bend of its flexible body (and changes its direction of swimming) by generating forces using the cilia. Considering a simple model of beam constrained between two walls, we predict the bent shapes of the organism and the forces it exerts on the walls. Finally we try to explain how bending (by sensing) can occur in channels by conducting experiments in thin film of fluid and drawing analogy to swimming behavior observed in different cases.
Development of Bend Sensor for Catheter Tip
NASA Astrophysics Data System (ADS)
Nagano, Yoshitaka; Sano, Akihito; Fujimoto, Hideo
Recently, a minimally invasive surgery which makes the best use of the catheter has been becoming more popular. In endovascular coil embolization for a cerebral aneurysm, the observation of the catheter's painting phenomenon is very important to execute the appropriate manipulation of the delivery wire and the catheter. In this study, the internal bend sensor which consists of at least two bending enhanced plastic optical fibers was developed in order to measure the curvature of the catheter tip. Consequently, the painting could be more sensitively detected in the neighborhood of the aneurysm. In this paper, the basic characteristics of the developed sensor system are described and its usefulness is confirmed from the comparison of the insertion force of delivery wire and the curvature of catheter tip in the experiment of coil embolization.
Residual Field Correction of Pulsed Bending Magnet
NASA Astrophysics Data System (ADS)
Takano, Junpei; Igarashi, Susumu; Kamikubota, Norihiko; Meigo, Shin-ichiro; Sato, Kenichi; Shirakata, Masashi; Yamada, Shuei
The Japan Proton Accelerator Research Complex (J-PARC) has an accelerator chain, Linac, Rapid Cycling Synchrotron (RCS), and Main Ring (MR). The RCS accelerates the proton beam up to 3 GeV every 40 msec. After the beam is extracted from the RCS, it is delivered to a beam transport line, which is 3NBT for the Material and Life Science Experimental Facility (MLF). Some bunches of the proton beam are bended from the 3NBT to another beam transport line, which is 3-50BT for the MR, by using a pulsed bending magnet (PB) [1]. However, the beam orbit in the 3NBT is kicked by the residual magnetic field of the PB. In order to correct the residual magnetic field, additional coils had been wound on the PB poles. As a result of scanning the current pattern of the correction coils, the orbit distortion in the 3NBT has been reduced.
Monitoring thermoplastic composites under cyclic bending tests
NASA Astrophysics Data System (ADS)
Boccardi, Simone; Meola, Carosena; Carlomagno, Giovanni Maria; Simeoli, Giorgio; Acierno, Domenico; Russo, Pietro
2016-05-01
This work is concerned with the use of infrared thermography to visualize temperature variations linked to thermo-elastic effects developing over the surface of a specimen undergoing deflection under bending tests. Several specimens are herein considered, which involve change of matrix and/or reinforcement. More specifically, the matrix is either a pure polypropylene, or a polypropylene added with a certain percentage of compatibilizing agent; the reinforcement is made of glass, or jute. Cyclic bending tests are carried out by the aid of an electromechanical actuator. Each specimen is viewed, during deflection, from one surface by an infrared imaging device. As main finding the different specimens display surface temperature variations which depend on the type of material in terms of both matrix and reinforcement.
Molecular Origin of Model Membrane Bending Rigidity
Kurtisovski, Erol; Taulier, Nicolas; Waks, Marcel; Ober, Raymond; Urbach, Wladimir
2007-06-22
The behavior of the bending modulus {kappa} of bilayers in lamellar phases was studied by Small Angle X-ray Scattering technique for various nonionic C{sub i}E{sub j} surfactants. The bilayers are either unswollen and dispersed in water or swollen by water and dispersed in dodecane. For unswollen bilayers, the values of {kappa} decrease with both an increase in the area per surfactant molecule and in the polar head length. They increase when the aliphatic chain length increases at constant area per surfactant molecule. Whereas for water-swollen membranes, the values of {kappa} decrease as the content of water increases converging to the value of the single monolayer bending modulus. Such a behavior results from the decoupling of the fluctuations of the two surfactant membrane monolayers. Our results emphasize the determinant contribution of the surfactant conformation to {kappa}.
Molecular Origin of Model Membrane Bending Rigidity
NASA Astrophysics Data System (ADS)
Kurtisovski, Erol; Taulier, Nicolas; Ober, Raymond; Waks, Marcel; Urbach, Wladimir
2007-06-01
The behavior of the bending modulus κ of bilayers in lamellar phases was studied by Small Angle X-ray Scattering technique for various nonionic CiEj surfactants. The bilayers are either unswollen and dispersed in water or swollen by water and dispersed in dodecane. For unswollen bilayers, the values of κ decrease with both an increase in the area per surfactant molecule and in the polar head length. They increase when the aliphatic chain length increases at constant area per surfactant molecule. Whereas for water-swollen membranes, the values of κ decrease as the content of water increases converging to the value of the single monolayer bending modulus. Such a behavior results from the decoupling of the fluctuations of the two surfactant membrane monolayers. Our results emphasize the determinant contribution of the surfactant conformation to κ
Big Bend National Park, TX, USA, Mexico
NASA Technical Reports Server (NTRS)
1991-01-01
The Sierra del Carmen of Mexico, across the Rio Grande River from Big Bend National Park, TX, (28.5N, 104.0W) is centered in this photo. The Rio Grande River bisects the scene; Mexico to the east, USA to the west. The thousand ft. Boquillas limestone cliff on the Mexican side of the river changes colors from white to pink to lavender at sunset. This severely eroded sedimentary landscape was once an ancient seabed later overlaid with volcanic activity.
Analysis of three-point-bend test for materials with unequal tension and compression properties
NASA Technical Reports Server (NTRS)
Chamis, C. C.
1974-01-01
An analysis capability is described for the three-point-bend test applicable to materials of linear but unequal tensile and compressive stress-strain relations. The capability consists of numerous equations of simple form and their graphical representation. Procedures are described to examine the local stress concentrations and failure modes initiation. Examples are given to illustrate the usefulness and ease of application of the capability. Comparisons are made with materials which have equal tensile and compressive properties. The results indicate possible underestimates for flexural modulus or strength ranging from 25 to 50 percent greater than values predicted when accounting for unequal properties. The capability can also be used to reduce test data from three-point-bending tests, extract material properties useful in design from these test data, select test specimen dimensions, and size structural members.
Springback After the Lateral Bending of T-Section Rails of Work-Hardening Materials
NASA Astrophysics Data System (ADS)
Song, Youshuo; Yu, Zhonghua
2013-11-01
This paper studies the springback after the lateral bending of T-section rails, considering the work-hardening materials. A linear-hardening model and an elastic-plastic power-exponent hardening model of the material are adopted and compared with the real experimental stress-strain curve obtained from the uniaxial tension tests. The analytical formulas for the springback and residual curvatures are given. The numerical results indicate that the material hardening directly affects the accuracy of springback prediction compared with the experimental results. Besides, springback prediction is not sensitive to hardening parameters in the beginning of elastic-plastic bending deformation. Although there is an apparent yield stage in the true stress-strain curve, the adopted hardening models can achieve an allowable relative error, if hardening parameters are properly selected.
Forming and Bending of Metal Foams
NASA Astrophysics Data System (ADS)
Nebosky, Paul; Tyszka, Daniel; Niebur, Glen; Schmid, Steven
2004-06-01
This study examines the formability of a porous tantalum foam, known as trabecular metal (TM). Used as a bone ingrowth surface on orthopedic implants, TM is desirable due to its combination of high strength, low relative density, and excellent osteoconductive properties. This research aims to develop bend and stretch forming as a cost-effective alternative to net machining and EDM for manufacturing thin parts made of TM. Experimentally, bending about a single axis using a wiping die was studied by observing cracking and measuring springback. It was found that die radius and clearance strongly affect the springback properties of TM, while punch speed, embossings, die radius and clearance all influence cracking. Depending on the various combinations of die radius and clearance, springback factor ranged from .70-.91. To examine the affect of the foam microstructure, bending also was examined numerically using a horizontal hexagonal mesh. As the hexagonal cells were elongated along the sheet length, elastic springback decreased. This can be explained by the earlier onset of plastic hinging occurring at the vertices of the cells. While the numerical results matched the experimental results for the case of zero clearance, differences at higher clearances arose due to an imprecise characterization of the post-yield properties of tantalum. By changing the material properties of the struts, the models can be modified for use with other open-cell metallic foams.
Strain Engineering of Phosphorene via Bending
NASA Astrophysics Data System (ADS)
Verma, Deepti; Dumitrica, Traian
Phosphorene (PE) - the newly discovered 2D derivative of Phosphorus - has an inherent band gap and a high current on/off ratio. Manipulating strain in PE films - strain engineering (SE) - will offer the opportunity to further tailor its electronic properties. Using objective boundary conditions (OBC) coupled with density functional tight binding model (DFTB), we calculate bending rigidity of PE and its 2D allotropes by modeling bent PE as large diameter nanotubes (PNTs). OBCs not only allow for drastic reductions in the number of atoms in simulations but also enable simulations of chiral PNTs, which is impossible with periodic boundary conditions. At the same time, the method describes how bending influences the electronic structure. We establish a robust platform for achieving SE for anisotropic 2D films. Using results from our calculations and orthotropic thin shell model we develop equivalent continuum structure (ECS) for PE and its allotropes upon bending. The developed ECS can be used for performing finite element simulations of PE films on substrates.
Controlled impact demonstration airframe bending bridges
NASA Technical Reports Server (NTRS)
Soltis, S. J.
1986-01-01
The calibration of the KRASH and DYCAST models for transport aircraft is discussed. The FAA uses computer analysis techniques to predict the response of controlled impact demonstration (CID) during impact. The moment bridges can provide a direct correlation between the predictive loads or moments that the models will predict and what was experienced during the actual impact. Another goal is to examine structural failure mechanisms and correlate with analytical predictions. The bending bridges did achieve their goals and objectives. The data traces do provide some insight with respect to airframe loads and structural response. They demonstrate quite clearly what's happening to the airframe. A direct quantification of metal airframe loads was measured by the moment bridges. The measured moments can be correlated with the KRASH and DYCAST computer models. The bending bridge data support airframe failure mechanisms analysis and provide residual airframe strength estimation. It did not appear as if any of the bending bridges on the airframe exceeded limit loads. (The observed airframe fracture was due to the fuselage encounter with the tomahawk which tore out the keel beam.) The airframe bridges can be used to estimate the impact conditions and those estimates are correlating with some of the other data measurements. Structural response, frequency and structural damping are readily measured by the moment bridges.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-29
... COMMISSION PPL Bell Bend, LLC; Combined License Application for Bell Bend Nuclear Power Plant; Exemption 1.0..., Certifications, and Approvals for Nuclear Power Plants.'' This reactor is to be identified as Bell Bend Nuclear... application is based upon the U.S. EPR reference COL (RCOL) application for UniStar's Calvert Cliffs...
NASA Technical Reports Server (NTRS)
Hoff, N J; Fuchs, S J; Cirillo, Adam J
1944-01-01
This paper is the second part of a series of reports on the inward bulge type buckling of monocoque cylinders. It presents the results of an experimental investigation of buckling in combined bending and compression. In the investigation it was found that the theory developed in part I of the present series predicts the buckling load in combined bending and compression with the same degree of accuracy as the older theory does in pure bending. In the realm covered by the experiments no systematic variation of the parameter N was observed. The analysis of the test results afforded a check on the theories of buckling of a curved panel. The agreement between experiment and theory was reasonably good. In addition, the effect of the end conditions upon the stress distribution under loads and upon initial stresses was investigated.
NASA Astrophysics Data System (ADS)
Noma, Nobuyasu; Kuwabara, Toshihiko
2011-01-01
Draw-bending experiment is carried out using a 1.2 mm-thick high strength steel sheet with a tensile strength of 980 MPa and the residual curvature of the draw-bent specimens are precisely measured. The die profile of the draw-bending testing machine rotates, so that the effect of friction force on the curvature data after springback can be neglected. Moreover, in order to quantitatively evaluate the Bauschinger effect of the test material, stress reversal tests are performed using an in-plane stress reversal testing machine. Furthermore, the finite element analyses (FEA) of the draw-bending experiment are carried out. The effect of the work hardening models (isotropic or combined), element types (shell or solid), and the number of integration points in the through-thickness direction on the amount of springback (residual curvature) are investigated in detail.
Semi-analytical solution of groundwater flow in a leaky aquifer system subject to bending effect
NASA Astrophysics Data System (ADS)
Yu, Chia-Chi; Yang, Shaw-Yang; Yeh, Hund-Der
2013-04-01
SummaryThe bending of aquitard like a plate due to aquifer pumping and compression is often encountered in many practical problems of subsurface flow. This reaction will have large influence on the release of the volume of water from the aquifer, which is essential for the planning and management of groundwater resources in aquifers. However, the groundwater flow induced by pumping in a leaky aquifer system is often assumed that the total stress of aquifer maintains constant all the time and the mechanical behavior of the aquitard formation is negligible. Therefore, this paper devotes to the investigation of the effect of aquitard bending on the drawdown distribution in a leaky aquifer system, which is obviously of interest in groundwater hydrology. Based on the work of Wang et al. (2004) this study develops a mathematical model for investigating the impacts of aquitard bending and leakage rate on the drawdown of the confined aquifer due to a constant-rate pumping in the leaky aquifer system. This model contains three equations; two flow equations delineate the transient drawdown distributions in the aquitard and the confined aquifer, while the other describes the vertical displacement in response to the aquitard bending. For the case of no aquitard bending, this new solution can reduce to the Hantush Laplace-domain solution (Hantush, 1960). On the other hand, this solution without the leakage effect can reduce to the time domain solution of Wang et al. (2004). The results show that the aquifer drawdown is influenced by the bending effect at early time and by the leakage effect at late time. The results of sensitivity analysis indicate that the aquifer compaction is sensitive only at early time, causing less amount of water released from the pumped aquifer than that predicted by the traditional groundwater theory. The dimensionless drawdown is rather sensitive to aquitard's hydraulic conductivity at late time. Additionally, both the hydraulic conductivity and
Anton, Steven R; Erturk, Alper; Inman, Daniel
2012-06-01
The topic of multifunctional material systems using active or smart materials has recently gained attention in the research community. Multifunctional piezoelectric systems present the ability to combine multiple functions into a single active piezoelectric element, namely, combining sensing, actuation, or energy conversion ability with load-bearing capacity. Quantification of the bending strength of various piezoelectric materials is, therefore, critical in the development of load-bearing piezoelectric systems. Three-point bend tests are carried out on a variety of piezoelectric ceramics including soft monolithic piezoceramics (PZT-5A and PZT-5H), hard monolithic ceramics (PZT-4 and PZT-8), single-crystal piezoelectrics (PMN-PT and PMN-PZT), and commercially packaged composite devices (which contain active PZT-5A layers). A common 3-point bend test procedure is used throughout the experimental tests. The bending strengths of these materials are found using Euler-Bernoulli beam theory to be 44.9 MPa for PMN-PZT, 60.6 MPa for PMN-PT, 114.8 MPa for PZT- 5H, 123.2 MPa for PZT-4, 127.5 MPa for PZT-8, 140.4 MPa for PZT-5A, and 186.6 MPa for the commercial composite. The high strength of the commercial configuration is a result of the composite structure that allows for shear stresses on the surfaces of the piezoelectric layers, whereas the low strength of the single-crystal materials is due to their unique crystal structure, which allows for rapid propagation of cracks initiating at flaw sites. The experimental bending strength results reported, which are linear estimates without nonlinear ferroelastic considerations, are intended for use in the design of multifunctional piezoelectric systems in which the active device is subjected to bending loads. PMID:22711404
Analysis of surface cracks in finite plates under tension or bending loads
NASA Technical Reports Server (NTRS)
Newman, J. C., Jr.; Raju, I. S.
1979-01-01
Stress-intensity factors calculated with a three-dimensional, finite-element analysis for shallow and deep semielliptical surface cracks in finite elastic isotropic plates subjected to tension or bending loads are presented. A wide range of configuration parameters was investigated. The ratio of crack depth to plate thickness ranged from 0.2 to 0.8 and the ratio of crack depth to crack length ranged from 0.2 to 2.0. The effects of plate width on stress-intensity variations along the crack front was also investigated. A wide-range equation for stress-intensity factors along the crack front as a function of crack depth, crack length, plate thickness, and plate width was developed for tension and bending loads. The equation was used to predict patterns of surface-crack growth under tension or bending fatigue loads. A modified form of the equation was also used to correlate surface-crack fracture data for a brittle epoxy material within + or - 10 percent for a wide range of crack shapes and crack sizes.
Insights into the damage zones in fault-bend folds from geomechanical models and field data
NASA Astrophysics Data System (ADS)
Ju, Wei; Hou, Guiting; Zhang, Bo
2014-01-01
Understanding the rock mass deformation and stress states, the fracture development and distribution are critical to a range of endeavors including oil and gas exploration and development, and geothermal reservoir characterization and management. Geomechanical modeling can be used to simulate the forming processes of faults and folds, and predict the onset of failure and the type and abundance of deformation features along with the orientations and magnitudes of stresses. This approach enables the development of forward models that incorporate realistic mechanical stratigraphy (e.g., the bed thickness, bedding planes and competence contrasts), include faults and bedding-slip surfaces as frictional sliding interfaces, reproduce the geometry of the fold structures, and allow tracking strain and stress through the whole deformation process. In this present study, we combine field observations and finite element models to calibrate the development and distribution of fractures in the fault-bend folds, and discuss the mechanical controls (e.g., the slip displacement, ramp cutoff angle, frictional coefficient of interlayers and faults) that are able to influence the development and distribution of fractures during fault-bend folding. A linear relationship between the slip displacement and the fracture damage zone, the ramp cutoff angle and the fracture damage zone, and the frictional coefficient of interlayers and faults and the fracture damage zone was established respectively based on the geomechanical modeling results. These mechanical controls mentioned above altogether contribute to influence and control the development and distribution of fractures in the fault-bend folds.
Determination of dynamic fracture-initiation toughness using a novel impact bend test procedure
Yokoyama, T. . Faculty of Engineering Okayama Univ. of Science . Dept. of Mechanical Engineering)
1993-11-01
A novel impact bend test procedure is described for determining the dynamic fracture-initiation toughness, K[sub Id], at a loading rate (stress intensity factor rate), K[sub I], of the order of 10[sup 6] MPa [radical]m/s. A special arrangement of the split Hopkinson pressure bar is adopted to measure accurately dynamic loads applied to a fatigue-precracked bend specimen. The dynamic stress intensity factor history for the bend specimen is evaluated by means of a dynamic finite element technique. The onset of crack initiation is detected using a string gage attached on the side of the specimen near a crack tip. The value of K[sub Id] is determined from the critical dynamic stress intensity factor at crack initiation. A series of dynamic fracture tests is carried out on a 7075-T6 aluminum alloy, a Ti-6246 alloy and an AISI 4340 steel. The K[sub Id] values obtained for the three structural materials are compared with the corresponding values obtained under quasi-static loading conditions.
Weibull statistical analysis of Krouse type bending fatigue of nuclear materials
NASA Astrophysics Data System (ADS)
Haidyrah, Ahmed S.; Newkirk, Joseph W.; Castaño, Carlos H.
2016-03-01
A bending fatigue mini-specimen (Krouse-type) was used to study the fatigue properties of nuclear materials. The objective of this paper is to study fatigue for Grade 91 ferritic-martensitic steel using a mini-specimen (Krouse-type) suitable for reactor irradiation studies. These mini-specimens are similar in design (but smaller) to those described in the ASTM B593 standard. The mini specimen was machined by waterjet and tested as-received. The bending fatigue machine was modified to test the mini-specimen with a specially designed adapter. The cycle bending fatigue behavior of Grade 91 was studied under constant deflection. The S-N curve was created and mean fatigue life was analyzed using mean fatigue life. In this study, the Weibull function was predicted probably for high stress to low stress at 563, 310 and 265 MPa. The commercial software Minitab 17 was used to calculate the distribution of fatigue life under different stress levels. We have used 2 and 3- parameters Weibull analysis to introduce the probability of failure. The plots indicated that the 3- parameter Weibull distribution fits the data well.
On the deformation behavior of human dentin under compression and bending.
Zaytsev, Dmitry; Ivashov, Alexander S; Mandra, Julia V; Panfilov, Peter
2014-08-01
The cause of difference in deformation behavior of human dentin under compression and bending is discussed. Mechanical properties of dentin under these deformation schemes are compared. Microstructural study of fracture surfaces of samples and cracks in dentin is carried out, too. Dentin behaves like a brittle solid under bending, whereas it exhibits various types of response from brittle to highly deformable under compression that depended on the geometry of sample (d/h ratio of a cubic sample). It is shown that the quantity of cracks on the compressed sample increases when its elasticity and plasticity grow up, whereas under bending the failure of sample occurs due to the advancement of dominant crack. Deformation and crack growth are the channels for the accommodation of applied stress in dentin. Crack growth is the leading one when the level of tensile stress in sample is dominant, whereas deformation becomes the leading channel when compression stress is dominant. However, in both cases contribution of the concurrent channel cannot be ignored. This feature is caused by the ductile fracture mode of dentin on the mesoscopic level. PMID:24907741
Design of a 90{degree} overmoded waveguide bend
Nantista, C.; Kroll, N.M.; Nelson, E.M.
1993-04-01
A design for a 90{degree} bend for the TE{sub 01} mode in over-moded circular waveguide is presented. A pair of septa, symmetrically placed perpendicular to the plane of the bend, are adiabatically introduced into the waveguide before the bend and removed after it. Introduction of the curvature excites five propagating modes in the curved section. The finite element field solver YAP is used to calculate the propagation constants of these modes in the bend, and the guide diameter, septum depth, septum thickness, and bend radius are set so that the phase advances of all five modes through the bend are equal modulo 2{pi}. To a good approximation these modes are expected to recombine to form a pure mode at the end of the bend.
Characterization of bending loss in hollow flexible terahertz waveguides.
Doradla, Pallavi; Joseph, Cecil S; Kumar, Jayant; Giles, Robert H
2012-08-13
Attenuation characteristics of hollow, flexible, metal and metal/dielectric coated polycarbonate waveguides were investigated using an optically pumped far infrared (FIR) laser at 215 µm. The bending loss of silver coated polycarbonate waveguides were measured as a function of various bending angles, bending radii, and bore diameters. Minimal propagation losses of 1.77, 0.96 dB/m were achieved by coupling the lowest loss TE11 mode into the silver or gold coated waveguide, and HE11 mode into the silver/polystyrene coated waveguides respectively. The maximal bending loss was found to be less than 1 dB/m for waveguides of 2 to 4.1 mm bore diameters, with a 6.4 cm bend radius, and up to 150° bending angle. The investigation shows the preservation of single laser mode in smaller bore waveguides even at greater bending angles. PMID:23038558
Evolving efficiency of restraining bends within wet kaolin analog experiments
NASA Astrophysics Data System (ADS)
Hatem, Alexandra E.; Cooke, Michele L.; Madden, Elizabeth H.
2015-03-01
Restraining bends along strike-slip fault systems evolve by both propagation of new faults and abandonment of fault segments. Scaled analog modeling using wet kaolin allows for qualitative and quantitative observations of this evolution. To explore how bend geometry affects evolution, we model bends with a variety of initial angles, θ, from θ = 0° for a straight fault to θ = 30°. High-angle restraining bends (θ ≥ 20°) overcome initial inefficiencies by abandoning unfavorably oriented restraining segments and propagating multiple new, inwardly dipping, oblique-slip faults that are well oriented to accommodate convergence within the bend. Restraining bends with 0° < θ ≤ 15° maintain activity along the restraining bend segment and grow a single new oblique slip fault on one side of the bend. In all restraining bends, the first new fault propagates at ~5 mm of accumulated convergence. Particle Image Velocimetry analysis provides a complete velocity field throughout the experiments. From these data, we quantify the strike-slip efficiency of the system as the percentage of applied plate-parallel velocity accommodated as slip in the direction of plate motion along faults within the restraining bend. Bends with small θ initially have higher strike-slip efficiency compared to bends with large θ. Although they have different fault geometries, all systems with a 5 cm bend width reach a steady strike-slip efficiency of 80% after 50 mm of applied plate displacement. These experimental restraining bends resemble crustal faults in their asymmetric fault growth, asymmetric topographic gradient, and strike-slip efficiency.
Cricket antennae shorten when bending (Acheta domesticus L.)
Loudon, Catherine; Bustamante, Jorge; Kellogg, Derek W.
2014-01-01
Insect antennae are important mechanosensory and chemosensory organs. Insect appendages, such as antennae, are encased in a cuticular exoskeleton and are thought to bend only between segments or subsegments where the cuticle is thinner, more flexible, or bent into a fold. There is a growing appreciation of the dominating influence of folds in the mechanical behavior of a structure, and the bending of cricket antennae was considered in this context. Antennae will bend or deflect in response to forces, and the resulting bending behavior will affect the sensory input of the antennae. In some cricket antennae, such as in those of Acheta domesticus, there are a large number (>100) of subsegments (flagellomeres) that vary in their length. We evaluated whether these antennae bend only at the joints between flagellomeres, which has always been assumed but not tested. In addition we questioned whether an antenna undergoes a length change as it bends, which would result from some patterns of joint deformation. Measurements using light microscopy and SEM were conducted on both male and female adult crickets (Acheta domesticus) with bending in four different directions: dorsal, ventral, medial, and lateral. Bending occurred only at the joints between flagellomeres, and antennae shortened a comparable amount during bending, regardless of sex or bending direction. The cuticular folds separating antennal flagellomeres are not very deep, and therefore as an antenna bends, the convex side (in tension) does not have a lot of slack cuticle to “unfold” and does not lengthen during bending. Simultaneously on the other side of the antenna, on the concave side in compression, there is an increasing overlap in the folded cuticle of the joints during bending. Antennal shortening during bending would prevent stretching of antennal nerves and may promote hemolymph exchange between the antenna and head. PMID:25018734
Bending analysis of a general cross-ply laminate using 3D elasticity solution and layerwise theory
NASA Astrophysics Data System (ADS)
Yazdani Sarvestani, H.; Naghashpour, A.; Heidari-Rarani, M.
2015-12-01
In this study, the analytical solution of interlaminar stresses near the free edges of a general (symmetric and unsymmetric layups) cross-ply composite laminate subjected to pure bending loading is presented based on Reddy's layerwise theory (LWT) for the first time. First, the reduced form of displacement field is obtained for a general cross-ply composite laminate subjected to a bending moment by elasticity theory. Then, first-order shear deformation theory of plates and LWT is utilized to determine the global and local deformation parameters appearing in the displacement fields, respectively. One of the main advantages of the developed solution based on the LWT is exact prediction of interlaminar stresses at the boundary layer regions. To show the accuracy of this solution, three-dimensional elasticity bending problem of a laminated composite is solved for special set of boundary conditions as well. Finally, LWT results are presented for edge-effect problems of several symmetric and unsymmetric cross-ply laminates under the bending moment. The obtained results indicate high stress gradients of interlaminar stresses near the edges of laminates.
A numerical study of strike-slip bend formation with application to the Salton Sea pull-apart basin
NASA Astrophysics Data System (ADS)
Ye, Jiyang; Liu, Mian; Wang, Hui
2015-03-01
How stepovers of strike-slip faults connect to form bends is a question important for understanding the formation of push-up ranges (restraining bends) and pull-apart basins (releasing bends). We investigated the basic mechanics of this process in a simple three-dimensional viscoelastoplastic finite element model. Our model predicts localized plastic strain within stepovers that may eventually lead to the formation of strike-slip bends. Major parameters controlling strain localization include the relative fault strength, geometry of the fault system, and the plasticity model assumed. Using the Drucker-Prager plasticity model, in which the plastic yield strength of the crust depends on both shear and normal stresses, our results show that a releasing bend is easier to develop than a restraining bend under similar conditions. These results may help explain the formation of the Salton Sea pull-apart basin in Southern California 0.5-0.1 Ma ago, when the stepover between the Imperial Fault and the San Andreas Fault was connected by the Brawley seismic zone.
Displacement analysis of a bend plate test with mechanical loading and laser heating
Lam, P.S.
1997-09-01
The surface displacment of a steel plate caused by a permanent deformation as a result of local yielding was modeled by a finite element analysis. The local yielding occurs when a small area of the plate is heated by a laser beam. The calculated displacments are in good agreement with the preliminary experimental data obtained using a bend specimen with laser heating at the University of Alabama at Huntsville. It has been shown computuationally and optically that the relative displacments are less than 1mm near the laser heated area of the specimen. The results demonstrate that the experimental approach is a feasible technique for determining the residual stress under multiaxial stress field.
Contribution of Elasticity in Slab Bending
NASA Astrophysics Data System (ADS)
Fourel, L.; Goes, S. D. B.; Morra, G.
2014-12-01
Previous studies have shown that plate rheology exerts a dominant control on the shape and velocity of subducting plates. Here, we perform a systematic investigation of the, often disregarded, role of elasticity in slab bending at the trench, using simple, yet fully dynamic, set of 2.5D models where an elastic, visco-elastic or visco-elasto-plastic plate subducts freely into a purely viscous mantle. We derive a scaling relationship between the bending radius of visco-elastic slabs and the Deborah number, De, which is the ratio of Maxwell time over deformation time. We show that De controls the ratio of elastically stored energy over viscously dissipated energy and find that at De exceeding 10-2, it requires substantially less energy to bend a visco-elastic slab to the same shape as a purely viscous slab with the same viscosity (90% less for De=0.1). Elastically stored energy at higher De facilitates slab unbending and hence favours retreating modes of subduction, while trench advance only occurs for some cases with De<10-2. We use our scaling relation to estimate apparent Deborah numbers, Deapp, from a global compilation of subduction-zone parameters. Values range from 10-3 to >1, where most zones have low Deapp<10-2, but a few young plates have Deapp>0.1. Slabs with Deapp ≤ 10-2 either have very low viscosities, ≤10 times mantle viscosity, or they may be yielding, in which case our apparent Deborah number may underestimate actual De by up to an order of magnitude. If a significant portion of the low Deapp slabs yield, then elastically stored energy may actually be important in quite a large number of subduction zones. Interestingly, increasing Deapp correlates with increasing proportion of larger seismic events (b-value) in both instrumental and historic catalogues, indicating that increased contribution of elasticity may facilitate rupture in larger, less frequent earthquakes.
Great Bend tornadoes of August 30, 1974
NASA Technical Reports Server (NTRS)
Umenhofer, T. A.; Fujita, T. T.; Dundas, R.
1977-01-01
Photogrammetric analyses of movies and still pictures taken of the Great Bend, Kansas Tornado series have been used to develop design specifications for nuclear power plants and facilities. A maximum tangential velocity of 57 m/sec and a maximum vertical velocity of 27 m/sec are determined for one suction vortex having a translational velocity of 32 m/sec. Three suction vortices with radii in the 20 to 30 m range are noted in the flow field of one tornado; these suction vortices apparently form a local convergence of inflow air inside the outer portion of the tornado core.
Self-bending symmetric cusp beams
Gong, Lei; Liu, Wei-Wei; Lu, Yao; Li, Yin-Mei; Ren, Yu-Xuan
2015-12-07
A type of self-bending symmetric cusp beams with four accelerating intensity maxima is theoretically and experimentally presented. Distinguished from the reported regular polygon beams, the symmetric cusp beams simultaneously exhibit peculiar features of natural autofocusing and self-acceleration during propagation. Further, such beams take the shape of a fine longitudinal needle-like structure at the focal region and possess the strong ability of self-healing over obstacles. All these intriguing properties were verified experimentally. Particularly, the spatial profile of the reconstructed beam exhibits spatially sculpted optical structure with four siamesed curved arms. Thus, we anticipate that the structured beam will benefit optical guiding and optofluidics in surprising ways.
Bending and buckling of wet paper
NASA Astrophysics Data System (ADS)
Lee, Minhee; Kim, Seungho; Kim, Ho-Young; Mahadevan, L.
2016-04-01
Flat paper stained with water buckles and wrinkles as it swells and deforms out of the original plane. Here we quantify the geometry and mechanics of a strip of paper that swells when it imbibes water from a narrow capillary. Characterizing the hygroexpansive nature of paper shows that thickness-wise swelling is much faster than in-plane water imbibition, leading to a simple picture for the process by which the strip of paper bends out of the plane. We model the out-of-plane deformation using a quasi-static theory and show that our results are consistent with quantitative experiments.
Self-bending symmetric cusp beams
NASA Astrophysics Data System (ADS)
Gong, Lei; Liu, Wei-Wei; Ren, Yu-Xuan; Lu, Yao; Li, Yin-Mei
2015-12-01
A type of self-bending symmetric cusp beams with four accelerating intensity maxima is theoretically and experimentally presented. Distinguished from the reported regular polygon beams, the symmetric cusp beams simultaneously exhibit peculiar features of natural autofocusing and self-acceleration during propagation. Further, such beams take the shape of a fine longitudinal needle-like structure at the focal region and possess the strong ability of self-healing over obstacles. All these intriguing properties were verified experimentally. Particularly, the spatial profile of the reconstructed beam exhibits spatially sculpted optical structure with four siamesed curved arms. Thus, we anticipate that the structured beam will benefit optical guiding and optofluidics in surprising ways.
Bending of light in quantum gravity.
Bjerrum-Bohr, N E J; Donoghue, John F; Holstein, Barry R; Planté, Ludovic; Vanhove, Pierre
2015-02-13
We consider the scattering of lightlike matter in the presence of a heavy scalar object (such as the Sun or a Schwarzschild black hole). By treating general relativity as an effective field theory we directly compute the nonanalytic components of the one-loop gravitational amplitude for the scattering of massless scalars or photons from an external massive scalar field. These results allow a semiclassical computation of the bending angle for light rays grazing the Sun, including long-range ℏ contributions. We discuss implications of this computation, in particular, the violation of some classical formulations of the equivalence principle. PMID:25723201
Multifiber optical bend sensor to aid colonoscope navigation
NASA Astrophysics Data System (ADS)
Kesner, Jessica E.; Gavalis, Robb M.; Wong, Peter Y.; Cao, Caroline G. L.
2011-12-01
A colonoscopy's near-blind navigation process frequently causes disorientation for the scope operator, leading to harm for the patient. Navigation can be improved if real-time colonoscope shape, location, and orientation information is provided by a shape-tracking aid, such as a fiber optic bend sensor. Fiber optic bend sensors provide advantages over conventional electromechanical shape-trackers, including low cost and ease of integration. However, current fiber optic bend sensors lack either the ability to detect both bending direction and curvature, or the ability to detect multiple localized bends. An inexpensive multifiber bend sensor was developed to aid users in navigation during colonoscopy. The bend sensor employs active-cladding optical fibers modified with fluorescent quantum dots, bandpass filters, and a complementary metal-oxide-semiconductor imager as key components. Results from three-fiber sensors demonstrate the bend sensor's ability to measure curvature (error of 0.01 mm), direction (100% accuracy), and location (predetermined distance) of a bend in the fiber bundle. Comparison with spectroscopy data further confirmed the accuracy of the bending direction measurement for a three-fiber sensor. Future work includes improvements in fiber manufacturing to increase sensor sensitivity and consistency. An expanded 31 fiber bundle would be needed to track the full length of a colonoscope.
The design of an agent to bend DNA.
Akiyama, T; Hogan, M E
1996-01-01
An artificial DNA bending agent has been designed to assess helix flexibility over regions as small as a protein binding site. Bending was obtained by linking a pair of 15-base-long triple helix forming oligonucleotides (TFOs) by an adjustable polymeric linker. By design, DNA bending was introduced into the double helix within a 10-bp spacer region positioned between the two sites of 15-base triple helix formation. The existence of this bend has been confirmed by circular permutation and phase-sensitive electrophoresis, and the directionality of the bend has been determined as a compression of the minor helix groove. The magnitude of the resulting duplex bend was found to be dependent on the length of the polymeric linker in a fashion consistent with a simple geometric model. Data suggested that a 50-70 degrees bend was achieved by binding of the TFO chimera with the shortest linker span (18 rotatable bonds). Equilibrium analysis showed that, relative to a chimera which did not bend the duplex, the stability of the triple helix possessing a 50-70 degrees bend was reduced by less than 1 kcal/mol of that of the unbent complex. Based upon this similarity, it is proposed that duplex DNA may be much more flexible with respect to minor groove compression than previously assumed. It is shown that this unusual flexibility is consistent with recent quantitation of protein-induced minor groove bending. Images Fig. 2 Fig. 3 PMID:8901543
Nonlinear Bending Stiffness of Plates Clamped by Bolted Joints under Bending Moment
NASA Astrophysics Data System (ADS)
Naruse, Tomohiro; Shibutani, Yoji
Equivalent stiffness of plates clamped by bolted joints for designing should be evaluated according to not only the strength of bolted joints but also the deformation and vibration characteristics of the structures. When the applied external axial load or the bending moment is sufficiently small, the contact surfaces of the bolted joint are stuck together, and thus both the bolt and the clamped plates deform linearly. Although the sophisticated VDI 2230 code gives the appropriate stiffness of clamped plates for the infinitesimal deformation, the stiffness may vary nonlinearly with increasing the loading because of changing the contact state. Therefore, the present paper focuses on the nonlinear behaviour of the bending stiffness of clamped plates by using Finite Element (FE) analyses, taking the contact condition on bearing surfaces and between the plates into account. The FE models of the plates with thicknesses of 3.2, 4.5, 6.0 and 9.0 mm tightened with M8, 10, 12 and 16 bolts were constructed. The relation between bending moment and bending compliance of clamped plates is found to be categorized into three regions, namely, (i) constant compliance with fully stuck contact surfaces, (ii) transition showing the nonlinear compliance, and (iii) constant compliance with one-side contact surfaces. The mechanical models for these three regions are proposed and compared with FEM solutions. The prediction on the bounds of three regions is in a fairly good agreement except the case with smaller bolts and thicker plates.
Guided Wave Travel Time Tomography for Bends
NASA Astrophysics Data System (ADS)
Volker, Arno; Bloom, Joost
2011-06-01
The concept of predictive maintenance using permanent sensors that monitor the integrity of an installation is an interesting addition to the current method of periodic inspections. Guided wave tomography has been developed to map the wall thickness using the travel times of guided waves. The method has been demonstrated for straight pipes. The extension of this method to bends is not straightforward because natural focusing occurs due to geometrical path differences. This yields a phase jump, which complicates travel time picking. Because ray-tracing is no longer sufficient to predict the travel times a recursive wave field extrapolation has been developed. The method uses a short spatial convolution operator to propagate a wave field through a bend. The method allows to calculate the wave field at the detector ring, including the phase jump as a consequence of the natural focusing. The recursive wave field extrapolation is done in the space-frequency domain. Therefore dispersion effects can be included easily in the forward modeling. Comparison with measurements shows the accuracy of the method.
Precision Small Angle Bending of Sheet Metals Using Shear Deformation
NASA Astrophysics Data System (ADS)
Hirota, Kenji; Mori, Yorifumi
This paper deals with a new method to bend sheet metals at a small angle precisely, in which a sheet metal is slightly bent by shear deformation at negative punch-die clearance. Deformation behavior and key factors affecting on the bend angle were studied in detail with pure aluminum sheets. It was proved that the bend angle was changed in proportion to both punch penetration and negative punch-die clearance within a certain range. The same was true for high-strength steel and phosphor bronze, which are difficult to bend precisely by conventional methods due to large springback after unloading. By using this relationship as a control law, four kinds of sheet metals were precisely bent within a few degrees. This method was applied to correct the angular errors in U-bend products of high-strength steel and to bend leaf springs of phosphor bronze at an arbitrary small angle.
Local sorting, bend curvature, and particle mobility in meandering gravel bed rivers
NASA Astrophysics Data System (ADS)
Clayton, Jordan A.
2010-02-01
Hydraulic, grain scale sorting of mixed bed sediment influences the mobility of grains in discrete areas of river channels. To assess this effect, local values of surface grain size sorting were compared with measurements of bed load at corresponding locations in a bend of the Colorado River in Rocky Mountain National Park (RMNP), and the distribution of local Shields stress through the reach was derived from a two-dimensional flow model. With decreasing degrees of local sorting, the relative mobility of the fine- and coarse-size fractions of the load appeared to decrease and increase, respectively. Furthermore, back-calculated critical Shields stress values for sediment entrainment decreased with values of local sorting, particularly for the upstream portion of the reach where particles were more poorly sorted and coarse grains had higher relative exposure. To evaluate the pervasiveness of these and other patterns of sorting in gravel rivers, detailed field measurements of channel topography and surface grain size (317 pebble counts) were obtained for seven additional reaches of differing curvature (radius of curvature/width from 1 to 28) near the headwaters of the Colorado and Fall rivers in RMNP. Moderately curved and tight bends (radius of curvature/width ≤ 7) were significantly better sorted than comparatively straight reaches. Values of local sorting decreased with distance downstream for the majority of curved channels, reflecting a reduction in the standard deviation of surface grain sizes toward the lower end of the reach; this effect increased slightly with bend sharpness.