Science.gov

Sample records for bending test designed

  1. Reversal bending fatigue testing

    SciTech Connect

    Wang, Jy-An John; Wang, Hong; Tan, Ting

    2014-10-21

    Embodiments for apparatuses for testing reversal bending fatigue in an elongated beam are disclosed. Embodiments are configured to be coupled to first and second end portions of the beam and to apply a bending moment to the beam and create a pure bending condition in an intermediate portion of the beam. Embodiments are further configured to cyclically alternate the direction of the bending moment applied to the beam such that the intermediate portion of the beam cyclically bends in opposite directions in a pure bending condition.

  2. Design, Manufacture and Testing of A Bend-Twist D-Spar

    SciTech Connect

    Ong, Cheng-Huat; Tsai, Stephen W.

    1999-06-01

    Studies have indicated that an adaptive wind turbine blade design can significantly enhance the performance of the wind turbine blade on energy capture and load mitigation. In order to realize the potential benefits of aeroelastic tailoring, a bend-twist D-spar, which is the backbone of a blade, was designed and fabricated to achieve the objectives of having maximum bend-twist coupling and fulfilling desirable structural properties (031 & GJ). Two bend-twist D-spars, a hybrid of glass and carbon fibers and an all-carbon D-spar, were fabricated using a bladder process. One of the D-spars, the hybrid D-spar, was subjected to a cantilever static test and modal testing. Various parameters such as materials, laminate schedule, thickness and internal rib were examined in designing a bend-twist D-spar. The fabrication tooling, the lay-up process and the joint design for two symmetric clamshells are described in this report. Finally, comparisons between the experimental test results and numerical results are presented. The comparisons indicate that the numerical analysis (static and modal analysis) agrees well with test results.

  3. Design, modeling, fabrication and testing of a MEMS capacitive bending strain sensor

    NASA Astrophysics Data System (ADS)

    Aebersold, J.; Walsh, K.; Crain, M.; Voor, M.; Martin, M.; Hnat, W.; Lin, J.; Jackson, D.; Naber, J.

    2006-04-01

    Presented herein are the design, modelling, fabrication and testing of a MEMSbased capacitive bending strain sensor utilizing a comb drive. This sensor is designed to be integrated with a telemetry system that will monitor changes in bending strain to assist orthopaedic surgeons with the diagnosis of spinal fusion. ABAQUS/CAE version 6.5 finite element analysis (FEA) modelling software was used to predict sensor actuation, capacitance output and the avoidance of material failure. Highly doped boron silicon wafers with a low resistivity were fabricated into an interdigitated finger array employing deep reactive ion etching (DRIE) to create 150 µm sidewalls with 25 µm spacing between the adjacent fingers. For testing, the sensor was adhered to a steel beam, which was subjected to four-point bending. This mechanically changed the spacing between the interdigitated fingers as a function of strain. As expected, the capacitance output increased as an inverse function of the spacing between the interdigitated fingers, beginning with an initial capacitance of 7.56 pF at the unstrained state and increasing inversely to 17.04 pF at 1571 µɛ of bending strain. The FEA and analytical models were comparable with experimental data. The largest differential of 0.65 pF or 6.33% occurred at 1000 µɛ.

  4. Wire and Cable Cold Bending Test

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony

    2010-01-01

    One of the factors in assessing the applicability of wire or cable on the lunar surface is its flexibility under extreme cold conditions. Existing wire specifications did not address their mechanical behavior under cold, cryogenic temperature conditions. Therefore tests were performed to provide this information. To assess this characteristic 35 different insulated wire and cable pieces were cold soaked in liquid nitrogen. The segments were then subjected to bending and the force was recorded. Any failure of the insulation or jacketing was also documented for each sample tested. The bending force tests were performed at room temperature to provide a comparison to the change in force needed to bend the samples due to the low temperature conditions. The results from the bending tests were plotted and showed how various types of insulated wire and cable responded to bending under cold conditions. These results were then used to estimate the torque needed to unroll the wire under these low temperature conditions.

  5. Initial Ares I Bending Filter Design

    NASA Technical Reports Server (NTRS)

    Jang, Jiann-Woei; Bedrossian, Nazareth; Hall, Robert; Norris, H. Lee; Hall, Charles; Jackson, Mark

    2007-01-01

    The Ares-I launch vehicle represents a challenging flex-body structural environment for control system design. Software filtering of the inertial sensor output will be required to ensure control system stability and adequate performance. This paper presents a design methodology employing numerical optimization to develop the Ares-I bending filters. The filter design methodology was based on a numerical constrained optimization approach to maximize stability margins while meeting performance requirements. The resulting bending filter designs achieved stability by adding lag to the first structural frequency and hence phase stabilizing the first Ares-I flex mode. To minimize rigid body performance impacts, a priority was placed via constraints in the optimization algorithm to minimize bandwidth decrease with the addition of the bending filters. The bending filters provided here have been demonstrated to provide a stable first stage control system in both the frequency domain and the MSFC MAVERIC time domain simulation.

  6. Design and fabrication of a bending rotation fatigue test rig for in situ electrochemical analysis during fatigue testing of NiTi shape memory alloy wires.

    PubMed

    Neelakantan, Lakshman; Zglinski, Jenni Kristin; Frotscher, Matthias; Eggeler, Gunther

    2013-03-01

    The current investigation proposes a novel method for simultaneous assessment of the electrochemical and structural fatigue properties of nickel-titanium shape memory alloy (NiTi SMA) wires. The design and layout of an in situ electrochemical cell in a custom-made bending rotation fatigue (BRF) test rig is presented. This newly designed test rig allows performing a wide spectrum of experiments for studying the influence of fatigue on corrosion and vice versa. This can be achieved by performing ex situ and∕or in situ measurements. The versatility of the combined electrochemical∕mechanical test rig is demonstrated by studying the electrochemical behavior of NiTi SMA wires in 0.9% NaCl electrolyte under load. The ex situ measurements allow addressing various issues, for example, the influence of pre-fatigue on the localized corrosion resistance, or the influence of hydrogen on fatigue life. Ex situ experiments showed that a pre-fatigued wire is more susceptible to localized corrosion. The synergetic effect can be concluded from the polarization studies and specifically from an in situ study of the open circuit potential (OCP) transients, which sensitively react to the elementary repassivation events related to the local failure of the oxide layer. It can also be used as an indicator for identifying the onset of the fatigue failure. PMID:23556847

  7. Design and fabrication of a bending rotation fatigue test rig for in situ electrochemical analysis during fatigue testing of NiTi shape memory alloy wires

    NASA Astrophysics Data System (ADS)

    Neelakantan, Lakshman; Zglinski, Jenni Kristin; Frotscher, Matthias; Eggeler, Gunther

    2013-03-01

    The current investigation proposes a novel method for simultaneous assessment of the electrochemical and structural fatigue properties of nickel-titanium shape memory alloy (NiTi SMA) wires. The design and layout of an in situ electrochemical cell in a custom-made bending rotation fatigue (BRF) test rig is presented. This newly designed test rig allows performing a wide spectrum of experiments for studying the influence of fatigue on corrosion and vice versa. This can be achieved by performing ex situ and/or in situ measurements. The versatility of the combined electrochemical/mechanical test rig is demonstrated by studying the electrochemical behavior of NiTi SMA wires in 0.9% NaCl electrolyte under load. The ex situ measurements allow addressing various issues, for example, the influence of pre-fatigue on the localized corrosion resistance, or the influence of hydrogen on fatigue life. Ex situ experiments showed that a pre-fatigued wire is more susceptible to localized corrosion. The synergetic effect can be concluded from the polarization studies and specifically from an in situ study of the open circuit potential (OCP) transients, which sensitively react to the elementary repassivation events related to the local failure of the oxide layer. It can also be used as an indicator for identifying the onset of the fatigue failure.

  8. Design and fabrication of a bending rotation fatigue test rig for in situ electrochemical analysis during fatigue testing of NiTi shape memory alloy wires

    SciTech Connect

    Neelakantan, Lakshman; Zglinski, Jenni Kristin; Eggeler, Gunther; Frotscher, Matthias

    2013-03-15

    The current investigation proposes a novel method for simultaneous assessment of the electrochemical and structural fatigue properties of nickel-titanium shape memory alloy (NiTi SMA) wires. The design and layout of an in situ electrochemical cell in a custom-made bending rotation fatigue (BRF) test rig is presented. This newly designed test rig allows performing a wide spectrum of experiments for studying the influence of fatigue on corrosion and vice versa. This can be achieved by performing ex situ and/or in situ measurements. The versatility of the combined electrochemical/mechanical test rig is demonstrated by studying the electrochemical behavior of NiTi SMA wires in 0.9% NaCl electrolyte under load. The ex situ measurements allow addressing various issues, for example, the influence of pre-fatigue on the localized corrosion resistance, or the influence of hydrogen on fatigue life. Ex situ experiments showed that a pre-fatigued wire is more susceptible to localized corrosion. The synergetic effect can be concluded from the polarization studies and specifically from an in situ study of the open circuit potential (OCP) transients, which sensitively react to the elementary repassivation events related to the local failure of the oxide layer. It can also be used as an indicator for identifying the onset of the fatigue failure.

  9. Monitoring thermoplastic composites under cyclic bending tests

    NASA Astrophysics Data System (ADS)

    Boccardi, Simone; Meola, Carosena; Carlomagno, Giovanni Maria; Simeoli, Giorgio; Acierno, Domenico; Russo, Pietro

    2016-05-01

    This work is concerned with the use of infrared thermography to visualize temperature variations linked to thermo-elastic effects developing over the surface of a specimen undergoing deflection under bending tests. Several specimens are herein considered, which involve change of matrix and/or reinforcement. More specifically, the matrix is either a pure polypropylene, or a polypropylene added with a certain percentage of compatibilizing agent; the reinforcement is made of glass, or jute. Cyclic bending tests are carried out by the aid of an electromechanical actuator. Each specimen is viewed, during deflection, from one surface by an infrared imaging device. As main finding the different specimens display surface temperature variations which depend on the type of material in terms of both matrix and reinforcement.

  10. Design and development of a MEMS capacitive bending strain sensor

    NASA Astrophysics Data System (ADS)

    Aebersold, J.; Walsh, K.; Crain, M.; Martin, M.; Voor, M.; Lin, J.-T.; Jackson, D.; Hnat, W.; Naber, J.

    2006-05-01

    The design, modeling, fabrication and testing of a MEMS-based capacitive bending strain sensor utilizing a comb drive is presented. This sensor is designed to be integrated with a telemetry system that will monitor changes in bending strain to assist with the diagnosis of spinal fusion. ABAQUS/CAE finite-element analysis (FEA) software was used to predict sensor actuation, capacitance output and avoid material failure. Highly doped boron silicon wafers with a low resistivity were fabricated into an interdigitated finger array employing deep reactive ion etching (DRIE) to create 150 µm sidewalls with 25 µm spacing between the adjacent fingers. The sensor was adhered to a steel beam and subjected to four-point bending to mechanically change the spacing between the interdigitated fingers as a function of strain. As expected, the capacitance output increased as an inverse function of the spacing between the interdigitated fingers. At the unstrained state, the capacitive output was 7.56 pF and increased inversely to 17.04 pF at 1571 µɛ of bending strain. The FEA and analytical models were comparable with the largest differential of 0.65 pF or 6.33% occurring at 1000 µɛ. Advantages of this design are a dice-free process without the use of expensive silicon-on-insulator (SOI) wafers.

  11. Optimum design of ninety degree bends

    NASA Technical Reports Server (NTRS)

    Modi, Vijay; Cabuk, Hayri; Huan, Jian-Chun; Quadracci, Richard

    1992-01-01

    An algorithm for the optimum design of an internal flow component to obtain the maximum pressure rise is presented. Maximum pressure rise in a duct with simultaneous turning and diffusion is shown to be related to the control of flow separation on the passage walls. Such a flow is usually associated with downstream conditions that are desirable in turbomachinery and propulsion applications to ensure low loss and stable performance. The algorithm requires the solution of an 'adjoint' problem in addition to the 'direct' equations governing the flow in a body, which in the present analysis are assumed to be the laminar Navier-Stokes equations. The theoretical framework and computational algorithms presented in this study are for the steady Navier-Stokes equations. A procedure is developed for the numerical solution of the adjoint equations. This procedure is coupled with a direct solver in a design iteration loop, that provides a new shape with a higher pressure rise. This procedure is first validated for the design of optimum plane diffusers in two-dimensional flow. The direct Navier-Stokes and the 'adjoint' equations are solved using a finite volume formulation for spatial discretization in an artificial compressibility framework. A simplified version of the above approach is then utilized to design ninety degree diffusing bends. Calculations were carried out for a mean radius ratio at inlet of 2.5 and Reynolds numbers varying from 100 to 500. While at this stage laminar flows is assumed, it is shown that a similar approach can be conceived for turbulent flows.

  12. Design of a 90{degree} overmoded waveguide bend

    SciTech Connect

    Nantista, C.; Kroll, N.M.; Nelson, E.M.

    1993-04-01

    A design for a 90{degree} bend for the TE{sub 01} mode in over-moded circular waveguide is presented. A pair of septa, symmetrically placed perpendicular to the plane of the bend, are adiabatically introduced into the waveguide before the bend and removed after it. Introduction of the curvature excites five propagating modes in the curved section. The finite element field solver YAP is used to calculate the propagation constants of these modes in the bend, and the guide diameter, septum depth, septum thickness, and bend radius are set so that the phase advances of all five modes through the bend are equal modulo 2{pi}. To a good approximation these modes are expected to recombine to form a pure mode at the end of the bend.

  13. Reversible Bending Fatigue Testing on Zry-4 Surrogate Rods

    SciTech Connect

    Wang, Jy-An John; Wang, Hong; Bevard, Bruce Balkcom; Howard, Rob L

    2014-01-01

    Testing high-burnup spent nuclear fuel (SNF) presents many challenges in areas such as specimen preparation, specimen installation, mechanical loading, load control, measurements, data acquisition, and specimen disposal because these tasks are complicated by the radioactivity of the test specimens. Research and comparison studies conducted at Oak Ridge National Laboratory (ORNL) resulted in a new concept in 2010 for a U-frame testing setup on which to perform hot-cell reversible bending fatigue testing. Subsequently, the three-dimensional finite element analysis and the engineering design of components were completed. In 2013 the ORNL team finalized the upgrade of the U-frame testing setup and the integration of the U-frame setup into a Bose dual linear motor test bench to develop a cyclic integrated reversible-bending fatigue tester (CIRFT). A final check was conducted on the CIRFT test system in August 2013, and the CIRFT was installed in the hot cell in September 2013 to evaluate both the static and dynamic mechanical response of SNF rods under simulated loads. The fatigue responses of Zircaloy-4 (Zry-4) cladding and the role of pellet pellet and pellet clad interactions are critical to SNF vibration integrity, but such data are not available due to the unavailability of an effective testing system. While the deployment of the developed CIRFT test system in a hot cell will provide the opportunity to generate the data, the use of a surrogate rod has proven quite effective in identifying the underlying deformation mechanism of an SNF composite rod under an equivalent loading condition. This paper presents the experimental results of using surrogate rods under CIRFT reversible cyclic loading. Specifically, monotonic and cyclic bending tests were conducted on surrogate rods made of a Zry-4 tube and alumina pellet inserts, both with and without an epoxy bond.

  14. The design of an agent to bend DNA.

    PubMed Central

    Akiyama, T; Hogan, M E

    1996-01-01

    An artificial DNA bending agent has been designed to assess helix flexibility over regions as small as a protein binding site. Bending was obtained by linking a pair of 15-base-long triple helix forming oligonucleotides (TFOs) by an adjustable polymeric linker. By design, DNA bending was introduced into the double helix within a 10-bp spacer region positioned between the two sites of 15-base triple helix formation. The existence of this bend has been confirmed by circular permutation and phase-sensitive electrophoresis, and the directionality of the bend has been determined as a compression of the minor helix groove. The magnitude of the resulting duplex bend was found to be dependent on the length of the polymeric linker in a fashion consistent with a simple geometric model. Data suggested that a 50-70 degrees bend was achieved by binding of the TFO chimera with the shortest linker span (18 rotatable bonds). Equilibrium analysis showed that, relative to a chimera which did not bend the duplex, the stability of the triple helix possessing a 50-70 degrees bend was reduced by less than 1 kcal/mol of that of the unbent complex. Based upon this similarity, it is proposed that duplex DNA may be much more flexible with respect to minor groove compression than previously assumed. It is shown that this unusual flexibility is consistent with recent quantitation of protein-induced minor groove bending. Images Fig. 2 Fig. 3 PMID:8901543

  15. Security hologram foil labels with a design facilitating authenticity testing: effects of mechanical bending of substrates with the glued on holograms

    NASA Astrophysics Data System (ADS)

    Aubrecht, Ivo

    2015-05-01

    Optimal design of security holograms or diffractive optically variable image devices (DOVIDs) that would be complex enough to deter counterfeiters from attempts of mimicking but contains features readily recognizable by laymen has been addressed by many experts. This paper tries to discuss effects of mechanical bending of a flexible substrate to visual appearance of a glued-on foil DOVID. Initially plane, the DOVID is deformed to a convex- or concave-shaped curved surface. Theoretical analyses and experimental results assume the surface to be a cylindrical segment and concern rainbow-type surface-relief holograms that are recorded piecewise in a photoresist material, coated on planar and non-planar substrates.

  16. DESIGN MANUAL: SWIRL AND HELICAL BEND POLLUTION CONTROL DEVICES

    EPA Science Inventory

    This design manual contains descriptions of design procedures and operating experience to date, including results obtained, for secondary flow pollution control devices. Two types of combined sewer overflow regulators are described: the swirl and the helical bend regulator/separa...

  17. ACHRO: A program to help design achromatic bends

    SciTech Connect

    Rusthoi, D.

    1993-01-01

    ACHRO is a very simple 2000-line. FORTRAN code that provides help for the designer of the achromatic bend. Given a beam momentum, the program calculates the required drift lengths and dipole parameters which it will apply to any one of several different types of achromats. The types of achromats that the code helps to design include the Enge dual-270,'' the Brown 2-dipole, the Leboutet 3-dipole, and the Enge 4-dipole, as well as the periodic systems which can be designed to any order in symmetric, nonsymmetric and stair-step varieties. Given the dimensions into which a bend must fit, ACHRO will calculate the geometrical parameters in an X-Y plane for a single or multiple achromat, and for achromatic S-bend'' configurations where possible. ACHRO makes it very easy to optimize a bend with respect to drift lengths and magnet parameters by allowing the user to change parameter values and see the resulting calculation. Used in conjunction with a beam-transport code, ACHRO makes it possible for a designer to consider various types of achromatic bends in the same beamline layout in order to compare important bend characteristics such as dispersion, Isochronicity, sensitivity, geometric and chromatic aberrations, aperture requirements, space for diagnostics, etc., all of which are largely a function of the geometry and the type of achromat selected.

  18. ACHRO: A program to help design achromatic bends

    SciTech Connect

    Rusthoi, D.

    1993-03-01

    ACHRO is a very simple 2000-line. FORTRAN code that provides help for the designer of the achromatic bend. Given a beam momentum, the program calculates the required drift lengths and dipole parameters which it will apply to any one of several different types of achromats. The types of achromats that the code helps to design include the Enge dual-270,`` the Brown 2-dipole, the Leboutet 3-dipole, and the Enge 4-dipole, as well as the periodic systems which can be designed to any order in symmetric, nonsymmetric and stair-step varieties. Given the dimensions into which a bend must fit, ACHRO will calculate the geometrical parameters in an X-Y plane for a single or multiple achromat, and for achromatic ``S-bend`` configurations where possible. ACHRO makes it very easy to optimize a bend with respect to drift lengths and magnet parameters by allowing the user to change parameter values and see the resulting calculation. Used in conjunction with a beam-transport code, ACHRO makes it possible for a designer to consider various types of achromatic bends in the same beamline layout in order to compare important bend characteristics such as dispersion, Isochronicity, sensitivity, geometric and chromatic aberrations, aperture requirements, space for diagnostics, etc., all of which are largely a function of the geometry and the type of achromat selected.

  19. Comparing Rotary Bend Wire Fatigue Test Methods at Different Test Speeds

    NASA Astrophysics Data System (ADS)

    Weaver, Jason D.; Gutierrez, Erick J.

    2015-12-01

    Given its relatively simple setup and ability to produce results quickly, rotary bend fatigue testing is becoming commonplace in the medical device industry and is the subject of a new standard test method ASTM E2948-14. Although some research has been conducted to determine if results differ for different rotary bend fatigue test setups or test speeds, these parameters have not been extensively studied together. In this work, we investigate the effects of these two parameters on the fatigue life of three commonly used medical device alloys (ASTM F2063 nitinol, ASTM F138 stainless steel, and ASTM F1058 cobalt chromium). Results with three different rotary bend fatigue test setups revealed no difference in fatigue life among those setups. Increasing test speed, however, between 100 and 35,000 RPM led to an increased fatigue life for all three alloys studied (average number of cycles to fracture increased between 2.0 and 5.1 times between slowest and fastest test speed). Supplemental uniaxial tension tests of stainless steel wire at varying strain rates showed a strain rate dependence in the mechanical response which could in part explain the increased fatigue life at faster test speeds. How exactly strain rate dependence might affect the fatigue properties of different alloys at different alternating strain values requires further study. Given the difference in loading rates between benchtop fatigue tests and in vivo deformations, the potential for strain rate dependence should be considered when designing durability tests for medical devices and in extrapolating results of those tests to in vivo performance.

  20. Modelling The Bending Test Behaviour Of Carbon Fibre Reinforced SiC By Finite Element Method

    NASA Astrophysics Data System (ADS)

    Hofmann, S.; Koch, D.; Voggenreiter, H.

    2012-07-01

    Liquid silicon infiltrated carbon fibre reinforced SiC, has shown to be a high-potential material for thermal protection systems. The tensile and bending behaviour of the ceramic-matrix composite, C/C-SiC, were investigated in varying orientations relative to the 0/90° woven carbon fibres. The ratio of bending to tensile strength was about 1.7 to 2 depending on the loading direction. With the goal to understand this large difference finite element analyses (FEA) of the bending tests were performed. The different stress-strain behaviour of C/C-SiC under tensile and compression load were included in the FEA. Additionally the bending failure of the CMC-material was modelled by Cohesive Zone Elements (CZE) accounting for the directional tensile strength and Work of Fracture (WOF). The WOF was determined by Single Edge Notched Bending (SENB) tests. Comparable results from FEA and bending test were achieved. The presented approach could also be adapted for the design of C/C-SiC-components and structures.

  1. Compression After Impact Testing of Sandwich Structures Using the Four Point Bend Test

    NASA Technical Reports Server (NTRS)

    Nettles, Alan T.; Gregory, Elizabeth; Jackson, Justin; Kenworthy, Devon

    2008-01-01

    For many composite laminated structures, the design is driven by data obtained from Compression after Impact (CAI) testing. There currently is no standard for CAI testing of sandwich structures although there is one for solid laminates of a certain thickness and lay-up configuration. Most sandwich CAI testing has followed the basic technique of this standard where the loaded ends are precision machined and placed between two platens and compressed until failure. If little or no damage is present during the compression tests, the loaded ends may need to be potted to prevent end brooming. By putting a sandwich beam in a four point bend configuration, the region between the inner supports is put under a compressive load and a sandwich laminate with damage can be tested in this manner without the need for precision machining. Also, specimens with no damage can be taken to failure so direct comparisons between damaged and undamaged strength can be made. Data is presented that demonstrates the four point bend CAI test and is compared with end loaded compression tests of the same sandwich structure.

  2. Progress in developing DBTT determinations from miniature disk bend tests

    NASA Astrophysics Data System (ADS)

    Kohse, G.; Ames, M.; Harling, O. K.

    1986-11-01

    Experiments to investigate the possibility of obtaining ductile-to-brittle transition temperature (DBTT) data using bend tests of 3 mm diameter disks are described. A disk specimen 0.40 mm thick with two V-shaped grooves, 0.10 mm deep at right angles to each other along diameters of the disk face, is found to be suitable. In high strain-rate bend testing of materials which exhibit a Charpy V-notch (CVN) DBTT, such specimens undergo a marked change in load/deflection behavior as temperature is lowered. The temperature at which this transition occurs is 145-178 K below the CVN 68 J (50 ft-1b) temperature for three materials tested. There is some evidence that the miniature test transition correlates more consistently with the temperature at which CVN energy reaches a low value such as 7 J. This test offers interesting possibilities for in-service monitoring of critical components such as reactor pressure vessels. Further testing to investigate more fully the relationship between the miniature test and Charpy V-notch results is required.

  3. Analysis of three-point-bend test for materials with unequal tension and compression properties

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.

    1974-01-01

    An analysis capability is described for the three-point-bend test applicable to materials of linear but unequal tensile and compressive stress-strain relations. The capability consists of numerous equations of simple form and their graphical representation. Procedures are described to examine the local stress concentrations and failure modes initiation. Examples are given to illustrate the usefulness and ease of application of the capability. Comparisons are made with materials which have equal tensile and compressive properties. The results indicate possible underestimates for flexural modulus or strength ranging from 25 to 50 percent greater than values predicted when accounting for unequal properties. The capability can also be used to reduce test data from three-point-bending tests, extract material properties useful in design from these test data, select test specimen dimensions, and size structural members.

  4. Design of bending multi-layer electroactive polymer actuators

    NASA Astrophysics Data System (ADS)

    Balakrisnan, Bavani; Nacev, Alek; Smela, Elisabeth

    2015-04-01

    The effects of layer thickness and stiffness on multilayer bending actuator performance were investigated with an analytical mechanical model. Performance was evaluated in terms of curvature, blocked force, and work. Multilayer device designs corresponding to dielectric elastomer actuator, ionic polymer metal composite, and conjugated polymer structures were examined. Normalized plots of the performance metrics as functions of relative layer thickness and stiffness are presented that should allow initial, starting-point estimates for designs for particular applications. The results show that to achieve high curvature, layer thickness and stiffness may need to be set above or below particular bounds, or varied together, depending on the device configuration; often there is a broad plateau of combinations that work equally well. There is a conflict between achieving high bending and high force: the former requires the device to behave as much as possible like a simple bilayer with optimal ratios of thickness and modulus, while the latter requires thicker layers and shows little dependence on their moduli. Finally, to maximize work there are areas in the thickness-modulus plane that should be avoided, these areas varying with the configuration in sometimes surprising ways.

  5. Design of a Variable Thickness Plate to Focus Bending Waves

    NASA Technical Reports Server (NTRS)

    Schiller, Noah H.; Lin, Sz-Chin Steven; Cabell, Randolph H.; Huang, Tony Jun

    2012-01-01

    This paper describes the design of a thin plate whose thickness is tailored in order to focus bending waves to a desired location on the plate. Focusing is achieved by smoothly varying the thickness of the plate to create a type of lens, which focuses structural-borne energy. Damping treatment can then be positioned at the focal point to efficiently dissipate energy with a minimum amount of treatment. Numerical simulations of both bounded and unbounded plates show that the design is effective over a broad frequency range, focusing traveling waves to the same region of the plate regardless of frequency. This paper also quantifies the additional energy dissipated by local damping treatment installed on a variable thickness plate relative to a uniform plate.

  6. Design and Simulation Results of Waveguide Bends Used in Debuncher Cooling System

    SciTech Connect

    Sun, Ding; /Fermilab

    2000-09-13

    This note is a document about design and simulation results of waveguide bends installed with the arrays in debuncher cooling upgrade. The main feature of these bends is that they are not traditional mitered bends or round bends. Instead, a cylinder is placed in the corner area of the bend. The reason for this design is purely to overcome some practical problems: (1) since these bends are very close to the slotted foil which serves as part of the waveguide array, it is very difficult to make good joint and contact if mitered bends are used, (2) assembly difficulty due to the location of these bends, and (3) limited space requires a compact design. Shown in Figure 1 is a schematic drawing of a bend. Dimensions of bends for each frequency band are listed in Table 1. Shown in Figure 2-5 are the simulation results using HFSS. One of the bends was fabricated with flanges on both ends and measured using a Network Analyzer. The HFSS result was confirmed by the measured data.

  7. Evaluation of ultimate tensile strength using Miniature Disk Bend Test

    NASA Astrophysics Data System (ADS)

    Kumar, Kundan; Pooleery, Arun; Madhusoodanan, K.; Singh, R. N.; Chakravartty, J. K.; Shriwastaw, R. S.; Dutta, B. K.; Sinha, R. K.

    2015-06-01

    Correlations for evaluation of Ultimate Tensile Strength (UTS) using Miniature Disk Bend Test (MDBT) or Small Punch Test (SPT) has been an open issue since the development of the techniques. The larger plastic strains, in tri-axial state of stress during SPT, make the translation to the equivalent uniaxial parameter less certain. Correlations based on Pmax of load-displacement curve are also in disagreement as the point corresponding to Pmax does not represent a necking situation as in case of UTS, in a uniaxial tensile test. In present work, an attempt has been made for locating necking zone, which appears prior to Pmax, through experiments and FEM analyses. Experimental results on disk specimens from 20MnMoNi55, CrMoV ferritic steel and SS304LN materials along with FEM analyses found that load corresponding to 0.48 mm displacement is to be very close to the necking zone, and gives best fit for a UTS correlation.

  8. Modeling of magnetostrictive Galfenol sensor and validation using four point bending test

    SciTech Connect

    Datta, Supratik; Atulasimha, Jayasimha; Flatau, Alison B.

    2007-05-01

    A magnetomechanical bending model has been developed to predict the magnetic induction, elastic, and magnetostrictive strain and bending stress in a magnetostrictive member subjected simultaneously to bending load and dc magnetic bias field. This model was obtained by coupling Euler-Bernoulli beam theory with an energy-based statistical model. The bending model predictions were within 10% of the experimental results obtained from a uniquely devised four point bending test of Galfenol (nominal composition of 84 at. % Fe and 16 at. % Ga) performed under different magnetic bias fields.

  9. Tension and Bending Testing of an Integral T-Cap for Stitched Composite Airframe Joints

    NASA Technical Reports Server (NTRS)

    Lovejoy, Andrew E.; Leone, Frank A., Jr.

    2016-01-01

    The Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) is a structural concept that was developed by The Boeing Company to address the complex structural design aspects associated with a pressurized hybrid wing body aircraft configuration. An important design feature required for assembly is the integrally stitched T-cap, which provides connectivity of the corner (orthogonal) joint between adjacent panels. A series of tests were conducted on T-cap test articles, with and without a rod stiffener penetrating the T-cap web, under tension (pull-off) and bending loads. Three designs were tested, including the baseline design used in large-scale test articles. The baseline had only the manufacturing stitch row adjacent to the fillet at the base of the T-cap web. Two new designs added stitching rows to the T-cap web at either 0.5- or 1.0-inch spacing along the height of the web. Testing was conducted at NASA Langley Research Center to determine the behavior of the T-cap region resulting from the applied loading. Results show that stitching arrests the initial delamination failures so that the maximum strength capability exceeds the load at which the initial delaminations develop. However, it was seen that the added web stitching had very little effect on the initial delamination failure load, but actually decreased the initial delamination failure load for tension loading of test articles without a stiffener passing through the web. Additionally, the added web stitching only increased the maximum load capability by between 1% and 12.5%. The presence of the stiffener, however, did increase the initial and maximum loads for both tension and bending loading as compared to the stringerless baseline design. Based on the results of the few samples tested, the additional stitching in the T-cap web showed little advantage over the baseline design in terms of structural failure at the T-cap web/skin junction for the current test articles.

  10. 16 CFR Figure 1 to Part 1512 - Bicycle Front Fork Cantilever Bending Test Rig

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Bicycle Front Fork Cantilever Bending Test Rig 1 Figure 1 to Part 1512 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS... Fork Cantilever Bending Test Rig EC03OC91.070...

  11. 16 CFR Figure 1 to Part 1512 - Bicycle Front Fork Cantilever Bending Test Rig

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Bicycle Front Fork Cantilever Bending Test Rig 1 Figure 1 to Part 1512 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS... Fork Cantilever Bending Test Rig EC03OC91.070...

  12. 16 CFR Figure 1 to Part 1512 - Bicycle Front Fork Cantilever Bending Test Rig

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Bicycle Front Fork Cantilever Bending Test Rig 1 Figure 1 to Part 1512 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS... Fork Cantilever Bending Test Rig EC03OC91.070...

  13. 16 CFR Figure 1 to Part 1512 - Bicycle Front Fork Cantilever Bending Test Rig

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 2 2013-01-01 2013-01-01 false Bicycle Front Fork Cantilever Bending Test Rig 1 Figure 1 to Part 1512 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS... Fork Cantilever Bending Test Rig EC03OC91.070...

  14. 16 CFR Figure 1 to Part 1512 - Bicycle Front Fork Cantilever Bending Test Rig

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Bicycle Front Fork Cantilever Bending Test Rig 1 Figure 1 to Part 1512 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS... Fork Cantilever Bending Test Rig EC03OC91.070...

  15. Prediction of Springback After Draw-Bending Test Using Different Material Models

    NASA Astrophysics Data System (ADS)

    Racz, Sever-Gabriel; Khan, Salim; Chalal, Hocine; Abed-Meraim, Farid; Balan, Tudor

    2011-01-01

    Within the framework of sheet metal forming, the importance of hardening models for springback predictions has been often emphasized. While some specific applications require very accurate models, in many common situations simpler (isotropic hardening) models may be sufficient. In these conditions, investigation of the impact of hardening models requires well defined test configurations and accurate measurements to generate the reference data. Specific draw-bend tests have been especially conceived for this purpose. In this work, such a draw-bending experimental device has been designed, for use on a biaxial tension machine. Three different steel sheets have been tested (one mild steel sheet and two HSS sheets) with thicknesses between 0.8 and 2 mm. Up to three different back-force levels were used for the tests. Wall curvatures and springback angles were measured. Finite element simulations of the tests were performed. A parameter sensitivity analysis has been carried out in order to determine the numerical parameters ensuring accurate springback results. The tests were simulated using an isotropic hardening model and a combined isotropic-kinematic hardening model. The impact of the hardening model is explored for the various test configurations and conclusions are drawn concerning their relative importance.

  16. A New High-Speed, High-Cycle, Gear-Tooth Bending Fatigue Test Capability

    NASA Technical Reports Server (NTRS)

    Stringer, David B.; Dykas, Brian D.; LaBerge, Kelsen E.; Zakrajsek, Andrew J.; Handschuh, Robert F.

    2011-01-01

    A new high-speed test capability for determining the high cycle bending-fatigue characteristics of gear teeth has been developed. Experiments were performed in the test facility using a standard spur gear test specimens designed for use in NASA Glenn s drive system test facilities. These tests varied in load condition and cycle-rate. The cycle-rate varied from 50 to 1000 Hz. The loads varied from high-stress, low-cycle loads to near infinite life conditions. Over 100 tests were conducted using AISI 9310 steel spur gear specimen. These results were then compared to previous data in the literature for correlation. Additionally, a cycle-rate sensitivity analysis was conducted by grouping the results according to cycle-rate and comparing the data sets. Methods used to study and verify load-path and facility dynamics are also discussed.

  17. Test Equal Bending by Gravity for Space and Time

    NASA Astrophysics Data System (ADS)

    Sweetser, Douglas

    2009-05-01

    For the simplest problem of gravity - a static, non-rotating, spherically symmetric source - the solution for spacetime bending around the Sun should be evenly split between time and space. That is true to first order in M/R, and confirmed by experiment. At second order, general relativity predicts different amounts of contribution from time and space without a physical justification. I show an exponential metric is consistent with light bending to first order, measurably different at second order. All terms to all orders show equal contributions from space and time. Beautiful minimalism is Nature's way.

  18. SiC-CMC-Zircaloy-4 Nuclear Fuel Cladding Performance during 4-Point Tubular Bend Testing

    SciTech Connect

    IJ van Rooyen; WR Lloyd; TL Trowbridge; SR Novascone; KM Wendt; SM Bragg-Sitton

    2013-09-01

    The U.S. Department of Energy Office of Nuclear Energy (DOE NE) established the Light Water Reactor Sustainability (LWRS) program to develop technologies and other solutions to improve the reliability, sustain the safety, and extend the life of current reactors. The Advanced LWR Nuclear Fuel Development Pathway in the LWRS program encompasses strategic research focused on improving reactor core economics and safety margins through the development of an advanced fuel cladding system. Recent investigations of potential options for “accident tolerant” nuclear fuel systems point to the potential benefits of silicon carbide (SiC) cladding. One of the proposed SiC-based fuel cladding designs being investigated incorporates a SiC ceramic matrix composite (CMC) as a structural material supplementing an internal Zircaloy-4 (Zr-4) liner tube, referred to as the hybrid clad design. Characterization of the advanced cladding designs will include a number of out-of-pile (nonnuclear) tests, followed by in-pile irradiation testing of the most promising designs. One of the out-of-pile characterization tests provides measurement of the mechanical properties of the cladding tube using four point bend testing. Although the material properties of the different subsystems (materials) will be determined separately, in this paper we present results of 4-point bending tests performed on fully assembled hybrid cladding tube mock-ups, an assembled Zr-4 cladding tube mock-up as a standard and initial testing results on bare SiC-CMC sleeves to assist in defining design parameters. The hybrid mock-up samples incorporated SiC-CMC sleeves fabricated with 7 polymer impregnation and pyrolysis (PIP) cycles. To provide comparative information; both 1- and 2-ply braided SiC-CMC sleeves were used in this development study. Preliminary stress simulations were performed using the BISON nuclear fuel performance code to show the stress distribution differences for varying lengths between loading points

  19. Four-point Bend Testing of Irradiated Monolithic U-10Mo Fuel

    SciTech Connect

    Rabin, B. H.; Lloyd, W. R.; Schulthess, J. L.; Wright, J. K.; Lind, R. P.; Scott, L.; Wachs, K. M.

    2015-03-01

    This paper presents results of recently completed studies aimed at characterizing the mechanical properties of irradiated U-10Mo fuel in support of monolithic base fuel qualification. Mechanical properties were evaluated in four-point bending. Specimens were taken from fuel plates irradiated in the RERTR-12 and AFIP-6 Mk. II irradiation campaigns, and tests were conducted in the Hot Fuel Examination Facility (HFEF) at Idaho National Laboratory (INL). The monolithic fuel plates consist of a U-10Mo fuel meat covered with a Zr diffusion barrier layer fabricated by co-rolling, clad in 6061 Al using a hot isostatic press (HIP) bonding process. Specimens exhibited nominal (fresh) fuel meat thickness ranging from 0.25 mm to 0.64 mm, and fuel plate average burnup ranged from approximately 0.4 x 1021 fissions/cm3 to 6.0 x 1021 fissions/cm3. After sectioning the fuel plates, the 6061 Al cladding was removed by dissolution in concentrated NaOH. Pre- and post-dissolution dimensional inspections were conducted on test specimens to facilitate accurate analysis of bend test results. Four-point bend testing was conducted on the HFEF Remote Load Frame at a crosshead speed of 0.1 mm/min using custom-designed test fixtures and calibrated load cells. All specimens exhibited substantially linear elastic behavior and failed in a brittle manner. The influence of burnup on the observed slope of the stress-strain curve and the calculated fracture strength is discussed.

  20. Optimum Design of Composite Sandwich Structures Subjected to Combined Torsion and Bending Loads

    NASA Astrophysics Data System (ADS)

    Li, Xiang; Li, Gangyan; Wang, Chun H.; You, Min

    2012-06-01

    This research is motivated by the increase use of composite sandwich structures in a wide range of industries such as automotive, aerospace and civil infrastructure. To maximise stiffness at minimum weight, the paper develops a minimum weight optimization method for sandwich structure under combined torsion and bending loads. We first extend the minimum-weight design of sandwich structures under bending load to the case of torsional deformation and then present optimum solutions for the combined requirements of both bending and torsional stiffness. Three design cases are identified for a sandwich structure required to meet multiple design constraints of torsion and bending stiffness. The optimum solutions for all three cases are derived. To illustrate the newly developed optimum design solutions, numerical examples are presented for sandwich structures made of either isotropic face skins or orthotropic composite face skins.

  1. Improved design of a polarization converter based on semiconductor optical waveguide bends.

    PubMed

    Obayya, S S; Rahman, B M; Grattan, K T; El-Mikati, H A

    2001-10-20

    By using an efficient vector finite-element-based beam-propagation method, we present an improved design of a polarization converter. This design relies on the use of a single-section deeply etched bent semiconductor waveguide with slanted sidewalls. By careful adjustment of the bend radius, the waveguide width, and the sidewall angle we obtained a nearly 100% polarization conversion ratio with no appreciable radiation loss and a bending angle of less than 180 degrees . PMID:18364819

  2. Reversal bending fatigue test system for investigating vibration integrity of spent nuclear fuel during transportation

    DOE PAGESBeta

    Wang, Jy -An; Wang, Hong; Bevard, Bruce Balkcom; Howard, Rob L.; Flanagan, Michelle E.

    2014-09-01

    Transportation packages for spent nuclear fuel (SNF) must meet safety requirements under normal and accident conditions as specified by federal regulations. During transportation, SNF experiences unique conditions and challenges to cladding integrity due to the vibrational and impact loading during road or rail shipment. Oak Ridge National Laboratory (ORNL) has been developing testing capabilities that can be used to improve the understanding of the impacts on SNF integrity due to vibration loading, especially for high burn-up SNF in normal transportation operation conditions. This information can be used to meet the nuclear industry and U.S.Nuclear Regulatory Commission needs in the areamore » of safety and security of SNF storage and transportation operations. The ORNL developed test system can perform reversal bending fatigue testing to evaluate both the static and dynamic mechanical response of SNF rods under simulated loads. The testing apparatus is also designed to meet the challenges of hot cell operation, including remote installation and detachment of the SNF test specimen, in situ test specimen deformation measurement, and implementation of a driving system suitable for use in a hot cell. The system contains a U frame set-up equipped with uniquely designed grip rigs to protect the SNF rod sample and to ensure valid test results, and uses three specially designed linear variable differential transformers to obtain the in situ curvature measurement. A variety of surrogate test rods have been used to develop and calibrate the test system as well as in performing a series of systematic cyclic fatigue tests. The surrogate rods include stainless steel (SS) cladding, SS cladding with cast epoxy and SS cladding with alumina pellet inserts simulating fuel pellets. Testing to date has shown that the interface bonding between the SS cladding and the alumina pellets has a significant impact on the bending response of the test rods as well as their fatigue strength

  3. Reversal bending fatigue test system for investigating vibration integrity of spent nuclear fuel during transportation

    SciTech Connect

    Wang, Jy -An; Wang, Hong; Bevard, Bruce Balkcom; Howard, Rob L.; Flanagan, Michelle E.

    2014-09-01

    Transportation packages for spent nuclear fuel (SNF) must meet safety requirements under normal and accident conditions as specified by federal regulations. During transportation, SNF experiences unique conditions and challenges to cladding integrity due to the vibrational and impact loading during road or rail shipment. Oak Ridge National Laboratory (ORNL) has been developing testing capabilities that can be used to improve the understanding of the impacts on SNF integrity due to vibration loading, especially for high burn-up SNF in normal transportation operation conditions. This information can be used to meet the nuclear industry and U.S.Nuclear Regulatory Commission needs in the area of safety and security of SNF storage and transportation operations. The ORNL developed test system can perform reversal bending fatigue testing to evaluate both the static and dynamic mechanical response of SNF rods under simulated loads. The testing apparatus is also designed to meet the challenges of hot cell operation, including remote installation and detachment of the SNF test specimen, in situ test specimen deformation measurement, and implementation of a driving system suitable for use in a hot cell. The system contains a U frame set-up equipped with uniquely designed grip rigs to protect the SNF rod sample and to ensure valid test results, and uses three specially designed linear variable differential transformers to obtain the in situ curvature measurement. A variety of surrogate test rods have been used to develop and calibrate the test system as well as in performing a series of systematic cyclic fatigue tests. The surrogate rods include stainless steel (SS) cladding, SS cladding with cast epoxy and SS cladding with alumina pellet inserts simulating fuel pellets. Testing to date has shown that the interface bonding between the SS cladding and the alumina pellets has a significant impact on the bending response of the test rods as well as their fatigue strength. The

  4. Reversible Bending Fatigue Test System for Investigating Vibration Integrity of Spent Nuclear Fuel during Transportation

    SciTech Connect

    Wang, Jy-An John; Wang, Hong; Bevard, Bruce Balkcom; Howard, Rob L; Flanagan, Michelle

    2013-01-01

    Transportation packages for spent nuclear fuel (SNF) must meet safety requirements under normal and accident conditions as specified by federal regulations. During transportation, SNF experiences unique conditions and challenges to cladding integrity due to the vibrational and impact loading during road or rail shipment. Oak Ridge National Laboratory (ORNL) has been developing testing capabilities that can be used to improve the understanding of the impacts on SNF integrity due to vibration loading, especially for high burn-up SNF in normal transportation operation conditions. This information can be used to meet the nuclear industry and U.S. Nuclear Regulatory Commission needs in the area of safety and security of spent nuclear fuel storage and transport operations. The ORNL developed test system can perform reversible-bending fatigue testing to evaluate both the static and dynamic mechanical response of SNF rods under simulated loads. The testing apparatus is also designed to meet the challenges of hot-cell operation, including remote installation and detachment of the SNF test specimen, in-situ test specimen deformation measurement, and implementation of a driving system suitable for use in a hot cell. The system contains a U-frame set-up equipped with uniquely designed grip rigs, to protect SNF rod and to ensure valid test results, and use of 3 specially designed LVDTs to obtain the in-situ curvature measurement. A variety of surrogate test rods have been used to develop and calibrate the test system as well as in performing a series of systematic cyclic fatigue tests. The surrogate rods include stainless steel (SS) cladding, SS cladding with cast epoxy, and SS cladding with alumina pellets inserts simulating fuel pellets. Testing to date has shown that the interface bonding between the SS cladding and the alumina pellets has a significant impact on the bending response of the test rods as well as their fatigue strength. The failure behaviors observed from

  5. Comparison of the bending performance of solid and cannulated spinal pedicle screws using finite element analyses and biomechanical tests.

    PubMed

    Shih, Kao-Shang; Hsu, Ching-Chi; Hou, Sheng-Mou; Yu, Shan-Chuen; Liaw, Chen-Kun

    2015-09-01

    Spinal pedicle screw fixations have been used extensively to treat fracture, tumor, infection, or degeneration of the spine. Cannulated spinal pedicle screws with bone cement augmentation might be a useful method to ameliorate screw loosening. However, cannulated spinal pedicle screws might also increase the risk of screw breakage. Thus, the purpose of this study was to investigate the bending performance of different spinal pedicle screws with either solid design or cannulated design. Three-dimensional finite element models, which consisted of the spinal pedicle screw and the screw's hosting material, were first constructed. Next, monotonic and cyclic cantilever bending tests were both applied to validate the results of the finite element analyses. Finally, both the numerical and experimental approaches were evaluated and compared. The results indicated that the cylindrical spinal pedicle screws with a cannulated design had significantly poorer bending performance. In addition, conical spinal pedicle screws maintained the original bending performance, whether they were solid or of cannulated design. This study may provide useful recommendations to orthopedic surgeons before surgery, and it may also provide design rationales to biomechanical engineers during the development of spinal pedicle screws. PMID:26208430

  6. A Bending Test for Determining the Atterberg Plastic Limit in Soils.

    PubMed

    Moreno-Maroto, José Manuel; Alonso-Azcárate, Jacinto

    2016-01-01

    The thread rolling test is the most commonly used method to determine the plastic limit (PL) in soils. It has been widely criticized, because a considerable subjective judgment from the operator that carries out the test is involved during its performance, which may affect the final result significantly. Different alternative methods have been put forward, but they cannot compete with the standard rolling test in speed, simplicity and cost. In an earlier study by the authors, a simple method with a simple device to determine the PL was presented (the "thread bending test" or simply "bending test"); this method allowed the PL to be obtained with minimal operator interference. In the present paper a version of the original bending test is shown. The experimental basis is the same as the original bending test: soil threads which are 3 mm in diameter and 52 mm long are bent until they start to crack, so that both the bending produced and its related moisture content are determined. However, this new version enables the calculation of PL from an equation, so it is not necessary to plot any curve or straight line to obtain this parameter and, in fact, the PL can be achieved with only one experimental point (but two experimental points are recommended). The PL results obtained with this new version are very similar to those obtained through the original bending test and the standard rolling test by a highly experienced operator. Only in particular cases of high plasticity cohesive soils, there is a greater difference in the result. Despite this, the bending test works very well for all types of soil, both cohesive and very low plasticity soils, where the latter are the most difficult to test via the standard thread rolling method. PMID:27404389

  7. Design and fabrication of Rene 41 advanced structural panels. [their performance under axial compression, shear, and bending loads

    NASA Technical Reports Server (NTRS)

    Greene, B. E.; Northrup, R. F.

    1975-01-01

    The efficiency was investigated of curved elements in the design of lightweight structural panels under combined loads of axial compression, inplane shear, and bending. The application is described of technology generated in the initial aluminum program to the design and fabrication of Rene 41 panels for subsequent performance tests at elevated temperature. Optimum designs for two panel configurations are presented. The designs are applicable to hypersonic airplane wing structure, and are designed specifically for testing at elevated temperature in the hypersonic wing test structure located at the NASA Flight Research Center. Fabrication methods developed to produce the Rene panels are described, and test results of smaller structural element specimens are presented to verify the design and fabrication methods used. Predicted strengths of the panels under several proposed elevated temperature test load conditions are presented.

  8. TEST SYSTEM FOR EVALUATING SPENT NUCLEAR FUEL BENDING STIFFNESS AND VIBRATION INTEGRITY

    SciTech Connect

    Wang, Jy-An John; Wang, Hong; Bevard, Bruce Balkcom; Howard, Rob L; Flanagan, Michelle

    2013-01-01

    Transportation packages for spent nuclear fuel (SNF) must meet safety requirements specified by federal regulations. For normal conditions of transport, vibration loads incident to transport must be considered. This is particularly relevant for high-burnup fuel (>45 GWd/MTU). As the burnup of the fuel increases, a number of changes occur that may affect the performance of the fuel and cladding in storage and during transportation. The mechanical properties of high-burnup de-fueled cladding have been previously studied by subjecting defueled cladding tubes to longitudinal (axial) tensile tests, ring-stretch tests, ring-compression tests, and biaxial tube burst tests. The objective of this study is to investigate the mechanical properties and behavior of both the cladding and the fuel in it under vibration/cyclic loads similar to the sustained vibration loads experienced during normal transport. The vibration loads to SNF rods during transportation can be characterized by dynamic, cyclic, bending loads. The transient vibration signals in a specified transport environment can be analyzed, and frequency, amplitude and phase components can be identified. The methodology being implemented is a novel approach to study the vibration integrity of actual SNF rod segments through testing and evaluating the fatigue performance of SNF rods at defined frequencies. Oak Ridge National Laboratory (ORNL) has developed a bending fatigue system to evaluate the response of the SNF rods to vibration loads. A three-point deflection measurement technique using linear variable differential transformers is used to characterize the bending rod curvature, and electromagnetic force linear motors are used as the driving system for mechanical loading. ORNL plans to use the test system in a hot cell for SNF vibration testing on high burnup, irradiated fuel to evaluate the pellet-clad interaction and bonding on the effective lifetime of fuel-clad structure bending fatigue performance. Technical

  9. Breaking Nano-Spaghetti: Bending and Fracture Tests of Nanofibers.

    PubMed

    Corrales, Tomas P; Friedemann, Kathrin; Fuchs, Regina; Roy, Clément; Crespy, Daniel; Kappl, Michael

    2016-02-01

    Nanofibers composed of silica nanoparticles, used as structural building blocks, and polystyrene nanoparticles introduced as sacrificial material are fabricated by bicolloidal electrospinning. During fiber calcination, sacrificial particles are combusted leaving voids with controlled average sizes. The mechanical properties of the sintered silica fibers with voids are investigated by suspending the nanofiber over a gap and performing three-point bending experiments with atomic force microscopy. We investigate three different cases: fibers without voids and with 60 or 260 nm voids. For each case, we study how the introduction of the voids can be used to control the mechanical stiffness and fracture properties of the fibers. Fibers with no voids break in their majority at a single fracture point (70% of cases), segmenting the fiber into two pieces, while the remaining cases (30%) fracture at multiple points, leaving a gap in the suspended fiber. On the other hand, fibers with 60 nm voids fracture in only 25% of the cases at a single point, breaking predominantly at multiple points (75%). Finally, fibers with 260 nm voids fracture roughly in equal proportions leaving two and multiple pieces (46% vs 54%, respectively). The present study is a prerequisite for processes involving the controlled sectioning of nanofibers to yield anisometric particles. PMID:26750590

  10. Comparison of ring compression testing to three point bend testing for unirradiated ZIRLO cladding

    SciTech Connect

    None, None

    2015-04-01

    Safe shipment and storage of nuclear reactor discharged fuel requires an understanding of how the fuel may perform under the various conditions that can be encountered. One specific focus of concern is performance during a shipment drop accident. Tests at Savannah River National Laboratory (SRNL) are being performed to characterize the properties of fuel clad relative to a mechanical accident condition such as a container drop. Unirradiated ZIRLO tubing samples have been charged with a range of hydride levels to simulate actual fuel rod levels. Samples of the hydrogen charged tubes were exposed to a radial hydride growth treatment (RHGT) consisting of heating to 400°C, applying initial hoop stresses of 90 to 170 MPa with controlled cooling and producing hydride precipitates. Initial samples have been tested using both a) ring compression test (RCT) which is shown to be sensitive to radial hydride and b) three-point bend tests which are less sensitive to radial hydride effects. Hydrides are generated in Zirconium based fuel cladding as a result of coolant (water) oxidation of the clad, hydrogen release, and a portion of the released (nascent) hydrogen absorbed into the clad and eventually exceeding the hydrogen solubility limit. The orientation of the hydrides relative to the subsequent normal and accident strains has a significant impact on the failure susceptability. In this study the impacts of stress, temperature and hydrogen levels are evaluated in reference to the propensity for hydride reorientation from the circumferential to the radial orientation. In addition the effects of radial hydrides on the Quasi Ductile Brittle Transition Temperature (DBTT) were measured. The results suggest that a) the severity of the radial hydride impact is related to the hydrogen level-peak temperature combination (for example at a peak drying temperature of 400°C; 800 PPM hydrogen has less of an impact/ less radial hydride fraction than 200 PPM hydrogen for the same thermal

  11. Design, fabrication, and characterization of Si-based ARROW photonic crystal bend waveguides and power splitters.

    PubMed

    Chen, Jian-Hua; Huang, Yang-Tung; Yang, Yu-Lin; Lu, Ming-Feng; Shieh, Jia-Min

    2012-08-20

    Silicon-based (Si-based) photonic crystal waveguide based on antiresonant reflecting optical waveguide (ARROW PCW) structures consisting of 60° bends and Y-branch power splitters were designed and first efficiently fabricated and characterized. The ARROW structure has a relatively large core size suitable for efficient coupling with a single-mode fiber. Simple capsule-shaped topography defects at 60° photonic crystal (PC) bend corners and Y-branch PC power splitters were used for increasing the broadband light transmission. In the preliminary measurements, the propagation losses of the ARROW PC straight waveguides lower than 2 dB/mm with a long length of 1500 μm were achieved. The average bend loss of 60° PC bend waveguides was lower than 3 dB/bend. For the Y-branch PC power splitters, the average power imbalance was lower than 0.6 dB. The results show that our fabricated Si-based ARROW PCWs with 60° bends and Y-branch structures can provide good light transmission and power-splitting ability. PMID:22907016

  12. Optimum structural design with plate bending elements - A survey

    NASA Technical Reports Server (NTRS)

    Haftka, R. T.; Prasad, B.

    1981-01-01

    A survey is presented of recently published papers in the field of optimum structural design of plates, largely with respect to the minimum-weight design of plates subject to such constraints as fundamental frequency maximization. It is shown that, due to the availability of powerful computers, the trend in optimum plate design is away from methods tailored to specific geometry and loads and toward methods that can be easily programmed for any kind of plate, such as finite element methods. A corresponding shift is seen in optimization from variational techniques to numerical optimization algorithms. Among the topics covered are fully stressed design and optimality criteria, mathematical programming, smooth and ribbed designs, design against plastic collapse, buckling constraints, and vibration constraints.

  13. Bending behavior of lapped plastic ehv cables

    SciTech Connect

    Morgan, G H; Muller, A C

    1980-01-01

    One of the factors delaying the development of lapped polymeric cables has been their reputed poor bending characteristics. Complementary programs were begun at BNL several years ago to mathematically model the bending of synthetic tape cables and to develop novel plastic tapes designed to have moduli more favorable to bending. A series of bend tests was recently completed to evaluate the bending performance of several tapes developed for use in experimental superconducting cables. The program is discussed and the results of the bend tests are summarized.

  14. Design of a multi-bend achromat lattice for 3 GeV synchrotron light source

    NASA Astrophysics Data System (ADS)

    Kim, Eun-San

    2016-03-01

    We present a lattice design for a low-emittance and high-brilliance 3 GeV synchrotron light source that has been widely investigated in the world. We show the design results for a MBA (Multi-Bend Achromat) lattice with an emittance of 1.3 nm and 282.4 m circumference. Each cell has 5 bending magnets that consist of outer two with bending angle of 4.5° and inner three with bending angle of 7°. The lattice is designed to be flexible and consists of 12 straight sections in which one straight section has a length of 5.9 m. We have studied the dynamic aperture in the lattice with machine errors. It is shown that the designed low-emittance lattice provides sufficient dynamic aperture after COD correction. We present the results of variations of emittance, energy spread and dynamic aperture due to in-vacuum undulators in the straight sections. We performed particle tracking after the beam injection to investigate the efficiency of the injection scheme. We show the designed results of an injection scheme that shows the space allocation in injection section and the particle motions of injected beam. Our designed lattice provides a good optimization in terms of the emittance and brilliance as a light source for 3 GeV energy and circumference of 28 m.

  15. Static and Cyclic Load-Deflection Characteristics of NiTi Orthodontic Archwires Using Modified Bending Tests

    NASA Astrophysics Data System (ADS)

    Nili Ahmadabadi, Mahmoud; Shahhoseini, Tahereh; Habibi-Parsa, Mohamad; Haj-Fathalian, Maryam; Hoseinzadeh-Nik, Tahereh; Ghadirian, Hananeh

    2009-08-01

    Near-equiatomic nickel-titanium (nitinol) has the ability to return to a former shape when subjected to an appropriate thermomechanical procedure. One of the most successful applications of nitinol is orthodontic archwire. One of the suitable characteristics of these wires is superelasticity, a phenomenon that allows better-tolerated loading conditions during clinical therapy. Superelastic nitinol wires deliver clinically desired light continuous force enabling effective tooth movement with minimal damage for periodontal tissues. In this research, a special three-point bending fixture was invented and designed to determine the superelastic property in simulated clinical conditions, where the wire samples were held in the fixture similar to an oral cavity. In this experimental study, the load-deflection characteristics of superelastic NiTi commercial wires were studied through three-point bending test. The superelastic behavior was investigated by focusing on bending time, temperature, and number of cycles which affects the energy dissipating capacity. Experimental results show that the NiTi archwires are well suited for cyclic load-unload dental applications. Results show reduction in superelastic property for used archwires after long-time static bending.

  16. Flexural strength of dental composite restoratives: comparison of biaxial and three-point bending test.

    PubMed

    Chung, S M; Yap, A U J; Chandra, S P; Lim, C T

    2004-11-15

    This study compared two test methods used to evaluate the flexural strength of resin-based dental composites. The two test methods evaluated were the three-point bending test4 and the biaxial flexural test. Materials used in this investigation were from the same manufacturer (3M ESPE) and included microfill (A110), minifill (Z100 and Filtek Z250), polyacid modified (F2000), and flowable [Filtek Flowable (FF)] composites. Flexural strength was determined with the use of both test methods after 1 week of conditioning in water at 37 degrees C. Data were analyzed with the use of an ANOVA/Scheffe test and an independent-samples t test at significance level 0.05. Mean flexural strength (n = 7) ranged from 66.61 to 147.21 and 67.27 to 182.81 MPa for three-point bending and ball-on-three-ball biaxial test methods, respectively. In both test methods, Z100 was significantly stronger than all other composites evaluated. In the three-point bending test, flexural strength of Z250 was significantly higher than A110, F2000 and FF, and FF was significantly stronger than A110 and F2000. The biaxial test method arrived at the same conclusions except that there was no significant difference between Z250 and FF. Pearson's correlation revealed a significantly (p < 0.01) positive and good correlation (R2 = 0.72) in flexural strength between the two test methods. Although the biaxial test has the advantage of utilizing small specimens, the low reproducibility of this test method does not support the proposition that it is a more reliable test method when compared to the ISO three-point bending test. PMID:15386492

  17. Achromatic and isochronous lattice design of P2DT bending section in RAON accelerator

    NASA Astrophysics Data System (ADS)

    Jin, Hyunchang; Jang, Ji-Ho; Jang, Hyojae; Hong, In-Seok; Jeon, Dong-O.

    2015-09-01

    In RAON heavy ion accelerator, generally, the In-flight Fragmentation (IF) and Isotope Separation On-Line (ISOL) systems are employed in order to produce various isotope beams. Out of the isotope beams, the beams generated by the ISOL system are transported from the low energy linac SCL3 to the high energy driver linac SCL2. The post-accelerator to the driver linac transport (P2DT) section that consists of the charge stripper section, the 180° bending section, and the SCL2 matching section is placed between the SCL3 and the SCL2. In this P2DT section, however, the transverse and longitudinal emittance growth can aggravate the beam acceptance of the SCL2. Besides, the growth at the P2DT 180° bending section is considered a significant issue because of the unexpected achromatic effect. Therefore an achromatic and isochronous lattice design should be devised to prevent the transverse and longitudinal emittance from increasing while the multi-charge beams flow through the bending section. This study reports an improved design for the achromatic and isochronous lattice up to the second-order. After satisfying the first-order achromatic and isochronous condition by adjusting the field strength of quadrupoles with this design, the simple and efficient method will be utilized with the aim of getting the minimum number of sextupoles. The research on the collimator for the charge selection at the bending section will be also represented by using the designed lattice.

  18. Mechanical characterization of C60 whiskers by MEMS bend testing

    NASA Astrophysics Data System (ADS)

    Larsson, M. P.; Lucyszyn, S.

    2009-04-01

    Little has been published on the mechanical characteristics of C60 whiskers, due to the inherent difficulties in physically mounting such small test samples. Earlier reported results suggested Young's modulus values of 32 and 54 GPa, with 130 and 160 micron diameter C60 nanowhiskers, respectively, using compressive deformation techniques. In our work, an experimental bespoke silicon-based microelectromechanical system has been developed to extract an other value. 1th as been found, through parameter extraction techniques, that a Young's modulus of only ~ 2 GPa is obtained with a C60 whisker having a diameter of 4 microns. By including the previously published data points, there is now strong evidence to suggest an inverse proportionality relationship between the Young's modulus and the diameter of a C60 whisker.

  19. Springback evaluation for TRIP 800 steel sheets by simple bending tests

    NASA Astrophysics Data System (ADS)

    Avellaneda, F. J.; Miguel, V.; Coello, J.; Martínez, A.; Calatayud, A.

    2012-04-01

    TRIP steels, or Transformed Induced Plasticity steels, have excellent mechanical properties if compared with conventional steels. Strain hardening is also greater, thus they offer a good combination of strength and formability properties that may be justified by the multiphase structure of these steels. The highlighted characteristic of these steels is that they modify the microstructure with the deformation process as part of the austenite transforms to martensite, with the consequent change of the material properties. One of the main problems of TRIP steels is strong elastic recovery, or springback, after forming. In this work, the springback phenomenon is evaluated by bending tests and the influence of the variables involved in it is determined. The factor found to affect material recovery the most was the bending angle. Experimental bending forces do not agree with theoretical predictions.

  20. Elastic Moduli of Pyrolytic Boron Nitride Measured Using 3-Point Bending and Ultrasonic Testing

    NASA Technical Reports Server (NTRS)

    Kaforey, M. L.; Deeb, C. W.; Matthiesen, D. H.; Roth, D. J.

    1999-01-01

    Three-point bending and ultrasonic testing were performed on a flat plate of PBN. In the bending experiment, the deformation mechanism was believed to be shear between the pyrolytic layers, which yielded a shear modulus, c (sub 44), of 2.60 plus or minus .31 GPa. Calculations based on the longitudinal and shear wave velocity measurements yielded values of 0.341 plus or minus 0.006 for Poisson's ratio, 10.34 plus or minus .30 GPa for the elastic modulus (c (sub 33)), and 3.85 plus or minus 0.02 GPa for the shear modulus (c (sub 44)). Since free basal dislocations have been reported to affect the value of c (sub 44) found using ultrasonic methods, the value from the bending experiment was assumed to be the more accurate value.

  1. Bending Tests of Circular Cylinders of Corrugated Aluminum-alloy Sheet

    NASA Technical Reports Server (NTRS)

    Buckwalter, John C; Reed, Warren D; Niles, Alfred S

    1937-01-01

    Bending tests were made of two circular cylinders of corrugated aluminum-alloy sheet. In each test failure occurred by bending of the corrugations in a plane normal to the skin. It was found, after analysis of the effect of short end bays, that the computed stress on the extreme fiber of a corrugated cylinder is in excess of that for a flat panel of the same basic pattern and panel length tested as a pin-ended column. It is concluded that this increased strength was due to the effects of curvature of the pitch line. It is also concluded from the tests that light bulkheads closely spaced strengthen corrugated cylinders very materially.

  2. Optimization of the 3-Point Bending Failure of Anodized Aluminum Formed in Tartaric/Sulphuric Acid Using Doehlert Design

    NASA Astrophysics Data System (ADS)

    Bensalah, W.; Feki, M.; De-Petris Wery, M.; Ayedi, H. F.

    2015-02-01

    The bending failure of anodized aluminum in tartaric/sulphuric acid bath was modeled using Doehlert design. Bath temperature, anodic current density, sulphuric acid, and tartaric acid concentrations were retained as variables. Thickness measurements and 3-point bending experiments were conducted. The deflection at failure ( D f) and the maximum load ( F m) of each sample were, then, deducted from the corresponding flexural responses. The treatment of experimental results has established mathematical models of second degree reflecting the relation of cause and effect between the factors and the studied properties. The optimum path study of thickness, deflection at failure, and maximum load, showed that the three optima were opposite. Multicriteria optimization using the desirability function was achieved in order to maximize simultaneously the three responses. The optimum conditions were: C tar = 18.2 g L-1, T = 17.3 °C, J = 2.37 A dm-2, C sul = 191 g L-1, while the estimated response values were e = 57.7 µm, D f = 5.6 mm, and F m = 835 N. Using the established models, a mathematical correlation was found between deflection at failure and thickness of the anodic oxide layer. Before bending tests, aluminum oxide layer was examined by scanning electron microscopy (SEM) and atomic force microscopy. After tests, the morphology and the composition of the anodic oxide layer were inspected by SEM, optical microscopy, and glow-discharge optical emission spectroscopy.

  3. Relating tensile, bending, and shear test data of asphalt binders to pavement performance

    SciTech Connect

    Chen, J.S.; Tsai, C.J.

    1998-12-01

    Eight different asphalt binders representing a wide range of applications for pavement construction were tested in uniaxial tension, bending, and shear stresses. Theoretical analyses were performed in this study to covert the data from the three engineering tests to stiffness moduli for predicting pavement performance. At low temperatures, high asphalt stiffness may induce pavement thermal cracking; thus, the allowable maximum stiffness was set at 1,000 MPa. At high temperatures, low asphalt stiffness may lead to pavement rutting (ruts in the road); master curves were constructed to rank the potential for rutting in the asphalts. All three viscoelastic functions were shown to be interchangeable within the linear viscoelastic region. When subjected to large deformation in the direct tension test, asphalt binders behaved nonlinear viscoelastic in which the data under bending, shear and tension modes were not comparable. The asphalts were, however, found toe exhibit linear viscoelasticity up to the failure point in the steady-state strain region.

  4. Design of the optical structure of a LED light of airfield used on the taxiway centerline of bend

    NASA Astrophysics Data System (ADS)

    Ma, Xiaodan; Yang, Jianhong; Li, Lei

    2014-07-01

    Along with the continuous renewal of the light source, LED light source could have been used in the lights of airfield already. LED light source in the application will be more energy efficient. This paper designs the optical structure of the taxiway centerline light,which is used on the bend. Osram LT CPDP - KZ - 4 green LED has been chosen to be the light source.Optical components used in the structure, such as the prism, the lens, the scattering pieces, is designed on the basis of the optical design principles. The optical design principle include the edge-ray etendue conservation, conservation of energy and so on. Then, the structure is drawn and simulated. Completing these steps combines with software, such as ProE, Matlab and TracePro. To test the optical structure with Yuanfang GO-2000 distribution photometer. The test results meet the standards of the civil aviation administration's requirements. In order to further reduce energy consumption, and optimize the components on the premise of meeting the requirements of national standards. The paper reduces the input current from 900mA to 400mA by optimizing the components. The method of optimizing is combining the prism with scattering pieces and optimizing the lens surface. The optical structure of the taxiway centerline lights used on the bend after improving is more efficient and meet the requirements of national standards including chromaticity and light intensity.

  5. The use of experimental bending tests to more accurate numerical description of TBC damage process

    NASA Astrophysics Data System (ADS)

    Sadowski, T.; Golewski, P.

    2016-04-01

    Thermal barrier coatings (TBCs) have been extensively used in aircraft engines to protect critical engine parts such as blades and combustion chambers, which are exposed to high temperatures and corrosive environment. The blades of turbine engines are additionally exposed to high mechanical loads. These loads are created by the high rotational speed of the rotor (30 000 rot/min), causing the tensile and bending stresses. Therefore, experimental testing of coated samples is necessary in order to determine strength properties of TBCs. Beam samples with dimensions 50×10×2 mm were used in those studies. The TBC system consisted of 150 μm thick bond coat (NiCoCrAlY) and 300 μm thick top coat (YSZ) made by APS (air plasma spray) process. Samples were tested by three-point bending test with various loads. After bending tests, the samples were subjected to microscopic observation to determine the quantity of cracks and their depth. The above mentioned results were used to build numerical model and calibrate material data in Abaqus program. Brittle cracking damage model was applied for the TBC layer, which allows to remove elements after reaching criterion. Surface based cohesive behavior was used to model the delamination which may occur at the boundary between bond coat and top coat.

  6. Strain concentrations in pipelines with concrete coating full scale bending tests and analytical calculations

    SciTech Connect

    Verley, R.; Ness, O.B.

    1995-12-31

    This paper presents the results of full scale bending tests on 16 in. and 20 in. diameter, concrete coated pipes with polyethene and asphalt corrosion coatings. Constant moment, four-point bending was applied to a pipe string consisting of one pipe joint welded between two half-length joints. The strain concentration factor (SCF) at the field joints (FJ), expressing the ratio between the strain in the FJ and the average strain for the pipe joint, was investigated and compared to predictions using an analytical model presented in an accompanying paper (Ness and Verley, 1995). Material tests on the pipe steel, the corrosion coating and the concrete were conducted. The analytical model is found to give a good prediction of the strain distribution along the pipe joint, for both the steel and the concrete, and therefore also of the SCF. The sliding of the concrete over the steel is also predicted reasonably well.

  7. Refinements to the Mixed-Mode Bending Test for Delamination Toughness

    NASA Technical Reports Server (NTRS)

    Reeder, James R.

    2000-01-01

    The mixed-mode bending (MMB) test for delamination toughness was first introduced in 1988. This simple test is a combination of the standard Mode I (opening) test and a Mode II (sliding) test. This MMB test has become widely used in the United States and around the world for mixed-mode toughness measurements. Because of the widespread use of this test method, it is being considered for standardization by ASTM Committee D30. This paper discusses several improvements to the original test method. The improvements to the MMB test procedure include an improved method for calculating toughness from the measured test quantities, a more accurate way of setting the mixed-mode ratio to be tested, and the inclusion of a new alignment criterion for improved consistency in measured values.

  8. Control of Springback in Sheet Metal U-bending Through Design Experiment

    SciTech Connect

    Chirita, Bogdan; Brabie, Gheorghe

    2007-05-17

    For the U-bending of sheet metals, springback represents the most important failure mode that is affecting the parts. The purpose of this study was to develop a method for the reduction or the elimination of springback from the designing stage of the forming process. This paper describes a numerical procedure that combines simulation of springback by finite element method with a fractional factorial design and proposes the optimization of the forming parameters and tools geometry for the reduction of springback intensity. At the end of the study we were able to obtain an important improvement of part precision using the parameters predicted by the factorial design.

  9. A Criterion to Control Nonlinear Error in the Mixed-Mode Bending Test

    NASA Technical Reports Server (NTRS)

    Reeder, James R.

    2002-01-01

    The mixed-mode bending test ha: been widely used to measure delamination toughness and was recently standardized by ASTM as Standard Test Method D6671-01. This simple test is a combination of the standard Mode I (opening) test and a Mode II (sliding) test. This test uses a unidirectional composite test specimen with an artificial delamination subjected to bending loads to characterize when a delamination will extend. When the displacements become large, the linear theory used to analyze the results of the test yields errors in the calcu1ated toughness values. The current standard places no limit on the specimen loading and therefore test data can be created using the standard that are significantly in error. A method of limiting the error that can be incurred in the calculated toughness values is needed. In this paper, nonlinear models of the MMB test are refined. One of the nonlinear models is then used to develop a simple criterion for prescribing conditions where thc nonlinear error will remain below 5%.

  10. Influence of test methods on critical current degradation of Bi-2223/Ag superconductor tapes by bending strain

    NASA Astrophysics Data System (ADS)

    Kuroda, Tsuneo; Katagiri, Kazumune; Shin, Hyung-Seop; Itoh, Kikuo; Kumakura, Hiroaki; Wada, Hitoshi

    2005-12-01

    The results of two test methods were compared among three laboratories to determine a standard measurement method of critical current (Ic) as a function of bending strain for Ag-sheathed Bi-2223 superconductors. The VAMAS round-robin-test method (RRT) and the bending-rig method developed by Goldacker were used. The Ic degradation started with less bending strain for RRT than for bending-rig. Average irreversible strains (ɛirr) were 0.30% for RRT and 0.37% for bending-rig. Another test identified parameters that affected the results. A modified RRT method, with a current connection between the sample and the electrode, was used to avoid some thermal stresses of the test procedure. The ɛirr values increased to the level of the bending-rig, but the modified RRT Ic degradation rate with bending strain was higher. The stress states during sample bending differed between these methods. The shear stress was examined as a source of the Ic degradation rate differences with strain in terms of the crack propagation and delamination defects of oxide filaments from the Ag sheath.

  11. Experimental investigation of fatigue behavior of carbon fiber composites using fully-reversed four-point bending test

    NASA Astrophysics Data System (ADS)

    Amiri, Ali

    Carbon fiber reinforced polymers (CFRP) have become an increasingly notable material for use in structural engineering applications. Some of their advantages include high strength-to-weight ratio, high stiffness-to-weight ratio, and good moldability. Prediction of the fatigue life of composite laminates has been the subject of various studies due to the cyclic loading experienced in many applications. Both theoretical studies and experimental tests have been performed to estimate the endurance limit and fatigue life of composite plates. One of the main methods to predict fatigue life is the four-point bending test. In most previous works, the tests have been done in one direction (load ratio, R, > 0). In the current work, we have designed and manufactured a special fixture to perform a fully reversed bending test (R = -1). Static four-point bending tests were carried out on three (0°/90°)15 and (± 45°)15 samples to measure the mechanical properties of CFRP. Testing was displacement-controlled at the rate of 10 mm/min until failure. In (0°/90°)15 samples, all failed by cracking/buckling on the compressive side of the sample. While in (± 45°)15 all three tests, no visual fracture or failure of the samples was observed. 3.4 times higher stresses were reached during four-point static bending test of (0° /90°)15 samples compared to (± 45°)15. Same trend was seen in literature for similar tests. Four-point bending fatigue tests were carried out on (0° /90°)15 sample with stress ratio, R = -1 and frequency of 5 Hz. Applied maximum stresses were approximately 45%, 56%, 67%, 72% and 76% of the measured yield stress for (0° /90°)15 samples. There was visible cracking through the thickness of the samples. The expected downward trend in fatigue life with increasing maximum applied stress was observed in S-N curves of samples. There appears to be a threshold for ‘infinite’ life, defined as 1.7 million cycles in the current work, at a maximum stress of about

  12. Design study of the bending sections between harmonic cascade FEL stages

    SciTech Connect

    Wan, Weishi; Corlett, John; Fawley, William; Zholents, A.

    2004-06-30

    The present design of LUX (linac based ultra-fast X-ray facility) includes a harmonic cascade FEL chain to generate coherent EUV and soft X-ray radiation. Four cascade stages, each consisting of two undulators acting as a modulator and a radiator, respectively, are envisioned to produce photons of approximate wavelengths 48 nm, 12 nm, 4 nm and 1 nm. Bending sections may be placed between the modulator and the radiator of each stage to adjust and maintain bunching of the electrons, to separate, in space, photons of different wavelengths and to optimize the use of real estate. In this note, the conceptual design of such a bending section, which may be used at all four stages, is presented. Preliminary tracking results show that it is possible to maintain bunch structure of nm length scale in the presence of errors, provided that there is adequate orbit correction and there are 2 families of trim quads and trim skew quads, respectively, in each bending section.

  13. Determination of dynamic fracture-initiation toughness using a novel impact bend test procedure

    SciTech Connect

    Yokoyama, T. . Faculty of Engineering Okayama Univ. of Science . Dept. of Mechanical Engineering)

    1993-11-01

    A novel impact bend test procedure is described for determining the dynamic fracture-initiation toughness, K[sub Id], at a loading rate (stress intensity factor rate), K[sub I], of the order of 10[sup 6] MPa [radical]m/s. A special arrangement of the split Hopkinson pressure bar is adopted to measure accurately dynamic loads applied to a fatigue-precracked bend specimen. The dynamic stress intensity factor history for the bend specimen is evaluated by means of a dynamic finite element technique. The onset of crack initiation is detected using a string gage attached on the side of the specimen near a crack tip. The value of K[sub Id] is determined from the critical dynamic stress intensity factor at crack initiation. A series of dynamic fracture tests is carried out on a 7075-T6 aluminum alloy, a Ti-6246 alloy and an AISI 4340 steel. The K[sub Id] values obtained for the three structural materials are compared with the corresponding values obtained under quasi-static loading conditions.

  14. Design and Fabrication of the Superconducting Horizontal Bend Magnet for the Super High Momentum Spectrometer at Jefferson Lab

    SciTech Connect

    Chouhan, Shailendra S.; DeKamp, Jon; Burkhart, E. E,; Bierwagen, J.; Song, H.; Zeller, Albert F.; Brindza, Paul D.; Lassiter, Steven R.; Fowler, Michael J.; Sun, Qiuli

    2015-06-01

    A collaboration exists between NSCL and JLab to design and build JLab's Super High Momentum Spectrometer (SHMS) horizontal bend magnet that allows the bending of the 12 GeV/c particles horizontally by 3° to allow SHMS to reach angles as low as 5.5°. Two full size coils have been wound and are cold tested for both magnetic and structural properties. Each coil is built from 90 layers of single-turn SSC outer conductor cable. An initial test coil with one third the turns was fabricated to demonstrate that the unique saddle shape with fully contoured ends could be wound with Rutherford superconducting cable. Learned lessons during the trial winding were integrated into the two complete full-scale coils that are now installed in the helium vessel. The fabrication of the iron yoke, cold mass, and thermal shield is complete, and assembly of the vacuum vessel is in progress. This paper presents the process and progress along with the modified magnet design to reduce the fringe field in the primary beam region and also includes the impact of the changes on coil forces and coil restraint system.

  15. Four-Point Bending Strength Testing of Pultruded Fiberglass Composite Wind Turbine Blade Sections

    SciTech Connect

    Musial, W.; Bourne, B; Hughes, S; Zuteck, M. D.

    2001-07-10

    The ultimate strength of the PS Enterprises pultruded blade section was experimentally determined under four-point bending at the National Renewable Energy Laboratory. Thirteen 8-foot long full-scale blade segments were individually tested to determine their maximum moment carrying capability. Three airfoil-bending configurations were tested: high- and low-pressure skin buckling, and low pressure skin buckling with foam interior reinforcement. Maximum strain was recorded for each sample on the compressive and tensile surfaces of each test blade. Test data are compared to the results of three analytical buckling prediction methods. Based on deviations from the linear strain versus load curve, data indicate a post-buckling region. High-pressure side buckling occurred sooner than low-pressure side buckling. The buckling analyses were conservative for both configurations, but high-pressure side buckling in particular was substantially under-predicted. Both high- and low-pressure buckling configurations had very similar failure loads. These results suggests that a redundant load path may be providing strength to the section in the post-buckling region, making the onset of panel buckling a poor predictor of ultimate strength for the PS Enterprises pultrusion.

  16. Practical method for analysis and design of slender reinforced concrete columns subjected to biaxial bending and axial loads

    NASA Astrophysics Data System (ADS)

    Bouzid, T.; Demagh, K.

    2011-03-01

    Reinforced and concrete-encased composite columns of arbitrarily shaped cross sections subjected to biaxial bending and axial loads are commonly used in many structures. For this purpose, an iterative numerical procedure for the strength analysis and design of short and slender reinforced concrete columns with a square cross section under biaxial bending and an axial load by using an EC2 stress-strain model is presented in this paper. The computational procedure takes into account the nonlinear behavior of the materials (i.e., concrete and reinforcing bars) and includes the second - order effects due to the additional eccentricity of the applied axial load by the Moment Magnification Method. The ability of the proposed method and its formulation has been tested by comparing its results with the experimental ones reported by some authors. This comparison has shown that a good degree of agreement and accuracy between the experimental and theoretical results have been obtained. An average ratio (proposed to test) of 1.06 with a deviation of 9% is achieved.

  17. Design of triangular core LMA-PCF with low-bending loss and low non-linearity for laser application

    NASA Astrophysics Data System (ADS)

    Kabir, Sumaiya; Khandokar, Md. Rezwanul Haque; Khan, Muhammad Abdul Goffar

    2016-07-01

    In this paper we characterize the design of a simple large-mode area photonic crystal fiber (LMA-PCF) with low bending loss and low non-linearity. The finite element method (FEM) with perfectly matched boundary layer (PML) is used to investigate the guiding properties. According to simulation the characterized four ring fluorine doped triangular core LMA-PCF achieves 1500 μm2 effective mode area with a low bending loss of 10-5dB/km at the wavelength of 1.064 μm and at a bending radius of 40 cm which is suitable for high power fiber laser.

  18. Designing a test facility LEBT for RISP

    NASA Astrophysics Data System (ADS)

    Bodenstein, R. M.; Bahng, J. B.

    2015-10-01

    Raon, the rare isotope accelerator of the Rare Isotope Science Project (RISP) in Daejeon, South Korea, is being designed to accelerate multiple-charge-state beams simultaneously. Using an Electron Cyclotron Resonance (ECR) Ion Source to produce the ions, Raon will transport the beam through two 90-degree bending magnets and a Low Energy Beam Transport (LEBT) system to a Radio Frequency Quadrupole (RFQ). A test facility is under development to test the components of the injector and LEBT system. A new LEBT, based upon the LEBT of the main driver linac, is being designed to fit within the test facility's restrictive space requirements. This work will briefly review the main driver linac LEBT design, and then discuss the current status of the test facility LEBT design.

  19. Computer Designed Instruction & Testing.

    ERIC Educational Resources Information Center

    New Mexico State Univ., Las Cruces.

    Research findings on computer designed instruction and testing at the college level are discussed in 13 papers from the first Regional Conference on University Teaching at New Mexico State University. Titles and authors are as follows: "Don't Bother Me with Instructional Design, I'm Busy Programming! Suggestions for More Effective Educational…

  20. A photoelastic investigation of asymmetric four point bend shear test for composite materials

    NASA Technical Reports Server (NTRS)

    Prabhakaran, R.; Sawyer, W.

    1986-01-01

    The shear stress fringe value of orthotropic birefringent model materials is presently used in an asymmetric four-point bend test that employs a notched specimen and is a modification of the Iosipescu test (1967). While in the case of a unidirectionally reinforced glass-polyester model material, shear stress fringe values obtained from 90- and 120-deg (sharp and radiused) notches are reasonably close to the values obtained for an off-axis tensile specimen, no conclusions can be drawn on the influence of the notch parameters, due to the peculiarities of the photoelastic response of the inhomogeneous orthotropic model material. The failure modes nevertheless indicate that a notch radius, and the 120-deg notch angle, reduce the stress concentration. Comparisons are made with finite element results.

  1. Redesign of the mixed-mode bending delamination test to reduce nonlinear effects

    NASA Technical Reports Server (NTRS)

    Reeder, James R.; Crews, John H., Jr.

    1992-01-01

    The mixed-mode bending (MMB) test uses a lever to apply simultaneously mode I and mode II loading to a split-beam specimen. An iterative analysis that accounts for the geometric nonlinearity of the MMB test was developed. The analysis accurately predicted the measured load-displacement response and the strain energy release rate, G, of an MMB test specimen made of AS4/PEEK. The errors in G when calculated using linear theory were found to be as large as 30 percent in some cases. Because it would be inconvenient to use a nonlinear analysis to analyze MMB data, the MMB apparatus was redesigned to minimize the nonlinearity. With the improved apparatus, loads are applied just above the midplane of the test specimen through a roller attached to the lever. This apparatus was demonstrated by measuring the mixed-mode delamination fracture toughhess of the test specimen. The nonlinearity errors associated with testing this tough composite material were less than +/- 3 percent. The data from the improved MMB apparatus analyzed with a linear analysis were similar to those found with the original apparatus and the nonlinear analysis.

  2. Numerical Modeling for Hole-Edge Cracking of Advanced High-Strength Steels (AHSS) Components in the Static Bend Test

    NASA Astrophysics Data System (ADS)

    Kim, Hyunok; Mohr, William; Yang, Yu-Ping; Zelenak, Paul; Kimchi, Menachem

    2011-08-01

    Numerical modeling of local formability, such as hole-edge cracking and shear fracture in bending of AHSS, is one of the challenging issues for simulation engineers for prediction and evaluation of stamping and crash performance of materials. This is because continuum-mechanics-based finite element method (FEM) modeling requires additional input data, "failure criteria" to predict the local formability limit of materials, in addition to the material flow stress data input for simulation. This paper presents a numerical modeling approach for predicting hole-edge failures during static bend tests of AHSS structures. A local-strain-based failure criterion and a stress-triaxiality-based failure criterion were developed and implemented in LS-DYNA simulation code to predict hole-edge failures in component bend tests. The holes were prepared using two different methods: mechanical punching and water-jet cutting. In the component bend tests, the water-jet trimmed hole showed delayed fracture at the hole-edges, while the mechanical punched hole showed early fracture as the bending angle increased. In comparing the numerical modeling and test results, the load-displacement curve, the displacement at the onset of cracking, and the final crack shape/length were used. Both failure criteria also enable the numerical model to differentiate between the local formability limit of mechanical-punched and water-jet-trimmed holes. The failure criteria and static bend test developed here are useful to evaluate the local formability limit at a structural component level for automotive crash tests.

  3. Nonlinear analysis and redesign of the mixed-mode bending delamination test

    NASA Technical Reports Server (NTRS)

    Reeder, J. R.; Crews, J. H., Jr.

    1991-01-01

    The Mixed Mode Bending (MMB) test uses a lever to simultaneously apply mode I and mode II loading to a split beam specimen. An iterative analysis that accounts for the geometric nonlinearity of the MMB test was developed. The analysis accurately predicted the measured load displacement response and the strain energy release rate, G, of an MMB test specimen made of APC2 (AS4/PEEK). The errors in G when calculated using linear theory were found to be as large as thirty percent in some cases. Because it would be inconvenient to use a nonlinear analysis to analyze MMB data, the MMB apparatus was redesigned to minimize the nonlinearity. The nonlinear analysis was used as a guide in redesigning the MMB apparatus. With the redesigned apparatus, loads were applied through a roller attached to the level and loaded just above the midplane of the test specimen. The redesigned apparatuus has geometric nonlinearity errors of less than three percent, even for materials substantially tougher than APC2. This apparatus was demonstrated by measuring the mixed mode delamination fracture toughness of APC2.

  4. Cracking and Spalling Behavior of HVOF Thermally Sprayed WC-Co-Cr Coating in Bend and Axial Fatigue Tests

    NASA Astrophysics Data System (ADS)

    Gui, M.; Eybel, R.; Asselin, B.; Monerie-Moulin, F.

    2015-03-01

    In this work, WC-10Co-4Cr coating was sprayed by high-velocity oxygen fuel (HVOF) process on Almen strip and axial fatigue coupon. Three-point bend test was used to bend Almen strip coating specimens with tensile and compressive stress applied to the coating. Axial fatigue coating specimens were tested at a load stress of 1250 MPa and a stress ratio of R = -1. Process condition of Thermal spraying was found to have an effect on spalling performance of the coating in the fatigue test. The mechanism of cracking and spalling process in the coating was studied in bend and fatigue conditions. Based on deformation difference between the coating and the substrate, the factors, especially coating thickness, to impact the coating spalling behavior in axial fatigue test are discussed. HVOF-sprayed WC-10Co-4Cr coating matches the deformation of base substrate by cracking when tensile stress is applied in bend and fatigue tests because the coating has very limit deformation capability. In axial fatigue test of WC-10Co-4Cr coating specimen, the substrate works in a stress-to-strain manner; however the coating works in a strain-to-stress manner and is stressed due to the substrate deformation.

  5. Progress Letter Report on Bending Fatigue Test System Development for Spent Nuclear Fuel Vibration Integrity Study (Out-of-cell fatigue testing development - Task 2.4)

    SciTech Connect

    Wang, Jy-An John; Wang, Hong; Cox, Thomas S; Baldwin, Charles A; Bevard, Bruce Balkcom

    2013-08-01

    Vibration integrity of high burn-up spent nuclear fuel in transportation remains to be a critical component of US nuclear waste management system. The structural evaluation of package for spent fuel transportation eventually will need to see if the content or spent fuel is in a subcritical condition. However, a system for testing and characterizing such spent fuel is still lacking mainly due to the complication involved with dealing radioactive specimens in a hot cell environment. Apparently, the current state-of-the-art in spent fuel research and development is quite far away from the delivery of reliable mechanical property data for the assessment of spent fuels in the transport package evaluation. Under the sponsorship of US NRC, ORNL has taken the challenge in developing a robust testing system for spent fuel in hot cell. An extensive literature survey was carried out and unique requirements of such testing system were identified. The U-frame setup has come to the top among various designs examined for reverse bending fatigue test of spent fuel rod. The U-frame has many features that deserve mentioned here: Easy to install spent fuel rod in test; Less linkages than in conventional bending test setup such as three-point or four-point bending; Target the failure mode relevant to the fracture of spent fuel rod in transportation by focusing on pure bending; The continuous calibrations and modifications resulted in the third generation (3G) U-frame testing setup. Rigid arms are split along the LBB axis at rod sample ends. For each arm, this results in a large arm body and an end piece. Mating halves of bushings were modified into two V-shaped surfaces on which linear roller bearings (LRB) are embedded. The rod specimen is installed into the test fixture through opening and closing slide end-pieces. The 3G apparently has addressed major issues of setup identified in the previous stage and been proven to be eligible to be further pursued in this project. On the other

  6. Design considerations for adjustable-curvature, high-power, X-ray mirrors based on elastic bending

    NASA Astrophysics Data System (ADS)

    Howells, Malcolm R.; Lunt, David

    1993-08-01

    The use of elastic bending to form the shapes of high-power X-ray mirrors for synchrotron radiation beamlines is considered. An approach in which the bending mechanism and the mirror are cut from the same monolithic block by electric-discharge-machining techniques is especially advocated. A discussion of the theory and practical design philosophies is given that includes circular and elliptical cylinder mirrors. The influence of gravity on the mirror shape is studied with emphasis on the optimum positions for the mirror supports that, for a uniform mirror, turn out to be at a spacing equal to the mirror length divided by root three.

  7. Design of two-way reversible bending actuator based on a shape memory alloy/shape memory polymer composite

    NASA Astrophysics Data System (ADS)

    Taya, Minoru; Liang, Yuanchang; Namli, Onur C.; Tamagawa, Hirohisa; Howie, Tucker

    2013-10-01

    The design of a reversible bending actuator based on a SMA/SMP composite is presented. The SMA/SMP composite is made of SMA NiTi wires with a bent ‘U’-shape in the austenite phase embedded in an epoxy SMP matrix which has a memorized flat shape. The bending motion is caused by heating the composite above TAf to activate the NiTi recovery. Upon cooling, the softening from the austenite to R-phase transformation results in a relaxation of the composite towards its original flat shape. In the three-point bending measurement the composite was able to exhibit a reversible deflection of 1.3 mm on a support with a 10 mm span. In addition, a material model for predicting the composite’s deflection is presented and predicts the experimental results reasonably well. The model also estimates the in-plane internal force and the degree of the SMA phase transformation.

  8. Control system of the fatigue stand for material tests under combined bending with torsion loading and experimental results

    NASA Astrophysics Data System (ADS)

    Rozumek, Dariusz; Marciniak, Zbigniew

    2008-08-01

    The paper presents the control system of the fatigue test stand MZGS-200PL. Electric signals from the strain gauge Wheatstone bridges were processed with spectrum analyzer and the computer. In the computer, the signals were registered on the hard disk. The paper presents characteristics signals loading, power spectral density, autocorrelations and cross-correlation. The circular smooth specimens were tested. As compared with hydraulic machines for fatigue tests, the presented machine is reliable and simple, it works quietly, it allows to save energy, it is small and cheap. The test stand MZGS-200PL allows to perform tests under cyclic proportional, non-proportional and random bending with torsion, as well as tests under pure bending and pure torsion.

  9. In-situ scanning electron microscopy study of fracture events during back-end-of-line microbeam bending tests

    SciTech Connect

    Vanstreels, K. Zahedmanesh, H.; Bender, H.; Gonzalez, M.; De Wolf, I.; Lefebvre, J.; Bhowmick, S.

    2014-11-24

    This paper demonstrates the direct observation of crack initiation, crack propagation, and interfacial delamination events during in-situ microbeam bending tests of FIB milled BEOL structures. The elastic modulus and the critical force of fracture of the BEOL beam samples were compared for beams of different length and width.

  10. Multilayer laminated piezoelectric bending actuators: design and manufacturing for optimum power density and efficiency

    NASA Astrophysics Data System (ADS)

    Jafferis, Noah T.; Lok, Mario; Winey, Nastasia; Wei, Gu-Yeon; Wood, Robert J.

    2016-05-01

    In previous work we presented design and manufacturing rules for optimizing the energy density of piezoelectric bimorph actuators through the use of laser-induced melting, insulating edge coating, and features for rigid ground attachments to maximize force output, as well as a pre-stacked technique to enable mass customization. Here we adapt these techniques to bending actuators with four active layers, which utilize thinner material layers. This allows the use of lower operating voltages, which is important for overall power usage optimization, as typical small-scale power supplies are low-voltage and the efficiency of boost-converter and drive circuitry increases with decreasing output voltage. We show that this optimization results in a 24%–47% reduction in the weight of the required power supply (depending on the type of drive circuit used). We also present scaling arguments to determine when multi-layer actuator are preferable to thinner actuators, and show that our techniques are capable of scaling down to sub-mg weight actuators.

  11. Elevated-temperature fracture resistances of monolithic and composite ceramics using chevron-notched bend tests

    NASA Technical Reports Server (NTRS)

    Ghosh, Asish; Jenkins, Michael G.; Ferber, Mattison K.; Peussa, Jouko; Salem, Jonathan A.

    1992-01-01

    The quasi-static fracture behaviors of monolithic ceramics (SiC, Si3N4, MgAl2O4), self-reinforced monoliths (acicular grained Si3N4, acicular grained mullite), and ceramic matrix composites (SiC whisker/Al2O3 matrix, TiB2 particulate/SiC matrix, SiC fiber/CVI SiC matrix, Al2O3 fiber/CVI SiC matrix) were measured over the temperature range of 20 to 1400 C. The chevron notched, bend bar test geometry was essential for characterizing the elevated temperature fracture resistances of this wide range of quasi-brittle materials during stable crack growth. Fractography revealed the differences in the fracture behavior of the different materials at the various temperatures. The fracture resistances of the self-reinforced monoliths were comparable to those of the composites and the fracture mechanisms were found to be similar at room temperature. However at elevated temperatures the differences of the fracture behavior became apparent where the superior fracture resistance of the self-reinforced monoliths were attributed to the minor amounts of glassy, intergranular phases which were often more abundant in the composites and affected the fracture behavior when softened by elevated temperatures.

  12. Three Point Bending Test of Human Femoral Tissue: An Essay in Ancient and Modern Bones

    NASA Astrophysics Data System (ADS)

    González-Bárcenas, L. A.; Trejo-Camacho, H.; Suárez-Estrella, I.; Heredia, A.; Magaña, C.; Bucio, L.; Orozco, E.

    2003-09-01

    Some procedures for characterising the mechanical properties of femur diaphysis are reviewed here. We have used the three point bending test to measure the relative rupture modulus of ancient healthy human tissues (1250, 800, 614, and 185 years BP) as well as recent bones. The maximum resistance to fracture was measured applying a force (by a wedge) over the femoral inner surface. The maximum rupture strength was about 150 MPa for recent bone and decreased as the antiquity increased. The typical anisotropy that is observed in this kind of tissues is due to the anisotropical orientation of fibres as well as the textured orientation of the apatite crystals over the collagen fibres. Therefore we found that ancient bones show less fracture strength probably due to an abiotic crystal growth phenomenon during the diagenesis process. By LVSEM analysis we have found that in recent samples the fracture surface is irregular due to the crosslinking interactions between the collagen molecules, in comparison with the ancient samples, where a smooth surface is clearly appreciated as the antiquity of the sample increases. The results reported here strongly suggest that these composites should contain a fibrillar phase as a matrix constituted mainly by a natural polymer (i.e. collagen, cellulose, etc.). Moreover, this composite must have a minimum rupture strength of about 150 MPa.

  13. Design of GaN-based S-bend Y-branch power splitter with MMI structure

    NASA Astrophysics Data System (ADS)

    Azhar, Arviza; Purnamaningsih, Retno W.

    2015-01-01

    In this work, we have designed GaN based symmetric S-Bend Y-branch power splitter with rectangular MMI structure at telecommunication wavelength. Optimization of the structure parameters required for this structure was conducted accurately by theoretical tools using BPM methods. The simulation results proposed the optimum dimension for the design Y-branch power splitter at relative output power 94.5%.

  14. Effect of ball geometry on endurance limit in bending of drilled balls

    NASA Technical Reports Server (NTRS)

    Munson, H. E.

    1975-01-01

    Four designs of drilled (cylindrically hollow) balls were tested for resistance to bending fatigue. Bending fatigue has been demonstrated to be a limiting factor in previous evaluations of the drilled ball concept. A web reinforced drilled ball was most successful in resisting bending fatigue. Another design of through drilled design, involving a heavier wall than the standard reference ball, also showed significant improvement in resistance to bending fatigue.

  15. Numerical Analysis of AHSS Fracture in a Stretch-bending Test

    NASA Astrophysics Data System (ADS)

    Luo, Meng; Chen, Xiaoming; Shi, Ming F.; Shih, Hua-Chu

    2010-06-01

    Advanced High Strength Steels (AHSS) are increasingly used in the automotive industry due to their superior strength and substantial weight reduction advantage. However, their limited ductility gives rise to numerous manufacturing issues. One of them is the so-called `shear fracture' often observed on tight radii during stamping processes. Since traditional approaches, such as the Forming Limit Diagram (FLD), are unable to predict this type of fracture, efforts have been made to develop failure criteria that can predict shear fractures. In this paper, a recently developed Modified Mohr-Coulomb (MMC) ductile fracture criterion[1] is adopted to analyze the failure behavior of a Dual Phase (DP) steel sheet during stretch bending operations. The plasticity and ductile fracture of the present sheet are fully characterized by the Hill'48 orthotropic model and the MMC fracture model respectively. Finite Element models with three different element types (3D, shell and plane strain) were built for a Stretch Forming Simulator (SFS) test and numerical simulations with four different R/t ratios (die radius normalized by sheet thickness) were performed. It has been shown that the 3D and shell element models can accurately predict the failure location/mode, the upper die load-displacement responses as well as the wall stress and wrap angle at the onset of fracture for all R/t ratios. Furthermore, a series of parametric studies were conducted on the 3D element model, and the effects of tension level (clamping distance) and tooling friction on the failure modes/locations were investigated.

  16. Local strain and damage mapping in single trabeculae during three-point bending tests.

    PubMed

    Jungmann, R; Szabo, M E; Schitter, G; Tang, Raymond Yue-Sing; Vashishth, D; Hansma, P K; Thurner, P J

    2011-05-01

    The use of bone mineral density as a surrogate to diagnose bone fracture risk in individuals is of limited value. However, there is growing evidence that information on trabecular microarchitecture can improve the assessment of fracture risk. One current strategy is to exploit finite element analysis (FEA) applied to 3D image data of several mm-sized trabecular bone structures obtained from non-invasive imaging modalities for the prediction of apparent mechanical properties. However, there is a lack of FE damage models, based on solid experimental facts, which are needed to validate such approaches and to provide criteria marking elastic-plastic deformation transitions as well as microdamage initiation and accumulation. In this communication, we present a strategy that could elegantly lead to future damage models for FEA: direct measurements of local strains involved in microdamage initiation and plastic deformation in single trabeculae. We use digital image correlation to link stress whitening in bone, reported to be correlated to microdamage, to quantitative local strain values. Our results show that the whitening zones, i.e. damage formation, in the presented loading case of a three-point bending test correlate best with areas of elevated tensile strains oriented parallel to the long axis of the samples. The average local strains along this axis were determined to be (1.6±0.9)% at whitening onset and (12±4)% just prior to failure. Overall, our data suggest that damage initiation in trabecular bone is asymmetric in tension and compression, with failure originating and propagating over a large range of tensile strains. PMID:21396601

  17. Local strain and damage mapping in single trabeculae during three-point bending tests

    PubMed Central

    Jungmann, R.; Szabo, M.E.; Schitter, G.; Tang, Raymond Yue-Sing; Vashishth, D.; Hansma, P.K.; Thurner, P.J.

    2012-01-01

    The use of bone mineral density as a surrogate to diagnose bone fracture risk in individuals is of limited value. However, there is growing evidence that information on trabecular microarchitecture can improve the assessment of fracture risk. One current strategy is to exploit finite element analysis (FEA) applied to 3D image data of several mm-sized trabecular bone structures obtained from non-invasive imaging modalities for the prediction of apparent mechanical properties. However, there is a lack of FE damage models, based on solid experimental facts, which are needed to validate such approaches and to provide criteria marking elastic–plastic deformation transitions as well as microdamage initiation and accumulation. In this communication, we present a strategy that could elegantly lead to future damage models for FEA: direct measurements of local strains involved in microdamage initiation and plastic deformation in single trabeculae. We use digital image correlation to link stress whitening in bone, reported to be correlated to microdamage, to quantitative local strain values. Our results show that the whitening zones, i.e. damage formation, in the presented loading case of a three-point bending test correlate best with areas of elevated tensile strains oriented parallel to the long axis of the samples. The average local strains along this axis were determined to be (1.6 ± 0.9)% at whitening onset and (12 ± 4)% just prior to failure. Overall, our data suggest that damage initiation in trabecular bone is asymmetric in tension and compression, with failure originating and propagating over a large range of tensile strains. PMID:21396601

  18. a New X-Actuator Design for Dual Bending/twisting Control of Wings

    NASA Astrophysics Data System (ADS)

    TZOU, H. S.; YE, R.; DING, J. H.

    2001-03-01

    Recent development of smart structures and structronic systems has demonstrated the technology in many engineering applications. Active structural control of aircraft wings or helicopter blades (e.g., shapes, flaps, leading and/or trailing edges) can significantly enhance the aerodynamic efficiency and flight maneuverability of high-performance airplanes and helicopters. This paper is to evaluate the dual bending and torsion vibration control effects of an X-actuator configuration reconfigured from a parallel configuration. The finite element (FE) formulation of a new FE using the layerwise constant shear angle theory is reviewed and the derived governing equations are discussed. Bending and torsion control effects of plates are studied using the FE method and also demonstrated via laboratory experiments. The FE and experimental results both suggest the X-actuator is effective for both bending and torsion control of plates.

  19. Improved design of a three roll tube bending process under geometrical uncertainties

    NASA Astrophysics Data System (ADS)

    Strano, Matteo; Colosimo, Bianca Maria; Castillo, Enrique Del

    2011-05-01

    In the tube bending industry a process is considered flexible if it allows the forming of different curvature radii, without the need for a machine setup or a tool change. This is possible by numerically controlling one or more moving dies or rolls which are able to produce different radii. Unlike conventional tube bending processes, where the tube is clamped at its end and bent around a fixed die, bending with variable radius generally requires that the tube is axially fed into the forming area. A flexible bending operation is traditionally operated by dividing it into an opening phase (the bending roll is moving) and a steady phase (the bending roll is on hold and the tube is axially fed). A technological limit of the process is its intrinsic variability, e.g. measured in terms of repeatability of the obtained bent angle. An FEM based sensitivity analysis is shown in the paper in order to verify which input parameters of the incoming tubes (dimensions, material properties, etc.) are more influential on the results in terms of repeatability. The presence of the two opening and steady phases, with different mechanical conditions is an obstacle to the production of an aesthetic tube with a constant, uniform curvature radius. As a result, the real curvature radius moving along the tube spine will have some variations, which may also transform into defects, such as wrinkling or bumps. A modification of the traditionally operated control curves is proposed in the paper in order to improve the uniformity of the obtained curvature radius. Finally, a method is proposed for optimizing the control curves, under the presence of noise factors.

  20. The high temperature three point bend testing of proton irradiated 316L stainless steel and Mod 9Cr 1Mo

    NASA Astrophysics Data System (ADS)

    Maloy, Stuart A.; Zubelewicz, A.; Romero, T.; James, M. R.; Sommer, W. F.; Dai, Y.

    2005-08-01

    The predicted operating conditions for a lead-bismuth eutectic target to be used in an accelerator driven system for the Advanced Fuel Cycle Initiative span a temperature range of 300-600 °C while being irradiated by a high energy (˜600 MeV) proton beam. Such spallation conditions lead to high displacement rates coupled with high accumulation rates of helium and hydrogen up to 150 appm/dpa. Some candidate materials for these applications include Mod9Cr-1Mo and 316L stainless steel. To investigate the effect of irradiation on these materials, the mechanical properties are being measured through three point bend testing on Mod 9Cr-1Mo and 316L at 25, 250, 350 and 500 °C after irradiation in a high energy proton beam (500-800 MeV) to a dose of 9.8 dpa at temperatures from 200 to 320 °C. By comparing measurements made in bending to tensile measurements measured on identically irradiated materials, a measurement of 0.2% offset yield stress was obtained from 0.05% offset yield stress measured in three point bend testing. Yield stress increased by more than a factor of two after irradiation to 9.8 dpa. Observation of the outer fiber surface of 316L showed very localized deformation when tested after irradiation at 70 °C and deformation on multiple slip systems when tested after irradiation at 250-320 °C.

  1. Design of a triple-bend isochronous achromat with minimum coherent-synchrotron-radiation-induced emittance growth

    NASA Astrophysics Data System (ADS)

    Venturini, M.

    2016-06-01

    Using a 1D steady-state free-space coherent synchrotron radiation (CSR) model, we identify a special design setting for a triple-bend isochronous achromat that yields vanishing emittance growth from CSR. When a more refined CSR model with transient effects is included in the analysis, numerical simulations show that the main effect of the transients is to shift the emittance growth minimum slightly, with the minimum changing only modestly.

  2. Test Design and Speededness

    ERIC Educational Resources Information Center

    van der Linden, Wim J.

    2011-01-01

    A critical component of test speededness is the distribution of the test taker's total time on the test. A simple set of constraints on the item parameters in the lognormal model for response times is derived that can be used to control the distribution when assembling a new test form. As the constraints are linear in the item parameters, they can…

  3. Effect of mixed convection and u-bends on the design of double-pipe heat exchangers

    SciTech Connect

    Abdelmessih, A.N.; Bell, K.J.

    1999-09-01

    For horizontal flow in the laminar flow regimen, the interaction between natural and forced convection and the effect of the secondary flow induced by an unheated U-bend were considered in developing an empirical correlation for the nearly uniform heat flux condition. The correlation predicts the local peripheral average heat transfer coefficient with an absolute average deviation of 9.9%. In this article the mechanisms involved in laminar flow with the presence of a U-bend are explained. The realistic behavior of the correlation is illustrated. Also, a brief discussion of some of the existing correlations for laminar flow is presented. Four cases showing the practicality of using the correlation in the design of horizontal double-pipe heat exchangers are demonstrated.

  4. Effects of subcritical crack growth on fracture toughness of ceramics assessed in chevron-notched three-point bend tests

    NASA Technical Reports Server (NTRS)

    Chao, L. Y.; Singh, D.; Shetty, D. K.

    1988-01-01

    A numerical computational study was carried out to assess the effects of subcritical crack growth on crack stability in the chevron-notched three-point bend specimens. A power-law relationship between the subcritical crack velocity and the applied stress intensity were used along with compliance and stress-intensity relationships for the chevron-notched bend specimen to calculate the load response under fixed deflection rate and a machine compliance. The results indicate that the maximum load during the test occurs at the same crack length for all the deflection rates; the maximum load, however, is dependent on the deflection rate for rates below the critical rate. The resulting dependence of the apparent fracture toughness on the deflection rate is compared to experimental results on soda-lime glass and polycrystalline alumina.

  5. The role of confinement and corona crystallinity on the bending modulus of copolymer micelles measured directly by AFM flexural tests.

    PubMed

    Jennings, L; Glazer, P; Laan, A C; de Kruijff, R M; Waton, G; Schosseler, F; Mendes, E

    2016-09-21

    We present an approach which makes it possible to directly determine the bending modulus of single elongated block copolymer micelles. This is done by forming arrays of suspended micelles onto microfabricated substrates and by performing three-point bending flexural tests, using an atomic force microscope, on their suspended portions. By coupling the direct atomic force microscopy measurements with differential scanning calorimetry data, we show that the presence of a crystalline corona strongly increases the modulus of the copolymer elongated micelles. This large increase suggests that crystallites in the corona are larger and more uniformly oriented due to confinement effects. Our findings together with this hypothesis open new interesting avenues for the preparation of core-templated polymer fibres with enhanced mechanical properties. PMID:27506248

  6. An ion-optical design study of a carbon-ion rotating gantry with a superconducting final bending magnet

    NASA Astrophysics Data System (ADS)

    Bokor, J.; Pavlovič, M.

    2016-03-01

    Ion-optical designs of an isocentric ion gantry with a compact curved superconducting final bending magnet are presented. The gantry is designed for transporting carbon-therapy beams with nominal kinetic energy of 400 MeV/u, which corresponds to the penetration range of C6+ beam in water of about 28 cm. In contrast to other existing designs, we present a "hybrid" beam transport system containing a single superconducting element - the last bending magnet. All other elements are based on conventional warm technology. Ion-optical properties of such a hybrid system are investigated in case of transporting non-symmetric (i.e. different emittance patterns in the horizontal and vertical plane) beams. Different conditions for transporting the non-symmetric beams are analyzed aiming at finding the optimal, i.e. the most compact, gantry version. The final gantry layout is presented including a 2D parallel scanning. The ion-optical and scanning properties of the final gantry design are described, discussed and illustrated by computer simulations performed by WinAGILE.

  7. Displacement analysis of a bend plate test with mechanical loading and laser heating

    SciTech Connect

    Lam, P.S.

    1997-09-01

    The surface displacment of a steel plate caused by a permanent deformation as a result of local yielding was modeled by a finite element analysis. The local yielding occurs when a small area of the plate is heated by a laser beam. The calculated displacments are in good agreement with the preliminary experimental data obtained using a bend specimen with laser heating at the University of Alabama at Huntsville. It has been shown computuationally and optically that the relative displacments are less than 1mm near the laser heated area of the specimen. The results demonstrate that the experimental approach is a feasible technique for determining the residual stress under multiaxial stress field.

  8. Test Analysis Correlation of the Single Stringer Bending Tests for the Space Shuttle ET-137 Intertank Stringer Crack Investigation

    NASA Technical Reports Server (NTRS)

    Phillips, Dawn R.; Saxon, Joseph B.; Wingate, Robert J.

    2012-01-01

    , occurred as the LOX liquid level crossed the LOX tank / Intertank interface ring frame. Hence, cryogenically-induced displacements were suspected as a contributing cause of the stringer cracks. To study the behavior of Intertank stringers subjected to similar displacements, static load tests of individual stringers, colloquially known as "single stringer bending tests" were performed. Approximately thirty stringers were tested, many of which were cut from the partially completed Intertank for what would have been ET-139. In addition to the tests, finite element (FE) analyses of the test configuration were also performed. In this paper, the FE analyses and test-analysis correlation for stringer test S6-8 are presented. Stringer S6-8 is a "short chord" configuration with no doubler panels.

  9. Bending elastic modulus of red blood cell membrane derived from buckling instability in micropipet aspiration tests.

    PubMed

    Evans, E A

    1983-07-01

    Observation of cell membrane buckling and cell folding in micropipette aspiration experiments was used to evaluate the bending rigidity of the red blood cell membrane. The suction pressure required to buckle the membrane surface initially was found to be about one-half to two-thirds of the pressure that caused the cell to fold and move up the pipet. A simple analytical model for buckling of a membrane disk supported at inner and outer radii correlates well with the observed buckling pressures vs. pipet radii. The buckling pressure is predicted to increase in inverse proportion to the cube of the pipet radius; also, the buckling pressure depends inversely on the radial distance to the toroidal rim of the cell, normalized by the pipet radius. As such, the pressure required to buckle the membrane with 1 X 10(-4) cm diam pipet would be about four times greater than with a 2 X 10(-4) cm pipet. This is the behavior observed experimentally. Based on analysis of the observed buckling data, the membrane bending or curvature elastic modulus is calculated to be 1.8 X 10(-12) dyn-cm. PMID:6882860

  10. The design and experiment of a novel ultrasonic motor based on the combination of bending modes.

    PubMed

    Yan, Jipeng; Liu, Yingxiang; Liu, Junkao; Xu, Dongmei; Chen, Weishan

    2016-09-01

    This paper presents a new-type linear ultrasonic motor which takes advantage of the combination of two orthogonal bending vibration modes. The proposed ultrasonic motor consists of eight pieces of PZT ceramic plates and a metal beam that includes two cone-shaped horns and a cylindrical driving foot. The finite element analyses were finished to verify the working principle of the proposed motor. The mode shapes of the motor were obtained by modal analysis; the elliptical trajectories of nodes on the driving foot were obtained by time-domain analysis. Based on the analyses, a prototype of the proposed motor was fabricated and measured. The mechanical output characteristics were obtained by experiments. The maximal velocity of the proposed motor is 735mm/s and the maximal thrust is 1.1N. PMID:27400216

  11. Improvement of transmission properties through two-bend resonance by holographic design for a two-dimensional photonic crystal waveguide.

    PubMed

    Dong, G Y; Yang, X L; Cai, L Z; Shen, X X; Wang, Y R

    2008-09-29

    We have investigated the transmission properties of a photonic crystal waveguide (PCW) formed by holographic lithography for the first time with a two-dimensional (2D) triangular holographic photonic crystal (PhC) including a line defect with two 60 masculine bends. Calculations have shown that for this PCW high transmission (>90%) through sharp corners can be obtained in a wide frequency range from 0.298 to 0.310 (omega alpha/2pi c) with the relative band gap of 4% when the dielectric contrast is 7.6:1. As far as we know, this result should be the widest frequency range with high transmission (>90%) in the waveguide of similar 2D triangular PhCs ever reported. We have also found that the specific holographic designs of PhC have strong influence on the resonance between the two waveguide bends, and thus this fact can be used as an effective means to improve the transmission property of 2D holographic PCW. In addition to the simplicity and low cost of holographic fabrication of PhCs, these features may reveal the possibly better guiding ability of holographic PCW than the conventional waveguide and the promising potential of the former in the application of photonic integrated circuits. PMID:18825173

  12. Design optimization of a low-loss and wide-band sharp 120° waveguide bend in 2D photonic crystals

    NASA Astrophysics Data System (ADS)

    Yuan, Jianhua; Yang, Jian; Shi, Dan; Ai, Wenbao; Shuai, Tianping

    2016-05-01

    For two dimensional photonic crystals containing finite cylinders on triangle lattice, a 120° waveguide bend with low-loss and wide-band is obtained in this paper. The optimal process can be divided into two steps: firstly, a conventional waveguide bend can be introduced by maximizing the photonic bandgap; then further optimization involves shifting the position and modifying the radius of only one air hole near the bend. An optimization problem at a given frequency or over a frequency range needs to be solved. It depends on both the field solutions obtained by using the finite element method and the optimization of photonic bandgap obtained by using the plane wave expansion method. With the proposed optimal technique, the result of our optimized design for sharp 120° waveguide bends shows that an obvious low-loss transmission at wavelength 1550 nm can be observed and the maximum value of objective function is able to be rapidly obtained.

  13. Bending testing and characterization of surrogate nuclear fuel rods made of Zircaloy-4 cladding and aluminum oxide pellets

    DOE PAGESBeta

    Wang, Hong; Wang, Jy-An John

    2016-07-20

    We studied behavior of surrogate nuclear fuel rods made of Zircaloy-4 (Zry-4) cladding with alumina pellets under reversed cyclic bending. Tests were performed under load or moment control at 5 Hz, and an empirical correlation was established between rod fatigue life and amplitude of the applied moment. Fatigue response of Zry-4 cladding was further characterized by using flexural rigidity. Degradation of flexural rigidity was shown to depend on the moment applied and the prefatigue condition of specimens. Pellet-to-pellet interface (PPI), pellet-to-cladding interface (PCI), and pellet condition all affect surrogate rod failure. Bonding/debonding of PPI/PCI and pellet fracturing contribute to surrogatemore » rod bending fatigue. Also, the effect of sensor spacing on curvature measurement using three-point deflections was studied; the method based on effective specimen gauge length is effective in sensor spacing correction. Finally, we developed the database and gained understanding in this study such that it will serve as input to analysis of SNF vibration integrity.« less

  14. Questions Dog Design of Tests

    ERIC Educational Resources Information Center

    Gewertz, Catherine

    2012-01-01

    On the verge of signing a contract to help design assessments for the common standards, ACT Inc. has withdrawn from the project amid conflict-of-interest questions sparked by its own development of a similar suite of tests. Even though it involves only a small subcontract, the move by the Iowa-based test-maker, and the questions from the state…

  15. LSP Composite Test Bed Design

    NASA Technical Reports Server (NTRS)

    Day, Arthur C.; Griess, Kenneth H.

    2013-01-01

    This document provides standalone information for the Lightning Strike Protection (LSP) Composite Substrate Test Bed Design. A six-sheet drawing set is reproduced for reference, as is some additional descriptive information on suitable sensors and use of the test bed.

  16. International round robin test of the retained critical current after double bending at room temperature of Ag-sheathed Bi-2223 superconducting wires

    NASA Astrophysics Data System (ADS)

    Yamada, Y.; Nishijima, G.; Osamura, K.; Shin, H. S.; Goldacker, W.; Breschi, M.; Ribani, P.

    2016-02-01

    An international round robin test was carried out in order to establish a test method for retained critical current after double bending at room temperature of Ag-sheathed Bi-2223 superconducting wires. Tests for commercial Bi-2223 tape were conducted by six laboratories using the same guidelines. The standard uncertainties (SUs) of measurands were evaluated for these four quantities: I C0, I C/I C080, I C/I C060, I C/I C050, where, I C0 is initial critical current and I C /I C0XX is critical current after XX mm bending. Using an F test to determine where the most scatter was generated in the test results it was found that the greatest scatter in the normalized critical current measurements came from inter-laboratory scatter. In a type-B uncertainty evaluation, the major contribution was from the bending diameter and measuring temperature. The relative SU tended to increase as the bending diameter decreased. A specific mandrel diameter corresponding to a retained critical current of 95% could be determined with a relative SU of 1.3%. In order to reduce the overall scatter, the temperature difference between the critical current measurements before and after bending should be small.

  17. Using the Semi-Circular Bending Test to Investigate the Interaction Between Hydraulic and Natural Fractures

    NASA Astrophysics Data System (ADS)

    Wang, W.; Olson, J. E.; Prodanovic, M.

    2014-12-01

    Micro-seismic data shows that hydraulic fracture propagation is a complex process. When hydraulic fractures interact with pre-existing natural fractures, it can result in a complex fracture network. The interaction depends on in-situ stresses, rock and natural fracture mechanical properties, approach angle and hydraulic fracture treatment parameters. Most simulation studies treat natural fractures as frictional interfaces with cohesive properties. However, from core observation, partially cemented and fully cemented natural fractures are widely present and it is not clear that whether they fit the common description or not. In this study, semi-circular bending experiments are utilized to examine the fracture propagation paths. Synthetic hydrostone samples with embedded inclusions of different mechanical properties are used to mimic rock and cemented natural fractures. Simulation results are generated using finite element software ABAQUS. The extended finite element method (XFEM) capability of ABAQUS allows the fracture initiation and propagation along a solution dependent path without the need for re-meshing. The simulation results are used to explain the experimental observations. In a series of experiment and modeling work, we assess the influence of the fracture approach angle, inclusion strength, and inclusion thickness on fracture propagation. Current results indicate the fracture propagation direction is strongly influenced by pre-existing inclusions. The propagating fractures tend to cross the inclusion when the approach angle is high and divert into the inclusion when the approach angle is low. The crossing surface is thus not a clean cut, but with a jog distance that depends on the inclusion thickness and approach angle. Results imply that if hydraulic fractures have lower approach angles to pre-existing natural fractures, the ultimate fracture network is going to have higher complexity. The thickness of natural fractures can also add to the complexity.

  18. Microstructural Simulation of Three-Point Bending Test with Mo-Si-B Alloy at High Temperature: Sources of Strain Field Localization

    NASA Astrophysics Data System (ADS)

    Chollacoop, Nuwong; Alur, Amruthavalli P.; Kumar, K. Sharvan

    Deformation behavior in three-point bending test of Mo-Si-B alloy was investigated by recourse to finite element analysis (FEA) with microstructure incorporated. This Mo-Si-B alloy consists of hard, brittle T2 (Mo5SiB2) phase embedded in soft matrix of Mo solid solution. The sample contains pre-crack configuration at the middle in order to study the effect of the second phase (T2 particles) onto a crack tip during the bending test. Various optical micrographs were scanned, digitized and meshed for FEA. It was found that strain localization from the second phase at the crack tip was interfered with that from the loading pin in three-point bending test. Such interference could be reduced by replacement with end moment loading, in order to identify sole strain localization effect from the second phase at the crack tip.

  19. Field Bending Tests of Three Riparian Species Common to the Central Platte River: Resistance, Rigidity and Plant Streamlining

    NASA Astrophysics Data System (ADS)

    Thomas, R. E.; Bankhead, N. L.; Simon, A.

    2010-12-01

    The braided Platte River, central Nebraska, was described by the 19th Century wit Artemus Ward as being “a mile wide and an inch deep”. 150 years on, the upstream diversion and storage of water for agricultural, municipal and industrial uses has caused significant alteration of the hydrologic regime. As a result, sandbars have been progressively colonized by vegetation, leading to the formation of semi-permanent islands and the narrowing of braids by 30-90%. In response, a program was initiated early in 2007 to recreate habitat for endangered birds. One potential management strategy is to modify the hydrologic regime with the goal of removing vegetation and hence re-establishing a dynamic braided channel. An interdisciplinary approach has been adopted to evaluate the likelihood for successful implementation of such a strategy. In a companion paper, Bankhead et al. describe field tests conducted to quantify the forces necessary to uproot and/or break the stems and roots of four common riparian species. Herein, we describe field measurements of the behavior of reed canary grass, phragmites australis and cottonwood plants in response to being pulled horizontally at a known height above the ground. During the tests, the extent of plant bending in response to the applied force and the resistance to bending were monitored continuously. Furthermore, a novel approach employing time lapse photography and image processing was used to quantify associated changes in plant projected area. The mean stem diameter of reed canary grass plants was 3.21 ± 1.08 mm (μ ± σ, n = 69), that of phragmites australis plants was 6.05 ± 1.95 mm (n = 90), and that of cottonwood plants was 4.18 ± 3.59 mm (n = 76). The mean stem length of reed canary grass was 0.77 ± 0.35 m (n = 69), that of phragmites australis was 0.86 ± 0.64 m (n = 90), and that of cottonwoods was 0.55 ± 0.43 m (n = 76). The flexural rigidities (J) of cottonwoods were particularly sensitive to plant age: for 1 year

  20. Bending fatigue tests on SiC-Al tapes under alternating stress at room temperature

    NASA Technical Reports Server (NTRS)

    Herzog, J. A.

    1981-01-01

    The development of a testing method for fatigue tests on SiC-Al tapes containing a small amount of SiC filaments under alternating stress is reported. The fatigue strength curves resulting for this composite are discussed. They permit an estimate of its behavior under continuous stress and in combination with various other matrices, especially metal matrices.

  1. Bending tests on T91 samples implanted with 0.25 at.% helium: Experiments and mechanical analysis

    NASA Astrophysics Data System (ADS)

    Henry, J.; Vincent, L.; Averty, X.; Marini, B.; Jung, P.

    2006-09-01

    In order to investigate helium effects on the fracture properties of martensitic mod 9Cr-1Mo (T91) steel, miniature Charpy specimens were implanted at 250 °C in the notch region to 0.25 at.% helium using a degraded 34 MeV 3He ion beam and subsequently submitted to static bending tests at room temperature. For the six implanted specimens, a 'pop-in' phenomenon, which is an arrested unstable crack extension, was systematically recorded during testing. In the implanted zones of the samples, the fracture mode was fully brittle with both intergranular and cleavage fracture, whereas for unimplanted samples tested at -170 °C, the fracture mode was found to be 100% cleavage. Finite element simulations of the tests performed on unimplanted and implanted specimens were also carried out to determine stress and strain fields at the onset of crack propagation. Based on these computations, the fracture toughness of implanted T91 was tentatively evaluated using the Beremin model of the local approach to brittle fracture.

  2. Experimental Analysis of Mast Lifting and Bending Forces on Vibration Patterns Before and After Pinion Reinstallation in an OH-58 Transmission Test Rig

    NASA Technical Reports Server (NTRS)

    Huff, Edward M.; Lewicki, David G.; Tumer, Irem Y.; Decker, Harry; Barszez, Eric; Zakrajsek, James J.; Norvig, Peter (Technical Monitor)

    2000-01-01

    As part of a collaborative research program between NASA Ames Research Center (ARC), NASA Glenn Research Center (GRC), and the US Army Laboratory, a series of experiments is being performed in GRC's 500 HP OH-58 Transmission Test Rig facility and ARC's AH-I Cobra and OH-58c helicopters. The findings reported in this paper were drawn from Phase-I of a two-phase test-rig experiment, and are focused on the vibration response of an undamaged pinion gear operating in the transmission test rig. To simulate actual flight conditions, the transmission system was run at three torque levels, as well as two mast lifting and two mast bending levels. The test rig was also subjected to disassembly and reassembly of the main pinion housing to simulate the effect of maintenance operations. An analysis of variance based on the total power of the spectral distribution indicates the relative effect of each experimental factor, including Wong interactions with torque. Reinstallation of the main pinion assembly is shown to introduce changes in the vibration signature, suggesting the possibility of a strong effect of maintenance on HUMS design and use. Based on these results, further research will be conducted to compare these vibration responses with actual OH58c helicopter transmission vibration patterns.

  3. Bending rigidity of composite resin coating clasps.

    PubMed

    Ikebe, K; Kibi, M; Ono, T; Nokubi, T

    1993-12-01

    The purpose of this study is to examine the bending profiles of composite resin coating cast clasps. The cobalt-chromium alloy cast clasps were made using tapered wax pattern. Silane coupling method (Silicoater MD, Kulzer Co.) was used to attach composite resin to metal surface. The breakage and the bending rigidity of composite resin coating clasps were evaluated. Results were as follows: 1) After the repeated bending test to the tips of clasp arm at 10,000 times in 0.25 mm deflection, neither crack on composite resin surface nor separation at resin/metal interface was observed in any specimen. 2) There was no significant difference in the bending rigidity of clasp arms between before and after composite resin coating. From these results, it was demonstrated that the composite resin coating cast clasp was available in clinical cases and coating with composite resin had little influence on the bending rigidity of clasp arms. Therefore, it was suggested that our clasp designing and fabricating system to control the bending rigidity of clasp arms could be applied to composite resin coating clasps. PMID:8935086

  4. Design and testing of external fixator bone screws.

    PubMed

    Evans, M; Spencer, M; Wang, Q; White, S H; Cunningham, J L

    1990-11-01

    In external fixation, bone screw loosening still presents a major clinical problem. For this study, the design factors influencing the mechanics of the bone-screw interface were analysed and various experimental screws designed with the intention of maximizing the strength and stiffness of the inserted screw. Push-in, pull-out and bending tests were then carried out on the three experimental screws, and on two commercially available screws in both a synthetic material and in cadaveric bone; photoelastic tests on different screw threadforms were also performed. The results of the push-in and pull-out tests indicate that both the screw threadform and cutting head have a significant effect on the holding strength of the screw. The photoelastic tests show that most of the applied load is distributed over the first few threads closest to the load, and that the area between the thread crests is subjected to high shear stresses. PMID:2266740

  5. Method for testing shell materials for fatigue crack resistance under biaxial bending

    SciTech Connect

    Esiev, T.S.; Basiev, K.D.; Steklov, O.I. |

    1995-10-01

    A method for testing shell materials for fatigue crack resistance is proposed. A stressed state typically occurring in shells is simulated on a specimen with a surface notch by subjecting it to biaxial surface tension. The time of fatigue crack generation or the crack propagation rate is used to evaluate the crack resistance of a material. Cross-shaped test specimens cut out of a real shell had a size and a loading scheme that made it possible to vary the biaxial stress ratio over the range of 0.5 {<=} {lambda} {<=} 1.

  6. Ares I Static Tests Design

    NASA Technical Reports Server (NTRS)

    Carson, William; Lindemuth, Kathleen; Mich, John; White, K. Preston; Parker, Peter A.

    2009-01-01

    Probabilistic engineering design enhances safety and reduces costs by incorporating risk assessment directly into the design process. In this paper, we assess the format of the quantitative metrics for the vehicle which will replace the Space Shuttle, the Ares I rocket. Specifically, we address the metrics for in-flight measurement error in the vector position of the motor nozzle, dictated by limits on guidance, navigation, and control systems. Analyses include the propagation of error from measured to derived parameters, the time-series of dwell points for the duty cycle during static tests, and commanded versus achieved yaw angle during tests. Based on these analyses, we recommend a probabilistic template for specifying the maximum error in angular displacement and radial offset for the nozzle-position vector. Criteria for evaluating individual tests and risky decisions also are developed.

  7. Dispersion suppressors with bending

    SciTech Connect

    Garren, A.

    1985-10-01

    Dispersion suppressors of two main types are usually used. In one the cell quadrupole focussing structure is the same as in normal cells but some of the dipoles are replaced by drifts. In the other, the quadrupole strengths and/or spacings are different from those of the normal cells, but the bending is about the same as it is in the cells. In SSC designs to date, dispersion suppressors of the former type have been used, consisting of two cells with bending equivalent to one. In this note a suppressor design with normal bending and altered focussing is presented. The advantage of this scheme is that circumference is reduced. The disadvantages are that additional special quadrupoles must be provided (however, they need not be adjustable), and the maximum beta values within them are about 30% higher than the cell maxima.

  8. On the impact bending test technique for high-strength pipe steels

    NASA Astrophysics Data System (ADS)

    Arsenkin, A. M.; Odesskii, P. D.; Shabalov, I. P.; Likhachev, M. V.

    2015-10-01

    It is shown that the impact toughness (KCV-40 = 250 J/cm2) accepted for pipe steels of strength class K65 (σy ≥ 550 MPa) intended for large-diameter gas line pipes is ineffective to classify steels in fracture strength. The results obtained upon testing of specimens with a fatigue crack and additional sharp lateral grooves seem to be more effective. In energy consumption, a macrorelief with splits is found to be intermediate between ductile fracture and crystalline brittle fracture. A split formation mechanism is considered and a scheme is proposed for split formation.

  9. Optical design and testing: introduction.

    PubMed

    Liang, Chao-Wen; Koshel, John; Sasian, Jose; Breault, Robert; Wang, Yongtian; Fang, Yi Chin

    2014-10-10

    Optical design and testing has numerous applications in industrial, military, consumer, and medical settings. Assembling a complete imaging or nonimage optical system may require the integration of optics, mechatronics, lighting technology, optimization, ray tracing, aberration analysis, image processing, tolerance compensation, and display rendering. This issue features original research ranging from the optical design of image and nonimage optical stimuli for human perception, optics applications, bio-optics applications, 3D display, solar energy system, opto-mechatronics to novel imaging or nonimage modalities in visible and infrared spectral imaging, modulation transfer function measurement, and innovative interferometry. PMID:25322438

  10. Design and manufacturing rules for maximizing the performance of polycrystalline piezoelectric bending actuators

    NASA Astrophysics Data System (ADS)

    Jafferis, Noah T.; Smith, Michael J.; Wood, Robert J.

    2015-06-01

    Increasing the energy and power density of piezoelectric actuators is very important for any weight-sensitive application, and is especially crucial for enabling autonomy in micro/milli-scale robots and devices utilizing this technology. This is achieved by maximizing the mechanical flexural strength and electrical dielectric strength through the use of laser-induced melting or polishing, insulating edge coating, and crack-arresting features, combined with features for rigid ground attachments to maximize force output. Manufacturing techniques have also been developed to enable mass customization, in which sheets of material are pre-stacked to form a laminate from which nearly arbitrary planar actuator designs can be fabricated using only laser cutting. These techniques have led to a 70% increase in energy density and an increase in mean lifetime of at least 15× compared to prior manufacturing methods. In addition, measurements have revealed a doubling of the piezoelectric coefficient when operating at the high fields necessary to achieve maximal energy densities, along with an increase in the Young’s modulus at the high compressive strains encountered—these two effects help to explain the higher performance of our actuators as compared to that predicted by linear models.

  11. Stringer Bending Test Helps Diagnose and Prevent Cracks in the Space Shuttle's External Tank

    NASA Technical Reports Server (NTRS)

    Saxon, Joseph B.; Swanson, Gregory R.; Ondocsin, William P.; Wingate, Robert J.

    2012-01-01

    Space Shuttle Discovery's last mission, STS-133, was scheduled to launch on November 5, 2010. Just hours before liftoff, a hydrogen leak at an umbilical connection scrubbed the launch attempt. After the scrub, further inspection revealed a large crack in the foam insulation covering the External Tank, ET-137. Video replay of the launch attempt confirmed the crack first appeared as cryogenic propellants were being loaded into the ET. When the cracked foam was removed, technicians found the underlying stringer had two 9-inch-long cracks. Further inspection revealed a total of 5 of the 108 ET stringers had cracked. NASA and Lockheed Martin immediately launched an aggressive campaign to understand the cracks and repair the stringers in ET-137, targeting February 2011 as the new launch date for STS-133. Responsibilities for the various aspects of the investigation were widely distributed among NASA centers and organizations. This paper will focus on lab testing at Marshall Space Flight Center (MSFC) in Huntsville, Alabama that was intended to replicate the stringer failure and gauge the effect of proposed countermeasures.

  12. Ultimate bending capacity of strain hardening steel pipes

    NASA Astrophysics Data System (ADS)

    Chen, Yan-fei; Zhang, Juan; Zhang, Hong; Li, Xin; Zhou, Jing; Cao, Jing

    2016-04-01

    Based on Hencky's total strain theory of plasticity, ultimate bending capacity of steel pipes can be determined analytically assuming an elastic-linear strain hardening material, the simplified analytical solution is proposed as well. Good agreement is observed when ultimate bending capacities obtained from analytical solutions are compared with experimental results from full-size tests of steel pipes. Parametric study conducted as part of this paper indicates that the strain hardening effect has significant influence on the ultimate bending capacity of steel pipes. It is shown that pipe considering strain hardening yields higher bending capacity than that of pipe assumed as elastic-perfectly plastic material. Thus, the ignorance of strain hardening effect, as commonly assumed in current codes, may underestimate the ultimate bending capacity of steel pipes. The solutions proposed in this paper are applicable in the design of offshore/onshore steel pipes, supports of offshore platforms and other tubular structural steel members.

  13. Estimation of Fracture Toughness of Anisotropic Rocks by Semi-Circular Bend (SCB) Tests Under Water Vapor Pressure

    NASA Astrophysics Data System (ADS)

    Kataoka, M.; Obara, Y.; Kuruppu, M.

    2015-07-01

    In order to investigate the influence of water vapor pressure in the surrounding environment on mode I fracture toughness ( K Ic) of rocks, semi-circular bend (SCB) tests under various water vapor pressures were conducted. Water vapor is one of the most effective agents which promote stress corrosion of rocks. The range of water vapor pressure used was 10-2 to 103 Pa, and two anisotropic rock types, African granodiorite and Korean granite, were used in this work. The measurement of elastic wave velocity and observation of thin sections of these rocks were performed to investigate the microstructures of the rocks. It was found that the distribution of inherent microcracks and grains have a preferred orientation. Two types of specimens in different orientations, namely Type-1 and Type-3, were prepared based on the anisotropy identified by the differences in the elastic wave velocity. K Ic of both rock types was dependent on the water vapor pressure in the surrounding environment and decreased with increasing water vapor pressure. It was found that the degree of the dependence is influenced by the orientation and density of inherent microcracks. The experimental results also showed that K Ic depended on the material anisotropy. A fracture process was discussed on the basis of the geometry of fractures within fractured specimens visualized by the X-ray computed tomography (CT) method. It was concluded that the dominant factor causing the anisotropy of K Ic is the distribution of grains rather than inherent microcracks in these rocks.

  14. Damage Characterization of Glass/Epoxy Composite Under Three-Point Bending Test Using Acoustic Emission Technique

    NASA Astrophysics Data System (ADS)

    Pashmforoush, Farzad; Fotouhi, Mohamad; Ahmadi, Mehdi

    2012-07-01

    Acoustic emission (AE) technique is an efficient non-destructive method for detection and identification of various damage mechanisms in composite materials. Discrimination of AE signals related to different damage modes is of great importance in the use of this technique. For this purpose, integration of k-means algorithm and genetic algorithm (GA) was used in this study to cluster AE events of glass/epoxy composite during three-point bending test. Performing clustering analysis, three clusters with separate frequency ranges were obtained, each one representing a distinct damage mechanism. Furthermore, time-frequency analysis of AE signals was performed based on wavelet packet transform (WPT). In order to find the dominant components associated with different damage mechanisms, the energy distribution criterion was used. The frequency ranges of the dominant components were then compared with k-means genetic algorithm (KGA) outputs. Finally, SEM observation was utilized to validate the results. The obtained results indicate good performance of the proposed methods in the damage characterization of composite materials.

  15. Engineering test facility design definition

    NASA Astrophysics Data System (ADS)

    Bercaw, R. W.; Seikel, G. R.

    1980-06-01

    The Engineering Test Facility (ETF) is the major focus of the Department of Energy (DOE) Magnetohydrodynamics (MHD) Program to facilitate commercialization and to demonstrate the commercial operability of MHD/steam electric power. The ETF will be a fully integrated commercial prototype MHD power plant with a nominal output of 200 MW sub e. Performance of this plant is expected to meet or surpass existing utility standards for fuel, maintenance, and operating costs; plant availability; load following; safety; and durability. It is expected to meet all applicable environmental regulations. The current design concept conforming to the general definition, the basis for its selection, and the process which will be followed in further defining and updating the conceptual design.

  16. Engineering test facility design definition

    NASA Technical Reports Server (NTRS)

    Bercaw, R. W.; Seikel, G. R.

    1980-01-01

    The Engineering Test Facility (ETF) is the major focus of the Department of Energy (DOE) Magnetohydrodynamics (MHD) Program to facilitate commercialization and to demonstrate the commercial operability of MHD/steam electric power. The ETF will be a fully integrated commercial prototype MHD power plant with a nominal output of 200 MW sub e. Performance of this plant is expected to meet or surpass existing utility standards for fuel, maintenance, and operating costs; plant availability; load following; safety; and durability. It is expected to meet all applicable environmental regulations. The current design concept conforming to the general definition, the basis for its selection, and the process which will be followed in further defining and updating the conceptual design.

  17. Composite materials: Testing and design

    NASA Technical Reports Server (NTRS)

    Whitcomb, John D. (Editor)

    1988-01-01

    The present conference discusses topics in the analysis of composite structures, composite materials' impact and compression behavior, composite materials characterization methods, composite failure mechanisms, NDE methods for composites, and filament-wound and woven composite materials' fabrication. Attention is given to the automated design of a composite plate for damage tolerance, the effects of adhesive layers on composite laminate impact damage, instability-related delamination growth in thermoset and thermoplastic composites, a simple shear fatigue test for unidirectional E-glass epoxy, the growth of elliptic delaminations in laminates under cyclic transverse shear, and the mechanical behavior of braided composite materials.

  18. Designing Test Chips for Custom Integrated Circuits

    NASA Technical Reports Server (NTRS)

    Buehler, M. G.; Griswold, T. W.; Pina, C. A.; Timoc, C. C.

    1985-01-01

    Collection of design and testing procedures partly automates development of built-in test chips for CMOS integrated circuits. Testchip methodology intended especially for users of custom integratedcircuit wafers. Test-Chip Designs and Testing Procedures (including datareduction procedures) generated automatically by computer from programed design and testing rules and from information supplied by user.

  19. Design and testing of a new, simple continuous bent sagittally focusing monochromator

    SciTech Connect

    Kycia, S.; Inoue, K.; Shen, Q.

    1996-09-01

    A continuous bent sagittally focusing monochromator has been designed and built. The monochromator is compatible with the present single-point bender apparatus designed for polygonal (ribbed) triangular sagittally focusing monochromators. This monochromator implements a new design concept taking advantage of a tapered rectangular wafer to allow for sagittal bending while simultaneously minimizing anticlastic bending. The monochromator was optimized to operate at x-ray energies in the range of 5 to 25 keV. The design was derived from finite element analysis using ANSYS. The monochromator performance was tested by means of an apparatus implementing an x-ray tube source and a double-crystal configuration. This method yields precise contour maps of the entire monochromator surface. Details of the monochromator design, test apparatus, and corresponding results will be presented. {copyright} {ital 1996 American Institute of Physics.}

  20. Finite element prediction with experimental validation of damage distribution in single trabeculae during three-point bending tests.

    PubMed

    Ridha, Hambli; Thurner, Philipp J

    2013-11-01

    There is growing evidence that information on trabecular microarchitecture can improve the assessment of fracture risk. One current strategy is to exploit finite element (FE) analysis applied to experimental data of mechanically loaded single trabecular bone tissue obtained from non-invasive imaging techniques for the investigation of the damage initiation and growth of bone tissue. FE analysis of this type of bone has mainly focused on linear and non-linear analysis to evaluate the bone's failure properties. However, there is a lack of experimentally validated FE damage models at trabecular bone tissue level allowing for the simulation of the progressive damage process (initiation and growth) till complete fracture. Such models are needed to perform enhanced prediction of the apparent failure mechanical properties needed to assess the fracture risk of bone organs. In the current study, we develop a FE model based on a continuum damage mechanics (CDM) approach to simulate the damage initiation and propagation of a single trabecula till complete facture in quasi-static regime. Three-point bending experiments were performed on single bovine trabeculae and compared to FE results. In order to validate the proposed FE mode, (i) the force displacement curve was compared to the experimental one and (ii) the damage distribution was correlated to the measured one obtained by digital image correlation based on stress whitening in bone, reported to be correlated to microdamage. A very good agreement was obtained between the FE and experimental results, indicating that the proposed damage investigation protocol based on FE analysis and testing is reliable to assess the damage behavior of bone tissue and that the current damage model is able to accurately simulate the damaging and fracturing process of single trabeculae under quasi static load. PMID:23890577

  1. Performance monitoring of large-scale autonomously healed concrete beams under four-point bending through multiple non-destructive testing methods

    NASA Astrophysics Data System (ADS)

    Karaiskos, G.; Tsangouri, E.; Aggelis, D. G.; Van Tittelboom, K.; De Belie, N.; Van Hemelrijck, D.

    2016-05-01

    Concrete is still the leading structural material due to its low production cost and great structural design flexibility. Although it is distinguished by such a high durability and compressive strength, it is vulnerable in a series of ambient and operational degradation factors which all too frequently result in crack formation that can adversely affect its mechanical performance. The autonomous healing system, using encapsulated polyurethane-based, expansive, healing agent embedded in concrete, is triggered by the crack formation and propagation and promises material repair and operational service life extension. As shown in our previous studies, the formed cracks on small-scale concrete beams are sealed and repaired by filling them with the healing agent. In the present study, the crack formation and propagation in autonomously healed, large-scale concrete beams are thoroughly monitored through a combination of non-destructive testing (NDT) methods. The ultrasonic pulse velocity (UPV), using embedded low-cost and aggregate-size piezoelectric transducers, the acoustic emission (AE) and the digital image correlation (DIC) are the NDT methods which are comprehensively used. The integrated ultrasonic, acoustic and optical monitoring system introduces an experimental configuration that detects and locates the four-point bending mode fracture on large-scale concrete beams, detects the healing activation process and evaluates the subsequent concrete repair.

  2. Bend ductility of tungsten heavy alloys

    SciTech Connect

    Gurwell, W.E.; Garnich, M.R.; Dudder, G.B.; Lavender, C.A.

    1992-11-01

    A bend ductility test is used to indicate the formability of tungsten heavy alloys sheet. The primary test bends a notchless Charpy impact specimen to a bend angle of approximately 100C. This can be augmented by a bend-completion test. Finite element modeling as well as strain-gaged bend specimens elucidate the strain distribution in the specimen as a function of material thickness and bend angle. The bend ductilities of 70%W, 807.W and 90%W alloys are characterized. As expected, decreasing thickness or tungsten content enhances bend ductility. Oxidation is not detrimental; therefore, controlled atmosphere is not required for cooling. The potentially detrimental effects of mechanical working (e.g., rolling, roller-leveling, grit blasting, and peening) and machining (e.g., cutting and sanding) are illustrated.

  3. Biomechanical testing of a new design for Schanz pedicle screws.

    PubMed

    Willett, K; Hearn, T C; Cuncins, A V

    1993-01-01

    Standard 5-mm AO Schanz pedicle screws were biomechanically compared with a new design, featuring 6-mm threads with a 5-mm core diameter continuous with the shaft. One each of the two screw designs was surgically inserted into the matching pedicles of 32 cadaveric vertebrae. The pull-out strengths of the screws were then determined by recording the peak force values during extraction under servohydraulic displacement control. The screws were also tested in three-point bending, varying the inner load point with respect to the shaft thread junction, within a clinically anticipated range. The mean pull-out strength for the 6-mm screw was 597 N, which was significantly greater than the mean strength of 405 N for the 5 mm screw (p = 0.002). The 6-mm screw was also stronger in three-point bending, and failed at the point of inner load application, with no evidence of a stress-raising effect at the shaft/thread junction. In contrast, the 5-mm screw withstood lower loads, and failed at the shaft/thread junction, regardless of the point of loading. Pedicle screw breakage and pull-out are the recognized modes of failure of spinal implants, which are dependent on pedicle screw fixation. The results suggest distinct biomechanical advantages for the 6-mm screw, which should be used whenever clinically feasible. PMID:8377050

  4. Design, tests and commissioning of the EMMA injection septum

    NASA Astrophysics Data System (ADS)

    Marinov, K.; Clarke, J. A.; Marks, N.; Tzenov, S.

    2013-02-01

    The paper describes the main steps taken during the design and commissioning stages of the EMMA injection and extraction septum magnets. A preliminary analysis of the problem is presented first followed by a discussion of the results obtained through finite element magnetic modeling and design optimization. The measures taken to suppress the stray field generated by the magnet are discussed in detail. Two sets of tests are performed on the magnet: magnetic field measurement resulting in a three-dimensional magnetic field map and measurement of the electron beam bending angle as a function of the magnet current. The values of the effective magnetic length resulting from the two sets of measurement are found to be in excellent agreement.

  5. Design considerations and test facilities for accelerated radiation effects testing

    NASA Technical Reports Server (NTRS)

    Price, W. E.; Miller, C. G.; Parker, R. H.

    1972-01-01

    Test design parameters for accelerated dose rate radiation effects tests for spacecraft parts and subsystems used in long term mission (years) are detailed. A facility for use in long term accelerated and unaccelerated testing is described.

  6. Program Helps Design Tests Of Developmental Software

    NASA Technical Reports Server (NTRS)

    Hops, Jonathan

    1994-01-01

    Computer program called "A Formal Test Representation Language and Tool for Functional Test Designs" (TRL) provides automatic software tool and formal language used to implement category-partition method and produce specification of test cases in testing phase of development of software. Category-partition method useful in defining input, outputs, and purpose of test-design phase of development and combines benefits of choosing normal cases having error-exposing properties. Traceability maintained quite easily by creating test design for each objective in test plan. Effort to transform test cases into procedures simplified by use of automatic software tool to create cases based on test design. Method enables rapid elimination of undesired test cases from consideration and facilitates review of test designs by peer groups. Written in C language.

  7. Bending rules for animal propulsion.

    PubMed

    Lucas, Kelsey N; Johnson, Nathan; Beaulieu, Wesley T; Cathcart, Eric; Tirrell, Gregory; Colin, Sean P; Gemmell, Brad J; Dabiri, John O; Costello, John H

    2014-01-01

    Animal propulsors such as wings and fins bend during motion and these bending patterns are believed to contribute to the high efficiency of animal movements compared with those of man-made designs. However, efforts to implement flexible designs have been met with contradictory performance results. Consequently, there is no clear understanding of the role played by propulsor flexibility or, more fundamentally, how flexible propulsors should be designed for optimal performance. Here we demonstrate that during steady-state motion by a wide range of animals, from fruit flies to humpback whales, operating in either air or water, natural propulsors bend in similar ways within a highly predictable range of characteristic motions. By providing empirical design criteria derived from natural propulsors that have convergently arrived at a limited design space, these results provide a new framework from which to understand and design flexible propulsors. PMID:24548870

  8. Stress and stress relaxation behaviors of multi-layered polarizer structures under a reliability test condition characterized by use of a bending beam technique

    NASA Astrophysics Data System (ADS)

    Lin, Taiy-In; Hsieh, Chih-Yung; Li, I.-Yin; Leu, Jihperng

    2015-04-01

    The bending curvature, stresses, and stress relaxation of various multi-layered structures with different adhesive layers pertaining to the polarizer in a thin-film transistor liquid-crystal display (TFT-LCD) have been successfully characterized by using bending beam technique under reliability test. To be more specific, three different types of pressure-sensitive adhesive (hard-, middle-, and soft-type) and various poly(vinyl alcohol) (PVA) stretched directions are devised to examine to key stress contributors and correlations with light leakage. The shrinkage stress in stretched PVA film and stress relaxation ability of pressure-sensitive adhesives (PSA) layers are found to be the key factors determining the stress distribution and out-of-plane displacement of a polarizer stack. For hard-type PSA, its polarizer stack generates the highest bending curvature with maximum out-of-plane displacement but minimum in-plane displacement, leading to anisotropic stress distribution with high stress around the edges. On the other hand, polarizer stack with soft-type PSA yields the maximum in-plane displacement but the minimum out-of-plane displacement, resulting in isotropic stress distribution.

  9. A3 Subscale Diffuser Test Article Design

    NASA Technical Reports Server (NTRS)

    Saunders, G. P.

    2009-01-01

    This paper gives a detailed description of the design of the A3 Subscale Diffuser Test (SDT) Article Design. The subscale diffuser is a geometrically accurate scale model of the A3 altitude rocket facility. It was designed and built to support the SDT risk mitigation project located at the E3 facility at Stennis Space Center, MS (SSC) supporting the design and construction of the A3 facility at SSC. The subscale test article is outfitted with a large array of instrumentation to support the design verification of the A3 facility. The mechanical design of the subscale diffuser and test instrumentation are described here

  10. 10 CFR 63.133 - Design testing.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Design testing. 63.133 Section 63.133 Energy NUCLEAR... MOUNTAIN, NEVADA Performance Confirmation Program § 63.133 Design testing. (a) During the early or... design, such as, for example, borehole and shaft seals, backfill, and drip shields, as well as...

  11. 10 CFR 63.133 - Design testing.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Design testing. 63.133 Section 63.133 Energy NUCLEAR... MOUNTAIN, NEVADA Performance Confirmation Program § 63.133 Design testing. (a) During the early or... design, such as, for example, borehole and shaft seals, backfill, and drip shields, as well as...

  12. Aerosol deposition in bends with turbulent flow

    SciTech Connect

    McFarland, A.R.; Gong, H.; Wente, W.B.

    1997-08-01

    The losses of aerosol particles in bends were determined numerically for a broad range of design and operational conditions. Experimental data were used to check the validity of the numerical model, where the latter employs a commercially available computational fluid dynamics code for characterizing the fluid flow field and Lagrangian particle tracking technique for characterizing aerosol losses. Physical experiments have been conducted to examine the effect of curvature ratio and distortion of the cross section of bends. If it curvature ratio ({delta} = R/a) is greater than about 4, it has little effect on deposition, which is in contrast with the recommendation given in ANSI N13.1-1969 for a minimum curvature ratio of 10. Also, experimental results show that if the tube cross section is flattened by 25% or less, the flattening also has little effect on deposition. Results of numerical tests have been used to develop a correlation of aerosol penetration through a bend as a function of Stokes number (Stk), curvature ratio ({delta}) and the bend angle ({theta}). 17 refs., 10 figs., 2 tabs.

  13. An Experimental Investigation of Transverse Tension Fatigue Characterization of IM6/3501-6 Composite Materials Using a Three-Point Bend Test

    NASA Technical Reports Server (NTRS)

    Peck, Ann W.

    1998-01-01

    As composites are introduced into more complex structures with out-of-plane loadings, a better understanding is needed of the out-of-plane, matrix-dominated failure mechanisms. This work investigates the transverse tension fatigue characteristics of IM6/3501 composite materials. To test the 90 degree laminae, a three-point bend test was chosen, potentially minimizing handling and gripping issues associated with tension tests. A finite element analysis was performed of a particular specimen configuration to investigate the influence of specimen size on the stress distribution for a three-point bend test. Static testing of 50 specimens of 9 different sized configurations produced a mean transverse tensile strength of 61.3 Mpa (8.0 ksi). The smallest configuration (10.2 mm wide, Span-to-thickness ratio of 3) consistently exhibited transverse tensile failures. A volume scale effect was difficult to discern due to the large scatter of the data. Static testing of 10 different specimens taken from a second panel produced a mean transverse tensile strength of 82.7 Mpa (12.0 ksi). Weibull parameterization of the data was possible, but due to variability in raw material and/or manufacturing, more replicates are needed for greater confidence. Three-point flex fatigue testing of the smallest configuration was performed on 59 specimens at various levels of the mean static transverse tensile strength using an R ratio of 0.1 and a frequency of 20 Hz. A great deal of scatter was seen in the data. The majority of specimens failed near the center loading roller. To determine whether the scatter in the fatigue data is due to variability in raw material and/or the manufacturing process, additional testing should be performed on panels manufactured from different sources.

  14. Test Information Targeting Strategies for Adaptive Multistage Testing Designs.

    ERIC Educational Resources Information Center

    Luecht, Richard M.; Burgin, William

    Adaptive multistage testlet (MST) designs appear to be gaining popularity for many large-scale computer-based testing programs. These adaptive MST designs use a modularized configuration of preconstructed testlets and embedded score-routing schemes to prepackage different forms of an adaptive test. The conditional information targeting (CIT)…

  15. Formal functional test designs with a test representation language

    NASA Technical Reports Server (NTRS)

    Hops, J. M.

    1993-01-01

    The application of the category-partition method to the test design phase of hardware, software, or system test development is discussed. The method provides a formal framework for reducing the total number of possible test cases to a minimum logical subset for effective testing. An automatic tool and a formal language were developed to implement the method and produce the specification of test cases.

  16. 10 CFR 63.133 - Design testing.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Design testing. 63.133 Section 63.133 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA Performance Confirmation Program § 63.133 Design testing. (a) During the early...

  17. 10 CFR 63.133 - Design testing.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Design testing. 63.133 Section 63.133 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA Performance Confirmation Program § 63.133 Design testing. (a) During the early...

  18. 10 CFR 63.133 - Design testing.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Design testing. 63.133 Section 63.133 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA Performance Confirmation Program § 63.133 Design testing. (a) During the early...

  19. Numerical Investigation of Dynamic Rock Fracture Toughness Determination Using a Semi-Circular Bend Specimen in Split Hopkinson Pressure Bar Testing

    NASA Astrophysics Data System (ADS)

    Xu, Y.; Dai, F.; Xu, N. W.; Zhao, T.

    2016-03-01

    The International Society for Rock Mechanics (ISRM) has suggested a notched semi-circular bend technique in split Hopkinson pressure bar (SHPB) testing to determine the dynamic mode I fracture toughness of rock. Due to the transient nature of dynamic loading and limited experimental techniques, the dynamic fracture process associated with energy partitions remains far from being fully understood. In this study, the dynamic fracturing of the notched semi-circular bend rock specimen in SHPB testing is numerically simulated for the first time by the discrete element method (DEM) and evaluated in both microlevel and energy points of view. The results confirm the validity of this DEM model to reproduce the dynamic fracturing and the feasibility to simultaneously measure key dynamic rock fracture parameters, including initiation fracture toughness, fracture energy, and propagation fracture toughness. In particular, the force equilibrium of the specimen can be effectively achieved by virtue of a ramped incident pulse, and the fracture onset in the vicinity of the crack tip is found to synchronize with the peak force, both of which guarantee the quasistatic data reduction method employed to determine the dynamic fracture toughness. Moreover, the energy partition analysis indicates that simplifications, including friction energy neglect, can cause an overestimation of the propagation fracture toughness, especially under a higher loading rate.

  20. MITG test assembly design and fabrication

    SciTech Connect

    Schock, A.

    1983-01-01

    The design, analysis, and evaluation of the Modular Isotopic Thermoelectric Generator (MITG), described in an earlier paper, led to a program to build and test prototypical, modules of that generator. Each test module duplicates the thermoelectric converters, thermal insulation, housing and radiator fins of a typical generator slice, and simulates its isotope heat source module by means of an electrical heater encased in a prototypical graphite box. Once the approx. 20-watt MITG module has been developed, it can be assembled in appropriate number to form a generator design yielding the desired power output. The present paper describes the design and fabrication of the MITG test assembly, which confirmed the fabricability of the multicouples and interleaved multifoil insulation called for by the design. Test plans, procedures, instrumentation, results, and post-test analyses, as well as revised designs, fabrication procedures, and performance estimates, are described in subsequent papers in these proceedings.

  1. Construction of Parallel Test Forms Using Optimal Test Designs.

    ERIC Educational Resources Information Center

    Dirir, Mohamed A.

    The effectiveness of an optimal item selection method in designing parallel test forms was studied during the development of two forms that were parallel to an existing form for each of three language arts tests for fourth graders used in the Connecticut Mastery Test. Two listening comprehension forms, two reading comprehension forms, and two…

  2. Design, manufacture and test of the composite case for ERINT-1 solid rocket motor

    NASA Astrophysics Data System (ADS)

    Mard, Francis

    1993-06-01

    SEP is in charge since 1989 of the ERINT-1 motor case and nozzle. The stringent missile weight and volume requirements coupled with the specification to provide an aerodynamically stable configuration over a very large Mach number range led to the need to develop a high-performance composite motor case. Development of this SRM case presented a variety of technical challenges that were solved by an original design: (1) integral skirts, high bending stiffness, and bending loads are required; (2) high temperature composite stiffness and loads are required up to 160 C; (3) integral fin lugs attachments high aerodynamic loading is required on fin lugs; (4) enclosed fore dome; and (5) aft-pinned joint: a large rear opening is required to cast the propellant. Structural testing in ultimate conditions confirmed the soundness of the design. Positive safety margins were demonstrated on both internal pressure and mechanical loads requirements.

  3. Bend Properties of Sapphire Fibers at Elevated Temperatures. 1; Bend Survivability

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.; Sayir, Haluk

    1995-01-01

    The effect of temperature on the bend radius that a c-axis-oriented sapphire fiber can withstand was determined for fibers of various diameter. Bend stress rupture tests were performed for times of 1-100 h and temperatures of 300-1700 C. Fibers would survive the bend test undeformed, would fracture or would deform. The bend survival radius was determined to be the radius above which no fibers fractured or deformed for a given time-temperature treatment. It was found that the ability of fibers to withstand curvature decreases substantially with time and increasing temperature and that fibers of smaller diameter (46-83 micron) withstood smaller bend radii than would be expected from just a difference in fiber diameter when compared with the bend results of the fibers of large diameter (144 micron). This was probably due to different flaw populations, causing high temperature bend failure for the tested sapphire fibers of different diameters.

  4. [On fatigue bending strength of PMMA-specimen (author's transl)].

    PubMed

    Rojczyk, M; Rojczyk-Pflüger, J

    1980-01-01

    The fatigue response of PMMA-specimen was tested under cyclic bending of 1.5 Hz in a particularly designed testing device. Specimen were tested that a "Wöhler" curve and the corresponding fatigue strength could be evaluated. The fatigue strength was reached after a comparatively short time and ranged in the order of 33 per cent of static breaking strength. PMID:7447658

  5. Design of an Advanced Expander Test Bed

    NASA Technical Reports Server (NTRS)

    Mitchell, John C.; Tabata, William K.

    1993-01-01

    The final design of the Advanced Expander Test Bed (AETB) is discussed. The AETB is a cryogenic rocket ground test unit being designed and built for NASA to enable validation of mission-focused technologies for advanced space engines. Based on the split expander cycle, it will operate at a nominal thrust of 20,000 lbf, a chamber pressure of 1200 psia, and may be operated off-design over a wide range of throttling conditions and mixture ratios. The design approach and configuration of the major components are described.

  6. Computerized Adaptive Testing System Design: Preliminary Design Considerations.

    ERIC Educational Resources Information Center

    Croll, Paul R.

    A functional design model for a computerized adaptive testing (CAT) system was developed and presented through a series of hierarchy plus input-process-output (HIPO) diagrams. System functions were translated into system structure: specifically, into 34 software components. Implementation of the design in a physical system was addressed through…

  7. Software design of missile integrated test system

    NASA Astrophysics Data System (ADS)

    Dai, Jing; Zhang, Ping; Li, Xingshan; Liao, Canxing; Wang, Zongli

    2006-11-01

    Based on virtual instrument, software design precept of missile integrated test system is proposed in this paper. The integrated test system software was developed under modular, intelligent and structured precept. In this way, the expansion capability of the test software is improved, and it is very convenient for second-development and maintenance. This test software is of higher-degree automation, its integrated test environment gives full play to the hardware platform of the missile integrated test system. In response to the specific hardware configuration of the test system and special missile test requirements, the application of test resources was optimized in the test procedure to improve test speed greatly and satisfy the power-on time limit for missile test. At the same time, by applying multithreading and hardware clock on a data acquisition card, accurate data acquisition, data calculating and data injecting can be completed in a millisecond to satisfy the harsh missile test requirement. This automatic test equipment can automatically test the nose cabin and control cabin only of a missile and a training missile; all the missile test items can be accomplished in a short period of time to enhance the efficiency and reliability of the test.

  8. Los Alamos Novel Rocket Design Flight Tested

    ScienceCinema

    Tappan, Bryce

    2015-01-05

    Los Alamos National Laboratory scientists recently flight tested a new rocket design that includes a high-energy fuel and a motor design that also delivers a high degree of safety. Researchers will now work to scale-up the design, as well as explore miniaturization of the system, in order to exploit all potential applications that would require high-energy, high-velocity, and correspondingly high safety margins.

  9. Los Alamos Novel Rocket Design Flight Tested

    SciTech Connect

    Tappan, Bryce

    2014-10-23

    Los Alamos National Laboratory scientists recently flight tested a new rocket design that includes a high-energy fuel and a motor design that also delivers a high degree of safety. Researchers will now work to scale-up the design, as well as explore miniaturization of the system, in order to exploit all potential applications that would require high-energy, high-velocity, and correspondingly high safety margins.

  10. Quasi-Static 3-Point Reinforced Carbon-Carbon Bend Test and Analysis for Shuttle Orbiter Wing Leading Edge Impact Damage Thresholds

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin L.; Sotiris, Kellas

    2006-01-01

    Static 3-point bend tests of Reinforced Carbon-Carbon (RCC) were conducted to failure to provide data for additional validation of an LS-DYNA RCC model suitable for predicting the threshold of impact damage to shuttle orbiter wing leading edges. LS-DYNA predictions correlated well with the average RCC failure load, and were good in matching the load vs. deflection. However, correlating the detectable damage using NDE methods with the cumulative damage parameter in LS-DYNA material model 58 was not readily achievable. The difficulty of finding internal RCC damage with NDE and the high sensitivity of the mat58 damage parameter to the load near failure made the task very challenging. In addition, damage mechanisms for RCC due to dynamic impact of debris such as foam and ice and damage mechanisms due to a static loading were, as expected, not equivalent.

  11. Compression-bending of multi-component semi-rigid columns in response to axial loads and conjugate reciprocal extension-prediction of mechanical behaviours and implications for structural design.

    PubMed

    Lau, Ernest W

    2013-01-01

    The mathematical modelling of column buckling or beam bending under an axial or transverse load is well established. However, the existent models generally assume a high degree of symmetry in the structure of the column and minor longitudinal and transverse displacements. The situation when the column is made of several components with different mechanical properties asymmetrically distributed in the transverse section, semi-rigid, and subjected to multiple axial loads with significant longitudinal and transverse displacements through compression and bending has not been well characterised. A more comprehensive theoretical model allowing for these possibilities and assuming a circular arc contour for the bend is developed, and used to establish the bending axes, balance between compression and bending, and equivalent stiffness of the column. In certain situations, such as with pull cable catheters commonly used for minimally invasive surgical procedures, the compression loads are applied via cables running through channels inside a semi-rigid column. The model predicts the mathematical relationships between the radius of curvature of the bend and the tension in and normal force exerted by such cables. Conjugate extension with reciprocal compression-bending is a special structural arrangement for a semi-rigid column such that extension of one segment is linked to compression-bending of another by inextensible cables running between them. Leads are cords containing insulated electrical conductor coil and cables between the heart muscle and cardiac implantable electronic devices. Leads can behave like pull cable catheters through differential component pulling, providing a possible mechanism for inside-out abrasion and conductor cable externalisation. Certain design features may predispose to this mode of structural failure. PMID:23127643

  12. Testing Multiple Outcomes in Repeated Measures Designs

    ERIC Educational Resources Information Center

    Lix, Lisa M.; Sajobi, Tolulope

    2010-01-01

    This study investigates procedures for controlling the familywise error rate (FWR) when testing hypotheses about multiple, correlated outcome variables in repeated measures (RM) designs. A content analysis of RM research articles published in 4 psychology journals revealed that 3 quarters of studies tested hypotheses about 2 or more outcome…

  13. ITEM ANALYSIS, TEST DESIGN, AND CLASSIFICATION.

    ERIC Educational Resources Information Center

    SOLOMON, HERBERT

    THE THEME OF THIS PROGRAM WAS THE USE OF PROBABILISTIC MODELS AS MEASUREMENT TOOLS FOR EXPERIMENTAL DESIGN IN TEST CONSTRUCTION AND FOR ANALYSIS OF TEST DATA. SOME CENTRAL ISSUES IN THIS FIELD ARE DISCUSSED AND RESOLVED IN THE FIRST FOUR CHAPTERS OF THE REPORT UNDER THE FOLLOWING TITLES--(1) CONTRIBUTIONS TO ITEM SELECTION, (2) CLUSTERING…

  14. Component Latent Trait Models for Test Design.

    ERIC Educational Resources Information Center

    Embretson, Susan Whitely

    Latent trait models are presented that can be used for test design in the context of a theory about the variables that underlie task performance. Examples of methods for decomposing and testing hypotheses about the theoretical variables in task performance are given. The methods can be used to determine the processing components that are involved…

  15. Compaction managed mirror bend achromat

    DOEpatents

    Douglas, David

    2005-10-18

    A method for controlling the momentum compaction in a beam of charged particles. The method includes a compaction-managed mirror bend achromat (CMMBA) that provides a beamline design that retains the large momentum acceptance of a conventional mirror bend achromat. The CMMBA also provides the ability to tailor the system momentum compaction spectrum as desired for specific applications. The CMMBA enables magnetostatic management of the longitudinal phase space in Energy Recovery Linacs (ERLs) thereby alleviating the need for harmonic linearization of the RF waveform.

  16. NESC VII European project: demonstration of warm pre-stressing effect in biaxial loading conditions - Bending tests on 18MND5 cruciform specimens and their interpretation

    SciTech Connect

    Jacquemoud, C.; Yuritzinn, T.; Marie, S.

    2012-07-01

    In the framework of the NESC VII European project, a large experimental program has been dedicated to characterize the Warm Pre-Stressing (WPS) effect in different testing configurations. One of the CEA (France) contributions to this project is the realization of five point bending tests on large cruciform specimens considering different WPS loading cycles. The five cruciform specimens, sponsored by EDF (France) and IRSN (France), are made of 18MND5 steel. Two of them have been tested on a same LCF (Load-Cool-Fracture) loading cycle and two others on the same LCTF (Load-Cool-Transient-Fracture) loading cycle. The experimental results presented in this paper give a successful demonstration of the WPS effect in biaxial loading conditions either on a LCF or on a LCTF cycle. During the test interpretations, different models have then been tested and compared in order to evaluate their ability to predict the cleavage fracture in the case of different WPS loading cycles. They all provide very conservative predictions whatever loading cycle is concerned. (authors)

  17. Overview of the IFMIF test cell design

    SciTech Connect

    Moeslang, A.; Daum, E.; Haines, J.R.; Williams, D.M.; Jitsukawa, S.; Noda, K.; Viola, R.

    1996-10-01

    The Conceptual Design Activity (CDA) for the International Fusion Materials Irradiation Facility (IFMIF) has entered its second and final year, and an outline design has been developed. Initial evaluations of the potential of this high flux, high intensity D-Li source have shown that the main materials testing needs can be fulfilled. According to these needs, Vertical Test Assemblies will accommodate test modules for the high flux (0.5 liter, 20 dpa/a, 250-1000 C), the medium flux (6 liter, 1-20 dpa/a, 250-1000 C), the low flux (7.5 liter, 0.1-1 dpa/a), and the very low flux (> 100 liter, 0.01-0.1 dpa/a) regions. Detailed test matrices have been defined for the high and medium flux regions, showing that on the basis of small specimen test technologies, a database for an engineering design of an advanced fusion reactor (DEMO) can be established for a variety of structural materials and ceramic breeders. The design concepts for the Test Cell, including test assemblies, remote handling equipment and Hot Cell Facilities with capacity for investigating all irradiation specimens at the IFMIF site are described.

  18. Generating circuit tests by exploiting designed behavior

    NASA Astrophysics Data System (ADS)

    Shirley, Mark H.

    1988-12-01

    Generating tests for sequential devices is one of the hardest problems in designing and manufacturing digital circuits. This task is difficult primarily because internal components are accessible only indirectly, forcing a test generator to use the surrounding components collectively as a probe for detecting faults. This in turn forces the test generator to reason about complex interactions between the behaviors of these surrounding components. Current automated solutions are becoming ineffective as designs grow larger and more complex. Yet, despite the complexity, human experts remain remarkably successful, in part, because they use knowledge from many sources and use a variety of reasoning techniques. This thesis exploits several kinds of expert knowledge about circuits and test generation not used by the current algorithms. First, many test generation problems can be solved efficiently using operation relations, a novel representation of circuit behavior that connects internal component operations with directly executable circuit operations. Operation relations can be computed efficiently for sequential circuits that provide few operations at their interfaces by searching traces of simulated circuit behavior. Second, experts write test programs rather than test vectors because programs are a more readable and compact representation for tests than vectors are. Test programs can be constructed automatically by merging test program fragments using expert supplied goal-refined rules and domain independent planning techniques from artificial intelligence.

  19. Reaction wheel design, construction and qualification testing

    NASA Astrophysics Data System (ADS)

    Proper, Ian

    This thesis examines the design, construction, and space-qualification testing of a microsatellite class reaction wheel. A literature review compares both currently and formerly operational, as well as commercially available reaction wheel assemblies, to assess the torque and momentum generation capabilities relative to the masses of the respective units. Several potential software models for a prototype reaction wheel are constructed and compared to the units described in the literature review to determine feasibility of operation. Choosing a particular model, the prototype wheel is then constructed and baseline tests are performed to determine its operational characteristics. Finally, a series of qualification tests are performed: a life test, a vibration test and a thermal vacuum test. These tests aim to validate the ability of the prototype reaction wheel unit to operate for at least a six-month mission in a typical low Earth orbit environment.

  20. Phase trombones with bending

    SciTech Connect

    Courant, E.D.; Garren, A.

    1985-10-01

    The phase shifting trombones considered up to now for SSC application consisted of sets of evenly spaced quadrupoles separated by drift spaces. One such trombone was placed between a dispersion suppressor and a crossing insertion, so that the trombone had zero dispersion. With such trombones, it is possible to change {beta}{sup *} at constant tune, or to change the tunes by several units without altering the cell phase advances in the arcs. An objection to the above type of phase trombone is that it adds to the circumference, since no bending is included. This objection may or may not be valid depending on the potential usefulness of the drift spaces in them. In this note the authors show an alternative trombone design in which dipoles are included between the quadrupoles as in the normal arc cells. Since these trombones have dispersion, they are placed at the ends of the arcs, to be followed in turn by the dispersion suppressors and crossing insertions.

  1. Design and Test of the CC Cryostat Head Cart

    SciTech Connect

    Jaques, Al; /Fermilab

    1989-08-08

    This Engineering Note documents the design of the stand to be used to transport the CC Cryostat heads into the D-Zero clean room. Due to the width of the clean room access door, the heads will have to be upright to fit through. This head cart will hold the heads upright and wheel them into the clean room on a guided track. Before the wheels are placed on the heat cart, it will be used as a stand to place the heads on for the purpose of test fitting the super insulation. The head cart will not only be structurally sufficient to support the weight of the heads but also stiff enough to allow a maximum deflection of 1/2-inch at the end of the 48-inch cylinder. The heaviest head assembly weighs about 9000 pounds. Following A.I.S.C. specifications and using a 9000 pound design load, the head cart was initially designed and built and later modified in order to meet the deflection requirements. Bending and tension stresses were limited to two thirds the yield strength. Weld and shear stresses are limited to 0.4*Fy. The C7 X 12.25 channels, the L2.5 X 2.5 X 0.25 angles adn the 1/2-inch plate are all A36 steel. In order to validate the need for an end plate in the 48-inch cylinder, an ANSYS model was created of the cylinder itself to determine it's rigidity under a point load applied at it's outer end. Appendix D contains the results which demonstrate the rigidity of the cylinder-end plate assembly. Also included is a Frame-Mac simulation of the head cart which was used to estimate the deflection at the cylinder end. A load test was performed to 133% of the rated capacity, or 12,000 pounds. The test load was incrementally applied using a crane and hook scale. A graph of deflection vs. load is shown in Appendix E. A spreader beam was designed and built to properly test the head cart. Stress calculations for this test spreader beam are included in Appendix C.

  2. Lithium Circuit Test Section Design and Fabrication

    NASA Technical Reports Server (NTRS)

    Godfroy, Thomas; Garber, Anne

    2006-01-01

    The Early Flight Fission - Test Facilities (EFF-TF) team has designed and built an actively pumped lithium flow circuit. Modifications were made to a circuit originally designed for NaK to enable the use of lithium that included application specific instrumentation and hardware. Component scale freeze/thaw tests were conducted to both gain experience with handling and behavior of lithium in solid and liquid form and to supply anchor data for a Generalized Fluid System Simulation Program (GFSSP) model that was modified to include the physics for freeze/thaw transitions. Void formation was investigated. The basic circuit components include: reactor segment, lithium to gas heat exchanger, electromagnetic (EM) liquid metal pump, load/drain reservoir, expansion reservoir, instrumentation, and trace heaters. This paper will discuss the overall system design and build and the component testing findings.

  3. Lithium Circuit Test Section Design and Fabrication

    NASA Astrophysics Data System (ADS)

    Godfroy, Thomas; Garber, Anne; Martin, James

    2006-01-01

    The Early Flight Fission - Test Facilities (EFF-TF) team has designed and built an actively pumped lithium flow circuit. Modifications were made to a circuit originally designed for NaK to enable the use of lithium that included application specific instrumentation and hardware. Component scale freeze/thaw tests were conducted to both gain experience with handling and behavior of lithium in solid and liquid form and to supply anchor data for a Generalized Fluid System Simulation Program (GFSSP) model that was modified to include the physics for freeze/thaw transitions. Void formation was investigated. The basic circuit components include: reactor segment, lithium to gas heat exchanger, electromagnetic (EM) liquid metal pump, load/drain reservoir, expansion reservoir, instrumentation, and trace heaters. This paper discusses the overall system design and build and the component testing findings.

  4. Certification Testing Approach for Propulsion System Design

    NASA Technical Reports Server (NTRS)

    Rodriguez, Henry; Popp, Chris

    2006-01-01

    The Certification of Propulsion Systems is costly and complex, involving development and qualification testing. The desire of the certification process is to assure all requirements can be demonstrated to be compliant. The purpose of this paper is to address the technical design concerns of certifying a propulsion system for flight. Presented are Pressurization, Tankage, Feed System and Combustion Instability concerns. Propulsion System Engineers are challenged with the dilemma for testing new systems to specific levels to reduce risk yet maintain budgetary targets. A methodical approach is presented to define the types of test suitable to address the technical issues for qualifying systems for retiring the risk levels. Experience of the lessons learned from supporting the Shuttle Program for Main Propulsion and On Orbit Propulsions Systems as well as previous collaborations on design concerns for certifying propulsion systems are utilized to address design concerns and verification approaches.

  5. Lithium Circuit Test Section Design and Fabrication

    SciTech Connect

    Godfroy, Thomas; Garber, Anne; Martin, James

    2006-01-20

    The Early Flight Fission -- Test Facilities (EFF-TF) team has designed and built an actively pumped lithium flow circuit. Modifications were made to a circuit originally designed for NaK to enable the use of lithium that included application specific instrumentation and hardware. Component scale freeze/thaw tests were conducted to both gain experience with handling and behavior of lithium in solid and liquid form and to supply anchor data for a Generalized Fluid System Simulation Program (GFSSP) model that was modified to include the physics for freeze/thaw transitions. Void formation was investigated. The basic circuit components include: reactor segment, lithium to gas heat exchanger, electromagnetic (EM) liquid metal pump, load/drain reservoir, expansion reservoir, instrumentation, and trace heaters. This paper discusses the overall system design and build and the component testing findings.

  6. Designing, engineering, and testing wood structures

    NASA Technical Reports Server (NTRS)

    Gorman, Thomas M.

    1992-01-01

    The objective of this paper is to introduce basic structural engineering concepts in a clear, simple manner while actively involving students. This project emphasizes the fact that a good design uses materials efficiently. The test structure in this experiment can easily be built and has various design options. Even when the structure is loaded to collapsing, only one or two pieces usually break, leaving the remaining pieces intact and reusable.

  7. An evaluation of the sandwich beam in four-point bending as a compressive test method for composites

    NASA Technical Reports Server (NTRS)

    Shuart, M. J.; Herakovich, C. T.

    1978-01-01

    The experimental phase of the study included compressive tests on HTS/PMR-15 graphite/polyimide, 2024-T3 aluminum alloy, and 5052 aluminum honeycomb at room temperature, and tensile tests on graphite/polyimide at room temperature, -157 C, and 316 C. Elastic properties and strength data are presented for three laminates. The room temperature elastic properties were generally found to differ in tension and compression with Young's modulus values differing by as much as twenty-six percent. The effect of temperature on modulus and strength was shown to be laminate dependent. A three-dimensional finite element analysis predicted an essentially uniform, uniaxial compressive stress state in the top flange test section of the sandwich beam. In conclusion, the sandwich beam can be used to obtain accurate, reliable Young's modulus and Poisson's ratio data for advanced composites; however, the ultimate compressive stress for some laminates may be influenced by the specimen geometry.

  8. Advanced wing design survivability testing and results

    NASA Technical Reports Server (NTRS)

    Bruno, J.; Tobias, M.

    1992-01-01

    Composite wings on current operational aircraft are conservatively designed to account for stress/strain concentrations, and to assure specified damage tolerance. The technology that can lead to improved composite wing structures and associated structural efficiency is to increase design ultimate strain levels beyond their current limit of 3500 to 4000 micro-in/in to 6000 micro-in/in without sacrificing structural integrity, durability, damage tolerance, or survivability. Grumman, under the sponsorship of the Naval Air Development Center (NADC), has developed a high-strain composite wing design for a subsonic aircraft wing using novel and innovative design concepts and manufacturing methods, while maintaining a state-of-the-art fiber/resin system. The current advanced wing design effort addressed a tactical subsonic aircraft wing using previously developed, high-strain wing design concepts in conjunction with newer/emerging fiber and polymer matrix composite (PMC) materials to achieve the same goals, while reducing complexity. Two categories of advanced PMC materials were evaluated: toughened thermosets; and engineered thermoplastics. Advanced PMC materials offer the technological opportunity to take maximum advantage of improved material properties, physical characteristics, and tailorability to increase performance and survivability over current composite structure. Damage tolerance and survivability to various threats, in addition to structural integrity and durability, were key technical issues addressed during this study, and evaluated through test. This paper focuses on the live-fire testing, and the results performed to experimentally evaluate the survivability of the advanced wing design.

  9. S-IC Test Stand Design Model

    NASA Technical Reports Server (NTRS)

    1962-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photo is of the S-IC test stand design model created prior to construction.

  10. S-IC Test Stand Design Model

    NASA Technical Reports Server (NTRS)

    1962-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photo is of the S-IC test stand design model.

  11. Fracture assessment of HSST Plate 14 shallow-flaw cruciform bend specimens tested under biaxial loading conditions

    SciTech Connect

    Bass, B.R.; McAfee, W.J.; Williams, P.T.; Pennell, W.E.

    1998-06-01

    A technology to determine shallow-flaw fracture toughness of reactor pressure vessel (RPV) steels is being developed for application to the safety assessment of RPVs containing postulated shallow surface flaws. Matrices of cruciform beam tests were developed to investigate and quantify the effects of temperature, biaxial loading, and specimen size on fracture initiation toughness of two-dimensional (constant depth), shallow, surface flaws. The cruciform beam specimens were developed at Oak Ridge National Laboratory (ORNL) to introduce a far-field, out-of-plane biaxial stress component in the test section that approximates the nonlinear stresses resulting from pressurized-thermal-shock or pressure-temperature loading of an RPV. Tests were conducted under biaxial load ratios ranging from uniaxial to equibiaxial. These tests demonstrated that biaxial loading can have a pronounced effect on shallow-flaw fracture toughness in the lower transition temperature region for an RPV material. The cruciform fracture toughness data were used to evaluate fracture methodologies for predicting the observed effects of biaxial loading on shallow-flaw fracture toughness. Initial emphasis was placed on assessment of stress-based methodologies, namely, the J-Q formulation, the Dodds-Anderson toughness scaling model, and the Weibull approach. Applications of these methodologies based on the hydrostatic stress fracture criterion indicated an effect of loading-biaxiality on fracture toughness; the conventional maximum principal stress criterion indicated no effect. A three-parameter Weibull model based on the hydrostatic stress criterion is shown to correlate the experimentally observed biaxial effect on cleavage fracture toughness by providing a scaling mechanism between uniaxial and biaxial loading states.

  12. 10 CFR 60.142 - Design testing.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Design testing. 60.142 Section 60.142 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN GEOLOGIC REPOSITORIES... thermal interaction effects of the waste packages, backfill, rock, and groundwater shall be conducted....

  13. 10 CFR 60.142 - Design testing.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Design testing. 60.142 Section 60.142 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN GEOLOGIC REPOSITORIES... thermal interaction effects of the waste packages, backfill, rock, and groundwater shall be conducted....

  14. 10 CFR 60.142 - Design testing.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Design testing. 60.142 Section 60.142 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN GEOLOGIC REPOSITORIES... thermal interaction effects of the waste packages, backfill, rock, and groundwater shall be conducted....

  15. 10 CFR 60.142 - Design testing.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Design testing. 60.142 Section 60.142 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN GEOLOGIC REPOSITORIES... thermal interaction effects of the waste packages, backfill, rock, and groundwater shall be conducted....

  16. 10 CFR 60.142 - Design testing.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Design testing. 60.142 Section 60.142 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN GEOLOGIC REPOSITORIES... thermal interaction effects of the waste packages, backfill, rock, and groundwater shall be conducted....

  17. SAPHIRE Change Design and Testing Procedure

    SciTech Connect

    Curtis Smith

    2010-02-01

    This document describes the procedure software developers of SAPHIRE follow when adding a new feature or revising an existing capability. This procedure first describes the general approach to changes, and then describes more specific processes. The process stages include design and development, testing, and documentation.

  18. Siemens SOFC Test Article and Module Design

    SciTech Connect

    2011-03-31

    Preliminary design studies of the 95 kWe-class SOFC test article continue resulting in a stack architecture of that is 1/3 of 250 kWe-class SOFC advanced module. The 95 kWeclass test article is envisioned to house 20 bundles (eight cells per bundle) of Delta8 cells with an active length of 100 cm. Significant progress was made in the conceptual design of the internal recirculation loop. Flow analyses were initiated in order to optimize the bundle row length for the 250 kWeclass advanced module. A preferred stack configuration based on acceptable flow and thermal distributions was identified. Potential module design and analysis issues associated with pressurized operation were identified.

  19. Engineering design of vertical test stand cryostat

    SciTech Connect

    Suhane, S.K.; Sharma, N.K.; Raghavendra, S.; Joshi, S.C.; Das, S.; Kush, P.K.; Sahni, V.C.; Gupta, P.D.; Sylvester, C.; Rabehl, R.; Ozelis, J.; /Fermilab

    2011-03-01

    Under Indian Institutions and Fermilab collaboration, Raja Ramanna Centre for Advanced Technology and Fermi National Accelerator Laboratory are jointly developing 2K Vertical Test Stand (VTS) cryostats for testing SCRF cavities at 2K. The VTS cryostat has been designed for a large testing aperture of 86.36 cm for testing of 325 MHz Spoke resonators, 650 MHz and 1.3 GHz multi-cell SCRF cavities for Fermilab's Project-X. Units will be installed at Fermilab and RRCAT and used to test cavities for Project-X. A VTS cryostat comprises of liquid helium (LHe) vessel with internal magnetic shield, top insert plate equipped with cavity support stand and radiation shield, liquid nitrogen (LN{sub 2}) shield and vacuum vessel with external magnetic shield. The engineering design and analysis of VTS cryostat has been carried out using ASME B&PV Code and Finite Element Analysis. Design of internal and external magnetic shields was performed to limit the magnetic field inside LHe vessel at the cavity surface <1 {micro}T. Thermal analysis for LN{sub 2} shield has been performed to check the effectiveness of LN{sub 2} cooling and for compliance with ASME piping code allowable stresses.

  20. Discussion on FRP design properties based on flexural tests (ASTM D-790) and tensile tests (ASTM D-638)

    SciTech Connect

    Clark, J.M.

    1996-11-01

    Tensile and flexural test results on the same laminate can have significant difference with the reported flexural strength being up to 100% greater than the tensile strength using the standard ASTM reporting methods. Taken at face value, these results can lead to nonconservative designs. The flexural test method is much simpler and less expensive, but must be used with a clear understanding of how they were computed and with sound engineering judgment since the flexural strength is calculated with linear bending theory at failure loads that are usually in the nonlinear range. This is significant since the general accepted design practice is to use linear theory in the design of FRP equipment. Manufacturers reporting this value should thus have a clear understanding of the difference between the reported results for flexural strength and the required design strength. This paper shows how to determine the proper design value from a flexural test which results in safe designs of FRP equipment and shows that the reported flexural strength from the ASTM D-790 method should not be used in design of FRP equipment.

  1. Influence of abutment screw design and surface coating on the bending flexural strength of the implant set.

    PubMed

    Prado, Célio Jesus do; Neves, Flávio Domingues das; Soares, Carlos José; Dantas, Kelly Abadia; Dantas, Talita Souza; Naves, Lucas Zago

    2014-04-01

    The purpose of this study was to analyze the influence of the setting and the presence of solid lubricant on the abutment screw surface on the flexural strength of the joint implant/abutment/screw. Forty abutments were connected to external hex implants, divided into 4 groups (n = 10): FE (titanium alloy screw threaded in the extremity), LE (titanium alloy screw with solid lubricant and thread in the extremity), FT (titanium alloy screw with threaded in all its length), and LT (titanium alloy screw with solid lubricant and thread in all its length). Through the mechanical flexural test, the implant/abutment resistance was evaluated with load applied perpendicular to the long axis in a mechanical testing machine (EMIC) under a speed of 0.5 mm/min. Data were submitted to a statistics test, and results showed statistically significant differences between the FE group and the other groups, and the FE group showed the lowest values. The LE group showed greater values than the LT group, and the values were statistically significant. According to the methodology used, it can be concluded that within noncoated titanium screws, a screw threaded along its entire length provided greater rigidity to the implant set, while with the screw containing solid lubricant, the screw threaded in all its length provided less rigidity of the implant set than screws with the thread only on the end. Among screws with the same geometry, those with the solid lubricant are statistically higher than those which do not have threads just at the end, but those with threads along their entire length do not show statistically significant differences. PMID:22251283

  2. Design of a fusion engineering test facility

    SciTech Connect

    Sager, P.H.

    1980-01-01

    The fusion Engineering Test Facility (ETF) is being designed to provide for engineering testing capability in a program leading to the demonstration of fusion as a viable energy option. It will combine power-reactor-type components and subsystems into an integrated tokamak system and provide a test bed to test blanket modules in a fusion environment. Because of the uncertainties in impurity control two basic designs are being developed: a design with a bundle divertor (Design 1) and one with a poloidal divertor (Design 2). The two designs are similar where possible, the latter having somewhat larger toroidal field (TF) coils to accommodate removal of the larger torus sectors required for the single-null poloidal divertor. Both designs have a major radius of 5.4 m, a minor radius of 1.3 m, and a D-shaped plasma with an elongation of 1.6. Ten TF coils are incorporated in both designs, producing a toroidal field of 5.5 T on-axis. The ohmic heating and equilibrium field (EF) coils supply sufficient volt-seconds to produce a flat-top burn of 100 s and a duty cycle of 135 s, including a start of 12 s, a burn termination of 10 s, and a pumpdown of 13 s. The total fusion power during burn is 750 MW, giving a neutron wall loading of 1.5 MW/m/sup 2/. In Design 1 of the poloidal field (PF) coils except the fast-response EF coils are located outside the FT coils and are superconducting. The fast-response coils are located inside the TF coil bore near the torus and are normal conducting so that they can be easily replaced.In Design 2 all of the PF coils are located outside the TF coils and are superconducting. Ignition is achieved with 60 MW of neutral beam injection at 150 keV. Five megawatts of radio frequency heating (electron cyclotron resonance heating) is used to assist in the startup and limit the breakdown requirement to 25 V.

  3. Certification Testing Approach for Propulsion System Design

    NASA Technical Reports Server (NTRS)

    Rodriguez, Henry; Popp, Chris

    2005-01-01

    The Certification of Propulsion Systems is costly and complex which involves development and qualification testing. The desire of the certification process is to assure all requirements can be demonstrated to be compliant. The purpose of this paper is to address the technical design concerns of certifying a system for flight. The authors of this paper have experience the lessons learned from supporting the Shuttle Program for Main Propulsion and On Orbit Propulsions Systems. They have collaborated design concerns for certifying propulsion systems. Presented are Pressurization, Tankage, Feed System and Combustion Instability concerns. Propulsion System Engineers are challenged with the dilemma for testing new systems to specific levels to reduce risk yet maintain budgetary targets. A methodical approach is presented to define the types of test suitable to address the technical issues for qualifying systems for retiring the risk levels.

  4. DESIGN AND SHIELDING OF A BEAM LINE FROM ELENA TO ATRAP USING ELECTROSTATIC QUADRUPOLE LENSES AND BENDS

    SciTech Connect

    Yuri, Yosuke; Lee, Edward P.

    2010-09-01

    The construction of the Extra Low ENergy Antiprotons (ELENA) upgrade to the Antiproton Decelerator (AD) ring has been proposed at CERN to produce a greatly increased current of low-energy antiprotons for various experiments including anti-hydrogen studies. This upgrade involves the addition of a small storage ring and electrostatic beam lines. The 5.3-MeV antiproton beams from AD are decelerated down to 100 keV in the compact ring and transported to each experimental apparatus. In this paper, we describe an electrostatic beam line from the ELENA ring to the ATRAP experimental apparatus and magnetic shielding of the low-energy beam line against the ATRAP superconducting solenoid magnet. A possible rough conceptual design of this system is displayed.

  5. A Computerized Test of Design Fluency.

    PubMed

    Woods, David L; Wyma, John M; Herron, Timothy J; Yund, E William

    2016-01-01

    Tests of design fluency (DF) assess a participant's ability to generate geometric patterns and are thought to measure executive functions involving the non-dominant frontal lobe. Here, we describe the properties of a rapidly administered computerized design-fluency (C-DF) test that measures response times, and is automatically scored. In Experiment 1, we found that the number of unique patterns produced over 90 s by 180 control participants (ages 18 to 82 years) correlated with age, education, and daily computer-use. Each line in the continuous 4-line patterns required approximately 1.0 s to draw. The rate of pattern production and the incidence of repeated patterns both increased over the 90 s test. Unique pattern z-scores (corrected for age and computer-use) correlated with the results of other neuropsychological tests performed on the same day. Experiment 2 analyzed C-DF test-retest reliability in 55 participants in three test sessions at weekly intervals and found high z-score intraclass correlation coefficients (ICC = 0.79). Z-scores in the first session did not differ significantly from those of Experiment 1, but performance improved significantly over repeated tests. Experiment 3 investigated the performance of Experiment 2 participants when instructed to simulate malingering. Z-scores were significantly reduced and pattern repetitions increased, but there was considerable overlap with the performance of the control population. Experiment 4 examined performance in veteran patients tested more than one year after traumatic brain injury (TBI). Patients with mild TBI performed within the normal range, but patients with severe TBI showed reduced z-scores. The C-DF test reliably measures visuospatial pattern generation ability and reveals performance deficits in patients with severe TBI. PMID:27138985

  6. A Computerized Test of Design Fluency

    PubMed Central

    Woods, David L.; Wyma, John M.; Herron, Timothy J.; Yund, E. William

    2016-01-01

    Tests of design fluency (DF) assess a participant’s ability to generate geometric patterns and are thought to measure executive functions involving the non-dominant frontal lobe. Here, we describe the properties of a rapidly administered computerized design-fluency (C-DF) test that measures response times, and is automatically scored. In Experiment 1, we found that the number of unique patterns produced over 90 s by 180 control participants (ages 18 to 82 years) correlated with age, education, and daily computer-use. Each line in the continuous 4-line patterns required approximately 1.0 s to draw. The rate of pattern production and the incidence of repeated patterns both increased over the 90 s test. Unique pattern z-scores (corrected for age and computer-use) correlated with the results of other neuropsychological tests performed on the same day. Experiment 2 analyzed C-DF test-retest reliability in 55 participants in three test sessions at weekly intervals and found high z-score intraclass correlation coefficients (ICC = 0.79). Z-scores in the first session did not differ significantly from those of Experiment 1, but performance improved significantly over repeated tests. Experiment 3 investigated the performance of Experiment 2 participants when instructed to simulate malingering. Z-scores were significantly reduced and pattern repetitions increased, but there was considerable overlap with the performance of the control population. Experiment 4 examined performance in veteran patients tested more than one year after traumatic brain injury (TBI). Patients with mild TBI performed within the normal range, but patients with severe TBI showed reduced z-scores. The C-DF test reliably measures visuospatial pattern generation ability and reveals performance deficits in patients with severe TBI. PMID:27138985

  7. Discovering Gee's Bend Quilts

    ERIC Educational Resources Information Center

    Johnson, Ann

    2008-01-01

    Gee's Bend is a small community near Selma, Alabama where cotton plantations filled the land before the Civil War. After the war, the freed slaves of the plantations worked as tenant farmers and founded an African-American community. In 2002, the women of this community brought international attention and acclaim to Gee's Bend through the art of…

  8. Microhole Tubing Bending Report

    DOE Data Explorer

    Oglesby, Ken

    2012-01-01

    A downhole tubing bending study was made and is reported herein. IT contains a report and 2 excel spreadsheets to calculate tubing bending and to estimate contact points of the tubing to the drilled hole wall (creating a new support point).

  9. Bending Stiffness of Multiwall Sandwich

    NASA Technical Reports Server (NTRS)

    Blosser, M. L.

    1983-01-01

    An analytical and experimental study was carried out to understand the extensional and flexural behavior of multiwall sandwich, a metallic insulation composed of alternate layers of flat and dimpled foil. The multiwall sandwich was structurally analyzed by using several simplifying assumptions combined with a finite element analysis. The simplifying assumptions made in this analysis were evaluated by bending and tensile tests. Test results validate the assumption that flat sheets in compression do not significantly contribute to the flexural stiffness of multiwall sandwich for the multiwall geometry tested. However, calculations show that thicker flat sheets may contribute significantly to bending stiffness and cannot be ignored. Results of this analytical approach compare well with test data; both show that the extensional stiffness of the dimpled sheet in he 0 deg direction is about 30 percent of that for a flat sheet, and that in the 45 deg direction, it is about 10 percent. The analytical and experimental multiwall bending stiffness showed good agreement for the particular geometry tested.

  10. Severe Accident Test Station Design Document

    SciTech Connect

    Snead, Mary A.; Yan, Yong; Howell, Michael; Keiser, James R.; Terrani, Kurt A.

    2015-09-01

    The purpose of the ORNL severe accident test station (SATS) is to provide a platform for evaluation of advanced fuels under projected beyond design basis accident (BDBA) conditions. The SATS delivers the capability to map the behavior of advanced fuels concepts under accident scenarios across various temperature and pressure profiles, steam and steam-hydrogen gas mixtures, and thermal shock. The overall facility will include parallel capabilities for examination of fuels and irradiated materials (in-cell) and non-irradiated materials (out-of-cell) at BDBA conditions as well as design basis accident (DBA) or loss of coolant accident (LOCA) conditions. Also, a supporting analytical infrastructure to provide the data-needs for the fuel-modeling components of the Fuel Cycle Research and Development (FCRD) program will be put in place in a parallel manner. This design report contains the information for the first, second and third phases of design and construction of the SATS. The first phase consisted of the design and construction of an out-of-cell BDBA module intended for examination of non-irradiated materials. The second phase of this work was to construct the BDBA in-cell module to test irradiated fuels and materials as well as the module for DBA (i.e. LOCA) testing out-of-cell, The third phase was to build the in-cell DBA module. The details of the design constraints and requirements for the in-cell facility have been closely captured during the deployment of the out-of-cell SATS modules to ensure effective future implementation of the in-cell modules.

  11. Drag Reduction Tests on Supersonic Transport Design

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Langley researchers recently completed supersonic tests in the Unitary Plan Wind Tunnel on a nonlinear design for a supersonic transport. Although the drag reduction measured during the tests was not as great as that predicted using computational methods, significant drag reductions were achieved. Future tests will be conducted at a higher Reynolds number, which will be more representative of flight conditions. These tests will be used to identify a supersonic transport configuration that provides maximum drag reduction. Reducing drag decreases operating cost by improving fuel consumption and lowering aircraft weight. As a result, this research has the potential to help make a future high-speed civil transport (HSCT) an affordable means of travel for the flying public.

  12. Spacecraft load, design and test philosophies

    NASA Technical Reports Server (NTRS)

    Wada, B. K.

    1986-01-01

    The development of spacecraft loads, design and test philosophies at the Jet Propulsion Laboratory (JPL) during the past 25 years is presented. Examples from the JPL's Viking, Voyager and Galileo spacecraft are used to explain the changes in philosophy necessary to meet the program requirements with a reduction in cost and schedule. Approaches to validate mathematical models of large structures which can't be ground tested as an overall system because of size and/or adverse effects of terrestrial conditions such as gravity are presented.

  13. Design, Fabrication and Test of Composite Curved Frames for Helicopter Fuselage Structure

    NASA Technical Reports Server (NTRS)

    Lowry, D. W.; Krebs, N. E.; Dobyns, A. L.

    1984-01-01

    Aspects of curved beam effects and their importance in designing composite frame structures are discussed. The curved beam effect induces radial flange loadings which in turn causes flange curling. This curling increases the axial flange stresses and induces transverse bending. These effects are more important in composite structures due to their general inability to redistribute stresses by general yielding, such as in metal structures. A detailed finite element analysis was conducted and used in the design of composite curved frame specimens. Five specimens were statically tested and compared with predicted and test strains. The curved frame effects must be accurately accounted for to avoid premature fracture; finite element methods can accurately predict most of the stresses and no elastic relief from curved beam effects occurred in the composite frames tested. Finite element studies are presented for comparative curved beam effects on composite and metal frames.

  14. Design, analysis, and testing of a metal matrix composite web/flange intersection

    NASA Technical Reports Server (NTRS)

    Biggers, S. B.; Knight, N. F., Jr.; Moran, S. G.; Olliffe, R.

    1992-01-01

    An experimental and analytical program to study the local design details of a typical T-shaped web/flange intersection made from a metal matrix composite is described. Loads creating flange bending were applied to specimens having different designs and boundary conditions. Finite element analyses were conducted on models of the test specimens to predict the structural response. The analyses correctly predict failure load, mode, and location in the fillet material in the intersection region of the web and the flange when specimen quality is good. The test program shows the importance of fabrication quality in the intersection region. The full-scale test program that led to the investigation of this local detail is also described.

  15. Crashworthy airframe design concepts: Fabrication and testing

    NASA Technical Reports Server (NTRS)

    Cronkhite, J. D.; Berry, V. L.

    1982-01-01

    Crashworthy floor concepts applicable to general aviation aircraft metal airframe structures were investigated. Initially several energy absorbing lower fuselage structure concepts were evaluated. Full scale floor sections representative of a twin engine, general aviation airplane lower fuselage structure were designed and fabricated. The floors featured an upper high strength platform with an energy absorbing, crushable structure underneath. Eighteen floors were fabricated that incorporated five different crushable subfloor concepts. The floors were then evaluated through static and dynamic testing. Computer programs NASTRAN and KRASH were used for the static and dynamic analysis of the floor section designs. Two twin engine airplane fuselages were modified to incorporate the most promising crashworthy floor sections for test evaluation.

  16. Composite transport wing technology development: Design development tests and advanced structural concepts

    NASA Technical Reports Server (NTRS)

    Griffin, Charles F.; Harvill, William E.

    1988-01-01

    Numerous design concepts, materials, and manufacturing methods were investigated for the covers and spars of a transport box wing. Cover panels and spar segments were fabricated and tested to verify the structural integrity of design concepts and fabrication techniques. Compression tests on stiffened panels demonstrated the ability of graphite/epoxy wing upper cover designs to achieve a 35 percent weight savings compared to the aluminum baseline. The impact damage tolerance of the designs and materials used for these panels limits the allowable compression strain and therefore the maximum achievable weight savings. Bending and shear tests on various spar designs verified an average weight savings of 37 percent compared to the aluminum baseline. Impact damage to spar webs did not significantly degrade structural performance. Predictions of spar web shear instability correlated well with measured performance. The structural integrity of spars manufactured by filament winding equalled or exceeded those fabricated by hand lay-up. The information obtained will be applied to the design, fabrication, and test of a full-scale section of a wing box. When completed, the tests on the technology integration box beam will demonstrate the structural integrity of an advanced composite wing design which is 25 percent lighter than the metal baseline.

  17. Modeling and optimized design of a parabolic-profile single-mode fiber with ultra-low bending loss and large-mode-area

    NASA Astrophysics Data System (ADS)

    Li, Haisu; Ren, Guobin; Yin, Bin; Lian, Yudong; Bai, Yunlong; Jian, Wei; Jian, Shuisheng

    2015-10-01

    A novel parabolic-profile single-mode fiber with ultra-low bending loss and large-mode-area is proposed in this paper. A modified formula is derived for calculation of bending loss of parabolic-profile single-mode fiber and a performance index is defined as the ratio of bending loss to mode-field-diameter to evaluate fiber performance. The influences of fiber parameters on cutoff wavelength, bending loss and effective mode area are investigated systematically. Simulation results show that the parabolic-profile single-mode fiber could support both an ultra-low bending loss (0.052 dB/turn at bending radii R=5 mm) and a large effective mode area up to 260 μm2 at 1.55 μm, meanwhile maintaining single-mode operation rigorously (cutoff wavelength fixed at 1.26 μm). This fiber is suitable for compact, portable high power fiber-to-the-home applications.

  18. Bending stresses due to torsion in cantilever box beams

    NASA Technical Reports Server (NTRS)

    Kuhn, Paul

    1935-01-01

    The paper beings with a brief discussion on the origin of the bending stresses in cantilever box beams under torsion. A critical survey of existing theory is followed by a summary of design formulas; this summary is based on the most complete solution published but omits all refinements considered unnecessary at the present state of development. Strain-gage tests made by NACA to obtained some experimental verification of the formulas are described next. Finally, the formulas are applied to a series of box beams previously static-tested by the U.S. Army Air Corps; the results show that the bending stresses due to torsion are responsible to a large extent for the free-edge type of failure frequently experienced in these tests.

  19. Ceramic high temperature receiver design and tests

    SciTech Connect

    Davis, S.B.

    1982-07-01

    The High Temperature Solar Thermal Receiver, which was tested a Edwards AFB, CA during the winter of 1980-1981, evolved from technologies developed over a five year period of work. This receiver was tested at the Army Solar Furnace at White Sands, NM in 1976. The receiver, was tested successfully at 1768 deg F and showed thermal efficiencies of 85%. The results were sufficiently promising to lead ERDA to fund our development and test of a 250 kW receiver to measure the efficiency of an open cavity receiver atop a central tower of a heliostat field. This receiver was required to be design scalable to 10, 50, and 100 MW-electric sizes to show applicability to central power tower receivers. That receiver employed rectangular silicon carbide panels and vertical stanchions to achieve scalability. The construction was shown to be fully scalable, and the receiver was operated at temperatures up to 2000 deg F to achieve the performance goals of the experiment during tests at the GIT advanced components test facility during the fall of 1978.

  20. Ceramic high temperature receiver design and tests

    NASA Technical Reports Server (NTRS)

    Davis, S. B.

    1982-01-01

    The High Temperature Solar Thermal Receiver, which was tested a Edwards AFB, CA during the winter of 1980-1981, evolved from technologies developed over a five year period of work. This receiver was tested at the Army Solar Furnace at White Sands, NM in 1976. The receiver, was tested successfully at 1768 deg F and showed thermal efficiencies of 85%. The results were sufficiently promising to lead ERDA to fund our development and test of a 250 kW receiver to measure the efficiency of an open cavity receiver atop a central tower of a heliostat field. This receiver was required to be design scalable to 10, 50, and 100 MW-electric sizes to show applicability to central power tower receivers. That receiver employed rectagular silicon carbide panels and vertical stanchions to achieve scalability. The construction was shown to be fully scalable; and the receiver was operated at temperatures up to 2000 deg F to achieve the performance goals of the experiment during tests at the GIT advanced components test facility during the fall of 1978.

  1. Wrapped multilayer insulation design and testing

    NASA Astrophysics Data System (ADS)

    Dye, S. A.; Tyler, P. N.; Mills, G. L.; Kopelove, A. B.

    2014-11-01

    New vehicles need improved cryogenic propellant storage and transfer capabilities for long duration missions. Multilayer insulation (MLI) for cryogenic propellant feedlines is much less effective than MLI tank insulation, with heat leak into spiral wrapped MLI on pipes 3-10 times higher than conventional tank MLI. Better insulation for cryogenic feed lines is an important enabling technology that could help NASA reach cryogenic propellant storage and transfer requirements. Improved insulation for Ground Support Equipment could reduce cryogen losses during launch vehicle loading. Wrapped-MLI (WMLI) is a high performance multilayer insulation using innovative discrete spacer technology specifically designed for cryogenic transfer lines and Vacuum Jacketed Pipe (VJP) to reduce heat flux. The poor performance of traditional MLI wrapped on feed lines is due in part to compression of the MLI layers, with increased interlayer contact and heat conduction. WMLI uses discrete spacers that maintain precise layer spacing, with a unique design to reduce heat leak. A Triple Orthogonal Disk spacer was engineered to minimize contact area/length ratio and reduce solid heat conduction for use in concentric MLI configurations. A new insulation, WMLI, was developed and tested. Novel polymer spacers were designed, analyzed and fabricated; different installation techniques were examined; and rapid prototype nested shell components to speed installation on real world piping were designed and tested. Prototypes were installed on tubing set test fixtures and heat flux measured via calorimetry. WMLI offered superior performance to traditional MLI installed on cryogenic pipe, with 2.2 W/m2 heat flux compared to 26.6 W/m2 for traditional spiral wrapped MLI (5 layers, 77-295 K). WMLI as inner insulation in VJP can offer heat leaks as low as 0.09 W/m, compared to industry standard products with 0.31 W/m. WMLI could enable improved spacecraft cryogenic feedlines and industrial hot/cold transfer

  2. [Comparison of interfaces between a NiCr alloy and various dental ceramics using transmission electron microscopy (TEM) and 3-point bending test].

    PubMed

    Hegedüs, Csaba; Daróczi, Lajos; Deák, György; Beke, Dezsö

    2003-12-01

    Several methods (e.g. tensile strength, shear bond strength) have been used in testing metal-ceramic bonds. However, in the interface, structural and analytical investigations can be applied in determining the chemical and phase structure of substances making up the bond. The aim of the present study is to assess the interface between Wiron 99 (Bego) alloy and Vision (Wohlwend) VITA VMK68 (Vita), Carat (Dentsply/DeTrey) ceramic using transmission electron microscopy (TEM) and 3-point bending test. In the case of NiCr alloys, morphologically similar but structurally varying phases developed in all of the ceramics. In each case, a Cr2O3 layer consisting of small crystals (10-20 nm) was noticed with a series of underlying bubble-like amorphous inclusions. The exact three dimensional (3D) location of these structures and their relation to the glass-phase of the ceramic, as well as its role in the nanomechanical anchoring of the ceramic are still to be clarified. The values of debonding stress were 41.67 +/- 5.01 MPa, 52.89 +/- 8.06 MPa and 56.58 +/- 10.21 MPa for Carat, VITA VMK68 ceramic and Vision, respectively. These parameters do not present significant difference at p > or = 0.05 among the three types of ceramics. Based on our measurements it is highly likely that the micromorphology of interface is basically determined by the composition of the alloy while in the chemical composition of the newly developed phases the ceramic and the parameters of firing (temperature, magnitude of vacuum and firing time) play an important role. Values of cracking and morphological resemblance suggest that the superficial micromorphological and nanomorphological structures, acting as mechanical anchoring elements, play an important role in fixing the ceramic. PMID:14971264

  3. OPSAID Initial Design and Testing Report.

    SciTech Connect

    Hurd, Steven A.; Stamp, Jason Edwin; Chavez, Adrian R.

    2007-11-01

    Process Control System (PCS) security is critical to our national security. Yet, there are a number of technological, economic, and educational impediments to PCS owners implementing effective security on their systems. OPSAID (Open PCS Security Architecture for Interoperable Design), a project sponsored by the US Department of Energy's Office of Electricity Delivery and Reliability, aims to address this issue through developing and testing an open source architecture for PCS security. Sandia National Laboratories, along with a team of PCS vendors and owners, have developed and tested this PCS security architecture. This report describes their progress to date.2 AcknowledgementsThe authors acknowledge and thank their colleagues for their assistance with the OPSAID project.Sandia National Laboratories: Alex Berry, Charles Perine, Regis Cassidy, Bryan Richardson, Laurence PhillipsTeumim Technical, LLC: Dave TeumimIn addition, the authors are greatly indebted to the invaluable help of the members of the OPSAID Core Team. Their assistance has been critical to the success and industry acceptance of the OPSAID project.Schweitzer Engineering Laboratory: Rhett Smith, Ryan Bradetich, Dennis GammelTelTone: Ori Artman Entergy: Dave Norton, Leonard Chamberlin, Mark AllenThe authors would like to acknowledge that the work that produced the results presented in this paper was funded by the U.S. Department of Energy/Office of Electricity Delivery and Energy Reliability (DOE/OE) as part of the National SCADA Test Bed (NSTB) Program. Executive SummaryProcess control systems (PCS) are very important for critical infrastructure and manufacturing operations, yet cyber security technology in PCS is generally poor. The OPSAID (Open PCS (Process Control System) Security Architecture for Interoperable Design) program is intended to address these security shortcomings by accelerating the availability and deployment of comprehensive security technology for PCS, both for existing PCS and

  4. In situ bending of an Au nanowire monitored by micro Laue diffraction

    PubMed Central

    Leclere, Cédric; Cornelius, Thomas W.; Ren, Zhe; Davydok, Anton; Micha, Jean-Sébastien; Robach, Odile; Richter, Gunther; Belliard, Laurent; Thomas, Olivier

    2015-01-01

    This article1 reports on the first successful combination of micro Laue (µLaue) diffraction with an atomic force microscope for in situ nanomechanical tests of individual nanostructures. In situ three-point bending on self-suspended gold nanowires was performed on the BM32 beamline at the ESRF using a specially designed atomic force microscope. During the bending process of the self-suspended wire, the evolution of µLaue diffraction patterns was monitored, allowing for extraction of the bending angle of the nanowire. This bending compares well with finite element analysis taking into account elastic constant bulk values and geometric nonlinearities. This novel experimental setup opens promising perspectives for studying mechanical properties at the nanoscale. PMID:26089751

  5. Insights Gained from Testing Alternate Cell Designs

    SciTech Connect

    J. E. O'Brien; C. M. Stoots; J. S. Herring; G. K. Housley; M. S. Sohal; D. G. Milobar; Thomas Cable

    2009-09-01

    The Idaho National Laboratory (INL) has been researching the application of solid-oxide electrolysis cell for large-scale hydrogen production from steam over a temperature range of 800 to 900ºC. The INL has been testing various solid oxide cell designs to characterize their electrolytic performance operating in the electrolysis mode for hydrogen production. Some results presented in this report were obtained from cells, initially developed by the Forschungszentrum Jülich and now manufactured by the French ceramics firm St. Gobain. These cells have an active area of 16 cm2 per cell. They were initially developed as fuel cells, but are being tested as electrolytic cells in the INL test stands. The electrolysis cells are electrode-supported, with ~10 µm thick yttria-stabilized zirconia (YSZ) electrolytes, ~1400 µm thick nickel-YSZ steam-hydrogen electrodes, and manganite (LSM) air-oxygen electrodes. The experiments were performed over a range of steam inlet mole fractions (0.1 to 0.6), gas flow rates, and current densities (0 to 0.6 A/cm2). Steam consumption rates associated with electrolysis were measured directly using inlet and outlet dewpoint instrumentation. On a molar basis, the steam consumption rate is equal to the hydrogen production rate. Cell performance was evaluated by performing DC potential sweeps at 800, 850, and 900°C. The voltage-current characteristics are presented, along with values of area-specific resistance as a function of current density. Long-term cell performance is also assessed to evaluate cell degradation. Details of the custom single-cell test apparatus developed for these experiments are also presented. NASA, in conjunction with the University of Toledo, has developed another fuel cell concept with the goals of reduced weight and high power density. The NASA cell is structurally symmetrical, with both electrodes supporting the thin electrolyte and containing micro-channels for gas diffusion. This configuration is called a bi

  6. SP-100 design, safety, and testing

    SciTech Connect

    Smith, G.L.; Cox, C.M.; Mahaffey, M.K.

    1990-07-01

    The SP-100 Program is developing a nuclear reactor power system that can enhance and/or enable future civilian and military space missions. The program is directed to develop space reactor technology to provide electrical power in the range of tens to hundreds of kilowatts. The major nuclear assembly test is to be conducted at the Hanford Site near Richland, Washington, and is designed to validate the performance of the 2.4-MWt nuclear and heat transport assembly. 10 refs., 5 figs.

  7. ACCESS: Design, Strategy, and Test Performance

    NASA Astrophysics Data System (ADS)

    Kaiser, Mary Elizabeth; Morris, M. J.; McCandliss, S. R.; Rauscher, B. J.; Kimble, R. A.; Kruk, J. W.; Wright, E. L.; Pelton, R. S.; Feldman, P. D.; Moos, H. W.; Riess, A. G.; Benford, D. J.; Foltz, R.; Gardner, J. P.; Mott, D. B.; Wen, Y.; Woodgate, B. E.; Bohlin, R.; Deustua, S. E.; Dixon, W. V.; Sahnow, D. J.; Kurucz, R. L.; Lampton, M.; Perlmutter, S.

    2013-01-01

    Improvements in the astrophysical flux scale are needed to answer fundamental scientific questions ranging from cosmology to stellar physics. In particular, the precise calibration of the flux scale across the visible-NIR bandpass is fundamental to the precise determination of dark energy parameters based on SNeIa photometry. ACCESS, Absolute Color Calibration Experiment for Standard Stars, is a series of rocket-borne sub-orbital missions and ground-based experiments that will enable improvements in the precision of the astrophysical flux scale through the transfer of absolute laboratory detector standards from the National Institute of Standards and Technology (NIST) to a network of stellar standards with a calibration accuracy of 1% and a spectral resolving power of 500 across the 0.35 to 1.7 micron bandpass. The telescope is a Dall-Kirkham Cassegrain with a 15.5-inch primary. The spectrograph is a Rowland circle design, with the grating operating as a low order (m=1-4) echelle, a Fery prism provides cross dispersion, and a HST/WFC3 heritage HAWAII-1R HgCdTe detector is used across the full spectral bandpass. The telescope mirrors have received their flight coatings. The flight detector and detector spare have been integrated with their electronics and flight mount. The controller electronics have been flight qualified. Vibration testing to launch loads and thermal vacuum testing of the detector, mount, and housing have been performed. Detector characterization testing is in progress (Morris et al.). Fabrication, integration, and automation of the ground-based calibration subsystems are also in progress. The ACCESS design, calibration strategy, and ground-based integration and test results will be presented. Launch is expected this year. NASA sounding rocket grant NNX08AI65G and DOE DE-FG02-07ER41506 support this work.

  8. Temperature buffer test design, instrumentation and measurements

    NASA Astrophysics Data System (ADS)

    Sandén, Torbjörn; Goudarzi, Reza; de Combarieu, Michel; Åkesson, Mattias; Hökmark, Harald

    The Temperature Buffer Test, TBT, is a heated full-scale field experiment carried out jointly by ANDRA and SKB at the SKB Äspö Hard Rock Laboratory in Southeast Sweden. An existing 8 m deep, 1.8 m diameter KBS-3-type deposition hole located at -420 m level has been selected for the test. The objectives are to improve the general understanding of Thermo-Hydro-Mechanical, THM, behavior of buffer materials submitted to severe thermal conditions with temperatures well over 100 °C during water uptake of partly saturated bentonite-based buffer materials, and to check, in due time, their properties after water saturation. The test includes two carbon steel heating canisters each 3 m high and 0.6 m diameter, surrounded by 0.6 m of buffer material. There is a 0.2 m thick sand shield between the upper heater and the surrounding bentonite, while the lower heater is surrounded by bentonite only. On top of the stack of bentonite blocks is a confining plug anchored to the rock. In the slot between buffer and rock wall is a sand filter equipped with pipes to control the water pressure at the boundary, which is seldom done with an EBS in situ experiment. Both heater mid-height planes are densely instrumented in order to follow, with direct or indirect methods, buffer THM evolution. Temperature, relative humidity, stress and pore pressure have been monitored since the test start in March 2003. Total water inflow is also monitored. Firstly, the present paper describes the test design, the instrumentation, the plug anchoring system and the system for water boundary pressure control. Second, having described the test, the paper shows different measurements that illustrate evolution of temperature, saturation, suction and swelling pressure in the upper and the lower buffer.

  9. Degradation mechanisms and accelerated aging test design

    SciTech Connect

    Clough, R L; Gillen, K T

    1985-01-01

    The fundamental mechanisms underlying the chemical degradation of polymers can change as a function of environmental stress level. When this occurs, it greatly complicates any attempt to use accelerated tests for predicting long-term material degradation behaviors. Understanding how degradation mechanisms can change at different stress levels facilitates both the design and the interpretation of aging tests. Oxidative degradation is a predominant mechanism for many polymers exposed to a variety of different environments in the presence of air, and there are two mechanistic considerations which are widely applicable to material oxidation. One involves a physical process, oxygen diffusion, as a rate-limiting step. This mechanism can predominate at high stress levels. The second is a chemical process, the time-dependent decomposition of peroxide species. This leads to chain branching and can become a rate-controlling factor at lower stress levels involving time-scales applicable to use environments. The authors describe methods for identifying the operation of these mechanisms and illustrate the dramatic influence they can have on the degradation behaviors of a number of polymer types. Several commonly used approaches to accelerated aging tests are discussed in light of the behaviors which result from changes in degradation mechanisms. 9 references, 4 figures.

  10. Determination of the axial force on stay cables accounting for their bending stiffness and rotational end restraints by free vibration tests

    NASA Astrophysics Data System (ADS)

    Ceballos, Marcelo A.; Prato, Carlos A.

    2008-10-01

    Determination of the axial force in terms of its natural frequencies may be significantly influenced by the bending stiffness of the cable and the rotational elastic restraints at the ends, depending on the geometrical and mechanical parameters of the cable and its supports and restraints, particularly in cement-grouted parallel-bundle wire cables. The paper presents an explicit analytical expression for the natural frequencies taking into account both the bending stiffness of the cable and the rotational restraint at the ends that may be used to determine the axial force. While the bending stiffness of the cable and the axial force are selected as variables to attain an optimal match between analytical and experimental data, the rotational stiffness at the ends is treated as a known parameter in that process. The degree of rotational restraint at the ends cannot be accurately inferred from the sequence of the experimentally determined natural frequencies, since this parameter does not appreciably affect the progression of their values. Techniques are discussed that allow approximate determination of the rotational stiffness at the ends for the most common arrangements of anchors and cables with, and without, intermediate supports provided by deviators located near the ends. The axial force and the bending stiffness of the cable are both simultaneously adjusted by matching the natural frequencies of the analytical model with the experimental values. The proposed approach leads to a reduction of the error in the estimation of the axial force for short cables with relatively high bending stiffness such as those typical of cement-grouted parallel-bundle wire cables often used as cable stays for bridges until the early 1990s.

  11. Thermal static bending of deployable interlocked booms

    NASA Technical Reports Server (NTRS)

    Staugaitis, C. L.; Predmore, R. E.

    1973-01-01

    Metal ribbons processed with a heat-forming treatment are enabled to form tubelike structures when deployed from a roll. Deployable booms of this have been utilized for gravity-gradient stabilization on the RAE, ATS, and Nimbus D satellites. An experimental thermal-mechanics test apparatus was developed to measure the thermal static bending and twist of booms up to 3 meters long. The apparatus was calibrated by using the correlation between calculated and observed thermal bending of a seamless tube. Thermal static bending values of 16 interlocked deployable booms were observed to be within a factor of 2.5 of the values calculated from seamless-tube theory. Out-of-Sun-plane thermal bending was caused by complex heat transfer across the interlocked seam. Significant thermal static twisting was not observed.

  12. Advanced burner test reactor preconceptual design report.

    SciTech Connect

    Chang, Y. I.; Finck, P. J.; Grandy, C.; Cahalan, J.; Deitrich, L.; Dunn, F.; Fallin, D.; Farmer, M.; Fanning, T.; Kim, T.; Krajtl, L.; Lomperski, S.; Moisseytsev, A.; Momozaki, Y.; Sienicki, J.; Park, Y.; Tang, Y.; Reed, C.; Tzanos, C; Wiedmeyer, S.; Yang, W.; Chikazawa, Y.; JAEA

    2008-12-16

    advanced fuel cycle; (2) To qualify the transuranics-containing fuels and advanced structural materials needed for a full-scale ABR; and (3) To support the research, development and demonstration required for certification of an ABR standard design by the U.S. Nuclear Regulatory Commission. The ABTR should also address the following additional objectives: (1) To incorporate and demonstrate innovative design concepts and features that may lead to significant improvements in cost, safety, efficiency, reliability, or other favorable characteristics that could promote public acceptance and future private sector investment in ABRs; (2) To demonstrate improved technologies for safeguards and security; and (3) To support development of the U.S. infrastructure for design, fabrication and construction, testing and deployment of systems, structures and components for the ABRs. Based on these objectives, a pre-conceptual design of a 250 MWt ABTR has been developed; it is documented in this report. In addition to meeting the primary and additional objectives listed above, the lessons learned from fast reactor programs in the U.S. and worldwide and the operating experience of more than a dozen fast reactors around the world, in particular the Experimental Breeder Reactor-II have been incorporated into the design of the ABTR to the extent possible.

  13. Right-angle slot waveguide bends with high bending efficiency.

    PubMed

    Ma, Changbao; Zhang, Qun; Van Keuren, Edward

    2008-09-15

    Two right-angle bends for nanoscale slot waveguides with high bending efficiency based on a corner mirror and different resonant cavities are presented, one with a triangular cavity and the other with a square cavity. Through two-dimensional parametric scanning of the position of the mirror and the dimension of the cavity, a maximum bending efficiency calculated using mode overlap integral (MOI) of 94.3% is achieved for the bend with the triangular cavity and 93.1% is achieved for the bend with the square cavity. Although they both have similar bending performance, the position of the mirror is different between the two cases. PMID:18794968

  14. A Novel Circular TE01-Mode Bend

    SciTech Connect

    Tantawi, S

    2004-04-19

    Future Linear Colliders and Accelerators require rf systems and components that are capable of handling hundreds of megawatts power levels at x-band frequencies and higher. Standard rf components that have been in use for a long time such as waveguide bends, directional couplers and hybrids, can not be used because of peak field considerations. Indeed, one has to reinvent most of these components taking into account the constraints imposed by ultra-high-power operation. Here, we present a new design for circular waveguides bends propagating the low-loss TE{sub 01} mode. The bend has smooth walls and low field levels. We present a simple synthesis process for designing such device. The general philosophy of this technique can be applied to other components as well. We describe the detailed design of the bend and compare our design with finite element simulations and experimental data. The bend has very low ohmic losses, and the TE{sub 01} mode is transmitted with virtually perfect mode purity.

  15. Fluidized Bed Asbestos Sampler Design and Testing

    SciTech Connect

    Karen E. Wright; Barry H. O'Brien

    2007-12-01

    A large number of samples are required to characterize a site contaminated with asbestos from previous mine or other industrial operations. Current methods, such as EPA Region 10’s glovebox method, or the Berman Elutriator method are time consuming and costly primarily because the equipment is difficult to decontaminate between samples. EPA desires a shorter and less costly method for characterizing soil samples for asbestos. The objective of this was to design and test a qualitative asbestos sampler that operates as a fluidized bed. The proposed sampler employs a conical spouted bed to vigorously mix the soil and separate fine particulate including asbestos fibers on filters. The filters are then analyzed using transmission electron microscopy for presence of asbestos. During initial testing of a glass prototype using ASTM 20/30 sand and clay fines as asbestos surrogates, fine particulate adhered to the sides of the glass vessel and the tubing to the collection filter – presumably due to static charge on the fine particulate. This limited the fines recovery to ~5% of the amount added to the sand surrogate. A second prototype was constructed of stainless steel, which improved fines recovery to about 10%. Fines recovery was increased to 15% by either humidifying the inlet air or introducing a voltage probe in the air space above the sample. Since this was not a substantial improvement, testing using the steel prototype proceeded without using these techniques. Final testing of the second prototype using asbestos suggests that the fluidized bed is considerably more sensitive than the Berman elutriator method. Using a sand/tremolite mixture with 0.005% tremolite, the Berman elutriator did not segregate any asbestos structures while the fluidized bed segregated an average of 11.7. The fluidized bed was also able to segregate structures in samples containing asbestos at a 0.0001% concentration, while the Berman elutriator method did not detect any fibers at this

  16. Optimal Test Design with Rule-Based Item Generation

    ERIC Educational Resources Information Center

    Geerlings, Hanneke; van der Linden, Wim J.; Glas, Cees A. W.

    2013-01-01

    Optimal test-design methods are applied to rule-based item generation. Three different cases of automated test design are presented: (a) test assembly from a pool of pregenerated, calibrated items; (b) test generation on the fly from a pool of calibrated item families; and (c) test generation on the fly directly from calibrated features defining…

  17. Mechanical properties of orthodontic wires in tension, bending, and torsion.

    PubMed

    Drake, S R; Wayne, D M; Powers, J M; Asgar, K

    1982-09-01

    The mechanical properties of three sizes of stainless steel (SS), nickel-titanium (NT), and titanium-molybdenum (TM) orthodontic wires were studied in tension, bending, and torsion. The wires (0.016 inch, 0.017 by 0.025 inch, and 0.019 by 0.025 inch) were tested in the as-received condition. Tensile testing and stiffness testing machines along with a torsional instrument were used. Mean values and standard deviations of properties were computed. The data were analyzed statistically by analysis of variance using a factorial design. Means were ranked by a Tukey interval calculated at the 95 percent level of confidence. In tension, the stainless steel wires had the least maximum elastic strain or springback, whereas the titanium-molybdenum wires had the most. Higher values of springback indicate the capacity for an increased range of activation clinically. In bending and torsion, the stainless steel wires had the least stored energy at a fixed moment, whereas the nickel-titanium wires had the most. Spring rates in bending and torsion, however, were highest for stainless steel wires and lowest for nickel-titanium wires. A titanium-molybdenum teardrop closing loop delivered less than one half the force of a comparable stainless steel loop for similar activations. PMID:6961793

  18. Designing Substantive Playing Tests- A Model.

    ERIC Educational Resources Information Center

    Byo, James L.

    2001-01-01

    Discusses the use of playing tests in music education, stating that the tests can be useful beyond assessment measurement. Describes how to create performance tests based upon the idea of an accomplished learner. Addresses how to give the tests and presents implications gleaned from field test results. (CMK)

  19. Single Event Testing on Complex Devices: Test Like You Fly Versus Test-Specific Design Structures

    NASA Technical Reports Server (NTRS)

    Berg, Melanie D.; Label, Kenneth

    2016-01-01

    We present a mechanism for evaluating complex digital systems targeted for harsh radiation environments such as space. Focus is limited to analyzing the single event upset (SEU) susceptibility of designs implemented inside Field Programmable Gate Array (FPGA) devices. Tradeoffs are provided between application-specific versus test-specific test structures.

  20. Test Design Project: Studies in Test Bias. Annual Report.

    ERIC Educational Resources Information Center

    McArthur, David

    Item bias in a multiple-choice test can be detected by appropriate analyses of the persons x items scoring matrix. This permits comparison of groups of examinees tested with the same instrument. The test may be biased if it is not measuring the same thing in comparable groups, if groups are responding to different aspects of the test items, or if…

  1. Measuring graphene's bending stiffness

    NASA Astrophysics Data System (ADS)

    Blees, Melina; Barnard, Arthur; Roberts, Samantha; Kevek, Joshua W.; Ruyack, Alexander; Wardini, Jenna; Ong, Peijie; Zaretski, Aliaksandr; Wang, Siping; McEuen, Paul L.

    2013-03-01

    Graphene's unusual combination of in-plane strength and out-of-plane flexibility makes it promising for mechanical applications. A key value is the bending stiffness, which microscopic theories and measurements of phonon modes in graphite put at κ0 = 1.2 eV.1 However, theories of the effects of thermal fluctuations in 2D membranes predict that the bending stiffness at longer length scales could be orders of magnitude higher.2,3 This macroscopic value has not been measured. Here we present the first direct measurement of monolayer graphene's bending stiffness, made by mechanically lifting graphene off a surface in a liquid and observing both motion induced by thermal fluctuations and the deflection caused by gravity's effect on added weights. These experiments reveal a value κeff = 12 keV at room temperature -- four orders of magnitude higher than κ0. These results closely match theoretical predictions of the effects of thermally-induced fluctuations which effectively thicken the membrane, dramatically increasing its bending stiffness at macroscopic length scales.

  2. Design, fabrication and test of block 4 design solar cell modules. Part 2: Residential module

    NASA Technical Reports Server (NTRS)

    Jester, T. L.

    1982-01-01

    Design, fabrication and test of the Block IV residential load module are reported. Design changes from the proposed module design through three iterations to the discontinuance of testing are outlined.

  3. A transparent bending-insensitive pressure sensor

    NASA Astrophysics Data System (ADS)

    Lee, Sungwon; Reuveny, Amir; Reeder, Jonathan; Lee, Sunghoon; Jin, Hanbit; Liu, Qihan; Yokota, Tomoyuki; Sekitani, Tsuyoshi; Isoyama, Takashi; Abe, Yusuke; Suo, Zhigang; Someya, Takao

    2016-05-01

    Measuring small normal pressures is essential to accurately evaluate external stimuli in curvilinear and dynamic surfaces such as natural tissues. Usually, sensitive and spatially accurate pressure sensors are achieved through conformal contact with the surface; however, this also makes them sensitive to mechanical deformation (bending). Indeed, when a soft object is pressed by another soft object, the normal pressure cannot be measured independently from the mechanical stress. Here, we show a pressure sensor that measures only the normal pressure, even under extreme bending conditions. To reduce the bending sensitivity, we use composite nanofibres of carbon nanotubes and graphene. Our simulations show that these fibres change their relative alignment to accommodate bending deformation, thus reducing the strain in individual fibres. Pressure sensitivity is maintained down to a bending radius of 80 μm. To test the suitability of our sensor for soft robotics and medical applications, we fabricated an integrated sensor matrix that is only 2 μm thick. We show real-time (response time of ∼20 ms), large-area, normal pressure monitoring under different, complex bending conditions.

  4. A transparent bending-insensitive pressure sensor.

    PubMed

    Lee, Sungwon; Reuveny, Amir; Reeder, Jonathan; Lee, Sunghoon; Jin, Hanbit; Liu, Qihan; Yokota, Tomoyuki; Sekitani, Tsuyoshi; Isoyama, Takashi; Abe, Yusuke; Suo, Zhigang; Someya, Takao

    2016-05-01

    Measuring small normal pressures is essential to accurately evaluate external stimuli in curvilinear and dynamic surfaces such as natural tissues. Usually, sensitive and spatially accurate pressure sensors are achieved through conformal contact with the surface; however, this also makes them sensitive to mechanical deformation (bending). Indeed, when a soft object is pressed by another soft object, the normal pressure cannot be measured independently from the mechanical stress. Here, we show a pressure sensor that measures only the normal pressure, even under extreme bending conditions. To reduce the bending sensitivity, we use composite nanofibres of carbon nanotubes and graphene. Our simulations show that these fibres change their relative alignment to accommodate bending deformation, thus reducing the strain in individual fibres. Pressure sensitivity is maintained down to a bending radius of 80 μm. To test the suitability of our sensor for soft robotics and medical applications, we fabricated an integrated sensor matrix that is only 2 μm thick. We show real-time (response time of ∼20 ms), large-area, normal pressure monitoring under different, complex bending conditions. PMID:26809055

  5. 46 CFR 61.40-3 - Design verification testing.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Design verification testing. 61.40-3 Section 61.40-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PERIODIC TESTS AND INSPECTIONS Design Verification and Periodic Testing of Vital System Automation § 61.40-3 Design...

  6. 46 CFR 61.40-3 - Design verification testing.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Design verification testing. 61.40-3 Section 61.40-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PERIODIC TESTS AND INSPECTIONS Design Verification and Periodic Testing of Vital System Automation § 61.40-3 Design...

  7. 46 CFR 61.40-3 - Design verification testing.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Design verification testing. 61.40-3 Section 61.40-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PERIODIC TESTS AND INSPECTIONS Design Verification and Periodic Testing of Vital System Automation § 61.40-3 Design...

  8. 46 CFR 61.40-3 - Design verification testing.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Design verification testing. 61.40-3 Section 61.40-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PERIODIC TESTS AND INSPECTIONS Design Verification and Periodic Testing of Vital System Automation § 61.40-3 Design...

  9. 46 CFR 61.40-3 - Design verification testing.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Design verification testing. 61.40-3 Section 61.40-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PERIODIC TESTS AND INSPECTIONS Design Verification and Periodic Testing of Vital System Automation § 61.40-3 Design...

  10. 49 CFR 178.33b-7 - Design qualification test.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Design qualification test. 178.33b-7 Section 178... PACKAGINGS Specifications for Inside Containers, and Linings § 178.33b-7 Design qualification test. (a) Drop..., each new design must be drop tested as follows: Three groups of twenty-five filled containers must...