Science.gov

Sample records for beneficiation process water

  1. Removal of heavy metal ions from oil shale beneficiation process water by ferrite process

    SciTech Connect

    Mehta, R.K.; Zhang, L.; Lamont, W.E.; Schultz, C.W. . Mineral Resources Inst.)

    1991-01-01

    The ferrite process is an established technique for removing heavy metals from waste water. Because the process water resulting from oil shale beneficiation falls into the category of industrial waste water, it is anticipated that this process may turn out to be a potential viable treatment for oil shale beneficiation process water containing many heave metal ions. The process is chemoremedial because not only effluent water comply with quality standards, but harmful heavy metals are converted into a valuable, chemically stable by-product known as ferrite. These spinel ferrites have magnetic properties, and therefore can be use in applications such as magnetic marker, ferrofluid, microwave absorbing and scavenging material. Experimental results from this process are presented along with results of treatment technique such as sulfide precipitation.

  2. Removal of heavy metal ions from oil shale beneficiation process water by ferrite process

    SciTech Connect

    Mehta, R.K.; Zhang, L.; Lamont, W.E.; Schultz, C.W.

    1991-12-31

    The ferrite process is an established technique for removing heavy metals from waste water. Because the process water resulting from oil shale beneficiation falls into the category of industrial waste water, it is anticipated that this process may turn out to be a potential viable treatment for oil shale beneficiation process water containing many heave metal ions. The process is chemoremedial because not only effluent water comply with quality standards, but harmful heavy metals are converted into a valuable, chemically stable by-product known as ferrite. These spinel ferrites have magnetic properties, and therefore can be use in applications such as magnetic marker, ferrofluid, microwave absorbing and scavenging material. Experimental results from this process are presented along with results of treatment technique such as sulfide precipitation.

  3. Process for beneficiating coal

    SciTech Connect

    Burgess, L.E.; Fox, K.M.; Herman, D.E.; McGarry, P.E.

    1982-06-01

    Mine run coal is pulverized and the extended surfaces of the coal particles are rendered hydrophobic and oilophilic by a chemical bonding and graft polymerization reaction with a water insoluble organic polymerizable monomer under peroxidation influence in a predominantly water reaction medium. The mineral ash present in the coal and particularly the iron pyrites remains hydrophilic and is separated from the polymeric organic surface bonded coal product in a water washing step wherein the washed coal floats on and is recovered from the water phase and the ash is removed with the separated wash water in a critical wash step. Excess water is removed from the beneficiated hydrophobic surface-altered coal product mechanically. The hydrophobic and oilophilic organic polymeric surface bonded coating about the coal particles is fortified by inclusion of additional unbound free fatty acids by further small additions thereof. The carboxylic acid groups present in the coal-oil product are thereafter converted to a metal soap. The beneficiated coal product can be used ''dry,'' or additional quantities of a liquid hydrocarbon fuel can be incorporated with the ''dry'' beneficiated coal product to produce a flowable fluid or liquid coal product having the rheological property of marked thixotropy. Introduction of this physically induced property into the liquid coal-oil-mixture prevents settling out of the heavier coal particles from the relatively ash-free fluid fuel composition under extended storage periods.

  4. Beneficial Reuse of San Ardo Produced Water

    SciTech Connect

    Robert A. Liske

    2006-07-31

    This DOE funded study was performed to evaluate the potential for treatment and beneficial reuse of produced water from the San Ardo oilfield in Monterey County, CA. The potential benefits of a successful full-scale implementation of this project include improvements in oil production efficiency and additional recoverable oil reserves as well as the addition of a new reclaimed water resource. The overall project was conducted in two Phases. Phase I identified and evaluated potential end uses for the treated produced water, established treated water quality objectives, reviewed regulations related to treatment, transport, storage and use of the treated produced water, and investigated various water treatment technology options. Phase II involved the construction and operation of a small-scale water treatment pilot facility to evaluate the process's performance on produced water from the San Ardo oilfield. Cost estimates for a potential full-scale facility were also developed. Potential end uses identified for the treated water include (1) agricultural use near the oilfield, (2) use by Monterey County Water Resources Agency (MCWRA) for the Salinas Valley Water Project or Castroville Seawater Intrusion Project, (3) industrial or power plant use in King City, and (4) use for wetlands creation in the Salinas Basin. All of these uses were found to have major obstacles that prevent full-scale implementation. An additional option for potential reuse of the treated produced water was subsequently identified. That option involves using the treated produced water to recharge groundwater in the vicinity of the oil field. The recharge option may avoid the limitations that the other reuse options face. The water treatment pilot process utilized: (1) warm precipitation softening to remove hardness and silica, (2) evaporative cooling to meet downstream temperature limitations and facilitate removal of ammonia, and (3) reverse osmosis (RO) for removal of dissolved salts, boron, and

  5. Process of beneficiating coal and product

    SciTech Connect

    Burgess, L.E.; Fox, K.M.; McGarry, P.E.

    1981-12-08

    Mine run coal is pulverized and the extended surfaces of the coal particles are rendered hydrophobic and oilophilic by a chemical bonding and graft polymerization reaction with a water unsoluble organic polymerizable monomer under peroxidation influence in a predominantly water reaction medium. The mineral ash present in the coal, particularly the iron pyrites, remains hydrophilic and is separated from the polymeric organic surface bonded coal product in a water washing step wherein the washed coal floats on and is recovered from the water phase and the ash is removed with the separated wash water in a critical wash step. The hydrophobic and oilophilic organic polymeric surface bonded coating about the coal particles is fortified by inclusion of additional unbound free fatty acids by further small additions thereof. Excess water is removed from the beneficiated hydrophobic surface-altered coal product mechanically, and the carboxylic acid groups present in the coal-oil product are thereafter converted to a metal soap. The beneficiated coal product can be used ''dry'', or additional quantities of a liquid hydrocarbon fuel can be incorporated with the ''dry'' beneficiated coal product to produce a flowable fluid or liquid coal product having the rheological property of marked thixotropy. Introduction of this physically induced property into the liquid coal-oil-mixture prevents settling out of the heavier coal particles from the relatively ash-free fluid fuel composition under extended storage periods.

  6. Produced Water Management and Beneficial Use

    SciTech Connect

    Terry Brown; Carol Frost; Thomas Hayes; Leo Heath; Drew Johnson; David Lopez; Demian Saffer; Michael Urynowicz; John Wheaton; Mark Zoback

    2007-10-31

    Large quantities of water are associated with the production of coalbed methane (CBM) in the Powder River Basin (PRB) of Wyoming. The chemistry of co-produced water often makes it unsuitable for subsequent uses such as irrigated agriculture. However, co-produced waters have substantial potential for a variety of beneficial uses. Achieving this potential requires the development of appropriate water management strategies. There are several unique characteristics of co-produced water that make development of such management strategies a challenge. The production of CBM water follows an inverse pattern compared to traditional wells. CBM wells need to maintain low reservoir pressures to promote gas production. This need renders the reinjection of co-produced waters counterproductive. The unique water chemistry of co-produced water can reduce soil permeability, making surface disposal difficult. Unlike traditional petroleum operations where co-produced water is an undesirable by-product, co-produced water in the PRB often is potable, making it a highly valued resource in arid western states. This research project developed and evaluated a number of water management options potentially available to CBM operators. These options, which focus on cost-effective and environmentally-sound practices, fall into five topic areas: Minimization of Produced Water, Surface Disposal, Beneficial Use, Disposal by Injection and Water Treatment. The research project was managed by the Colorado Energy Research Institute (CERI) at the Colorado School of Mines (CSM) and involved personnel located at CERI, CSM, Stanford University, Pennsylvania State University, the University of Wyoming, the Argonne National Laboratory, the Gas Technology Institute, the Montana Bureau of Mining and Geology and PVES Inc., a private firm.

  7. Effect of coal beneficiation process on rheology/atomization of coal water slurries. Quarterly progress report, July 1, 1995--September 30, 1995

    SciTech Connect

    Ohene, F.

    1996-02-01

    The overall objective of this project is to perform experiments to understand the effect of coal beneficiation processes and high shear rheological properties on the atomization of coal-water slurries (CWS). In the atomization studies, the mean drop size of the CWS sprays will be determined at various air-to CWS. A correlation between the high shear rheological properties, particle size distributions and the atomization will be made in order to determine the influence of these parameters on the atomization of CWS.

  8. Effect of coal beneficiation process on rheology/atomization of coal water slurries. Quarterly progress report, January 1--March 30, 1995

    SciTech Connect

    Ohene, F.

    1995-12-31

    The overall objective of this project is to perform experiments to understand the effect of coal beneficiation processes and high shear rheological properties on the atomization of coal-water slurries (CWS). In the atomization studies, the mean drop size of the CWS sprays will be determined at various air-to CWS. A correlation between the high shear rheological properties, particle size distributions and the atomization will be made in order to determine the influence of these parameters on the atomization of CWS. Results on the rheological evaluation of CWS are presented.

  9. Effect of coal beneficiation process on rheology/atomization of coal water slurries. Quarterly progress report, May 1, 1993--July 31, 1993

    SciTech Connect

    Ohene, F.

    1994-09-01

    The overall objective of this project is to perform experiments to understand the effect of coal beneficiation processes and high shear rheological properties on the atomization of coal-water slurries (CWS). In the atomization studies, the mean drop size of the CWS sprays will be determined at various air-to-CWS. A correlation between the high shear rheological properties, particle size distributions and the atomization will be made in order to determine the influence of these parameters on the atomization of CWS.

  10. Effect of coal beneficiation process on rheology/atomization of coal water slurries. Final report, October 1, 1992--July 31, 1996

    SciTech Connect

    Ohene, F.

    1997-05-01

    To examine the factors that govern fine spray production during atomization of coal water slurries, an experimental study of the effect of coal beneficiation and their rheological properties on atomization of clean slurries was proposed. The objective of this study was to understand the effect of low shear, high shear rheology, and viscoelastic behavior on the atomization of beneficiated slurries.

  11. Potential beneficial uses of coalbed natural gas (CBNG) water.

    PubMed

    Reddy, K J; Whitman, Ashley J; Kniss, Andrew R

    2014-01-01

    The CBNG well water is typically managed by discharging into nearby disposal ponds. The CBNG well water could potentially be very useful in the water-limited regions (e.g., arid and semi-arid), but beneficial uses may be hindered by water quality problems. Objectives of this research were to: (1) examine trend analysis of nine years of CBNG well water at discharge (outfall) points and in corresponding disposal ponds, (2) evaluate geochemical processes, (3) identify potential water quality issues, and (4) find potential beneficial uses. The CBNG well water at discharge points and in corresponding disposal ponds was measured on-site for pH and electrical conductivity (EC). These water samples were also analyzed in the laboratory for calcium (Ca), sodium (Na), magnesium (Mg), potassium (K), iron (Fe), aluminum (Al), copper (Cu), arsenic (As), selenium (Se), cadmium (Cd), and barium (Ba). Total dissolved solids (TDS) were calculated from EC measurements. The sodium adsorption ratio (SAR) was calculated from Na, Ca, and Mg concentrations. Trend analyses of outfalls and disposal ponds were conducted separately so that the differences in trends could be compared. Trends in CBNG well water at discharge points are not always the same as trends in CBNG disposal ponds: environmental and geochemical processes play an important role in the water quality of these well waters. Overall trend analyses suggest that CBNG well water at discharge points in all basins of the Powder River Basin meets beneficial use criteria, except for SAR and to some extent EC, for aquatic life, livestock and wildlife watering, and irrigation. The CBNG well water in disposal ponds across all basins meets criteria for all beneficial uses except for As, pH, SAR, and to some extent EC for irrigation, aquatic life, and livestock and wildlife watering. PMID:24280972

  12. Nanoscale particles in technological processes of beneficiation

    PubMed Central

    Adushkin, Vitaly V; Golub', Anatoly P

    2014-01-01

    Summary Background: Cavitation is a rather common and important effect in the processes of destruction of nano- and microscale particles in natural and technological processes. A possible cavitation disintegration of polymineral nano- and microparticles, which are placed into a liquid, as a result of the interaction of the particles with collapsed cavitation bubbles is considered. The emphasis is put on the cavitation processes on the interface between liquid and fine solid particles, which is suitable for the description of the real situations. Results: The results are illustrated for the minerals that are most abundant in gold ore. The bubbles are generated by shock loading of the liquid heated to the boiling temperature. Possibilities of cavitation separation of nano- and microscale monomineral fractions from polymineral nano- and microparticles and of the use of cavitation for beneficiation are demonstrated. Conclusion: The cavitation disintegration mechanism is important because the availability of high-grade deposits in the process of mining and production of noble metals is decreasing. This demands for an enhancement of the efficiency in developing low-grade deposits and in reprocessing ore dumps and tailings, which contain a certain amount of noble metals in the form of finely disseminated fractions. The cavitation processes occuring on the interface between liquid and fine solid particles are occasionally more effective than the bulk cavitation processes that were considered earlier. PMID:24778972

  13. Process for magnetic beneficiating petroleum cracking catalyst

    DOEpatents

    Doctor, Richard D.

    1993-01-01

    A process for beneficiating a particulate zeolite petroleum cracking catalyst having metal values in excess of 1000 ppm nickel equivalents. The particulate catalyst is passed through a magnetic field in the range of from about 2 Tesla to about 5 Tesla generated by a superconducting quadrupole open-gradient magnetic system for a time sufficient to effect separation of said catalyst into a plurality of zones having different nickel equivalent concentrations. A first zone has nickel equivalents of about 6,000 ppm and greater, a second zone has nickel equivalents in the range of from about 2000 ppm to about 6000 ppm, and a third zone has nickel equivalents of about 2000 ppm and less. The zones of catalyst are separated and the second zone material is recycled to a fluidized bed of zeolite petroleum cracking catalyst. The low nickel equivalent zone is treated while the high nickel equivalent zone is discarded.

  14. Process for magnetic beneficiating petroleum cracking catalyst

    DOEpatents

    Doctor, R.D.

    1993-10-05

    A process is described for beneficiating a particulate zeolite petroleum cracking catalyst having metal values in excess of 1000 ppm nickel equivalents. The particulate catalyst is passed through a magnetic field in the range of from about 2 Tesla to about 5 Tesla generated by a superconducting quadrupole open-gradient magnetic system for a time sufficient to effect separation of said catalyst into a plurality of zones having different nickel equivalent concentrations. A first zone has nickel equivalents of about 6,000 ppm and greater, a second zone has nickel equivalents in the range of from about 2000 ppm to about 6000 ppm, and a third zone has nickel equivalents of about 2000 ppm and less. The zones of catalyst are separated and the second zone material is recycled to a fluidized bed of zeolite petroleum cracking catalyst. The low nickel equivalent zone is treated while the high nickel equivalent zone is discarded. 1 figures.

  15. Beneficial Reuse of San Ardo Produced Water

    SciTech Connect

    Robert A. Liske

    2003-09-26

    This report summarizes the work performed from 1 April 2003 to 30 September 2003 and recommends the tasks to be performed during Phase II (Pilot Evaluation). During this period discussions were held with various water agencies regarding use of the treated produced water either directly or indirectly through a water trading arrangement. In particular, several discussions were held with Monterey County Water Resources Agency, that has been charged with the long-term management and preservation of water resources in Monterey County. The Agency is very supportive of the program. However, they would like to see water quality/cost estimate data for the treated produced water from the pilot study prior to evaluating water use/water trade options. The agency sent a letter encouraging the project team to perform the pilot study to evaluate feasibility of the project. In addition, the regulations related to use of the treated water for various applications were updated during this period. Finally, the work plan, health and safety plan and sample analyses plan for performing pilot study to treat the oilfield produced water were developed during this period.

  16. Beneficiation-hydroretort processing of US oil shales, engineering study

    SciTech Connect

    Johnson, L.R.; Riley, R.H.

    1988-12-01

    This report describes a beneficiation facility designed to process 1620 tons per day of run-of-mine Alabama oil shale containing 12.7 gallons of kerogen per ton of ore (based on Fischer Assay). The beneficiation facility will produce briquettes of oil shale concentrate containing 34.1 gallons of kerogen per ton (based on Fischer Assay). The beneficiation facility will produce briquettes of oil shale concentrate containing 34.1 gallons of kerogen per ton (based on Fischer Assay) suitable for feed to a hydroretort oil extraction facility of nominally 20,000 barrels per day capacity. The beneficiation plant design prepared includes the operations of crushing, grinding, flotation, thickening, filtering, drying, briquetting, conveying and tailings empoundment. A complete oil shale beneficiation plant is described including all anticipated ancillary facilities. For purposes of determining capital and operating costs, the beneficiation facility is assumed to be located on a generic site in the state of Alabama. The facility is described in terms of the individual unit operations with the capital costs being itemized in a similar manner. Additionally, the beneficiation facility estimated operating costs are presented to show operating costs per ton of concentrate produced, cost per barrel of oil contained in concentrate and beneficiation cost per barrel of oil extracted from concentrate by hydroretorting. All costs are presented in fourth quarter of 1988 dollars.

  17. Effect of coal beneficiation process on rheology/atomization of coal water slurries. Quarterly progress report, November 1, 1993--January 31, 1994

    SciTech Connect

    Ohene, F.

    1994-06-01

    The atomization study began with simulated fluids-(Mixtures of glycerine-water mixtures or corn syrup-water mixtures). This was done to minimize the experimental variables, optimize the experimental conditions for subsequent CWS atomization studies and also, simplify the analysis. The atomization data obtained for the simulated fluids are as shown in Table 1 and 2. The Air/Fuel ratio was varied from 0.12--0.40 in this study. variation of SMD as a Function of Viscosity. The SMD of glycerine-water mixtures at high Air/Fuel and low Air/Fuel data are plotted in Figures 5 and 6. The data show that at high Air/Fuel ratio, there is no significant change of the SMD as the viscosity is varied. However, at low Air/Fuel ratio the SMD shows a strong dependence on the viscosity. This is due to the fact that entrainment losses become more severe as A/F increases, In the high A/F regime, there is very little variation between the SMD and the viscosity of the glycerine-water solutions. This is probably due to the fact that the relative velocity between the droplets and the air is very high and this produces high pressure forces on the droplets to the same extent. Considerable dispersion of the droplets was also observed at high A/F ratios. This effect is minimized in the low A/F regime. Figures 5--8 show plots os SMD as a Function of Air/Fuel ratio. The plot show a linear dependence of SMD on the air to Fuel ratio. A fit of the experimental data to equation 1 in order to determine the necessary coefficients will be reported during the next quarter.

  18. DECONTAMINATING AND PROCESSING DREDGED MATERIAL FOR BENEFICIAL USE

    SciTech Connect

    CLESCERI,N.L.; STERN,E.A.; FENG,H.; JONES,K.W.

    2000-07-01

    Management of contaminated dredged material is a major problem in the Port of New York and New Jersey. One component of an overall management plan can be the application of a decontamination technology followed by creation of a product suitable for beneficial use. This concept is the focus of a project now being carried out by the US Environmental Protection Agency-Region 2, the US Army Corps of Engineers-New York District, the US Department of Energy-Brookhaven National Laboratory, and regional university groups that have included Rensselaer Polytechnic Institute, Rutgers University, New Jersey Institute of Technology, and Stevens Institute of Technology. The project has gone through phased testing of commercial technologies at the bench scale (15 liters) and pilot scale (1.5--500 m{sup 3}) levels. Several technologies are now going forward to large-scale demonstrations that are intended to treat from 23,000 to 60,000 m{sup 3}. Selections of the technologies were made based on the effectiveness of the treatment process, evaluation of the possible beneficial use of the treated materials, and other factors. Major elements of the project are summarized here.

  19. BENEFICIAL USE OF INDUSTRIAL STORMWATER RUNOFF: NONPOTABLE WATER SUPPLY PURPOSES

    EPA Science Inventory

    As population and industry grow, water demand increases, and water supply becomes more of a problem. While reclamation of municipal wastewater for industry, subpotable domestic usage, and groundwater recharge has been practiced in the United States over the past several decades ...

  20. Is ultraviolet radiation on haemodialysis RO water beneficial?

    PubMed

    Stragier, A

    2005-01-01

    The quality of dialysis fluids has become increasingly important in the treatment of HD patients. Purified water represents over 95% of its volume. Bacterial and endotoxin content of Reverse Osmosis (RO) water is usually kept under control by bacterial filters, inserted in the distribution departure loop, and by monthly disinfection of the distribution circuit; the simpler the circuit, the better. This paper reports 12 years experience during which Ultraviolet Irradiation (UV) has replaced bacterial filters. To keep the bacterial growth under control in a complex RO water circuit (including a tank and multiple loops) a simple UV lamp was inserted in the departure line. It proved sufficient to keep bacterial count within AAMI norms. Failure of the UV lamp was associated with a rise of up to 500 cfu/ml in the last (fourth week) before routine disinfection. Normal levels were again obtained after replacement of the UV lamp. Six years later, a second UV lamp was added on the return loop. Bacterial counts and endotoxin levels in RO water promptly fell to <1 cfu/ml and <0.125 EU, till today. It is concluded that UV lamps should be favoured over bacterial filters in systems that are not disinfected daily, such as the RO water circuit. The principle of UV irradiation is explained and its advantage over bacterial filters is discussed. Future possible applications of UV are presented. PMID:16551024

  1. A combined physical/microbial process for coal beneficiation

    SciTech Connect

    Noah, K.S.; Glenn, A.W.; Stevens, C.J.; McAtee, N.B.; McIlwain, M.E.; Andrews, G.F.

    1993-11-01

    A combined physical/microbial process for the removal of pyritic sulfur from coal was demonstrated in a 200 L aerated trough slurry reactor. The reactor was divided into six sections, each of which acted as both a physical separator and a bioreactor. Settled solids from sections 2 through 6 were recycled to section 1 which acted as a rougher. The objective was physical removal of the larger pyritic inclusions, which would take many days to biodegrade, and biodegradation of the micropyrite, which is difficult to remove physically. The process was operated continuously for 8 months, treating two Illinois No. 6 coals (4 months each). Reduction of 90% in-pyritic sulfur with 90% energy recovery and 35% ash removal was obtained for a low pyrite Monterey coal at a 5 day coal retention time and 20% (w/w) slurry concentration. Increased coal loading reduced performance apparently due to losses of sulfur oxidizing bacteria. A low pyrite Consol coal gave 63--77% pyrite reduction with 23--30% ash removal and 77--90% heating value recovery. Product coal pyritic sulfur analysis indicated no differences between treatments of Consol coal. This suggests that the coal residence time could be further reduced and the slurry concentration increased in future work.

  2. Treating Coalbed Natural Gas Produced Water for Beneficial Use By MFI Zeolite Membranes

    SciTech Connect

    Robert Lee; Liangxiong Li

    2008-03-31

    Desalination of brines produced from oil and gas fields is an attractive option for providing potable water in arid regions. Recent field-testing of subsurface sequestration of carbon dioxide for climate management purposes provides new motivation for optimizing efficacy of oilfield brine desalination: as subsurface reservoirs become used for storing CO{sub 2}, the displaced brines must be managed somehow. However, oilfield brine desalination is not economical at this time because of high costs of synthesizing membranes and the need for sophisticated pretreatments to reduce initial high TDS and to prevent serious fouling of membranes. In addition to these barriers, oil/gas field brines typically contain high concentrations of multivalent counter cations (eg. Ca{sup 2+} and SO{sub 4}{sup 2-}) that can reduce efficacy of reverse osmosis (RO). Development of inorganic membranes with typical characteristics of high strength and stability provide a valuable option to clean produced water for beneficial uses. Zeolite membranes have a well-defined subnanometer pore structure and extreme chemical and mechanical stability, thus showing promising applicability in produced water purification. For example, the MFI-type zeolite membranes with uniform pore size of {approx}0.56 nm can separate ions from aqueous solution through a mechanism of size exclusion and electrostatic repulsion (Donnan exclusion). Such a combination allows zeolite membranes to be unique in separation of both organics and electrolytes from aqueous solutions by a reverse osmosis process, which is of great interest for difficult separations, such as oil-containing produced water purification. The objectives of the project 'Treating Coalbed Natural Gas Produced Water for Beneficial Use by MFI Zeolite Membranes' are: (1) to conduct extensive fundamental investigations and understand the mechanism of the RO process on zeolite membranes and factors determining the membrane performance, (2) to improve the

  3. Process to improve boiler operation by supplemental firing with thermally beneficiated low rank coal

    DOEpatents

    Sheldon, Ray W.

    2001-01-01

    The invention described is a process for improving the performance of a commercial coal or lignite fired boiler system by supplementing its normal coal supply with a controlled quantity of thermally beneficiated low rank coal, (TBLRC). This supplemental TBLRC can be delivered either to the solid fuel mill (pulverizer) or directly to the coal burner feed pipe. Specific benefits are supplied based on knowledge of equipment types that may be employed on a commercial scale to complete the process. The thermally beneficiated low rank coal can be delivered along with regular coal or intermittently with regular coal as the needs require.

  4. Separation and Purification of Mineral Salts from Spacecraft Wastewater Processing via Electrostatic Beneficiation

    NASA Technical Reports Server (NTRS)

    Miles, John D., II; Lunn, Griffin

    2013-01-01

    Electrostatic separation is a class of material processing technologies commonly used for the sorting of coarse mixtures by means of electrical forces acting on charged or polarized particles. Most if not all of the existing tribo-electrostatic separators had been initially developed for mineral ores beneficiation. It is a well-known process that has been successfully used to separate coal from minerals. Potash (potassium) enrichment where underground salt mines containing large amounts of sodium is another use of this techno logy. Through modification this technology can be used for spacecraft wastewater brine beneficiation. This will add in closing the gap beeen traveling around Earth's Gravity well and long-term space explorations. Food has been brought on all man missions, which is why plant growth for food crops continues to be of interest to NASA. For long-term mission considerations food productions is one of the top priorities. Nutrient recovery is essential for surviving in or past low earth orbit. In our advance bio-regenerative process instead of nitrogen gas produced; soluble nitrate salts that can be recovered for plant fertilizer would be produced instead. The only part missing is the beneficiation of brine to separate the potassium from the sodium. The use of electrostatic beneficiation in this experiment utilizes the electrical charge differences between aluminum and dried brine by surface contact. The helixes within the aluminum tribocharger allows for more surface contact when being agitated. When two materials are in contact, the material with the highest affinity for electrons becomes negatively charged, while the other becomes positively charged. This contact exchange of charge may cause the particles to agglomerate depending on their residence time within the tribocharger, compromising the efficiency of separation. The aim of this experiment is to further the development in electrostatic beneficiation by optimizing the separation of ersatz and

  5. Application of water quality guidelines and water quantity calculations to decisions for beneficial use of treated water

    NASA Astrophysics Data System (ADS)

    Pham, Minh Phung T.; Castle, James W.; Rodgers, John H.

    2011-12-01

    Water reuse guidelines were compiled as a decision-analysis screening tool for application to potential water reuse for irrigation, livestock watering, aquaculture, and drinking. Data compiled from the literature for water reuses yielded guideline values for over 50 water quality parameters, including concentrations of inorganic and organic constituents as well as general water chemistry parameters. These water quality guidelines can be used to identify constituents of concern in water, to determine the levels to which the constituents must be treated for water reuse applications, and assess the suitability of treated water for reuse. An example is provided to illustrate the application of water quality guidelines for decision analysis. Water quantity analysis was also investigated, and water volumes required for producing 16 different crops in 15 countries were estimated as an example of applying water quantity in the decision-making process regarding the potential of water reuse. For each of the countries investigated, the crop that produces the greatest yield in terms of weight per water volume is tomatoes in Australia, Brazil, Italy, Japan, Saudi Arabia, Turkey, USA; sugarcane in Chad, India, Indonesia, Sudan; watermelons in China; lettuce in Egypt, Mexico; and onions (dry) in Russia.

  6. Determining water and nitrogen balances for beneficial management practices using lysimeters at Wagna test site (Austria).

    PubMed

    Klammler, Gernot; Fank, Johann

    2014-11-15

    The shallow Murtal aquifer south of Graz, Austria, provides easily withdrawable groundwater, which is supplied as drinking water without any chemical treatment. The aquifer is also used intensively by agriculture. Common agricultural management practices are the main source for diffuse nitrogen leaching and high groundwater nitrate concentrations. To safeguard the coexisting use of these two important resources, lysimeters are operated at the agricultural test site Wagna, Austria, and the influence of two beneficial management practices--low nitrogen input and organic farming--on nitrogen leaching towards groundwater is investigated. The technical lysimeter design as presented here consists of: (1) high-resolution weighing cells, (2) a suction controlled lower boundary condition for sucking off seepage water, thus emulating undisturbed field conditions, (3) comparative soil temperature, water content and matrix potential measurements inside and outside the lysimeter at different depths, (4) an installation of the lysimeters directly into test plots and (5) a removable upper lysimeter ring enabling machinery soil tillage. Our results indicate that oasis effects or fringe effects of the lysimeter cylinder on unsaturated water flow did not occur. Another lysimeter cultivated with lawn is operated for observing grass-reference evapotranspiration, which resulted in good agreement with calculated grass-reference evapotranspiration according to the FAO-Penman-Monteith method. We conclude that lysimeters installed at Wagna test site did not show any fringe effects and, thus, are appropriate tools for measuring water balance elements and nitrogen leaching of arable and grass land at point scale. Furthermore, our results for the period of 2005 to 2011 show that beneficial management practices reduced nitrate leaching and, hence, may allow for a sustainable coexistence of drinking water supply and agriculture in the Murtal aquifer. PMID:24982000

  7. Development and scale-up of particle agglomeration processes for coal beneficiation

    NASA Astrophysics Data System (ADS)

    Shen, Meiyu

    The development of two modified agglomeration processes for coal beneficiation is presented separately in Parts I and II of this dissertation. Part I is based on research which was conducted to study the mechanism and characteristics of a gas-promoted oil agglomeration process. Part II is based on research which was carried out to develop a newer and more innovative method for agglomerating coal particles with microscopic gas bubbles in aqueous suspensions. In Part I, the development of a gas-promoted oil agglomeration process for cleaning coal was carried out with scale model mixing systems in which aqueous suspensions of ultrafine coal particles were treated with a liquid hydrocarbon and a small amount of air. The resulting agglomerates were recovered by screening. During batch agglomeration tests the progress of agglomeration was monitored by observing changes in agitator torque in the case of concentrated suspension. A key parameter turned out to be the minimum time te required to produce compact spherical agglomerates. Other important parameters included the projected area mean particle diameter of the agglomerates recovered at the end of a test as well as the ash content and yield of agglomerates. Batch agglomeration tests were conducted with geometrically similar mixing tanks which ranged in volume from 0.346 to 11.07 liters. It was shown that gas bubbles trigger the process of agglomeration and participate in a very complex mechanism involving the interaction of particles, oil droplets, and gas bubbles. The process takes place in stages involving dispersion of oil and gas, flocculation, coagulation, and agglomerate building. Numerous agglomeration tests were conducted with two kinds of coal in concentrated suspensions to determine the important characteristics of the process and to study the effects of the following operating parameters: i-octane concentration, air concentration, particle concentration, tank diameter, impeller diameter, and impeller speed

  8. The influence of additives on coal-water mixtures prepared with beneficiated coal

    SciTech Connect

    Ekmann, J.M.; Wildman, D.J.

    1986-01-01

    Use of coal-water mixtures (CWM) as fuels for utility and industrial applications is currently constrained by a number of factors, including the cost of compliance with environmental quality regulations. From a utilization standpoint, limiting ash and sulfur contents to levels comparable to those for residual fuel oil produces an attractive alternate fuel provided the unit cost is equal to that for the fuel oil. Reduction in the mineral matter content of the coal has been identified as a target for continued development of CWM. Changes in coal type or in the characteristics of a single coal have been shown to affect CWM properties. It appears worthwhile to examine the impact that beneficiation might have on CWM properties.

  9. Pyrolysis process for producing condensed stabilized hydrocarbons utilizing a beneficially reactive gas

    DOEpatents

    Durai-Swamy, Kandaswamy

    1982-01-01

    In a process for recovery of values contained in solid carbonaceous material, the solid carbonaceous material is comminuted and then subjected to pyrolysis, in the presence of a carbon containing solid particulate source of heat and a beneficially reactive transport gas in a transport flash pyrolysis reactor, to form a pyrolysis product stream. The pyrolysis product stream contains a gaseous mixture and particulate solids. The solids are separated from the gaseous mixture to form a substantially solids-free gaseous stream which comprises volatilized hydrocarbon free radicals newly formed by pyrolysis. Preferably the solid particulate source of heat is formed by oxidizing part of the separated particulate solids. The beneficially reactive transport gas inhibits the reactivity of the char product and the carbon-containing solid particulate source of heat. Condensed stabilized hydrocarbons are obtained by quenching the gaseous mixture stream with a quench fluid which contains a capping agent for stabilizing and terminating newly formed volatilized hydrocarbon free radicals. The capping agent is partially depleted of hydrogen by the stabilization and termination reaction. Hydrocarbons of four or more carbon atoms in the gaseous mixture stream are condensed. A liquid stream containing the stabilized liquid product is then treated or separated into various fractions. A liquid containing the hydrogen depleted capping agent is hydrogenated to form a regenerated capping agent. At least a portion of the regenerated capping agent is recycled to the quench zone as the quench fluid. In another embodiment capping agent is produced by the process, separated from the liquid product mixture, and recycled.

  10. Thermochemical water decomposition processes

    NASA Technical Reports Server (NTRS)

    Chao, R. E.

    1974-01-01

    Thermochemical processes which lead to the production of hydrogen and oxygen from water without the consumption of any other material have a number of advantages when compared to other processes such as water electrolysis. It is possible to operate a sequence of chemical steps with net work requirements equal to zero at temperatures well below the temperature required for water dissociation in a single step. Various types of procedures are discussed, giving attention to halide processes, reverse Deacon processes, iron oxide and carbon oxide processes, and metal and alkali metal processes. Economical questions are also considered.

  11. A co-beneficial system using aquatic plants: bioethanol production from free-floating aquatic plants used for water purification.

    PubMed

    Soda, S; Mishima, D; Inoue, D; Ike, M

    2013-01-01

    A co-beneficial system using constructed wetlands (CWs) planted with aquatic plants is proposed for bioethanol production and nutrient removal from wastewater. The potential for bioethanol production from aquatic plant biomass was experimentally evaluated. Water hyacinth and water lettuce were selected because of their high growth rates and easy harvestability attributable to their free-floating vegetation form. The alkaline/oxidative pretreatment was selected for improving enzymatic hydrolysis of the aquatic plants. Ethanol was produced with yields of 0.14-0.17 g-ethanol/ g-biomass in a simultaneous saccharification and fermentation mode using a recombinant Escherichia coli strain or a typical yeast strain Saccharomyces cerevisiae. Subsequently, the combined benefits of the CWs planted with the aquatic plants for bioethanol production and nutrient removal were theoretically estimated. For treating domestic wastewater at 1,100 m(3)/d, it was inferred that the anoxic-oxic activated sludge process consumes energy at 3,200 MJ/d, whereas the conventional activated sludge process followed by the CW consumes only 1,800 MJ/d with ethanol production at 115 MJ/d. PMID:23752400

  12. Geochemical Variability and the Potential for Beneficial Use of Waste Water Coproduced with Oil from Permian Basin of the Southwest USA

    NASA Astrophysics Data System (ADS)

    Khan, N. A.; Holguin, F. O.; Xu, P.; Engle, M.; Dungan, B.; Hunter, B.; Carroll, K. C.

    2014-12-01

    The U.S. generates 21 billion barrels/year of coproduced water from oil and gas exploration, which is generally considered waste water. Growth in unconventional oil and gas production has spurred interest in beneficial uses of produced water, especially in arid regions such as the Permian Basin of Texas and New Mexico, the largest U.S. tight oil producer. Produced waters have variable chemistries, but generally contain high levels of organics and salts. In order to evaluate the environmental impact, treatment, and reuse potential, there is a need to characterize the compositional variability of produced water. In the present study, produced water samples were collected from 12 wells across the Permian Basin. Compositional analyses including coupled gas chromatography-time of flight-mass spectrometry and inductively coupled plasma-optical emission spectroscopy were conducted. The samples show elevated benzene, ethylbenzene, toluene, xylene, alkyl benzenes, propyl-benzene, and naphthalene compared to other heteroaromatics; they also contain complex hydrocarbon compounds containing oxygen, nitrogen, and sulfur. Van Krevelen diagrams show an increase in the concentration of heteroaromatic hydrocarbons with increasing well depth. The salinity, dominated by sodium-chloride, also increases with depth, ranging from 37-150 g/L TDS. Depth of wells (or producing formation) is a primary control on predicting water quality for treatment and beneficial use. Our results suggest that partial treatment by removing suspended solids and organic contaminants would support some beneficial uses such as onsite reuse, bioenergy production, and other industrial uses. Due to the high salinity, conventional desalination processes are not applicable or very costly, making beneficial uses requiring low salinity not feasible.

  13. Integrated continuous testing of the micronized-magnetite beneficiation process in PETC`s Coal Preparation Process Research Facility

    SciTech Connect

    Maronde, C.P.; Killmeyer, R.P.; Suardini, P.J.

    1995-10-01

    Under a cost-shared Department of Energy contract, awarded as part of the Coal Preparation Program`s High Efficiency Preparation subprogram, Custom Coals International will be installing and testing 227 kg/hr micronized-magnetite cycloning circuit in PETC`s Coal Preparation Process Research Facility. The project includes the design, construction, testing, and decommissioning of a fully integrated circuit complete with feed coal classification to remove the minus-30-micron material, dense-medium cycloning of the 300 by 30 micron feed coal using micronized magnetite (<10 microns), and medium recovery via drain and rinse screening and various stages and types of magnetic separation. This paper will describe the micronized-magnetite beneficiation technology and the scope of work for this project including an update on the status of the project, the circuit, and the proposed test plan.

  14. Water chemistry and poultry processing water quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study examined the influences of water chemistry on the quality of process water used in immersion chillers. During commercial poultry processing the bird carcasses come in direct contact with process water during washing and chilling operations. Contamination of the process water with bacteria...

  15. Water softening process

    DOEpatents

    Sheppard, John D.; Thomas, David G.

    1976-01-01

    This invention involves an improved process for softening hard water which comprises selectively precipitaing CaCO.sub.3 to form a thin layer thereof, increasing the pH of said water to precipitate magnesium as magnesium hydroxide and then filtering the resultant slurry through said layer. The CaCO.sub.3 layer serves as a thin permeable layer which has particularly useful application in cross-flow filtration applications.

  16. Assessments of Environmental Impacts and Beneficial Use of Coalbed Methane Produced Water in the Powder River Basin

    SciTech Connect

    Jeff Morris

    2009-03-15

    Impact on water quality and the beneficial use of the coal bed methane (CBM) produced water are imminent questions to be answered due to the rapidly growing CBM exploration in the Powder River Basin (PRB). The practice of discharging large volumes of water into drainage channels or using it to irrigate rangeland areas has the potential of causing serious problems. The elevated salinity and sodicity in the CBM water may be detrimental to soils, plants and the associated microbial communities. There are limited studies on CBM water characterization; however, a comprehensive understanding of CBM water influence on the local ecosystem is lacking. It is very important that the water applied to soils meets the favorable combination of salinity and sodicity that will allow the plants to grow at good production levels and that will maintain the structure of the soils. The purpose of this study was to access various CBM water treatment technologies and the influence of the treated water on local biogeochemical settings in order to evaluate and identify the proper technologies to treat the CBM produced water from CBM operations, and use it in an environmentally safe manner. Unfortunately, a suitable field site was not identified and the funds for this effort were moved to a different project.

  17. Field Validation of Toxicity Tests to Evaluate the Potential for Beneficial Use of Produced Water

    SciTech Connect

    Joseph Bidwell; Jonathan Fisher; Naomi Cooper

    2008-03-31

    This study investigated potential biological effects of produced water contamination derived from occasional surface overflow and possible subsurface intrusion at an oil production site along the shore of Skiatook Lake, Oklahoma. We monitored basic chemistry and acute toxicity to a suite of standard aquatic test species (fathead minnow-Pimephales promelas, Daphnia pulex, Daphnia magna, and Ceriodaphnia dubia) in produced water and in samples taken from shallow groundwater wells on the site. Toxicity identification evaluations and ion toxicity modeling were used to identify toxic constituents in the samples. Lake sediment at the oil production site and at a reference site were also analyzed for brine intrusion chemically and by testing sediment toxicity using the benthic invertebrates, Chironomus dilutus, and Hyallela azteca. Sediment quality was also assessed with in situ survival and growth studies with H. azteca and the Asian clam, Corbicula fluminea, and by benthic macroinvertebrate community sampling. The produced water was acutely toxic to the aquatic test organisms at concentrations ranging from 1% to 10% of the whole produced water sample. Toxicity identification evaluation and ion toxicity modeling indicated major ion salts and hydrocarbons were the primary mixture toxicants. The standardized test species used in the laboratory bioassays exhibited differences in sensitivity to these two general classes of contaminants, which underscores the importance of using multiple species when evaluating produced water toxicity. Toxicity of groundwater was greater in samples from wells near a produced water injection well and an evaporation pond. Principle component analyses (PCA) of chemical data derived from the groundwater wells indicated dilution by lake water and possible biogeochemical reactions as factors that ameliorated groundwater toxicity. Elevated concentrations of major ions were found in pore water from lake sediments, but toxicity from these ions was

  18. Managing urban biosolids: Beneficial uses

    SciTech Connect

    Forste, J.B.

    1998-07-01

    Biosolids (the primarily organic product produced by wastewater treatment processes that can be beneficially recycled) are becoming a significant challenge for operators of both small and large urban wastewater facilities. More stringent water quality standards, coupled with increasingly sensitive environmental and public health considerations, have made the treatment and use/disposal of solids from treatment processes a growing and complex field of environmental management.

  19. Regional Disparities in the Beneficial Effects of Rising CO2 Emissions on Crop Water Productivity

    NASA Technical Reports Server (NTRS)

    Deryng, Delphine; Elliott, Joshua; Folberth, Christian; Meuller, Christoph; Pugh, Thomas A. M.; Boote, Kenneth J.; Conway, Declan; Ruane, Alex C.; Gerten, Dieter; Jones, James W.; Khabarov, Nikolay; Olin, Stefan; Schaphoff, Sibyll; Schmid, Erwin; Yang, Hong; Rosenzweig, Cynthia

    2016-01-01

    Rising atmospheric carbon dioxide concentrations are expected to enhance photosynthesis and reduce crop water use. However, there is high uncertainty about the global implications of these effects for future crop production and agricultural water requirements under climate change. Here we combine results from networks of field experiments and global crop models to present a spatially explicit global perspective on crop water productivity (CWP, the ratio of crop yield to evapotranspiration) for wheat, maize, rice and soybean under elevated carbon dioxide and associated climate change projected for a high-end greenhouse gas emissions scenario. We find carbon dioxide effects increase global CWP by 10[0;47]%-27[7;37]% (median[interquartile range] across the model ensemble) by the 2080s depending on crop types, with particularly large increases in arid regions (by up to 48[25;56]% for rain fed wheat). If realized in the fields, the effects of elevated carbon dioxide could considerably mitigate global yield losses whilst reducing agricultural consumptive water use (4-17%). We identify regional disparities driven by differences in growing conditions across agro-ecosystems that could have implications for increasing food production without compromising water security. Finally, our results demonstrate the need to expand field experiments and encourage greater consistency in modeling the effects of rising carbon dioxide across crop and hydrological modeling communities.

  20. Demonstration of beneficial uses of warm water from condensers of electric-generating plants

    SciTech Connect

    Boyd, L.L.; Ashley, G.C.; Hietala, J.S.; Stansfield, R.V.; Tonkinson, T.R.C.

    1980-05-01

    The report gives results of a project to demonstrate that warmed cooling water from condensers of electric generating plants can effectively and economically heat greenhouses. The 0.2-hectare demonstration greenhouse, at Northern States Power Co.'s Sherburne County (Sherco) Generating Plant, used 29.4 C water to heat both air and soil: finned-tube commercial heat exchangers were used to heat the air; and buried plastic pipes, the soil. Warm water from the Sherco 1 cooling tower was piped over 0.8 km to the greenhouse where it was cooled from 2.7 to 5.6 C before returning to the cooling tower basin. Roses and tomatoes were the principal crops in the 3-year test, although other flowers and vegetables, and conifer seedlings were also grown. The warm water heating system supplied all the greenhouse heating requirements, even at ambient temperatures as low as -40 C. Roses, snapdragons, geraniums, tomatoes, lettuce, and evergreen seedlings were grown successfully. The demonstration proved the concept to be both technically and economically feasible at Sherco, with an apparent saving of $4500/hectare in 1978 dollars over fuel oil heating, plus an annual oil savings of about 500 cu m/hectare. Privately financed commercial greenhouses heated with warm water were built at Sherco in 1977. The commercial greenhouses will expand from 0.48 to almost 1 hectare by late 1980.

  1. Regional disparities in the beneficial effects of rising CO2 concentrations on crop water productivity

    NASA Astrophysics Data System (ADS)

    Deryng, Delphine; Elliott, Joshua; Folberth, Christian; Müller, Christoph; Pugh, Thomas A. M.; Boote, Kenneth J.; Conway, Declan; Ruane, Alex C.; Gerten, Dieter; Jones, James W.; Khabarov, Nikolay; Olin, Stefan; Schaphoff, Sibyll; Schmid, Erwin; Yang, Hong; Rosenzweig, Cynthia

    2016-08-01

    Rising atmospheric CO2 concentrations ([CO2]) are expected to enhance photosynthesis and reduce crop water use. However, there is high uncertainty about the global implications of these effects for future crop production and agricultural water requirements under climate change. Here we combine results from networks of field experiments and global crop models to present a spatially explicit global perspective on crop water productivity (CWP, the ratio of crop yield to evapotranspiration) for wheat, maize, rice and soybean under elevated [CO2] and associated climate change projected for a high-end greenhouse gas emissions scenario. We find CO2 effects increase global CWP by 10[047]%-27[737]% (median[interquartile range] across the model ensemble) by the 2080s depending on crop types, with particularly large increases in arid regions (by up to 48[25;56]% for rainfed wheat). If realized in the fields, the effects of elevated [CO2] could considerably mitigate global yield losses whilst reducing agricultural consumptive water use (4-17%). We identify regional disparities driven by differences in growing conditions across agro-ecosystems that could have implications for increasing food production without compromising water security. Finally, our results demonstrate the need to expand field experiments and encourage greater consistency in modelling the effects of rising [CO2] across crop and hydrological modelling communities.

  2. Beneficial effects of laser irradiation on the deposition process of diamond/Ni60 composite coating with cold spray

    NASA Astrophysics Data System (ADS)

    Yao, Jianhua; Yang, Lijing; Li, Bo; Li, Zhihong

    2015-03-01

    Although cold spray process has many unique advantages over other coating techniques, it has difficulties in depositing hard materials. This article presents a study in the beneficial effects of laser irradiation on the fabrication process of diamond/Ni60 composite coating using cold spray. The focus of this research is on the comparison between the composite coatings produced with laser cladding (LC) and with supersonic laser deposition (SLD), with respect to diamond graphitization and tribological properties, thus to demonstrate the beneficial effects of laser irradiation on the cold spray process. The influence of deposition temperature on the coating characteristics, such as deposition efficiency, diamond volume fraction, microstructure and phase is also investigated. The tribological properties of the diamond/Ni60 composite coating produced with SLD are determined using a pin-on-disc tribometer, along with the diamond/Ni60 coating produced using LC with the optimal process parameters for comparison. The experimental results show that with the assistance of laser irradiation, diamond/Ni60 composite coating can be successfully deposited using cold spray; the obtained coating is superior to that processed with LC, because SLD can suppress the graphitization of the diamond particles. The diamond/Ni60 composite coating fabricated with SLD has much better tribological properties than the LC coating.

  3. A DEMONSTRATION OF BENEFICIAL USES OF WARM WATER FROM CONDENSERS OF ELECTRIC GENERATING PLANTS

    EPA Science Inventory

    The report gives results of a project to demonstrate that warmed cooling water from condensers of electric generating plants can effectively and economically heat greenhouses. The 0.2-hectare demonstration greenhouse, at Northern States Power Co.'s Sherburne County (Sherco) Gener...

  4. Beneficial effect of sulphate-bicarbonate-calcium water on gallstone risk and weight control

    PubMed Central

    Corradini, Stefano Ginanni; Ferri, Flaminia; Mordenti, Michela; Iuliano, Luigi; Siciliano, Maria; Burza, Maria Antonella; Sordi, Bruno; Caciotti, Barbara; Pacini, Maria; Poli, Edoardo; Santis, Adriano De; Roda, Aldo; Colliva, Carolina; Simoni, Patrizia; Attili, Adolfo Francesco

    2012-01-01

    AIM: To investigate the effect of drinking sulphate-bicarbonate-calcium thermal water (TW) on risk factors for atherosclerosis and cholesterol gallstone disease. METHODS: Postmenopausal women with functional dyspepsia and/or constipation underwent a 12 d cycle of thermal (n = 20) or tap (n = 20) water controlled drinking. Gallbladder fasting volume at ultrasound, blood vitamin E, oxysterols (7-β-hydroxycholesterol and 7-ketocholesterol), bile acid (BA), triglycerides, total/low density lipoprotein and high density lipoprotein cholesterol were measured at baseline and at the end of the study. Food consumption, stool frequency and body weight were recorded daily. RESULTS: Blood lipids, oxysterols and vitamin E were not affected by either thermal or tap water consumption. Fasting gallbladder volume was significantly (P < 0.005) smaller at the end of the study than at baseline in the TW (15.7 ± 1.1 mL vs 20.1 ± 1.7 mL) but not in the tap water group (19.0 ± 1.4 mL vs 19.4 ± 1.5 mL). Total serum BA concentration was significantly (P < 0.05) higher at the end of the study than at baseline in the TW (5.83 ± 1.24 μmol vs 4.25 ± 1.00 μmol) but not in the tap water group (3.41 ± 0.46 μmol vs 2.91 ± 0.56 μmol). The increased BA concentration after TW consumption was mainly accounted for by glycochenodeoxycholic acid. The number of pasta (P < 0.001), meat (P < 0.001) and vegetable (P < 0.005) portions consumed during the study and of bowel movements per day (P < 0.05) were significantly higher in the TW than in the tap water group. Body weight did not change at the end of the study as compared to baseline in both groups. CONCLUSION: Sulphate-bicarbonate-calcium water consumption has a positive effect on lithogenic risk and intestinal transit and allows maintenance of a stable body weight despite a high food intake. PMID:22408352

  5. A combined physical/microbial process for the beneficiation of coal

    SciTech Connect

    Andrews, G.F.; Stevens, C.J.; Noah, K.S.; McIlwain, M.E.

    1993-09-01

    A large-laboratory scale physical/microbial process was demonstrated for the removal of pyritic sulfur from coal. The process took place in an aerated-trough slurry reactor with a total slurry volume of 150 L. The reactor was divided into six sections, each of which acted as a physical separator and a bioreactor. The process objective was to physically remove the larger pyritic inclusions and to biodegrade the small inclusions (micropyrite). The process was continuously operated for 120 days, treating approximately 1 ton of Illinois {number_sign}6 coal. Ninety percent pyrite removal was achieved at a 20% slurry concentration and a reactor residence time of 5 days. Additional research should be performed to find the optimum values for reactor residence time, slurry concentration, and process hydraulic residence time (or recycle ratio). Finding these optimum values will enable a process to be developed that will maximize the amount of coal that can be processed per unit reactor volume per unit time with the desired level of pyritic sulfur removal.

  6. Effect of processing techniques at industrial scale on orange juice antioxidant and beneficial health compounds.

    PubMed

    Gil-Izquierdo, Angel; Gil, Maria I; Ferreres, Federico

    2002-08-28

    Phenolic compounds, vitamin C (L-ascorbic acid and L-dehydroascorbic acid), and antioxidant capacity were evaluated in orange juices manufactured by different techniques. Five processes at industrial scale (squeezing, mild pasteurization, standard pasteurization, concentration, and freezing) used in commercial orange juice manufacturing were studied. In addition, domestic squeezing (a hand processing technique) was compared with commercial squeezing (an industrial FMC single-strength extraction) to evaluate their influences on health components of orange juice. Whole orange juice was divided into soluble and cloud fractions after centrifugation. Total and individual phenolics were analyzed in both fractions by HPLC. Commercial squeezing extracted 22% more phenolics than hand squeezing. The freezing process caused a dramatic decrease in phenolics, whereas the concentration process caused a mild precipitation of these compounds to the juice cloud. In pulp, pasteurization led to degradation of several phenolic compounds, that is, caffeic acid derivatives, vicenin 2 (apigenin 6,8-di-C-glucoside), and narirutin (5,7,4'-trihydroxyflavanone-7-rutinoside) with losses of 34.5, 30.7, and 28%, respectively. Regarding vitamin C, orange juice produced by commercial squeezing contained 25% more of this compound than domestic squeezing. Mild and standard pasteurization slightly increased the total vitamin C content as the contribution from the orange solids parts, whereas concentration and freezing did not show significant changes. The content of L-ascorbic acid provided 77-96% of the total antioxidant capacity of orange juice. Mild pasteurization, standard pasteurization, concentration, and freezing did not affect the total antioxidant capacity of juice, but they did, however, in pulp, where it was reduced by 47%. PMID:12188615

  7. Sulfur Fumigation Processing of Traditional Chinese Medicinal Herbs: Beneficial or Detrimental?

    PubMed Central

    Kan, Winnie Lai Ting; Ma, Bin; Lin, Ge

    2011-01-01

    Majority of traditional Chinese medicine (TCM) herbs need to undergo post-harvesting processing to convert raw material into the form readily used for prescription. In general, processing procedures are either according to China Pharmacopeia or based on traditional methods. Recently sulfur fumigation is increasingly used to replace traditional sun-drying for its pesticidal and anti-bacterial properties in a cheap and convenient manner. However, to date information on effects of sulfur fumigation on herbal safety and efficacy are limited. This article addresses potential destructive effects of sulfur fumigation on herbal efficacy and safety through reviewing currently available information. Since recently increased numbers of studies have demonstrated that sulfur fumigation-induced dramatic changes in chemical profiles of various sulfur-fumigated herbs, consequent alteration of efficacy, and/or potential incidence of toxicity are suspected. Therefore comprehensive investigations on effects of sulfur fumigation on toxicity, chemical profiles, pharmacokinetics, and bioactivities of TCM herbs are timely to provide scientific basis for standardization and regulation of this currently common but potentially harmful processing method. PMID:22207851

  8. Dupoly process for treatment of depleted uranium and production of beneficial end products

    DOEpatents

    Kalb, Paul D.; Adams, Jay W.; Lageraaen, Paul R.; Cooley, Carl R.

    2000-02-29

    The present invention provides a process of encapsulating depleted uranium by forming a homogenous mixture of depleted uranium and molten virgin or recycled thermoplastic polymer into desired shapes. Separate streams of depleted uranium and virgin or recycled thermoplastic polymer are simultaneously subjected to heating and mixing conditions. The heating and mixing conditions are provided by a thermokinetic mixer, continuous mixer or an extruder and preferably by a thermokinetic mixer or continuous mixer followed by an extruder. The resulting DUPoly shapes can be molded into radiation shielding material or can be used as counter weights for use in airplanes, helicopters, ships, missiles, armor or projectiles.

  9. DUPoly process for treatment of depleted uranium and production of beneficial end products

    SciTech Connect

    Kalb, P.D.; Adams, J.W.; Lageraaen, P.R.; Cooley, C.R.

    2000-02-29

    The present invention provides a process of encapsulating depleted uranium by forming a homogeneous mixture of depleted uranium and molten virgin or recycled thermoplastic polymer into desired shapes. Separate streams of depleted uranium and virgin or recycled thermoplastic polymer are simultaneously subjected to heating and mixing conditions. The heating and mixing conditions are provided by a thermokinetic mixer, continuous mixer or an extruder and preferably by a thermokinetic mixer or continuous mixer followed by an extruder. The resulting DUPoly shapes can be molded into radiation shielding material or can be used as counter weights for use in airplanes, helicopters, ships, missiles, armor or projectiles.

  10. Development of a method for characterizing changes in coal and mineral surfaces resulting from beneficiation processes

    SciTech Connect

    Slomka, B.J.; Seward, K.J.; Dawson, M.R.; Buttermore, W.H.

    1989-01-01

    A novel method was developed for characterizing changes in coal and mineral surfaces resulting from sonication and other cleaning processes. This method employs a unique flow-cell to permit the dynamic measurement of dye adsorption on coal and mineral particle surfaces. The rates and extents of adsorption of ionic dyes on Illinois No. 6 coal were found to be dependent on mineral content and particle size of ground coal samples. A significant correlation was observed between the adsorbed quantity of dye and the total mineral content of coal. In preliminary experiments with methylene blue dye, clay was found to absorb significantly more of the dye than quartz, pyrite, calcite, or clean coal'' surfaces. By using dyes of differing adsorption selectivity, it is demonstrated that sonication reduces the apparent mineral content on the surface of coal. 9 refs., 7 fig., 3 tabs.

  11. Insulin-sensitizing and beneficial lipid-metabolic effects of the water-soluble melanin complex extracted from Inonotus obliquus.

    PubMed

    Lee, Jung-Han; Hyun, Chang-Kee

    2014-09-01

    Inonotus obliquus has been traditionally used for treatment of metabolic diseases; however, the mechanism remains to be elucidated. In this study, we found that the water-soluble melanin complex extracted from I. obliquus improved insulin sensitivity and reduced adiposity in high fat (HF)-fed obese mice. When the melanin complex was treated to 3T3-L1 adipocytes, insulin-stimulated glucose uptake was increased significantly, and its phosphoinositide 3-kinase-dependent action was proven with wortmannin treatment. Additionally, dose-dependent increases in Akt phosphorylation and glucose transporter 4 translocation into the plasma membrane were observed in melanin complex-treated cells. Adiponectin gene expression in 3T3-L1 cells incubated with melanin complex increased which was corroborated by increased AMP-activated protein kinase phosphorylation in HepG2 and C2C12 cells treated with conditioned media from the 3T3-L1 culture. Melanin complex-treated 3T3-L1 cells showed no significant change in expression of several lipogenic genes, whereas enhanced expressions of fatty acid oxidative genes were observed. Similarly, the epididymal adipose tissue of melanin complex-treated HF-fed mice had higher expression of fatty acid oxidative genes without significant change in lipogenic gene expression. Together, these results suggest that the water-soluble melanin complex of I. obliquus exerts antihyperglycemic and beneficial lipid-metabolic effects, making it a candidate for promising antidiabetic agent. PMID:24615848

  12. Treatment Process Requirements for Waters Containing Hydraulic Fracturing Chemicals

    NASA Astrophysics Data System (ADS)

    Stringfellow, W. T.; Camarillo, M. K.; Domen, J. K.; Sandelin, W.; Varadharajan, C.; Cooley, H.; Jordan, P. D.; Heberger, M. G.; Reagan, M. T.; Houseworth, J. E.; Birkholzer, J. T.

    2015-12-01

    A wide variety of chemical additives are used as part of the hydraulic fracturing (HyF) process. There is concern that HyF chemicals will be released into the environment and contaminate drinking water, agricultural water, or other water used for beneficial purposes. There is also interest in using produced water (water extracted from the subsurface during oil and gas production) for irrigation and other beneficial purposes, especially in the arid Southwest US. Reuse of produced water is not speculative: produced water can be low in salts and is being used in California for irrigation after minimal treatment. In this study, we identified chemicals that are used for hydraulic fracturing in California and conducted an analysis to determine if those chemicals would be removed by a variety of technically available treatment processes, including oil/water separation, air stripping, a variety of sorption media, advanced oxidation, biological treatment, and a variety of membrane treatment systems. The approach taken was to establish major physiochemical properties for individual chemicals (log Koc, Henry's constant, biodegradability, etc.), group chemicals by function (e.g corrosion inhibition, biocides), and use those properties to predict the fate of chemical additives in a treatment process. Results from this analysis is interpreted in the context of what is known about existing systems for the treatment of produced water before beneficial reuse, which includes a range of treatment systems from oil/water separators (the most common treatment) to sophisticated treatment trains used for purifying produced water for groundwater recharge. The results show that most HyF chemical additives will not be removed in existing treatment systems, but that more sophisticated treatment trains can be designed to remove additives before beneficial reuse.

  13. Phosphoproteomic analysis of induced resistance reveals activation of signal transduction processes by beneficial and pathogenic interaction in grapevine.

    PubMed

    Perazzolli, Michele; Palmieri, Maria Cristina; Matafora, Vittoria; Bachi, Angela; Pertot, Ilaria

    2016-05-20

    Protein phosphorylation regulates several key processes of the plant immune system. Protein kinases and phosphatases are pivotal regulators of defense mechanisms elicited by resistance inducers. However, the phosphorylation cascades that trigger the induced resistance mechanisms in plants have not yet been deeply investigated. The beneficial fungus Trichoderma harzianum T39 (T39) induces resistance against grapevine downy mildew (Plasmopara viticola), but its efficacy could be further improved by a better understanding of the cellular regulations involved. We investigated quantitative changes in the grapevine phosphoproteome during T39-induced resistance to get an overview of regulatory mechanisms of downy mildew resistance. Immunodetection experiments revealed activation of the 45 and 49kDa kinases by T39 treatment both before and after pathogen inoculation, and the phosphoproteomic analysis identified 103 phosphopeptides that were significantly affected by the phosphorylation cascades during T39-induced resistance. Peptides affected by T39 treatment showed comparable phosphorylation levels after P. viticola inoculation, indicating activation of the microbial recognition machinery before pathogen infection. Phosphorylation profiles of proteins related to photosynthetic processes and protein ubiquitination indicated a partial overlap of cellular responses in T39-treated and control plants. However, phosphorylation changes of proteins involved in response to stimuli, signal transduction, hormone signaling, gene expression regulation, and RNA metabolism were exclusively elicited by P. viticola inoculation in T39-treated plants. These results highlighted the relevance of phosphorylation changes during T39-induced resistance and identified key regulator candidates of the grapevine defense against downy mildew. PMID:27010348

  14. Apparatus for beneficiating coal

    SciTech Connect

    Burgess, L.E.; Fox, K.M.; Herman, D.E.; McGarry, P.E.

    1985-08-20

    Mine run coal is pulverized and the extended surfaces of the coal particles are rendered hydrophobic and oilophilic by a chemical bonding and graft polymerization reaction with a water insoluble organic polymerizable monomer under peroxidation influence in a predominantly water reaction medium. The mineral ash present in the coal and particularly the iron pyrites remains hydrophilic and is separated from the polymeric organic surface bonded coal product in a water washing step wherein the washed coal floats on and is recovered from the water phase and the ash is removed with the separated wash water in a critical wash step. Excess water is removed from the beneficiated hydrophobic surface-altered coal product mechanically. The hydrophobic and oilophilic organic polymeric surface bonded coating about the coal particles is fortified by inclusion of additional unbound free fatty acids by further small additions thereof. The carboxylic acid groups present in the coal-oil product are thereafter converted to a metal soap. The beneficiated coal product can be used ''dry'', or additional quantities of a liquid hydrocarbon fuel can be incorporated with the ''dry'' beneficiated coal product to produce a flowable fluid or liquid coal product having the rheological property of marked thixotropy. Introduction of this physically induced property into the liquid coal-oil-mixture prevents settling out of the heavier coal particles from the relatively ash-free fluid fuel composition under extended storage periods.

  15. Family identification: a beneficial process for young adults who grow up in homes affected by parental intimate partner violence

    PubMed Central

    Naughton, Catherine M.; Muldoon, Orla T.

    2015-01-01

    Exposure to parental intimate partner violence (parental IPV) is a complex trauma. Research within social psychology establishes that identification with social groups impacts positively on how we appraise, respond to and recover from traumatic events. IPV is also a highly stigmatized social phenomenon and social isolation is a major factor for families affected by IPV, yet strong identification with the family group may act as a beneficial psychological resource to young people who grew up in homes affected by IPV. The current study, an online survey of 355 students (Mage = 20, 70% female), investigated if a psychosocial process, specifically identification with the family, may influence the relationship between the predictor, exposure to parental IPV, and outcomes, global self-esteem and state anxiety. Mediation analysis suggests that identification with the family has a positive influence on the relationship between exposure to parental IPV and psychological outcomes; exposure to parental IPV results in reduced family identification, but when family identification is strong it results in both reduced anxiety and increased self-esteem for young people. The findings highlight the importance of having a strong sense of belonging to the extended family for young people who were exposed to parental IPV, thus has implications for prevention, intervention, and social policy. PMID:26379582

  16. Family identification: a beneficial process for young adults who grow up in homes affected by parental intimate partner violence.

    PubMed

    Naughton, Catherine M; O'Donnell, Aisling T; Muldoon, Orla T

    2015-01-01

    Exposure to parental intimate partner violence (parental IPV) is a complex trauma. Research within social psychology establishes that identification with social groups impacts positively on how we appraise, respond to and recover from traumatic events. IPV is also a highly stigmatized social phenomenon and social isolation is a major factor for families affected by IPV, yet strong identification with the family group may act as a beneficial psychological resource to young people who grew up in homes affected by IPV. The current study, an online survey of 355 students (M age = 20, 70% female), investigated if a psychosocial process, specifically identification with the family, may influence the relationship between the predictor, exposure to parental IPV, and outcomes, global self-esteem and state anxiety. Mediation analysis suggests that identification with the family has a positive influence on the relationship between exposure to parental IPV and psychological outcomes; exposure to parental IPV results in reduced family identification, but when family identification is strong it results in both reduced anxiety and increased self-esteem for young people. The findings highlight the importance of having a strong sense of belonging to the extended family for young people who were exposed to parental IPV, thus has implications for prevention, intervention, and social policy. PMID:26379582

  17. Fraction distribution and risk assessment of heavy metals in waste clay sediment discharged through the phosphate beneficiation process in Jordan.

    PubMed

    Al-Hwaiti, Mohammad Salem; Brumsack, Hans Jurgen; Schnetger, Bernhard

    2015-07-01

    Heavy metal contamination of clay waste through the phosphate beneficiation process is a serious problem faced by scientists and regulators worldwide. Through the beneficiation process, heavy metals naturally present in the phosphate rocks became concentrated in the clay waste. This study evaluated the concentration of heavy metals and their fractions in the clay waste in order to assess the risk of environmental contamination. A five-step sequential extraction method, the risk assessment code (RAC), effects range low (ERL), effects range medium (ERM), the lowest effect level (LEL), the severe effect level (SEL), the redistribution index (U tf), the reduced partition index (I), residual partition index (I R), and the Nemerow multi-factor index (PC) were used to assess for clay waste contamination. Heavy metals were analyzed using high-resolution inductively coupled plasma mass spectrometry (HR-ICP-MS) and inductively coupled plasma optical emission spectroscopy (ICP-OES). Correlation analyses were carried out to better understand the relationships between the chemical characteristics and the contents of the different phase fractions. Concentrations of Cd and Cu confirmed that both were bound to the exchangeable fraction (F1) and the carbonate fraction (F2), presenting higher mobility, whereas Pb was most abundant in the Fe-Mn oxide fraction (F3) and organic matter fraction (F4). The residual fraction (F5) contained the highest concentrations (>60%) of As, Cr, Mo, V, and Zn, with lower mobility. Application of the RAC index showed that Cd and Cu should be considered a moderate risk, whereas As, Cr, Mo, Pb, and Zn presented a low risk. Cadmium and Cu contents in mobile fractions F1 and F2 were higher than ERL but lower than ERM. On the other hand, As, Pb, and Zn contents of mobile fractions F1 and F2 were lower than ERL and ERM guideline values. Moreover, total Pb concentrations in the clay waste were below the lowest effect level (LEL) threshold value period, Cr and

  18. Water extract of the fungi from Fuzhuan brick tea improves the beneficial function on inhibiting fat deposition.

    PubMed

    Peng, Yuxuan; Xiong, Zhe; Li, Juan; Huang, Jian-An; Teng, Cuiqin; Gong, Yushun; Liu, Zhonghua

    2014-08-01

    Fuzhuan brick tea (FBT) is traditionally consumed by the ethnic group in the border region of northwest China. The unique yellow fungal (Eurotium cristatum) growth phase is considered to be the key process point in the manufacture of the brick tea. The fungi from FBT are not only strongly correlated to the quality of brick tea, but also have the potential function of preventing obesity. The water extract of fungi (100 μg/mL) can significantly inhibit fat deposition in 3T3-L1 adipocyte and Caenorhabditis elegans. Furthermore, the inhibition of 3T3-L1 adipocyte formation was not due to the suppression on cell viability. PMID:24634994

  19. Process for photosynthetically splitting water

    DOEpatents

    Greenbaum, Elias

    1984-01-01

    The invention is an improved process for producing gaseous hydrogen and oxygen from water. The process is conducted in a photolytic reactor which contains a water-suspension of a photoactive material containing a hydrogen-liberating catalyst. The reactor also includes a volume for receiving gaseous hydrogen and oxygen evolved from the liquid phase. To avoid oxygen-inactivation of the catalyst, the reactor is evacuated continuously by an external pump which circulates the evolved gases through means for selectively recovering hydrogen therefrom. The pump also cools the reactor by evaporating water from the liquid phase. Preferably, product recovery is effected by selectively diffusing the hydrogen through a heated semipermeable membrane, while maintaining across the membrane a magnetic field gradient which biases the oxygen away from the heated membrane. This promotes separation, minimizes the back-reaction of hydrogen and oxygen, and protects the membrane.

  20. Application of membrane-coupled sequencing batch reactor for oilfield produced water recycle and beneficial re-use.

    PubMed

    Fakhru'l-Razi, A; Pendashteh, Alireza; Abidin, Zurina Zainal; Abdullah, Luqman Chuah; Biak, Dayang Radiah Awang; Madaeni, Sayed Siavash

    2010-09-01

    Oil and gas field wastewater or produced water is a significant waste stream in the oil and gas industries. In this study, the performance of a membrane sequencing batch reactor (MSBR) and membrane sequencing batch reactor/reverse osmosis (MSBR/RO) process treating produced wastewater were investigated and compared. The MSBR was operated in different hydraulic residence time (HRT) of 8, 20 and 44 h. Operation results showed that for a HRT of 20 h, the combined process effluent chemical oxygen demand (COD), total organic carbon (TOC) and oil and grease (O&G) removal efficiencies were 90.9%, 92% and 91.5%, respectively. The MSBR effluent concentration levels met the required standard for oil well re-injection. The RO treatment reduced the salt and organic contents to acceptable levels for irrigation and different industrial re-use. Foulant biopsy demonstrated that the fouling on the membrane surface was mainly due to inorganic (salts) and organic (microorganisms and their products, hydrocarbon constituents) matters. PMID:20434905

  1. Process for photosynthetically splitting water

    SciTech Connect

    Greenbaum, E.

    1982-01-28

    In one form of the invention, hydrogen is produced by providing a reactor containing a body of water. The water contains photolytic material, i.e., photoactive material containing a hydrogen-catalyst. The interior of the reactor is isolated from atmosphere and includes a volume for receiving gases evolved from the body of water. The photolytic material is exposed to light to effect photosynthetic splitting of the water into gaseous hydrogen and oxygen. The gas-receiving volume is continuously evacuated by pumping to promote evolution of gaseous hydrogen and oxygen into that volume and to withdraw them therefrom. In another form of the invention, separation of the hydrogen and oxygen is effected by selectively diffusing the hydrogen through a heated semipermeable membrane in a separation zone while maintaining across the zone a magnetic field gradient biasing the oxygen away from the membrane. In a third form of the invention, the withdrawn gas is contacted with a membrane blocking flow of water vapor to the region for effecting recovery of the hydrogen. In a fourth embodiment, the invention comprises a process for selectively recovering hydrogen from a gas mixture comprising hydrogen and oxygen. The process is conducted in a separation zone and comprises contacting the mixture with a semipermeable membrane effecting selective diffusion of hydrogen while maintaining across the zone a magnetic field gradient effecting movement of oxygen in a direction away from the membrane.

  2. Beneficiation of coal and metallic and non-metallic ores by froth flotation process using polyhydroxy alkyl xanthate depressants

    SciTech Connect

    Petrovich, V.

    1980-07-08

    In the concentration of metallic and non-metallic minerals by froth flotation with a high content of pyrite and the like iron sulfides, which includes the subjecting of such ores when finely ground and sized to substantially liberate particles of pyrite, to froth flotation process in the presence of any suitabl E and adeuqate collector and frother for desired metallic and non-metallic mineral for the recovery of the same, and in the presence of a polyhydroxy alkyl xanthate wetting and depressing agent for pyrite, the step of adding to a pulp of mineral slurry an amount of the order of 0.01 to 0.10 kg per metric ton of a non-collecting polyhydroxy alkyl xanthate, of which hydroxyl groups of said polyhydroxy alkyl xanthates contain from 3 to 4, and having the following general formula: HOCH/sub 2/(CHOH)mcH(CHO)OCSSK wherein M is an integer from 2 to 3; said polyhydroxy alkyl xanthates, react with pyrite and said iron sulfides of the pulp of mineral slurry to yield a water soluble or insoluble hydrophilic coating depressing the pyrite and said iron sulfides, said polyhydroxy alkyl xanthates being selected from the group consisting of potassium pentose, and potassium hexose xanthates, such as potassium arabinose xanthate, potassium xylose xanthate, potassium glucose xanthate, potassium fructose xanthate.

  3. Beneficial effects on water management of simple hydraulic structures in wetland systems: the Vallevecchia case study, Italy.

    PubMed

    Carrer, G M; Bonato, M; Smania, D; Barausse, A; Comis, C; Palmeri, L

    2011-01-01

    Conflicting water uses in coastal zones demand integrated approaches to achieve sustainable water resources management, protecting water quality while allowing those human activities which rely upon aquatic ecosystem services to thrive. This case study shows that the creation and simple management of hydraulic structures within constructed wetlands can markedly reduce the non-point pollution from agriculture and, simultaneously, benefit agricultural activities, particularly during hot and dry periods. The Vallevecchia wetland system is based on a reclaimed 900 ha-large drainage basin in Northern Italy, where droughts recently impacted agriculture causing water scarcity and saltwater intrusion. Rainwater and drained water are recirculated inside the system to limit saltwater intrusion, provide irrigation water during dry periods and reduce the agricultural nutrient loads discharged into the bordering, eutrophic Adriatic Sea. Monitoring (2003-2009) of water quality and flows highlights that the construction (ended in 2005) of a gated spillway to control the outflow, and of a 200,000 m3 basin for water storage, dramatically increased the removal of nutrients within the system. Strikingly, this improvement was achieved with a minimal management effort, e.g., each year the storage basin was filled once: a simple management of the hydraulic structures would greatly enhance the system efficiency, and store more water to irrigate and limit saltwater intrusion. PMID:22053478

  4. Negative, Null and Beneficial Effects of Drinking Water on Energy Intake, Energy Expenditure, Fat Oxidation and Weight Change in Randomized Trials: A Qualitative Review

    PubMed Central

    Stookey, Jodi J. D.

    2016-01-01

    Drinking water has heterogeneous effects on energy intake (EI), energy expenditure (EE), fat oxidation (FO) and weight change in randomized controlled trials (RCTs) involving adults and/or children. The aim of this qualitative review of RCTs was to identify conditions associated with negative, null and beneficial effects of drinking water on EI, EE, FO and weight, to generate hypotheses about ways to optimize drinking water interventions for weight management. RCT conditions that are associated with negative or null effects of drinking water on EI, EE and/or FO in the short term are associated with negative or null effects on weight over the longer term. RCT conditions that are associated with lower EI, increased EE and/or increased FO in the short term are associated with less weight gain or greater weight loss over time. Drinking water instead of caloric beverages decreases EI when food intake is ad libitum. Drinking water increases EE in metabolically-inflexible, obese individuals. Drinking water increases FO when blood carbohydrate and/or insulin concentrations are not elevated and when it is consumed instead of caloric beverages or in volumes that alter hydration status. Further research is needed to confirm the observed associations and to determine if/what specific conditions optimize drinking water interventions for weight management. PMID:26729162

  5. Negative, Null and Beneficial Effects of Drinking Water on Energy Intake, Energy Expenditure, Fat Oxidation and Weight Change in Randomized Trials: A Qualitative Review.

    PubMed

    Stookey, Jodi J D

    2016-01-01

    Drinking water has heterogeneous effects on energy intake (EI), energy expenditure (EE), fat oxidation (FO) and weight change in randomized controlled trials (RCTs) involving adults and/or children. The aim of this qualitative review of RCTs was to identify conditions associated with negative, null and beneficial effects of drinking water on EI, EE, FO and weight, to generate hypotheses about ways to optimize drinking water interventions for weight management. RCT conditions that are associated with negative or null effects of drinking water on EI, EE and/or FO in the short term are associated with negative or null effects on weight over the longer term. RCT conditions that are associated with lower EI, increased EE and/or increased FO in the short term are associated with less weight gain or greater weight loss over time. Drinking water instead of caloric beverages decreases EI when food intake is ad libitum. Drinking water increases EE in metabolically-inflexible, obese individuals. Drinking water increases FO when blood carbohydrate and/or insulin concentrations are not elevated and when it is consumed instead of caloric beverages or in volumes that alter hydration status. Further research is needed to confirm the observed associations and to determine if/what specific conditions optimize drinking water interventions for weight management. PMID:26729162

  6. The Oxnard advanced water purification facility: combining indirect potable reuse with reverse osmosis concentrate beneficial use to ensure a California community's water sustainability and provide coastal wetlands restoration.

    PubMed

    Lozier, Jim; Ortega, Ken

    2010-01-01

    The City of Oxnard in California is implementing a strategic water resources program known as the Groundwater Recovery Enhancement and Treatment (GREAT) program, which includes an Advanced Water Purification Facility (AWPF) that will use a major portion of the secondary effluent from the City's existing Water Pollution Control Facility to produce high-quality treated water to be used for irrigation of edible food crops, landscape irrigation, injection into the groundwater basin to form a barrier to seawater intrusion, and other industrial uses. The AWPF, currently under design by CH2M HILL, will employ a multiple-barrier treatment train consisting of microfiltration, reverse osmosis, and ultravioletlightbased advanced oxidation processes to purify the secondary effluent to conform to California Department of Public Health Title 22 Recycled Water Criteria for groundwater recharge. The AWPF, which will have initial and build-out capacities of ca. 24,000 and ca 95,000 m(3)/day, respectively, was limited to a 1.8-hectare site, with 0.4 hectares dedicated to a Visitor's Center and administration building. Further, the depth below grade and height of the AWPF's structures were constrained because of the high groundwater table at the site, the high cost of excavation and dewatering, and local codes. To accommodate these various restrictions, an innovative design approach has been developed. This paper summarizes the design constraints and innovative solutions for the design of the AWPF. PMID:20220237

  7. Beneficial reuse of FGD material in the construction of low permeability liners: Impacts on inorganic water quality constituents

    SciTech Connect

    Cheng, C.M.; Tu, W.; Zand, B.; Butalia, T.; Wolfe, W.; Walker, H.

    2007-05-15

    In this paper, we examine the water quality impacts associated with the reuse of fixated flue gas desulfurization (FGD) material as a low permeability liner for agricultural applications. A 0.457-m-thick layer of fixated FGD material from a coal-fired power plant was utilized to create a 708 m{sup 2} swine manure pond at the Ohio Agricultural Research and Development Center Western Branch in South Charleston, Ohio. To assess the effects of the fixated FGD material liner, water quality samples were collected over a period of 5 years from the pond surface water and a sump collection system beneath the liner. Water samples collected from the sump and pond surface water met all Ohio nontoxic criteria, and in fact, generally met all national primary and secondary drinking water standards. Furthermore it was found that hazardous constituents (i.e., As, B, Cr, Cu, and Zn) and agricultural pollutants (i.e., phosphate and ammonia) were effectively retained by the FGD liner system. The retention of As, B, Cr, Cu, Zn, and ammonia was likely due to sorption to mineral components of the FGD liner, while Ca, Fe, and P retention were a result of both sorption and precipitation of Fe- and Ca-containing phosphate solids.

  8. Effects of temperature on cuticular lipids and water balance in a desert Drosophila: is thermal acclimation beneficial?

    PubMed

    Gibbs, A G; Louie, A K; Ayala, J A

    1998-01-01

    The desert fruit fly Drosophila mojavensis experiences environmental conditions of high temperature and low humidity. To understand the physiological mechanisms allowing these small insects to survive in such stressful conditions, we studied the effects of thermal acclimation on cuticular lipids and rates of water loss of adult D. mojavensis. Mean hydrocarbon chain length increased at higher temperatures, but cuticular lipid melting temperature (Tm) did not. Lipid quantity doubled in the first 14 days of adult life, but was unaffected by acclimation temperature. Despite these changes in cuticular properties, organismal rates of water loss were unaffected by either acclimation temperature or age. Owing to the smaller body size of warm-acclimated flies, D. mojavensis reared for 14 days at 33 degrees C lost water more rapidly on a mass-specific basis than flies acclimated to 25 degrees C or 17 degrees C. Thus, apparently adaptive changes in cuticular lipids do not necessarily result in reduced rates of water loss. Avoidance of high temperatures and desiccating conditions is more likely to contribute to survival in nature than changes in water balance mediated by surface lipids. PMID:9390938

  9. Demonstration of beneficial uses of warm water from condensers of electric generating plants. Final report, May 1975-April 1980

    SciTech Connect

    Boyd, L.L.; Ashley, G.C.; Hietala, J.S.; Stansfield, R.V.; Tonkinson, T.R.C.

    1980-05-01

    The report gives results of a project to demonstrate that warmed cooling water from condensers of electric generating plants can effectively and economically heat greenhouses. The 0.2-hectare demonstration greenhouse, at Northern States Power Co.'s Sherburne County (Sherco) Generating Plant, used 29.4 C water to heat both air and soil: finned-tube commercial heat exchangers were used to heat the air; and buried plastic pipes, the soil. Warm water from the Sherco 1 cooling tower was piped over 0.8 km to the greenhouse where it was cooled from 2.7 to 5.6 C before returning to the cooling tower basin. Roses and tomatoes were the principal crops in the 3-year test, although other flowers and vegetables, and conifer seedlings were also grown. The warm water heating system supplied all the greenhouse heating requirements, even at ambient temperatures as low as -40 C. Roses, snapdragons, geraniums, tomatoes, lettuce, and evergreen seedlings were grown successfully.

  10. Toward delisting of the water quality beneficial use impairment in the St. Louis River, MN: A monitoring approach

    EPA Science Inventory

    Water quality in the St. Louis River Estuary (SLRE), a great lakes area of concern (AOC), is improving. A significant leap forward followed the opening of the Western Lake Superior Sanitary District in 1978. However, desire for continued improvement throughout the estuary was the...

  11. Root elongation, water stress, and mechanical impedance: a review of limiting stresses and beneficial root tip traits.

    PubMed

    Bengough, A Glyn; McKenzie, B M; Hallett, P D; Valentine, T A

    2011-01-01

    Root elongation in drying soil is generally limited by a combination of mechanical impedance and water stress. Relationships between root elongation rate, water stress (matric potential), and mechanical impedance (penetration resistance) are reviewed, detailing the interactions between these closely related stresses. Root elongation is typically halved in repacked soils with penetrometer resistances >0.8-2 MPa, in the absence of water stress. Root elongation is halved by matric potentials drier than about -0.5 MPa in the absence of mechanical impedance. The likelihood of each stress limiting root elongation is discussed in relation to the soil strength characteristics of arable soils. A survey of 19 soils, with textures ranging from loamy sand to silty clay loam, found that ∼10% of penetration resistances were >2 MPa at a matric potential of -10 kPa, rising to nearly 50% >2 MPa at - 200 kPa. This suggests that mechanical impedance is often a major limitation to root elongation in these soils even under moderately wet conditions, and is important to consider in breeding programmes for drought-resistant crops. Root tip traits that may improve root penetration are considered with respect to overcoming the external (soil) and internal (cell wall) pressures resisting elongation. The potential role of root hairs in mechanically anchoring root tips is considered theoretically, and is judged particularly relevant to roots growing in biopores or from a loose seed bed into a compacted layer of soil. PMID:21118824

  12. New municipal solid waste processing technology reduces volume and provides beneficial reuse applications for soil improvement and dust control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A garbage-processing technology has been developed that shreds, sterilizes, and separates inorganic and organic components of municipal solid waste. The technology not only greatly reduces waste volume, but the non-composted byproduct of this process, Fluff®, has the potential to be utilized as a s...

  13. Water First Aid Is Beneficial In Humans Post-Burn: Evidence from a Bi-National Cohort Study

    PubMed Central

    Wood, Fiona M.; Phillips, Michael; Jovic, Tom; Cassidy, John T; Cameron, Peter; Edgar, Dale W.

    2016-01-01

    Introduction Reported first aid application, frequency and practices around the world vary greatly. Based primarily on animal and observational studies, first aid after a burn injury is considered to be integral in reducing scar and infection, and the need for surgery. The current recommendation for optimum first aid after burn is water cooling for 20 minutes within three hours. However, compliance with this guideline is reported as poor to moderate at best and evidence exists to suggest that overcooling can be detrimental. This prospective cohort study of a bi-national burn patient registry examined data collected between 2009 and 2012. The aim of the study was to quantify the magnitude of effects of water cooling first aid after burn on indicators of burn severity in a large human cohort. Method The data for the analysis was provided by the Burn Registry of Australia and New Zealand (BRANZ). The application of first aid cooling prior to admission to a dedicated burn service, was analysed for its influence on four outcomes related to injury severity. The patient related outcomes were whether graft surgery occurred, and death while the health system (cost) outcomes included total hospital length of stay and admission to ICU. Robust regression analysis using bootstrapped estimation adjusted using a propensity score was used to control for confounding and to estimate the strength of association with first aid. Dose-response relationships were examined to determine associations with duration of first aid. The influence of covariates on the impact of first aid was assessed. Results Cooling was provided before Burn Centre admission for 68% of patients, with at least twenty minutes duration for 46%. The results indicated a reduction in burn injury severity associated with first aid. Patients probability for graft surgery fell by 0.070 from 0.537 (13% reduction) (p = 0.014). The probability for ICU admission fell by 0.084 from 0.175 (48% reduction) (p<0.001) and hospital

  14. Combining Contextual and Morphemic Cues Is Beneficial during Incidental Vocabulary Acquisition: Semantic Transparency in Novel Compound Word Processing

    ERIC Educational Resources Information Center

    Brusnighan, Stephen M.; Folk, Jocelyn R.

    2012-01-01

    In two studies, we investigated how skilled readers use contextual and morphemic information in the process of incidental vocabulary acquisition during reading. In Experiment 1, we monitored skilled readers' eye movements while they silently read sentence pairs containing novel and known English compound words that were either semantically…

  15. Volatile halocarbon compounds in process water and processed foods

    SciTech Connect

    Uhler, A.D.; Diachenko, G.W.

    1987-10-01

    Volatile halocarbon compounds (VHCs) of low molecular weight are among the most abundant man-made industrial chemicals in the United States. Because of the physical properties of these compounds, in particular their high volatility, they are ubiquitous environmental contaminants. The Environmental Protection Agency (EPA) has detected numerous VHCs in ground water and finished drinking water. The Food and Drug Administration's (FDA's) Division of Contaminants Chemistry, as well as other laboratories, have detected VHCs in foods. These findings of VHCs in foods, coupled with their frequent detection in ground waters, suggested that food contamination by VHCs could be occurring via polluted process waters. The objectives of this investigation were to determine if VHC contamination of food through contact with contaminated process water was widespread, and to ascertain the levels of contamination. The problem was addressed by collecting and analyzing process water and foods from processing plants situated in areas where contamination of the process water was most probable. Recent data from EPA were used to select food processing plants most likely to use VHC-contaminated process water. Processing plants were chosen for study only if they produced a high-fat content food that came in contact with water during processing, or produced a product that contained a high percentage of added water. Findings are reported here in process water and food product analysis from 15 food processing plants located in 9 different states (CA, FL, IL, MA, MI, NY, OH, PA, WI), representing a total of 39 food products.

  16. Nontarget effects of aerial mosquito adulticiding with water-based unsynergized pyrethroids on honey bees and other beneficial insects in an agricultural ecosystem of north Greece.

    PubMed

    Chaskopoulou, Alexandra; Thrasyvoulou, Andreas; Goras, Georgios; Tananaki, Chrysoula; Latham, Mark D; Kashefi, Javid; Pereira, Roberto M; Koehler, Philip G

    2014-05-01

    We assessed the nontarget effects of ultra-low-volume (ULV) aerial adulticiding with two new water-based, unsynergized pyrethroid formulations, Aqua-K-Othrine (FFAST antievaporant technology, 2% deltamethrin) and Pesguard S102 (10% d-phenothrin). A helicopter with GPS navigation technology was used. One application rate was tested per formulation that corresponded to 1.00 g (AI)/ha of deltamethrin and 7.50 g (AI)/ha of d-phenothrin. Three beneficial nontarget organisms were used: honey bees (domesticated hives), family Apidae (Apis mellifera L.); mealybug destroyers, family Coccinellidae (Cryptolaemus montrouzieri Mulsant); and green lacewings, family Chrysopidae (Chrysoperla carnea (Stephens)). No significant nontarget mortalities were observed. No bees exhibited signs of sublethal exposure to insecticides. Beehives exposed to the insecticidal applications remained healthy and productive, performed as well as the control hives and increased in weight (25-30%), in adult bee population (14-18%), and in brood population (15-19%). PMID:24897869

  17. Water surface capturing by image processing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An alternative means of measuring the water surface interface during laboratory experiments is processing a series of sequentially captured images. Image processing can provide a continuous, non-intrusive record of the water surface profile whose accuracy is not dependent on water depth. More trad...

  18. Ionomer-Membrane Water Processing Apparatus

    NASA Technical Reports Server (NTRS)

    MacCallum, Taber K. (Inventor); Kelsey, Laura (Inventor)

    2016-01-01

    This disclosure provides water processing apparatuses, systems, and methods for recovering water from wastewater such as urine. The water processing apparatuses, systems, and methods can utilize membrane technology for extracting purified water in a single step. A containment unit can include an ionomer membrane, such as Nafion(Registered Trademark), over a hydrophobic microporous membrane, such as polytetrafluoroethylene (PTFE). The containment unit can be filled with wastewater, and the hydrophobic microporous membrane can be impermeable to liquids and solids of the wastewater but permeable to gases and vapors of the wastewater, and the ionomer membrane can be permeable to water vapor but impermeable to one or more contaminants of the gases and vapors. The containment unit can be exposed to a dry purge gas to maintain a water vapor partial pressure differential to drive permeation of the water vapor, and the water vapor can be collected and processed into potable water.

  19. Electrostatic Beneficiation of Coal

    SciTech Connect

    D. Lindquist; K. B. Tennal; M. K. Mazumder

    1998-10-29

    It was suggested in the proposal that small particles, due to low inertia, may not impact on the surfaces of the tribocharger. They would, thus, not receive charge and would not be beneficiated in the electrostatic separation. A milling process was proposed in which the small particles are stirred together with larger carrier beads producing the desired contact charge exchange. A force is necessary for removing the coal particles from the carrier beads. In copying machines electrostatic force is used to pull toner particles away horn iron carrier particles which are held back by magnetic force. Aerodynamic force is used in test instruments for measuring the charge to mass ratio on toners. A similar system of milling and removal is desired for use with the small coal particles. The carrier beads need to be made of copper rather than iron. This complicates the separation process since copper is non-magnetic. We are working on coating of iron beads with a layer of copper. Dr. Robert Engleken of Arkansas State University has supplied us with several test batches of copper-coated iron in the size range of -40 +70 mesh. ` We are currently testing whether the milling process used with the copper coated iron beads produces the desired charge on the coal particles.

  20. Zero-discharge: An application of process water recovery technology in the food processing industry

    SciTech Connect

    Fok, S.; Moore, B.

    1999-07-01

    Water is a valuable natural resource and the food processing industry has been among the leading industrial water users in California. With support from a major northern California utility and the California Institute for Food and Agricultural Research, Tri Valley Growers (TVG) has successfully installed the first US energy-efficient zero-discharge process water reclamation system at its Oberti Olive processing facility in Madera, California. The advanced zero-discharge system is the largest application in the world of membrane filtration for recovering water from a food processing plant. Previously, the plant discharged an average of 1 million gallons of salty wastewater (brine) a day into 160 acres of evaporation ponds. However, new environmental regulations made the ponds obsolete. The cost of process water disposal using alternate biotreatment system was prohibitive and would make continued operation uneconomical with plant closure and job loss the likely outcome. Through comprehensive pilot testing and subsequent system design and operational optimization, the advance membrane filtration system with pre- and post-treatment now recovers about 80% of the process liquid in high priority form of water for subsequent reuse at the plant. The solids produced in olive processing, plus concentrated process liquids are used off-site as an animal feed component, thus achieving the plant zero-discharge scheme. The successful implementation of the zero discharge system at the Oberti Olive processing plant has produced energy saving of 3,500,000 kilowatthours and 244,000 therms of gas a year of power as compared to the alternate biotreatment system. It also prevented plant closure and job loss. In addition, water conservation and the discontinuation of evaporation pond use is beneficial to the environment. The project was applauded by the California Environmental Protection Agency as a positive step forward for environmental technology in the agricultural sector in

  1. Understanding the Effects of Multiscale Groundwater-Surface Water Interactions on Scott River Baseflow and Stream Temperature in Support of Beneficial Salmon Habitat

    NASA Astrophysics Data System (ADS)

    Hines, R.; Harter, T.

    2009-12-01

    The Scott River watershed is one of only a handful of major watersheds in California that include a zone of adjudicated groundwater and that is not managed by a major reservoir. The Scott River is a major tributary in the Klamath River basin, providing habitat for cold water salmon fishery, including the migration, spawning, reproduction, and early development of cold water fish such as coho salmon, Chinook salmon, and steelhead trout. The Scott Valley entertains extensive alfalfa and hay productions that provide the economic base for the agricultural valley. Due to the Mediterranean climate in the area, discharge rates in the river are highly seasonal. Almost all annual discharge occurs during the winter precipitation season and spring snowmelt. During the summer months (July through September), the main-stem river becomes disconnected from its tributaries throughout much of Scott Valley and relies primarily on baseflow from the Scott Valley aquifer. Summer baseflow in the Scott supports juvenile coho salmon that remain in the Valley until the following winter. Stream temperatures in the Scott River have increased to levels that are not considered sustainable for the native salmon population. Concurrently, late summer/early fall baseflow has decreased, possibly leading to substantial deterioration of habitat conditions. Increased temperature and decreased baseflow are thought to be due in part to groundwater pumping for irrigation and to increased solar radiation from lack of shade by riparian vegetation. Scott Valley agriculture relies on a combination of surface water and groundwater supplies for crop irrigation during April through September. Regional scale surface water - groundwater modeling is employed to investigate the benefits to mid-and late summer baseflow in the Scott River of various conjunctive use management alternatives, including increased spring irrigation recharge and deficit irrigation. Field measurements of stream temperature indicate that

  2. Ispra Mark-10 water splitting process

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A thermochemical water splitting process, the Ispra Mark-10 chemical reaction cycle, was chosen for examining the possibility of using water to produce hydrogen on a large scale for fuel and major industrial chemical uses. The assumed energy source for the process is an HTGR (helium cooled). A process flow diagram, a material balance, and an energy balance were developed for the thermochemical reaction cycle. Principal reactions which constitute the cycle are included.

  3. Phase change water processing for Space Station

    NASA Technical Reports Server (NTRS)

    Zdankiewicz, E. M.; Price, D. F.

    1985-01-01

    The use of a vapor compression distillation subsystem (VCDS) for water recovery on the Space Station is analyzed. The self-contained automated system can process waste water at a rate of 32.6 kg/day and requires only 115 W of electric power. The improvements in the mechanical components of VCDS are studied. The operation of VCDS in the normal mode is examined. The VCDS preprototype is evaluated based on water quality, water production rate, and specific energy. The relation between water production rate and fluids pump speed is investigated; it is concluded that a variable speed fluids pump will optimize water production. Components development and testing currently being conducted are described. The properties and operation of the proposed phase change water processing system for the Space Station, based on vapor compression distillation, are examined.

  4. Beneficial Effects of Dietary Probiotics Mixture on Hemato-Immunology and Cell Apoptosis of Labeo rohita Fingerlings Reared at Higher Water Temperatures

    PubMed Central

    Prusty, Ashisa K.; PaniPrasad, Kurchetti; Mohanta, Kedar N.

    2014-01-01

    Probiotics play an important role in growth increment, immune enhancement and stress mitigation in fish. Increasing temperature is a major concern in present aquaculture practices as it markedly deteriorates the health condition and reduces the growth in fish. In order to explore the possibilities of using probiotics as a counter measure for temperature associated problems, a 30 days feeding trial was conducted to study the hemato-immunological and apoptosis response of Labeo rohita (8.3±0.4 g) reared at different water temperatures, fed with or without dietary supplementation of a probiotic mixture (PM) consisting of Bacillus subtilis, Lactococcus lactis and Saccharomyces cerevisiae) (1011 cfu kg−1). Three hundred and sixty fish were randomly distributed into eight treatment groups in triplicates, namely, T1(28°C+BF(Basal feed)+PM), T2(31°C+BF+PM), T3(34°C+BF+PM), T4(37°C+BF+PM), T5(28°C+BF), T6(31°C+BF), T7(34°C+BF) and T8(37°C+BF). A significant increase (P<0.01) in weight gain percentage was observed in the probiotic fed fish even when reared at higher water temperature (34–37°C). Respiratory burst assay, blood glucose, erythrocyte count, total serum protein, albumin, alkaline phosphatase and acid phosphatase were significantly higher (P<0.01) in the probiotic fed groups compared to the non-probiotic fed groups. A significant (P<0.01) effect of rearing temperature and dietary probiotic mixture on serum myeloperoxidase activity, HSP70 level and immunoglobulin production was observed. Degree of apoptosis in different tissues was also significantly reduced in probiotic-supplemented groups. Hence, the present results show that a dietary PM could be beneficial in enhancing the immune status of the fish and also help in combating the stress caused to the organism by higher rearing water temperature. PMID:24979660

  5. Radiation processing applications in the Czechoslovak water treatment technologies

    NASA Astrophysics Data System (ADS)

    Vacek, K.; Pastuszek, F.; Sedláček, M.

    The regeneration of biologically clogged water wells by radiation proved to be a successful and economically beneficial process among other promising applications of ionizing radiation in the water supply technology. The application conditions and experience are mentioned. The potential pathogenic Mycobacteria occuring in the warm washing and bathing water are resistant against usual chlorine and ozone concentrations. The radiation sensitivity of Mycobacteria allowed to suggest a device for their destroying by radiation. Some toxic substances in the underground water can be efficiently degraded by gamma radiation directly in the wells drilled as a hydraulic barrier surrounding the contaminated land area. Substantial decrease of CN - concentration and C.O.D. value was observed in water pumped from such well equipped with cobalt sources and charcoal. The removing of pathogenic contamination remains to be the main goal of radiation processing in the water purification technologies. The decrease of liquid sludge specific filter resistance and sedimentation acceleration by irradiation have a minor technological importance. The hygienization of sludge cake from the mechanical belt filter press by electron beam appears to be the optimum application in the Czechoslovak conditions. The potatoes and barley crop yields from experimental plots treated with sludge were higher in comparison with using the manure. Biological sludge from the municipal and food industry water purification plants contains nutritive components. The proper hygienization is a necessary condition for using them as a livestock feed supplement. Feeding experiments with broilers and pigs confirmed the possibility of partial (e.g. 50%) replacement of soya-, bone- or fish flour in feed mixtures by dried sludge hygienized either by heat or by the irradiation.

  6. Coal beneficiation by gas agglomeration

    DOEpatents

    Wheelock, Thomas D.; Meiyu, Shen

    2003-10-14

    Coal beneficiation is achieved by suspending coal fines in a colloidal suspension of microscopic gas bubbles in water under atmospheric conditions to form small agglomerates of the fines adhered by the gas bubbles. The agglomerates are separated, recovered and resuspended in water. Thereafter, the pressure on the suspension is increased above atmospheric to deagglomerate, since the gas bubbles are then re-dissolved in the water. During the deagglomeration step, the mineral matter is dispersed, and when the pressure is released, the coal portion of the deagglomerated gas-saturated water mixture reagglomerates, with the small bubbles now coming out of the solution. The reagglomerate can then be separated to provide purified coal fines without the mineral matter.

  7. Process for removing metals from water

    DOEpatents

    Napier, J.M.; Hancher, C.M.; Hackett, G.D.

    1987-06-29

    A process for removing metals from water including the steps of prefiltering solids from the water, adjusting the pH to between about 2 and 3, reducing the amount of dissolved oxygen in the water, increasing the pH to between about 6 and 8, adding water-soluble sulfide to precipitate insoluble sulfide- and hydroxide-forming metals, adding a containing floc, and postfiltering the resultant solution. The postfiltered solution may optionally be eluted through an ion exchange resin to remove residual metal ions. 2 tabs.

  8. Process for removing metals from water

    DOEpatents

    Napier, John M.; Hancher, Charles M.; Hackett, Gail D.

    1989-01-01

    A process for removing metals from water including the steps of prefiltering solids from the water, adjusting the pH to between about 2 and 3, reducing the amount of dissolved oxygen in the water, increasing the pH to between about 6 and 8, adding water-soluble sulfide to precipitate insoluble sulfide- and hydroxide-forming metals, adding a flocculating agent, separating precipitate-containing floc, and postfiltering the resultant solution. The postfiltered solution may optionally be eluted through an ion exchange resin to remove residual metal ions.

  9. The Beneficiation of Education

    ERIC Educational Resources Information Center

    Senger, April J.

    2014-01-01

    When the challenge of adapting curriculum to meet the requirements of the Common Core State Standards were presented, this author immediately sought out the assistance of experts in another field: the school library staff. It was apparent that staff needed to practice the beneficiation of the current curriculum to meet the CCSS requirements.…

  10. Apparatus and process for water treatment

    DOEpatents

    Phifer, Mark A.; Nichols, Ralph L.

    2001-01-01

    An apparatus is disclosed utilizing permeable treatment media for treatment of contaminated water, along with a method for enhanced passive flow of contaminated water through the treatment media. The apparatus includes a treatment cell including a permeable structure that encloses the treatment media, the treatment cell may be located inside a water collection well, exterior to a water collection well, or placed in situ within the pathway of contaminated groundwater. The passive flow of contaminated water through the treatment media is maintained by a hydraulic connection between a collecting point of greater water pressure head, and a discharge point of lower water pressure head. The apparatus and process for passive flow and groundwater treatment utilizes a permeable treatment media made up of granular metal, bimetallics, granular cast iron, activated carbon, cation exchange resins, and/or additional treatment materials. An enclosing container may have an outer permeable wall for passive flow of water into the container and through the enclosed treatment media to an effluent point. Flow of contaminated water is attained without active pumping of water through the treatment media. Remediation of chlorinated hydrocarbons and other water contaminants to acceptable regulatory concentration levels is accomplished without the costs of pumping, pump maintenance, and constant oversight by personnel.

  11. Geoinformatics and water-erosion processes

    NASA Astrophysics Data System (ADS)

    Svoray, Tal; Atkinson, Peter M.

    2013-02-01

    Geomorphologists have commonly published conclusions about soil erosion and water movement based on experimental data obtained at the catchment scale. The underlying assumptions were that there exists little spatial variation in conditions at the hillslope scale (the fundamental unit) and that the catchments are representative of other catchments in the same region. These assumptions are unlikely to be tenable in practice. Indeed, we suggest that there is substantial spatial variation in geomorphological properties even at small distances when observed at fine spatial resolution and that modern geoinformatics approaches can be used to quantify and characterize this variation. This introduction reviews the ten papers that comprise this Special Issue on Studying Water-Erosion Processes with Geoinformatics, drawn from across the geomorphological sciences. The water erosion processes studied in these papers include sediment transport, fluvial processes, slope denudation, landsliding, bank erosion and bank line migration. The findings suggest that innovative measurement and modeling approaches such as GPS measurements, geostatistics, image processing techniques, and physically-based models deliver new data with which to study water erosion processes. These findings involve domains that are associated with fundamental aspects of geomorphology. Hence, there are strong grounds for claiming that geoinformatics can contribute to greater understanding of water erosion processes through characterization of space-time dynamics. We suggest that geomorphologists need to use more geoinformatics to collect more data relating to the outcomes of water erosion processes, to seek out and apply innovative processing methods and, finally, model the data to provide greater understanding of processes and to forecast and explore future scenarios.

  12. Space Station Water Processor Process Pump

    NASA Technical Reports Server (NTRS)

    Parker, David

    1995-01-01

    This report presents the results of the development program conducted under contract NAS8-38250-12 related to the International Space Station (ISS) Water Processor (WP) Process Pump. The results of the Process Pumps evaluation conducted on this program indicates that further development is required in order to achieve the performance and life requirements for the ISSWP.

  13. Chapter A5. Processing of Water Samples

    USGS Publications Warehouse

    Wilde, Franceska D., (Edited By); Radtke, Dean B.; Gibs, Jacob; Iwatsubo, Rick T.

    1999-01-01

    The National Field Manual for the Collection of Water-Quality Data (National Field Manual) describes protocols and provides guidelines for U.S. Geological Survey (USGS) personnel who collect data used to assess the quality of the Nation's surface-water and ground-water resources. This chapter addresses methods to be used in processing water samples to be analyzed for inorganic and organic chemical substances, including the bottling of composite, pumped, and bailed samples and subsamples; sample filtration; solid-phase extraction for pesticide analyses; sample preservation; and sample handling and shipping. Each chapter of the National Field Manual is published separately and revised periodically. Newly published and revised chapters will be announced on the USGS Home Page on the World Wide Web under 'New Publications of the U.S. Geological Survey.' The URL for this page is http:/ /water.usgs.gov/lookup/get?newpubs.

  14. Hydrothermal carbonization: process water characterization and effects of water recirculation.

    PubMed

    Stemann, Jan; Putschew, Anke; Ziegler, Felix

    2013-09-01

    Poplar wood chips were treated hydrothermally and the increase of process efficiency by water recirculation was examined. About 15% of the carbon in the biomass was dissolved in the liquid phase when biomass was treated in de-ionized water at 220 °C for 4 h. The dissolved organic matter contained oxygen and was partly aerobically biodegradable. About 30-50% of the total organic carbon originated from organic acids. A polar and aromatic fraction was extracted and a major portion of the organic load was of higher molecular weight. By process water recirculation organic acids in the liquid phase concentrated and catalyzed dehydration reactions. As a consequence, functional groups in hydrothermally synthesized coal declined and dewaterability was enhanced. Recirculated reactive substances polymerized and formed additional solid substance. As a result, carbon and energetic yields of the produced coal rose to 84% and 82%, respectively. PMID:23792664

  15. Beneficial Uses of Depleted Uranium

    SciTech Connect

    Brown, C.; Croff, A.G.; Haire, M. J.

    1997-08-01

    Naturally occurring uranium contains 0.71 wt% {sup 235}U. In order for the uranium to be useful in most fission reactors, it must be enriched the concentration of the fissile isotope {sup 235}U must be increased. Depleted uranium (DU) is a co-product of the processing of natural uranium to produce enriched uranium, and DU has a {sup 235}U concentration of less than 0.71 wt%. In the United States, essentially all of the DU inventory is in the chemical form of uranium hexafluoride (UF{sub 6}) and is stored in large cylinders above ground. If this co-product material were to be declared surplus, converted to a stable oxide form, and disposed, the costs are estimated to be several billion dollars. Only small amounts of DU have at this time been beneficially reused. The U.S. Department of Energy (DOE) has begun the Beneficial Uses of DU Project to identify large-scale uses of DU and encourage its reuse for the primary purpose of potentially reducing the cost and expediting the disposition of the DU inventory. This paper discusses the inventory of DU and its rate of increase; DU disposition options; beneficial use options; a preliminary cost analysis; and major technical, institutional, and regulatory issues to be resolved.

  16. Processing of water on the moon

    NASA Technical Reports Server (NTRS)

    Fowle, A. A.

    1963-01-01

    The electrolytic dissociation of water into gaseous forms of hydrogen and oxygen is a well known process that can quickly be summarized in a series of illustrations. Table 1 presents some physical properties of hydrogen and oxygen for purposes of reference. Figure 1 illustrates the chemical process and the equipment used in the industrial production of hydrogen and oxygen by the electrolysis of water. Table 2 summarizes the characteristics of electrolytic H2-O2 cells used in industrial practice. It is of interest to note that substantial amounts of power are required for the process and that rather heavy equipments are common to the land-based systems now in use. Very little can be done to reduce the power requirements, for the process as now carried out is relatively efficient, but undoubtedly great savings in weight can be realized.

  17. RECYCLING OF WATER IN POULTRY PROCESSING PLANTS

    EPA Science Inventory

    Studies were conducted on recycling chiller water in a poultry processing plant. The recycling system must be provided with the capability of removing solids and controlling the microbial population. UV was used to control the microbial population. For this control to be effectiv...

  18. Biosolids management: Beneficial use comes of age

    SciTech Connect

    Hodson, C.O.

    1996-12-01

    The most important issues facing the biosolids management industry today are costs, odors and public perception. Of these, public perception has the biggest effect on the industry -- in the way biosolids are generated, used, destroyed, transported and reused. Even in the way they have been named. Officially, sludge is a term affixed to the product that comes out of sewage treatment plants and biosolids is what the processed end product is called. Although it sounds like two different things, the terms are used interchangeably. Still called sludge by some environmental professionals in the water and wastewater industries, biosolids is the official term for sludge being marketed to the public. And apparently it`s working. After years of public misperceptions, biosolids education and public relations programs thrust the organics into the Age of Beneficial Use.

  19. A hybrid ED/RO process for TDS reduction of produced waters

    SciTech Connect

    Tsai, S.P.; Datta, R.; Frank, J.R.

    1995-12-31

    Large volumes of produced waters are generated from natural gas production. In the United States the prevailing management practice for produced waters is deep well injection, but this practice is costly. Therefore minimizing the need for deep well injection is desirable. A major treatment issue for produced waters is the reduction of total dissolved solids (TDS), which consist mostly of inorganic salts. A hybrid electrodialysis/reverse-osmosis (ED/RO) treatment process is being developed to concentrate the salts in produced waters and thereby reduce the volume of brine that needs to be managed for disposal. The desalted water can be used beneficially or discharged. In this study, laboratory feasibility experiments were conducted by using produced waters from multiple sites. A novel-membrane configuration approach to prevent fouling and scale formation was developed and demonstrated. Results of laboratory experiments and plans for field demonstration are discussed.

  20. Process and system for treating waste water

    DOEpatents

    Olesen, Douglas E.; Shuckrow, Alan J.

    1978-01-01

    A process of treating raw or primary waste water using a powdered, activated carbon/aerated biological treatment system is disclosed. Effluent turbidities less than 2 JTU (Jackson turbidity units), zero TOC (total organic carbon) and in the range of 10 mg/l COD (chemical oxygen demand) can be obtained. An influent stream of raw or primary waste water is contacted with an acidified, powdered, activated carbon/alum mixture. Lime is then added to the slurry to raise the pH to about 7.0. A polyelectrolyte flocculant is added to the slurry followed by a flocculation period -- then sedimentation and filtration. The separated solids (sludge) are aerated in a stabilization sludge basin and a portion thereof recycled to an aerated contact basin for mixing with the influent waste water stream prior to or after contact of the influent stream with the powdered, activated carbon/alum mixture.

  1. Highly tritiated water processing by isotopic exchange

    SciTech Connect

    Shu, W.M.; Willms, R.S.; Glugla, M.; Cristescu, I.; Michling, R.; Demange, D.

    2015-03-15

    Highly tritiated water (HTW) is produced in fusion machines and one of the promising technologies to process it is isotopic exchange. 3 kinds of Pt-catalyzed zeolite (13X-APG, CBV-100-CY and HiSiv-1000) were tested as candidates for isotopic exchange of highly tritiated water (HTW), and CBV-100-CY (Na-Y type with a SiO{sub 2}/Al{sub 2}O{sub 3} ratio of ∼ 5.0) shows the best performance. Small-scale tritium testing indicates that this method is efficient for reaching an exchange factor (EF) of 100. Full-scale non-tritium testing implies that an EF of 300 can be achieved in 24 hours of operation if a temperature gradient is applied along the column. For the isotopic exchange, deuterium recycled from the Isotope Separation System (deuterium with 1% T and/or 200 ppm T) should be employed, and the tritiated water regenerated from the Pt-catalyzed zeolite bed after isotopic exchange should be transferred to Water Detritiation System (WDS) for further processing.

  2. Electrostatic Beneficiation of Lunar Simulant

    NASA Technical Reports Server (NTRS)

    Trigwell, Steve; Captain, James; Captain, Janine; Arens, Ellen; Quinn, Jacqueline; Calle, Carlos

    2006-01-01

    Electrostatic beneficiation of lunar regolith is a method allowing refinement of specific minerals in the material for processing on the moon. The use of tribocharging the regolith prior to separation was investigated on the lunar simulant MLS-I by passing the dust through static mixers constructed from different materials; aluminum, copper, stainless steel, and polytetrafluoroethylene (PTFE). The amount of charge acquired by the simulant was dependent upon the difference in the work function of the dust and the charging material. XPS and SEM were used to characterize the simulant after it was sieved into five size fractions (> 100 pm, 75-100 pm, 50- 75 pm, 50-25 pm, and < 25 pm), where very little difference in surface composition was observed between the sizes. Samples of the smallest (< 25 pm) and largest (> 100 pm) size fractions were beneficiated through a charge separator using the aluminum (charged the simulant negatively) and PTFE (charged positively) mixers. The mass fractions of the separated simulant revealed that for the larger particle size, significant unipolar charging was observed for both mixers, whereas for the smaller particle sizes, more bipolar charging was observed, probably due to the finer simulant adhering to the inside of the mixers shielding the dust from the charging material. Subsequent XPS analysis of the beneficiated fractions showed the larger particle size fraction having some species differentiation, but very little difference for the smaller.size. Although MLS-1 was made to have similar chemistry to actual lunar dust, its mineralogy is quite different. On-going experiments are using NASA JSC-1 lunar simulant. A vacuum chamber has been constructed, and future experiments are planned in a simulated lunar environment.

  3. Water in Biological and Chemical Processes

    NASA Astrophysics Data System (ADS)

    Bagchi, Biman

    2013-11-01

    Part I. Bulk Water: 1. Uniqueness of water; 2. Anomalies of water; 3. Dynamics of water: molecular motions and hydrogen bond breaking kinetics; 4. Inherent structures of liquid water; 5. pH of water; Part II. Water in Biology: Dynamical View and Function: 6. Biological water; 7. Explicit role of water in biological functions; 8. Hydration of proteins; 9. Can we understand protein hydration layer: lessons from computer simulations; 10. Water in and around DNA and RNA; 11. Role of water in protein-DNA interaction; 12. Water surrounding lipid bilayers; 13. Water in Darwin's world; Part III. Water in Complex Chemical Systems: 14. Hydrophilic effects; 15. Hydrophobic effects; 16. Aqueous binary mixtures: amphiphilic effect; 17. Water in and around micelles, reverse micelles and microemulsions; 18. Water in carbon nanotubes; Part IV. Bulk Water: Advanced Topics: 19. Entropy of water; 20. Freezing of water into ice; 21. Supercritical water; 22. Microscopic approaches to understand water anomalies.

  4. Beneficial bacteria inhibit cachexia

    PubMed Central

    Varian, Bernard J.; Goureshetti, Sravya; Poutahidis, Theofilos; Lakritz, Jessica R.; Levkovich, Tatiana; Kwok, Caitlin; Teliousis, Konstantinos; Ibrahim, Yassin M.; Mirabal, Sheyla; Erdman, Susan E.

    2016-01-01

    Muscle wasting, known as cachexia, is a debilitating condition associated with chronic inflammation such as during cancer. Beneficial microbes have been shown to optimize systemic inflammatory tone during good health; however, interactions between microbes and host immunity in the context of cachexia are incompletely understood. Here we use mouse models to test roles for bacteria in muscle wasting syndromes. We find that feeding of a human commensal microbe, Lactobacillus reuteri, to mice is sufficient to lower systemic indices of inflammation and inhibit cachexia. Further, the microbial muscle-building phenomenon extends to normal aging as wild type animals exhibited increased growth hormone levels and up-regulation of transcription factor Forkhead Box N1 [FoxN1] associated with thymus gland retention and longevity. Interestingly, mice with a defective FoxN1 gene (athymic nude) fail to inhibit sarcopenia after L. reuteri therapy, indicating a FoxN1-mediated mechanism. In conclusion, symbiotic bacteria may serve to stimulate FoxN1 and thymic functions that regulate inflammation, offering possible alternatives for cachexia prevention and novel insights into roles for microbiota in mammalian ontogeny and phylogeny. PMID:26933816

  5. Beneficial uses of radiation

    SciTech Connect

    Fox, M.R.

    1991-10-01

    An overall decline in technical literacy within the American public has come at a time when technological advances are accelerating in the United States and around the world. This had led to a large communication gulf between the general public and the technologists. Nowhere is this more evident then with the topic of radiation. Regrettably, too few people know about sources of radiation, the pervasiveness, amounts, and variabilities, and do not have a true understanding of the environment in which we live. Nor do many people know that radiation has been used in beneficial ways for decades around the world. While the general public does not know of the scientific applications to which radiation has been deployed, it nevertheless had benefited tremendously from these efforts. Thanks to the well know properties of radiation, scientific ingenuity has found many uses of radiation in chemical and agricultural research, biomedical research, in the diagnoses and treatment of hundreds of types of diseases, in industrial applications, food irradiation, and many others. This paper provides a sample of the types of uses to which radiation has been used to help advance the betterment of humankind.

  6. Beneficiation of lunar ilmenite

    NASA Technical Reports Server (NTRS)

    Ruiz, Joaquin

    1991-01-01

    One of the most important commodities lacking in the moon is free oxygen which is required for life and used extensively for propellent. Free oxygen, however, can be obtained by liberating it from the oxides and silicates that form the lunar rocks and regolith. Ilmenite (FeTiO3) is considered one of the leading candidates for production of oxygen because it can be reduced with a reasonable amount of energy and it is an abundant mineral in the lunar regolith and many mare basalts. In order to obtain oxygen from ilmenite, a method must be developed to beneficiate ilmenite from lunar material. Two possible techniques are electrostatic or magnetic methods. Both methods have complications because lunar ilmenite completely lacks Fe(3+). Magnetic methods were tested on eucrite meteorites, which are a good chemical simulant for low Ti mare basalts. The ilmenite yields in the experiments were always very low and the eucrite had to be crushed to xxxx. These data suggest that magnetic separation of ilmenite from fine grain lunar basalts would not be cost effective. Presently, experiments are being performed with electrostatic separators, and lunar regolith is being waited for so that simulants do not have to be employed.

  7. Beneficial bacteria inhibit cachexia.

    PubMed

    Varian, Bernard J; Goureshetti, Sravya; Poutahidis, Theofilos; Lakritz, Jessica R; Levkovich, Tatiana; Kwok, Caitlin; Teliousis, Konstantinos; Ibrahim, Yassin M; Mirabal, Sheyla; Erdman, Susan E

    2016-03-15

    Muscle wasting, known as cachexia, is a debilitating condition associated with chronic inflammation such as during cancer. Beneficial microbes have been shown to optimize systemic inflammatory tone during good health; however, interactions between microbes and host immunity in the context of cachexia are incompletely understood. Here we use mouse models to test roles for bacteria in muscle wasting syndromes. We find that feeding of a human commensal microbe, Lactobacillus reuteri, to mice is sufficient to lower systemic indices of inflammation and inhibit cachexia. Further, the microbial muscle-building phenomenon extends to normal aging as wild type animals exhibited increased growth hormone levels and up-regulation of transcription factor Forkhead Box N1 [FoxN1] associated with thymus gland retention and longevity. Interestingly, mice with a defective FoxN1 gene (athymic nude) fail to inhibit sarcopenia after L. reuteri therapy, indicating a FoxN1-mediated mechanism. In conclusion, symbiotic bacteria may serve to stimulate FoxN1 and thymic functions that regulate inflammation, offering possible alternatives for cachexia prevention and novel insights into roles for microbiota in mammalian ontogeny and phylogeny. PMID:26933816

  8. Mining and beneficiation of lunar ores

    NASA Technical Reports Server (NTRS)

    Bunch, T. E.; Williams, R. J.; Mckay, D. S.; Giles, D.

    1979-01-01

    The beneficiation of lunar plagioclase and ilmenite ores to feedstock grade permits a rapid growth of the space manufacturing economy by maximizing the production rate of metals and oxygen. A beneficiation scheme based on electrostatic and magnetic separation is preferred over conventional schemes, but such a scheme cannot be completely modeled because beneficiation processes are empirical and because some properties of lunar minerals have not been measured. To meet anticipated shipping and processing needs, the peak lunar mining rate will exceed 1000 tons/hr by the fifth year of operation. Such capabilities will be best obtained by automated mining vehicles and conveyor systems rather than trucks. It may be possible to extract about 40 kg of volatiles (60 percent H2O) by thermally processing the less than 20 micron ilmenite concentrate extracted from 130 tons of ilmenite ore. A thermodynamic analysis of an extraction process is presented.

  9. Beneficial Biofilms: Wastewater and Other Industrial Applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter describes the use of beneficial biofilms for the production of industrial chemicals such as ethanol, butanol, lactic acid, acetic acid/vinegar, succinic acid, and fumaric acid. It also emphasizes application of biofilm reactors for treatment of dairy industry wastewater, oily sea water...

  10. Photochemical Transformation Processes in Sunlit Surface Waters

    NASA Astrophysics Data System (ADS)

    Vione, D.

    2012-12-01

    Photochemical reactions are major processes in the transformation of hardly biodegradable xenobiotics in surface waters. They are usually classified into direct photolysis and indirect or sensitised degradation. Direct photolysis requires xenobiotic compounds to absorb sunlight, and to get transformed as a consequence. Sensitised transformation involves reaction with transient species (e.g. °OH, CO3-°, 1O2 and triplet states of chromophoric dissolved organic matter, 3CDOM*), photogenerated by so-called photosensitisers (nitrate, nitrite and CDOM). CDOM is a major photosensitiser: is it on average the main source of °OH (and of CO3-° as a consequence, which is mainly produced upon oxidation by °OH of carbonate and bicarbonate) and the only important source of 1O2 and 3CDOM* [1, 2]. CDOM origin plays a key role in sensitised processes: allochthonous CDOM derived from soil runoff and rich in fulvic and humic substances is usually more photoactive than autochthonous CDOM (produced by in-water biological processes and mainly consisting of protein-like material) or of CDOM derived from atmospheric deposition. An interesting gradual evolution of CDOM origin and photochemistry can be found in mountain lakes across the treeline, which afford a gradual transition of allochthonous- autochtonous - atmopheric CDOM when passing from trees to alpine meadows to exposed rocks [3]. Another important issue is the sites of reactive species photoproduction in CDOM. While there is evidence that smaller molecular weight fractions are more photoactive, some studies have reported considerable 1O2 reactivity in CDOM hydrophobic sites and inside particles [4]. We have recently addressed the problem and found that dissolved species in standard humic acids (hydrodynamic diameter < 0.1 μm) account for the vast majority of 1O2 and triplet states photoproduction. In hydrophobic sites of particles, the formation rate of 1O2 is considerably lower than in the solution bulk [5], but the absence

  11. Diel biogeochemical processes in terrestrial waters

    USGS Publications Warehouse

    Compiled and Edited by Nimick, David A.; Gammons, Christopher H.

    2011-01-01

    Many biogeochemical processes in rivers and lakes respond to the solar photocycle and produce persistent patterns of measureable phenomena that exhibit a day-night, or 24-h, cycle. Despite a large body of recent literature, the mechanisms responsible for these diel fluctuations are widely debated, with a growing consensus that combinations of physical, chemical, and biological processes are involved. These processes include streamflow variation, photosynthesis and respiration, plant assimilation, and reactions involving photochemistry, adsorption and desorption, and mineral precipitation and dissolution. Diel changes in streamflow and water properties such as temperature, pH, and dissolved oxygen concentration have been widely recognized, and recently, diel studies have focused more widely by considering other constituents such as dissolved and particulate trace metals, metalloids, rare earth elements, mercury, organic matter, dissolved inorganic carbon (DIC), and nutrients. The details of many diel processes are being studied using stable isotopes, which also can exhibit diel cycles in response to microbial metabolism, photosynthesis and respiration, or changes in phase, speciation, or redox state. In addition, secondary effects that diel cycles might have, for example, on biota or in the hyporheic zone are beginning to be considered. This special issue is composed primarily of papers presented at the topical session "Diurnal Biogeochemical Processes in Rivers, Lakes, and Shallow Groundwater" held at the annual meeting of the Geological Society of America in October 2009 in Portland, Oregon. This session was organized because many of the growing number of diel studies have addressed just a small part of the full range of diel cycling phenomena found in rivers and lakes. This limited focus is understandable because (1) fundamental aspects of many diel processes are poorly understood and require detailed study, (2) the interests and expertise of individual

  12. Modulation of host immunity by beneficial microbes.

    PubMed

    Zamioudis, Christos; Pieterse, Corné M J

    2012-02-01

    In nature, plants abundantly form beneficial associations with soilborne microbes that are important for plant survival and, as such, affect plant biodiversity and ecosystem functioning. Classical examples of symbiotic microbes are mycorrhizal fungi that aid in the uptake of water and minerals, and Rhizobium bacteria that fix atmospheric nitrogen for the plant. Several other types of beneficial soilborne microbes, such as plant-growth-promoting rhizobacteria and fungi with biological control activity, can stimulate plant growth by directly suppressing deleterious soilborne pathogens or by priming aboveground plant parts for enhanced defense against foliar pathogens or insect herbivores. The establishment of beneficial associations requires mutual recognition and substantial coordination of plant and microbial responses. A growing body of evidence suggests that beneficial microbes are initially recognized as potential invaders, after which an immune response is triggered, whereas, at later stages of the interaction, mutualists are able to short-circuit plant defense responses to enable successful colonization of host roots. Here, we review our current understanding of how symbiotic and nonsymbiotic beneficial soil microbes modulate the plant immune system and discuss the role of local and systemic defense responses in establishing the delicate balance between the two partners. PMID:21995763

  13. Beneficiation and extraction of nonterrestrial materials, part 2

    NASA Technical Reports Server (NTRS)

    Agosto, William N.

    1992-01-01

    A review of options for processing extraterrestrial materials was dominated by industrial materials scientist who tried to identify which processes utilizing space materials could be implemented in the near term. The most practical process seem to us to be the extraction of lunar oxygen and the extraction of metals and ceramics from the residues of the reduction process. The growth of space activity will be accompanied by increased demand for liquid oxygen for each round trip to the Moon. The oxygen and the intermediary product water will be needed for the life support at the base. The reduced metals and ceramics may be considered byproducts or may develop into primary products. Some of the same processes would be directly applicable to recovery of products from asteroids. We also discussed other processes for directly utilizing asteroid metals. Some of the topics covered include beneficiation and oxygen extraction methods, metallurgy, and extraterrestrial cement.

  14. Systems for recycling water in poultry processing

    SciTech Connect

    Carawan, R.E.; Sheldon, B.W.

    1988-12-31

    The study was conducted to identify effective and economical water treatments, including disinfection, to meet the U.S. Department of Agriculture`s standards for the recycling of poultry chiller water. Reconditioned chiller water meeting these criteria was used to chill hot broiler carcasses, and the quality of the chilled carcasses was then evaluated.

  15. Study for Identification of Beneficial Uses of Space (BUS). Volume 2: Technical report. Book 4: Development and business analysis of space processed surface acoustic wave devices

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Preliminary development plans, analysis of required R and D and production resources, the costs of such resources, and, finally, the potential profitability of a commercial space processing opportunity for the production of very high frequency surface acoustic wave devices are presented.

  16. Study for identification of beneficial uses of Space (BUS). Volume 2: Technical report. Book 1: Development and business analysis of space processed isoenzymes

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A separation method to provide reasonable yields of high specificity isoenzymes for the purpose of large scale, early clinical diagnosis of diseases and organic damage such as, myocardial infarction, hepatoma, muscular dystrophy, and infectous disorders is presented. Preliminary development plans are summarized. An analysis of required research and development and production resources is included. The costs of such resources and the potential profitability of a commercial space processing opportunity for electrophoretic separation of high specificity isoenzymes are reviewed.

  17. Study for identification of beneficial Uses of Space (BUS). Volume 2: Technical report. Book 3: Development and business analysis of space processed tungsten fox X-ray targets

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The development plans, analysis of required R and D and production resources, the costs of such resources, and finally, the potential profitability of a commercial space processing opportunity for containerless melting and resolidification of tungsten are discussed. The aim is to obtain a form of tungsten which, when fabricated into targets for X-ray tubes, provides at least, a 50 percent increase in service life.

  18. CLOSED PROCESS WATER LOOP IN NSSC CORRUGATING MEDIUM MANUFACTURE

    EPA Science Inventory

    Over the last 5 years, the Green Bay Packaging corrugating medium mill has converted to an essentially closed process water system. The mill is a net consumer of water. This is due to the greater amount of water carried out of the system with the sheet compared to the lower water...

  19. Water savings potentials of irrigation systems: global simulation of processes and linkages

    NASA Astrophysics Data System (ADS)

    Jägermeyr, J.; Gerten, D.; Heinke, J.; Schaphoff, S.; Kummu, M.; Lucht, W.

    2015-07-01

    Global agricultural production is heavily sustained by irrigation, but irrigation system efficiencies are often surprisingly low. However, our knowledge of irrigation efficiencies is mostly confined to rough indicative estimates for countries or regions that do not account for spatiotemporal heterogeneity due to climate and other biophysical dependencies. To allow for refined estimates of global agricultural water use, and of water saving and water productivity potentials constrained by biophysical processes and also non-trivial downstream effects, we incorporated a process-based representation of the three major irrigation systems (surface, sprinkler, and drip) into a bio- and agrosphere model, LPJmL. Based on this enhanced model we provide a gridded world map of irrigation efficiencies that are calculated in direct linkage to differences in system types, crop types, climatic and hydrologic conditions, and overall crop management. We find pronounced regional patterns in beneficial irrigation efficiency (a refined irrigation efficiency indicator accounting for crop-productive water consumption only), due to differences in these features, with the lowest values (< 30 %) in south Asia and sub-Saharan Africa and the highest values (> 60 %) in Europe and North America. We arrive at an estimate of global irrigation water withdrawal of 2469 km3 (2004-2009 average); irrigation water consumption is calculated to be 1257 km3, of which 608 km3 are non-beneficially consumed, i.e., lost through evaporation, interception, and conveyance. Replacing surface systems by sprinkler or drip systems could, on average across the world's river basins, reduce the non-beneficial consumption at river basin level by 54 and 76 %, respectively, while maintaining the current level of crop yields. Accordingly, crop water productivity would increase by 9 and 15 %, respectively, and by much more in specific regions such as in the Indus basin. This study significantly advances the global

  20. The Roles of Beneficiation in Lunar Work

    NASA Technical Reports Server (NTRS)

    Rickman, Doug L.

    2010-01-01

    Natural feedstocks used for any process are intrinsically variable. They may also contain deleterious components or low concentrations of desired fractions. For these three reasons it is standard industrial practice to beneficiate feedstocks. This is true across all industries which trans-form raw materials into standardized units. On the Moon there are three natural resources: vacuum, radiation and regolith. To utilize in situ resources on the Moon it is reasonable to presume some beneficiation of the regolith (ground rock) resource will be desirable if not essential. As on Earth, this will require fundamental understanding of the physics and chemistry of the relevant processes, which are exceeding complex in detail. Further, simulants are essential test articles for evaluation of components and systems planned for lunar deployment. Simulants are of course made from geologic feedstocks. Therefore, there is variation, deleterious components and incorrect concentrations of desired fractions in the feedstocks used for simulants. Thus, simulant production can benefit from beneficiation of the input feedstocks. Beneficiation of geologic feedstocks is the subject of extractive metallurgy. Clearly, NASA has two discrete interests pertaining to the science and technology of extractive metallurgy.

  1. ENHANCED ELECTROCHEMICAL PROCESSES IN SUBCRITICAL WATER

    SciTech Connect

    Steven B. Hawthorne

    2000-07-01

    This project involved designing and performing preliminary electrochemical experiments in subcritical water. An electrochemical cell with substantially better performance characteristics than presently available was designed, built, and tested successfully. The electrochemical conductivity of subcritical water increased substantially with temperature, e.g., conductivities increased by a factor of 120 when the temperature was increased from 25 to 250 C. Cyclic voltammograms obtained with platinum and nickel demonstrated that the voltage required to produce hydrogen and oxygen from water can be dropped by a factor of three in subcritical water compared to the voltages required at ambient temperatures. However, no enhancement in the degradation of 1,2-dichlorobenzene and the polychlorinated biphenyl 3,3',4,4'-tetrachlorobiphenyl was observed with applied potential in subcritical water.

  2. Process for exchanging hydrogen isotopes between gaseous hydrogen and water

    DOEpatents

    Hindin, Saul G.; Roberts, George W.

    1980-08-12

    A process for exchanging isotopes of hydrogen, particularly tritium, between gaseous hydrogen and water is provided whereby gaseous hydrogen depeleted in tritium and liquid or gaseous water containing tritium are reacted in the presence of a metallic catalyst.

  3. Understanding Multiscale Surface Water-Groundwater Interactions on Scott River Watershed Temperatures with the use of Distributed Temperature Sensing (DTS) in Support of the Coldwater Salmonid Fishery Beneficial Use

    NASA Astrophysics Data System (ADS)

    Hines, R. J.; Harter, T.; Tyler, S. W.; McFadin, B.; Yokel, E.

    2008-12-01

    river temperatures, groundwater accretion and other beneficial salmonid habitat indicators. Our work suggests that understanding of local-scale groundwater-stream interaction and analysis of corresponding local-scale geologic and riparian vegetation controls are critical to understanding the basin-scale groundwater-stream interactions. Preliminary data reviews indicate that groundwater discharge leads to distinct cold temperature pools near the streambed, while the remainder of the stream column is thermally well mixed. This local-scale, three-dimensional understanding is necessary if strategies are to be developed that aim for effective water resource management practices and improved beneficial use habitat. A multi-scale field reconnaissance and modeling approach is suggested to develop water management practices that lead to better habitat protection throughout the watershed.

  4. WATER CONSERVATION AND POLLUTION CONTROL IN COAL CONVERSION PROCESSES

    EPA Science Inventory

    The report gives results of a study to determine water consumption and environmental impacts of coal conversion processes in Western states. Part 1 gives brief descriptions and process water requirements for nine conversion processes. Detailed designs and analyses are given for t...

  5. Beneficial uses of CFB ash

    SciTech Connect

    Young, L.J.; Cotton, J.L. Jr.

    1994-12-31

    Coal-fired generation accounts for almost 55 percent of the electricity produced in the United States. It has been estimated that over 90 million tons of coal combustion waste by-products were generated in 1990. Currently, only 30% of coal combustion waste is recycled for various beneficial applications. The remaining waste is primarily managed in landfills and surface impoundments. Circulating fluidized bed (CFB) combustion technology will play an important role in supplying power for future load growth and Title 4 of the 1990 Clean Air Act Amendments compliance. CFB ash by-products have many beneficial uses. This paper describes potential applications of CFB ashes based on the ash characteristics. The beneficial uses of CFB ash discussed in this study include agricultural applications, acidic waste stabilizer, ash rock, sludge stabilizer, strip mine reclamation, and structural fill.

  6. Quantitative Eatimation of Ground Water Recharge Process in Vadose Zone Beneath a Rice Paddy Field Using Cross-Borehole Radar

    NASA Astrophysics Data System (ADS)

    Kuroda, S.; Shiina, Y.; Okuyama, T.; Takeutch, M.

    2005-12-01

    Wet Rice Paddy field is one of most important components of land uses in monsoon Asia. It is known to have some other beneficial functions than food production, for example ground water recharge, purification of surface and subsurface water, and alleviation of flood. Though ground water recharge process of paddy field is essential for those functions, the actual conditions of ground water recharge process beneath paddy field has not been clarified besides in the zone of about 1m depth from soil surface. Recently cross borehole radar is recognized as one of usefull methods for measurement of soil water distribution and its change. We applied cross borehole radar for monitoring of soil water in vadose zone beneath a paddy field to clarify the ground water recharge process. Cross borehole radar monitoring clarified the infiltration process into the vadose zone and shallow ground water aquifer beneath the paddy field. We estimated the increment of soil volumetric water content from CRIME model, the descent velocity of wetting front, and infiltration rate from cross borehole radar data quantitatively. They were almost coincident with the directly measured results. Using these results,we tried to estimate permeability based on some hypothesis of infiltration process.

  7. Thermochemical production of hydrogen via multistage water splitting processes

    NASA Technical Reports Server (NTRS)

    Funk, J. E.

    1975-01-01

    This paper presents and reviews the fundamental thermodynamic principles underlying thermochemical water splitting processes. The overall system is considered first and the temperature limitation in process thermal efficiency is developed. The relationship to an ideal water electrolysis cell is described and the nature of efficient multistage reaction processes is discussed. The importance of the reaction entropy change and the relation of the reaction free energy change to the work of separation is described. A procedure for analyzing thermochemical water splitting processes is presented and its use to calculate individual stage efficiency is demonstrated. A number of processes are used to illustrate the concepts and procedures.

  8. Effect of water separation layer on metal nanoforming process investigated using molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Wu, Cheng-Da; Chang Chin, Po-Yuan; Chiang, Chia-Chin; Lai, Rong-Jer; Fang, Te-Hua

    2013-11-01

    The effects of water separation layer and temperature on the nanoforming process of Al films are studied using molecular dynamics simulations. These effects are evaluated in terms of molecular/atomic trajectories, potential energy, slip vectors, and the radial distribution function. The simulation results show that Al films can automatically fill cavities via heating without requiring an external loading exerted on them. At the complete filling stage, the most compact structure is obtained for forming with no water; however, the pattern collapses during the demolding process due to strong adhesion with the mold. In nanoforming in a humid environment, water molecules between the mold and Al film act as a buffer which relieves the forming pressure on the Al film, slowing down the deformation. During demolding, the buffer effectively prevents the formation of pattern defects induced by adhesion. Water molecules gradually vaporize with increasing temperature, which causes pattern failure due to a decrease in humidity. Moderate water layers are beneficial for better order and a compact pattern structure.

  9. Numerical simulation of sediment related processes in water quality model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sediment is a major nonpoint-source pollutant, and the exchange of materials between water and sediment is an important component of the lake eutrophication process. Suspended sediment increases water surface reflectivity and light attenuation in the water column. Nutrients can be absorbed to sedime...

  10. MULTIPLE WATER REUSE IN POULTRY PROCESSING: CASE STUDY IN EGYPT

    EPA Science Inventory

    An industrial-scale multiple water reuse system was under investigation for a period of four years at a modern poultry processing plant in Alexandria, Egypt. The system involved: chlorination of cooling water from the compressor; reuse of this water in the chiller; successive tra...

  11. Buildings, Beneficial Microbes, and Health.

    PubMed

    Peccia, Jordan; Kwan, Sarah E

    2016-08-01

    Bacteria and fungi in buildings exert an influence on the human microbiome through aerosol deposition, surface contact, and human and animal interactions. As the identities and functions of beneficial human microbes emerge, the consequences of building design, operation, and function must be understood to maintain the health of occupants in buildings. PMID:27397930

  12. Membrane-based processes for sustainable power generation using water.

    PubMed

    Logan, Bruce E; Elimelech, Menachem

    2012-08-16

    Water has always been crucial to combustion and hydroelectric processes, but it could become the source of power in membrane-based systems that capture energy from natural and waste waters. Two processes are emerging as sustainable methods for capturing energy from sea water: pressure-retarded osmosis and reverse electrodialysis. These processes can also capture energy from waste heat by generating artificial salinity gradients using synthetic solutions, such as thermolytic salts. A further source of energy comes from organic matter in waste waters, which can be harnessed using microbial fuel-cell technology, allowing both wastewater treatment and power production. PMID:22895336

  13. Analysis of process water use in poultry meat production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Poultry processing facilities use large quantities of water for chiller unit operations. The chiller is critical for temperature reduction to inhibit microbial growth and preserve product quality and safety. Process water quality can also influence product safety when bacteria present on poultry sk...

  14. Water chemistry and antimicrobial treatment in poultry processing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study examined the influence of calcium and magnesium ions in process water on the solubility of trisodium phosphate. Water used in poultry processing operations may be treated with sanitizers such as trisodium phosphate to reduce microbial activity and the risk of contamination. This occurs wh...

  15. Novel biotreatment process for glycol waters

    SciTech Connect

    Raja, L.M.V.; Elamvaluthy, G.; Palaniappan, R.; Krishnan, R.M.

    1991-12-31

    Propylene oxide (PO), propylene glycol (PG), and polyols are produced from propylene via propylene chlorohydrin. Effluents from these plants contain biological oxygen demand/chemical oxygen demand (BOD/COD) loads besides high chloride concentrations. The high salinity poses severe problem to adopt conventional methods like activated sludge processes. Presently, a simple, economically viable and versatile microbiological process has been developed to get more than 90% biodegradation in terms of BOD/COD, utilizing specially developed Pseudomonas and Aerobacter. The process can tolerate high salinity up to 10 wt% NaCl or 5 wt% CaCl{sub 2} and can withstand wide variations in pH (5.5-11.0) and temperature (15-45{degrees}C). The biodegradation of glycols involves two steps. The enzymatic conversion of glycols to carboxylic and hydroxycarboxylic acids is aided by Pseudoomonas. Further degradation to CO{sub 2} and H{sub 2}O by carboxylic acid utilizing Aerobacter, and possible metabolic degradative pathway of glycols are discussed. Various process parameters obtained in the lab scale (50 L bioreactor) and pilot scale (20 m{sup 3} bioreactor), and unique features of our process are also discussed.

  16. Beneficially reusing LLRW the Savannah River Site Stainless Steel Program

    SciTech Connect

    Boettinger, W.L.

    1993-09-09

    With 68 radioactively contaminated excess Process Water Heat Exchangers the Savannah River Site launched its program to turn potential LLRW metal liabilities into assets. Each Heat Exchanger contains approximately 100 tons of 304 Stainless Steel and could be disposed as LLRW by land burial. Instead the 7000 tons of metal will be recycled into LLRW, HLW, and TRU waste containers thereby eliminating the need for near term land disposal and also eliminating the need to add more clean metal to the waste stream. Aspects of the partnership between DOE and Private Industry necessary to accomplish this new mission are described. A life cycle cost analysis associated with past practices of using carbon steel containers to indefinitely store material (contributing to the creation of today`s legacy waste problems) is presented. The avoided cost calculations needed to support the economics of the ``Indifference`` decision process in assessing the Beneficial Reuse option relative to the Burial option are described.

  17. Water-hydrogen isotope exchange process analysis

    SciTech Connect

    Fedorchenko, O.; Alekseev, I.; Uborsky, V.

    2008-07-15

    The use of a numerical method is needed to find a solution to the equation system describing a general case of heterogeneous isotope exchange between gaseous hydrogen and liquid water in a column. A computer model of the column merely outputting the isotope compositions in the flows leaving the column, like the experimental column itself, is a 'black box' to a certain extent: the solution is not transparent and occasionally not fully comprehended. The approximate analytical solution was derived from the ZXY-diagram (McCabe-Thiele diagram), which illustrates the solution of the renewed computer model called 'EVIO-4.2' Several 'unusual' results and dependences have been analyzed and explained. (authors)

  18. Magnetic process for removing heavy metals from water employing magnetites

    DOEpatents

    Prenger, F. Coyne; Hill, Dallas D.; Padilla, Dennis D.; Wingo, Robert M.; Worl, Laura A.; Johnson, Michael D.

    2003-07-22

    A process for removing heavy metals from water is provided. The process includes the steps of introducing magnetite to a quantity of water containing heavy metal. The magnetite is mixed with the water such that at least a portion of, and preferably the majority of, the heavy metal in the water is bound to the magnetite. Once this occurs the magnetite and absorbed metal is removed from the water by application of a magnetic field. In most applications the process is achieved by flowing the water through a solid magnetized matrix, such as steel wool, such that the magnetite magnetically binds to the solid matrix. The magnetized matrix preferably has remnant magnetism, but may also be subject to an externally applied magnetic field. Once the magnetite and associated heavy metal is bound to the matrix, it can be removed and disposed of, such as by reverse water or air and water flow through the matrix. The magnetite may be formed in-situ by the addition of the necessary quantities of Fe(II) and Fe(III) ions, or pre-formed magnetite may be added, or a combination of seed and in-situ formation may be used. The invention also relates to an apparatus for performing the removal of heavy metals from water using the process outlined above.

  19. Magnetic process for removing heavy metals from water employing magnetites

    DOEpatents

    Prenger, F. Coyne; Hill, Dallas D.

    2006-12-26

    A process for removing heavy metals from water is provided. The process includes the steps of introducing magnetite to a quantity of water containing heavy metal. The magnetite is mixed with the water such that at least a portion of, and preferably the majority of, the heavy metal in the water is bound to the magnetite. Once this occurs the magnetite and absorbed metal is removed from the water by application of a magnetic field. In most applications the process is achieved by flowing the water through a solid magnetized matrix, such as steel wool, such that the magnetite magnetically binds to the solid matrix. The magnetized matrix preferably has remnant magnetism, but may also be subject to an externally applied magnetic field. Once the magnetite and associated heavy metal is bound to the matrix, it can be removed and disposed of, such as by reverse water or air and water flow through the matrix. The magnetite may be formed in-situ by the addition of the necessary quantities of Fe(II) and Fe(III) ions, or pre-formed magnetite may be added, or a combination of seed and in-situ formation may be used. The invention also relates to an apparatus for performing the removal of heavy metals from water using the process outlined above.

  20. Integrated water management system - Description and test results. [for Space Station waste water processing

    NASA Technical Reports Server (NTRS)

    Elden, N. C.; Winkler, H. E.; Price, D. F.; Reysa, R. P.

    1983-01-01

    Water recovery subsystems are being tested at the NASA Lyndon B. Johnson Space Center for Space Station use to process waste water generated from urine and wash water collection facilities. These subsystems are being integrated into a water management system that will incorporate wash water and urine processing through the use of hyperfiltration and vapor compression distillation subsystems. Other hardware in the water management system includes a whole body shower, a clothes washing facility, a urine collection and pretreatment unit, a recovered water post-treatment system, and a water quality monitor. This paper describes the integrated test configuration, pertinent performance data, and feasibility and design compatibility conclusions of the integrated water management system.

  1. Fate of perfluorooctanesulfonate and perfluorooctanoate in drinking water treatment processes.

    PubMed

    Takagi, Sokichi; Adachi, Fumie; Miyano, Keiichi; Koizumi, Yoshihiko; Tanaka, Hidetsugu; Watanabe, Isao; Tanabe, Shinsuke; Kannan, Kurunthachalam

    2011-07-01

    Perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) have been recognized as global environmental pollutants. Although PFOS and PFOA have been detected in tap water from Japan and several other countries, very few studies have examined the fate, especially removal, of perfluorinated compounds (PFCs) in drinking water treatment processes. In this study, we analyzed PFOS and PFOA at every stages of drinking water treatment processes in several water purification plants that employ advanced water treatment technologies. PFOS and PFOA concentrations did not vary considerably in raw water, sand filtered water, settled water, and ozonated water. Sand filtration and ozonation did not have an effect on the removal of PFOS and PFOA in drinking water. PFOS and PFOA were removed effectively by activated carbon that had been used for less than one year. However, activated carbon that had been used for a longer period of time (>1 year) was not effective in removing PFOS and PFOA from water. Variations in the removal ratios of PFOS and PFOA by activated carbon were found between summer and winter months. PMID:21628066

  2. Process for removing sulfate anions from waste water

    DOEpatents

    Nilsen, David N.; Galvan, Gloria J.; Hundley, Gary L.; Wright, John B.

    1997-01-01

    A liquid emulsion membrane process for removing sulfate anions from waste water is disclosed. The liquid emulsion membrane process includes the steps of: (a) providing a liquid emulsion formed from an aqueous strip solution and an organic phase that contains an extractant capable of removing sulfate anions from waste water; (b) dispersing the liquid emulsion in globule form into a quantity of waste water containing sulfate anions to allow the organic phase in each globule of the emulsion to extract and absorb sulfate anions from the waste water and (c) separating the emulsion including its organic phase and absorbed sulfate anions from the waste water to provide waste water containing substantially no sulfate anions.

  3. Process for the production of hydrogen from water

    DOEpatents

    Miller, William E.; Maroni, Victor A.; Willit, James L.

    2010-05-25

    A method and device for the production of hydrogen from water and electricity using an active metal alloy. The active metal alloy reacts with water producing hydrogen and a metal hydroxide. The metal hydroxide is consumed, restoring the active metal alloy, by applying a voltage between the active metal alloy and the metal hydroxide. As the process is sustainable, only water and electricity is required to sustain the reaction generating hydrogen.

  4. Process Intensification with Integrated Water-Gas-Shift Membrane Reactor

    SciTech Connect

    2009-11-01

    This factsheet describes a research project whose objective is to develop hydrogen-selective membranes for an innovative gas-separation process based on a water-gas-shift membrane reactor (WGS-MR) for the production of hydrogen.

  5. INTERACTIONS OF SILICA PARTICLES IN DRINKING WATER TREATMENT PROCESSES

    EPA Science Inventory

    EPA Identifier: U915331
    Title: Interactions of Silica Particles in Drinking Water Treatment Processes
    Fellow (Principal Investigator): Christina L. Clarkson
    Institution: Virginia Polytechnic Institute and State University
    EPA GRANT R...

  6. INPUT SUBSTITUTION AND DEMAND IN THE WATER SUPPLY PRODUCTION PROCESS

    EPA Science Inventory

    The structure of input demand for U.S. water utilities is analyzed by estimating a translog cost function. An important feature of the model includes the multiproduct specification of the water supply production process. Operating variables are also specified to include capacity ...

  7. PRELIMINARY DESIGN FOR DRINKING WATER TREATMENT PROCESS SYSTEMS

    EPA Science Inventory

    A computer model has been developed for use in estimating the performance and associated costs of proposed and existing water supply systems. Design procedures and cost-estimating relationships for 25 unit processes that can be used for drinking water treatment are contained with...

  8. Innovative Fresh Water Production Process for Fossil Fuel Plants

    SciTech Connect

    James F. Klausner; Renwei Mei; Yi Li; Jessica Knight

    2006-09-29

    This project concerns a diffusion driven desalination (DDD) process where warm water is evaporated into a low humidity air stream, and the vapor is condensed out to produce distilled water. Although the process has a low fresh water to feed water conversion efficiency, it has been demonstrated that this process can potentially produce low cost distilled water when driven by low grade waste heat. This report summarizes the progress made in the development and analysis of a Diffusion Driven Desalination (DDD) system. Detailed heat and mass transfer analyses required to size and analyze the diffusion tower using a heated water input are described. The analyses agree quite well with the current data and the information available in the literature. The direct contact condenser has also been thoroughly analyzed and the system performance at optimal operating conditions has been considered using a heated water/ambient air input to the diffusion tower. The diffusion tower has also been analyzed using a heated air input. The DDD laboratory facility has successfully been modified to include an air heating section. Experiments have been conducted over a range of parameters for two different cases: heated air/heated water and heated air/ambient water. A theoretical heat and mass transfer model has been examined for both of these cases and agreement between the experimental and theoretical data is good. A parametric study reveals that for every liquid mass flux there is an air mass flux value where the diffusion tower energy consumption is minimal and an air mass flux where the fresh water production flux is maximized. A study was also performed to compare the DDD process with different inlet operating conditions as well as different packing. It is shown that the heated air/heated water case is more capable of greater fresh water production with the same energy consumption than the ambient air/heated water process at high liquid mass flux. It is also shown that there can be

  9. Integrating Beneficiation into Regolith Conveyance Systems

    NASA Technical Reports Server (NTRS)

    Metzger, Philip T.; Mantovani, James H.; Townsend, I. I.; Mueller, Robert P.

    2010-01-01

    Regolith conveyance includes hauler/dumpers, hoppers, augers, pneumatic transport subsystems, and other elements. The features of the conveyance and the time the material stream spend in conveyance may be used synergistically to perform beneficiation, pre-processing (such as heating), and other tasks, thus reducing the mass and complexity of the overall ISRU system. Since the cost of spaceflight is largely driven by the cost of launching mass out of Earth's gravity well, the conveyance system should be leveraged in this way to the maximum extent.

  10. An alternative process to treat boiler feed water for reuse.

    PubMed

    Guirgis, Adel; Ghosh, Jyoti P; Achari, Gopal; Langford, Cooper H; Banerjee, Daliya

    2012-09-01

    A bench-scale process to treat boiler feed water for reuse in steam generation was developed. Industrial water samples from a steam-assisted gravity drainage plant in northern Alberta, Canada, were obtained and samples characterized. The technology, which consists of coagulation-settling to remove oil/grease and particulates followed by an advanced oxidative treatment, led to clean water samples with negligible organic carbon. Coagulation followed by settling removed most particulates and some insoluble organics. The advanced oxidative treatment removed any remaining color in the samples, decreased the organic content to near-zero, and provided water ready for reuse. PMID:23012772

  11. Combustion characterization of beneficiated coal-based fuels

    SciTech Connect

    Chow, O.K.; Nsakala, N.Y.

    1990-11-01

    The Pittsburgh Energy Technology Center of the US Department of Energy has contracted with Combustion Engineering, Inc. (CE) to perform a three-year project on Combustion Characterization of Beneficiated Coal-Based Fuels.'' The beneficiated coals are produced by other contractors under the DOE Coal Preparation Program. Several contractor-developed advanced coal cleaning processes are being run at the cleaning facility in Homer City, Pennsylvania, to produce 20-ton batches of fuels for shipment to CE's laboratory in Windsor, Connecticut. CE then processes the products into either a coal-water fuel (CVVT) or a dry microfine pulverized coal (DMPC) form for combustion testing. The objectives of this project include: (1) the development of an engineering data base which will provide detailed information on the properties of BCFs influencing combustion, ash deposition, ash erosion, particulate collection, and emissions; and (2) the application of this technical data base to predict the performance and economic impacts of firing the BCFs in various commercial boiler designs. The technical approach used to develop the technical data includes: bench-scale fuel property, combustion, and ash deposition tests; pilot-scale combustion and ash effects tests; and full-scale combustion tests. Subcontractors to CE to perform parts of the test work are the Massachusetts Institute of Technology (MIT), Physical Science, Inc. Technology Company (PSIT) and the University of North Dakota Energy and Environmental Research Center (UNDEERC). Twenty fuels will be characterized during the three-year base program: three feed coals, fifteen BCFS, and two conventionally cleaned coals for full-scale tests. Approximately, nine BCFs will be in dry microfine coal (DMPC) form, and six BCFs will be in coal-water fuel (CWF) form. Additional BCFs would be characterized during optional project supplements.

  12. Treatment of water-based printing ink wastewater by Fenton process combined with coagulation.

    PubMed

    Ma, Xiang-Juan; Xia, Hui-Long

    2009-02-15

    Attempts were made in this study to examine the efficiency of Fenton process combined with coagulation for treatment of water-based printing ink wastewater. Parameters affecting the Fenton process, such as pH, dosages of Fenton reagents and the settling time, were determined by using jar test experiments. 86.4% of color and 92.4% of chemical oxygen demand (COD) could be removed at pH 4, 50mg/l H(2)O(2), 25mg/l FeSO(4) and 30min settling time. The coagulation using polyaluminium chloride (PAC) and ferrous sulfate (FeSO(4)) was beneficial to improve the Fenton process treated effluent in reducing the flocs settling time, enhancing color and COD removal. The overall color, COD and suspended solids (SS) removal reached 100%, 93.4% and 87.2% under selected conditions, respectively. Thus this study might offer an effective way for wastewater treatment of water-based ink manufacturer and printing corporation. PMID:18583032

  13. Waste minimization in the poultry processing industry. Process and water quality aspects

    SciTech Connect

    Gelman, S.R.; Scott, S.; Davis, H.

    1989-11-09

    The poultry processing industry is a large, water intensive industry. In a typical week in Alabama up to 15 million birds are processed, and Arkansas, Georgia, and North Carolina have similar processing volumes. This presentation will focus on issues surrounding waste minimization in the live processing industry as well as provide a brief look at the prepared foods segment, mainly cooked chicken products. The case study also reviews water quality issues that require us to examine waste treatment in a new light. This information will also apply to other industries facing more stringent treatment requirements as a result of stiffer water quality regulations.

  14. How processing digital elevation models can affect simulated water budgets

    USGS Publications Warehouse

    Kuniansky, E.L.; Lowery, M.A.; Campbell, B.G.

    2009-01-01

    For regional models, the shallow water table surface is often used as a source/sink boundary condition, as model grid scale precludes simulation of the water table aquifer. This approach is appropriate when the water table surface is relatively stationary. Since water table surface maps are not readily available, the elevation of the water table used in model cells is estimated via a two-step process. First, a regression equation is developed using existing land and water table elevations from wells in the area. This equation is then used to predict the water table surface for each model cell using land surface elevation available from digital elevation models (DEM). Two methods of processing DEM for estimating the land surface for each cell are commonly used (value nearest the cell centroid or mean value in the cell). This article demonstrates how these two methods of DEM processing can affect the simulated water budget. For the example presented, approximately 20% more total flow through the aquifer system is simulated if the centroid value rather than the mean value is used. This is due to the one-third greater average ground water gradients associated with the centroid value than the mean value. The results will vary depending on the particular model area topography and cell size. The use of the mean DEM value in each model cell will result in a more conservative water budget and is more appropriate because the model cell water table value should be representative of the entire cell area, not the centroid of the model cell.

  15. COMPUTER ASSISTED PRELIMINARY DESIGN FOR DRINKING WATER TREATMENT PROCESS SYSTEMS

    EPA Science Inventory

    The purpose of the study was to develop an interactive computer program to aid the design engineer in evaluating the performance and cost for any proposed drinking water treatment system consisting of individual unit processes. The 25 unit process models currently in the program ...

  16. A system of automated processing of deep water hydrological information

    NASA Technical Reports Server (NTRS)

    Romantsov, V. A.; Dyubkin, I. A.; Klyukbin, L. N.

    1974-01-01

    An automated system for primary and scientific analysis of deep water hydrological information is presented. Primary processing of the data in this system is carried out on a drifting station, which also calculates the parameters of vertical stability of the sea layers, as well as their depths and altitudes. Methods of processing the raw data are described.

  17. Water-Energy Correlations: Analysis of Water Technologies, Processes and Systems in Rural and Urban India

    NASA Astrophysics Data System (ADS)

    Murumkar, A. R.; Gupta, S.; Kaurwar, A.; Satankar, R. K.; Mounish, N. K.; Pitta, D. S.; Virat, J.; Kumar, G.; Hatte, S.; Tripathi, R. S.; Shedekar, V.; George, K. J.; Plappally, A. K.

    2015-12-01

    In India, the present value of water, both potable and not potable, bears no relation to the energy of water production. However, electrical energy spent on ground water extraction alone is equivalent to the nation's hydroelectric capacity of 40.1 GWh. Likewise, desalinating 1m3 water of the Bay of Bengal would save three times the energy for potable ground water extraction along the coast of the Bay. It is estimated that every second woman in rural India expends 0.98 kWhe/m3/d for bringing water for household needs. Yet, the water-energy nexus remains to be a topic which is gravely ignored. This is largely caused by factors such as lack of awareness, defective public policies, and intrusive cultural practices. Furthermore, there are instances of unceasing dereliction towards water management and maintenance of the sparsely distributed water and waste water treatment plants across the country. This pollutes the local water across India apart from other geogenic impurities. Additionally, product aesthetics and deceptive advertisements take advantage of the abulia generated by users' ignorance of technical specifications of water technologies and processes in mismanagement of water use. Accordingly, urban residents are tempted to expend on energy intensive water technologies at end use. This worsens the water-energy equation at urban households. Cooking procedures play a significant role in determining the energy expended on water at households. The paper also evaluates total energy expense involved in cultivating some major Kharif and Rabi crops. Manual and traditional agricultural practices are more prominent than mechanized and novel agricultural techniques. The specific energy consumption estimate for different water technologies will help optimize energy expended on water in its life cycles. The implication of the present study of water-energy correlation will help plan and extend water management infrastructure at different locations across India.

  18. Experimental research on water-jet guided laser processing

    NASA Astrophysics Data System (ADS)

    Li, Ling; Wang, Yang; Yang, Lijun; Chu, Jiecheng

    2007-01-01

    The water-jet guided laser processing is a new compound micro-machining process in which the laser beam passes through the water-jet by full reflection onto the workpiece. In this paper, a new key component:the coupling unit was designed and which would form a long, slim, high-pressure and stable water-jet. The couple unit made the fluid field in the chamber symmetry; the coupling quality of the laser beam and the water-jet could be easily detected by CCD camera. For its excellent surface quality, the nozzle with a \\fgr 0.18mm hole got better machining effect than other nozzles. Aiming at finding optimum machining parameters, experiments were carried out. The results showed the attenuation of laser energy bore relation to water-jet stability. The energy intensity distributed over the water-jet cross section nearly homogeneous and the laser energy nearly did not decrease in long working distance. When water-jet pressure was high, efficient cooling of the workpiece prevented burrs, cracks and heat affected zone from forming. During cutting Si wafer process, nearly no cracking was found; Adjusting reasonable laser parameters grooving 65Mn, the machining accuracy would combine with the speed.

  19. Process Control for Precipitation Prevention in Space Water Recovery Systems

    NASA Technical Reports Server (NTRS)

    Sargusingh, Miriam; Callahan, Michael R.; Muirhead, Dean

    2015-01-01

    The ability to recover and purify water through physiochemical processes is crucial for realizing long-term human space missions, including both planetary habitation and space travel. Because of their robust nature, rotary distillation systems have been actively pursued by NASA as one of the technologies for water recovery from wastewater primarily comprised of human urine. A specific area of interest is the prevention of the formation of solids that could clog fluid lines and damage rotating equipment. To mitigate the formation of solids, operational constraints are in place that limits such that the concentration of key precipitating ions in the wastewater brine are below the theoretical threshold. This control in effected by limiting the amount of water recovered such that the risk of reaching the precipitation threshold is within acceptable limits. The water recovery limit is based on an empirically derived worst case wastewater composition. During the batch process, water recovery is estimated by monitoring the throughput of the system. NASA Johnson Space Center is working on means of enhancing the process controls to increase water recovery. Options include more precise prediction of the precipitation threshold. To this end, JSC is developing a means of more accurately measuring the constituent of the brine and/or wastewater. Another means would be to more accurately monitor the throughput of the system. In spring of 2015, testing will be performed to test strategies for optimizing water recovery without increasing the risk of solids formation in the brine.

  20. Monitoring the Water Quality in the Recycling Process

    NASA Astrophysics Data System (ADS)

    Antonyová, A.; Antony, P.; Soewito, B.

    2015-06-01

    Specific water contamination requires the recycling process prior to its discharge into the public sewerage network. Electro-flotation technology was used for cleaning of waste water contaminated with the disperse colorants. Dispersion colorants were used to decorate the boxes, made of corrugated board, in the company for the production of packaging. The objective of this paper is to present a method of optimization to determine the length of the time interval for electro-flotation process. Interval should be set so as to achieve the degree of cleaning the water that is the maximum possible in the process of electro-flotation. The measurement of the light passing through the measuring the translucent tube determines the actual degree of the water purity. The measurement is carried out by means of a photodiode in different wavelengths. The measured values in the measuring tube are compared with the nominal value, which corresponds to pure distilled water. Optimization the time interval to clean the water using electro-flotation was determined for yellow color. The optimum interval for the water contaminated with the yellow color was set to 1800s.

  1. Wastewater privatization: A beneficial alternative

    SciTech Connect

    Wakeman, R.F.; Drewry, W.A.

    1999-07-01

    Municipalities with wastewater operations face increasing requirements to maximize efficiency, implement capital improvements, and ensure environmental compliance. Privatization is a relatively unused alternative offering benefits in the areas of cost-effective operations, flexible financing, technology access, and compliance assurance. Recent executive direction and tax code changes have opened new doors for mutually beneficial public-private partnerships. Wastewater privatization has historically consisted of short-term contract agreements for treatment operations, but looming infrastructure recapitalization and development requirements have catalyzed an exploration of non-traditional alternatives that include private sector financing, development, and operation of entire wastewater systems, The purpose of this paper is to show why privatization must be considered, evaluate the different levels available, and generate an analytical aid for communities taking their first look at privatization opportunities.

  2. The Use of Catalysts in Near-Critical Water Processing

    SciTech Connect

    Elliott, Douglas C.

    2005-06-26

    The use of heterogeneous catalysts in near-critical water processing provides many challenges of material stability in addition to the normal questions of chemical activity. Conventional catalyst materials developed in traditional organic chemistry or petroleum chemistry applications provide a source of information of materials with the required activities but often without the required stability when used in hot liquid water. The importance of the use of catalysts in near-critical water processing plays a particularly crucial role for the development of renewable fuels and chemicals based on biomass feedstocks. Stability issues include both those related to the catalytic metal and also to the catalyst support material. In fact, the stability of the support is the most likely concern when using conventional catalyst formulations in near-critical water processing. Processing test results are used to show important design parameters for catalyst formulations for use in wet biomass gasification in high-pressure water and in catalytic hydrogenations in water for production of value-added chemical products from biomass in the biorefinery concept. Analytical methods including powder x-ray diffraction for crystallite size and composition determination, surface area and porosity measurements, and elemental analysis have all been used to quantify differences in catalyst materials before and after use. By these methods both the chemical and physical stability of heterogeneous catalysts can be verified.

  3. Indirect gas chromatographic measurement of water for process streams

    SciTech Connect

    Barbour, F.A.

    1993-05-01

    This project was conducted to develop a moisture measurement method for process gas streams of fossil fuels. Objective was to from pyrolysis to measure the molar concentration of water in a gas stream without flow measurements. The method developed has been incorporated into the hydrocarbon gas analysis method currently used at Western Research Institute. A literature search of types of direct measuring moisture sensors was conducted, and a list of sensors available is given; most of them could not survive in the environment of the process streams. Indirect methods of measuring water involve changing the water via reaction to a compound that can be more readily measured. These methods react water with various reagents to form hydrogen, acetylene, and acetone. The method chose for this study uses a calcium carbide reaction column to convert the water present in the gas stream to acetylene for analysis. Relative deviation for the daily determination of water varied from 0.5 to 3.4%. The method chosen was tested for linearity over a wide range of gas stream water content. Response over 2 to 15 mole % water appears to be linear with a correlation coefficient of 0.991.

  4. The Impact of Rhizosphere Processes on Water Flow and Root Water Uptake

    NASA Astrophysics Data System (ADS)

    Schwartz, Nimrod; Kroener, Eva; Carminati, Andrea; Javaux, Mathieu

    2015-04-01

    For many years, the rhizosphere, which is the zone of soil in the vicinity of the roots and which is influenced by the roots, is known as a unique soil environment with different physical, biological and chemical properties than those of the bulk soil. Indeed, in recent studies it has been shown that root exudate and especially mucilage alter the hydraulic properties of the soil, and that drying and wetting cycles of mucilage result in non-equilibrium water dynamics in the rhizosphere. While there are experimental evidences and simplified 1D model for those concepts, an integrated model that considers rhizosphere processes with a detailed model for water and roots flow is absent. Therefore, the objective of this work is to develop a 3D physical model of water flow in the soil-plant continuum that take in consideration root architecture and rhizosphere specific properties. Ultimately, this model will enhance our understanding on the impact of processes occurring in the rhizosphere on water flow and root water uptake. To achieve this objective, we coupled R-SWMS, a detailed 3D model for water flow in soil and root system (Javaux et al 2008), with the rhizosphere model developed by Kroener et al (2014). In the new Rhizo-RSWMS model the rhizosphere hydraulic properties differ from those of the bulk soil, and non-equilibrium dynamics between the rhizosphere water content and pressure head is also considered. We simulated a wetting scenario. The soil was initially dry and it was wetted from the top at a constant flow rate. The model predicts that, after infiltration the water content in the rhizosphere remained lower than in the bulk soil (non-equilibrium), but over time water infiltrated into the rhizosphere and eventually the water content in the rhizosphere became higher than in the bulk soil. These results are in qualitative agreement with the available experimental data on water dynamics in the rhizosphere. Additionally, the results show that rhizosphere processes

  5. Quantitative mineralogical characterization of chrome ore beneficiation plant tailing and its beneficiated products

    NASA Astrophysics Data System (ADS)

    Das, S. K.

    2015-04-01

    Mineralogical characterization and liberation of valuable minerals are primary concerns in mineral processing industries. The present investigation focuses on quantitative mineralogy, elemental deportment, and locking-liberation characteristics of the beneficiation of tailings from a chrome ore beneficiation plant in the Sukinda region, Odisha; methods used for the study of the beneficiated tailings are QEMSCAN®, X-ray diffraction (XRD), and mineral chemistry by a scanning electron microscope equipped with an energy-dispersive spectrometer (SEM-EDS). The tailing sample was fine grained (69.48wt% below 45 μm size), containing 20.25wt% Cr2O3 and 39.19wt% Fe2O3, with a Cr:Fe mass ratio of 0.51. Mineralogical investigations using QEMSCAN studies revealed that chromite, goethite, and gibbsite are the dominant mineral phases with minor amounts of hematite, kaolinite, and quartz. The sample contained 34.22wt% chromite, and chromite liberation is more than 80% for grains smaller than 250 μm in size. Based on these results, it was predicted that liberated chromite and high-grade middling chromite particles could be separated from the gangue by various concentration techniques. The tailing sample was beneficiated by hydrocyclone, tabling, wet high-intensity magnetic separation (WHIMS), and flotation in order to recover the chromite. A chromite concentrate with 45.29wt% Cr2O3 and a Cr:Fe mass ratio of 1.85 can be produced from these low-grade chromite ore beneficiation plant rejects.

  6. Combustion characterization of beneficiated coal-based fuels. Quarterly report No. 8, January--March 1991

    SciTech Connect

    Chow, O.K.; Nsakala, N.Y.

    1991-07-01

    The Pittsburgh Energy Technology Center of the US Department of Energy has contracted with Combustion Engineering, Inc. (CE) to perform a five-year project on ``Combustion Characterization of Beneficiated Coal-Based Fuels.`` The beneficiated coals are produced by other contractors under the DOE Coal Preparation Program. Several contractor-developed advanced coal cleaning processes are run at pilot-scale cleaning facilities to produce 20-ton batches of fuels for shipment to CE`s laboratory in Windsor, Connecticut. CE then processes the products into either a coal-water fuel (CWF) or a dry microfine pulverized coa1 (DMPC) form for combustion testing. The objectives of this project include: (1) the development of an engineering data base which will provide detailed information on the properties of BCFs influencing combustion, ash deposition, ash erosion, particulate collection, and emissions; and (2) the application of this technical data base to predict the performance and economic impacts of firing the BCFs in various commercial boiler designs. During the third quarter of 1991, the following technical progress was made: Calculated the kinetic characteristics of chars from the combustion of spherical oil agglomeration beneficiated products; continued drop tube devolatilization tests of the spherical oil agglomeration beneficiated products; continued analyses of the data and samples from the CE pilot-scale tests of nine fuels; and started writing a summary topical report to include all results on the nine fuels tested.

  7. INNOVATIVE FRESH WATER PRODUCTION PROCESS FOR FOSSIL FUEL PLANTS

    SciTech Connect

    James F. Klausner; Renwei Mei; Yi Li; Jessica Knight

    2004-09-01

    An innovative Diffusion Driven Desalination (DDD) process was recently described where evaporation of mineralized water is driven by diffusion within a packed bed. The energy source to drive the process is derived from low pressure condensing steam within the main condenser of a steam power generating plant. Since waste heat is used to drive the process, the main cost of fresh water production is attributed to the energy cost of pumping air and water through the packed bed. This report describes the annual progress made in the development and analysis of a Diffusion Driven Desalination (DDD) system. A combined thermodynamic and dynamic analysis demonstrates that the DDD process can yield a fresh water production of 1.03 million gallon/day by utilizing waste heat from a 100 MW steam power plant based on a condensing steam pressure of only 3'' Hg. Throughout the past year, the main focus of the desalination process has been on the diffusion tower and direct contact condenser. Detailed heat and mass transfer analyses required to size and analyze these heat and mass transfer devices are described. An experimental DDD facility has been fabricated, and temperature and humidity data have been collected over a range of flow and thermal conditions. The analyses agree quite well with the current data and the information available in the literature. Direct contact condensers with and without packing have been investigated. It has been experimentally observed that the fresh water production rate is significantly enhanced when packing is added to the direct contact condensers.

  8. Innovative Fresh Water Production Process for Fossil Fuel Plants

    SciTech Connect

    James F. Klausner; Renwei Mei; Yi Li; Jessica Knight; Venugopal Jogi

    2005-09-01

    This project concerns a diffusion driven desalination (DDD) process where warm water is evaporated into a low humidity air stream, and the vapor is condensed out to produce distilled water. Although the process has a low fresh water to feed water conversion efficiency, it has been demonstrated that this process can potentially produce low cost distilled water when driven by low grade waste heat. This report describes the annual progress made in the development and analysis of a Diffusion Driven Desalination (DDD) system. A dynamic analysis of heat and mass transfer demonstrates that the DDD process can yield a fresh water production of 1.03 million gallon/day by utilizing waste heat from a 100 MW steam power plant based on a condensing steam pressure of only 3 Hg. The optimum operating condition for the DDD process with a high temperature of 50 C and sink temperature of 25 C has an air mass flux of 1.5 kg/m{sup 2}-s, air to feed water mass flow ratio of 1 in the diffusion tower, and a fresh water to air mass flow ratio of 2 in the condenser. Operating at these conditions yields a fresh water production efficiency (m{sub fW}/m{sub L}) of 0.031 and electric energy consumption rate of 0.0023 kW-hr/kg{sub fW}. Throughout the past year, the main focus of the desalination process has been on the direct contact condenser. Detailed heat and mass transfer analyses required to size and analyze these heat and mass transfer devices are described. The analyses agree quite well with the current data. Recently, it has been recognized that the fresh water production efficiency can be significantly enhanced with air heating. This type of configuration is well suited for power plants utilizing air-cooled condensers. The experimental DDD facility has been modified with an air heating section, and temperature and humidity data have been collected over a range of flow and thermal conditions. It has been experimentally observed that the fresh water production rate is enhanced when air

  9. Evaluation of the freeze-thaw/evaporation process for the treatment of produced waters. Final report, August 1992--August 1996

    SciTech Connect

    Boysen, J.E.; Walker, K.L.; Mefford, J.L.; Kirsch, J.R.; Harju, J.A.

    1996-06-01

    The use of freeze-crystallization is becoming increasingly acknowledged as a low-cost, energy-efficient method for purifying contaminated water. The natural freezing process can be coupled with natural evaporative processes to treat oil and gas produced waters year round in regions where subfreezing temperatures seasonally occur. The climates typical of Colorado`s San Juan Basin and eastern slope, as well as the oil and gas producing regions of Wyoming, are well suited for application of these processes in combination. Specifically, the objectives of this research are related to the development of a commercially-economic FTE (freeze-thaw/evaporation) process for the treatment and purification of water produced in conjunction with oil and natural gas. The research required for development of this process consists of three tasks: (1) a literature survey and process modeling and economic analysis; (2) laboratory-scale process evaluation; and (3) field demonstration of the process. Results of research conducted for the completion of these three tasks indicate that produced water treatment and disposal costs for commercial application of the process, would be in the range of $0.20 to $0.30/bbl in the Rocky Mountain region. FTE field demonstration results from northwestern New Mexico during the winter of 1995--96 indicate significant and simultaneous removal of salts, metals, and organics from produced water. Despite the unusually warm winter, process yields demonstrate disposal volume reductions on the order of 80% and confirm the potential for economic production of water suitable for various beneficial uses. The total dissolved solids concentrations of the FTE demonstration streams were 11,600 mg/L (feed), 56,900 mg/L (brine), and 940 mg/L (ice melt).

  10. 7 CFR 1434.6 - Beneficial interest.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., title and control of the honey and beneficial interest in the honey, as specified in 7 CFR 1434.6, must... REGULATIONS FOR HONEY § 1434.6 Beneficial interest. (a) To be eligible to receive marketing assistance loans under this part a producer must have the beneficial interest in the honey that is tendered to CCC for...

  11. 7 CFR 1434.6 - Beneficial interest.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., title and control of the honey and beneficial interest in the honey, as specified in 7 CFR 1434.6, must... REGULATIONS FOR HONEY § 1434.6 Beneficial interest. (a) To be eligible to receive marketing assistance loans under this part a producer must have the beneficial interest in the honey that is tendered to CCC for...

  12. 7 CFR 1434.6 - Beneficial interest.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., title and control of the honey and beneficial interest in the honey, as specified in 7 CFR 1434.6, must... REGULATIONS FOR HONEY § 1434.6 Beneficial interest. (a) To be eligible to receive marketing assistance loans under this part a producer must have the beneficial interest in the honey that is tendered to CCC for...

  13. 7 CFR 1434.6 - Beneficial interest.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., title and control of the honey and beneficial interest in the honey, as specified in 7 CFR 1434.6, must... REGULATIONS FOR HONEY § 1434.6 Beneficial interest. (a) To be eligible to receive marketing assistance loans under this part a producer must have the beneficial interest in the honey that is tendered to CCC for...

  14. 7 CFR 1434.6 - Beneficial interest.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., title and control of the honey and beneficial interest in the honey, as specified in 7 CFR 1434.6, must... REGULATIONS FOR HONEY § 1434.6 Beneficial interest. (a) To be eligible to receive marketing assistance loans under this part a producer must have the beneficial interest in the honey that is tendered to CCC for...

  15. Technology advancement of the static feed water electrolysis process

    NASA Technical Reports Server (NTRS)

    Schubert, F. H.; Wynveen, R. A.

    1977-01-01

    A program to advance the technology of oxygen- and hydrogen-generating subsystems based on water electrolysis was studied. Major emphasis was placed on static feed water electrolysis, a concept characterized by low power consumption and high intrinsic reliability. The static feed based oxygen generation subsystem consists basically of three subassemblies: (1) a combined water electrolysis and product gas dehumidifier module; (2) a product gas pressure controller and; (3) a cyclically filled water feed tank. Development activities were completed at the subsystem as well as at the component level. An extensive test program including single cell, subsystem and integrated system testing was completed with the required test support accessories designed, fabricated, and assembled. Mini-product assurance activities were included throughout all phases of program activities. An extensive number of supporting technology studies were conducted to advance the technology base of the static feed water electrolysis process and to resolve problems.

  16. Science-policy processes for transboundary water governance.

    PubMed

    Armitage, Derek; de Loë, Rob C; Morris, Michelle; Edwards, Tom W D; Gerlak, Andrea K; Hall, Roland I; Huitema, Dave; Ison, Ray; Livingstone, David; MacDonald, Glen; Mirumachi, Naho; Plummer, Ryan; Wolfe, Brent B

    2015-09-01

    In this policy perspective, we outline several conditions to support effective science-policy interaction, with a particular emphasis on improving water governance in transboundary basins. Key conditions include (1) recognizing that science is a crucial but bounded input into water resource decision-making processes; (2) establishing conditions for collaboration and shared commitment among actors; (3) understanding that social or group-learning processes linked to science-policy interaction are enhanced through greater collaboration; (4) accepting that the collaborative production of knowledge about hydrological issues and associated socioeconomic change and institutional responses is essential to build legitimate decision-making processes; and (5) engaging boundary organizations and informal networks of scientists, policy makers, and civil society. We elaborate on these conditions with a diverse set of international examples drawn from a synthesis of our collective experiences in assessing the opportunities and constraints (including the role of power relations) related to governance for water in transboundary settings. PMID:25773532

  17. Beneficial use of sludge in building components

    SciTech Connect

    Alleman, J.E.

    1983-12-01

    Results are presented of a study in which sludge was introduced in the manufacture of brick. More than 300 bench-scale, sludge-amended bricks were produced with initial volumetric sludge additions of from 16% to 50%. These specimens looked, felt, and smelled like standard bricks, and those with sludge additions of 30% or less were found capable of meeting the appropriate technical standards. Three full-scale runs have been completed by a commercial manufacturer, and almost one million bricks have been produced. These bricks were found comparable to normal, unadulterated bricks; in fact, the incorporation of sludge was believed to be beneficial due to related improvements in the brick's water absorption properties. The name 'biobrick' is used to refer to the new product.

  18. Subcritical Water Processing of Proteins: An Alternative to Enzymatic Digestion?

    PubMed

    Powell, Thomas; Bowra, Steve; Cooper, Helen J

    2016-06-21

    Subcritical water is an emerging tool in the processing of bioorganic waste. Subcritical water is an environmentally benign solvent which has the potential to provide an alternative to traditional methods of protein hydrolysis without the inclusion of expensive acids or enzymes. To date, most studies on the subcritical water mediated hydrolysis of proteins have focused on the production of amino acids, rather than the intermediate peptides. Here, we investigate the specificity of subcritical water with respect to the production of peptides from three model proteins, hemoglobin, bovine serum albumin, and β-casein, and compare the results with enzymatic digestion of proteins by trypsin. In addition, the effect of subcritical water (SCW) treatment on two protein post-translational modifications, disulfide bonds and phosphorylation, was investigated. The results show that high protein sequence coverages (>80%) can be obtained following subcritical water hydrolysis. These are comparable to those obtained following treatment with tryspin. Under mild subcritical water conditions (160 °C), all proteins showed favored cleavage of the Asp-X bond. The results for β-casein revealed favored cleavage of the Glu-X bond at subcritical water temperatures of 160 and 207 °C. That was similarly observed for bovine serum albumin at a subcritical water temperature of 207 °C. Subcritical water treatment results in very limited cleavage of disulfide bonds. Reduction and alkylation of proteins either prior to or post subcritical water treatment improve reported protein sequence coverages. The results for phosphoprotein β-casein show that, under mild subcritical water conditions, phosphorylation may be retained on the peptide hydrolysis products. PMID:27181872

  19. INNOVATIVE FRESH WATER PRODUCTION PROCESS FOR FOSSIL FUEL PLANTS

    SciTech Connect

    James F. Klausner; Renwei Mei; Yi Li; Mohamed Darwish; Diego Acevedo; Jessica Knight

    2003-09-01

    This report describes the annual progress made in the development and analysis of a Diffusion Driven Desalination (DDD) system, which is powered by the waste heat from low pressure condensing steam in power plants. The desalination is driven by water vapor saturating dry air flowing through a diffusion tower. Liquid water is condensed out of the air/vapor mixture in a direct contact condenser. A thermodynamic analysis demonstrates that the DDD process can yield a fresh water production efficiency of 4.5% based on a feed water inlet temperature of only 50 C. An example is discussed in which the DDD process utilizes waste heat from a 100 MW steam power plant to produce 1.51 million gallons of fresh water per day. The main focus of the initial development of the desalination process has been on the diffusion tower. A detailed mathematical model for the diffusion tower has been described, and its numerical implementation has been used to characterize its performance and provide guidance for design. The analysis has been used to design a laboratory scale diffusion tower, which has been thoroughly instrumented to allow detailed measurements of heat and mass transfer coefficient, as well as fresh water production efficiency. The experimental facility has been described in detail.

  20. Water and processes of degradation in the Martian landscape

    NASA Technical Reports Server (NTRS)

    Milton, D. J.

    1973-01-01

    It is shown that erosion has been active on Mars so that many of the surface landforms are products of degradation. Unlike earth, erosion has not been a universal process, but one areally restricted and intermittently active so that a landscape is the product of one or two cycles of erosion and large areas of essentially undisturbed primitive terrain; running water has been the principal agent of degradation. Many features on Mars are most easily explained by assuming running surface water at some time in the past; for a few features, running water is the only possible explanation.

  1. The "independence principle" in the processes of water transport.

    PubMed Central

    Hernández, J A; Fischbarg, J

    1994-01-01

    The processes of membrane transport exhibiting permeability coefficients depending on the species activities do not obey the "independence principle" and are assumed to take place by a mechanism of discrete nature, analyzable by a kinetic formalism. In this article, we study the dependence of the osmotic permeability coefficient on the water activities, from the steady-state analysis of a kinetic model of single-file water transport that simultaneously incorporates the vacancy-mediated and "knock-on" mechanisms into the state diagram. In particular, we study the relation between the near-equilibrium osmotic permeability (Pe) and the equilibrium water activity of the compartments (w). The analysis and numerical calculations performed for a simple case of the model show that, for values of the parameters consistent with experimental data, Pe exhibits only a small variation with w within the physiological range in the majority of the situations considered here. It is not possible to predict, from the study of these simple models, whether more complicated kinetic diagrams of water transport may be characterized by permeability coefficients with a more evident dependence on the water activities. Nevertheless, the results obtained here suggest that, for the case of physiological water pores, the analysis of the kinetic dependence of the permeability coefficients on the water activities may not yield evidence pointing to a discrete nature for the transport process. PMID:7529582

  2. Electrostatic Separator for Beneficiation of Lunar Soil

    NASA Technical Reports Server (NTRS)

    Quinn, Jacqueline; Arens, Ellen; Trigwell, Steve; Captain, James

    2010-01-01

    A charge separator has been constructed for use in a lunar environment that will allow for separation of minerals from lunar soil. In the present experiments, whole lunar dust as received was used. The approach taken here was that beneficiation of ores into an industrial feedstock grade may be more efficient. Refinement or enrichment of specific minerals in the soil before it is chemically processed may be more desirable as it would reduce the size and energy requirements necessary to produce the virgin material, and it may significantly reduce the process complexity. The principle is that minerals of different composition and work function will charge differently when tribocharged against different materials, and hence be separated in an electric field.

  3. Supercritical Water Process for the Chemical Recycling of Waste Plastics

    NASA Astrophysics Data System (ADS)

    Goto, Motonobu

    2010-11-01

    The development of chemical recycling of waste plastics by decomposition reactions in sub- and supercritical water is reviewed. Decomposition reactions proceed rapidly and selectively using supercritical fluids compared to conventional processes. Condensation polymerization plastics such as PET, nylon, and polyurethane, are relatively easily depolymerized to their monomers in supercritical water. The monomer components are recovered in high yield. Addition polymerization plastics such as phenol resin, epoxy resin, and polyethylene, are also decomposed to monomer components with or without catalysts. Recycling process of fiber reinforced plastics has been studied. Pilot scale or commercial scale plants have been developed and are operating with sub- and supercritical fluids.

  4. Process for removing an organic compound from water

    DOEpatents

    Baker, Richard W.; Kaschemekat, Jurgen; Wijmans, Johannes G.; Kamaruddin, Henky D.

    1993-12-28

    A process for removing organic compounds from water is disclosed. The process involves gas stripping followed by membrane separation treatment of the stripping gas. The stripping step can be carried out using one or multiple gas strippers and using air or any other gas as stripping gas. The membrane separation step can be carried out using a single-stage membrane unit or a multistage unit. Apparatus for carrying out the process is also disclosed. The process is particularly suited for treatment of contaminated groundwater or industrial wastewater.

  5. Tribocharging Lunar Soil for Electrostatic Beneficiation

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Future human lunar habitation requires using in situ materials for both structural components and oxygen production. Lunar bases must be constructed from thermal-and radiation-shielding materials that will provide significant protection from the harmful cosmic energy which normally bombards the lunar surface. In addition, shipping oxygen from Earth is weight-prohibitive, and therefore investigating the production of breathable oxygen from oxidized mineral components is a major ongoing NASA research initiative. Lunar regolith may meet the needs for both structural protection and oxygen production. Already a number of oxygen production technologies are being tested, and full-scale bricks made of lunar simulant have been sintered. The beneficiation, or separation, of lunar minerals into a refined industrial feedstock could make production processes more efficient, requiring less energy to operate and maintain and producing higher-performance end products. The method of electrostatic beneficiation used in this research charges mineral powders (lunar simulant) by contact with materials of a different composition. The simulant acquires either a positive or negative charge depending upon its composition relative to the charging material.

  6. Sunlight Controls Water Column Processing of Carbon in Arctic Freshwaters

    NASA Astrophysics Data System (ADS)

    Cory, R. M.; Ward, C. P.; Crump, B. C.; Kling, G. W.

    2014-12-01

    Carbon (C) in thawing permafrost soils may have global impacts on climate change, yet controls on its processing and fate are poorly understood. The dominant fate of dissolved organic C (DOC) released from soils to inland waters is either complete oxidation to CO2 or partial oxidation and river export to oceans. Both processes are most often attributed to bacterial respiration, but we recently showed that photochemical oxidation exceeds rates of respiration and accounts for 70-95% of total DOC processed in the water column of arctic lakes and rivers. While the overall dominance of photochemical processing in streams and lakes remained, the fate of DOC varied consistently by water type. In small streams DOC was mainly mineralized by sunlight to CO2, while in lakes the main fate of DOC was partial photo-oxidation. Large rivers were intermediate between these end members, and photo-mineralization to CO2 was about equal to or less than partial photo-oxidation. We suggest this pattern is a result of light-exposure history, where DOC leached from soils into headwater streams has little prior light exposure and is labile to complete photo-oxidation, but as light exposure increases moving downstream and into lakes with longer residence times the DOC photo-lability declines. Thus as easily photo-mineralized moieties are removed, DOC fate shifts toward partial photo-oxidation and downstream export in rivers and lakes. At the basin scale, photochemical processing of DOC is about one third of the total CO2 released from surface waters, and is thus an important, newly measured component of the Arctic C budget. We also suggest that these photochemical transformations of DOC will occur in any shallow surface water, and could be important for better understanding inland water carbon cycling.

  7. PROCESS WATER BUILDING, TRA605. CONTEXTUAL VIEW, CAMERA FACING SOUTHEAST. PROCESS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PROCESS WATER BUILDING, TRA-605. CONTEXTUAL VIEW, CAMERA FACING SOUTHEAST. PROCESS WATER BUILDING AND ETR STACK ARE IN LEFT HALF OF VIEW. TRA-666 IS NEAR CENTER, ABUTTED BY SECURITY BUILDING; TRA-626, AT RIGHT EDGE OF VIEW BEHIND BUS. INL NEGATIVE NO. HD46-34-1. Mike Crane, Photographer, 4/2005 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  8. New process for screen cutting: water-jet guided laser

    NASA Astrophysics Data System (ADS)

    Perrottet, Delphine; Amorosi, Simone; Richerzhagen, Bernold

    2005-07-01

    Today's OLED manufacturers need high-precision, fast tools to cut the metal screens used to deposit the electroluminescent layers onto the substrate. Conventional methods -tching and dry laser cutting - are not satisfying regarding the demands of high-definition OLED displays. A new micro machining technology, the water jet guided laser - a hybrid of laser and water jet technologies that has been actively used in recent years in the electronic and semiconductor field - is now available to OLED manufacturers. This technology represents a significant improvement in screen, mask and stencil cutting, as it combines high precision and high speed. It is able to cut small apertures with totally clean edges (no dross or slag), as the water jet removes the particles and a thin water film is maintained on the material surface during the process. Because the water jet cools the material between the laser pulses, the cut material is free of any thermal stress. The water jet guided laser is also a very fast process: as an example, rectangular slots can be cut in 30 to 50 microns thick stainless steel or nickel at a rate between 25'000 and 30'000 holes per hour.

  9. Living biofouling-resistant membranes as a model for the beneficial use of engineered biofilms

    PubMed Central

    Wood, Thammajun L.; Guha, Rajarshi; Tang, Li; Geitner, Michael; Kumar, Manish

    2016-01-01

    Membrane systems are used increasingly for water treatment, recycling water from wastewater, during food processing, and energy production. They thus are a key technology to ensure water, energy, and food sustainability. However, biofouling, the build-up of microbes and their polymeric matrix, clogs these systems and reduces their efficiency. Realizing that a microbial film is inevitable, we engineered a beneficial biofilm that prevents membrane biofouling, limiting its own thickness by sensing the number of its cells that are present via a quorum-sensing circuit. The beneficial biofilm also prevents biofilm formation by deleterious bacteria by secreting nitric oxide, a general biofilm dispersal agent, as demonstrated by both short-term dead-end filtration and long-term cross-flow filtration tests. In addition, the beneficial biofilm was engineered to produce an epoxide hydrolase so that it efficiently removes the environmental pollutant epichlorohydrin. Thus, we have created a living biofouling-resistant membrane system that simultaneously reduces biofouling and provides a platform for biodegradation of persistent organic pollutants. PMID:27140616

  10. Living biofouling-resistant membranes as a model for the beneficial use of engineered biofilms.

    PubMed

    Wood, Thammajun L; Guha, Rajarshi; Tang, Li; Geitner, Michael; Kumar, Manish; Wood, Thomas K

    2016-05-17

    Membrane systems are used increasingly for water treatment, recycling water from wastewater, during food processing, and energy production. They thus are a key technology to ensure water, energy, and food sustainability. However, biofouling, the build-up of microbes and their polymeric matrix, clogs these systems and reduces their efficiency. Realizing that a microbial film is inevitable, we engineered a beneficial biofilm that prevents membrane biofouling, limiting its own thickness by sensing the number of its cells that are present via a quorum-sensing circuit. The beneficial biofilm also prevents biofilm formation by deleterious bacteria by secreting nitric oxide, a general biofilm dispersal agent, as demonstrated by both short-term dead-end filtration and long-term cross-flow filtration tests. In addition, the beneficial biofilm was engineered to produce an epoxide hydrolase so that it efficiently removes the environmental pollutant epichlorohydrin. Thus, we have created a living biofouling-resistant membrane system that simultaneously reduces biofouling and provides a platform for biodegradation of persistent organic pollutants. PMID:27140616

  11. An Excel Workbook for Identifying Redox Processes in Ground Water

    USGS Publications Warehouse

    Jurgens, Bryant C.; McMahon, Peter B.; Chapelle, Francis H.; Eberts, Sandra M.

    2009-01-01

    The reduction/oxidation (redox) condition of ground water affects the concentration, transport, and fate of many anthropogenic and natural contaminants. The redox state of a ground-water sample is defined by the dominant type of reduction/oxidation reaction, or redox process, occurring in the sample, as inferred from water-quality data. However, because of the difficulty in defining and applying a systematic redox framework to samples from diverse hydrogeologic settings, many regional water-quality investigations do not attempt to determine the predominant redox process in ground water. Recently, McMahon and Chapelle (2008) devised a redox framework that was applied to a large number of samples from 15 principal aquifer systems in the United States to examine the effect of redox processes on water quality. This framework was expanded by Chapelle and others (in press) to use measured sulfide data to differentiate between iron(III)- and sulfate-reducing conditions. These investigations showed that a systematic approach to characterize redox conditions in ground water could be applied to datasets from diverse hydrogeologic settings using water-quality data routinely collected in regional water-quality investigations. This report describes the Microsoft Excel workbook, RedoxAssignment_McMahon&Chapelle.xls, that assigns the predominant redox process to samples using the framework created by McMahon and Chapelle (2008) and expanded by Chapelle and others (in press). Assignment of redox conditions is based on concentrations of dissolved oxygen (O2), nitrate (NO3-), manganese (Mn2+), iron (Fe2+), sulfate (SO42-), and sulfide (sum of dihydrogen sulfide [aqueous H2S], hydrogen sulfide [HS-], and sulfide [S2-]). The logical arguments for assigning the predominant redox process to each sample are performed by a program written in Microsoft Visual Basic for Applications (VBA). The program is called from buttons on the main worksheet. The number of samples that can be analyzed

  12. Loss of Water to Space from Mars: Processes and Implications

    NASA Astrophysics Data System (ADS)

    Kass, D. M.

    2001-12-01

    One of the major sinks for water on Mars is the loss to space. This occurs via a complex series of processes that transport the individual atoms to the upper atmosphere, where several escape mechanisms remove them. Hydrogen and deuterium are lost primarily by Jeans escape. Non-thermal processes also remove H and D, but are only important in determining D loss at solar minimum under modern conditions. The present H loss rate is equivalent to the loss of 10-3~pr-\\micron~yr-1 of water. The loss of oxygen is more complicated. The three main processes are indirect (or ionospheric) sputtering, solar wind pickup of O+, and O2+ dissociative recombination. Their relative importance has varied over the history of Mars. The combined effect of the O loss processes is to remove a ~ 50~m global layer of water over the last 3.5 Gyr. Based on photochemical modeling, the loss of oxygen and hydrogen are balanced (over geological timescales) by a feedback process. During the early history of Mars, impact erosion and hydrodynamic blow-off may have removed significant water. But, it is difficult to estimate their quantitative effects. The transport of individual H, D and O atoms to the exosphere where they can escape is not completely understood. It occurs primarily via intermediate species, H2, HD, O2 and CO2. The H2 and HD are formed by photolysis of water and the odd hydrogen photochemistry. One open issue is the mechanism regulating the partitioning of D between HDO and HD (which controls the supply of D available for escape from the exosphere). The various loss processes isotopically enrich Martian water since the exospheric escape source region is depleted. Jeans escape and the transport from the lower atmosphere further fractionate hydrogen, the most useful isotopic system. Based on recent observations, the D/H fractionation factor, F ~ 0.02. Measurements of atmospheric water vapor indicate it is enriched in deuterium, with a D/H ratio ~ 5 times the terrestrial value. Since

  13. Effect of water treatment processes on Cryptosporidium infectivity.

    PubMed

    Keegan, Alexandra; Daminato, David; Saint, Christopher P; Monis, Paul T

    2008-03-01

    Conventional water treatment processes have the ability to remove Cryptosporidium oocysts through coagulation, flocculation, sedimentation and filtration, provided there is efficient management of plant performance. The potential exists for the breakthrough of oocysts through the treatment train. The effect of the water treatment chemical aluminium sulphate (alum) on Cryptosporidium oocyst infectivity has been assessed using an assay that combines cell culture and real-time polymerase chain reaction techniques. The infectivity of fresh and temperature-aged oocysts (stored up to 6 months at 4 or 15 degrees C) was unaffected by exposure to a range of doses of alum in standard jar test procedures and dissolved air flotation processes and subsequent exposure to chlorine or chloramine. Removal efficiencies and infectivity measures are important in determining risk to public health and will reflect the ability of water treatment plants to act as a barrier to these pathogens. PMID:18067945

  14. Removal of antibiotics from surface and distilled water in conventional water treatment processes

    USGS Publications Warehouse

    Adams, C.; Wang, Y.; Loftin, K.; Meyer, M.

    2002-01-01

    Conventional drinking water treatment processes were evaluated under typical water treatment plant conditions to determine their effectiveness in the removal of seven common antibiotics: carbadox, sulfachlorpyridazine, sulfadimethoxine, sulfamerazine, sulfamethazine, sulfathiazole, and trimethoprim. Experiments were conducted using synthetic solutions prepared by spiking both distilled/ deionized water and Missouri River water with the studied compounds. Sorption on Calgon WPH powdered activated carbon, reverse osmosis, and oxidation with chlorine and ozone under typical plant conditions were all shown to be effective in removing the studied antibiotics. Conversely, coagulation/flocculation/sedimentation with alum and iron salts, excess lime/soda ash softening, ultraviolet irradiation at disinfection dosages, and ion exchange were all relatively ineffective methods of antibiotic removal. This study shows that the studied antibiotics could be effectively removed using processes already in use many water treatment plants. Additional work is needed on by-product formation and the removal of other classes of antibiotics.

  15. Processes Controlling Water Vapor in the Winter Arctic Stratospheric Middleworld

    NASA Technical Reports Server (NTRS)

    Pfister, Leonhard; Selkirk, Henry; Jensen, Eric; Sachse, Glenn; Podolske, James; Schoeberl, Mark; Browell, Edward; Ismail, Syed; Hipskind, R. Stephen (Technical Monitor)

    2000-01-01

    Water vapor in the winter arctic stratospheric middleworld is import-an: for two reasons: (1) the arctic middleworld is a source of air for the upper Troposphere because of the generally downward motion, and thus its water vapor content helps determine upper tropospheric water, a critical part of the earth's radiation budget; and (2) under appropriate conditions, relative humidities will be large, even to the point of stratospheric cirrus cloud formation, leading to the production of active chlorine species that could destroy ozone. On a number of occasions during SOLVE, clouds were observed in the stratospheric middleworld by the DC-8 aircraft. These tended to coincide with regions of low temperatures, though some cases suggest water vapor enhancements due to troposphere-to-stratosphere transport. The goal of this work is to understand the importance of processes in and at the edge of the arctic stratospheric middleworld in determining water vapor at these levels. Specifically, is water vapor at these levels determined largely by the descent of air from above, or are clouds both within and at the edge of the stratospheric middleworld potentially important? How important is troposphere-to-stratosphere transport of air in determining stratospheric middleworld water vapor content? To this end, we will first examine the minimum saturation mixing ratios along theta/EPV tubes during the SOLVE winter and compare these with DC-8 water vapor observations. This will be a rough indicator of how high relative humidities can get, and the likelihood of cirrus cloud formation in various parts of the stratospheric middleworld. We will then examine saturation mixing ratios along both diabatic and adiabatic trajectories, comparing these values with actual aircraft water vapor observations, both in situ and remote. Finally, we will attempt to actually predict water vapor using minimum saturation mixing ratios along trajectories, cloud injection (derived from satellite imagery) along

  16. Erosional processes in channelized water flows on Mars

    NASA Technical Reports Server (NTRS)

    Baker, V. R.

    1979-01-01

    A hypothesis is investigated according to which the Martian outflow channels were formed by high-velocity flows of water or dynamically similar liquid. It is suggested that the outflow channels are largely the result of several interacting erosional mechanisms, including fluvial processes involving ice covers, macroturbulence, streamlining, and cavitation.

  17. COST ESTIMATION MODELS FOR DRINKING WATER TREATMENT UNIT PROCESSES

    EPA Science Inventory

    Cost models for unit processes typically utilized in a conventional water treatment plant and in package treatment plant technology are compiled in this paper. The cost curves are represented as a function of specified design parameters and are categorized into four major catego...

  18. PROCESS WATER QUALITY REQUIREMENTS FOR IRON AND STEEL MAKING

    EPA Science Inventory

    The report gives results of a study to: develop information on minimum water quality requirements for the different unit processes in iron and steel making; identify data gaps; and recommend research efforts to obtain the required information. The study utilized plant visits, lit...

  19. Oil recovery process involving the injection of thickened water

    SciTech Connect

    Byham, D.E.; Chen, C.S.; Sheppard, E.W.

    1980-09-16

    Waterflood oil recovery process involving the use of an amphoteric polyelectrolyte as a thickening agent for mobility control. The amphoteric polyelectrolyte is a copolymer of a quaternary vinyl pyridinium sulfonate and a water-insoluble alpha olefin or hydrogenated diene. Specifically disclosed are vinyl pyridinium sulfonate-styrene block copolymers. The amphoteric polyelectrolytes are stable in high temperature and high brine environments.

  20. [Effects of quantum nonlocality in the water activation process].

    PubMed

    Zatsepina, O V; Stekhin, A A; Yakovleva, G V

    2014-01-01

    The dynamic alterations of the magnetic flux density of the water volume, activated with structurally stressed calcium carbonate in micellar form have been investigated. The phase of the associated water was established to exhibit electrical and magnetic properties, recorded by in B&E meter in the frequency range of 5Hz - 2kHz. Alterations in water Eh (redox) potential and the magnetic flux density B testify to synchronous auto-oscillatory changes. This gives evidence of non-linearity of the relationship between auto-oscillatory processes excited in the water; and reflects the nonlocal in time the relationship between the states of water, manifesting in a change of water activity on the 1st and 2nd day in negative time. The mechanism of action of associated water phase is shown to be described by de Broglie concept of matter waves with taking into account delocalized in time states of phase of electron wave packet in accordance with the transactional interpretation of quantum physics. PMID:24749297

  1. A learning process of water cycle as complex system

    NASA Astrophysics Data System (ADS)

    Schertzer, D.; Deroubaix, J. F.; Tchiguirinskaia, I.; Tassin, B.; Thevenot, D.

    2009-04-01

    Water cycle is a very good example of a complex geosystem which has many societal impacts and drivers. A permanent and ubiquitous question is how to increase public awareness and understanding of its extreme behaviours, as well as of the related uncertainties. For instance, CEREVE is highly solicited to help the general public, particularly the youth, and the local politicians to get better acquainted with the new water culture in general and with flood risks in particular, in the nearby county Val-de-Marne. Since 2001, May is the month of the "Festival de l'Oh"(which sounds like "Festival de l'Eau", i.e. the water festival co-organized by the county council and city of Paris. "Oh » at the same time partly displays the chemical composition of water and is an exclamation for atonishment). This festival starts with the Scientific Days of Environment that involve researchers and students of the county, as well as collaborators of all around the world. This conference is open to the public who can be informed from the latest research developments, in particular with the help of some general synthesis and panel discussions. On the other hand, (young) researchers can present their own works to a large public. This conference is followed by a Professional Forum where students, heads of water public services or private operators can meet. In the framework of the water festival preparation, there are several water forums for the secondary schools. All along the year, there are regular pedagogical activities for secondary schools, in particular in the framework of Water Houses scattered across the county. We will discuss the importance to better evaluate the effective impact of these pedagogical events on the public awareness and understanding, and to make the learning process more adaptive and interactive, as well as to better address the underlying fundamental problems, e.g. the present limitations of current modelling and data processing.

  2. Influence of hard water ions on the growth of salmonella in poultry processing water

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The influence of magnesium and calcium ions in process water on the growth of Salmonella was evaluated and related to the contamination in process wastewater. Salmonella typhimurium was grown in the laboratory and exposed to 500 mg/kg and 1000 mg/kg of magnesium and calcium ions to simulate hard pr...

  3. Modeling abiotic processes of aniline in water-saturated soils

    SciTech Connect

    Fabrega-Duque, J.R.; Jafvert, C.T.; Li, H.; Lee, L.S.

    2000-05-01

    The long-term interactions of aromatic amines with soils are important in defining the fate and transport of these compounds in the environment. Abiotic loss of aniline from the aqueous phase to the soil phase occurs with an initial rapid loss due to reversible mass transfer processes, followed by a slow loss due to irreversible reactions. A kinetic model describing these processes in water-saturated soils was developed and evaluated. The model assumes that instantaneous equilibrium occurs for the following reversible processes: (1) acid dissociation of the protonated organic base (BH+) in the aqueous phase; (2) ion exchange between inorganic divalent cations (D{sup 2+} = Ca{sup 2+} + Mg{sup 2+}) on the soil and the protonated organic base; and (3) partitioning of the nonionic species of aniline (B{sub aq}) to soil organic carbon. The model assumes that irreversible loss of aniline occurs through reaction of B{sub aq} with irreversible sites (C{sub ir}) on the soil. A kinetic rate constant, k{sub ir}, and the total concentration of irreversible sites, C{sub T}, were employed as adjustable model parameters. The model was evaluated as adjustable model parameters. The model was evaluated with measured mass distributions of aniline between water and five soils ranging in pH (4.4--7.3), at contact times ranging from 2 to 1,600 h. Some experiments were performed at different soil mass to water volume ratios. A good fit was obtained with a single value of k{sub ir} for all soils, pH values, and soil-water ratios. To accurately predict soil-water distributions at contact times <24 h, mass transfer of the neutral species to the soil was modeled as a kinetic process, again, assuming that ion exchange processes are instantaneous.

  4. Processing of combined domestic bath and laundry waste waters for reuse as commode flushing water

    NASA Technical Reports Server (NTRS)

    Hypes, W. D.; Batten, C. E.; Wilkins, J. R.

    1975-01-01

    An experimental investigation of processes and system configurations for reclaiming combined bath and laundry waste waters for reuse as commode flush water was conducted. A 90-min recycle flow was effective in removing particulates and in improving other physical characteristics to the extent that the filtered water was subjectively acceptable for reuse. The addition of a charcoal filter resulted in noticeable improvements in color, turbidity, and suds elimination. Heating and chlorination of the waste waters were investigated for reducing total organism counts and eliminating coliform organisms. A temperature of 335.9 K (145 F) for 30 min and chlorine concentrations of 20 mg/l in the collection tank followed by 10 mg/l in the storage tank were determined to be adequate for this purpose. Water volume relationships and energy-use rates for the waste water reuse systems are also discussed.

  5. Microbial fuel cell treatment of ethanol fermentation process water

    SciTech Connect

    Borole, Abhijeet P.

    2012-06-05

    The present invention relates to a method for removing inhibitor compounds from a cellulosic biomass-to-ethanol process which includes a pretreatment step of raw cellulosic biomass material and the production of fermentation process water after production and removal of ethanol from a fermentation step, the method comprising contacting said fermentation process water with an anode of a microbial fuel cell, said anode containing microbes thereon which oxidatively degrade one or more of said inhibitor compounds while producing electrical energy or hydrogen from said oxidative degradation, and wherein said anode is in electrical communication with a cathode, and a porous material (such as a porous or cation-permeable membrane) separates said anode and cathode.

  6. Carbon cycle. Sunlight controls water column processing of carbon in arctic fresh waters.

    PubMed

    Cory, Rose M; Ward, Collin P; Crump, Byron C; Kling, George W

    2014-08-22

    Carbon in thawing permafrost soils may have global impacts on climate change; however, the factors that control its processing and fate are poorly understood. The dominant fate of dissolved organic carbon (DOC) released from soils to inland waters is either complete oxidation to CO2 or partial oxidation and river export to oceans. Although both processes are most often attributed to bacterial respiration, we found that photochemical oxidation exceeds rates of respiration and accounts for 70 to 95% of total DOC processed in the water column of arctic lakes and rivers. At the basin scale, photochemical processing of DOC is about one-third of the total CO2 released from surface waters and is thus an important component of the arctic carbon budget. PMID:25146289

  7. Enhancement of surface properties for coal beneficiation

    SciTech Connect

    Chander, S.; Aplan, F.F.

    1990-01-01

    The main objective of this research project is to study ways to modify surface properties of coal, pyrite and ash-forming mineral matter for beneficiation of fine coal. Since the differences in surface properties of coal and mineral matter are utilized in several oil based preparation technologies, such as: froth flotation, emulsion flotation, spherical agglomeration and liquid-liquid separation, another objective is to delineate the role of oil. The following studies are behind carried out to achieve the objectives: Investigation of the natural hydrophobicity of coal and pyrite; development and evaluation of enhanced coal hydrophobicity; development and evaluation of reagents xanthates which modulate the hydrophobicity of pyrite; and development and evaluation of emulsion processes and their underlying principles.

  8. Processes Controlling Water Vapor in the Winter Arctic Tropopause Region

    NASA Technical Reports Server (NTRS)

    Pfister, Leonhard; Selkirk, Henry B.; Jensen, Eric J.; Padolske, James; Sachse, Glen; Avery, Melody; Schoeberl, Mark R.; Mahoney, Michael J.; Richard, Erik

    2002-01-01

    This work describes transport and thermodynamic processes that control water vapor near the tropopause during the SAGE III-Ozone Loss and Validation Experiment (SOLVE), held during the Arctic 1999/2000 winter season. Aircraft-based water vapor, carbon monoxide, and ozone measurements were analyzed so as to establish how deeply tropospheric air mixes into the Arctic lowermost stratosphere and what the implications are for cloud formation and water vapor removal in this region of the atmosphere. There are three major findings. First, troposphere-to-stratosphere exchange extends into the Arctic stratosphere to about 13 km. Penetration is to similar levels throughout the winter, however, because ozone increases with altitude most rapidly in the early spring, tropospheric air mixes with the highest values of ozone in that season. The effect of this upward mixing is to elevate water vapor mixing ratios significantly above their prevailing stratospheric values of above 5ppmv. Second, the potential for cloud formation in the stratosphere is highest during early spring, with about 20% of the parcels which have ozone values of 300-350 ppbv experiencing ice saturation in a given 10 day period. Third, during early spring, temperatures at the troposphere are cold enough so that 5-10% of parcels experience relative humidities above 100%, even if the water content is as low as 5 ppmv. The implication is that during this period, dynamical processes near the Arctic tropopause can dehydrate air and keep the Arctic tropopause region very dry during early spring.

  9. Stabilized thermally beneficiated low rank coal and method of manufacture

    SciTech Connect

    Viall, A.J.; Richards, J.M.

    2000-07-18

    A process is described for reducing the spontaneous combustion tendencies of thermally beneficiated low rank coals employing heat, air or an oxygen containing gas followed by an optional moisture addition. Specific reaction conditions are supplied along with knowledge of equipment types that may be employed on a commercial scale to complete the process.

  10. Stabilized thermally beneficiated low rank coal and method of manufacture

    DOEpatents

    Viall, Arthur J.; Richards, Jeff M.

    2000-01-01

    A process for reducing the spontaneous combustion tendencies of thermally beneficiated low rank coals employing heat, air or an oxygen containing gas followed by an optional moisture addition. Specific reaction conditions are supplied along with knowledge of equipment types that may be employed on a commercial scale to complete the process.

  11. Stabilized thermally beneficiated low rank coal and method of manufacture

    DOEpatents

    Viall, A.J.; Richards, J.M.

    1999-01-26

    A process is described for reducing the spontaneous combustion tendencies of thermally beneficiated low rank coals employing heat, air or an oxygen containing gas followed by an optional moisture addition. Specific reaction conditions are supplied along with knowledge of equipment types that may be employed on a commercial scale to complete the process. 3 figs.

  12. Stabilized thermally beneficiated low rank coal and method of manufacture

    DOEpatents

    Viall, Arthur J.; Richards, Jeff M.

    1999-01-01

    A process for reducing the spontaneous combustion tendencies of thermally beneficiated low rank coals employing heat, air or an oxygen containing gas followed by an optional moisture addition. Specific reaction conditions are supplied along with knowledge of equipment types that may be employed on a commercial scale to complete the process.

  13. Toxicity assessment of oil field produced water treated by evaporative processes to produce water to irrigation.

    PubMed

    Andrade, V T; Andrade, B G; Costa, B R S; Pereira, O A; Dezotti, M

    2010-01-01

    During the productive life of an oil well, a high quantity of produced water is extracted together with the oil, and it may achieve up to 99% in the end of the well's economical life. Desalination is one of mankind's earliest forms of saline water treatment, and nowadays, it is still a common process used throughout the world. A single-effect mechanical vapor compression (MVC) process was tested. This paper aims to assess the potential toxicity of produced water to be re-used in irrigation. Samples of both produced and distilled water were evaluated by 84 chemical parameters. The distilled produced water presented a reduction up to 97% for the majority of the analyzed parameters, including PAHs. Toxicity bioassays were performed with distilled produced water to evaluate the growth inhibition of Pseudokirchneriella subcapitata algae, the acute toxicity to Danio rerio fish, the germination inhibition of Lactuca sativa vegetable and the severity of toxicity, as well as behavior test with Lumbricid Earthworm Eisenia fetida. The ecotoxicological assays results showed no toxicity, indicating that the referred evaporative process can produce water to be reused in irrigation. PMID:20706017

  14. Submerged demineralize system processing of TMI-2 accident waste water

    SciTech Connect

    Sanchez, H.F.; Quinn, G.J.

    1983-02-01

    Accident-generated radioactive waste at Three Mile Island Unit 2 includes a varity of high and low specific-activity waste. The high-specific-activity waste, particularly over one million gallons of contaminated water, required special processing and secondary waste handling. General public utilities and its contractors developed a zeolite-based ion-exchange system called the Submerged Demineralizer System to reduce contamination levels in the water to below allowable limits. Testing and modifications resulted in an operating system that had successfully processed waste water from the Reactor Coolant Bleed Tanks, the Reactor Building Basement, and the Reactor Coolant System as of August 1982. System design objectives were met and decontamination criteria established in 10 CFR 20 were attained. Additional wastes that could not be handled routinely were generated by another water-processing system, called EPICOR II. EPICOR II wastes are discussed. Low-specific-activity (LSA) wastes such as trash and resin-bed waste canisters are also included in handling. LSA wastes are routinely handled and shipped according to existing industry practice. Plant records are summarized to provide approximate yearly volumes and curie loadings of low-specific-activity wastes being shipped off the Island to a commercial burial site.

  15. Process for blending coal with water immiscible liquid

    DOEpatents

    Heavin, Leonard J.; King, Edward E.; Milliron, Dennis L.

    1982-10-26

    A continuous process for blending coal with a water immiscible liquid produces a uniform, pumpable slurry. Pulverized raw feed coal and preferably a coal derived, water immiscible liquid are continuously fed to a blending zone (12 and 18) in which coal particles and liquid are intimately admixed and advanced in substantially plug flow to form a first slurry. The first slurry is withdrawn from the blending zone (12 and 18) and fed to a mixing zone (24) where it is mixed with a hot slurry to form the pumpable slurry. A portion of the pumpable slurry is continuously recycled to the blending zone (12 and 18) for mixing with the feed coal.

  16. In vitro genotoxicity of chlorinated drinking water processed from humus-rich surface water

    SciTech Connect

    Liimatainen, A.; Grummt, T.

    1988-11-01

    Chlorination by-products of drinking waters are capable of inducing sister chromatid exchanges (SCE) and chromosome aberrations (CA) in vitro, in addition to their mutagenic activity in the Ames test. Finnish drinking waters, processed from humus-rich surface water using chlorine disinfection, have been found to be highly mutagenic in the Ames' test. The highest activities have been found in the acidic, non-volatile fraction of the water concentrates using tester strain TA100 without metabolic activation by S9mix. The mutagenicities have varied between 500 and 14,000 induced revertants per liter. These figures are one to two magnitudes higher than those reported elsewhere. The authors studied five Finnish drinking water samples for their potency to exert genotoxic effects, SCEs and CAs, in mammalian cells in vitro (human peripheral lymphocytes and Chinese hamster lung fibroblasts).

  17. Stagewise processing of yellow water using clinoptilolite for nitrogen and phosphorus recovery and higher residual quality.

    PubMed

    Allar, A D; Beler Baykal, B

    2015-01-01

    Source-separated human urine may be used as a source of fertilizers indirectly through processing with clinoptilolite. The suggested form of fertilizer is clinoptilolite loaded with plant nutrients from urine, where nitrogen and phosphorus will be released upon contact with water. Triggered by the need for handling high concentrations remaining in the liquid phase to be disposed of, this paper aims to present the option of improving the residual nutrient quality through stagewise processing with clinoptilolite, while investigating any improvement in nutrient removal. Two sets of experiments, stagewise operation under (i) constant loadings and (ii) variable loadings in each stage, are discussed. Stagewise operation has been observed to be successful for attaining reduced residual liquid phase concentrations as well as improvements in nitrogen recovery as compared to single-stage operation. Comparing constant and variable stagewise loadings, the final concentration is 10 times lower with variable loadings. The latter is comparable to a level found in only 1% of conventional domestic wastewater volume. Stagewise operation was beneficial from the standpoint of both additional nutrient recovery and for residuals control, with more pronounced benefits for attaining higher quality residual liquid phase concentrations to be disposed of. PMID:26067508

  18. An integrated modeling process to assess water quality for watersheds

    NASA Astrophysics Data System (ADS)

    Bhuyan, Samarjyoti

    2001-07-01

    An integrated modeling process has been developed that combines remote sensing, Geographic Information Systems (GIS), and the Agricultural NonPoint Source Pollution (AGNPS) hydrologic model to assess water quality of a watershed. Remotely sensed Landsat Thematic Mapper (TM) images were used to obtain various land cover information of a watershed including sub-classes of rangeland and wheat land based on the estimates of vegetative cover and crop residue, respectively. AGNPS model input parameters including Universal Soil Loss Equation's (USLE) cropping factors (C-factors) were assigned to the landcover classes. The AGNPS-ARC INFO interface was used to extract input parameters from several GIS layers for the AGNPS model during several selected storm events for the sub-watersheds. Measured surface water quantity and quality data for these storm events were obtained from U.S. Geological Survey (USGS) gaging stations. Base flow separation was done to remove the base flow fraction of water and total suspended sediment (TSS), total nitrogen (total-N), and total phosphorous (total-P) from the total stream flow. Continuous antecedent moisture content ratios were developed for the sub-watersheds during the storm events and were used to adjust the Soil Conservation Service-Curve Numbers (SCS-CN) of various landcovers. A relationship was developed between storm amounts and estimated energy intensity (EI) values using a probability method (Koelliker and Humbert, 1989), and the EI values were used in running the AGNPS model input files. Several model parameters were calibrated against the measured water quality data and then the model was run on different sub-watersheds to evaluate the modeling process. This modeling process was found to be effective for smaller sub-watersheds having adequate rainfall data. However, in the case of large sub-watersheds with substantial variations of rainfall and landcover, this process was less satisfactory. This integrated modeling process will

  19. Processes Driving Natural Acidification of Western Pacific Coral Reef Waters

    NASA Astrophysics Data System (ADS)

    Shamberger, K. E.; Cohen, A. L.; Golbuu, Y.; McCorkle, D. C.; Lentz, S. J.; Barkley, H. C.

    2013-12-01

    Rising levels of atmospheric carbon dioxide (CO2) are acidifying the oceans, reducing seawater pH, aragonite saturation state (Ωar) and the availability of carbonate ions (CO32-) that calcifying organisms use to build coral reefs. Today's most extensive reef ecosystems are located where open ocean CO32- concentration ([CO32-]) and Ωar exceed 200 μmol kg-1 and 3.3, respectively. However, high rates of biogeochemical cycling and long residence times of water can result in carbonate chemistry conditions within coral reef systems that differ greatly from those of nearby open ocean waters. In the Palauan archipelago, water moving across the reef platform is altered by both biological and hydrographic processes that combine to produce seawater pH, Ωar, [CO32-] significantly lower than that of open ocean source water. Just inshore of the barrier reefs, average Ωar values are 0.2 to 0.3 and pH values are 0.02 to 0.03 lower than they are offshore, declining further as water moves across the back reef, lagoon and into the meandering bays and inlets that characterize the Rock Islands. In the Rock Island bays, coral communities inhabit seawater with average Ωar values of 2.7 or less, and as low as 1.9. Levels of Ωar as low as these are not predicted to occur in the western tropical Pacific open ocean until near the end of the century. Calcification by coral reef organisms is the principal biological process responsible for lowering Ωar and pH, accounting for 68 - 99 % of the difference in Ωar between offshore source water and reef water at our sites. However, in the Rock Island bays where Ωar is lowest, CO2 production by net respiration contributes between 17 - 30 % of the difference in Ωar between offshore source water and reef water. Furthermore, the residence time of seawater in the Rock Island bays is much longer than at the well flushed exposed sites, enabling calcification and respiration to drive Ωar to very low levels despite lower net ecosystem

  20. Stemflow-induced processes of soil water storage

    NASA Astrophysics Data System (ADS)

    Germer, Sonja

    2013-04-01

    Compared to stemflow production studies only few studies deal with the fate of stemflow at the near-stem soil. To investigate stemflow contribution to the root zone soil moisture by young and adult babassu palms (Attalea speciosa Mart.), I studied stemflow generation, subsequent soil water percolation and root distributions. Rainfall, stemflow and perched water tables were monitored on an event basis. Perched water tables were monitored next to adult palms at two depths and three stem distances. Dye tracer experiments monitored stemflow-induced preferential flow paths. Root distributions of fine and coarse roots were related to soil water redistribution. Average rainfall-collecting area per adult palm was 6.4 m², but variability between them was high. Funneling ratios ranged between 16-71 and 4-55 for adult and young palms, respectively. Nonetheless, even very small rainfall events of 1 mm can generate stemflow. On average, 9 liters of adult palm stemflow were intercepted and stemflow tended to decrease for-high intensity rainfall events. Young babassu palms funneled rainfall via their fronds, directly to their subterranean stems. The funneling of rainfall towards adult palm stems, in contrast, led to great stemflow fluxes down to the soil and induced initial horizontal water flows through the soil, leading to perched water tables next to palms, even after small rainfall events. The perched water tables extended, however, only a few decimeters from palm stems. After perched water tables became established, vertical percolation through the soil dominated. To my knowledge, this process has not been described before, and it can be seen as an addition to the two previously described stemflow-induced processes of Horton overland flow and fast, deep percolation along roots. This study has demonstrated that Babassu palms funnel water to their stems and subsequently store it in the soil next to their stems in areas where coarse root length density is very high. This might

  1. Effectiveness of water desalination by membrane distillation process.

    PubMed

    Gryta, Marek

    2012-01-01

    The membrane distillation process constitutes one of the possibilities for a new method for water desalination. Four kinds of polypropylene membranes with different diameters of capillaries and pores, as well as wall thicknesses were used in studied. The morphology of the membrane used and the operating parameters significantly influenced process efficiency. It was found that the membranes with lower wall thickness and a larger pore size resulted in the higher yields. Increasing both feed flow rate and temperature increases the permeate flux and simultaneously the process efficiency. However, the use of higher flow rates also enhanced heat losses by conduction, which decreases the thermal efficiency. This efficiency also decreases when the salt concentration in the feed was enhanced. The influence of fouling on the process efficiency was considered. PMID:24958289

  2. Effectiveness of Water Desalination by Membrane Distillation Process

    PubMed Central

    Gryta, Marek

    2012-01-01

    The membrane distillation process constitutes one of the possibilities for a new method for water desalination. Four kinds of polypropylene membranes with different diameters of capillaries and pores, as well as wall thicknesses were used in studied. The morphology of the membrane used and the operating parameters significantly influenced process efficiency. It was found that the membranes with lower wall thickness and a larger pore size resulted in the higher yields. Increasing both feed flow rate and temperature increases the permeate flux and simultaneously the process efficiency. However, the use of higher flow rates also enhanced heat losses by conduction, which decreases the thermal efficiency. This efficiency also decreases when the salt concentration in the feed was enhanced. The influence of fouling on the process efficiency was considered. PMID:24958289

  3. Reactor Materials Program process water piping indirect failure frequency

    SciTech Connect

    Daugherty, W.L.

    1989-10-30

    Following completion of the probabilistic analyses, the LOCA Definition Project has been subject to various external reviews, and as a result the need for several revisions has arisen. This report updates and summarizes the indirect failure frequency analysis for the process water piping. In this report, a conservatism of the earlier analysis is removed, supporting lower failure frequency estimates. The analysis results are also reinterpreted in light of subsequent review comments.

  4. Processes Controlling Water Vapor in the Winter Arctic Tropopause Region

    NASA Technical Reports Server (NTRS)

    Pfister, Leonhard; Selkirk, Henry B.; Jensen, Eric J.; Podolske, James; Sachse, Glen; Avery, Melody; Schoeberl, Mark R.; Hipskino, R. Stephen (Technical Monitor)

    2001-01-01

    This work describes transport and thermodynamic processes that control water vapor near the tropopause during the SAGE Ozone Loss and Validation Experiment (SOLVE), held during the Arctic 1999-2000 winter season. Aircraft based water vapor, carbon monoxide, and ozone measurements are analyzed so as to establish how deeply tropospheric air mixes into the arctic lower-most stratosphere, and what the implications are for cloud formation and water vapor removal in this region of the atmosphere. There are three major findings. First, troposphere-to- stratosphere exchange extends into the arctic stratosphere to about 13 km. Penetration is to similar levels throughout the winter, however, because ozone increases idly in the early spring, tropospheric air mixes with the highest values of ozone in that season. The effect of this upward mixing is to elevate water vapor mixing ratios significantly above their prevailing stratospheric values of about 5 ppmv. Second, the potential for cloud formation in the stratosphere is highest during early spring, with about 20\\% of the parcels which have ozone values of 300-350ppbv experiencing ice saturation in a given 10 day period. Third, during early Spring temperatures at the tropopause are cold enough so that 5-10\\% of parcels experience relative humidities above 100\\%, even if the water content is as low as 5 ppmv. The implication is that during, this period the arctic tropopause can play an important role in maintaining a very dry upper troposphere during early Spring.

  5. Mining and beneficiation: A review of possible lunar applications

    NASA Technical Reports Server (NTRS)

    Chamberlain, Peter G.

    1991-01-01

    Successful exploration of Mars and outer space may require base stations strategically located on the Moon. Such bases must develop a certain self-sufficiency, particularly in the critical life support materials, fuel components, and construction materials. Technology is reviewed for the first steps in lunar resource recovery-mining and beneficiation. The topic is covered in three main categories: site selection; mining; and beneficiation. It will also include (in less detail) in-situ processes. The text described mining technology ranging from simple diggings and hauling vehicles (the strawman) to more specialized technology including underground excavation methods. The section of beneficiation emphasizes dry separation techniques and methods of sorting the ore by particle size. In-situ processes, chemical and thermal, are identified to stimulate further thinking by future researchers.

  6. UMTRA Ground Water Project management action process document

    SciTech Connect

    1996-03-01

    A critical U.S. Department of Energy (DOE) mission is to plan, implement, and complete DOE Environmental Restoration (ER) programs at facilities that were operated by or in support of the former Atomic Energy Commission (AEC). These facilities include the 24 inactive processing sites the Uranium Mill Tailings Radiation Control Act (UMTRCA) (42 USC Section 7901 et seq.) identified as Title I sites, which had operated from the late 1940s through the 1970s. In UMTRCA, Congress acknowledged the potentially harmful health effects associated with uranium mill tailings and directed the DOE to stabilize, dispose of, and control the tailings in a safe and environmentally sound manner. The UMTRA Surface Project deals with buildings, tailings, and contaminated soils at the processing sites and any associated vicinity properties (VP). Surface remediation at the processing sites will be completed in 1997 when the Naturita, Colorado, site is scheduled to be finished. The UMTRA Ground Water Project was authorized in an amendment to the UMTRCA (42 USC Section 7922(a)), when Congress directed DOE to comply with U.S. Environmental Protection Agency (EPA) ground water standards. The UMTRA Ground Water Project addresses any contamination derived from the milling operation that is determined to be present at levels above the EPA standards.

  7. Reactor materials program process water component failure probability

    SciTech Connect

    Daugherty, W. L.

    1988-04-12

    The maximum rate loss of coolant accident for the Savannah River Production Reactors is presently specified as the abrupt double-ended guillotine break (DEGB) of a large process water pipe. This accident is not considered credible in light of the low applied stresses and the inherent ductility of the piping materials. The Reactor Materials Program was initiated to provide the technical basis for an alternate, credible maximum rate LOCA. The major thrust of this program is to develop an alternate worst case accident scenario by deterministic means. In addition, the probability of a DEGB is also being determined; to show that in addition to being mechanistically incredible, it is also highly improbable. The probability of a DEGB of the process water piping is evaluated in two parts: failure by direct means, and indirectly-induced failure. These two areas have been discussed in other reports. In addition, the frequency of a large bread (equivalent to a DEGB) in other process water system components is assessed. This report reviews the large break frequency for each component as well as the overall large break frequency for the reactor system.

  8. Integrated treatment process using a natural Wyoming clinoptilolite for remediating produced waters from coalbed natural gas operations

    USGS Publications Warehouse

    Zhao, H.; Vance, G.F.; Urynowicz, M.A.; Gregory, R.W.

    2009-01-01

    Coalbed natural gas (CBNG) development in western U.S. states has resulted in an increase in an essential energy resource, but has also resulted in environmental impacts and additional regulatory needs. A concern associated with CBNG development relates to the production of the copious quantities of potentially saline-sodic groundwater required to recover the natural gas, hereafter referred to as CBNG water. Management of CBNG water is a major environmental challenge because of its quantity and quality. In this study, a locally available Na-rich natural zeolite (clinoptilolite) from Wyoming (WY) was examined for its potential to treat CBNG water to remove Na+ and lower the sodium adsorption ratio (SAR, mmol1/2 L- 1/2). The zeolite material was Ca-modified before being used in column experiments. Column breakthrough studies indicated that a metric tonne (1000??kg) of Ca-WY-zeolite could be used to treat 60,000??L of CBNG water in order to lower SAR of the CBNG water from 30 to an acceptable level of 10??mmol1/2 L- 1/2. An integrated treatment process using Na-WY-zeolite for alternately treating hard water and CBNG water was also examined for its potential to treat problematic waters in the region. Based on the results of this study, use of WY-zeolite appears to be a cost-effective water treatment technology for maximizing the beneficial use of poor-quality CBNG water. Ongoing studies are evaluating water treatment techniques involving infiltration ponds lined with zeolite. ?? 2008 Elsevier B.V. All rights reserved.

  9. Beneficial trait stability in entomopathogenic nematodes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A number of beneficial traits such as virulence, reproductive potential, and environmental tolerance are key factors in determining an organism’s ability to produce high levels of efficacy in biological control. Deterioration or loss of beneficial traits during laboratory or industrial culture prod...

  10. Making beneficial fungi resistant to fungicides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Unlike phytopathogenic fungi such as scab and Phytophthora, some fungi that are found in the orchard are beneficial. These beneficial fungi such as Beauveria bassiana and Metarhizium brunneum are natural control agents of various insect pests including the pecan weevil. However, these fungi can be...

  11. Beneficial Insects and Spiders of Alaska

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The development of integrated pest management programs is dependent on the availability of biological information on beneficial insects and natural enemies of agricultural pests. This cooperative effort between ARS and UAF represents the first manual on beneficial insects and natural enemies of pest...

  12. Ore and coal beneficiation method

    SciTech Connect

    Abadi, K.

    1987-10-27

    This patent describes a method for the separation of iron pyrite from a pulverized mineral ore comprising iron pyrites as a first constituent and a second constituent selected from the group consisting of coal and non-ferrous metal ores by air froth flotation of an aqueous pulp of the pulverized mineral ore. The improvement comprises incorporating in the pulp from about 0.02 to about 1 pound per ton of mineral of a composition comprising hydroxyacetic acid, xanthan gum, sodium silicate, and water wherein the acid content of the composition is from about 0.1 to about 69 percent by weight of the composition, the xanthan gum is from about 0.01 to about 10 percent by weight of the composition; and the ratio by weight of sodium silicate to hydroxyacetic acid is in the range of from about 0 to about 0.5.

  13. Novel Americium Treatment Process for Surface Water and Dust Suppression Water

    SciTech Connect

    Tiepel, E.W.; Pigeon, P.; Nesta, S.; Anderson, J.

    2006-07-01

    The Rocky Flats Environmental Technology Site (RFETS), a former nuclear weapons production plant, has been remediated under CERCLA and decommissioned to become a National Wildlife Refuge. The site conducted this cleanup effort under the Rocky Flats Cleanup Agreement (RFCA) that established limits for the discharge of surface and process waters from the site. At the end of 2004, while a number of process buildings were undergoing decommissioning, routine monitoring of a discharge pond (Pond A-4) containing approximately 28 million gallons of water was discovered to have been contaminated with a trace amount of Americium-241 (Am-241). While the amount of Am-241 in the pond waters was very low (0.5 - 0.7 pCi/l), it was above the established Colorado stream standard of 0.15 pCi/l for release to off site drainage waters. The rapid successful treatment of these waters to the regulatory limit was important to the site for two reasons. The first was that the pond was approaching its hold-up limit. Without rapid treatment and release of the Pond A-4 water, typical spring run-off would require water management actions to other drainages onsite or a mass shuttling of water for disposal. The second reason was that this type of contaminated water had not been treated to the stringent stream standard at Rocky Flats before. Technical challenges in treatment could translate to impacts on water and secondary waste management, and ultimately, cost impacts. All of the technical challenges and specific site criteria led to the conclusion that a different approach to the treatment of this problem was necessary and a crash treatability program to identify applicable treatment techniques was undertaken. The goal of this program was to develop treatment options that could be implemented very quickly and would result in the generation of no high volume secondary waste that would be costly to dispose. A novel chemical treatment system was developed and implemented at the RFETS to treat Am

  14. Combustion characterization of beneficiated coal-based fuels. Quarterly report No. 9, April--June 1991

    SciTech Connect

    Chow, O.K.; Nsakala, N.Y.

    1991-08-01

    The Pittsburgh Energy Technology Center of the US Department of Energy has contracted with Combustion Engineering, Inc. (CE) to perform a five-year project on ``Combustion Characterization of Beneficiated Coal-Based Fuels.`` The beneficiated coals are produced by other contractors under the DOE Coal Preparation Program. Several contractor-developed advanced coal cleaning processes are run at pilot-scale cleaning facilities to produce 20-ton batches of fuels for shipment to CE`s laboratory in Windsor, Connecticut. CE then processes the products into either a coal-water fuel (CWF) or a dry microfine pulverized coa1 (DMPC) form for combustion testing. The objectives of this project include: (1) the development of an engineering data base which will provide detailed information on the properties of BCFs influencing combustion, ash deposition, ash erosion, particulate collection, and emissions; and (2) the application of this technical data base to predict the performance and economic impacts of firing the BCFs in various commercial boiler designs. During the second quarter of 1991, the following technical progress was made: completed drop tube furnace devolatilization tests of the spherical oil agglomeration beneficiated products; continued analyses of samples to determine devolatilization kinetics; continued analyses of the data and samples from the CE pilot-scale tests of nine fuels; completed writing a summary topical report including all results to date on he nine fuels tested; and presented three technical papers on the project results at the 16th International Conference on Coal & Slurry Technologies.

  15. Methane gas seepage - Disregard of significant water column filter processes?

    NASA Astrophysics Data System (ADS)

    Schneider von Deimling, Jens; Schmale, Oliver

    2016-04-01

    Marine methane seepage represents a potential contributor for greenhouse gas in the atmosphere and is discussed as a driver for climate change. The ultimate question is how much methane is released from the seafloor on a global scale and what fraction may reach the atmosphere? Dissolved fluxes from methane seepage sites on the seabed were found to be very efficiently reduced by benthic microbial oxidation, whereas transport of free gas bubbles from the seabed is considered to bypass the effective benthic methane filter. Numerical models are available today to predict the fate of such methane gas bubble release to the water column in regard to gas exchange with the ambient water column, respective bubble lifetime and rise height. However, the fate of rising gas bubbles and dissolved methane in the water column is not only governed by dissolution, but is also affected by lateral oceanographic currents and vertical bubble-induced upwelling, microbial oxidation, and physico-chemical processes that remain poorly understood so far. According to this gap of knowledge we present data from two study sites - the anthropogenic North Sea 22/4b Blowout and the natural Coal Oil point seeps - to shed light into two new processes gathered with hydro-acoustic multibeam water column imaging and microbial investigations. The newly discovered processes are hereafter termed Spiral Vortex and Bubble Transport Mechanism. Spiral Vortex describes the evolution of a complex vortical fluid motion of a bubble plume in the wake of an intense gas release site (Blowout, North Sea). It appears very likely that it dramatically changes the dissolution kinetics of the seep gas bubbles. Bubble Transport Mechanism prescribes the transport of sediment-hosted bacteria into the water column via rising gas bubbles. Both processes act as filter mechanisms in regard to vertical transport of seep related methane, but have not been considered before. Spiral Vortex and Bubble Transport Mechanism represent the

  16. Effects of Gravity on Supercritical Water Oxidation (SCWO) Processes

    NASA Technical Reports Server (NTRS)

    Hegde, Uday; Hicks, Michael

    2013-01-01

    The effects of gravity on the fluid mechanics of supercritical water jets are being studied at NASA to develop a better understanding of flow behaviors for purposes of advancing supercritical water oxidation (SCWO) technologies for applications in reduced gravity environments. These studies provide guidance for the development of future SCWO experiments in new experimental platforms that will extend the current operational range of the DECLIC (Device for the Study of Critical Liquids and Crystallization) Facility on board the International Space Station (ISS). The hydrodynamics of supercritical fluid jets is one of the basic unit processes of a SCWO reactor. These hydrodynamics are often complicated by significant changes in the thermo-physical properties that govern flow behavior (e.g., viscosity, thermal conductivity, specific heat, compressibility, etc), particularly when fluids transition from sub-critical to supercritical conditions. Experiments were conducted in a 150 ml reactor cell under constant pressure with water injections at various flow rates. Flow configurations included supercritical jets injected into either sub-critical or supercritical water. Profound gravitational influences were observed, particularly in the transition to turbulence, for the flow conditions under study. These results will be presented and the parameters of the flow that control jet behavior will be examined and discussed.

  17. Process for purification of waste water produced by a Kraft process pulp and paper mill

    NASA Technical Reports Server (NTRS)

    Humphrey, M. F. (Inventor)

    1979-01-01

    The water from paper and pulp wastes obtained from a mill using the Kraft process is purified by precipitating lignins and lignin derivatives from the waste stream with quaternary ammonium compounds, removing other impurities by activated carbon produced from the cellulosic components of the water, and then separating the water from the precipitate and solids. The activated carbon also acts as an aid to the separation of the water and solids. If recovery of lignins is also desired, then the precipitate containing the lignins and quaternary ammonium compounds is dissolved in methanol. Upon acidification, the lignin is precipitated from the solution. The methanol and quaternary ammonium compound are recovered for reuse from the remainder.

  18. Process for separation and preconcentration of radium from water

    DOEpatents

    Dietz, Mark; Horwitz, E. Philip; Chiarizia, Renato; Bartsch, Richard A.

    1999-01-01

    A process for preconcentrating and separating radium from a contaminated solution containing at least water and radium includes the steps of adding a quantity of a water-soluble macrocyclic polyether to the contaminated solution to form a combined solution. An acid is added to the combined solution to form an acidic combined solution having an ›H.sup.+ ! concentration of about 0.5M. The acidic combined solution is contacted with a sulfonic acid-based strong acid cation exchange medium or a organophilic sulfonic acid medium having a plurality of binding sites thereon to bind the radium thereto and to form a radium-depleted solution. The radium-depleted solution is separated from the strong acid cation exchange medium or organophilic sulfonic acid medium. The radium remaining bound to the exchange medium or organophilic reagent is then stripped from the exchange medium or organophilic medium and the activity of the radium is measured.

  19. Process for separation and preconcentration of radium from water

    DOEpatents

    Dietz, M.; Horwitz, E.P.; Chiarizia, R.; Bartsch, R.A.

    1999-01-26

    A process for preconcentrating and separating radium from a contaminated solution containing at least water and radium includes the steps of adding a quantity of a water-soluble macrocyclic polyether to the contaminated solution to form a combined solution. An acid is added to the combined solution to form an acidic combined solution having an [H{sup +}] concentration of about 0.5M. The acidic combined solution is contacted with a sulfonic acid-based strong acid cation exchange medium or a organophilic sulfonic acid medium having a plurality of binding sites thereon to bind the radium thereto and to form a radium-depleted solution. The radium-depleted solution is separated from the strong acid cation exchange medium or organophilic sulfonic acid medium. The radium remaining bound to the exchange medium or organophilic reagent is then stripped from the exchange medium or organophilic medium and the activity of the radium is measured. 24 figs.

  20. Water states and water gates in osmotic processes, and the inoperative concept of molfraction of water.

    PubMed

    Scholander, P F

    1975-10-01

    An historical account is given of concepts regarding the mechanism of osmosis and imbibition, starting with Lord Kelvin's gravitational column, where he pointed out that a capillary standing in a dish of water within an isothermal enclosure must have a lowered vapor pressure at its elevated meniscus so as to match that emanating from the surface in the dish, otherwise distillation would violate the Second law. A brilliant sequence to this simple idea followed through Poynting, Arrhenius, Noyes and culminated with Hulett, who in 1901 formulated the "solvent tension theory" of osmosis, stating in essence that the thermal motion of the solute molecules by impact with the free solvent surface put the solvent under tension. This lowers the vapor pressure and thereby also its freezing point. Perrin, in famous experiments on Brownian motion, demonstrated solute-solvent independence within a solution and further support came through Herzfeld, Mysels and Duclaux. We measured negative pressures in salt-free sap of mangroves and other plants matching the osmotic pressure in the leaf cells. A series of measurements on magnetic and gravitational effects on osmotic pressure likewise bore out the tension theory. The fashionable "water concentration theory" is left experimentally contradicted and in violation of the Second law. PMID:1104754

  1. Degradation of ethylenethiourea pesticide metabolite from water by photocatalytic processes.

    PubMed

    Bottrel, Sue Ellen C; Amorim, Camila C; Leão, Mônica M D; Costa, Elizângela P; Lacerda, Igor A

    2014-01-01

    In this study, photocatalytic (photo-Fenton and H2O2/UV) and dark Fenton processes were used to remove ethylenethiourea (ETU) from water. The experiments were conducted in a photo-reactor with an 80 W mercury vapor lamp. The mineralization of ETU was determined by total organic carbon analysis, and ETU degradation was qualitatively monitored by the reduction of UV absorbance at 232 nm. A higher mineralization efficiency was obtained by using the photo-peroxidation process (UV/H2O2). Approximately 77% of ETU was mineralized within 120 min of the reaction using [H2O2]0 = 400 mg L(-1). The photo-Fenton process mineralized 70% of the ETU with [H2O2]0 = 800 mg L(-1) and [Fe(2+)] = 400 mg L(-1), and there is evidence that hydrogen peroxide was the limiting reagent in the reaction because it was rapidly consumed. Moreover, increasing the concentration of H2O2 from 800 mg L(-1) to 1200 mg L(-1) did not enhance the degradation of ETU. Kinetics studies revealed that the pseudo-second-order model best fit the experimental conditions. The k values for the UV/H2O2 and photo-Fenton processes were determined to be 6.2 × 10(-4) mg L(-1) min(-1) and 7.7 × 10(-4) mg L(-1) min(-1), respectively. The mineralization of ETU in the absence of hydrogen peroxide has led to the conclusion that ETU transformation products are susceptible to photolysis by UV light. These are promising results for further research. The processes that were investigated can be used to remove pesticide metabolites from drinking water sources and wastewater in developing countries. PMID:24502213

  2. Evaluation of Effectiveness Technological Process of Water Purification Exemplified on Modernized Water Treatment Plant at Otoczna

    NASA Astrophysics Data System (ADS)

    Jordanowska, Joanna; Jakubus, Monika

    2014-12-01

    The article presents the work of the Water Treatment Plant in the town of Otoczna, located in the Wielkopolska province, before and after the modernization of the technological line. It includes the quality characteristics of the raw water and treated water with particular emphasis on changes in the quality indicators in the period 2002 -2012 in relation to the physicochemical parameters: the content of total iron and total manganese, the ammonium ion as well as organoleptic parameters(colour and turbidity). The efficiency of technological processes was analysed, including the processes of bed start up with chalcedonic sand to remove total iron and manganese and ammonium ion. Based on the survey, it was found that the applied modernization helped solve the problem of water quality, especially the removal of excessive concentrations of iron, manganese and ammonium nitrogen from groundwater. It has been shown that one year after modernization of the technological line there was a high reduction degree of most parameters, respectively for the general iron content -99%, general manganese - 93% ammonia - 93%, turbidity - 94%. It has been proved, that chalcedonic turned out to be better filter material than quartz sand previously used till 2008. The studies have confirmed that the stage of modernization was soon followed by bed start-up for removing general iron from the groundwater. The stage of manganese removal required more time, about eight months for bed start-up. Furthermore, the technological modernization contributed to the improvement of the efficiency of the nitrification process.

  3. Extraction of reusable water from a mineral mining process

    SciTech Connect

    Gleim, W.K.

    1982-01-19

    A method for the treatment of an aqueous effluent slime derived from a tar sand extraction process is disclosed. The effluent slime ph is adjusted to an acidic ph and treated with an anionic surface active agent to create flocculation of solid asphaltic material entrained within the slime. A solvent solution comprising chlorinated hydrocarbon and a solvent therefor is added so that upon centrifuging of the treated slime three physical layers of material comprising (1) water; (2) asphaltics in the solvent solution and (3) clay are formed.

  4. Polymer performance in cooling water: The influence of process variables

    SciTech Connect

    Amjad, Z.; Pugh, J.; Zibrida, J.; Zuhl, B.

    1997-01-01

    The key to the efficacy of phosphate and phosphonates in stabilized phosphate and all-organic cooling water treatment (CWT) programs is the presence and performance of polymeric inhibitors/dispersants. The performance of polymeric additives used in CWT programs can be adversely impacted by the presence of iron, phosphonate, or cationic polymer and influenced by a variety of process variables including system pH and temperature. In this article, the performance of several polymeric additives is evaluated under a variety of stressed conditions.

  5. Polymer performance in cooling water: The influence of process variables

    SciTech Connect

    Amjad, Z.; Pugh, J.; Zibrida, J.; Zuhl, B.

    1996-12-01

    The key to the efficacy of phosphate and phosphonates in stabilized phosphate and all-organic cooling water treatment (CWT) programs is the presence and performance of polymeric inhibitors/dispersants. The performance of polymeric additives used in CWT programs can be adversely impacted by the presence of iron, phosphonate, or cationic polymer and influenced by a variety of process variables including system pH and temperature. In this paper, the performance of several polymeric additives is evaluated under a variety of stressed conditions.

  6. Magnetic beneficiation of lunar soils

    NASA Technical Reports Server (NTRS)

    Mckay, D. S; Oder, R. R.; Graf, J.; Taylor, L. A.

    1992-01-01

    We will present a review of recent laboratory results obtained in dry magnetic separation of one gram samples of the minus 1 mm size fraction of five lunar soils of widely differing maturities. Two highland soils were investigated as potential sources of low iron content feed stocks for space manufacture of metals, including aluminum, silicon, and calcium. Pure anorthite was separated from the diamagnetic fraction of immature highland regolith. Three high titanium mare soils were investigated as potential sources of ilmenite for production of hydrogen and for recovery of He-3. Ilmenite and pyroxene were separated from the paramagnetic fractions of the mare basalts. Agglutinates and other fused soil components containing metallic iron were separated from the strongly magnetic fractions of all soils. We will present conceptual magnetic separation flow sheets developed from the laboratory data and designed for production of anorthite from highland soils and for production of ilmenite from mare soils. Using these flow sheets, we will discuss problems and opportunities associated with the magnetic separation of lunar soils. Separation of high-grade anorthite or other diamagnetic components at moderately high recovery can be achieved in processing immature highland soils. Further, while magnet weight is always an issue in magnetic separation technology, recent developments in both low temperature and high temperature superconductivity present unusual opportunities for magnet design specific to the lunar environment.

  7. Pressurized fluidized-bed hydroretorting of Eastern oil shales -- Beneficiation

    SciTech Connect

    Roberts, M.J.; Lau, F.S.; Mensinger, M.C. ); Schultz, C.W.; Mehta, R.K.; Lamont, W.E. ); Chiang, S.H.; Venkatadri, R. ); Misra, M. )

    1992-05-01

    The Mineral Resources Institute at the University of Alabama, along with investigators from the University of Pittsburgh and the University of Nevada-Reno, have conducted a research program on the beneficiation, of Eastern oil shales. The objective of the research program was to evaluate and adapt those new and emerging technologies that have the potential to improve the economics of recovering oil from Eastern oil shales. The technologies evaluated in this program can be grouped into three areas: fine grinding kerogen/mineral matter separation, and waste treatment and disposal. Four subtasks were defined in the area of fine grinding. They were as follows: Ultrasonic Grinding, Pressure Cycle Comminution, Stirred Ball Mill Grinding, and Grinding Circuit Optimization. The planned Ultrasonic grinding research was terminated when the company that had contracted to do the research failed. Three technologies for effecting a separation of kerogen from its associated mineral matter were evaluated: column flotation, the air-sparged hydrocyclone, and the LICADO process. Column flotation proved to be the most effective means of making the kerogen/mineral matter separation. No problems are expected in the disposal of oil shale tailings. It is assumed that the tailings will be placed in a sealed pond and the water recycled to the plant as is the normal practice. It may be advantageous, however, to conduct further research on the recovery of metals as by-products and to assess the market for tailings as an ingredient in cement making.

  8. The removal of anionic surfactants from water in coagulation process.

    PubMed

    Kaleta, Jadwiga; Elektorowicz, Maria

    2013-01-01

    This paper presents the results of a laboratory study on the effectiveness of the coagulation process in removing surfactants from water. The application of traditional coagulants (aluminium sulfate and iron chlorides) has not brought satisfactory results, the reduction in anionic surfactant (AS) content reached 7.6% and 10%, respectively. Adding cationic polyelectrolyte (Zetag-50) increased the removal efficiency to 24%. Coagulation using a polyelectrolyte alone proved to be more efficient, the reduction in surfactant content fluctuated at a level of about 50%. Complete surfactant removal was obtained when powdered activated carbon was added 5 minutes before the basic coagulant to the coagulation process. The efficiency of surfactant coagulation also increased after the application of powdered clinoptilolite, but to a smaller degree. Then the removal of AS was found to be improved by dosing powdered clinoptilolite simultaneously or with short delay after the addition of the basic coagulant. PMID:23837351

  9. Process for separating water and solids from fuels

    SciTech Connect

    Filho, J.H.; Bachmann, D.L.

    1987-11-17

    A process for separating water and solid particles from a fuel oil feedstock is described comprising: subjecting the feedstock to a first separation in a scroll type centrifugal separator to form a first recovered fuel stream and an oil cake; subjecting at least the first recovered fuel stream to a second separation in a centrifugal disc separator to form a clean fuel stream, an oil-bearing water stream and a sludge stream; treating the oil-bearing water stream in a separator to recover the oil; treating the oil cake removed from the first separation with a solvent in order to form a suspension; mixing the suspension with the sludge stream to form a mixture; feeding the mixture to a filter press to yield a solid reject and a filtrate; separating the filtrate into a decantate and recovered oil; mixing at least a portion of the recovered oil with first recovered fuel stream to form a semi-cleaned fuel stream; and subjecting the semi-cleaned fuel stream to the second separation in a centrifugal disc separator to form the clean fuel stream.

  10. Enhancement of processes for solar photocatalytic detoxification of water

    SciTech Connect

    Pacheco, J.E.; Tyner, C.E.

    1990-01-01

    A solar-driven photocatalytic process is being developed to destroy low levels of toxic organics in water. Parabolic troughs with a glass pipe reactor and heliostats (large tracking mirrors) with a falling-film reactor were used to conduct engineering-scale solar detoxification of water experiments. We have assessed the effect of catalyst (titanium dioxide) loading and hydrogen peroxide concentration on the destruction of a model organic compound, salicylic acid. We found the optimal catalyst loading to be 0.1% for the conditions of 30 ppM salicylic acid and 300 ppM hydrogen peroxide. Hydrogen peroxide affected the reaction rates significantly, increasing the reaction rate over 4 times for stoichiometric amounts and more than 19 times for 10 times the stoichiometric amount. Destruction rates appear to be linearly proportional to the ultraviolet light intensity, though more data are needed to fully establish the relation. Initial tests with an actual water pollutant, trichloroethylene, demonstrated destruction from 1.2 ppM to less than 50 ppB in less than 5 minutes of exposure with a trough system. 15 refs., 6 figs.

  11. Ground-water sapping processes, Western Desert, Egypt

    SciTech Connect

    Luo, W.; Arvidson, R.E.; Sultan, M.; Becker, R.; Crombie, M.K.; Sturchio, N.; Alfy, Z.E.

    1997-01-01

    Depressions of the Western Desert of Egypt (specifically, Kharga, Farafra, and Kurkur regions) are mainly occupied by shales that are impermeable, but easily erodible by rainfall and runoff, whereas the surrounding plateaus are composed of limestones that are permeable and more resistant to fluvial erosion under semiarid to arid conditions. A computer simulation model was developed to quantify the ground-water sapping processes, using a cellular automata algorithm with coupled surface runoff and ground-water flow for a permeable, resistant layer over an impermeable, friable unit. Erosion, deposition, slumping, and generation of spring-derived tufas were parametrically modeled. Simulations using geologically reasonable parameters demonstrate that relatively rapid erosion of the shales by surface runoff, ground-water sapping, and slumping of the limestones, and detailed control by hydraulic conductivity inhomogeneities associated with structures explain the depressions, escarpments, and associated landforms and deposits. Using episodic wet pulses, keyed by {delta}{sup 18}O deep-sea core record, the model produced tufa ages that are statistically consistent with the observed U/Th tufa ages. This result supports the hypothesis that northeastern African wet periods occurred during interglacial maxima. This {delta}{sup 18}O-forced model also replicates the decrease in fluvial and sapping activity over the past million years. 65 refs., 21 figs., 2 tabs.

  12. Co-occurrence of Photochemical and Microbiological Transformation Processes in Open-Water Unit Process Wetlands.

    PubMed

    Prasse, Carsten; Wenk, Jannis; Jasper, Justin T; Ternes, Thomas A; Sedlak, David L

    2015-12-15

    The fate of anthropogenic trace organic contaminants in surface waters can be complex due to the occurrence of multiple parallel and consecutive transformation processes. In this study, the removal of five antiviral drugs (abacavir, acyclovir, emtricitabine, lamivudine and zidovudine) via both bio- and phototransformation processes, was investigated in laboratory microcosm experiments simulating an open-water unit process wetland receiving municipal wastewater effluent. Phototransformation was the main removal mechanism for abacavir, zidovudine, and emtricitabine, with half-lives (t1/2,photo) in wetland water of 1.6, 7.6, and 25 h, respectively. In contrast, removal of acyclovir and lamivudine was mainly attributable to slower microbial processes (t1/2,bio = 74 and 120 h, respectively). Identification of transformation products revealed that bio- and phototransformation reactions took place at different moieties. For abacavir and zidovudine, rapid transformation was attributable to high reactivity of the cyclopropylamine and azido moieties, respectively. Despite substantial differences in kinetics of different antiviral drugs, biotransformation reactions mainly involved oxidation of hydroxyl groups to the corresponding carboxylic acids. Phototransformation rates of parent antiviral drugs and their biotransformation products were similar, indicating that prior exposure to microorganisms (e.g., in a wastewater treatment plant or a vegetated wetland) would not affect the rate of transformation of the part of the molecule susceptible to phototransformation. However, phototransformation strongly affected the rates of biotransformation of the hydroxyl groups, which in some cases resulted in greater persistence of phototransformation products. PMID:26562588

  13. Effect of water hardness on the ability of water to rinse bacteria from the skin of processed broilers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of water hardness on the ability of water to rinse bacteria from the skin of processed broiler chickens was examined. Artificial hard water with a total hardness of 200 ppm (very hard water) was prepared by dissolving calcium chloride (CaCl2) and magnesium chloride hexahydrate (MgCl2 •6H2...

  14. Process studies of water percolation in a Mediterranean karst area

    NASA Astrophysics Data System (ADS)

    Lange, J.; Arbel, Y.; Greenbaum, N.; Grodek, T.

    2009-04-01

    In drylands karst environments comprise large areas and their groundwater resources are important for local and regional water supply. Recharge estimations are usually based on long term averages and hence uncertain, because they do not explicitly account for the accentuated variability of dryland precipitation, where a large fraction of annual rainfall is concentrated in a small number of high magnitude events. To provide process information in adequate temporal resolution the present study directly investigates percolation processes in an Eastern Mediterranean karst system, Mt. Carmel, Israel. Therefore the drip response of stalactites in a karstic cave 28m below a sprinkling experiment was measured. Besides hydrometric measurements (soil moisture, surface runoff, stalactite dripping rates) also tracers were applied. Sprinkling water was pumped from two wells of the underlying karst aquifer. The experiment took place at the end of the dry season. Simulating a series of two high intensity storms, 190 mm of artificial rainfall was sprinkled over two days on a 143 m2 plot. Two types of tracers were used: (i) the relatively high conductivity of the sprinkling water facilitated the separation between old (pre-sprinkling) and new (sprinkling) water by mixing analysis, (ii) before second day sprinkling bromide was injected as a dirac impulse on top of selected soil pockets to facilitate direct insights into percolation fluxes. On the plot surface saturation excess runoff was observed towards the end of first day sprinkling and entire soil saturation occurred down to the deepest soil moisture sensor. During the second day the entire soil reached quickly saturation and remained at field capacity until the end of data collection. In the cave the drip response depended on stalactite type: (i) perennial stalactites were already dripping continuously before sprinkling onset. Conductivity dynamics resulted in high percentages of pre-sprinkling water suggesting continuous input

  15. Pesticides removal in the process of drinking water production.

    PubMed

    Ormad, M P; Miguel, N; Claver, A; Matesanz, J M; Ovelleiro, J L

    2008-03-01

    The aim of this research work was to study the effectiveness of the treatments commonly used in drinking water plants in Spain to degrade 44 pesticides systematically detected in the Ebro River Basin. The pesticides studied are: alachlor, aldrin, ametryn, atrazine, chlorfenvinfos, chlorpyrifos, pp'-DDD, op'-DDE, op'-DDT, pp'-DDT, desethylatrazine, 3,4-dichloroaniline, 4,4'-dichlorobenzophenone, dicofol, dieldrin, dimethoate, diuron, alpha-endosulphan, endosulphan-sulphate, endrin, alpha-HCH, beta-HCH, gamma-HCH, delta-HCH, heptachlor, heptachlor epoxide A, heptachlor epoxide B, hexachlorobenzene, isodrin, 4-isopropylaniline, isoproturon, metholachlor, methoxychlor, molinate, parathion methyl, parathion ethyl, prometon, prometryn, propazine, simazine, terbuthylazine, terbutryn, tetradifon and trifluralin. The techniques applied are: preoxidation by chlorine or ozone, chemical precipitation with aluminium sulphate and activated carbon adsorption. Oxidation by chlorine removes 60% of the studied pesticides, although combining this technique with a coagulation-flocculation-decantation process is more effective. The disadvantage of this treatment is the formation of trihalomethanes. Oxidation by ozone removes 70% of the studied pesticides. Although combination with a subsequent coagulation-flocculation-decantation process does not improve the efficiency of the process, combination with an activated-carbon absorption process gives rise to 90% removal of the studied pesticides. This technique was found to be the most efficient among the techniques studied for degrading the majority of the studied pesticides. PMID:18023468

  16. Photochemical Transformation Processes in Sunlit Surface Waters (Invited)

    NASA Astrophysics Data System (ADS)

    Vione, D.

    2013-12-01

    Photochemical reactions are major processes in the transformation of hardly biodegradable xenobiotics in surface waters. They are usually classified into direct photolysis and indirect or sensitised degradation. Direct photolysis requires xenobiotic compounds to absorb sunlight, and to get transformed as a consequence. Sensitised transformation involves reaction with transient species (e.g. °OH, CO3-°, 1O2 and triplet states of chromophoric dissolved organic matter, 3CDOM*), photogenerated by so-called photosensitisers (nitrate, nitrite and CDOM). CDOM is a major photosensitiser: is it on average the main source of °OH (and of CO3-° as a consequence, which is mainly produced upon oxidation by °OH of carbonate and bicarbonate) and the only important source of 1O2 and 3CDOM* [1, 2]. CDOM origin plays a key role in sensitised processes: allochthonous CDOM derived from soil runoff and rich in fulvic and humic substances is usually more photoactive than autochthonous CDOM (produced by in-water biological processes and mainly consisting of protein-like material) or of CDOM derived from atmospheric deposition. An interesting gradual evolution of CDOM origin and photochemistry can be found in mountain lakes across the treeline, which afford a gradual transition of allochthonous- autochtonous - atmopheric CDOM when passing from trees to alpine meadows to exposed rocks [3]. Another important issue is the sites of reactive species photoproduction in CDOM. While there is evidence that smaller molecular weight fractions are more photoactive, some studies have reported considerable 1O2 reactivity in CDOM hydrophobic sites and inside particles [4]. We have recently addressed the problem and found that dissolved species in standard humic acids (hydrodynamic diameter < 0.1 μm) account for the vast majority of 1O2 and triplet states photoproduction. In hydrophobic sites of particles, the formation rate of 1O2 is considerably lower than in the solution bulk [5], but the absence

  17. Petroleum coke adsorption as a water management option for oil sands process-affected water.

    PubMed

    Zubot, Warren; MacKinnon, Michael D; Chelme-Ayala, Pamela; Smith, Daniel W; Gamal El-Din, Mohamed

    2012-06-15

    Water is integral to both operational and environmental aspects of the oil sands industry. A water treatment option based on the use of petroleum coke (PC), a by-product of bitumen upgrading, was examined as an opportunity to reduce site oil sands process-affected water (OSPW) inventories and net raw water demand. Changes in OSPW quality when treated with PC included increments in pH levels and concentrations of vanadium, molybdenum, and sulphate. Constituents that decreased in concentration after PC adsorption included total acid-extractable organics (TAO), bicarbonate, calcium, barium, magnesium, and strontium. Changes in naphthenic acids (NAs) speciation were observed after PC adsorption. A battery of bioassays was used to measure the OSPW toxicity. The results indicated that untreated OSPW was toxic towards Vibrio fischeri and rainbow trout. However, OSPW treated with PC at appropriate dosages was not acutely toxic towards these test organisms. Removal of TAO was found to be an adsorption process, fitting the Langmuir and Langmuir-Freundlich isotherm models. For TAO concentrations of 60 mg/L, adsorption capacities ranged between 0.1 and 0.46 mg/g. This study demonstrates that freshly produced PC from fluid cokers provides an effective treatment of OSPW in terms of key constituents' removal and toxicity reduction. PMID:22575375

  18. Pressurized fluidized-bed hydroretorting of Eastern oil shales -- Beneficiation. Topical report for Task 4, Beneficiation research

    SciTech Connect

    Roberts, M.J.; Lau, F.S.; Mensinger, M.C.; Schultz, C.W.; Mehta, R.K.; Lamont, W.E.; Chiang, S.H.; Venkatadri, R.; Misra, M.

    1992-05-01

    The Mineral Resources Institute at the University of Alabama, along with investigators from the University of Pittsburgh and the University of Nevada-Reno, have conducted a research program on the beneficiation, of Eastern oil shales. The objective of the research program was to evaluate and adapt those new and emerging technologies that have the potential to improve the economics of recovering oil from Eastern oil shales. The technologies evaluated in this program can be grouped into three areas: fine grinding kerogen/mineral matter separation, and waste treatment and disposal. Four subtasks were defined in the area of fine grinding. They were as follows: Ultrasonic Grinding, Pressure Cycle Comminution, Stirred Ball Mill Grinding, and Grinding Circuit Optimization. The planned Ultrasonic grinding research was terminated when the company that had contracted to do the research failed. Three technologies for effecting a separation of kerogen from its associated mineral matter were evaluated: column flotation, the air-sparged hydrocyclone, and the LICADO process. Column flotation proved to be the most effective means of making the kerogen/mineral matter separation. No problems are expected in the disposal of oil shale tailings. It is assumed that the tailings will be placed in a sealed pond and the water recycled to the plant as is the normal practice. It may be advantageous, however, to conduct further research on the recovery of metals as by-products and to assess the market for tailings as an ingredient in cement making.

  19. Draix multidisciplinary observatory for water and sediment processes

    NASA Astrophysics Data System (ADS)

    Le Bouteiller, C.; Mathys, N.; Liébault, F.; Klotz, S.

    2013-12-01

    Over the last decades, much progress has been done in the modeling and conceptualizing of surface processes. Testing theories and models requires field data, and possibly long-term time series. Here we present a 30-year old field observatory dedicated to water and sediment fluxes in the French Alps. Draix observatory is located in a badland area of the French Alps (shale lithology), and includes several subcatchments which differ in size (0.001 to 1 km2) and vegetation coverage (bare soil or forest). Climate is mountainous and Mediterranean, characterized with summer storm-induced floods and winter frost. Data collected includes climatic data (rainfall, temperature) and water and sediment fluxes (discharge at the outlet of each subcatchment, suspended load and bedload fluxes). High frequency monitoring (minute/hour) is used to capture flood dynamics. Some soil hydraulic and geophysical properties, lidar scans and vegetation maps are also available. The combination of an erodible badland morphology and tough climatic conditions induces very high erosion rates and sediment yield (up to 70 tons/ha/yr). Observed erosion processes include landslides, small-scale debris flows, gully formation, weathering on the slopes and in the riverbeds, hyperconcentrated flows and in-transport sediment abrasion. The sediment response is highly non-linear with a strong seasonal pattern of storage and scour in the bed. Current research on Draix observatory is multidisciplinary and involves hydraulic engineers, hydrologists, geomorphologists, soil scientists and restoration ecologists. Fast rates of geomorphic changes, well-constrained sediment budgets and long data series are some of the advantages of this site for the study of earth surface processes. Our data is available for the community and we welcome everyone who is interested in collaborating on it.

  20. OCCUPATIONAL ALLERGY AND ASTHMA AMONG SALT WATER FISH PROCESSING WORKERS

    PubMed Central

    Jeebhay, Mohamed F; Robins, Thomas G; Miller, Mary E; Bateman, Eric; Smuts, Marius; Baatjies, Roslynn; Lopata, Andreas L

    2010-01-01

    Background Fish processing is a common economic activity in Southern Africa. The aim of this study was to determine the prevalence and host determinants of allergic symptoms, allergic sensitization, bronchial hyper-responsiveness and asthma among workers processing saltwater fish. Methods A cross-sectional study was conducted on 594 currently employed workers in two processing plants involved in pilchard canning and fishmeal processing. A modified European Community Respiratory Health Survey (ECRHS) questionnaire was used. Skin prick tests (SPT) used extracts of common airborne allergens, fresh fish (pilchard, anchovy, maasbanker, mackerel, red eye) and fishmeal. Spirometry and methacholine challenge tests (tidal breathing method) used ATS guidelines. Results Work-related ocular-nasal symptoms (26%) were more common than asthma symptoms (16%). The prevalence of atopy was 36%, while 7% were sensitized to fish species and 26% had NSBH (PC20 ≤ 8 mg/ml or ≥12% increase in FEV1 post bronchodilator). The prevalence of probable occupational asthma was 1.8% and fish allergic rhino-conjunctivitis 2.6%. Women were more likely to report work-related asthma symptoms (OR=1.94) and have NSBH (OR=3.09), while men were more likely to be sensitized to fish (OR=2.06) and have airway obstruction (OR=4.17). Atopy (OR=3.16) and current smoking (OR=2.37), but not habitual seafood consumption were associated with sensitization to fish. Conclusions Based on comparison with previous published studies, the prevalence of occupational asthma to salt water fish is lower than due to shellfish. The gendered distribution of work and exposures in fish processing operations together with atopy and cigarette smoking are important determinants of occupational allergy and asthma. PMID:18726880

  1. Developing a demand model integrating end uses of water (DMEUW): structure and process of integration.

    PubMed

    Sarker, R C; Gato-Trinidad, S

    2015-01-01

    The process of developing an integrated water demand model integrating end uses of water has been presented. The model estimates and forecasts average daily water demand based on the end-use pattern and trend of residential water consumption, daily rainfall and temperature, water restrictions and water conservation programmes. The end-use model uses the latest end-use data set collected from Yarra Valley Water, Australia. A computer interface has also been developed using hypertext markup language and hypertext pre-processor. The developed model can be used by water authorities and water resource planners in forecasting water demand and by household owners in determining household water consumption. PMID:25746644

  2. Coastal processes influencing water quality at Great Lakes beaches

    USGS Publications Warehouse

    U.S. Geological Survey

    2013-01-01

    In a series of studies along the Great Lakes, U.S. Geological Survey scientists are examining the physical processes that influence concentrations of fecal indicator bacteria and related pathogens at recreational beaches. These studies aim to estimate human health risk, improve management strategies, and understand the fate and transport of microbes in the nearshore area. It was determined that embayed beaches act as traps, accumulating Escherichia coli (E. coli) and other bacteria in the basin and even in beach sand. Further, shear stress and wave run-up could resuspend accumulated bacteria, leading to water-contamination events. These findings are being used to target beach design and circulation projects. In previous research, it was determined that E. coli followed a diurnal pattern, with concentrations decreasing throughout the day, largely owing to solar inactivation, but rebounding overnight. Studies at a Chicago beach identified the impact of wave-induced mass transport on this phenomenon, a finding that will extend our understanding of bacterial fate in the natural environment. In another series of studies, scientists examined the impact of river outfalls on bacteria concentrations, using mechanistic and empirical modeling. Through these studies, the models can indicate range and extent of impact, given E. coli concentration in the source water. These findings have been extended to extended lengths of coastlines and have been applied in beach management using empirical predictive modeling. Together, these studies are helping scientists identify and eliminate threats to human and coastal health.

  3. Diaromatic sulphur-containing 'naphthenic' acids in process waters.

    PubMed

    West, Charles E; Scarlett, Alan G; Tonkin, Andrew; O'Carroll-Fitzpatrick, Devon; Pureveen, Jos; Tegelaar, Erik; Gieleciak, Rafal; Hager, Darcy; Petersen, Karina; Tollefsen, Knut-Erik; Rowland, Steven J

    2014-03-15

    Polar organic compounds found in industrial process waters, particularly those originating from biodegraded petroleum residues, include 'naphthenic acids' (NA). Some NA have been shown to have acute toxicity to fish and also to produce sub-lethal effects. Whilst some of these toxic effects are produced by identifiable carboxylic acids, acids such as sulphur-containing acids, which have been detected, but not yet identified, may produce others. Therefore, in the present study, the sulphur-containing acids in oil sands process water were studied. A fraction (ca 12% by weight of the total NA containing ca 1.5% weight sulphur) was obtained by elution of methylated NA through an argentation solid phase extraction column with diethyl ether. This was examined by multidimensional comprehensive gas chromatography-mass spectrometry (GCxGC-MS) in both nominal and high resolution mass accuracy modes and by GCxGC-sulphur chemiluminescence detection (GCxGC-SCD). Interpretation of the mass spectra and retention behaviour of methyl esters of several synthesised sulphur acids and the unknowns allowed delimitation of the structures, but not complete identification. Diaromatic sulphur-containing alkanoic acids were suggested. Computer modelling of the toxicities of some of the possible acids suggested they would have similar toxicities to one another and to dehydroabietic acid. However, the sulphur-rich fraction was not toxic or estrogenic to trout hepatocytes, suggesting the concentrations of sulphur acids in this sample were too low to produce any such effects in vitro. Further samples should probably be examined for these compounds. PMID:24252453

  4. Water reuse in the l-lysine fermentation process

    SciTech Connect

    Hsiao, T.Y.; Glatz, C.E.

    1996-02-05

    L-Lysine is produced commercially by fermentation. As is typical for fermentation processes, a large amount of liquid waste is generated. To minimize the waste, which is mostly the broth effluent from the cation exchange column used for l-lysine recovery, the authors investigated a strategy of recycling a large fraction of this broth effluent to the subsequent fermentation. This was done on a lab-scale process with Corynebacterium glutamicum ATCC 21253 as the l-lysine-producing organisms. Broth effluent from a fermentation in a defined medium was able to replace 75% of the water for the subsequent batch; this recycle ratio was maintained for 3 sequential batches without affecting cell mass and l-lysine production. Broth effluent was recycled at 50% recycle ratio in a fermentation in a complex medium containing beet molasses. The first recycle batch had an 8% lower final l-lysine level, but 8% higher maximum cell mass. In addition to reducing the volume of liquid waste, this recycle strategy has the additional advantage of utilizing the ammonium desorbed from the ion-exchange column as a nitrogen source in the recycle fermentation. The major problem of recycling the effluent from the complex medium was in the cation-exchange operation, where column capacity was 17% lower for the recycle batch. The loss of column capacity probably results from the buildup of cations competing with l-lysine for binding.

  5. Water recovery and solid waste processing for aerospace and domestic applications

    NASA Technical Reports Server (NTRS)

    Murawczyk, C.

    1973-01-01

    The work is described accomplished in compiling information needed to establish the current water supply and waste water processing requirements for dwellings, and for developing a preliminary design for a waste water to potable water management system. Data generated was used in formulation of design criteria for the preliminary design of the waste water to potable water recycling system. The system as defined was sized for a group of 500 dwelling units. Study tasks summarized include: water consumption, nature of domestic water, consumer appliances for low water consumption, water quality monitoring, baseline concept, and current and projected costs.

  6. Geohydrologic feasibility study of the Piceance Basin of Colorado for the potential applicability of Jack W. McIntyre`s patented gas/produced water separation process

    SciTech Connect

    Kieffer, F.

    1994-02-01

    Geraghty & Miller, Inc. of Midland, Texas conducted geologic and hydrologic feasibility studies of the potential applicability of Jack McIntyre`s patented process for the recovery of natural gas from coalbed/sand formations in the Piceance Basin through literature surveys. Jack McIntyre`s tool separates produced water from gas and disposes of the water downhole into aquifers unused because of poor water quality, uneconomic lifting costs or poor aquifer deliverability. The beneficial aspects of this technology are two fold. The process increases the potential for recovering previously uneconomic gas resources by reducing produced water lifting, treatment and disposal costs. Of greater importance is the advantage of lessening the environmental impact of produced water by downhole disposal. Results from the survey indicate that research in the Piceance Basin includes studies of the geologic, hydrogeologic, conventional and unconventional recovery oil and gas technologies. Available information is mostly found centered upon the geology and hydrology for the Paleozoic and Mesozoic sediments. Lesser information is available on production technology because of the limited number of wells currently producing in the basin. Limited information is available on the baseline geochemistry of the coal/sand formation waters and that of the potential disposal zones. No determination was made of the compatibility of these waters. The study also indicates that water is often produced in variable quantities with gas from several gas productive formations which would indicate that there are potential applications for Jack McIntyre`s patented tool in the Piceance Basin.

  7. [Potentially beneficial effects of climate changes].

    PubMed

    Hitz, Mette Friberg; Jensen, Jens Erik Beck

    2009-10-26

    Climate changes have many unbeneficial effects on human health, but may also have beneficial effects. An increased mean temperature reduces the incidence of death due to hypothermia and cardiovascular disease and may increase exercise frequency. As the ozone layer decreases, the synthesis of vitamin D in the organism will also increase. An increased level of plasma vitamin D has beneficial effects on bone- and muscle health, seems to reduce cancer incidence and mortality and reduces the prevalence of autoimmune- and cardiovascular disease. PMID:19857402

  8. Example process hazard analysis of a Department of Energy water chlorination process

    SciTech Connect

    Not Available

    1993-09-01

    On February 24, 1992, the Occupational Safety and Health Administration (OSHA) released a revised version of Section 29 Code of Federal Regulations CFR Part 1910 that added Section 1910.119, entitled ``Process Safety Management of Highly Hazardous Chemicals`` (the PSM Rule). Because US Department of Energy (DOE) Orders 5480.4 and 5483.1A prescribe OSHA 29 CFR 1910 as a standard in DOE, the PSM Rule is mandatory in the DOE complex. A major element in the PSM Rule is the process hazard analysis (PrHA), which is required for all chemical processes covered by the PSM Rule. The PrHA element of the PSM Rule requires the selection and application of appropriate hazard analysis methods to systematically identify hazards and potential accident scenarios associated with processes involving highly hazardous chemicals (HHCs). The analysis in this report is an example PrHA performed to meet the requirements of the PSM Rule. The PrHA method used in this example is the hazard and operability (HAZOP) study, and the process studied is the new Hanford 300-Area Water Treatment Facility chlorination process, which is currently in the design stage. The HAZOP study was conducted on May 18--21, 1993, by a team from the Westinghouse Hanford Company (WHC), Battelle-Columbus, the DOE, and Pacific Northwest Laboratory (PNL). The chlorination process was chosen as the example process because it is common to many DOE sites, and because quantities of chlorine at those sites generally exceed the OSHA threshold quantities (TQs).

  9. Influence of water hardness on the ability of water to rinse bacteria from the skin of processed broilers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Experiments were conducted to examine the effect of water hardness on the ability of water to rinse bacteria from the skin of processed broiler chickens. Very hard water (200 ppm total hardness) was prepared by dissolving 0.38 g calcium chloride (CaCl2) and 0.175 g magnesium chloride hexahydrate (Mg...

  10. WATER QUALITY EFFECTS OF HYPORHEIC PROCESSING IN A LARGE RIVER

    EPA Science Inventory

    Water quality changes along hyporheic flow paths may have
    important effects on river water quality and aquatic habitat. Previous
    studies on the Willamette River, Oregon, showed that river water follows
    hyporheic flow paths through highly porous deposits created by river...

  11. [Prebiotics: concept, properties and beneficial effects].

    PubMed

    Corzo, N; Alonso, J L; Azpiroz, F; Calvo, M A; Cirici, M; Leis, R; Lombó, F; Mateos-Aparicio, I; Plou, F J; Ruas-Madiedo, P; Rúperez, P; Redondo-Cuenca, A; Sanz, M L; Clemente, A

    2015-01-01

    Prebiotics are non-digestible food ingredients (oligosaccharides) that reach the colon and are used as substrate by microorganisms producing energy, metabolites and micronutrients used for the host; in addition they also stimulate the selective growth of certain beneficial species (mainly bifidobacteria and lactobacilli) in the intestinal microbiota. In this article, a multidisciplinary approach to understand the concept of prebiotic carbohydrates, their properties and beneficial effects in humans has been carried out. Definitions of prebiotics, reported by relevant international organizations and researchers, are described. A comprehensive description of accepted prebiotics having strong scientific evidence of their beneficial properties in humans (inulin-type fructans, FOS, GOS, lactulose and human milk oligosaccharides) is reported. Emerging prebiotics and those which are in the early stages of study have also included in this study. Taken into account that the chemical structure greatly influences carbohydrates prebiotic properties, the analytical techniques used for their analysis and characterization are discussed. In vitro and in vivo models used to evaluate the gastrointestinal digestion, absorption resistance and fermentability in the colon of prebiotics as well as major criteria to design robust intervention trials in humans are described. Finally, a comprehensive summary of the beneficial effects of prebiotics for health at systemic and intestinal levels is reported. The research effort on prebiotics has been intensive in last decades and has demonstrated that a multidisciplinary approach is necessary in order to claim their health benefits. PMID:25659062

  12. 7 CFR 1421.6 - Beneficial interest.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., title and control of the commodity and beneficial interest in the commodity as specified in 7 CFR 1421.6..., feedlot, ethanol plant, wool pool, feed mill, feed or grain bank, or other facilities as determined by CCC... entities such as a dairy, feedlot, ethanol plant, wool pool, feed mill, feed or grain bank, or...

  13. 7 CFR 1421.6 - Beneficial interest.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., title and control of the commodity and beneficial interest in the commodity as specified in 7 CFR 1421.6..., feedlot, ethanol plant, wool pool, feed mill, feed or grain bank, or other facilities as determined by CCC... entities such as a dairy, feedlot, ethanol plant, wool pool, feed mill, feed or grain bank, or...

  14. 7 CFR 1421.6 - Beneficial interest.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., title and control of the commodity and beneficial interest in the commodity as specified in 7 CFR 1421.6..., feedlot, ethanol plant, wool pool, feed mill, feed or grain bank, or other facilities as determined by CCC... entities such as a dairy, feedlot, ethanol plant, wool pool, feed mill, feed or grain bank, or...

  15. 7 CFR 1421.6 - Beneficial interest.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., title and control of the commodity and beneficial interest in the commodity as specified in 7 CFR 1421.6..., feedlot, ethanol plant, wool pool, feed mill, feed or grain bank, or other facilities as determined by CCC... entities such as a dairy, feedlot, ethanol plant, wool pool, feed mill, feed or grain bank, or...

  16. 7 CFR 1421.6 - Beneficial interest.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., title and control of the commodity and beneficial interest in the commodity as specified in 7 CFR 1421.6..., feedlot, ethanol plant, wool pool, feed mill, feed or grain bank, or other facilities as determined by CCC... entities such as a dairy, feedlot, ethanol plant, wool pool, feed mill, feed or grain bank, or...

  17. Introduction: Mass production for beneficial organisms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There are numerous organisms that are beneficial to humans and the environment. Some of these organisms can be cultured on a large scale. However, certain key aspects in production technology and maximization of cost efficiency are lacking for many organisms. The purpose of this book is to assemb...

  18. Induced Systemic Resistance by Beneficial Microbes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Beneficial microbes in the microbiome of plant roots improve plant health. Induced systemic esistance (ISR) emerged as an important mechanism by which selected plant growth–promoting bacteria and fungi in the rhizosphere prime the whole plant body for enhanced defense against a broad range of pathog...

  19. Water based demulsifier formulation and process for its use in dewatering and desalting crude hydrocarbon oils

    SciTech Connect

    Merchant, P. Jr.; Lacy, S.M.

    1988-04-12

    A process for separating emulsified water from water-in-crude oil emulsion produced from underground reservoirs is described which comprises: (a) dispersing from 1 volume ppm to 50 volume ppm of a water soluble demulsifier into the crude oil containing water emulsified therein the parts being based on the volume of the oil; (b) permitting the water to separate from the crude oil; and (c) removing the water from the crude oil.

  20. Beneficiation of ilmenite from lumar analog

    NASA Technical Reports Server (NTRS)

    Ramadorai, G.; Dean, R.

    1992-01-01

    must be emphasized that improved grades and recoveries can be obtained with the -400 mesh fines. However, beneficiation of these extremely fine materials is not possible in a practical process scheme.

  1. Water recovery and solid waste processing for aerospace and domestic applications. Volume 1: Final report

    NASA Technical Reports Server (NTRS)

    Murray, R. W.

    1973-01-01

    A comprehensive study of advanced water recovery and solid waste processing techniques employed in both aerospace and domestic or commercial applications is reported. A systems approach was used to synthesize a prototype system design of an advanced water treatment/waste processing system. Household water use characteristics were studied and modified through the use of low water use devices and a limited amount of water reuse. This modified household system was then used as a baseline system for development of several water treatment waste processing systems employing advanced techniques. A hybrid of these systems was next developed and a preliminary design was generated to define system and hardware functions.

  2. Beneficiating value-added products from combustion fly ash

    SciTech Connect

    Soong, Y.; McMahan, L.; Gray, D.; Fauth, T.A.; Link, K.; Champagne, J.; Schoffstall, M.R.

    1999-07-01

    Two separation techniques, a dry triboelectrostatic and a wet agglomeration column technique, were developed for beneficiating value-added products from combustion fly ashes. The dry triboelectrostatic separation of fly ash derived from both coal combustion and the combustion of coal mixed with 10 wt.% biomass were conducted. Two different types of triboelectrostatic separators - parallel plate and louvered plate separators - were used for this study. It was found that the quality of separation was dependent upon the nature of fly ash and the configuration of the separator utilized. The development of an oil agglomeration process for the recovery of unburned carbon from fly ash required the optimization of the process. The beneficiation was performed using the six-foot agglomeration column under batch mode conditions. A systematic study on the effects of agglomerant, agitation speeds, air flows, feed rates and agglomerant/ash ratios on the quality of beneficiation was conducted. Preliminary results indicate that the unburned carbon products with the purity of 66 to 71% and the yields of 55 to 57% could be obtained under the optimum conditions studied. Selected applications (i.e., activated carbon, molecular sieves and catalytic application) from the fly ash derived products were explored.

  3. Water evaporation particularities in the process of forest fire extinguishing

    NASA Astrophysics Data System (ADS)

    Strizhak, Pavel A.; Volkov, Roman S.; Vysokomornaya, Olga V.; Voytkov, Ivan S.

    2015-01-01

    Numerical simulation of water massif motion through the high temperature gases corresponding to the typical conditions of forest fires was carried out. Maximal values of part by volume of liquid evaporating from water massif under its motion through the flaming burning area were determined when solving the heat and mass transfer problem under the conditions of endothermic phase transformations. Influence of liquid phase transition heat on the heat and mass transfer conditions on the track of water massif was determined. The expediency of polydisperse interspaced in time and space atomization of water massifs under the large-scale (especially, forest fires) fire extinguishing was proved.

  4. Boiling water neutronic reactor incorporating a process inherent safety design

    DOEpatents

    Forsberg, C.W.

    1985-02-19

    A boiling-water reactor core is positioned within a prestressed concrete reactor vessel of a size which will hold a supply of coolant water sufficient to submerge and cool the reactor core by boiling for a period of at least one week after shutdown. Separate volumes of hot, clean (nonborated) water for cooling during normal operation and cool highly borated water for emergency cooling and reactor shutdown are separated by an insulated wall during normal reactor operation with contact between the two water volumes being maintained at interfaces near the top and bottom ends of the reactor vessel. Means are provided for balancing the pressure of the two water volumes at the lower interface zone during normal operation to prevent entry of the cool borated water into the reactor core region, for detecting the onset of excessive power to coolant flow conditions in the reactor core and for detecting low water levels of reactor coolant. Cool borated water is permitted to flow into the reactor core when low reactor coolant levels or excessive power to coolant flow conditions are encountered.

  5. Role of water hardness in rinsing bacteria from the skin of processed broiler chickens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of water hardness on the ability of water to rinse bacteria from the skin of processed broiler chickens was examined. Artificial hard water with a total hardness of 200 ppm (very hard water) was prepared by dissolving calcium chloride (CaCl2) and magnesium chloride hexahydrate (MgCl2 •6H2...

  6. Dose assessment for process water tunnels at Hanford Site.

    SciTech Connect

    Kamboj, S.; Yu, C.; LePoire, D.; Environmental Assessment

    2000-01-01

    The RESRAD-BUILD and RESRAD computer codes were used for dose assessment of the 105-C Process Water Tunnels at the Hanford Site. The evaluation assessed three different exposure scenarios: recreational use, tunnel maintenance worker, and residential use. The recreationist and maintenance worker scenarios were evaluated by using RESRAD-BUILD, a computer model for analyzing the radiological doses resulting from remediation and occupancy of structures contaminated with radioactive material. The recreationist was assumed to use the tunnels as an overnight shelter for eight hours per day for one week. The maintenance worker was assumed to spend 20 hours per year working in the tunnel. Six exposure pathways were considered for both scenarios in dose assessment. The gradual removal of surface contamination over time and ingrowth of decay products were considered in calculating the dose at different times. The maximum dose would occur immediately after the release and was estimated to be 1.9 mrem/yr for the recreationist and 0.9 mrem/yr for the maintenance worker. The residential scenario was evaluated by using the probabilistic RESRAD code. It was assumed that total activity from the tunnels would be brought into the near-surface layer by future human activities. Eight exposure pathways were considered. The maximum yearly dose for this very unlikely scenario would occur immediately after the release and was less than 4 mrem/yr for the maximally exposed individual. The assessment demonstrates that both codes are suitable for nuclear facility decontamination and decommissioning sites, where buildings and structures with residual radioactivity must be evaluated to facilitate property transfer or release.

  7. Combustion characterization of beneficiated coal-based fuels. Quarterly report No. 12, January--March 1992

    SciTech Connect

    Chow, O.K.; Nsakala, N.Y.

    1992-08-01

    The Pittsburgh Energy Technology Center of the US Department of Energy has contracted with Combustion Engineering, Inc. (CE) to perform a five-year project on ``Combustion Characterization of Beneficiated Coal-Based Fuels.`` The beneficiated coals are produced by other contractors under the DOE Coal Preparation Program. Several contractor-developed advanced coal cleaning processes are run at pilot-scale cleaning facilities to produce 20-ton batches of fuels for shipment to CE`s laboratory in Windsor, Connecticut. CE then processes the products into either a coal-water fuel (CWF) or a dry microfine pulverized coa1 (DMPC) form for combustion testing. The objectives of this project include: (1) the development of an engineering data base which will provide detailed information on the properties of BCFs influencing combustion, ash deposition, ash erosion, particulate collection, and emissions; and (2) the application of this technical data base to predict the performance and economic impacts of firing the BCFs in various commercial boiler designs. The technical approach used to develop the technical data includes: bench-scale fuel property, combustion, and ash deposition tests; pilot-scale combustion and ash effects tests; and full-scale combustion tests. During the third quarter of 1992, the following technical progress was made: Continued analyses of drop tube furnace samples to determine devolatilization kinetics; completed editing of the fifth quarterly report and sent it to the publishing office; and prepared two technical papers for conferences.

  8. Combustion characterization of beneficiated coal-based fuels. Quarterly report No. 10, July--September 1991

    SciTech Connect

    Chow, O.K.; Nsakala, N.Y.

    1991-11-01

    The Pittsburgh Energy Technology Center of the US Department of Energy has contracted with Combustion Engineering, Inc. (CE) to perform a five-year project on ``Combustion Characterization of Beneficiated Coal-Based Fuels.`` The beneficiated coals are produced by other contractors under the DOE Coal Preparation Program. Several contractor-developed advanced coal cleaning processes are run at pilot-scale cleaning facilities to produce 20-ton batches of fuels for shipment to CE`s laboratory in Windsor, Connecticut. CE then processes the products into either a coal-water fuel (CWF) or a dry microfine pulverized coa1 (DMPC) form for combustion testing. The objectives of this project include: (1) the development of an engineering data base which will provide detailed information on the properties of BCFs influencing combustion, ash deposition, ash erosion, particulate collection, and emissions; and (2) the application of this technical data base to predict the performance and economic impacts of firing the BCFs in various commercial boiler designs. During the third quarter of 1991, the following technical progress was made: Continued analyses of drop tube furnace samples to determine devolatilization kinetics; completed analyses of the samples from the pilot-scale ash deposition tests of unweathered Upper Freeport fuels; completed editing of the first three quarterly reports and sent them to the publishing office; presented the project results at the Annual Contractors` Conference.

  9. Combustion characterization of beneficiated coal-based fuels. Quarterly report No. 14, July--September 1992

    SciTech Connect

    Chow, O.K.; Nsakala, N.Y.

    1993-02-01

    The Pittsburgh Energy Technology Center of the US Department of Energy has contracted with Combustion Engineering, Inc. (CE) to perform a five-year project on ``Combustion Characterization of Beneficiated Coal-Based Fuels.`` The beneficiated coals are produced by other contractors under the DOE Coal Preparation Program. Several contractor-developed advanced coal cleaning processes are run at pilot-scale cleaning facilities to produce 20-ton batches of fuels for shipment to CE`s laboratory in Windsor, Connecticut. CE then processes the products into either a coal-water fuel (CWF) or a dry microfine pulverized coa1 (DMPC) form for combustion testing. The objectives of this project include: (1) the development of an engineering data base which will provide detailed information on the properties of BCFs influencing combustion, ash deposition, ash erosion, particulate collection, and emissions; and (2) the application of this technical data base to predict the performance and economic impacts of firing the BCFs in various commercial boiler designs. The technical approach used to develop the technical data includes: bench-scale fuel property, combustion, and ash deposition tests; pilot-scale combustion and ash effects tests; and full-scale combustion tests. During the third quarter of 1992, the following technical progress was made: Continued analyses of drop tube furnace samples to determine devolatilization kinetics; published two technical papers at conferences; and prepared for upcoming tests of new BCFs being produced.

  10. Combustion characterization of beneficiated coal-based fuels. Quarterly report No. 17, April--June 1993

    SciTech Connect

    Chow, O.K.; Nsakala, N.Y.

    1993-08-01

    Pittsburgh Energy Technology Center of the US Department of Energy has contracted with Combustion Engineering, Inc. (CE) to perform a five-year project on ``Combustion Characterization of Beneficiated Coal-Based Fuels.`` The beneficiated coals are produced by other contractors under the DOE Coal Preparation Program. Several contractor-developed advanced coal cleaning processes are run at pilot-scale cleaning facilities to produce 20-ton batches of fuels for shipment to CE`s laboratory in Windsor, Connecticut. CE then processes the products into either a coal-water fuel (CWF) or a dry microfine pulverized coa1 (DMPC) form for combustion testing. The objectives of this project include: (1) the development of an engineering data base which will provide detailed information on the properties of BCFs influencing combustion, ash deposition, ash erosion, particulate collection, and emissions; and (2) the application of this technical data base to predict the performance and economic impacts of firing the BCFs in various commercial boiler designs. The technical approach used to develop the technical data includes: bench-scale fuel property, combustion, and ash deposition tests; pilot-scale combustion and ash effects tests; and full-scale combustion tests. During the third quarter of 1993, the following technical progress was made: Completed modeling calculations of coal mineral matter transformations, deposition behavior, and heat transfer impacts of six test fuels; and ran pilot-scale tests of Upper Freeport feed coal, microagglomerate product, and mulled product.

  11. Evaluation of pretreatment processes for supercritical water oxidation

    SciTech Connect

    Barnes, C.M.

    1994-01-01

    This report evaluates processes to chemically treat US Department of Energy wastes to remove organic halogens, phosphorus, and sulfur. Chemical equilibrium calculations, process simulations, and responses from developers and licensors form the basis for comparisons. Gas-phase catalytic hydrogenation processes, strong base and base catalyzed processes, high pressure hydrolysis, and other emerging or commercial dehalogenation processes (both liquid and mixed phase) were considered. Cost estimates for full-scale processes and demonstration testing are given. Based on the evaluation, testing of a hydrogenation process and a strong base process are recommended.

  12. Water Consumption Estimates of the Biodiesel Process in the US

    EPA Science Inventory

    As a renewable alternative to petroleum diesel, biodiesel has been widely used in the US and around the world. Along with the rapid development of the biodiesel industry, its potential impact on water resources should also be evaluated. This study investigates water consumption f...

  13. PROCESSES INFLUENCING VARIABILITY IN CAVE DRIP WATER TEMPERATURES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have investigated five months of epikarst storage drip water temperatures along with surface air temperature and rainfall at a small waterfall in Cave Spring Caverns, Kentucky. Falling from about 4 m, water temperatures are measured within seconds of entering the cave passage with two minute, and...

  14. TREATMENT OF ARSENIC RESIDUALS FROM DRINKING WATER REMOVAL PROCESSES

    EPA Science Inventory

    The drinking water MCL was recently lowered from 0.05 mg/L to 0.01 mg/L. One concern was that reduction in the TCLP arsenic limit in response to the drinking water MCL could be problematic with regard to disposal of solid residuals generated at arsenic removal facilities. This pr...

  15. Diagenetic saline formation waters: Their role in crustal processes

    SciTech Connect

    Land, L.S. . Dept. Geology)

    1992-01-01

    Formation waters typical of most sedimentary basins are Bi-rich, Na-Ca-Cl brines. High Cl content is due to halite dissolution and high Ca content to albitization of metastable detrital plagioclase deposited in both sands and shales. High Br content is due to halite recrystallization, especially during deformation, and to the conversion of carnallite to sylvite. Minor elements and isotopes are all controlled by mineral/water reactions. Saline formation waters are thus a normal diagenetic product formed during burial. Diagenetic formation waters constitute a previously unrecognized loop in crustal cycling. Transfer of Li, B, S, Cl, Ca, and Br from sediments to brines, and then discharge of brines back to the ocean, explains why these six elements are depleted in the average igneous crust relative to the average sedimentary crust. Diagenetic saline formation waters are limited in volume only by the availability of sedimentary halite and detrital plagioclase. Thus, the volume of fluids available for MVT-type mineralization and late stage sediment diagenesis is much larger than would be true if formation waters were modified surficial brines. Discharge of saline formation waters from sedimentary basins accounts for efficient chloride cycling (225 Ma residence time in the ocean), and for most of the chloride content of the world's rivers not due to aerosols. Expulsion of large volumes of diagenetic formation waters during tectonism can account for rapid excursions in oceanic chemistry, as in the case of [sup 87]Sr/[sup 86]Sr.

  16. Boiling water neutronic reactor incorporating a process inherent safety design

    DOEpatents

    Forsberg, Charles W.

    1987-01-01

    A boiling-water reactor core is positioned within a prestressed concrete reactor vessel of a size which will hold a supply of coolant water sufficient to submerge and cool the reactor core by boiling for a period of at least one week after shutdown. Separate volumes of hot, clean (non-borated) water for cooling during normal operation and cool highly borated water for emergency cooling and reactor shutdown are separated by an insulated wall during normal reactor operation with contact between the two water volumes being maintained at interfaces near the top and bottom ends of the reactor vessel. Means are provided for balancing the pressure of the two volumes at the lower interface zone during normal operation to prevent entry of the cool borated water into the reactor core region, for detecting the onset of excessive power to coolant flow conditions in the reactor core and for detecting low water levels of reactor coolant. Cool borated water is permitted to flow into the reactor core when low reactor coolant levels or excessive power to coolant flow conditions are encountered.

  17. Water quality and hydrogeochemical processes in McDonalds Branch Basin, New Jersey pinelands, 1984-88. Water resources investigation

    SciTech Connect

    Johnsson, P.A.; Barringer, J.L.

    1993-12-31

    The report describes the spatial and temporal variability in the chemical constituents of surface and ground water in a small watershed in the Pinelands and discusses the complex hydrologic and geochemical processes thought to contribute to the variability associated with the freshwater wetlands within the basin. The report presents hydrologic measurements (precipitation amounts, stream stage and discharge, and water-table altitudes) and water-quality data (from analysis of samples of bulk and wet precipitation, surface water, and ground water) collected as part of a 1986-88 study by the USGS at McDonalds Branch basin.

  18. DEMONSTRATION BULLETIN: CAV-OX ULTRAVIOLET OXIDATION PROCESS MAGNUM WATER TECHNOLOGY

    EPA Science Inventory

    The CAV-OX® technology (see Fig- ure 1) destroys organic contaminants, including chlorinated hy- drocarbons, in water. The process uses hydrogen peroxide, hy- drodynamic cavitation, and ultraviolet (UV) radiation to photolyze and oxidize organic compounds present in water at ...

  19. Process for treating waste water having low concentrations of metallic contaminants

    DOEpatents

    Looney, Brian B; Millings, Margaret R; Nichols, Ralph L; Payne, William L

    2014-12-16

    A process for treating waste water having a low level of metallic contaminants by reducing the toxicity level of metallic contaminants to an acceptable level and subsequently discharging the treated waste water into the environment without removing the treated contaminants.

  20. The Potential and Beneficial Use of Weigh-In-Motion (WIM) Systems Integrated with Radio Frequency Identification (RFID) Systems for Characterizing Disposal of Waste Debris to Optimize the Waste Shipping Process

    SciTech Connect

    Abercrombie, Robert K; Buckner Jr, Dooley; Newton, David D

    2010-01-01

    The Oak Ridge National Laboratory (ORNL) Weigh-In-Motion (WIM) system provides a portable and/or semi-portable means of accurately weighing vehicles and its cargo as each vehicle crosses the scales (while in motion), and determining (1) axle weights and (2) axle spacing for vehicles (for determination of Bridge Formula compliance), (3) total vehicle/cargo weight and (4) longitudinal center of gravity (for safety considerations). The WIM system can also weigh the above statically. Because of the automated nature of the WIM system, it eliminates the introduction of human errors caused by manual computations and data entry, adverse weather conditions, and stress. Individual vehicles can be weighed continuously at low speeds (approximately 3-10 mph) and at intervals of less than one minute. The ORNL WIM system operates and is integrated into the Bethel Jacobs Company Transportation Management and Information System (TMIS, a Radio-Frequency Identification [RFID] enabled information system). The integrated process is as follows: Truck Identification Number and Tare Weight are programmed into a RFID Tag. Handheld RFID devices interact with the RFID Tag, and Electronic Shipping Document is written to the RFID Tag. The RFID tag read by an RFID tower identifies the vehicle and its associated cargo, the specific manifest of radioactive debris for the uniquely identified vehicle. The weight of the cargo (in this case waste debris) is calculated from total vehicle weight information supplied from WIM to TMIS and is further processed into the Information System and kept for historical and archival purposes. The assembled data is the further process in downstream information systems where waste coordination activities at the Y-12 Environmental Management Waste Management Facility (EMWMF) are written to RFID Tag. All cycle time information is monitored by Transportation Operations and Security personnel.

  1. Evaluation of surface water resources from machine-processing of ERTS multispectral data

    NASA Technical Reports Server (NTRS)

    Mausel, P. W.; Todd, W. J.; Baumgardner, M. F.; Mitchell, R. A.; Cook, J. P.

    1976-01-01

    The surface water resources of a large metropolitan area, Marion County (Indianapolis), Indiana, are studied in order to assess the potential value of ERTS spectral analysis to water resources problems. The results of the research indicate that all surface water bodies over 0.5 ha were identified accurately from ERTS multispectral analysis. Five distinct classes of water were identified and correlated with parameters which included: degree of water siltiness; depth of water; presence of macro and micro biotic forms in the water; and presence of various chemical concentrations in the water. The machine processing of ERTS spectral data used alone or in conjunction with conventional sources of hydrological information can lead to the monitoring of area of surface water bodies; estimated volume of selected surface water bodies; differences in degree of silt and clay suspended in water and degree of water eutrophication related to chemical concentrations.

  2. The Interaction of Spacecraft Cabin Atmospheric Quality and Water Processing System Performance

    NASA Technical Reports Server (NTRS)

    Perry, Jay L.; Croomes, Scott D. (Technical Monitor)

    2002-01-01

    Although designed to remove organic contaminants from a variety of waste water streams, the planned U.S.- and present Russian-provided water processing systems onboard the International Space Station (ISS) have capacity limits for some of the more common volatile cleaning solvents used for housekeeping purposes. Using large quantities of volatile cleaning solvents during the ground processing and in-flight operational phases of a crewed spacecraft such as the ISS can lead to significant challenges to the water processing systems. To understand the challenges facing the management of water processing capacity, the relationship between cabin atmospheric quality and humidity condensate loading is presented. This relationship is developed as a tool to determine the cabin atmospheric loading that may compromise water processing system performance. A comparison of cabin atmospheric loading with volatile cleaning solvents from ISS, Mir, and Shuttle are presented to predict acceptable limits to maintain optimal water processing system performance.

  3. Chemotaxis signaling systems in model beneficial plant-bacteria associations.

    PubMed

    Scharf, Birgit E; Hynes, Michael F; Alexandre, Gladys M

    2016-04-01

    Beneficial plant-microbe associations play critical roles in plant health. Bacterial chemotaxis provides a competitive advantage to motile flagellated bacteria in colonization of plant root surfaces, which is a prerequisite for the establishment of beneficial associations. Chemotaxis signaling enables motile soil bacteria to sense and respond to gradients of chemical compounds released by plant roots. This process allows bacteria to actively swim towards plant roots and is thus critical for competitive root surface colonization. The complete genome sequences of several plant-associated bacterial species indicate the presence of multiple chemotaxis systems and a large number of chemoreceptors. Further, most soil bacteria are motile and capable of chemotaxis, and chemotaxis-encoding genes are enriched in the bacteria found in the rhizosphere compared to the bulk soil. This review compares the architecture and diversity of chemotaxis signaling systems in model beneficial plant-associated bacteria and discusses their relevance to the rhizosphere lifestyle. While it is unclear how controlling chemotaxis via multiple parallel chemotaxis systems provides a competitive advantage to certain bacterial species, the presence of a larger number of chemoreceptors is likely to contribute to the ability of motile bacteria to survive in the soil and to compete for root surface colonization. PMID:26797793

  4. Shale-oil-recovery systems incorporating ore beneficiation. Final report.

    SciTech Connect

    Weiss, M.A.; Klumpar, I.V.; Peterson, C.R.; Ring, T.A.

    1982-10-01

    This study analyzed the recovery of oil from oil shale by use of proposed systems which incorporate beneficiation of the shale ore (that is concentration of the kerogen before the oil-recovery step). The objective was to identify systems which could be more attractive than conventional surface retorting of ore. No experimental work was carried out. The systems analyzed consisted of beneficiation methods which could increase kerogen concentrations by at least four-fold. Potentially attractive low-enrichment methods such as density separation were not examined. The technical alternatives considered were bounded by the secondary crusher as input and raw shale oil as output. A sequence of ball milling, froth flotation, and retorting concentrate is not attractive for Western shales compared to conventional ore retorting; transporting the concentrate to another location for retorting reduces air emissions in the ore region but cost reduction is questionable. The high capital and energy cost s results largely from the ball milling step which is very inefficient. Major improvements in comminution seem achievable through research and such improvements, plus confirmation of other assumptions, could make high-enrichment beneficiation competitive with conventional processing. 27 figures, 23 tables.

  5. Process for treating effluent from a supercritical water oxidation reactor

    DOEpatents

    Barnes, Charles M.; Shapiro, Carolyn

    1997-01-01

    A method for treating a gaseous effluent from a supercritical water oxidation reactor containing entrained solids is provided comprising the steps of expanding the gas/solids effluent from a first to a second lower pressure at a temperature at which no liquid condenses; separating the solids from the gas effluent; neutralizing the effluent to remove any acid gases; condensing the effluent; and retaining the purified effluent to the supercritical water oxidation reactor.

  6. Process for treating effluent from a supercritical water oxidation reactor

    DOEpatents

    Barnes, C.M.; Shapiro, C.

    1997-11-25

    A method for treating a gaseous effluent from a supercritical water oxidation reactor containing entrained solids is provided comprising the steps of expanding the gas/solids effluent from a first to a second lower pressure at a temperature at which no liquid condenses; separating the solids from the gas effluent; neutralizing the effluent to remove any acid gases; condensing the effluent; and retaining the purified effluent to the supercritical water oxidation reactor. 6 figs.

  7. Process for treating effluent from a supercritical water oxidation reactor

    SciTech Connect

    Barnes, C.M.; Shapiro, C.

    1995-12-31

    The present invention relates generally to a method for treating and recycling the effluent from a supercritical water oxidation reactor and more specifically to a method for treating and recycling the effluent by expanding the effluent without extensive cooling. Supercritical water oxidation is the oxidation of fuel, generally waste material, in a body of water under conditions above the thermodynamic critical point of water. The current state of the art in supercritical water oxidation plant effluent treatment is to cool the reactor effluent through heat exchangers or direct quench, separate the cooled liquid into a gas/vapor stream and a liquid/solid stream, expand the separated effluent, and perform additional purification on gaseous, liquid, brine and solid effluent. If acid gases are present, corrosion is likely to occur in the coolers. During expansion, part of the condensed water will revaporize. Vaporization can damage the valves due to cavitation and erosion. The present invention expands the effluent stream without condensing the stream. Radionuclides and suspended solids are more efficiently separated in the vapor phase. By preventing condensation, the acids are kept in the much less corrosive gaseous phase thereby limiting the damage to treatment equipment. The present invention also reduces the external energy consumption, by utilizing the expansion step to also cool the effluent.

  8. Nucleation processes of nanobubbles at a solid/water interface

    NASA Astrophysics Data System (ADS)

    Fang, Chung-Kai; Ko, Hsien-Chen; Yang, Chih-Wen; Lu, Yi-Hsien; Hwang, Ing-Shouh

    2016-04-01

    Experimental investigations of hydrophobic/water interfaces often return controversial results, possibly due to the unknown role of gas accumulation at the interfaces. Here, during advanced atomic force microscopy of the initial evolution of gas-containing structures at a highly ordered pyrolytic graphite/water interface, a fluid phase first appeared as a circular wetting layer ~0.3 nm in thickness and was later transformed into a cap-shaped nanostructure (an interfacial nanobubble). Two-dimensional ordered domains were nucleated and grew over time outside or at the perimeter of the fluid regions, eventually confining growth of the fluid regions to the vertical direction. We determined that interfacial nanobubbles and fluid layers have very similar mechanical properties, suggesting low interfacial tension with water and a liquid-like nature, explaining their high stability and their roles in boundary slip and bubble nucleation. These ordered domains may be the interfacial hydrophilic gas hydrates and/or the long-sought chemical surface heterogeneities responsible for contact line pinning and contact angle hysteresis. The gradual nucleation and growth of hydrophilic ordered domains renders the original homogeneous hydrophobic/water interface more heterogeneous over time, which would have great consequence for interfacial properties that affect diverse phenomena, including interactions in water, chemical reactions, and the self-assembly and function of biological molecules.

  9. Nucleation processes of nanobubbles at a solid/water interface.

    PubMed

    Fang, Chung-Kai; Ko, Hsien-Chen; Yang, Chih-Wen; Lu, Yi-Hsien; Hwang, Ing-Shouh

    2016-01-01

    Experimental investigations of hydrophobic/water interfaces often return controversial results, possibly due to the unknown role of gas accumulation at the interfaces. Here, during advanced atomic force microscopy of the initial evolution of gas-containing structures at a highly ordered pyrolytic graphite/water interface, a fluid phase first appeared as a circular wetting layer ~0.3 nm in thickness and was later transformed into a cap-shaped nanostructure (an interfacial nanobubble). Two-dimensional ordered domains were nucleated and grew over time outside or at the perimeter of the fluid regions, eventually confining growth of the fluid regions to the vertical direction. We determined that interfacial nanobubbles and fluid layers have very similar mechanical properties, suggesting low interfacial tension with water and a liquid-like nature, explaining their high stability and their roles in boundary slip and bubble nucleation. These ordered domains may be the interfacial hydrophilic gas hydrates and/or the long-sought chemical surface heterogeneities responsible for contact line pinning and contact angle hysteresis. The gradual nucleation and growth of hydrophilic ordered domains renders the original homogeneous hydrophobic/water interface more heterogeneous over time, which would have great consequence for interfacial properties that affect diverse phenomena, including interactions in water, chemical reactions, and the self-assembly and function of biological molecules. PMID:27090291

  10. Nucleation processes of nanobubbles at a solid/water interface

    PubMed Central

    Fang, Chung-Kai; Ko, Hsien-Chen; Yang, Chih-Wen; Lu, Yi-Hsien; Hwang, Ing-Shouh

    2016-01-01

    Experimental investigations of hydrophobic/water interfaces often return controversial results, possibly due to the unknown role of gas accumulation at the interfaces. Here, during advanced atomic force microscopy of the initial evolution of gas-containing structures at a highly ordered pyrolytic graphite/water interface, a fluid phase first appeared as a circular wetting layer ~0.3 nm in thickness and was later transformed into a cap-shaped nanostructure (an interfacial nanobubble). Two-dimensional ordered domains were nucleated and grew over time outside or at the perimeter of the fluid regions, eventually confining growth of the fluid regions to the vertical direction. We determined that interfacial nanobubbles and fluid layers have very similar mechanical properties, suggesting low interfacial tension with water and a liquid-like nature, explaining their high stability and their roles in boundary slip and bubble nucleation. These ordered domains may be the interfacial hydrophilic gas hydrates and/or the long-sought chemical surface heterogeneities responsible for contact line pinning and contact angle hysteresis. The gradual nucleation and growth of hydrophilic ordered domains renders the original homogeneous hydrophobic/water interface more heterogeneous over time, which would have great consequence for interfacial properties that affect diverse phenomena, including interactions in water, chemical reactions, and the self-assembly and function of biological molecules. PMID:27090291

  11. MONITORING OXIDATION-REDUCTION PROCESS DURING GROUND WATER-SURFACE WATER INTERACTIONS AT THE CHICKASAW NRA

    EPA Science Inventory

    Mineralized ground waters at the Chickasaw National Recreational Area contain hydrogen sulfide, i.e., sulfur in the -2 valence state. As these mineralized ground waters discharge at the surface and mix with oxygen-rich waters a series of abiotic and biotic reactions occur that c...

  12. Processes in the pore waters of peat deposits

    SciTech Connect

    Levshenko, T.V.; Efremova, A.G.; Galkina, Z.M.; Surkova, T.E.; Tolstov, K.A.

    1983-01-01

    The composition of the waters of modern peat bogs that have developed in the intracontinental regions under the conditions of bogs of the high-moor, mixed, and lowmoor types have been investigated for the case of a number of peat deposits of the Smolensk, Volgorad, and Pskov provinces. During the work the pH of the deposits and the C1-, Alk, SO/sup 2/-, Ca/sup 2 +/, Mg/sup 2 +/, K- contents of the pore water of modern peat beds were studied. The thickness of the deposits studied amounted to 5-7 m. Samples were taken every 0.5 m in depth. The water was separated from the deposits by pressing out.

  13. Process and utility water requirements for cellulosic ethanol production processes via fermentation pathway

    EPA Science Inventory

    The increasing need of additional water resources for energy production is a growing concern for future economic development. In technology development for ethanol production from cellulosic feedstocks, a detailed assessment of the quantity and quality of water required, and the ...

  14. Mulled Coal: A beneficiated coal form for use as a fuel or fuel intermediate

    SciTech Connect

    Not Available

    1991-09-01

    During the past quarter Energy International has evaluated additional mull formulations with varying reagent additives, mixing times, and particle sizes. The Environmental Review was completed and conceptual designs developed for the Mull Preparation and CWF Conversion Systems. As these technical developments move toward commercial application, the needs for coordinated efforts and integrated requirements have become increasingly apparent. Systems are vitally needed to integrate energy delivery systems from the raw resource through processing to application and end use. Problems have been encountered in the preparation of conventional coal-water fuels that mutually satisfy the requirements for storage stability, handling, preparation, atomization, combustion, and economics. Experience has been slow in evolving generic technologies or products and coal-specific requirements and specifications continue to dominate the development. Thus, prospects for commercialization remain highly specific to the coal, the processor, and the end use. Developments in advanced beneficiation of coal to meet stringent requirements for low ash and low sulfur can be anticipated to further complicate the problem areas. This is attributable to the beneficiated coal being produced in very fine particles with a high surface area, modified surface characteristics, reduced particle size distribution range, and high inherent moisture.

  15. Electrostatic Beneficiation of Lunar Regolith: Applications in In-Situ Resource Utilization

    NASA Technical Reports Server (NTRS)

    Trigwell, Steve; Captain, James; Weis, Kyle; Quinn, Jacqueline

    2011-01-01

    Upon returning to the moon, or further a field such as Mars, presents enormous challenges in sustaining life for extended periods of time far beyond the few days the astronauts experienced on the moon during the Apollo missions. A stay on Mars is envisioned to last several months, and it would be cost prohibitive to take all the requirements for such a stay from earth. Therefore, future exploration missions will be required to be self-sufficient and utilize the resources available at the mission site to sustain human occupation. Such an exercise is currently the focus of intense research at NASA under the In-situ Resource Utilization (ISRU) program. As well as oxygen and water necessary for human life, resources for providing building materials for habitats, radiation protection, and landing/launch pads are required. All these materials can be provided by the regolith present on the surface as it contains sufficient minerals and metals oxides to meet the requirements. However, before processing, it would be cost effective if the regolith could be enriched in the mineral(s) of interest. This can be achieved by electrostatic beneficiation in which tribocharged mineral particles are separated out and the feedstock enriched or depleted as required. The results of electrostatic beneficiation of lunar simulants and actual Apollo regolith, in lunar high vacuum are reported in which various degrees of efficient particle separation and mineral enrichment up to a few hundred percent were achieved.

  16. Hydroxyl carboxylate based non-phosphorus corrosion inhibition process for reclaimed water pipeline and downstream recirculating cooling water system.

    PubMed

    Wang, Jun; Wang, Dong; Hou, Deyin

    2016-01-01

    A combined process was developed to inhibit the corrosion both in the pipeline of reclaimed water supplies (PRWS) and in downstream recirculating cooling water systems (RCWS) using the reclaimed water as makeup. Hydroxyl carboxylate-based corrosion inhibitors (e.g., gluconate, citrate, tartrate) and zinc sulfate heptahydrate, which provided Zn(2+) as a synergistic corrosion inhibition additive, were added prior to the PRWS when the phosphate (which could be utilized as a corrosion inhibitor) content in the reclaimed water was below 1.7 mg/L, and no additional corrosion inhibitors were required for the downstream RCWS. Satisfactory corrosion inhibition was achieved even if the RCWS was operated under the condition of high numbers of concentration cycles. The corrosion inhibition requirement was also met by the appropriate combination of PO4(3-) and Zn(2+) when the phosphate content in the reclaimed water was more than 1.7 mg/L. The process integrated not only water reclamation and reuse, and the operation of a highly concentrated RCWS, but also the comprehensive utilization of phosphate in reclaimed water and the application of non-phosphorus corrosion inhibitors. The proposed process reduced the operating cost of the PRWS and the RCWS, and lowered the environmental hazard caused by the excessive discharge of phosphate. Furthermore, larger amounts of water resources could be conserved as a result. PMID:26899639

  17. Performance of a Water Recirculation Loop Maintenance Device and Process for the Advanced Spacesuit Water Membrane Evaporator

    NASA Technical Reports Server (NTRS)

    Rector, Tony; Steele, John W.; Bue, Grant C.; Campbell, Colin; Makinen, Janice

    2012-01-01

    A water loop maintenance device and process to maintain the water quality of the Advanced Spacesuit Water Membrane Evaporation (SWME) water recirculation loop has been undergoing a performance evaluation. The SWME is a heat rejection device under development at the NASA Johnson Space Center to perform thermal control for advanced spacesuits. One advantage to this technology is the potential for a significantly greater degree of tolerance to contamination when compared to the existing Sublimator technology. The driver for the water recirculation maintenance device and process is to further enhance this advantage through the leveraging of fluid loop management lessons-learned from the International Space Station (ISS). A bed design that was developed for a Hamilton Sundstrand military application, and considered for a potential ISS application with the Urine Processor Assembly, provides a low pressure drop means for water maintenance in a recirculation loop. The bed design is coupled with high capacity ion exchange resins, organic adsorbents, and a cyclic methodology developed for the Extravehicular Mobility Unit (EMU) Transport Water loop. The maintenance process further leverages a sorbent developed for ISS that introduces a biocide in a microgravity-compatible manner for the Internal Active Thermal Control System (IATCS). The leveraging of these water maintenance technologies to the SWME recirculation loop is a unique demonstration of applying the valuable lessons learned on the ISS to the next generation of manned spaceflight Environmental Control and Life Support System (ECLSS) hardware. This

  18. EFFECTIVE RISK MANAGEMENT OF ENDOCRINE DISRUPTING CHEMICALS USING DRINKING WATER TREATMENT PROCESSES

    EPA Science Inventory

    The conventional drinking water treamtent processes of coagulation, flocculation, and filtration as well as specialized treatment processes have been examined for their capacity to remove endocrine disrupting chemicals (EDCs). A groupf od EDCs including 4-nonylphenol, diethylphth...

  19. Using Gypsum to Affect Soil Erosion Processes and Water Quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A driving force in soil erosion is the low electrolyte content of rain water. Various electrolyte sources have proven useful in serving as electrolyte sources such as phosphogypsum, lime and various salts, however, each has other potential problems. We performed a number of studies on low cost gypsu...

  20. Earth Science (A Process Approach), Section 1: The Water Cycle.

    ERIC Educational Resources Information Center

    Campbell, K. C.; And Others

    Included is a collection of earth science laboratory activities, which may provide the junior or senior high school science teacher with ideas for activities in his program. The included 48 experiments are grouped into these areas: properties of matter; evaporation; atmospheric moisture and condensation; precipitation; moving water, subsurface…

  1. WATER AS A REACTION MEDIUM FOR CLEAN CHEMICAL PROCESSES.

    EPA Science Inventory

    Green chemistry is a rapid developing new field that provides us a pro-active avenue for the sustainable development of future science and technologies. When designed properly, clean chemical technology can be developed in water as a reaction media. The technologies generated f...

  2. Conditioning of carbonaceous material prior to physical beneficiation

    DOEpatents

    Warzinski, Robert P.; Ruether, John A.

    1987-01-01

    A carbonaceous material such as coal is conditioned by contact with a supercritical fluid prior to physical beneficiation. The solid feed material is contacted with an organic supercritical fluid such as cyclohexane or methanol at temperatures slightly above the critical temperature and pressures of 1 to 4 times the critical pressure. A minor solute fraction is extracted into critical phase and separated from the solid residuum. The residuum is then processed by physical separation such as by froth flotation or specific gravity separation to recover a substantial fraction thereof with reduced ash content. The solute in supercritical phase can be released by pressure reduction and recombined with the low-ash, carbonaceous material.

  3. Integrated Water Flow Model (IWFM), A Tool For Numerically Simulating Linked Groundwater, Surface Water And Land-Surface Hydrologic Processes

    NASA Astrophysics Data System (ADS)

    Dogrul, E. C.; Brush, C. F.; Kadir, T. N.

    2006-12-01

    The Integrated Water Flow Model (IWFM) is a comprehensive input-driven application for simulating groundwater flow, surface water flow and land-surface hydrologic processes, and interactions between these processes, developed by the California Department of Water Resources (DWR). IWFM couples a 3-D finite element groundwater flow process and 1-D land surface, lake, stream flow and vertical unsaturated-zone flow processes which are solved simultaneously at each time step. The groundwater flow system is simulated as a multilayer aquifer system with a mixture of confined and unconfined aquifers separated by semiconfining layers. The groundwater flow process can simulate changing aquifer conditions (confined to unconfined and vice versa), subsidence, tile drains, injection wells and pumping wells. The land surface process calculates elemental water budgets for agricultural, urban, riparian and native vegetation classes. Crop water demands are dynamically calculated using distributed soil properties, land use and crop data, and precipitation and evapotranspiration rates. The crop mix can also be automatically modified as a function of pumping lift using logit functions. Surface water diversions and groundwater pumping can each be specified, or can be automatically adjusted at run time to balance water supply with water demand. The land-surface process also routes runoff to streams and deep percolation to the unsaturated zone. Surface water networks are specified as a series of stream nodes (coincident with groundwater nodes) with specified bed elevation, conductance and stage-flow relationships. Stream nodes are linked to form stream reaches. Stream inflows at the model boundary, surface water diversion locations, and one or more surface water deliveries per location are specified. IWFM routes stream flows through the network, calculating groundwater-surface water interactions, accumulating inflows from runoff, and allocating available stream flows to meet specified or

  4. SRS stainless steel beneficial reuse program

    SciTech Connect

    Boettinger, W.L.

    1997-02-01

    The US Department of Energy`s (DOE) Savannah River Site (SRS) has thousands of tons of stainless steel radioactive scrap metal (RSNI). Much of the metal is volumetrically contaminated. There is no {open_quotes}de minimis{close_quotes} free release level for volumetric material, and therefore no way to recycle the metal into the normal commercial market. If declared waste, the metal would qualify as low level radioactive waste (LLW) and ultimately be dispositioned through shallow land buried at a cost of millions of dollars. The metal however could be recycled in a {open_quotes}controlled release{close_quote} manner, in the form of containers to hold other types of radioactive waste. This form of recycle is generally referred to as {open_quotes}Beneficial Reuse{close_quotes}. Beneficial reuse reduces the amount of disposal space needed and reduces the need for virgin containers which would themselves become contaminated. Stainless steel is particularly suited for long term storage because of its resistance to corrosion. To assess the practicality of stainless steel RSM recycle the SRS Benficial Reuse Program began a demonstration in 1994, funded by the DOE Office of Science and Technology. This paper discusses the experiences gained in this program.

  5. Ability of chemically softened water to rinse bacteria from the skin of processed broilers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction: The quality of water used in cleansing operations in commercial poultry processing facilities may have an effect on the efficacy of sanitation operations in these facilities. Water hardness is a characteristic of water that is related to the concentration of calcium and magnesium disso...

  6. Combustion characterization of beneficiated coal-based fuels. Quarterly report No. 6, July 1990--September 1990

    SciTech Connect

    Chow, O.K.; Nsakala, N.Y.

    1990-11-01

    The Pittsburgh Energy Technology Center of the US Department of Energy has contracted with Combustion Engineering, Inc. (CE) to perform a three-year project on ``Combustion Characterization of Beneficiated Coal-Based Fuels.`` The beneficiated coals are produced by other contractors under the DOE Coal Preparation Program. Several contractor-developed advanced coal cleaning processes are being run at the cleaning facility in Homer City, Pennsylvania, to produce 20-ton batches of fuels for shipment to CE`s laboratory in Windsor, Connecticut. CE then processes the products into either a coal-water fuel (CVVT) or a dry microfine pulverized coal (DMPC) form for combustion testing. The objectives of this project include: (1) the development of an engineering data base which will provide detailed information on the properties of BCFs influencing combustion, ash deposition, ash erosion, particulate collection, and emissions; and (2) the application of this technical data base to predict the performance and economic impacts of firing the BCFs in various commercial boiler designs. The technical approach used to develop the technical data includes: bench-scale fuel property, combustion, and ash deposition tests; pilot-scale combustion and ash effects tests; and full-scale combustion tests. Subcontractors to CE to perform parts of the test work are the Massachusetts Institute of Technology (MIT), Physical Science, Inc. Technology Company (PSIT) and the University of North Dakota Energy and Environmental Research Center (UNDEERC). Twenty fuels will be characterized during the three-year base program: three feed coals, fifteen BCFS, and two conventionally cleaned coals for full-scale tests. Approximately, nine BCFs will be in dry microfine coal (DMPC) form, and six BCFs will be in coal-water fuel (CWF) form. Additional BCFs would be characterized during optional project supplements.

  7. CONCERNS WITH THE BENEFICIAL REUSE IN AGRICULTURE OF RESIDUALS FROM MUNICIPAL WASTEWATER TREATMENT AND ANIMAL FEEDING OPERATIONS

    EPA Science Inventory

    The pathogenic organisms that may be present in such residuals, processes commonly employed for controlling them; these processes' effectiveness and how extensively they are used; and issues and concerns with beneficial reuse will be discussed. Processes presently being researche...

  8. Application of fiber optic sensors in waste water management from microelectronics fabrication processes

    NASA Astrophysics Data System (ADS)

    Ulieru, Dumitru G.

    1999-09-01

    The concept of waste water treatment from microelectronics fab processes is referring to waste water discharged from ultrapure water plant which can't be treated on recovery waste water section. These wastes concentrated contains organic and inorganic acids, alkalis, metals, cyanide, chromium and fluoride effluent from fab processes. They will be canalized on qualities for treatment sections which permit the discharge of treated waste water as neutral with solids removal as compacted sludge. For management of waste water treatment plant we are using the fiber optic sensors as follows: level and flow control, signalization automatic pumps control and protection, solid control, leak detection a.s.o. The neutral quality of treated water has 'null' impact against of environmental system recommended for all semiconductors and microelectronics fab processes.

  9. Physical and economic processes of water scarcity and water allocation for integrated river basin management

    NASA Astrophysics Data System (ADS)

    Deng, Xiangzheng; Singh, R. B.; Liu, Junguo; Güneralp, Burak

    Water scarcity and stress have attracted increasing attention as water has become increasingly regarded as one of the most critical resources in the world's sustainable development. Water allocation is correlated to the land use and cover changes (LUCC), population distribution, economic development, climate changes, and environmental governance. These factors physically alter surface energy for water balance through the changes in Net Primary Productivity (NPP) of vegetation (Haiming Yan et al.), and natural resource productivity, simultaneously, financially and interactively influence on water allocation for socio-economic development (Xiangzheng Deng et al.). Therefore, it is very important to figure out a mechanism of water allocation in the course of LUCC (Xiangzheng Deng et al.; Hasan Ozdemir and Emre Elbaşı), climate and economic changes at various spatial and temporal scales.

  10. Different hydrodynamic processes regulated on water quality (nutrients, dissolved oxygen, and phytoplankton biomass) in three contrasting waters of Hong Kong.

    PubMed

    Zhou, Weihua; Yuan, Xiangcheng; Long, Aimin; Huang, Hui; Yue, Weizhong

    2014-03-01

    The subtropical Hong Kong (HK) waters are located at the eastern side of the Pearl River Estuary. Monthly changes of water quality, including nutrients, dissolved oxygen (DO), and phytoplankton biomass (Chl-a) were routinely investigated in 2003 by the Hong Kong Environmental Protection Department in three contrasting waters of HK with different prevailing hydrodynamic processes. The western, eastern, and southern waters were mainly dominated by nutrient-replete Pearl River discharge, the nutrient-poor coastal/shelf oceanic waters, and mixtures of estuarine and coastal seawater and sewage effluent of Hong Kong, respectively. Acting in response, the water quality in these three contrasting areas showed apparently spatial–temporal variation pattern. Nutrients usually decreased along western waters to eastern waters. In the dry season, the water column was strongly mixed by monsoon winds and tidal currents, which resulted in relatively low Chl-a (<5 μg l(−1)) and high bottom DO (>4 mg l(−1)), suggesting that mixing enhanced the buffering capacity of eutrophication in HK waters. However, in the wet season, surface Chl-a was generally >10 μg l(−1) in southern waters in summer due to halocline and thermohaline stratification, adequate nutrients, and light availability. Although summer hypoxia (DO <2 mg l(−1)) was episodically observed near sewage effluent site and in southern waters induced by vertical stratification, the eutrophication impacts in HK waters were not as severe as expected owing to P limitation and short water residence time in the wet season. PMID:24122158

  11. Beneficiation and hydroretorting of low grade oil shale

    SciTech Connect

    Tippin, R.B.; Hanna, J.; Janka, J.C.; Rex, R.C. Jr.

    1985-02-01

    A new approach to oil recovery from low grade oil shales has been developed jointly by the Mineral Resources Institute (MRI) of The University of Alabama and the HYCRUDE Corporation. The approach is based on the HYTORT process, which utilized hydrogen gas during the retorting process to enhance oil yields from many types of oil shales. The performance of the HYTORT process is further improved by combining it with MRI's froth flotation process. Taking advantage of differences in the surface properties of the kerogen and the inorganic mineral constituents of the oil shales, the MRI process can reject up to three quarters by weight of relatively kerogen-free inorganic fractions of the oil shale before HYTORT processing. The HYTORT and MRI processes are discussed. Results of tests by each process on oil shales of low to moderate inherent kerogen content are presented. Also discussed are the results of the combined processes on an Indiana New Albany oil shale. By combining the two processes, the raw shale which yielded 12 gallons of oil per ton by Fischer Assay was upgraded by flotation to a product yielding 27 gallons of Fischer Assay oil per ton. HYTORT processing of the beneficiated product recovered 54 gallons of oil per ton, an improvement in oil yield by a factor of 4.5 over the raw shale Fischer Assay.

  12. Modeling of membrane processes for air revitalization and water recovery

    NASA Technical Reports Server (NTRS)

    Lange, Kevin E.; Foerg, Sandra L.; Dall-Bauman, Liese A.

    1992-01-01

    Gas-separation and reverse-osmosis membrane models are being developed in conjunction with membrane testing at NASA JSC. The completed gas-separation membrane model extracts effective component permeabilities from multicomponent test data, and predicts the effects of flow configuration, operating conditions, and membrane dimensions on module performance. Variable feed- and permeate-side pressures are considered. The model has been applied to test data for hollow-fiber membrane modules with simulated cabin-air feeds. Results are presented for a membrane designed for air drying applications. Extracted permeabilities are used to predict the effect of operating conditions on water enrichment in the permeate. A first-order reverse-osmosis model has been applied to test data for spiral wound membrane modules with a simulated hygiene water feed. The model estimates an effective local component rejection coefficient under pseudosteady-state conditions. Results are used to define requirements for a detailed reverse-osmosis model.

  13. Urine pretreatment for waste water processing systems. [for space station

    NASA Technical Reports Server (NTRS)

    Winkler, H. E.; Verostko, C. E.; Dehner, G. F.

    1983-01-01

    Recovery of high quality water from urine is an essential part of life support on a Space Station to avoid costly launch and resupply penalties. Water can be effectively recovered from urine by distillation following pretreatment by a chemical agent to inhibit microorganism contamination and fix volatile ammonia constituents. This paper presents the results of laboratory investigations of several pretreatment chemicals which were tested at several concentration levels in combination with sulfuric acid in urine. The optimum pretreatment formulation was then evaluated with urine in the Hamilton Standard Thermoelectric Integrated Membrane Evaporation Subsystem (TIMES). Over 2600 hours of test time was accumulated. Results of these laboratory and system tests are presented in this paper.

  14. Processes Controlling Water Vapor in the Winter Arctic Stratospheric Middleworld

    NASA Technical Reports Server (NTRS)

    Pfister, Leonhard; Selkirk, Henry B.; Jensen, Eric J.; Podolske, James; Sachse, Glen; Avery, Melody; Schoeberl, Mark R.; Hipskind, R. Stephen (Technical Monitor)

    2000-01-01

    Abstract: Water vapor in the winter arctic stratospheric middleworld (that part of the stratosphere with potential temperatures lower than the tropical tropopause) is important for two reasons: (1) the arctic middleworld is a source of air for the upper troposphere because of the generally downward motion, and thus its water vapor content helps determine upper tropospheric water, a critical part of the earth's radiation budget; and (2) under appropriate conditions, relative humidities will be large even to the point of stratospheric cirrus cloud formation, leading to the production of active chlorine species that could destroy ozone. On a number of occasions during SOLVE, clouds were observed in the stratospheric middleworld by the DC-8 aircraft. The relationship between ozone and CO from aircraft measurements taken during the early, middle and late part of the winter of 1999-2000 show that recent mixing with tropospheric air extends up to ozone values of about 350-450 ppbv. Above that level, the relationship suggests stratospheric air with minimal tropospheric influence. The transition is quite abrupt, particularly in early spring. Trajectory analyses are consistent with these relationships, with a significant drop-off in the percentage of trajectories with tropospheric PV values in their 10-day history as in-situ ozone increases above 400 ppbv. The water distribution is affected by these mixing characteristics, and by cloud formation. Significant cloud formation along trajectories occurs up to ozone values of about 400 ppbv during the early spring, with small, but nonzero probabilities extending to 550 ppbv. Cloud formation in the stratospheric middleworld is minimal during early and midwinter. Also important is the fact that, during early spring 30% of the trajectories near the tropopause (ozone values less than 200 ppbv) have minimum saturation mixing ratios less than 5 ppmv. Such parcels can mix out into the troposphere and could lead to very dry conditions in

  15. EVALUATION OF HYPERFILTRATION FOR SEPARATION OF TOXIC SUBSTANCES IN TEXTILE PROCESS WATER

    EPA Science Inventory

    The report gives results of an evaluation of hyperfiltration for separation of toxic substances in textile process water. Three membranes (cellulose acetate, polyether/amide, and dynamic zirconium oxide/polyacrylic acid) were used to separate process water from scour and dye oper...

  16. REMOVAL OF TOXIC METALS IN ELECTROPLATING WASH WATER BY A DONNAN DIALYSIS PROCESS

    EPA Science Inventory

    A program was conducted to develop anion-exchange membranes to be used in the removal of copper, cadmium, and zinc, as their complex cyanide anions, from cyanide process electroplating wash waters by a Donnan dialysis process. For these laboratory studies, simulated wash waters p...

  17. Large break frequency for the SRS (Savannah River Site) production reactor process water system

    SciTech Connect

    Daugherty, W.L.; Awadalla, N.G.; Sindelar, R.L.; Bush, S.H.; Review and Synthesis Associates, Richland, WA )

    1989-01-01

    The objective of this paper is to present the results and conclusions of an evaluation of the large break frequency for the process water system (primary coolant system), including the piping, reactor tank, heat exchangers, expansion joints and other process water, system components. This evaluation was performed to support the ongoing PRA effort and to complement deterministic analyses addressing the credibility of a double-ended guillotine break. This evaluation encompasses three specific areas: the failure probability of large process water piping directly from imposed loads, the indirect failure probability of piping caused by the seismic-induced failure of surrounding structures, and the failure of all other process water components. The first two of these areas are discussed in detail in other papers. This paper primarily addresses the failure frequency of components other than piping, and includes the other two areas as contributions to the overall process water system break frequency. 6 refs., 2 figs., 1 tab.

  18. Unit process engineering for water quality control and biosecurity in marine water recirculating systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High-intensity systems that treat and recirculate water must maintain a culture environment that can sustain near optimum fish health and growth at the design carrying capacity. Water recirculating systems that use centralized treatment systems can benefit from the economies of scale to decrease th...

  19. Removal of Stabilized Silver Nanoparticles from Ohio River Water by Potable Water Treatment Processes

    EPA Science Inventory

    Due to their extensive use, silver nanoparticles (Ag NPs) are likely to occur in drinking water sources. Once released into the environment they are considered an emerging contaminant in water and wastewater. The main objective of this research is to investigate the removal of di...

  20. Modeling of biomass to hydrogen via the supercritical water pyrolysis process

    SciTech Connect

    Divilio, R.J.

    1998-08-01

    A heat transfer model has been developed to predict the temperature profile inside the University of Hawaii`s Supercritical Water Reactor. A series of heat transfer tests were conducted on the University of Hawaii`s apparatus to calibrate the model. Results of the model simulations are shown for several of the heat transfer tests. Tests with corn starch and wood pastes indicated that there are substantial differences between the thermal properties of the paste compared to pure water, particularly near the pseudo critical temperature. The assumption of constant thermal diffusivity in the temperature range of 250 to 450 C gave a reasonable prediction of the reactor temperatures when paste is being fed. A literature review is presented for pyrolysis of biomass in water at elevated temperatures up to the supercritical range. Based on this review, a global reaction mechanism is proposed. Equilibrium calculations were performed on the test results from the University of Hawaii`s Supercritical Water Reactor when corn starch and corn starch and wood pastes were being fed. The calculations indicate that the data from the reactor falls both below and above the equilibrium hydrogen concentrations depending on test conditions. The data also indicates that faster heating rates may be beneficial to the hydrogen yield. Equilibrium calculations were also performed to examine the impact of wood concentration on the gas mixtures produced. This calculation showed that increasing wood concentrations favors the formation of methane at the expense of hydrogen.

  1. Comparison of Diafiltration and Size-Exclusion Chromatography to Recover Hemicelluloses From Process Water From Thermomechanical Pulping of Spruce

    NASA Astrophysics Data System (ADS)

    Andersson, Alexandra; Persson, Tobias; Zacchi, Guido; Stålbrand, Henrik; Jönsson, Ann-Sofi

    Hemicelluloses constitute one of the most abundant renewable resources on earth. To increase their utilization, the isolation of hemicelluloses from industrial biomass side-streams would be beneficial. A method was investigated to isolate hemicelluloses from process water from a thermomechanical pulp mill. The method consists of three steps: removal of solids by microfiltration, preconcentration of the hemicelluloses by ultrafiltration, and purification by either size-exclusion chromatography (SEC) or diafiltration. The purpose of the final purification step is to separate hemicelluloses from small oligosaccharides, monosaccharides, and salts. The ratio between galactose, glucose, and mannose in oligo- and polysaccharides after preconcentration was 0.8∶1∶2.8, which is similar to that found in galactoglucomannan. Continuous diafiltration was performed using a composite fluoro polymer membrane with cutoff of 1000 Da. After diafiltration with four diavolumes the purity of the hemicelluloses was 77% (gram oligo- and polysaccharides/ gram total dissolved solids) and the recovery was 87%. Purification by SEC was performed with 5, 20, and 40% sample loadings, respectively and a flow rate of 12 or 25 mL/min (9 or 19 cm/h). The purity of hemicelluloses after SEC was approx 82%, and the recovery was above 99%. The optimal sample load and flow rate were 20% and 25 mL/min, respectively. The process water from thermomechanical pulping of spruce is inexpensive. Thus, the recovery of hemicelluloses is not of main importance. If the purity of 77%, obtained with diafiltration, is sufficient for the utilization of the hemicelluloses, diafiltration probably offers a less expensive alternative in this application.

  2. Process for increasing the water discharge of water delivering drilled wells, previously used for water delivery, and having decreased water discharge

    SciTech Connect

    Gomory, P.; Hegedus, J.; Kiss, F.; Simon, A.

    1985-09-17

    Process for increasing the water discharge of water delivering drilled wells, which can be characterized in that into the filter section of the well weak acids with a dissociation constant being less than K /SUB d/ =10/sup -3/ are introduced. After a dwelling period of longer duration, expediently 10 to 48 hours, as well as compressing, flushing is performed by means of a scavenging pump. Thereafter the solution of sodium bicarbonate and/or sodium hypochlorite is introduced into the filter section. After a longer dwelling period, expediently one to thirty-six hours, flushing is performed by means of the scavenging pump. As weak acids with a dissociation constant being less than K /SUB d/ =10/sup -3/ acetic acid, tartaric acid, citric acid, metaboric and/or tetraboric acid is used.

  3. Are self-explanations always beneficial?

    PubMed

    Kuhn, Deanna; Katz, Jared

    2009-07-01

    We present evidence suggesting that the effect of self-explanations on learning is not always beneficial and, in fact, in some contexts has a detrimental effect. Over eight sessions, fourth-graders engaged in investigation of a database with the goal of identifying causal effects. In a separate task, children in one condition also generated self-explanations regarding the mechanisms underlying the causal effects they believed to be present. In a comparison condition, they did not. On a transfer task, children in the no-explanations condition showed superior causal inference performance. The findings are discussed as reflecting the development of "data-reading" skill with which an emphasis on explanations may interfere. PMID:19386318

  4. Effect of two-stage coagulant addition on coagulation-ultrafiltration process for treatment of humic-rich water.

    PubMed

    Liu, Ting; Chen, Zhong-lin; Yu, Wen-zheng; Shen, Ji-min; Gregory, John

    2011-08-01

    A novel two-stage coagulant addition strategy applied in a coagulation-ultrafiltration (UF) process for treatment of humic-rich water at neutral pH was investigated in this study. When aluminum sulfate (alum) doses were set at a ratio of 3:1 added during rapid mix stage and half way through flocculation stage, the integrated process of two-stage alum addition achieved almost the same organic matter removal as that of conventional one-stage alum addition at the same overall dose. Whereas membrane fouling could be effectively mitigated by the two-stage addition exhibited by trans-membrane pressure (TMP) developments. The TMP developments were found to be primarily attributed to external fouling on membrane surface, which was closely associated with floc characteristics. The results of jar tests indicated that the average size of flocs formed in two-stage addition mode roughly reached one half larger than that in one-stage addition mode, which implied a beneficial effect on membrane fouling reduction. Moreover, the flocs with more irregular structure and lower effective density resulted from the two-stage alum addition, which caused higher porosity of cake layer formed by such flocs on membrane surface. Microscopic observations of membrane surface demonstrated that internal fouling in membrane pores could be also remarkably limited by two-stage alum addition. It is likely that the freshly formed hydroxide precipitates were distinct in surface characteristics from the aged precipitates due to formation of more active groups or adsorption of more labile aluminum species. Consequently, the flocs could further connect and aggregate to contribute to preferable properties for filtration performance of the coagulation-UF process. As a simple and efficient approach, two-stage coagulant addition strategy could have great practical significance in coagulation-membrane processes. PMID:21704354

  5. Technology advancement of the static feed water electrolysis process

    NASA Technical Reports Server (NTRS)

    Jensen, F. C.; Schubert, F. H.

    1977-01-01

    Some results are presented of a research and development program to continue the development of a method to generate oxygen for crew metabolic consumption during extended manned space flights. The concept being pursued is that of static feed water electrolysis. Specific major results of the work included: (1) completion of a 30-day electrode test using a Life Systems, Inc.-developed high performance catalyst. During startup the cell voltages were as low as 1.38 V at current densities of 108 mA/sq cm (100 ASF) and temperatures of 355 K (180 F). At the end of 30 days of testing the cell voltages were still only 1.42 V at 108 mA/sq cm, (2) determination that the Static Feed Water Electrolysis Module does not release an aerosol of the cell electrolyte into the product gas streams after a break-in period of 24 hours following a new electrolyte charge, and (3) completion of a detailed design analysis of an electrochemical Oxygen Generation Subsystem at a three-man level (4.19 kg/day (9.24 lb/day) of oxygen).

  6. NMR spectroscopy and chemometrics to evaluate different processing of coconut water.

    PubMed

    Sucupira, N R; Alves Filho, E G; Silva, L M A; de Brito, E S; Wurlitzer, N J; Sousa, P H M

    2017-02-01

    NMR and chemometrics was applied to understand the variations in chemical composition of coconut water under different processing. Six processing treatments were applied to coconut water and analyzed: two control (with and without sulphite), and four samples thermally processed at 110°C and 136°C (with and without sulphite). Samples processed at lower temperature and without sulphite presented pink color under storage. According to chemometrics, samples processed at higher temperature exhibited lower levels of glucose and malic acid. Samples with sulphite processed at 136°C presented lower amount of sucrose, suggesting the degradation of the carbohydrates after harshest thermal treatment. Samples with sulphite and processed at lower temperature showed higher concentration of ethanol. However, no significant changes were verified in coconut water composition as a whole. Sulphite addition and the temperature processing to 136°C were effective to prevent the pinking and to maintain the levels of main organic compounds. PMID:27596412

  7. Air-dense medium fluidized bed dry beneficiation of coal: Results of 50 MTPH demonstration plant

    SciTech Connect

    Chen Qingru; Yang Yi; Liang Chuncheng; Tao Xiuxiang; Luo Zhenfu

    1993-12-31

    This paper presents the performance results of the 50 MTPH Coal Dry Beneficiation Demonstration Plant constructed in the Heilongjiang Province of northeastern China. The separating media used in this process consists of an air/dense medium (magnetite, or magnetic pearls, a remnant of coal combustion in power plants) fluidized bed controllable at specific gravities ranging from 1.3 to 2.0. That portion of the feedstock with a specific gravity less than the separating gravity floats to the top of the fluidized bed where it is recovered at one end of the vessel. That portion of the feedstock with a specific gravity higher than the separating gravity sinks and is discharged from the other end of the vessel. The process has separating efficiencies similar to a heavy media vessel or cyclone with the additional advantages of (1) can be utilized in an arid region containing insufficient water supply, (2) results in a dry product requiring no additional dewatering and coal slime treatment, and (3) as result of air flow will remove some surface moisture present in the feedstock. As a result of the magnetite used in the fluidized bed and the subsequent downstream recovery of this magnetite, the current demonstration plant utilizes a 6mm bottom size. The topsize of the feed is a function of the size of the system and the site specific ash liberation requirement. The Demonstration Plant commenced operation in September 1992. The mechanical processes of the system including coal feeding, sizing, gravity separation/beneficiation, and medium recovery, functioned as anticipated from the 10 MTPH pilot plant. Preliminary results with separating gravities in the range of 1.3--2.0 showed a probable error as low as 0.05 with magnetite losses of 0.5 kg/MT of feed.

  8. Thermal performance of a photographic laboratory process: Solar Hot Water System

    NASA Technical Reports Server (NTRS)

    Walker, J. A.; Jensen, R. N.

    1982-01-01

    The thermal performance of a solar process hot water system is described. The system was designed to supply 22,000 liters (5,500 gallons) per day of 66 C (150 F) process water for photographic processing. The 328 sq m (3,528 sq. ft.) solar field has supplied 58% of the thermal energy for the system. Techniques used for analyzing various thermal values are given. Load and performance factors and the resulting solar contribution are discussed.

  9. Accurate determination of fiber water-retaining capability at process conditions by headspace gas chromatography.

    PubMed

    Zhang, Shu-Xin; Chai, Xin-Sheng; He, Liang

    2016-09-16

    This work reports on a method for the accurate determination of fiber water-retaining capability at process conditions by headspace gas chromatography (HS-GC) method. The method was based the HS-GC measurement of water vapor on a set closed vials containing in a given amount pulp with different amounts of water addition, from under-saturation to over-saturation. By plotting the equilibrated water vapor signal vs. the amount of water added in pulp, two different trend lines can be observed, in which the transition of the lines corresponds to fiber water-retaining capability. The results showed that the HS-GC method has good measurement precision (much better than the reference method) and good accuracy. The present method can be also used for determining pulp fiber water-retaining capability at the process temperatures in both laboratory research and mill applications. PMID:27554029

  10. Dynamic water loss of antigorite by impact process

    NASA Astrophysics Data System (ADS)

    Sekine, Toshimori; Kimura, Tomoaki; Kobayashi, Takamichi; Mashimo, Tsutomu

    2015-04-01

    Impact-induced dehydration of serpentine in primitive meteorites is believed to be a mechanism to provide water in terrestrial planets. Primitive meteorites show a wide range of porosity and it is necessary to know the effect of porosity on the dehydration. In this work we report the dynamic dehydration reaction in powdered samples of antigorite by shock recovery experiments, in which recovered samples were investigated using techniques of X-ray diffractions, electron microscopy, and thermal analyses of shock recovered samples. The present experimental results indicate that the dehydration reaction is weakly pressure-dependent below a peak shock pressure of ∼21 GPa and becomes violent at pressures of 21-60 GPa. The kinetics was found to be dependent on not only peak shock pressure but also the initial porosity and sample amount. We discuss the heterogeneous dehydration reactions based on the phases identified in the recovered samples, more than previously thought.

  11. Computer simulation of the water and hydrogen distillation and CECE process and its experimental verification

    SciTech Connect

    Fedorchenko, O.A.; Alekseev, I.A.; Trenin, V.D.; Uborski, V.V.

    1995-10-01

    Mathematical simulation procedures have been developed for three processes of hydrogen isotopes separation: (1) a non steady-state water distillation; (2) a cryogenic distillation; and (3) a combined electrolysis and multistage water/hydrogen catalytic exchange (CECE) process. The simulation procedures possess some special features. Thus, the comparatively large step of integration and as a result of this high fast-acting is the peculiarity of the model for the dynamic behaviour of water distillation column operating at total reflux. The simulation procedure for CECE process considers six components and three phases (liquid water, water vapour, and hydrogen gas) and allows one to carry out computations for any mole fraction stock. This procedure, as the one for cryogenic distillation process, is not based on the Newton-Raphson method, and, in spite of this, convergence is reached by a small number of iterations (4 - 11). 8 refs., 4 figs., 6 tabs.

  12. Quantification of unsteady heat transfer and phase changing process inside small icing water droplets.

    PubMed

    Jin, Zheyan; Hu, Hui

    2009-05-01

    We report progress made in our recent effort to develop and implement a novel, lifetime-based molecular tagging thermometry (MTT) technique to quantify unsteady heat transfer and phase changing process inside small icing water droplets pertinent to wind turbine icing phenomena. The lifetime-based MTT technique was used to achieve temporally and spatially resolved temperature distribution measurements within small, convectively cooled water droplets to quantify unsteady heat transfer within the small water droplets in the course of convective cooling process. The transient behavior of phase changing process within small icing water droplets was also revealed clearly by using the MTT technique. Such measurements are highly desirable to elucidate underlying physics to improve our understanding about important microphysical phenomena pertinent to ice formation and accreting process as water droplets impinging onto wind turbine blades. PMID:19485525

  13. County develops beneficial use program for sludge disposal

    SciTech Connect

    Palmer, D.W. ); Jepson, C.B. )

    1993-08-01

    This article describes a program of sewage sludge disposal that is beneficial and deals with contract services necessary for the hauling and marketing of sludge products. The topics of the article include dealing with insurance, obtaining the best price, quality of sludge, beneficial uses of sludge, and future plans for new methods of beneficial use.

  14. Development of a cleaning process for uranium chips machined with a glycol-water-borax coolant

    SciTech Connect

    Taylor, P.A.

    1984-12-01

    A chip-cleaning process has been developed to remove the new glycol-water-borax coolant from oralloy chips. The process involves storing the freshly cut chips in Freon-TDF until they are cleaned, washing with water, and displacing the water with Freon-TDF. The wash water can be reused many times and still yield clean chips and then be added to the coolant to make up for evaporative losses. The Freon-TDF will be cycled by evaporation. The cleaning facility is currently being designed and should be operational by April 1985.

  15. Evidence for Recent Liquid Water on Mars: 'Dry' Processes on One Slope; 'Wet' Processes on Another

    NASA Technical Reports Server (NTRS)

    2000-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site]

    How can martian gullies--thought to be caused in part by seepage and runoff of liquid water--be distinguished from the more typical, 'dry' slope erosion processes that also occur on Mars? For one thing, most--though not all--of the gully landforms occur on slopes that face away from the martian equator and toward the pole. For another, slopes that face toward the equator exhibit the same types of features as seen on nearly every other non-gullied slope on Mars.

    The example shown here comes from northwestern Elysium Planitia in the martian northern hemisphere. The Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) high resolution view (A, left) shows a portion of a 10 kilometer-(6.2 mi)-diameter meteor impact crater at a resolution of about 9 meters (29.5 ft) per pixel. The crater is shown in the context image (B, middle). The north-facing (or, pole-ward) slope in the MOC view is shadowed because sunlight illuminates the scene from the lower left. In this shadowed area, a series of martian gullies--defined by their erosional alcoves, deep channels, and apron deposits--are seen. On the sunlit south-facing (or equator-ward) slope, a scene more typical of most martian impact craters is present--the upper slopes show layered bedrock, the lower slopes show light-toned streaks of dry debris that has slid down the slope forming talus deposits that are distinctly different from the lobe-like form of gully aprons. The picture in (C) has been rotated so that the two slopes--one with gullies (right) and one without (left)--can be compared.

    The crater is located at 36.7oN, 252.3oW. The MOC image was acquired in November 1999 and covers an area 3 km (1.9 mi) wide by 14 km (8.7 mi) long; north is toward the upper right (in A) and it is illuminated by sunlight from the lower left. The Viking 1 orbiter context image (B) was obtained in 1978 and is illuminated from the left

  16. WATER-GAS SHIFT WITH INTEGRATED HYDROGEN SEPARATION PROCESS

    SciTech Connect

    Maria Flytzani-Stephanopoulos; Xiaomei Qi; Scott Kronewitter

    2004-02-01

    This project involved fundamental research and development of novel cerium oxide-based catalysts for the water-gas-shift reaction and the integration of these catalysts with Pd-alloy H{sub 2} -separation membranes supplying high purity hydrogen for fuel cell use. Conditions matching the requirements of coal gasifier-exit gas streams were examined in the project. Cu-cerium oxide was identified as the most promising high-temperature water-gas shift catalyst for integration with H{sub 2}-selective membranes. Formulations containing iron oxide were found to deactivate in the presence of CO{sub 2}. Cu-containing ceria catalysts, on the other hand, showed high stability in CO{sub 2}-rich gases. This type gas will be present over much of the catalyst, as the membrane removes the hydrogen produced from the shift reaction. The high-temperature shift catalyst composition was optimized by proper selection of dopant type and amount in ceria. The formulation 10at%Cu-Ce(30at%La)O{sub x} showed the best performance, and was selected for further kinetic studies. WGS reaction rates were measured in a simulated coal-gas mixture. The apparent activation energy, measured over aged catalysts, was equal to 70.2 kJ/mol. Reaction orders in CO, H{sub 2}O, CO{sub 2} and H{sub 2} were found to be 0.8, 0.2, -0.3, and -0.3, respectively. This shows that H{sub 2}O has very little effect on the reaction rate, and that both CO{sub 2} and H{sub 2} weakly inhibit the reaction. Good stability of catalyst performance was found in 40-hr long tests. A flat (38 cm{sup 2}) Pd-Cu alloy membrane reactor was used with the catalyst washcoated on oxidized aluminum screens close coupled with the membrane. To achieve higher loadings, catalyst granules were layered on the membrane itself to test the combined HTS activity/ H{sub 2} -separation efficiency of the composite. Simulated coal gas mixtures were used and the effect of membrane on the conversion of CO over the catalyst was evidenced at high space

  17. The challenges of mainstream deammonification process for municipal used water treatment.

    PubMed

    Xu, Guangjing; Zhou, Yan; Yang, Qin; Lee, Zarraz May-Ping; Gu, Jun; Lay, Winson; Cao, Yeshi; Liu, Yu

    2015-03-01

    The deammonification process combining partial nitritation and anaerobic ammonium oxidation has been considered as a viable option for energy-efficient used water treatment. So far, many full-scale sidestream deammonification plants handling high-ammonia used water have been in successful operation since Anammox bacteria were first discovered in the 1990s. However, large-scale application of this process for treating municipal used water with low ammonia concentration has rarely been reported. Compared to the sidestream deammonification process, the mainstream deammonification process for municipal used water treatment faces three main challenges, i.e., (i) high COD/N ratio leading to denitrifiers outcompeting Anammox bacteria, (ii) numerous difficulties in selective retention of ammonia-oxidizing bacteria (AOB) over nitrite-oxidizing bacteria (NOB), and (iii) sufficient accumulation of Anammox bacteria. Therefore, this paper attempts to provide a detailed analysis of these challenges and possible solutions towards sustainable mainstream deammonification process. PMID:25638355

  18. Method of manipulating the chemical properties of water to improve the effectiveness of a desired process

    DOEpatents

    Hawthorne, Steven B.; Miller, David J.; Lagadec, Arnaud Jean-Marie; Hammond, Peter James; Clifford, Anthony Alan

    2002-01-01

    The method of the present invention is adapted to manipulate the chemical properties of water in order to improve the effectiveness of a desired process. The method involves heating the water in the vessel to subcritical temperatures between 100.degree. to 374.degree. C. while maintaining sufficient pressure to the water to maintain the water in the liquid state. Various physiochemical properties of the water can be manipulated including polarity, solute solubility, surface tension, viscosity, and the disassociation constant. The method of the present invention has various uses including extracting organics from solids and semisolids such as soil, selectively extracting desired organics from liquids, selectively separating organics using sorbent phases, enhancing reactions by controlling the disassociation constant of water, cleaning waste water, removing organics from water using activated carbon or other suitable sorbents, and degrading various compounds.

  19. Hydrochloric acid method of beneficiating magnesite using a pilot plant

    SciTech Connect

    Sertin, V.A.; Galkin, Y.M.; Gemusova, I.B.; Glezer, E.B.; Khaltyurin, V.A.; Kislitsyn, V.I.; Rodde, T.V.; Simonov, K.V.; Vetlugina, N.A.; Yurlova, L.N.; Zakutinskii, V.L.

    1985-07-01

    One feature of the HCl treatment of magnesite is the possibility of using the main mass of HCl in a closed cycle. Regeneration of the HCl takes place during the thermal hydrolysis of the purified solution of magnesium chloride. In accordance with the plan drawn up by the Eastern Institute of Refractories and the Ukranian Institute of Chemistry, a pilot plant has been built at the Magnesite Combine; this has been mastered and is used for the hydrochloric acid treatment of magnesite; the annual productivity of the equipment is 400 tons. Some features of the process of dissolution of natural and caustic magnesite in HCL and the sintering of the beneficiated product have been considered elsewhere. This paper pays particular attention to the apparatus-process character and considers in more detail the hydrolysis of magnesium chloride.

  20. Operation, Modeling and Analysis of the Reverse Water Gas Shift Process

    NASA Technical Reports Server (NTRS)

    Whitlow, Jonathan E.

    2001-01-01

    The Reverse Water Gas Shift process is a candidate technology for water and oxygen production on Mars under the In-Situ Propellant Production project. This report focuses on the operation and analysis of the Reverse Water Gas Shift (RWGS) process, which has been constructed at Kennedy Space Center. A summary of results from the initial operation of the RWGS, process along with an analysis of these results is included in this report. In addition an evaluation of a material balance model developed from the work performed previously under the summer program is included along with recommendations for further experimental work.

  1. Influence of Water Content on Mechanical Properties of Rock in Both Saturation and Drying Processes

    NASA Astrophysics Data System (ADS)

    Zhou, Zilong; Cai, Xin; Cao, Wenzhuo; Li, Xibing; Xiong, Cheng

    2016-08-01

    Water content has a pronounced influence on the properties of rock materials, which is responsible for many rock engineering hazards, such as landslides and karst collapse. Meanwhile, water injection is also used for the prevention of some engineering disasters like rock-bursts. To comprehensively investigate the effect of water content on mechanical properties of rocks, laboratory tests were carried out on sandstone specimens with different water contents in both saturation and drying processes. The Nuclear Magnetic Resonance technique was applied to study the water distribution in specimens with variation of water contents. The servo-controlled rock mechanics testing machine and Split Hopkinson Pressure Bar technique were used to conduct both compressive and tensile tests on sandstone specimens with different water contents. From the laboratory tests, reductions of the compressive and tensile strength of sandstone under static and dynamic states in different saturation processes were observed. In the drying process, all of the saturated specimens could basically regain their mechanical properties and recover its strength as in the dry state. However, for partially saturated specimens in the saturation and drying processes, the tensile strength of specimens with the same water content was different, which could be related to different water distributions in specimens.

  2. Advanced precoat filtration and competitive processes for water purification. Technical report

    SciTech Connect

    Wang, L.K.; Wang, M.H.S.

    1989-01-28

    An advanced precoat filtration process system is introduced. Also presented and discussed are major competitive processes for water purification, such as conventional precoat filtration, conventional physical-chemical process, lime softening, carbon adsorption, ion exchange, activated alumina, reverse osmosis, ultrafiltration, microfiltration, electrodialysis, and packed aeration column.

  3. Is biological treatment a viable alternative for micropollutant removal in drinking water treatment processes?

    PubMed

    Benner, Jessica; Helbling, Damian E; Kohler, Hans-Peter E; Wittebol, Janneke; Kaiser, Elena; Prasse, Carsten; Ternes, Thomas A; Albers, Christian N; Aamand, Jens; Horemans, Benjamin; Springael, Dirk; Walravens, Eddy; Boon, Nico

    2013-10-15

    In western societies, clean and safe drinking water is often taken for granted, but there are threats to drinking water resources that should not be underestimated. Contamination of drinking water sources by anthropogenic chemicals is one threat that is particularly widespread in industrialized nations. Recently, a significant amount of attention has been given to the occurrence of micropollutants in the urban water cycle. Micropollutants are bioactive and/or persistent chemicals originating from diverse sources that are frequently detected in water resources in the pg/L to μg/L range. The aim of this review is to critically evaluate the viability of biological treatment processes as a means to remove micropollutants from drinking water resources. We first place the micropollutant problem in context by providing a comprehensive summary of the reported occurrence of micropollutants in raw water used directly for drinking water production and in finished drinking water. We then present a critical discussion on conventional and advanced drinking water treatment processes and their contribution to micropollutant removal. Finally, we propose biological treatment and bioaugmentation as a potential targeted, cost-effective, and sustainable alternative to existing processes while critically examining the technical limitations and scientific challenges that need to be addressed prior to implementation. This review will serve as a valuable source of data and literature for water utilities, water researchers, policy makers, and environmental consultants. Meanwhile this review will open the door to meaningful discussion on the feasibility and application of biological treatment and bioaugmentation in drinking water treatment processes to protect the public from exposure to micropollutants. PMID:24053940

  4. Beneficial microstructured titania photoanodes for improving DSSC performance

    NASA Astrophysics Data System (ADS)

    Ahmed, Saquib

    Critical assessment of economically viable renewable energy sources is essential for the development of a globally sustainable society. Dye sensitized solar cells (DSSCs) offer a viable alternative to traditional silicon and thin film photovoltaic (PV) technologies owing to their potential low cost and facile manufacturing. The two main challenges in enhancing device cell performance lie in improving the open circuit voltage (VOC), and suppressing recombination in the semiconductor TiO2 matrix. This thesis explores the latter challenge through investigation of a novel microstructured TiO2 photoanode system. In this research, we have synthesized CTAB-templated mesoporous, anatase, high surface area TiO2 using an acidic precursor to enhance dye adsorption. Through simple supramolecular self-assembly of the TiO2 particles during the synthesis, we have discovered a self-assembled system of TiO2 nanocrystallite aggregates with high surface area, which when applied as the photoanode in DSSCs, result in a novel high-roughness film beneficial for dye adsorption, and also lead to enhanced intrinsic light-scattering within the film itself. The TiO2 nanocrystallites are highly crystalline, with good interconnectivity for improved electron conduction. An additional unique and beneficial feature inherent of this novel photoanode film is its hierarchical meso- and macro-porosity, leading to improved electrolyte percolation through the TiO2 matrix---thereby providing better access to dye molecules for regeneration to occur more effectively (enhanced charge transfer). In all, we have fabricated a TiO2 system through a one-step process that incorporates key beneficial microstructural features crucial for enhancing DSSC behavior. We have further carried out critical TiCl4 surface treatment studies of this porous electrode structure of TiO2 aggregates to understand and improve upon recombination kinetics in the photonanode film matrix, together with enhancing its intrinsic light

  5. Characterization of arid land water-balance processes at Yucca Mountain, Nevada

    NASA Astrophysics Data System (ADS)

    Flint, Alan L.; Flint, Lorraine E.; Hevesi, Joseph A.; Hudson, David B.

    Water-balance processes were characterized to estimate net infiltration at Yucca Mountain, Nevada, to help determine the suitability of this site as a potential high-level radioactive waste repository. Detailed water-content data were collected from 98 boreholes located in four topographic positions (ridgetops, sideslopes, albvial terraces, and active channels) representing four infiltration zones. These data include monthly volumetric water-content readings with depth for 1984 through 1995 and water potential measurements made at a soil-bedrock contact in 1995. These data, combined with measured evapotranspiration and precipitation data, piovide the seasonal and areal distribution of changes in volumetric water content needed to assess hydrologic processes contributing to net infiltration. The conceptual model of infiltration at Yucca Mountain describes the processes of precipitation, runoff, evapotranspiration, and vertical redistribution of water in the shallow unsaturated zone. Field observations and measurements and data analysis indicate that, in order for net infiltration to occur, water must reach and nearly saturate the soil-bedrock contact to initiate flow in the underlying fractured bedrock, and water must penetrate deep enough to escape the influences of evapotranspiration. The amount of net infiltration is a function of how long or how frequently the contact is saturated. Water must penetrate deep enough to escape the influences of evapotranspiration. The penetration of water through the soil is influenced primarily by the seasonal timing and areal distribution of precipitation, the storage capacity of soil, and the properties of the underlying bedrock.

  6. Biosorption process for removing heavy metal ions using water milfoil (Myriophyllum Spicatum) in contaminated water

    SciTech Connect

    Wang, T.C.; Weissman, J.C.; Varadarajan, R.

    1995-12-31

    A small scale biomass metal contacting experiment was performed to screen the optimal plant species for biosorption and bioaccumulation of cadmium, zinc, nickel, lead, and copper. Experiments were also conducted to test the ability of the biomass to lower the metal concentrations below the US Environmental Protection Agency surface water discharge criteria. The minimum residual concentration was 0.1 mg/L for zinc, 0.004 mg/L for lead, and about 0.01 mg/L for cadmium, nickel, and lead. Results indicate that water milfoil can be used for bioremoval of metals.

  7. Process for preparing a stabilized coal-water slurry

    DOEpatents

    Givens, Edwin N.; Kang, Doohee

    1987-01-01

    A process for preparing a stabilized coal particle suspension which includes the steps of providing an aqueous media substantially free of coal oxidizing constituents, reducing, in a nonoxidizing atmosphere, the particle size of the coal to be suspended to a size sufficiently small to permit suspension thereof in the aqueous media and admixing the coal of reduced particle size with the aqueous media to release into the aqueous media coal stabilizing constituents indigenous to and carried by the reduced coal particles in order to form a stabilized coal particle suspension. The coal stabilizing constituents are effective in a nonoxidizing atmosphere to maintain the coal particle suspension at essentially a neutral or alkaline pH. The coal is ground in a nonoxidizing atmosphere such as an inert gaseous atmosphere to reduce the coal to a sufficient particle size and is admixed with an aqueous media that has been purged of oxygen and acid-forming gases.

  8. Process for preparing a stabilized coal-water slurry

    DOEpatents

    Givens, E.N.; Kang, D.

    1987-06-23

    A process is described for preparing a stabilized coal particle suspension which includes the steps of providing an aqueous media substantially free of coal oxidizing constituents, reducing, in a nonoxidizing atmosphere, the particle size of the coal to be suspended to a size sufficiently small to permit suspension thereof in the aqueous media and admixing the coal of reduced particle size with the aqueous media to release into the aqueous media coal stabilizing constituents indigenous to and carried by the reduced coal particles in order to form a stabilized coal particle suspension. The coal stabilizing constituents are effective in a nonoxidizing atmosphere to maintain the coal particle suspension at essentially a neutral or alkaline pH. The coal is ground in a nonoxidizing atmosphere such as an inert gaseous atmosphere to reduce the coal to a sufficient particle size and is admixed with an aqueous media that has been purged of oxygen and acid-forming gases. 2 figs.

  9. [Alcohol--when it's beneficial to your health?].

    PubMed

    Zdrojewicz, Zygmumt; Pypno, Damian; Bugaj, Bartosz; Cabała, Krzysztof

    2015-12-01

    Ethyl alcohol is the most commonly used psychoactive agent. It's average consumption in Poland totaled 9.67 liters per capita in 2013. Ethanol's biotransformation rate in an adult ranges from 7 to 10 grams per hour. The basic metabolism takes place in the liver through the oxidation involving NAD+. The alcohol is transformed first into acetaldehyde and then into acetic acid. In higher blood concentrations or in alcoholism, cytochrome's P-450 coenzyme CYP2E1 also plays an important role in this process. Alcohol is responsible for nearly 50% of annual deaths, mostly caused by an accident due to alcohol intoxication while driving. Studies were performed to determine the influence ethanol has on the human body and how it impacts the progression of illnesses such as senile dementia, cardiovascular diseases or osteoporosis. Scientists' attention was drawn to the possibility of ethyl alcohol's usage resulting in a reduction in an overall mortality rate, however the beneficial effects were observed only during a slight and moderate consumption. Higher doses of alcohol were associated with a decline in patient's condition. The purpose of this dissertation is an attempt to answer the question, whether the alcohol can be beneficial to the user's health and if so, in what doses? The importance of this topic comes from the fact that due to the alcohol being widely available, determining the influence it has on human body is vital for public health. Original articles and reviews were used to summarize the results of studies regarding the topic. PMID:26802685

  10. Characterization and Beneficiation Studies of a Low Grade Bauxite Ore

    NASA Astrophysics Data System (ADS)

    Rao, D. S.; Das, B.

    2014-10-01

    A low grade bauxite sample of central India was thoroughly characterized with the help of stereomicroscope, reflected light microscope and electron microscope using QEMSCAN. A few hand picked samples were collected from different places of the mine and were subjected to geochemical characterization studies. The geochemical studies indicated that most of the samples contain high silica and low alumina, except a few which are high grade. Mineralogically the samples consist of bauxite (gibbsite and boehmite), ferruginous mineral phases (goethite and hematite), clay and silicate (quartz), and titanium bearing minerals like rutile and ilmenite. Majority of the gibbsite, boehmite and gibbsitic oolites contain clay, quartz and iron and titanium mineral phases within the sample as inclusions. The sample on an average contains 39.1 % Al2O3 and 12.3 % SiO2, and 20.08 % of Fe2O3. Beneficiation techniques like size classification, sorting, scrubbing, hydrocyclone and magnetic separation were employed to reduce the silica content suitable for Bayer process. The studies indicated that, 50 % by weight with 41 % Al2O3 containing less than 5 % SiO2 could be achieved. The finer sized sample after physical beneficiation still contains high silica due to complex mineralogical associations.

  11. Alternative Processes for Water Reclamation and Solid Waste Processing in a Physical/chemical Bioregenerative Life Support System

    NASA Technical Reports Server (NTRS)

    Rogers, Tom D.

    1990-01-01

    Viewgraphs on alternative processes for water reclamation and solid waste processing in a physical/chemical-bioregenerative life support system are presented. The main objective is to focus attention on emerging influences of secondary factors (i.e., waste composition, type and level of chemical contaminants, and effects of microorganisms, primarily bacteria) and to constructively address these issues by discussing approaches which attack them in a direct manner.

  12. Combustion characterization of beneficiated coal-based fuels. Quarterly report No. 16, January--March 1993

    SciTech Connect

    Chow, O.K.; Nsakala, N.Y.

    1993-05-01

    The Pittsburgh Energy Technology Center of the US Department of Energy has contracted with Combustion Engineering, Inc. (CE) to perform a five-year project on ``Combustion Characterization of Beneficiated Coal-Based Fuels.`` The beneficiated coals are produced by other contractors under the DOE Coal Preparation Program. Several contractor-developed advanced coal cleaning processes are run at pilot-scale cleaning facilities to produce 20-ton batches of fuels for shipment to CE`s laboratory in Windsor, Connecticut. CE then processes the products into either a coal-water fuel (CWF) or a dry microfine pulverized coa1 (DMPC) form for combustion testing. The objectives of this project include: (1) the development of an engineering data base which will provide detailed information on the properties of BCFs influencing combustion, ash deposition, ash erosion, particulate collection, and emissions; and (2) the application of this technical data base to predict the performance and economic impacts of firing the BCFs in various commercial boiler designs. The technical approach used to develop the technical data includes: bench-scale fuel property, combustion, and ash deposition tests; pilot-scale combustion and ash effects tests; and full-scale combustion tests. During the first quarter of 1993, the following technical progress was made: Reported results of drop tube furnace data analyses to determine devolatilization kinetics; reported the results from the re-analyzed pilot-scale ash deposits from the first nine feed coals and BCFs using a modified CCSEM technique; and prepared for upcoming tests of new BCFs being produced.

  13. Combustion characterization of beneficiated coal-based fuels. Quarterly report No. 13, April--June 1992

    SciTech Connect

    Chow, O.K.; Nsakala, N.Y.

    1992-09-01

    The Pittsburgh Energy Technology Center of the US Department of Energy has contracted with Combustion Engineering, Inc. (CE) to perform a five-year project on ``Combustion Characterization of Beneficiated Coal-Based Fuels.`` The beneficiated coals are produced by other contractors under the DOE Coal Preparation Program. Several contractor-developed advanced coal cleaning processes are run at pilot-scale cleaning facilities to produce 20-ton batches of fuels for shipment to CE`s laboratory in Windsor, Connecticut. CE then processes the products into either a coal-water fuel (CWF) or a dry microfine pulverized coa1 (DMPC) form for combustion testing. The objectives of this project include: (1) the development of an engineering data base which will provide detailed information on the properties of BCFs influencing combustion, ash deposition, ash erosion, particulate collection, and emissions; and (2) the application of this technical data base to predict the performance and economic impacts of firing the BCFs in various commercial boiler designs. The technical approach used to develop the technical data includes: bench-scale fuel property, combustion, and ash deposition tests; pilot-scale combustion and ash effects tests; and full-scale combustion tests. During the third quarter of 1992, the following technical progress was made: Continued analyses of drop tube furnace samples to determine devolatilization kinetics; completed analyses of the samples from the pilot-scale ash deposition tests of unweathered Upper Freeport feed coal; published two technical papers at conferences; and prepared for upcoming tests of new BCFs being produced.

  14. Combustion characterization of beneficiated coal-based fuels. Quarterly report No. 15, October--December 1992

    SciTech Connect

    Chow, O.K.; Nsakala, N.Y.

    1993-03-01

    The Pittsburgh Energy Technology Center of the US Department of Energy has contracted with Combustion Engineering, Inc. (CE) to perform a five-year project on ``Combustion Characterization of Beneficiated Coal-Based Fuels.`` The beneficiated coals are produced by other contractors under the DOE Coal Preparation Program. Several contractor-developed advanced coal cleaning processes are run at pilot-scale cleaning facilities to produce 20-ton batches of fuels for shipment to CE`s laboratory in Windsor, Connecticut. CE then processes the products into either a coal-water fuel (CWF) or a dry microfine pulverized coa1 (DMPC) form for combustion testing. The objectives of this project include: (1) the development of an engineering data base which will provide detailed information on the properties of BCFs influencing combustion, ash deposition, ash erosion, particulate collection, and emissions; and (2) the application of this technical data base to predict the performance and economic impacts of firing the BCFs in various commercial boiler designs. The technical approach used to develop the technical data includes: bench-scale fuel property, combustion, and ash deposition tests; pilot-scale combustion and ash effects tests; and full-scale combustion tests. During the third quarter of 1992, the following technical progress was made: Continued analyses of drop tube furnace samples to determine devolatilization kinetics; re-analyzed the samples from the pilot-scale ash deposition tests of the first nine feed coals and BCFs using a modified CCSEM technique; updated the topical summary report; and prepared for upcoming tests of new BCFs being produced.

  15. Image processing developments and applications for water quality monitoring and trophic state determination

    NASA Technical Reports Server (NTRS)

    Blackwell, R. J.

    1982-01-01

    Remote sensing data analysis of water quality monitoring is evaluated. Data anaysis and image processing techniques are applied to LANDSAT remote sensing data to produce an effective operational tool for lake water quality surveying and monitoring. Digital image processing and analysis techniques were designed, developed, tested, and applied to LANDSAT multispectral scanner (MSS) data and conventional surface acquired data. Utilization of these techniques facilitates the surveying and monitoring of large numbers of lakes in an operational manner. Supervised multispectral classification, when used in conjunction with surface acquired water quality indicators, is used to characterize water body trophic status. Unsupervised multispectral classification, when interpreted by lake scientists familiar with a specific water body, yields classifications of equal validity with supervised methods and in a more cost effective manner. Image data base technology is used to great advantage in characterizing other contributing effects to water quality. These effects include drainage basin configuration, terrain slope, soil, precipitation and land cover characteristics.

  16. Processes of water rock interaction in the Turonian aquifer of Oum Er-Rabia Basin, Morocco

    NASA Astrophysics Data System (ADS)

    Ettazarini, Said

    2005-12-01

    Possible water rock interaction processes, in the Moroccan basin of Oum Er-Rabia, were discussed by a geochemical study of groundwater from the Turonian limestone aquifer, the most important water resource in the region. Different types of water according to the classification of Piper were defined. Waters have shown an evolution from dominant CHO3 Ca Mg type through mixed to SO4 Cl Ca Mg type. The use of geochemical diagrams and chemical speciation modeling method has shown that water rock interaction is mainly controlled by carbonate and anhydrite dissolution, ion exchange and reverse ion exchange processes. Water rock equilibrium conditions are favorable for the precipitation of calcite, dolomite, kaolinite and magnesian smectite.

  17. Copper corrosion in potable water systems: Impacts of natural organic matter and water treatment processes

    SciTech Connect

    Rehring, J.P.; Edwards, M.

    1996-04-01

    Copper corrosion was examined in the presence of natural organic matter (NOM) and in situations where NOM was altered by drinking water treatment. Corrosion rates (i{sub corr}) increased with higher NOM concentration at pH 6, whereas insignificant effects were observed at pH 7.5 and 9.0. Corrosion byproduct release was affected adversely by 4 mg/L NOM at pH 6.0, 7.5 and 9.0, with soluble copper increasing by 0.6 mg/L to 0.7 mg/L when compared to solutions without NOM. Alum-coagulated waters had higher i{sub corr} than untreated waters, but ferric chloride (FeCl{sub 3}{center_dot}6H{sub 2}O)-coagulated waters exhibited reduced i{sub corr}. This difference was attributed to the relative effects of added sulfate via alum coagulation vs added chloride via FeCl{sub 3}{center_dot}6H{sub 2}O coagulation. The effect of combined treatment (alum coagulation, ozonation, and granular activated carbon) was similar to that using alum coagulation alone.

  18. Moditored unsaturated soil transport processes as a support for large scale soil and water management

    NASA Astrophysics Data System (ADS)

    Vanclooster, Marnik

    2010-05-01

    The current societal demand for sustainable soil and water management is very large. The drivers of global and climate change exert many pressures on the soil and water ecosystems, endangering appropriate ecosystem functioning. The unsaturated soil transport processes play a key role in soil-water system functioning as it controls the fluxes of water and nutrients from the soil to plants (the pedo-biosphere link), the infiltration flux of precipitated water to groundwater and the evaporative flux, and hence the feed back from the soil to the climate system. Yet, unsaturated soil transport processes are difficult to quantify since they are affected by huge variability of the governing properties at different space-time scales and the intrinsic non-linearity of the transport processes. The incompatibility of the scales between the scale at which processes reasonably can be characterized, the scale at which the theoretical process correctly can be described and the scale at which the soil and water system need to be managed, calls for further development of scaling procedures in unsaturated zone science. It also calls for a better integration of theoretical and modelling approaches to elucidate transport processes at the appropriate scales, compatible with the sustainable soil and water management objective. Moditoring science, i.e the interdisciplinary research domain where modelling and monitoring science are linked, is currently evolving significantly in the unsaturated zone hydrology area. In this presentation, a review of current moditoring strategies/techniques will be given and illustrated for solving large scale soil and water management problems. This will also allow identifying research needs in the interdisciplinary domain of modelling and monitoring and to improve the integration of unsaturated zone science in solving soil and water management issues. A focus will be given on examples of large scale soil and water management problems in Europe.

  19. Characterization of plutonium in ground water near the idaho chemical processing plant

    USGS Publications Warehouse

    Cleveland, J.M.

    1982-01-01

    Plutonium is present in very low concentrations in ground water near the disposal well at the Idaho Chemical Processing Plant but was not detected in waters at greater distances. Because of the absence of strong complexing agents, the plutonium is present as an uncomplexed (perhaps hydrolyzed) tetravalent species, which is readily precipitated or sorbed by basalt or sediments along the ground-water flow path.

  20. Thermochemical processes for hydrogen production by water decomposition. Final report

    SciTech Connect

    Perlmutter, D.D.

    1980-08-01

    The principal contributions of the research are in the area of gas-solid reactions, ranging from models and data interpretation for fundamental kinetics and mixing of solids to simulations of engineering scale reactors. Models were derived for simulating the heat and mass transfer processes inside the reactor and tested by experiments. The effects of surface renewal of solids on the mass transfer phenomena were studied and related to the solid mixing. Catalysis by selected additives were studied experimentally. The separate results were combined in a simulation study of industrial-scale rotary reactor performance. A study was made of the controlled decompositions of a series of inorganic sulfates and their common hydrates, carried out in a Thermogravimetric Analyzer (TGA), a Differential Scanning Calorimeter (DSC), and a Differential Thermal Analyzer (DTA). Various sample sizes, heating rates, and ambient atmospheres were used to demonstrate their influence on the results. The purposes of this study were to: (i) reveal intermediate compounds, (ii) determine the stable temperature range of each compound, and (iii) measure reaction kinetics. In addition, several solid additives: carbon, metal oxides, and sodium chloride, were demonstrated to have catalytic effects to varying degrees for the different salts.

  1. Criticality safety evaluation report for the cold vacuum drying facility's process water handling system

    SciTech Connect

    NELSON, J.V.

    1999-05-12

    This report addresses the criticality concerns associated with process water handling in the Cold Vacuum Drying Facility. The controls and limitations on equipment design and operations to control potential criticality occurrences are identified.

  2. MONITORING OXIDATION-REDUCTION PROCESSES IN GROUND WATERS, SEDIMENTS, AND SOILS

    EPA Science Inventory

    The overall goal of this project is to develop recommendations and technical guidelines for evaluating redox processes in contaminated ground water, sediment, and soil systems. One specific goal is to evaluate existing methodologies for determining Dissolved Oxygen (DO) concentra...

  3. PROCESS WATER BUILDING, TRA605. INSIDE A FLASH EVAPORATOR. INL NEGATIVE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PROCESS WATER BUILDING, TRA-605. INSIDE A FLASH EVAPORATOR. INL NEGATIVE NO. 3323. Unknown Photographer, 9/12/1951 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  4. Effects of Subsurface Sampling &Processing on Martian Simulant Containing Varying Quantities of Water

    NASA Astrophysics Data System (ADS)

    Menard, J.; Sangillo, J.; Savain, A.; McNamara, K. M.

    2004-03-01

    This study is an attempt to simulate lubricant-free drilling into JSC Mars-1 simulant containing up to 50% water by weight and assess the impact of processing parameters on interpretation of in-situ compositional and mineralogical measurements.

  5. Energy requirements of the switchable polarity solvent forward osmosis (SPS-FO) water purification process

    SciTech Connect

    Wendt, Daniel S.; Orme, Christopher J.; Mines, Gregory L.; Wilson, Aaron D.

    2015-08-01

    A model was developed to estimate the process energy requirements of a switchable polarity solvent forward osmosis (SPS FO) system for water purification from aqueous NaCl feed solution concentrations ranging from 0.5 to 4.0 molal at an operational scale of 480 m3/day (feed stream). The model indicates recovering approximately 90% of the water from a feed solution with NaCl concentration similar to seawater using SPS FO would have total equivalent energy requirements between 2.4 and 4.3 kWh per m3 of purified water product. The process is predicted to be competitive with current costs for disposal/treatment of produced water from oil and gas drilling operations. As a result, once scaled up the SPS FO process may be a thermally driven desalination process that can compete with the cost of seawater reverse osmosis.

  6. Criticality Safety Evaluation Report for the Cold Vacuum Drying (CVD) Facilities Process Water Handling System

    SciTech Connect

    KESSLER, S.F.

    2000-08-10

    This report addresses the criticality concerns associated with process water handling in the Cold Vacuum Drying Facility. The controls and limitations on equipment design and operations to control potential criticality occurrences are identified.

  7. Energy requirements of the switchable polarity solvent forward osmosis (SPS-FO) water purification process

    DOE PAGESBeta

    Wendt, Daniel S.; Orme, Christopher J.; Mines, Gregory L.; Wilson, Aaron D.

    2015-08-01

    A model was developed to estimate the process energy requirements of a switchable polarity solvent forward osmosis (SPS FO) system for water purification from aqueous NaCl feed solution concentrations ranging from 0.5 to 4.0 molal at an operational scale of 480 m3/day (feed stream). The model indicates recovering approximately 90% of the water from a feed solution with NaCl concentration similar to seawater using SPS FO would have total equivalent energy requirements between 2.4 and 4.3 kWh per m3 of purified water product. The process is predicted to be competitive with current costs for disposal/treatment of produced water from oilmore » and gas drilling operations. As a result, once scaled up the SPS FO process may be a thermally driven desalination process that can compete with the cost of seawater reverse osmosis.« less

  8. Post-treatment of reclaimed waste water based on an electrochemical advanced oxidation process

    NASA Technical Reports Server (NTRS)

    Verostko, Charles E.; Murphy, Oliver J.; Hitchens, G. D.; Salinas, Carlos E.; Rogers, Tom D.

    1992-01-01

    The purification of reclaimed water is essential to water reclamation technology life-support systems in lunar/Mars habitats. An electrochemical UV reactor is being developed which generates oxidants, operates at low temperatures, and requires no chemical expendables. The reactor is the basis for an advanced oxidation process in which electrochemically generated ozone and hydrogen peroxide are used in combination with ultraviolet light irradiation to produce hydroxyl radicals. Results from this process are presented which demonstrate concept feasibility for removal of organic impurities and disinfection of water for potable and hygiene reuse. Power, size requirements, Faradaic efficiency, and process reaction kinetics are discussed. At the completion of this development effort the reactor system will be installed in JSC's regenerative water recovery test facility for evaluation to compare this technique with other candidate processes.

  9. THE UPTAKE OF WATER DISINFECTION BY-PRODUCTS INTO FOODS DURING HOME PROCESSING

    EPA Science Inventory

    A variety of organic compounds in tap water are produced as a result of disinfection process. Use of chlorine-containing chemicals for disinfection produces many disinfection by-products (DBPs) including trihalomethanes, haloacetonitriles and haloacetic acid. Ozonation with secon...

  10. PROCESS WATER BUILDING, TRA605. CAMERA LOOKING EAST AND TO WEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PROCESS WATER BUILDING, TRA-605. CAMERA LOOKING EAST AND TO WEST WALL NOW ENCLOSING FLASH EVAPORATORS. PIPES IN FOREGROUND WILL CARRY DEMINERALIZED COOLING WATER TO AND FROM THE MTR. INL NEGATIVE NO. 2937. Unknown Photographer, 7/30/1951 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  11. REMOVAL OF ARSENIC FROM DRINKING WATER SUPPLIES BY IRON REMOVAL PROCESS

    EPA Science Inventory

    This design manual is an in-depth presentation of the steps required to design and operate a water treatment plant for removal of arsenic in the As (V) form from drinking water using an iron removal process. The manual also discusses the capital and operating costs including many...

  12. A Cost-Benefit Analysis of Hollow Water's Community Holistic Circle Healing Process.

    ERIC Educational Resources Information Center

    Couture, Joe; Parker, Ted; Couture, Ruth; Laboucane, Patti

    Four Native American communities in Manitoba (Canada) known as Hollow Water devised a healing system for sexual abuse--the Hollow Water First Nation Community Holistic Circle Healing (CHCH). While integrating elements of a number of federal and provincially funded services, the 13-step CHCH healing process is based on the seven Midewin teachings…

  13. The method of multispectral image processing of phytoplankton processing for environmental control of water pollution

    NASA Astrophysics Data System (ADS)

    Petruk, Vasil; Kvaternyuk, Sergii; Yasynska, Victoria; Kozachuk, Anastasia; Kotyra, Andrzej; Romaniuk, Ryszard S.; Askarova, Nursanat

    2015-12-01

    The paper presents improvement of the method of environmental monitoring of water bodies based on bioindication by phytoplankton, which identify phytoplankton particles carried out on the basis of comparison array multispectral images using Bayesian classifier of solving function based on Mahalanobis distance. It allows to evaluate objectively complex anthropogenic and technological impacts on aquatic ecosystems.

  14. Water treatment process and system for metals removal using Saccharomyces cerevisiae

    DOEpatents

    Krauter, Paula A. W.; Krauter, Gordon W.

    2002-01-01

    A process and a system for removal of metals from ground water or from soil by bioreducing or bioaccumulating the metals using metal tolerant microorganisms Saccharomyces cerevisiae. Saccharomyces cerevisiae is tolerant to the metals, able to bioreduce the metals to the less toxic state and to accumulate them. The process and the system is useful for removal or substantial reduction of levels of chromium, molybdenum, cobalt, zinc, nickel, calcium, strontium, mercury and copper in water.

  15. Large break frequency for the SRS (Savannah River Site) production reactor process water system

    SciTech Connect

    Daugherty, W.L.; Awadalla, N.G.; Sindelar, R.L.; Bush, S.H.; Review and Synthesis Associates, Richland, WA )

    1989-01-01

    The objective of this paper is to present the results and conclusions of an evaluation of the break frequency for the process water system (primary coolant system), including the piping, reactor tank, heat exchangers, expansion joints and other process water system components. This evaluation was performed to support the ongoing PRA effort and to complement deterministic analyses addressing the credibility of a double-ended guillotine break. 6 refs., 2 figs., 1 tab.

  16. DEVELOPMENT AND VALIDATION OF AN ACID MINE DRAINAGE TREATMENT PROCESS FOR SOURCE WATER

    SciTech Connect

    Lane, Ann

    2015-12-31

    Throughout Northern Appalachia and surrounding regions, hundreds of abandoned mine sites exist which frequently are the source of Acid Mine Drainage (AMD). AMD typically contains metal ions in solution with sulfate ions which have been leached from the mine. These large volumes of water, if treated to a minimum standard, may be of use in Hydraulic Fracturing (HF) or other industrial processes. This project’s focus is to evaluate an AMD water treatment technology for the purpose of providing treated AMD as an alternative source of water for HF operations. The HydroFlex™ technology allows the conversion of a previous environmental liability into an asset while reducing stress on potable water sources. The technology achieves greater than 95% water recovery, while removing sulfate to concentrations below 100 mg/L and common metals (e.g., iron and aluminum) below 1 mg/L. The project is intended to demonstrate the capability of the process to provide AMD as alternative source water for HF operations. The second budget period of the project has been completed during which Battelle conducted two individual test campaigns in the field. The first test campaign demonstrated the ability of the HydroFlex system to remove sulfate to levels below 100 mg/L, meeting the requirements indicated by industry stakeholders for use of the treated AMD as source water. The second test campaign consisted of a series of focused confirmatory tests aimed at gathering additional data to refine the economic projections for the process. Throughout the project, regular communications were held with a group of project stakeholders to ensure alignment of the project objectives with industry requirements. Finally, the process byproduct generated by the HydroFlex process was evaluated for the treatment of produced water against commercial treatment chemicals. It was found that the process byproduct achieved similar results for produced water treatment as the chemicals currently in use. Further

  17. Processing Tritiated Water at the Savannah Rivver Site: A Production Scale Demonstration

    SciTech Connect

    Sessions, K

    2004-11-04

    The Palladium Membrane Reactor (PMR) process was installed in the Tritium Facilities at the Savannah River Site to perform a production-scale demonstration for the recovery of tritium from tritiated water adsorbed on molecular sieve (zeolite). Unlike the current recovery process that utilizes magnesium, the PMR offers a means to process tritiated water in a more cost effective and environmentally friendly manner. The design and installation of the large-scale PMR process was part of a collaborative effort between the Savannah River Site and Los Alamos National Laboratory. The PMR process operated at the Savannah River Site between May 2001 and April 2003. During the initial phase of operation the PMR processed thirty-four kilograms of tritiated water from the Princeton Plasma Physics Laboratory. The water was processed in fifteen separate batches to yield approximately 34,400 liters (STP) of hydrogen isotopes. Each batch consisted of round-the-clock operations for approximately nine days. In April 2003 the reactor's palladium-silver membrane ruptured resulting in the shutdown of the PMR process. Reactor performance, process performance and operating experiences have been evaluated and documented. A performance comparison between PMR and current magnesium process is also documented.

  18. Three-Dimensional Numerical Study of Impinging Water Jets in Runout Table Cooling Processes

    NASA Astrophysics Data System (ADS)

    Cho, Myung Jong; Thomas, Brian G.; Lee, Pil Jong

    2008-07-01

    Cooling from impinging water jets in runout table (ROT) processing depends on the fluid flow and depth of water accumulated in the water pool that forms on the surface of the moving steel strip. This effect is investigated with a three-dimensional (3-D) computational model of fluid flow, pressure, and free surface motion for realistic banks of nozzles within the flow rate region of the ROT process (2400 to 9200 L/min m2). The volume of fluid (VOF) method with the high-resolution interface capturing (HRIC) scheme was implemented to handle the free surface flow of the water jet, and the k-ɛ model was used for turbulence. The governing equations are discretized by a second-order accurate scheme and solved with the computational fluid dynamics (CFD) code Fluent. The model was validated with experimental measurements of free-surface shape and hydraulic jump position for a single water jet impinging onto a moving surface that included turbulent flow and multiphase regions of mixed bubbles and water. For banks of water jets impinging onto the surface of the moving strip in a realistic ROT, the free surface shape, velocity, and pressure distributions have been calculated for various flow rates and surface widths. A deeper water pool is expected on the moving surface with increasing water flow rate and with increasing width. In addition, as the water pool height increases, the pressure variations on the moving surface below the water jets decrease. A simple relation to predict the water pool height from the water flow rate per unit area and strip width has been derived. The predictions agree well with both the 3-D calculations and measurements from water model experiments.

  19. Mulled coal: A beneficiated coal form for use as a fuel or fuel intermediate. Phase 3, Final report

    SciTech Connect

    Not Available

    1993-08-01

    Energy International Corporation (El) was awarded a contract to evaluate a new concept for utilization of the fine coal wetcake produced by many of the physical beneficiation processes now under development. EI proposed development of a stabilized wetcake with properties that would facilitate storage, handling, transport, and subsequent conversion of the material into Coal-Water Fuel (CWF) at the point of use. The effort was performed in three phases. Phase I established the technical feasibility of stabilizing the fine coal ``wetcake`` in a form that can be readily handled and converted into a desired fuel form at the combustion site. The preferred form of stabilized ``wetcake`` was a granular free flowing material with the moisture encapsulated with the fine coal particles. The product was termed Mulled Coal. Phase I results indicated that the Mulled Coal was not only suitable as a CWF intermediate, but also had potential as a solid fuel. Phase II demonstrated the utilization of the Mulled Coal process to store and move fine coal products as a stable ``wetcake.`` Tasks in this phase tested components of the various systems required for storage, handling and combustion of the fine coals. Phase III expanded the technology by: 1. Evaluating Mulled Coal from representative coals from all producing regions in the US. 2. Development of bench-scale tests. 3. Design, construction, and operation of a 1 ton/hr continuous processing unit. 4. Evaluation of the effects of beneficiation. and 5. Developing an estimate of capital and operating costs for commercial units.

  20. Can beneficial ends justify lying? Neural responses to the passive reception of lies and truth-telling with beneficial and harmful monetary outcomes.

    PubMed

    Yin, Lijun; Weber, Bernd

    2016-03-01

    Can beneficial ends justify morally questionable means? To investigate how monetary outcomes influence the neural responses to lying, we used a modified, cheap talk sender-receiver game in which participants were the direct recipients of lies and truthful statements resulting in either beneficial or harmful monetary outcomes. Both truth-telling (vs lying) as well as beneficial (vs harmful) outcomes elicited higher activity in the nucleus accumbens. Lying (vs truth-telling) elicited higher activity in the supplementary motor area, right inferior frontal gyrus, superior temporal sulcus and left anterior insula. Moreover, the significant interaction effect was found in the left amygdala, which showed that the monetary outcomes modulated the neural activity in the left amygdala only when truth-telling rather than lying. Our study identified a neural network associated with the reception of lies and truth, including the regions linked to the reward process, recognition and emotional experiences of being treated (dis)honestly. PMID:26454816

  1. Allelopathic effects of glucosinolate breakdown products in Hanza [Boscia senegalensis (Pers.) Lam.] processing waste water.

    PubMed

    Rivera-Vega, Loren J; Krosse, Sebastian; de Graaf, Rob M; Garvi, Josef; Garvi-Bode, Renate D; van Dam, Nicole M

    2015-01-01

    Boscia senegalensis is a drought resistant shrub whose seeds are used in West Africa as food. However, the seeds, or hanza, taste bitter which can be cured by soaking them in water for 4-7 days. The waste water resulting from the processing takes up the bitter taste, which makes it unsuitable for consumption. When used for irrigation, allelopathic effects were observed. Glucosinolates and their breakdown products are the potential causes for both the bitter taste and the allelopathic effects. The objectives of this study are to identify and quantify the glucosinolates present in processed and unprocessed hanza as well as different organs of B. senegalensis, to analyze the chemical composition of the processing water, and to pinpoint the causal agent for the allelopathic properties of the waste water. Hanza (seeds without testa), leaves, branches, unripe, and ripe fruits were collected in three populations and subjected to glucosinolate analyses. Methylglucosinolates (MeGSL) were identified in all plant parts and populations, with the highest concentrations being found in the hanza. The levels of MeGSLs in the hanza reduced significantly during the soaking process. Waste water was collected for 6 days and contained large amounts of macro- and micronutrients, MeGSL as well as methylisothiocyanate (MeITC), resulting from the conversion of glucosinolates. Waste water from days 1-3 (High) and 4-6 (Low) was pooled and used to water seeds from 11 different crops to weeds. The High treatment significantly delayed or reduced germination of all the plant species tested. Using similar levels of MeITC as detected in the waste water, we found that germination of a subset of the plant species was inhibited equally to the waste water treatments. This confirmed that the levels of methylisiothiocyanate in the waste water were sufficient to cause the allelopathic effect. This leads to the possibility of using hanza waste water in weed control programs. PMID:26236325

  2. Allelopathic effects of glucosinolate breakdown products in Hanza [Boscia senegalensis (Pers.) Lam.] processing waste water

    PubMed Central

    Rivera-Vega, Loren J.; Krosse, Sebastian; de Graaf, Rob M.; Garvi, Josef; Garvi-Bode, Renate D.; van Dam, Nicole M.

    2015-01-01

    Boscia senegalensis is a drought resistant shrub whose seeds are used in West Africa as food. However, the seeds, or hanza, taste bitter which can be cured by soaking them in water for 4–7 days. The waste water resulting from the processing takes up the bitter taste, which makes it unsuitable for consumption. When used for irrigation, allelopathic effects were observed. Glucosinolates and their breakdown products are the potential causes for both the bitter taste and the allelopathic effects. The objectives of this study are to identify and quantify the glucosinolates present in processed and unprocessed hanza as well as different organs of B. senegalensis, to analyze the chemical composition of the processing water, and to pinpoint the causal agent for the allelopathic properties of the waste water. Hanza (seeds without testa), leaves, branches, unripe, and ripe fruits were collected in three populations and subjected to glucosinolate analyses. Methylglucosinolates (MeGSL) were identified in all plant parts and populations, with the highest concentrations being found in the hanza. The levels of MeGSLs in the hanza reduced significantly during the soaking process. Waste water was collected for 6 days and contained large amounts of macro- and micronutrients, MeGSL as well as methylisothiocyanate (MeITC), resulting from the conversion of glucosinolates. Waste water from days 1–3 (High) and 4–6 (Low) was pooled and used to water seeds from 11 different crops to weeds. The High treatment significantly delayed or reduced germination of all the plant species tested. Using similar levels of MeITC as detected in the waste water, we found that germination of a subset of the plant species was inhibited equally to the waste water treatments. This confirmed that the levels of methylisiothiocyanate in the waste water were sufficient to cause the allelopathic effect. This leads to the possibility of using hanza waste water in weed control programs. PMID:26236325

  3. Electropulse treatment of water solution of humic substances in a layer iron granules in process of water treatment

    NASA Astrophysics Data System (ADS)

    Lobanova, G. L.; Yurmazova, T. A.; Shiyan, L. N.; Machekhina, K. I.

    2016-02-01

    The present work is a part of a continuations study of the physical and chemical processes complex in natural waters containing humic-type organic substances at the influence of pulsed electrical discharges in a layer of iron pellets. The study of humic substances processing in the iron granules layer by means of pulsed electric discharge for the purpose of water purification from organic compounds humic origin from natural water of the northern regions of Russia is relevant for the water treatment technologies. In case of molar humate sodium - iron ions (II) at the ratio 2:3, reduction of solution colour and chemical oxygen demand occur due to the humate sodium ions and iron (II) participation in oxidation-reduction reactions followed by coagulation insoluble compounds formation at a pH of 6.5. In order to achieve this molar ratio and the time of pulsed electric discharge, equal to 10 seconds is experimentally identified. The role of secondary processes that occur after disconnection of the discharge is shown. The time of contact in active erosion products with sodium humate, equal to 1 hour is established. During this time, the value of permanganate oxidation and iron concentration in solution achieves the value of maximum permissible concentrations and further contact time increase does not lead to the controlled parameters change.

  4. Evaluation and comparison of alternative designs for water/solid-waste processing systems for spacecraft

    NASA Technical Reports Server (NTRS)

    Spurlock, J. M.

    1975-01-01

    Promising candidate designs currently being considered for the management of spacecraft solid waste and waste-water materials were assessed. The candidate processes were: (1) the radioisotope thermal energy evaporation/incinerator process; (2) the dry incineration process; and (3) the wet oxidation process. The types of spacecraft waste materials that were included in the base-line computational input to the candidate systems were feces, urine residues, trash and waste-water concentrates. The performance characteristics and system requirements for each candidate process to handle this input and produce the specified acceptable output (i.e., potable water, a storable dry ash, and vapor phase products that can be handled by a spacecraft atmosphere control system) were estimated and compared. Recommendations are presented.

  5. An innovative carbonate coprecipitation process for the removal of zinc and manganese from mining impacted waters

    USGS Publications Warehouse

    Sibrell, P.L.; Chambers, M.A.; Deaguero, A.L.; Wildeman, T.R.; Reisman, D.J.

    2007-01-01

    Although mine drainage is usually thought of as acidic, there are many cases where the water is of neutral pH, but still contains metal species that can be harmful to human or aquatic animal health, such as manganese (Mn) and zinc (Zn). Typical treatment of mine drainage waters involves pH adjustment, but this often results in excessive sludge formation and removal of nontoxic species such as magnesium and calcium. Theoretical consideration of the stability of metal carbonate species suggests that the target metals could be removed from solution by coprecipitation with calcium carbonate. The U.S. Geological Survey has developed a limestone-based process for remediation of acid mine drainage that increases calcium carbonate saturation. This treatment could then be coupled with carbonate coprecipitation as an innovative method for removal of toxic metals from circumneutral mine drainage waters. The new process was termed the carbonate coprecipitation (CCP) process. The CCP process was tested at the laboratory scale using a synthetic mine water containing 50 mg/L each of Mn and Zn. Best results showed over 95% removal of both Mn and Zn in less than 2 h of contact in a limestone channel. The process was then tested on a sample of water from the Palmerton zinc superfund site, near Palmerton, Pennsylvania, containing over 300 mg/L Zn and 60 mg/L Mn. Treatment of this water resulted in removal of over 95% of the Zn and 40% of the Mn in the limestone channel configuration. Because of the potential economic advantages of the CCP process, further research is recommended for refinement of the process for the Palmerton water and for application to other mining impacted waters as well. ?? Mary Ann Liebert, Inc.

  6. Progress in the development of the reverse osmosis process for spacecraft wash water recovery.

    NASA Technical Reports Server (NTRS)

    Pecoraro, J. N.; Podall, H. E.; Spurlock, J. M.

    1972-01-01

    Research work on ambient- and pasteurization-temperature reverse osmosis processes for wash water recovery in a spacecraft environment is reviewed, and the advantages and drawbacks of each are noted. A key requirement in each case is to provide a membrane of appropriate stability and semipermeability. Reverse osmosis systems intended for such use must also take into account the specific limitations and requirements imposed by the small volume of water to be processed and the high water recovery desired. The incorporation of advanced high-temperature membranes into specially designed modules is discussed.

  7. Waste water processing technology for Space Station Freedom - Comparative test data analysis

    NASA Technical Reports Server (NTRS)

    Miernik, Janie H.; Shah, Burt H.; Mcgriff, Cindy F.

    1991-01-01

    Comparative tests were conducted to choose the optimum technology for waste water processing on SSF. A thermoelectric integrated membrane evaporation (TIMES) subsystem and a vapor compression distillation subsystem (VCD) were built and tested to compare urine processing capability. Water quality, performance, and specific energy were compared for conceptual designs intended to function as part of the water recovery and management system of SSF. The VCD is considered the most mature and efficient technology and was selected to replace the TIMES as the baseline urine processor for SSF.

  8. Physical beneficiation of char and chemically conditioned coal

    SciTech Connect

    Warzinski, R.P.; Cavallaro, J.A.

    1986-04-01

    Demineralization of coals and coal-derived chars is part of an effort to develop alternative fuels from coal. Pyrolysis and some gasification processes yield chars containing a large fraction of the calorific value of the feed coal and essentially all of its mineral matter. In the work reported here, three gasification chars produced from anthracite, bituminous, and subbituminous coals have been subjected to specific gravity separation to determine their yield-ash relationships. Either low yields or high ash levels in the float products were observed. Also reported is preliminary work concerning the use of chemical conditioning to enhance the cleanability of coal prior to physical beneficiation. Conditioning of an Illinois No. 6 River King Mine coal with either supercritical methanol or cyclohexane resulted in an improved yield-ash relationship, whereas similar treatment with supercritical toluene had a negative effect.

  9. Synchronous DOM and dissolved phosphorus release in riparian soil waters: linking water table fluctuations and biogeochemical processes

    NASA Astrophysics Data System (ADS)

    Gruau, G.; Dupas, R.; Humbert, G.; GU, S.; Jeanneau, L.; Fovet, O.; Denis, M.; Gascuel-Odoux, C.; Jaffrezic, A.; Faucheux, M.; Gilliet, N.; Hamon, Y.; Petitjean, P.

    2015-12-01

    Riparian zones are often viewed as hot spots controlling N, C, P and Fe cycling and export in catchments. Groundwater and surface water flowpaths converge in these zones, and encounter the most reactive, organic-rich, uppermost soil horizons, while being at the same time zones in which soil moisture conditions temporarily fluctuate due to changes in water table depth, which can trigger biogeochemical processes. One well documented example is the process of denitrification which can remove N from riparian groundwater due to the anaerobic reduction of nitrate by soil organic matter. However, the role of riparian zones on the cycling of other nutrients such as dissolved organic matter (DOM) and dissolved P (DP) is much less well documented. In this study, we evaluated this role by using time series of DOM and DP concentrations obtained on the Kervidy-Naizin catchment, a temperate agricultural headwater catchment controlled by shallow groundwater. Over 2 years, groundwater DOM and DP were monitored fortnightly both in the riparian zones and at the bottom of hillslope domains. Two periods of synchronous DOM and DP release were evidenced, the first corresponding to the rise of the water table after the dry summer period, the second being concomitant of the installation of reducing conditions. The reductive dissolution of soil Fe oxyhydroxides initiated by the prolonged soil water saturation caused the second peak, a process which was, however, strongly temporarily and spatially variable at the catchment scale, being dependent on i) the local topographic slope and ii) the annual rainfall amount and frequency. As regard the first peak, it was due either to the flushing by the water table of DOM and DP accumulated during the summer period, or to the release of microbial DOM and DP due to microbial biomass killing by osmotic shock. This study argues for the existence of coupled and complex DOM and DP release processes in the riparian zones of shallow groundwater dominated

  10. Rootzone processes, tree water-use, and the equitable allocation of irrigation water to olives

    NASA Astrophysics Data System (ADS)

    Green, Steve; Clothier, Brent; Caspari, Horst; Neal, Sue

    John Philip's first job in 1947, at Griffith in Australia's Murrumbidgee Irrigation Area, was to develop means by which irrigation practices could become sustainable. Subsequently, through his analytical endeavors he created revolutionary new understanding of mass and energy transfers in the soil-plantatmosphere continuum. Here we describe applications and modeling that have directly benefited from John Philip's insights and perspicacity. We have used a new means for determining the radiation interception by an isolated olive tree, and we have employed these results to interpret and model the measured rates of tree water-use from heat-pulse measures of sapflow. These parameters are used in a risk assessment framework, along with measures of the soil's hydraulic character to provide a basis for establishing guidelines for the equitable and sustainable allocation of water for the irrigation of olive trees in Marlborough, New Zealand. We find that small 2-year old olive trees use about 25 litres a week, whereas mature 8-year old trees transpire about 525 L/wk. Our model developed to establish irrigation allocations, SPASMO, used a 28-year sequence of local weather records. For the Fairhall stony silt loam, we find that an irrigation allocation of 230 mm will meet the needs of olives 9 years in 10. Average requirements would be met with just 140 mm. Only 35 mm would be required to meet the needs of olives 90% of the time on the Woodbourne deep silt loam. Apposite measurements and apt modeling are shown capable of guiding regulatory authorities in managing the complexity of allocating water to olive irrigationists.

  11. Reconciling Scale Mismatch in Water Governance, Hydro-climatic Processes and Infrastructure Systems of Water Supply in Las Vegas

    NASA Astrophysics Data System (ADS)

    Garcia, M. E.; Alarcon, T.; Portney, K.; Islam, S.

    2013-12-01

    Water resource systems are a classic example of a common pool resource due to the high cost of exclusion and the subtractability of the resource; for common pool resources, the performance of governance systems primarily depends on how well matched the institutional arrangements and rules are to the biophysical conditions and social norms. Changes in water governance, hydro-climatic processes and infrastructure systems occur on disparate temporal and spatial scales. A key challenge is the gap between current climate change model resolution, and the spatial and temporal scale of urban water supply decisions. This gap will lead to inappropriate management policies if not mediated through a carefully crafted decision making process. Traditional decision support and planning methods (DSPM) such as classical decision analysis are not equipped to deal with a non-static climate. While emerging methods such as decision scaling, robust decision making and real options are designed to deal with a changing climate, governance systems have evolved under the assumption of a static climate and it is not clear if these methods are well suited to the existing governance regime. In our study, these questions are contextualized by examining an urban water utility that has made significant changes in policy to adapt to changing conditions: the Southern Nevada Water Authority (SNWA) which serves metropolitan Las Vegas. Like most desert cities, Las Vegas exists because of water; the artesian springs of the Las Vegas Valley once provided an ample water supply for Native Americans, ranchers and later a small railroad city. However, population growth has increased demands far beyond local supplies. The area now depends on the Colorado River for the majority of its water supply. Natural climate variability with periodic droughts has further challenged water providers; projected climate changes and further population growth will exacerbate these challenges. Las Vegas is selected as a case

  12. Microbial Community Structures and Dynamics in the O3/BAC Drinking Water Treatment Process

    PubMed Central

    Tian, Jian; Lu, Jun; Zhang, Yu; Li, Jian-Cheng; Sun, Li-Chen; Hu, Zhang-Li

    2014-01-01

    Effectiveness of drinking water treatment, in particular pathogen control during the water treatment process, is always a major public health concern. In this investigation, the application of PCR-DGGE technology to the analysis of microbial community structures and dynamics in the drinking water treatment process revealed several dominant microbial populations including: α-Proteobacteria, β-Proteobacteria, γ-Proteobacteria, Bacteroidetes, Actinobacteria Firmicutes and Cyanobacteria. α-Proteobacteria and β-Proteobacteria were the dominant bacteria during the whole process. Bacteroidetes and Firmicutes were the dominant bacteria before and after treatment, respectively. Firmicutes showed season-dependent changes in population dynamics. Importantly, γ-Proteobacteria, which is a class of medically important bacteria, was well controlled by the O3/biological activated carbon (BAC) treatment, resulting in improved effluent water bio-safety. PMID:24937529

  13. Reuse of process water in a waste-to-energy plant: An Italian case of study.

    PubMed

    Gardoni, Davide; Catenacci, Arianna; Antonelli, Manuela

    2015-09-01

    The minimisation of water consumption in waste-to-energy (WtE) plants is an outstanding issue, especially in those regions where water supply is critical and withdrawals come from municipal waterworks. Among the various possible solutions, the most general, simple and effective one is the reuse of process water. This paper discusses the effectiveness of two different reuse options in an Italian WtE plant, starting from the analytical characterisation and the flow-rate measurement of fresh water and process water flows derived from each utility internal to the WtE plant (e.g. cooling, bottom ash quenching, flue gas wet scrubbing). This census allowed identifying the possible direct connections that optimise the reuse scheme, avoiding additional water treatments. The effluent of the physical-chemical wastewater treatment plant (WWTP), located in the WtE plant, was considered not adequate to be directly reused because of the possible deposition of mineral salts and clogging potential associated to residual suspended solids. Nevertheless, to obtain high reduction in water consumption, reverse osmosis should be installed to remove non-metallic ions (Cl(-), SO4(2-)) and residual organic and inorganic pollutants. Two efficient solutions were identified. The first, a simple reuse scheme based on a cascade configuration, allowed 45% reduction in water consumption (from 1.81 to 0.99m(3)tMSW(-1), MSW: Municipal Solid Waste) without specific water treatments. The second solution, a cascade configuration with a recycle based on a reverse osmosis process, allowed 74% reduction in water consumption (from 1.81 to 0.46m(3)tMSW(-1)). The results of the present work show that it is possible to reduce the water consumption, and in turn the wastewater production, reducing at the same time the operating cost of the WtE plant. PMID:26028558

  14. Biological processes for the treatment of waste water from coal-fired power plants

    SciTech Connect

    Vredenbregt, L.H.J.; Potma, A.A.; Enoch, G.D.

    1998-07-01

    In The Netherlands, all coal-fired power stations are equipped with a wet lime(stone)-gypsum flue gas desulfurization (FGD) installation, in order to meet the SO{sub 2} emission requirements. During wet desulfurization a waste water stream is produced containing among others suspended solids, heavy metals, nitrate and in some cases ammonia. Besides, the chemical oxygen demand (COD) of the waste water is increased if the FGD process is optimized by application of organic buffers. The traditional waste water treatment plant (WWTP) does not remove nitrate, ammonia and COD, and only poorly removes the anions of oxygenated metals such as selenium. In a previous research it was demonstrated that nitrate and ammonia can be removed biologically, even at the relatively extreme conditions of FGD waste water, which is characterized by a high chloride concentration (5 and 40 g/l) and relatively high temperatures (typically 35--50 C). However, the removal is no longer solely focused on nitrogen components, but also on COD removal and for the anions of some oxygenated metals target values are expected in the near future. In this paper attention is focused on two biological processes. One process is the combined removal of nitrate and COD in a fluid-bed reactor which can be applied upstream of the traditional WWTP. The application of this process was successfully demonstrated at a bench-scale fluid bed reactor. The optimal process conditions were determined in activated-sludge reactors on a laboratory scale. The second biological process is the combined removal of COD and metals from FGD waste water. An upflow sludge blanket reactor was successfully tested on laboratory scale at a wide range of process conditions with actual waste water. The possible advantages and disadvantages of the biological removal processes are discussed and compared with the well known chemical precipitation process.

  15. Numerical Simulation of Sediment-Associated Water Quality Processes for a Mississippi Delta Lake

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Three major sediment-associated processes were presented to describe the effects of sediment on lake water quality processes: the effect of suspended sediment on the light intensity for the growth of phytoplankton (PHYTO), the adsorption–desorption of nutrients by sediment, and the release of nutrie...

  16. 40 CFR 420.08 - Non-process wastewater and storm water.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Non-process wastewater and storm water. 420.08 Section 420.08 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY General Provisions § 420.08 Non-process wastewater and storm...

  17. INTEGRATED BIOREACTOR SYSTEM FOR THE TREATMENT OF CYANIDE, METALS AND NITRATES IN MINE PROCESS WATER

    EPA Science Inventory

    An innovative biological process is described for the tratment of cyanide-, metals- and nitrate-contaminated mine process water. The technology was tested for its ability to detoxify cyanide and nitrate and to immobilize metals in wastewater from agitation cyanide leaching. A pil...

  18. The development of the General Atomic thermochemical water-splitting process

    NASA Astrophysics Data System (ADS)

    Besenbruch, G. E.; Allen, C. L.; Brown, L. C.; McCorkle, K.; Rode, Y. S.; Norman, Y. H.; Trester, P.; Sharp, R.

    1981-03-01

    Thermochemical water splitting was investigated. The main advantages of the cycle are that it can be conducted as an all liquid and gas phase process and that its unit operations are simple, industry-developed processes like distillation, vaporization, and phase separation.

  19. Treatment of sewage sludge in supercritical water and evaluation of the combined process of supercritical water gasification and oxidation.

    PubMed

    Qian, Lili; Wang, Shuzhong; Xu, Donghai; Guo, Yang; Tang, Xingying; Wang, Longfei

    2015-01-01

    Influences of temperature and oxidation coefficient (n) on sewage sludge treatment in supercritical water and its corresponding reaction mechanism were studied. Moreover, the combined process of supercritical water gasification (SCWG) and supercritical water oxidation (SCWO) was also investigated. The results show that ammonia nitrogen, phenols and pyridines are main refractory intermediates. The weight of solid products at 873K and n=4 is only 3.5wt.% of the initial weight, which is lower than that after combustion. Volatile organics in solid phase have almost released at 723K and n=0. Highest yield of combustible gases was obtained at n=0, and H2 yield can reach 11.81mol/kg at 873K. Furthermore, the combination of SCWG at 723K and SCWO at 873K with a total n=1 is feasible for its good effluent quality and low operation costs. PMID:25461006

  20. Visualization of Water Accumulation Process in Polymer Electrolyte Fuel Cell Using Neutron Radiography

    NASA Astrophysics Data System (ADS)

    Murakawa, Hideki; Sugimoto, Katsumi; Kitamura, Nobuki; Sawada, Masataka; Asano, Hitoshi; Takenaka, Nobuyuki; Saito, Yasushi

    In order to clarify the water-accumulation phenomena in an operating polymer electrolyte fuel cell (PEFC), the water distribution in a small fuel cell was measured in the through-plane direction by using neutron radiography. The fuel cell had nine parallel channels for classifying the water-accumulation process in the gas diffusion layer (GDL) under the lands and channels. The experimental results were compared with numerical results. The water accumulation in the GDL under the lands was larger than that under the channels during the period of early PEFC operation. The difference of the water accumulation in the GDL under the land and channel was related to the water vapor. Because of the land, the vapor fraction in the GDL under the land was also higher than that under the channel. As a result, condensation was easy to occur in the GDL under the land.

  1. A phenomenological and thermodynamic study of the water permeation process in corn starch/MMT films.

    PubMed

    Slavutsky, Aníbal M; Bertuzzi, María A

    2012-09-01

    Water transport in edible films of starch based products is a complex phenomenon due to the strong interaction of sorbed water molecules with the polymeric structure of starch. Moisture sorption isotherms of starch and starch/MMT films were obtained. The results indicated that nanoclay incorporation produces a decrease of water uptake at all temperatures analysed. Thermodynamic parameters showed that sorption process is less favourable when MMT is incorporated into the starch matrix. Effect of driving force and water activity (aw) values at each side of the film on permeability and diffusivity coefficients were analysed. The effect of the tortuous pathway generated by MMT incorporation was significant only in the middle and lower range of aw. At high aw range the plasticizing effect of water dominated and MMT incorporation had little effect on the water barrier properties of these films. PMID:24751076

  2. Characterisation and treatment of VOCs in process water from upgrading facilities for compressed biogas (CBG).

    PubMed

    Nilsson Påledal, S; Arrhenius, K; Moestedt, J; Engelbrektsson, J; Stensen, K

    2016-02-01

    Compression and upgrading of biogas to vehicle fuel generates process water, which to varying degrees contains volatile organic compounds (VOCs) originating from the biogas. The compostion of this process water has not yet been studied and scientifically published and there is currently an uncertainty regarding content of VOCs and how the process water should be managed to minimise the impact on health and the environment. The aim of the study was to give an overview about general levels of VOCs in the process water. Characterisation of process water from amine and water scrubbers at plants digesting waste, sewage sludge or agricultural residues showed that both the average concentration and composition of particular VOCs varied depending on the substrate used at the biogas plant, but the divergence was high and the differences for total concentrations from the different substrate groups were only significant for samples from plants using waste compared to residues from agriculture. The characterisation also showed that the content of VOCs varied greatly between different sampling points for same main substrate and between sampling occasions at the same sampling point, indicating that site-specific conditions are important for the results which also indicates that a number of analyses at different times are required in order to make an more exact characterisation with low uncertainty. Inhibition of VOCs in the anaerobic digestion (AD) process was studied in biomethane potential tests, but no inhibition was observed during addition of synthetic process water at concentrations of 11.6 mg and 238 mg VOC/L. PMID:26694791

  3. Revisions to the SRCC Rating Process for Solar Water Heaters: Preprint

    SciTech Connect

    Burch, J.; Huggins, J.; Long, S.; Thornton, J.

    2012-06-01

    In the United States, annual performance ratings for solar water heaters are computed with component-based simulation models driven by typical meteorological year weather and specified water draw. Changes in the process are being implemented to enhance credibility through increased transparency and accuracy. Changes to the process include using a graphical rather than text-based model-building tool, performing analytical tests on all components and systems, checking energy balances on every component, loop, and system at every time step, comparing the results to detect outliers and potential errors, and documenting the modeling process in detail. Examples of changes in ratings are shown, along with analytical and comparative testing results.

  4. Understanding the Role of Water on Electron-Initiated Processes and Radical Chemistry

    SciTech Connect

    Garrett, Bruce C; Colson, Steven D; Dixon, David A.; Laufer, Allan H; Ray, Douglas

    2003-06-10

    On September 26–28, 2002, a workshop entitled “Understanding the Role of Water on Electron-Initiated Processes and Radical Chemistry” was held to assess new research opportunities in electron-driven processes and radical chemistry in aqueous systems. Of particular interest was the unique and complex role that the structure of water plays in influencing these processes. Novel experimental and theoretical approaches to solving long-standing problems in the field were explored. A broad selection of participants from universities and the national laboratories contributed to the workshop, which included scientific and technical presentations and parallel sessions for discussions and report writing.

  5. Hydrophobic flocculation flotation for beneficiating fine coal and minerals

    SciTech Connect

    Song, S.; Valdivieso, A.L.

    1998-06-01

    It is shown that hydrophobic flocculation flotation (HFF) is an effective process to treat finely ground ores and slimes so as to concentrate coal and mineral values at a fine size range. The process is based on first dispersing the fine particles suspension, followed by flocculation of fine mineral values or coal in the form of hydrophobic surfaces either induced by specifically adsorbed surfactants or from nature at the conditioning of the slurry with the shear field of sufficient magnitude. The flocculation is intensified by the addition of a small amount of nonpolar oil. finely ground coals, ilmenite slimes, and gold finely disseminated in a slag have been treated by this process. Results are presented indicating that cleaned coal with low ash and sulfur remaining and high Btu recovery can be obtained, and the refractory ores of ilmenite slimes and fine gold-bearing slag can be reasonably concentrated, leading to better beneficiation results than other separation techniques. In addition, the main operating parameters affecting the HFF process are discussed.

  6. Biological efficacy and toxic effect of emergency water disinfection process based on advanced oxidation technology.

    PubMed

    Tian, Yiping; Yuan, Xiaoli; Xu, Shujing; Li, Rihong; Zhou, Xinying; Zhang, Zhitao

    2015-12-01

    An innovative and removable water treatment system consisted of strong electric field discharge and hydrodynamic cavitation based on advanced oxidation technologies was developed for reactive free radicals producing and waterborne pathogens eliminating in the present study. The biological efficacy and toxic effects of this advanced oxidation system were evaluated during water disinfection treatments. Bench tests were carried out with synthetic microbial-contaminated water, as well as source water in rainy season from a reservoir of Dalian city (Liaoning Province, China). Results showed that high inactivation efficiency of Escherichia coli (>5 log) could be obtained for synthetic contaminated water at a low concentration (0.5-0.7 mg L(-1)) of total oxidants in 3-10 s. The numbers of wild total bacteria (108 × 10(3) CFU mL(-1)) and total coliforms (260 × 10(2) MPN 100 mL(-1)) in source water greatly reduced to 50 and 0 CFU mL(-1) respectively after treated by the advanced oxidation system, which meet the microbiological standards of drinking water, and especially that the inactivation efficiency of total coliforms could reach 100%. Meanwhile, source water qualities were greatly improved during the disinfection processes. The values of UV254 in particular were significantly reduced (60-80%) by reactive free radicals. Moreover, the concentrations of possible disinfection by-products (formaldehyde and bromide) in treated water were lower than detection limits, indicating that there was no harmful effect on water after the treatments. These investigations are helpful for the ecotoxicological studies of advanced oxidation system in the treatments of chemical polluted water or waste water. The findings of this work suggest that the developed water treatment system is ideal in the acute phases of emergencies, which also could offer additional advantages over a wide range of applications in water pollution control. PMID:26427371

  7. Bulk heterojunction organic photovoltaics from water-processable nanomaterials and their facile fabrication approaches.

    PubMed

    Subianto, Surya; Dutta, Naba; Andersson, Mats; Choudhury, Namita Roy

    2016-09-01

    Organic thin film photovoltaics based on bulk-heterojunction donor-acceptor combinations have received significant interest due to their potential for low-cost, large-scale solution processing. However, current state-of-the-art cells utilise materials soluble mainly in halogenated solvents which pose processing challenges due to their toxicity and thus environmental hazards. In this contribution, we look at various nanomaterials, and alternative processing of these solar cells using environmentally friendly solvents, and review recently reported different strategies and approaches that are making inroads in this field. Specifically, we focus on the use of water-dispersible donors and acceptors, use of aqueous solvents for fabrication and discuss the merits of the two main approaches of water-processable solar cells; namely, through the use of water-soluble materials and the use of aqueous dispersion rather than a solution, as well as review some of the recent advances in alternative fabrication techniques. PMID:27396690

  8. Active-Site Hydration and Water Diffusion in Cytochrome P450cam: A Highly Dynamic Process

    SciTech Connect

    Miao, Yinglong; Baudry, Jerome Y

    2011-01-01

    Long-timescale molecular dynamics simulations (300 ns) are performed on both the apo- (i.e., camphor-free) and camphor-bound cytochrome P450cam (CYP101). Water diffusion into and out of the protein active site is observed without biased sampling methods. During the course of the molecular dynamics simulation, an average of 6.4 water molecules is observed in the camphor-binding site of the apo form, compared to zero water molecules in the binding site of the substrate-bound form, in agreement with the number of water molecules observed in crystal structures of the same species. However, as many as 12 water molecules can be present at a given time in the camphor-binding region of the active site in the case of apo-P450cam, revealing a highly dynamic process for hydration of the protein active site, with water molecules exchanging rapidly with the bulk solvent. Water molecules are also found to exchange locations frequently inside the active site, preferentially clustering in regions surrounding the water molecules observed in the crystal structure. Potential-of-mean-force calculations identify thermodynamically favored trans-protein pathways for the diffusion of water molecules between the protein active site and the bulk solvent. Binding of camphor in the active site modifies the free-energy landscape of P450cam channels toward favoring the diffusion of water molecules out of the protein active site.

  9. Advanced Signal Processing for High Temperatures Health Monitoring of Condensed Water Height in Steam Pipes

    NASA Technical Reports Server (NTRS)

    Lih, Shyh-Shiuh; Bar-Cohen, Yoseph; Lee, Hyeong Jae; Takano, Nobuyuki; Bao, Xiaoqi

    2013-01-01

    An advanced signal processing methodology is being developed to monitor the height of condensed water thru the wall of a steel pipe while operating at temperatures as high as 250deg. Using existing techniques, previous study indicated that, when the water height is low or there is disturbance in the environment, the predicted water height may not be accurate. In recent years, the use of the autocorrelation and envelope techniques in the signal processing has been demonstrated to be a very useful tool for practical applications. In this paper, various signal processing techniques including the auto correlation, Hilbert transform, and the Shannon Energy Envelope methods were studied and implemented to determine the water height in the steam pipe. The results have shown that the developed method provides a good capability for monitoring the height in the regular conditions. An alternative solution for shallow water or no water conditions based on a developed hybrid method based on Hilbert transform (HT) with a high pass filter and using the optimized windowing technique is suggested. Further development of the reported methods would provide a powerful tool for the identification of the disturbances of water height inside the pipe.

  10. Water farms and transfer conflicts in Arizona, USA: A proposed resolution process

    NASA Astrophysics Data System (ADS)

    McEntire, Joanne

    1989-05-01

    Water is a relatively scarce resource in Arizona, especially since the recent urban growth booms of Phoenix and Tucson. Arizona's 1980 Groundwater Management Act was the precursor to current water-transfer conflicts between urban buyers, rural farmers, and third parties. Water farms are bought with the intention to transfer their appurtenant groundwater to the two major metropolitan areas. As water markets have emerged, differing values and public interest issues have become apparent, while the state legislature attempts to resolve inequities. Site-specific transfer disputes, as well as policy-making conflicts, offer suitable situations for a mediation process. Equity- and efficiency-based criteria are suggested as the basis for resolving water-transfer conflicts, and a mediation process is proposed. However, third parties must develop an agenda, and a balance of power should be attained before mediation can effectively forge an agreement on water-transfer policies. The attainment of statewide policies generated through a mediated process has the potential to expand long-range regional water planning and management.

  11. Water Flow and Solute Transport Processes in Deep Sandy Vadose Zone

    NASA Astrophysics Data System (ADS)

    Rimon, Y.; Dahan, O.

    2010-12-01

    Water percolation and solute transport through an unsaturated sandy formation were investigated using a vadose-zone monitoring system (VMS) that enables in-situ, real-time, monitoring of the percolating water. The VMS includes flexible time-domain reflectometry (FTDR) probes which allow continuous monitoring of the temporal variations of the vadose zone water contents, and vadose-zone sampling ports (VSPs) which are designed to allow frequent sampling of the sediment pore-water as well as measurements of the pore-water pressure. Several years of continuous operation of the VMS provided insight into the dynamics of rainfall-induced infiltration events in a 22-m thick sandy formation. Measurements of the temporal variations in vadose-zone water contents as well as continuous monitoring of the vadose-zone pore water, allowed detailed tracking of the wetting fronts' propagation velocities and determination of flow patterns governing solute transport. It has been shown that the chemical composition of mobile flowing water along the vadose zone is not in equilibrium with the total soluble solute potential of the sediment. This phenomenon is usually attributed to preferential flow. However, wetting-front propagation patterns, as monitored continuously over four rainy seasons through the entire vadose zone, as well as a tracer experiment, showed relatively uniform wetting-front propagation with no direct evidence for significant preferential flow. These results were confirmed HYDRUS simulation. The contradictory observations on matrix and preferential flow as governing mechanisms led to conceptualization of the percolation process as pore-scale dual domain flow. Measurements of vadose zone water pressure through a separate set of VSPs, revealed the critical relationship between temporal variations in vadose zone water contents and water pressure, as well as the dynamic connectivity of the vadose zone gas phase to the atmosphere. As expected, variation in the sediments

  12. Water ecosystem service function assessment based on eco-hydrological process in Luanhe Basin,China

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Hao, C.; Qin, T.; Wang, G.; Weng, B.

    2012-12-01

    At present, ecological water are mainly occupied by a rapid development of social economic and population explosion, which seriously threat the ecological security and water security in watershed and regional scale. Due to the lack of a unified standard of measuring the benefit of water resource, social economic and ecosystem, the water allocation can't take place in social economic and ecosystem. The function which provided by water in terrestrial, aquatic and social economic system can be addressed through water ecosystem service function research, and it can guide the water allocation in water resource management. The function which provided by water in terrestrial, aquatic and social economic system can be addressed through water ecosystem service function research, and it can guide the water allocation in water resource management. Throughout the researches of water ecosystem service, a clear identification of the connection of water ecosystem service function has not been established, and eco-economic approach can't meet the practical requirement of water allocation. Based on "nature-artificiality" dual water cycle theory and eco-hydrological process, this paper proposes a connection and indicator system of water ecosystem service function. In approach, this paper establishes an integrated assessment approach through prototype observation technology, numerical simulation, physical simulation and modern geographic information technology. The core content is to couple an eco-hydrological model, which involves the key processes of distributed hydrological model (WEP), ecological model (CLM-DGVM), in terms of eco-hydrological process. This paper systematically evaluates the eco-hydrological process and evolution of Luanhe Basin in terms of precipitation, ET, runoff, groundwater, ecosystem's scale, form and distribution. According to the results of eco-hydrological process, this paper assesses the direct and derived service function. The result indicates that the

  13. Extended principle component analysis - a useful tool to understand processes governing water quality at catchment scales

    NASA Astrophysics Data System (ADS)

    Selle, B.; Schwientek, M.

    2012-04-01

    Water quality of ground and surface waters in catchments is typically driven by many complex and interacting processes. While small scale processes are often studied in great detail, their relevance and interplay at catchment scales remain often poorly understood. For many catchments, extensive monitoring data on water quality have been collected for different purposes. These heterogeneous data sets contain valuable information on catchment scale processes but are rarely analysed using integrated methods. Principle component analysis (PCA) has previously been applied to this kind of data sets. However, a detailed analysis of scores, which are an important result of a PCA, is often missing. Mathematically, PCA expresses measured variables on water quality, e.g. nitrate concentrations, as linear combination of independent, not directly observable key processes. These computed key processes are represented by principle components. Their scores are interpretable as process intensities which vary in space and time. Subsequently, scores can be correlated with other key variables and catchment characteristics, such as water travel times and land use that were not considered in PCA. This detailed analysis of scores represents an extension of the commonly applied PCA which could considerably improve the understanding of processes governing water quality at catchment scales. In this study, we investigated the 170 km2 Ammer catchment in SW Germany which is characterised by an above average proportion of agricultural (71%) and urban (17%) areas. The Ammer River is mainly fed by karstic springs. For PCA, we separately analysed concentrations from (a) surface waters of the Ammer River and its tributaries, (b) spring waters from the main aquifers and (c) deep groundwater from production wells. This analysis was extended by a detailed analysis of scores. We analysed measured concentrations on major ions and selected organic micropollutants. Additionally, redox-sensitive variables

  14. Development of a water-jet assisted laser paint removal process

    NASA Astrophysics Data System (ADS)

    Madhukar, Yuvraj K.; Mullick, Suvradip; Nath, Ashish K.

    2013-12-01

    The laser paint removal process usually leaves behind traces of combustion product i.e. ashes on the surface. An additional post-processing such as light-brushing or wiping by some mechanical means is required to remove the residual ash. In order to strip out the paint completely from the surface in a single step, a water-jet assisted laser paint removal process has been investigated. The 1.07 μm wavelength of Yb-fiber laser radiation has low absorption in water; therefore a high power fiber laser was used in the experiment. The laser beam was delivered on the paint-surface along with a water jet to remove the paint and residual ashes effectively. The specific energy, defined as the laser energy required removing a unit volume of paint was found to be marginally more than that for the gas-jet assisted laser paint removal process. However, complete paint removal was achieved with the water-jet assist only. The relatively higher specific energy in case of water-jet assist is mainly due to the scattering of laser beam in the turbulent flow of water-jet.

  15. Spatial Pattern of Great Lakes Estuary Processes from Water Quality Sensing and Geostatistical Methods

    NASA Astrophysics Data System (ADS)

    Xu, W.; Minsker, B. S.; Bailey, B.; Collingsworth, P.

    2014-12-01

    Mixing of river and lake water can alter water temperature, conductivity, and other properties that influence ecological processes in freshwater estuaries of the Great Lakes. This study uses geostatistical methods to rapidly visualize and understand water quality sampling results and enable adaptive sampling to remove anomalies and explore interesting phenomena in more detail. Triaxus, a towed undulating sensor package, was used for collecting various physical and biological water qualities in three estuary areas of Lake Michigan in Summer 2011. Based on the particular sampling pattern, data quality assurance and quality control (QA/QC) processes, including sensor synchronization, upcast and downcast separation, and spatial outlier removal are first applied. An automated kriging interpolation approach that considers trend and anisotropy is then proposed to estimate data on a gridded map for direct visualization. Other methods are explored with the data to gain more insights on water quality processes. Local G statistics serve as a supplementary tool to direct visualization. The method identifies statistically high value zones (hot spots) and low value zones (cold spots) in water chemistry across the estuaries, including locations of water sources and intrusions. In addition, chlorophyll concentration distributions are different among sites. To further understand the interactions and differences between river and lake water, K-means clustering algorithm is used to spatially cluster the water based on temperature and specific conductivity. Statistical analysis indicates that clusters with significant river water can be identified from higher turbidity, specific conductivity, and chlorophyll concentrations. Different ratios between zooplankton biomass and density indicate different zooplankton structure across clusters. All of these methods can contribute to improved near real-time analysis of future sampling activity.

  16. Optimizing the air flotation water treatment process. Final report, May 1997

    SciTech Connect

    Barnett, B.

    1998-09-01

    The injection water for the Nelson Project is a combination of produced and make-up water, typical of many Eastern Kansas operations. The make-up water is a low-salinity salt water from the Arbuckle Formation and contains dissolved minerals and sulfides. The produced water contains suspended oil, suspended clay and silt particles, along with a combination of other dissolved minerals. The combination of the two waters causes several undesirable reactions. The suspended solids load contained in the combined waters would plug a 75-micron plant bag filter within one day. Wellhead filters of 75-micron size were also being used on the injection wells. The poor water quality resulted in severe loss of injectivity and frequent wellbore cleaning of the injection wells. Various mechanical and graded-bed filtration methods were considered for cleaning the water. These methods were rejected due to the lack of field equipment and service availability. A number of vendors did not even respond to the author`s request. The air flotation process was selected as offering the best hope for a long-term solution. The objective of this work is to: increase the cost effectiveness of the process through optimizing process design factors and operational parameters. A vastly modified air flotation system is the principal tool for accomplishing the project objective. The air flotation unit, as received from manufacturer Separation Specialist, was primarily designed to remove oil from produced water. The additional requirement for solids removal necessitated major physical changes in the unit. Problems encountered with the air flotation unit and specific modifications are detailed in the body of the report.

  17. Chemistry of the solid-water interface: Processes at the mineral-water and particle-water interface in natural systems

    SciTech Connect

    Stumm, W.

    1992-01-01

    The title book covers coordination chemistry of the hydrous oxide-water interface; surface charge and the electric double layer; adsorption; chemical weathering phenomena; homogeneous and heterogeneous nucleation and precipitation; particle-particle interaction; carbonate reactivity; redox processes mediated by surfaces; photochemistry; and trace element transport. It can be used as a source book for teaching and for professionals in geochemical and environmental disciplines.

  18. Application of a solar UV/chlorine advanced oxidation process to oil sands process-affected water remediation.

    PubMed

    Shu, Zengquan; Li, Chao; Belosevic, Miodrag; Bolton, James R; El-Din, Mohamed Gamal

    2014-08-19

    The solar UV/chlorine process has emerged as a novel advanced oxidation process for industrial and municipal wastewaters. Currently, its practical application to oil sands process-affected water (OSPW) remediation has been studied to treat fresh OSPW retained in large tailings ponds, which can cause significant adverse environmental impacts on ground and surface waters in Northern Alberta, Canada. Degradation of naphthenic acids (NAs) and fluorophore organic compounds in OSPW was investigated. In a laboratory-scale UV/chlorine treatment, the NAs degradation was clearly structure-dependent and hydroxyl radical-based. In terms of the NAs degradation rate, the raw OSPW (pH ∼ 8.3) rates were higher than those at an alkaline condition (pH = 10). Under actual sunlight, direct solar photolysis partially degraded fluorophore organic compounds, as indicated by the qualitative synchronous fluorescence spectra (SFS) of the OSPW, but did not impact NAs degradation. The solar/chlorine process effectively removed NAs (75-84% removal) and fluorophore organic compounds in OSPW in the presence of 200 or 300 mg L(-1) OCl(-). The acute toxicity of OSPW toward Vibrio fischeri was reduced after the solar/chlorine treatment. However, the OSPW toxicity toward goldfish primary kidney macrophages after solar/chlorine treatment showed no obvious toxicity reduction versus that of untreated OSPW, which warrants further study for process optimization. PMID:25051215

  19. Zero Liquid Discharge (ZLD) System for Flue-Gas Derived Water From Oxy-Combustion Process

    SciTech Connect

    Sivaram Harendra; Danylo Oryshchyn; Thomas Ochs; Stephen J. Gerdemann; John Clark

    2011-10-16

    Researchers at the National Energy Technology Laboratory (NETL) located in Albany, Oregon, have patented a process - Integrated Pollutant Removal (IPR) that uses off-the-shelf technology to produce a sequestration ready CO{sub 2} stream from an oxy-combustion power plant. Capturing CO{sub 2} from fossil-fuel combustion generates a significant water product which can be tapped for use in the power plant and its peripherals. Water condensed in the IPR{reg_sign} process may contain fly ash particles, sodium (from pH control), and sulfur species, as well as heavy metals, cations and anions. NETL is developing a treatment approach for zero liquid discharge while maximizing available heat from IPR. Current treatment-process steps being studied are flocculation/coagulation, for removal of cations and fine particles, and reverse osmosis, for anion removal as well as for scavenging the remaining cations. After reverse osmosis process steps, thermal evaporation and crystallization steps will be carried out in order to build the whole zero liquid discharge (ZLD) system for flue-gas condensed wastewater. Gypsum is the major product from crystallization process. Fast, in-line treatment of water for re-use in IPR seems to be one practical step for minimizing water treatment requirements for CO{sub 2} capture. The results obtained from above experiments are being used to build water treatment models.

  20. Solar process heat technology in action: The process hot water system at the California Correctional Institution at Tehachapi

    SciTech Connect

    Hewett, R. ); Gee, R.; May, K. )

    1991-12-01

    Solar process heat technology relates to solar thermal energy systems for industry, commerce, and government. Applications include water preheating and heating, steam generation, process hot air, ventilation air heating, and refrigeration. Solar process heat systems are available for commercial use. At the present time, however, they are economically viable only in niche markets. This paper describes a functioning system in one such market. The California Department of Corrections (CDOC), which operates correctional facilities for the state of California, uses a solar system for providing hot water and space heating at the California Correctional Institute at Tehachapi (CCI/Tehachapi). CCI/Tehachapi is a 5100-inmate facility. The CDOC does not own the solar system. Rather, it buys energy from private investors who own the solar system located on CCI/Tehachapi property; this arrangement is part of a long-term energy purchase agreement. United Solar Technologies (UST) of Olympia Washington is the system operator. The solar system, which began operating in the fall of 1990, utilizes 2677 m{sup 2} (28,800 ft{sup 2}) of parabolic through solar concentrators. Thermal energy collected by the system is used to generate hot water for showers, kitchen operations, and laundry functions. Thermal energy collected by the system is also used for space heating. At peak operating conditions, the system is designed to meet approximately 80 percent of the summer thermal load. 4 figs., 4 tabs.

  1. Nitrate in Ground Waters of the United States: Contrasting Scales and Processes

    NASA Astrophysics Data System (ADS)

    Nolan, B. T.

    2002-12-01

    Nitrate is one of the most ubiquitous compounds in ground water. Studies conducted during 1992 - 1995 by the U.S. Geological Survey's National Water Quality Assessment (NAWQA) Program detected nitrate in 71% of shallow ground water samples, more than 13 times as often as organic nitrogen, ammonia, nitrite, and orthophosphate (based on a common detection threshold of 0.2 mg/L). Nitrate commonly occurs in mixtures with other contaminants. Mixtures of "anthropogenic" nitrate (>3 mg/L as N), atrazine, and deethylatrazine were among the most frequently occurring mixtures in ground water samples from 1,497 domestic and public supply wells. The samples were analyzed for nitrate, 83 pesticides, and 60 volatile organic compounds. Elevated nitrate concentration in ground water has been associated with adverse health effects. Interpretive studies conducted at contrasting spatial scales reveal different processes influencing nitrate behavior in ground water. At the national scale, an empirical model indicates that leaching and water-table position influence nitrate concentration in shallow ground water (typically <5 m deep). The probability of nitrate contamination is greater in areas with high nitrogen loading and well-drained soils overlying unconsolidated sand and gravel deposits. Median nitrate concentration for wells grouped by mapped probability region increases from 0.24 to 8.3 mg/L as the predicted probability of nitrate exceeding 4 mg/L increases from 0.17 or less to >0.83. With these shallow ground-water data, nitrate contamination risk increases with increasing depth to ground water because of reduced denitrification potential. Denitrification commonly occurs under anoxic conditions in areas with very shallow depth to ground water (i.e., high water-table position). A regional study indicates that nitrate reduction and calcite dissolution processes influence nitrate concentration in ground waters of the southeastern United States. Water and sediment of the North

  2. Mulled coal - a beneficiation coal form for use as a fuel or fuel intermediate. Technical progress report No. 9, April 1, 1992--June 30, 1992

    SciTech Connect

    Not Available

    1993-01-01

    Under the auspices of the DOE and private industry, considerable progress has been made in: preparation of coal-water fuels; combustion of low-ash coal-based fuel forms; processes to provide deeply-cleaned coal. Developments in advanced beneficiation of coal to meet stringent requirements for low ash and low sulfur can be anticipated to further complicate the problem areas associated with this product. This is attributable to the beneficiated coal being procured in very fine particles with high surface areas, modified surface characteristics, reduced particle size distribution range, and high inherent moisture. Experience in the storage, handling, and transport of highly beneficiated coal has been limited. This is understandable, as quantities of such product are only now becoming available in meaningful quantities. During this reporting period the authors have: developed a suite of empirical tests covering water retention, rewetting, mull stability, angle of repose, dusting, etc.; a standardized suite for testing handling properties has been developed; initiated screening studies of alternate mulling agent formulations; mulls from six different coals and coals cleaned at different levels are being prepared for evaluation.

  3. One-Way Diffusion of Ionic Liquids in a Mixing Process with Water

    NASA Astrophysics Data System (ADS)

    Oikawa, Noriko; Tahara, Daiki; Kurita, Rei

    2016-09-01

    In contrast to the usual diffusive mixing process between two miscible liquids, the ionic liquid [Cnmim][PF6] forms a droplet in water while mixing. The droplet retains a sharp interface with surface tension, gradually decreasing in size until completely mixed with water. This peculiar behavior in the mixing process accompanies one-way diffusion, in which ions diffuse in one direction only from the bulk IL droplet into the bulk continuum of water. The activation energy of the one-way diffusion at the [Cnmim][PF6]/water interface increases with increasing length of the hydrophobic alkyl chains attached to the cation molecules of [Cnmim][PF6]. It is considered that the hydrophobic nanoscale structure observed in [C4mim][PF6] plays an important role in the generation of the droplet and the mixing dynamics.

  4. Intensifying of the processes of mechanical separation of oil products from industrial waste water

    SciTech Connect

    Kostova, I.

    1995-11-01

    The raised requirements for discharge of industrial effluents in the Black Sea and in the rivers lead to the development of more efficient technologies for additional treatment and improving the existing facilities. Pollutants with concentrations which are several times higher than the admissible rates according to the Bulgarian Standards, are found at many places along the Black Sea Coast. This is due to the imperfect construction of the water treatment facilities and their improper maintenance. Oil products are one of the main pollutants in water basins. The negative influence which they have on the ecological balance comes from the fact that they are among the most difficulty and slowly dissociating organic substances. They have negative impact on the physical and chemical qualities of water and obstruct the self-purification process disrupting its biological life. In this paper the opportunity to intensify the processes of mechanical separation of oil products from industrial waste water is discussed.

  5. Evaluation of Tribocharged Electrostatic Beneficiation of Lunar Simulant in Lunar Gravity

    NASA Technical Reports Server (NTRS)

    Quinn, Jacqueline W.; Captain, Jim G.; Weis, Kyle; Santiago-Maldonado, Edgardo; Trigwell, Steve

    2011-01-01

    The lunar regolith has high concentrations of aluminum, silicon, calcium, iron, sodium, and titanium oxides. Liberation of these metals would provide necessary materials for structural and building material fabrication, spare part, machine and tool production, and construction and site preparation in-situ on the moon or other extraterrestrial body (Rao et al 1979). Ilmenite (FeTi03) is a mineral of interest on the moon as a source of iron, titanium, and oxygen (Cameron 1992, Zhao and Shadman 1993) and therefore enrichment of this mineral in the feedstock before processing would be a considerable advantage in reducing energy requirements to process regolith. Not only for construction materials, but shipping oxygen and water from earth is weight prohibitive, and so investigations into the potential production of oxygen from the oxides of lunar regolith are a major research initiative by NASA (Sibille et al. 2009, Moscatello et al. 2009). In this paper, the results of electrostatic beneficiation of two sets of lunar simulants on two different reduced gravity flight series are presented.

  6. Enhancement of surface properties for coal beneficiation

    SciTech Connect

    Chander, S.; Aplan, F.F.

    1992-01-30

    This report will focus on means of pyrite removal from coal using surface-based coal cleaning technologies. The major subjects being addressed in this study are the natural and modulated surface properties of coal and pyrite and how they may best be utilized to facilitate their separation using advanced surface-based coal cleaning technology. Emphasis is based on modified flotation and oil agglomerative processes and the basic principles involved. The four areas being addressed are: (1) Collectorless flotation of pyrite; (2) Modulation of pyrite and coal hydrophobicity; (3) Emulsion processes and principles; (4) Evaluation of coal hydrophobicity.

  7. Shallow water processes govern system-wide phytoplankton bloom dynamics: A field study

    USGS Publications Warehouse

    Thompson, J.K.; Koseff, Jeffrey R.; Monismith, Stephen G.; Lucas, L.V.

    2008-01-01

    Prior studies of the phytoplankton dynamics in South San Francisco Bay, California, USA have hypothesized that bivalve filter-feeders are responsible for the limited phytoplankton blooms in the system. This study was designed to examine the effects of benthic grazing and light attenuation on this shallow, turbid, and nutrient replete system. We found that grazing by shallow water bivalves was important in determining phytoplankton bloom occurrence throughout the system and that above a shallow water bivalve grazing threshold, phytoplankton biomass did not exceed bloom levels. Wind speed, used as a proxy for light attenuation in the shallow water, was similarly important in determining bloom development in the shallow water. Environmental conditions and benthic grazing in the deep water channel had a less discernible effect on system-wide phytoplankton blooms although persistent water column stratification did increase bloom magnitude. The shallow water bivalves, believed to be preyed upon by birds and fish that migrate through the system in fall and winter, disappear each year prior to the spring phytoplankton bloom. Because growth of the phytoplankton depends so strongly on shallow water processes, any change in the shallow-water benthic filter-feeders or their predators has great potential to change the phytoplankton bloom dynamics in this system. ?? 2007 Elsevier B.V. All rights reserved.

  8. Cooling and condensing of sulfur and water from claus process gas

    SciTech Connect

    Palm, J. W.; Kunkel, L. V.

    1985-07-02

    The Claus process gas is cooled in a condenser to condense most of the sulfur vapor in solid form. The gas leaving the condenser is then further cooled to condense water without producing substantially any sulfur in an undesirable form. The resulting gas of reduced water content is useful in Claus reaction, particularly the low temperature Claus reaction in which the product sulfur is adsorbed on the catalyst.

  9. An analysis of hydrogen production via closed-cycle schemes. [thermochemical processings from water

    NASA Technical Reports Server (NTRS)

    Chao, R. E.; Cox, K. E.

    1975-01-01

    A thermodynamic analysis and state-of-the-art review of three basic schemes for production of hydrogen from water: electrolysis, thermal water-splitting, and multi-step thermochemical closed cycles is presented. Criteria for work-saving thermochemical closed-cycle processes are established, and several schemes are reviewed in light of such criteria. An economic analysis is also presented in the context of energy costs.

  10. The plausible role of carbonate in photo-catalytic water oxidation processes.

    PubMed

    Kornweitz, Haya; Meyerstein, Dan

    2016-04-20

    DFT calculations point out that the photo-oxidation of water on GaN is energetically considerably facilitated by adsorbed carbonate. As the redox potential of the couple CO3˙(-)/CO3(2-) is considerably lower than that of the couple OH˙/OH(-) but still enables the oxidation of water it is suggested that carbonate should be considered as a catalyst/co-catalyst in a variety of catalytic/photo-catalytic/electro-catalytic oxidation processes. PMID:27045227

  11. EFFICACY OF FILTRATION PROCESSES TO OBTAIN WATER CLARITY AT K EAST SPENT NUCLEAR FUEL (SNF) BASIN

    SciTech Connect

    DUNCAN JB

    2006-09-28

    The objective is to provide water clarity to the K East Basin via filtration processes. Several activities are planned that will challenge not only the capacity of the existing ion exchange modules to perform as needed but also the current filtration system to maintain water clarity. Among the planned activities are containerization of sludge, removal of debris, and hydrolasing the basin walls to remove contamination.

  12. PROCESS WATER BUILDING, TRA605, INTERIOR. FIRST FLOOR. DETAILED VIEW OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PROCESS WATER BUILDING, TRA-605, INTERIOR. FIRST FLOOR. DETAILED VIEW OF SIX VALVE HANDWHEELS IN WALL NICHE. CAMERA FACES EAST. VALVES CONTROL FLOW OF WATER IN PIPE SECTION ALONG NORTH WALL IN BASEMENT BELOW. NOTE HATCH COVER IN FLOOR. INL NEGATIVE NO. HD46-26-2. Mike Crane, Photographer, 2/2005 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  13. PROCESS WATER BUILDING, TRA605. FLOOR PLAN AND SECTION OF FLASH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PROCESS WATER BUILDING, TRA-605. FLOOR PLAN AND SECTION OF FLASH EVAPORATOR ROOM SHOWING ITS LOCATION ABOVE THE SEAL AND SUMP TANKS. PIPING TAKES WATER FROM SEAL TANK UPWARD TO FLASH EVAPORATORS AND THEN BACK DOWN TO SUMP TANK. BLAW-KNOX 3150-5-6, 8/1950. INL INDEX NO. 531-605-00-098-100011, REV. 3. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  14. Case study on the implementation of deammonification for the process water treatment of Munich WWTPs.

    PubMed

    Hilliges, Rita; Steinle, Eberhard; Böhm, Bernhard

    2012-01-01

    The two-staged WWTP 'Gut Grosslappen' has a capacity of 2 mio. PE. It comprises a pre-denitrification in the first stage using recirculation from the nitrifying second stage. A residual post-denitrification in a downstream sand filter is required in order to achieve the effluent standards. Presently the process water from sludge digestion is treated separately by nitrification/denitrification. Due to necessary reconstruction of the biological stages, the process water treatment was included in the future overall process concept of the WWTP. A case study was conducted comparing the processes nitritation/denitrititation and deammonification with nitrification/denitrification including their effect on the operational costs of the planned main flow treatment. Besides the different operating costs the investment costs required for the process water treatment played a significant role. Six cases for the process water treatment were compared. As a result, in Munich deammonification can only be recommended for long-term future developments, due to the high investment costs, compared with the nitritation/denitritation alternative realizable in existing tanks. The savings concerning aeration, sludge disposal and chemicals were not sufficient to compensate for the additional investment costs. Due to the specific circumstances in Munich, for the time being the use of existing tanks for nitritation/denitritation proved to be most economical. PMID:22546808

  15. Ground-water solutes and eolian processes: An example from the High Plains of Texas

    SciTech Connect

    Wood, W.W.; Sanford, W.E. )

    1992-01-01

    Eolian dunes associated with saline-lake basins are important geologic features in arid and semiarid areas. The authors propose that eolian processes may also be important in controlling solute concentration and composition of ground water in these environments. A study of Double Lakes on the Southern High Plains of Texas suggests that approximately 200 megagrams of chloride enters this topographically closed basin from the surrounding water table aquifer, direct precipitation and surface runoff. Solute-transport simulation suggest that approximately 70 of the 200 megagrams of the chloride annually leaves the basin by diffusion and ground-water advection through a 30 meter-thick shale underlying the lake. The remaining 130 megagrams is hypothesized to be removed by eolian processes. Closed water-table contours around the lake and a hydrologic analysis suggest that it is improbable that solutes will reach the surrounding water-table aquifer by ground-water transport from this lake system. The conceptual eolian-transport model is further supported by observed chloride profiles in the unsaturated zone. When analyzed with estimates of recharge fluxes, these profiles suggest that approximately 150 megagrams of chloride enter the unsaturated zone downwind of the lake annually. Thus two independent methods suggest that 130 to 150 megagrams of chloride enter the unsaturated zone downwind of the lake annually. Thus two independent methods suggest that 130 to 150 megagrams of chloride are removed from the basin annually by eolian process and redeposited downwind of the lake. Eolian input to the ground water is consistent with the observed plume shape as well as with the solute and isotopic composition of ground water in the water-table aquifer downwind of the lake basin.

  16. Cyber-physical system for a water reclamation plant: Balancing aeration, energy, and water quality to maintain process resilience

    NASA Astrophysics Data System (ADS)

    Zhu, Junjie

    Aeration accounts for a large fraction of energy consumption in conventional water reclamation plants (WRPs). Although process operations at older WRPs can satisfy effluent permit requirements, they typically operate with excess aeration. More effective process controls at older WRPs can be challenging as operators work to balance higher energy costs and more stringent effluent limitations while managing fluctuating loads. Therefore, understandings of process resilience or ability to quickly return to original operation conditions at a WRP are important. A state-of-art WRP should maintain process resilience to deal with different kinds of perturbations even after optimization of energy demands. This work was to evaluate the applicability and feasibility of cyber-physical system (CPS) for improving operation at Metropolitan Water Reclamation District of Greater Chicago (MWRDGC) Calumet WRP. In this work, a process model was developed and used to better understand the conditions of current Calumet WRP, with additional valuable information from two dissolved oxygen field measurements. Meanwhile, a classification system was developed to reveal the pattern of historical influent scenario based on cluster analysis and cross-tabulation analysis. Based on the results from the classification, typical process control options were investigated. To ensure the feasibility of information acquisition, the reliability and flexibility of soft sensors were assessed to typical influent conditions. Finally, the process resilience was investigated to better balance influent perturbations, energy demands, and effluent quality for long-term operations. These investigations and evaluations show that although the energy demands change as the influent conditions and process controls. In general, aeration savings could be up to 50% from the level of current consumption; with a more complex process controls, the saving could be up to 70% in relatively steady-state conditions and at least 40

  17. Process for removal of ammonia and acid gases from contaminated waters

    DOEpatents

    King, C.J.; Mackenzie, P.D.

    1982-09-03

    Contaminating basic gases, i.e., ammonia and acid gases, e.g., carbon dioxide, are removed from process waters or waste waters in a combined extraction and stripping process. Ammonia in the form of ammonium ion is extracted by an immiscible organic phase comprising a liquid cation exchange component, especially an organic phosphoric acid derivative, and preferably di-2-ethyl hexyl phosphoric acid, dissolved in an alkyl hydrocarbon, aryl hydrocarbon, higher alcohol, oxygenated hydrocarbon, halogenated hydrocarbon, and mixtures thereof. Concurrently, the acidic gaseous contaminants are stripped from the process or waste waters by stripping with stream, air, nitrogen, or the like. The liquid cation exchange component has the ammonia stripped therefrom by heating, and the component may be recycled to extract additional amounts of ammonia.

  18. Process for removal of ammonia and acid gases from contaminated waters

    DOEpatents

    King, C. Judson; MacKenzie, Patricia D.

    1985-01-01

    Contaminating basic gases, i.e., ammonia, and acid gases, e.g., carbon dioxide, are removed from process waters or waste waters in a combined extraction and stripping process. Ammonia in the form of ammonium ion is extracted by an immiscible organic phase comprising a liquid cation exchange component, especially an organic phosphoric acid derivative, and preferably di-2-ethyl hexyl phosphoric acid, dissolved in an alkyl hydrocarbon, aryl hydrocarbon, higher alcohol, oxygenated hydrocarbon, halogenated hydrocarbon, and mixtures thereof. Concurrently, the acidic gaseous contaminants are stripped from the process or waste waters by stripping with steam, air, nitrogen, or the like. The liquid cation exchange component has the ammonia stripped therefrom by heating, and the component may be recycled to extract additional amounts of ammonia.

  19. Antireflective silica thin films with super water repellence via a solgel process.

    PubMed

    Xu, Yao; Fan, Wen Hao; Li, Zhi Hong; Wu, Dong; Sun, Yu Han

    2003-01-01

    A solgel process was developed, through which silica films possessing both high antireflection and super water repellence were obtained. In this process, methyl-modified SiO2 sols synthesized by colloidal suspension of SiO2 particles and hexamethyldisilazane (HMDS) were used to deposit spinning-coating films on optical glass substrates. On the resultant films the contact angle for water increased with the increasing amount of HMDS in the reaction mixture. The biggest contact angle was 165 degrees, and the lowest reflectivity on one-sided film reached 0.03%. The antireflections were high all the while. One advantage of this process is that neither a roughened surface nor fluoroalkyltrialkoxylsilane (FAS) is needed to obtained super water repellence. PMID:12518829

  20. Dominant processes controlling water chemistry of the Pecos River in American southwest

    NASA Astrophysics Data System (ADS)

    Yuan, Fasong; Miyamoto, Seiichi

    2005-09-01

    Here we show an analysis of river flow and water chemistry data from eleven gauging stations along the Pecos River in eastern New Mexico and western Texas, with time spanning 1959-2002. Analysis of spatial relationship between the long-term average flow and total dissolved solids (TDS) concentration allows us to illuminate four major processes controlling river chemistry, namely saline water addition, evaporative concentration with salt gain or loss, dilution with salt gain or loss, and salt storage. Of the 10 river reaches studied, six reaches exhibit the process dominated by evaporative concentration or freshwater dilution with little change in salt load. Four reaches show considerable salt gains or losses that are induced by surface-ground water interactions. This analysis suggests that the evaporative concentration and freshwater dilution are the prevailing mechanisms, but local processes (e.g., variations in hydrologic flowpath and lithologic formation) also play an important role in regulating the hydrochemistry of the Pecos River.

  1. Influence of water grid on combustion process in small dendromass heat source

    NASA Astrophysics Data System (ADS)

    Papučík, Štefan; Pilát, Peter; Hrabovský, Peter; Patsch, Marek

    2016-06-01

    For achieving of low emission in compliance of required performance parameters of small heat source affects a number of factors. It's not just about redistribution and intensity of combustion air or flue gas temperature in the chimney. An important role in the combustion process also have a combustion chamber shape, size of embers, placing of the fuel in the chamber, positioning, distribution and temperature of combustion air entering into the combustion process, the tightness of the measured heat source or temperature of the combustion chamber. The bigger problem with the achievement of low emission limits occurs at the operation of gasification heat source in lower performance. The article discusses about the effects on the combustion process is simple structural adjustment of heat source - removal of water grate during operation at reduced performance. On measuring were used identical small heat sources (with and without lambda probe oxygen sensor, with water and without water grate), which uses principle of biomass gasification.

  2. The tree water isoscape of a central Pennsylvania catchment: ecohydrologic patterns and processes

    NASA Astrophysics Data System (ADS)

    Brubaker, K. M.; Gaines, K.

    2015-12-01

    The connections between vegetation and catchment hydrology are important for tree physiology, plant geography, stream flow, and transport of solutes within a watershed. While water isotopes from tree stems have been studied extensively to examine source-water differences at a small scale, there has been little emphasis on modeling of plant stem water isotopes at larger scales, due to the expensive and laborious extraction and analysis processes. We characterized the tree stem water for stable isotopes over a landscape (isoscape) at a first-order catchment in central Pennsylvania in order to address the following questions: 1) How does tree water isotopic composition relate to catchment topography and tree characteristics? 2) What are the underlying hydrologic processes that are revealed by tree water isotopes? We used 267 observations of tree xylem water δ18O from 121 trees to build a statistical model with candidate variables related to topography and tree characteristics. We then applied the final model to predict the tree xylem water δ18O composition during the growing season of the remaining trees defined as > 18-cm diameter (at breast height; DBH) in the catchment. The final model included tree canopy height and slope magnitude as predictors, and explained about 56% of variance in tree water δ18O composition in the catchment. Tree canopy height and degree of slope were both negatively related to tree water δ18O suggesting the tallest trees and trees on the steepest slopes had tree water isotopic compositions most depleted in heavy isotopes. Each of these suggested the influence of cool-season isotopic inputs. On the valley floor, where tree canopy heights were tallest, the tree water δ18O composition was likely due to early growing season soil saturation from a shallow ground water table. Conversely, the steep hill slope δ18O composition may be a result of tree water use of tightly-bound soil water originating from cool season precipitation. The model

  3. Application of forward osmosis membrane technology for oil sands process-affected water desalination.

    PubMed

    Jiang, Yaxin; Liang, Jiaming; Liu, Yang

    2016-01-01

    The extraction process used to obtain bitumen from the oil sands produces large volumes of oil sands process-affected water (OSPW). As a newly emerging desalination technology, forward osmosis (FO) has shown great promise in saving electrical power requirements, increasing water recovery, and minimizing brine discharge. With the support of this funding, a FO system was constructed using a cellulose triacetate FO membrane to test the feasibility of OSPW desalination and contaminant removal. The FO systems were optimized using different types and concentrations of draw solution. The FO system using 4 M NH4HCO3 as a draw solution achieved 85% water recovery from OSPW, and 80 to 100% contaminant rejection for most metals and ions. A water backwash cleaning method was applied to clean the fouled membrane, and the cleaned membrane achieved 77% water recovery, a performance comparable to that of new FO membranes. This suggests that the membrane fouling was reversible. The FO system developed in this project provides a novel and energy efficient strategy to remediate the tailings waters generated by oil sands bitumen extraction and processing. PMID:27120634

  4. Pressurized fluidized-bed hydroretorting of eastern oil shales. Volume 4, Task 5, Operation of PFH on beneficiated shale, Task 6, Environmental data and mitigation analyses and Task 7, Sample procurement, preparation, and characterization: Final report, September 1987--May 1991

    SciTech Connect

    Not Available

    1992-03-01

    The objective of Task 5 (Operation of Pressurized Fluidized-Bed Hydro-Retorting (PFH) on Beneficiated Shale) was to modify the PFH process to facilitate its use for fine-sized, beneficiated Eastern shales. This task was divided into 3 subtasks: Non-Reactive Testing, Reactive Testing, and Data Analysis and Correlations. The potential environment impacts of PFH processing of oil shale must be assessed throughout the development program to ensure that the appropriate technologies are in place to mitigate any adverse effects. The overall objectives of Task 6 (Environmental Data and Mitigation Analyses) were to obtain environmental data relating to PFH and shale beneficiation and to analyze the potential environmental impacts of the integrated PFH process. The task was divided into the following four subtasks. Characterization of Processed Shales (IGT), 6.2. Water Availability and Treatment Studies, 6.3. Heavy Metals Removal and 6.4. PFH Systems Analysis. The objective of Task 7 (Sample Procurement, Preparation, and Characterization) was to procure, prepare, and characterize raw and beneficiated bulk samples of Eastern oil shale for all of the experimental tasks in the program. Accomplishments for these tasks are presented.

  5. Sediment and process water characterization in support of 300 Area North Process Pond physical soil washing test

    SciTech Connect

    Field, J.G.

    1994-02-18

    The sediments in the 300 Area North Process Pond are being considered for clean-up using soil washing processes. Prior to site clean-up several preliminary pilot-scale physical washing campaigns were performed by Westinghouse Hanford Company (WHC) staff in the summer of 1993. WHC used equipment that was obtained from the US Environmental Protection Agency. Specific details are found in the 300-FF-1 Physical Separations CERCLA Treatability Test Plan. Physical soil washing includes separation and proper containment of the contaminant-rich fines and residual liquid effluent and release of the coarse ``clean`` fraction, should it meet minimum performance levels for residual contaminant concentration to the site being cleaned. A goal of the demonstration is to concentrate the contaminants into {le}10% of the soil volume excavated and, therefore, to release {ge}90% of the soil back to the site as clean soil. To support interpretation of the WHC soil washing treatability study, PNL performed some sediment and process water characterization on samples taken during three major and one small campaign. This report documents particle-size distributions in various field washed piles, and chemical and gama emitting radionuclide contents as a function of particle-size distribution for the field washed sediments and contents in the spent process water. All of the particle fractions were separated by wet sieving, but two field samples were also subjected to dry sieving and attrition scrubbing followed by wet sieving.

  6. RNAi at work: Targeting invertebrate pests and beneficial organisms' diseases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Invertebrates present two types of large scale RNAi application opportunities: pest control and beneficial insect health. The former involves the introduction of sustainable applications to keep pest populations low, and the latter represents the challenge of keeping beneficial organisms healthy. RN...

  7. Integrated process control for recirculating cooling water treatment in the coal chemical industry.

    PubMed

    Pei, Y S; Guo, W; Yang, Z F

    2011-01-01

    This work focused on the integrated process of the recirculating cooling water (RCW) treatment to achieve approximate zero emission in the coal chemical industry. The benefits of fractional and comprehensive RCW treatment were quantified and qualified by using a water and mass balance approach. Limits of cycle of concentrations and some encountered bottlenecks were used to ascertain set target limits for different water sources. Makeup water was mixed with water produced from reverse osmosis (RO) in the proportion of 6:4, which notably reduced salts discharge. Side infiltration, which settled down suspended solids, can reduce energy consumption by over 40%. An automated on-line monitoring organic phosphorus inhibitor feed maintains the RCW system stability in comparison to the manual feed. Two-step electrosorb technology (EST) instead of an acid feed can lead cycle of concentration of water to reach 7.0. The wastewater from RO, EST and filter was transferred into a concentration treatment system where metallic ions were adsorbed by permanent magnetic materials. Separation of water and salts was completed by using a magnetic disc separator. Applying the integrated process in a coal chemical industry, a benefit of 1.60 million Yuan annually in 2 years was gained and approximate zero emission was achieved. Moreover, both technical and economic feasibility were demonstrated in detail. PMID:21977648

  8. [Monitoring and analysis on evolution process of rainfall runoff water quality in urban area].

    PubMed

    Dong, Wen; Li, Huai-En; Li, Jia-Ke

    2013-02-01

    In order to find the water quality evolution law and pollution characteristics of the rainfall runoff from undisturbed to the neighborhood exit, 6 times evolution process of rainfall runoff water quality were monitored and analyzed from July to October in 2011, and contrasted the clarification efficiency of the grassland to the roof runoff rudimentarily at the same time. The research showed: 1. the results of the comparison from "undisturbed, rainfall-roof, rainfall runoff-road, rainfall-runoff the neighborhood exit runoff " showed that the water quality of the undisturbed rain was better than that from the roof and the neighborhood exist, but the road rainfall runoff water quality was the worst; 2. the average concentrations of the parameters such as COD, ammonia nitrogen and total nitrogen all exceeded the Fifth Class of the Surface Water Quality Standard except for the soluble total phosphorus from undisturbed rainfall to the neighborhood exit; 3. the runoff water quality of the short early fine days was better than that of long early fine days, and the last runoff water quality was better than that of the initial runoff in the same rainfall process; 4. the concentration reduction of the grassland was notable, and the reduction rate of the grassland which is 1.0 meter wide of the roof runoff pollutants such as COD and nitrogen reached 30%. PMID:23668123

  9. Thermodynamic properties of adsorbed water on silica gel - Exergy losses in adiabatic sorption processes

    NASA Astrophysics Data System (ADS)

    Worek, W. M.; Zengh, W.; San, J.-Y.

    1991-09-01

    In order to perform exergy analyses to optimize the transient heat and mass transfer processes involving sorption by solid adsorbents, the thermodynamic properties of adsorbed water must be determined. In this paper, the integral enthalpy and entropy are determined directly from isotherm data of water adsorbed on silica gel particles and silica gel manufactured in the form of a felt with 25 percent cotton as a support and Teflon as a binder. These results are then used to evaluate the exergy losses, due to the sorption and the convective heat and mass transfer processes, that occur in each portion of an adiabatic desiccant dehumidificaton cycle.

  10. System and process for efficient separation of biocrudes and water in a hydrothermal liquefaction system

    DOEpatents

    Elliott, Douglas C.; Hart, Todd R.; Neuenschwander, Gary G.; Oyler, James R.; Rotness, Jr, Leslie J.; Schmidt, Andrew J.; Zacher, Alan H.

    2016-08-02

    A system and process are described for clean separation of biocrudes and water by-products from hydrothermal liquefaction (HTL) product mixtures of organic and biomass-containing feedstocks at elevated temperatures and pressures. Inorganic compound solids are removed prior to separation of biocrude and water by-product fractions to minimize formation of emulsions that impede separation. Separation may be performed at higher temperatures that reduce heat loss and need to cool product mixtures to ambient. The present invention thus achieves separation efficiencies not achieved in conventional HTL processing.

  11. THERMODYNAMIC CONSIDERATIONS FOR THERMAL WATER SPLITTING PROCESSES AND HIGH TEMPERATURE ELECTROLYSIS

    SciTech Connect

    J. E. O'Brien

    2008-11-01

    A general thermodynamic analysis of hydrogen production based on thermal water splitting processes is presented. Results of the analysis show that the overall efficiency of any thermal water splitting process operating between two temperature limits is proportional to the Carnot efficiency. Implications of thermodynamic efficiency limits and the impacts of loss mechanisms and operating conditions are discussed as they pertain specifically to hydrogen production based on high-temperature electrolysis. Overall system performance predictions are also presented for high-temperature electrolysis plants powered by three different advanced nuclear reactor types, over their respective operating temperature ranges.

  12. PROCESS WATER BUILDING, TRA605. AERIAL TAKEN WHILE SEVERAL PIPE TRENCHES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PROCESS WATER BUILDING, TRA-605. AERIAL TAKEN WHILE SEVERAL PIPE TRENCHES REMAINED OPEN. CAMERA FACES EASTERLY. NOTE DUAL PIPES BETWEEN REACTOR BUILDING AND NORTH SIDE OF PROCESS WATER BUILDING. PIPING NEAR WORKING RESERVOIR HEADS FOR RETENTION RESERVOIR. PIPE FROM DEMINERALIZER ENTERS MTR FROM NORTH. SEE ALSO TRENCH FOR COOLANT AIR DUCT AT SOUTH SIDE OF MTR AND LEADING TO FAN HOUSE AND STACK. INL NEGATIVE NO. 2966-A. Unknown Photographer, 7/31/1951 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  13. PROCESS WATER BUILDING, TRA605, INTERIOR. FIRST FLOOR. CAMERA IS IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PROCESS WATER BUILDING, TRA-605, INTERIOR. FIRST FLOOR. CAMERA IS IN SOUTHEAST CORNER AND FACES NORTHWEST. CONTROL ROOM AT RIGHT. CRANE MONORAIL IS OVER FLOOR HATCHES AND FLOOR OPENINGS. SIX VALVE HANDWHEELS ALONG FAR WALL IN LEFT CENTER VIEW. SEAL TANK IS ON OTHER SIDE OF WALL; PROCESS WATER PIPES ARE BELOW VALVE WHEELS. NOTE CURBS AROUND FLOOR OPENINGS. INL NEGATIVE NO. HD46-26-3. Mike Crane, Photographer, 2/2005 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  14. Field guide for collecting and processing stream-water samples for the National Water-Quality Assessment Program

    USGS Publications Warehouse

    Shelton, Larry R.

    1994-01-01

    The U.S. Geological Survey's National Water-Quality Assessment program includes extensive data- collection efforts to assess the quality of the Nations's streams. These studies require analyses of stream samples for major ions, nutrients, sediments, and organic contaminants. For the information to be comparable among studies in different parts of the Nation, consistent procedures specifically designed to produce uncontaminated samples for trace analysis in the laboratory are critical. This field guide describes the standard procedures for collecting and processing samples for major ions, nutrients, organic contaminants, sediment, and field analyses of conductivity, pH, alkalinity, and dissolved oxygen. Samples are collected and processed using modified and newly designed equipment made of Teflon to avoid contamination, including nonmetallic samplers (D-77 and DH-81) and a Teflon sample splitter. Field solid-phase extraction procedures developed to process samples for organic constituent analyses produce an extracted sample with stabilized compounds for more accurate results. Improvements to standard operational procedures include the use of processing chambers and capsule filtering systems. A modified collecting and processing procedure for organic carbon is designed to avoid contamination from equipment cleaned with methanol. Quality assurance is maintained by strict collecting and processing procedures, replicate sampling, equipment blank samples, and a rigid cleaning procedure using detergent, hydrochloric acid, and methanol.

  15. Real-time water treatment process control with artificial neural networks

    SciTech Connect

    Zhang, Q.; Stanley, S.J.

    1999-02-01

    With more stringent requirements being placed on water treatment performance, operators need a reliable tool to optimize the process control in the treatment plant. In the present paper, one such tool is presented, which is a process control system built with the artificial neural network (ANN) modeling approach. The coagulation, flocculation, and sedimentation processes involve many complex physical and chemical phenomena and thus are difficult to model for process control with traditional methods. Proposed is the use of a neural network process control system for the coagulation, flocculation, and sedimentation processes. Presented is a review of influential control parameters and control requirements for these processes followed by the development of a feed forward neural network control scheme. A neural network process model was built based on nearly 2,000 sets of process control data. This model formed the major component of a software controller and was found to consistently predict the optimum alum and power activated carbon doses for different control actions. With minor modifications, the approach illustrated can be used for building control models for other water treatment processes.

  16. Tritiated water processing using liquid phase catalytic exchange and solid oxide electrolyte cell

    SciTech Connect

    Yamai, H.; Konishi, S.; Hara, M.; Okuno, K.; Yamamoto, I.

    1995-10-01

    Liquid phase catalytic exchange (LPCE) is an effective method for enrichment and removal of tritium from tritiated water. Combined electrolysis catalytic exchange (CECE) process is an attractive application of a LPCE column. We proposed a new process that improves the CECE process. Using a solid oxide electrolyte (SOE) cell for electrolysis makes the CECE process more energy efficient and eliminates other disadvantages such as large tritium inventory and extremely slow system response. When the cell is used for recombination, the system becomes even more simple, efficiently, reliable and safe. 21 refs., 9 figs.

  17. Beneficial role of bacterial endophytes in heavy metal phytoremediation.

    PubMed

    Ma, Ying; Rajkumar, Mani; Zhang, Chang; Freitas, Helena

    2016-06-01

    Phytoremediation is an emerging technology that uses plants and their associated microbes to clean up pollutants from the soil, water and air. In recent years, phytoremediation assisted by bacterial endophytes has been highly recommended for cleaning up of metal polluted soils since endophytic bacteria can alleviate metal toxicity in plant through their own metal resistance system and facilitate plant growth under metal stress. Endophytic bacteria improve plant growth in metal polluted soils in two different ways: 1) directly by producing plant growth beneficial substances including solubilization/transformation of mineral nutrients (phosphate, nitrogen and potassium), production of phytohormones, siderophores and specific enzymes; and 2) indirectly through controlling plant pathogens or by inducing a systemic resistance of plants against pathogens. Besides, they also alter metal accumulation capacity in plants by excreting metal immobilizing extracellular polymeric substances, as well as metal mobilizing organic acids and biosurfactants. The present work aims to review the progress of recent research on the isolation, identification and diversity of metal resistant endophytic bacteria and illustrate various mechanisms responsible for plant growth promotion and heavy metal detoxification/phytoaccumulation/translocation in plants. PMID:26989941

  18. Beneficial effects of footbaths in controlling spasticity after stroke

    NASA Astrophysics Data System (ADS)

    Matsumoto, Shuji; Shimodozono, Megumi; Etoh, Seiji; Shimozono, Yurika; Tanaka, Nobuyuki; Kawahira, Kazumi

    2010-07-01

    Footbaths are considered to provide beneficial thermal therapy for post-stroke patients with spasticity, but their anti-spastic effects have not been investigated comprehensively. The present study aimed to evaluate alterations in motor-neuron excitability using F-wave parameters in post-stroke patients with spastic hemiplegia. Subjects’ legs below the knee joint were immersed in water at 41°C and F-wave recordings were made over the abductor hallucis muscle before, immediately after, and 30 min after thermal treatment. Antidromic stimulation was performed on the tibial nerve at the ankle. Measurements included F-wave amplitude, F-wave/M-response ratio, changes in modified Ashworth scale (MAS), body temperature and surface-skin temperature. The mean values of both F-wave parameters were higher on the affected side before footbath treatment. In post-stroke patients, the mean values of F-wave parameters were significantly reduced after footbath treatment ( P < 0.01). The anti-spastic effects of footbath treatment were indicated by decreased F-wave parameters, in parallel with decreases in MAS. Body temperature was significantly increased both immediately after, and 30 min following footbath treatment in both groups, which appeared to play an important role in decreased spasticity. Surface-skin temperature increased immediately after footbath treatment in both groups and returned to baseline 30 min later. These findings demonstrate that the use of footbaths is an effective nonpharmacological anti-spastic treatment that might facilitate stroke rehabilitation.

  19. Application of water-assisted ultraviolet light processing on the inactivation of murine norovirus on blueberries.

    PubMed

    Liu, Chuhan; Li, Xinhui; Chen, Haiqiang

    2015-12-01

    In this study, a novel set-up using water-assisted UV processing was developed and evaluated for its decontamination efficacy against murine norovirus (MNV-1) inoculated on fresh blueberries for both small and large-scale experimental setups. Blueberries were skin-inoculated with MNV-1 and treated for 1-5 min with UV directly (dry UV) or immersed in agitated water during UV treatment (water-assisted UV). The effect of the presence of 2% (v/v) blueberry juice or 5% crushed blueberries (w/w) in wash water was also evaluated. Results showed that water-assisted UV treatment generally showed higher efficacies than dry UV treatment. With 12,000 J/m(2) UV treatment in small-scale setup, MNV reductions of >4.32- and 2.48-log were achieved by water-assisted UV and dry UV treatments, respectively. Water-assisted UV showed similar inactivating efficacy as 10-ppm chlorine wash. No virus was detected in wash water after UV treatment or chlorine wash. MNV-1 was more easily killed on skin-inoculated blueberries compared with calyx-inoculated berries. When clear water was used as wash water in the large-scale setup, water-assisted UV treatment (UV dose of 12,000 J/m(2)) resulted in >3.20 log and 1.81 log MNV-1 reductions for skin- and calyx-inoculated berries, respectively. The presence of 2% blueberry juice in wash water decreased the decontamination efficacy of water-assisted UV and chlorine washing treatments. To improve the inactivation efficacy, the effect of combining water-assisted UV treatment with chlorine washing was also evaluated. The combined treatment had better or similar inactivation efficacy compared to water-assisted UV treatment and chlorine washing alone. Findings of this study suggest that water-assisted UV treatment could be used as an alternative to chlorine washing for blueberries and potentially for other fresh produce. PMID:26210533

  20. Revised ground-water monitoring compliance plan for the 300 area process trenches

    SciTech Connect

    Schalla, R.; Aaberg, R.L.; Bates, D.J.; Carlile, J.V.M.; Freshley, M.D.; Liikala, T.L.; Mitchell, P.J.; Olsen, K.B.; Rieger, J.T.

    1988-09-01

    This document contains ground-water monitoring plans for process-water disposal trenches located on the Hanford Site. These trenches, designated the 300 Area Process Trenches, have been used since 1973 for disposal of water that contains small quantities of both chemicals and radionuclides. The ground-water monitoring plans contained herein represent revision and expansion of an effort initiated in June 1985. At that time, a facility-specific monitoring program was implemented at the 300 Area Process Trenches as part of a regulatory compliance effort for hazardous chemicals being conducted on the Hanford Site. This monitoring program was based on the ground-water monitoring requirements for interim-status facilities, which are those facilities that do not yet have final permits, but are authorized to continue interim operations while engaged in the permitting process. The applicable monitoring requirements are described in the Resource Conservation and Recovery Act (RCRA), 40 CFR 265.90 of the federal regulations, and in WAC 173-303-400 of Washington State's regulations (Washington State Department of Ecology 1986). The program implemented for the process trenches was designed to be an alternate program, which is required instead of the standard detection program when a facility is known or suspected to have contaminated the ground water in the uppermost aquifer. The plans for the program, contained in a document prepared by the US Department of Energy (USDOE) in 1985, called for monthly sampling of 14 of the 37 existing monitoring wells at the 300 Area plus the installation and sampling of 2 new wells. 27 refs., 25 figs., 15 tabs.

  1. Coconut water of different maturity stages ameliorates inflammatory processes in model of inflammation

    PubMed Central

    Rao, Sadia Saleem; Najam, Rahila

    2016-01-01

    Aim: Coconut water is a natural beverage that is a part of daily diet of many people. This study was designed to explore the anti-inflammatory activity of coconut water of different maturation stages (young and mature) with rat paw edema model of inflammation using plethysmometer. Methodology: For this study, albino rats were selected and divided into four equal groups (10 rats in each group). Group 1 was set as control and administered distilled water 1 ml orally; Groups 2 and 3 were treated with young and mature coconut water, respectively, at 4 ml/100 g dose orally. Group 4 was treated with the standard drug (ibuprofen) at 400 mg/70 kg. 0.1 ml of 1% w/v acetic acid was administered in the subplantar tissue of rat paw 30 min after oral treatments of groups. Plethysmometer was used to measure rat paw edema. Results: Results revealed that both coconut water possess significant anti-inflammatory activity (P < 0.001). In comparison to control, percent inhibition by young coconut water was 20.22%, 35.13%, 42.52%, and 36% at 1, 2, 3, and 4 h of acetic acid administration, respectively. However, maximum percent inhibition (42.52%) was observed in the second phase of the inflammatory process. On the other hand, percent inhibition by mature coconut water was 18.80%, 25.94%, 24.13%, and 18.66% at 1, 2, 3, and 4 h of acetic acid administration, respectively. However, maximum percent inhibition (25.94%) was observed in the first phase of the inflammatory process. Conclusions: This study strongly suggests the use of young coconut water for potent anti-inflammatory effect and mature coconut water for moderate anti-inflammatory effect. PMID:27366350

  2. Greenhouse gas emissions from alternative water supply processes in southern California, USA

    NASA Astrophysics Data System (ADS)

    Schneider, A.; Townsend-Small, A.

    2012-12-01

    Burgeoning population centers and declining hydrological resources have encouraged the development of alternative water treatment systems, including desalination and wastewater recycling. These processes currently provide potable water for millions of people and assist in satisfying agricultural and landscaping irrigation demands. There are a variety of alternative water production methods in place, and while they help to reduce the demands placed on aquifers, during their operation they are also significant sources of greenhouse gases. The environmental advantages of these alternative water production methods need to be carefully weighed against their energy footprints and greenhouse gas emissions profiles. This study measured the greenhouse gas emissions of a wastewater treatment and recycling facility in Orange County, California to get a more complete picture of the carbon footprint of the plant. We measured atmospheric emissions of CO2, CH4, and N2O throughout the water recycling process and at various times of the day and week. This allowed us to assemble a thorough, cross-sectional profile of greenhouse gas emissions from the facility. We then compared the measured emissions of the treatment plant to the modeled emissions of desalination plants in order to assess the relative carbon footprints of the two water production methods. Other water supply alternatives, including regional water importation, were also included in the comparison in order to provide a more complete understanding of the potential greenhouse gas emissions. Finally, we assessed the significance of wastewater treatment as an urban greenhouse gas source when compared to other known emissions in the region. This research offers a valuable tool for sustainable urban and regional development by providing planners with a quantified comparison of the carbon footprints of several water production options.

  3. An Investigation of the Reverse Water Gas Shift Process and Operating Alternatives

    NASA Technical Reports Server (NTRS)

    Whitlow, Jonathan E.

    2002-01-01

    The Reverse Water Gas Shift (RWGS) process can produce water and ultimately oxygen through electrolysis. This technology is being investigated for possible use in the exploration of Mars as well as a potential process to aid in the regeneration of oxygen from carbon dioxide. The initial part of this report summarizes the results obtained from operation of the RWGS process at Kennedy Space Center during May and June of this year. It has been demonstrated that close to complete conversion can be achieved with the RWGS process under certain operating conditions. The report also presents results obtained through simulation for an alternative staged configuration for RWGS which eliminates the recycle compressor. This configuration looks promising and hence seems worthy of experimental investigation.

  4. Millimeter-wave imaging radiometer data processing and development of water vapor retrieval algorithms

    NASA Technical Reports Server (NTRS)

    Chang, L. Aron

    1995-01-01

    This document describes the current status of Millimeter-wave Imaging Radiometer (MIR) data processing and the technical development of the first version of a water vapor retrieval algorithm. The algorithm is being used by NASA/GSFC Microwave Sensors Branch, Laboratory for Hydrospheric Processes. It is capable of a three dimensional mapping of moisture fields using microwave data from airborne sensor of MIR and spaceborne instrument of Special Sensor Microwave/T-2 (SSM/T-2).

  5. Diamonds in the rough: identification of individual napthenic acids in oil sands process water

    SciTech Connect

    Rowland, Steven J.; Scarlett, Alan G.; Jones, David; West, Charles E. ); Frank, Richard A.

    2011-03-10

    Expansion of the oil sands industry of Canada has seen a concomitant increase in the amount of process water produced and stored in large lagoons known as tailings ponds. Concerns have been raised, particularly about the toxic complex mixtures of water-soluble naphthenic acids (NA) in the process water. To date, no individual NA have been identified, despite numerous attempts, and while the toxicity of broad classes of acids is of interest, toxicity is often structure-specific, so identification of individual acids may also be very important. The chromatographic resolution and mass spectral identification of some individual NA from oil sands process water is described. The authors concluded that the presence of tricyclic diamondoid acids, never before even considered as NA, suggests an unprecedented degree of biodegradation of some of the oil in the oil sands. The identifications reported should now be followed by quantitative studies, and these used to direct toxicity assays of relevant NA and the method used to identify further NA to establish which, or whether all NA, are toxic. The two-dimensional comprehensive gas chromatography-mass spectrometry method described may also be important for helping to better focus reclamation/remediation strategies for NA as well as in facilitating the identification of the sources of NA in contaminated surface waters (auth)

  6. The freezing process of continuously sprayed water droplets on the superhydrophobic silicone acrylate resin coating surface

    NASA Astrophysics Data System (ADS)

    Hu, Jianlin; Xu, Ke; Wu, Yao; Lan, Binhuan; Jiang, Xingliang; Shu, Lichun

    2014-10-01

    This study conducted experiments on freezing process of water droplets on glass slides covered with superhydrophobic coatings under the continuous water spray condition in the artificial climatic chamber which could simulate low temperature and high humidity environments. The freezing mechanism and freezing time of water droplets under the condition of continuous spray were observed by the microscope and were compared with those of the single static droplet. Then, differences of freezing process between continuously sprayed droplets and single static droplet were analyzed. Furthermore, the effects of static contact angle (CA), contact angle hysteresis (CAH) and roughness of the superhydrophobic coating surface on the freezing time of continuously sprayed droplets were explored. Results show that the freezing process of the continuously sprayed droplets on the superhydrophobic coating started with the homogeneous nucleation at gas-liquid interfaces. In addition, the temperature difference between the location near the solid-liquid interface and the location near the gas-liquid interface was the key factor that influenced the ice crystallization mechanism of water droplets. Moreover, with the larger CA, the smaller CAH and the greater roughness of the surface, droplets were more likely to roll down the surface and the freezing duration on the surface was delayed. Based on the findings, continuous water spray is suggested in the anti-icing superhydrophobic coatings research.

  7. Efficiency of conventional drinking-water-treatment processes in removal of pharmaceuticals and other organic compounds

    USGS Publications Warehouse

    Stackelberg, P.E.; Gibs, J.; Furlong, E.T.; Meyer, M.T.; Zaugg, S.D.; Lippincott, R.L.

    2007-01-01

    Samples of water and sediment from a conventional drinking-water-treatment (DWT) plant were analyzed for 113 organic compounds (OCs) that included pharmaceuticals, detergent degradates, flame retardants and plasticizers, polycyclic aromatic hydrocarbons (PAHs), fragrances and flavorants, pesticides and an insect repellent, and plant and animal steroids. 45 of these compounds were detected in samples of source water and 34 were detected in samples of settled sludge and (or) filter-backwash sediments. The average percent removal of these compounds was calculated from their average concentration in time-composited water samples collected after clarification, disinfection (chlorination), and granular-activated-carbon (GAC) filtration. In general, GAC filtration accounted for 53% of the removal of these compounds from the aqueous phase; disinfection accounted for 32%, and clarification accounted for 15%. The effectiveness of these treatments varied widely within and among classes of compounds; some hydrophobic compounds were strongly oxidized by free chlorine, and some hydrophilic compounds were partly removed through adsorption processes. The detection of 21 of the compounds in 1 or more samples of finished water, and of 3 to 13 compounds in every finished-water sample, indicates substantial but incomplete degradation or removal of OCs through the conventional DWT process used at this plant. ?? 2007 Elsevier B.V. All rights reserved.

  8. Emergy Evaluation of a Production and Utilization Process of Irrigation Water in China

    PubMed Central

    Chen, Dan; Luo, Zhao-Hui; Chen, Jing; Kong, Jun; She, Dong-Li

    2013-01-01

    Sustainability evaluation of the process of water abstraction, distribution, and use for irrigation can contribute to the policy of decision making in irrigation development. Emergy theory and method are used to evaluate a pumping irrigation district in China. A corresponding framework for its emergy evaluation is proposed. Its emergy evaluation shows that water is the major component of inputs into the irrigation water production and utilization systems (24.7% and 47.9% of the total inputs, resp.) and that the transformities of irrigation water and rice as the systems' products (1.72E + 05 sej/J and 1.42E + 05 sej/J, resp.; sej/J = solar emjoules per joule) represent their different emergy efficiencies. The irrigated agriculture production subsystem has a higher sustainability than the irrigation water production subsystem and the integrated production system, according to several emergy indices: renewability ratio (%R), emergy yield ratio (EYR), emergy investment ratio (EIR), environmental load ratio (ELR), and environmental sustainability index (ESI). The results show that the performance of this irrigation district could be further improved by increasing the utilization efficiencies of the main inputs in both the production and utilization process of irrigation water. PMID:24082852

  9. Beneficial uses of /sup 241/Am

    SciTech Connect

    Mangeng, C.A.; Thayer, G.R.

    1984-05-01

    This report assesses the uses of /sup 241/Am and the associated costs and supply. The study shows that /sup 241/Am-fueled radioisotope thermoelectric generators in the range of 1 to 5 W electrical provide the most promising use of kilogram amounts of this isotope. For medical uses, where purity is essential, irradiation of /sup 241/Am can produce 97% pure /sup 238/Pu at $21,000/g. Using a pyro-metallurgical process, /sup 241/Am could be recovered from molten salt extraction (MSE) residues at an estimated incremental cost of $83/g adjusted to reflect the disposal costs of waste products. This cost of recovery is less than the $300/g cost for disposal of the /sup 241/Am contained in the MSE residues.

  10. Integration of biopolymer production with process water treatment at a sugar factory.

    PubMed

    Anterrieu, Simon; Quadri, Luca; Geurkink, Bert; Dinkla, Inez; Bengtsson, Simon; Arcos-Hernandez, Monica; Alexandersson, Tomas; Morgan-Sagastume, Fernando; Karlsson, Anton; Hjort, Markus; Karabegovic, Lamija; Magnusson, Per; Johansson, Peter; Christensson, Magnus; Werker, Alan

    2014-06-25

    The present investigation has focused on generating a surplus denitrifying biomass with high polyhydroxyalkanoate (PHA) producing potential while maintaining water treatment performance in biological nitrogen removal. The motivation for the study was to examine integration of PHA production into the water treatment and residuals management needs at the Suiker Unie sugar beet factory in Groningen, the Netherlands. At the factory, process waters are treated in nitrifying-denitrifying sequencing batch reactors (SBRs) to remove nitrogen found in condensate. Organic slippage (COD) in waters coming from beet washing is the substrate used for denitrification. The full-scale SBR was mimicked at laboratory scale. In two parallel laboratory scale SBRs, a mixed-culture biomass selection strategy of anoxic-feast and aerobic-famine was investigated using the condensate and wash water from Suiker Unie. One laboratory SBR was operated as conventional activated sludge with long solids retention time similar to the full-scale (SRT >16 days) while the other SBR was a hybrid biofilm-activated sludge (IFAS) process with short SRT (4-6 days) for the suspended solids. Both SBRs were found to produce biomass with augmented PHA production potential while sustaining process water treatment for carbon, nitrogen and phosphorus for the factory process waters. PHA producing potential in excess of 60 percent g-PHA/g-VSS was achieved with the lab scale surplus biomass. Surplus biomass of low (4-6 days) and high (>16 days) solids retention time yielded similar results in PHA accumulation potential. However, nitrification performance was found to be more robust for the IFAS SBR. Assessment of the SBR microbial ecology based on 16sDNA and selected PHA synthase genes at full-scale in comparison to biomass from the laboratory scale SBRs suggested that the full-scale process was enriched with a PHA storing microbial community. However, structure-function relationships based on RNA levels for the

  11. Exploiting the Adaptation Dynamics to Predict the Distribution of Beneficial Fitness Effects.

    PubMed

    John, Sona; Seetharaman, Sarada

    2016-01-01

    Adaptation of asexual populations is driven by beneficial mutations and therefore the dynamics of this process, besides other factors, depends on the distribution of beneficial fitness effects. It is known that on uncorrelated fitness landscapes, this distribution can only be of three types: truncated, exponential and power law. We performed extensive stochastic simulations to study the adaptation dynamics on rugged fitness landscapes, and identified two quantities that can be used to distinguish the underlying distribution of beneficial fitness effects. The first quantity studied here is the fitness difference between successive mutations that spread in the population, which is found to decrease in the case of truncated distributions, remains nearly a constant for exponentially decaying distributions and increases when the fitness distribution decays as a power law. The second quantity of interest, namely, the rate of change of fitness with time also shows quantitatively different behaviour for different beneficial fitness distributions. The patterns displayed by the two aforementioned quantities are found to hold good for both low and high mutation rates. We discuss how these patterns can be exploited to determine the distribution of beneficial fitness effects in microbial experiments. PMID:26990188

  12. Exploiting the Adaptation Dynamics to Predict the Distribution of Beneficial Fitness Effects

    PubMed Central

    2016-01-01

    Adaptation of asexual populations is driven by beneficial mutations and therefore the dynamics of this process, besides other factors, depends on the distribution of beneficial fitness effects. It is known that on uncorrelated fitness landscapes, this distribution can only be of three types: truncated, exponential and power law. We performed extensive stochastic simulations to study the adaptation dynamics on rugged fitness landscapes, and identified two quantities that can be used to distinguish the underlying distribution of beneficial fitness effects. The first quantity studied here is the fitness difference between successive mutations that spread in the population, which is found to decrease in the case of truncated distributions, remains nearly a constant for exponentially decaying distributions and increases when the fitness distribution decays as a power law. The second quantity of interest, namely, the rate of change of fitness with time also shows quantitatively different behaviour for different beneficial fitness distributions. The patterns displayed by the two aforementioned quantities are found to hold good for both low and high mutation rates. We discuss how these patterns can be exploited to determine the distribution of beneficial fitness effects in microbial experiments. PMID:26990188

  13. Water-enhanced solubility of carboxylic acids in organic solvents and its applications to extraction processes

    SciTech Connect

    Starr, J.N.; King, C.J.

    1991-11-01

    The solubilities of carboxylic acids in certain organic solvents increase remarkably with an increasing amount of water in the organic phase. This phenomenon leads to a novel extract regeneration process in which the co-extracted water is selectively removed from an extract, and the carboxylic acid precipitates. This approach is potentially advantageous compared to other regeneration processes because it removes a minor component of the extract in order to achieve a large recovery of acid from the extract. Carboxylic acids of interest include adipic acid, fumaric acid, and succinic acid because of their low to moderate solubilities in organic solvents. Solvents were screened for an increase in acid solubility with increased water concentration in the organic phase. Most Lewis-base solvents were found to exhibit this increased solubility phenomena. Solvents that have a carbonyl functional group showed a very large increase in acid solubility. 71 refs., 52 figs., 38 tabs.

  14. Finite element analysis and modeling of water absorption by date pits during a soaking process.

    PubMed

    Waezi-Zadeh, Motahareh; Ghazanfari, Ahmad; Noorbakhsh, Shahin

    2010-07-01

    Date pits for feed preparation or oil extraction are soaked in water to soften before milling or extrusion. Knowledge of water absorption by the date pits helps in better managing the soaking duration. In this research, the process of water absorption by date pits was modeled and analyzed using Fick's second law of diffusion, finite element approach, and Peleg model. The moisture content of the pits reached to its saturation level of 41.5% (wet basis) after 10 d. The estimated coefficient of diffusion was 9.89x10(-12) m(2)/s. The finite element model with a proposed ellipsoid geometry for a single date pit and the analytical model fitted better to the experimental data with R(2) of 0.98. The former model slightly overestimated the moisture content of the pits during the initial stages of the soaking and the latter model generally underestimated this variable through the entire stages of soaking process. PMID:20593512

  15. A method for separating water soluble organics from a process stream by aqueous biphasic extraction

    SciTech Connect

    Chaiko, David J.; Mego, William A.

    1997-12-01

    The present invention relates to a method for separating water-miscible organic species from a process stream by aqueous biphasic extraction. In particular, the method includes extracting the organic species into a polymer-rich phase of an aqueous biphase system in which the process stream comprises the salt-rich phase, and, next, separating the polymer from the extracted organic species by contacting the loaded, polymer-rich phase with a water-immiscible organic phase. Alternatively, the polymer can be separated from the extracted organic species by raising the temperature of the loaded, polymer-rich phase above the cloud point, such that the polymer and the water-soluble organic species separate into two distinct aqueous phases. In either case, a substantially salt-free, concentrated aqueous solution containing the organic species is recovered.

  16. Stationary and non-stationary autoregressive processes with external inputs for predicting trends in water quality.

    PubMed

    Pinault, Jean Louis; Dubus, Igor G

    2008-08-20

    An autoregressive approach for the prediction of water quality trends in systems subject to varying meteorological conditions and short observation periods is discussed. Under these conditions, the dynamics of the system can be reliably forecast, provided their internal processes are understood and characterized independently of the external inputs. A methodology based on stationary and non-stationary autoregressive processes with external inputs (ARX) is proposed to assess and predict trends in hydrosystems which are at risk of contamination by organic and inorganic pollutants, such as pesticides or nutrients. The procedures are exemplified for the transport of atrazine and its main metabolite deethylatrazine in a small agricultural catchment in France. The approach is expected to be of particular value to assess current and future trends in water quality as part of the European Water Framework Directive and Groundwater Directives. PMID:18554747

  17. Numerical simulation of the process of airfoil icing in the presence of large supercooled water drops

    NASA Astrophysics Data System (ADS)

    Prykhodko, O. A.; Alekseyenko, S. V.

    2014-10-01

    We have developed a software package and related methodology that can be used to simulate the process of airfoil icing during flight in the presence of large supercooled liquid water drops in the oncoming airflow. The motion of a carrier medium is described using the Navier-Stokes equations for a compressible gas. The motion of water drops is described using an inertial model. The process of water deposition and its subsequent freezing on an airfoil surface are described by the method of control volumes based on the equations of conservation of mass, momentum, and energy for each element of the surface. The main results of simulations are presented for the icing of an NACA 0012 airfoil profile with "barrier" ice formation in the absence and presence of heating of the leading edge. The influence of the ice-growth thickness and position on the airfoil chord on the pattern of airflow and aerodynamic characteristics of airfoil is analyzed.

  18. Water reclamation and value-added animal feed from corn-ethanol stillage by fungal processing.

    PubMed

    Rasmussen, M L; Khanal, S K; Pometto, A L; van Leeuwen, J Hans

    2014-01-01

    Rhizopus oligosporus was cultivated on thin stillage from a dry-grind corn ethanol plant. The aim of the research was to develop a process to replace the current energy-intensive flash evaporation and make use of this nutrient-rich stream to create a new co-product in the form of protein-rich biomass. Batch experiments in 5- and 50-L stirred bioreactors showed prolific fungal growth under non-sterile conditions. COD, suspended solids, glycerol, and organic acids removals, critical for in-plant water reuse, reached ca. 80%, 98%, 100% and 100%, respectively, within 5 d of fungal inoculation, enabling effluent recycle as process water. R. oligosporus contains 2% lysine, good levels of other essential amino acids, and 43% crude protein - a highly nutritious livestock feed. Avoiding water evaporation from thin stillage would furthermore save substantial energy inputs on corn ethanol plants. PMID:24269825

  19. Combination of an electrolytic pretreatment unit with secondary water reclamation processes

    NASA Technical Reports Server (NTRS)

    Wells, G. W.; Bonura, M. S.

    1973-01-01

    The design and fabrication of a flight concept prototype electrolytic pretreatment unit (EPU) and of a contractor-furnished air evaporation unit (AEU) are described. The integrated EPU and AEU potable water recovery system is referred to as the Electrovap and is capable of processing the urine and flush water of a six-man crew. Results of a five-day performance verification test of the Electrovap system are presented and plans are included for the extended testing of the Electrovap to produce data applicable to the combination of electrolytic pretreatment with most final potable water recovery systems. Plans are also presented for a program to define the design requirements for combining the electrolytic pretreatment unit with a reverse osmosis final processing unit.

  20. Signal processing for determining water height in steam pipes with dynamic surface conditions

    NASA Astrophysics Data System (ADS)

    Lih, Shyh-Shiuh; Lee, Hyeong Jae; Bar-Cohen, Yoseph

    2015-03-01

    An enhanced signal processing method based on the filtered Hilbert envelope of the auto-correlation function of the wave signal has been developed to monitor the height of condensed water through the steel wall of steam pipes with dynamic surface conditions. The developed signal processing algorithm can also be used to estimate the thickness of the pipe to determine the cut-off frequency for the low pass filter frequency of the Hilbert Envelope. Testing and analysis results by using the developed technique for dynamic surface conditions are presented. A multiple array of transducers setup and methodology are proposed for both the pulse-echo and pitch-catch signals to monitor the fluctuation of the water height due to disturbance, water flow, and other anomaly conditions.